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Abstract

Towards synergistic models of visual motion estimation in
biological and artificial vision

This thesis addresses the study of the motion perception in primates. We propose

that scaling up the models rooted in biological vision by taking a task centric

approach would gives us further insights to probe biological vision and better

constraints to design models. The first part of this thesis relates to a feedforward

view of how the motion information is processed in the mammalian brains with

specific focus on areas V1 and MT. Based on a standard physiological model

describing the activity of motion sensitive neurons in areas V1 and MT, we propose

a feedforward model for dense optical flow estimation. This feedforward V1-MT

model is benchmarked with modern computer vision datasets and results form a

basis to study multiple aspects of dense motion estimation. Benchmarking results

demonstrated that a sharp optical flow map cannot be obtained by considering

isotropic pooling and motion estimation is disrupted in regions close to object or

motion boundaries. It also shows a blindspot in the modelling literature that spatial

association of the extracted motion information has not been attempted or has been

limited to recovering coarser attributes. In order to improve the motion estimation,

we investigated the pooling by MT neurons in terms of spatial-extent and selectivity

for integration as well as the decoding strategy in order to obtain a spatially dense

optical flow map. We show that by incorporating a pooling strategy that is

regulated by form-based cues and considering lateral propagation of the activity,

the motion estimation quality is improved. Interestingly, incorporating the form

based cues amounts to addition of neurons with different kinds of selectivity to the

network. This raises a question, whether or not a minimal network with recurrent

interactions in feature domain can exhibit different kinds of feature selectivities or

we need to consider explicitly cells with different kinds of selectivity? This question

relates to the second part of the thesis. We investigated this question using a

ring network model under neural fields formalism with motion direction as feature

space, closely mimicing MT physiological experiments. Our model produced a rich

variety of results. Our results indicate that a variety of tuning behaviors found

in MT area can be reproduced by a minimal network of directionally tuned cells,

explicit 2D cues need not be required for motion integration, dynamical changes in

the MT neuronal tuning reported in the literature can be explained through feature

domain recurrent interactions and also open the door for accounting transparency

by challenging the high inhibition regimes considered by many models in the

literature for motion integration. To conclude, we re-emphasize on task-centric

modelling approaches and several directions for interfacing studies in biological and

computer vision.





Chapter 1

Introduction

“There are things known and there are things unknown, and in be-
tween are the doors (of perception).”

- Aldous Huxley, The Doors of Perception

What is visual perception?

We are in a constant need to be aware of the environment around us for our survival

and well being. We need to know where we are, what things are around us and where

the things around us are moving. In order to be aware of the environment, we rely

upon early sensory mechanisms that capture changes in the environmental energy

in various forms such as patterns of illumination (visual), patterns of vibrations (au-

ditory), patterns of pressure (somatosensory) etc. While vision is one of dominant

senses, the sensory information that is being captured in the form of illumination

patterns is often incomplete, noisy and ambiguous. Due to these difficulties, at-

tributes of interest such as objects that are present or their motion information are

not directly available at the sensing level. Consider the scenes depicted in Fig. 1.1,

it is a non-trivial challenge to detect what objects/animals are there and where they

are from an array of intensity samples of the scene. Visual perception or in brief

vision refers to the active process of identification, interpretation and organization

of the visual information overcoming the inherent sensory ambiguities in order to

become aware of the environment.

Figure 1.1: Illustrating few scenes where our visual system needs to overcome am-

biguities in order to extract relevant information. We need to carefully group parts

of the image with distinct visual appearance to identify an object at the same time

we need to separate parts which are close in appearance but belonging to different

objects.

Understanding how the visual system performs these functions is a fascinat-

ing question and has been investigated for a long time by several different disci-
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plines [Palmer 1999]. One might even start asking a much more fundamental ques-

tion, what does it mean to understand vision? David Marr’s [Marr 1983] suggestion

to this question is that any complex information processing system such as visual

system needs to be understood at three distinct levels, computational, algorithmic

and implementational. Computational level relates to understanding the computa-

tional problem that the system is handling, algorithmic level relates to identification

of the strategy that the system adapts to solve the computational problem and im-

plementation relates to characterization of how the algorithm is physically executed.

1.1 The Goal

The goal of this thesis is to understand low level visual motion perception by de-

veloping computational models that describe early visual motion estimation. It

would mean to identify potential algorithmic strategies that could be adapted by

the system as well as plausible neuronal implementation. In short, characterization

of representation and information processing carried out by areas specialized in low

level motion processing within the primate visual system.

1.2 The Challenges

There are many challenges in developing computational models that describe motion

perception.

• Interdependence of different levels: Even though Marr’s [Marr 1982] three

levels of understanding framework provides a powerful and intuitive way to

explore the visual system, these three levels are not independent.

Three levels of understanding

What is the right computational problem? Identification of the computa-

tional problem is a primary step in order to be able to probe the visual sys-

tem in terms of the algorithmic strategies and structural implementation. In

the context of motion processing, a lot of progress has been made on this

front [Fennema 1979, Bradley 2008] (see Chapter.2 for a detailed discussion).

Going from the level of computational problem to identification of the algo-

rithmic strategy is tricky. The visual system might not be relying on a single
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strategy and could be changing the algorithmic approach in a context depen-

dant manner. The computational problems also manifest in different forms

with respect to the algorithmic strategy that is being adapted. Even after

identification of a plausible algorithmic strategy, relating it to the neuronal

activity would depend largely upon on the assumed representation. Thus it is

very difficult to come up with generic models that could describe the motion

perception in complex naturalistic scenarios.

• Complexity of the network: The primate visual system is phenomenally com-

plex [Felleman 1991]. It occupies around 52% of mammalian cortex, has sev-

eral recurrently interconnected areas and is capable of solving several ill-posed

problems such as segmentation, recognition, motion and depth estimation

within a matter of few milliseconds.

Flat map of the macaque monkey brain and hierarchy of the visual areas.

Figures taken from [Felleman 1991].

What are the effective ways of abstraction to study such a complicated net-

work? To simplify the problem, traditionally the network has been divided

into “what pathway” and “where pathway”, each comprising of few function-

ally specialized areas. Even this kind of coarse abstraction is challenged by

recent evidence suggesting significant amount of interactions between areas as-

signed to two different pathways. Even within each area, there are diverse cell

types with varying selectivity. The selectivity of the cells has also been found

to change dynamically and also depended on the type stimuli used to probe

them. Under these observations, selection of an appropriate minimal network

representative of the areas involved is challenging. Even after selecting few

representative areas, one needs to think about the modes of interaction be-

tween the network elements that need to be taken into account. Consideration

of feedforward only or inclusion of recurrent and lateral interactions is a dif-

ficult choice. This question would also translate into selection of appropriate

representation.
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• Limited observation windows: The functioning of the visual system is probed

using a variety of techniques such as single/multi electrode recordings, func-

tional imaging using techniques such as VSD imaging, functional MRI, be-

havioural responses such as eye tracking or perceptual reports. Each of these

techniques yield observations related to the activity of the brain at different

spatio-temporal scales and often do not provide detailed information for char-

acterizing representation/information processing strategies. Another aspect is

that not all techniques are available to probe all the areas of interest as some

of them might be difficult to reach.

Techniques used to probe brain function and their effectives in terms

spatio-temporal resolution of observations [Sejnowski 2014].

In other words, in order to understand how the visual system solves the am-

biguities in the sensory information, one needs to overcome the observational

ambiguities introduced by the limitations of the available techniques to probe

the functioning of the brain.

1.3 Methodology

Given the limitations of the experimental techniques, theoretical analysis and com-

putational modeling play an important role in linking different observations. The-

oretical models are helpful in constructing compact representations and building

bridges across different levels of description. Theoretical models of perception have

been classified into three different categories [Dayan 2001], depending on which of

the what, how or why questions they answer. Descriptive models suggest algorith-

mic rules that can potentially explain large amount of experimental data. In the

context of visual motion estimation one can give example of rules such as Intersec-

tion of Constraints [Fennema 1979] or Harmonic Vector averaging [Johnston 2013],

which describe perceived motion direction when there are multiple components of

motion present in the stimuli. Mechanistic models address the question of how sys-

tems operate in a bottom-up manner and often attempt to descibe how descriptive

models could be implemented by the neural networks establishing a structure/func-

tion relationship. In the context of motion estimation examples of such models could
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be the pattern cell model by Simoncelli and Heeger [Simoncelli 1998]. Interpretive

models try to explain the behaviour of a system with a top-down approach focusing

on the functional role of a phenomenon or why we tend to observe the phenomenon.

These models could be explaining why a particular approach has been adapted by

the visual system. In the context of motion estimation, example of such model could

be Bayesian estimation [Weiss 1998] where the visual system is continually trying

to minimize the ambiguity in the observations.

Eventhough theoretical models have the potential to establish structure/func-

tion relationship, there is currently a lot of fragmentation in these models. The

models are rooted heavily on explaining a particular experiment, for example, em-

pirical rules such as Intersection of Contraints describe the eventual psychophysical

percept that is being reported whilst ignoring the representational questions. One

cannot decipher whether the visual system computes a dense flow field which is uni-

form for the stimuli or selects regions within the stimuli which are not ambiguous

to arrive at the percept. If we consider a mechanistic model such as Simoncelli-

Heeger [Simoncelli 1998] model, the model explains how a particular MT cell could

exhibit pattern motion selectivity but does not elaborate on how population of MT

cells could encode/represent different scenarios such as transparency, motion bound-

aries etc., which need to be dealt with in order to interpret motion information.

Overall, within the context of each of these models, the task of motion estima-

tion is reduced to several sub-aspects or “read-outs” that a particular experimental

technique could provide, thus ignoring key representational questions and overall

effectiveness of the proposed strategies in terms of recovering motion information.

Figure 1.2: Illustrating approaches taken by studies in Visual neuroscience and

Computer vision towards motion estimation.

There is a complementary approach that has been taken in the field of computer

vision, where researchers have heavily focussed on the view point of recovering dense

motion vector map for all the elements within the scene. This focus has lead to the

development of public domain datasets resembling complex naturalistic scenarios
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and benchmarking practices where efficacy of the models/algorithms could be tested

on standard criteria. Fig. 1.2 illustrates the current scenario in tacking the motion

estimation problem from the view point of computational neuroscience and computer

vision.

