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“Quand tu prendras le chemin d’Ithaque,

souhaite que la route soit longue,

pleine d’aventures, pleine d’enseignements.

Les Lestrygons et les Cyclopes,

ne les crains pas, ni la colère de Poséidon,

jamais tu ne trouveras rien de tel sur ton chemin,

si ta pensée reste élevée, si une émotion rare

étreint ton esprit et ton corps.

Les Lestrygons et les Cyclopes,

tu ne les rencontreras pas, ni l’irascible Poséidon,

si tu ne les transportes pas dans ton âme,

si ton âme ne les fait surgir devant toi.

Souhaite que la route soit longue.

Que nombreux soient les matins d’été

où - avec quel plaisir et quelle joie,

tu découvriras des ports que tu n’as jamais vus;

arrête-toi dans les comptoirs phéniciens

pour te procurer de précieuses marchandises,

ambre, corail, ébène, nacre,

et capiteux parfums de toutes sortes,

le plus que tu pourras de capiteux parfums;

visite aussi beaucoup de villes égyptiennes,

et n’aie de cesse de t’instruire auprès

de ceux qui savent.

Garde toujours Ithaque présente à ton esprit.

Y parvenir est ta destination finale.

Mais ne te hâte surtout pas dans ton voyage.

Mieux vaut le prolonger pendant des années;

et n’aborder dans l’̂ıle que dans ta vieillesse,

riche de ce que tu auras gagné en chemin,

sans attendre d’Ithaque aucun autre bienfait.

Ithaque t’a offert ce beau voyage.

Sans elle, tu n’aurais pas pris la route.

Elle n’a rien de plus à t’apporter.

Et même si elle est pauvre, Ithaque ne t’a pas trompé.

Sage comme tu l’es, avec une expérience pareille,

Tu as sûrement déjà compris ce que les Ithaques signifient”.

C.P. Cavafy, 1911

(Traduction de Dominique Grandmont, En attendant les barbares et autres poèmes, Gallimard.)
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“As you set out for Ithaka

hope the voyage is a long one,

full of adventure, full of discovery.

Laistrygonians and Cyclops,

angry Poseidon; don’t be afraid of them:

you’ll never find things like that on your way

as long as you keep your thoughts raised high,

as long as a rare excitement

stirs your spirit and your body.

Laistrygonians and Cyclops,

wild Poseidon; you won’t encounter them

unless you bring them along inside your soul,

unless your soul sets them up in front of you.

Hope the voyage is a long one.

May there be many a summer morning when,

with what pleasure, what joy,

you come into harbors seen for the first time;

may you stop at Phoenician trading stations

to buy fine things,

mother of pearl and coral, amber and ebony,

sensual perfume of every kind,

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to gather stores of knowledge from their scholars.

Keep Ithaka always in your mind.

Arriving there is what you are destined for.

But do not hurry the journey at all.

Better if it lasts for years,

so you are old by the time you reach the island,

wealthy with all you have gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you would not have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.

Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean”.

C.P. Cavafy, Collected Poems, 1911

(Translated by Edmund Keeley and Philip Sherrard. Edited by George Savidis. Revised Edition. Princeton

University Press, 1992)

vii





Preface

E
very PhD student is dreaming of a robust model or theory, or maybe a well-defined experiment

to work with, and so, ending up with nice conclusions and good results for a successful defense.

It took three years for me to realize that fighting with unknown theories or concepts that may not

apply to the point of your research, and even not arriving to fancy models or applications, is what

brings you from a student to a researcher. And in my opinion, this is the most fascinating part of the

process. Because this is what leads you to personalize the project that, initially, was your advisor(s)’

idea. Nobody says it is an easy process; it can be a long or even a tough road that nobody else

can travel for you. But as Cavafy explains in his poem “Ithaka”, there are many treasures to meet

through the way, and at the end there is always a new part of yourself waiting for you to discover it.

Though an academic exercise, being a PhD student is definitely a way of life. Looking back to whom

I was when I started this PhD program and who I became three years later makes me realize how

many treasures, but also hindrances, I have met the last years. It was back in 2012 when I firstly

left Greece to follow the Greek-French Master program “HYDROHASARS”. At that moment, I had

no idea how much my life would change in the following years; how many new “homes” were waiting

for me out there. So, the “target”, named as “Ithaka” by Cavafy, is what brings us into an amazing

journey that has a lot to teach to us. Ithaka reflects the goals that we set, and as so, it is the forcing

power that keeps us motivated and focused but also open to anything new. In the following lines, let

me do a brief flashback and make a stop with you to some of the most challenging but also beautiful

places of the three-year travel to my personal Ithaka: My PhD.
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“Multi-PhD”: Multi-cultural, Multi-disciplinary, Multi-supervised

“Multi-cultural”

From“Bonjour ça va” to“Hi, how’s it going”, and feeling that as“καληµερα, τι κανεις”, this project

has been a life-changing experience for me. Traveling and working for the half of my PhD in France

and the other half in the U.S. taught me that people across different countries and continents may be

very similar in their needs and attitudes. These may be then expressed through different traditions

and habits depending on geographic and cultural specificities. The most usual question I get about

this experience is what I did find different between Greece, France and the U.S.. Well, the first thing

that comes to my mind is all the fun interactions you get with the supervisors abroad. Restricted

to formal relationships, in Greece there is a significant distance between advisors and students. In

Greece, formal addresses like “Mr X” are supposed to present particular respect to someone. In this

context, students are expected to call the professors with their last names and talk in plural. This

probably sounds to you as a small detail arising mainly from differences in languages. However, it

is based on a deep mindset about academic, and by inference, social hierarchy supported also by

linguistic and behavioral rules. Thus, I was positively surprised to be invited to the place of my

advisors from the beginning of my interaction with them. Sharing family and friendly moments

with advisors not only does not reduce the respect you have for them but instead, it increases the

appreciation you get for the complete personality you get to know: a real person, that can combine

research, family, career, professional and personal dreams in one life. Like the moment that you

meet your advisor in his/her pajamas; your Greek conservatism is crushed leaving place for true and

honest communications.

At the beginning of my arrival in France, I caught myself looking for small or big differences in every

aspect: food, lunch time, sleeping hours, leisure, mentality. Generally, people have the tendency to

focus on differences when they enter a new environment. That is because we understand the world

through comparisons. As my advisors say, “It all depends on the scale you are looking at.” You may

think there is a big difference between the Greek and French cuisine when, for example, you compare

an “overcooked”Greek steak seasoned and sprinkled with salt and pepper with a plain, almost “raw”

French steak or fillet. However, French and Greek food fall in the same category called as “European”

from people outside Europe, when comparing it with the American diet. Although clichés are here

to defeat me, I strongly believe that we cannot or at least we should not generalize across countries.

Did you know that French people do not necessarily need olive oil or generally grease to “fry” their

egg? I have to admit that as far as the frying of an egg, Greece may be much closer to China than

France, and this fact is confirmed by my Chinese and French flatmates, respectively. Very soon I

realized that even if there is always probability to find differences in habits from county to country,

it is also highly probable to find out important similarities. It is that moment when you join people

in a family gathering and you become a witness of all this laughter and love coming out from similar

jokes, stories and quips among relatives and friends around the table. During these three years I had

the luck to experience with others important days like Christmas, Thanksgiving, 4th of July. Those

moments were touching my heart since on the face of people that I was meeting for the first time,
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and I had no common biomes or even common language, I could see my family; the smile of my

husband, the jokes of my father or brothers, the warmness of my mum. . . .

Traveling around, meeting or living with new people and getting new experiences in work, and life in

general, is a wonderful process. It teaches you not only to accept but also to appreciate the difference!

Sure, the “difference”, in the sense of something new, may give you a hard time until you get familiar

with that. One could say that the most challenging part is when you arrive at a new place and

you are called to build a new life. Far from what you were used to having in your daily life - your

friends or family - you have to create a new routine. This routine has to be adapted in the culture

of the new place, but still reflect your habits and personality. When this new place is not related to

leisure travels but instead it is linked with a new working environment, you may need to speed the

process of adaptation in order to come back to a regular working rhythm as soon as possible. What a

conflict! Though, once you get into the new reality, a whole world full of new friends and colleagues

is opening to you; absolutely a new family. Getting to know new people and that each of them has

his own values, beliefs, and traditions to share may fascinate you! Every single person that I met

either in France or the U.S. during my “multi-cultural” PhD gave me a new lesson for my life. The

friendships acquired made me realize every day something that people often say but they rarely feel:

that “life is beautiful”. Thus, if you ask me now, I strongly believe that adapting to new things is

not the biggest difficulty you will have to deal with if you move in different places during your PhD.

Leaving a place can be even harder than arriving to a new one. As Miriam Adeney wrote: “You will

never be completely at home again, because part of your heart always will be elsewhere. That is the

price you pay for the richness of loving and knowing people in more than one place”.

“Multi-disciplinary”

Studying risk to natural hazards has been always interesting to me. It is that power of nature that

impresses me in two forms: Firstly, as physical phenomena, complex in their nature and inherently

unpredictable and secondly, as “enemies” of humans and their environment, challenging to face. As

civil engineers in the polytechnic school, they made us to believe that natural hazards can be mitigated

through structural measures. Then, the subject to investigate is how to optimize the resistance of

infrastructure to such severe or extreme natural occurrences. During my Master studies in France I

met, for the first time, the idea that the effects of some kinds of hazards, like flash flooding, cannot

be reduced by solely undertaking technical measures. Such phenomena may be so sudden and severe,

and their dynamics are in interplay with people. In fact this interplay is what creates the disaster

when human life and livelihoods are threatened. True story: That idea about individuals and their

socio-economic constraints being a key factor for a hazard to become a disaster, which was delivered

in the 1970s from political ecology, came to my ears, for the first time, in 2012. Since then, every

day I am penetrating deeper and deeper in the “vulnerability and risk to natural hazards” world,

fascinated by the multifaceted and multidisciplinary nature of the problem.

Within multidisciplinary (also called interdisciplinary) topics lurk some difficulties. In my opinion,

the biggest troubles arise when a word used to explain a process or phenomenon in one discipline

may mean something very different in another. Even worse, a term may be unknown for people

with a certain specialty, and as so, it tends to be ignored when studying a complex multidisciplinary
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issue. For example, have you ever thought that “vulnerability” as a word may have not so much to

tell to meteorologists? Instead the term “impact” makes much more sense for them when referring

to potentiality for losses from weather phenomena such as storms. It didn’t take a long time to

realize such difficulties in communication. The University of Grenoble in France organizes annually

a series of presentations for the PhD students belonging to a specific laboratory. Each laboratory

conducts its own “journée de thèse” where its students present and discuss their subject with the

ultimate goal to increase interactions and connectivity between researchers with similar interests.

My participation in the first “journée de thèse” was just after the first three months of my PhD ,and

similarly to the rest of the first-year PhD students of my lab I was called to present my topic in

five minutes. I remember feeling so proud to present my plans to work on a multidisciplinary issue.

Excited to answer possible questions after my presentation, I beckoned positively to that professor

raising his hand. “Will you use numbers in your study?” he asked. Obviously, for a laboratory

comprised mainly from hydrologists and climate scientists my work sounded too much “social”. And

to make the translation, “social” for hydrologist engineers means “theoretical”. So, I guess the term

“human vulnerability factors” could not find a place in their mind.

Of course, at that time I couldn’t do this kind of understanding. At a first glance, I was thinking

that probably I didn’t make a good presentation, and I tried to figure out how I could improve that

in the future. It was about one year later when I attended a multidisciplinary workshop for extreme

weather challenges, and I got the opportunity to participate in working groups made up of social

and physical scientists such as psychologists, sociologists and meteorologists as well as stakeholders.

That experience helped me to regain my confidence by confirming my thinking related to social and

physical aspects of my research. That was my first “official” touch with the “babylonia” that exists in

such multidisciplinary collaborations, and after that I experienced similar cases in other conferences

or seminars. It was apparent that for social scientists I was just an engineer with an interest on social

aspects of physical phenomena whereas hydrometeorologists and practitioners characterized my work

as social study. So, which is exactly my specialty? Based on my small experience gained the last three

years, it comes out that some scientists need to specifically work on transferring knowledge from one

discipline to the other, while translating research to a well-defined terminology commonly understood

by the involved actors and researchers. Hopefully geography accommodates such multidisciplinary

works, though probably a new autonomous “multi-discipline” is to be built. I am definitely interested

to work and become an expert on this potential practice but I always struggle to explain that to

others with one representative word. These years I tried to find a special name to characterize the

“multi-discipline” on which I am working, but without great success. Still, I am not giving up.

Among other reasons, interdisciplinary topics are becoming attractive to researchers and practitioners

because they are usually society-centered, meaning that they aim to solve a real-world problem crucial

for the well-being of modern societies. The “marriage” of different disciplines is necessary to address

the complexity of the real-world systems and their direct or indirect interactions. So, interdisciplinary

projects are often linked with operational efforts. The involvement of stakeholders in research leads

to a transdiscipline teamwork challenged in many aspects. In my opinion, operationalization may

have either positive or negative effects on a research project. It is an incredible feeling to know

that the product of your research intends to a big scope like protecting the environment or saving

human lives. The potentiality for application of your research findings in practices vital for the
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prosperity of society is a driving force increasing your motivation for further advancements. Though,

when operational work becomes a goal in itself, research opportunities may be ignored. In this case,

research quality may be degraded in favor of time- and/or cost-effective solutions that are of interest

for a certain audience in the public or private sector.

My first interaction with the operational world and especially operational weather forecasting was at

the second half of my first PhD year when I started my visit in the U.S. National Weather Center

(NWC). I still remember the first research group meeting that I joined; scientists involved in the

FLASH project were discussing their accomplishments and weaknesses in generating high-resolution

hydrologic simulations contributing to the realm of hydrologic forecasting. Many ideas of how to

improve and/or facilitate the work of human forecasters were falling one after the other on the table.

PhD students were arguing for the ability of hydrographs, radar-based estimations and other hydro-

meteorological stuff that sounded like a big noise in my ears at that moment. I felt uncomfortable.

I was thinking, “What I am doing here? I am just a PhD student in a university.”When I heard my

name from my advisor, I wanted to shout: “Oh, wait, I am not such an expert! I don’t know how to

make it work for real?!” As you can imagine, the call was just to introduce myself and my research

goals to the rest of the group. Though, I could say that I felt kind of stressed for the next three or

four following meetings.

Eventually, I found the whole process of thinking how to produce research that could be potentially

incorporated in operational forecasting very interesting. Until then, I had the impression that the

users of a research product (e.g., in this case operational forecasters) would be the ones who would

set specific demands from researchers. In my mind, meeting the forecasters would be the first step

in a work-flow towards a predictive model. However, as I was observing researchers working towards

operational tools, I realized that scientifically sound prototypes have to be studied and delivered

to forecasters before getting any feedback from them. So, a big pre-operational effort is required,

including valuable basic research. We could view the final output as a compromise between scientific

and empirical knowledge. The most important then is to play this game fairly. I mean that obviously

operationalization creates possible constraints (e.g., type of data to be used, time of model run,

format of the output). Although these limitations should be seriously considered during the model

designing, they should not constrain or reduce the research substance, but instead they should leave

space for scientifically innovative efforts. But why I am telling all that? Well, it sounds probably

obvious but dealing with services and their requirements is not trivial. I feel very lucky to get to

know this world in such a smooth way. In my case, I have been somehow“protected” by the fact that

I was conducting basic, not yet operational, research work during my thesis. This fact gave me more

freedom than others to spend substantial time on exploring concepts, data or methodologies that

have been interesting to me. Still, there were moments that I intensely felt the conflict between my

research curiosity and the need to deliver outcomes relevant to meet certain requirements and interests

related to operational forecasting. Who knows how much pressure a PhD student, funded to conduct

operational research, may have! Trust me, communicating with decision-makers, understanding

their needs and translating them into well-formed research and user-friendly outputs may be a very

challenging task even for highly experienced researchers.
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“Multi-supervised”

For me, advisors and students in a PhD project are like parents and children in a family. I keep telling

to my friends and/or other PhD students that you can always observe similarities in the personality

of a PhD student and his/her advisor(s) as you can identify common characteristics between parents

and their children. In my opinion, it is this “chemistry” or “similarity” (i.e., how closely attitudes,

values, interests and personality match between people) - as it is called in social psychology - that

leads the advisor to choose the student and vice versa. In my case, my “PhD family” consists of three

parents: Sandrine, Isabelle and JJ, and one child: me. My three parents are all different between

themselves but they aim on the same thing: to help me to grow up and mature scientifically. I do

not think this text is the most relevant place to give concrete examples, but I can tell that as a child,

I have seen myself behaving similarly to some of my parents depending on the challenge I had to face

in my project. Certainly, following the advice of scientists with different backgrounds and academic

experiences is not trivial. Sometimes it gets tricky to converge the opinions and find the “best” (or at

least a good) research direction for a multidisciplinary issue. To make it more challenging, imagine

four researchers (well, I mean three experienced and a young one) coming from different schools, and

generally involved in differently-oriented projects collaborating on a multidisciplinary project over

long distance. Long skype meetings causing strong headaches were a reality for my advisors and me

these three years.

As in every family, there can be always some disagreements or even fights between the members.

But each member supports the other on every goal. And as everyone else, my strongest motivation

these three years has been to make my family proud of me. Every time I was getting tired of

studying, I was regaining my motivation and power by reminding to myself how much Sandrine

appreciated it when I knew deeply the details of my work; how happy Isabelle was as I was finding

a good way to execute interesting results and disseminate my research; and how trustful JJ became

as I was becoming capable to present a complete story from my analysis. Good parents want for

their children to become independent and confident members in the society. This is why good PhD

advisors encourage their students to disseminate their work and be exposed to and criticized from

the scientific community through conferences and publications. And of course, as it happens in the

society, it is not the “parents” nor the “friends”, but the rest of the scientific community that will

evaluate how much maturity I gained for my next research steps, and how ready I became for the

rest of my professional life through this PhD. Though, for me it will be always the process to the

fulfillment that matters. Tony Fahkry wrote: “The journey to achieve a goal is governed by: the

person you become along the way, the skills acquired, the connections made and the inner growth

which takes place”.
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Résumé

A
uXXIe siècle, la prévision de l’aléa hydrométéorologique et des impacts associés aux crues rapides

demeurent un défi pour les prévisionnistes et les services de secours. Les mesures structurelles

et / ou les avancées des systèmes de prévision hydrologique ne garantissent pas, à elles seules, la

réduction des décès lors de ces phénomènes d’inondation rapide. La littérature souligne la nécessité

d’intégrer d’autres facteurs, liés aux processus de vulnérabilité sociaux et comportementaux, afin de

mieux prendre en compte les risques encourus par les populations lors de ces épisodes extrêmes.

Cette dissertation conduit une analyse théorique couplés à ceux de une analyse des accidents his-

toriques mortels afin d’expliquer les interactions qui existent entre les processus hydrométéorologiques

et sociaux responsables de l’apparition de vulnérabilités humaines lors de crues rapides aux États-

Unis. Des données d’enquêtes liées aux crues rapides sont examinées afin d’élaborer un système

de classification des circonstances du décès (en voiture, à l’extérieur, à proximité d’un cours d’eau,

dans un camping, dans un bâtiment ou en mobile-home). L’objectif est d’établir un lien entre la

conception des vulnérabilités et l’estimation des pertes humaines liées à ces catastrophes naturelles.

“Random forest” est utilisé et est basé sur un arbre de décision, qui permet d’évaluer la probabilité

d’occurrence de décès pour une circonstance donnée en fonction d’indicateurs spatio-temporels. Un

système de prévision des décès liés à l’usage de la voiture lors des crues rapides, circonstance la plus

répandue, est donc proposé en s’appuyant sur les indicateurs initialement identifiés lors de l’étude

théorique.

Les résultats confirment que la vulnérabilité humaine et le risque associé varient de façon dynamique

et infra journalière, et en fonction de la résonance spatio-temporelle entre la dynamique sociale et

la dynamique d’exposition aux dangers. Par exemple, on constate que les jeunes et les personnes

d’âge moyen sont plus susceptibles de se retrouver pris au piège des crues rapides particulièrement

soudaines(par exemple, une durée de près de 5 heures) pendant les horaires de travail ou de loisirs en

extérieur. Les personnes âgées sont quant à elles plus susceptibles de périr à l’intérieur des bâtiments,

lors d’inondations plus longues, et surtout pendant la nuit lorsque les opérations de sauvetage et /
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ou d’évacuation sont rendues difficiles. Ces résultats mettent en évidence l’importance d’examiner la

situation d’exposition aux risques en tenant compte de la vulnérabilité dynamique, plutôt que de se

concentrer sur les conceptualisations génériques et statiques. Ce concept de vulnérabilité dynamique

est l’objectif de modélisation développée dans cette thèse pour des vulnérabilités liés aux véhicules.

À partir de l’étude de cas sur les crues rapides survenues en mai 2015, et en analysant principalement

les états du Texas et de l’Oklahoma, principaux états infectés par ces évènements,le modèle montre

des résultats prometteurs en termes d’identification spatio-temporelle des circonstances dangereuses.

Cependant, des seuils critiques pour la prédiction des incidents liés aux véhicules doivent être étudiés

plus en profondeur en intégrant des sensibilités locales non encore résolues par le modèle.

Le modèle établi peut être appliqué, à une résolution journalière ou horaire, pour chaque comté du

continent américain. Nous envisageons cette approche comme une première étape afin de fournir

un système de prévision des crues rapides et des risques associés sur le continent américain. Il est

important que la communauté scientifique spécialisée dans l’étude des crues éclairs récoltent des

données à plus haute résolution lorsque ces épisodes entrainement des risques mortels, et ce afin

d’appuyer la modélisation des complexités temporelles et spatiales associées aux pertes humaines

causées par les futures inondations soudaines.

Mots-clés: Crue rapide, impacts humains, facteurs de vulnérabilité, prédiction par apprentissage

virtuel, cartographie dynamique des risques
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Abstract

I
n the 21st century the prediction of and subsequent response to impacts due to sudden onset

and localized flash flooding events remain a challenge for forecasters and emergency managers.

Structural measures and/or advances in hydrological forecasting systems alone do not guarantee

reduction of fatalities during short-fuse flood events. The literature highlights the need for the

integration of additional factors related to social and behavioral vulnerability processes to better

capture risk of people during flash floods.

This dissertation conducts a theoretical analysis as well as an analysis of flash flood-specific historic

fatalities to explain complex and dynamic interactions between hydrometeorological, spatial and so-

cial processes responsible for the occurrence of human life-threatening situations during the “event”

phase of flash floods in the United States (U.S.). Individual-by-individual fatality records are exam-

ined in order to develop a classification system of circumstances (i.e., vehicle-related, outside/close

to streams, campsite, permanent buildings, and mobile homes). The ultimate goal is to link human

vulnerability conceptualizations with realistic forecasts of prominent human losses from flash flood

hazards. Random forest, a well-known decision-tree based ensemble machine learning algorithm for

classification is adopted to assess the likelihood of fatality occurrence for a given circumstance as

a function of representative indicators at the county-level and daily or hourly time steps. Start-

ing from the most prevalent circumstance of fatalities raised from both the literature review and

the impact-based analysis, flash flood events with lethal vehicle-related accidents are the subject to

predict.

The findings confirm that human vulnerability and the subsequent risk to flash flooding, vary dy-

namically depending on the space-time resonance between that social and hazard dynamics. For

example, it is found that younger and middle-aged people are more probable to get trapped from

very fast flash floods (e.g., duration close to 5 hours) while participating in daytime outdoor ac-

tivities (e.g., vehicle-related, recreational). In contrary, older people are more likely to perish from

longer flooding inside buildings, and especially in twilight and darkness hours when rescue and/or
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evacuation operations are hindered. This reasoning places the importance of situational examination

of dynamic vulnerability over generic and static conceptualizations, and guides the development of

flash flood-specific modeling of vehicle-related human risk in this thesis. Based on the case study of

May 2015 flash floods with a focus in Texas and Oklahoma, the model shows promising results in

terms of identifying dangerous circumstances in space and time. Though, critical thresholds for the

prediction of vehicle-related incidents need to be further investigated integrating local sensitivities,

not yet captured by the model.

The developed model can be applied on a daily or hourly basis for every U.S. county. We vision

this approach as a first effort to provide a prediction system to support emergency preparedness

and response to flash flood disasters over the conterminous U.S. It is recommended that the flash

flood disaster science community and practitioners conduct data collection with more details for the

life-threatening scene, and at finer resolutions to support modeling of local temporal and spatial

complexities associated with human losses from flash flooding in the future.

Keywords: Flash flood, human impacts, vulnerability factors, machine-learning predictions, dynamic

risk mapping
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ChapterI

General introduction

Flash floods are high-impact, occasionally catastrophic events that result from the intersection

of hydrometeorological extremes and society at small space-time scales, generally on the order of

hours [AMS, 2000; Ruin et al., 2009]. The impacts of these events include both damage to property

and threat to life [French et al., 1983; Staes et al., 1994; Gruntfest and Handmer, 2001; Petersen,

2001; Jonkman, 2005; Vinet, 2008; Gaume et al., 2009; Llasat et al., 2010]. Flash flood severity is

shaped by a range of factors including topography, land cover, seasonality, the distribution of flood

structures (e.g., dams, bridges, culverts) and critical infrastructure (e.g., schools, hospitals, electricity

industry), and human population. Because flash flood events are generally very localized in space

and time, they are difficult to forecast with precision and can subsequently leave people uninformed

and subject to surprise in the midst of their daily activities.

In the United States (U.S.) flood is the second most devastating hazard after heat in terms of

number of fatalities, with flash floods to account for the majority of those [Ashley and Ashley, 2008].

Recent examples of fatal flash flood events in the U.S. include the Albert Pike campground flood in

Arkansas that killed 20 campers on June 11, 2010 [Holmes Jr and Wagner, 2011], and the Oklahoma

City flash flood on May 31, 2013 that killed 13 people [Yussouf et al., 2016]. Another case of major

flash flooding in the U.S. occurred in May 2015, with Oklahoma and Texas to be among the most

impacted states. On May 14, 2015, prior to extensive flooding beginning around May 24, flash

flood warnings were issued for counties in southeast Texas. At least 34 people lost their lives in

flash floods from May 6 to 29, including 30 victims in Texas and 4 in Oklahoma. On September

14, 2015 in Hildale, Utah, 19 people were killed in a flash flood event characterized as the most

deadly weather disaster in Utah history [Avila, 2016]. In 2015, the National Weather Service (NWS)

reported 176 flood-related fatalities, noticeably overriding the 10- and 30-year average fatalities per

year (Figure I.1). Sixty-seven percent of those 176 flood fatalities were attributed to flash flooding 1.

Only heat wave has a higher 30-year average number of fatalities than flooding.

1. Data available online at https://www.ncdc.noaa.gov/stormevents/ftp.jsp.

1
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1. Flash flood forecasting and warning in the United States

1 Flash flood forecasting and warning in the United States

Advances in flash flood forecasts and warnings are very important to increase preparedness and

response capacity of the local authorities and population to flash flood crisis. Hydrologic and natural

hazard sciences show a great interest in the improvement of tools for monitoring and forecasting

flash floods recognizing flash flooding as an extremely sudden release of water producing high risk for

human life [Carpenter et al., 1999; Borga, 2009; Marchi et al., 2010; Borga et al., 2011; Hapuarachchi

et al., 2011]. The U.S. NWS Glossary (2009) defines a flash flood as: “a rapid and extreme flow

of high water into a normally dry area, or a rapid water level rise in a stream or creek above a

predetermined flood level, beginning within six hours of the causative event (e.g., intense rainfall,

dam failure, ice jam)”. This definition is not universally accepted in the scientific literature [Gaume

et al., 2009]. Though, it is in accordance with definitions given from the WMO which marks the time

scale between four to six hours, and it serves as the starting point for the organization of operational

flash flood forecasting and monitoring in the U.S. In the U.S. NWS, the timescale of six hours is

used to divide operational responsibility between local weather forecast offices that issue flash flood

warnings and regional river forecast centers that issue river flood warnings.

In the U.S., hydrometeorological hazards are communicated to the public by the NWS federal

governmental agency. In terms of spatial and temporal scales of the forecasts, the forecasting and

alerting responsibilities are distributed according to time scales: the longer scale forecasts and the

short-term predictions. The NWS Weather Prediction Center (WPC), part of the National Cen-

ters for Environmental Prediction (NCEP) is responsible for long-range interpretation of automated

weather forecast guidance, providing 0-72 hours (0-3 days) forecasts of heavy or excessive rainfall

(i.e., quantitative precipitation estimate exceeding flash flood guidance), and 0-168 hours (0-7 days)

quantitative precipitation forecasts (QPF). Thirteen regional River Forecast Centers (RFCs), mostly

employing hydrologists, cover all 50 states and the U.S. territories focusing primarily on riverine

flooding. At a local level, the flash flood alerting enterprise is administered by 122 NWS Weather

Forecast Offices (WFOs). Meteorologists in the WFOs issue point-based forecasts for their local areas

of responsibility. These point forecasts include probabilities of precipitation and QPFs. WFOs issue

flash flood watches when there is a fifty to eighty percent chance of flooding conditions in the next 48

hours 1. Warnings are issued when flash flooding is considered as “imminent or likely” over a period

generally less than six hours (or up to twelve hours in specific cases) (Table I.1).

If impacts arise from the interplay of multiple, natural and social factors, then in principle at

least, an early warning system should address all of the factors relevant to the particular risk. Solely

based on hydrometeorological products, the aforementioned warning messages are restricted to gen-

eralized advice to the public. Obviously, despite technological advances in forecasting have largely

improved watch-warning systems during the last decades, the prediction of prominent impacts of

this phenomenon remains a big challenge. Forecasters of the NWS do their best to collect as many

information as possible (e.g., hydrometeorological products, social media), to make sense of the situ-

ation before and after a flash flood occurrence. They are also responsible for collecting ground truth

reports to validate their warnings. Still, a more concrete tool that could inform forecasters of the

1. For documentation on the WFO hydrologic products specification visit http://www.nws.noaa.gov/directives/

sym/pd01009022curr.pdf.
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Table I.1 – Difference between a Flood Watch and a Flood Warning issued by the National Weather Service.
Source: Definitions available at http://www.floodsafety.noaa.gov/. Retrieved on October 31,
2016.

Flood product Interpretation

Flash Flood Warning Take Action! A Flash Flood Warning is issued when a flash flood
is imminent or occurring. If you are in a flood prone area move
immediately to high ground. A flash flood is a sudden violent flood
that can take from minutes to hours to develop. It is even possible
to experience a flash flood in areas not immediately receiving rain.

Flood Warning Take Action! A Flood Warning is issued when the hazardous
weather event is imminent or already happening. A Flood Warning
is issued when flooding is imminent or occurring.

Flood Watch Be Prepared: A Flood Watch is issued when conditions are fa-
vorable for a specific hazardous weather event to occur. A Flood
Watch is issued when conditions are favorable for flooding. It does
not mean flooding will occur, but it is possible.

Flood Advisory Be Aware: An Flood Advisory is issued when a specific weather
event that is forecast to occur may become a nuisance. A Flood
Advisory is issued when flooding is not expected to be bad enough to
issue a warning. However, it may cause significant inconvenience,
and if caution is not exercised, it could lead to situations that may
threaten life and/or property.

potential risk to people is required to go towards more targeted warnings and protection actions in

specific areas.

Initiatives towards improving tools for flash flood modeling and prediction across the U.S. include

the Flooded Locations and Simulated Hydrographs (FLASH) project that was launched in 2012

in the University of Oklahoma [Gourley et al., 2017]. The FLASH project presented in the next

section promotes the development of probabilistic impact focused outputs to advance the state-of-

science in operational flash flood predictions by integrating human impacts aspects with FLASH

hydrometeorological products.

