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Chapter 1

Résumé en francais

1.1 Introduction

Les protéines régulent les processus biologiques en interagissant avec d’autres molécules
(protéines, acides nucléiques, cofacteurs, ...) et en adaptant leur forme et leurs mouve-
ments aux changements environnementaux. Le comportement dynamique des protéines
est directement lié à leur fonction (Henzler-Wildman and Kern, 2007; Frauenfelder et al.,
1991). Les protéines sont également soumises à des contraintes évolutives et structurelles
afin de maintenir et / ou adapter leurs fonctions. Les protéines sont des macromolécules
formées par une ou plusieurs chaı̂nes d’acides aminés. Une mutation est un change-
ment dans la séquence d’acides aminés d’une protéine, qui peut affecter sa structure et /

ou sa fonction. Les mutations peuvent induire différents phénotypes : elles peuvent être
bénéfiques (gain de fonction), neutres ou délétères pour la fonction de la protéine. La plas-
ticité structurale d’une protéine peut être modifiée par des modifications génétiques (par
exemple des mutations ponctuelles) qui peuvent induire des effets sur des sites distants de
la protéine, provoquant ainsi des maladies. Par conséquent, caractériser les préférences
et changements conformationnels des protéines peuvent ouvrir la voie à la conception de
médicaments, pour comprendre les mécanismes qui sous-tendent les maladies, et pour les
prévenir/traiter.

Dynamique structurale des protéines

La façon dont une protéine se replie en une structure 3D est codée dans sa séquence
d’acides aminés. Néanmoins les protéines ne sont pas statiques. Au cours de leur vie,
elles subissent des changements conformationnels et s’associent avec des partenaires.
L’idée selon laquelle les protéines existent en solution comme un ensemble de confor-
mations est aujourd’hui généralement admise. La dynamique conformationnelle d’une
protéine est directement liée à sa fonction. (Henzler-Wildman and Kern, 2007; Frauen-
felder et al., 1991). Les simulations moléculaires atomistiques sont une méthode de choix
pour explorer l’espace conformationnel d’une protéine. L’accumulation de données de
dynamique moléculaire (DM) nécessite le développement de méthodes capables d’extraire
des informations biologiques pertinentes et de les visualiser d’une manière globale. Les
simulations de DM consistent à simuler (de façon computationnelle) le comportement
des protéines en solution. Elles fournissent des informations détaillées sur les fluctua-
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tions et les changements conformationnels des protéines et des acides nucléiques, en pro-
duisant des trajectoires (ensemble des positions de la protéine à des intervalles de temps
réguliers).

Dans les simulations en solvant explicite, la protéine est placée dans une boı̂te d’eau
virtuelle et ses mouvements sont simulés typiquement sur 0,01-10 microsecondes et en-
registrés. Une taille moyenne pour un système (molécules de protéines et d’eau) à étudier
avec des simulations de DM, est de 104 à 105 atomes et le temps de calcul est de plusieurs
jours ou années de CPU. Les simulations DM requièrent l’utilisation des ressources de
calcul haute performance.

Les résidus d’une protéine ”communiquent” entre eux, ce qui peut résulter en un cou-
plage allostérique (i.e. la propagation d’un signal de perturbation entre des sites distincts,
pouvant être situés loin dans la séquence ainsi que dans la structure de la protéine) qui
module la fonction de la protéine. Des efforts méthodologiques ont été précédemment
engagés pour identifier des groupes ou des chaı̂nes de résidus responsables de couplage
entre sites protéiques distants (Chiappori et al., 2012; Papaleo et al., 2012; Laine et al.,
2012; Raimondi et al., 2013; Pandini et al., 2013; Blacklock and Verkhivker, 2013; Mc-
Clendon et al., 2014; Invernizzi et al., 2014; Allain et al., 2014). Par exemple, la méthode
MONETA (Allain et al., 2014) s’est avérée utile pour identifier les chemins de commu-
nications pour les protéines régulées de façon allostérique et pour guider la mutagenèse
in silico (Laine et al., 2012). MONETA vise à aider l’analyse des données de simulations
de DM. Elle permet de mettre l’accent sur des régions ou des résidus spécifiques, à con-
dition que l’utilisateur possède une certaine connaissance du système. Des valeurs fixes
sont codées dans l’outil pour la plupart des paramètres, ce qui limite son application et sa
flexibilité.

Protéines intrinsèquement désordonnées (PID) Les PIDs sont caractérisées par leur
absence de structure tertiaire stable dans des conditions physiologiques in vitro (Dunker
et al., 2001) ainsi que le fait que leurs séquences partagent certaines propriétés, i.e., elles
ont des complexités plus faibles, leur nombre d’acides aminés hydrophobes est plus petit,
elles ont plus de résidus polaires ou chargés (Wright and Dyson, 1999; Ishida and Ki-
noshita, 2007) et leur séquence est faiblement conservée (Brown et al., 2011; Mei et al.,
2014). Ces résultats ont abouti à l’élaboration de nombreuses approches basées sur la
séquence pour prédire des régions désordonnées dans les protéines (He et al., 2009; Peng
and Kurgan, 2012; Deng et al., 2012).

Conservation évolutive and co-evolution

Le degré de variation pour chaque position le long d’un ensemble de séquences ho-
mologues peut être très large. On note que plus la variation à une position est faible,
plus le degré de conservation est élevé et donc la position biologique est importante.
Les régions où les résidus sont identiques ou quasi-identiques parmi toutes les espèces
sont appelées conservées. Différentes méthodes mesurent le niveau de conservation de
chaque position d’un ensemble d’alignement de séquences homologues (alignement de
séquences multiples (MSA)). Les analyses basées sur la notion classique de contenu
d’information capturent numériquement la variabilité d’un résidu à une position donnée
du MSA en fournissant un score numérique global. Ce score représente l’entropie de



1.1. INTRODUCTION 11

l’ensemble des séquences par la combinaison de l’information locale sur les positions
d’alignement (Akashi, 1999; Thompson et al., 1999; Duret et al., 2000; Lecompte et al.,
2001; Notredame, 2002; Wallace et al., 2005; Watson et al., 2005; Notredame, 2007).
Des informations supplémentaires peuvent être considérées, par exemple les propriétés
physico-chimiques des résidus et la conservation locale de ces propriétés (voir (Carbone
and Dib, 2011) pour une liste de références).

La co-évolution dans les protéines correspond à des changements sur des positions
différentes qui se produisent en même temps. La co-évolution est le signe d’une dépendance
fonctionnelle et/ou structurelle entre les deux positions. Les résidus co-évolués peuvent
être impliqués dans des interactions fonctionnelles entre des protéines et des biomolécules
(Lichtarge et al., 1996; Engelen et al., 2009; Lichtarge and Wilkins, 2010). Les sig-
naux de co-variation évolutiive ont également été exploités pour prédire avec une grande
précision des contacts natifs au sein de structures de protéines (Morcos et al., 2011),
d’interactions intermoléculaires (Champeimont et al., 2016) et de communication al-
lostérique intramoleculaire (Sung et al., 2016).

Les approches pour détecter les signaux de coévolution existants, peuvent être divisés
en deux groupes principaux: les méthodes statistiques et les méthodes combinatoires.
Les analyses de la première catégorie capturent la covariation entre les positions des
séquences alignées en mesurant des coefficients de corrélation (Goh et al., 2000; Fares
and Travers, 2006), l’information mutuelle (Atchley et al., 2000; Ramani and Marcotte,
2003; Gloor et al., 2005) et la déviation des distributions pour estimer le couplage ther-
modynamique entre les résidus (Süel et al., 2003b; Dima and Thirumalai, 2006; Weigt
et al., 2009; Sadowski et al., 2011). Par exemple, La méthode Statistical Coupling Anal-
ysis (SCA) (Lockless and Ranganathan, 1999) calcule la répartition des acides aminés à
une position par rapport aux changements à toute autre position et identifie un groupe de
résidus coévoluant, appelé secteur. La méthode Direct Coupling Analysis (DCA) (Mor-
cos et al., 2011) est une autre technique statistique pour détecter le signal coévolutif entre
les résidus. La force de la méthode réside dans sa capacité à démêler les interactions
directes des interactions indirectes. D’un autre côté, des approches combinatoires son
proposées pour surmonter les restrictions des approches statistiques (Fryxell, 1996; Pazos
and Valencia, 2001). Elles s’appuient sur l’extraction de sous-arbres à partir de l’arbre
phylogénétique des séquences associé au MSA. MST et BIS, sont deux approches combi-
natoires, proposées dans notre laboratoire, pour détecter les résidus coévoluant (Baussand
and Carbone, 2009; Dib and Carbone, 2012b). Leur avantage réside dans le fait qu’elles
peuvent traiter un petit ensemble de séquences. MST fonctionne mieux sur des ensembles
de séquences avec des divergences variables, alors que BIS exige des séquences qui sont
hautement conservées.

Sonder le paysage de mutations des protéines La question de savoir comment les vari-
ations de séquence d’acides aminés façonnent le paysage conformationnel des protéines et
impactent leur fonction est très importante en biologie, et encore loin d’être résolue. Des
technologies récemment mises au point, communément nommées ”balayage mutation-
nel profond”, permettent d’estimer les conséquences fonctionnelles de chaque change-
ment d’acide aminé possible à chaque position dans une protéine(McLaughlin et al.,
2012; Fowler and Fields, 2014; Figliuzzi et al., 2016). Ces développements sont promet-
teurs et les données produites peuvent être utilisées pour valider 1) des prédictions in
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silico et 2) des méthodes de calcul développées pour prédire les effets des mutations.
Plusieurs méthodes ont été mises au point pour prédire l’effet des mutations, par exemple:
Polyphen-2 (Adzhubei et al., 2010), SIFT (Ng and Henikoff, 2003), PoPMuSiC (Dehouck
et al., 2011), I-Mutant2.0 (Capriotti et al., 2005) and MUpro (Cheng et al., 2006). Un autre
exemple est le comptage simple des fréquences d’acides aminés à chaque position pour
prédire les résultats phénotypiques des mutations.

Quelques questions biologiques en biologie computationnelle

Les principales questions biologiques que nous abordons dans cette thèse, sont les suiv-
antes: 1) Quelles sont les positions dans une protéine qui sont très sensibles aux muta-
tions? 2) Quel est l’effet d’une substitution d’acide aminé particulière? 3) Quel est le lien
entre les contraintes structurales et évolutives? Et beaucoup d’autres questions connexes
comme: quelles régions de la protéine sont plus sensibles aux mutations et quelles sont les
chaı̂nes de résidus (chemin) à travers lesquelles les perturbations pourraient se propager à
travers la structure? Nous cherchons à caractériser le paysage mutationnel des protéines à
large échelle et de manière systématique à travers l’analyse conjointe des structures et des
séquences protéiques. Outre les questions biologiques mentionnées ci-dessus, nous abor-
dons plusieurs défis computationnels : 1) Conception d’une méthode qui permet l’analyse
de la dynamique des protéines à différents niveaux. 2) Développement d’un outil basé sur
la méthode proposée, pour étudier la dynamique conformationnelle des protéines d’une
manière systématique à grande échelle. 3) La capacité de se déplacer entre les différentes
représentations de protéines (1D, 2D, 3D et 4D) doit être incorporée dans le procédé.

1.1.1 Approches
Les réseaux de résidus corrélés dynamiquement jouent un rôle crucial dans la propaga-
tion de signaux de perturbation comme les mutations. Ces résidus sont réputés pour être
très conservés et/ou co-évolués. Cependant, la relation entre évolution des séquences
et dynamique structurale a été rarement explorée. Dans ce travail, nous avons exploité
les séquences et les structures protéiques pour prédire les effets des mutations et ex-
plorer la relation entre les contraintes structurales et évolutives. Nous avons développé
des méthodes et des mesures quantitatives pour extraire et décrire des signaux struc-
turaux/dynamiques et évolutifs de façon automatisée et à large échelle. En outre, nous
avons développé des mesures pour prédire les effets des mutations basés sur la séquence
et la structure/analyse de la dynamique. De plus, nous avons appliqué ces méthodes et
exploré la relation séquence-structure-fonction. Nous présentons un résumé des méthodes
et leurs applications dans les sections suivantes.

1.2 COMmunication MApping (COMMA)
Nous présentons COMmunication MApping (COMMA), une méthode pour caractériser
l’architecture dynamique d’une protéine et cartographier cette informations sur la struc-
ture en trois dimensions de la protéine. La méthode proposée est publiée (Karami et al.,
2016) et est disponible gratuitement www.lcqb.upmc.fr/COMMA. COMMA extrait les
informations pertinentes de la dynamique des protéines et les intègre de manière systématique.

www.lcqb.upmc.fr/COMMA


1.2. COMMUNICATION MAPPING (COMMA) 13

La méthode va au-delà des analyses classiques de simulations DM. Elle intègre les pro-
priétés dynamiques et définit des régions protéiques servant de blocs ou d’unités de com-
munication. COMMA fournit également des mesures pour prédire les effets des muta-
tions à grande échelle, identifier les régions/résidus importants dans une protéine, prédire
la flexibilité/désordre, et comparer différentes protéines ou différents états d’une même
protéine.

1.2.1 Principe de COMMA
Le principe de la méthode COMMA est représenté sur la Figure 1.1 et son algorithme
se déroule comme suit: 1) extraction de cinq propriétés dynamiques à partir d’un ensem-
ble de conformations: corrélations dynamiques locales, distances minimales, propensions
de communication, forces d’interaction non-covalentes et structures secondaires (box 1).
2) Ces propriétés sont utilisées pour grouper les résidus en (i) cliques indépendantes et
(ii) chemins de communication (boxes 2-3). Les cliques indépendantes sont des clusters
de résidus qui présentent des fluctuations atomiques concertées alors que les chemins de
communication sont des chaı̂nes non-covalentes de résidus qui se déplacent ensemble. 3)
Les informations obtenues à partir des cliques indépendantes et les chemins de commu-
nication sont intégrées dans un graphe, appelé Protein Communication Network (PCN)
(box 4). 4) Les composantes connexes sont extraites de ce graphique pour définir des
blocs de communication de la protéine (box 5). 5) Les chemins de communication qui
relient des éléments de structure secondaire différents sont utilisée pour définir des paires
de segments communiquants et mesurer la force de l’interaction (box 6). COMMA per-
met de visualiser les blocs de communication et les paires de segments communiquants
en les mappant sur la conformation moyenne des protéines.
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Figure 1.1: Représentation schématique du flux de travail de COMMA.

Un certain nombre de méthodes ont été développées précédemment pour caractériser
la dynamique conformationnelle des protéines et leur communication inter-résidus. Cepen-
dant, ces outils ne considèrent généralement que des corrélations dynamiques ou / et
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des interactions non-covalentes, alors que COMMA combine cinq propriétés dynamiques
différentes dans un cadre unifié. De plus, COMMA décrit la communication à différents
niveaux, à partir de résidus individuels jusqu’à l’ensemble de l’architecture dynamique de
la protéine. En particulier, l’identification de la communication des paires d’éléments de
structure secondaire est une caractéristique unique de notre méthode. Enfin, COMMA,
qui utilise package Python de DMTraj (?), ne dépend pas d’un package DM particulier et
peut gérer les formats les plus populaires utilisés dans la communauté de la dynamique
moléculaire.

1.2.2 Application de COMMA à trois protéines archétypales

Nous avons appliqué COMMA à trois protéines archétypes: (i), le domaine B de la
protéine staphylococcique A [PDB:1BDD] (résidus 1-60, NMR), une protéine hautement
stable, (ii) le domaine de liaison à l’ADN de la protéine humain suppresseur de tumeur
p53 [PDB:2XWR] (chaı̂ne A, résidus 89-293, 1.68Å résolution), une protéine hautement
flexible, (iii) la région cytoplasmique du récepteur la tyrosine kinase KIT [PDB:1T45]
(résidus 547-935, 1.90Å résolution), une protéine régulée de manière allostérique. Pour
chaque protéine, 2 répliques de 50 ns ont été réalisées et COMMA a été appliqué sur les
30 derniers ns (30 000 conformations) de chaque réplique.

KIT Le récepteur tyrosine kinase de type III KIT est impliqué dans des chemins de sig-
nalisation cruciales pour la croissance, la différenciation et la survie cellulaires (Lemmon
and Schlessinger, 2010; Edling and Hallberg, 2007; Qiu et al., 1988). La mutation de
l’aspartate en position 816 en une valine conduit à l’activation constitutive du récepteur et
est associé au développement de mastocytoses et de tumeurs stromales gastro-intestinales
(Orfao et al., 2007; Miettinen M, 2002). Il a été montré expérimentalement que la mu-
tation induit des effets à longue distance qui produisent un changement dans l’équilibre
conformationnel de la kinase (Gajiwala et al., 2009). COMMA a été appliqué à la région
cytoplasmique de KIT (331 résidus) sauvage et mutée D816V. Une analyse conformation-
nelle similaire avait été effectuée précédemment avec MONETA 2.0 (Laine et al., 2011a).

Les blocs de communication (CBs) trouvés dans KIT peuvent être classés en fonc-
tion des informations structurales et dynamiques utilisées pour les identifier. Dans le type
sauvage, COMMA détecte 8 CBsclique, qui représentent des régions de la protéine ayant
des fluctuations élevées, concertées à l’intérieur du CBclique mais indépendantes vis-à-vis
du reste de la protéine. 3 CBspath sont détectés en considérant des chaı̂nes de résidus
(chemins) liés de proche en proche par des interactions non-covalentes et se déplaçant en-
semble. Un CBpath constitué uniquement par des longs chemins (≥ 6 résidus), et formant
ainsi le ”noyau” de la communication à longue portée dans KIT, représente plus d’un tiers
de la protéine.

Les blocs de communication identifiés par COMMA dans les types sauvage et muté
ont été comparés. COMMA a détecté 3 CBspath de longue portée dans le mutant au lieu
d’1 dans le type sauvage. La mutation induit une refonte complète des CBs de KIT, car-
actérisé par une réorganisation de la hiérarchie entre les résidus communicant à longue
portée et à courte portée et par la fusion de plusieurs CBsclique. Soulignons que la posi-
tion 816 est située dans un CB dont une partie des résidus correspondent à des résidus
impliqués dans un réseau allostérique chez la kinase Src (Foda et al., 2015).
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Les résultats de COMMA ont été comparés à ceux obtenus avec MONETA 2.0. MON-
ETA identifie des segments dynamiques indépendants et des chemins de communication à
partir de simulations DM tout-atome (Allain et al., 2014), qui sont semblables aux cliques
indépendantes et aux chemins de communication identifiées par COMMA (Figure 1.1,
boxes 2 and 3). Cependant, COMMA exploite ces composants pour une analyse plus
approfondie (Figure 1.1, boxes 4, 5 and 6) d’une manière qui est complètement différent
de MONETA (Allain et al., 2014). Les composants de MONETA sont sensiblement
différents des blocs de communication identifiés par COMMA et MONETA ne décrit
pas les connexions entre eux. De cette comparaison, il est clair que COMMA apporte des
informations supplémentaires sur la définition et la disposition des unité dynamiques de
la protéine, par rapport à MONETA.

MONETA a précédemment permis de mettre en évidence un chemin de communica-
tion crucial dans le type sauvage de KIT qui relie deux régions, la boucle d’activation
et le segment juxta-membranaire (JMR), à travers le résidu D792 de la boucle cataly-
tique (Laine et al., 2012). Le chemin est interrompu par la mutation D816V. Dans la
représentation par COMMA du type sauvage de KIT, tous les résidus qui participent à
ce chemin sont contenus dans le CBpath de longue portée. En revanche, dans le mutant,
D792 est impliquée dans des chemins de communication plus courts par rapport au type
sauvage, et aucun chemin ne va de D792 au JMR. Les résultats de COMMA sont donc
en accord avec ceux de MONETA. De plus, en détectant des blocs de communication,
COMMA permet d’identifier d’autres chemins longs qui sont interrompus dans le mutant.
En particulier, le fait que le long CBpath dans le type sauvage est divisé en deux plus pe-
tits CBspath dans le mutant correspond à une rupture de communication entre N655 et les
résidus I653, H651 et K807. Fait intéressant, ces résidus ont été précédemment identifiés
comme formant un réseau d’interactions appelé ’frein moléculaire’ crucial pour la sta-
bilité de la conformation inactive des tyrosine kinases (Chen et al., 2007). Par conséquent,
l’analyse de COMMA permis de mettre en évidence un effet délétère de la mutation acti-
vatrice D816V sur ce ’frein moléculaire’ qui n’avait pas été détectée auparavant.

Comparaison des protéines A et p53 Le domaine B de la protéine A (BdpA) et le
domaine de liaison à l’ADN (DBD) de p53 représentent deux protéines archétypales en
termes de stabilité thermodynamique et cinétique. Alors que le second se déplie juste au-
dessus la température physiologique (Bullock et al., 1997), le premier se replie de manière
rapide et stable (Lei et al., 2008). En outre, BdpA se compose de trois hélices tandis que
DBD contient principalement des feuillets β. Nos analyses des deux protéines montrent
des résultats très différents. COMMA détecte deux très petits CBsclique dans BdpA, cor-
respondant aux deux extrémités et représentant 13% des résidus protéiques. En revanche,
les CBsclique identifiés dans DBD de la p53 représentent près de 60% de la protéine. Ils
englobent tous les résidus impliqués dans l’interaction avec l’ADN, qui adoptent des con-
formations variables dans les structures expérimentales de la protéine (Lukman et al.,
2013). COMMA permet également de caractériser l’évolution de CBspath en fonction
de longueur minimale des chemins de communication. Le noyau de communication de
BdpA, défini sur la base des chemins très longs (≥ 8 résidus), comprend toute l’hélice H3
et certains résidus de H1 et H2 (Figure 1.1, box 5, en jaune). Ceci est cohérent avec les
données expérimentales montrant que l’hélice H3 est la plus stable parmi les trois (Bai
et al., 1997). p53 DBD présente un comportement dynamique remarquablement différent,
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avec un noyau de communication composé de résidus provenant de différents brins β qui
constituent le premier feuillet β. Filtrer progressivement les chemins de communication
les plus courts exclut d’abord les boucles qui encadrent les brins β, puis les extrémités
des brins β du CB. Notez que la longueur des chemins ne dépend pas de la longueur des
brins β, i.e. de longs brins β ne présentent pas des chemins nécessairement plus longs.
Ces observations sur BdpA et p53 DBD montrent que COMMA est utile pour comparer
des protéines de natures très différentes d’une manière simple.

1.3 Mutations de l’hormone de croissance associées à des
maladies génétiques

L’hormone de croissance (GH) est composée de 4 hélices et régule une grande variété
de processus physiologiques, y compris la croissance et la différenciation des muscles,
des os, du cartilage et des cellules (Sundstrom et al., 1996). La régulation de la crois-
sance humaine normale est initiée par la liaison de GH à son récepteur (GHR), avec la
stoechiométrie 1: 2, GH se lie à 2 sous-unités identiques du récepteur (de Vos et al.,
1992). Bien que les 2 molécules de récepteur soient identiques, les sites de liaison de GH
sont différents. GH est composé de 4 hélices et trois d’entre elles sont impliquées dans
l’interaction avec GHR. Les hélices H1 et H4 forment le premier site de liaison, tandis
que H1 et H3 forment le second site de liaison. Le premier a une forte affinité pour GHR,
tandis que le second a une faible affinité.

Les deux sites de liaison sont couplés de manière allostérique, et il a été montré
précédemment que le site 2 peut être modifié par des mutations au niveau le site 1 (Walsh
et al., 2004). Des mutations ponctuelles du complexe GH-GHR peuvent causer des mal-
adies génétiques telles que la petite taille (Petkovic et al., 2010). Nous avons eu accès à un
groupe de ces mutants grâce à notre collaborateur, Serge Amselem (Service de Génétique
et d’Embryologie Médicales, UMR S933 INSERM/UPMC, Hôpital Armand-Trousseau)
et à partir de cette liste, nous avons sélectionné 2 mutations pathologiques, L124R et
R183H. Dans ce chapitre, nous démontrons l’impact de ces 2 mutations sur le comporte-
ment dynamique du complexe. Ensuite, nous caractérisons le couplage allostérique entre
les 2 sites de liaison, et étudions l’impact des mutations sur ce couplage. En outre, nous
établissons un lien entre la communication allostérique dans le complexe et les signaux
de co-évolution.

1.3.1 Effets des mutations révélés par l’analyse classique de DM
Nous rapportons ici un résumé de l’analyse DM du complexe GH-GHR. Des résultats
similaires ont été observés à partir de l’analyse de GH seul, mais ils ne sont pas présentés
ici pour éviter la redondance. Pour le complexe GH-GHR nous avons effectué 2 répliques
de 100 ns de simulations DM, puis pour chaque réplique, nous avons analysé les 70
dernières ns. Pour le monomère GH nous avons effectué 2 répliques de 50 simulations ns
DM et analysé les 30 dernières ns de chacun.

Tout d’abord, nous avons analysé les fluctuations atomiques des types sauvage et
mutés (MUL124R et MUR183H). Les résultats démontrent que le complexe de type sauvage
est plus rigide que les deux mutants. Pour les deux mutants, une région en boucle (sur les
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résidus L128 à R134) qui fait face aux 2 positions de mutation, présente des fluctuations
plus élevées par rapport au WT. D’autre part, les effets à longue portée de ces mutations se
traduisent aussi par une plus grande flexibilité dans certaines régions de boucle au niveau
des récepteurs par rapport au WT.

Les conformations DM moyennes des 2 répliques du complexe WT et des mutants,
MUL124R et MUR183H ont été superposées. Pour WT et MUL124R, les répliques moyennes
sont bien superposées dans la région de l’hormone, alors que des différences à longue
portée sont visibles dans les régions de boucle des deux récepteurs. Pour WT et MUR183H,
les structures moyennes sont presque superposées, cependant des régions en boucle de
GH et sur les deux récepteurs, adoptent des positions très différentes moyennes chez
MUR183H. Dans ces régions, les répliques WT affichent des profils très similaires alors
que les répliques mutantes se déplacent dans deux directions différentes. Ce comporte-
ment suggère également des effets de longue portée de la mutation dans les récepteurs.

Les liaisons hydrogène entre les positions de mutation et leurs résidus voisins ont été
étudiées pour WT, MUL124R et MUR183H. L’analyse a révélé l’affaiblissement du réseau
d’interactions autour de L124R en MUL124R et également autour de R183H en MUR183H,
alors que la mutation L124R génère de nouvelles interactions entre H1 et H4, reliant les
deux sites de liaison.

Nous avons étudié l’ensemble des interactions au niveau des 2 sites de liaison. Il est
frappant qu’un plus grand nombre de résidus sont impliqués dans les interactions au site
1 (31 résidus) avec une force d’interaction moyenne de 76%, par rapport au site 2 qui
n’implique que 19 résidus de GH avec une force d’interaction moyenne de 71%. Cette
observation est en accord avec l’affinité de liaison inférieure du site 2 (Walsh et al., 2004).
Une légère diminution globale de la force d’interaction est rapportée au cours des 70 ns
de simulation DM pour les 2 répliques de MUL124R par rapport à WT sur les 2 sites de
liaison, tandis que la baisse est plus marquée au site 2. D’autre part, pour les 2 répliques
de MUR183H, le long de 70 ns de DM simulations la force d’interaction est légèrement
réduite sur les 2 sites de liaison, mais la baisse est plus marquée sur le site 1.

1.3.2 Effets des mutations sur la communication du complexe

Nous avons appliqué une analyse COMMA pour étudier GH monomère et le complexe
GH-GHR, mais nous rapportons ici un résumé des résultats de l’analyse de GH-GHR WT
et MUs (Figure 1.2). Afin de comparer WT avec MUs (MUL124R et MUR183H), les chemins
de communication avec au moins 4 résidus dans les sites de liaison ont été extraits (Figure
1.2). Les CBspath sont colorés sur la structure et les chemins à des sites de liaison sont
présentés dans des lignes noires. Les chemins dans le premier site de liaison, entre la
GH et R1 ne sont présents que dans le WT, alors que les chemins dans le second site de
liaison, entre GH et R2 ne sont présents que dans les mutants. Dans MUL124R seulement
H1 de GH communique avec R2, alors que MUR183H démontre plus la communication
dans le site 2, entre H1 et H3 de GH et R2. Une telle augmentation des chemins pourrait
être liée à l’augmentation de la force d’interaction au site 2 pour MUR183H.

La réorganisation des blocs de MUL124R par rapport au WT correspond à l’augmentation
de la couverture du plus grand bloc (Figure 1.2a en rouge). Ce bloc de MUL124R cou-
vre plusieurs blocs du WT (colorés en rose foncé, jaune, marron et rose sur WT). Pour
MUR183H, des chemins nouvellement formées dans le mutant sont détectés à l’intérieur de
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Figure 1.2: Blocs de communication pour WT, MUL124R and MUR183H GH-GHR complexe.
Blocs de communication des chemins avec au moins 4 résidus pour a) WT, b) MUL124R and c)
MUR183H complexes. La représentation schématique des blocs sont représentés sur la gauche.
Toutes les chemins au niveau des sites de liaison sont représentés en traits noirs sur la structure du
WT, MUL124R et MUR183H .

GH (reliant les blocs rouges et violets à l’intérieur de GH sur WT) et R1 (assemblage de
blocs roses jaunes, bruns et rouges sombres à l’intérieur de R1 sur WT).

1.3.3 Analyse de coévolution de GH et de GH-GHR

Nous avons effectué une analyse de coévolution du complexe GH-GHR. Après avoir ef-
fectué l’alignement multiple de séquences (MSA) sur l’ensemble des séquences homo-
logues de GH-GHR, les résidus de co-évolution ont été détectés en utilisant BIS et re-
groupés avec CLAG. Par conséquent, 9 groupes différents ont été détectés. L’observation
importante concerne les chemins détectées au niveau du premier site de liaison (entre la
GH et GHR1), lorsqu’ils passent à travers les résidus qui appartiennent aux premier et
second clusters de résidus coévoluant. Les résidus coévoluant du premier groupe sont
détectés sur les hélices de GH, et sur Rec1D1 et Rec2D2 (figures 1.3 sphères vertes).
D’autre part, dans le groupe 2, les 4 résidus coévoluant sont détectés sur l’hormone et les
deux récepteurs (figures 1.3 sphères rouges). Les chemins du site 1 traversent à travers
ces résidus coévoluant et relie D171 sur H4 de GH à R203 sur R1 (figures 1.3). Cette
observation met en évidence l’importance de D171 sur GH et R203 sur R1, car ils sont
directement liés par très peu de chemins de liaison GH à GHR, alors qu’ils appartiennent
à deux groupes de résidus coévoluant différents.
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Figure 1.3: Les chemins reliant les résidus coévoluant. Les résidus coévoluant qui appartiennent
à des groupes 1 et 2 sont présentés dans les sphères et colorés en vert et rouge, respectivement.
Les chemins qui communiquent à site1 sont représentés par des lignes noires, ils relient les deux
pôles.

1.4 Infostérie des protéines

Nous proposons une méthode pour détecter les points chauds mutationnels délétères et
caractériser les positions des résidus qui sont bénéfiques pour la fonction de la protéine.
Nous identifions, en étudiant la dynamique conformationnelle, les régions de la protéine
qui sont cruciales pour la diffusion de l’information au sein de la structure de la protéine
et définissions ces régions formellement. Le nouveau concept de infostérie, de ’info’ -
information - et ’stérique’ - arrangement de résidus dans l’espace - est introduit.

PDZ3, est le troisième domaine PDZ de la protéine synaptique PSD-95. PDZ3 se
lie à la protéine de liaison à PDZ (CRIPT) riche en cystéines, ce qui permet à PSD-95
de s’associer au cytosquelette. Le ligand de PDZ3 est le peptide C-terminal dérivé de la
CRIPT (TKNYKQTSV). Des technologies récemment mises au point (”deep mutational
scanning”) permettent d’estimer les conséquences fonctionnelles de chaque changement
d’acide aminé unique possible à chaque position dans une protéine (Fowler and Fields,
2014). Ce balayage a été appliqué à un domaine PDZ dans le contexte cellulaire (McLaugh-
lin et al., 2012). Les auteurs ont montré qu’il y avait un bon chevauchement entre
l’ensemble des 20 positions affichant la plus haute sensibilité à la mutation et un réseau
physiquement contigu de résidus coévoluant détectés à partir d’un alignement multiple de
séquences d’homologues de PDZ (sector) (Lockless and Ranganathan, 1999).

1.4.1 Architecture dynamique du complexe PDZ-CRIPT

Nous avons effectué 5 répliques de 20 ns simulations DM pour PDZ-CRIPT et appliqué
COMMA pour analyser les 15 dernières ns de chaque réplique (Figure 1.4). L’organisation
de la façon dont l’information est transmise à travers le complexe PDZ-CRIPT a révélé
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que le ligand est presque entièrement intégrée dans la communication de la PDZ3 et peut
être divisée en deux parties: les résidus C-terminaux se déplacent avec 2 feuillets β de
PDZ3 comme un corps rigide, tandis que les résidus N-terminaux sont plus flexibles et
fluctuent de concert avec la boucle L2. Il a également révélé que les résidus PDZ3 encer-
clant le ligand ne se déplacent pas ou fluctuent tous ensemble, mais se rapportent à 2
régions différentes de la protéine (de couleur rouge/rose sur Figure 1.4a et marine/bleu
sur Figure 1.4b).

Figure 1.4: Blocs de communication (CB) identifiés par COMMA dans de type sauvage
PDZ3. La protéine est représenté sous la forme d’un dessin. (a) 2 CBspath sont détectées, de
couleur rouge et magenta. (b) 4 CBsclique sont détectés, dans différents tons bleus. La taille de
la saucisse reflète la tendance de chaque résidu à être détecté dans un CB. Les résidus dont les
substitutions ont été étudiés sont étiquetés.

Nous avons également étudié l’impact de 8 mutations dont les effets ont été rapportés
dans (McLaughlin et al., 2012): P311W (bénéfique), D366A, S371A and F325A (neutre),
I341A, H372A, G329A and A347F (délétère). Ils ont été choisis de manière à couvrir
différents endroits dans le domaine PDZ et pour représenter les différents phénotypes des
mutations. Des simulations DM des complexes mutés (5 répliques de 20 ns chacune) ont
été effectuées et les analyses classiques n’ont pas révélé de changements drastiques dans
leurs structures ou leurs mouvements (Figure 1.5a). En revanche, l’analyse COMMA
révèle des différences frappantes dans la communication des mutants par rapport au type
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sauvage (Figure1.5b-c).

Figure 1.5: analyse COMMA pour le complexe de PDZ-CRIPT. (a) Conformations DM
moyenne du complexe de type sauvage (WT) et de 8 mutants. (b) Les chemins de communi-
cation (> 3 résidus) détectés par COMMA sont mappés sur la conformation moyenne et affichés
sous forme de lignes noires. L’épaisseur de chaque segment est proportionnelle au nombre de
chemins reliant les deux résidus.(c) Les résidus traversés par au moins un chemin de communica-
tion (> 3 résidus) sont affichés sous forme de sphères noires, centrées sur leurs atomes C-α. La
taille de chaque sphère est proportionnelle au nombre de chemins passant par le résidu.

1.4.2 Caractériser l’effet de mutations uniques
Pour quantifier les différences entre les mutants et le type sauvage, d’abord, nous avons
étudié les chemins qui traversent chaque résidu du WT et MUs. Cette analyse a montré
que, en définissant de nouvelles mesures reflétant la façon dont les résidus communiquent
les uns avec les autres, nous avons été en mesure d’évaluer les effets des mutations
délétères. COMMA a révélé des différences frappantes entre les mutants et le type
sauvage, même si les systèmes ont été simulés sur des échelles de temps relativement
courtes. Plus précisément, les mutations délétères induisent une augmentation importante
du nombre et de la longueur des chemins de communication, ce qui entraı̂ne des CBspath

élargies et un plus grand nombre de résidus fortement connectés. La concentration de
chemins accrue pourrait être interprétée comme une rigidité accrue du complexe.