Historically, the stimuli that are being explored in neurosciences were carefully

tailored to test some of the computational questions that a visual system might en-

counter in natural scenes [Albright 1995]. Consider the naturalistic scene depicted

in Fig. 1.3, where the visual system has to detect motion and has to do non-trivial

interpolation and segmentation before the scene could be decomposed into mean-

ingful motion components. Synthetic stimuli such as plaids and moving gratings

allowed the neuroscientists to ask critical questions about the rules that visual sys-

tem could rely to integrate or segment motion components. However, the models

ignored the aspect of dense recovery and did not make a rigorous attempt to verify

the scalability of the rules that were derived using the synthetic stimuli and thus

could be missing out on important constraints that need to be considered. Part

of the reason could have been the lack of appropriate ground truth in naturalistic

scenarios. This bottle neck has long been overcome by Computer vision.

Figure 1.3: Illustrating a natural scene where the visual system has to disambiguate

motion signals from multiple sources by integrating and segmenting appropriately.

Figure adapted from [Albright 1995].

In this thesis we take a task-centric view for the motion estimation problem,

the idea is to scale up models rooted in visual neuroscience and derive a dense

flow optical flow map using them going beyond the stage of “read-outs” or synthetic

stimuli they were originally designed for. This would rigorously test the assumptions

made by models and could provide new insights into probing the visual system itself.

We also examine what could be implications of taking task-centric view to interface

studies in neurosciences and computer vision in general.

1.4 Organization and main contributions

The thesis is organized into four parts.

PART I is a review of the studies in low level motion estimation. We begin by sum-

marizing the computational problems that visual system encounters towards
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dense motion estimation, we present relevant findings from the experimen-

tal investigations at both psychophysical and physiological levels. We briefly

present key mathematical models that describe the experimental observations

related to motion detection and integration. We discuss open questions that

existing models do not address.

PART II is centred on scaling up models rooted in biology for motion estimation in real

world scenarios using feedforward filtering framework. We describe a minimal

feedforward model representative of pattern motion selective cells in MT area

and evaluate the model performance using standard computer vision dataset.

A form based pooling mechanism has been developed and it is demonstrated

that it improves the performance of the model. A regression based decoder

has also been studied to exploit machine learning techniques to improve the

flow estimation. We discuss a key question, whether we need to incorporate

additional cell types or the network effects in the form or recurrent interactions

have to be better captured?

PART III we explore the role of interplay between recurrent interactions and driving

input on tuning properties of the cell within a network using neural fields

formalism. Using bifurcation theory and a structured input representative

of standard stimuli used in physiological and psychophysical experiments we

characterize the behaviour of the model under various connectivity regimes.

The numerical results are used to explain various kinds of temporal dynamics

and behavioural switches observed in MT tuning properties.

PART IV We present task-centric summary of models in neuroscience by considering

additional tasks, namely sensing and segmentation, followed by perspectives

on interfacing biological and computer vision and a publication list resulting

out of this work.





Part I

Studies in visual motion

processing





Chapter 2

Visual Motion Estimation

“The level of computational theory is fundamental to understanding
vision. From an information processing point of view, computations that
underlie perception depend more upon the computational problems that
have to be solved than upon the particular hardware in which their solu-
tions are implemented."

- David Marr, Vision

“Computational theory enables us to formulate a number of empirical
questions that would not otherwise arise, and it opens the way for a ratio-
nal investigation of the phenomenon rather than the confused cataloguing
of its phenomenology."

- S. Ullman, The interpretation of structure from motion

We live in a dynamical world, in which detection, intepretation and organization

of the changes in the environment are essential for survival. Vision motion informa-

tion serves several functional needs in this regard [Nakayama 1984]. For example, it

is used to detect an approaching predator or to track and hunt a prey, for naviga-

tion, to understand ego-motion etc. However, the motion information is not readily

available to the visual sensing devices, in either biological or artificial systems. It

has to be estimated from the spatio-temporal patterns of light that is projected onto

the two dimensional sensor (retina/camera) from the moving world. The problem

of estimating the displacement of the scene elements, pixels or objects in the im-

age plane is referred to as optical flow estimation and is a non-trivial problem with

several computational challenges.

The computational difficulty is also evident from the fact that biological visual

systems, ranging from small insects to complex ones like primates, devote consid-

erable amount of neural resources to motion processing. Owing to the scientific

curiosity and application potential, this problem has been well studied in to both

artificial and biological vision. Although, it is clear that processing constraints in bi-

ological systems are different from those in an artificial vision system, they share the

goal of extracting motion information from a very similar input of temporally vary-

ing intensity patterns. Given the evidence that computations analogous to optical

flow estimation are performed by low-level sensory processing systems in biological

vision, we consider understanding flow computation as a first step in understanding

motion perception. In this chapter, we begin by summarizing the computational
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challenges that underlie visual motion estimation with the conviction that identifi-

cation of the fundamental computational challenges would give us a way not only to

provide an organized presentation of the literature but also a key to probe biological

vision solutions and to test the efficacy of the proposed models.

2.1 Computational challenges in motion estimation

We can appreciate the difficulties in optical flow estimation by analysing few cases:

consider a simple scene containing few dots moving diagonally upward as shown in

Fig. 2.1. The task of optical flow estimation would be to assign displacement vectors

to each of the dot within the scene, thus one needs to be able to match the dots in the

frame captured at time (t1) to the one captured after at time (t1 + δt). Assuming

rigid motion, this assignment is achievable only as long as the dots are distinct,

thanks to either brightness or color as shown in Fig. 2.1.a. But, if the dots have

similar appearance, one can not reliably estimate the displacement vectors without

taking additional constraints into consideration as the matching is ambiguous as

shown in Fig. 2.1.b.

Figure 2.1: A scene illustrating the ambiguity in optical flow estimation. In (a), the

motion of the dots is uniquely identifiable because correspondence could be estab-

lished between the pixels across the temporal samples. In (b), a variety of motions

could result in the configurations observed making the estimation ambiguous unless

additional contextual information is available to estimate the flow.

Considering the surrounding of a pixel is helpful to resolve ambiguities in motion

estimation as long as there are distinct patterns of brightness changes in its vicinity.

For example, in Fig. 2.2.a, unique motion vectors could be estimated by considering

that a group of dots within a small window have similar motion. Even after consid-

ering local context of a pixel, absence of 2D pattern features still renders the motion

estimation problem as ill-posed and gives raise to two different computational prob-

lems referred to as the blank wall problem and the aperture problem. The scenario

in which there is no brightness change is referred to as the blank wall problem: in

this case the motion is not observable for a local detector as illustrated in Fig. 2.2.b.

The scenario in which there is brightness changes only along one direction is referred

to as aperture problem: in this case the velocity estimate along the direction of the

contrast ambiguous as illustrated in Fig. 2.2.c. Note that the aperture problem is a

much more generic term and is used widely in other scenarios where the observation

window is limited and thus renders the available information ambiguous.
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Figure 2.2: Illustrating scenarios considering local contextual information to resolve

ambiguities in optical flow. In (a), the motion of the dots is uniquely identifiable

by assuming that dots within a small neighbourhood (in orange) to have similar

motion. In (b), considering local neighbourhood does not help in the absence of

local contrast, known as the blank wall problem. In (c), velocity is resolvable only

along the direction orthogonal to contrast. In (d), assuming uniform motion in a

local neighbourhood would lead to erroneous estimates due to presence of multiple

motion components.

The third aspect pertains to the selection of the local context itself. The selection

problem arises when there are instances in the scene where multiple components of

the motion are present within the neighbourhood of the pixel. Such instances can

be observed at occlusion boundaries, where the object is in motion and background

is stationary or motion boundaries where there are multiple motion surfaces in the

vicinity as illustrated in Fig. 2.2.d or an extreme case of transparency, where multiple

motion surfaces are present/perceived at the same location. In all of these scenarios,

selection of the patterns to establish a context and representation of motion surfaces

are difficult problems to address.

2.2 Investigations into biological vision

How does the brain solve these problems for motion estimation? What kind of

algorithmic approaches does it take? What are the neural substrates implementing

the approach? These questions have inspired a variety of studies using rich variety of

techniques and stimuli. Here, we briefly overview psychophysical and physiological

explorations of these questions. Psychophysics is particularly interesting as it is

non-invasive and has great potential to give insights into the representational and

information processing strategies. Physiology gives us direct access to probe neural

computation.

2.2.1 Psychophysics

Early investigations into the computational mechanims underlying motion estima-

tion came in the form of behavioral experiments involving Chlorophanus beetle by

Hassentein and Reichardt [Reichardt 1961]. The beetle was glued to a stick and

mounted on a y-globe. It was presented with moving stimuli and was tested for its

behavioural responses such as direction in which it turns in response to the stimuli,

see Fig. 2.3 for an illustration. The observations lead to the formulation of a basic



16 Chapter 2. Visual Motion Estimation

Figure 2.3: Illustration of the early behavioral experiments on insects leading to the

formulation of correlation type detectors. Figure adapted from [Poggio 2011].

correlation type detector, where the inputs from two spatially separate samples are

compared against each other to estimate motion. The fundamental structure of

the correlation-type detectors has been modified further to account for the behav-

ioral observations from human perceptual experiments involving moving sinusoidal

gratings of varying contrasts as input [Van Santen 1984], where the subjects were

requested to report the direction of motion that is being perceived. Currently, it is

a dominant view that early motion detectors are most sensitive to motion orthono-

gal to the local image constrast. It would imply that the visual system could be

generating several 1D motion cues, as the detectors are not very sensitive to mo-

tion information along the contrast orientation. However, the motion information

is ambiguous when only 1D cues are considered, which has long been known to the

experimentalists [Wallach 1935]. The system has to combine multiple cues that are

available in the stimuli to eliminate ambiguity and reliably estimate motion.

2.2.1.1 Phenomenological rules describing 1D/2D cue combination

How does visual system disambiguate motion? There are two aspects to this ques-

tion, how multiple 1D cues available locally could be combined and how 2D motion

signals are integrated across space and time to yield a percept? The first question

has been studied extensively using spatially overlapping moving gratings, known as

plaids, in various configurations [Adelson 1982, Gorea 1991, Yo 1992]. Plaid stim-

uli are ideal to study this question as they are analogous to natural conditions of

oriented contours moving in front of each other. Interestingly, the behavioural re-

sponse of the visual system to plaid patterns is not-so straight forward to interpret

and depends on the parameters of the stimuli.