This thesis was partly conducted at the University of Oklahoma, and was partly funded by

the FLASH project, with the aim to conduct basis research for a nationwide prediction effort for

forecasters and emergency managers to target their warnings on anticipated human impacts during

flash flood events in the U.S..

1.1 The FLASH project

The FLASH team 1, led by Dr. Gourley, is comprised of researchers and students who use an

interdisciplinary and collaborative approach to advance the accuracy, timing, and specificity of flash

flood warnings in the U.S., with the ultimate goal to save lives and protect infrastructure from flash

flood hazards. The project is funded by the Disaster Relief Appropriations Act of 2013 (P.L. 113-2),

providing support to the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at

the University of Oklahoma. The FLASH system generates hydrometeorological products at flash

flood scale in real-time across the conterminous U.S. including rainfall average recurrence intervals,

rainfall-to-flash flood guidance ratios, and distributed hydrologic model-based discharge forecasts

1. For information on the FLASH system and the team members visit https://blog.nssl.noaa.gov/flash/.
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the latter to exist only when people’s lives and livelihoods are swept away by a hazard [Annan, 2003].

Since the 70s O’Keefe et al. [1976] and the tenants of the political ecology approach have stated that

disasters do not come out from the natural hazard itself. Instead they argue that social, economic,

and political constrains of individuals are the main drivers of the increase of human vulnerability

and the related hazards impacts. Disaster or disaster risk when expressed in human terms (loss of

lives, people affected) is therefore the outcome of a hazard, and depends on the physical, social,

economic properties of the system that is exposed to and interacts with the hazard. Examples may

refer to physical disabilities of people, risk awareness and perception, lack of financial resources or

social capital for emergency response, poor constructions.

Researchers working on multidisciplinary studies related to natural hazards and climate variability

or change, often have different interpretations of vulnerability, but also of terms that are supposed

to be well-defined like hazard and risk. Birkmann [2006b] provides a list of essential terminology in

the assessment of vulnerability and the disaster risk reduction domain in general (Birkmann, 2006b,

p. 453). With such an existing profusion of terms, in the following pages we propose to clarify the

meaning of the ones that are selected as working definition for our study.

2.1 How is the hazard depicted?

As a determinant of risk, the notion of hazard is defined as “a dangerous phenomenon, substance,

human activity or condition that may cause loss of life, injury or other health impacts, property

damage, loss of livelihoods and services, social and economic disruption, or environmental damage”

[UN/ISDR, 2009]. Especially for hydrometeorological hazards (e.g., thunderstorm, tornado, drought,

coastal flood, flash flood), the dangerous phenomenon corresponds to processes of atmospheric, hy-

drological and/or oceanographic nature. The natural hazard under consideration is commonly defined

in probabilistic terms as“the probability of occurrence associated with an extreme event that can cause

a failure” [UNDRO, 1991; Plate, 2002] or “the probability of occurrence, within a specific period of

time in a given area, of a potentially damaging natural phenomenon” [Cardona et al., 2003].

In this thesis flash flood hazard is considered as a natural process that exceeds specific thresh-

olds and become a threat for human losses and damages in the human-environmental system. As

an alternative to the probabilistic representation, we may use the magnitude (e.g., discharge, ac-

cumulated rainfall) or intensity (e.g., rainfall rate, time to peak discharge) of the hazard event,

may be combined with factors such as speed of onset, duration and spatial extent, as proxies of

the occurrence of a hydrometeorological extreme at specified locations and times. The hazard can

be combined then with vulnerability proxies (e.g., exposed people, sensitive characteristics of the

environment) leading to an integrated dynamic estimation of human risk.

2.2 What does vulnerability mean?

In the context of risk to natural hazards, vulnerability describes both the social processes driving

the potential for harm and/or characteristics of individuals or groups of people that make them

susceptible to be harmed physically and/or psychologically; a concept that evolved out of the social

sciences in the 1970s as an alternative to the hazard or techno-centered paradigme developed in
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the 1940s based on which disaster risk is mostly due to a natural cause and a lack of perception

or adjustment to it [White and Haas, 1975; Schneiderbauer and Ehrlich, 2004]. From that time

vulnerability has taken various definitions depending on the research objective and the author’s

background with the ultimate goal to analyze the human-environmental conditions and interactions

within socio-ecological systems threatened and impacted by a stressor [Adger, 2006]. The majority

of definitions in the literature tend to view vulnerability either i) as a pre-existing state of the social

system defined independently of the hazard occurrence, or ii) as a potential for losses caused by the

system’s exposure to a particular hazard and its sensitivity to specific impacts. The former idea

is supported mainly by purely social-oriented scientists representing vulnerability through a set of

selected socio-economic characteristics that reveal the inherent fragility of the system [Allen, 2003;

Sarewitz et al., 2003], whereas the latter is promoted by climate change community which links

vulnerability with the likelihood of impact occurrence considering the specificity of the hazard under

study. The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR)

describes vulnerability with the following statement:

“The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate

change, including climate variability and extremes. Vulnerability is a function of the character,

magnitude, and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive

capacity.” (IPCC, 2001, p. 995)

In the climate change perspective, McCarthy [2001] defines sensitivity as “the degree to which

a system is affected, either adversely or beneficially, by climate-related stimuli. The effect may be

direct (e.g., a change in crop yield in response to a change in the mean, range, or variability of

temperature) or indirect (e.g., damages caused by an increase in the frequency of coastal flooding due

to sea level rise)”. Thus, sensitivity is a term that explains the degree to which a system is modified or

affected by hazards. Adaptive capacity is “the ability of a system to evolve in order to accommodate

environmental hazards or policy change and to expand the range of variability with which it can cope”

[Adger, 2006] .

Conceptualizations that consider social vulnerability as an inherent property of the society may

adequately explain social groups that are the most fragile from an economic or physical point of view

(or as a result of other types of marginalization processes). However, they focus on the negative

side of the vulnerability concept, ignoring positive aspects related to people’s strength to deal with

the hazard or their capacities for self-protection [Wisner, 2003; Blaikie et al., 2014]. Bohle [2001]

highlights that vulnerability can not be described without considering the capacity to anticipate, cope

with, resist and recover from the impact of a hazard, defined as the internal side of vulnerability.

The term “coping” is used in his conceptual framework to represent coping and response capacities

as they emerge from the Crisis and Conflict Theory (e.g., control of assets and resources, capacity to

manage crisis situations), Action Theory Approaches (e.g., how people act freely as result of socio-

economic or governmental constrains) and Model of Access to Assets (e.g., access to resources/assets)

[Bohle, 2001]. According to Bohle, exposure to specific risks and shocks is one of the vulnerability

components described as“external”side of vulnerability, which together with the internal vulnerability

side compose the“double structure of vulnerability”. This external aspect ecompasses spatial exposure

but also social inequities, population dynamics, and incapacity of people to obtain assets that can

alter the exposure of individuals and households to risk.
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In this study, social vulnerability is considered as a whole, integrating the pre-existing social

conditions that make people susceptible to the prominent hazard (inherent social vulnerability), and

the hazard-specific sensitivities emerging from the interaction of the exposed people and the hazard

in specified circumstances across space and time. The term social is used to bound vulnerability

factors to human beings [Blaikie et al., 2014]. Building on the IPCC definition, vulnerability is

viewed as a process defined by a set of social sub-processes related to human exposure, sensitivity

and coping capacity that evolve in time and thus, can not be assessed in advance or mapped as a

static picture independently of the hazard (see Chapter II). The term“coping” instead of “adaptive”

capacity is used to describe the short-term ability of people to deal with the strength of the hazard

(here flash flood).

2.3 How to operationalize vulnerability?

To support decision makers and mitigation planning for disaster risk reduction, the conceptual-

izations of vulnerability need to be translated in specific metrics or measurement tools to be used

for risk assessment in practice. Currently, social vulnerability assessment research is driven by the

selection of relevant vulnerability indicators and criteria. In the 2005 World Conference on Disaster

Reduction (WCDR), the international community underlined that it is important to “develop sys-

tems of indicators of disaster risk and vulnerability at national and sub-national scales that will enable

decision-makers to assess the impact of disasters on social, economic, and environmental conditions

and disseminate the results to decision-makers, the public and population at risk” [ISDR, 2005]. Fol-

lowing explanations given by Gallopin [1997], Birkmann [2006b] defines an indicator of vulnerability

to natural hazards as:

“a variable which is an operational representation of a characteristic or quality of a system able

to provide information regarding the susceptibility, coping capacity and resilience of a system to an

impact of an albeit ill-defined event linked with a hazard of natural origin.”

Birkmann [2006b] highlights the fact that indicators may be defined differently by the various

authors in the literature, though they always intend to have a special meaning for the estimation of a

certain quality or characteristic of a system based on interpretations about the relationship between

the indicator and the phenomenon of interest. Than means that every variable that is selected to be

included in the vulnerability assessment should indicate a specific aspect or process of the underlying

vulnerability to the hazard(s) under study [Gallopin, 1997]. Certainly, there are limitations on the

selection and use of indicators. According to Cutter et al. [2009] the main problems discussed in the

literature can be summarized as following:

• Research requirements to assign complex concepts and interactions into a set of variables

(compromise between good knowledge of the system and its specifics, and the need for sim-

plicity in applications).

• Difficulty to quantify some vulnerability concepts and interactions between the social vulner-

ability processes (e.g., social networking, cognition, trust in the government and warnings).
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• Data availability and resources constrain the selection of input variables relevant to explain

the natural and social processes on a scale that is suitable for the purposes of the analysis

(geographic unit, timeframe).

• Lack of compatibility between the methods of indicators aggregation, and reproducibility of

the indexes. Various indexes are constructed following different approaches driven from the

available variables, geography, and certain study-specific interpretations.

In the frame of the socially oriented studies where vulnerability is considered as an internal prop-

erty of the society, Cutter et al. [2009] highlights some broad indicators that appear frequently in

the literature using different proxies: the socioeconomic status (e.g., wealth or poverty); the age; the

special needs populations (e.g., people in hospitals); the gender; and the race and/or the ethnicity

are some of the most commonly used characteristics [Tierney et al., 2001; Center, 2002]. These indi-

cators summarize social dependencies and economic disadvantages of the population through indexes

assigned to geographic units varying from block groups to states [Cutter et al., 2000; Cutter et al.,

2003]. Especially, the eleven social vulnerability indicators proposed by Cutter et al. [2003] have

largely been used in various studies presented the literature [Rygel et al., 2006; Azar and Rain, 2007].

Given the multifaceted nature of vulnerability to different hazards, adopting indicators that may

be available through the literature is not the best practice. In the words of Brooks et al. [2005],

“vulnerability depends critically on context, and the factors that make a system vulnerable to a hazard

will depend on the nature of the system and the type of hazard in question”. For example, flood

insurance may indicate the existence of preparedness measures specifically reducing vulnerability to

flood but not to other hazards (e.g., wind). Flood insurance can not directly reduce vulnerability

during flooding but may facilitate the recovery process after a flood disaster [Tunstall, 2009; Zhong et

al., 2013]. In addition to that, such flood prevention measures may be relevant for some countries and

type of economies but not for others (e.g., economic differences between developed and developing

countries, differences in insurance policy between Europe and U.S.). Rufat et al. [2015] review 67

flood-hazard case studies (1997-2013) to present the main factors considered when assessing social

vulnerability to floods. Their results show that the demographic and socio-economic characteristics,

and health and coping capacity issues are the most frequently used ones in the quantification of

social vulnerability. Though, the frequency varies depending on the flood type (e.g., riverine or

flash flood), disaster phase (e.g., response or recovery) and place of application (e.g., developed or

developing country) [Rufat et al., 2015]. In this perspective, studying social vulnerability to a specific

temporal and spatial context of the flood hazard is a key step to identifying relevant and measurable

indicators [Fekete, 2010]. It also helps to explain the causative processes avoiding generalizations and

simplifications in vulnerability assessment and mapping.

Downing [2004] argues that a relevant conceptual model has to be developed to be used as the basis

for indicator development and selection. The conceptual model should be guided from the objective

of the analysis, and be in respect to the spatial and temporal bounds of the phenomenon (e.g., scales

of flood phenomenon) and application (e.g., vulnerability of certain administrative units) of interest.

Thus, defining the objective of the analysis implies the identification of the area or territory and

hazard of interest, and the scope of the study (e.g., preventing human impacts or economic losses).
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In this thesis, a dynamic vulnerability conceptual model is developed to explain the main factors

and their interactions, related to the vulnerability of individuals during the flash flood crisis. Based

on the identified flash flood-specific vulnerability factors, nationwide available data in the U.S. will

be gathered and explored for their relevance to serve as indicators of human risk to flash flood

hazard at the county level a, and daily or sub-daily time steps.

a. In the U.S., a county is a political and geographic subdivision of a state and is used for the level of local
government. At the 2000 U.S. Census, the median land area of U.S. counties is 1,610 km2. Documentation of the 2000
U.S. Census Bureau geographic entities is available online at http://www.census.gov/prod/2001pubs/mso-01icdp.pdf.

2.4 Which is the relevant conceptual model to link vulnerability and risk?

Several conceptual frameworks or models have been developed in the literature to set vulnerability

in the context of risk analysis, and help researchers to systematize the measurement of vulnerability

aspects relevant to the hazard and the social system of interest. Birkmann [2006b] and Cutter et al.

[2009] both provide a review and/or criticism of well-known conceptual models in vulnerability re-

search. Here, we discuss the main attributes of core previous conceptual models that lead the way

for framing vulnerability in our study: i) the components included in the vulnerability term (e.g.,

exposure, sensitivity, capacity), ii) the characterization of vulnerability (e.g., process or character-

istic), and iii) the dynamics considered (e.g., temporal or spatial interactions between vulnerability

components and the hazard).

One of the most well-known conceptual frameworks in the literature that views risk as the intersec-

tion of processes associated with the natural hazard event and vulnerability is the pressure and release

model (PAR model) presented in the At Risk volume [Blaikie et al., 1994; Wisner et al., 2004]. In this

framework, vulnerability is considered as a progressive process from root causes (e.g., limited access

to resources), to dynamic pressures (e.g., lack of local institutions or training, socio-demographic

changes such as rapid urbanization) to unsafe conditions (e.g., unprotected infrastructure, special

groups at risk, low income levels, lack of disaster preparedness). Though, the model is criticized for

not explicitly addressing the interactions between social and natural systems [Cutter et al., 2009].

Integrated multidisciplinary approaches that combine vulnerability of a system with exposure to

particular hazards are applied in vulnerability (or risk) mapping for identifying particularly vulnerable

(or critical) regions [o’Brien et al., 2004; Metzger et al., 2005]. In this direction, Cutter [1996] presents

the hazard-of-place approach to integrate the place-based interaction between potential exposure

and societal vulnerability with a specific focus on particular places or regions [Cutter et al., 2000;

Cutter et al., 2006]. In this framework exposure is differentiated from social vulnerability, and it is

defined as biophysical vulnerability influenced by the geographic context (i.e., site and situation of the

place, proximity to hazard). Thus, social vulnerability is focused on the community ability to cope

with, respond to or recover from one or more hazards, and it is mainly described by the economic,

demographic, and housing characteristics of the place. This perspective of social vulnerability agrees

more with the definition of vulnerability as an intrinsic characteristic of the place or the system

of interest (independent of the hazard type). Unfortunately, it does not address the dynamics of

vulnerability emerging from the embedded socio-environmental interactions, and the intersection of

human activities with the hazard dynamics.
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presence of the hazard), and vulnerability (i.e., susceptibility of the exposed elements to damage or

loss), minus the capacity (e.g., urban planning, emergency response, communications) of the exposed

system to deal with the hazard.

Within the context of sustainability, the BBC framework developed by Bogardi and Birkmann

[2004] at the Institute of Environment and Human Security of the United Nations University (UNU-

EHS) integrates environmental, social and economic aspects of human safety with the occurrence

of a natural phenomenon related to a specific hazard. In this framework, the economic, social or

environmental risk arises from the combination of the hazard with the corresponding vulnerability

sphere; both viewed as sequential components in the risk assessment procedure. In contrast with

the disaster risk community, the BBC framework (Bogardi and Birkmann Conceptual framework)

defines exposure, susceptibility and coping capacities explicitly as elements of vulnerability (Figure

I.6). This framework implies for consideration of the specifics of the hazard and distinguishes two

temporal phases for the overall reduction of risk: just before the hazard strikes (preparedness), and

after the hazard effects start to be apparent (emergency response). Fekete [2010] applies the BBC

model to assess social vulnerability of German population to river flooding. He focuses especially on

the social sphere and based on the BBC framework he selected river flood-relevant indicators that

explained social susceptibility at the county-level; thus providing comparisons of social vulnerabil-

ity estimations among the counties of Germany. An interesting contribution of this framework is

that vulnerability is viewed as a process rather than a simple characteristic, encompassing capacities

that may reduce vulnerability. In this perspective, exposure, susceptibility and capacities are inter-

connected vulnerability processes that mediate the anticipated risk. The common attribute of the

BBC framework and Bollin’s model is that they consider social vulnerability and hazard as separate

components in the realm of risk. Although the dependencies and interactions with the hazard are

broadly discussed, they often presume a linear relationship between those two contributors and risk in

practice. However, we believe that social vulnerability processes intersect with the hazard occurrence

in a possibly complex and non linear manner revealing a dangerous scene for the exposed human or

environmental system.
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to combine indicators of risk in the literature. In recent years, most of the studies aggregate vulnera-

bility indicators to compose indexes at the national level for international or global-oriented projects

[UNDP, 2004; Cardona, 2005]. Examples of indexes that aim to assess vulnerability and risk towards

natural hazards include the Disaster Deficit Index (DDI) for the expected financial loss and capacity

[Cardona, 2005], the Prevalent Vulnerability Index (PVI) for the socio-economic fragility and infras-

tructural capacity to recover from natural hazards [Cardona, 2005], and the Risk Management Index

(RMI) for the capacity related to risk identification and reduction, disaster management and financial

protection [Carreño et al., 2007]. At the national level, indexes use only one numeric value to describe

an entire country ignoring the possible spatial variability of vulnerability within that country and/or

its temporal evolution. Cutter et al. [2003] developed the Social Vulnerability Index (SoVI) based

on the social dimensions of the PAR model to quantify the relative socio-economic and demographic

quality of a place as a means of understanding vulnerability at the county level.

In majority, the aforementioned approaches view vulnerability as a static metric of social aspects

that is studied independently of the hazard, as they aim to be generic and multi-hazard. However,

in fast-evolving events such as flash floods, human impacts depend not only on variables such as the

magnitude of the natural hazard and the vulnerability of those affected, but also on how these factors

evolve and intersect in space and time. These contextual factors can alter the scale distribution, and

magnitude of impacts on people. Thus, indexes may be descriptive of the existing and foreseen

conditions of the coupled human-environmental system, but they can not serve as predictive tools

for specific impacts [Cutter et al., 2009].

To predict combinations of physical and social characteristics and processes favorable for the out-

break of impacts (e.g., fatalities, injuries, damages) within a flash flood or other hazard event, several

variables have to be related to observed impact data. Therefore, we need an integrated approach

allowing to test interrelationships between social and physical indicators with respect to their ability

to explain past human impact occurrences in the geographic unit of interest. Methodologically, this

approach can be carried out through “supervised”machine learning techniques, where the dependent

attribute or label (e.g., occurrence of human losses), is defined as the variable to be predicted, and is

part of the dataset inserted in the machine learning algorithm [Kohavi and Provost, 1998]. The goal

of the algorithm is then to learn general rules that map the inputs to desired outputs. This is not

the case in “unsupervised” learning where the label is not specified as part of the dataset, and the

machine learning algorithm is allowed to cluster cases drawn from the dataset into classes naturally

driven from the data [Kohavi and Provost, 1998].

Machine learning is a technique belonging to the broader field of artificial intelligence (AI), that

“gives computers the ability to learn without being explicitly programmed” [Simon, 2013]. Although

there is a disagreement on how exactly to define “learning”, a concrete way of doing so is to consider

learning as a process of acquiring knowledge that the learner can use to develop a set of rules [Quinlan,

1986]. Rapid rise of data availability during the last century discourage manual interpretations by

the human brain. On the other hand, computers and subsequently machine learning, are designed to

perform repetitive assignments such as developing sets of rules based on the analysis of big datasets

(learning). According to Quinlan [1986], “domain specialists” and “knowledge engineers” need to

collaborate to create explicit rules outlining and defining the knowledge available about the operation

of a particular “expert system” in the modern world, but this approach may lead to “a few rules per
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man day”, opposed to the computers and by inference, the machine learning techniques, that can

rapidly process thousands of rules.

Forecasting of flash flood impacts relies on the already complicated expert system of weather

forecasting. Machine learning may therefore serve as a promising tool to complement hydrologic

forecasts with vulnerability-related variables used as predictors, in order to capture the complex

and dynamic rules related to life-threatening situations during flash flooding. That means that

risk indicators should first be chosen based on theoretical knowledge before being sorted out by

machine learning algorithms to help identifying complex patterns and relationships that would not

be detectable through vulnerability hypothesis and two-dimensional statistics. Machine learning

algorithms include support vector machines [Vapnik and Cortes, 1995], artificial neural networks

[Rojas, 2013], and regression or classification trees [Breiman et al., 1984; Quinlan, 1986], to name

but a few. Such techniques have been applied in hydrological and meteorological studies including

extreme rainfall [e.g., Nayak and Ghosh, 2013], and tornado development from mesocyclones [e.g.,

Trafalis et al., 2014]. Clark [2016] used machine learning models to forecast the probability of flash

flooding given a set of atmospheric and hydrologic conditions in the contiguous U.S., and explore

their applicability in operational forecasting. Recently, data-driven models have been further applied

in assessing flood damage based on multiple variables describing the flooding hydrology and warnings,

building characteristics and precaution measures, and the socio-economic status of private households

[Merz et al., 2013].

In this dissertation, a machine-learning technique is applied to a compiled database with in-

dicators about the hydrometeorology of the flash flood event, and the infrastructure and socio-

demographics of the exposed county to produce, for the first time, automatic probabilistic forecasts

of flash flood fatalities for a given life-threatening circumstance.

3 Research Hypothesis and Objectives

The main goal of this PhD research is to propose a conceptual and methodological framework to

link social vulnerability conceptualizations with realistic forecasts of prominent impacts from flash

flood hazards. Especially, we see this study as entry point for a forecasting system to anticipate

potential human losses, with a focus on the most prevalent circumstance of fatalities: vehicle-related

incidents.

In this direction, we hypothesize that:

i. Integrating flash flood impact reports with extra datasets describing critical elements of the

hazard, the population and the environment in the counties exposed to those flash floods, would

provide us a base for building a machine-learning approach for flash flood human risk prediction.

ii. Machine-learning approaches are relevant to link flash flood occurrence with the potential-

ity of circumstance-specific casualties by integrating exposure, sensitivity and coping capacity

characteristics defining human vulnerability to flash flooding.
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Chapter I. General introduction

To develop our approach and test this hypothesis core research questions need to be answered.

Table I.2 summarizes the three main questions that pose three challenging objectives that lead this

thesis.

Table I.2 – Research questions and the corresponding objectives that guide this thesis.

Keywords Research question Objective

Social vulnerability Which social processes inter-

act with the flash flood haz-

ard and define the dynamic

variability of human vulnera-

bility across space and time?

To build a conceptual vul-

nerability model that cap-

tures the dynamic interplay

between relevant vulnerabil-

ity factors and the spatiotem-

poral scales of flash flood

events.

Human impacts

Who is the most vulnerable to

flash flooding in terms of loss

of life?

To analyze the situations of

historic fatality events as de-

termined by the victimsÕ pro-

file and activity and the

spatio-temporal context of

the causative flash flooding.

Forecasting of

prominent human

losses

How to quantify the rela-

tionship between the magni-

tude of the flash flood and

proxies revealing the expo-

sure and susceptibility of peo-

ple at certain circumstances

at the time of the event?

To model and map dynam-

ically circumstance-specific

human risk predictions re-

vealing the time-variant

exposure to a given flash

flood forecast.

4 Document structure

The first and the last chapters serve as the general introduction and general conclusion of this

thesis, respectively. The rest of the dissertation is organized in four chapters which document the

integrated hazard-vulnerability approach toward flash flood human losses prediction.

After framing the research intentions in the present chapter, the second and third chapters describe

the main concepts and data adopted in this research, respectively. Chapter II presents findings from

a literature review on past flood impact and vulnerability studies and lists the driving factors that

control social vulnerability to flash floods. Human vulnerability is defined and contextualized to

short-fuse floods to consider the spatial and temporal specificity of the flash flood hazard. Then, a

conceptual model for the assessment of social vulnerability and by inference, of human risk to flash

flood events is developed and presented accordingly.

Chapter III presents the collection of nationwide data from various sources in the U.S., and their

pre-processing to serve as indicators of the main vulnerability processes identified in the developed

conceptual model at the scale of the analysis (county-level). Especially, historic flash flood impacts

records are supplemented with a set of variables that may explain the hazard occurrence but also the
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4. Document structure

sensitive characteristics of the exposed population and built environment corresponding to the set of

flash flood events under study.

Chapter IV explores the situations of the fatality events as determined by the victims’ profile

and activity and the spatio-temporal context of the flash flooding in the U.S.. Impact data presented

in Chapter III are used to carry out a statistical and geospatial analysis of historic human losses

in the U.S.. Especially, 1075 flash flood-specific human losses from 1996-2014 on the scale of the

U.S. are classified to six main categories/circumstances and are investigated correspondingly. This

analysis provides interesting insights for the understanding of human vulnerability in past flash flood

events, and the prediction of human losses in future events; investigated in Chapter V of the thesis.

Chapter V discusses methodological developments allowing the integration of physical and social

dynamics leading to model forecasts of circumstance-specific human losses during a flash flood. A

machine learning predictive approach is developed based on the flash flood database prepared for

binary classification in Chapter III. Especially, a Random Forest classifier is applied to assess the

likelihood of fatality occurrence for a given circumstance (i.e., vehicle related incidents) as a function

of representative indicators. Details on the classification method and the modeling steps are pre-

sented in this chapter. Chapter V provides also descriptions of the final model performance and the

contribution of each indicator/predictor in the prediction of vehicle-related fatalities at the county-

level across U.S. In the continue, the catastrophic flash floods of May 2015 in the states of Texas and

Oklahoma are used as a case study to map the dynamics of the estimated probabilistic risk on a daily

and hourly scale, by applying the developed model. Achievements and limitations of the developed

modeling tool are finally discussed to evaluate the ability of the proposed approach to realistically

capture severe cases of flash flooding in terms of vehicle-related incidents.

Each of the Chapters II, IV, and V focuses on one of the three research objectives presented in

Table I.2, and correspond to the three main publications produced during the dissertation. The

general conclusions of this thesis in Chapter VI are presented in terms of general review and

summary of findings in each of the three research questions (Table I.2). The summary and conclusions

are followed by a discussion on the perspectives of the current research, as well as potential research

directions for determining casualties from flash flood hazards in the future.
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CONCEPT AND DATA FOR FLASH

FLOOD AND IMPACT-SPECIFIC

VULNERABILITY DEFINITION

Chapter II: Dynamic vulnerability factors for impact-based flash

flood prediction

Chapter II is based on a paper published in Natural Hazards, Journal of the Inter-

national Society for the Prevention and Mitigation of Natural Hazards: Terti, G., Ruin,

I., Anquetin, S. and Gourley, J.J., 2015. Dynamic vulnerability factors for impact-based flash flood

prediction. Natural Hazards, 79(3), pp.1481-1497.

Chapter III: Data collection and processing
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Résumé

Résumé

L
es circonstances sociologiques et humaines qui transforment un événement naturel en catastrophe

mortelle peuvent être expliquées par la vulnérabilité sociale. Mais quelles sont les caractéris-

tiques spatio-temporelle de la vulnérabilité (i.e., la vulnérabilité dynamique) qui influencent la façon

dont les individus sont touchés par un aléa naturel particulier? Le Chapitre II présente une analyse

critique des études antérieures réalisées sur les impacts humains et les vulnérabilités associées, liés aux

crues rapides. L’étude est motivée par l’hypothèse que la résonnance des échelles spatio-temporelles

associées à l’aléa avec celles liées à la localisation des personnes, en connaissant leurs caracteristiques

socio-économiques, révèle différents types de vulnérabilités et définit la zone la plus exposée en termes

de mortalité. Sur la base de cette idée, un modèle conceptuel pour évaluer la vulnérabilité face à

ces aléas naturels est développé et présenté ici. La principale avancée, par rapport aux études précé-

dentes, est l’introduction du concept de la variabilité spatiale et temporelle de la vulnérabilité et du

risque associé. Cela signifie que le modèle proposé ne considère pas la vulnérabilité sociale comme

un synopsis statique, décrit par une seule carte, mais comme un processus en constante évolution

dérivée de l’interaction des dynamiques sociales et physiques. Ce concept de vulnérabilité dynamique

est essentiel pour identifier les variables pertinentes à utiliser pour évaluer les risques associés aux

crues éclairs, la cartographie dynamique et la prévision. La collecte de telles variables à partir de

données nationales aux États-Unis est présentée dans le Chapitre III. Le modèle développé sert de

base à l’élaboration d’une approche méthodologique pour quantifier les risques humains, en tenant

compte des circonstances dans lesquelles les victimes ont perdu la vie lors de l’épisode de crue. De

manière plus précise, les données d’impact de ces aléas sont complétées par des données qui décrivent

les caractéristiques de l’aléa, de la population exposée et de l’environnement, dans les comtés ayant

déjà subi des crues rapides. C’est sur cette base de données ainsi compilée que la conceptualisation

du modèle de prévision de l’occurrence des crues rapides, et des éventuelles victimes associées, sera

construite en intégrant l’ensemble des données définissant l’aléa et la vulnérabilité humaine face aux

crues éclairs (i.e. exposition, capacité d’adaptation, ...).
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Abstract

Abstract

S
ocial vulnerability explains the sociological and human-dependent circumstances that translate a

natural event into a deadly disaster. But, what are the space-time characteristics of vulnerability

(i.e., dynamic vulnerability) that influence how people are impacted by a specific natural hazard?

Chapter II presents a critical analysis of previous flood-related human impact and vulnerability stud-

ies to better understand and summarize the human-related factors that determine the impacts from

flash flood events. The study is motivated by the hypothesis that the intersection of the spatiotem-

poral context of the flash flood hazard with the distribution of people and their characteristics across

space and time reveals different paths of vulnerability and defines the most probable space of an

exposed area in terms of deadly impacts. Based on this idea, a conceptual model for assessing vul-

nerability to flash flooding is developed and presented herein. The most important advance of the

current research in comparison with previous efforts in vulnerability assessment is the introduction

of the concept of the spatial and temporal variability of vulnerability and the subsequent risk. This

means that the proposed conceptual model does not consider social vulnerability as a static synopsis

that can be described by a single map, but as an ever-evolving process derived from the interaction of

social and physical dynamics. The dynamic perspective of vulnerability is key for the identification of

pertinent variables to be used for flash flood risk assessment and dynamic mapping, and prediction.