1.4.3 Prédire les points sensibles aux mutations
Notre caractérisation de l’infostérie du type sauvage a révélé que la plupart des posi-
tions sensibles aux mutations correspondent à des résidus servant de ponts critiques soit
entre la protéine et le peptide, ou un CBpath et un CBclique, ou deux éléments de struc-
ture secondaire/motifs distincts. Fait intéressant, certains résidus peuvent jouer des rôles
multiples. Cette analyse a également démontré que, en exploitant des simulations d’un
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seul état conformationnel du complexe PDZ-CRIPT type sauvage DM, sans comprendre
les changements conformationnels induits par toutes les mutations, nous pouvons prédire
80% des hotspots délétères avec une précision de 80%.

1.4.4 Prédire les points sensibles aux mutationsen utilisant l’analyse
de séquence

Nous avons effectué une analyse de séquence sur PDZ3 pour prédire ses hotspots muta-
tionnels. Nous avons utilisé la matrice de valeurs ∆E mesurées expérimentalement rap-
portées dans (McLaughlin et al., 2012) comme notre référence. En raison de la disponi-
bilité des données expérimentales qui révèle le paysage mutationnelle de PDZ3, nous
avons été en mesure d’examiner l’efficacité et la précision de nos résultats. Notre anal-
yse a conduit à la détection de positions sensibles avec une grande précision. Au-delà
de la détection de ces positions, les signaux de conservation sur un site unique, associés
à des termes d’interaction par paires entre chaque position et ses voisins structuraux,
peuvent être utilisés pour prédire les résultats phénotypiques de l’ensemble des 20 × 83
substitutions possibles. Une corrélation de 0.51 a été obtenue avec l’ensemble de matrice
expérimentale ∆E valeurs. Cette corrélation est très bonne, considérant le bruit contenu
dans les données expérimentales. De plus, il est nettement meilleur que ce qui est obtenu
à partir des méthodes plus sophistiquées (SIFT, Polyphen-2, PoPMuSiC, I-Mutant2.0 et
MUpro).

1.5 Désordre dans les ”coiled-coils”

Les ”coiled-coils” sont des motifs d’oligomérisation omniprésents chez les protéines, où
jusqu’à 7 hélices alpha amphipatiques (les nombres les plus courants d’hélices étant 2 et 3)
s’entrelacent ensemble de manière similaire aux fibres d’une corde. Les ”coiled-coils” les
plus courants ont une orientation ”gauche”. Ils présentent un motif de séquence spécifique
composé de sept résidus abcdefg où a et d sont hydrophobes et les autres résidus sont
apolaires. La stabilisation des ”coiled-coils” est principalement due à des interactions
hydrophobes (Isoleucines, leucines et Valines). Nous concentrons notre étude sur les do-
maines phosphatases de multimérisation (PDM) de deux virus, à savoir le virus Measles
(MeV) et le virus Nipah (NiV) qui adoptent une structure à enroulement en spirale (ori-
entation ”gauche”) en solution.

Le virus Measles (MeV) est un simple brin, non segmenté du virus négatif qui
appartient à la famille des Paramyxoviridae et il est encapsidé par les monomères de
la nucléoprotéine (N) (Blocquel et al., 2014). Plusieurs structures cristallines ont été
résolues pour le domaine P de multimérisation (PDM) de MeV. Dans MeV PDM, il y a
une rupture dans la réplique du motif abcdefg autour de L342 qui conduit à l’apparition
d’un coude à cette position. Par conséquent, les positions L339 à L342 forment une hélice
3 10 qui oriente K343 vers l’extérieur. Les structures diffèrent au niveau de la région C-
terminale. Dans une structure (code PDB: 3ZDO) (Communie et al., 2013), cette région
est ordonnée alors qu’elle est absente dans l’autre structure (Code PDB: 4BHV) (Blocquel
et al., 2014).
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Le virus Nipah (NiV) est un agent pathogène humain nouvellement émergé dans la
famille des Paramyxoviridae (Eaton et al., 2007) et aucun vaccin à usage humain n’a
encore été développé (Broder, 2012). Le domaine P de multimérisation (PDM) de NiV
couvre les résidus 470-578. La structure cristalline de NiV PDM a été résolue comme
un long ”coiled-coil” tétramérique parallèle (Bruhn et al., 2014), dans lequel l’extrémité
N-terminale de chaque monomère forme un capuchon à 2 hélices. Il y a un coude (”kink”)
formé à la position Pro 544 au milieu de chaque hélice.

Nous sommes intéressés à étudier 2 questions biologiques principales. Nous souhaitons
tout d’abord prédire la région désordonnée de PDM des deux virus mentionnés. Les
données cristallographiques sont contradictoires et nos collaborateurs, Sonia Longhi (Uni-
versité d’Aix-Marseille) et Denis Gerlier (Ecole Normale Supérieure de Lyon), ont réalisés
des expériences qui suggèrent que la partie C-terminale de PMD est intrinsèquement
désordonnée. D’autre part, les virus de Paramyxoviridae ont été montrées pour former
des trimères ou des tétramères. En particulier, les PDM des virus Measle (MeV) et Nipah
(NiV) ont été cristallisés comme tétramères. Nos collaborateurs ont démontré une forte
preuve expérimentale obtenue à partir d’études SAXS et spectroscopie UV lointain pour
l’existence d’une forme trimérique de NiV PDM en solution (Blocquel et al., 2013). Par
conséquent, il y a un fort intérêt pour savoir quele est la forme la plus stable pour les NiV
PDM et MeV PDM, le trimère ou le tétramère.

1.5.1 Analyse de COMMA

Nous avons produit 2 répliques de 50 ns de simulations DM pour chacun des MeV et
NiV PDM. Ensuite COMMA a été appliqué aux 30 dernières ns de chaque réplicat pour
extraire les blocs de communication pour chacun des systèmes (Figure 1.6). Il convient
de souligner que toutes les interactions non-covalentes squelette-squelette sont ignorées
pour l’analyse de COMMA. Bien que, dans chaque système, les hélices ont une séquence
identique, l’analyse de COMMA révèle un comportement différent pour chacune. Même
le long des hélices, des comportements différents sont observés. Par exemple, la seconde
moitié de la chaı̂ne A en MeV PDM est détecté comme un CBpath séparé, tandis qu’un
CBclique est détecté au niveau du coude à cette même région (ils ont un chevauchement de
6 résidus). Aussi, la deuxième moitié de la chaı̂ne B de NiV PDM, est détecté comme un
CBspath séparé. En outre, le regroupement des hélices est différent entre la PDM des deux
virus.

Nous avons examiné si ces observations, en particulier la détection d’une partie désordonnée
C-terminale, pourrait être reproduit pour toute structure ”coiled-coil”. Nous avons analysé
la protéine RhcC de marinus Staphylothermus qui a été résolu comme un tétramère ”coiled-
coil” d’orientation ”droite” (Figure 1.6c,f,i). Les résultats suggèrent un comportement
différent de ce que nous avons observé pour les ”coiled-coils” gauches. Aucun des
CBsclique identifiés au niveau des extrémités N- et C-terminaux du tétramère n’englobe
les quatre hélices, ce qui suggère l’absence d’une région désordonnée sur la structure de
RhcC. Ce que nous avons observé pour MeV et NiV PDM, ne se reproduit pas. L’absence
d’un noyau de communication unique à travers les hélices est visible ici, où chaque hélice
affiche un rôle indépendant. Une des raisons du contraste observé entre les deux types de
”coiled-coils”, pourrait être l’absence de coude dans RhcC.

Deux répliques de 50 ns de simulations DM ont également été produits pour chacun
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Figure 1.6: Blocs de communication de MeV PDM, NiV PDM et RhcC identifiés par
COMMA. Les blocs de communication sont mappés sur la conformation DM moyenne. Ces
blocs sont obtenus en tenant compte des chemins d’une longueur égale ou supérieure à 4 (a, b et
c), 8 (d) et 7 (e et f) les résidus. Les blocs de communication basé sur les cliques sont colorés dans
des tons bleus (g, h et i). Les résidus connus impliqués dans la région de désordre de MeV PDM
sont représentés par des bâtons.

des monomères MeV PDM, NiV PDM et RhcC. Dans les simulations des deux MeV et
NiV PDM, le déroulement de la C-term a été observée. Les hélices simples sont fortement
courbées lors de la simulation avec le kink servant de point d’articulation. La structure
moyenne révèle l’apparition d’une courbure importante avec un haut degré de flexion
pour tous les trois systèmes. Les résultats indiquent que MeV et NiV PDM n’adoptent
pas de conformations monomèriques stables en solution et que leurs parties C-terminales
sont intrinsèquement désordonnées. Nous pouvons interpréter ces résultats comme une
transition de l’état désordonné à l’état ”pas-si-ordonné” lors de la formation du tétramère
pour les deux PDMs.

Nous avons comparé nos résultats avec trois programmes basés sur la séquence: Coils
server, IUPred et ANCHOR, en utilisant leurs paramètres par défaut. Les trois méthodes
ne sont pas en mesure de détecter des régions flexibles et instables des ”coiled-coils”
de manière aussi précise que COMMA. Fait intéressant, COMMA fournit également un
moyen de distinguer les deux comportements différents. La présence d’un seul CBclique

sur les quatre chaı̂nes représentent la probabilité d’une région désordonnée, alors que
l’existence d’un autre type de CBsclique fournir indice sur la région flexible pour la dy-
namique des bobines enroulées.

1.5.2 Contrôle de la flexibilité/communication par des mutations
Pour sonder la stabilité du tétramère MeV PDM, nous avons muté 4 résidus hydrophobes
en position a du motif répété en acides aminés chargés négativement: V315D, L322D,
V346D et I353D. Les deux premières positions sont situées avant le ”kink” (première
moitié), tandis que les deux dernières positions sont situées après (seconde moitié). Des
simulations DM ont été réalisées pour chaque mutation, puis nous avons appliqué l’analyse
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Figure 1.7: Etude des mutants de communication MeV PDM. Blocs de communication iden-
tifiés par COMMA pour le a) de type sauvage et des mutations au niveau de la première moitié
des hélices, b) V315D et c) L322D) et des mutations au niveau de la seconde moitié des hélices,
d) I353D et e) V346D, sont mappés sur la conformation DM moyenne. Les CBspath sont obtenus
en tenant compte des interactions impliquant des chaı̂nes latérales et des chemins d’une longueur
égale ou supérieure à 4 et 8 résidus. Les résidus connus impliqués dans la région de trouble sont
présentés comme des bâtons. Les blocs de communication basée clique-identifiés par COMMA
sont colorées dans des tons bleus.

COMMA à l’ensemble des conformations obtenues pour chaque mutation (Figure 1.7).
Les mutations de la première moitié conduisent à l’augmentation du nombre de com-

munications directes dans la seconde moitié et à l’établissement d’une communication
entre les deux moitiés, qui à son tour a permis aux deux moitiés de communiquer à travers
la structure. D’autre part, les mutations de la deuxième moitié conduit à la fragmentation
des CBs et diminution de la communication entre les deux moitiés et à une augmentation
significative de la communication à l’intérieur de la première moitié. La comparaison
des résultats représentent une séparation entre les deux moitiés des hélices avant et après
le coude (”kink”). Le N-term est devenu plus stable et rigide, tandis que le C-term est
plus flexible. La caractérisation expérimentale des mutants pourrait aider à valider ces
hypothèses.

1.6 Conclusion
Dans cette thèse, nous avons présenté COMMA, une méthode pour décrire et comparer
les architectures dynamiques de différentes protéines ou différentes variantes de la même
protéine. COMMA extrait propriétés dynamiques de ensembles conformationnels pour
identifier les chemins de communication, des chaı̂nes de résidus liés par des interactions
stables qui se déplacent ensemble, et cliques indépendantes, des groupes de résidus qui
fluctuent de manière concertée. Les chemins et les cliques sont utilisés pour définir des
blocs de communication. Le terme ’communication’ se réfère à la façon dont l’information
est transmise à travers la structure de la protéine. L’originalité de la méthode réside dans
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le fait qu’elle représente les deux modes de communication différents, grâce à l’utilisation
des chemins et des cliques. Elle fournit une description de l’infostérie d’une protéine qui
va au-delà des notions de chaı̂ne, domaine et structure/motif secondaire, et au-delà des
mesures classiques de la façon dont une protéine se déplace et/ou change de forme.

Nous avons montré l’efficacité de notre approche pour fournir des idées mécanistiques
sur les effets des mutations délétères en identifiant les résidus qui jouent un rôle clé dans la
propagation de ces effets, à travers différentes études de cas. En outre COMMA révèle un
lien entre les clusters de coévoluant résidus et les réseaux de corrélations dynamiques. Il
permet de comparer les différents types de communication se produisant entre les résidus
et de hiérarchiser les différentes régions d’une protéine en fonction de l’efficacité de leur
communication. En outre, nous avons présenté une approche pour exploiter les séquences
et les dynamiques structurelles pour prédire un paysage mutationnel. La discussion des
exemples, a révélé comment l’étude de la conservation apporte des idées importantes
sur le rôle de chaque mutation. Notre méthode proposée pour étudier la dynamique des
protéines, peut détecter des régions de protéines qui sont sujettes à des troubles ou des
réarrangements conformationnels substantiels. En outre, l’analyse COMMA des ”coiled-
coils” nous a permis de proposer des mutations qui régulent leur stabilité.

Une analyse plus poussée peut être appliquée pour améliorer les méthodes proposées.
(1) La mise en place automatique des seuils utilisés dans COMMA a besoin d’être modifié
pour l’étude des grands complexes. (2) Le lien entre les clusters de coévoluant résidus et
les réseaux de positions corrélées dynamiquement doit encore être étudiée plus. (3) Nous
avons proposé une hypothèse de mutations pour réguler la stabilité des ”coiled-coils”,
l’étude expérimentale de ces mutations peut ajouter plus de preuves à nos résultats.
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In this chapter we explain the basics of biology that are necessary to understand the
following chapters and discuss the biological questions that we try to answer.

2.1 Some biological questions in computational biology
Proteins perform many biological functions, among which are chemical reaction catal-
ysis, cell structuring, signal transduction and gene expression. They regulate biological
processes by interacting with other molecules (proteins, nucleic acids, cofactors, ...) and
by adapting their shape and motions to environmental changes. Protein conformational
dynamics are directly linked to protein functions (Henzler-Wildman and Kern, 2007;
Frauenfelder et al., 1991). For example calmodulin is a protein that adopts completely
different conformations depending on the number of calcium ions bound to it and the
proteins (cellular partners or proteins from pathogens) it interacts with (Figure 2.1) (Lid-
dington, 2002; Vetter and Leclerc, 2003). Proteins are also subject to evolutionary and
structural constraints to maintain and/or adapt their functions.

Proteins are macromolecules formed by one or several chains of amino acids. The
structure of proteins is organized according to four different hierarchical levels: primary
structure represents the sequence of amino acids forming one protein, secondary struc-
tures are the set of local structures with regular repeats that are stabilized by hydro-
gen bonds formed between the backbone atoms of the amino acid residues (α-helices,

27
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β-sheets, turns, etc.) in the protein, tertiary structure is the arrangement of secondary
structures in 3D space that is stabilized by non-bonded interactions, salt bridges, hy-
drogen bonds, disulphide bonds, etc. and quaternary structure is the arrangement of
domains/chains within a protein or proteins within a macromolecular structure.

Proteins can be viewed as 1-dimensional (1D) sequences of amino acids or as 2-
dimensional (2D) arrangement of secondary structure elements or as highly dynamic
3-dimensional (3D) structures, interacting with each other to form complexes (quater-
nary structure). The analysis of the sequences of evolutionary related proteins enables
to identify conservation and coevolution signals. Amino acid residues highly conserved
through evolution are likely to be very important for the function of the protein. Pairs or
groups of residues that coevolve, i.e. they change at the same time during evolution, are
likely to cooperate or collectively contribute to the function of the protein. The analysis
of secondary structures in 2D space, enables to detect locally stable structure element.
Biologically pertinent information can also be extracted from the description of the po-
sitions of protein atoms in 3D space (protein tertiary structure) and their displacements
along time (protein motions). Proteins change their shape (conformation) in response
to environmental conditions. Such changes can be studied by simulating/characterizing
the dynamical behaviour of proteins in solution. Moreover, the interactions between do-
mains/chains/proteins can be studied from the analysis of complexes. Accounting for the
changes of proteins through time and/or the interactions of proteins between each other,
the study of complexes adds some levels of complexity to their description and permits to
better understand how they perform their functions.

Figure 2.1: Calmodulin in different environmental conditions. Calmodulin is a calcium sen-
sor and adopts different conformations depending on the level of calcium ion bound to it or the
interacting proteins (figure from (Berman et al., 2000)). The figure represents: a) Calmodulin
structure without calcium (Hitoshi Kuboniwa et al., 1995), b) Calmodulin after binding to cal-
cium (Chattopadhyaya et al., 1992), c) Calmodulin bound to two different enzymes shown in red
(calmodulin-dependent protein kinase II-alpha at the top (Wall et al., 1997) and myosin light chain
kinase on the bottom (Ikura et al., 1992)) and d) Calmodulin bound to a toxin (the edema factor
toxin from the anthrax bacteria) (Drum et al., 2002).

A mutation is a change in the amino acid sequence that may affect the structure and/or
function of the proteins. Mutations may have different phenotypic outcomes: they can be
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beneficial (gain-of-funtion), neutral or deleterious for the function of the protein.
A deleterious mutation may alter the structural plasticity of a protein and induces ef-

fects at distant protein sites, thereby provoking diseases. For example growth hormone
(GH) is a protein responsible for human growth and point mutations of this protein may
cause genetic diseases such as short stature (Petkovic et al., 2010). Another example is
given by the receptor tyrosine kinase KIT, where a cancer mutation located in the activa-
tion loop induces structural changes in a region distant by more than 15 Å (Figure 2.2).
Therefore, any finding of the protein conformational preferences and changes may lead
the way to designing drugs, recognizing the function of inheriting contagious diseases
and hopefully preventing them.

Figure 2.2: The effect of a mutation. The change in one amino acid on the sequence of KIT,
effects the structure. The mutation position is shown with a green sphere and the affected regions
are represented by dotted blue circles on the structure.

Although experimental methods such as X-ray crystallography and Nucleic Magnetic
Resonance (NMR) can provide high resolution atomic details of individual protein struc-
tures, it is difficult to determine experimentally the atomic structures of proteins at large-
scale and systematically assess the effects of mutations on the structure and/or dynamical
behavior of a protein (not all the mutations induce effects on the structure). It is true that
these techniques have improved dramatically in recent years, but it is equally true that
the study of the mutational landscape is drastically difficult. Therefore, the development
of computational prediction methods to analyze the effect of mutations in a large scale is
extremely important to help understand the molecular mechanisms of biological systems.

The main biological questions that we address in this thesis, are the following: 1)
What are the positions in a protein that are highly sensitive to mutations? 2) What is the
effect of a particular amino acid substitution? 3) What is the link between the structural
and the evolutionary constraints? And many other related questions like: which regions
of the protein are more sensitive to mutations and what are the chains of residues (path-
ways) through which the perturbations could propagate across the structure? We wish to
characterize the mutational landscape of a protein at large scale or in a systematic way
through the joint analysis of protein structure/sequence.

In addition to the biological questions mentioned above, we address the following
computational challenges in this thesis: 1) Design of a computational method that enables
the analysis of protein dynamics at different levels. 2) Development of a computational
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tool based on the proposed method, to study the conformational dynamics of proteins in a
systematic way at large scale. 3) The ability to move between different protein represen-
tations (1D, 2D, 3D and 4D) has to be embedded in the method. This feature enables to
extract relevant information from each representation and take advantage of them in the
joint analysis of structure/sequence and also the analysis of protein dynamics.

2.2 Background

2.2.1 Protein structures

The building blocks of proteins are amino acids. Amino acids are small molecules, that
are present in all living organisms. They consist of carbon, hydrogen, nitrogen and phos-
phor atoms. There are 20 different amino acids, they share a common scaffold comprised
of one acidic part (carboxylic acid, COOH) and one basic part (amine, NH2), along with
a side chain that is specific to each amino acid (Figure 2.3). They are encoded in two
ways, by a three letter code or a single letter code (A or ALA for Alanine, C or CYS for
Cysteine, etc.). Within proteins, amino acids are linked together by a peptidic bond and
they are called residues, as they lose their acid group when binding together (Berk et al.,
2000).

Figure 2.3: The general structure of amino acids. Amino acids are made from one amine group,
one carboxylic acid and different side-chains.

The way a protein folds into a 3D structure is encoded in its amino acid sequence.
Nevertheless proteins are not static. During their lifetime, they undergo conformational
changes and associate with partners (small molecules, other proteins, DNAs, RNAs, ...).
The view according to which proteins exist in solution as an ensemble of conformations
is nowadays generally accepted. Likewise, the necessity to characterize the dynamical
behaviour of a protein to improve our comprehension of its functioning in the cell is
increasingly acknowledged. The amino acid composition, structural context and possible
biochemical modifications (e.g. post-translational modification like phosphorylation) will
determine to what extent a protein segment or region will fold, be more and less flexible,
amenable to conformational changes and/or subject to disorder.
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2.2.2 Conformational dynamics

Protein conformational dynamics are directly linked to protein functions (Henzler-Wildman
and Kern, 2007; Frauenfelder et al., 1991). They are sensitive to environmental changes,
point mutations, ligand binding and post-translational biochemical modifications (Tsai
et al., 2008; Kern and Zuiderweg, 2003; Weber, 1972). Atomistic molecular simulation
is a method of choice to explore a protein’s conformational space. It has become increas-
ingly popular with the recent advances in computational power, force field accuracy and
sampling algorithm development (Piana et al., 2014; Dror et al., 2012). The accumulation
of molecular dynamics (MD) data calls for the development of methods able to extract
pertinent biological information and visualise it in a comprehensive way.

Molecular dynamics MD simulations consist in simulating (computationally) the be-
haviour of proteins in solution. They provide detailed information on the fluctuations and
conformational changes of proteins and nucleic acids, by producing trajectories (ensem-
bles of snapshots of the protein taken at regular time intervals). Physical movements of
atoms and molecules are approximated by using the Newton’s equation of motion (clas-
sical mechanics). MD was first introduced by Alder and Wainwright in the late 1950’s
(Alder and Wainwright, 1957, 1959) to study the interactions of hard spheres. Their stud-
ies paved the way for further improvements. The first MD simulation was carried out by
Rahman in 1964 using liquid argon (Rahman, 1964), the first MD simulation of a realis-
tic system using liquid water was performed in 1974 (Stillinger and Rahman, 1974) and
it was in 1977 that MacCammon et al. performed the first MD simulations of a protein
(McCammon et al., 1977).

In explicit solvent simulation, the protein is placed in a virtual box of water and its
motions are simulated typically over 0.01-10 microseconds and recorded. An average
size for a system (protein and water molecules) to be studied with MD simulations, is
104 to 105 atoms and the computational time is several CPU-days or CPU-years. For
example a protein of medium size (PDZ domain), comprised of 83 residues, contains
1238 atoms and each of this atom has 3 degrees of freedom (cartesian coordinates x,
y, z). The motions of the protein depends on the interactions between all atoms of the
protein and also between the protein atoms and the solvent (water molecules) surrounding
it, consequently in total the system has 42072 degrees of freedom. The computational
time needed to apply 20-ns MD simulations over this system with 14024 atoms (with
pmemd of Amber package (Case et al., 2012)), is about 440 hours (or more than 18
days) of CPU-time. MD simulations are CPU intensive, consequently the use of high
performance computing resources is necessary and the advances in parallel algorithms
allow the simulations to be distributed among several CPUs.

Numerous studies have used all-atom MD simulations in explicit solvent to success-
fully characterize mutation-induced changes on the structure, internal dynamics and ther-
modynamic stability of proteins, and predict their functional implications (see (Liu and
Nussinov, 2008; Dixit and Verkhivker, 2009; Laine et al., 2011b; Calhoun and Daggett,
2011; Couve et al., 2014; Chauvot de Beauchene et al., 2014; Da Silva Figueiredo Ce-
lestino Gomes et al., 2014; Kamaraj and Bogaerts, 2015; Saladino and Gervasio, 2016; Lu
et al., 2016) for a non-exhaustive list of references). Increasing computational resources
now permit to simulate mutated systems on time-scales that are functionally relevant (sev-
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eral tens of microseconds). Still, the complete description of a protein’s conformational
landscape is far beyond reach. In addition, identifying the meaningful protein properties
to be recorded in the simulations is not trivial and extracting pertinent biological informa-
tion often require some expert knowledge on the system studied.

Allosteric coupling The binding of a ligand at one site of a protein can have effect at
long distance on another binding site of the protein (Monod and Jacob, 1961; Monod
et al., 1965). This phenomenon is referred to as allostery and was first described by
Changeux 50 years ago (Changeux, 1961). Such propagation of a perturbation signal
between distinct sites, possibly located far away in the sequence and structure of the
protein, is modulated by ”communication” between residues. An example of allosteric
pathways responsible for a transition between tensed and relaxed states in heamoglobin is
shown here (Motlagh et al., 2014). Experimental evidence has demonstrated that protein
residues ”communicate” either through stable non-covalent interactions (Monod et al.,
1965) or via changes in their local atomic fluctuations (Schrank et al., 2009). Previous
methodological efforts were engaged toward the identification of clusters or chains of
residues mediating long-range communication in proteins (Chiappori et al., 2012; Papaleo
et al., 2012; Laine et al., 2012; Raimondi et al., 2013; Pandini et al., 2013; Blacklock and
Verkhivker, 2013; McClendon et al., 2014; Invernizzi et al., 2014; Allain et al., 2014) and
most of these methods construct a graph to represent the protein.

Figure 2.4: Allostery in heamoglobin. a) Proposed allosteric pathways that are responsible for the
transition from tensed form (T) to relaxed form (R) are represented on the structure of tetrameric
haemoglobin with red spheres and light blue sticks show the haem groups (Süel et al., 2003a).
b) The proposed allosteric transition of tetrameric haemoglobin by Perutz (Perutz and TenEyck,
1972; Perutz et al., 1998). The α-subunits and β-subunits are shown for each state with blue and
purple colors, respectively and the haem groups are shown in light blue. The salt bridges (shown in
red and blue spheres, representing positive and negative charges, respectively) hold the molecule
in T state. The transition from T to R state happens upon binding of oxygen (orange oval), which
leads to release of salt bridges and rotation of subunits by 15◦. This is along with binding of 60
water molecules to the R state that brings the equilibrium (Colombo et al., 1992). (Figure is taken
from (Motlagh et al., 2014).)

Graph representation In order to develop computational tools to analyse conforma-
tional dynamics of proteins, the representation of a protein as a graph is useful as it un-
ravels more easily and readily its properties at the atomic or residue level. Typically,
each node of the graph represents one residue of the protein and the edges represent non-
covalent interactions that stabilise the protein three-dimensional structure (Boede et al.,
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2007; Vishveshwara S, 2009). Information about the dynamical behaviour of the pro-
tein can also be integrated in several ways. For example, the edges can be constructed
and weighted based on the persistence values of the interactions computed over a con-
formational ensemble instead of their presence/absence in a static structure (Tiberti et al.,
2014). Other types of dynamic properties can be taken into consideration, such as dy-
namical correlations between residues (Seeber et al., 2011; Bhattacharyya et al., 2013;
Skjærven et al., 2014). Alternatively, every conformation of a MD trajectory can be rep-
resented by a contact graph and the evolution of the graphs can be analysed over time to
detect important structure-changing events of the graphs (Wriggers et al., 2009).

MONETA (Laine et al., 2012) A number of previously developed methods are dedi-
cated to the analysis of the dynamical behaviour of proteins and their inter-residue com-
munication (Skjærven et al., 2014; Schrank et al., 2009; Tiberti et al., 2014; Raimondi
et al., 2013; McClendon et al., 2014). In particular, the method MONETA proved use-
ful to identify communication routes in allosterically regulated proteins and to guide in
silico mutagenesis (Allain et al., 2014). MONETA is intended to assist the analysis of
MD simulation data in a manually-guided way. It enables to focus on specific protein
regions or residues provided that the user has some prior knowledge of the system. Fixed
values are encoded in the tool for most of the parameters, which limits its applicability
and flexibility.

2.2.3 Intrinsic disorder

Intrinsically disordered proteins (IDP) and intrinsically disordered regions (IDR) in
proteins are characterized by lack of stable tertiary structure under physiological condi-
tions in vitro (Dunker et al., 2001). Previous studies demonstrated that IDPs and IDRs
sequences share some properties, i.e., they have lower complexities, lower number of hy-
drophobic amino acids and more polar or charged residues (Wright and Dyson, 1999;
Ishida and Kinoshita, 2007), and low sequence conservation (Brown et al., 2011; Mei
et al., 2014). These findings resulted in the development of the numerous sequence-based
computational approaches to predict disordered regions in proteins (He et al., 2009; Peng
and Kurgan, 2012; Deng et al., 2012).

The interest in protein intrinsic disorder has grown over the recent years, as its preva-
lence in the proteome and its contribution to protein function has become more and more
evident. However, it remains unclear whether the physico-chemical properties associated
to intrinsic disorder are fundamentally different from those associated with flexibility and
conformational plasticity (Uversky and Dunker, 2010). Alternatively, one can think of
a continuous scale ranging from well-ordered stable states to completely unfolded states
and spanning a variety of degrees of flexibility or disorder. The rapidly growing body
of structural data available in the Protein Data Bank (Berman et al., 2000) provides a
means to infer the position of protein regions on such a scale. Specifically, previous stud-
ies have exploited the redundancy of the PDB, i.e. the fact that 2 or more models of
the same protein are available, which is the case of a majority of proteins in the PDB
(Uversky and Dunker, 2010). At one end of the spectrum, residues that adopt very simi-
lar conformations in all PDB structures are considered as stable and well-ordered. At the
other end, residues that are missing from all PDB structures are considered as intrinsically
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disordered (Bloomer et al., 1978; Bode et al., 1978). An interesting concept was intro-
duced to describe the residues lying in between, that of ambiguous or dual-personality
fragments/regions which are present in some PDBs and missing in others. There can be
several possible reasons explaining such discrepancies between PDB structures: different
crystallization conditions (Lian, 1998; Sidote and Hoffman, 2003), different space groups
(e.g. a solvent-exposed loop may be stabilized by crystal packing), different conforma-
tional states (e.g. active/inactive in the case of enzymes) (Frimpong et al., 2010), the
presence/absence of cofactors, ligands, biochemical modifications, etc (more references
in (Uversky and Dunker, 2010)). These differences highlight the fact that X-ray crystal
structures – which form the vast majority of the PDB – are static snapshots representing
stable states of the protein that were captured by crystallization among others that are
populated in solution (Harauz et al., 2009). By contrast, NMR models can give insights
on the dynamics of the protein and NMR techniques have been developed in recent years
to characterize intrinsically disordered proteins (Mizutani et al., 2008; Kobe et al., 2008;
Bahadur and Zacharias, 2008).

Tools to predict disorder In this section we present three web-based tools to predict
disordered region from protein sequence.

• Coils server (Lupas et al., 1991). This program measures the probability of a se-
quence to form coiled-coil conformations. It takes a sequence as input and com-
pares it with a database of known parallel two-stranded coiled-coils and measures
a score based on the similarity. Consequently, it compares the score with the dis-
tribution of scores for globular and coiled-coils proteins to obtain the probability of
forming coiled-coil conformation.

• IUPred (Dosztanyi et al., 2005). The program predicts the set of intrinsically disor-
dered regions from the protein sequence. The idea behind is to estimate the pairwise
energy content. The amino acids in globular proteins are able to form great num-
ber of favorable interactions, while intrinsically disordered proteins do not have the
potential to form enough favorable interactions, due to their lack of stable structure.

• ANCHOR (Dosztanyi et al., 2009). The program is based on the same energy esti-
mation approach as in IUPred and predicts the disordered binding regions. A large
set of disordered proteins experience a transition from disorder to order when bind-
ing to a structured partner. The idea behind ANCHOR is to look for disordered
segments that are not able to fold on their own through forming sufficient favor-
able interactions and presumably will gain stabilizing energy by interacting with a
globular protein partner.

2.2.4 Evolutionary conservation and co-evolution
Conservation Homologous sequences are the sets of sequences that have evolved along
billions of years, they are the results of evolution and natural selection and share the
same common ancestor. Every set of ancestral sequences are generated through mutation,
insertion and deletion. The degree of variation in every position along a set of homologous
sequences can be very diverse, the smaller the variation at a position, the higher the degree
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of conservation and hence the more biologically important the position. The study of
conservation rate for positions within homologous sequences can help to predict regions
that are more important and perturbations in those regions are more likely to be deleterious
(see (Carbone and Dib, 2011) for a list of references).

Different methods are proposed to measure the conservation level of every position
from a set of aligned homologous sequences (multiple sequence alignment (MSA)). Anal-
ysis have been based on the classical notion of information content, and captured nu-
merically the residue variability in a single position of the MSA, by providing a global
numerical score. This score represents the entropy of the set of sequences through the
combination of local information on alignment positions (Akashi, 1999; Thompson et al.,
1999; Duret et al., 2000; Lecompte et al., 2001; Notredame, 2002; Wallace et al., 2005;
Watson et al., 2005; Notredame, 2007). Additional information have been also consid-
ered, for example physico-chemical properties of residues and local preservation of those
properties along the MSA (see (Carbone and Dib, 2011) for a list of references).

Several methods are proposed to analyse the phylogenetic tree topology and the evo-
lutionary distances between a family of homologous sequences, in order to extract signals
of conservation and identify positions that are conserved at different levels of an evolu-
tionary tree (Faith, 1992; Mihalek et al., 2004; Landau et al., 2005; Sankararaman et al.,
2009; Carbone, 2014). A phylogenetic tree can be associated with the evolution of a group
of species, where leaves correspond to species in the group and the internal nodes repre-
sent their ancestors. In most of the cases, species that are positioned close to each other
share the same biological behavior, whereas in the case of long branches, phylogenetically
close species may represent different behaviours (Carbone, 2014). For the conserved pro-
tein domains, it is shown that phylogenetically close species share conserved patterns in
homologous sequences and for proteins that have diverged sequence identity (more than
50%), we can still find homologous sequences that display specific conserved patterns,
but this is more likely in distant species than in phylogenetically close ones (Carbone,
2014). Consequently, the topology of the phylogenetic tree plays a very important role to
identify conservation along the tree.

Conservation could be used as a method to predict mutational effects (de Juan et al.,
2013). Assuming that a protein in all the species performs the same function, however
it possesses changes on the sequences at some extent, one can infer the neutral effect of
such mutations. On the other hand, if different functions are observed among species,
then it suggests the deleterious effect of the mutations, because of the induced changes of
protein function.

Coevolution Coevolution in proteins refers to the cases where changes on different
positions, along the sequences, happen at the same time. Coevolution is the sign of a
functional and/or structural dependency between two positions, for example direct non-
covalent interactions, but it can be other things, like propagation of signals. In the case of
residue pairs forming non-covalent interactions, a change in one of the residues to another
amino acid with different physico-chemical properties, can break the interaction. In order
to maintain the interaction, the other residue involved in the pair has to be changed in an
acceptable manner. Such simultaneous changes may result in equal or even larger fitness
and be accepted by the natural selection. Nevertheless, in a large number of cases, the
structural constraints acting on conserved and/or coevolved residues remain to be identi-
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fied. A toy example of coevolution and conservation is represented in Figure 2.5.