Two possible rules have been proposed for determining perceived motion direc-

tion in terms of the velocities of the constituent components in plaid patterns, the

system could take a simple vector average (VA) or follow a more complex approach

in the form of intersection of constraints (IoC) as illustrated in Fig. 2.4. The plaid

stimuli themselves are classified into two categories based on the position of the di-

rection vector predicted by IoC rule with respect to components. In Type I plaids,
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Figure 2.4: Figure illustrating plaid patterns and associated rules that describe

component integration.

IoC direction is located in between the component velocity vectors. In Type II

plaids, it falls on the same side. This has been illustrated in Fig. 2.4 (c and d).

[Wilson 1992] claim that there is a qualitative difference in the appearance of the

Type I and Type II plaids: Type I plaids seem to be “rigid” whereas Type II plaids

apear to be “fluid like (blobs)”. Although the two types of plaids differ perceptually,

the main reason for the distinction is that in Type II plaids direction predicted by

VA is significantly different from the one predicted by IoC and the perceived direc-

tion tends to be closed to the IoC direction. In unikinetic plaids, an extreme case,

where one of the grating pattern is stationary, the IoC rule is not valid, as there is

only one component in motion. However, the percept could be explained by the mo-

tion of the 2D features (blobs at intersections) and stands as an evidence that both

a combination of 1D velocity estimation mechanisms and pattern velocity (blobs)

information are being used by the visual system simultaneously [Gorea 1991]. This

re-introduces the debate whether 2D motion cues are always decomposed into 1D

constituents in the early stages of detection? An instance of plausible change in the

algorithmic approach based on the context.

Figure 2.5: Figure illustrating perceived changes in direction of motion of the grating

due to the change in 2D cue information influenced by the shape of the aperture.

Figure adapted from [Wallach 1935]

Various forms of interactions among 1D and 2D cues can be readily seen if

we look into the ingenious experiments performed by Hans Wallach [Wallach 1935,

Wuerger 1996], where drifting lines and gratings under different apertures were pre-

sented to the observers. It has been reported that perceived motion direction of
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the line was along the orientation of the edge of the aperture it intersected. If the

two aperture edges that intersected simultaneously had different orientations, then

the percept was reported along an intermediate direction. Sharp transitions in the

percepts were also reported if the intersection angles changed due to the the shape

of the aperture, these are illustrated in Fig. 2.5.

The selection or integration choice has also been found to be influenced by seg-

mentation cues available with-in the images. For instance, we know from physics

that when two transparent surfaces are physically overlaid, the resulting intensity

that could be observed is neighter too bright nor too dark. This kind of prior in-

formation could be taken into account by visual system in grouping the available

cues. [Stoner 1990] tested this using plaid patterns by modulating the luminance

at the intersections. They found that if the luminance levels at the intersections

were within a range to support two transparent surfaces being overlaid, transparent

motion is perceived. Breaking away from that luminance range either by setting

intersections to be too dark or two white increased the likelihood of a coherent

percept. The stimuli are illustrated in Fig. 2.6.

Figure 2.6: Figure illustrating modulations of the intensity at intersections of the

plaid patterns. If the intersections are too dark or too light, the percept is found be

dominantly coherent and in between the percept is found to be dominantly trans-

parent. Figure adapted from [Stoner 1990]

Similarly, the visual system seems to selectively consider available 2D cues gen-

erated, at times even discarding some of them. This can be readily observe in case of

the chop-sticks illusion [Anstis 1990], as illustrated in Fig. 2.7. In the configuration

where the line-endings are visible, the 2D cues generated at the intersection of the

moving bars are discarded and the bars are perceived to be sliding over each other.

In the configuration were line endings are occluded by an external surface, the 2D

cues generated at these intersections are discarded and the bars are perceived to be

moving together along the direction of motion of their intersection.

In short, the motion percept seems to be a result of interactions among different

kinds of cues that are available in the stimuli. If several different 1D cues are

available locally, then cues are integrated along the feature space (motion) and in

the regions where local cues are inadequate, 2D cues from distant locations are being

relied upon. In this process, contextually the 2D cues are combined, discarded or

selected based on form based cues.
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Perceived direction

Motion direction

(a)

Perceived direction

Motion direction

(b)

Figure 2.7: Illustrating contextual selection of 2D motion cues. (a) Percept is dom-

inated by 2D cues at the end of the bars. (b) Percept is dominated by 2D cues

generated due to intersection of the bars. The available 2D cues are highlighted

using dotted orange boxes.

2.2.1.2 Dynamical changes related to motion integration

The analysis of the reported percepts could shed a light on the eventual solution

adopted by the visual system, it does not shed light on how the visual system arrives

at the solution itself. In order to gain deeper insights, the temporal evolution of per-

ceptual capacities has been exploited by psychophysicists. Perceptual computations

are better understood by measuring reaction times, limiting viewing times, or using

clever tricks such as masking to interrupt perceptual processes at different times.

2.2.1.3 Early dynamics in solving aperture problem

[Castet 1993] probed the estimated direction of motion of moving bars of varying

lengths when they are presented for very short intervals of about 170ms and found

that accuracy decreases as the length of the bar increases. [Wallace 2005, Born 2006]

recorded the behavioural responses in the form of eye tracking when subjects were

asked to follow the center of a moving bar in case of both humans and trained

monkeys. These experiment revealed a striking trend in terms of accuracy of the

motion direction estimation, with respect to time. Initially the ocular flow response

followed the direction orthogonal to the tilt of the bar and got slowly adjusted to the

right direction with gradually decreasing angular error. This is very striking as it

hints at the possibility of visual system solving the aperture problem by propagation

of non-ambiguous cues across stimuli rather than just selecting informative areas in

the stimuli and ignoring the task of dense field estimation. These observations are

illustrated in Fig 2.8.

In the case of translating bars, there are only two kinds of cues, ambiguous 1D

cues at the center and unambiguous 2D cues at the edges. Translating diamonds

are bit more interesting stimuli, bars present with in the diamond have different

slants, thus the 1D directional estimates from the ambiguous parts are different. We

thus have a scenario of two contrasting 1D cues, along with corners which provide

unambiguous 2D motion estimates. In this case, the initial ocular responses were
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Figure 2.8: Illustrating early dynamics of motion estimation reflected in ocular

response to moving bars, adapted from [Tlapale 2011a].

found to follow a vector averaging rule and then later on, have a course correction

towards true direction of the object [Wallace 2005] better predicted by IoC rule.

This observation once again re-emphasizes the fact that local ambiguity is resolved

by considering all the available cues.

2.2.1.4 Slow changes in the percept over prolonged stimulation

Setting aside early dynamics, at a slower time scale, prolonged stimulation (10s of

seconds) using certain stimuli was found to elicit multiple percepts over time, this

is referred to as perceptual multistability. When, it comes to motion perception,

two important stimuli could be discussed. One being a classical barber pole and

other being plaid patterns viewed under circular aperture. When a drifting grat-

ing patterns are observed through a symmetric square aperture, under prolonged

exposure, horizontal, vertical or motion orthogonal to grating orientation are per-

ceived [Wallach 1935] as illustrated in Fig. 2.9.

Figure 2.9: Illustrating a square barberpole stimulus and reported perceptual

switches overtime.

In the case of plaids, the visual system could either group the two component

motions as a single pattern or could treat the two moving components as separate

ones and consider the motion surfaces to be transparent. Experimentally, it has

been found that coherent pattern motion along the direction predicted by IoC is

perceived initially. Upon prolonged stimulation, the percept was not only found to

change to a transparent one but also to switch between these two states of coherency

and transparency periodically as illustrated in Fig. 2.10.
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Figure 2.10: Illustrating possible percepts for a plaid stimuli and perceptual switches

overtime.

2.2.2 Physiology

In this section, we present a brief overview of vast amounts of literature that con-

cerns neural correlates of the motion estimation with focus on areas V1 and MT, as

they have long have been associated with low-level motion percepts. The early dis-

coveries of neural correlates to motion detection came from the seminal experiments

by [Hubel 1965, Hubel 1968], who discovered cells in Cat’s visual areas 18 and 19

which responded to motion of spots and oriented contours followed by similar obser-

vations in the visual area V1 in striate cortex of the monkey. A brief illustration of

the observation is presented in Fig. 2.11. The cells respond by firing vigorously when

an oriented bar moves with in small region (usually perpendicular to orientation)

but are silent when the motion direction is in the opposite direction.

Figure 2.11: Illustrating the responses of V1 direction sensitive cells when stimulated

with oriented bars moving in different directions.Figure adapted from [Hubel 1968].

These observation lead to the early models of the motion detection

by [Movshon 1978] and later were found to be analogous the models describing
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motion perception in case of gratings and sinusoids by [Adelson 1985]. Thus, link-

ing percepts and physiological responses in cases of simple stimuli such as moving

gratings and leading to the popularity of spatio-temporal energy models. These

early discoveries motivated further experiments with increasingly complex stimuli.

A natural and popular extention to the stimuli such as moving bars and gratings is

plaid patterns: physiological experiments using plaids revealed a variety of responses

in area MT [Movshon 1985].

2.2.2.1 Motion tuning properties of MT neurons

The middle temporal visual area (MT or V5) is rich with cells which are responsive

to moving stimuli and are often selective to the direction of motion independent

of orientation of the underlying contrast. This is different from cells in V1, which

respond well when the direction of motion is orthogonal to the contrast. Thus,

MT is believed to the region in the brain where aperture problem is solved. But,

understanding the response selectivity of MT is not so straight forward. The cells

are found to change their response selectivity dynamically and also with respect to

the stimuli used to probe them. Here, we brief few observations of interest.

2.2.2.2 Prominent tuning characteristics

Pattern and Component cells Traditionally preferred direction of MT neurons

is tested using moving gratings and then the cells are further probed using stimuli

such as plaids [Movshon 1985] or overlapping RDKs [Snowden 1991]. However, the

cells are classified into two different classes based on their tuning properties to

plaids (comprised of overlapping grating stimuli). The cells which exhibit a uni-

modal response in the direction domain to the plaid patterns are referred to as

pattern cells as they are tuned to direction of motion of the pattern as whole and

are believed to be solving the aperture problem. Cells which respond with bimodal

lobes to plaids are referred to as component cells and are believed to play a role in

perception of transparency [Snowden 1991].