The gathering of such variables from nationwide datasets in the U.S. is presented in Chapter III. The

developed conceptual model is used as the basis to build a methodological approach towards quantifi-

cation of human risk considering the circumstances in which people lost their life in past flash flood

events. Especially, flash flood impact data are supplemented with extra data that may describe the

characteristics of the hazard and the exposed population and built environment at counties exposed

to historic flash flood occurrences. It is hypothesized that the compiled database will support the

incorporation of our conceptualizations in a statistical approach to link flash flood occurrence with

the potentiality of casualties by integrating exposure, sensitivity and coping capacity characteristics

defining human vulnerability to flash flooding.
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ChapterII

Dynamic vulnerability factors for

impact-based flash flood prediction

1 Introduction

Flash floods are the most dangerous floods since they can occur with little or no warning, restricting

the anticipation time of effective response [Creutin et al., 2013]. For different types of flood (e.g., river

flood, flash flood), there may be differences in the drivers of human vulnerability depending on the

way that the hazard intervenes social processes, and whether it creates opportunities for anticipation

or not. When scrutinizing the socio-demographic variables in flash flood-related human losses, for

example, it becomes obvious that they reflect the space-time distribution of everyday life activities

(e.g., commuting to work in a vehicle), revealing both the dynamics of exposure and the difficulty

to adapt patterned movements to fast-changing and potentially dangerous conditions. In fact, in

such fast-evolving events, impacts depend not only on variables such as the magnitude of the natural

hazard and the vulnerability of those affected, but also on how these factors evolve and intersect in

space and time. In the case of flooding fatalities, for instance, the elderly are often thought to be the

most vulnerable. But when fatalities are mapped against basin scale and response time, it has been

shown that in fact it is young motorists who are most likely to be killed in flash flooding in small

catchments, whereas the elderly most frequently perish in their homes from large-scale fluvial flooding

[Ruin et al., 2008]. As a consequence, generic vulnerability factors addressing the overall fragility of

populations with poor biophysical, social, and/or financial capital fail to capture the variability of

the situations in which people become vulnerable and perish in flash flooding conditions.

To date, there has been very little work on the identification of vulnerability factors that are specific

to short-fuse weather events and even fewer studies on the intersection between human behavior and

flash floods [Ruin et al., 2008; Creutin et al., 2009]. The objective of this study is to introduce

a new conceptual framework for the analysis of social vulnerability to short-fuse weather events
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Chapter II. Dynamic vulnerability factors for impact-based flash flood prediction

(here flash floods) taking into account the spatial and temporal characteristics of the natural hazard

and its interaction with the social dynamics at the daily and subdaily timescales. This conceptual

framework is a necessary first step toward the development of a dynamic vulnerability model to be

coupled with flash flood forecasting tools for the development of impact-specific flash flood forecasting

products that will be implemented at first in the U.S.. Such flash flood forecasting products include

impact-explicit maps that would inform forecasters and emergency managers for the likelihood of

human impacts to occur at an area exposed to flash flooding at a certain time step. To capture the

spatiotemporal variability of the human impacts, this probabilistic outcome should be the product

of the magnitude of the flash flood forecast with the vulnerability of the exposed infrastructure and

people at that time.

To address the objective, we begin this thesis with a literature review of impact assessments

with a primary focus of flash flood events in Europe, North America, and Australia. In addition

to data availability, common features in terms of human development indices and living conditions

permit making parallels between Europe and North America and contribute to the applicability of

this paper’s findings to these regions. For example, we assume that similar economic conditions

(i.e., high-income countries) have similar capabilities to assign financial resources to flood risk fore-

cast, mitigation, protection, and recovery. The ability of high-income countries for more advanced

flood risk prevention and management could explain the fact that although they are affected more

frequently by natural catastrophes they have relatively fewer fatalities [Jonkman, 2005]. If the con-

ceptual model proposed in this study is generalizable to the types of countries described above, the

development of a specific flash flood impact-forecasting tool implies careful consideration of the cul-

tural specificities for the country of reference. In other words, certain classification and thresholds

of the variables to be used to explain the vulnerability processes of the conceptual framework need

to be adapted depending on both the hydrometeorological thresholds and the habits of population

in the area. Data availability and resolution pose additional constraints to the transferability of the

concepts and methods in this research.

This chapter addresses the following central questions that enforce an innovative perspective of

vulnerability assessment:

i. How do the space and time scales of flash flood events interact with vulnerability and influence

the magnitude and type of human impacts?

ii. What are the human-dependent processes (i.e., vulnerability factors) that are related to flash

flood human risk?

iii. What are the interactions between the flash flood and the social vulnerability processes that

determine the dynamic variability of vulnerability across space and time?

The primary outcome of this part of the study is an integrated conceptual vulnerability model that

seeks to capture the dynamic interplay between the identified space-time vulnerability factors and the

spatiotemporal scales of flash flood events. The chapter is structured in the following manner. First,

the spatial and temporal aspects of flash flood events are discussed in the context of how they pertain

to social vulnerability. The next section presents findings from a literature review on past flood impact

and vulnerability studies and lists the driving factors that control social vulnerability to flash floods.

Then, we provide insights into the definition of dynamic vulnerability and present a conceptual model

for the assessment of social vulnerability to flash flood events. The final section provides concluding
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2. Flash flood spatial and temporal context

remarks and discusses methodological challenges in dynamic vulnerability assessment introducing the

approach adopted in this dissertation.

2 Flash flood spatial and temporal context

2.1 Space-time scale of flash flood

Blöschl and Sivapalan [1995] state that“hydrological processes occur at a wide range of scales, from

unsaturated flow in a 1 m soil profile to floods in river systems of a million square kilometres; from

flash floods of several minutes duration to flow in aquifers over hundreds of years”. The hydrological

processes in Figure II.1 are classified by Blöschl and Sivapalan [1995] after Anderson, Burt, et al.

[1990] based on the spatial and temporal ranges at which they actually operate. This type of scale

is referred to as “intrinsic” in the literature and is differentiated from the “observational” scale that

processes are measured or sampled, although the two types of scales sometimes converge [Anderson,

Burt, et al., 1990; Wu and Li, 2006]. The spatial scale on the graph refers to the length that each

process extends to whereas the temporal range represents its characteristic response time to the

triggering hydrometeorological process of a specific duration and extent.

Flash flood events result from several of the processes across space-time scales presented in Fig-

ure II.1. For example, the runoff from infiltration excess acts almost instantaneously at a very small

length scale whereas saturation excess runoff operates at a certain catchment area characterized by a

longer response time. According to the “space-time correspondence principle”, mesoscale or synoptic

scale meteorological events are associated with slower streamflow responses whereas localized thun-

derstorms yield fast responses in smaller, headwater catchments [Wu and Li, 2006]. The faster the

response, the higher the demand for details to detect the underlying short-term vulnerability patterns

and processes. Fast responses are also associated with higher complexity in the human environmental

system under study [Kienberger, 2007].
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3. Understanding social vulnerability to flash floods

Jonkman [2005], the severity of impact varies not only with the place where the event happens but

also with the type of hazard as shown by the difference in mortality rate between flood and flash

flood. The same study reveals that the difference between the two flood types not only contribute

to the type and magnitude of losses such distinct phenomena trigger but they also play a role in the

emergence of specific forms of vulnerability that are not relevant in the case of general flooding. The

effect of the flash flood spatio-temporal specificity on vulnerability is summarized as follows:

• In contrast with river flooding where the proximity to streams and rivers indicate a potential

risk level, the spatial distribution of small drainage areas prone to flash flooding limits the

efficacy of flood zoning measures for flash flood prevention. Therefore, the development of

advanced warning systems is preferred.

• The small spatial and temporal scales associated with flash flooding hinder the forecasting

ability to predict their precise locations with sufficient warning lead-time. Unlike river floods,

producing and disseminating accurate and timely forecasts that meet the human security

needs remain a challenge [Montz and Gruntfest, 2002].

• Flash flood dynamics such as the hydrologic response time to rainfall or concentration time

and the peak magnitude of streamflow vary with catchment size and basin physiographic and

geomorphological characteristics. In general, small catchments (few km2) are characterized

by short response times limiting the anticipation time for effective response [Creutin et al.,

2009]. Flash flood events have a greater chance to trap people in their vehicles or during

activities outside, especially during times of the day when commuters are on the road, i.e.,

rush hour [Ruin et al., 2008]. Outdoor locations such as the road networks are where most

of the fatalities occur with flash flood events [Sharif et al., 2012; Diakakis and Deligiannakis,

2013]. On the other hand, river floods occurring at large hydrological scales (hundreds to

thousand km2) are more typically responsible for building damages, evacuations, and inside

drowning of physically vulnerable populations [Ruin et al., 2008].

3 Understanding social vulnerability to flash floods

3.1 Considering direct human impacts as symptoms of social vulnerability

Social studies of vulnerability have traditionally focused on the loss of life or physical and mental

health problems [Enarson, 2007]. Data are available concerning lethal consequences of flash flood

events (e.g., Storm Data reports from U.S. NWS’s National Climatic Data Center (NCDC), but these

measurable phenomena constitute a small subset of social impacts, many of which are difficult to

classify, operationalize and measure. Usually, demographic characteristics (e.g., age and gender) of

the flash flood victims are analyzed to explore the possible factors that made them susceptible to

flooding [French et al., 1983; Coates, 1999; Ashley and Ashley, 2008; Cutter et al., 2009; Sharif et al.,

2012; Doocy et al., 2013]. Flood casualties vary by region and with the flood intensity. However, the

following findings about vulnerability have emerged from the analysis of flood consequences on lives

and property during a flood event.
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Chapter II. Dynamic vulnerability factors for impact-based flash flood prediction

• Lethal consequences are mostly related to flash floods than to river floods [Jonkman, 2005;

Ashley and Ashley, 2008]. Jonkman [2005] analyses 632 flood events reported in the OFDA-

CRED International Emergency Events Database (EM-DAT) maintained by the Center for

Research on the Epidemiology of Disasters in Brussels (CRED) in cooperation with the U.S.

Office for Foreign Disaster Assistance (OFDA). For the period 1975-2001, Jonkman [2005]

shows that unlike river floods, flash flood events are characterized by a high mortality rate per

event (5.6% versus 0.47% for river flooding), meaning that even if more people are affected by

river flooding, much less perish in those circumstances.

• Most of the flood fatalities in the U.S. [Staes et al., 1994; Ashley and Ashley, 2008; Maples and

Tiefenbacher, 2009; Sharif et al., 2012], Australia [Coates, 1999; FitzGerald et al., 2010] and

Europe [Jonkman and Kelman, 2005; Diakakis and Deligiannakis, 2013] are vehicle-related

with drowning being the main cause of death [French et al., 1983; Ryan and Hanes, 2009].

Since the velocity of the water is usually very high, flash flooding is much more dangerous for

motorists [Ruin et al., 2008]. According to FEMA [2015] only 0.15 m of swift-moving water

is needed to move a car and 0.61 m of moving water can carry larger vehicles.

• Most of the flash flood impacts take place during the “event” phase and most fatalities hap-

pen together with the peak of the hydrological event and sometimes even before the official

warnings are issued [Duclos et al., 1991; Staes et al., 1994; Jonkman and Kelman, 2005; Ruin

et al., 2008; Sharif et al., 2012]. [Špitalar et al., 2014] found that there was a peak in flash

flood fatalities shortly after dusk that was attributed to the motorists’ lack of visibility of the

floodwaters.

• As revealed in analyzing flood victims’ profiles with respect to catchment size and response

time [Ruin et al., 2008], the scales of flash flood impacts interfere with the daily routines

of people, potentially transforming daily activities and individual space-time paths into dan-

gerous circumstances. For instance, fast-reacting catchments have shown to preferably affect

middle-aged male drivers who are generally not considered as part of the vulnerable popula-

tion. Understanding whose routines are the most at risk and why is key in forecasting human

impacts from flash flood events.

3.2 Social processes and the embedded vulnerability factors

Based on prior studies of flood fatalities and social vulnerability to flooding and natural hazards in

general, this section provides an outline of the main factors that possibly make a person (or household)

vulnerable to flash flood events (Table II.1). The term “factor” is used here to qualitatively describe

the underlying reasons leading to losses during a flash flood event. Some of the cited studies do not

apply specifically to flash flood events. The primary factors identified through a literature review

are separated in four major categories based on the nature of the social process to which they are

related: 1) Land Use, 2) Risk Governance, 3) Individuals’ Status, and 4) Cognition processes.

Here, “Land Use” processes refer to the management of the natural environment to become built

or semi-natural habitats where specific human activities may be located. The characteristics of this

man-made environment may also affect the safety of people and their emergency response in flash

flood circumstances. “Risk Governance” is related to institutional policies for flood risk preparedness
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3. Understanding social vulnerability to flash floods

and response. The third and fourth categories refer to social and mental processes at the individual

or household level. “Individuals’ Status” describes their position in relation to others in regard to

social or professional standing. The socio-demographic profile of people (e.g., age, gender, profession,

housing ownership, family ties, health) is a primary factor that shapes the everyday life priorities

and constrains and defines individuals’ predisposition to crisis situations. Lastly, “Cognition”, as a

mental process of understanding through experience, thoughts and sensation, forms the conscious

and unconscious mechanisms of individuals.

Table II.1 – Social vulnerability factors.

Social sub-process Vulnerability factor

Land use

Urban development The densely built environment (e.g., dense road network) that im-

pedes evacuation and rescue processes within a flood event for

example due to traffic jams [Tapsell et al., 2005; Calianno et al.,

2013].

The quality of the structures (e.g., poor road or building construc-

tions) that is related to hazardous rescues or loss of life [Tapsell

et al., 2005; Jonkman, 2003].

The buildings’ design (e.g., number of floors or existence of roof

openings) that is related to the people’s ability to escape from

floodwaters [Priest et al., 2008].

Building usage The use of buildings that determines the evacuation feasibility.

For example, nursing homes, schools or hospitals constitute “spe-

cial needs” places from where population evacuation or removal is

problematic [Cutter et al., 2000; Vinet et al., 2012].

Risk governance

Flood risk prevention The existence of official flood prevention plans and measures (e.g.,

flood zoning) that affects risk awareness and preparedness for evac-

uation [Duclos et al., 1991].

Official emergency management The efficiency of the official emergency response and support that

defines the timely evacuation and rescue that are the dominant

response actions during a flood event [Lindell and Perry, 1991].

FF forecasting and warning The existence of official and timely warnings that determines the

population’s ability to undertake proper protection actions [Staes

et al., 1994].

The dissemination capability that plays a significant role on in-

forming people and also making them aware of the danger [Sharif

et al., 2012].
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Table II.1 Continued

Social sub-process Vulnerability factor

The quality of the warning that affects people’s trust of the warn-

ings and subsequent protection actions during the flash flood

[Vinet et al., 2012].

Individual’s status

Socioeconomical depedencies The dependency on others to perform self-protective actions such

as evacuation [Clark et al., 1998; Cutter et al., 2003; Chakraborty

et al., 2005; Azar and Rain, 2007].

The need for care-giving (i.e., supply of assistance to others) that

reduces the ability of timely self-protection and/or evacuation

[Fothergill, 1998; Cutter et al., 2000; Cutter et al., 2003; Wisner

et al., 2004].

The linguistic skills that affect the ability to receive and under-

stand warnings and emergency advice [Fekete, 2010; Wilhelmi and

Morss, 2013].

The financial ability to have access to resources permitting pre-

paredness measures and evacuation or rescue means [Enarson,

2007; Fekete, 2010; Wilhelmi and Morss, 2013].

Daily routine The daily mobility related to professional activity that creates dif-

ferences in population density across space and time (i.e., differ-

ent distribution of exposure due to movements from residential

to commercial, industrial or service-related areas and vice versa)

[Belmonte et al., 2011].

The flexibility to reschedule the daily life work activities [Golden,

2001] that affects the decision of people to postpone their self-

protection and/or drive under bad weather conditions [Ruin,

2010].

Social capital The social ties that increase the chance of receiving warnings,

safety advice and external help from relatives, friends or acquain-

tances during the emergency phase of the flood event [Duclos et

al., 1991; Wilhelmi and Morss, 2013].

Physical conditions The physical strength and health that define the ability to stand or

move through flood waters in order to escape from the flooded area

and prevent injuries or drowning [Blaikie et al., 1994; Tobin, 1997;

Clark et al., 1998; King, MacGregor, et al., 2000; Jonkman et al.,

2002; Tapsell et al., 2002; Wu et al., 2002; Haki, 2003; Chakraborty

et al., 2005; Azar and Rain, 2007; Cutter et al., 2003; McGuire et

al., 2007; Müller et al., 2011; Vinet et al., 2012].
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Table II.1 Continued

Social sub-process Vulnerability factor

Cognition

Risk perception The risk awareness built over the long term from education, com-

munication and experience influences people’s decision-making re-

lated to flood risk (from preparedness to post-event response)

[Burton et al., 1978; Fischhoff et al., 1978; Blaikie et al., 1994;

Slovic, 2000; Ruin, 2007; Ashley and Ashley, 2008; Carroll et al.,

2009; Fekete, 2010].

Cognitive mapping The familiarity with the environment related to risky behavior

such as driving into flash flood waters that exacerbates drown-

ing potentiality, especially after dusk [Montz and Gruntfest, 2002;

Ruin and Lutoff, 2004; Ruin et al., 2007; Ashley and Ashley, 2008;

Maples and Tiefenbacher, 2009; Ryan and Hanes, 2009; Vinet et

al., 2012; Špitalar et al., 2014].

The emotional attachment to locale and belongings such as a house

or personal items that affect the willingness to evacuate [Peacock

et al., 1997a; King, MacGregor, et al., 2000; Jonkman and Kelman,

2005; Carroll et al., 2009].

4 Conceptual model for the assessment of vulnerability to flash

flood

4.1 Towards a definition of dynamic vulnerability to flash flooding

Despite the variety of definitions depending on the specific scientific field [Birkmann, 2006b],

vulnerability generally encompasses the nature and level of exposure of a system to an undesirable

and/or unexpected change (i.e., a natural hazard). Sensitivity defines the level of effects on the

exposed system, and resilience explains the capacity of the system to adapt and/or cope with the

changes [Turner et al., 2003; Adger, 2006]. By adding a dynamic dimension to vulnerability, we

intend to account for the evolution and interactions in space and time between the natural hazard and

social characteristics and processes presented in section 2.1 and section 2.2, respectively. Dynamic

vulnerability encompasses the complex links between social and natural processes as well as their

interactions that make people and property susceptible to harm when they are exposed to a specific

flash flood event. Three components of dynamic vulnerability are proposed in Table II.2.

Although discussed in the literature [Adger, 2006; Turner et al., 2003], the dynamic character

of vulnerability is still not represented in applications to flooding [Wu et al., 2002; Fekete, 2009;

Müller et al., 2011; Wilhelmi and Morss, 2013]. This means that vulnerability is considered as a
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Table II.2 – Definitions of the three dynamic vulnerability components.

Vulnerability component Definition for dynamic vulnerability

Exposure (E)

The space and time intersection between a socioecological
system (e.g., people and their natural or built environment)
and the occurrence of a threat of a specific nature and mag-
nitude (e.g., flood characteristics). Unlike previous studies
that view exposure as an external feature that does not con-
stitute a component of vulnerability [Davidson and Shah,
1997], we consider exposure to be part of the vulnerability
definition.

Sensitivity (S)

The preexisting and ever-evolving conditions of the exposed
elements (e.g., people, buildings, roads) that influence the
degree to which they might be impacted. It is defined sim-
ilarly to the concept of susceptibility as an intrinsic part of
vulnerability [UN/ISDR, 2009]. “Condition” refers to struc-
tural attributes of the built environment (e.g., building con-
struction material) as well as to human characteristics (e.g.,
disabilities due to old age or poor health) that explain the
quality and reliability of the exposed system.

Coping capacity (CC)

The short-term ability to deal with the strength of the per-
turbation [Smit and Wandel, 2006]. This differs from adap-
tive capacity that represents the longer-term ability of a sys-
tem to respond to and recover from an event [Adger, 2006].
It is mostly used to characterize the capabilities of individ-
uals and societies to deal with adverse conditions to avoid
or lessen loss. Mitigation measures conducted at all levels
(from individuals to institutions) are thus crucial parameters
that drive the CC of population. Usually, CC refers to mate-
rial resources and social capital [Hanifan, 1916] that enable
people to avoid being harmed. In our study, we introduce
the mental and cognitive processes of individuals and their
interaction with social capital. For example, the individual’s
perception of risk is a mental process that could change the
decision to evacuate independently of the availability of a
car.

key but static element of the system where exposure, sensitivity, and coping capacity are neither

interacting with each other, nor evolving during an event or even from one specific event to the

next one. However, the three components of vulnerability vary throughout the day, from one day

to the other and according to the space and location under concern. The variability of exposure

depends on the different occupancy of the same space as a function of time of the day (“quantity” of

elements at risk). For example, more people are at work during the working hours, on the road during

the rush hours, at home during the rest hours, and often at recreational places during the holidays

and weekends [Belmonte et al., 2011]. The variability of sensitivity and coping capacity depends

on the different contributions of the individual’s characteristics, short- to long-term priorities (e.g.,

individual socio-economic status and/or daily constraints), and the way they deal with the natural

and social crisis circumstances. For example, there are some classes of workers who are employed by
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time-sensitive businesses and may not be freely capable to adapt their scheduled activities in case of

bad weather conditions. As they may be less adaptable to change their normal work-related journey

in fear of losing their job, they could be considered a sensitive population when flooding conditions

happen around commuting hours [Ruin, 2010].

The interaction between the flash flooding circumstances and the variable direct or indirect con-

tributions of the embedded social vulnerability factors (see section 3.2) is the core of the developed

conceptual vulnerability model presented in this study (see Figure II.2). This model integrates the

primary factors that need to be considered in the vulnerability analysis to predict the level of human

impacts for a specific flash flood event.
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4.2 Model concepts and the embedded functions

What is really happening in the short duration of flash flooding? To understand the potential

impacts of flash flood, we focus on the coupled physical and social circumstances that interplay during

the event (i.e., fast evolving processes) and their relationship with the slow evolving processes. “Slow”

processes are characterized by rates of change ranging from months to years. They influence the pre-

existing conditions of the flooding event (i.e., governmental, socio-economic, physical and cognitive

processes, in section 3.2). “Fast evolving processes” take place on the order of minutes to days

and therefore can interact with the dynamics of the flash flood. Compared to previous vulnerability

models [Turner et al., 2003], the main outcome of this new model is to take into account the individual

behavioral processes in the vulnerability assessment model. The behavior of people during the flash

flooding is determined by the coincidence of the flash flood event (i.e., “Crisis circumstances” in

Figure II.2) with the daily schedule of individuals (i.e., “Coupled place-activity” in Figure II.2).

“Crisis circumstances” refer to the flood (e.g., water depth, spatial extent of inundation, speed of

the flow) and the timing of the flood onset and also to the official warning and emergency system’s

response. “Crisis Circumstances” also define the property response that poses an extra threat to

people’s safety (e.g., the collapse of an old building when the fast moving water impinges on it).

The “Coupled place-activity” concept refers to processes representing the daily mobility and se-

quence of activities of people including where they are (e.g., inside a building, driving on the road)

and what they are doing (e.g., working, resting) at the different times of the day and across the

days of the week. This concept evolves out of time geography that describes the sequential path

(also called life path) of personal human events (with time and place as dimensions) that marks the

history of a person [Gamow, 1970] within a situational context [Hägerstrand, 1970]. Hägerstrand

[1970] stated that “life paths become captured within a net of constraints, some of which are imposed

by physiological and physical necessities and some imposed by private and common decisions”.

In the framework of natural hazards, perception of environmental cues and warning messages

strongly depend on contingent conditions (e.g., rush hours when there are errands to run and children

to pick up and lots of other cars on the road, or working hours when people feel they must be at

work regardless of the conditions) [Ruin, 2007; Ruin, 2010]. Likewise, the nature and dynamics of the

individuals’ reactions will differ according to the location and activity they were performing when

they felt the need for action, and their capability to connect with their relatives or to have social

interactions allowing a group response [Gruntfest and Drainage, 1977; Mileti, 1995; Drobek, 2000;

Lindell and Perry, 2003; Ruin et al., 2014]. Those contextual factors result from long-term Land use

factors (i.e., the decisions taken at the national or community level concerning land use planning

and management), “Risk Governance” factors (i.e., the risk prevention policy), and “Individuals’

Status” characteristics related to the individual’s position in life, attitudes, values and worldviews

(Table II.1). Over the long-term, societies shape their surroundings by making strategic choices that

drive individual’s decisions in terms of residential mobility related to the job market, for instance.

Those slow-evolving processes condition the daily routine of individuals and the way they deal with

the range of perturbations that may affect their daily project or tasks when they are faced with

unusual hydro-meteorological circumstances.
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the personal concerns that may hinder the perception of danger for oneself when all the attention is

dedicated to family safety or securing their belongings.

These interactions are very important because they define the decisions and actual actions taken

by the people during the flood event. Decision-making is the transition from the sense that people

make of their situation to a course of action among several alternative possibilities. However, the

final reaction (i.e., response) of people during a hypothetical flash flood event is not only determined

by the decision that they have made according to all the pre-mentioned functions but also by the

physical ability that they have to implement their decisions (e.g., the physical ability to move upstairs

while being in a multi-storey building).

5 Summary and Conclusions

This chapter argues that human impacts related to flash flood events present high variability and

diversity from place to place not only due to differences in hydro-meteorological circumstances but

also due to the space-time variability of people’s exposure and capacity to react. Rapidness of flash

flooding (short time between the rainfall and surface hydrological response) lessens the available time

for effective warning and protective actions revealing special forms of a population’s vulnerability.

The occurrence of this type of flood in small catchments (a few km2) with short duration (minutes

to hours) interacts with the spatial distribution and temporality of social vulnerability patterns.

In this study, prior flood-related human impact and vulnerability studies were reviewed to explore

the factors that influence how individuals or households experience flash flooding. It is highlighted

that since people and their activities are rarely static but move across space at different time intervals,

the dominant vulnerability factors also change correspondingly. Human impacts depend on the

intersection of the timing and the location of the flash flood event with the social profile and activity

of the exposed people. For instance, flash flood occurrence during darkness inhibits rescue operations

and safe driving due to limited visibility. Commonly, nighttime hours are associated with rest hours

when people are at home, but in winter when days are short, dusk comes early and may interact

with rush hours to exacerbate the surprising character of flash flood events. This, in turn, lessens the

capacity of people to make sense of the situation and respond effectively. A conceptual vulnerability

model is developed in this thesis to capture such complex interactions of the contextual vulnerability

factors and promote the dynamic mapping of human vulnerability to flash flood.

We recognize that space and time-varying vulnerability computational modeling is a challenge.

The data availability and the scale of application pose a critical dilemma on the methods to be

chosen. Hereafter, we adopt a multi-variate modeling approach that enables the quantification of

interactions and effects of multiple vulnerability variables based on a statistical analysis of impact

observations [e.g., Merz et al., 2013]. Based on statistical analysis and the U.S Storm Data datasets,

we will test the influence of the event timing, the severity of the observed/forecasted rainfall-runoff

and of selected exposure, sensitivity and coping capacity variables at the county scale and daily and

sub-daily time-steps. Vulnerability variables will be selected based on their representation of the

factors listed in Table II.1, on the number of fatalities classified by accidents’ circumstances, and

victims’ profile. This method, based on publicly available national datasets, can support a nation-
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wide operational prediction tool for forecasters and emergency managers to target their warnings

on anticipated impacts using the model combined with the forecasted timing of magnitude of the

natural hazard (flash flood in this case).
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ChapterIII

Data collection and processing

1 Introduction

Based on the conceptual framework discussed in Chapter II, two main types of data are identified

as crucial for the understanding and assessment of human risk to flash flood. The first type refers

to human impacts from past flash flood events. Historic human losses can help understanding the

circumstances in which people became vulnerable to flash flood hazards. Impact observations can

be also the base for the development of data mining approaches for assessing human losses due to

flash flooding and predict their occurrence in future events. In the U.S., observed impacts from

flash flooding are officially recorded by the National Oceanic and Atmospheric Administration’s

(NOAA’s) National Centers for Environmental Information (NCEI) Storm Events Database known

as Storm Data. Although not faultless [Gall et al., 2009], Storm Data is the most extensive nationwide

database in the U.S., recording four types of impacts (i.e., fatalities, injuries, and property and crop

damages) for forty eight weather related events (e.g., Hail, Heat, Hurricane, Flood, Flash Flood,

Tornado, Tsunami, Wildfire etc.) 1. From 2008 to 2010 summer months, the Severe Hazards Analysis

and Verification Experiment (SHAVE) conducted at the NSSL collected flash flooding reports using

public survey responses to a questionnaire in the entire U.S. [Gourley et al., 2010]. The collected

information is point based referring to the residential address of the responders to the telephone

surveys. Although the severity of flash flooding is described by a detailed impact classification

proposed by Calianno et al. [2013], the data only focus on material damages and economic losses.

Given the short time of data collection it was not possible to use it for the current study.

The second data type answers to the need for a set of variables that depict the critical hazard

characteristics and the sensitive characteristics of the exposed population and built environment.

Such information is not included in the existing nationwide impact datasets in the U.S. yet, and

1. Documentation of the Storm Data is available online at http://www.ncdc.noaa.gov/stormevents/

details.jsp?type=eventtype.
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need to be supplemented from other sources. Today there is no comprehensive catalog of proxy data

derived from the quantitative analysis of human impact observations that can be used to understand

and predict the vulnerability of people when facing flash flood events. The majority of flash flood

applications adopts generic vulnerability indicators that do not adequately describe the vulnerability

of people during the crisis phase; instead they describe the social groups that are the most fragile

from an economic point of view (or as a result of other types of marginalization processes) [Wilhelmi

and Morss, 2013; Karagiorgos et al., 2016]. These indicators are not sufficiently specific to deal with

social and physical dynamics that interact/emerge during short-fuse and localized events like flash

floods. To fill this gap, we investigate nationwide available datasets in the U.S. to quantify the

main vulnerability factors related to the individuals’ status, land use, risk governance and cognition

processes influencing the exposure, sensitivity and coping capacity of people during flash floods, as

presented in Chapter II. The indicators quantifying vulnerability and the prominent human risk

related to loss of life from flash flooding are considered according to the following criteria:

• The temporal phase of the event: Some indicators can be indicative of vulnerability

in the preparation or the recovery but not in the emergency phase of the hazard [Kuhlicke

et al., 2011; Rufat et al., 2015]. As an example, gender is used as a proxy with different

meanings depending on the stage of a disaster. Being female is often considered as a factor of

vulnerability because they generally have lower incomes which may involve more difficulties

in the recovery phase [Morrow, 1999; Cutter et al., 2003]. But during the “event” phase of

flash flooding, men have been observed to adopt riskier behaviors than women by entering

floodwaters, which make them more vulnerable during that phase [Ashley and Ashley, 2008;

Becker et al., 2015; Diakakis and Deligiannakis, 2013; Jonkman and Kelman, 2005; Sharif

et al., 2012].(MISSING: Ryan and Hanes 1995)

• The circumstance of the life-threatening incident: There are proxies that are specific to

loss of life circumstances. For example, characteristics of buildings such as their integrity and

distance to a nearby stream relates to the indoor loss of life circumstances. Other attributes

such as the road network density or travel time to work are associated with daily mobility and

environmental familiarity factors contributing to vehicle-related incidents [Ruin et al., 2007].

• The interaction between the social and flood dynamics: The rapidity and intensity

of the runoff plays an important role in shaping specific life-threatening circumstances. The

responses of small and flashy catchments (few square kilometers) have sufficient power to

trigger loss of life among people who are not protected by permanent structures. These

include mobile people (e.g., drivers, pedestrians, recreationists), campers, and residents in

mobile homes. It seems logical that data depicting the flow of commuters at the time of peak

runoff would be very indicative of the potentiality of vehicle-related accidents. Conversely,

the location of the nighttime population is more relevant to evaluate vulnerability in cases of

drowning from extended flooding in houses, when residents may get surprised in their sleep.

In the following sections, we present the available data sources and the process that has been

followed to create a complete database i) to analyze and understand vulnerability situations associated

with historic flash flood fatality events, and ii) to support a statistical approach for predicting human

impacts emerging from the interaction of social and physical dynamics. These two goals correspond

to the second and third research objectives, respectively, as presented in Table I.2.
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2 Impact data

Deadly and non-deadly flash flood reports in the U.S. are obtained from the NOAA/NCEI Storm

Data online 1. The Storm Data publish two complementary files each year:

i. An event details file with information about the weather event and the respective event narra-

tives.

ii. A fatality file with details about each death resulting from the events.