Figure 2.5: Toy example for conservation and coevolution patterns.

The first method to investigate correlated changes of amino acids along homologous
sequences has been introduced about twenty years ago (Pollock and Taylor, 1997). A
large number of methods have been proposed to investigate the evolutionary constraints
in proteins through the analysis of sequences. The set of coevolving residues detected by
these methods, are usually close in the three-dimensional structure (Lockless and Ran-
ganathan, 1999; Baussand and Carbone, 2009; Jones et al., 2012; Morcos et al., 2013),
they are shown to contain approximately a third of protein residues and form connected
networks. Moreover, residues conserved through evolution can be involved in functional
interactions between proteins and biomolecules (Lichtarge et al., 1996; Pupko et al., 2002;
Lichtarge and Sowa, 2002; Glaser et al., 2003; Cheng et al., 2005; Innis, 2007; Engelen
et al., 2009; Lichtarge and Wilkins, 2010). In addition, due to the availability of exper-
imental data, the crucial role of such coevolving residues were proved for a few protein
complexes in the allosteric mechanism (Lockless and Ranganathan, 1999; Kuriyan, 2004;
Baussand and Carbone, 2009), to maintain short paths in network communication and to
mediate signalling (del Sol et al., 2006, 2007). Signals of evolutionary covariation have
also been exploited to predict with high accuracy native contacts within protein struc-
tures (Morcos et al., 2011), inter-molecular interactions (Champeimont et al., 2016) and
intramolecular allosteric communication (Sung et al., 2016).

The existing approaches to capture coevolution signals, can be divided into two main
groups: statistical methods and combinatorial methods. Analysis of the first category are
based on capturing covariation between positions of the aligned sequences by measuring
correlation coefficients (Goh et al., 2000; Fares and Travers, 2006), mutual information
(Atchley et al., 2000; Ramani and Marcotte, 2003; Gloor et al., 2005) and deviance of
distributions to estimate the thermodynamic coupling between residues (Lockless and
Ranganathan, 1999; Süel et al., 2003b; Dima and Thirumalai, 2006; Weigt et al., 2009;
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Sadowski et al., 2011; Morcos et al., 2011). Some of the statistical approaches use also
the phylogenetic tree for the analysis of sequences with similar degree of covariation
(Yeang and Haussler, 2007). The second group of sequence-based approaches to detect
coevolving residues, are based on sequence counting and the use of phylogenetic trees,
in order to overcome the restrictions of statistical approaches (Fryxell, 1996; Pazos and
Valencia, 2001; Baussand and Carbone, 2009; Dib and Carbone, 2012b). In those methods
the distance tree is extracted from the phylogenetic tree and the analysis are done based
on the combinatorics of distance subtrees.

MST (Baussand and Carbone, 2009) and BIS (Dib and Carbone, 2012b), are two
combinatorial approaches, proposed in our lab, to detect coevolving residues. In both
methods, the degree of conservation and coevolution is measured by constructing the
distance tree from the phylogenetic tree of MSA. Their advantage lies in the fact that
they can measure coevolution over a small set of sequences. MST performs better over a
set of sequences with variable divergence, while BIS requires sequences that are highly
conserved.

An example of coevolution is represented in Figure 2.6, where we aligned the homol-
ogous sequences of Growth Hormone (GH). A subset of the multiple sequence alignment
is shown here, where positions 158 and 165 display simultaneous changes. At position
158 several switches between Y and S are present, whereas at position 165, we have D
and H. But the changes are all concurrent, every time there is a Y at position 158, position
165 is D. On the other hand, if position 158 is S, there is a H at position 165, but it never
happens that at positions 158 and 165 we observe Y and H at the same time, nor S and D.

Figure 2.6: An extract of an alignment of homologous sequences of Growth Hormone.
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We present a short summary of state-of-the-art methods to extract the sequence con-
servation and coevolution signals, then we will focus on how these signals can help us to
detect mutational hotspots in proteins. Several methods are proposed to detect coevolu-
tion across sequences, but here we will give a concise summary for some of them that are
used in the following chapters.

SCA (Lockless and Ranganathan, 1999) The Statistical Coupling Analysis (SCA)
method, is one of the first proposed coevolution detection methods. SCA measures the
statistical coupling between residues, in other words it computes the distribution of amino
acids at one position with respect to the changes at any other position. From several Mul-
tiple Sequence Alignments (MSA), SCA quantitatively measures the statistical energy
coupling which is the degree of coevolution among the residues of the studied protein.
The given MSA should contain at least a set of 100 divergent sequences for good results,
identical residues will not add additional information and will only bias the results. In ad-
dition, SCA identifies a group of coevolving residues, called sector. The sector detected
for PDZ domian, by using SCA was shown to have significant functional importance for
the binding of the protein to its cognate ligand (McLaughlin Jr et al., 2012).

DCA (Morcos et al., 2011) Direct Coupling Analysis (DCA) method, is another statis-
tical technique to detect the coevolutionary signal between residues. The strength of the
method is in its ability to disentangle the direct interactions from indirect interactions. For
example if residue A interacts with residue B and B interacts with residue C, DCA can
enable us to differentiate between the indirect correlation of A and C and the direct inter-
action of A with B and B with C. But DCA needs a large number of diverged sequences
(more than 1000), to detect the coupling between residues, which is a weak point in case
of animal sequences. DCA was shown to predict efficiently the mutational landscape of
proteins, where authors reported the linear correlation between the experimental data of
deep sequencing and predicted values for four different proteins, TEM1, PDZ3, RRM and
β-glucosidase (Figliuzzi et al., 2016).

MST (Baussand and Carbone, 2009) Maximal SubTree method (MST) identifies net-
works of positions that represent coevolution/conservation through the study of phylo-
genetic tree of homologous sequences of a protein family. The underlying method is to
extract distance trees from multiple sequence alignments, analyse the combinatorial of
the subtrees and apply clustering with Cluster Aggregation (CLAG) (Dib and Carbone,
2012a) (Figure 2.7). MST can be applied to the sequences of protein families with vari-
able divergence. MST is efficient even with few number of sequences, as well as low
sequence identity.

BIS (Dib and Carbone, 2012b) Blocks In Sequences (BIS) method considers phylo-
genetic trees and multiple sequence alignments and extracts conserved and coevolved
positions. The specific feature of BIS, is its ability to find blocks of residues that are con-
secutive along the sequence and that represent coevolution patterns. Nevertheless, it also
allows to detect single residues. Then the CLAG clustering (Dib and Carbone, 2012a) is
applied to the blocks, in order to extract clusters of coevolving blocks. The mentioned
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procedure in shown in figure 2.7. BIS can be applied to protein families that are highly
conserved or represented by few sequences. The method is combinatorial in nature, it
measures the regularity of a pattern (its “perfection”) and the distance from this regu-
larity, with respect to minimal changes, induced by a few mutations. While, statistical
methods extract coevolution signals by measuring how distant two amino acids distribu-
tions are from noise. BIS have been exploited to extract the coevolving residues for the
prediction of protein-protein interactions network of Hepatitis C Virus with high accuracy
(Champeimont et al., 2016).

Figure 2.7: The underlying procedure of MST and BIS.

2.2.5 Probing proteins mutational landscape
The question of how amino acid sequence variations (re-)shape the conformational land-
scape of proteins and impact their function is one of outstanding importance in biology,
yet far from being resolved. This can be explained by several reasons.

First, systematically assessing the phenotypic outcomes of protein sequence changes
is very challenging, both experimentally and computationally. In part, this is due to the
combinatorial explosion arising from considering all possible substitutions for single to
multiple-point mutant variants. Another difficulty resides in the design of the experiment:
what should be measured as phenotypic outcome? For instance, disease-associated muta-
tions can impair protein function in various ways, by destabilizing the structural stability
of the protein, by shifting the equilibrium of conformation populations, or by modulating
the binding affinity of the protein for its cellular partner(s), to name a few. These effects
are difficult to probe directly and unambiguously. Second, the unprecedented breadth of
data now accessible though deep sequencing is not always obvious to interpret in terms
of protein structure and function.

Recently developed technologies, commonly designated as deep mutational scanning,
enable to estimate the functional consequences of every possible single amino acid change
at every position in a protein (McLaughlin et al., 2012; Fowler and Fields, 2014; Figliuzzi
et al., 2016). These developments are promising and the produced data can be used to
validate in silico predictions. Several methods have been developed for predicting the
effect of mutations, and here we describe a number of them briefly.

Independent position conservation Independent model (IND) is a very straightfor-
ward sequence-based approach to predict mutational phenotypic outcomes, based on
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counting sequences from a MSA to have a measure of conservation at each position,
called Independent model. In this model, the effect of substituting the amino acid a0,
present in the wild-type sequence at the position i, by another amino acid a is estimated
as:

∆Epred
i(a0→a) = log

(
#(ai)
#(a0

i )

)
(2.1)

where #(ai) (resp. #(a0
i )) is the number of sequences where a (resp. a0) occurs at po-

sition i. Intuitively, if fewer sequences have a in position i compared to a0, replacing
the latter by the former should be deleterious. This formula, that is called independent
model, represents the contribution of every amino acid at each position and reflects the
conservation effects. Similar approach was used to predict the phenotypic outcome of
mutations for four proteins (Figliuzzi et al., 2016). By measuring the overall Pearson
correlation, authors showed about R2 =39% of the variability in the experimental data of
deep sequencing for TEM1 protein, is explained by the independent model.

Polyphen-2 (Adzhubei et al., 2010) Polymorphism Phenotyping v2, is a tool to predict
the possible effect of a mutation on the structure and/or function of a human protein. The
method is based on using straightforward physical and comparative considerations. It
analyses information from conservation of the MSA, solvent accessibility of the residue
in the 3D structure (if available), annotations on the sequence in UniProt (binding, active
site, lipid and metal) and secondary structures.

SIFT (Ng and Henikoff, 2003) A web-based tool that predicts the impact of an amino
acid substitution on protein function based on sequence homology. PSI-BLAST (Altschul
et al., 1997) is used to generate the MSA for each protein from closely related sequences,
furthermore predictions are based on the conservation degree obtained over the MSA.

PoPMuSiC (Dehouck et al., 2011) Another web-based tool to predict mutational ef-
fects. The method is based on evaluating stability change of a protein due to a single
amino acid substitution, under the basis of protein’s structure. Stability change is mea-
sured as a linear combination of 13 statistical potentials to highlight the coupling between
protein sequence and structure descriptors of the wild-type and mutant, the variation of
amino acid volume due to the mutation (2 terms for wild-type and mutant) and an inde-
pendent term. The potentials are extracted from a database of known protein structures
and represent the correlation between different sequence or structure descriptors (De-
houck et al., 2006). In addition, a neural network is used to adjust the proportionality
coefficients according to the the solvent accessibility of the mutated residue.

I-Mutant2.0 (Capriotti et al., 2005) A web-server based on support vector machine
and the input vector consists of 42 elements, including the mutated and mutant amino
acid, their structural environment, the temperature and pH. It has the ability to consider
information from protein structure and/or sequence. After training/testing with a cross
validation procedure, I-Mutant2.0 represented an accuracy of 80% for the stability pre-
dictions using the structure information and 77% using sequence information.
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MUPro (Cheng et al., 2006) A support vector machine web-server to predict stability
changes induced by single mutations based on information from both sequence and struc-
ture. 84% of accuracy is reported for the method, when considering only the stability
changes. On the other hand, the accuracy of predictions that are only based on sequence
analysis, are reported to be close to the accuracy obtained using 3D information. Conse-
quently, MUpro overcomes other predictors that are based on structure information.

2.3 Approaches
Networks of dynamically correlated residues play a crucial role in propagating mutations
perturbation signals. These residues are expected to display high degrees of conserva-
tion and/or coevolution. Understanding the role of disease-related mutations on the link
between coevolution and dynamical correlation can help decipher the molecular mech-
anisms of mutation-induced allosteric deregulation. However the relationship between
sequence evolution and structural dynamics has been seldom explored yet. In this work,
we have exploited both protein sequences and structures to predict mutational effects and
to explore the relationship between structural and evolutionary constraints. We have de-
veloped methods and quantitative measures to extract and describe structural/dynamical
and evolutionary signals in an automated way and at large scale.

Specifically, we have developed a computational tool, COmmunication MApping to
analyze MD simulations and describe the dynamical architecture of proteins. Further-
more, we developed metrics to predict the mutational effects based on sequence and
structure/dynamics analysis. Moreover, we applied those methods to different systems
and explored the sequence-structure-function relationship. We characterized the effect of
genetic disease associated mutations on the structural stability of growth hormone and
its interaction with its receptor. We proposed an approach to identify critical residues in
proteins and predict the mutational outcome of mutations. We applied it to the third PDZ
domain of PSD95 in complex with its cognate ligand. Finally, we characterized the dy-
namical behaviour of coiled-coils proteins from two viruses to identify regions prone to
disorder and predicted the effect of mutations on the stability of the protein oligomer and
disorder content.

2.4 Organization of the thesis
COMMA method We present a method, COMmunication MApping (COMMA), to
describe the dynamical architecture of a protein starting from a conformational ensemble
representing a micro-state and typically generated by MD simulations. COMMA ex-
tracts dynamic features, namely dynamical correlations, distances, secondary structures
and non-covalent interactions. Then, it integrates them in a graph theoretic framework,
where it identifies communication blocks, which do not necessarily correspond to domains
or groups of secondary structure elements. The term ’communication’ refers to the way
information is transmitted throughout the protein structure. COMMA is a fully automated
tool with broad applicability. Then, we show the utility and capabilities of COMMA by
applying it to three archetypal proteins, namely protein A, the tyrosine kinase KIT and
the tumour suppressor p53. Our method permits to compare in a direct way the dynam-
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ical behaviour either of proteins with different characteristics or of the same protein in
different conditions. It is useful to identify residues playing a key role in protein allosteric
regulation and to explain the effects of deleterious mutations in a mechanistic way.

Growth hormone in complex with its receptor We present a consensus analysis of
dynamically correlated and coevolved residue networks of growth hormone (GH) in com-
plex which its receptors (GHR). The mutants of GH-GHR are involved in human ge-
netic diseases. We had access to a group of these mutants through the collaborations that
we have with Serge Amselem (Service de Génétique et d’Embryologie Médicales, UMR
S933 INSERM / UPMC, Hôpital Armand-Trousseau). We have examined the impact
of two disease-related mutations on the allosteric communication of growth hormone.
COMMA provided hints on how the mutation affects the dissociation of the hormone and
its receptors and enables us to detect the key pathways on the structure of the wild-type
and mutants. In addition the comparison of wild-type and mutant showed a rewiring of
Communication Pathways linking coevolved residues. Characterizing the dynamical be-
havior of proteins provides a means for physical understanding of coevolution signals.
Understanding the role of disease-related mutations on the link between coevolution and
dynamical correlation can help decipher the molecular mechanisms of mutation-induced
allosteric deregulation.

Mutational hotspot of PDZ domain We introduce that pertinent information can be
extracted by COMMA from the structural dynamics of the wild-type PDZ3-CRIPT pep-
tide complex to identify the highly deleterious positions with very high accuracy and
provide a physical interpretation of their sensitivity to mutations. Moreover, we propose
a protocol to predict the effects of specific amino acid substitutions and show that it en-
ables to distinguish deleterious mutations from neutral and beneficial ones. We will show
that, although the global shape from the molecular dynamics simulations of the wild-type
complex and of the mutants are indistinguishable, COMMA is able to reveal significant
differences in the communication between the protein residues. Consequently, we show
that even in the absence of mutation-induced conformational changes, meaningful infor-
mation is contained in and can be retrieved from the arrangement of residues in space and
their atomic fluctuations. We may refer to this property of proteins dynamical behavior as
”infostery”, from ’info’ - information - and ’steric’ - arrangement of residues in space -. In
addition, we propose an original approach to predict mutational effects based on protein
sequence and define a score derived from sequence analysis and structural information
to predict the phenotypic outcomes of the mutations. The predictive power of the score
is equivalent to or higher than more sophisticated state-of-the-art methods for predicting
mutational outcome.

Disordered proteins In the final chapter, we show that COMMA can detect protein
regions that are prone to disorder or substantial conformational rearrangements, with-
out requiring the input MD trajectory to actually sample the unfolded states of these re-
gions. Our collaborators, Sonia Longhi (Université d’Aix-Marseille) and Denis Gerlier
(Ecole Normale Supérieure de Lyon) performed significant project concerning disordered
coiled-coils and we had access to their experimental data. Consequently, we were able to
compare COMMA results with the experimental data. On the other hand, we discuss a
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hypothesis to control the stability of coiled-coils and propose mutations that modulate the
stability.
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In this chapter, we present the methods that we proposed to solve the general ques-
tions, discussed in previous section, that we are trying to answer. We will introduce our
proposed method to dissect the dynamical architecture of proteins. We will show how the
study of both sequences and conformational changes can help us to explain the effects
of deleterious mutations and to identify residues playing a key role in protein allosteric
regulation in a mechanistic way. The proposed method is published (Karami et al., 2016)
and is freely available to the community at www.lcqb.upmc.fr/COMMA.
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3.1 COMmunication MApping (COMMA)

Characterizing a protein’s motions and conformational changes can help predict the func-
tional outcomes of mutations and the molecular mechanisms underlying diseases. Molec-
ular dynamics (MD) simulations provide a way to probe the dynamical behavior of pro-
teins in solution. However, it is sometimes difficult to determine what is important in the
simulation and what property or measure should be recorded. The accumulation of MD
data calls for the development of methods able to extract pertinent biological information
and visualise it in a comprehensive way. Consequently, In recent years, methodological
efforts have been made toward the definition of new measures to describe the dynamical
architecture of proteins.

We are interested to develop a method that aims toward the extraction of pertinent
information from the dynamics of proteins and integrate them in a systematic way. There-
fore, the starting data are conformational ensembles, typically generated by MD confor-
mations, but it could also be a set of X-ray or NMR structures. We propose a method that
goes beyond the classical MD analysis, integrates the dynamical properties and defines
the dynamical architecture of a protein by introducing communication modules. Our
proposed method provides a measure to predict the effects of mutations at large scale,
to identify the regions/residues important in a protein, to predict flexibility/disorder, to
compare different proteins or state of a protein in a straightforward way and many other
applications.

In this section, we discuss the proposed method to dissect the dynamical architecture
of proteins. The present work builds up on previous efforts to propose a systematic dissec-
tion of protein architectures from a dynamical perspective. We provide Communication
Mapping (COMMA), a method for analysing molecular dynamics-based communication
in proteins and for mapping this information onto protein three-dimensional structures.

3.1.1 COMMA workflow

The workflow of the COMMA method is depicted on Figure 3.1. COMMA requires
as input a conformational ensemble representing the protein of interest. Typically, the
method is intended to analyse all-atom MD trajectories, but it is not restricted to this type
of data. The analysis can also be performed on conformations obtained from another
sampling method or on experimentally determined structures. The order of the input
conformations does not influence the results. The ensemble can be divided into several
sets, for example corresponding to several replicates of an MD simulation. COMMA
algorithm proceeds as follows:

1. It analyses the conformational ensemble and extracts five residue-based dynamic
properties: local dynamical correlations, minimum distances, communication propen-
sities, non-covalent interaction strengths and secondary structures (box 1).

2. These properties are used to group residues into (i) independent cliques and (ii)
communication pathways (boxes 2-3). Independent cliques are clusters of residues
that display concerted atomic fluctuations while communication pathways are non-
covalent chains of residues that move together (see below).
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3. The information obtained from the independent cliques and the communication
pathways is integrated in a graph, called Protein Communication Network (PCN)
(box 4).

4. Connected components are extracted from this graph to define protein communica-
tion blocks (box 5).

5. The communication pathways that link different secondary structure elements are
used to define communicating segment pairs and measure the strength of the inter-
action (box 6).

COMMA allows to visualise communication blocks and communicating segment pairs
by mapping them onto the protein average conformation.

3.1.2 Extraction of dynamic properties
COMMA defines several measures that reflect the dynamic properties of the query pro-
tein. These measures are computed from each input set of conformations. Four measures
are defined for pairs of residues and provide 4 distinct matrices. A fifth measure, which is
new compared to MONETA, evaluates the likeliness of a residue to belong to a secondary
structure.

Local dynamical correlations. Principal Component Analysis (PCA) is used to de-
scribe the atomic fluctuations of a protein through eigenvectors or modes. These modes
are linear combinations of degrees of freedom. Starting from n PCA modes, describing
the protein’s essential dynamics (i.e. explaining 80% of the total atomic fluctuations), we
apply a statistical technique called Local Feature Analysis (LFA) (Zhang and Wriggers,
2006). LFA computes residual correlations CorrLFA(i, j) between residues i an j as:

CorrLFA(i, j) =

3∑
d=1

n∑
r=1

Ψr(id)Ψr( jd) (3.1)

where d is the (x, y, z)-coordinate index of each Cα atom in a residue and Ψr is the PCA
rth eigenvector. The CorrLFA matrix is characterised by sparse correlation patterns (see
on Figure 3.1). The LFA formalism identifies a set of n seed residues that are highly
fluctuating and representative of these correlation patterns.

Minimum distances. The minimum distance dmin
i j between two residues i and j is de-

fined as the smallest distance between any pair of atoms (ai, a j) belonging to residues i
and j respectively, averaged over the set of conformations.

Communication propensities. We evaluate the communication propensity CP(i, j) of
residues i and j as the variance of the inter-residue distance (Chennubhotla and Bahar,
2007):

CP(i, j) =< (di j − d̄i j)2 > (3.2)

where di j is the distance between the Cα atoms of residues i and j and d̄i j is the mean
value computed over the set of conformations. Intuitively, the smaller the variance, the
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more efficient the communication. Consequently, small values of CP(i, j) are indicative
of efficient signal transmission between residues i and j.

Non-covalent interaction strengths. We consider as non-covalent interactions hydrogen(H)-
bonds and hydrophobic contacts, detected using the HBPLUS algorithm (McDonald and
Thornton, 1994). H-bonds are detected between donor (D) and acceptor (A) atoms that
satisfy the following geometric criteria: (i) maximum distances of 3.9Å for D-A and 2.5Å
for H-A, (ii) minimum value of 90◦ for D-H-A, H-A-AA and D-A-AA angles, where
AA is the acceptor antecedent. Hydrophobic contacts are identified with an inter-atomic
distance lower than 3.9Å. The detected non-covalent interactions are then classified as
backbone-backbone, backbone-side chain and side chain-side chain. For a given inter-
action type, an interaction strength matrix INT is computed, where each entry (i, j) de-
scribes the percentage of conformations in which at least one non-covalent interaction is
formed between some pair of atoms (ai, a j) in residues i and j.

Secondary structures. Secondary structures are defined from the backbone torsion an-
gles of the protein by using the DSSP algorithm (Kabsch and Sander, 1983). Three per-
sistence values pα, pβ and pturn are computed for each residue. They reflect the percentage
of conformations in which the residue is in a α-helix, a β-sheet or a turn, respectively. The
secondary structure type that has the highest persistence value is assigned to the residue.

3.1.3 Identification of independent cliques and communication path-
ways

By combining the measures described above, COMMA identifies groups of residues that
mediate communication across the protein structure, namely independent cliques and
communications pathways. The computation is performed on each input set of confor-
mations. These components are similar to the independent dynamic segments and com-
munication pathways identified by MONETA. What is new in COMMA is the automated
set up of pertinent values for the parameters depending on the system studied (see Param-
eters).

Independent cliques

It can happen that two seeds detected by LFA are very close in the sequence (distant
by less than 6 residues). In that case, only the seed with the highest fluctuations is re-
tained. The CorrLFA matrix is characterised by dense correlation patterns around every
seed identified by LFA analysis. COMMA defines independent cliques as protein regions
that correspond to these patterns. Each seed is extended into an independent clique S
of residues by means of an extension algorithm that progressively adds residues in such a
way that: (i) have a minimum distance smaller than 3.7Å and (ii) display concerted atomic
fluctuations, indicated by high local dynamical correlations, that is the mean correlation
value computed over S must be higher than a threshold (Laine et al., 2012):

1
|S |

∑
i, jεS

CorrLFA(i, j) ≥ CorrLFA
cut (3.3)
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The set up of CorrLFA
cut is explained below (see Parameters). The extension algorithm ter-

minates when no more residue can be added. At the beginning of the iteration, S is made
by the starting seed. We obtain k ≤ n independent cliques, where n is the initial number
of seeds. Notice that the algorithm identifying the independent cliques uses information
coming from the local dynamical correlation and the minimum distance matrices.

Communication pathways

Any two residues i and j are considered to communicate efficiently if their communication
propensity is below a threshold, CP(i, j) ≤ CPcut. They form stable non-covalent interac-
tion(s) if their interaction strength is higher than a threshold, INT (i, j) ≥ INTcut. The set
up of the parameters CPcut and INTcut is explained below (see Parameters). Starting from
a given residue, the algorithm implemented in COMMA generates a tree of paths that
satisfies the following conditions (Laine et al., 2012): two consecutive residues in a path
(i) are not adjacent in the sequence, (ii) form stable non-covalent interaction(s) and (iii)
communicate efficiently. We ask that all residues in a path communicate efficiently with
each other by transitivity. Notice that the algorithm identifying the pathway-based edges
uses the communication propensity and the interaction strength matrices, and also the
secondary structure information, that plays a role for the set up of CPcut (see Parameters).

3.1.4 Construction of a protein communication network
Independent cliques and communication pathways are used to construct a Protein Com-
munication Network (PCN) that reflects the way information is transmitted across the
protein 3D structure. A PCN(N,E) is a coloured graph defined by nodes N that cor-
respond to the residues of the protein and edges E that connect dynamically correlated
residues. Two types of edges are constructed:

1. Clique-based edges: two vertices representing residues i and j are connected by a
clique-based edge if they belong to the same independent clique and if CorrLFA(i, j) ≥
CorrLFA

cut .

2. Pathway-based edges: two vertices representing residues i and j are connected by
a pathway-based edge if they are consecutive in some communication pathway.

The PCN is constructed by considering the union of all independent cliques and all com-
munication pathways detected from every input set of conformations. Let us stress that
MONETA 2.0 (Allain et al., 2014) also provides a graph representing the protein, but
it uses communication pathways and covalent bonds to construct it and the criteria em-
ployed are markedly different from those employed by COMMA to construct the PCN.

3.1.5 Extraction of communication blocks and communicating seg-
ment pairs

COMMA final outputs consist in dynamics-based decompositions of the query protein
3D structure. Two types of decompositions are produced. The protein is divided into: (i)
communication blocks defined from the PCN, (ii) communicating segment pairs defined
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from secondary structure elements and communication pathways. These two notions are
completely new compared to MONETA.

Communication blocks

Connected components in an undirected graph are isolated subgraphs. COMMA extracts
connected components from the constructed PCN by using depth-first search (DFS) and
defines protein communication blocks. Different types of communication blocks are de-
fined, namely CBsclique and CBspath. CBsclique are directly extracted by considering all
clique-based edges. Different kinds of CBspath are defined, either by considering all but
very short (≤ 3 residues) pathways, or by considering pathways longer than a fixed num-
ber of residues. An interesting threshold is given by MPLcut as defined below (see Pa-
rameters).

Communicating segment pairs

COMMA detects pairs of protein segments that are part of secondary structure elements
(SSEs) and that are linked by communication pathways. A SSE is constituted by residues
(at least three) that adopt the same secondary structure type. First the algorithm identifies
all SSEs contained in the protein structure. Then, it computes, for each pair (A,B) of
SSEs: (i) the proportion PRAB (resp. PRBA) of residues from A (resp. B) that are linked
by at least a communication path to some residue from B (resp. A), (ii) the number of
pairs of residues (iA, jB) of A and B that are consecutive in a communication path, ContAB.
The residues of A and B that are linked by at least a communication path constitute a
communicating segment pair. The communication strength between the two segments
defined from A and B is calculated as:

S AB = PRAB ∗ PRBA ∗ContAB (3.4)

3.1.6 Visualisation
COMMA is interfaced with PyMoL (DeLano, 2002) to permit the visualisation of the
communication blocks and the communicating segment pairs by mapping them on the
protein average conformation. COMMA produces PyMoL files (.pml extension) that en-
able the following representations:

• Communication blocks: the residues involved in communication blocks are coloured
accordingly. Residues that are not detected in a communication block are coloured
in white. Non-covalent interactions between blocks are shown as thick black lines.

• Communicating segment pairs: given a pair of SSEs, the residues involved in the
communicating segments in these SSEs are highlighted in colours. Pathways-based
edges linking residues in the two segments are shown as thick black lines.

3.1.7 Parameters
COMMA uses several parameters and allows the user to tune them depending on the
question asked and on the system studied. However, to allow for a large-scale application
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of the method, we have implemented automated procedures to set up default values for
all parameters.

CorrLFA
cut . We define the LFA correlation threshold CorrLFA

cut to delimit protein regions
of concerted atomic fluctuations. CorrLFA

cut is chosen such that 5% of the values in the
CorrLFA matrix are higher than CorrLFA

cut (Figure 3.2A).

CPcut. We define a cutoff CPcut to determine whether the communication between two
residues is efficient. The strategy employed to set the value of CPcut is inspired from (Dixit
and Verkhivker, 2011). Intuitively, neighbouring residues in the sequence forming well-
defined secondary structures are expected to communicate efficiently with each other.
First, we evaluate the proportion pss of residues that are in an α-helix, a β-sheet or a turn
in more than half of the conformations. Then for every residue i, we compute a modified
communication propensity MCP(i) as:

MCP(i) =
1
8

i+4∑
j=i−4

j,i;1≤ j≤N

CP(i, j) (3.5)

where N is the total number of residues. CPcut is chosen such that the proportion pss

of MCP values are lower than CPcut (Figure 3.2B). Any two residues i and j for which
CP(i, j) < CPcut are considered to communicate efficiently.

INTcut. We define a threshold value INTcut to filter out non-covalent interactions that
are not relevant. For this, an adjacency graph is constructed from the INT matrix by
considering different cutoff values, ranging from 0.25 to 1, by increments of 0.05, and the
size of the largest connected component is computed (Figure 3.2A). INTcut is the largest
interaction strength for which the size of the largest component is maximal (Brinda and
Vishveshwara, 2005) (Figure 3.2C).

MPLcut. We define a threshold MPLcut to discriminate between short and long paths.
For this, connected components are extracted from subgraphs of the PCN. The subgraphs
are defined by considering pathway-based edges that are derived from communication
pathways comprising at least n residues, n ranging from 4 to 8. MPLcut is chosen as the
minimum path length for which we observe the largest reduction of the size of the largest
connected component (Figure 3.2D).

3.1.8 Related tools
As noted in the introduction (Chapter 1, Introduction), a number of previously devel-
oped methods are proposed to analyse the dynamical conformation of proteins and their
inter-residue communication. These tools however typically consider only dynamical
correlations or/and non-covalent interactions, whereas COMMA combines four different
dynamical properties in a unified framework (Table 3.1). Moreover COMMA describes
communication at different levels, from individual residues to the whole dynamical archi-
tecture of the protein. In particular, the identification of communicating pairs of secondary
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A

B

C

D

Figure 3.2: Parameters for Protein A. (A) Distribution of the local dynamical correlation
(CorrLFA) values. (B) Distribution of the communication propensity (CP) values. (C) Size of the
largest connected component (in residues) extracted from the adjacency graph constructed based
on non-covalent interaction strengths. (D) Size of the largest connected component (in residues)
extracted from the PCN by considering communication pathways with different minimum lengths.

structure elements is a unique feature of our method (Table 3.1). Finally, COMMA, which
uses MDTraj Python package (McGibbon et al., 2014), does not depend on a particular
MD package and can handle most popular formats used in the protein structural dynamics
community.



54 CHAPTER 3. METHOD

C
O

M
M

A
B

io3D
(Skjæ

rven
etal.,2014)

G
SA

Tools
(Schrank

et
al.,

2009)

PyInteraph
(Tib-

ertietal.,2014)
PSN

-E
N

M
(R

ai-
m

ondi
et

al.,
2013)

Tayloretal.(M
c-

C
lendon

et
al.,

2014)
Softw

ar e
availability

X
X

X
X

-
-

O
pen

source
X

X
X

X
-

-
D

ependencies
M

D
traj,

E
igen

and
N

um
py

python
packages

R
,M

uscle
G

N
U

,
Scien-

tific
L

ibrary,
G

R
O

M
A

C
S

Python,Pym
ol

-
-

Program
m

ing
language

C
+

+
,Python

R
C

Python
-

-
Inputtrajectory

form
ats

A
M

B
E

R
,

G
R

O
-

M
A

C
S,

N
A

M
D

,
C

H
A

R
M

M
...

G
R

O
M

A
C

S
(.dcd)

G
R

O
M

A
C

S
A

M
B

E
R

,
G

R
O

-
M

A
C

S,
N

A
M

D
,

C
H

A
R

M
M

...

-
-

D
ynam

icalproperties:
non-covalentinteractions

X
-

-
X

X
X

inter-residue
distances

X
-

-
-

-
X

secondary
structures

X
-

-
-

-
-

dynam
icalcorrelations

X
(PC

A
,

L
FA

,
C

P)
X

(E
N

M
-N

M
A

,
PC

A
)

X
(betw

een
fram

es)
-

X
(E

N
M

-N
M

A
)

X
(M

I)

D
escription

levels:
residue

X
-

X
X

X
X

secondary
structure

X
-

-
-

-
-

region
/dom

ain
X

X
X

-
-

X
protein

X
X

X
X

X
X

O
utputs:

protein
netw

ork
X

-
X

X
X

X
com

m
unicating

regions
X

(pathw
ay-

and
C

B
s clique)

X
(dynam

ic
do-

m
ain,

correlation
netw

ork)

X
(functional

fragm
ents)

-
-

X
(com

m
unities)

com
m

unicating
segm

ent
pairs

X
-

-
-

-
-

functionaldom
ains

-
-

X
-

-
X

pathw
ays

X
-

X
X

X
X

Table
3.1:

C
om

parison
betw

een
different

m
ethods

to
analyse

the
dynam

icalbehaviour
of

proteins
and

their
inter-residue

com
m

unication.
T

he
technicalcharacteristics

and
functionalities

ofC
O

M
M

A
and

offive
state-of-the-artm

ethods
are

reported.T
he

PSN
-E

N
M

m
ethod

(R
aim

ondietal.,2013)
and

the
m

ethod
proposed

by
Tayloretal.(M

cC
lendon

etal.,2014)are
notim

plem
ented

as
softw

are.



3.2. APPLICATION OF COMMA ON THREE ARCHETYPAL PROTEINS 55

3.2 Application of COMMA on three archetypal proteins

Here, we have applied COMMA on three following case studies to illustrate its capabili-
ties.

3.2.1 Molecular dynamics simulations

We applied the COMMA method to three archetypal proteins: (i) the B domain of staphy-
lococcal protein A [PDB:1BDD] (residues 1-60, NMR), a highly stable protein, (ii) the
DNA-binding domain of the human tumour suppressor protein p53 [PDB:2XWR] (chain
A, residues 89-293, 1.68Å resolution), a highly flexible protein, (iii) the cytoplasmic re-
gion of the receptor tyrosine kinase KIT [PDB:1T45] (residues 547-935, 1.90Å resolu-
tion), an allosterically regulated protein. The following molecular dynamics protocol was
applied to all studied systems. More details on the MD trajectories of the wild-type KIT
and its oncogenic mutant D816V can be found in (Laine et al., 2011a).