Side Bias or Component selectivity For a long time, the above two types of

tuning were thought to be representative of component motion or pattern motions

in the driving stimuli. However, recent investigations by [Xiao 2015] have shown one

more type of tuning where cells preferred one of the components instead of pattern

selectivity or being reponsive to either of the components. Fig. 2.13 illustrates the

different kinds of selectivities obtained by [Xiao 2015] by averaging the firing rate

responses over a period of 1000 ms when cells are stimulated with overlapping RDKs

with two different directions of motion.

To summarize, at least, three distinct types of tuning behaviour are observed

when MT cells are probed with stimuli comprising of overlapping motion compo-

nents. The cells could merge the constituent components, respond to either of the

components or select one of the components, which is analogous to what has been
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Figure 2.12: Illustrating traditional classification of MT cells based on the qualita-

tive tuning responses to gratings and plaid stimuli. (a) Experimental data showing

the tuning response of component cell and pattern cells as a polar plot represent-

ing the firing rate to grating and plaid stimuli, adapted from [Movshon 1985]. (b)

Illustrating various plaid patterns formed by varying angles between the constitu-

tent components, (c) Illustrating responses of sampled pattern and component cells,

component cells exhibiting a bimodal tuning curve with respect to motion direction

and pattern cells exhibiting a single peak. (b) and (c) adapted from [Rust 2006].

Figure 2.13: Illustrating different kinds of tuning curves exhibited by MT direction

selective cells when stimulated with a set of overlapping RDKs. In blue and green

are the responses of the cell when only one of the components of the motion is

present and in red are the response of the cells to overlapping random dots. Figure

adapted from [Xiao 2015].

also observed psychophysically. How each of these tuning behaviours is relevant in

solving the aperture problem or representing pattern versus transparent percepts is

an open question.
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2.2.2.3 Temporal dynamics

MT cells are found to exhibit several different kinds of dynamical changes in the

tuning behavior: their response selectivities were found to emerge temporally and

their tuning properties were shown to change depending on the input type and

context [Pack 2008]. [Pack 2001] using an array of moving bars as stimuli have

demonstrated that early responses of MT neurons are dependant upon the contrast

orientation while late responses show true motion direction selectivity independent

of the orientation of the bar as illustrated in Fig. 2.14.

Early responses (~50ms 
after onset of responses)

Late responses (~1500ms 
after onset of responses)

(b) (c)(a)

Stimuli 

Figure 2.14: Figure illustrating temporal emergence of the tuning behavior with ori-

ented bars. (a) An array of moving bars stimuli used to probe MT tuning, (b) Early

responses of the MT neurons demonstrating that neuron has a preference to left-

oblique bar either moving downwards or leftwards, showing dependence on contrast

orientation, (c) Late responses demonstrating the motion direction preference of the

neuron independent of the contrast orientation. Figure adapted from [Pack 2001].

[Pack 2004] demonstrated that MT firing rate or response selectivity changes

slowly in the presence of an aperture. It has been shown that the aperture has no

impact on the neuronal selectivity for the first 40-60 ms and if one considers a longer

time window of about 200-1000 ms, the neuron seems to fire for any motion direction

that contains a motion component along the elongated edge of the aperture. The

Fig. 2.15 shows the temporal changes in the tuning of MT cells when they were

recorded with moving gratings presented behind an aperture.
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Figure 2.15: The aperture shape influences the late response tuning characterisitics

of the MT neurons. (a) The prefered direction of motion for the MT cell when the

grating is presented under a square aperture. (b) In the initial time period of around

40ms, the MT neuron still responds to the prefered direction φ = 450 even when

the grating is presented under a vertically elongated aperture showing little impact

of the aperture shape. (c) Late response, over a period of 200-1000ms the cell is

shown to be reponding to any motion direction which has a component of motion

along the elongated side of the aperture. Figure adapted from [Pack 2004].

While the previous two instances of the temporal changes in the tuning could

be attributed to the spatial integration of the cues for the aperture, [Smith 2005]

have demonstrated that even the characteristic tuning behaviours exhibited by the

MT neurons such as pattern and component selectivity emerge over a time of 60-

80 ms. Considering the z-score, which computes the similarity of the tuning curve

with either pattern like response or a component like response, they elucidated

that component cells respond faster than pattern cells by about 6 ms and both

pattern selectivity and component selectivity of the cells emerge gradually as shown

in Fig.2.16.
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Figure 2.16: Illustrating the temporal emergence of the response selectivities of

pattern and component cells based on z-score computed over different time windows,

figure adapted from [Smith 2005].

Similarly, [Xiao 2015] have demonstrated the temporal evolution of tuning us-

ing overlapping RDKs as illustrated in Fig.2.17, which by far is the most detailed
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presentation of the dynamically emergent behaviour of the MT direction selectivity.

Initially the responses appear to be biased towards a VA direction and later on could

emerge either as a side-biased or component selective.

Figure 2.17: Illustrating the temporal evolution of the response selectivities of MT

neurons when stimulated with overlapping RDKS, initally the response was observed

to be biased towards a Vector Average direction and later on different types of se-

lectivitieis such as side bias of two peaked responses were emergent. Figure adapted

from [Xiao 2015].

MT dynamics seems to follow the dynamics of the reported percepts and ob-

served behavioural signatures in terms of eye movements. However, how the popu-

lation response represents the percept remains ambiguous as the tuning behaviour

of the sub-populations such pattern cells, component cells or side-biased cells is dif-

ferent and their role in the eventual percept is not very clear and more over the

population responses are obtained by spatial aggregation.

2.2.2.4 Neural representation of coherent and transparent percepts

Eventhough neural correlates of coherent percepts have been found in the form of

pattern direction selective cells in MT, it has remained unclear, how the visual

system represents transparency? The early conjecture being that pattern direction

selective cells represent coherent motion, component direction selective cells could

be signalling transparent motion and spatially averaged population responses were

considered to reflect the percept. That is, if the spatially averaged population

tuning of the MT direction selective cells has two peaked response, it could be

signalling transparent motion or if it has a single peak, it could be signalling pattern

motion. Early experimental evidence supporting this conjecture came in the form

of the experiment by [Snowden 1991], in which enhanced component cell activity
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was reported when the cells were stimulated with plaid patterns whose intensity at

the intersections were modified to support transparency as illustrated in Fig. 2.18.

Figure 2.18: Illustrating enhanced activity in component cells when stimulated with

plaid patterns evoking a transparent percept. (a) Brightness at the intersections

found to play a critical role in percept, if modulated to support the levels that could

be expected from physically transparent surfaces, it has been found to evoke per-

ceptual transparency. (b) Responses of pattern and component cells under different

conditions of the brightnes at intersections. Figure adapted from [Snowden 1991].

This conjecture was challenged later on by other experiments. [Treue 2000] has

found that population response to RDKs giving raise to a transparent percept failed

to exhibit bi-modal tuning. [Treue 2000] further suggested that width of the tuning

is reflective of the transparency rather than the number of peaks and provided

metameric stimuli made up of several different combinations of RDKs as supporting

evidence. Different motion stimuli combined such that their overall tuning width is

identical were found to be evoking similar percepts as illustrated in Fig.2.19.

This hypothesis was found only relevant for RDKs as [McDonald 2014] observed

that, the population response profile for transparent dot fields was narrower than

that was observed for coherent plaids, thus one would be unable to decipher the

number of motion components perceived directly based on width of the population

tuning curves. This lead to further recommendation made by [McDonald 2014] that

one needs to take into account the tuning behaviour exhibited by sub-population

of the pattern direction selective cells. This claim has been supported by their ex-

perimental finding that pattern direction selective cells exhibit uni-modal tuning for

plaid stimuli and bi-modal tuning for superimposed RDKs as illustrated in Fig. 2.20.

Countering the observation that pattern cells could play a vital role in decoding

percepts no consistent transition in the tuning behavior was found when cells are

stimulated with RDKs versus plaids [Xiao 2015], different cells classified as aver-

aging, side biased or two peaked based on their responses to RDKs were found to
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Figure 2.19: Illustrating hypothesis that population tuning width could encode

perceptual transparency. (a-d) Revealing hypothetical tuning curves obtained by

linear combination of gaussians representative of the component tuning. (e) Pop-

ulation tuning for overlapping RDKs with different degrees of component sepa-

ration. (f-g) Unimodal population tuning curves observed in case of transparent

percepts. (h) Metameric stimuli having identical population tuning obtained via

different combinations of components and evoking similar percepts. Figure adapted

from [Treue 2000].

Figure 2.20: Illustrating the unimodal and bimodal tuning exhibited by pattern

cells reflective of the percepts evoked with plaid and RDK stimuli. Figure adapted

from [McDonald 2014].

exhibit either pattern selectivity on component selectivity when tested with plaid

patterns as shown in Fig. 2.21. Also, these sub-groups of direction selective cells have

more complex behaviour as tuning curves exhibit a single component selection be-

haviour in the form of side bias going beyond the uni-model (pattern) or bi-modal

(component) selectivity that have been reported so far. These observations raise

several questions, what is the contribution of each of these tuning behaviours to an

eventual percept? Are changes in tuning behaviour a result of an interplay between

driving stimuli and recurrent interactions within the network? Do we need to take

a deeper look into the idea of spatially segregating the population responses?
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Figure 2.21: Illustrating the behavioural transitions of different sub-populations

when stimulated with RDKs versus Plaids. There is no consistent behavioural shift

in pattern or component selectivity with plaids to sub-types identified using RDK

stimuli. Each graph illustrates the behaviour the neurons classified to be one of the

sub-types with RDK stimuli.

2.2.3 Consistent tuning behaviour across stimuli type

One of the characteristics of the pattern motion computation is that velocity esti-

mates are expected be independent of the underlying pattern/image structure. This

follows from the observation that once the aperture problem is solved, the cells are

expected to be tuned to the velocity features. In physiology, RDKs and plaid pat-

terns are the dominant types of stimuli used to study integration and segregation

of motion. So, it is normal to ask whether the velocity tuning behavior exhibited

in one class of stimuli translates to the other class thus being able to generalize the

hypothesis to complex naturalistic stimuli. However, it is very interesting to notice

that very few experiments have been performed testing the tuning behavior of the

MT cells with both types of stimuli simultaneously [McDonald 2014, Xiao 2015].

Once, the direction preference of MT cells is established using gratings, experiments

are typically performed either with plaid patterns or random dots independenlty,

very little is known about the transfer of tuning properties across stimuli types.