Storm Data events are recorded based on a specified point, however for many flash floods early in

the study period the point was missing from the data set and the flash flood event was considered

to be “countywide”. Although after October 2006 an effort has been made to report the locations

of impacted regions using bounding polygons independent of the county polygons, the accuracy of

the storm based polygons in unknown. Especially, at the time of the analysis, the NWS issued

some warnings about the validity of the longitude and latitude coordinates stored in the database.

Therefore, to avoid spatial vagueness and inconsistencies between the Storm Data files, and maximize

the amount of available records, the county reference is the finest spatial resolution used in this study.

The following subsections present the preparation of the Storm Data files for flash-flood specific

analysis in the continue to this thesis. Further examination of the situations where people lost

their lives, is proposed to better understand the link between certain social, geographic and hydro-

meteorological parameters at stake in the occurrence of flash flood human losses in the U.S. (see

Chapter IV). Moreover, the impact data are processed to be used as input to integrate extra datasets

and build an impact-based modeling approach in Chapter V. Figure III.1 illustrates the general

processing of the gathered data files, and the links between the impact data and the various extra

datasets.

1. Digital data available at http://www.ncdc.noaa.gov/stormevents/ftp.jsp.
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2.1 The Storm Data for flash flood casualties in the United States

Information on flash flooding fatalities and the related events are extracted from the 1996-2014

Storm Data 1. In total 1,048,683 event reports for all the weather hazard types are listed from 1996 to

2014. About 6% of those refer to flash flooding in the 19-year period. The 19-year data are selected

from the 1950-2014 Storm Data due to accessibility in digital format provided only after 1996.

According to the NWS [2016] a recorded flash flood must have posed a potential threat to life or

property and had a report of moving water with a depth greater than 0.15 m or more than 0.91 m of

standing water. From 1996 to 2014, 63,176 flash flood events have been reported across the entire U.S

including the non-contiguous states of Alaska, Hawaii and the territory of Puerto Rico. Forecasters

at local National Weather Service (NWS) offices collect flash flood reports primarily from official

sources including law enforcement and first-response authorities (e.g., Fire Department, Dept. of

Highways, County official, Park/Forest Service, 911 Call Center), emergency managers, and trained

spotters. Additionally, flash flood reports are gathered through other sources outside the NWS such

as mass media (e.g., newspaper, broadcast or social media, amateur radio), insurance companies and

members of the general public. The NWS makes an effort to use the best information available.

Though, underreporting can occur especially for low-impact events (i.e., with small spatial extension

or very few losses) usually not well documented by the media or public [Curran et al., 2000]. This

source of inaccuracy in the Storm Data is discussed in previous studies [Ashley and Ashley, 2008],

and assumed to be the main uncertainty source taking into account that almost 97% of the flash

flood events between 1996 and 2014 are events in which less than five people died. From the 63,176

reported flash flooding events, 1.6% includes at least one human impact (i.e., direct or indirect injury

or fatality). The database includes 705 flash flooding events with fatalities and 417 with injuries,

yielding a total of 1,075 fatalities and 6,028 injuries.

1. While the database continues to grow, this study uses the content of March 2015, at which time the Storm Data

contained flash flood reports from 1996 to 2014.
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were inundated by flood waters. Numerous cars were flooded or washed away. Most of the homes

flooded were along Mitchell Creek and Rubidoux River near downtown Waynesville. Over 100 people

were rescued from swift and high water. There were two flash flood fatalities which occurred near

downtown Waynesville”.

The focus of this thesis is constrained to fatalities due to the availability of details concerning

victims (e.g., age, gender, . . . ), and especially the circumstance of the fatalities. Although sometimes

included as comments in the event narratives of Storm Data, details about other nonfatal impacts

from flash floods, such as injuries or rescues, are not provided in a coherent database on the U.S. scale,

yet. The final fatality dataset consists of 1,075 individual fatalities with the following attributes:

i. The circumstance that the fatality occurred (reclassified as presented in the next subsection)

that explains where the victim was (e.g., inside a building, driving on the road) and what the

victim was doing (e.g., working, trying to reach home) at the time of the fatal incident

ii. The age and gender of the victim (if provided)

iii. The year and month of the fatality

iv. The state and county that the fatality occurred within

v. The local beginning and end time of the flash flooding event responsible for the fatality that

provides the onset of the flash flooding occurrence and the duration of the event

2.2 Individual fatalities reclassification

To prepare the fatality data for further analysis, we examine the individual-by-individual fatality

records for both direct (98%) and indirect (2%) losses from 1996 to 2014, and based on additional

details noted in the corresponding flash flooding event narrative (when available in the event de-

tails files), we generalize the 13 categories of the location/activity of the perished people into six

circumstances that adequately explain the framework of the majority of deaths (Table III.1).

The “in water” category was mainly distinguished from the “outside” category in the Storm Data

publication depending on whether the victim had purposely entered flash flood waters or had fallen or

swept into them accidentally [Ashley and Ashley, 2008]. In terms of vulnerability, however, these two

categories are identical since they are both dominated by situations in which people underestimated

the dangerousness of the flash floods in areas close to streams or rivers and walked through the

floodwaters to reach some destination like home. In the “in water” category there were also many

cases of children or teenagers who walked or played in the floodwaters close to streams. All these

cases were therefore assigned to the “outside/open or close to streams areas” class (Table III.2).

When people entered the flood to escape, for example, from a trapped vehicle or a flooded home

the deaths were reclassified as “vehicle-related” and “permanent building-related”, respectively, to

better explain the original, causative circumstances. Vehicle-related circumstances in Storm Data

represent weather-induced fatal incidents rather than traffic accidents. The “permanent home”, “per-

manent structure” and “business” categories were merged into the “permanent building-related” cir-

cumstance. Finally, cases for which there was no clear information for the location or the context of

the fatality (although other important details of the victim’s profile was available) were registered as
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Table III.1 – Categories of flash flooding fatalities’ circumstances before and after reclassification.

Category Code

Location defined in the Storm Data before reclassification

Vehicle/Towed Trailer VE

In water IW

Outside/open areas OU

Permanent home PH

Mobile/Trailer home MH

Camping CA

Boating BO

Permanent structure PS

Business BU

Ball field BF

Under tree UT

Other OT

Unknown NA

Circumstance defined in the compiled database after reclassification

Vehicle-related VE

Outside/Open or close to streams areas-related OU

Camping/Recreational areas-related CA

Permanent Building-related PB

Mobile Home-related MH

Other/Unknown OT

“other/unknown” to be further considered in the analysis of the available fatality and event-related

variables.

The number of classified fatalities in each circumstance is presented in Table III.3. The compiled

database with six circumstances of flash flood fatalities from 1996 to 2014 is now part of the unified

flash flood database described in Gourley et al. [2013] and is publicly available through FLASH 1.

The reclassified fatality dataset will be used for a comprehensive statistical and spatial description

of the circumstances leading to flash flood fatalities presented in Chapter IV.

1. The fatality data are available online at http://blog.nssl.noaa.gov/flash/database/.
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Table III.2 – Examples of reclassified cases in the Storm Data (1996-2014).

Previous location Circumstance Narrative

In water (IW) Vehicle-related (VE) “A woman drowned after attempting to
cross a flooded low-water crossing in her
truck. The truck was found on January 15,
but the woman’s body was not located until
the 18th. She was found off CR 147 near
the Marak community. Water was also re-
ported over roads near Davilla”.

In water (IW) Outside/close to
streams areas (OU)

“One to three inches of rain fell over Shan-
non County. All low areas that typically
flood during periods of excessive rainfall
were flooded. A 14 year old male attempted
to cross a flooded creek in extreme north-
east Shannon County near the community
of Bunker. He lost grip of a cable he was
using to keep stable in the swift flowing wa-
ter. He was swept downstream where he
drowned”.

In water (IW) Permanent building (PB) “. . .Around 400 people were evacuated in
Logan County, about 100 in Boone County,
and about 40 residents in Wayne County.
A 57 year old woman from Whitman of Lo-
gan County diedwhen she tried to evacu-
ate her home around 0015 EST on the16th.
She tried to wade through the flood waters
from Whitman Creek, but drowned”.

Unknown (NA) Vehicle-related (VE) “A 36 year old mother and her 16 year old
daughter drowned in an SUV at the under-
pass of Interstate 45 and Tellepsen Road.
The victims were discovered several hours
later as flood waters began to slowly recede
when law enforcement noticed the top of
their vehicle. The SUV was pulled out of
the water and the two victims were discov-
ered in the back of the vehicle”.

Unknown (NA) Outside/close to
streams areas (OU)

“. . .Around 5:45 p.m., a young girl fell into
a drainage ditch and was swept into a cul-
vert at a botanical garden in Mansfield.
The mother of the young girl jumped into
the culvert to rescue her and was also swept
away. The young girl was swept through
the culvert and was rescued. Unfortu-
nately, the mother did not survive. . . ”.
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Table III.3 – Number of reclassified cases of flash flooding fatalities’ circumstance and percentages to the total
1,075 reported fatalities.

Circumstance after reclassification:

VE OU CA PB MH OT

Previous location: TOTAL TOTAL (%)

VE 496 3 0 0 3 0 502 46.7

IW 99 116 26 14 1 22 278 25.9

OU 12 66 11 2 2 0 93 8.7

PH 0 2 0 37 0 0 39 3.6

MH 0 0 0 0 21 2 23 2.1

CA 0 0 30 0 0 0 30 2.8

BO 0 4 4 0 0 0 8 0.7

PS 0 0 0 5 0 0 5 0.5

BU 0 0 0 1 0 0 1 0.1

BF 1 0 0 0 0 0 1 0.1

UT 1 0 0 0 0 0 1 0.1

OT 3 19 1 0 0 5 28 2.6

NA 42 10 0 2 2 10 66 6.1

TOTAL 654 220 72 61 29 39 1,075 100

TOTAL (%) 60.8 20.5 6.7 5.7 2.7 3.6 100 –

2.3 Flash flood event database for binary classification

Part of the reclassified fatality dataset presented in section 2.2 is used to create an event-based

dataset with flash flood reports with or without human losses from 2001 to 2011(box B in Figure III.1).

A total of 551 fatalities resulting from 385 flash flood events from 2001 to 2011 in the conterminous

U.S. are discriminated by circumstance and aggregated by causative flash flood event to create a

statistical sample for each of the circumstances. Although almost half in size from the whole dataset,

the new sample presents a similar distribution of the fatality circumstances dominated by vehicle-

related incidents (Figure III.4).

In a second step, the dataset including 385 fatal flash flood events from 2001 to 2011 is supple-

mented with non fatal flash flood events reported in the Storm Data during those ten years. In total

38,106 flash flood reports with or without human losses are listed in this dataset. This allows us to

classify each flash flood as event with fatality or as event without fatality when examining the number

of fatalities in each flash flood event for each circumstance separately. As shown in Figure III.4B,

the sample size for fatal flash flood events in each circumstance ranges from 259 events that included

vehicle-related victims to 12 events associated with deaths in mobile homes (see values presented on

the top of the light grey bars in Figure III.4B).
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Figure III.5 – County-by-county number of flash flood events reported in the Storm Data from 2001 to 2011.
Counties with fatal flash flood events that according to the Storm Data led to one or more
fatalities are highlighted with red line. Map colors based on http://www.ColorBrewer.org, by
Cynthia A. Brewer, Penn State.

3 Supplementing flash flood reports with extra datasets for flash

flood human losses prediction

The extra datasets to be supplemented to the final binary-classified event dataset described in

section 2.3 can be split in two categories based on the characteristic(s) used as reference to bring

all the data in common spatial and temporal (when applicable) resolution: i) the temporally and

spatially arranged data that are redefined based on both the date and the county reported for each

flash flood event (2001-2011) (box C in Figure III.1), and ii) the spatially arranged data that are

adjusted to the county affected by each flash flood event (2001-2011) (box D in Figure III.1). The first

category includes hydrometeorological variables (e.g., unit peak discharge, accumulated rainfall) from

FLASH used to describe the hydrological and meteorological conditions associated with a certain flash

flood occurrence in the study period. In this category, the new data are paired with the flash flood

events reported from 2001 to 2011 using the corresponding event identifier (“Event ID”) as defined in

the Storm Data (Figure III.1). The FLASH data include also estimations of the flashiness index, an

indicator of flash flood severity, that is provided at every grid point over the conterminous U.S. with

a spatial resolution of 1 km. This variable falls in the second category: the spatially arranged data.

In the second category, the new variables are processed and referred to the county level to be

supplemented with the compiled database based on the unique geographic identifier of the reported

county in each flash flood record (“GEOID”). The GEOID of each county in the flash flood event
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dataset is produced by combining the state and county Federal Information Processing Standards

(FIPS) codes 1 provided in the Storm Data. The information were screened for possible inconsistencies

and the county identifiers were manually corrected when needed to ensure that the codes correspond

to the same county across the files. Especially, the counties from the 2010 Topologically Integrated

Geographic Encoding and Reference (TIGER) shapefile 2 are used as auxiliary data to spatially join

all the data at the county-level 3.

A bunch of spatial data are accessible through the Homeland Security Infrastructure Program

(HSIP) of the U.S. Department of Homeland Security 4 with NOAA’s federal access. The 2013 HSIP

Freedom Database compiles geospatially enabled data from various sources to support planning,

situational awareness, threat and impact analysis, modeling emergencies, and decision making during

response and recovery operations in the U.S.. Data include information about the territory such

as grid-based estimations of people in day and night time, and especially the built environment

(e.g., location of schools, hospitals). Also, some of the available data may refer to factors related

to the geomorphology of the territory (e.g., flood hazard zones), and the emergency service (i.e.,

location of official emergency centers). Additional datasets used in this study are the national parks

and recreational areas provided by the Earth Data Analysis Center (EDAC) 5, and by the National

Wilderness Preservation System (NWPS) 6. Features of the natural environment such as the river

network are obtained from the National Hydrography Dataset (NHD) which is available online at

the NHDPlus application (Version 2.1) built by the U.S. Environmental Protection Agency (EPA)

assisted by the U.S. Geological Survey, and Horizon Systems Corporation 7. These data are combined

with the 2010 TIGER road data to extract intersections related to low water crossings and bridges

across the U.S. Finally, socio-economic and demographic characteristics of people and households are

extracted for each county from Census surveys/programs estimates aggregated at the county-level

by the U.S. Census Bureau.

The kind and sources of the data gathered to provide inputs for analysis in this thesis, as well

as the risk indicators that they represent, are summarized in Table B.1 (see Annex B). The final

supplemented database composes a set of 38,106 flash flood events (unique Event IDs) accompanied

with more than 400 proxy variables the majority of which are obtained from the added datasets,

and some of them are kept from the Storm Data. There are fifty-eight missing values in the dataset

mainly because of lack of commuting information for the people of some counties in the Census data.

All of them correspond to nonlethal flash flood events. In the following subsections the variables

1. Federal Information Processing Standards (FIPS) are publicly announced standards developed by the United
States federal government for use in computer systems by non-military government agencies and government contractors
(https://www.nist.gov/itl/popular-links/federal-information-processing-standards-fips).

2. Geospatial data maintained by the Census Bureau’s Master Address File/Topologically Integrated Geographic
Encoding and Reference (MAF/TIGER) database publicly available at https://www.census.gov/geo/mapsdata/data/

tiger.html.

3. The unique geographic identifiers (GEOIDs) created by the U.S. Census Bureau for 2010 are available at https:
//www.census.gov/geo/reference/codes/cou.html.

4. Documentation of the HSIP products is available at https://gii.dhs.gov/HIFLD/public/HSIP-Gold-Freedom-One-
Pager-2015.pdf

5. Data developed at the University of New Mexico and are available at https://catalog.data.gov/dataset/

national-park-boundariesf0a4c.
6. Data managed by the Bureau of Land Management, Fish and Wildlife Service. Available at http://

www.wilderness.net/NWPS/geography.
7. Data available for download at http://www.horizon-systems.com/NHDPlus/NHDPlusV2_data.php. For more

documentation on the NHDPlusV2 see ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Documentation/

NHDPlusV2_User_Guide.pdf.

54

https://www.nist.gov/itl/popular-links/federal-information-processing-standards-fips
https://www.census.gov/geo/mapsdata/data/tiger.html.
https://www.census.gov/geo/mapsdata/data/tiger.html.
https://www.census.gov/geo/reference/codes/cou.html
https://www.census.gov/geo/reference/codes/cou.html
https://catalog.data.gov/dataset/national-park-boundariesf0a4c
https://catalog.data.gov/dataset/national-park-boundariesf0a4c
http://www.wilderness.net/NWPS/geography
http://www.wilderness.net/NWPS/geography
http://www.horizon-systems.com/NHDPlus/NHDPlusV2_data.php
ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf
ftp://ftp.horizon-systems.com/NHDplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf


3. Supplementing flash flood reports with extra datasets for flash flood human losses prediction

obtained from the various sources are grouped by the nature of indicators that they bring into the

analysis (i.e., hazard-related, territorial, social), and presented accordingly.

3.1 Hazard-related data

Although the NCEI Storm Data provides a monthly publication with details on storm occurrences

that were reported to the NWS, it does not accommodate a consistent description of the hydrological

response from heavy rainfall. The reported storm events are listed in chronological order by state

with information about the local time of occurrence, the estimated casualties and damages, and the

character of the Storm (e.g., coastal flood, flash flood). The description of the events is supported

by photographs, illustrations and narratives. However, the narratives for the meteorological event

and the related flash flood occurrence do not always include information on the magnitude of the

hydrological hazard. Thus, information that could be of interest when examining vulnerability of

people to flash flood waters such as the flood water depth and velocity, is not easy to retrieve. To

overcome the lack of hazard information in the flash flood reports dataset, hazard-related variables

are obtained by data generated by the FLASH system [Gourley et al., 2017].

a) Magnitude and time of the flash flood event

The magnitude of each reported flash flood occurrence is described by distributed hydrological

model-based discharge forecasts. Especially, the unit peak discharge (i.e., discharge normalized by

the cell’s upstream drainage area in (m3 s−1 km−2) was computed by running the Coupled Routing

and Excess Storage (CREST) distributed hydrological model [Wang et al., 2011] with kinematic wave

routing (at 0.01x0.01 degree resolution over the conterminous U.S.). The hydrological model is forced

with the NSSL’s MRMS 5-minute precipitation rates and provides unit peak discharge simulations on

a daily scale from 2001 to 2011 (for more information on the hydrological modeling and its principles

see Flamig [2016]). The maximum (as well as the mean and median) unit discharge in the county

where the event occurred was extracted for each flash flood event reported in the Storm Data from

2001 to 2011. The timing (in local hour) of the simulated daily unit peak discharge assigned to each

reported flash flood occurrence was also registered in the database. CREST simulations are also

used to provide hydrological data for a series of flash flood events in May 2015 which are outside

the time window of the reported flash floods used for model building, and they can therefore provide

for a case study to visualize and evaluate the model predictions (Chapter V). Figure III.6 shows an

example of simulated daily unit discharge assigned to each county for May 26 2015. Higher values

are concentrated in southeastern Texas which experienced major flash flooding on that day.
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Data source: Flooded Locations And Simulated Hydrographs
(FLASH) Project (NSSL), CREST simulations for May 26, 2015

Projection:  Lambert Conformal Conic
Author: G. Terti

Map colors based on www.ColorBrewer.org,
by Cynthia Brewer, Mark Harrower and The Penn State University
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Figure III.6 – County-by-county distribution of the simulated daily unit peak discharge (m3 s≠1 km≠2) for
May 26 2015 in the conterminous U.S.. Map colors based on http://www.ColorBrewer.org, by
Cynthia A. Brewer, Penn State.

b) Duration of the flash flood event

The only hazard information that we are able to obtain directly from the Storm Data is the

duration of the flash flood event, estimated as the difference between the reported local beginning

and end time of the event. Although flash flood duration can be revealing for the dynamic of flash

flooding as it relates to social impacts, this variable is not applicable in a forecasting mode since it

can not be assessed prior to a flash flood occurrence.

c) Magnitude and duration of the rainfall event

The MRMS project started by the National Oceanic and Atmospheric Administration’s (NOAA’s)

NSSL improving largely radar based quantitative precipitation estimates by generating frequent

Quantitative Precipitation Estimation (QPE) updates without human intervention available every

five minutes [Zhang et al., 2016]. Compared to other rain rate algorithms, the main advantage of

MRMS is the ability to determine on a grid cell basis (0.01 degree) which rainfall rate - reflectiv-

ity (i.e., R-Z) relationship is the most applicable. Zhang et al. [2011] describes the decision tree

classification that the system operates to choose among snow, hail, warm rain, convective rain, or

stratiform rain based on 3D reflectivity data, surface temperature, surface wet bulb temperature, the

column vertically integrated liquid density, and if a warm rain process was identified in the vertical

profiles of reflectivity (VPR). To enhance the hazard description in our dataset, the accumulated

precipitation (mm) and the duration of precipitation (hours) are aggregated from the high resolution
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MRMS precipitation estimates (1-km every 5 minutes) at the county level based on the county and

the date in which a specific flash flood observation was reported.

d) Flash flood severity

Except for the hydrometeorolofical facts, the severity of the hydrological response depends also

on basin characteristics driven by topological and geomorphological parameters. Flash flood-prone

locations in the U.S. have been recently studied within the FLASH system to support regional and

community planning and mitigation. In this objective, a new variable called “flashiness” is defined by

Saharia et al. [2016] as the difference between the peak discharge and action stage discharge 1 divided

by flood rise time and basin area. Thus, high flashiness depicts basins that have high conditional

probability of having a large-magnitude discharge in a short period of time. Flashiness is estimated

based on streamflow observations for 70,596 flooding events provided by the U.S. Geological Survey

(USGS) for 1,649 gauged locations (basins), and is used after to identify severe flash flooding in un-

gauged basins based on spatially distributed variables describing basin topography, hydroclimatology,

geology, and geomorphology (see Table 1 in Saharia et al. [2016]). The flashiness variable is scaled

between 0 and 1 for a given basin (estimated as the median of all the event-level flashiness values

for a basin) and presented as point data over the conterminous U.S. Because our spatial resolution

is the county, the original flashiness point data are converted to a 1-km raster 2. The mean in each

U.S. county is then calculated by applying zonal statistics to the 1-km float flashiness raster based

on the county administrative boundaries. By doing so, we assume that the mean flashiness in the

county is an indication of fast rise times depicting counties where the anticipation time for protective

actions may be more limited than others in a future flash flood event. According to Figure III.7, the

estimations highlight flash flood hotspots such as the: i) West coast, ii) southeast Arizona, iii) Front

range along New Mexico and Colorado, iv) Flash Flood Alley in Texas, v) Missouri Valley region,

and vi) Appalachians extending into the more populated regions of the Northeast [Saharia et al.,

2016].

1. Action stage is defined as the stage at which NWS forecasters take mitigation action for possible significant
hydrological activity, and it is usually associated with bankful conditions.

2. The ArcGIS geographic information system (GIS) is used for this analysis.
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Figure III.7 – County-by-county distribution of the calculated mean flashiness in the conterminous U.S.. Map
colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.

e) Flood hazard areas

Flood zones in the U.S. are also identified by the Federal Emergency Management Agency’s

(FEMA’s) National Flood Insurance Program (NFIP) characterizing land areas in terms of their

flood hazard risk. Flood maps, known officially as Flood Insurance Rate Maps (FIRMs), show

areas of “high” and “moderate-to-low” flood risk with the aim to reduce loss of life and damages

due to flooding. The National Flood Hazard Layer (NFHL) is the digital database that contains

the flood hazard mapping data. The region of interest is extracted from the geodadabase and is

converted in polygon shapefiles. Both the high and moderate-to-low flood risk areas (km2) and their

percentage to the total county area are calculated for each U.S. county after dissolving the flood

hazard areas geodatabase based on the county boundaries 1. In general, bigger highly flood-prone

areas are concentrated in the counties of south U.S., and especially in the West coast, Arizona,

and southeastern Texas (Figure III.8). Compared to the flashiness index, major flood-prone areas

are also estimated in Florida and eastern coastal states where North Atlantic tropical cyclones are

responsible for large flooding [Villarini et al., 2014]. This difference indicates the role of orograpgy in

the generation of large unit discharges favorable for flash flooding, when combined with highly moist

air [Konrad, 2001].

1. The 2010 TIGER counties were firstly clipped with the boundaries of the conterminous U.S. based on the National
Atlas states shapefile, and then the land areas provided in the TIGER shapefiles and the flood hazard areas provided
in the NFHL were recalculated.
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Figure III.8 – County-by-county distribution of the calculated high flood hazard risk area (km2) in the conter-
minous U.S.. Map colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn
State.

3.2 Territorial data

Critical features that may be related to the exposure of people, and their capacity to respond to

flash flood occurrences in certain circumstances in the exposed territory (e.g., road flash flooding,

buildings flooding), include roads, recreational areas, and critical buildings such as schools and hos-

pitals among others. In this section available geospatial data are explored to quantify the land use

and risk governance vulnerability processes described in Chapter II (Table II.1).

a) Local emergency services

We hypothize that the existence of local emergency services contribute to more timely and efficient

response leading to successful evacuation and rescues from flash flooding. Point data illustrating the

Local Emergency Operation Centers (EOCs) in the U.S. are produced by the TechniGraphics, Inc.

multi-national company (TGS) (currently named as Consolidated Analysis Centers, Inc. (CACI)) 1.

The original point shapefile is spatially joined with the county polygons, and the number of EOCs is

counted for every county 2. At the county-level the number of EOCs present low variability across the

conterminous U.S. with a mean of 2 centers per county (Figure III.9). The number of EOCs increases

for counties in the South California and Central Oklahoma. A cluster of EOCs well-above the mean

1. Information about the services of CACI are available at http://www.caci.com/fcc/Geospatial/

capabilities.shtml.
2. Analysis based on the Summary Statistics tool of ArcGIS software.
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is concentrated in north-west corner and especially, in Vermont, New Hampshire, Massachusetts, and

Connecticut.
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Figure III.9 – County-by-county distribution of the number of emergency operation centers in the conterminous
U.S.. Map colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.

b) Distribution of human population

The dynamic exposure of people in space and time is a key factor for the evolution of human risk

to flash flooding. The LandScan USAT M Raster Datasets developed by the Oak Ridge National Lab-

oratory (ORNL) provide Day/Night Population estimates 1. LandScan USA is a multi-dimensional

dasymetric modeling approach, which allowed the creation of a very high-resolution population dis-

tribution data both over space and time. At a spatial resolution of 3 arc seconds (90 m), the database

contains both nighttime residential as well as baseline daytime population distribution that incor-

porates movement of workers and students [Bhaduri et al., 2007]. The county-level daytime and

nighttime population is estimated based on the county polygons. The daytime and nighttime pop-

ulation density (people/km2) is then calculated for each U.S. county by dividing the daytime and

nighttime population by the estimated county land area, respectively, to be related with the exposure

of people at those periods.

1. Documentation of the LandScan data is available at https://www.ornl.gov/ornl/careerssci/landscan/.
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c) Road and river network

Searching for features related to road flooding circumstances, the TIGER/Line shapefiles contain

linear features such as roads, railroads, and hydrological network 1. The All Roads Shapefiles down-

loaded for the U.S. counties in this study include all the primary, secondary, local neighborhood, and

rural roads, and also smaller streets such as city streets, vehicular trails (4wd), ramps, service drives,

alleys, parking lot roads, private roads for service vehicles 2. These data were used to calculate the

total length of road network (km) in every county. The county-level road density (km/km2) is also

calculated by dividing the total road length in the county (km) with the estimated land area of the

county (km2) to quantify the “densely built environment” factor in circumstances related to road

flooding. In addition to that, we attempt to identify other critical features for flash flooding such

as low-water crossings and bridges that are associated with the majority of vehicle-related fatalities

from floods in the U.S. [Kellar and Schmidlin, 2012]. To do so, we extract the linear river network

provided by the NHD. Then, at the U.S. scale, the road shapefile is merged with the NHD hyfro-

graphic network shapefile, and the road-river intersection points are identified. The number of the

road-river intersections are finally calculated for each county. A swarm of crossings are concentrated

in the West, but many other counties across the coterminous U.S. are estimated as well-above the

county average (Figure III.10).
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Figure III.10 – County-by-county distribution of the calculated number of road-river intersections in the con-
terminous U.S.. Map colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer,
Penn State.

1. For technical documentation of the 2010 TIGER/Line Shapefiles see http://www2.census.gov/geo/pdfs/maps-

data/data/tiger/tgrshp2010/TGRSHP10SF1.pdf.
2. Geospatial data available at https://www.census.gov/geo/maps-data/data/tiger-line.html.
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d) Recreational areas

As we have discussed earlier the type of place matters in the way that people are constrained

in their response to the flooding situation. In recreational areas, and especially when performing

outdoor activities in the wild, people may have less access to information; a fact that might hinder

self-protection actions. To capture both national and state-defined recreational areas in the U.S., the

National Park Boundaries shapefiles developed by the EDAC are merged with the Wilderness Bound-

ary Data from the NWPS. Additional data are provided by the Environmental Systems Research

Institute’s (ESRI’s) Parks 1. The merged park shapefiles are intersected with the counties shapefile,

and are then dissolved by county. The total recreational area (km2) per county is calculated, and

then divided with the total estimated county land area to produce percentages of recreational area

to the total area in the county for all the counties in the conterminous U.S.

e) Special needs buildings

Special needs buildings that may require special attention for massive evacuation during a flash

flood event include education and health centers among others. The 2013 HSIP Freedom Data provide

geodatabases with the geolocation of education and health centers in the U.S., originally developed

by the ORNL. Educational features include daycare centers, private and public schools, colleges and

universities, and multiple campus college institutions. The data point files are spatially joined with

the counties and the number of centers are counted for every county 2. Similar process has been

followed to calculate the number of public health centers (hospitals) in every county.

3.3 Social data

The spatial scale of the analysis and application poses constraints on the representation of some of

the social vulnerability processes (especially the cognitive ones) presented in Chapter II. Especially,

no large-scale survey or dataset is available to directly provide up-to-date information on the level

of flash flood risk awareness or the capability of response from the exposed population at the U.S.

scale. Instead, the literature based questionnaire surveys on flood risk knowledge, perception and

behaviors, establish the links to socio-demographic characteristics such as age and gender [Drobot

et al., 2007; Knocke and Kolivras, 2007; Franklin et al., 2014; Morss et al., 2015; Gissing et al., 2016;

Lazrus et al., 2016]. Therefore, we propose to explore the suitability of publicly available census

data to be considered as proxies for behavioral response in flash flood circumstances. In general,

findings from flash flood or flood human-impact studies [Jonkman and Kelman, 2005; Ashley and

Ashley, 2008; Jonkman et al., 2009; Maples and Tiefenbacher, 2009; Diakakis and Deligiannakis,

2013; Doocy et al., 2013; Becker et al., 2015; Sharif et al., 2014] are crosschecked with arguments

from the literature on social vulnerability to flooding and natural hazards in general [Adger, 2006;

Rygel et al., 2006; Cutter et al., 2003; Cutter et al., 2009; Fekete, 2010; Kuhlicke et al., 2011; Zhong

et al., 2013].

1. State and local parks from the ArcGIS Maps and Data DVD available through the FLASH system.
2. Analysis based on the Summary Statistics tool of ArcGIS software.
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The selection of relevant vulnerability indicators expressed through specific proxies provided by

census data is a trade-off between the social vulnerability processes to be represented and the avail-

ability of data at the required spatio-temporal scale and resolution. In particular, we searched among

nationwide population and household surveys conducted by the U.S. Census Bureau that provide pop-

ulation data at the county level (see Annex C). The criteria to choose between the available U.S.

census data were related to the following requirements:

• Spatial adequacy. Census data should refer to geographic units such as counties to be con-

sistent with the county-level compiled flash flood reports dataset described in section 2.3.