Set up of the systems The 3D coordinates for the studied proteins were retrieved from
the Protein Data Bank (PDB) (Berman et al., 2000). All crystallographic water molecules
and other non-protein molecules were removed. The structure of the DNA-binding do-
main of P53 contains a bound zinc ion. At physiological temperature, Zn2+ rapidly dis-
sociates from the protein and the resulting Zn2+-free P53 is folded and stable (Butler and
Loh, 2007, 2003). Consequently, we removed the zinc ion from the initial PDB structure
and simulated P53 in the apo form. The mutated form of KIT was generated by in silico
substitution of the aspartate (D) in position 816 into a valine (V) using MODELLER 9v7
(Marti-Renom et al., 2000). All models were prepared using the LEAP module of AM-
BER 12 (Case et al., 2012), with the ff12SB forcefield parameter set: (i) hydrogen atoms
were added, (ii) Na+ or Cl− counter-ions were added to neutralise the systems charge,
(iii) the solute was hydrated with a cuboid box of explicit TIP3P water molecules with
a buffering distance up to 10Å. The environment of the histidines was manually checked
and they were consequently protonated with a hydrogen at the ε nitrogen. The details of
structure preparation and solvent models are given in Table 3.2.

Minimisation, heating and equilibration The systems were minimised, thermalised
and equilibrated using the SANDER module of AMBER 12. The following minimisation
procedure was applied: (i) 10,000 steps of minimisation of the water molecules keep-
ing protein atoms fixed, (ii) 10,000 steps of minimisation keeping only protein backbone
fixed to allow protein side chains to relax, (iii) 10,000 steps of minimisation without any
constraint on the system. Heating of the system to the target temperature of 310 K was
performed at constant volume using the Berendsen thermostat (Berendsen et al., 1984)
and while restraining the solute Cα atoms with a force constant of 10 kcal/mol/Å2. There-
after, the system was equilibrated for 100 ps at constant volume (NVT) and for further
100 ps using a Langevin piston (NPT) (Loncharich et al., 1992) to maintain the pressure.
Finally the restraints were removed and the system was equilibrated for a final 100-ps run.
Backbone deviations obtained after equilibration are smaller than 1.3 Å (Table 3.2).
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Protein A P53 KIT WT KIT MU
Total charge of counter-ions +2 -3 +1 0
Water box dimensions (Å3) 75x49x49 76x73x64 77x73x81 77x73x81
Number of water molecules 4 174 8 215 13 195 13 197
Total number of atoms 13 477 27 755 44 870 44 879
Deviation after equilibration (Å) 0.83 0.65 1.29 1.13

Table 3.2: MD preparation and equilibration details. The counter-ions employed to neutralize
the systems are Na+ and Cl−. Root mean square deviations were computed on the backbone atoms
of the equilibrated conformations versus the initial template.

Production of the trajectories For every protein, 2 replicates of 50 ns, with different
initial velocities, were performed in the NPT ensemble using the PMEMD module of
AMBER 12. The temperature was kept at 310 K and pressure at 1 bar using the Langevin
piston coupling algorithm. The SHAKE algorithm was used to freeze bonds involving
hydrogen atoms, allowing for an integration time step of 2.0 fs. The Particle Mesh Ewald
method (PME) (Darden et al., 1993) was employed to treat long-range electrostatics. The
coordinates of the system were written every ps. Standard analyses of the MD trajectories
were performed with the ptraj module of AMBER 12.

Stability of the trajectories The simulations of wild-type and mutated KIT were pre-
viously shown to have good stability (Laine et al., 2011a). To assess the stability of the
B domain of protein A and of the DNA-binding domain of p53, the Cα atoms root mean
square deviation (RMSD) from the equilibrated structure, the stability of secondary struc-
tures and the radius of gyration were recorded along each 50-ns MD simulation replicate
(Figure 3.3 and Figure 3.4). The B domain of protein A deviates by no more than
2.2Å (Figure 3.3A) from the equilibrated structure and has an average radius of gyra-
tion of 10.5±0.1Å (Figure 3.3D). p53 DNA-binding domain displays RMSD values in
the range 1.5-3.0Å (Figure 3.4A) and its radius of gyration values 16.6±0.1Å (Figure
3.4D). Secondary structure profiles are highly stable for both replicates of both proteins
(Figure 3.3B-C and Figure 3.4B-C). Overall, the evolution of RMSD, secondary struc-
ture and radius of gyration shows that protein A and p53 are stable over the 50-ns runs.
The systems are fully relaxed after 20 ns (Figure 3.3A and Figure 3.4A). Consequently,
COMMA was applied on the last 30 ns of every replicate. COMMA input sets for the
three study cases are made of 30,000 conformations.

Convergence of the trajectories To evaluate the convergence of the dynamic proper-
ties extracted by COMMA, a convergence analysis (Lyman and Zuckerman, 2006) was
applied to the MD trajectories of the studied systems. The analysis comprises two steps:
(i) a set of reference conformations are identified, (ii) all MD conformations from the tra-
jectory are clustered into corresponding reference groups. Each reference conformation
is first picked up randomly and the conformations distant by less than an arbitrary cutoff

r are binned with it. Then the trajectory is split in two halves and conformations from
each half are grouped based on their RMSD from each reference conformation. If the
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Figure 3.3: Stability analysis of the B domain of Protein A over 50 ns of MD simulations. A)
RMS deviations from the equilibrated structure, computed on the Cα atoms. The first and second
MD replicates are in blue and cyan. B,C) Secondary structures recorded over simulation time for
the first (B) and second (C) MD replicates. D) Radius of gyration.

simulation has converged, then each reference cluster should be populated equally from
both halves of the trajectory.

The RMSD was computed on the Cα atoms and the cutoff r was empirically chosen
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Figure 3.4: Stability analysis of P53 DNA-binding domain over 50 ns of MD simulations. A)
RMS deviations from the equilibrated structure, computed on the Cα atoms. The first and second
MD replicates are in blue and cyan. B,C) Secondary structures recorded over simulation time for
the first (B) and second (C) MD replicates. D) Radius of gyration.

so as to get a reasonable number of representative MD conformations, typically between
2 and 7. To reduce the bias resulting from the random choices of the references, the
process was repeated 5 times for each analyzed trajectory. The convergence quality of
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each simulation was measured using a convergence criterion c defined as (Chauvot de
Beauchene et al., 2014):

c = 1 − (
1
5

5∑
k=1

#(lone reference conformations)
#(reference conformations)

) (3.6)

A lone reference conformation is a reference conformation that is not visited in one half
of the trajectory (less that 1% of the frames in the corresponding reference group). The
convergence criterion c is comprised between 0 and 1; a value of 1 corresponds to an
optimal convergence. All trajectories show good to very good convergence, with values
of c ranging between 0.6 and 0.9 (Table 3.3). This indicates that the conformational
sampling furnished by the last 30 ns of each productive MD run is sufficient to apply
COMMA.

Protein A P53 KIT WT KIT MU
Replicate 1 2 1 2 1 2 1 2
Cutoff (Å) 1.5 2.2 2.3 2.3 2.5 2.5 2.5 2.5
# reference conformations 2-3 2-6 2-4 2-5 4-7 5-7 2-4 5-6
Convergence criterion c 0.9 0.8 0.9 0.9 0.6 0.4 0.7 0.6

Table 3.3: Convergence analysis of the two MD replicates of each studied system. The analysis
was applied 5 times on the last 30 ns of every productive run. The convergence criterion c was
calculated as described in Methods.

3.2.2 Communication blocks in KIT protein and its oncogenic mu-
tant

Presentation of KIT

KIT is a receptor tyrosine kinase of type III implicated in signalling pathways crucial
for cell growth, differentiation and survival (Lemmon and Schlessinger, 2010; Edling and
Hallberg, 2007; Qiu et al., 1988). The mutation of the aspartate located in position 816 to
a valine leads to the constitutive activation of the receptor and is associated to mastocy-
toses and gastrointestinal stromal tumours (Orfao et al., 2007; Miettinen M, 2002). It was
shown experimentally that the mutation induces long-range effects that lead to a shift in
the conformational equilibrium of the kinase away from the auto-inhibited state, resulting
in a 536-fold increased activation rate (Gajiwala et al., 2009). COMMA was applied to
the cytoplasmic region of KIT (331 residues), starting from 2 replicates of 50-ns MD sim-
ulations of the wild-type and D816V-mutated proteins (Laine et al., 2011a) (see Methods).
The method identified 11 (resp. 9) communication blocks in the wild type (resp. mutant)
(Table 3.4). These blocks reflect the way information is transmitted across the protein
structure (see Methods). They were mapped onto the average MD conformations of the
wild-type and mutated proteins for visualisation (Figure 3.5A). They were also used to
derive schematic representations of the two proteins (Figure 3.5B).
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Wild type
name A B C D E F G H I J K - -
size (res.) 22 11 32 16 14 13 11 127 160 9 4 - -
Mutant
name - B’ C’ D’ - - G’ H’ I’ J’ - L’ M’
size (res.) - 12 20 18 - - 10 86 186 8 - 35 66
Overlap (%) - 96 65 76 - - 95 80 87 71 - - -

Table 3.4: Mapping of communication blocks between wild-type KIT and the D816V mutant.
The overlap oi j between two blocks Bi and B j, identified in the wild type and in the mutant, is
evaluated as: oi j = 2 ∗ #(Bi ∩ B j)/(#(Bi) + #(B j)). Two blocks are defined as counterparts, namely
X and X’ if: (i) X’ (resp. X) yields the maximum overlap with X (rest. X’) over all blocks in the
mutant (resp. wild-type) protein; (ii) the overlap is greater than 60%.

Decomposition of KIT dynamical architecture

KIT communication blocks can be classified according to the structural and dynamical
information used to identify them. In the wild type (Figure 3.5A-B, on top), blocks A to
G (in blue tones) were obtained from independent cliques (see Methods). These blocks
represent protein regions whose internal dynamics are independent from each other and
from the rest of the protein. Blocks H (in red), I (in green), J (in lime green) and K
(in dark green) were obtained from communication pathways, i.e. chains of dynamically
correlated residues stabilised by non-covalent interactions (see Methods). Blocks I, J and
K were identified by considering all but very short paths while block H comprises only
long paths (≥ 6 residues).

Different types of connections are established between blocks (Figure 3.5A-B), namely,
from the strongest to the weakest: (a) inclusion, e.g. block H is included in block I, (b)
overlap, e.g. blocks D and I share some residues in common, (c) contact, e.g. some
residues from blocks B and I are adjacent in the sequence, (d) interaction, e.g. some
residues in blocks A and C form a stable H-bond or hydrophobic contact. We observed
that two blocks that share residues or contact each other (types a, b, c) are also connected
by non-covalent interactions (type d).

The architecture of KIT is composed of a core of long-range communicating residues
forming block H, that represents more than one third of the protein (Table 3.4). This core
spans the two lobes of the protein and covers most of the enzymatic site (Figure 3.5A-B,
on top). It is extended by a layer of short-range communicating residues contained in
block K and is connected to several much smaller blocks. These small blocks establish
few connections between them. However an interconnected set of small blocks (A, C, and
J) can be detected, that is constituted by residues from the N-terminal lobe and represents
about 20% of the protein.

Comparison of wild-type and mutated KIT

The communication blocks identified by COMMA in wild-type and mutated KIT were
compared. The pairs of blocks from the two proteins that are constituted in large part
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Figure 3.5: Dynamical architecture of wild-type KIT and the D816V mutant. On top. Wild-
type protein. At the bottom. Mutant protein. On the left. The communication blocks identified
by COMMA are mapped onto the average conformation represented as a cartoon. The mutation
site is represented by a sphere (at the bottom). The protein residues are coloured according to the
block they belong to and the different blocks are labelled. See Table 3.4 for details on the mapping
between the two proteins. In the middle. Schematic representations of the proteins depicting the
communication blocks identified by COMMA and the connections between them. Each block is
represented by a round and is labelled. The larger the number of residues in the block, the larger
the size of the round. Overlapping blocks share some residues in common. Contacting blocks
are connected by covalent bonds. The black links indicate the presence of stable non-covalent
interactions between blocks. Notice that non-covalent interactions are formed between blocks that
share some residues in common or contact each other, but they are not displayed for a sake of
clarity. On the right. Schematic representations of the proteins depicting the results obtained
from MONETA. The large round in green include all residues involved in some communication
pathway. The smaller blocks in blue tones represent independent dynamic segments. The size of
the round depends on the number of residues involved (same scaling as for COMMA results).

by the same residues were identified (Table 3.4). Overall, the composition of the blocks
and their connections can vary substantially upon mutation (Figure 3.5B). Specifically,
block M’ (in sky blue) of the mutant comprises most of the residues constituting blocks
A, E and F in the wild type. Let us stress that the mutational position 816 is located in
block E of the wild type protein and in block M’ of the mutant (indicated as a sphere
on Figure 3.5A, at the bottom). Interestingly, the protein regions comprised in block
M’ were recently highlighted as forming an allosteric network in Src kinase (Foda et al.,
2015). In addition to these changes, COMMA detected three long-range communication
blocks in the mutant (in red tones) instead of one in the wild type. Block H’ (in red)
is 1.5 times smaller than block H. Some residues from the N-lobe that were included in
block H now form the disjoint block L’ (in raspberry). The residues forming block J’ (in
firebrick) communicate at longer range than the residues forming block J in the wild type.
These three blocks H’, J’ and L’ are included in block I’, which is slightly bigger than
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I. Consequently, the mutation induces a complete reshaping of communication blocks in
KIT, characterised by a reorganisation of the hierarchy between long-range and short-
range communicating residues and the merge of three CBsclique.

Comparison with other classifications

The definition of KIT communication blocks provided by COMMA can be compared with
the definition of KIT regulatory regions reported in the literature (Jr., 2005; Griffith et al.,
2004; Nolen et al., 2004; Huse and Kuriyan, 2002). Blocks B, C, D, E, F and L partially
match the JM-Switch (JMS), the JM-Zipper (JMZ), the kinase insert domain (KID), the
A(ctivation)-loop, the substrate-binding platform (helix G) and the C-helix respectively
(Figure 3.6A). Block A contains the JM-Proximal (JMP) and the glycine-rich loop (P-
loop). The blocks can also be evaluated based on the flexibility profile of the residues they
contain. CBspath tend to contain rather rigid residues while CBsclique are highly flexible
(Figure 3.6B). From a secondary structure perspective, residues in CBspath tend to form
stable secondary structures whereas residues in CBsclique are in solvent-exposed loops
(Figure 3.6C). We observed that these trends are general among the proteins we studied.
These observations show that the identification of communication blocks by COMMA
correlates positively with protein residue classifications based on the literature, on rigid-
ity/flexibility or on secondary structures. Furthermore, COMMA enables to go beyond
such classifications by providing a more precise dissection of the protein’s dynamical
architecture.
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Figure 3.6: Classifications of KIT residues based on the literature, the rigidity/flexibility and the
secondary structures. The crystallographic structure 1T45 (A) or the MD average conformation
(B-C) of KIT cytoplasmic region is represented as a cartoon. (A) KIT regulatory regions defined
in the literature are highlighted by colours: the JM-Proximal (JMP, residues 547-552) in light
blue, the JM-Binder (JMB, residues 553-559) in light cyan, the JM-Switch (JMS, residues 560-
570) in slate, the JM-Zipper (JMZ, residues 571-581) in sky blue, the glycine-rich loop (P-loop,
residues 596-601) in marine, the C-helix (residues 631-647) in lime green, the catalytic loop (catal,
residues 790-797) in orange, the activation loop (A-loop, residues 810-835) in purple and the helix
G (residues 877-885) in dark blue. The N-terminal lobe is coloured in raspberry, the kinase insert
domain (KID) in blue and the C-terminal lobe in red. (B) The per-residue atomic fluctuations (in
Å) computed over the MD conformational ensemble are indicated by colours ranging from red
(low fluctuations) through white to blue (high fluctuations) and by the size of the tube (the larger
the tube the higher the fluctuations). (C) The percentages of conformations in which every residue
is in a secondary structure element (either α-helix, β-sheet or turn) are indicated by colours ranging
from blue (low percentage) through white to blue (high percentage).
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Comparison with MONETA

COMMA results were compared to those obtained with MONETA 2.0 (Figure 3.5C).
MONETA identifies independent dynamic segments and communication pathways from
all-atom MD simulations (Allain et al., 2014), which are similar to the independent cliques
and communication pathways identified by COMMA (Figure 3.1, boxes 2 and 3). How-
ever, COMMA exploits these components for further analysis (Figure 3.1, boxes 4, 5 and
6) in a way that is completely different from MONETA (Allain et al., 2014). Figure 3.5C
depicts schematic representations of the dynamic segments and communication pathways
detected by MONETA in KIT. The green round corresponds to the ensemble of residues
involved in some path (representing 90% of the protein). The rounds in blue tones repre-
sent dynamic segments. These components are substantially different from the communi-
cation blocks identified by COMMA (Figure 3.5B) and MONETA does not characterise
the connections between them. From this comparison, it is clear that COMMA brings
additional information on the definition and arrangement of the protein’s dynamical ar-
chitecture building blocks, compared to MONETA.

MONETA previously permitted to put in evidence a crucial communication path-
way in wild-type KIT that links the A-loop and the JMS through residue D792 from
the catalytic loop (Laine et al., 2012). The path was disrupted upon D816V mutation. In
COMMA representation of wild-type KIT (Figure 3.5, on top), all residues participating
in this path are contained in the long-pathway based block H (in red), from D792 in the
catalytic loop to V559 in the JMS. By contrast, in the mutant (Figure 3.5, at the bottom),
D792 is contained in the CBpath I’ (in green) but not in block H’ (in red), indicating that
this residue is involved in shorter communication pathways compared to the wild type,
and that no pathway goes from D792 to the JMS. COMMA results are thus in agree-
ment with those obtained by using MONETA. Moreover, by identifying communication
blocks, COMMA enables to pinpoint other long pathways that are interrupted in the mu-
tant. Specifically, the fact that the long-CBpath H in the wild type is divided in H’ and L’
in the mutant is associated to a disruption of the communication between residue N655
and residues I653, H651 and K807. Interestingly, these residues were shown to form a
network of interactions (called ’molecular brake’) crucial for the stability of the inactive
conformation of tyrosine kinases (Chen et al., 2007). Consequently, COMMA analysis
permits to put in evidence a deleterious effect of the activating D816V mutation on this
’molecular brake’ which was not previously detected.

3.2.3 Communicating segment pairs in Protein A

Protein A

The B domain of protein A (BdpA) from Staphylococcus aureus is a small α-helical pro-
tein. It comprises 60 residues arranged in three helices, namely H1 (residues 10-19), H2
(residues 25-37) and H3 (residues 42-56), linked by two turns, namely T1 (residues 20-
24) and T2 (residues 38-41). The fast-folding kinetics of protein A have been extensively
characterised through experiments and computer simulations (Lei et al., 2008; Sato et al.,
2006, 2004; Vu et al., 2004; Bai et al., 1997), enabling to establish the following state-
ments: (i) the isolated H3 has a higher stability and helical content compared to the two
other helices, (ii) H2 and H3 form a stable or marginally stable intermediate, (iii) H1 is
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docked in the rate limiting step.

Dynamical architecture of Protein A

COMMA was used to identify communicating segment pairs in BdpA (60 residues). For
this, we performed 2 replicates of 50-ns MD simulations, starting from an average nuclear
magnetic resonance (NMR) structure (see Methods). By analysing the MD trajectories,
COMMA detected five stable secondary structure elements (SSEs) in the protein: three
α-helices formed by residues 5-18, 25-37 and 39-55 and two turns formed by residues 2-4
and 56-59. We focus here on the three α-helices, which match well the experimentally-
defined helices H1, H2 and H3. Three pairs of communicating segments were identified
between H1/H2, H1/H3 and H2/H3 (Figure 3.1, box 6). The communication strengths
(computed as the product of the proportions of residues involved in communication path-
ways linking the two segments multiplied by the number of pairs of residues directly
linked by a pathway, see Methods) for these pairs are 0.5, 1.1 and 4.1 respectively. The
significantly higher strength of the segment pair corresponding to H2/H3 is the result of
a larger number of residues involved in the communication and a larger number of direct
links (5 versus 2 and 3, shown as black lines on Figure 3.1, box 6). Let us remind that a
direct link is a pair of residues from the two communicating segments that are consecutive
in a communication path (see Methods). Moreover, one can observe that the communi-
cating segments of H1 cover a significantly smaller portion of the helix compared to the
segments of H2 and H3. The communication blocks identified in protein A also show
that the residues of H1 are involved in shorter paths compared to H2 and H3 (Figure
3.1, box 5). These observations are in agreement with the experimental evidence that
H1 docks to a stable assembly of H2 and H3 during the folding process. Let us stress
that this result could not be obtained by simply analysing non-covalent interactions along
the MD trajectories: there are 8, 4 and 8 interactions for the H1/H2, H1/H3 and H2/H3
pairs. This emphasises the importance of the notions of communication propensity and
communication pathways in our analysis.

3.2.4 The role of pathway length and interaction type in p53 commu-
nication

Presentation of P53

The tumour suppressor p53 is a transcription factor regulating a wide range of genes in-
volved in DNA repair, apoptosis, senescence and metabolism (Li et al., 2012; Vousden
and Prives, 2009; Vogelstein et al., 2000). The p53 protein plays a crucial role in conserv-
ing the stability of the genome and preventing genomic mutation (Strachan T, 1999). The
loss of p53 tumour suppressor function is associated with cancer (Lu et al., 2009). The se-
quence of p53 can be divided into an N-terminal transactivation domain, a DNA-binding
core domain (DBD), a tetramerisation domain and a C-terminal regulatory domain (Oko-
rokov and Orlova, 2009). The DBD is intrinsically unstable and thus highly suscepti-
ble to oncogenic mutations (Canadillas et al., 2006). The three-dimensional structure of
the DBD comprises two antiparallel β-sheets, characteristic of the immunoglobulin-like
β-sandwich fold (Figure 3.7A, topology diagram on the left). In total, it contains 11 β-
strands and 2 α-helices linked by flexible loops (Figure 3.7A, see labels on the right). The
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dynamical architecture of p53 DBD (199 residues) was characterised by COMMA, start-
ing from 2 replicates of 50-ns MD simulations (see Methods). We investigated the evo-
lution of the pathway-based communication blocks identified by COMMA when varying
the minimum length of the pathways considered and the type of non-covalent interactions
used to construct them (Figure 3.7).

Hierarchical description of p53 communication

The ensemble of all but very short (≤ 3 residues) communication pathways identified in
p53 yielded one communication block (Figure 3.7B, in red), representing about 50% of
the protein residues. This block comprises the 11 β-strands of the protein, some residues
from the loops that frame them and a portion of the helix H2. The edges of the cor-
responding subgraph show that communication pathways go along individual β-strands
(the nodes coloured in the same grey tone belong to the same β-strand) and also cross
them. The edges linking different β-strands reflect well the interactions that stabilise the
two β-sheets of the protein. Filtering out pathways smaller than 6 residues yields a com-
munication block twice as small (Figure 3.7C, in orange). The β-strands S1, S3 and S8
that form the first β-sheet (Figure 3.7A, in pink) are completely absent from the block,
as well as helix H2. The block is further reduced by two times when keeping only very
long (≥ 8 residues) pathways (Figure 3.7D, in lime green). Only a portion of the second
β-sheet, composed of S4, S7, S9 and S10 (Figure 3.7A, in red), remain in the block. This
region can be viewed as the communication core of the protein.

Influence of non-covalent interaction type

Secondary structure units (e.g. β-sheets) are stabilised by H-bonds formed between back-
bone atoms (e.g. from parallel or anti-parallel β-strands). We analysed the impact of
disregarding information from these interactions on p53 DBD communication. Only in-
teractions involving side chain atoms were retained to construct communication pathways
and the corresponding communication blocks were extracted (Figure 3.7E-G). The ob-
tained subgraphs show a significantly reduced number of edges linking different β-strands.
This result is expected owing to the nature of β-sheets. More surprisingly, however,
the smaller number of edges minimally impacts the communication within each β-sheet.
This indicates that numerous interactions are established within the β-sheets, other than
backbone-backbone H-bonds. By contrast, the loss of these interactions is determinant for
the communication between the two β-sheets and results in each of them being detected
as an isolated communication block (Figure 3.7E, in red and pink). Two communication
blocks are also detected when pathways smaller than 6 residues are filtered out (Figure
3.7F, in orange and yellow-orange), instead of one with all interactions (Figure 3.7C).
This is due to backbone-backbone interactions being lost within S10 and between S10
and S9. The communication core of the protein, obtained from very long pathways (Fig-
ure 3.7G), is slightly smaller than when considering all interactions (Figure 3.7D), due
to missing interactions involving S7.
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Figure 3.7: Influence of pathway length and interaction type on P53 DBD communication.
(A) 2D topology diagram (on the left) and 3D structure (on the right) of p53 DBD. The diagram
was taken from PDBsum (de Beer et al., 2014) and the colours were modified to put in evidence
the S-type immunoglobulin-like fold of p53 DBD: the first β-sheet is in pink, the second β-sheet
is in red. The 3D structure (average MD conformation) is represented as a cartoon, where the 11
β-strands of the protein are coloured in grey tones and labelled. The clique-based communication
blocks identified by COMMA are colored in blue tones. (B-G) Pathway-based communication
blocks identified by COMMA by using information from all non-covalent interactions (B-D) or
only interactions involving side chains (E-G), and by considering only pathways longer than 3
(B,E), 5 (C,F) or 7 (D,G) residues. The communication blocks are represented as subgraphs in
the PCN (on the left) and are mapped on the average MD conformation (on the right). The edges on
the subgraphs and the residues on the 3D structure are coloured according to the communication
blocks they belong to. The nodes in the subgraphs are coloured in grey tones, indicating the
β-strand they belong to.
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3.2.5 Comparison of protein A and p53
The B domain of protein A and p53 DBD represent two archetypal proteins in terms of
thermodynamic and kinetic stability. While the latter unfolds at just above physiologi-
cal temperature (Bullock et al., 1997), the former presents fast and stable folding (Lei
et al., 2008). Moreover, BdpA is composed of three helices while p53 DBD mainly
contains β-sheets. Consistently, our analyses of the two proteins show very different re-
sults. COMMA identified 2 very small clique-based communication blocks in BdpA,
corresponding to the two extremities and representing 13% of the protein residues. By
contrast, the clique-based communication blocks identified in p53 DBD represent almost
60% of the protein (Figure 3.7A, on the right and in blue tones). They encompass all
residues involved in the interaction with DNA, namely the loops L1, L2 and L3 and the
helix H2, which adopt variable conformations in the available experimental structures of
p53 DBD (Lukman et al., 2013). COMMA also enabled to characterise the evolution of
pathway-based communication blocks when varying the minimum communication path-
way length. The communication core of BdpA, defined based on very long (≥ 8 residues)
pathways, comprises full-length helix H3 and some residues from H1 and H2 (Figure
3.1, box 5, in yellow). This is consistent with experimental evidence showing that H3 is
the most stable helix among the three (Bai et al., 1997). p53 DBD presents a strikingly
different dynamical behaviour, with a communication core composed of residues from
different β-strands that form the first β-sheet (Figure 3.7D). Progressively filtering out
communication pathways with increasing length results in residues, first from the loops
that frame the β-strands, then from the extremities of the β-strands, to be excluded from
the communication block (Figure 3.7B-D). Notice that the length of the pathways does
not depend on the length of the β-strands, i.e. longer β-strands do not exhibit longer paths.
These observations on BdpA and p53 DBD support the utility of COMMA to compare
proteins of very different natures in a straightforward way.

3.2.6 The importance of the conformational sampling
The results obtained from COMMA directly depend on the extent and quality of sampling
in the input conformational ensemble. In the case of MD trajectories, the user must care-
fully check that they have converged before proceeding through COMMA analysis. In
the present work, we have performed COMMA analysis on the conformational ensemble
generated during the last 30 ns of two 50-ns MD replicates for each studied system. We
have assessed the stability of the studied systems in the chosen force field description
(Figure 3.3A and Figure 3.4A) and the convergence of the MD trajectories (Table 3.3).
We have also applied COMMA to the single trajectories and have obtained similar results
(Table 3.5 and Table 3.6). This indicates that our results are reproducible and robust to
limited variations of the conformational ensemble. Another important aspect is the num-
ber of input conformations. In order to get statistically significant results, in particular
for the principal component analysis, the number of conformations shall in principle be
larger that the number of degrees of freedom of the system studied. In the examples of
application reported here, we have characterised the internal dynamics of three proteins
on relatively short simulation times (replicates of 50 ns). Consequently, we have illus-
trated how COMMA can reveal the dynamical dimension of a 3D structure representing a
particular macrostate of the protein. Nevertheless, the utility of COMMA is not limited to
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such type of analysis and the tool can be applied to atomistic simulations sampling large
conformational changes.

CBpath CBclique

l ≥ 4 l ≥ 5 l ≥ 6 l ≥ 7 l ≥ 8 All
P53
all 1 1 1 1 1 5
sim1 3 (55) 3 (61) 1 (84) 1 (75) 1 (88) 8 (78)
sim2 1 (95) 1 (82) 1 (87) 1 (80) 1 (59) 8 (91)
Protein A
all 1 1 1 1 1 2
sim1 1 (100) 1 (100) 1 (98) 1 (100) 1 (98) 2 (100)
sim2 1 (88) 1 (82) 1 (82) 1 (80) 1 (78) 2 (88)
KIT WT
all 3 1 1 1 1 7
sim1 3 (94) 1 (93) 1 (88) 1 (96) 1 (96) 6 (76)
sim2 2 (92) 1 (95) 2 (90) 1 (87) 1 (80) 6 (58)
KIT MU
all 1 2 3 2 2 5
sim1 2 (76) 2 (70) 2 (31) 1 (52) 1 (51) 5 (90)
sim2 1 (96) 2 (94) 3 (90) 2 (98) 2 (100) 6 (68)

Table 3.5: Reproducibility of communication blocks over the MD replicates of each studied
system. The numbers of pathway-based and clique-based communication blocks (CBs) identi-
fied by COMMA when applied to the whole conformational ensemble and to the individual MD
trajectories are indicated. For CBspath, different minimum pathway lengths l (in residues) are con-
sidered. The overlap (in percentages of residues) between the CBs identified from the first (resp.
second) MD replicate and those identified from the whole conformational ensemble are indicated
in parentheses.

3.3 Conclusion
We provide to the community a fully automated tool for analysing conformational ensem-
bles of proteins. The power of the COMMA method resides in the fact that it computes
a number of dynamic properties of a protein at the residue level and integrates them in a
unified framework to dissect the protein dynamical architecture by identifying its build-
ing blocks and the connections between them. COMMA permits to enrich the knowledge
of a protein structure by bringing precise, complete and synthetic information on/from
its internal dynamics. Moreover, the automatic set up of the parameters implemented in
COMMA allows for an adapted modelling of the system under study and to contrast the
roles of the different protein regions. COMMA can advantageously complement classical
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all sim1 sim2
H1-H2 0.5 0.1 0.3
H1-H3 1.1 1 0.3
H2-H3 4.1 4.1 2.6

Table 3.6: Reproducibility of communication strengths between secondary structure ele-
ments (SSEs) in Protein A. The communication strengths (computed as the product of the pro-
portions of residues involved in communication pathways linking the two segments multiplied by
the number of pairs of residues directly linked by a pathway, see Methods) between pairs of he-
lices (H1, H2, H3) are reported for the whole conformational ensemble and for each individual
replicate. The order of communication strengths is the same in the three analyses.

analyses of protein structures and simulations and help look at proteins as dynamical bi-
ological objects with a new eye. On the other hand, COMMA introduces new measures
and new algorithms, with respect to MONETA, to dissect a protein’s architecture building
blocks. It integrates different types of structural and dynamical information in a unified
graph representing the protein. It detects communication blocks and communicating seg-
ments pairs from this graph, which are new concepts representing groups of residues or
protein regions that mediate short- and long-range communication.

This analysis illustrates how COMMA can help dissect a protein 3D structure from a
dynamical perspective and characterise the effect of a deleterious mutation on the struc-
tural dynamics of a protein. The information provided by COMMA was found in agree-
ment with the previous findings on KIT allosteric communication. It further allows a
more systematic assessment of the differences between two proteins or two states of the
same protein and permits to pinpoint with high precision regions or residues instrumental
in the establishment or alteration of the protein communication.

This analysis unveiled the hierarchical roles played by the different structural units
(i.e. β-sheets) of the p53 DBD in the protein’s dynamical architecture. Specifically, the
residues constituting the first β-sheet communicate at shorter range than those constituting
the second β-sheet. Furthermore, it showed the preponderant role of backbone-backbone
interactions in establishing communication between the two β-sheets. These results illus-
trate how COMMA can be employed to contrast different protein regions from a dynami-
cal point of view and to investigate the molecular determinants of protein communication
at a precise level.
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Genetic disease-associated mutations in
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4.1 Biological context
Growth Hormone (GH) is a four helix bundle that regulates a wide variety of physiolog-
ical processes, including growth and differentiation of muscle, bone, and cartilage cells
(Sundstrom et al., 1996). The regulation of normal human growth is initiated by the
binding of GH to its receptor (GHR), with stoichiometry 1:2, GH binds to two identical
subunits of the receptor (de Vos et al., 1992). Although the two receptor molecules are
identical, the GH binding sites are different Figure 4.1).
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GH is composed of four helices and three of them are involved in the interaction
with GHR. Helices H1 and H4 form the first binding site, while H1 and H3 form the
second binding site. The former has high affinity for GHR, while the latter has low affinity
(Figure 4.1).

Figure 4.1: Crystallographic structure of the GH-GHR complex
Domains of GH-GHR complex are shown here with different colors. GH has one domain shown
in gray, comprised of four helices (H1, H2, H3 and H4). First and second receptors are colored
in orange and green, respectively and their domain are labelled on the structure. Rec1D1 and
Rec1D2 indicate two domains of the first receptor molecule (residues E32-P131 and D132-P234).
Rec2D1 and Rec2D2 indicate two domains of the second receptor molecule (residues E32-P131
and D132-P234). The surface of site1 and site2 GH are displayed.

The two binding sites are allosterically coupled and it was shown previously that site2
can be altered by mutations at site1 (Walsh et al., 2004). Point mutations of the GH-GHR
complex may cause genetic diseases such as short stature (Petkovic et al., 2010). We had
access to a group of these mutants from our collaborator, Serge Amselem (Service de
Génétique et d’Embryologie Médicales, UMR S933 INSERM / UPMC, Hôpital Armand-
Trousseau) and from that list we selected two disease causing mutations, L124R and
R183H. In this chapter we demonstrate the impact of these two disease-related mutations
on the dynamical behaviour of the complex. Then we characterize the allosteric coupling
between the two binding sites, define residues that are instrumental in this coupling and
represent the impact of the mutations on this coupling. Furthermore, we establish a link
between the allosteric communication in the complex and coevolution signals.
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4.2 Methods

4.2.1 Coevolving clusters

The set of sequences for GH-GHR were extracted following this protocol: a PSI-BLAST
(Altschul et al., 1997) search (3 iterations, e-value < 10−5) was performed with the se-
quence of GH (PDB code: 1HWG, chains A, B and C) as the query. A set of 19 ho-
mologous sequences were retrieved, with the average sequence identity of 68%. The
sequences were aligned with ClustalW (Larkin et al., 2007). It has to be mentioned that
for the complex, only one sequence per species was selected.