Do pattern motion selective cells also get tuned to vector average or IoC direction

when tested with overlapping RDKs? Recent studies have performed this test with

contradicting results [McDonald 2014, Xiao 2015]. Whilst, [McDonald 2014] have

shown that response behavior of the pattern cells and component cells is essentially

inverted when stimulated with RDKs versus plaids, [Xiao 2015] have found that not

only there is no correspondence between the tuning behaviour for pattern and com-

ponent cells but also it was not possible to predict a consistent transformation from

tuning behaviour exhibited for RDKs to one a type of tuning behaviour in plaids.

Even though sub-populations exhibiting different kinds of tuning are associated with

percepts, lack of consistent tuning across stimulus types needs careful examination

as it could signal that observed tunings are result of network effects under different

kinds of external stimulations.

To summarize, neural correlates of a solution to the aperture problem have been

found in MT area in the form of sub-populations of direction selective cells respond-



30 Chapter 2. Visual Motion Estimation

ing to pattern motion and the temporal dynamics of the firing seem to qualitatively

mimic reported percepts and behavioural responses at different time scales. How-

ever, the observations have been deeply coupled with stimuli type used to probe

such as RDKs or plaid patterns leaving several important questions open. For us

to understand low level vision, which essentially operates in a complex naturalistic

environment, we need to arrive at a unified understanding going beyond stimulus

categories. In order to do so, we need to characterize the mechanisms that underlie

the temporal dynamics and behavioural bifurcations with respect to the stimuli. In

the next section, we discuss mathematical models that attempt to capture observa-

tions that have been described so far.

2.3 Models of motion estimation

Models of pattern velocity (global velocity) estimation consider it to be a two

stage process [Adelson 1982, Grossberg 2001, Bayerl 2004]. In the first stage, lo-

cal velocities are estimated in the direction orthogonal to local contrast (a min-

imal contextual attribute) and in the second stage the constituent local veloci-

ties are combined to compute the pattern velocity. The models which describe

the first stage of motion computation are typically referred to as motion de-
tection models and models describing the second stage are know as motion in-
tegration models. Within the models of motion integration, there are differ-

ent types, phenomenological models [Adelson 1982, Johnston 2013], which explain

how pattern motions are computed based on the constituent components, typ-

ically summarizing reported percepts. Second category being those of mecha-

nistic models which try to explain the neural implementation of phenomenologi-

cal rules [Simoncelli 1998, Bayerl 2004, Tlapale 2011b]. Mechanistic models typi-

cally rely on temporal dynamics (behavioral or neuronal) as a signature for cross-

validating their efficacy in characterizing the neural mechanisms. In comparison

with phenomenological rules, they go beyond the steady state or convergence re-

sults often in the form of reported percepts and try to explain how the neural

system might potentially arrive at the percept or what processes could be responsi-

ble for behavioral dynamics and switches in the percepts. Based on the time scales

they consider, these models could be further classified into two types, first type

considering early temporal dynamics towards motion integration such as the ones

by [Bayerl 2004, Tlapale 2011b] or which focus exclusively on slow scale perceptual

switches [Rankin 2013].

2.3.1 Models of motion detection

How does biological vision systems detect motion or how do we build a motion de-

tector? Studies have identified the minimal criteria to be satisfied by a direction

selective motion detector [Borst 1989]. The motion detector has to have at least two

inputs, a non-linear interaction between the two inputs and asymmetry in the way it

process the two inputs. Two inputs are required as a single input cannot successfully
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discriminate various scenarios such as temporary change in the illumination or mo-

tion in opposite directions. A non-linear interaction is a must to capture temporal

attributes of the signal, in the absence of a non-linearity, the time-averaged response

of the detector would be equal to the time-averaged input signals thus loosing the

information about the temporal sequence of the input. Asymmetry is important to

establish direction selectivity, in the absence of the asymmetry one can switch the

inputs and the detector response would be same, thus loosing direction selectivity.

These three primary components are illustrated in Fig. 2.22.

Figure 2.22: Essential components for development of a motion detector, Figure

adapted from [Borst 1989].

Several motion detection models were proposed in the literature that sat-

isfy the three criteria listed above [Reichardt 1961, Barlow 1965, D. Marr 1981,

Adelson 1985, Van Santen 1985]. Each of them having different roots, for

example [Reichardt 1961] was developed to describe insect behavioral stud-

ies, [Barlow 1965] was developed to explain retinal physiological observa-

tions, [D. Marr 1981] was developed from a computer vision perspective and

[Adelson 1985] was based on human psychophysics. These detectors have a lot

of common steps and have been broadly classified into correlation based and gradi-

ent based [Borst 1989]. Fig. 2.23 illustrates the basic structure of gradient type and

correlation type motion detectors. Interestingly correlation based detectors are pop-

ular in biological vision whilst gradient based techniques are relied upon in computer

vision. A formal equivalence between these different techniques has been already

established [Simoncelli 1991]. In this section, we describe an example of each type

and then discuss how aperture problem is manifested in these models.

Reichardt Detector : The basic Reichardt detector [Reichardt 1961] comprises of

two mirror symmetric units, each of which compute the correlation of time delayed

signal at two separate locations. Theoretically, one of those units is sufficient for

detection of motion. The correlations in the opposite directions are considered and

subtracted from each other (motion opponency) to minimize noise induced corre-

lations. Considering the intensity samples collected by two sensory units located

at two spatial locations (x1, x2) be denoted by Ix1 and Ix2 , then the response of a

Reichardt detector (R) along the direction x1 → x2 can be given by:

R = Ix1(t− ε) · Ix2(t)− Ix1(t) · Ix2(t− ε) (2.1)

Spatio-temporal energy model or Elaborated Reichardt detectors: The basic struc-

ture of the Reichardt detector has been modified later on to include a filtering stage
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Figure 2.23: Structure of correlation type and gradient type motion detectors. Fig-

ure adapted from [Borst 2007].

Figure 2.24: Illustrating the idea of motion as a space-time orientation signal. (a)

Bar moving horizontally, (b) Moving bar observed in spatio-temporal domain, in

resembles an oriented plane in spatio-temporal domain (x-y-t) and an oriented line

in x-t domain. (c) Quadrature filters to detect contrast orientation in x-t line,

effectively signalling motion.

instead of intensity based correlations to account for contrast dependance on per-

ception [Adelson 1985, Van Santen 1985]. In these extended versions, the output of

the basic motion detection unit could be expressed in terms of “motion energy”. It

is the sum of squared responses of the correlation of input signal with two appropri-

ately chosen quadrature linear filters. The intuition behind these detectors lies in

interpreting motion detection problem as space-time contrast orientation detection

as illustrated in Fig. 2.24.

Typically, Gabor filters are considered for measuring motion energy. Let F odd

and F even be two quadrature Gabor filters given by,

F odd(x, t) = exp

(

− x2

2σ2

)

sin(ωxx+ ωtt) (2.2)

F even(x, t) = exp

(

− x2

2σ2

)

cos(ωxx+ ωtt) (2.3)

The response of these filters to the spatio-temporal input signal I(x, t) is obtained

Rodd = I(x, t) ∗ F odd(x, t) (2.4)
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Reven = I(x, t) ∗ F even(x, t) (2.5)

The local motion energy(M) is extracted by squaring and summing two units

outputs. Since, output of two quadrature filters are squared and summed, motion

energy is independent of phase.

M =
(

R2
odd +R2

even

)

(2.6)

Gradient based Models Instead of the correlation type detectors discussed above,

gradient based models operate by relating spatial and temporal changes in the

brightness signal [Fennema 1979, D. Marr 1981]. The intuition behind these de-

tectors is that brightness change that is to be expected due to an object motion is

proportional to the brightness gradient of the object [Borst 1989]. Considering an

intensity pattern I(x, t), this could be expressed as:

∂I(x, t)

∂t
=

∂I(x, t)

∂x
· dx
dt

(2.7)

The motion velocity along the gradient direction could be expressed as

v = −dx

dt
= −

(

∂I(x, t)

∂t

)

/

(

∂I

∂x

)

(2.8)

2.3.2 Manifestation of aperture problem in motion detectors

In case of Reichardt detector: The basic Reichardt is supposed to detect motion

along the direction in which basic sensory units are aligned. It relies purely based

on delayed correlation of the intensity measures, thus it is susceptible misinterpret

object motion direction depending on the shape of the object. For example, consid-

ering the pair of sensors x1 and x2 that are a part of a detector measuring motion

in upwards direction as shown in Fig.2.25, depending on the shape of the object,

the sensors could be activated even for other motion directions. The detector can

only sense the delay between the activation of the two sensors implying that true

direction or motion of the object can not recovered.

Figure 2.25: Illustrating aperture problem in case of basic Reichardt detector. The

sensor could be activated by a variety of motion directions based on the shape of

the object.

In case of motion energy models: The motion energy measured by the spatio-

temporal oriented filters is a measure of how much the spectrum of the input signal
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overlaps or fall with in the spectrum of the filters. Gabor functions that are used to

describe these filters have a small, spherical spectrum, whereas the spectrum of a

moving object lies along a plane, the orientation of which specifies the object velocity.

The filter responds best to planes that pass through the centre of its spectrum, but

as planes with various orientation can do this, the filters cannot determine the

object velocity as illustrated in Fig. 2.26. This is how aperture manifests itself in

the spatio-temporal energy models.

Figure 2.26: Illustrating the manifestation of aperture problem in case of motion en-

ergy models. (a) Intuition behind Fourier transform, moving grating stimuli as sinu-

soidal waves, (b) Example of a filter used to compute motion energy, (c) Spectrum of

spatio-temporal filters, spherical blobs indicate filter selectivity, spectrum of the ob-

jects with a particular velocity lies along a plane. Figure taken from [Bradley 2008].

In case of gradient based models The velocity information in the gradient models

can be derived in closed form by considering the constant brightness condition. Let

I(x, y, t) denote the measured image intensity at location x,y and time t. Let Ix,

Iy, It denote the partial derivatives of I with respect to x, y and t, respectively,

and let Vx and Vy be the x and y components of the object’s velocity. It has been

shown that IxVx + IyVy = −It, which can be rewritten as (Ix, Iy).(Vx, Vy) = −It.

The intensity derivatives are measurable but we need to estimate Vx and Vy. This

equation is ill-posed as we need to recover two variables from one constraint. Thus

we can not recover true local velocity of the object but can obtain the estimate of

the projection of the velocity in the direction of the gradient.