Though, the consistency of the data at the national scale (i.e., same proxies available for

all the geographic units in the U.S.) is important to allow the transferability of the current

approach in future advances. For example, selected proxies could be elaborated at smaller ge-

ographic units such as census tracts and block groups 1 to better capture the local variability

of vulnerability at the neighborhood level (if relevant) in future work.

• Temporal adequacy. Census data should provide up to date information relevant for the years

of the analysis. Often data releases (e.g., every three or five years) ensure data updating in

future applications.

• Content adequacy. Census data is desired to cover the socio-economic aspects related to

the flash flood-specific vulnerability definition. For example, commuting characteristics for

the population of specific geographic units is essential information for understanding and

quantifying the interruption of people’s intended paths due to flash flooding while they perform

everyday life activities such as travelling from and to work.

Based on the pre-mentioned criteria the American Community Survey (ACS) 5-years pre-tabulated

sample estimations for the period 2006-2010 was selected as the most relevant dataset for this study.

The ACS pre-tabulated estimates are freely accessible for download through the American FactFinder

application 2. For ease, in the remaining sections of this thesis, the terms ACS 5-years pre-tabulated

2006-2010 estimations, ACS 5-year estimates or simply ACS data, are used interchangeably. Several

proxy variables are extracted from the ACS estimates. Below, we introduce the main attributes of

social vulnerability assumptions selected to be explained by the obtained data.

a) Age

Both young and elderly may have limited physical strength to withstand floodwaters in flash flood

circumstances (e.g., limited stability in moving water) and depend on others for protective actions

when inside a building (e.g., evacuation) or outside (e.g., rescue from street floodwaters) [Clark et al.,

1998; Coates, 1999; Morrow, 1999; Tapsell et al., 2002; Cutter et al., 2003; Ashley and Ashley, 2008;

Vinet et al., 2012]. Old people may also be less informed when being alone at home or can be less

willing to abandon their personal possessions [Coninx and Bachus, 2009] and/or their home [Peacock

et al., 1997a] for evacuation purposes. Especially, for circumstances related to flooding along road

networks, young and middle-aged active population can be considered the most vulnerable since they

1. Census Tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity that generally
have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. Block groups are statistical
divisions of census tracts, are generally defined to contain between 600 and 3,000 people.

2. Data access at http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml.
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are overrepresented in vehicle-related fatalities from past flood events [Jonkman and Kelman, 2005;

Diakakis and Deligiannakis, 2013]. In fact, active population in urban areas is more likely to rely on

everyday routines such as travelling to work or school by car and thus, their potentiallity to meet

flood disruptions is increased [Ruin et al., 2007; Shabou, 2016]. Young drivers may be also less aware

of flash flood risk and more prone to risky behaviors [Drobot et al., 2007; Knocke and Kolivras,

2007; Ruin et al., 2007]. The ACS 5-year (2006-2010) estimates provide both counts of people and

percents of people to the total population of the county for thirteen age classes with a 5-year step

(e.g., uder 5, from 5 to 9 , . . . , 85 years and over) that can be summarized in fewer classes for

the purposes of the analysis. In addition to that, the median age of the residents and workers are

provided for both the residential and workplace 1 county, with details on the median age of workers

by means of transportation to work (e.g., car, public transportation, walked). Figure III.11 presents

the distribution of median age of people using a vehicle (drove alone or carpooled) in their daily

commutes to work by the county of workplace.
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Figure III.11 – County-by-county distribution of median age of commuters traveling to work by vehicle.
Data are missing for 21 counties over the conterminous U.S.. Map colors based on http:

//www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.

b) Gender

Females are supposed to be more likely to hold low-status jobs and have less access to resources

for evacuation due to economical constraints. Considering the “need for care-giving” vulnerability

factor presented in Table II.1, women tend to ignore their safety due to their responsibility for

children and elderly people in the household [Fothergill, 1998; Blaikie et al., 2014]. Thus, they may

1. The usual geographic location at which workers carried out their occupational activities during the employment
status reference week. The terms worksite, workplace, and place of work are interchangeable in the ACS data.
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constitute vulnerable group of people for certain circumstances such as flooding in mobile homes

mainly occupied by housewives or low-income females. However, women are hypothized to have

higher risk perception and preparedness for action [Martens and Ramm, 2007]. Especially, they are

considered as more likely to believe warnings and be more willing to respond [Phillips and Morrow,

2007]. In contrast, males are supposed to be more prone to risk-taking behavior than females, and

especially entering floodwaters on foot or in vehicle [French et al., 1983; Coates, 1999; Ashley and

Ashley, 2008]. Thus, they may be the most vulnerable when referring to flash flooding on the road

network. The literature shows that men are overrepresented in vehicle-related drowning worldwide

[Diakakis and Deligiannakis, 2013; Doocy et al., 2013; Jonkman and Kelman, 2005; Sharif et al.,

2012]. The number of people of a specific gender, as well as the percent of males and females

to the total population in the county, respectively, are included in the ACS data. The mean and

median percent of males per U.S. county is 49.9% and 49.5%, respectively. Figure III.12 shows that

independently of the county size, the number of males is big in highly urbanized areas as for example,

in the Capital area and Houston-Galveston area in Texas. Other combined information such as sex

of workers and aggregate travel time to work of workers by sex, are available in ACS detailed tables.

Such information are explored for possible use in certain circumstances of flash flooding related to

the daily mobility vulnerability factor (Table II.1).
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Figure III.12 – County-by-county distribution of the number of male people in the conterminous U.S.. Map
colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.

c) Family status

People living alone are usually considered as dependent on others to evacuate if being isolated

at home during the flood occurrence [Fekete, 2010]. In family households, parents are assumed as

65

http://www.ColorBrewer.org


Chapter III. Data collection and processing

very likely to put themselves into dangerous situations during flooding, given that they are generally

expected to ignore their self-protection to protect their children [Tapsell et al., 2002]. The literature

review presented by Cutter et al. [2003] suggests that especially single-parent households and large

families “often have limited finances to outsource care for dependents, and thus must juggle work

responsibilities and care for family members”. Thus, single parents or members of big households

may have less flexibility to reschedule work-related activities and thus, face flash flood risk while

travelling to work under adverse weather. Also, household members may decide to enter floodwaters

to gather with and/or help the rest of the family. The ACS data profile for demographic characteristics

and housing units includes information about the household type such as the number (and also

percentage) of family and single-parent households, as well as the average household size in the

county (Figure III.13).
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Figure III.13 – County-by-county distribution of the household size in the conterminous U.S.. Map colors
based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.

d) Poverty status

People living in poverty conditions are considered highly vulnerable in terms of reduced economical

ability to access preparedness measures and resources for evacuation in case of building flooding [Few,

2003]. The 2010 ACS 5-year estimates provide the number of people with income below the poverty

level for population for whom poverty status is determined 1. The information refers to the poverty

status of the last twelve months.

1. Following the Office of Management and Budget’s (OMB’s) Directive 14, the Census Bureau uses a set of money
income thresholds that vary by family size and composition to determine who is in poverty. If the total income for a
family or unrelated individual falls below the relevant poverty threshold, then the family (and every individual in it)
or unrelated individual is considered in poverty.
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e) Education

Lower education (e.g., without high school diploma) may constrain the ability to understand

warnings [Cutter et al., 2003; Fekete, 2010]. In addition to that, people with less than a high school

diploma are the least likely (about 17.5% in 2004) to work in occupations in which they are flexible to

vary their work schedules [McMenamin, 2007]. Thus, they may decide to drive through flooded ways

in their effort to deal with work-related constraints. The educational attainment for population 25

years and over in the county is included in the selected social characteristics table of the ACS data.

Especially, the educational level is provided in seven classes (e.g., less than 9th grade, 9th to 12th

grade without diploma, high school graduate, . . . , graduate of professional degree). The information

is presented as count of people or percent of people in a certain education class to the total population

25 years and over in the county.

f) Ethnicity/citizenship

Potential cultural constraints of foreign population may hinder situational awareness related to

the forthcoming weather, especially for foreigners who have low skills in the language of the warnings

[Trujillo-Pagán, 2007]. This can be determinant for decisions taken by those people during flash

flooding such as driving through flooded or barricaded roads. The ACS data include counts of

native population, foreign born population, foreign born naturalized U.S. citizens and foreign born

not U.S. citizens in the county. It is interesting that this information is discriminated by means of

transportation to work (e.g., car/truck/van drove alone, car/truck/van carpooled, walked, worked at

home) and thus, foreigner commuters can be tested for their relevance in certain circumstances of

flash flood exposure (e.g., vehicle-related, outside).

g) Language

Households that speak English may have more chance to receive and understand national or local

broadcastings and watches and thus, be efficiently warned. On the other hand, language difficulties

may lead to limited or no reception of warnings and emergency advice [Fekete, 2009; Wilhelmi and

Morss, 2013]. The number of people living in households that speak English only or households

in which the main language is other than English, and also speak English less than “very well”, is

available in the ACS data. The information refers to population five years and over in the county,

and it is also provided as percentage to the total population with five or more years. Similarly

to above, details about the main language spoken in the household are also available by means of

transportation to work and especially, for workers in the workplace county.

h) Disability

In crisis, disabled people need additional assistance to engage in protective actions [Rygel et

al., 2006]. This factor can be exacerbated when disabled people are isolated at home during flash
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flooding. Information about disability of the total civilian non institutionalized population 1 are

generally included in the ACS data but were not available in the 2010 5-year estimates (2006-2010).

Thus, the number of disabled people, and the number of people 65 years and over with disability

as well as the corresponding percentages to the total non institutionalized population in the county

were extracted from the 2012 ACS 5-year estimates (2008-2012).

i) Special needs population

Similarly to the disabled people, population living in group quarters 2 may have high depedency

on others to respond adequately to flash flood events. Especially, since this group living arrangement

is owned or managed by an entity or organization, people living there are dependent on higher-level

decisions and thus, are considered to have needs for special treatment during the flash flood crisis.

Emergency managers need to focus on such high population concentration areas for early evacuation

[Morrow, 1999; Rygel et al., 2006]. The ACS data provides the number of people living in group

quarters including all people not living in housing units and thus, may be used as indicator of special

needs population.

j) Home ownership

Home ownership is usually considered as an indication of more financial resources and awareness

towards preparedness measures for flood hazard [Cutter et al., 2003; Fekete, 2010]. In certain cases

however, such as a necessary evacuation from a flooded house, homeowners may feel more attached

to their place, and so they probably appear reluctant to leaving their property. The number of people

in owner and renter occupied housing units, respectively, is available in the ACS estimates.

k) Length of residence

New residents might have less experience with local floods and probably limited social capital in

terms of neighborhood networks to receive information and/or external help for evacuation or rescue

[Fekete, 2010]. They may have also limited knowledge of the local area and the national, regional

or local warning and emergency system. However, in certain circumstances such as road flooding,

longer residents probably feel familiarity with the local road network, and underestimate the flood

risk while driving [Maples and Tiefenbacher, 2009; Diakakis and Deligiannakis, 2013]. The 2010 ACS

estimates provide the number of owner and renter households by the year that the householder moved

into the housing unit, an information that could probably explain how long the residents are in the

same housing unit. This information is provided in six intervals of years (e.g., householder moved in

the house in 2005 or later, in 2000 to 2004, in 1990 to 1999, . . . , in 1970 to 1979, in 1969 or earlier).

The data are provided for householders that were living in another house in the same county or in

1. All U.S. civilians not residing in institutional group quarters facilities such as correctional institutions, juvenile
facilities, skilled nursing facilities, and other long-term care living arrangements.

2. The Census Bureau classifies all people not living in housing units as living in group quarters. There are two
types of group quarters: institutional group quarters (e.g., correctional facilities for adults, nursing homes, and hospice
facilities) and noninstitutional group quarters (fe.g., college/university student housing, military quarters).
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a house at another county, respectively, providing some more details for the assumptions related to

the familiarity with the area of residence.

l) Mobile housing structure

Mobile structures are less resistant than permanent buildings to flash flood waters increasing

vulnerability for those inside. Mobile homes may reveal also economic constraints for their residents

to access resources for flood preparedness and evacuation [Cutter et al., 2003; Chakraborty et al.,

2005]. The number of movable housing units such as mobile homes and vans in the county, are

included in the selected housing characteristics of ACS estimates.

m) Year structure built

New structures are expected to be more likely to withstand floodwaters. In respect to the “quality

of the structures” vulnerability factor presented in Table II.1, old homes might be in bad condition

creating hazardous situations for their residents during flooding, and especially when flash flood

occurrence surprises residents during nighttime rest hours. The age of housing units can be indirectly

extracted by the“year structure built”variable of the ACS data. The ACS 5-year 2006-2010 estimates

include nine classes of construction years for housing units (e.g., built in 2005 or later, built from

2000 to 2004, . . . , built from 1940 to 1949, built in 1939 or earlier). The county-level count and also

the percent of housing units in each class can be summarized in fewer classes relevant for further

analysis (e.g., built before 1980, built after 2000).

n) Phone availability

The existence of telephone service in the household may indicate the ability to access information

and/or call for help and evacuation when being blocked from floodwaters at home [Chakraborty et

al., 2005]. Though, this assumption is questionable because warning messages can now be delivered

directly to individuals through cell phones and personal data assistants [Phillips and Morrow, 2007].

Nowadays, many people rely on their cell phones and they do not maintain a land line. Data for

individuals’ phone availability is difficult to find. The number of households without phone available

in the county is the only related information at the county-level in the ACS data. The information

is also given as percentage to the total households in the county.

o) Vehicle availability

The existence of vehicle(s) may facilitate evacuation and create better opportunities for rescue

activities in flash flood circumstances related to buildings [Chakraborty et al., 2005]. The ACS 5-

year estimates provide county-level counts and percents of households for four classes starting from

households without vehicle available to households to 1, 2, or 3 and more vehicles available. The

availability of vehicles in the household increases also the chance for driving in flooded roads. Other

variables that might be more representative of the number of vehicles used in daily travels are explored

below to be used especially for road flooding circumstances.
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p) Vehicles

Personal vehicles are very much involved in flood vehicle-related deaths possibly due to drivers’

confidence in the safety of their automobile or their driving capabilities [Maples and Tiefenbacher,

2009; Diakakis and Deligiannakis, 2013]. Especially, the amount of vehicles used in daily commuting,

or being available to be used to reach a destination or retrieve family members (and/or property)

during flash flooding can be related to the likelihood of people to get trapped in a vehicle-related

incident. Information about the aggregated number of vehicles available in the total households in

the county are available in the ACS data. In addition to that, different tables of the ACS data

provide the aggregate number of vehicles (e.g., car, truck or van) used in commuting by workers

16 years and over, giving an indication of the probable daily exposure for workers whose mean of

transportation is vehicle. Figure III.14 indicates large number of vehicles in various urban counties

spread in the conterminous U.S.. A characteristic example is the urban corridor that extents from

Dallas to San Antonio, and the Houston area in south-central and southeastern Texas, respectively.

A visual comparison with the map in Figure III.12, the distribution of vehicles presents similarities

with the distribution of men over the U.S. counties. Further analysis reveals that the total number

of vehicles, and the number of vehicles used in commuting in the county, are both highly correlated

with the number of males in the county (Pearson’s correlation > 0.9).
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Figure III.14 – County-by-county distribution of the available vehicles in the conterminous U.S.. The aggregate
number of vehicles refers to the total number of vehicles available in the total households of
the county. Map colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn
State.
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q) Travel time to work

Longer journeys suggest higher likelihood of exposure to flooded roads [Shabou, 2016]. Ruin et al.

[2007] state that flash flood risk perception of motorists correlates to their everyday experience of

the road networks. Especially, they found that commuters risk perception is increased for short daily

travels. Information about the length of commuting for the county population are provided by the

ACS data either as aggregated travel time to work (in minutes) or as the number of commuters in

twelve time intervals of 5 or 10 minutes of traveling (e.g., workers traveling less than 5 minutes, 5 to

9 minutes, . . . , more than 90 minutes).

r) Time arriving at work

When compared with the time of the flash flood occurrence, the commuters that arrive at work

at that time are indicative of the exposure of work-related mobile population [Ruin, 2010]. On the

other hand, the time that the majority of population arrives at work in the county may highlight

critical hours (e.g., rush hours) in a specific county to be considered when a flash flood event occurs.

The ACS 5-year estimates include commuting details such as the number of commuters that arrive at

work at specific time intervals. In fact, fourteen time intervals are provided with a time step of thirty

minutes (e.g., 5:00 a.m. to 5:29 a.m., 5:30 a.m. to 5:59 a.m.) except for the two longer intervals

concerning early morning and late evening hours (i.e., 12:00 a.m. to 4:59 a.m., and 4:00 p.m. to 11:59

p.m) when the temporal resolution is reduced due to confidentiality reasons. The information is also

discretized by means of transportation to work for the county of the workplace providing interesting

inputs when studying vehicle-related human impacts from flash flood occurrences.

4 Summary and Conclusions

Quantifying human vulnerability in terms of loss of life risk during short-fuse dynamic flash flood-

ing requires an integrated interdisciplinary approach where many factors may interplay and coincide.

The lack of comprehensive datasets to describe the hydrometeorological response and the characteri-

sistics of areas and people exposed to those responses associated with certain impacts at specific times

and locations, adds a big challenge towards realistic assessments. In this chapter, we described our

effort to collect nationwide data from various sources in the U.S. and merge them into one common

database using as reference the countywide occurrence of historic flash flood events.

Firstly, we compiled a 19-year dataset with 1,075 individual flash flood-specific fatalities (1996-

2014) from annual files available in the Storm Data at the time of the analysis. The fatality files

were merged with the event files, based on the ID of each flash flood event reported from 1996 to

2014 in the Storm Data, to get complementary information about the timing, the duration and the

narratives related to the causative flash flood events. The circumstances of the elaborated fatality

records were inspected through the corresponding event narratives, and a classification scheme was

set to further analyze vulnerability situations associated with historic losses from flash floods in the

remainder of this thesis (Chapter IV). In a second step, the spatial and temporal coverage of the

dataset was restricted to ten years (2001-2011) in the conterminous U.S. to match with the spatio-
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temporal availability of additional data and especially, the hydrological description of the reported

flash flood events through simulated discharges. The individual fatalities in a given circumstance

were aggregated for each of the 385 fatal flash flood event reported from 2001 to 2011. Then, the

non-fatal flash flood events reported for the same time period in the Storm Data were added to the

list of fatal flash flood reports composing a dataset of 38,106 flash flood records. In that way, each

flash flood record could be classified as “yes” or “no” depending if the specific event led to one or

more fatalities in a given circumstance or did not include reported fatalities at all, respectively. This

provides for a binary classified dataset of flash flood events that can be used to formulate the target

variable to understand or predict when assessing the occurrence of human losses from flash flooding

in a certain circumstance.

A total of 38,106 flash flood events composed the final event-based dataset to be supplemented

with extra information. The selection of information relevant to serve as candidate indicators for the

assessment of human losses to flash flood hazard (Chapter V), was supported by a review of literature

on vulnerability and human impact studies, and interpretations of the author based on the flash flood

spatial and temporal specificity described in Chapter II. About thirteen different databases were

downloaded and edited to provide indicators related to hydrological and meteorological responses,

geomorphological characteristics, information for the available official emergency response, and other

spatial and socio-demographic attributes. The biggest challenge in this process was to integrate data

produced at different scales and/or resolution, expressed in different units and in terms relevant to a

specific discipline. Data processing was mainly supported by the R project for statistical computing

and ArcGIS GIS platform from Esri to refer the gathered data to the county administrative unit,

and join the variables to develop a consistent database. Especially, the event identifier, the county in

which a specific flash flood event was reported in the data, and the date of the flash flood occurrence

(when applicable), were the reference information for the final merging of all the datasets. Different

origin data are assumed to contribute to different aspects of the assessment of human vulnerability

depicting the overall view of human risk during the “event” phase of flash floods.
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TOWARDS SITUATIONAL

EXAMINATION OF HUMAN

VULNERABILITY TO FLASH FLOOD

Chapter IV: A situation-based analysis of flash flood fatalities in the

United States

Chapter IV is based on a paper published in Bulletin of American Meteorological So-

ciety (BAMS), Journal of the American Meteorology Society: Terti, G., Ruin, I., Anquetin,

S. and Gourley, J.J., 2016. A Situation-based Analysis of Flash Flood Fatalities in the United States.

Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-15-00276.1, in press.
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Résumé

Résumé

L
e Chapitre IV propose une analyse des circonstances de 1,075 décès dus aux crues rapides enreg-

istrées entre 1996 et 2014 aux États-Unis. Cette étude décrit les circonstances des décès à partir

du profil et de l’activité des victimes ainsi que du contexte spatio-temporel de l’aléa. Sur la base du

reclassement des circonstances des décès (lieu / activité) effectué dans le Chapitre III, nous étudions

statistiquement l’heure de début de l’épisode, la durée et l’emplacement ainsi que l’âge et le sexe des

victimes. En accord avec d’autres études, plus de 60% des décès rapportés sont liés à des véhicules

impliquant principalement des hommes. Une analyse géospatiale indique qu’ils sont les usagers les

plus fréquents dans les états du sud. De plus, 21% des décès surviennent à l’extérieur, généralement

dans les quartiers situés à proximité immédiate des cours d’eau, où les victimes présentent un com-

portement à risque élevé, comme, par exemple, le nettoyage des canalisations et même des activités

“aquatiques” dans les eaux en crue. La vulnérabilité humaine varie de façon dynamique sur une

base infra-journalière et dépend des caractéristiques de la crue. Par exemple, la plupart des décès

liés au camping sont associés à des événements rapides (moins de 5 heures de durée), se produisent

plus fréquemment après minuit. Ils ont un impact sur les jeunes femmes et les jeunes hommes. En

revanche, les décès liés à l’inondation de bâtiments sont le plus souvent associés à des événements de

plus longue durée et touchent les personnes âgées. Un examen situationnel plutôt que générique de

la vulnérabilité est nécessaire pour saisir de façon réaliste les cas à risques pour les individus lors des

crues de courte durée.
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Abstract

Abstract

C
hapter IV investigates the circumstances of 1,075 fatalities from flash flooding recorded from 1996

to 2014 across the United States. This study provides insights on the situation of the fatality

events as determined by the victims’ profile and activity and the spatio-temporal context of the

flooding. Based on the re-classification of the individual fatality circumstance (i.e., location/activity)

performed in Chapter III, we explore statistically the timing, the duration and location of the flash

flood event, and the age and gender of the victims. In agreement with other studies, more than 60% of

the reported fatalities are related to vehicles involving mainly males. A geospatial analysis indicates

these are most common in southern states. Further, 21% of fatalities occur outdoors, typically in

neighborhoods near streams, where the victims were exhibiting high risk-taking behaviour such as

cleaning out drains, and even playing in the floodwaters. Human vulnerability varies dynamically

on a sub-daily basis and depends on social and natural factors of the flash flood. For example,

most campsite-related fatalities are associated with very fast responding flash flood events (less than

5 hours duration), occur more commonly after midnight, and impact younger females and males

alike. On the other hand, fatalities related to inundation of permanent buildings are most commonly

associated with longer duration events and impacted the elderly. Situational rather than generic

examination of vulnerability is required to realistically capture risky cases for individuals during

short-fuse flood events.
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ChapterIV

A situation-based analysis of flash flood

fatalities in the United States

1 Introduction

Flash floods are often associated with rapid rises in water levels and fast-moving waters that

can sweep humans and their cars off their intended path [Montz and Gruntfest, 2002; Jonkman and

Vrijling, 2008; Ruin et al., 2009; FEMA, 2015]. Human impact studies are sometimes hazard-specific

but only a few focus on flash floods [Mooney, 1983; French et al., 1983; Staes et al., 1994]. A review

of the literature shows that:

(i) in most of the natural hazard mortality studies worldwide, flash flooding information is merged

with other types of floods for analysis [Coates, 1999; Ahern et al., 2005; Borden and Cutter,

2008; FitzGerald et al., 2010; Kellar and Schmidlin, 2012],

(ii) many studies are case-specific or are restricted to the analysis of fatality data obtained from

a limited number of flood events in specific regions [Staes et al., 1994; Jonkman and Kelman,

2005; Jonkman et al., 2009; Maples and Tiefenbacher, 2009; Sharif et al., 2014], and

(iii) when fatal accident circumstances are investigated, studies either focus on one specific type of

circumstance (often the vehicle-related one), or spatial and temporal patterns specific to the

various circumstances are rarely addressed [Coates, 1999; Ashley and Ashley, 2008; Maples and

Tiefenbacher, 2009; Sharif et al., 2012; Diakakis and Deligiannakis, 2013].

Because flash flooding events can be distinguished from riverine floods by their fast response to

rainfall and resulting impacts signature [Jonkman and Kelman, 2005; Gourley et al., 2013], this

dissertation proposes analyzing flash flood-specific impact datasets to identify the conjunction of

social and physical circumstances leading to those impacts. As described in Chapter III, data on
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flash flood-related casualties from 1996-2014 are derived from the NCEI Storm Data. Although not

unbiased, Storm Data is the most comprehensive nationwide database for flash flooding events and

the resulting impacts (i.e. fatalities, injuries and damages) [Gall et al., 2009]. Currently, our study is

restricted to the analysis of fatalities due to the availability of details concerning victims (e.g., age,

gender, location). Although sometimes included as comments in the event narratives of Storm Data,

details about other nonfatal impacts from flash floods, such as injuries or rescues, are not provided

in a coherent database on the U.S. scale, yet.

Rather than using the claim of the“deadliest flood type”to study flash floods separately, we address

specific aspects of vulnerability that are not relevant in the case of general flooding [Terti et al., 2015].

Chapter II stated that the intersection of the spatio-temporal context of the flash flooding phenomena

with the distribution of people and their socio-demographic characteristics reveals various paths of

vulnerability through the expression of different accidents’ circumstances (i.e., vehicle-related, inside

buildings, open-air). In the proposed conceptual vulnerability model, we use the term “coupled

place-activity” to point out that the nature and dynamics of the individuals’ reactions will differ

according to the location and activity they were performing when they felt the need for action, and

their capability to connect with their relatives or to have social interactions allowing a group response

[Ruin et al., 2014].

Previous analyses highlighted the importance of the location and activity of the exposed individuals

during a flash flooding event on the distribution of impacts [Ashley and Ashley, 2008; Ruin et al.,

2009]. Ashley and Ashley [2008] analyzed 4586 flood fatalities included in Storm Data for the period

1959-2005 to provide conclusions on the vulnerable states and populations in the contiguous U.S.

Examining the frequency of all flood-related fatalities by location revealed that 63% were associated

with vehicles whereas a number of deaths happened “in water” (9%) in cases where the victims

intentionally entered the flood waters. Špitalar et al. [2014] used a unified flash flood observational

database compiled at the National Severe Storms Laboratory (NSSL) [Gourley et al., 2013] to analyze

spatial, temporal and hydrological parameters with human impacts. In their study, physical attributes

related to 21,549 events in U.S. (2006-2012) were cross-analyzed with the aggregated number of fatal

events weighted with the fatalities. Their findings propose late evening flash flooding occurrences as

the most devastating in terms of injuries and fatalities. Further investigation of the vehicle-related

casualties showed that visibility but also rush hour habits contribute to more impactful flash floods.

The aforementioned studies do not analyze the profile of victims in certain circumstances. However,

they reveal that certain behaviors and attitudes are embedded in the fatal scene, inviting future

research on the socio-spatio-temporal characteristics of the circumstances and identification of the

vulnerability factors.

Jonkman and Kelman [2005] proposed a categorization of the causes and circumstances for 247

deaths caused by 13 small-scale flood events in Europe and the U.S. Their classification is a valu-

able contribution towards a more consistent comparison between different fatal flood events. The

reclassification of the fatalities circumstances in the present study does not intend to present statis-

tics on the exact reason or location of the losses. We rather attempt to contextualize prominent

responses and behaviors of the victims using smaller number of classes that will facilitate more tar-

geted warning and prediction approaches in the future. The purpose is to identify the circumstances

that can be described by certain physical attributes of the exposed environment (e.g., road network,
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campsites, mobile homes) and/or socio-demographic characteristics of the exposed population (e.g.,

family status, work travels) to serve as vulnerability predictors associated with human risk during

flash flood crisis. Today, very little is known about the distribution of flash flood-specific human

losses under certain circumstances and/or on a sub-daily basis in the U.S. Unlike previous work in

mortality data analysis, information about the victims and the spatio-temporal context of the fatal

flash flooding events are disaggregated for each of the circumstances. The analysis addresses the

following questions:

i. What are the predominant circumstances associated with the occurrence of fatalities during

flash flooding events?

ii. What is the temporal distribution of flash flooding fatalities for the different circumstances?

iii. Who is the most vulnerable to flash flooding in terms of loss of life; are the same patterns

revealed when discretizing by circumstance and/or time of the day?

iv. What is the sub-state and sub-county distribution of circumstance-specific fatalities across the

entire U.S.?

We believe that having the circumstances as the center point of the analysis is fundamental to

superimpose situational against generic vulnerability assessment. The spatial analysis improves the

picture of the geographic distribution of flash flooding fatalities in the U.S. The results of this research

can contribute to the development of more targeted warning and prediction approaches to prevent

human losses during flash floods, as introduced in Chapter V.

2 Statistical analysis of flash flood fatalities

2.1 Circumstances of the fatalities

This study is based on information about fatalities caused by flash flood events reported in nineteen

annual fatality and event files of the Storm Data (for data description see section 2.1 of Chapter III).

Examining the event narratives associated with 1,075 individual deaths reported from 1996 to 2014 in

Storm Data, allowed us to assign each fatality to one of the six prevalent circumstances: (i) vehicles;

ii) permanent buildings like homes or businesses; iii) mobile homes; iv) campsite or recreational

areas; v) outside/open air and close to streams/rivers areas; and vi) other/unknown. The number of

classified fatalities in each circumstance is presented in Table III.3.

After re-classification, 61% of the total 1,075 fatalities occurred in circumstances related to vehi-

cles. If we remove the 39 fatalities for which the location or activity of the victim could not be defined

(Table III.3), the vehicle-related circumstances account for 63% of the fatalities with known circum-

stance (Figure IV.1A). Despite differences in the exact percentages due to the data temporal and

spatial coverage, these findings agree with previous studies stating that most of the flood fatalities in

the U.S. [Mooney, 1983; Staes et al., 1994; Ashley and Ashley, 2008; Maples and Tiefenbacher, 2009;

Sharif et al., 2014; Špitalar et al., 2014], Australia [Coates, 1999; FitzGerald et al., 2010], and Europe

[Jonkman and Kelman, 2005; Diakakis and Deligiannakis, 2013] are vehicle-related with drowning

being the main cause of death [French et al., 1983; Ryan and Hanes, 2009].
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3 Spatial distribution of flash flood fatalities

From 1996-2014, there were fatalities reported in 49 U.S. states and territories with the exception

of Rhode Island, Massachusetts, and the District of Columbia. The state-based analysis of vehicle-

related fatalities reveals some patterns (Figure IV.12). First, there is a dearth of reports in a large

swath of the intermountain West. The hotspot for vehicle-related fatalities extends from Texas

eastward into the South reaching maximum positive anomalies in Alabama (33%) and Mississippi

(32%). Central and South-central Texas holds the most extreme rainfalls (i.e., rates less than 48h)

that led to some of the greatest flood peaks nationwide [O’Connor and Costa, 2004]. In the literature,

the domination of vehicle-related flash flood fatalities at those areas have been mainly related to

increases in exposure associated with rising population densities in urban areas with physiography

susceptible to flash flooding (e.g., Flash Flood Alley) [Sharif et al., 2012]. While additional research

is warranted on this topic, it is likely that this increased exposure combined with intense rainfall

rates and the prevalence of low-water crossings extends vehicle-related fatality occurrences eastward

across the South. As a general attitude of motorists, they may show incorrect confidence on driving

through usually dry low-water crossings, and may underestimate the risk when being experienced

in crossing successfully flooded intersections. The outside/open air circumstance in Figure IV.12B

reveals no significant regional preferences, indicating risky behaviors such as playing in floodwaters,

taking photographs, or cleaning out a drain are problematic on a national basis.