We extracted the network of coevolving residues from the set of homologous se-
quences of GH-GHR complex. After performing Multiple Sequence Alignment (MSA)
on the given dataset, co-evolving residues were detected using Blocks In Sequences (BIS)
(Dib and Carbone, 2012b) and clustered with Cluster Aggregation (CLAG) (Dib and Car-
bone, 2012a). BIS is the most suitable method for the coevolution analysis of growth
hormone, because it can be applied to protein families that are highly conserved or repre-
sented by few sequences.

4.2.2 Molecular dynamics simulations

The following molecular dynamics protocol was applied to all studied systems.

Set up of the systems The 3D coordinates for the studied proteins were retrieved from
the Protein Data Bank (PDB) (Berman et al., 2000). The PDB id of 1HWG was used
for the simulations of monomer (chain A) and complex (chains A, B and C). Number
of residues for the Hormone and its receptors are 191 and 237. Also there are some
missing residues, residues T148-D153, F191 of GH and residues V54-G62 of GHR. All
crystallographic water molecules and other non-protein molecules were removed and the
missing residues were modelled with MODELLER 9v7 (Fiser et al., 2000). Terminal
residues of the receptors were not modelled (residues F1-K31 for both GHR1 and GHR2
and residues Q235-S237 for the GHR1). Although receptors are identical, they don’t have
equal lengths after the modelling. There are 8 disulphide bonds for the GH-GHR com-
plex, two inside the hormone (C53,C165) and (C182,C189) and three within each receptor
(C38,C48), (C83,C94) and (C108,C122). Those bridges were kept for the molecular dy-
namics simulation. The two mutated forms of GH and GHGHR, MUL124R and MUR183H,
were generated by in silico substitution of the leucine (L) in position 124 into a argi-
nine (R) and in silico substitution of the arginine (R) in position 183 into a histidine (H),
respectively using MODELLER 9v7 (Marti-Renom et al., 2000).

All models were prepared using the LEAP module of AMBER 12 (Case et al., 2012),
with the ff12SB forcefield parameter set: (i) hydrogen atoms were added, (ii) Na+ or Cl−

counter-ions were added to neutralise the systems charge, (iii) the solute was hydrated
with a cuboid box of explicit TIP3P water molecules with a buffering distance up to 10Å.
The environment of the histidines was manually checked and they were consequently
protonated with a hydrogen at the ε nitrogen.
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Minimisation, heating and equilibration The systems were minimised, thermalised
and equilibrated using the SANDER module of AMBER 12. The following minimisation
procedure was applied: (i) 10,000 steps of minimisation of the water molecules keeping
protein atoms fixed, (ii) 10,000 steps of minimisation keeping only protein backbone
fixed to allow protein side chains to relax, (iii) 10,000 steps of minimisation without
any constraint on the system. Heating of the system to the target temperature of 310
K was performed at constant volume using the Berendsen thermostat (Berendsen et al.,
1984) and while restraining the solute Cα atoms with a force constant of 10 kcal/mol/Å2.
Thereafter, the system was equilibrated for 100 ps at constant volume (NVT) and for
further 100 ps using a Langevin piston (NPT) (Loncharich et al., 1992) to maintain the
pressure. Finally the restraints were removed and the system was equilibrated for a final
100-ps run.

Production of the trajectories Two replicates of 50ns MD simulations were generated
for the monomer (GH) and two replicates of 100 ns for the complex (GH-GHR), with
different initial velocities, were performed in the NPT ensemble using the PMEMD mod-
ule of AMBER 12. The temperature was kept at 310 K and pressure at 1 bar using the
Langevin piston coupling algorithm. The SHAKE algorithm was used to freeze bonds
involving hydrogen atoms, allowing for an integration time step of 2.0 fs. The Particle
Mesh Ewald method (PME) (Darden et al., 1993) was employed to treat long-range elec-
trostatics. The coordinates of the system were written every ps. Standard analyses of the
MD trajectories were performed with the ptraj module of AMBER 12. We applied the
same protocol of MD simulations to the mutated forms of the monomer and complex (GH
and GHGHR).

Stability of the trajectories To assess the stability of the complex, the all-atom root
mean square deviation (RMSD) from the equilibrated structure were recorded along each
100-ns MD simulation replicate (Figure 4.2). The mean RMSD value for the fist replicate
of the WT is 2.97+/-0.31 Å, for the second replicate of the WT mean value is 3.14+/-0.26
Å, respectively. The mean RMSD value for the fist replicate of the MUL124R is 4.08+/-0.5
Å and 3.14+/-0.3 Å for the second replicate. Mean value for the first replicate of MUR183H

is 3.4+/-0.43 Å and for the second replicate is 3.81+/-0.49 Å. According to those values,
the WT has globally slightly smaller conformational drift compared to the mutants.

The stability of the hormone alone, was also analysed (RMSD and fluctuations). The
details are not reported here to prevent the redundancy of the plots. Based on the RMSD
profiles, we retained the last 70 ns of the GH-GHR complex and the last 30 ns of GH
monomer simulations for further analysis.

Detection of H-bond network around mutation position The H-bond network in the
neighborhood of the mutations position to measure the local effects of every mutation. All
the residues within 10Å of the mutation point were selected and all the H-bonds within
these residues were detected, using the HBPLUS algorithm (McDonald and Thornton,
1994). As described in the previous chapter Chapter 2, Methods, in HBPLUS, H-bonds
are detected between donor (D) and acceptor (A) atoms that satisfy the following geomet-
ric criteria: (i) maximum distances of 3.9Å for D-A and 2.5Å for H-A, (ii) minimum value
of 90◦ for D-H-A, H-A-AA and D-A-AA angles, where AA is the acceptor antecedent.
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Figure 4.2: RMSD for the Growth Hormone Complex
For each replicate of the WT, MUL124R and MUR183H complexes, RMSD over all atoms (computed
from the initial structure) are shown for 100 ns MD simulations. Colors correspond to the two
replicates (1 and 2) of the WT and mutants.

Then we measured the interaction strength of every pair i and j, that represents the per-
centage of conformations in which at least one H-bond is formed between some pair of
atoms (ai, a j) in residues i and j.

4.2.3 COMMA analysis

The details of COMMA were explained (Chapter 2, Methods), but as brief summary,
COMMA extracts the dynamical properties at the residue level from the conformational
ensembles and employs them to identify communication routes (pathways) between residues.
It defines communication blocks, that are groups of residues with high communication
propensity and strong non-covalent interactions and maps this information on the struc-
ture of the protein. COMMA is useful to identify residues playing a key role in protein
allosteric regulation and to explain the effects of deleterious mutations in a mechanistic
way. We applied COMMA to extract communication blocks of wild-type, MUL124R and
MUR183H of the GH-GHR complex and GH monomer.

4.3 Effects of the mutations revealed by classical MD anal-
ysis

Here we report the MD analysis of the GH-GHR complex. Similar results were observed
from the analysis of GH alone, but they are not reported here to avoid redundancy. For
every GH-GHR complex we analysed 2 replicates of 70 ns and for each GH monomer we
analysed 2 replicates of 30 ns MD simulations.
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4.3.1 Atomic fluctuations
We analysed the atomic fluctuations of the wild-type and mutants (MUL124R and MUR183H)
of GH-GHR complex. The difference between atomic fluctuations of the mutant from
wild type (MU - WT), computed over backbone atoms and averaged by residues, are
mapped onto the complex structure (Figure 4.3). Mutation positions (124 and 183) are
pointed out on the structures by gray spheres indicating Ca atoms. Color ranges are from
blue to red, indicating changes from rigidity to flexibility. Results demonstrate that wild-
type complex is more rigid than the two mutants (Figure 4.3).

MUL124R displays higher fluctuations compared to the WT, around residues L128-
R134, forming GH Loop1 that faces mutation position (Figure 4.3 a). In addition, residues
Q29-E39 forming the C-terminal of Helix1 and GH Mini Helix1 display higher fluctu-
ations in MUL124R complex compared to the WT. In the region of Rec1Loop1, residues
T51-T58 and L61-Q65 and in the region of Rec2Loop2, residues H55-G62, R70-E75 and
I103-Y107 represent higher flexibility in the mutant.

Considering MUR183H (Figure 4.3 b), residues L128-R134, forming GH Loop1 that
faces mutation position, display higher fluctuations in the mutant compared to the WT.
Three other regions display higher fluctuations in MUR183H complex compared to the WT:
1) Residues S150-D154 forming GH Loop2, 2) residues P37-T50 forming GH Mini Helix1
and 3) residues E32-V54 and G62-T69 in the region of Rec1Loop1. On the other hand,
although residues E32 to P133, in the region of Rec2Loop1, globally have higher fluc-
tuations in mutant, WT has locally higher flexibility and fluctuation around the residues
V54-G62, E75-W80 and P84-W104, in Rec2Loop1.

Average MD conformation for the two replicates of the WT and mutant complexes,
MUL124R and MUR183H are superimposed (Figures 4.4 and 4.5, respectively). Considering
the WT and MUL124R, the average replicates are well superimposed in the hormone region,
whereas long-range differences were reported in the loop regions of the two receptors,
Rec1Loop1 and Rec2Loop1 (Figure 4.4b and c). The difference is more significant in
the region of Rec1Loop1.

For the MUR183H, the average structures are almost superimposed, however region
GH Loop1 (figure 4.5b), GH Loop2 (figure 4.5c), the loops on the two receptors Rec1Loop1
(starting from residue D52 to I64, figure 4.5d) and Rec2Loop1 (residues from E34 to
P133, figure 4.5e), adopt very different average positions in MUR183H complex. In those
regions, WT replicates display very similar profiles while mutant replicates are moving
in two different directions. This behavior also suggests the long range effects of mutation
in propagating signals through the receptors. Rec1Loop1 is also more rigid in the mutant
(Figure 4.3b), this suggests that Rec1Loop1 adopts one or the other position and remains
in it while the WT oscillate between the two.

4.3.2 Local H-bond network around the mutation within GH
Hydrogen bond interactions between mutation position (183) and its neighbouring residues
on the structure are shown for the WT and MUR183H (Figure 4.6). Mutation position (183)
interacts through hydrogen bonds with residues Q68, K70 and N72, in addition residues
N72, E129, D130, S132 and R134 form another H-bond network in both replicates of
WT complex. In contrast, Hbonds are not present in both replicas of MUR183H, except
for interacting pair of (N72, D130) in the first replica of MUR183H (4.6 part C) and (E129,
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Figure 4.3: Atomic fluctuations mapped on the complex structure
Atomic fluctuations over backbone atoms that are averaged by residues are mapped on the average
MD conformation of WT and MU complexes. Differences in values are shown through size and
color of the cartoons for a) MUL124R and b) MUR183H . Mutant has slightly higher fluctuations and
is more flexible.
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Figure 4.4: Average structures of the WT and MUL124R

Average structures for every replicate of the WT and MUL124R are superimposed. Blue and cyan
cartoons correspond to the WT while light and dark green to the MUL124R. The two loop re-
gions, Rec1Loop1 and Rec2Loop1, of the mutant receptors adopt very different average positions
compared to the WT (b and c).
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Figure 4.5: Average structures of the WT and MUR183H

Average structures for every replicate of the WT and mutant are superimposed. Blue and cyan
cartoons correspond to the WT while red and salmon to the mutant. Two loop regions of the
hormone are shown where mutant has higher fluctuations (b and c), in addition to the Rec1Loop1
of first receptor (d) and Rec2Loop1 of the second receptor (e).
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R134) in the second replica (4.6 part D). The interaction network within GH around the
mutation is altered/weakened by the mutation.

Figure 4.6: H-bond between residues around the mutation position (183)
The Hbond network in the neighbourhood of mutation position (183) is shown for the two repli-
cates of wild-type (a and b) and MUR183H (c and d) on the GH-GHR complex structures. These
structures are the MD conformations that are closest to the average coordinates. Mutation posi-
tion is represented with a gray sphere on each structure and HBonds are shown with dashed lines.
Interactions between R183, K70 and N72 is detected on the WT but not on the MUR183H as the
short range effect of the mutation.

Table 4.1 contains quantitative values for supporting the mentioned observations (Fig-
ure 4.6). R183 has non-bonded interactions with residues Q68, K70 and N72 in the WT
replicates, but those interactions are not present or weakened in the replicates of MUR183H.
Around the mutation position, other residues are affected by the mutation. Non-bonded in-
teractions between residue pairs of: (N72, D130), (E129, R134), (D130, S132) and (S132,
R134) are weakened or removed in the case of MUR183H. As mentioned in figures 4.3 and
4.5 part B, residues L128-R134 forming GH Loop1 which is facing mutation position,
have higher fluctuations in the MUR183H compare to the WT. The changes in interactions
around mutation position can cause MUR183H to fluctuate more, because interactions in
this region are weakened.

Furthermore, Hydrogen bond interactions in the neighbourhood of position 124 are
shown for the WT and MUL124R replicates (Figure 4.7). Mutation position (124) interacts
through H-Bonds with residues G120, R127 and L128. In addition two residue pairs of
I121-M125 and T123-R127 interact through H-bonds for both replicates of WT complex.
These H-bonds are not present or weakened in replicates of MUL124R, except for interact-
ing pair of I121-M125. By contrast, residues M125 and L128, interact through H-Bonds
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Interaction
Strength
WT1 WT2 MUR183H

1 MUR183H
2

183-68 67 87
183-70 91 93
183-72 100 100
72-130 66 89 74
72-132 94
129-132 39 95 59
129-134 52 99 84
130-132 74
134-132 52 6 17 26

Table 4.1: Strength of HBonds detected from MD simulations.
Hbonds around mutation position (183) are listed here. Values correspond to the strength of the
non-bonded interactions (% of MD conformations) over the last 70,000 conformations (we ignored
the values below 30%).

only in the replicates of MUL124R. Also due to the mutation, two pairs of H-Bond inter-
actions are recorded between S7-Q181 in first replicate and between F10-Q181 in second
replicate of MUL124R. These interactions link H1 to H4. The significance of the obser-
vation is that S7 and F10 are in the close neighbourhood of site2, while Q181 is placed
very close to site1. Therefore such interactions can help in the allosteric communication
between the binding sites. Moreover, interactions between R124 (on H3, very close to
the binding site2) and two other residues Q181 and S184 (on H4, very close to site1),
are present only in the replicates of the mutant and not in wild type. These two H-bonds,
could also support communication between the two binding sites. Other residues involved
in the H-Bond network close to the mutation position (Figure 4.7), are roughly the same
between the replicates of wild-type and MUL124R GH-GHR complex.

Table 4.2 contains quantitative values for supporting the mentioned observations (Fig-
ure 4.7). Other pairs of interacting H-Bonds are reported in the table, on H1 and H4, while
the strength of those interactions is roughly the same between wild type and MUL124R.
Consequently, the mutation (L124R), led to the weakening of interaction network around
mutation position, whereas it caused new interactions between H1 and H4, connecting the
two binding sites.

4.3.3 Interactions between GH and GHR

We studied the set of all interactions at the two binding sites. The average strength of the
interactions (over two replicates of MD simulations) are reported for the WT, MUL124R

and MUR183H complexes (Tables 4.3 and 4.4). Type of the interactions (hbond or hy-
drophobic) between all atoms of each pair of residues are mentioned, in addition to their
strength (% of MD conformations). Strikingly larger number of residues are involved
in the interactions at site1 (31 residues) with the average interaction strength of 76%,
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Figure 4.7: H-bond between residues around the mutation position
The Hbond network in the neighbourhood of mutation position (124) is shown for the two repli-
cates of wild-type (a and b) and MUL124R (c and d) GH-GHR complex. These structures are the
MD conformations that are closest to the average coordinates. Mutation position is represented
with a gray sphere on each structure and HBonds are shown with yellow lines. R124 interacts with
Q181 and S184 in the two replicates of MUL124R, but not in the wild-type complex.
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Interaction
Strength
WT1 WT2 MUL124R

1 MUL124R
1

124-120 98 98 76 86
124-127 59 75 55
124-128 91 90 43
124-181 59 49
124-184 59 52
121-125 99 100 98 89
123-127 50 31
125-128 34 60
6-10 98 99 71 99
7-181 81
10-181 75
177-181 98 99 96 98
180-184 95 77 100 88
181-185 84 96 78 98
181-184 49 48 67 79

Table 4.2: Strength of H-Bonds detected from MD simulations.
H-Bonds around mutation position (124) are reported with the corresponding interaction strength
(% of MD conformations) over the last 70,000 conformations.
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compared to site2 which involves only 19 hormone residues with an average interaction
strength of 71%. This observation is in agreement with the lower binding affinity of site2
(Walsh et al., 2004).

Considering differences in the average interaction strength between WT and MUL124R

of more than 10%, at site1, 8 pairs of the interacting residues represent reduction of
strength, while 4 other pairs of residues have an increase of strength Tables 4.3. On
the other hand, at site 2, 9 pairs of interacting residues lose their strength, but 5 other
pairs gain the strength. Also, the mutation induces the formation of interaction between
D112 and GHR2 (site2), whereas the average interaction strength of residues, T3 and A13
at site2 reduces bellow 30% in the mutant Table 4.4. Consequently, an overall slight de-
crease of the interaction strength is reported over the 70ns of MD simulation for the two
replicates of the mutant, at both binding sites. But the decrease is more present at site2.

Considering differences in the average interaction strength between WT and MUR183H

of more than 10%, at site1, 11 pairs of residues lose the strength, while 3 pairs of residues
have higher strength upon mutation. Due to the mutation of R183H, E56 interacts at
site1 with high strength (79%), while the strength of G190 at site1 decreases bellow 30%
Tables 4.3. At site2, an average decrease (of 10% or more) is reported for 6 pairs of
residues, whereas 4 other pairs of interacting residues represent an increase of interaction
strength. On the other hand, the mutation lead to the interaction of D112 with GHR2 at
site2 (similar to the observation for MUL124R), whereas T123 almost loses the interaction
in the mutant 4.4. Consequently, for the two replicates of mutant (MUR183H), along 70ns
of MD simulations the interaction strength is slightly reduced at both binding sites, but
the decrease is more present at site1.

4.4 Effects of the mutation on the communication of the
complex

GH monomer When considering all pathways (> 3 res), a single CBpath is detected
by COMMA analysis for WT that contains 127 residues (Figure 4.8 in red). For the
MUL124R and MUR183H mutants, in addition to a large CBpath (in red) that spans 129 and
130 residues of the GH mutants, respectively, a small CBpath (in pink) is detected that
contains 10 residues in MUL124R and 6 residues in MUR183H (Figure 4.8). In WT, when
considering long-range pathways of at least 8 residues, three CBpath are detected, helices
2 and 3 are communicating in one block (26 res, in green), whereas 22 residues on helix
1 and 25 residues of helix 4 form two separated blocks (in brown and yellow, respec-
tively). On the other hand, in the two mutants, long pathways span across the whole
structure and form a unique CBpath, consequently strong coupling between helices is ob-
served compared to the WT. The long-range CBpath in MUL124R contains 104 residues and
in MUR183H contains 96 residues. CBsclique are similar between the three systems of WT
and mutants.

GH-GHR complex Then we applied COMMA analysis to study the complex form of
GH-GHR. Figure 4.9 represents CBspath and CBsclique for the WT (a), MUL124R (b) and
MUR183H (c) of the complex GH-GHR. We report the details of the COMMA blocks.
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H18 94 ∗ 89 ∗ ∗ 88 ∗ ∗

H21 100 ∗ ∗ 80↓ ∗ ∗ 100 ∗ ∗

Q22 94 ∗ ∗ 43↓ ∗ 90 ∗ ∗

F25 77 ∗ 43↓ ∗ 75 ∗

Y28 88 ∗ ∗ 54↓ ∗ 72↓ ∗ ∗

K41 83 ∗ ∗ 50↓ ∗ ∗ 34↓ ∗ ∗

Y42 92 ∗ ∗ 99 ∗ 50↓ ∗

L45 91 ∗ 84 ∗ 74↓ ∗

Q46 67 ∗ 69 ∗ 53↓ ∗

P48 63 ∗ 47↓ ∗ 31↓ ∗

S51 58 ∗ ∗ 74↑ ∗ ∗ 30↓ ∗

L52 70 ∗ 65 ∗ 40↓ ∗

E56 13 ∗ 15 ∗ 79↑ ∗ ∗

S62 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

N63 68 ∗ 75 ∗ 79↑ ∗ ∗

R64 99 ∗ 100 ∗ ∗ 99 ∗ ∗

T67 92 ∗ 95 ∗ 93 ∗

Q68 39 ∗ 82↑ ∗ ∗ 44 ∗

Y164 80 ∗ 87 ∗ ∗ 75 ∗

R167 100 ∗ ∗ 92 ∗ ∗ 93 ∗ ∗

K168 88 ∗ 100↑ ∗ ∗ 98↑ ∗ ∗

D171 100 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

K172 98 ∗ 99 ∗ 98 ∗

E174 45 ∗ 50 ∗ ∗ 50 ∗ ∗

T175 99 ∗ ∗ 98 ∗ ∗ 97 ∗ ∗

R178 94 ∗ 88 ∗ 89 ∗

I179 82 ∗ 90 ∗ 74 ∗

C182 96 ∗ 96 ∗ 97 ∗

C189 75 ∗ 51↓ ∗ 36↓ ∗

G190 48 ∗ 25 ↓ ∗ 23↓ ∗

F191 41 ∗ 74↑ ∗ ∗ 31↓ ∗

Table 4.3: Residues involved in first binding site.
Residues that are involved in the non-bonded interactions at first binding site are listed. The
type of the all-atom interactions (H-Bonds or hydrophobic) and their strength (percentage of MD
simulation time) averaged over the two replicates, are reported for wild type and mutants. The
changes between WT and mutants that are equal or greater than 10% are represented by upward
and downward arrow that correspond to increase and decrease, respectively.
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F1 70 ∗ 51↓ ∗ ∗ 52↓ ∗

P2 42 ∗ 58↑ ∗ 37 ∗

T3 53 ∗ 26↓ ∗ 46 ∗

I4 65 ∗ 50↓ ∗ 54↓ ∗ ∗

R8 93 ∗ ∗ 62↓ ∗ ∗ 59↓ ∗ ∗

L9 86 ∗ 53↓ ∗ 83 ∗

N12 100 ∗ ∗ 99 ∗ ∗ 93 ∗

A13 94 ∗ 13↓ ∗ 91 ∗

L15 87 ∗ 88 ∗ 92 ∗

R16 99 ∗ ∗ 100 ∗ ∗ 100 ∗ ∗

H18 64 ∗ 35↓ ∗ 88↑ ∗

R19 52 ∗ ∗ 92↑ ∗ 94↑ ∗ ∗

Q22 48 ∗ 46 ∗ 84↑ ∗

Y103 73 ∗ 80 ∗ 48↓ ∗

D112 0 65↑ ∗ 50↑ ∗ ∗

D116 100 ∗ ∗ 40↓ ∗ 100 ∗ ∗

E119 77 ∗ 93↑ ∗ ∗ 62↓ ∗ ∗

G120 100 ∗ 48↓ ∗ 99 ∗

T123 52 ∗ 94↑ ∗ 14↓ ∗

Table 4.4: Residues involved in second binding site.
Residues that are involved in the non-bonded interactions at second binding site are listed. The
type of the all-atom interactions (H-Bonds or hydrophobic) and their strength (percentage of MD
simulation time) averaged over the two replicates, are reported for wild type and mutants. The
changes between WT and mutants that are equal or greater than 10% are represented by upward
and downward arrow that correspond to increase and decrease, respectively.
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Figure 4.8: Communication blocks for a) WT, b) MUL124R and c) MUR183H GH monomer
defined based on pathways of length .3, > 7 residues and independent cliques.
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Considering CBspath with at least 4 residues, one large communication block (207
residues) is detected in WT and 7 smaller blocks (≤ 36 residues). The complex is frag-
mented inside within the receptor molecules. On the other hand, GH is divided in two
and the division does not correspond to site1 and site2, bur rather to with GHR or without
GHR. The largest communication block in WT (in red) encompasses 31% of GH residues,
30% of R1 and 42% of R2. It must be emphasized that there is no direct pathway connect-
ing GH to R2 and the residues inside the red block are communicating through a chain of
overlapping pathways that connect: (1) residues inside GH, (2) GH to R1, (3) residues in-
side R1, (4) R1 to R2 and (5) residues inside R2 (pathways at the binding sites are shown
in black).

Considering CBspath in MUL124R, 4 blocks are defined while the largest block cov-
ers most of the residues in R1, R2 and helices H1 and H4 in GH (Figure 4.9 b). The
organization of blocks is roughly the same as in WT, except that the red block is more
extended and covers almost all the receptors. Also direct communication between GH
and receptors, happens only at site2.

In MUR183H, communication is reshaped into three blocks: (1) 52 % of GH residues
(and 3 residues of R2), (2) 63% of R1 and 18% of residues in R2 at the binding site
between the two receptors and (3) 41% of the residues inside R2 (Figure 4.9 c). The
organisation of the blocks is completely different for MUR183H, GH is completely con-
tained in one block, instead of being splitted. The block also contains some residues from
the receptor 2 (site2) and communication is maintained between the 2 receptors (orange
block). In addition, GH communicates only through site2. Although the communication
is stronger but does not propagate through the receptor molecules. When considering
long-range CBspath (> 7res), helix1 is not covered by blocks in MUL124R while residues
in Rec2D1 are not covered in MUR183H.

6 CBsclique are detected in WT, three blocks on Rec1D1, Rec2D1 and Rec2D2 (3, 1
and 2, respectively), two blocks on GH (4 and 6) and block 5 that covers some residues
on H2, H3, H4 and residues I165 to G168 of R1. Clique 2 contains few residues of the R1
in the binding site between the two receptors. In L1234R the three blocks in GH and the
other two in Rec1D1 and Rec2D1 are slightly different compared to WT, wheread block
2 is extended and contains residues in Rec1D2 as well as Rec2D2. CBsclique of MUR183H

are significantly different from WT and MUL124R. 4 blocks are detected: 1) covers part
of residues in Rec2D1 and H1, H2 and H3 in GH, 2) covers part of residues in Rec1D1
and H1, H2 and H4 in GH, 3) and 4) this clique is positioned on mutating residues and its
neighbours (C182-F191) on H4 and W169 on R1.

A general observation is the detection of large cliques in the receptors for all the
complexes of WT and MUs. Receptors have many loops, compared to GH and those
loops represent higher fluctuations compared to other receptor residues, when analysing
the fluctuations along MD simulations. Such behavior may explain the fact that cliques
are extended in receptors.

In order to compare the WT with the two mutants (MUL124R and MUR183H), commu-
nication pathways with at least 4 residues at the binding sites are extracted (Figure 4.9).
The details on the number of pathways and residues involved in the three systems and
binding sites are recorded in table 4.5. CBspath are colored on the structure and pathways
are shown in black lines. The pathways in the first binding site, between GH and R1 are
only present in WT (Figure 4.9b), whereas pathways in the second binding site, between
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GH-R1 GH-R2 R1-R2
Wild type
# Paths 4 0 3
# Residues 5 0 4
MUL124R

# Paths 0 3 49
# Residues 0 5 21
MUR183H

# Paths 0 15 3
# Residues 0 13 5

Table 4.5: Number of paths and residues communicating at binding sites.
Details of the pathways and residues communicating between hormone and receptors (GH-R1 and
GH-R2) and between the two receptors (R1-R2) in WT, MUL124R and MUR183H are listed.

GH and R2 are only present in the mutants. In MUL124R only H1 in GH communicates
with R2, whereas MUR183H demonstrates more communications in site2, between H1 and
H3 in GH and R2. Such increase of pathways could be related to the increase of the
interaction strength at site2 of the MUR183H.

The fact that communication through site1 is present only in WT may be significant
for the stability of the interaction of GH within its complex. It may indicate the delete-
rious effects of the mutations. The analysis of the interaction networks at binding sites
(Tables 4.3 and 4.4) represented slight reduction of interaction strength at both binding
sites for the two mutants. We observe the same behaviour when analysing the commu-
nication at binding site1 (Table 4.5). On the other hand, increase of communication is
reported for the two mutants at site2 (Table 4.5). However, a drastic increase is reported
for MUR183H. Even though the interaction networks at binding sites (Tables 4.3 and 4.4)
are not drastically different between WT and mutants, we can clearly see some changes in
the communication. Moreover, the changes in the re-shaping of the blocks and the differ-
ences between communications at binding sites, reveal the ability of COMMA to capture
the differences between the two mutants.

4.4.1 Pathways that correspond to block reshaping

COMMA enables us to detect the set of pathways that correspond to the reshaping of the
CBspath. For example there are 2 CBs detected on the structure of R2 in WT, whereas
there is only one CB on the R2 of MUL124R. Here we report the subset of pathways that
correspond to the reshaping of path CBs, between WT and each mutant:

WT and MUL124R The significant difference between blocks of WT and MUL124R cor-
responds to the increase in the coverage of largest block (Figure 4.10 colored in red).
This block in MUL124R covers more residues, including portion of residues in Rec1D1,
Rec1D2 and Rec2D1 (blocks colored in dark pink, yellow, brown and pink on WT). Set
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of new pathways in mutant that correspond to the grouping of all those blocks of WT in
mutant are shown with black lines.

WT and MUR183H A further analysis was performed to investigate the set of pathways
that result in the reshaping of communication blocks between WT and MUR183H (Figure
4.11, green lines). Pathways in WT are detected in R2 and at the first binding site between
GH and R1. Newly formed pathways in the mutant are detected inside GH, R1, R2 and at
the second binding site between GH and R2.

4.5 Coevolution analysis of GH and GH-GHR complex

4.5.1 Coevolution of the monomer (GH)

The set of homologous sequences were extracted for GH. After performing the sequence
alignment, we applied BIS to extract clusters of coevolving residues. For every cluster,
the set of hit residues and extensions are reported (Table 4.6), while hit residues of the six
clusters are colored on the structure of GH (Figure 4.12). We analysed each cluster, with
respect to the COMMA analysis of the GH-GHR complex. Here we report the results
obtained from the analysis of two clusters that are more interesting compared to the rest.

cluster hit resideus extensions
1 10,87 86
2 15,116 16,17,117
3 9,99,156
4 18,72,171,176 16,17,174,175
5 25,184 182,183
6 33,41 40

Table 4.6: Clusters of coevolving residues for GH.
Coevolving residues detected by BIS are reported here. The set of hit positions and extensions are
grouped separately.

In cluster 1 (F/L10 & L/F87), F10 from H1 belongs to CBpath1 and its buried side
chain is inserted between H1 (Nterm), H3 (C-term) and H4 (C-term). On the other hand,
L87 and its neighbouring residue, W86, from H2 and are precisely located at the kink of
the helix, L87 is not detected in CBpath nor in CBclique, but W86 belongs to CBpath2. The
coevolutionary change of F→L at position 10, may lead to the decrease of the space filled
by the residue, while coevolution at position 87 (L→F), would increase the excluded
volume and preserve the kink in the context of L10 (H2 could be instrumental in the
transmission of signal between the 2 coevolved residues). F10 interacts (91% simulation
time) with L124 (a mutational hotspot) from H3, and numerous paths go along H2 or
H3 from L124 to W86, which is 100% conserved and covalently linked to L87 (Figure
4.13a). It has to be mentioned that in the variant reported by (Walsh et al., 2004) F10
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Figure 4.10: Study of pathways that correspond to the reshaping of the blocks in WT and
MUL124R of GH-GHR.
The set of 8 communication blocks in a) WT (pink, red, brown, yellow, dark pink, orange, sand
and magenta) and 4 in b) MUL124R (pink, orange, magenta and red) are shown on the cartoon
representation of the structure. Pathways of at least 4 residues that correspond to the differences
between components are shown on the structure, their existence allows the components to collapse.
The schematic representations of the blocks in WT and MUL124R are depicted on the left. The
green lines represent the connection of separate secondary structures due to the mutation and the
black circles highlight secondary structures within CBs.
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Figure 4.11: Study of pathways that correspond to the reshaping of the blocks in WT and
MUR183H of GH-GHR.
The set of 8 communication blocks in a) WT (pink, red, brown, yellow, dark pink, orange, sand
and magenta) and 3 in b) MUR183H (pink, orange and red) are shown on the cartoon representation
of the structure. Pathways that correspond to the differences between blocks are colored in green,
their existence allows the components to collapse. The schematic representations of the blocks in
WT and MUR183H are depicted on the left. The green lines represent the connection of separate
secondary structures due to the mutation and the black circles highlight secondary structures within
CBs.
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Figure 4.12: Clusters of coevolved GH residues. Residues that belong to different coevlution
clusters are shown in different colors and with sticks on the structure of GH.
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is mutated to A and indeed the region after the kink and the subsequent loop (residues
94-110) adopt a different conformation.

Figure 4.13: Coevolved residues in clusters 1 and 2. Coevolved residues in clusters 1 (a) and
2 (b) are colored in yellow and red, respectively. The pathways detected by COMMA are shown
with black lines and the interaction between residues are represented by dashed lines.

In cluster 2 (L/S15 & D/Y116) residues 15-17 from H1 are detected in CBpath1 and
residues 116-117 from H3 are in CBpath8. D116 interacts with W104GHR2 (striking mu-
tational effects were reported for D116A in variant introduced by (Walsh et al., 2004));
R16 is fully conserved, involved in a salt bridge with E44GHR2, stacked with W169GHR2

and interacts with D116 for roughly 100% of simulation time (Figure 4.13b). The pos-
sible compensatory effect of D→Y at 116 would be to increase the excluded volume and
remove potential H-bonds, whereas L→S would decrease the excluded volume and add
potential H-bonds.

4.5.2 Coevolving residues in GH-GHR complex
We performed coevolution analysis of the GH-GHR complex. After performing Multi-
ple Sequence Alignment(MSA) on the set of homologous sequences of GH-GHR, co-
evolving residues are detected using BIS and clustered with CLAG (Figure 4.14). 9
different clusters were detected using BIS, 3 of them include only hormone residues and
the rest represent coevolution pattern between hormone and receptor residues. In order
to find the link between coevolution and COMMA, we extracted the subset of pathways
(with at least 4 residues) that communicate at binding sites. As explained in previous sec-
tion, there are two pathways at the first binding site and two others are detected between
the two receptors, from the COMMA analysis of wild-type GHGHR. The significant ob-
servation was the pathways detected at the first binding site (between GH and GHR1),
were passing through residues that belong to the first and second coevolving clusters. Co-
evolving residues of the first cluster are detected on the helices of GH, first Rec1D1 and
Rec2D2 (Figures 4.15 green spheres). On the other hand, in cluster 2, the 4 coevolving
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residues are detected on the hormone, Rec1D1 and Rec2D2 (Figures 4.15 red spheres).
Pathways at site1 cross through these coevolving residues and connects D171 on H4 of
GH to R203 on Rec1D1(Figures 4.15). This observation, highlights the importance of
D171 on GH and R203 on R1, as they are directly linked by the very few paths connecting
GH to GHR, while they belong to two different coevolving clusters.

Figure 4.14: Clusters of coevolved residues for GH-GHR. Coevolving residues of the GHGHR
are colored to highlight different clusters and all residues that belong to the receptors are labelled.

4.6 Conclusions
The results indicate a dynamics-based rewiring of communication network in GH-GHR
induced by deleterious mutations. One significant effect of these mutations is the discon-
nection between GH and R1, new communication routes are formed at second binding
site that are locally communicating between GH and few residues of R2. In addition,
the study of direct interaction between GH and its receptors are not necessarily the sign
of communication. Moreover, in MUR183H all four helices of GH communicate together,
while in WT and MUL124R they are splitted in two blocks. COMMA provides hints on
how the mutation affects the dissociation of the GH-GHR and enables us to detect the key
pathways on the structure of the WT and MUs.