(Ix, Iy) . (Vx, Vy)
√

(

I2x + I2y
)

= − It
√

(

I2x + I2y
)

(2.9)

2.3.3 Models of motion integration

In the previous section we have seen models of motion detection and manifestations

of aperture problem. In this section we visit mechanistic motion integration models

which propose solutions to the aperture problem.



2.3. Models of motion estimation 35

2.3.3.1 Mechanistic Models

Simoncelli and Heeger’s model : [Simoncelli 1998] proposed a model to explain the

pattern direction selectivity of MT neurons following the Fourier domain based in-

terpretation of the V1 cells given by spatio-temporal energy models [Adelson 1982].

The model considers a grey scale video I(t, x): R+ × Ω ∈ R+ as input, where t de-

notes time, and Ω ∈ R2 is the considered spatial domain. Local contrast is computed

A(t, x) =
[

I(t, x)− Ī(t, x)
]

/Ī(t, x), Ī(t, x) is the average of the stimulus over space

and time mimicking contrast enhancement by retinal ganglion cells. The model

structurally considers feedforward computations by three different sub-population

of cells, V1-simple cells, V1-complex cells and MT pattern cells.

- Response of V 1 simple cells: Let L(n, t) : R+ × 0 denote the linear filter

response to a set of filters along orientations O. L(n, t) = A
x,t∗ sn, sn being

third derivative of Gaussian filters in 28 different orientations. Then the simple

cell responses are given by

S(n, t) =
K1⌊L(n, t)2⌋

∑

m⌊L(m, t)⌋2 + σ1
(2.10)

where σ1,K1 are empirical constants regulating the saturation response.

- Response of V 1 complex cells: Obtained by pooling weighted pooling of the

responses from various V1 simple cells have same space-time orientation and

phase

C(n, t) =
∑

m

c(n,m)S(m, t) (2.11)

- Responses of MT pattern cells: A linear response is computed by selective

pooling of the V1 complex cells which lie along the preferred velocity plane

followed by a non-linear rectification.

q(n, t) =
∑

m

pnmC(m, t) (2.12)

where pnm are set of weights that pool the afferent V1 Complex signals. The

final response is obtained by rectified divisive normalisation. at the output of

the filters, and the output of the MT. It modulates a single cell activity p(t, i)

tuned to any given feature i by the population average

p(n, t) = λ1
⌊q(t, n)⌋2|

∑

m ⌊q(t,m)⌋2 + λ2
(2.13)

where ⌊x⌋ = max(0, x)denotes a positive rectification to account for the firing

rate activity, and λ1,2 are constants.
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Figure 2.27: Illustrating the pooling strategy to resolve aperture problem. (a) Am-

biguity at the level of individual motion energy detectors detectors, (b) Tiling a

velocity plane in the frequency domain using an ensemble of filters tuned to different

contrast orientations, (c) Pooling the responses along a plane to solve the ambiguity

induced by aperture problem. Figure adapted from [Pack 2008, Bradley 2008].

The algorithmic strategy adapted by the model over here is to pool the responses

of V1 cells whose response selectivity lies on the plane in the spatio-temporal

domain. The ambiguity that is faced by the individual detectors is thus overcome

by considering all the evidence that supports a particular object velocity which

is done by considering a set of filters that tile the plane as shown in Fig. 2.27(b).

This model was shown to be successful in explaining tuning characteristics of MT

neurons to gratings and plaid patterns by considering population responses of MT

neurons tuned to different velocities sampling the 2D velocity space. However,

this model does not take into account the recurrent connectivities between MT

neurons and also they do not propose a selectivity scheme as the pooling is spatially

isotropic, thus does not deal with scenarios where components have to be selectively

integrated such such as occlusions and motion boundaries. Another drawback of

this model is that a coherent decoding framework for velocity estimation has not

been proposed, making it difficult to test the efficacy of the mechanisms in realistic

scenes.

Bayerl and Neumann’s model: [Bayerl 2004] proposed that recurrent interac-

tions between V1 and MT can be used to solve the aperture problem by spatial

propagation of non-ambiguous cues. Starting from the input image sequence

I : (t, x) ∈ R+ ×Ω → I(t, x), local motion k1 is extracted using modified Reichardt

detectors. Two filtered images are correlated to estimate population activity:

directional derivatives are used to filter the input:

c1(t, x, α) =
I(t, x)

x∗ δ2αGσ

ε+
∑

β∈O |I(t, x)| x∗ δ2βGσ|
x∗Gσ

(2.14)
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where ε avoids divisions by zero, Gσ denotes a Gaussian Kernel, σ’s are scaling

constants,
x∗ denotes the convolution operator in space and δ2α denotes the second

order directional derivative in the direction α ∈ O

c+2 (t, x, v) =

(

∑

α∈O

c1(t, x, α)c1(t+ 1, x+ v, α)

)

x∗Gσ (2.15)

c−2 (t, x, v) =

(

∑

α∈O

c1(t+ 1, x, α)c1(t, x+ v, α)

)

x∗Gσ (2.16)

The half detectors are then combined by

k1t, x, v =
|c+2 (t, x, v)|+ − 1

2 |c
−
2 (t, x, v)|+

1 + |c−2 (t, x, v)|+
(2.17)

where |x|+ = max(0,x) is a positive rectification, for the activity of neurons is always

positive.

The population activity of the two cortical areas, V1 and MT be denoted by pi,

pi : (t, x, v) ∈ R+ × Ω× V → pi(t, x, v) ∈ [0, 1] (2.18)

where V represents the space of possible velocities. Each function pi can be

interpreted as the state of cortical area retinotopically organised which describe at

each position x the instantaneous activity of a neuron tuned for the velocity V.

m1(t, x, v) = k1(t, x, v)(1 + 100p2(t, x, v)) (2.19)

n1(t, x, v) = m2
i (t, x, v)

∗
vGσ (2.20)

p1(t, x, v) =
n1(t, x, v)− 1

2|V |

∑

w∈V n1(t, x, w)

0.01 +
∑

w∈V n1(t, x, w)
(2.21)

n2(t, x, v) = p21(t, x, v)
∗

x, vGσ (2.22)

p2(t, x, v) =
n2(t, x, v)− 1

2|V |

∑

w∈V n2(t, x, w)

0.01 +
∑

w∈V n2(t, x, w)
(2.23)

where mi and ni are intermediate stages to compute pii, k1 is the local motion

input.
∗
v denotes convolution with respect to the spatial domain and with a Gaussian

whose standard deviation is o.75 and
∗

x, v denotes convolution with respect to the

spatial and velocity domains with a Gaussian whose standard deviation is 0.75

(velocity) and 7 (spatial).

The algorithmic strategy adapted by this model is to solve the aperture problem

by propagation of unambiguous cues from spatially distant regions using strong

feedback from MT cells with large receptive fields. This is achieved by considering
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a form independent local velocity distribution that encodes uncertainty at the V1

stage. The regions with 2D cues generate responses with strong localized peaks

and ambiguous regions generate broad low amplitude distributions. The strong

shunting inhibition sets the network in winner take all mode, allowing enhanced

activity for the non-ambiguous cues arriving via modulatory feedback from MT,

thus solving the aperture problem. This is illustrated in Fig. 2.28. This idea has

been very influential and has been widely considered by other models [Beck 2011,

Tlapale 2011b, Raudies 2011].

Figure 2.28: Illustrating the model of motion integration proposed by [Bayerl 2004].

(a) Computational steps describing processing at V1 and MT stages, (b) Showing

unambiguous motion detected at corners and resolution of the ambiguous motion

estimation along the edge by the model. Figure adapted from [Bayerl 2004].

However, this model ignores few important aspects. At convergence, the activity

of V1 and MT are identical, thanks to the strong feedback coupling. V1 cells have

not been reported to exhibit such a dynamic change in their tuning behaviour.

The second aspect is that a strong feature domain inhibition is considered thus

eliminating the possibility of transparency and only allows modelling of pattern

selective cells. The third aspect is also that, the model relies on explicit 2D cues

available at the V1 stage, thus focussing on the spatial propagation aspects of the

aperture problem. The model does not give much attention to the dynamics of both

motion integration as well as the interplay between the tuning properties of the

selected units and recurrent interactions.

Florian Raudies and Ennio Mingolla’s model: [Raudies 2011] proposed an ex-

tension to the model by [Bayerl 2004] to capture motion transparency where multi-

ple motions are perceived at a single spatial location. This model proposes center-

surround interactions in the velocity domain would allow for co-existence of multiple

activity peaks in MT population responses and thus can capture transparency. The

model is quite complex and considers recurrent interactions between several different
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cortical areas: V1, MT, MST, LIP, each of the stages sharing common computational

steps. Here, we would only discuss some key ideas and limitations instead of giving a

detailed mathematical description of these stages. The model rightly points out that

center-surround interactions are critical in capturing transparency going beyond the

strong shunting inhibition that is typically considered. The center-surround connec-

tivities are chosen such that the population tuning of MT cells closely resembles the

experimental reportings by [Treue 2000]. Co-existing activity peaks in the velocity

domain are obtained by truncating the overall interaction widths. The model also

raises another important issue that in the literature spatially dense decoding has not

been attempted to explain transparency, instead population responses are pooled

across the images and analysed. However, the model does not present results of

spatially dense decoding. Due to the nature of the kernels considered the model

focusses on explain transparency in large stimuli such as patches of random dot

stripes and does not go into details in cases of stimuli such as plaids.

2.4 Discussion and Conclusion

Both physiological and psychophysical experiments explore simplistic stimuli in or-

der to explore the mechanisms of motion integration. While psychophysical exper-

iments have elucidated phenomenological rules of cue combination, physiological

experiments have identified possible neural correlates. However, these rules are for-

mulated on the basis of simplified stimuli in specific conditions and often the models

describing the results are only tested with limited sub set of stimuli. The focus of

the models has not been on recovering the dense optical flow field, so, it is not clear

how the models would be performing in complex realistic scenes and what kind of

improvements need to be taken into account do deal with the complexities.