The sample sizes with the camping/recreational area events in Figure IV.12C are smaller, but there

are very clear regions that are particularly vulnerable to flash flooding fatality events in recreational

settings. Canyon hiking and camping in the states of Utah and Arizona claim the lives of many

during the warm season. Most of these victims, several of whom are foreign, are not familiar with

their environment and do not readily recognize a hazardous situation. This problem is exacerbated by

the nature of the flash flooding events that can cause damage and impacts to areas well downstream

from the causative rainfall. Many canyons have sheer, steep walls, making a quick escape very

difficult. In 1997, ten hikers perished in Antelope Canyon in northern Arizona from a flash flood that

reached a stage of 3.4 m. The sun was still out when they entered the canyon, but heavy rainfall was

occurring in the headwaters of the basin. As the water rose, the curvy limestone walls that have been

shaped by water over time were practically impossible to climb without a rope, trapping the hikers.

The states of Arkansas and Hawaii also appear as being vulnerable to camping/recreational area flash

flooding events. Arkansas stands our primarily due to the Albert Pike campground flood that killed

20 people on June 10, 2010 [Holmes Jr and Wagner, 2011]. These camping-related fatalities could be

mitigated through more active local awareness activities, alerting systems, and escape routes (e.g.,

permanently placed ropes). There are no strong regional signals with permanent building or mobile

home fatalities. However, the states of Hawaii and Ohio have large positive anomalies for permanent

building fatalities, and Colorado stands out in mobile home fatality circumstances.
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4 Summary and Conclusions

In this chapter, we investigated the circumstance of 1,075 flash flood-specific human losses from

1996-2014 on the scale of the U.S.. The compiled fatality database used for this analysis is now

part of the unified flash flood database described in Gourley et al. [2013] and is publicly available

at http://blog.nssl.noaa.gov/flash/database/. One recommendation coming out of this study

is for the National Weather Service to consider classifying each flash flood fatality into the categories

presented herein. The purpose of our analysis was to explore if different vulnerability paths occur

depending on the situation, as determined by the victims’ profile and activity, and the spatio-temporal

context of the flash flooding. Indeed, we found that the circumstances associated with flash flooding

fatalities have certain characteristics related to season, time of the day, duration of the flood, location,

and tends to be associated with specific age and gender groups. Especially, the results suggest the

following patterns:

- Most of flash flood victims were involved in vehicle-related circumstances followed by the

“outside” incidents (almost 61% and 21% of the total 1,075 fatalities, respectively). In many

cases, both circumstances were characterized by unnecessary risk-taking behavior on behalf

of the victims. It occurs that an important amount of losses could be prevented if people had

a different approach and decided to stay inside instead of being active and mobile during the

flash flood event.

- In agreement with the spatio-temporal distribution of heavy precipitation, the majority of

fatal flash flood events (65% of the 705 total fatal flash floods) and the related fatalities (65%

of the total 1,075 fatalities) occurred in the warm season from May through September. From

a social point of view, it is interesting to notice that outdoor circumstances such as OU and

CA strongly contribute to the total monthly fatalities during this summer period, compared

to the rest of the year where VE victims dominate with noticeably higher percentages.

- People in outdoor circumstances such as VE, OU and CA were more likely to drown in very fast

and dynamic FF events with duration close to 5 hours. On the contrary, people in buildings

and mobile homes were more likely to get threatened by longer flash floods.

- Outside/close to streams incidents were more likely during daylight hours associated mainly

with young males (e.g., children and teenagers that were swept into creeks while playing near

high waters). In general, younger and middle-aged people were more probable to get trapped

while participating in daytime outdoor activities (e.g., VE, OU, CA), whereas older people

were more likely to perish inside buildings, and especially in twilight and darkness hours when

rescue and/or evacuation operations are hindered.

- In agreement with previous analysis of flood fatalities in U.S. [French et al., 1983; Ashley

and Ashley, 2008; Kellar and Schmidlin, 2012; Sharif et al., 2014], the majority of flash flood

victims from 1996 to 2014 were males (61% of the total 1,051 victims with known gender).

Doocy et al. [2013] presented a historical review of flood fatalities (1080-2009) worldwide

showing that in contrary to the developing countries, greater proportions of males compared

to female fatalities are observed in most of the developed countries. In our analysis, it occurs

that men were 2.6 and 1.4 times more likely than women to be involved in OU and VE fatal

incidents, respectively.
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We have conducted this analysis in preparation for more sophisticated and targeted alerting sys-

tems that will incorporate these socio-demographic characteristics. Future targeted alerts can be

communicated when we can collocate the location of risky incidents in space (e.g., roads, camp-

sites, mobile homes) with specific vulnerable groups (e.g., certain age groups, gender). The findings

highlight the importance of situation-specific assessment of flash flooding fatalities to guide the de-

velopment of flash flood-specific human risk modeling. In this direction, recording as much details as

possible for the life-threatening scene in Storm Data, and especially placing emphasis on the profile

and intentions of people involved, is of high importance for future methodological developments.

The next chapter will focus on a statistical classification model can be applied to obtain trends and

patterns in the probability of a fatality to occur in certain circumstances. Based on the reclassified

dataset supplemented with other variables describing the storm event, the spatial distribution and

socio-demographics of the exposed population, and the exposed built environment (Chapter III,

section 3), such a probabilistic approach serves as a promising method to quantify the time and

space-dependent human risk factors using representative indicators. We expect that this human

impact-based predictive approach will contribute to renewing alerting systems, making them more

specific and effective in triggering timely preventive actions by the public, finally leading to a decrease

in the trend of fatalities caused by flash flooding.
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TOWARDS PROBABILISTIC

PREDICTION OF FLASH FLOOD

HUMAN IMPACTS

Chapter V: Machine learning predictions of flash food human risk

related to vehicles

Chapter V is based on a paper under review in Risk Analysis, Journal of Society for

Risk Analysis: Terti, G., Ruin, I., Gourley, J.J., Kirstetter, P.-E., Flamig, Z., Blanchet, J., Arthur,

A., and Anquetin, S., 2017. Towards Probabilistic Prediction of Flash Flood Human Impacts. Risk

Analysis, in review.
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Résumé

Résumé

L
es crues rapides frappent les populations de manière rapide et violente et révèlent plusieurs sit-

uations de vulnérabilité liées à des circonstances d’accidents différentes (e.g. en véhicules, à

l’intérieur des bâtiments). La prévision des impacts humains lors des ces phénomènes extrêmes reste

très difficile pour les prévisionnistes et les services de secours car les outils actuels ne tiennent pas

compte des facteurs de vulnérabilité sociale. D’autre part, l’évaluation traditionnelle de la vulnéra-

bilité considère rarement la dynamique de l’aléa et ses interactions avec la société en situation de

crise. Le Chapitre V se concentre sur les développements conceptuels et méthodologiques permet-

tant l’intégration des dynamiques physiques et sociales, conduisant à des modèles de prévision des

impacts humains face aux crues éclairs. Pour atteindre cet objectif, un classificateur de Random

forest est appliqué pour évaluer la probabilité d’occurrence de décès, pour une circonstance donnée,

en fonction d’indicateurs représentatifs. Dans un premier temps, on choisit la vulnérabilité liée aux

véhicules, en effet l’analyse menée précédemment et la littérature indiquent que la plupart des décès

en cas de crues rapides sont issus de cette catégorie (Chapitre IV). La méthodologie est développée

à partir d’une base de données sur les crues rapides, avec ou sans perte humaine entre 2001 et 2011

aux États-Unis, complétée par d’autres variables décrivant, à l’échelle du comté, l’aléa (Chapitre III).

Les inondations de mai 2015 dans les états du Texas et de l’Oklahoma sont utilisées comme étude de

cas pour cartographier la dynamique du risque associé aux véhicules, à une résolution quotidienne et

horaire pour chaque comté dans la zone d’étude. Les résultats indiquent l’importance de l’évaluation

du risque humain, en fonction du temps et de l’espace, pour ces phénomènes. La nécessité d’une col-

lecte plus systématique des impacts humains est également mise en évidence afin de faire progresser

les modèles prédictifs basés sur les victimes des crues éclairs, dans le but d’utiliser des approches

d’apprentissage automatiques à l’avenir.
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Abstract

Abstract

F
lash floods disrupt people’s intended paths in a rapid and violent manner, revealing various vul-

nerability situations through the expression of different accidents’ circumstances (e.g., vehicle-

related, inside buildings). Forecasting human impacts from flash flooding remains very challenging for

forecasters and emergency managers because today’s forecasting tools do not consider social vulnera-

bility factors. On the other hand, traditional vulnerability assessment rarely considers the dynamics

of the hazard and their interactions with society in crisis situations. Chapter V focuses on conceptual

and methodological developments allowing the integration of physical and social dynamics leading to

model forecasts of circumstance-specific human losses during a flash flood. To reach this objective,

a Random Forest classifier is applied to assess the likelihood of fatality occurrence for a given cir-

cumstance as a function of representative indicators. To begin with, vehicle-related circumstance is

chosen as previous analysis and literature both indicate that most fatalities from flash flooding fall

in this category (Chapter IV). The methodology is developed using a database of flash flood events,

with and without human losses from 2001 to 2011 in the United States which has been supplemented

with other variables describing the storm event, the spatial distribution of the sensitive character-

istics of the exposed population and built environment at the county level (Chapter III, section 3).

The catastrophic flash floods of May 2015 in the states of Texas and Oklahoma are used as a case

study to map the dynamics of the estimated probabilistic vehicle-related human risk on a daily and

hourly level for each county in the study area. The results indicate the importance of time and

space-dependent human risk assessment for short-fuse flood events. The need for more systematic

human impact data collection is also highlighted to advance impact-based predictive models for flash

flood casualties using machine-learning approaches in the future.
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ChapterV

Machine learning predictions of flash food

human risk related to vehicles

1 Introduction

Technological advances in forecasting the potential for flash flooding have largely improved watch-

warning systems during recent decades. Hydrometeorologists work on the challenging issue of mod-

eling physical processes associated with the occurrence and magnitude of flash floods. A suite of

hydrometeorological products operating at high spatiotemporal resolutions has been developed to

support operational forecasters when issuing flash flood warnings in the U.S. [Gourley et al., 2017].

However, such advancements cannot yet address the occurrence of life-threatening situations emerg-

ing from the conjunction of the hazard, still difficult to predict, and social vulnerabilities that evolve

in space and time.

Currently, social vulnerability modeling research is dominated by the construction of indexes

summarizing social dependencies and economic disadvantages of the population in geographic units

varying from block groups to states [Clark et al., 1998; Cutter et al., 2000; Cutter, 2003; Tapsell et al.,

2002]. While there is a lot of research on analyzing flood impacts and understanding the underlying

causes of social vulnerability to flood hazards [Jonkman and Kelman, 2005; Ashley and Ashley, 2008;

Sharif et al., 2012; Doocy et al., 2013; Sharif et al., 2014], establishing specific vulnerability metrics

remains rare. Being strongly influenced by pioneering studies [Clark et al., 1998; Cutter et al., 2000;

Tapsell et al., 2002; Cutter, 2003], social vulnerability quantification in cases of flooding relies on

either data-reduction techniques such as factor analysis [Rygel et al., 2006] or arithmetic methods

such as standardization scores [Wu et al., 2002; Chakraborty et al., 2005; Wilhelmi and Morss, 2013] to

compose indicator-based aggregated social vulnerability measures and maps. With these approaches,

social vulnerability is treated separately and is then merged with the hazard information (provided
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through flood hazard maps or scores) only as a final step to provide a static map of integrated

socio-economical risk [e.g., Wilhelmi and Morss, 2013; Koks et al., 2015].

Indicators are chosen based on theoretical knowledge (deductive approach) or data-driven analysis

(inductive approach) whereas links with impact-related observations are rarely considered [Zahran

et al., 2008; Fekete, 2009]. Zahran et al. [2008] analyzed 832 flood events in Texas from 1997-2001

to explore the intersection of population vulnerability characteristics and aggregated flood casualties

at the county level. Adopting a multiple regression analysis their study reveals that flood casualties

are dependent on certain social vulnerability patterns. It was found that flood deaths and injuries in

Texas are positively correlated with socially vulnerable populations, whereas they are reduced with

the increase of structural and non-structural flood mitigation strategies in the exposed communities.

Still, social vulnerability in that analysis is described in a static way in terms of racial minorities and

economic status, inviting further research on the integration of more hazard and circumstance-specific

vulnerability predictors.

Following the analysis presented in Chapter IV, the primary focus hereafter is the vehicle-related

circumstance where the majority of people perish while inside their vehicle or are attempting to

escape from a vehicle being swept away in flash flood waters [Kellar and Schmidlin, 2012; Sharif

et al., 2012; Diakakis and Deligiannakis, 2013; Terti et al., 2016]. An empirically-guided, predictive

approach is adopted to estimate the likelihood of one or more vehicle-related fatality incidents to

occur in a specific flash flood event given the conjunction of supplemented characteristics about

the hydrometeorology of the event and the infrastructure and demography of the exposed county.

Random forest (RF) [Breiman, 2001], a well-known decision-tree based ensemble machine-learning

algorithm for classification and regression is adopted for this analysis. Tree-based models recursively

split the data space into sub-spaces according to the behavior of a target variable. The succession of

binary splits leads to a set of tree branches subdividing the data space into disjoint partitions of the

target variable. The splits are selected to maximize the homogeneity or purity of the target variable

in the leaves.

Such modeling is a powerful tool with recent, increasing use in hydrological and meteorological

research. Classification tree analysis has been used in hydrograph analysis to identify the effect of

various hydro-meteorological variables and certain thresholds on the type of catchment response [Ali

et al., 2010], as well as in seasonal streamflow forecasting considering large-scale climatic predictors

and their nonlinear interactions [Wei and Watkins, 2011]. Clark [2016] used machine learning models

to forecast the probability of flash flooding given a set of atmospheric and hydrologic conditions in the

conterminous U.S., and explored their applicability in operational forecasting. Recently, regression

tree models have been further applied in assessing flood damage based on multiple variables describing

the flooding hydrology and warnings, building characteristics and precaution measures, and the socio-

economic status of private households [Merz et al., 2013]. Compared to other advanced statistical

approaches such as logistic regression, random forest algorithm does not rely on any linear or other

relationship between the input predictor variables and the target variable, and it is not sensitive to

outliers, being able to handle nonlinear and complex high-order interactions [Breiman, 2001; Merz

et al., 2013].
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Building upon prior theoretical and empirical knowledge this chapter addresses the following

questions:

i. How can social and physical proxy variables at the county level inform a circumstance-specific

vulnerability metric available at temporal and spatial scales relevant to flash flood emergency

response?

ii. How to use historic fatal and non-fatal flash flood reports as the basis to quantify the relationship

between the magnitude of the flash flood and proxies revealing the vehicle-related vulnerability

of people at the time of the event?

iii. How can human risk predictions be estimated and mapped dynamically to reveal the time-

variant exposure to a given flash flood forecast?

The chapter consists of three main parts. First, we present the flash flood human impact data

used to create the target variable in the analysis and the supplemented extra variables treated as

vehicle-related risk predictors. In that part, our conceptual and methodological approach for flash

flood specific human vulnerability is refined to reflect the occurrence of human losses in the vehicle-

related circumstance. Then, section 3 describes the process to select certain independent predictor

variables to insert in the random forest algorithm, and the performance of the final classifier on

predicting flash flood events with vehicle-related human losses is assessed. Section 4 applies the built

classifier for a series of flash flood events that occurred in Texas and Oklahoma during May 2015.

This section presents a prototype towards vehicle-related risk prediction by providing dynamic maps

at the county level. The final section discusses the achievements and limitations of the current work

and proposes key future steps for the improvement of machine-learning based prediction of human

risk to flash flood threat.

2 Methodology

2.1 Target variable for vehicle-related fatal flash flood events

In this study, the challenge is to differentiate flash flood events based on the occurrence or non-

occurrence of vehicle-related fatalities. The data were prepared for binary classification as described

in section 2.3 of Chapter III. The process for formulating the target variable in the vehicle-related

circumstance is recalled in Figure V.1 1. The 10-year dataset includes 38,106 unique rows (i.e., flash

flood events) the majority of which (99%) is labeled as “N0 EVENT” event. Each of the 38,106 flash

flood events is attributed to a specific county in the conterminous U.S. Hereafter we called “exposed

county”, counties where at least one flash flood event has been reported between 2001 and 2011.

Over this period, 2,899 of the total 3,109 counties in the conterminous U.S. are concerned, with a

mean of about 13 events per county and up to 224 events for the most exposed. The latter are

1. Pictures used in this illustration are available at online media. The picture on the top (“EVENT”) refers to a
vehicle-related rescue conducted during the flash flood event of May 25, 2013 in Austin (Texas), and is available online
at http://www.desdemonadespair.net/2013/05/record-rainfall-causes-severe-flooding.html. The picture on
the bottom (“NO EVENT”) illustrates flood waters in a mobile home park in Pelham, Ala (Alabama) on April 6, 2014
(photo gallery available at http://illuminatimindcontrol.com/extreme-weather-severe-thunderstorms-tornado-

and-flash-flooding-swamps-u-s-southeast-many-homes-damaged-child-found-dead-in-mississippi-1-dead-

in-georgia-dozens-injured-more-stormy-weather-fo/.
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2.2 Candidate predictors of flash-flood specific human risk in the vehicle circum-

stance

Indicators relevant for the vehicle-related circumstance are chosen based on the interpretation of

the data discussed in section 3 of Chapter III. Table V.1 is an excerpt of the total list of the gathered

proxy variables included in the supplemented database, proposed for modeling the vehicle-related

human losses at the county level. Details on the pre-processing and the contribution of each variable

in depicting the vehicle-related risk situation in each exposed county are summarized in Table D.1

(Annex D).

In the U.S., private vehicle is the predominant transportation mode for work-related and other

travels [NHTS, 2009]. Integrating a proxy representing the flow of commuters at the time of the

event is crucial for this circumstance. Therefore, we combined indicators concerning the “time of

flash flood occurrence” and the “time arriving at work” from Table B.1 (Annex B), to create a new

indicator referred to as “commuters”. Based on the time of the simulated unit peak discharge for a

given flash flood event, each reported flash flood was assigned to a 30-min time step interval. Each

flash flood event was then supplemented with the number of workers that arrived at work by vehicle

in the exposed county during the certain time interval that includes the occurrence of the flood peak.

For evening and nighttime hours, the temporal resolution in the census data at the county level is

reduced due to confidentiality reasons, thus leading to increasing bias during this period. To avoid

further subjectivity in the analysis, the number of commuters assigned to the evening-night time

events is kept constant, assuming that this would be the highest possible exposure of commuters for

that event. Despite this limitation, this new variable enables a more realistic representation of the

people exposed in vehicles during a flash flood event in the specific county. Commuting plays an

important role in the overall vulnerability since work-related travels during a normal daily routine

are more likely to be continued under adverse weather conditions in contrast to leisure trips that can

be more easily rescheduled [Kilpeläinen and Summala, 2007; Cools and Creemers, 2013].

Table V.1 – Risk indicators and the related proxy variables to serve as candidate predictors for flash flood
events with vehicle-related incidents. Details on the proxies sources and processing are additionally
provided in Table D.1 of Annex D.

Variable Units & Reference

Indicator 1: Magnitude of the flash flood event

Daily unit peak discharge m3 s≠1 km≠2 in the event and the exposed

county

Indicator 2: Duration of the flash flood event

Duration of the flash flood event hours

Indicator 3: Magnitude of the rainfall event

Maximum accumulated precipitation mm in the exposed county at the reported

day(s)

Indicator 4: Duration of the rainfall event

Maximum duration of precipitation hours (for MRMS precipitation >1.0 mm in

the day of the reported flash flood event)
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Table II.1 Continued

Variable Units & Reference

Indicator 5: Flood hazard areas

Area of high risk of flood hazard km2 and % to the total area of the exposed

countyArea of moderate-to-low risk of flood hazard

Indicator 6: Flood severity

Mean flashiness index (value between 0-1) in the exposed

county

Indicator 7: Official emergency service

Number of Local Emergency Operation Cen-

ters (EOCs)

count in the exposed county

Indicator 8: Distribution of population

Daytime population density people/km2 in the exposed county

Indicator 9: Road network

Road length km in the exposed county

Road density km/km2 of the exposed county

Indicator 10: River-road network intersections

Number of river-road crossings count in the exposed county

Indicator 11: Age

People:

count and % to the total residential popula-

tion of the exposed county

-14 years or under (youth)

-15 to 34 years (new drivers and young adults)

-35 to 59 years (middle-aged active adults)

-60 years or over (retired and elderly)

Median age of residents years in the exposed county

Median age of workers years in the workplace exposed county

Median age of workers commuting by vehicle years in the workplace exposed county

Indicator 12: Gender

Males count and % to the total population of the

exposed county

Indicator 13: Household family status

Average household size persons per household in the exposed county

Number of family households (i.e., families) count and % to the total number of households

in the exposed countyNumber of single-parent families (i.e., with ei-

ther male or female householder)
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Table II.1 Continued

Variable Units & Reference

Indicator 14: Educational attainment

People educated with less than 9th grade count and % to the total population 25 years

and over in the exposed countyPeople graduated from high school or equiva-

lent

Indicator 15: Ethnicity/citizenship

Number of foreign, not U.S. citizen commuters

by private vehicle (drove alone or carpooled)

count in the workplace exposed county

Indicator 16: Language

Number of people who speak other than En-

glish languages at home, and speak English

less than “very well”

count for population over 5 years in the ex-

posed county

Number of commuters by private vehicle who

speak other than English languages at home,

and speak English less than “very well”

count for workers 16 years and over in the

workplace exposed county

Indicator 17: Vehicles

Aggregate number of vehicles count for the total households in the exposed

countyAggregate number of vehicles used in commut-

ing

Indicator 18: Travel time to work

Number of commuters who are traveling to go

to work from 5 to 90 or more minutes esti-

mated in 11 classes (e.g., 5 to 9 min, 10 to 14

min, . . . , 60 to 89 min, more than 90 min)

count in the exposed county

Indicator 19: Commuters

Number of commuters that arrive at work by

vehicle at the time of the peak discharge

count for workers 16 years and over who do

not work at home in the workplace exposed

county

2.3 Classification method

Random forests grow many binary classification trees that may be weak classifiers by them-

selves. These are combined with the ultimate goal of obtaining a learner with higher accuracy

[Dietterich, 2000]. Data consists of a given training set (X, Y ) = {(X1, Y1), . . . , (XN , YN )} with N

independent observations (e.g., flash flood events). The vector Xj is composed of p input predictors

(X1

j , X2

j , . . . , Xp
j ) where Xj ∈ R

p, and Yj is the target variable that we are trying to classify or

understand (i.e., “EVENT” or “N0 EVENT”). Breiman [2001] defines random forests as:
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a classifier that consists of a collection of tree-structured classifiers {h(X, Θk), k = 1, . . .} where Θk

is a random vector generated for the kth tree indepedent from the past random vectors Θ1, . . . , Θk−1

but with the same distribution, and each tree gives a unit vote for the most popular class at input X.

Each tree in the forest is grown with additional splitter variables until all terminal nodes of the

tree (also called leaves) are purely one class or the other (Figure V.3). When the data reach an

internal node, they follow one of the two branches if the value Xp of the predictor used at that node

is greater than some threshold or the other branch if Xp is less than or equal to the same threshold.

The main principle of random forests is randomization that is applied in two levels: i) each tree in

the ensemble forest is built from a new training sample drawn randomly with replacement (i.e., a

bootstrap sample) from the N cases in the original training set (X, Y ), and ii) the split in each node

during the construction of the tree is the best split of a random subset mtry of all variables (mtry < p)

[Liaw and Wiener, 2002].

As a result of the inherent randomness, the individual trees are almost independent . Bootstrap-

ping makes the ensemble less immune to changes in data and avoids overfitting [Touw et al., 2012].

It also allows for an internal validation during the model training. As the forest is built on training

data, each tree is tested on the samples not used in building that tree. Similar to a validation set,

the predictions on the data points not included in the bootstrap sample (called “out-of-bag” or OOB

sample) are aggregated and the error rate is thus estimated (OOB error) [Hastie et al., 2009]. The

predictions of the trees in the final forest are aggregated using a dataset that is independent from

the training sample. Each tree provides, for instance, a classification for each new flash flood event

depending on where it lands in the tree. At the end, the random forest algorithm retains the clas-

sification having the most votes (over all the trees in the forest). Probabilities of a vehicle-related

fatality are computed through the total number of votes. In our case, a probability threshold of 0.5

is used as a dichotomous event vs. non-event definition.
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Although the random forest algorithm does not suffer from multi-collinearity issues, redundant

variables complicate the evaluation of the effect of each variable to the target variable [Breiman,

2001; Dormann et al., 2013]. To detect and remove dependent variables, the variance inflation factor

(VIF) is computed as: V IF = 1/(1 − R2) where R is the multiple correlation coefficient resulting

from regressing linearly a predictor variable against all other predictor variables 1 [Dormann et al.,

2013; Naimi et al., 2014]. V IF equal to 1 indicates no collinearity, whereas increasing values (> 1)

entail increasing correlation between the variables. The procedure is described as follows: i) compute

V IF for all the 41 variables from Table D.1, excluding the one with the highest V IF ; ii) repeat the

stepwise procedure until no variables with V IF greater than 2 remain [Zuur et al., 2010]. At the

end, 12 variables are found and kept for further analysis (Table V.2).

Table V.2 – Variance Inflation Factor (VIF) for the proxy variables with VIF < threshold=2. The variables
are sorted from the ones with the least to the ones with the most variance explained by the other
predictor variables in the regression.

Proxy variable VIF

1. Mean flashiness 1.06

2. Area of moderate-to-low risk of flood hazard 1.10

3. Median age of workers commuting by vehicle 1.15

4. Maximum duration of precipitation 1.15

5. Daily unit peak discharge 1.18

6. Average household size 1.18

7. Area of high risk of flood hazard 1.31

8. Number of local emergency operation centers 1.33

9. Daytime population density 1.41

10. Number of river-road crossings 1.57

11. Road density 1.82

12. Number of commuters that arrive at work
by vehicle at the time of the peak discharge

1.88

The Spearman rank correlation coefficient (rs) illustrated in Figure V.4 accounts for monotonic

(possibly non-linear) relationships between the variables. High Spearman correlations suggest ei-

ther strong non-linearity between the variables or strong outliers in the data. Pairwise Spearman

correlations indicated that daytime population density was highly correlated with the commuters

(rs = 0.85) that arrived at work close to the peak discharge time and the road density (rs = 0.81),

where the latter two were also correlated to each other (rs > 0.6). These three variables represent

similar exposure aspects in the vehicle-related vulnerability assessment. Therefore, we decided to

keep only the number of commuters estimated at the hydrologic peak time as input for the random

forest model. This variable is the most dynamic and flash flood-specific one compared to the other

two correlated variables, and their distributions in the “EVENT” and “NO EVENT” classes present

an adequate distinction (p-value<0.05 in the KS test). Similarly, the area of moderate/low risk of

the flood hazard variable is excluded as being highly correlated with the high-risk area variable.

The final set of candidate predictors consists of nine uncorrelated variables that are standardized as

(number − mean)/standard deviation to avoid scale effects (Table V.3).

1. The functions “vifcor” and “vifstep” from “Uncertainty Analysis for Species Distribution Models” package (usdm-
package) built by Babak Naimi for R interface were used for this analysis. Documentation of the usdm-package is
available at https://cran.r-project.org/web/packages/usdm/usdm.pdf.

108

https://cran.r-project.org/web/packages/usdm/usdm.pdf




http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm


3. Random forest model for vehicle-related casualties

3.3 Model performance

The internal evaluation of the final random forests model shows that the OOB error is about 39%.

There is no typical value to evaluate the OOB error rate since it totally depends on the training

data and the model. Class probabilities are estimated for the independent test dataset comprised of

60 flash flood events in “EVENT” class and 9,452 “NO EVENT” cases (step D in Figure V.5). The

model performance is quantified based on the AUC, estimated as equal to 0.7 for this classifier [Robin

et al., 2011] (i.e., step E in Figure V.5). An AUC value of 0.5 corresponds to random guessing (i.e.,

the diagonal line on the ROC curve) and a value of less than 0.5 indicates discrimination worse than

random chance (Figure V.6).

While the predicted probability is a continuous value between 0 and 1, it is often desirable to

provide a binary prediction of whether the event will or will not occur to better understand the

performance of the binary classifier. The perfect model would be pointed in the left upper corner

of the ROC area where both the sensitivity P (Ŷ = EV ENT |Y = EV ENT ) 1 and the specificity

P (Ŷ = NO EV ENT |Y = NO EV ENT ) are equal to 1. ROC curve illustrates the performance of

the classifier system as its discrimination threshold is varied. The end-users can then decide what is

the best trade off between the hit rate and false alarms. Figure V.6 shows that for a 0.5 probability

cutoff the model classifies correctly the 73% “EVENT” and the 62% “NO EVENT” cases of the test

dataset 2. If hit rate (i.e., sensitivity) and false alarm (i.e, 1-specificity) have the same importance, for

example, then the best cutoff probability minimizes the Euclidean distance between the ROC curve

and the upper left corner of the graph which in our case is close to the 50% probability threshold

(blue point in Figure V.6) [Robin et al., 2011]. Forecasters and decision makers can further decide

if they prefer to maximize the hit rate at the cost of increasing false alarms when issuing warnings

for flash flood risk related to vehicles. In other words, they may select to warn and respond to

vehicle-related threats when the modeled probability of vehicle fatality exceeds 40%. According to

Figure V.6, for this threshold the random forest classifier assigns class “EVENT”when the predicted

probability is > 0.4 and by doing so, it classifies correctly the 87% of “EVENT” of the test dataset

(red point in Figure V.6). However, the probability of no impact events to be classified as events

with vehicle fatality in the test dataset is also increasing to 0.57.

1. Sensitivity or probability of detection is the conditional probability of the predicted target variable (Ŷ ) to be
“EVENT” given that the observed class was “EVENT”.

2. The functions “roc”, “plot”, and “coords” from“Display and Analyze ROC Curves” package (pROC-package) built
by Xavier Robin and co-authors for R interface were used for this analysis. Documentation of the pROC-package is
available at https://cran.r-project.org/web/packages/pROC/pROC.pdf.
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model to predict the probability of flash flood events with vehicle-related fatalities in the validation

set is slightly reduced.

Even if some variables do not constitute very strong predictors, it appears that considering all

possible interactions between them may lead to a better model for vehicle incidents in flash flood

events. Since the number of variables is not large enough to cause increase in the experimental

run time, the 9 predictors are all kept in the final model. In the following section, the final model

will be applied to a new set of flash flood events that occurred in May 2015 in the conterminous

U.S., and therefore they are independent of the training and testing datasets used during the model

building procedure (step F in Figure V.5). This study serves as a first step towards visualization and

evaluation of the outputs produced by the model, exploring its strengths and weaknesses in predicting

the probability of vehicle-related casualties in counties exposed to flash flooding.

Table V.4 – Predictive performance of alternative models on the test dataset. Full model is the selected optimal
model including all of the nine predictors (see Table V.3). Additional models are built by removing
one by one the least important predictors. The reduced model includes six predictors (i.e., EOCs,
household size, and median age predictors are excluded).