COMMA detected large regions that form cliques in receptor, which overlap with
pathway-based blocks to some extent. This observation may indicate that the automatic
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Figure 4.15: Pathways connecting coevolving residues. Coevolving residues that belong to
clusters 1 and 2 are shown in spheres and colored in green and red, respectively. Pathways that
communicate at site1 are shown by black lines, they connect the two clusters.

set up of the thresholds is not adapted for this system and that the definition of the different
types of blocks is somewhat unclear. Possibly COMMA has to be be adapted to the study
of complexes. One solution might be to analyze the complex piece by piece and not the
entire complex.

Coevolving residues of GH and GH-GHR complex were detected using BIS and the
link between those residues and pathways detected by COMMA were studied. The anal-
ysis of the complex revealed that, the only two detected pathways at the binding site 1,
connecting GH to R1, also connect coevolving residues. This observations highlights the
importance of joint analysis of coevolution and dynamics, in order to find key residues at
the binding sites of GH-GHR complex.
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In this chapter we propose a method to detect deleterious mutational hotspots and to
characterize residue positions that are beneficial for the function of protein. We identify,
by studying conformational dynamics, regions in the protein that are crucial for spread-
ing information within the protein structure and define these regions formally. The new
concept of infostery, from ’info’ - information - and ’steric’ - arrangement of residues in
space - is introduced.

5.1 Background
The question of how amino acid sequence variations (re-)shape the conformational land-
scape of proteins and impact their function is one of outstanding importance in biology.
Yet, it is far from being resolved. On the one hand, systematically assessing the phe-
notypic outcomes of protein sequence changes is very challenging both experimentally
and computationally. This is due in part to the combinatorial explosion arising from con-
sidering all possible substitutions for single to multiple-point mutant variants. Another
difficulty resides in the design of the experiment: what should be measured as phenotypic
outcome? Disease-associated mutations can impair protein function in various ways, ei-
ther by destabilizing the structural stability of the protein, or by shifting the equilibrium
of conformation populations, or by modulating the binding affinity of the protein for its
cellular partner(s), to name a few. These effects are difficult to probe directly and un-
ambiguously. In vitro measurements might not be pertinent in the cellular context while
in vivo measurements may hide multiple, possibly compensatory, effects. Computational
techniques such as molecular dynamics (MD) simulations provide mechanistic details and
can lead to very accurate free energy estimations. However, they are very limited in terms
of conformational sampling, they do not take into account the cellular environment, and
they are generally not applicable to study non-equilibrium processes.

On the other hand, the unprecedented breadth of data now accessible through deep
sequencing is not always obvious to interpret in terms of protein structure and function.
Conserved residues are generally important for the function of of protein and known to be
involved in the interactions between proteins and biomolecules (Lichtarge and Wilkins,
2010; Engelen et al., 2009; Lichtarge et al., 1996). Exploiting the signals of evolutionary
covariation has important applications, among which are predicting native contacts within
protein structures (Morcos et al., 2011), inter-molecule interactions (Champeimont et al.,
2016) and intramolecular allosteric communication (Sung et al., 2016).

Dynamical changes at one site induce local perturbations, along with long-range con-
formational alteration that is known as the allosteric coupling in protein. In addition,
allostery can impact distant sites upon changes in complexes or binding to a ligand. For
example, the previous analysis of sequence coevolution demonstrated the presence of evo-
lutionary networks, induced by statistically coupled residues in PDZ domain, that may be
important for the allostery (Lockless and Ranganathan, 1999). Those positions are lo-
cated at binding site and other places on the structure, forming a long-range interaction
network.

The term PDZ domain, short for (PSD-95, Discs-large, ZO-I) was first introduced by
(Kennedy, 1995) and it represents the name of three first proteins that were shown to share
PDZ domain. These proteins are: 1) post-synaptic density protein 95 (PSD-95), which
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is a synaptic protein found only in the brain, 2) Drosophila disc large tumor suppressor
(Dlg1) and 2) zona occludens 1 (ZO-1) that both play an important role at junctions and
in cell signalling complexes.

The most important function of PDZ domains, is described as binding to the C-
terminal ends of interacting partners, while participating in signal transduction mech-
anisms or acting as scaffolding element are mentioned in the literature. Although the
sequence is variable among different PDZ domains, the fold is conserved. As an illus-
tration, in PDZ2 that is one family member of PDZ domain, peptide binding results in
dynamical and structural regulations of loop regions that are far from the binding site.
Whereas, peptide binding in PDZ3 (another family member of PDZ domain), does not
induce strong structural and dynamical changes at regions either close of far form the
binding site (Papaleo et al., 2012).

PDZ3, is the third PDZ domain of the very well documented brain synaptic protein
PDS-95. PDZ3 links to cysteine-rich PDZ-binding protein (CRIPT), which allows PSD-
95 to associate with the cytoskeleton. The cognate ligand of PDZ3, is the C-terminal
peptide derived from CRIPT (TKNYKQTSV).

Recently developed technologies, commonly designated as deep mutational scanning,
enable to estimate the functional consequences of every possible single amino acid change
at every position in a protein (Fowler and Fields, 2014). Such scanning was applied to a
PDZ domain in cellular context (McLaughlin et al., 2012). In (McLaughlin et al., 2012),
the third PDZ domain of the very well documented brain synaptic protein PDS-95 (PDZ3)
was used as a model system. The experiment consisted in systematically measuring the
effect of single-point mutations on the association of PDZ3 to its cognate ligand, the
C-terminal peptide derived from CRIPT (TKNYKQTSV). Based on these measurements,
McLaughlin and co-authors (McLaughlin et al., 2012) showed that there was a good over-
lap between the set of 20 positions displaying the highest sensitivity to mutation (highest
impairment of ligand binding, averaged over all possible substitutions) and a physically
contiguous network of coevolving residues detected from a multiple sequence alignment
of PDZ homologs.

In the present study, we exploit these experimental data to explore the sequence-
structure-dynamics-function relationship. First, we show that most of the highly deleteri-
ous positions can be detected based on conservation only. We also propose a score derived
from sequence analysis and structural information to predict the phenotypic outcomes of
the mutations. Second, we demonstrate that pertinent information can be extracted from
the structural dynamics of the wild-type PDZ3-CRIPT peptide complex to identify the
highly deleterious positions with very high accuracy and provide a physical interpretation
of their sensitivity to mutations. Moreover, we propose a protocol to predict the effects
of specific amino acid substitutions and show that it enables to distinguish neutral and
gain-of-function mutations from deleterious ones. Our approach is based on COMMA
(Chapter 2, Methods), that is a method to describe and compare the dynamical architec-
tures of different proteins or different variants of the same protein. COMMA goes beyond
classical analyses of the behavior of proteins in solution and beyond classical descriptions
of proteins based on domains and secondary structures. Specifically, it extracts dynam-
ical properties from conformational ensembles to identify communication pathways, i.e.
chains of residues linked by stable interactions that move together, and communication
cliques, i.e. clusters of residues that fluctuate in a concerted way. Pathways and cliques
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PDB code residue coverage resolution (Å)
1BE9 302-430 1.82
1BEE 302-402 2.3
1TP3 302-402 1.99
1TP5 302-402 1.54
1TQ3 302-402 1.89

Table 5.1: Crystallized structures of PDZ3.

are used to define communication blocks, which do not necessarily correspond to do-
mains or groups of secondary structure elements. The power of the method is illustrated
on Figure 5.1 for the PDZ3-CRIPT peptide complex. While the average MD conforma-
tions of the wild-type form and of two deleterious mutants are indistinguishable (Figure
5.1a), COMMA revealed that the communication within the mutants is characterized by
more numerous and longer pathways (Figure 5.1b) and more highly connected residues
(Figure 5.1c).

5.1.1 Previous MD simulations of PDZ domain

Crystallized structures for PDZ3 domain are compared in table 5.1 and 1BE9 is shown to
have both the highest coverage of the residues and low resolution.

Significant number of the publications on PDZ3, report MD simulations on the struc-
ture of 1BE9 (Tiwari and Mohanty, 2013; Kalescky et al., 2014; Murciano-Calles et al.,
2014). In a recent study (Kalescky et al., 2014), authors performed MD simulations using
CHARMM on 1BE9 with and without the CRIPT ligand (bound and unbound simula-
tions). They have also performed rigid-body MD simulations and proposed this method
as a systematic approach to study the effect of every single residue on the dynamics of the
whole system and identify key allosteric residues.

In (Murciano-Calles et al., 2014) authors performed MD simulations on 1BE9 us-
ing CHARMM22 forcefield and NAMD to study the interaction between the PDZ3 and
the consensus hexapeptide KKETAV, the highest affinity binding partner of PSD-95. Au-
thors exploited post-translational modifications methods and claimed that interplay of salt
bridges between H3 and L23 has high effect on the binding affinity of PDZ3. Their finding
highlights the role of H3 that is only present in PDZ3 among all PDZ domains. Addition-
ally the analysis of the binding to the two different ligands, revealed a similar behaviour
in terms of the chemical shift dispersion between the protein and the ligand.

In addition, the dynamical changes of PDZ domains were studied upon binding to the
ligand. Two different members of PDZ domains are tyrosine phosphatase PDZ2 and PSD-
95 PDZ3. Previous studies revealed that upon binding to the ligand, PDZ2 undergoes
strong dynamical changes (Gianni et al., 2011), whereas PDZ3 display no significant
structural changes at both ligand binding and distal sites (Chi et al., 2008). The structure
of PDZ3 was experimentally determined in two different forms, truncated (delta) form
and full length. In the short form, the N-terminal first 10 residues and the C-terminal
helix, H3 and β sheet are lacking.
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Figure 5.1: COMMA analysis for PDZ3-CRIPT peptide complex. (a) Conformations averaged
over 5 replicates of 15-ns MD simulations of the wild-type complex (WT) and two deleterious mu-
tants (MUH372A and MUA347F). (b) Communication pathways (longer than 3 residues) detected
by COMMA are mapped onto the averaged conformation and displayed as black lines. The thick-
ness of each segment is proportional to the number of pathways linking the two residues. (c) The
residues crossed by at least one communication pathway (longer than 3 residues) are displayed as
black spheres, centered on their C-α atoms. The size of each sphere is proportional to the number
of pathways crossing the residue.

The allosteric behaviour of these two PDZ domains were studied in (Morra et al.,
2014). Authors performed MD simulations of 400ns for PDZ2 (PDB: 3LNY) in com-
plex with RAGEF2 C-terminal peptide, PDZ3 bound state (PDB:1BE9) in complex with
CRIPT (sequence: KQTSV), PDZ3 unbound state (PDB: 1BFE) and truncated PDZ3 in
both bound and unbound states. The study of atomic fluctuations revealed the overall
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higher flexibility in the unbound state of PDZ2, whereas significantly few changes of
fluctuations were reported for PDZ3 upon binding. Authors reported stronger interac-
tions of H372 with the ligand in PDZ3 compared to PDZ2. Authors exploited an energy
decomposition method to extract the essential interactions responsible for the stability of
the protein. The comparison of the energy eigenvector profile obtained by energy de-
composition method, revealed the higher impact of ligand binding in PDZ2 compared
to PDZ3. One hypothesis for the observed difference, points to their structural differ-
ences (additional C-terminal helix H3 and β sheet compared to PDZ2). Their analysis of
fluctuations, rearrangement of the binding site and energy profiles led to the conclusion
that the truncated PDZ3 has an intermediate dynamic behavior between PDZ2 and PDZ3.
Allosteric regions were detected as residues with the energy anti-correlated fluctuations.
Furthermore the higher stability of PDZ3 is reported due to the existence of H3 with the
most stabilizing energy.

5.1.2 Experimental data

Previously in (Lockless and Ranganathan, 1999), authors defined sector as a group of
coevolving amino acids that are crucial for the structure and function of the protein. The
sector in PDZ3, connects the ligand-binding pocket with an allosteric site on the opposite
surface. On the other hand, the same authors performed high-throughput experiments to
study the complete mutational landscape of PDZ3 (McLaughlin et al., 2012). In this work,
every residue of PDZ3 was mutated to every other possible amino acids to perform the
deep sequencing experiment, where they quantitatively measured the ability of the PDZ3
to bind its cognate ligand. Mutation-induced changes in binding affinity were indirectly
estimated by measuring the frequencies of mutated alleles in a bacterial population where
cells were classified based on their content of PDZ3-CRIPT peptide complex (assessed
by eGFP levels). The authors showed that there was a good overlap between the set
of positions displaying the highest sensitivity to mutation (highest impairment of ligand
binding, averaged over all possible substitutions) and a physically contiguous network
of coevolving residues (residues detected previously as sector). From their analysis, 20
residues out of 83 bring loss of function and their functional effect are greater than 2σ.
On the other hand, 15 amino acids out of those 20 residues are sector positions (sensitivity
of 75%).

Among those hotspot positions, a sub set of positions (L323, F325, I327 and L379)
tolerate substitutions only to the most chemically conservative amino acids and a set of
buried residues positioned outside the direct spatial environment of the ligand (G329,
G330, I336, A347, L353, V362 and A375), show significant sensitivity to mutation. The
largest average mutational effect comes from position G329 and H372, which tolerates
essentially no other substitution. Authors mentioned that Proline is the most unfavorable
substitution from their analysis, followed by Asp, Glu, Lys, Arg and by tryptophan that
hast he largest side chain in terms of volume. The least average perturbations are induced
from the substitutions to Ala and Cys.



5.2. MOLECULAR DYNAMICS SIMULATIONS 105

5.1.3 Choice of mutation
PDZ3 in complex with the CRIPT ligand (PDB code: 1BE9) was considered as the studied
structure. In addition to the wild-type PDZ3, three subset of its mutants with different
mutational effects (loss-of-function, neutral and gain-of-function mutants) were selected
based on the experiment of (McLaughlin Jr et al., 2012). The functional cost of the
selected positions is reported (Table 5.2).

position average ∆E mutation ∆E
329 -1.102 G329A -1.4
347 -0.21 A347F -1.4
372 -1.08 H372A -1.34
341 -0.03 I341A -0.6
325 -0.55 F325A -0.03
371 0.02 S371A 0
366 0.05 D366A 0.07
311 0.22 P311W 0.3

Table 5.2: Studied mutations. The average ∆E and ∆E per mutation is reported for the studied
mutations.

Loss-of-function mutants

The following four mutants with deleterious mutational effects were chosen: G329A,
A347F, H372A and I341A. Residues at positions 329, 372 and I341 were shown to in-
teract with the ligand, whereas 347 is far from the neighbouring proximity of the ligand.
347 is detected as switch residue, while 372 detected as wire residue (Kalescky et al.,
2014). Position 372 determines the ligand specificity and 347 is shown to be coupled to
key residue H372 (Lockless and Ranganathan, 1999).

Neutral mutants

A set of three mutations with neutral functional effects were selected: F325A, S371A
and D366A. Both positions of 325 and 371 are within the close proximity of the ligand,
whereas D366A is positioned far from the ligand, on the other side of the structure.

Gain-of-function mutants

P311W has positive mutational effects (gain of function) and is placed far from the neigh-
bouring proximity of the ligand.

5.2 Molecular dynamics simulations
The following molecular dynamics protocol was applied to all studied systems.
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Set up of the systems. The 3D coordinates of PDZ3 in complex with its cognate lig-
and, a C-terminal peptide derived from CRIPT, were retrieved from the Protein Data Bank
(Berman et al., 2000) (PDB code: 1BE9, residues 302 to 430, 1.82 Å resolution (Doyle
et al., 1996)). All crystallographic water molecules and other non-protein molecules were
removed. The CRIPT peptide (sequence: TKNYKQTSV) is truncated in the PDB struc-
ture (sequence: KQTSV). The missing residues and side chains were modeled using
MODELLER 9v7 (Marti-Renom et al., 2000). The mutated forms of PDZ were gen-
erated by in silico substitutions using Rosetta Backrub (Smith and Kortemme, 2008). All
systems were prepared with the LEAP module of AMBER 12 (Case et al., 2012), using
the ff12SB forcefield parameter set: (i) hydrogen atoms were added, (ii) the solute was
hydrated with a cuboid box of explicit TIP3P water molecules with a buffering distance
up to 10Å, (iii) Na+ and Cl− counter-ions were added to reproduce physiological salt con-
centration (150 nM solution of potassium chloride). PDZ domain contains 2 histidines,
whose protonation states were determined so as to locally optimize the hydrogen-bond
network: (i) a hydrogen was assigned to the ε-nitrogen of H317 and (ii) hydrogen was
assigned to the δ-nitrogen of H372.

In total, 15 models were built and simulated (Table 5.3): (1-9) wild-type and all
mutated forms of full-length PDZ3 (residues 302 to 430) in complex with the ligand,
(10-11) wild-type and H372A-mutated full-length PDZ3 (residues 302 to 430) in free
form (ligand removed), (12-13) wild-type and H372A-mutated truncated PDZ3 (residues
311 to 393) in complex with the ligand, (14-15) wild-type and H372A-mutated truncated
PDZ3 (residues 311 to 393) in free form (ligand removed).

Minimization, heating and equilibration. The systems were minimized, thermalized
and equilibrated using the SANDER module of AMBER 12. The following minimization
procedure was applied: (i) 10,000 steps of minimization of the water molecules keeping
protein atoms fixed, (ii) 10,000 steps of minimization keeping only protein backbone
fixed to allow protein side chains to relax, (iii) 10,000 steps of minimization without
any constraint on the system. Heating of the system to the target temperature of 310
K was performed at constant volume using the Berendsen thermostat (Berendsen et al.,
1984) and while restraining the solute Cα atoms with a force constant of 10 kcal/mol/Å2.
Thereafter, the system was equilibrated for 100 ps at constant volume (NVT) and for
further 100 ps using a Langevin piston (NPT) (Loncharich et al., 1992) to maintain the
pressure. Finally the restraints were removed and the system was equilibrated for a final
100 ps run.

Production of the trajectories. 5 (models 1-9) or 2 (models 10-15) replicates of 20
ns (Table 5.3), with different initial velocities, were performed for each system. The
simulations were realized in the NPT ensemble using the PMEMD module of AMBER
12. The time step was set to 2.0 fs. The temperature was kept at 310 K and pressure at
1 bar using the Langevin piston coupling algorithm. The SHAKE algorithm was used
to freeze bonds involving hydrogen atoms, allowing for an integration time step of 2.0
fs. The Particle Mesh Ewald (PME) method (Darden et al., 1993) was employed to treat
long-range electrostatics. The coordinates of the system were written every ps. Standard
analyses of the MD trajectories were performed with the ptraj module of AMBER 12.
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Model Number of Waterbox dimensions
number replicates (in Å3)

Complex, full length (124 res.)
1 WT 5 72 × 68 × 58
2 P311W 5 72 × 68 × 58
3 D366A 5 72 × 68 × 58
4 S371A 5 71 × 68 × 58
5 F325A 5 72 × 68 × 58
6 I341A 5 72 × 68 × 58
7 H372A 5 72 × 68 × 58
8 G329A 5 72 × 68 × 58
9 A347F 5 72 × 68 × 58

Free PDZ, full length (115 res.)
10 WT 2 72 × 68 × 58
11 H372A 2 72 × 68 × 58

Complex, truncated form (92 res.)
12 WT 2 56 × 67 × 55
13 H372A 2 55 × 67 × 55

Free PDZ, truncated form (83 res.)
14 WT 2 56 × 67 × 55
15 H372A 2 55 × 59 × 55

Table 5.3: Computational details of performed MD simulations. The duration of each replicate
was 20 ns.

Stability of the trajectories. To assess the stability of the PDZ domain and its mutants,
the all-atom root mean square deviation (RMSD) was recorded along each 20-ns MD
simulation replicate (Figure 5.2 and 5.3). The simulations of full-length PDZ3 in complex
with its ligand (models 1-9) are very stable (Figure 5.2). The PDZ domain (residues 311-
393) deviates by 1.58-2.59 Å from the equilibrated structure, on average. The CRIPT
peptide remains in interaction with the protein all along the simulations, at a minimum
distance lower than 2 Å. The conformational drift of the ligand (RMSD values in the range
1.99-6.78 Å) is mainly due to the N-terminal residues (numbered -8 to -5). No significant
difference can be observed between the wild-type and mutated forms of the full-length
complex (Figure 5.2). The PDZ domain also shows high stability in the simulations of
the models 10-15 (Figure 5.3). The average deviations of wild-type and H372A-mutated
PDZ domain are in the range of 1.65-2.67 Å for full-length free form (models 10-11),
1.85-2.41 Å for truncated complexed form (models 12-13) and 1.88-2.62 Å for truncated
free form (models 14-15). All systems are fully relaxed after 5 ns. Consequently, the last
15 ns of each replicate were retained for subsequent analyses.
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Figure 5.2: Root mean square deviation for PDZ domain and its mutants. All-atom RMSD
recorded along the simulations of the full-length PDZ3 domain (residues 302-430) in complex with
the CRIPT peptide (models 1-9). The initial frame is taken as the reference, for each replicate.
The RMSD is computed on residues 311 to 393. Each curve is colored differently and corresponds
to one replicate: (a) WT, (b) MUP311W , (c) MUD366A , (d) MUS 371A, (e) MUF325A, (f) MUI341A,
(g) MUH372A, (h) MUG329A and (i) MUA347F .

Fluctuations and secondary structures. The by-residue RMS fluctuations of the PDZ
domain (residues 311 to 393) were computed for all MD simulations. The fluctuations
were measured with respect to the average structure in every replicate. The simulations
of full-length PDZ3 in complex with its ligand (models 1-9) displayed fluctuations within
the range of 0.5Å-4.54Å. The atomic fluctuations profiles are very similar for models 10-
15 (between 0.5Å and 3.95Å). Secondary structures were assigned with DSSP (Kabsch
and Sander, 1983). They are very stable along all MD simulations.

Solvent accessibility. The solvent accessible relative surface areas (rsa) of the residues
in the wild-type PDZ3 and the mutants were recorded using NACCESS (Hubbard and
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Figure 5.3: Root mean square deviation for wild-type and H372A-mutated PDZ domains.
All atom RMSD recorded along the simulations of: (a) full-length WT in free form (model 10),
(b) full-length MUH372A in free form (model 11), (c) truncated WT in free form (model 14), (d)
truncated MUH372A in free form (model 15), (e) truncated WT in complex with the ligand (model
12), (f) truncated MUH372A in complex with the ligand (model 13), The RMSD is computed on
residues 311 to 393. Each curve is colored differently and corresponds to one replicate.

Thornton, 1992-6) along the MD simulations. For each residue, the rsa was averaged
over the replicates of 15-ns MD simulation. The set of residues with 0% ≤ RS A ≤ 25%
are considered as buried residues. Moreover the RSA was also measured over the X-ray
structure as a reference.

5.3 COMMA analysis

COMMA was applied to extract communication blocks of PDZ3 in complex with its
cognate ligand. As described above, classical analyses (RMSD, RMSF, secondary struc-
ture...) of the MD simulations showed that the truncated and free forms of PDZ3 (models
10-15) behave very similarly to the full-length PDZ3 in complex with its cognate ligand.
Consequently, we focused on the latter to study and predict the impact of single-point
mutations, and we applied COMMA on the last 15 ns of every replicate (75,000 confor-
mations) of models 1-9.
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5.3.1 The confidence for COMMA blocks

COMMA uses a number of thresholds that are automatically set depending on the system
studied (Chapter 2, Methods). In order to assess the confidence of communication blocks
(both pathway-based and clique-based), sensitivity of the residues were analysed when
considering different sets of thresholds. The communication propensity threshold, CPcut,
used to define pathways was varied from 60% to 80% quantile by 5%. Consequently
COMMA was applied to defined CBspath with different CPcut. Residue sensitivity to be
included in those blocks was measured. The pathway-based confidence value represents
the number of times a given residue was included in CBpath, divided by the total number
of CPcut considered (5 values).

The same procedure was applied to assess the confidence of CBsclique by changing
the correlation threshold, CorrLFA

cut , used to delimit protein regions of concerted atomic
fluctuations. COMMA was applied with different CorrLFA

cut , changing from 85% to 95%
quantiles by 1% to measure the residue sensitivity to be included in CBsclique. The clique-
based confidence was assigned to residues based on the number of times they are detected
in CBclique divided by the total number of CorrLFA

cut (11 values).

5.3.2 Algorithm for picking up isolated direct contacts with varying
thresholds

All pairs of communicating residues are shown on a dot plot matrix. Different types of
communication are highlighted by colors on this matrix, where black dots correspond
to direct communication between every pair, gray represents the set of communicating
residues that their distance along the sequence is within the range of 4 residues and other
colors (such as red and magenta) are used to highlight indirect communications between
pairs of residues and the selected color corresponds to different communication blocks
that they belong to.

Isolated direct contacts are one or group of neighbouring residue pairs that communi-
cate directly. Residues in every pair of isolated direct contacts, are far along the sequence
and belong to different secondary structures. In few cases groups of isolated dots are
surrounded by at most 4 other indirect communicating pairs, those are few exceptions
considered in the analysis. Isolated dots represent the set of important residues on the
structure that link different secondary structures. There are only few short-length path-
ways crossing through them. Hence they are not surrounded by indirect communications
on the matrix, as well as on the structure. Therefore the whole functionality/stability of
the structure depends on the pathways crossing them. Their absence can cause negative
effects on the flow of signals along the structure.

The communication propensity threshold, CPth, used to define pathways was varied
from 60% to 80% quantile by 5%. COMMA was applied by using varied CPth to detect
the set of isolated direct contacts. A network was constructed from the set of all detected
isolated direct contacts, where nodes correspond to residues involved in such contacts and
edges connect the residues in every pair. A weight was assigned to each edge that account
for the number times a given contact was observed in WT or MUs. Furthermore a filter
was applied in order to remove all the exposed residues. At the end, single nodes that are
not linked to any other nodes, were removed from the network. Connected components
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of the network were defined and represented on the structure by different colors.

5.4 Dynamical architecture of PDZ-CRIPT peptide com-
plex

In this section, we explored the dynamical behavior of the PDZ3 bound to its cognate
ligand for the WT and all 8 studied MUs.

5.4.1 Wild-type complex
The complex between PDZ3 (residues 301 to 415) and the C-terminal CRIPT peptide
(TKNYKQTSV) was simulated in explicit solvent (five replicates of 20 ns) and the tra-
jectories were analyzed using COMMA. In the complex, the ligand forms an additional
β-strand in the groove between the β-strand S2 (residues 325 to 330) and the helix H2
(residues 372 to 380) of PDZ3 (Figure 5.4a). COMMA identified 2 pathway-based and
4 clique-based communication blocks (CBs). CBs partition the protein structure accord-
ing to the way information is transmitted across it. As one can observe (Figure 5.4b-c),
they do not correspond to domains but go across domains. They also go beyond chains:
pathway-based and CBsclique contain residues of the PDZ domain and of the ligand.

On the one hand, residues in a CBpath (CBpath) are linked by stable non-covalent inter-
actions and move together. The biggest CBpath (Figure 5.4b, in red) encompasses most
of the 2 β-sheets of the PDZ domain (42 residues) and the C-terminal residues -2 and
-1 of the ligand. The second CBpath (8 residues, Figure 5.4b, in pink) corresponds to
the helix H2. On the other hand, residues in a CBclique (CBclique) display high concerted
atomic fluctuations (Chapter 2, Methods). The major part of the ligand binding pocket is
involved in a CBclique (Figure 5.4c, in blue). Another CBclique (in marine) comprises helix
H1 (residues 341-350) and one residue, G324, from S2, which is in interaction with the
ligand. The N-terminal residues (-8 to -3) of the ligand form a CBclique (in purple) with
the loop L2 from PDZ. Finally, the smallest CBclique (in slate) is comprised by residues
363-366 from loop L5.

To assess the robustness of the results, we considered a consensus over different values
of the thresholds used to detect CBs (see COMMA analysis). The propensity (between 0
and 1) of each residue of the complex to be detected in a CB was computed (Figure 5.4,
size of the sausage). 85% of residues detected in CBspath and 98% of those detected in
CBsclique have a propensity value of 1. This indicates that the confidence in the detection
is high. We also simulated the free PDZ3 domain, without the ligand. The propensities of
the protein residues in the free form to be in a CBpath or CBclique are very similar to those
computed for the complex.

The organisation of the way information is transmitted across the PDZ3-CRIPT pep-
tide complex revealed that the ligand is almost fully integrated in the communication of
the PDZ domain and can be divided in two parts: the C-terminal residues move with the
2 β-sheets of PDZ as a rigid body while the N-terminal residues are more flexible and
fluctuate in concert with the loop L2. It also revealed that the PDZ residues encircling
the ligand do not move or fluctuate all together, but relate to 2 different protein regions
(colored in red/pink on Figure 5.4a and marine/blue on Figure 5.4b) .
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Figure 5.4: Communication blocks (CBs) identified by COMMA in wild-type PDZ. The pro-
tein is represented as a cartoon. (a) 2 CBspath are detected, colored in red and magenta. (b) 4
CBsclique are detected, colored in different blue tones. The size of the sausage reflects the propen-
sity of each residue to be detected in a CB. The residues whose substitutions were studied are
labelled.

5.4.2 Mutant complexes

We studied the impact of 8 mutations whose effects were reported in (McLaughlin et al.,
2012): P311W (beneficial), D366A, S371A and F325A (neutral), I341A, H372A, G329A
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and A347F (deleterious). They were chosen so as to span different locations in the PDZ
domain (Figure 5.4 and Figure 5.5) and to represent different mutational outcomes (Ta-
ble 5.4). MD simulations of the mutated complexes (5 replicates of 20 ns each) were
performed and classical analyses did not reveal any drastic changes in their structures or
movements (Figure 5.1a and 5.6a). They displayed RMS deviation profiles similar to
that of the wild type (Figure 5.2) and their secondary structures remained stable. By con-
trast, COMMA analysis revealed striking differences in the communication of the mutants
compared to the wild type (Figure 5.1b-c, 5.6b-c and Figure 5.7).

Figure 5.5: Localization of the studied mutations in the PDZ3-CRIPT peptide complex. The
protein PDZ3 and the ligand (PDB code: 1BE9) are displayed as cartoons colored in white and
black respectively. The residues whose mutations were studied and residues from the ligand with
which they interact are shown as sticks. Hydrogen-bonds are indicated as dashed red lines.
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Mutation experimental ∆E Gain of pathways Number of residues
(in kcal/mol) (McLaughlin et al., 2012) (> 3 residues) losing communications

P311W 0.31 753 21
D366A 0.07 780 11
S371A 0.02 766 10
F325A -0.03 450 15
I341A -0.64 1800 15
H372A -1.34 2126 8
G329A -1.36 1000 6
A347F -1.42 2312 10

Table 5.4: Studied mutations. The experimental measurements are given, along with the number
of communication pathways (> 3 residues) gained compared to the wild-type complex and the
number of residues losing communications.

Figure 5.6: COMMA analysis for PDZ3-CRIPT peptide complex. (a) Conformations averaged
over 5 replicates of 15-ns MD simulations of the wild-type complex (WT) and eight mutants.
(b) Communication pathways (> 3 residues) detected by COMMA are mapped onto the averaged
conformation and displayed as black lines. The thickness of each segment is proportional to the
number of pathways linking the two residues. (c) The residues crossed by at least one communi-
cation pathway (> 3 residues) are displayed as black spheres, centered on their C-α atoms. The
size of each sphere is proportional to the number of pathways crossing the residue.

5.4.3 Matrix of properties from COMMA analysis

The effect of mutations were measured based on ∆E values proposed for every substitu-
tion (McLaughlin et al., 2012). Here we measured different variations of ∆E to highlight
those that are deleterious or beneficial for the ligand binding of PDZ3. First the following
groups of physico-chemical classes were considered: 1) hydrophobic: {V, I, L,M, F,W, A, P,G},
2) negatively charged: {D, E}, 3) positively charged: {K,R}, 4) polar: {C, Y,H,N, S , T,Q},
to introduce mean∗∆E. For every position that belong to one class, the average is mea-
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Figure 5.7: Communication blocks identified by COMMA in PDZ mutants. (a) MUP311W , (b)
MUD366A, (c) MUS 371A, (d) MUF325A, (e) MUI341A, (f) MUH372A, (g) MUG329A and (h) MUA347F .
The differences with block detected in the wild-type form (Figure 5.4) are indicated by arrows.

sured over the substitutions that belong to other classes. Second, we defined mean∗∗∆E
that is similar to mean∗∆E but the classes are different. Here we report the set of physico-
chemical classes were considered: 1) hydrophobic: {V, I, L,M, F,W, A, P,G}, 2) nega-
tively charged: {D, E}, 3) positively charged: {K,R}, 4) polar: {C, Y,H,N, S , T,Q}.
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For every position on PDZ3 the following properties are measured from COMMA
analysis of the WT and MUs and shown in form of a matrix (Figure 5.8):

• positions that belong to CBspath of more than 3 residues and more than 6 residues

• position that belong to CBsclique

• length of pathways

• number of pathways

• the number of residues that every position is connected to, through pathways

• number of direct contacts between loops

• number of direct contacts between loops and secondary structures (α helix or β
strand)

• number of pathways connecting directly a protein residue to a residue on the the
ligand

• the robustness of residues that belong to pathway-based and CBsclique.

• Residues detected as sector (McLaughlin et al., 2012)

• the set of 4 clusters of coevolving residues in PDZ3 detected by MST (Baussand
and Carbone, 2009)

• max ∆E(p) of (McLaughlin et al., 2012)

• max ∆E(p) of (McLaughlin et al., 2012), when ignoring the effect of substitutions
to proline, because mutation to proline is the most unfavourable substitution

• the measured mean∆E of (McLaughlin et al., 2012)

• the measured mean∗∆E

• the measured mean∗∗∆E

• the measured mean∆E of (McLaughlin et al., 2012) when ignoring the effect of
substitutions to proline

• mean∗∆E when ignoring the effect of substitutions to proline

• mean∗∗∆E when ignoring the effect of substitutions to proline

• differences of pathway lengths, number of pathways and number of contacts be-
tween WT and every MU.
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Figure 5.8: PDZ matrix. mean∆E, mean∗∆E and mean∗∗∆E for every position is measured over
the set of residues that do not belong to the same physico-chemical classes. The sum direct con-
tacts between loops (white to green), loops and secondary structures (white to purple) and also
contacts with the ligand (white to orange) are measures for every position in wild type and mu-
tants. The newly defined max∆E, mean∆E, mean∗∆E and mean∗∗∆E while ignoring mutations to
proline, are also shown here. The sum direct contacts between loops, loops and secondary struc-
tures and also contacts with the ligand are measures for every position in wild type and mutants.
(The corresponding color code is from white to orange.)
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5.5 Characterizing the effect of single mutations

The total number of communication pathways is increased in all mutants compared to the
wild type (WT) complex (Table 5.4). The gain of pathways is higher for the deleterious
mutations, A347F, H372A, G329A and I341A, than for the other ones. Where are located
these additional paths? In all the mutants, the CBspath cover a larger portion of the protein
structure compared to WT (Figure 5.9b). This indicate that new residues are crossed by
pathways in the mutants (Figure 5.1b-c and 5.1b-c). Furthermore, the deleterious mutants
display the largest numbers of residues (Figure 5.9b, in blue tones). This observation
holds when considering subsets of pathways, defined by varying the minimum pathway
length up to 6 residues.

The ensemble of CBspath is also less fragmented in the mutant compared to the wild
type (Figure 5.7). To quantify the differences between mutants and the wild type, first we
measured the number of pathways (> 3 residues) that are crossing through every residue
of the WT and MUs. Figure 5.9a represents number of pathways of the wild-type PDZ3
on the 3D structure.