The first step in developing a scaled up models would be to identify the cell

types to be included. Psychophysical observations of the coherent and transpar-

ent percepts have been weakly linked to different cell types, the pattern cells and

component cells which exhibit uni-modal and bi-model tuning respectively. But

considering this kind of static tuning behaviour by cells has been questioned by re-

cent experimental observations by [Xiao 2015], who showed that tuning behaviours

don’t translate across stimuli. This raises a serious problem of what are the minimal

cell types to be included in a model to explain percept or estimation of optical flow

by integration and segregation? Also, including more and more cell types with dis-

tinct tuning behaviour to account for experimental observations might dangerously

lead to data over fitting and resulting in less insights into the underlying network

computation.

Psychophysical observations at multiple scales using stimuli such as moving grat-

ings and lines under apertures hint at spatial propagation and competition between

different motion cues and which is also reflected in the form of dynamic shifts in

the neuronal selectivity. In feed forward models, such as [Perrone 2008], this kind

of shifts are accounted for by adding additional inputs to the MT cells, either tem-
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porally delayed or in the form of cues from form related areas. But, it fails to

explain the lack of consistent transition in the tuning behaviour when the driv-

ing input is changed. Both, the dynamic shifts in the tuning behaviour and lack

of consistent transition from one stimulus type to other hint a strong role of re-

current interactions. Even though there are spatialized recurrent network mod-

els [Beck 2011, Tlapale 2011b, Raudies 2011] that have been proposed in the liter-

ature, these models consider 2D cues to be either computed in the afferent stages

or rely on empirically chosen connectivities and do not analyse the interplay be-

tween tuning behaviour and driving stimuli. Thus they break a continuum between

local 1D cue integration and form based spatial propagation of the activity. Thus

we need to better understand the local recurrent interactions that could facilitate

spatio-temporal grouping by direction selective MT units. In thesis, I examine the

following questions:

• What is the efficacy of the models proposed in psychophysics/physiology in

dealing with real scenes?

• How to improve the performance of the models?

• How does one explain dynamic shifts in tuning properties?

• How does one capture transitions in the tuning behaviour across stimuli type?



Part II

Feedforward models for motion

estimation





Chapter 3

What can we expect from a

feedforward V1-MT model?

“Testing leads to failure and failure leads to understanding.”

- Burt Rutan, Aviation pioneer

In this chapter, our goal is to scale up a biologically inspired motion estima-

tion model and benchmark it on a state-of-the-art computer vision dataset. In

order to do so, we focus on the V1-MT feedforward model, which is minimal and

can be considered equivalent to the popular and well studied Lucas-Kanade ap-

proach [Lucas 1981] (see [Simoncelli 1991]).The two key contributions of this work

can be stated as follows:

• Proposing a velocity space sampling of tuned MT neurons and a scheme to de-

code the local velocity from the activity of these neurons. Estimating spatially

dense flow field in contrast to recovering a single readout.

• Examining the efficacy of V1-MT feedforward processing in natural image

scenarios. The stimuli used in various psychophysical and physiological ex-

periments that inspired the V1-MT feedforward model are highly homoge-

neous and do not cover the complexities that arise in the case of natural

images [Nishimoto 2011]. Thus the efficacy of the proposed model and inher-

ent limitations in case of natural stimuli are not known. This is explored by

considering Middlebury dataset, which comprises complex stimuli.

In the past two decades, efforts by computer vision researchers have led to

development of a large number of models for the computation of optical flow

(see [Fortun 2015] for a review). In addition to modelling efforts to solve this task,

a prominent achievement in computer vision has been to develop publicly available

benchmarking datasets [Baker 2011, Butler 2012] to evaluate and compare models

in natural image scenarios. These benchmarking datasets have spurred a great deal

of research resulting in new models, however, despite this large amount of work in

this area, the problem still remains open as many of the models either lack consistent

accuracy across video sequences or have a high computational cost.

On the other hand the neural mechanisms underlying motion analysis in the

visual cortex have been extensively studied with a lot of emphasis on understanding

the function of cortical areas V1 [Sincich 2005, Rasch 2013] and MT [Rust 2006],

which play a crucial role in motion estimation (see [Perrone 2008, Bradley 2008,
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Pack 2008] for reviews). Neurons in V1 are found to respond when motion direction

is perpendicular to the contrast of the underlying pattern, while neurons in MT are

found to respond best to a particular speed irrespective of the underlying contrast

orientation and thus are believed to be solving the local motion estimation problem.

Several computational models have been proposed based on the available exper-

imental data. Initially models focussed on motion sensitive cells in V1 (complex

cells). Using the conceptual framework of receptive fields (RF) the responses were

explained using Gabor functions [Daugman 1985], and spatio-temporal motion en-

ergy [Adelson 1985]. Then few attempts were made to recover the motion vectors

directly from the motion energy representation [Heeger 1987, Grzywacz 1990]. One

could call these models as being at the interface between computer vision and biolog-

ical vision. These initial attempts were later on leveraged and extended to explain

the properties of MT neurons by considering a feedforward pooling from V1 cells

followed by divisive normalisation [DeAngelis 1995, Simoncelli 1998, Rust 2006].

Apart from this class of linear-non linear feedforward models other attempts

were made to simulate the information processing by V1-MT layers using lat-

eral or feedback interactions for solving the aperture problem, by considering

a pure velocity space representation and various kinds of local motion estima-

tion [Bayerl 2004, Bayerl 2007b, Tlapale 2010, Masson 2010, Bouecke 2011].

Even though there was some early interaction among the biological and com-

puter vision communities at a modeling level (see, e.g., [Heeger 1988, Nowlan 1994,

Simoncelli 1998]), comparatively little work has been done for examining or extend-

ing the models proposed in biology in terms of their engineering efficacy on modern

optical flow estimation datasets. In this work, we take a step towards filling the

critical gap between biological and computer vision studies (see [Medathati 2015b]

for a more general discussion), focusing on visual motion estimation, leveraging and

testing ideas proposed in biology in terms of building scalable algorithms.

The chapter is organized as follows: In Sec. 3.1 we present our V1-MT feed-

forward architecture for optical flow estimation (called FFV1MT). Our model has

three main steps: The two first steps model V1 cells and MT pattern cells following

classical ideas from the literature. The third step is a decoding stage to extract

the optical flow from MT population response. In Sec. 3.2 we present the algorith-

mic details of this model, which are an essential contribution here, since they allow

this V1-MT architecture to be applied to real videos. In particular, we propose a

multi-scale approach to deal with large ranges of speeds found in natural scenes. In

Sec. 3.3 we evaluate our approach on several kinds of videos. We use test sequences

to show the intrinsic properties of our approach and we benchmark our approach

using the Middlebury dataset [Baker 2011].
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Figure 3.1: FFV1MT Model overview: It is a three-step feedforward model, where

Step 1 corresponds to the V1 layer (obtained by a non-separable spatio-temporal

filtering and a normalisation), Step 2 corresponds to MT layer (obtained by pooling

V1 responses first with respect to θ, then in a local spatial neighbourhood, and

applying a static non-linearity) and Step 3 is velocity estimation (obtained by a

weighted average of MT responses).

3.1 Feedforward V1-MT model for optical flow estima-

tion

3.1.1 General overview

In general, the pattern selectivity of MT cells can be explained by following

two different approaches [Bradley 2008]: the motion computation can be related

to direct 2-D feature tracking mechanisms, or based on fusion of 1-D velocity

cues using intersection of constraints (IOC) mechanisms. For the former ap-

proach, the consequence is that the aperture problem does not affect the mo-

tion processing, though little evidence for a feature-tracking mechanisms are re-

ported [Stoner 1990, Noest 1993, Skottun 1999]. The latter approach is based on

geometric relationships among the local velocity estimates.

The model we study in this chapter is based on a non-linear integration

of the V1 afferents to obtain the MT pattern cells [Pack 2008]. In particular,

the IOC mechanism is indirectly considered through localized activations of V1

cells [DeAngelis 1995, Simoncelli 1998, Rust 2006]. It is a three-step feedforward

model: Step 1 corresponds to the V1 simple and complex cells, Step 2 corresponds

to the MT pattern cells and Step 3 corresponds to a decoding stage to obtain the

optical flow from the MT population response. In term of modelling, Steps 1 and

2 follow a classical view, while Step 3 has been introduced to solve the task of op-

tical flow. An illustration of our model called FFV1MT is given in the figure next

to Tab. 3.1 (see also Fig. 3.1 for a more detailed illustration of the computations

involved).

This model is inspired from previous works from visual neuro-

science [Heeger 1987, Simoncelli 1998, Rust 2006] and in Tab. 3.1, we summarise

the main differences. In the seminal paper of Heeger [Heeger 1987] a first motion

estimation model is introduced to compute the optical flow. Steps 1 and 2 of
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V 1

MT

p
D
ec
o
d
in
g

Model char-

acteristics

[Heeger 1987] [Simoncelli 1998] [Rust 2006] FFV1MT

V1 cell model Gabor filters Third deriva-

tive of a

Gaussian

Direction

space only

Gabor fil-

ters as in

[Heeger 1987]

MT pooling N.A. Yes Yes Yes

MT nonlin-

earity

N.A. Yes Yes Yes

MT popula-

tion sampling

N.A. Dense Direction

space only

Principal axes

only

Decoding Least-square

on motion

energy

No No Linear

Multi scale Yes No No Yes

Coarse-to-

fine

No No No Yes

Table 3.1: Comparison of our model FFV1MT with respect to other most related

work.

our model are similar to the ones presented in [Simoncelli 1998], but in the latter

the optical flow is not estimated. It is worth to note that the model proposed

in [Rust 2006] is described in the parameter space, whereas we present a model in

the (p, t) space that is able to estimate the optical flow of real-world sequences. All

the models, but [Rust 2006], introduce a processing stage to avoid responses to am-

biguous low frequency textures. Finally, we propose an empirical sampling scheme

of the two-dimensional velocity space, which provides competitive estimates while

reducing the computational cost significantly when compared to [Simoncelli 1998].

3.1.2 Description of the FFV1MT model

Let us consider a grayscale image sequence I(p, t), for all positions p = (x, y) inside

a domain Ω and for all time t > 0. Our goal is to find the optical flow v(p, t) =

(vx, vy)(p, t) defined as the apparent motion at each position p and time t.

Step 1 : V1 (Motion energy estimation and normalization) In the V1-layer

two sub-populations of neurons are involved in the information processing, namely

V1-direction selective simple cells and complex cells. Simple cells are characterised

by the preferred direction θ of their contrast sensitivity in the spatial domain and

their preferred velocity vc in the direction orthogonal to their contrast orientation

often referred to as component speed. The RFs of the V1 simple cells are classi-

cally modelled using band-pass filters in the spatio-temporal domain. In order to
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achieve low computational complexity, the spatio-temporal filters are decomposed

into separable filters in space and time. Spatial component of the filter is described

by Gabor filters H and temporal component by an exponential decay function P.