Random Forest model AUC Specificity Sensitivity

Full model (9 predictors) 0.703 0.620 0.733

Model without EOCs (8 predictors) 0.700 0.620 0.733

Model without Average household size (8 predictors) 0.691 0.614 0.717

Model without Median age (8 predictors) 0.703 0.620 0.700

Reduced model (6 predictors) 0.694 0.621 0.633
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the 16 days of simulations. We should recall that the random forest classifier was trained on reported

flash flood events 1. As a result, when new cases, probably with mild hydrological responses, traverse

each tree of the forest, they may reach a terminal node characterized as “EVENT” because of the

dominance of other static predictors (e.g., river-water crossings) in the county. Thus, a threshold

of daily unit peak discharge will be set to deal with high predicted probabilities in days with low

daily unit peak discharge in the continue of the study (see subsection 4.2). In the next sections we

focus on Oklahoma and Texas which encountered the majority of human impacts and especially,

vehicle-related fatalities, to discuss the model outputs and explore the dynamics of vehicle-related

human risk from day-to-day. Then, the case of flash flooding on May 26, 2015 will be used to study

hourly predictions of casualties related to vehicles.
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Figure V.9 – Maximum county-level daily forecast probability of vehicle-related casualty due to flash flooding,
estimated by the random forest model for each day between the 16th and the 31st of May 2015.

1. A flash flood event is reported by the NWS when it has posed a potential threat to life or property, and had
a report of moving water with a depth greater than 0.15 m or more than 0.91 m of standing water. Documentation
available at http://www.nws.noaa.gov/directives/.
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4.1 Deadly flash floods in Texas and Oklahoma in May 2015

On May 14, 2015, prior to extensive flooding beginning around May 24, flash flood warnings were

issued for counties in southeast Texas. At least 34 people lost their lives in flash floods from May 6

to 29, including 30 victims in Texas and 4 in Oklahoma (Figure V.10). Eighty-eight percent of these

fatalities occurred from May 18 to 29, and more than fifty percent of those occurred in vehicle-related

circumstances. First-response authorities carried out hundreds of water rescues involving mainly

stranded motorists who attempted to drive through high water. Submerged streets and flooded

or destroyed homes drew a multi-day hazardous scene with thousands of stranded, occasionally

abandoned vehicles, and homeless people along the Blanco river as well as the urban centers of

Dallas and Houston in Texas.

Especially after May 16 that refers to the case study presented in the next subsection, the Storm

Data reported 27 victims in Texas and 3 in Oklahoma. Fifty-seven percent of those deaths were

related to vehicles (Figure V.11). Individual fatalities for those events were reclassified as proposed

in subsection 2.2 of Chapter III.
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Figure V.10 – Percent of flash flood victims by day of reported fatality. Percentages are estimated to the total
34 fatalities reported in the Storm Data for Texas and Oklahoma in May 2015. The values on
the top of the bars indicate the raw number of fatalities in each day.
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Figure V.11 – Percent of flash flood victims by circumstance. Percentages are estimated to the total 30 fatali-
ties reported for Texas and Oklahoma, from May 16 to May 31, in the Storm Data. Especially,
vehicle-related fatalities were reported on May 18, 20, 23, 24, 25, 26, and 29. The values on the
right of the bars indicate the raw number of fatalities in each circumstance. The estimations are
based on reclassification of the fatalities circumstances reported in the Storm Data fatality file,
available at https://www.ncdc.noaa.gov/stormevents/ftp.jsp. The fatality circumstances are
classified as proposed in Chapter III.

4.2 Mapping dynamic human risk related to vehicles

a) Daily estimations of vehicle-related human risk

In this case study, daily risk maps are constructed with a focus on the 254 counties in Texas and

77 counties in Oklahoma. Figure V.12 presents daily maps from May 23 to 26 when the majority of

vehicle-related fatalities occurred (12 fatalities). The estimated probabilities are equally distributed

in four categories: i) low likelihood: ≤ 0.25, ii) moderate likelihood: > 0.25 - ≤ 0.50, iii) high

likelihood: > 0.50 - ≤ 0.75, and iv) very high likelihood: > 0.75. To prevent overrepresentation of

dynamic risk in counties with possibly high values of static (e.g., flashiness) or semi-static predictors

(e.g., commuters) but no actual flash flooding, the probabilities in counties with low daily unit peak

discharge (< 2 m3 s−1 km−2) are mapped in the low likelihood category. The counties with vehicle-

related victims are extracted depending on the fatality day reported in the Storm Data fatality file

and highlighted with red boundaries on the produced daily risk maps. Local storm reports (LSRs) are

also mapped with red dots to illustrate flash flood emergency issues such as road flooding, closures,

and rescues. LSRs are preliminary reports issued in near real time by local NWS forecast offices and

serve as the initial source for reports in Storm Data 1.

On May 23, the model predicts higher probabilities for vehicle-related incidents in two main areas

along the western Oklahoma-Texas boundary and central Texas. In the first area, the eastbound

and westbound lanes of Interstate 40 were closed because of flooding in counties predicted as high-

moderate likelihood (Figure V.12A). According to the media, nearly every low-lying bridge in Elk

City was flooded 2. Also, Oklahoma City and surrounding cities’ fire departments responded to more

1. LSR are available online at https://mesonet.agron.iastate.edu/lsr/.
2. Weather news on https://weather.com/storms/severe/news/southern-plains-flooding-texas-arkansas-

oklahoma. Retrieved on August 10, 2016.
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than 100 vehicles stuck in high water in the evening 1. In Texas, a 42-year-old man died in his

vehicle along the Blanco River near downtown Blanco 2. In the same county, another male victim

(81-year-old) was swept away in floodwaters while trying to escape his car. The next day on the 24th,

high likelihood of vehicle-related accidents are predicted from the Eastern border of Oklahoma to the

Central-Southern counties of Texas. In fact, two vehicle-related fatalities occurred in the highlighted

counties (Hays and Medina) in Texas (Figure V.12B). A 29-year-old man was washed away with his

vehicle and an 18-year-old girl was swept away while driving back home. In Oklahoma, no fatalities

were reported but several local storm reports indicate numerous roads flooding and submerged cars.

On May 25, the spatial pattern of the predicted vulnerability remains similar and notable but with

lower values. A cluster of higher probabilities occurred in central Texas were multiple water rescues

were reported (Figure V.12C). Two males (23 and 55-year-old) died when their vehicles were swept

away in Travis and Williamson Counties, respectively. On May 26, risk for motorists according to the

developed model is concentrated in southeastern Texas with highest probabilities estimated around

Harris County in Houston, Texas (Figure V.12D). Actually, hundreds of vehicles were stranded in

floodwaters after daylight in the Houston area. Four fatalities occurred that were directly related

to vehicles in Harris County. Three more fatalities resulted from the capsizing of a Houston Fire

Department rescue boat while rescuing stranded motorists 3. In Fort Bend County, a 73-year-old

woman lost her life while driving to work and was found dead about 50 m from her submerged car 4.

It appears that the model performs better for widespread precipitation and flash flooding than for

more localized events.

1. Online news at http://newsok.com/article/5422080. Retrieved on August 10, 2016.
2. According to Storm Data event narratives available at https://www.ncdc.noaa.gov/stormevents/

eventdetails.jsp?id=581620.
3. The three fatalities are classified as vehicle-related based on the reclassification approach presented in Chapter III.
4. Details from online media available at http://edition.cnn.com/2015/05/27/us/severe-weather/.
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b) Hourly estimations of vehicle-related human risk

Forcing the random forest classifier with hourly unit peak discharge simulations produces hourly

predictions for the catastrophic day of May 26. Other time-variant predictors are also adjusted at

the hourly scale to be inserted as inputs in the model. The number of commuters is related to

the corresponding hour associated with a certain unit peak discharge in each county; assuming that

this discharge is representative of a potential flash flood event at that specific time. The duration

of precipitation is considered as increasing with an hourly step, starting one hour before the first

simulated hourly unit peak discharge of the day which begin at midnight. The hourly prediction

maps highlight southeastern Texas counties with the highest probabilities to occur in the morning

hours (Figure V.13). Although the exact time of the fatalities occurred on May 26 is not easy to be

determined through the available data or media, the Storm Data report the causative events within

the first hours of the day.

According to the daily map for May 26, vehicle-related human risk is high and very high for

Fort Bend and Harris Counties, respectively, where vehicle-related fatalities were actually reported.

Interestingly, the hourly maps show some variability for this area with the probabilities to fall on

the high, moderate, and low categories at specific hours during the day. The highest probabilities

in Harris Counties are estimated mainly from 03:00 a.m. to 09:00 a.m, and reduces throughout the

day, revealing the conjunction of commuters and flood dynamics during morning commuting hours

(Figure V.14). In fact, on the morning of May 26, the NWS in Houston/Galveston issued a flash

flood emergency for southwest Harris County (which includes the city of Houston) and northeast Fort

Bend County. A flash flood emergency is only issued in the most life-threatening rainfall situations.

Especially, that was the first flash flood emergency for Harris County history, and it was announced

at 10:52 p.m. on the 25th [Talbott, 2015]. During the morning hours on the 26th, people shared

hundreds of pictures and comments through social media such as twitter, instagram and facebook,

indicating road flooding as the dominating life-threatening circumstance (Figure V.15). A flood

warning has been issued for the entire Houston metro area until 2:45 p.m of the 26th. The Houston

NWS announced strong messages to prevent drivers from trying to cross flooded roads, getting

emergency responders and themselves into high risk:

“MOST FLOOD DEATHS OCCUR IN AUTOMOBILES. NEVER DRIVE YOUR VEHICLE

INTO AREAS WHERE THE WATER COVERS THE ROADWAY. FLOOD WATERS ARE USU-

ALLY DEEPER THAN THEY APPEAR. JUST ONE FOOT OF FLOWING WATER IS POWER-

FUL ENOUGH TO SWEEP VEHICLES OFF THE ROAD. WHEN ENCOUNTERING FLOODED

ROADS MAKE THE SMART CHOICE...TURN AROUND...DON’T DROWN”
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5. Summary and Conclusions

In this study, uncertainty in quantification of human risk related to vehicles is accounted for by

treating the occurrence of flash flood fatalities in a probabilistic way. Compared to previous studies,

human risk is illustrated as an evolving likelihood of vehicle-related incidents overcoming the one-

sided static generalization of social vulnerability from county to county. Validation of the developed

model is not a straightforward exercise. Rare events such as flash floods with casualties are difficult

to predict. The same conjunction of socio-hydrological conditions identified as lethal in past flash

flood events may not result in fatalities during a future event due to differing circumstances at a

very local level. More precise impact data are needed to calibrate and/or verify the model outputs.

Integrating social media and crowdsourcing datasets in the modeling process could provide a valuable

contribution to the model performance. Based on the case study presented in this chapter, the model

shows promising results in terms of locating dangerous circumstances in space and time. Higher

probabilities are adequately predicted for extended county-level flash flooding while the model seems

to overestimate vehicle-related risk during very localized events. Critical thresholds for the prediction

of vehicle-related incidents need to be further investigated integrating local sensitivities.

When analyzing the variable importance in the model, it is shown that peak unit discharge plays

the most important role in partitioning the flash flood events in events with and without vehicle-

related fatalities. Being dynamic, this variable and the maximum precipitation both describe the

magnitude of the natural hazard. Especially, it is because these dynamic variables have been deter-

mined in much higher spatial and temporal resolutions than the county-level demographics, that they

probably can inherently capture some local conditions crucial for the occurrence of life-threatening

scenes. Still, other hydrological variables (e.g., flood water velocity), not available in this study, might

be stronger predictors for vehicle-related incidents. The area under the ROC curve (AUC) used to

evaluate the final classifier is estimated as 0.7 indicating a moderate predictive performance; inviting

further improvements with the predictors. Particularly, the results presented here are subject to the

following limitations and inherent uncertainties:

- Data uncertainties: Flash flood events and the recorded human losses in Storm Data are

subject to undercounting [Curran et al., 2000; Ashley and Ashley, 2008; Sharif et al., 2012].

Because the model uses a binary classification, under-reporting is generally not a problem.

Socio-demographic information from the U.S. Census Bureau and other data sources used as

inputs in this study may add further inaccuracies. Sometimes data provided by the American

Community Survey are characterized from large margins of error adding further concerns

about the quality and precision of model inputs [Spielman et al., 2014]. Lastly, the hydrologic

model simulations are subject to uncertainties due to inadequate model physics representations

and forcing from weather radar-based rainfall estimates [Flamig, 2016].

- Scale limitations: The need for large number of observations to construct an adequate statis-

tical sample for the machine-learning algorithm necessitates the consideration of many years

of flash flood event observations within a large geographic area (i.e., whole U.S.). That means

that regional differences and local specificity that may convert an initially moderate risk flash

flood event to a catastrophic event are not considered in the current analysis.

- Resolution constraints: The fact that reports on flash flood fatalities are not spatially explicit

complicates the supplementation with other extra datasets available at higher resolution than

the county. Local and sometimes dynamic information defined on the order of a few kilometers
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and/or with high temporal resolution (e.g., population density, unit discharge) are aggregated,

losing details that may contribute to the occurrence of a lethal scene.

Rather than presenting this model as an established relationship between the selected predictors,

we envision an adaptive approach that evolves with data updates and improves with experience.

Opportunities for future work are discussed in Chapter VI. For example, it would be interesting to

further refine the exposed areas within the counties based on the extent of the hydrological forecast.

Collection of more spatially precise candidate predictors can then be forced according to the extent of

the impacted area. Casualties depend on many parameters such as personal strengths and last-minute

decisions. Discrimination between lethal and non-lethal events is very difficult especially for flash

flood events with less than 5 fatalities. Exploring other classification criteria of the target variable

might enable a more refined clustering of the severity of flash flooding in terms of impacts. We

recommend that the flash flood disaster science community and practitioners conduct data collection

with more details and at finer resolutions to better capture local temporal and spatial complexities

associated with human losses from flash flooding.
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General conclusion

1 General review

Within the context of risk management, vulnerability assessment complements hazard assessment

to inform actions related to prediction and early warning and ultimately, risk reduction. For fore-

casters and emergency managers the prediction and warning of human impacts due to such a sudden

onset and localized event like flash flooding is a big challenge. Despite unavoidable biases and scale

issues, this PhD work represents a first attempt to provide a prediction system to support emergency

preparedness and response to flash flood disasters. The research is motivated by the hypothesis

that the intersection of the spatiotemporal context of the hazard with the distribution of people and

their characteristics across space and time reveals different paths of vulnerability and defines the

occurrence of human losses. But how far can vulnerability and risk research go towards prediction

of anticipated human impacts? Are the available data adequate to capture complexities associated

with both physical and social processes that not only overlay, but also interact in space and time?

In this study, we explored readily available datasets across the U.S., and we adopted a modeling

approach to support a nationwide prediction effort for NWS forecasters and emergency managers to

target their warnings on anticipated human impacts, forcing the model with hydrologic forecasts.

Specifically, throughout this PhD project, we have addressed the following objectives, presented

in the General Introduction:

• Constructing a conceptual vulnerability model that captures the dynamic interplay between

the flash flood hazards and social vulnerability factors at relevant spatio-temporal scales [Terti

et al., 2015].

• Analyzing the situations of historic fatality events as determined by the victim’s profile and

fatality circumstance, and the spatio-temporal context of the causative flash flood event re-

ported over the U.S. [Terti et al., 2016].
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• Modeling and dynamic mapping of human risk predictions, based on the circumstance of the

anticipated incidents (here vehicle-related), and the time-variant exposure to a given flash

flood forecast [Terti et al., in review].

2 Summary of research findings

2.1 Research question #1: Which social processes interact with the flash flood

hazard defining the dynamic human vulnerability?

To decide which social processes are related with people’s vulnerability to short-fuse weather events

(and especially, flash floods), impact assessments of flood and flash flood events in Europe, North

America, and Australia were primarily reviewed. Prior vulnerability studies have been also critically

reviewed to conceptualize vulnerability to a flash-flood and impact specific context with a focus on the

emergency phase of the event. Thus, findings from this theoretical analysis implies for applicability

in developed regions such as Europe and North America, where common features in terms of human

development indexes and living conditions call for similar priorities in the distribution of assets at the

individual or institutional level. The primary vulnerability factors identified through the literature

review and conceptual analysis are separated in four major categories based on the nature of the

social process to which they are related:

• Land use: The management of the natural environment to become built where specific human

activities may be located. The characteristics of this man-made environment (e.g., dense

road network, ”special needs” buildings) may affect the safety of people and their emergency

response in flash flood circumstances.

• Risk governance: Institutional policies for flood risk preparedness and response (e.g., official

emergency services, dissemination of timely warnings).

• Individuals’ status: People’s position in relation to others in regard to social or professional

standing. The socio-demographic profile of people (e.g., age, gender, profession, housing

ownership, family ties, and health) is a primary factor that shapes the everyday life priorities

and constrains and defines individuals’ predisposition to crisis situations.

• Cognition: Mental process of understanding through experience, thoughts, and sensation,

forms the conscious and unconscious mechanisms of individuals (e.g., risk awareness, famil-

iarity with roads, emotional attachment to property).

This study argues that human impacts related to flash flood events present high variability and

diversity from place to place not only due to differences in hydro-meteorological circumstances but

also due to the space-time variability of people’s exposure and capacity to react. Based on this idea,

a conceptual model for assessing impact-focused vulnerability to flash flooding was developed and

presented in Chapter II. The conceptual model developed in this dissertation, was used as the base to

identify exposure, sensitivity and coping capacity variables to serve as vulnerability indicators for the

assessment of human risk at the county level, and daily or sub-daily time steps at the scale of U.S.

The selection and collection of indicators based on nationwide datasets, as presented in Chapter III,

intended to quantify the vulnerability factors summarized in the presented conceptual framework.

128



2. Summary of research findings

Further analysis of human losses associated specifically with flash flood occurrences in the U.S, and

classified by accidents’ circumstances and victim’s profile, was required for more targeted selection

of relevant proxies to describe each indicator depending on the risk situation.

2.2 Research question #2: Who is the most vulnerable in terms of loss of life to

flash flooding?

Identifying the social, spatial, and temporal framework of the historic human losses from flash

floods is key to gaining a deeper understanding of the contextual risk factors, and thus to advance

vulnerability assessment and future prevention policies. In this dissertation, 1075 flash flood-specific

human losses reported from 1996 to 2014 on the scale of the U.S. were classified in six main cate-

gories/circumstances that explain the majority of the deaths, and were investigated correspondingly.

The purpose was to explore if different vulnerability paths occur depending on the situation as de-

termined by the victims’ profile and activity and the spatio-temporal context of the flooding. The

statistical analysis suggests the following patterns that seek to answer the questions set in the intro-

duction of Chapter IV:

• The majority of flash flood victims are involved in vehicle-related circumstances followed

by the ”outside” incidents (almost 61% and 21% of the total 1,075 fatalities, respectively).

In many cases, both circumstances are characterized by unnecessary risk-taking behavior on

behalf of the victims. In our analysis, men were 2.6 and 1.4 times more likely than women

to be involved in ”vehicle” and ”outside” fatal incidents, respectively. Given that the median

age of males is 22 years for ”outside/close to streams” circumstances and 44 years for vehicle-

related circumstances, it appears that the generic concept of elderly people being the most

vulnerable to natural hazards is not categorically supported in the flash flood context. Older

people are more likely to perish inside buildings, and especially in twilight and darkness hours

when rescue and/or evacuation operations are hindered, whereas younger and middle-aged

people are more likely to get trapped while participating in daytime outdoor activities. In

particular, ”outside” incidents are more likely during daylight hours associated mainly with

young males (e.g., children and teenagers that were swept into creeks while playing near high

waters). On the other hand, low visibility of dusk conditions is an exacerbating factor for

middle-aged active population to be involved in vehicle-related accidents.

• Concerning the flood dynamics, people in outdoor circumstances such as vehicle-related, out-

side in neighborhoods and recreational areas (e.g., campsites, canyons) are more likely to

drown in fast and dynamic flash flood events with duration close to 5 hours. On the contrary,

people in buildings and mobile homes are more likely to get threatened by longer flash floods.

• There is no clear trend in the annual fatalities or circumstances during the study period. In

agreement with the spatio-temporal distribution of heavy precipitation, the majority of fatal

flash flood events (65% of the 705 total fatal flash floods) and the related fatalities (65% of

the total 1075 fatalities) occurred in the warm season from May through September. From a

social point of view, it is interesting to notice that outdoor circumstances such as ”outside”and

”recreational”, strongly contribute to the total monthly fatalities during this summer period
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compared to the rest of the year where ”vehicle-related” victims dominate with noticeably

higher percentages.

• Geographically, the state-level analysis of the fatalities circumstances reveals the higher sus-

ceptibility of people living in southern states to perish in vehicle-related circumstances. Fur-

ther investigations are needed to determine if this is more due to cultural factors such as

risk-taking behavior and confidence in automobiles or other reasons more related to higher

urbanization and higher exposure of the road networks. Certain physical attributes of the ex-

posed environment (e.g., canyons, campsites, proximity to rivers) can be strong vulnerability

predictors for certain circumstances such as ”recreational” and ”outside”.

The above findings confirmed the hypothesis raised from the theoretical analysis presented in

Chapter II, that situational rather than generic examination of vulnerability is required to realisti-

cally capture risky cases during short fuse flood events. The patterns identified in the Storm Data

generated the idea to use such impacts observations for modeling situational human risk towards

prediction of circumstance-specific human losses in future events. The results from the statisti-

cal analysis further supported the construction of vulnerability assumptions when selecting proxy

variables to represent circumstance-specific risk indicators in our methodological framework. The

compiled database used for this analysis is now part of the unified flash flood database, publicly

available at http://blog.nssl.noaa.gov/flash/database/ for future research studies.

2.3 Research question #3: How to quantify the dynamic relationship between

the flash flood magnitude and human vulnerability?

Modeling human risk to flash flood events, is a challenging task that requires i) a comprehensive

dataset with variables explaining the hydrometeorological response, and the characteristics of the

exposed areas and people associated with certain disaster occurrences, and ii) machine learning

methods capable to deal with nonlinear and complex interactions between the variables. To support

such modeling approach a list of Storm Data flash flood events, with and without human losses from

2001 to 2011 in the contiguous U.S. was supplemented with other variables describing the storm

event, the spatial distribution of the sensitive characteristics of the exposed population and built

environment at the county level (Chapter III). As presented in Chapter V, the flash flood event

database was prepared for binary classification separating events with one or more vehicle-related

fatalities and events without reported fatality. Then, random forest, a decision-tree based ensemble

machine learning algorithm for classification was adopted to assess the likelihood of fatality occurrence

for a given circumstance as a function of representative indicators. Starting from the most prevalent

circumstance of fatalities raised from the analysis presented in Chapter IV, flash flood events with

lethal vehicle-related accidents were the target to predict. The classification method applied in

Chapter V reveals the following:

• The internal evaluation that was conducted through the model building shows that the clas-

sifier does not present very high predictive performance (AUC=0.7). Though, this first result

towards predicting vehicle-related losses in a set of unseen flash flood events is encouraging.

Given that the coarse-resolution of the predictors (e.g., county level) may be unable to ex-

plain salient local natural and social processes, and that fatal flash floods are extremely rare
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events to predict, the random forest method could not provide predictive skills comparable to

other more explicitly-defined applications (e.g., prediction of an e-mail as spam or not based

on characteristic keywords-predictors). Considering the uncertainties introduced by the data,

but also the modeling method itself, we elaborate a probabilistic configuration of human risk

related to vehicles.

• Concerning the importance of variables, it appears that the more dynamic the variable, the

more determinant it becomes in the classification of fatal and non-fatal events. Indeed, vari-

ables that describe the social aspects (e.g., median age, household size) are considered as

weaker predictors in the model. However, when these variable are excluded from the predic-

tors set, the ability of the model to predict the probability of flash flood events with vehicle-

related fatalities in the validation set is reduced. There is a plausible signal that considering

all possible interactions between the probably weak predictors may lead to a better model for

predicting vehicle incidents in flash flood events. Still, more work is required to advance the

representation on human vulnerability in the predictive methodology.

The advantage of the methodology proposed in this dissertation is that, in contrary to previous

studies, human vulnerability, and the subsequent risk, is illustrated as a time-variant likelihood of

vehicle-related incidents advancing static generalizations of human vulnerability. The developed

model can be applied on a daily or sub-daily basis for every county in the conterminous U.S. by

forcing the random forest classifier presented in Chapter V with daily or hourly hydrological forecasts,

respectively. When examining the May 2015 flash floods in Texas and Oklahoma, the model results

are encouraging in identifying vehicle-related human risk in space and time (Chapter V). Especially,

in cases of extended county-level flash flooding, the model sufficiently predicts high probabilities.

Though, the vehicle-related risk tends to be overestimated during very localized events that may

largely depend on local sensitivities not yet captured by the model.

3 With an eye to the future

3.1 Prospective work

The use of observed human losses and other reported impacts, as guidance to build and adjust

machine learning models is a promising approach to better link social vulnerability conceptualizations

with realistic forecasts of prominent impacts from flash flood hazards. However, there is a lot of work

to be done to establish a model that has high predictive power for the occurrence of casualties in

future flash flood events across the U.S.

A logical following this work is to include other types of human impacts (e.g., injuries, rescues)

in the analysis. This would enhance the statistical analysis of vulnerability situations explored

in Chapter IV. In addition to that, considering other human impacts would enlarge the size of

the statistical sample for events with human impacts in the machine-learning based risk analysis

presented in Chapter V. Unfortunately, systematic classification of impacts other than fatalities in

not a straightforward exercise in the Storm Data. Although, initially, we explored the potentiality to

classify the circumstance of nonfatal impacts when details were included in the event narratives of

Storm Data, it appeared that the majority of the events lacked information about the location of the
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accident, and especially, they did not detail on the profile of the people involved. One recommendation

arising from that limitation is for the NWS to promote a more human-centered reporting approach

for weather disasters in the U.S.

Another advancement of the current methodology would be to improve the spatial resolution of

the analysis. Given the locality and complexity of the flash flood hazard, the practicality of the

county-level modeling is questionable. As described in Chapter III, at the time of the analysis the

most reliable spatial reference for the reported impacts in the Storm Data was the county. To avoid

spatial vagueness and inconsistencies between the Storm Data files, and to maximize the amount

of available records, the county reference was used in the predictive modeling. Though, when the

accuracy of the bounding polygons currently adopted by the NWS to report impacted areas in flash

flood events, allow for it, it would be interesting to bring all the data in finer resolution. Furthermore,

the reported bounding polygons could be crosschecked with the extent of the hydrologic forecast to

delineate even more specific exposed areas. This would provide for the collection of more spatially

precise predictors to be used as input in the machine learning model training. For instance, data that

were already available on the order of a few kilometers (e.g., population density, unit discharge) could

be then more valuable for describing the exposure related to a certain flash flood event. Census data

from the ACS could be then extracted and aggregated from smaller geographic units such as block

groups to allow for a better representation of the socio-economic and demographic variability of the

exposed people. Additionally, it would be very interesting to proceed to an assessment of uncertainties

associated with the input data (when feasible). The ACS data for example, provide the margin of error

for the socio-demographic estimates allowing for a brief description of the measurement inaccuracy

and uncertainty.

Future work should further expand the methodological developments presented in this dissertation

in the modeling of other life-threatening circumstances (e.g., flooding inside buildings, in mobile

homes, at recreation areas) identified as challenging for the response of individuals to flash flooding.

Though, it was realized that the biggest caveat of the adopted machine learning approach was the

need for large number of observations to train a robust model. Thus, the rarity of flash flood events

with fatalities in circumstances other than vehicle-related make the prediction of incidents in those

circumstances a real statistical challenge. Instead of using a binary classification of events (e.g., with

and without fatalities) in a given circumstance, other unsupervised machine learning methods such

as clustering algorithms [Huang, 1998; Kim et al., 2004; Plant and Böhm, 2011] should be probably

explored. Based on additional information that could be potentially available in the data (e.g.,

considering both the circumstance of the fatal accident and the profile of victims, duration of the

causative event etc.) such clustering methods may could classify the historic flash flood events of the

Storm Data in different categories. If that would work, then, instead of modeling every circumstance

separately, we could build a multiclass classification approach for predicting different clusters of flash

flood events.

Given the strong dependency of machine learning methods on the data inserted to them, it is

apparent that they are not a panacea in the realization of previously-unseen conditions. Experts

engagement is a necessity to compensate the scarcity of large and suitable data at the scale of the

flash flood disasters. It is suggested, therefore, that the model developed in this study may be

presented as a prototype for forecasters of the NWS to visualize the capabilities of the included
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information and outputs on human risk forecasting. A participatory approach, involving forecasters

and emergency managers, is a strong recommendation not only to fit the model objectives and outputs

to their needs, but also to get feedback on potential adjustments and improvements of the modeling

itself based on experts’ knowledge and experience in the area of their responsibility.

3.2 Next research directions

One question raised from the current study is how well social vulnerability related to short-fuse

weather hazards can be represented through aggregated socio-demographic characteristics available

in the census data. Although, traditionally vulnerability assessments related to natural hazards

propose the statistical analysis of socio-demography revealing economic and physical fragility in

certain geographic units (e.g., block groups, census tracts, counties) [Cutter et al., 2003; Wilhelmi

and Morss, 2013], it is an obvious omission that risk perception and other cognitive factors related to

decision making in crisis situation are not directly represented through such vulnerability indicators.

In fact, the machine learning model trained on the Storm Data flash flood reports indicates social

variables at the county level as weak predictors of the vehicle-related fatalities. Since information

on flood risk awareness and perception is only available through questionnaire-based local studies

[Drobot et al., 2007; Morss et al., 2015], their effect on the prominent impacts during flash flooding

should be explored at the local level.

Other approaches with different data requirements and spatial applicability could be elaborated

in future research. The proposed approach could be more experimental with the development and

implementation of an agent-based model to test our vulnerability hypotheses at smaller scales: over

a small city or a neighborhood with resolutions of the order of meters and minutes [Chen et al., 2006;

Taillandier et al., 2010; Beck et al., 2014]. Agent-based simulations (ABS) “focus on the concept

of the emergence of a system. A group of agents are defined, which follow a set of rules and, in

their interaction, whilst following these rules, the behavior of the system emerges” [Nagarajan et al.,

2012]. Agents are autonomous, goal-oriented, software components that perform a task and interact

with other agents and environment [Albino et al., 2007]. Recent studies showed interesting results

with agent-based modeling to describe the interactions between people and flood hazard, and to

assess vulnerability of individuals during flooding [Dawson et al., 2011; Lumbroso and Tagg, 2011].

This type of modeling is particularly appropriate to test the hypotheses listed in Table II.1 of this

thesis, about the influence of cognitive processes on crisis behaviors among other factors. Nevertheless

this approach can also integrate outcomes from the statistical analysis conducted on coarse resolution

datasets (e.g., analysis of Storm Data presented in Chapter IV) to see how these affect the distribution

of human impacts at the small scale.

Based on the present research findings, the agent-based model may include six main agents:

Flash flood, road network, buildings, mobile home parks, recreation areas, and people. Some of the

agents may interact and define the state of each other in each time step (Figure VI.1). The flash

flood agent represents the magnitude and the timing of the flash flood event and directly affects

the state of the infrastructure elements in the environment (e.g., roads become flooded or totally

impassible/closed). People (i.e., human agents) can change their behavior after perceiving the state

of the environmental agents. For example, they may decide to change direction in order to reach
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of case studies would allow for an holistic understanding of the contextual factors embedded in the

small-scale physical and human processes driving the distribution of flash flood human impacts.
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Hägerstrand, T. [1970]. “Wath about people in regional science?”: Regional Science Association. Vol. 24.

Haki, Z. G. [2003]. “Assessment of social vulnerability using geographic information systems: Pendik, Istanbul

case study”. PhD thesis. MIDDLE EAST TECHNICAL UNIVERSITY.