Second we counted the number of residues comprised in CBspath (Figure 5.9b). In
all the mutants, the CBspath cover a larger portion of the protein structure compared to
WT. Furthermore, the deleterious mutants, A347F, H372A, G329A and I341A (in blue
tones), display the largest numbers. This observation holds when considering subsets of
pathways, defined by varying the minimum pathway length up to 6 residues.

Third, we defined a score that accounts for the total number of residues in CBspath as
well as the size of the largest CBpath:

S (MU) =

∑
i #(XMU

i )∑
i #(XWT

i )
maxi(#(XMU

i ))
maxi(#(XWT

i ))
(5.1)

where #(XWT
i ) (resp. #(XMU

i )) is the number of residues comprised in the ith CBpath of the
wild type (resp. the considered mutant). The largest and the less fragmented the CBpath

ensemble in the mutant compared to the wild type, the higher the score. To compute
the score, the CBspath were obtained from inclusive subsets of pathways defined by using
cutoff lengths ranging from 3 to 5 residues (Figure 5.9d). The scores are higher in the
deleterious mutants (blue tones) compared to the other ones (gray tones and pink). The
highest value (4.0) is reached by MUH372A with pathways longer than 5 residues.

Last and forth, we counted the number of highly connected residues, i.e. residues
crossed by >60, >80 or >100 pathways (Figure 5.1c and 5.9c). There are more highly
connected residues in all studied mutants compared to WT, with the deleterious mutants
displaying the largest increases (Figure 5.9c). In MUA347F , MUH372A and MUG329A, more
than one third of the protein’s residues are crossed by more than 100 pathways. This is
more than twice as much as WT. The most highly connected residues in WT are also those
displaying the highest gain of pathways upon mutations.

In all three plots reporting values for the three metrics considered here (Figure 5.9),
the curves corresponding to deleterious mutations (in blue tones) are systematically above
the other ones (in grey tones and in pink). Moreover, there is a clear distinction between
the 2 groups: crossing between curves is observed within but not between groups. In
addition, the variability between the neutral and gain-of-function mutations is smaller
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than that observed between the deleterious mutations (pink and gray curves are closer to
each other than the blue ones).

This analysis showed that although the single-point mutations did not drastically af-
fect the structural dynamics of the PDZ-CRIPT peptide complex on a relatively short
time scale, COMMA was able to highlight significant differences between the dynamical
architectures of the mutants and that of the wild type. Specifically, the deleterious muta-
tions induce a dramatic increase in the number and length of communication pathways,
resulting in extended CBspath and larger numbers of highly connected residues. This ob-
servation could be interpreted as an increased stiffness of the complex. Noticeably, the
studied neutral and gain-of function mutants also show stiffened structures, although to a
much smaller extent than the deleterious ones. This suggests that the structure of the com-
plex has to adapt to any substitution introduced in silico, even if it has no experimentally
measurable effect. The effects recorded on the neutral and gain-of function mutants can
be considered as background noise, from which the signal corresponding to deleterious
mutations can clearly be distinguished. Finally, one should notice that the metrics used
here do not enable to single out the effet of the gain-of-function mutation P311W, whose
magnitude is in any case twice as small as the least deleterious mutation.

Figure 5.9: Effect of single-point mutations on the conformational dynamics of PDZ. (a)
Mapping of the number of communication pathways (>3 residues) onto PDZ domain 3D structure.
The ligand is colored in black and represented in sticks. (b) Number of residues in CBpath. The
CBs are defined with pathways of varying length, from >3 to >5 residues. (c) Number of highly
connected residues, i.e. crossed by a large number of pathways, from >60 to >100. (d) CBpath

score computed for different pathway lengths, from >3 to >5 residues. The curves are colored
according to the experimentally measured effects of the mutations: beneficial in pink, neutral in
grey tones and deleterious in blue tones.
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5.6 Predicting mutational hotspots

In this section we study the wild-type PDZ3 and its mutants, with the aim of predicting
the mutational hotspots by applying COMMA analysis.

5.6.1 Structural dynamics-based prediction of deleterious hotspots
using WT

Do the 20 deleterious positions identified in (McLaughlin et al., 2012) play a particu-
lar role in the structural dynamics of the wild-type complex and can we identify them?
A first observation one can make is that all these residues belong to the interior of the
complex (rsa<25%). In total, almost half of the protein residues are buried and display a
distribution of experimental ∆E measurements shifted toward lower values compared to
the solvent-exposed residues (Figure 5.10, compare boxplots in blue and orange). This
finding agrees with previous studies showing that sites with lower solvent accessibility
are typically less tolerant to mutations (Bustamante et al., 2000; Ramsey et al., 2011).

COMMA detected 7 residues belonging to both a CBpath and a CBclique with high
confidence (Figure 5.4). This dual character make them highly versatile as they transmit
information in two different ways, via stable interactions and via high atomic fluctuations,
to different regions of the protein. If we filter out surface residues (rsa>25%), we end
up with 4 residues which were all identified in (McLaughlin et al., 2012) as deleterious
hotspots: G324, I341, A376 and V379 (Table 5.5).

Another ensemble of residues potentially crucial for the stability of the complex are
those comprising the ligand-binding pocket. One could expect that mutating them could
lead to impairment of the protein-peptide association. We used COMMA to select residues
forming direct contacts with the ligand. This means that they are immediately preceding
or following a residue from the ligand in a communication pathway. This concept is more
restrictive than the usual notion of physical contact, as residues adjacent in a path must:
(i) form stable non-covalent interaction(s), present in more than 40 % of the simulation
time, and (ii) have highly correlated movements, i.e. the variance of their inter-residue
distance must be smaller than 0.08. We found 4 residues from PDZ being in direct contact
with the ligand: F325, N326, I327 and H372 (Figure 5.11a,c). All of them are buried,
and, except for N326, they are highly sensitive to mutation, representing 15% of the 20
deleterious hotspots (Table 5.5). Let us stress that the ensemble of residues forming stable
non-covalent interactions along the simulations is 4 times bigger (16 residues) than that
of residues in direct contact with the ligand. This illustrates the important contribution of
condition (ii) in defining direct contacts.

The direct and indirect communications detected by COMMA within the PDZ domain
are reported on Figure 5.12. Two residues are in indirect communication if they are
linked by a communication path but they are not adjacent in the path (they do not form
stable non-covalent interaction). We observed that most direct communications between
residues far away in the sequence (black dots) are (1) grouped together in the dot plot
and (2) surrounded by indirect ones (colored dots). (1) means that if two residues ak

and a j, at positions k and j in the sequence with | j − k| > 4, are adjacent in a pathway,
then some of their immediate neighbours in the sequence are also likely to be directly
connected (see lower left cartoon on Figure 5.12, black lines between I338 and I359,
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Figure 5.10: Distributions of experimentally measured mutation-induced changes in PDZ3
affinity for its cognate ligand, the C-terminal peptide of CRIPT. The values are taken from
(McLaughlin et al., 2012). All: all 20 possible amino acid substitutions for all 83 positions (1660
values). WT: wild-type to wild-type substitutions (83 values). Bur: all substitutions for the
40 buried residues (solvent accessible surface area, rsa <25%). Lig: all substitutions for the
13 residues forming hydrogen-bond or hydrophobic contact with the ligand in the PDB structure
(1BE9). Del: all substitutions for the 20 deleterious mutational hotspots identified in (McLaughlin
et al., 2012). Exp: all substitutions for the 43 exposed residues (rsa ≥25%). Sel: all substitutions
for the 9 residues exposed and located in CBclique that lose communication in at least two mutants.
Benef: all substitutions for the 20 beneficial positions.

F337 and D357, I336 and I359...). (2) means that if one or more pairs from two protein
segments, (ak−n, ..., ak+n) and (a j−m, ..., a j+m), with | j − k| > 4, are connected by direct
communication(s), they are likely part of longer pathways that extend along each segment
(see lower left cartoon on Figure 5.12, red dotted lines between I336 and D357, F337 and
I359...). Nevertheless, a few direct communications appear isolated in the plot (isolated
black dots, encircled in blue, see Materials and Methods). They correspond to residue
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Table 5.5: Detection of deleterious mutational hotspots

Strategy Sens PPV Spe Acc
path- and clique- 20 100 100 81
based CBs1

Infostery direct communications 15 75 98 78
Analysis with ligand only2

of the
Wild type isolated direct 65 81 95 88

communications3

all criteria 80 80 94 90

Coevolution SCA 75 75 92 88
Analysis MST 80 64 86 84

DCA 70 70 94 86

The performance values, sensitivity (S ens), precision or positive predictive value (PPV), specificity (S pe)
and accuracy (Acc), are given in percentages. 1 Buried residues detected in both a CBclique and a CBpath

with very high confidence. 2 Buried residues forming direct communications with the ligand. 3 Buried
residues forming isolated direct communications between them (see Materials and Methods).

pairs that form communication bridges between two protein segments while the other
residues from the two segments communicate with significantly poorer efficiency (Figure
5.12, upper left cartoon). We hypothesized that the residues involved in these bridges may
be critically important in stabilizing the complex and that mutating them could result in
highly deleterious outcome.

To test this hypothesis, we extracted the communication bridges (up to 5 black dots
that are not surrounded by colored dots) from the dot plots obtained for different values of
the communication propensity threshold (see Materials and Methods). In total, we identi-
fied 17 communication bridges involving 24 residues (Figure 5.12 and Figure ??). When
we filter out residues exposed to the solvent, we end up with a network of 16 residues,
divided into 5 connected components (Figure 5.11a,b). Each component encompasses
several secondary structure elements remote from each other in the primary sequence.
Three components (in green, cyan and yellow) comprise 10 residues from the α-helix H2,
the β-sheets S2-4 and the loops L2, L5 that enclose the ligand (Figure 5.11b). The second
biggest component (in orange) is formed by 4 residues from the α-helix H1, the loop L1
and the β-sheet S5. The remaining one (in purple) comprises 2 residues from S3 and L4.
13 out of 16 (81%) residues are deleterious hotspots (Table 5.5). Noticeably, none of the
isolated direct communications is located within the same secondary structure element
(α-helix, β-strand or loop) or motif (β-sheet).

Our characterization of the wild-type complex infostery revealed that most of the
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Figure 5.11: Network of residues in direct communication in wild-type PDZ3-CRIPT peptide
complex. (a) Each node corresponds to a residue and each edge corresponds to a direct communi-
cation, detected either as isolated within the PDZ domain, or between PDZ and its ligand. Residues
in bold are deleterious hotspots. The connected components extracted from the subnetwork where
the nodes and edges associated to the ligand are removed are encircled in different colors. (b) The
residues involved in communications within PDZ are shown as sticks and colored according to the
connected component to which they belong. (c) The residues from the ligand (in black) and from
PDZ (in slate) in direct communication are shown as sticks. The communications are displayed as
black lines.

highly deleterious positions correspond to residues serving as critical bridges between
either the protein and the peptide, or a CBpath and a CBclique, or two distinct secondary
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Figure 5.12: Dotplot representing direct and indirect communication between PDZ residues.
Upper triangle: default communication propensity threshold. Lower triangle: threshold corre-
sponding to 65% quantile of the communication propensity distribution. Each dot stands for the
existence of a communication pathway linking the 2 residues indicated in x and y-axis. If the 2
residues are less than 4 residues away in the protein sequence, the dot is colored in grey. Other-
wise, if the 2 residues are adjacent in a pathway (direct communication), the dot is in black. If they
are not adjacent (indirect communication), the dot is colored according to the CBpath to which the
residues belong (red or pink, same color-code as in Figure 5.4a). Isolated direct communications
are encircled in blue. The secondary structures are also indicated. On the left, two communication
motifs are mapped onto the 3D structure of PDZ, represented as a cartoon. The pathways (> 3
residues) linking the residues in the motifs are displayed as black solid lines. The C-α atoms of
the residues belonging to the motif are represented as grey spheres (black smaller spheres outside
the motif). Dashed red lines indicate indirect communications.

structure elements/motifs. These regions of the complex would otherwise behave inde-
pendently, since they are not covalently bound, or they display different dynamical proper-
ties. Interestingly, some residues can play multiple roles. I327 and H372 form both direct
communication with the ligand and isolated direct communications. I341 and L379 are
detected in both types of CBs and form isolated direct communications. This analysis
also demonstrated that by exploiting MD simulations of only one conformational state of
the wild-type PDZ3-CRIPT peptide complex, without any insight into the conformational
changes induced by any mutation, we could predict 80% of the deleterious hotspots with
a precision of 80% (Table 5.5). The residues that are not detected, I328, I338, I359 and
I388, all belong to a CBpath with propensity value of 1, are completely buried (rsa<5%)
and highly connected (crossed by >70 paths).

5.6.2 Decreased communications for specific positions associated to
beneficial mutations

Despite a global increase of pathway concentration in the mutants, some residues display
a lower number of direct and/or indirect communications than in the wild type (Figure
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5.1c and 5.6c, red spheres). Between 8 and 24% of the residues, depending on the mu-
tant considered, can lose up to 100% of their communications (Figure 5.13). Moreover,
more than half of these residues lose communications in only one mutant. This indicates
that specific residues in the different mutants measure loss of communication, contrary to
what was observed above for pathway concentration (see on Figure 5.1c and 5.6c, the red
spheres are located in various places while the black spheres grow in the same regions).
Moreover, the number of residues being affected and the magnitude of the loss are dif-
ferent depending on the experimentally measured mutational outcome from (McLaughlin
et al., 2012). Noticeably, the beneficial mutation, P311W (Table 5.4), affects 1.4 to 3.1
times more residues than the other mutants (22 versus 7-16, see Figure 5.13 and red
spheres on Figure 5.6c). In three of the deleterious mutants, MUI341A, MUG329A and
MUA347F , the losses are more important (44-47% on average) than in the other mutants
(23-30%).

Figure 5.13: Lost communications in mutated PDZ. The 8 studied mutants are reported in x-
axis and colored according to the experimentally measured effect of the mutation (beneficial in
pink, neutral in gray tones, deleterious in blue tones). Each point represents a residue that loses
at least one communication in at least one mutant and the percentage of lost communication for
this residue is reported in y-axis. There are 22, 13, 13, 15, 16, 10, 7 and 10 residues that lose
communication in MUP311W , MUD366A, MUS 371A, MUF325A, MUI341A, MUH372A, MUG329A and
MUA347F , respectively.

More than two thirds of the residues losing communications are linked by pathways
to less than 8 other residues in the wild-type complex. Such residues are generally de-
tected in CBsclique. We considered the subset of 9 residues (i) detected in a CBclique (with
propensity value of 1) in WT, (ii) exposed to the solvent (rsa≥25%) in WT and (iii) losing
communications in at least two mutants. These residues correspond to positions that could
be considered as beneficial (Figure 5.10, Sel). Their average ∆E over all substitutions is
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positive and for each position, between 12 and 20 substitutions (over 20 possible amino
acid types) lead to positive ∆E values, up to 0.3 kcal/mol.

This analysis showed that the strain introduced by the mutations in the PDZ3-CRIPT
peptide complex, manifested by a global increased pathway concentration, can be relaxed
through different residues losing communications. It also suggested a set of criteria that
could be applied to identify good candidates for beneficial mutations in a protein or pro-
tein complex.

5.7 Predicting mutatioanl hotspots using sequence anal-
ysis

We performed sequence analysis on PDZ3 to predict its mutational hotspots. We used
the matrix of 20 (amino acid types) × 83 (positions) experimentally measured ∆E values
reported in (McLaughlin et al., 2012) as our reference for defining beneficial, neutral
and deleterious mutations. These values estimate the changes in binding affinity of the
PDZ3 domain for its cognate ligand, the C-terminal CRIPT peptide, upon single-point
mutations. Due to the availability of the experimental data which reveals the mutational
landscape of PDZ3, we were able to examine the efficiency and accuracy of our results.
Our analysis led to the detection of deleterious hotspots with high precision. Here we
report the results

5.7.1 Homologous sequences
The set of sequences for PDZ3 were extracted following the method in (Baussand and
Carbone, 2009). The PDZ3 was selected as the model (pdb 1BE9) and PSI-BLAST
(Altschul et al., 1997) was applied using ClustalW (Larkin et al., 2007) with default pa-
rameters. Consequently, a set of 1384 sequences were extracted. Among the obtained
sequences, 1263 represent 20%-40% sequence identity with the reference, 67 display
40%-60% and 53 represent more than 60% identity. Then multiple sequence alignment
was applied on the sequence. The average sequence identity of the obtained sequences
with PDZ3 is around 30%.

5.7.2 Evolutionary constraints
Can we relate our findings on the PDZ3-CRIPT peptide complex infostery to the evo-
lutionary constraints exerted on the system. We extracted coevolution signals from a
large set of PDZ homologous sequences. Such signals are indicative of functional de-
pendencies between residues. We considered three different methods, namely Statistical
Coupling Analysis (SCA) (Lockless and Ranganathan, 1999), Direct-Coupling Analysis
(DCA) (Weigt et al., 2009) and Maximal SubTrees (MST) (Baussand and Carbone, 2009)
(see Materials and Methods). SCA and DCA are statistical methods that infer couplings
between residues from the alignment and require a large set of sequences. By contrast,
MST relies on a combinatorial approach based on the analysis of the alignment, on the
associated distance tree and on the combinatorics of its subtrees. The three methods dis-
play comparable accuracies (Table 5.5). SCA detected a physically contiguous network
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324 325 328 338 341 359 367 376 388
SCA X X X X X

DCA X X X X X X

MST X X X X

COMMA X X X X

Table 5.6: False negatives given by coevolution-based (SCA, DCA and MST) and infostery-
based (COMMA) analyses.

316 322 326 344 345 346 351 356 357 360 363 364 370 386 390
SCA X X X X X

DCA X X X X X X

MST X X X X X X X X X

COMMA X X X X

Table 5.7: False positives given by coevolution-based (SCA, DCA and MST) and infostery-
based (COMMA) analyses.

(sector) of 20 coevolving amino acids (McLaughlin et al., 2012), containing 15 (75%) of
the 20 deleterious hotspots. Among the 20 best-ranked positions identified by DCA, 14
(70%) are deleterious positions. MST detected 25 coevolving positions, among which 16
are deleterious. Consequently, most of the positions highly sensitive to mutations (be-
tween 70 and 80%) are detected as coevolved.

Using COMMA, we were able to detect 80% of the deleterious positions with higher
accuracy (Acc=90%) than the three sequence-based methods (Table 5.5). Noticeably,
the deleterious position I328 is missed by all methods (Table 5.6). I341 and L367 are
not detected as co-evolved but they are identified by the infostery analysis. Some non-
deleterious positions are detected as coevolved but not as important for the complex in-
fostery (Table 5.7).

The fact that both infostery-based and sequence-based analyses retrieve most of the
deleterious positions clearly indicates a link between the evolutionary constraints and the
structural constraints that apply to the PDZ domain to ensure/adapt its function. Further-
more, our characterization of PDZ3-CRIPT peptide complex infostery provides a phys-
ical interpretation of the functional importance of the coevolved residues. For instance,
the sector residues identified in (McLaughlin et al., 2012) from sequence analysis play
different roles in the complex infostery: 55% belong to a CBpath, 15% to a CBclique, 15%
to both and 15% to none (Table 5.8).

5.7.3 Predicting mutational effects
A mutational landscape represents the genotype-to-phenotype mapping, with a quantita-
tive phenotype that is assigned to each sequence. We followed a similar protocol to the
independent model (IND) in (Figliuzzi et al., 2016), to measure the phenotypic effect of
mutations. Subsequently we generated a matrix of data, from the set of multiple sequence
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sector CBpath CBclique direct communication Isolated direct
residue propensity propensity with ligand communication
322 0 1 0 0
323 0.8 0 0 1
325 1 0 1 0
327 1 0 1 1
329 0 0 0 1
330 0 0 0 1
336 1 0 0 1
347 0 1 0 1
351 0 0 0 0
353 1 0 0 1
359 1 0 0 0
362 1 0 0 1
363 1 1 0 0
364 0 1 0 0
372 1 0 1 1
375 1 0 0 1
376 1 1 0 0
379 1 1 0 1
386 1 0 0 1
388 1 0 0 0

Table 5.8: Role of the residues detected in a sector by coevolution analysis (McLaughlin et al.,
2012) in the infostery of the wild-type PDZ3-CRIPT peptide complex.
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alignments (Figure 5.14c). In this table, every column i corresponds to one position on
the wild-type sequence and every row j to one of the 20 amino acid types. Then, we
counted the number of sequences that represent amino acid j at position i and put this
number in the table. Then we applied the IND model to obtain the predicted values from
sequence analysis for every substitution, where the effect of substituting amino acid a0 by
a at position i is estimated as:

∆EIND
i(a0→a) = log

(
#(ai)
#(a0

i )

)
(5.2)

where #(ai) (resp. #(a0
i ))) is the number of sequences where a (resp. a0) occurs at position

i. The Pearson correlation R and R2 between the experimental and predicted values of
IND model equal 44% and 19% (Figure 5.14a).

On the other hand, we proposed to used the structural data in order to improve the ac-
curacy of the results. Hence, we measured the Cα distance between all pairs of residues,
considering the crystal 3D structure (pdb 1BE9). For each amino acid a0 occupying posi-
tion i, we considered the structural neighbours b0 found at a distance <10 Å in the tertiary
structure and occupying positions j in the alignment:

∆Epred
i(a0→a) = log

(
#(ai)
#(a0

i )

)
+ log

Πb0
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#(ai, b0
j)

#(a0
i , b

0
j)

 (5.3)

where #(ai, b0
j) is the number of sequences containing at positions i, j the amino acids a,

b0 respectively and #(a0
i , b

0
j) is the number of sequences containing the amino acids a0 and

b0 respectively. Intuitively, if a0 is found co-occurring with wild-type residues b0 more
often than a is, then it means that the latter is less fitted for its structural neighbourhood.

We compared the performance of our sequence-based approaches to five state-of-the-
art methods to predict mutational outcome: PopMusic (Dehouck et al., 2011), Polyphen-2
(Adzhubei et al., 2010), MUpro (Cheng et al., 2006), SIFT (Ng and Henikoff, 2003) and
I-mutant 2.0 (Capriotti et al., 2005). All these methods displayed lower predictive power
than what we obtained with Equations 2.1 and 5.3 (Figure 5.14c). We also compared our
results to a previous study (Figliuzzi et al., 2016), where the authors used Direct-Coupling
Analysis (Weigt et al., 2009) to estimate the pairwise interaction terms between positions
i and j. They obtained an R2 value around 27%, very similar to what we obtained (26%)
with simple sequence counts.

This analysis showed that most of the residues in PDZ3 whose substitutions result,
on average, in strong impairment of CRIPT peptide binding can be detected in a very
straightforward way from the alignment of many PDZ homologous sequences. 80% of
these residues correspond to positions that are highly conserved in the alignment. By
using an additional filter based on residue burial we could achieve an accuracy (87%)
similar to that obtained from a more sophisticated analysis, called SCA, detecting co-
evolution signals (88%) (McLaughlin et al., 2012). Noticeably, 3 mutational hotspots
identified experimentally, I328, I338 and L367, were not detected by us from conserva-
tion signals, nor by McLaughlin and coauthors who used SCA (McLaughlin et al., 2012).
In addition, our analysis led to the identification of 12 highly conserved positions that
do not correspond to mutational hotspots. One could hypothesize that these positions are
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Figure 5.14: Sequence analysis for PDZ. (a) Matrix showing the number of sequences containing
each amino acid at each position of the protein. At each position, the amino acid present in the
wild-type PDZ3 sequence is highlighted by a black square. Highly conserved positions, displaying
one dominant amino acid (> 593 sequences) are highlighted by gray rectangles. The strip below
the matrix reports the experimental PDZ3-CRIPT ligand binding affinity changes (∆E) averaged
over the 20 possible amino acid substitutions for each position (values taken from (McLaughlin
et al., 2012)). Deleterious mutational hotspots are indicated by red arrows. (b) Distribution of the
number of sequences. (c) Correlation R2 between experimental and predicted mutational effects.
Tested methods are Epistatic Sequence Analysis (EPI), Direct Coupling Analysis (DCA), Inde-
pendent Sequence Analysis (IND), PopMuSiC (Pop), Polyphen-2 (Poly), MUpro (MUpro), SIFT
(SIFT) and I-Mutant2.0 (Imut2).

important for other aspects of PDZ function, for instance homo-dimerization (some PDZ
domains are known to form dimers (Lee and Zheng, 2010)).

Beyond hotspot detection, single-site conservation signals, combined with pairwise
interaction terms between each position and its structural neighbours, could be used to
predict the phenotypic outcomes of all 20 × 83 possible substitutions. A correlation of
0.51 was obtained with the whole matrix of experimental ∆E values. This correlation
is very good, owing to the noise contained in the experimental data (values reported for
wild-type to wild-type substitutions range from -0.17 to 0.18 kcal/mol, Figure 5.10, WT).
Moreover, it is significantly better than what is obtained from more sophisticated meth-
ods. Yet, it means that sequence analysis only partially explain the experimental values,
which can be explained by discrepancies between the measured phenotype and that under
evolutionary selection (fitness). The experimental measurements do not reflect mutation-
induced changes in PDZ domain function, but a much more specific outcome, that is the
binding affinity between one particular PDZ domain, PSD95pdz3, and its cognate ligand,
the CRIPT peptide. Different PDZ domains specifically recognize different target pep-
tides and some of them even form homo-dimers (Lee and Zheng, 2010). These aspects
of the functional variability of PDZ domains are not captured by the experiment designed
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by McLaughlin and co-authors (McLaughlin et al., 2012) but could influence the correct
interpretation of the results.

5.8 Conclusions
In this work, we have proposed new measures to study the dynamical behavior of proteins
and protein complexes in solution and to probe their mutational landscape. We have in-
troduced the concept of infostery, from ’info’ - information - and ’steric’ - arrangement of
residues in space. We have characterized the infostery of the wild-type PDZ3-CRIPT pep-
tide complex and single-point mutants with COMMA, a method to describe how residues
communicate with each other across a protein structure. We have applied different criteria
based on the geometry and dynamics of the complex to capture pertinent information.

First, we demonstrated that the wild-type complex contain all information necessary
to identify almost all (S ens=80%) the positions significantly sensitive to mutations (dele-
terious hotspots) with very high precision (PPV=80%). We found that the residues at
these positions were either crucial for stabilizing the binding of the ligand by contacting
it directly, critical for the structural stability of the protein by connecting segments remote
in the primary sequence, or versatile in the dynamical architecture of the protein by being
involved in two different types of communication. Our approach does not require any a
priori knowledge about the effect of any substitution nor about the system (e.g. residues
or regions known to be important).

Second, we assessed the effects of chosen amino acid substitutions at 8 particular po-
sitions. The phenotypic outcomes (beneficial, neutral or deleterious) of these mutations
were suggested by experiments (McLaughlin et al., 2012). We showed that the mutations
did not drastically change the shape or motions of the complex on the time scale of a
few tens of nanoseconds. Yet, we could exploit the data by characterizing the mutants
infostery to distinguish the different types of mutations: deleterious, neutral and benefi-
cial. Our results revealed a stiffening of the PDZ3-CRIPT peptide complex induced by the
deleterious mutations and manifested as a largely increased concentration of communica-
tion pathways. This global increase was accompanied by communication losses affecting
different residues, specific to each mutant. The beneficial mutant could be singled out as
it displayed the highest number of such residues.

From the experimental data, deleterious mutations are much easier to identify than
beneficial ones. Indeed, the magnitude of the beneficial effects are rather small and the
data are noisy, as exemplified by the fact that values reported for wild-type to wild-type
amino acid substitutions are not zero. Our analysis suggested that residues exposed to
the solvent and located in clique-based communication blocks are good candidates for
beneficial mutations. This finding shall be confirmed by future studies on systems where
beneficial mutational effects are more clearly assessed.

We also put in evidence a link between the evolutionary constraints and the structural
constraints that apply to the PDZ domain. Most of the highly deleterious positions have
coevolved along evolution and they play particular roles in the complex communication.
It was suggested that evolutionarily coupled residues in dopamine D2 receptor are links
in a chain of allosteric interactions (Sung et al., 2016). Such results let envisage the
possibility of reconstructing communication networks across protein structures based on
conservation and coevolution signals. This would require further developments aimed at
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deciphering the physical basis for such signals and for the functional dependencies they
underlie.

Our work contributes to better understand the sequence-structure-dynamics relation-
ship as it provides means to predict the phenotypic outcomes of mutations in a systematic
way. It can be applied to any pair of mutations, or triplets, not just point-wise mutations,
for the analysis of combined mutational effects, that might be deleterious but also com-
pensatory (for the re-establishment of the function). It opens new avenues for developing
efficient strategies to describe the mutational landscape of a protein in a computationally
tractable way. We addressed the study of a difficult case, where the effects of the muta-
tions are not obvious from classical analysis of the simulations. We were able to extract
pertinent information from relatively short MD simulations and we demonstrated that the
wild-type complex contained all information to identify most of the positions that ’mat-
ter’. This is very encouraging and let envisage large-scale applications of our approach.

Our results open new avenues for the prediction of mutational effects and let envisage
the possibility of developing efficient strategies to characterize/explore the conformational
dynamics of a protein in a computationally tractable way. (1) Simple sequence analysis
and structural information from X-ray crystallography already furnish a lot of information
about the function of the protein. (2) Relatively short MD simulations of the wild-type
complex are sufficient to identify most of the positions that ’matter’ for ligand binding.
One could think of collecting information from (1) and (2) to define a set of potentially
important positions. Systematic substitutions applied to a set of about 20 pre-selected
positions could be applied to further investigate them. The total amount of required com-
puting time for simulating 20 × 20 substitutions with 5 replicates of 20 ns would be
1 280 000 CPU hours.
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Disorder in coiled-coils
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6.1 Introduction
Coiled-coils are ubiquitous oligomerisation motifs in proteins, where up to 7 amphiphatic
α-helices (the most common number of helices are 2 and 3) intertwine together similar
to the strings of a rope. The most common coiled-coils, are left-handed. They feature a
specific sequence motif called heptad repeat, comprised of seven residues abcdefg where
a and d are hydrophobic and the other residues are apolar. The number of residues per turn
in a regular α-helix is 3.6. In the case of heptad repeats, it reduces to 3.5 residues per turn
which leads to the left-handing (Stetefeld et al., 2000). A few cases of naturally occurring
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Figure 6.1: Domain organization of MeV and NiV Phosphoprotein. The organization of the
MeV and NiV phosphoprotein is shown (a). The protein is comprised of two domains, PNT and
PCT. PCT is composed of three parts: the spacer that is a disordered region, the Poly Multimer-
ization Domain (PMD) that is a structured region, a disordered linker and the X domain (XD) that
is a globular region. MeV PMD and NiV PMD are shown here (b) and c), respectively). Each
monomer of NiV PMD, has a two-helix Nterm cap.

right-handed coiled coils were also identified, characterized by 11-residue repeats, where
the periodicity of residues per helices increases up to 3.67. In this chapter we will focus
our study on phosphoprotein multimerisation domains (PMD) of two viruses, namely
Measles virus (MeV) and Nipah virus (NiV) that adopt a left-handed coiled-coil structure
in solution.

Measles virus (MeV) is a negative single stranded, nonsegmented virus that belongs
to the family of paramyxoviridae and it is encapsidated by monomers of nucleoprotein
(N) (Blocquel et al., 2014). MeV is the template for both transcription and replication
by the viral polymerase complex. Polymerase complex consists of RNA-dependent RNA
polymerase (L) and phosphoprotein (P) (Figure 6.1). P plays role to tether the L onto
the nucleocapsid template. P comprises a N-terminal domain (PNT, res 1-230) which is
a disordered region and the C-terminal (PCT, res 231-507) is composed of the following
parts: a disordered region (res 231-303), the P multimerization domain (PMD) (res 304-
375), a disordered linker (res 377-458) and a globular region (res 459-507) known as X
domain (XD) (Karlin et al., 2003) (Figure 6.1).

Different crystal structures were solved for this protein. One tetrameric coiled-coil
structure of MeV PMD (PDB code 3ZDO) was solved by (Communie et al., 2013). Our
collaborators, Sonia Longhi (Université d’Aix-Marseille) and Denis Gerlier (Ecole Nor-
male Supérieure de Lyon), first solved the crystal structure of the shortened form of MeV
PMD, residues 304-360, called PMD-Ctrunc (PDB code 4BHV) (Blocquel et al., 2014).
Then they employed MeV PMD-Ctrunc as a model to generate the long form crystal
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PDB code method resolution chains res. present res. resolved
(Å) in the construct in the structure

3ZDO X-ray 2.07 A/B/C/D/ 304-377 308-371
(Communie et al., 2013) E/F/G/H
4BHV X-ray 2.10 A/B/C/D/ 304-360 307-360
(Blocquel et al., 2014) E/F/G/H
4C5Q X-ray 2.20 A/B/C/D 304-375 307-357
(Blocquel et al., 2014)
4N5B X-ray 2.2 A/B/C/D/ 470-578 477-576
(Blocquel et al., 2014) E/F/G/H

Table 6.1: MD preparation and equilibration details. The counter-ions employed to neutralize
the systems are Na+ and Cl−. Root mean square deviations were computed on the backbone atoms
of the equilibrated conformations versus the initial template.

structure of the MeV PMD (PDB code 4C5Q) and showed that only residues 308 to 357
are structured while the rest of the polypeptide chain (res 358-375) is disordered. The
details of the crystal structures are described in Table 6.1.

In the case of MeV PMD, a and d are always leucine (L), isoleucine (I) and valine
(V), except for N329 and Q356 (figure 6.2). The side chains adopt a “knobs into holes”
packing, where a residue from one helix inside the space is encompassed by four side-
chains of another helix in front of it (a and d registers in figure 6.2). The stability of
coiled-coils is closely related to the geometry of knobs into holes. In MeV MPD, there is
a breakage in the repetition of abcdefg motif around L342 which leads to the appearance
of a kink at this position. Therefore positions L339 to L342 form a 3 10 helix which leads
K343 outward.

Our collaborators performed a structural comparison of three MeV PMD structures
(4C5Q, 4BHV and 3ZDO) and discovered some differences (Blocquel et al., 2014). The
kink occurs at L342 in all chains of 4C5Q, 4BHV, whereas it is missing in the chains C
and F of 3ZDO. The association of the tetramer is less tight and helices are significantly
less twisted in PMD-Ctrunc (4BHV) compared to the other two structures. Differences
were also observed in the geometry of knobs in those three structures: the structure of
3ZDO, represents fewer knobs on each protomer. In addition, Blocquel et al. showed
that all tetramers are energetically stable and the crystal structure of PMD-Ctrunc has
the highest stability. According to these findings, the same protein sequence may lead
to different coiled-coil structures (ie different content of disorder and different packing
of the tetramer). Where do the differences come from? Are they due to different crystal
packings, or to different states of the complex? These differences can have an impact on
the conclusions about the function and mechanisms of the same protein. Consequently, it
is important to investigate how to resolve the discrepancies between the different structural
data.

Nipah virus (NiV) is a newly emerged human pathogen in the family of paramyx-
oviridae (Eaton et al., 2007) and no vaccine or antiviral therapeutics is detected yet for
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Figure 6.2: Sequence of registers for MeV PMD. The list of MeV PMD amino acids that appear
at every position of the heptad repeat are shown. Colors represent physico-chemical properties of
amino acids: orange for hydrophobic, red for negatively charged, blue for positively charged and
green for polar.

human use (Broder, 2012). The N-terminal region of Nipah virus phosphoprotein (P) is
intrinsically disordered (residues 1-50). The C-terminal consists of a well-ordered region,
P multimerization domain (PMD) that spans over residues 470-578, a flexible linker and
the X domain (residues 660-709) (Figure 6.1). Kink position is at Pro 544 in Nipah virus.
Each monomer has a two-helix N-terminal cap in Nipah virus whereas in measles virus
there is no cap at the N-terminal.