Hanifan, L. J. [1916]. “The rural school community center”. The Annals of the American Academy of Political

and Social Science. Vol. 67, pp. 130–138.

Hapuarachchi, H., Wang, Q., and Pagano, T. [2011]. “A review of advances in flash flood forecasting”. Hydro-

logical Processes. Vol. 25. no. 18, pp. 2771–2784.

Hastie, T., Tibshirani, R., and Friedman, J. [2009]. “Unsupervised learning”. The elements of statistical

learning. Springer, pp. 485–585.

Holmes Jr, R. R. and Wagner, D. M. [2011]. “Flood of June 11, 2010, in the Upper Little Missouri River

watershed, Arkansas”. US Geological Survey Scientific Investigations Report. Vol. 5194, p. 31.

Huang, Z. [1998]. “Extensions to the k-means algorithm for clustering large data sets with categorical values”.

Data mining and knowledge discovery. Vol. 2. no. 3, pp. 283–304.

IPCC, I. P. O. C. C. [2001]. “Climate change 2007: impacts, adaptation and vulnerability”. Genebra, Súıça.
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annexA

Frequency of flash flood victims and fatal

flash flood events by state

From 1996 to 2014, the Storm Data reported 705 flash flood events that led to one or more

fatalities. The frequency of fatal flash flood events and the caused fatalities is summarized by state

and sorted by the number of fatalities in decreasing order (Table A.1). The analysis includes the 48

conterminous states, as well as the states of Alaska and Hawaii, the District of Columbia, and the

territory of Puerto Rico.

Table A.1 – Frequency and percentages of flash flood fatalities and fatal flash flood events by state for the
50 states, the District of Columbia, and the territory of Puerto Rico (including their ranks in
fatalities) for the period 1996-2014. Ratios are estimated by dividing the number of fatalities with
the number of fatal flash flood events in each state.

State Abbrev Fatalities Fatalities (%) Events Events (%) Ratio

TEXAS TX 207 19.3 136 19.3 1.5

ARIZONA AZ 69 6.4 40 5.7 1.7

MISSOURI MO 62 5.8 44 6.2 1.4

ARKANSAS AR 56 5.2 26 3.7 2.2

PENNSYLVANIA PA 49 4.6 32 4.5 1.5

KENTUCKY KY 45 4.2 32 4.5 1.4

NORTH CAROLINA NC 41 3.8 18 2.6 2.3

CALIFORNIA CA 41 3.8 29 4.1 1.4
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annex A. Frequency of flash flood victims and fatal flash flood events by state

Table A.1 Continued

State Abbrev Fatalities Fatalities (%) Events Events (%) Ratio

PUERTO RICO PR 40 3.7 25 3.5 1.6

NEW YORK NY 37 3.4 21 3 1.8

OKLAHOMA OK 37 3.4 21 3 1.8

OHIO OH 32 3 22 3.1 1.5

TENNESSEE TN 31 2.9 22 3.1 1.4

VIRGINIA VA 30 2.8 24 3.4 1.2

WEST VIRGINIA WV 23 2.1 17 2.4 1.4

NEW MEXICO NM 21 2 15 2.1 1.4

COLORADO CO 20 1.9 11 1.6 1.8

INDIANA IN 18 1.7 14 2 1.3

ALABAMA AL 16 1.5 12 1.7 1.3

MINNESOTA MN 15 1.4 8 1.1 1.9

KANSAS KS 15 1.4 9 1.3 1.7

GEORGIA GA 14 1.3 9 1.3 1.6

UTAH UT 14 1.3 11 1.6 1.3

MARYLAND MD 13 1.2 5 0.7 2.6

MISSISSIPPI MS 13 1.2 12 1.7 1.1

HAWAII HI 11 1 4 0.6 2.8

ILLINOIS IL 11 1 8 1.1 1.4

FLORIDA FL 9 0.8 8 1.1 1.1

LOUISIANA LA 8 0.7 8 1.1 1

SOUTH CAROLINA SC 7 0.7 6 0.9 1.2

WISCONSIN WI 7 0.7 6 0.9 1.2

IOWA IA 7 0.7 7 1 1

NEW HAMPSHIRE NH 6 0.6 4 0.6 1.5

NEVADA NV 6 0.6 6 0.9 1

WYOMING WY 5 0.5 2 0.3 2.5

MICHIGAN MI 5 0.5 4 0.6 1.2

NEW JERSEY NJ 5 0.5 4 0.6 1.2

SOUTH DAKOTA SD 4 0.4 3 0.4 1.3

ALASKA AK 3 0.3 1 0.1 3
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Table A.1 Continued

State Abbrev Fatalities Fatalities (%) Events Events (%) Ratio

NORTH DAKOTA ND 3 0.3 2 0.3 1.5

VERMONT VT 3 0.3 2 0.3 1.5

MAINE ME 3 0.3 3 0.4 1

NEBRASKA NE 3 0.3 3 0.4 1

DELAWARE DE 2 0.2 1 0.1 2

CONNECTICUT CT 2 0.2 2 0.3 1

IDAHO ID 2 0.2 2 0.3 1

WASHINGTON WA 2 0.2 2 0.3 1

MONTANA MT 1 0.1 1 0.1 1

OREGON OR 1 0.1 1 0.1 1

DIST OF COLUMBIA DC 0 0

MASSACHUSSETS MA 0 0

RHODE ISLAND RI 0 0
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annexB

Type and sources of collected data, and

their role in the assessment of human

vulnerability and risk to flash flood

In this study, about thirteen different databases are gathered and processed to provide indicators

related to hydrological and meteorological responses, geomorphological characteristics, information

for the available official emergency response, and other spatial and socio-demographic attributes.

According to Table B.1, different origin data are assumed to contribute to different aspects of the

assessment of human vulnerability, depicting the overall view of human risk during the “event” phase

of flash floods. The data are originally provided in various spatial resolutions (e.g., 1-km grid cell,

point geodata, county administrative units), and are all adjusted to the county-level to proceed for

the analysis.
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Table B.1 – Summary of collected data types and sources, and their role in the assessment of human vulnerability and risk to flash flood. Indicators are proposed as
relevant to one or more circumstances (ALL: all circumstances, VE: Vehicle-related, OU: Outside/Open or close to stream area, CA: Camping/Recreational
area, PB: Permanent Building, MH: Mobile Home).

Category of

variables

Source/Origin Indicators to be represented Contribution

Hydrological

conditions

CREST model simulations developed by

the OU and the NSSL (NOAA), FLASH

(https://blog.nssl.noaa.gov/flash/)

1. Magnitude of the flash flood event

(ALL)
Incorporation of the

hazard spatial and

temporal dynamics that

alter human exposure

to flash flooding

2. Time of flash flood occurrence (ALL)

Storm Data maintained by NOAA’s NWS

(https://www.ncdc.noaa.gov/stormevents/ftp.jsp)
3. Duration of flash flood event (ALL)

Meteorological

conditions

MRMS precipitation estimates developed by the

CIMMS, and OU (http://mrms.ou.edu), FLASH

4. Magnitude of the rainfall event (ALL)

5. Duration of the rainfall event (ALL

with focus on outside: VE, OU and CA)

Geomorphological

characteristics

National Flood Hazard Layer (NFHL) from FEMA’s

NFIP (https://www.fema.gov/national-flood-hazard-

layer-nfhl), HSIP

6. Flood hazard areas (ALL)
Incorporation of flood

predicament of the ex-

posed area that can pre-

define the potentiality

for human exposure and

coping capacities

Flashiness Index developed in the NSSL (NOAA),

FLASH
7. Flood severity (ALL)

1
6
0



Table B.1 Continued

Category of

variables

Source/Origin Indicators to be represented Contribution

Emergency re-

sponse

Geospatial data produced by the TGS

(currently CACI International Inc.)

(http://www.caci.com/fcc/Geospatial/capabilities.shtml),

HSIP

8. Official emergency services (ALL)

Incorporation of official

emergency resources

that support popula-

tion’s capacity to cope

with flash flood crisis

Spatial

information

for the natural

and built

environment

LandScan USA Day/Night Population developed

by the ORNL (http://web.ornl.gov/sci/landscan/),

HSIP

9. Distribution of population (Daytime:

ALL with focus on VE, OU; Nighttime:

PB, MH)

Incorporation of densi-

ties of people and phys-

ical features that deter-

mine the spatial distri-

bution of human expo-

sure to flash flooding

MAF/TIGER database

(https://www.census.gov/geo/maps-

data/data/tiger.html), Census Bureau

10. Road network (VE)

National Hydrography Dataset,

NHDPlus(http://www.horizon-

systems.com/nhdplus/NHDplusV2 data.php)/2010

TIGER Roads, Census Bureau

11. River-road network intersections (VE)

Wilderness Boundary Data, NWPS

(http://www.wilderness.net/NWPS/geography)
12. Recreational areas (CA)

National Park Boundaries, EDAC

(https://catalog.data.gov/dataset/national-park-

boundariesf0a4c)

1
6
1
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Table B.1 Continued

Category of

variables

Source/Origin Indicators to be represented Contribution

Education and Public Health Centers from the ORNL,

HSIP (https://gii.dhs.gov/HIFLD/public/HSIP-

Gold-Freedom-One-Pager-2015.pdf)

13. Special needs buildings (PB) Incorporation of criti-

cal usage information

for buildings that af-

fect population’s sensi-

tivity and coping capac-

ity during flash floods

Socio-

economic and

demographic

characteristics

for the

population

and

households

ACS 5-year (2006-2010) Estimates provided at the

American FactFinder (http://factfinder.census.gov/),

Census Bureau

14. Age (ALL; for commuting workers:

VE, OU; for workers working at home:

PB)

Incorporation of the

population and house-

hold sensitive char-

acteristics that affect

people’s ability to react

adequately, and the po-

tential for better coping

responses when exposed

to flash flooding

15. Gender (Males:VE, OU; Females:MH)

16. Household family status (VE, PB)

17. Poverty Status (PB, MH)

18. Educational attainment (ALL)

19. Ethnicity/citizenship (VE, PB, MH)

20. Language (VE, OU, PB, MH)

21. Disability (PB, MH)

22. Special Needs population (PB)

23. Home ownership (PB, MH)

24. Length of residence (PB)

25. Mobile housing structure (MH)

1
6
2



Table B.1 Continued

Category of

variables

Source/Origin Indicators to be represented Contribution

26. Year housing structure built (PB)

27. Household phone availability (PB,

MH)

28. Household vehicle availability (PB,

MH)

29. Vehicles (VE)

30. Travel time to work (VE, OU)

31. Time arriving at work (VE, OU)

1
6
3



annex B. Type and sources of collected data, and their role in the assessment of human vulnerability and risk

to flash flood
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annexC

Available U.S. Census Surveys and their

geographical representation

The American Community Survey (ACS) is a part of the U.S. Census Bureau’s Decennial Cen-

sus Program and is designed to provide more current demographic, social, economic, and housing

estimates throughout the decade (Table C.1). ACS estimates are periodic estimates that describe

the average characteristics of population and housing over a period of data collection. For the 2010

5-year data products used in this study, interviews from January 1, 2006 through December 31, 2010

were applied. ACS questionnaires are mailed out each month to a sample of residences. The monthly

survey data are then combined to represent the characteristics of a population over periods of 1, 3,

or 5 years. While all areas are continuously sampled each year, ACS data are not available for all

areas in the 1-year and 3- year datasets due to confidentiality reasons [Gardner et al., 2010]. All

areas are represented in the 5-year data products starting in 2010 (i.e., the 2005-2009 ACS release).

Especially, the 5-year estimates are available for many distinct geographies including the nation, all

50 states, District of Columbia, and Puerto Rico, counties, places, census tracts (Figure C.1). In

this study, human vulnerability to flash flood is assessed for the county-level population. As shown

in Figure C.1 counties are connected to states because a state is comprised of many counties, and a

county can never cross a state boundary.
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annex C. Available U.S. Census Surveys and their geographical representation

Table C.1 – U.S. Census Bureau’s surveys explored for data availability and suitability in this dissertation.

Format Dataset Temporal resolution Spatial resolution

American Community Survey (annual survey)

Untabulated Sample

individual-based data

(sample of about 1%

of the U.S. population)

Public Use Microdata

Sample (PUMS)

1-year ACS PUMS
Region, Division, State,

and Public Use Microdata

Areas (PUMAs) with pop-

ulation >100,000

3-years ACS PUMS

5-years ACS PUMS

Pretabulated Sample

data summarized by

geographical unit

(sample of about 2%

of the U.S. population)

ACS Files

ACS 1-year Estimates Areas with population

>65,000

ACS 3-years Estimates Areas with population

>20,000

ACS 5-years Estimates States, Counties, . . . , up

to Census Tracks and

Block Groups

Decennial Census (Survey conducted every 10 years)

Pretabulated 100%

survey data summa-

rized by geographical

unit

Decennial census SF1 Every 10 years period

(e.g. 2000; 2010)

States, Counties, . . . . For

most subjects, statistics

for Census Block Groups

and Blocks are also shown

Decennial census SF2
Similar to SF1. To pre-

serve confidentiality, only

geographic entities with a

population of at least 100

for the specified group are

available in the summary

file

Pretabulated sample

survey data summa-

rized by geographical

unit

Decennial census SF3
Up to Census Tracks and

Block Groups (but for se-

lected subjects) until 2000

/replaced by ACS survey

after 2005
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annexD

Indicators and proxy variables for

vehicle-related human risk to flash flood

To model the occurrence of human losses from flash flooding in vehicles we choose proxy variables

relevant to such circumstances. Table D.1 summarizes the 41 variables selected from the supple-

mented database presented in Chapter III as the most representative ones of vehicle-related human

risk to flash floods.

Table D.1 – Summary of processing and interpretation of proxy variables to serve as candidate predictors for
flash flood events with vehicle-related human losses.

Variables Processing Risk hypothesis

Indicator 1: Magnitude of the flash flood event

Daily Unit Peak Discharge

(m3 s≠1 km≠2)
Computed by running the CREST dis-

tributed hydrologic model. The unit

peak discharge for each day was stored,

and has been aggregated for the county

that the event occurred at the reported

day(s).

Higher magnitudes are associ-

ated with higher water levels

that inundate and expose a

larger area to flooding.

Indicator 2: Duration of the flash flood event

Duration of the flash flood

event (in hours)
Estimated as the difference between the

beginning and end local time of the

flash flood event (e.g., 4, 1.17 hours)

when provided in the Storm Data.

Higher magnitudes are associ-

ated with higher water levels

that inundate and expose a

larger area to flooding.
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annex D. Indicators and proxy variables for vehicle-related human risk to flash flood

Table II.1 Continued

Variables Processing Risk hypothesis

Indicator 3: Magnitude of the rainfall event

Maximum accumulated

precipitation (mm)
Extracted from MRMS system provid-

ing precipitation rate estimates across

the CONUS at 1-km resolution with up-

dates every five min. Aggregated for

the county where the event occurred at

the reported day(s).

Maximum rainfall is associated

with adverse weather and road

conditions exacerbating traffic

accidents and vehicle-related risk

[Shankar et al., 1995].

Indicator 4: Duration of the rainfall event

Maximum duration of

precipitation (in hours)
Estimated number of hours of the

MRMS Precipitation >1.0mm in the

day of the reported flash flood event.

The longer the precipitation lasts

the more likely is the occurrence

of floodwaters on impervious sur-

faces such as roads creating dan-

gerous conditions for motorists.

Indicator 5: Flood hazard areas

Area of high risk of flood

hazard (in km2 and % to the

total county area)

Calculated for each U.S. county after

dissolving the flood hazard areas geo-

database based on the 2010 counties.

The existence of areas sensitive

to flood risk indicates higher like-

lihood of severe flash flooding

and impacts on the road network

and its users.
Area of moderate to low risk

of flood hazard (in km2 and

% to the total county area)

Indicator 6: Flood severity

Mean flashiness (index) Calculated mean flashiness index (i.e.,

values between 0-1) for each county.

The original flashiness point data were

converted to a 1-km float raster and af-

ter to a 1-km integer raster to calculate

the mean in each U.S. county.

High flashiness index reveals the

potentiality of high-magnitude

discharge in a short period

of time associated with severe

flooding and limited anticipation

time for people [Saharia et al.,

2016].

Indicator 7: Official emergency service

Number of Local

Emergency Operation

Centers (EOCs) (count)

Counted in each U.S. county using sum-

mary statistics on the spatially joined

2010 TIGER counties and EOC shape-

files from the HSIP.

The existence of local emergency

services can likely contribute to

more timely and efficient re-

sponse leading to successful res-

cues from vehicles [Sharif et al.,

2014].
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Table II.1 Continued

Variables Processing Risk hypothesis

Indicator 8: Distribution of population

Daytime Population

Density (people/km2)
Calculated for each U.S. county by di-

viding the daytime population (pro-

vided by the ORNL’s 90m-cell daytime

population data) by the county land

area from the 2010 TIGER counties

shapefile.

The daily mobility and routine

that creates differences in popu-

lation density across space dur-

ing the day defines the distribu-

tion of exposure [Belmonte et al.,

2011].

Indicator 9: Road network

Road Length (km) Calculated for each road feature from

the 2010 TIGER/Line road shapefile

and aggregated by 2010 U.S. county.

The exposure of roads is in-

separable linked with exposure

of vehicle users. Road net-

work sensitivity to inundation

impedes rescue operations and

limits the response capacity of

drivers and passengers during

flooding [Versini et al., 2010].

Road Density (km/km2) Calculated for each U.S. county by di-

viding the estimated road length (km)

by the calculated county land area

(km2).

Indicator 10: River-road network intersections

Number of River-Road

intersections (count)
Calculated as the intersection points of

the merged 2010 TIGER road and NHD

river/stream network shapefiles and ag-

gregated for each U.S. county.

Crossings like bridges and

low-water crossings are fea-

tures sensitive to flash flooding

largely linked to vehicle-related

deaths in the U.S. [Kellar and

Schmidlin, 2012]. Especially,

when associated with low-

visibility hours, drivers’ ability

to evaluate the conditions on

high-risk locations of the road

network is subsequently reduced

[Jonkman and Kelman, 2005;

Diakakis and Deligiannakis,

2013].
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Table II.1 Continued

Variables Processing Risk hypothesis

Indicator 11: Age

People (count and % to the

total county residential

population):

Estimated for the each U.S. county by

grouping age sub-groups provided in ta-

ble DP05 of the county-level 2010 ACS

5-year estimates.

Very young and old popula-

tion is always susceptible due to

their physical constraints, and

their dependency on others to

deal with or escape from flood-

waters [Coates, 1999; Morrow,

1999; Ashley and Ashley, 2008;

Fekete, 2010]. But in major-

ity young and middle-aged active

population is more likely to be

involved in vehicle-related inci-

dents [Ruin et al., 2007; Kellar

and Schmidlin, 2012; Diakakis

and Deligiannakis, 2013; Terti et

al., 2016]. Young drivers may

be also less aware of flash flood

risk [Knocke and Kolivras, 2007]

and more confident to undertake

risky behaviors towards crossing

flooded roadways [Drobot et al.,

2007].

-14 years or under (youth)

-15 to 34 years (new drivers

and young adults)

-35 to 59 years (middle-aged

active adults)

-60 years or over (retired

and elderly)

Median age of residents

(years)
Extracted from table DP05 of the

county-level 2010 ACS 5-year esti-

mates.

Median age of workers (in

the workplace county)

(years)

Extracted from table B08503 of the

county-level 2010 ACS 5-year esti-

mates.

Median age of workers

commuting to work by

vehicle in the workplace

county (years)

Estimated by grouping the carpooled

and drove alone classes from table

B08503 of the county-level 2010 ACS

5-year estimates for workplace geogra-

phy.

Indicator 12: Gender

Males (count and % to the

total county population)
Extracted from table DP05 of the

county-level 2010 ACS 5-year esti-

mates.

Males are supposed to be more

likely to be involved in emer-

gency activities or to undertake

risky behavior associated with

entering floodwaters in vehicle

[Coates, 1999; Jonkman and Kel-

man, 2005; Ashley and Ashley,

2008; FitzGerald et al., 2010;

Kellar and Schmidlin, 2012;

Doocy et al., 2013; Terti et

al., 2016], and especially, driv-

ing through already barricaded

roads [Diakakis and Deligian-

nakis, 2013; Gissing et al., 2016].
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Table II.1 Continued

Variables Processing Risk hypothesis

Indicator 13: Household family status

Average household size Extracted from table DP02 of the

county-level 2010 ACS 5-year

estimates.

Family responsibilities and de-

pendencies can lead to unex-

pected mobility under extreme

weather conditions. Someone

may try to cross flooded lo-

cations in the effort to reach

and help the rest of the house-

hold members during flash floods

[Fekete, 2010; Ruin et al., 2014].

Single parents may have more

pressure for care giving that

along with parents’ tendency

to ignore their self-protection

to protect their children can

lead them to enter flashy waters

[Tapsell et al., 2002].

Number of family

households (i.e., families)

(count and % to the total

number of households)

Number of single-parent

families (i.e., with either

male or female householder)

(count and % to the total

number of households)

Indicator 14: Educational attainment

People educated with less

than 9th grade (count and

% to the total population 25

years and over)

Extracted from table DP02 of the

county-level 2010 ACS 5-year esti-

mates.

Lower education may reduce the

ability to understand warnings

[Cutter et al., 2003; Fekete,

2010]. People with less than

a high school diploma are the

least likely (about 17.5% in

2004) to work in occupations

in which they are flexible to

vary their work schedules [Mc-

Menamin, 2007] and thus, may

feel the need to drive through po-

tentially flooded ways.

People graduated from high

school or equivalent (count

and % to the total popula-

tion 25 years and over)

Indicator 15: Ethnicity/Citizenship

Number of foreign born, not

U.S. citizen commuters by

private vehicle (drove alone

or carpooled; in the work-

place county)

Estimated by grouping the drove

alone and carpooled classes from table

B08511 of the county-level 2010 ACS 5-

year estimates for workplace geography.

Probable cultural or language

constraints of foreign commuters

may hinder situational aware-

ness related to the forthcoming

weather and driving conditions

[Ruin et al., 2007; Maples and

Tiefenbacher, 2009].
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Table II.1 Continued

Variables Processing Risk hypothesis

Indicator 16: Language

Number of people who

speak other than English

languages at home, and

speak English less than

”very well” (for population

over 5 years) (count)

Extracted from table DP02 of the

county-level 2010 ACS 5-year esti-

mates.

Language difficulties can lead

to limited or no reception of

warnings and emergency ad-

vice [Fekete, 2010; Wilhelmi and

Morss, 2013].

Number of commuters by

private vehicle who speak

other than English lan-

guages at home, and speak

English less than ”very well”

(count) (for workers 16 years

and over in the workplace

county)

Estimated by grouping drove alone and

carpooled classes for workers who speak

other than English languages at home

and speaking English less than ”very

well” from table B08513 of the county-

level 2010 ACS 5-year estimates.

Indicator 17: Vehicles

Aggregate number of vehi-

cles available in the total

households (count)

Extracted from table B25046 of the

county-level 2010 ACS 5-year esti-

mates.

The amount of vehicles used in

daily commuting or being avail-

able to be used to reach a

destination, or retrieve family

members (and/or property) dur-

ing flooding can be related to

the likelihood of people to get

trapped in a car-related incident.

The use of private four-wheel ve-

hicles in driving through flooded

ways is mainly attributed to the

drivers’ confidence in automobile

safety or personal driving capa-

bilities, and underestimation of

risk [Diakakis and Deligiannakis,

2013; Franklin et al., 2014; Giss-

ing et al., 2016].

Aggregate number of vehi-

cles used in commuting by

workers (count)

Extracted from table B08015 of the

county-level 2010 ACS 5-year esti-

mates.
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Table II.1 Continued

Variables Processing Risk hypothesis

Indicator 18: Travel time to work

Number of commuters who

are travelling to go to work

from 5 to 90 or more minutes

estimated in 11 classes (e.g.,

5 to 9 min, 10 to 14 min, . . . ,

60 to 89 min, more than 90

min) (count)

Extracted from table B08303 of the

county-level 2010 ACS 5-year esti-

mates.

Longer journeys suggest higher

likelihood of exposure to flooded

roads. Also, commuters who are

familiar with long everyday trav-

els on certain roads may be more

likely to underestimate the level

of risk associated with voluntary

entering floodwater [Ruin et al.,

2007; Maples and Tiefenbacher,

2009].

Indicator 19: Commuters

Number of commuters that

arrive at work by vehicle in a

time interval that covers the

time of the unit peak dis-

charge associated with a cer-

tain flash flood event in the

exposed county (for work-

ers 16 years and over who

do not work at home in the

workplace county) (count)

Estimated by assigning the number of

workers arriving during a given time

interval at work to each flash flood

event for which the CREST simulated

unit peak discharge has been recorded

in the same time interval. The drove

alone and carpooled classes of com-

muters were grouped for each given

time interval from table B08532 of the

2010 ACS 5-year estimates

The conjunction of daily mo-

bility related to professional

activity of people with the

occurrence of unusual hydrom-

eteorological circumstances

increases the vehicle-related

spatio-temporal exposure [Ruin,

2007].
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Prévision des impacts humains conséquences des crues rapides intégrant le concept
de vulnérabilité sociale dynamique.

A
u XXIe siècle, la prévision de l’aléa hydrométéorologique et des impacts associés aux crues rapides demeurent un défi pour les
prévisionnistes et les services de secours. Les mesures structurelles et / ou les avancées des systèmes de prévision hydrologique

ne garantissent pas, à elles seules, la réduction des décès lors de ces phénomènes d’inondation rapide. La littérature souligne la
nécessité d’intégrer d’autres facteurs, liés aux processus de vulnérabilité sociaux et comportementaux, afin de mieux prendre en
compte les risques encourus par les populations lors de ces épisodes extrêmes. Cette dissertation conduit une analyse théorique
couplés à ceux de une analyse des accidents historiques mortels afin d’expliquer les interactions qui existent entre les processus

hydrométéorologiques et sociaux responsables de l’apparition de vulnérabilités humaines lors de crues rapides aux États-Unis.
Des données d’enquêtes liées aux crues rapides sont examinées afin d’élaborer un système de classification des circonstances du
décès (en voiture, à l’extérieur, à proximité d’un cours d’eau, dans un camping, dans un bâtiment ou en mobile-home). L’objectif
est d’établir un lien entre la conception des vulnérabilités et l’estimation des pertes humaines liées à ces catastrophes naturelles.
“Random forest” est utilisé et est basé sur un arbre de décision, qui permet d’évaluer la probabilité d’occurrence de décès pour
une circonstance donnée en fonction d’indicateurs spatio-temporels. Un système de prévision des décès liés à l’usage de la voiture
lors des crues rapides, circonstance la plus répandue, est donc proposé en s’appuyant sur les indicateurs initialement identifiés
lors de l’étude théorique. Les résultats confirment que la vulnérabilité humaine et le risque associé varient de façon dynamique
et infra journalière, et en fonction de la résonance spatio-temporelle entre la dynamique sociale et la dynamique d’exposition aux
dangers. Par exemple, on constate que les jeunes et les personnes d’âge moyen sont plus susceptibles de se retrouver pris au piège
des crues rapides particulièrement soudaines(par exemple, une durée de près de 5 heures) pendant les horaires de travail ou de
loisirs en extérieur. Les personnes âgées sont quant à elles plus susceptibles de périr à l’intérieur des bâtiments, lors d’inondations
plus longues, et surtout pendant la nuit lorsque les opérations de sauvetage et / ou d’évacuation sont rendues difficiles. Ces
résultats mettent en évidence l’importance d’examiner la situation d’exposition aux risques en tenant compte de la vulnérabilité
dynamique, plutôt que de se concentrer sur les conceptualisations génériques et statiques. Ce concept de vulnérabilité dynamique

est l’objectif de modélisation développée dans cette thèse pour des vulnérabilités liés aux véhicules. À partir de l’étude de cas
sur les crues rapides survenues en mai 2015, et en analysant principalement les états du Texas et de l’Oklahoma, principaux
états infectés par ces évènements,le modèle montre des résultats prometteurs en termes d’identification spatio-temporelle des
circonstances dangereuses. Cependant, des seuils critiques pour la prédiction des incidents liés aux véhicules doivent être étudiés
plus en profondeur en intégrant des sensibilités locales non encore résolues par le modèle. Le modèle établi peut être appliqué, à
une résolution journalière ou horaire, pour chaque comté du continent américain. Nous envisageons cette approche comme une
première étape afin de fournir un système de prévision des crues rapides et des risques associés sur le continent américain. Il est
important que la communauté scientifique spécialisée dans l’étude des crues éclairs récoltent des données à plus haute résolution
lorsque ces épisodes entrainement des risques mortels, et ce afin d’appuyer la modélisation des complexités temporelles et spatiales
associées aux pertes humaines causées par les futures inondations soudaines.

Mots clés : Crue rapide, impacts humains, facteurs de vulnérabilité, prédiction par apprentissage virtuel, cartographie
dynamique des risques.

Forecasting of flash-flood human impacts integrating the social vulnerability dynam-
ics.

I
n the 21st century the prediction of and subsequent response to impacts due to sudden onset and localized flash flooding
events remain a challenge for forecasters and emergency managers. Structural measures and/or advances in hydrological

forecasting systems alone do not guarantee reduction of fatalities during short-fuse flood events. The literature highlights the
need for the integration of additional factors related to social and behavioral vulnerability processes to better capture risk of
people during flash floods. This dissertation conducts a theoretical analysis as well as an analysis of flash flood-specific historic
fatalities to explain complex and dynamic interactions between hydrometeorological, spatial and social processes responsible for the
occurrence of human life-threatening situations during the “event” phase of flash floods in the United States (U.S.). Individual-
by-individual fatality records are examined in order to develop a classification system of circumstances (i.e., vehicle-related,
outside/close to streams, campsite, permanent buildings, and mobile homes). The ultimate goal is to link human vulnerability
conceptualizations with realistic forecasts of prominent human losses from flash flood hazards. Random forest, a well-known
decision-tree based ensemble machine learning algorithm for classification is adopted to assess the likelihood of fatality occurrence
for a given circumstance as a function of representative indicators at the county-level and daily or hourly time steps. Starting
from the most prevalent circumstance of fatalities raised from both the literature review and the impact-based analysis, flash
flood events with lethal vehicle-related accidents are the subject to predict. The findings confirm that human vulnerability and
the subsequent risk to flash flooding, vary dynamically depending on the space-time resonance between that social and hazard
dynamics. For example, it is found that younger and middle-aged people are more probable to get trapped from very fast flash
floods (e.g., duration close to 5 hours) while participating in daytime outdoor activities (e.g., vehicle-related, recreational). In
contrary, older people are more likely to perish from longer flooding inside buildings, and especially in twilight and darkness
hours when rescue and/or evacuation operations are hindered. This reasoning places the importance of situational examination
of dynamic vulnerability over generic and static conceptualizations, and guides the development of flash flood-specific modeling of
vehicle-related human risk in this thesis. Based on the case study of May 2015 flash floods with a focus in Texas and Oklahoma,
the model shows promising results in terms of identifying dangerous circumstances in space and time. Though, critical thresholds
for the prediction of vehicle-related incidents need to be further investigated integrating local sensitivities, not yet captured by the
model. The developed model can be applied on a daily or hourly basis for every U.S. county. We vision this approach as a first
effort to provide a prediction system to support emergency preparedness and response to flash flood disasters over the conterminous
U.S. It is recommended that the flash flood disaster science community and practitioners conduct data collection with more details
for the life-threatening scene, and at finer resolutions to support modeling of local temporal and spatial complexities associated
with human losses from flash flooding in the future.

Keywords : Flash flood, human impacts, vulnerability factors, machine-learning predictions, dynamic risk mapping.
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