The crystal structure of NiV PMD was solved as a long parallel tetrameric coiled-coil
(Bruhn et al., 2014), where in the N-terminal each monomer forms a two-helix cap. There
is a kink formed at position Pro 544 in the middle of each helix which corresponds to a coil
frameshift, braking from ideal Crick parameter for coiled-coils. The stabilization of NiV
PMD is primarily due to the hydrophobic interactions (isoleucines, leucines and valines),
a typical characteristic of coiled-coils. Although the protein forms a tetramer in the PDB
structure, our collaborators found evidence that the NiV PMD exists as a trimer in solution
through different experiments (the elution profile, cross-linking experiments with SAB,
experiment of sedimentation velocity, far-UV spectroscopy and obtaining molecular mass
from SAXS studies) (Blocquel et al., 2013).

There are two main biological questions that we are interested to investigate. First we
would like to predict the disordered region of PMD of the two mentioned viruses. Three
X-ray structures were solved experimentally for the PMD of MeV, however the body of
structural data available are conflicting. The full-length domain (residues 304-375) is
well-ordered (Communie et al., 2013) in one structure (PDB code: 3ZDO), whereas for
the other structure (PDB code: 4BHV) the C-terminal part (residues 360-375) is missing,
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indicating that the region is intrinsically disordered (Blocquel et al., 2014). Second, the
paramyxoviridae viruses were shown to form trimers or tetramers. In particular the PMDs
of the Measle (MeV) and Nipah (NiV) viruses were crystallized as tetramers. There
is strong experimental evidence obtained from SAXS studies and far-UV spectroscopy
for the existence of a trimeric form of NiV PMD in solution (Blocquel et al., 2013).
Therefore, there is a strong interest to know which one is the most stable form for NiV
PMD and MeV PMD, the trimeric or tetrameric.

In the present work, we show that COMMA can detect protein regions that are prone
to disorder or substantial conformational rearrangements, without requiring the input MD
trajectory to actually sample the unfolded states of these regions. Furthermore the analysis
of results obtained from COMMA enabled us to propose hypothesis for mutations on
MeV PMD, in order to control the stability of the coiled-coil structure.

6.2 Methods

6.2.1 Studied systems
The following homo-tetramer coiled-coils were studied (6.1):

• MeV PMD (PDB code: 3ZDO, chains A: 309-371, B: 309-370, C: 311-373 and D:
308-371, 2.07Å)

• NiV PMD (PDB code: 4N5B, chain A: 475-578, B: 476-575, C: 477-576 and D:
476-576, 2.2Å)

• NiV PMD (PDB code: 4GJW, chains A: 476-571, B: 476-571, D: 471-571 and H:
476-571, 3.0 Å)

• RhcC (PDB code: 1YBK, chains A: 1-52, B: 1-52, C: 4-52 and D: 1-52, 1.45 Å)

Among the three mentioned structures for MeV PMD, we chose 3ZDO, because it has
a full length structure and the C-term is resolved. Moreover the right-handed coiled-coil
homo-tetramer of the RhcC protein (Staphylothermus marinus) was studied as a control
for our analysis on left-handed coiled-coils. Furthermore, these proteins were also sim-
ulated as monomers. In addition, we studied 4 different mutations of MeV PDM. In all
these mutants the wild-type amino acid was mutated to an aspartic acid (D): V315D,
L322D, V346D and I353D.

6.2.2 Molecular dynamics simulations
Set up of the systems The 3D coordinates for the studied proteins were retrieved from
the Protein Data Bank (PDB) (Berman et al., 2000). All crystallographic water molecules
and other non-protein molecules were removed. All models were prepared using the
LEAP module of AMBER 12 (Case et al., 2012), with the ff12SB forcefield parameter
set: (i) hydrogen atoms were added, (ii) Na+ or Cl− counter-ions were added to neutralise
the systems charge, (iii) the solute was hydrated with a cuboid box of explicit TIP3P
water molecules with a buffering distance up to 10Å. The environment of the histidines
was manually checked and they were consequently protonated with a hydrogen at the
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ε nitrogen. The mutated forms were generated by in silico substitutions using Rosetta
Backrub (Smith and Kortemme, 2008).

Minimisation, heating and equilibration The systems were minimised, thermalised
and equilibrated using the SANDER module of AMBER 12. The following minimisation
procedure was applied: (i) 10,000 steps of minimisation of the water molecules keeping
protein atoms fixed, (ii) 10,000 steps of minimisation keeping only protein backbone
fixed to allow protein side chains to relax, (iii) 10,000 steps of minimisation without
any constraint on the system. Heating of the system to the target temperature of 310
K was performed at constant volume using the Berendsen thermostat (Berendsen et al.,
1984) and while restraining the solute Cα atoms with a force constant of 10 kcal/mol/Å2.
Thereafter, the system was equilibrated for 100 ps at constant volume (NVT) and for
further 100 ps using a Langevin piston (NPT) (Loncharich et al., 1992) to maintain the
pressure. Finally the restraints were removed and the system was equilibrated for a final
100-ps run.

Production of the trajectories For every protein, 2 replicates of 50 ns, with different
initial velocities, were performed in the NPT ensemble using the PMEMD module of
AMBER 12. The temperature was kept at 310 K and pressure at 1 bar using the Langevin
piston coupling algorithm. The SHAKE algorithm was used to freeze bonds involving
hydrogen atoms, allowing for an integration time step of 2.0 fs. The Particle Mesh Ewald
method (PME) (Darden et al., 1993) was employed to treat long-range electrostatics. The
coordinates of the system were written every ps. Standard analyses of the MD trajectories
were performed with the ptraj module of AMBER 12.

Stability of the trajectories The RMSD of the studied coiled-coils (MeV PMD, NiV
PMD and RhcC) and the mutants of MeV OMD are measured along simulation time
for all the replicates of wild type and mutants (figures 6.3 and 6.4). All systems are
fully relaxed after 10 ns. Consequently, the last 40 ns of each replicate were retained for
subsequent analyses.

6.2.3 COMMA analysis

COMMA was applied to each system, over the 2 replicates of 50-ns MD simulations
to extract communication blocks. COMMA identified pathway-based communication
blocks, i.e. groups of residues that move together and are linked by non-covalent interac-
tions, and clique-based communication blocks, i.e. groups of residues that display high
concerted atomic fluctuations and that are close in 3D space. Pathways are chains of
residues linked by non-covalent interactions that move together. We should emphasize
that all the backbone-backbone non-covalent interactions are ignored for the analysis of
COMMA. We define to set of pathway-based communication blocks, namely short-range
and long-range blocks. Short-range block are consist of pathways of at least 4 residues,
whereas long-range blocks are detected from the set of long-range pathways. The length
of such pathways are system-depended, therefore we may have pathways of at least 7 or
8 residues.
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Figure 6.3: RMSD plot for the studied coiled-coils. The root mean square deviation is measured
for every chain along the MD simulation time for the two replicates of a) MeV PMD (3ZDO), b)
NiV PMD (4N5B), c) NiV PMD (4GJW) and a) RhcC (1YKB).

6.3 Results
We performed MD simulations on MeV PMD (PDB code: 3ZDO) and NiV PMD (PDB
code: 4N5B) and applied COMMA to extract the communication blocks for each system.
CBspath define rigid bodies that move together, whereas CBsclique define flexible regions
that represent concerted atomic fluctuations.

6.3.1 Non-symmetric organization of the rigid communication in MeV
and NiV PMD

The four helices of MeV PMD tetramer, although they share exactly the same sequence
and that sequence follows the same pattern of 7 registers (abcdefg), helices do not play
equivalent nor symmetrical roles in the communication of the protein. The largest CBpath

identified by COMMA (Figure 6.5a, in red) comprises most of the residues from he-
lices B, C and D and only half of the residues from helix A (77% of the total number
of residues in the protein). The remaining half of helix A is detected as an independent
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Figure 6.4: RMSD plot for the wild type and mutants of MeV PMD. The root mean square de-
viation is measured for every residue along the MD simulation time for the wild type and mutants.

CBpath (in pink), which partly overlaps with a CBclique (Figure 6.5e, in purple). These
observations show that almost half of helix A is not integrated in the communication of
the complex. Residues that belong to long-range CBpath, represent pertinent behaviour in
communication with other residues. They highlight regions with strong interactions and
high communication propensities, that are expected to form the communication core of
the protein. On the other hand, the communication hierarchy of a protein can be inferred
by changing the length of pathways considered to define CBspath. While considering
all the pathways, almost all the residues are involved in communication pathways, the
increase of pathway length lead us toward communication core of the protein. The hi-
erarchy of communication pathways between the helices in MeV and NiV PMD, can be
further refined by considering only pathways of at least 8 residues (Figure 6.5c), where
the cores of communication in MEV PMD, highlight only the N-term halves. Further-
more, helices A and D are coupled together, while helices B and C are coupled together.
The two blocks, which represent the communication core of the protein, comprise 34%
of the protein residues.

In the case of NiV PMD, COMMA identified a large block (Figure 6.5b, in red)
comprises most of the residues from helices A, C and D and only half of the residues
from helix B (58% of the total number of residues in the protein). The N-term of helix B
is not integrated in the larger block and about 26% of its residues (6% of the total number
of residues in the protein) are comprised in an independent CBpath (Figure 6.5b, in pink).
The pairing of the helices in long-CBspath is different from that observed in MeV PMD,
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Figure 6.5: Communication Blocks of MeV PMD and NiV PMD identified by COMMA.
Pathway-based and clique-based communication blocks identified by COMMA are mapped on
the average MD conformation. Those blocks are obtained by considering pathways with length
equal or greater than 4 (a and b), 8 (c) and 7 (d) residues. The clique-based communication blocks
identified by COMMA are colored in blue tones (e and f). Known residues involved in disorder
region of MeV PMD are shown by sticks.

with the C- D in the same blocks and A and B in two different blocks (Figure 6.5d). It
should be also stressed out that the minimum path length considered for the long-range
CBpath is smaller in NiV PMD (at least 7 residues) compared to MeV PMD (at least 8
residues).

Although in each system, helices have identical sequence of residues between the
chains, the analysis of COMMA reveals different behaviour for each chain. In addition,
the second half of chain A in MeV PMD and the second half of chain B in NiV PMD, are
detected as separate CBspath. In addition the grouping of the helices is different between
the PMD of the two viruses. The same analysis were applied to another structure of the
coiled-coil tetramer of NiV PMD (PDB code: 4GJW) and we obtain very similar results.

6.3.2 Flexible regions mediating communication in MeV and NiV
PMD

CBsclique detected by COMMA, are groups of residues that display concerted atomic fluc-
tuations along the MD simulations. These residue are the most striking regions for the
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flexibility of the protein and fluctuate independently from the rest of the protein. Three
types of cliques are detected for the MeV and NiV PMDs: at N-term, kink-region (around
the kink) and C-term.

CBsclique are detected at N-term and C-term, which is expected at extremities. They
tend to be highly flexible in solution. Interestingly, in the case of MeV PMD 3 CBs are
detected at the N-term that comprise residues from individual (C, D) or a pair of (A and
B) helices, while only 1 CB encompassing residues from all four helices (7-9 residues
from each helix) is detected at the C-term. 65% of the residues known to be ambiguous
(disordered in PDB structure 3ZDO, shown as sticks on Figure 6.5e) are included in this
block. For the NiV PMD, COMMA identified 3 CBsclique in the N-terminal part of the
tetramer, representing 81% of the residues from the two-helix caps (Figure 6.5f, in purple,
cyan and marine). As in MeV PMD, 1 CB (in dark blue) encompassing all four helices
was detected in the C-terminal part of the tetramer. This block is noticeably larger that
that detected in MeV PMD, as it comprises between 13 and 24 residues from each helix
(73 residues). We can hypothesize that those residues are, to some extent, intrinsically
disordered.

Another CBclique (in light purple) is detected around the kinks in both PMDs. How-
ever, in MeV PMD the kink-region clique contains 11 residues from one helix, while
in NiV PMD, it contains 57 residues from all 4 helices (Figure 6.5e). The presence of
this four-helix CB in NiV PMD may be indicative of a weaker stability of the tetrameric
arrangement for this protein compared to MeV PMD, in agreement with experiments sug-
gesting that NiV PMD may be more stable as a trimer than as a tetramer (Blocquel et al.,
2013).

It should be also stressed that although the sequence is identical between the chains in
each system, there is no symmetrical or identical behaviour detected by COMMA. Even
along the helices, different behaviours are observed. For example, the second half of
chain A in MeV PMD is detected as a separate CBpath, while the single chain kink-region
CBclique is detected at this very same region (they have an overlap of 6 residues). The
aforementioned identical behaviour of chain A in MeV PMD, is not observed for NiV
PMD.

6.3.3 Study of a right-handed coiled-coil as a control

We investigated whether these observations, in particular the detection of a C-terminal
disordered part, could be reproduced for any coiled-coil structure. As a control, we anal-
ysed the RhcC protein from Staphylothermus marinus which was solved as a right-handed
coiled-coil tetramer. We expected to observe a different behaviour due to the lack of a
kink in this protein. COMMA was applied to the ensemble of trajectories produced by
MD simulations. Here we report the results:

When all paths are considered, 4 different pathway blocks are detected, each of which
covers almost one helix out of four. Through these four blocks about 72% of residues
in the protein are communicating (Figure 6.6a). Considering only long pathways, the
number of residues in every block is decreased. Also blocks are reduced toward the center
of the protein (Figure 6.6b). Three different CBsclique are identified by COMMA (they
are colored by different blue tones): 2 cliques that cover different N terminals and one
clique that is positioned on the C terminal region and contains three helices, all together
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Figure 6.6: Communication Blocks of RhcC identified by COMMA. Pathway-based commu-
nication blocks identified by COMMA are mapped on the average MD conformation. Those
pathways are obtained by considering lengths equal or greater than (a) 4 and (b) 7 residues. The
clique-based communication blocks identified by COMMA are colored in blue tones (c).

in one clique. This largest clique involves about 10% of the residues (Figure 6.6c).
Those results suggest a strong different behaviour from what we observed for the left-

handed coiled-coils. Every chain of the protein is detected as a separate CBpath, when
we consider all pathways and when we consider only long pathways. What we observed
for MeV and NiV PMDs, is not reproduced as a standard right handed coiled-coil. The
lack of a unique communication core across the helices is visible here, where every helix
displays an independent role.

The CBsclique at the N-term and C-term represent a roughly identical behaviour in
terms of the pairing of the helices. The C-term of chains B, C and D is detected as
a single C-term clique, while the N-term of the same chains is identified as a separate
clique. On the other hand there is a small clique on chain A at the N-term. None of the
identified CBsclique at the N- and C-terminal extremities of the tetramer encompasses the
four helices, which suggests the lack of a disordered region on the structure of RhcC.

COMMA analysis revealed that the four helices of MeV and NiV PMD tetramers do
not play equivalent nor symmetrical nor independent roles in the communication of the
protein. This is very different from what can be observed for the right-handed coiled-coil
structure of the RhcC protein, where the residues from each individual helix belong to
only one CBpath and the block roughly contain the same number of residues. One reason
for the observed contrast between the two coiled-coils, could be the lack of the kink in the
middle of helices for the right-handed coiled-coils.

6.3.4 Comparison with single chains (for monomers)
Two replicates of 50ns MD trajectories were also produced for each of the MeV PMD,
NiV PMD and RhcC monomers. The stability of the systems were reached after 25ns,
therefore the last 25ns of each replicate were considered to be analysed using COMMA. In
the simulations of both MeV and NiV PMDs, the unfolding of the C-term was observed.
The single helices strongly bent during the simulation with the kink serving as a hinge
point. The average structure obtained form MD simulations reveals the appearance of
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Figure 6.7: Communication blocks identified by COMMA from single chain simulations.
Communication blocks are defined from applying COMMA to single chains of MeV PMD, NiV
PMD and RhcC. Pathway and CBsclique identified by COMMA are mapped on the average MD
conformation. Those pathways are obtained by considering interactions involving side chains,
short- and long-range pathways. The clique-based communication blocks identified by COMMA
are colored in blue tones.

such a strong kink with high degree of bending for all the three systems (Figure 6.7).
Here we report COMMA results:

• Chain B of MeV PMD (3ZDO): CBspath defined from short-range pathways are
extracted (Figure 6.7a). There is no pathway block constructed from long-range
pathways, the maximum number of residues involved in pathways is 4. The region
known as disordered is 77% covered by the CBclique (res 361-370) (Figure 6.7b).

• Chain A of NiV PMD (4N5B): CBspath defined from short (more than 3 res.) and
long-range (at least 8 res.) pathways are extracted (Figure 6.7c and d). A portion
of the residues that were previously predicted as disordered, is covered by two
CBsclique (res 563-568 and res 575-578).

• Chain B of RhcC (1YBK): CBspath defined from short and long-range (at least 5
residues) pathways are extracted (Figure 6.7f and g). The C-terminal clique covers
5 residues (res 48-52).

Several CBspath were observed for all the three monomers. The residues from 360 to
370, known to be ambiguous in MeV PMD, were completely unfolded and detected as a
CBclique by COMMA (Figure 6.7b, in blue).

The number of residues that are detected as CBclique, in addition to the number of
unfolded residues in the N-term and C-term of the monomers are reported in Table 6.2.
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monomer protein N-term C-term
CBclique unfolded CBclique unfolded

MeV PMD 4 7 10 15
NiV PMD 5 0 10 19
RhcC 6 2 5 3

Table 6.2: CBclique of the monomers. The number of residues detected as CBclique in the N-term
and C-term of each monomer, MeV PMD, NiV PMD and RhcC are shown here.

These results indicate that MeV and NiV PMD do not adopt stable monomeric confor-
mations in solution and that their C-terminal parts are intrinsically disordered. Whereas,
in the case of RhcC monomer the C-term is folded and we cannot suggest a disorder be-
haviour. In addition the monomeric form of RhcC, is bended in the middle but there is
no kink. But from the MD simulations we can say that the monomeric form is not stable.
At last, we can interpret the results as a transition from unfolded state to ”not-so-folded”
state upon binding for the two PMDs.

6.3.5 Comparison between COMMA and other tools to predict dis-
order

In order to evaluate the power of COMMA to predict the disordered region in coiled-coil
structures, we compared our results with three sequence-based programs: Coils server,
IUPred and ANCHOR, using their default parameters. The results obtained from these
methods are shown in Figure 6.8.

From the analysis of COMMA, the presence of the clique is averaged over the four
chains to predict the region of disordered residues, where the predicted disordered regions
for MeV PMD starts from Gly 365 and for NiV PMD starts from Leu 563. The unfolding
of the helices (loops detected by DSSP (Kabsch and Sander, 1983)), is reported over
MD simulations and averaged over four chains (shown in red on the Figure 6.8). Coils
server measures the probability to form a coiled-coil structure, as mentioned in the method
section. But here we present the probability not to form a coiled-coil structure (which is
1 − Prob(CoilsS erver), in order to better compare the results (Figure 6.8 green bars).

Residues for which we obtain the maximum number of helices (that is 4 in the case
of studied coiled-coils) in CBclique and maximum confidence (which is 1), are detected
as predictions of disordered by COMMA. In the case of MeV PMD, the comparison
of the predictions with the experimental data, reveals the power of COMMA to predict
the disordered residues with strikingly better precision, compared to the other methods
(Figure 6.8). The set of disordered residues in NiV PMD are not known, experimentally,
However, the results obtained from different sequence-based predictors, suggest a similar
region on the C-term to be disordered. In that case, the predictions of COMMA and Coils
server suggest roughly the same set of C-term residues as disordered.

The three mentioned sequence-based methods (Coils server, IUPred and ANCHOR)
and also the unfolding of the helices are good and fast measures to predict disorder, how-
ever they are not able to detect flexible and unstable regions of coiled-coils. Although
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Figure 6.8: Comparison between different methods to predict disorder residues. For the a)
MeV PMD and b) NiV PMD the comparison is done between different methods to predict disorder
residues. The unfolding of helices along MD simulations, number of chains detected as cliques and
the confidence of CBpath residues are shown in red, blue and cyan, respectively. The predictions of
Coils server to form coiled-coil structures are shown in green. The predictions of disorder residues
obtained from IUPred and ANCHOR are shown in orange and purple, respectively.
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Figure 6.9: Mutation from a hydrophobic amino acid to a negatively charged one. The hy-
drophobic a registers are mutated to negatively charged residues. Changes of the side chains are
shown in the figure.

COMMA is computationally expensive due to the fact that it depends on the results of
time consuming MD simulations, it is able to predict both types of regions. Interestingly,
COMMA also provides a mean to distinguish the two different behaviours. The presence
of a single CBclique over the four chains represent the probability of a disordered region,
while the existence of other type of CBsclique provide hint on flexible region for the dy-
namics of the coiled-coils.

While, COMMA is capable of identifying disordered residues through a CBclique that
spans C-term of the four chains, it also highlights the differences between MeV PMD
and NiV PMD. One can observe that NiV PMD is less stable, where a larger number of
residues are detected as CBclique. This observation suggests a larger disordered region for
NiV PMD, which may lead to the conclusion of instability of the tetrameric form for NiV
PMD.

6.4 Controlling MeV PMD flexibility/communication through
mutations

COMMA enabled us to predict disordered residues with high accuracy compared to the
other predictors. Consequently our collaborators and us, we were interested to design a
mutation which brings more stability to the structure. For that reason, our collaborators
suggested two mutations of MeV PMD, L322D and I353D to be tested by COMMA
analysis. These two mutations are a positions on the sequence of MeV PMD, where
hydrophobic amino acids (leucine and isoleucine) are mutated to a negatively charged
amino acid (aspartic acid). The hydrophobic amino acids in position a have their side
chains oriented toward the interior of the coiled-coils (inward) and mutating them to Asp
leads to outward orientation of the side chains because of its negative charges (Figure
6.9).

From previous COMMA analysis of the wild-type MeV PMD, one may infer that the
first half of the structure is more rigid and represents the communication core of the sys-
tem, whereas the second half is more flexible and contains more disordered residues. For
any mutation from a hydrophobic amino acid to a negatively charged one in coiled-coils,
we expect to observe some flexibility, because the side chains of the mutated residues are
exposed to the solvent and not packed inside the coiled-coils. Consequently, we expected
the mutation in the first half (L322D) to bring some flexibility to the N-term, which results
in a bridge between the two halves. On the other hand, the mutation on the second half
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                309       315        322         329        336              346         353        360        367        374    
Seq:         DELFSD VQDIKTA LAKIHED NQKIISK LESLLLLKGE VESIKKQ INRQNIS ISTLEGH LSSIMIA  I
registers: bcdefg   abcdefg  abcdefg  abcdefg abcdecdefg  abcdefg  abcdefg abcdefg  abcdefg a

V315D L322D
1st 

exception kink V346D I353D disorder

Figure 6.10: The sequence of MeV PMD with the corresponding registers. The sequence of
MeV PMD along with the registers assigned to it are listed here. Arrows are pointed to the a
positioned that are mutated in this study.

(I353D), was expected to bring even more flexibility to the C-term which may cause the
increase of CBsclique.

In order to test the mentioned hypothesis, we decided to study to study the mutation of
all hydrophobic a positions to the same negatively charged amino acid, Asp. Figure 6.10
represents the sequence of a single chain for the PMD of MeV in addition to the registered
assigned to every position. Here we report four different mutations, each at different a of
the heptad repeat. Two of them are selected before the kink and two others are after the
kink.

MD simulations were performed for every mutation, then we applied COMMA anal-
ysis to the ensemble of conformations obtained for the each mutation and here we report
the obtained results:

6.4.1 Mutations before the kink
V315D This mutation is positioned at the N-terminal, the first a register on every chain.
Two CBsclique are detected at N-term, one spans three chains (A, B and C and the other one
contains residues from chain D (Figure 6.11b). On the other hand, the C-term CBclique

spans all four chains and contains 23 residues of the disorder region, 9 residue less than
wild type (32 res.) (Figure 6.12). Almost all residues (83%) are in a single CBpath (in red),
when considering all pathways (> 3 res), whereas in wild type the second half of chain A
is detected as a second block (Figure 6.11b). Similarly, a single CBpath is detected when
considering long-range pathways (at least 8 residues). Whereas in WT, this block contains
mainly residues on the first, but also contains few residues after the kink. In addition the
pairing of helices is not observed upon mutation and all the helices are placed in the same
block.

L322D 2 CBsclique are detected, one at N-term (25 res.) and the other at C-term (32
res) (Figure 6.12). Both of these CBs spans residues from the four chains. On the other
hand, one large CBpath is defined when considering pathways of at least 4 residues (79%),
similar to V315D (Figure 6.11c). A single long-range CBpath (>=8 res.) is detected that
contains residues from both halves of the helices. It extends toward the C-term signifi-
cantly more than in V315D.

Segment pairs We applied COMMA analysis to define the pairs of secondary structure
elements (SSEs) and to monitor the direct communications between them (see Methods)
(Figure 6.12). Applying the mutations on a positions at the first half, leads to the increase
in number of direct communications at the second half, in total 11 communications in WT,
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Figure 6.11: Study of mutants (V315D and L322D) of MeV PMD communication. Com-
munication blocks identified by COMMA for the a) wild type and mutations at the first half of
the helices, b) V315D and c) L322D), are mapped on the average MD conformation. CBspath

are obtained by considering interactions involving side chains and pathways with length equal or
greater than 4 and 8 residues. Known residues involved in disorder region are shown as sticks.
The clique-based communication blocks identified by COMMA are colored in blue tones.

path CB
CBpath direct pathways

N-term 2nd half C-term CB N-term C-term
wild type 195, 12 19, 8, 6 11 32 35 11
V315D 209 28, 9 - 23 65 17
L322D 198 25 - 32 58 31
V346D 123, 20, 19, 19, 19 15, 9 19 30 63 4
I353D 170, 27, 20 17 20 36 55 12

Table 6.3: Summary of the number of residues involved in path-based and CBsclique and
direct contacts between the chains. For the wild type and four mutants the detail of the path-
based and CBclique are reported here. In addition number of direct communications between the
chains in the two halves are recorded.

17 in V315D and 31 in L322D (Table 6.3). In the case of L322D, this is reflected in the
shift of the CBpath toward the C-term (Figure 6.11). Consequently, the mutant (L322D)
induce new communications between chains A and C (1st half) and between chains B and
D (2nd half). Also the CBclique on second half of the wild type disappears. In addition the
results suggest a symmetrical or almost equivalent detection of CBsclique at N-term and
C-term.

We can conclude that upon mutation of the hydrophobic a positions on the first half
to a negatively charged amino acid, establish/reinforce communication between the two
halves. The roles of the two halves in the communication of the complex become almost
symmetrical/equivalent.



150 CHAPTER 6. DISORDER IN COILED-COILS

Figure 6.12: Study of mutations of MeV PMD at the first half of helices by COMMA segment
pairs. Number of residues detected as CBclique at the terminals, before and after the kind, is re-
ported for the WT and mutants on the left column. All communications between helices extracted
from the analysis of segment pairs in COMMA are show on the average structure, in the middle
column of the figure. The schematic representation on the right (wild type and mutants), reports
the number of direct pathways between helices in the first and second halves (numbers colored in
black and red, respectively).
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Figure 6.13: Study of mutants (V346D and I353D) of MeV PMD communication. Communi-
cation blocks identified by COMMA for the a) wild type and mutations at the second half of the
helices, b) I353D and c) V346D, are mapped on the average MD conformation. Those pathways
are obtained by considering interactions involving side chains and pathways with length equal or
greater than 4 and 8 residues. Known residues involved in disorder region are shown by sticks.
The clique-based communication blocks identified by COMMA are colored in blue tones.

6.4.2 Mutations after the kink

V346D This mutation is placed very close to the kink. 4 CBsclique are detected (Figure
6.13b and 6.14). The C-term clique spans the four chains but contains roughly the same
number of residues as the wild type. Two other N-term cliques are detected, where two
of them cover residues from chains A and B, and the third clique is positioned on chain
C. The last clique (in dark blue), is positioned around second halves of chains B and C, in
the region between the kink and disordered residues. CBspath obtained from this mutation
are significantly different from the wild type. When considering all pathways (>=4res.),
the second half of chains A and C are detected as two separate blocks. Also considering
long-range pathways (at least 8 residues) the pairing of the chains is not present any more
and only one block is detected by COMMA.

I353D 3 CBsclique are detected (Figure 6.13c). The area detected as disordered at C-
terminal contains a larger number of residues (36 aa) compared to the wild type (32 aa)
(Figure 6.14. The other N-term CBpath covers residues of chains A and B, very similar to
the clique detected at the same region in wild type. The third clique is positioned around
second half of chains A and D, in the region between the kink and disorder residues.
When considering all pathways (>=4res.), the larger block (in red) is smaller than the
same block in WT and new blocks (in pink, magenta, violet and brown) appear in the
2nd half, each of the them containing residues from only one chain. Long-range pathway
block are similar to the wild type in terms of number of residues in the block, although the
pairing of the chains is not present any more and only one block is detected by COMMA.

Segment pairs The total number of residues that belong to N-term clique, is signifi-
cantly decreased, whereas a sharp increase is observed in the clique that appear at the
second half. In the case of V 346D, a significant decrease is observed, there is only one
contact between chains C and D and 3 contacts between chains A and D. Comparison of
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Figure 6.14: Study of mutations of MeV PMD at the second half of helices by COMMA
segment pairs. Number of residues detected as CBclique at the terminals, before and after the
kink, is reported for the WT and mutants on the left column. All communications between helices
extracted from the analysis of segment pairs in COMMA are show on the average structure, in the
middle column of the figure. The schematic representation on the right (wild type and mutants),
reports the number of direct pathways between helices in the first and second halves (numbers
colored in black and red, respectively).

the results represent a separation between the two halves of the helices, before and after
the kink. The first part is more rigid, while the second part is more flexible.

CBspath (of at least 4 res.) of the mutants are more fragmented compared to the wild
type, at the C-term. The separation between such CBs happens around the mutation posi-
tion. This observation suggests stiffening of the N-term and reduction of communication
in C-term. The analysis of segment pair suggests the lack or small number of commu-
nications between the chains on the second half (Table 6.3). Furthermore, the presence
of a second half CBclique that spans two chains and the total increase in the number of
residues detected as CBpath, suggest the increase of flexibility on the second half due to
the mutation. We can conclude that upon mutation of the hydrophobic a positions on the
second half to a negatively charged amino acid, breakage of the communication between
1st and 2nd halves happens, due to which the communication cannot propagate across the
structure. The structure is more rigid on the first half while it is even more flexible on
the second half. Chains of the second half represent a more independent behavior, that is
similar to the right-handed coiled-coil (RhcC) (Figure 6.6).
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6.5 Conclusions
This analysis revealed that COMMA is able to detect a region known to be ambiguous, i.e.
well ordered in a PDB structure and unresolved in another one, in the coiled-coil tetramer
of the MeV PMD. The region is detected as a clique-based communication block that
spans all four chains. The application of COMMA to the coiled-coil tetramer of the NiV
PMD yielded similar results, suggesting that the C-terminal part of the NiV PMD coiled-
coil tetramer also has substantial disorder content. This disorder seems to be an intrinsic
feature of the monomer. This property is not shared by the RhcC protein, which forms
right-handed tetrameric coiled coils. Interestingly, COMMA also predicts disorder around
the kink in NiV PMD, which may be indicative of a weaker stability of the tetrameric
form of this protein compared to MeV PMD. Furthermore, comparisons with the existing
tools to predict disordered residues, revealed the power of COMMA to predict disordered
residues.

Surprisingly the sequence of amino acids for each studied system, MeV PMD, NiV
PMD and RhcC, is identical between their chains, whereas the behaviour of the chains are
different. In the case of wild-type MeV PMD, residues are grouped in the same CBpath,
whereas another CB is detected over the second half of chain A and a similar behaviour
was observed for NiV PMD. Such separation may suggest the existence of the trimeric
form. On the other hand chains are fragmented in four different path CBs for RhcC, rep-
resenting independent communications. Also the organization of CBspath are different
between chains and between the systems. Consequently, chains have different roles, al-
though they possess the same sequence. In addition, by using classical MD analysis, it is
not possible to differentiate the role of helices.

Pathways extracted from COMMA contain important information about the commu-
nication between residues and specifically between chains. Based on our analysis, there
are many such interactions between all the chains in the coiled-coil structures studied in
this work. This analysis along with the study of mutations suggested by our collaborators,
enabled us to propose mutations that modulate the stability of disordered coiled-coils.

Applying the mutations at N-term, led to the increase in number of direct communica-
tions at the second half and establishing communication between the two halves, which in
turn enabled the two halves to communicate across the structure. On the other hand, the
mutation of a positions at C-term, led to the fragmentation of path CBs and decrease of
communication at C-term and significant increase of communication at the N-term at the
same time. Comparison of the results represent a separation between the two halves of
the helices, before and after the kink. The N-term became more stable and rigid, while the
C-term turned to be more flexible. Finally, experimental characterization of the mutants
could help validate these hypotheses.
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Chapter 7

Conclusion

In this thesis we presented COMMA, a method to describe and compare the dynamical
architectures of different proteins or different variants of the same protein. COMMA ex-
tracts dynamical properties from conformational ensembles to identify communication
pathways, chains of residues linked by stable interactions that move together, and in-
dependent cliques, clusters of residues that fluctuate in a concerted way. Pathways and
cliques are used to define communication blocks. The term ’communication’ refers to the
way information is transmitted across the protein structure. The originality of the method
lies in the fact that it accounts for two different modes of communication, through the
use of pathways and cliques. Consequently, it enables to contrast the different types of
communication occurring between residues and to hierarchise the different regions of a
protein depending on their communication efficiency. COMMA provides a description
of the infostery of a protein or protein complex that goes beyond the notions of chain,
domain and secondary structure element/motif, and beyond classical measures of how a
protein moves and/or changes its shape.

We showed the efficiency of our approach in providing mechanistic insights on the
effects of deleterious mutations by pinpointing residues playing key roles in the propaga-
tion of these effects, through different case studies. The discussion of examples, revealed
physical interpretation on how the study of conservation brings significant insights on the
sensitivity of conserved positions to mutations. Moreover, our work contributed to better
understanding the sequence-structure-dynamics relationship as it provides means to pre-
dict the phenotypic outcomes of mutations in a systematic way. It has to be emphasized
that in the case of PDZ domain, we were able to extract pertinent information from rela-
tively short MD simulations and we demonstrated that the wild-type complex contained
all information to identify most of the positions that ’matter’. Our proposed method to
study the dynamics of proteins, can detect protein regions that are prone to disorder or
substantial conformational rearrangements, without requiring the input MD trajectory to
actually sample the unfolded states of these regions. Moreover, COMMA analysis of
disordered coiled-coils, enabled us to suggest mutations that regulate the stability of the
coiled-coils.

Further investigation can be applied to improve the proposed methods, some of which
are: (1) The automatic set-up of the thresholds used in COMMA need to be modified for
the study of large complexes. (2) The link between clusters of coevolving residues and
networks of dynamically correlated positions has yet to be further studied. We observed
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some interesting overlaps or complementarity between coevolution signals and commu-
nication pathways that should be further investigated. (3) We proposed a hypothesis for
mutations to regulate the stability of disordered coiled-coils, experimental investigation
of those mutations can add more evidence to our results.
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