Given the peak spatial and temporal frequencies fs and ft of a receptive field, we

define the following complex filters by:

H(p, θ, fs) = Be

(

−(x2+y2)

2σ2

)

ej2π(fscos(θ)x+fssin(θ)y), (3.1)

P(t, ft) = e(−
t
τ )ej2π(ftt), (3.2)

where σ and τ define the spatial and temporal scales, respectively. Denoting the

real and imaginary components of the complex filters H and P as He,Pe and Ho,Po
respectively, and a preferred velocity vc related to the frequencies by the relation

vc =
ft
fs

, (3.3)

we introduce the odd and even spatio-temporal filters defined as follows,

Go(p, t, θ, vc) = Ho(p, θ, fs)Pe(t, ft) +He(p, θ, fs)Po(t, ft),
Ge(p, t, θ, vc) = He(p, θ, fs)Pe(t, ft)−Ho(p, θ, fs)Po(t, ft). (3.4)

These odd and even symmetric and tilted (in space-time domain) filters characterize

V1 simple cells. Using these expressions, we define the response of simple cells, either

odd or even, with a preferred direction of contrast sensitivity θ in the spatial domain,

with a preferred velocity vc and with a spatial scale σ by

Ro/e(p, t, θ, v
c) = (Go/e(·, ·, θ, vc)

(x,y,t)∗ I)(p, t). (3.5)

Fig. 3.2(a) shows the amplitude power spectra of the spatio-temporal filters

Go(p, t, θ, vc) (the same is for Ge(p, t, θ, vc)) in the frequency domain. The shape

of the amplitude power spectra of the filters’ bank is due to the combination of the

odd and even functions (Ho, He, Po, and Pe) given in (3.4).

The complex cells are described as a combination of the quadrature pair of simple

cells (5.1) by using the motion energy formulation

E(p, t, θ, vc) = Ro(p, t, θ, v
c)2 +Re(p, t, θ, v

c)2,

followed by a normalisation: Considering a finite set of orientations θ = θ1 . . . θN ,

the final V1 response is defined by

EV 1(p, t, θ, vc) =
E(p, t, θ, vc)

∑N
i=1E(p, t, θi, vc) + ε

, (3.6)

where 0 < ε ≪ 1 is a small constant to avoid divisions by zero in regions with no

energy (when no spatio-temporal texture is present). The main property of V1 is its

tuning to the spatial orientation of the visual stimulus, since the preferred velocity

of each cell is related to the direction orthogonal to its spatial orientation.
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Figure 3.2: Representation of the V1 RFs in the frequency domain. (a) The

iso-surface of the power spectra of the considered spatio-temporal filter bank that

models the V1 cells. The spatial radial peak frequency of the filters is constant and

the temporal frequency changes, thus the frequency bands have a cylinder-like shape.

The V1 cells afferent to a population of MT cells for a specific vc are highlighted

in cyan. (b) The weights wd(θ) used to pool the afferent V1 cells. In particular,

the weights refer to a cosine weighting function, with values from -1 to 1 as in the

colormap.

Step 2: MT pattern cells response MT neurones exhibit velocity tuning ir-

respective of the contrast orientation. This is believed to be achieved by pool-

ing afferent responses in both spatial and orientation domains followed by a non-

linearity [Simoncelli 1998]. The responses of an MT pattern cell tuned to the speed

vc and to direction of speed d can be expressed as follows:

EMT (p, t, d, vc) = F

(

N
∑

i=1

wd(θi)Gσpool

x,y∗ EV 1(p, t, θi, v
c)

)

, (3.7)

where Gσpool
denotes a Gaussian kernel of standard deviation σpool for the spa-

tial pooling, F (s) = exp(s) is a static nonlinearity chosen as an exponential func-

tion [Paninski 2004, Rust 2006], and wd represents the MT linear weights that give

origin to the MT tuning. In Fig. 3.2(a) the power spectra of the filters correspond-

ing to the V1 cells afferent to a population of MT cells tuned to a specific vc are

represented in cyan. Such afferent cells are weighted through the wd(θ), as shown

in Fig. 3.2(b).

Physiological evidence suggests that wd is a smooth function with central exci-

tation and lateral inhibition. Cosine function shifted over various orientations is a

potential function that could satisfy this requirement to produce the responses for

a population of MT neurones [Maunsell 1983a]. Considering the MT linear weights

shown in [Rust 2006], wd(θ) is defined by

wd(θ) = cos(d− θ) d ∈ [0, 2π[. (3.8)

This choice allows to obtain direction tuning curves of pattern cells that behave as

in [Rust 2006]. However, considering MT neurones that span over the 2-D velocity



3.1. Feedforward V1-MT model for optical flow estimation 49

space with a preferred set of tuning speed directions in [0, 2π[ and also a multiplicity

of tuning speeds is not necessary to encode velocity. A sampling along the cardinal

axes is sufficient to recover the full velocity vector: since cosine functions shifted over

various orientations (see Eq. (3.8)) can be described by the linear combination of an

orthonormal basis (i.e., sine and cosine functions), all the V1 afferent information

is encoded by two populations of MT neurons (see Eq. (5.1.2)). For this reason, in

this model, we sample the velocity space using two MT populations tuned to the

directions d = 0 and d = π/2 with varying tuning speeds.

Step 3: Decoding In this step we wonder how optical flow can be estimated by

decoding the population responses of the MT neurones. Indeed, a unique velocity

vector cannot be recovered by activity of a single velocity tuned MT neurone as

multiple scenarios could evoke the same activity, but unique vector can be recovered

based on the activity of a population. In this chapter, we present a decoding step

which was not present in [Simoncelli 1998, Rust 2006] to decode the MT population.

We adopt a linear combination approach to decode the MT population response as

in [Pouget 1998, Rad 2011]:







vx(p, t) =
∑M

i=1 v
c
iE

MT (p, t, 0, vci ),

vy(p, t) =
∑M

i=1 v
c
iE

MT (p, t, π/2, vci ).
(3.9)

3.1.3 An extension to deal with discontinuities: The FFV1MT–TF
model

The FFV1MT approach described in this section relies on isotropic spatial smooth-

ing at V1 level and isotropic pooling from V1 to MT. There is no mechanism to deal

with motion discontinuities. In this section, we propose a simple extension of the

FFV1MT model to show how discontinuities could be preserved. The idea is to in-

troduce an iterative diffusion process between MT cells, which could be interpreted

as the effect of lateral connections inside the MT population. The way nearby cells

exchange information depends on their respective tuning speeds and directions, but

it can also depend on the local context of the image. For example, local contrast

and luminance information can modulate neurones characteristics and connections.

To model this idea, we propose a solution based on the trilateral filter (TF)

which is an extension of the linear Gaussian filtering. Bilateral and trilateral filter

have been extensively used in the context of nonlinear image smoothing leading to

many applications (see [Paris 2009] for a review). They provide a simple way to

take discontinuities into account. Considering each population of MT cells tuned to

a specific value of d and vc as a spatial map, the goal is to apply TF in space to

each map EMT (·, t, d, vc). This model is called FFV1MT–TF.

Denoting EMT (p, t, d, vc) by EMT (p) for sake of simplicity, one iteration of TF
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on EMT (p) is defined by:

TFα,β,γ [E
MT ](p) =

1

N(p)

∫

p′∈Ω
fα(‖p− p′‖)fβ(EMT (p′)− EMT (p))

fγ(I(p
′, t)− I(p, t))EMT (p′)dp′,

(3.10)

where

fµ(s) = exp(s2/µ2) s ∈ R, (3.11)

α, β and γ are parameters defining the smoothing properties of TF and N(p) is the

normalising term

N(p) =

∫

p′∈Ω
fα(‖p− p′‖)fβ(EMT (p′)− EMT (p))fγ(I(p

′, t)− I(p, t))dp′.

The interpretation of (3.10) is that, to estimate the new activity of an MT cell lo-

cated at position p after one pass of TF, we average MT cell activities which are close

in space, which have a similar activity, and which correspond to positions having

similar luminance. The resulting filtered energy TFα,β,γ [E
MT ](p) is smoothed while

main discontinuities are preserved and enhanced according to energy and luminance

discontinuities. Several iterations of this filter can be made depending on the degree

of smoothing desired.

3.2 Making the approach applicable to real videos

This kind of V1-MT feedforward architecture presented in Sec. 3.1 was initially

proposed to explain recorded neural activities and mainly applied on synthetic ho-

mogeneous images such as moving gratings and plaids. They were not designed to

be a systematic alternative to computer vision algorithms to work on real videos.

In this section, we propose algorithmic solutions to make this V1-MT feedforward

architecture applicable to real videos so that it could be benchmarked using state-

of-the-art dataset.

3.2.1 Multiscale approach

One critical point in dealing with real videos is to be able to deal with a large

range of speeds. As detailed in Sec. 3.1, the V1-like RFs are modelled through

spatio-temporal filters. In order to keep as low as possible the computational load

of the model, only one spatial radial peak frequency fs has been considered. This

is in contrast with the physiological findings, since information in natural images

is spread over a wide range of frequencies, it is necessary to use a mechanism that

allows to get information from the whole range of frequency.

We propose a multi-scale approach as illustrated in Fig. 3.3. This is a classical

approach used in computer vision. It consists in (i) a pyramidal decomposition with

L levels [J.R. Bergen 1984] and (ii) a coarse-to-fine refinement [Simoncelli 1993],
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which is a computationally efficient way to take into account the presence of different

spatial frequency channels in the visual cortex and their interaction.

Using this approach, the spatial distance between corresponding points is re-

duced, thus yielding to a more precise estimate, since the residual values of the

velocities lie in the filters’ range. This also allows large displacements to be esti-

mated which is a crucial aspect when dealing with real sequences. Interestingly, at a

functional level, there is an experimental evidence that MT neurons seems to follow

a coarse-to-fine strategy [Pack 2001] suggesting that motion signals become more

refined over time.

The equivalence between a multi-scale approach and the corresponding multi-

resolution approach is shown in Fig. 3.4. The multi-scale analysis is performed by

using three banks of Gabor filters with different spatial peak radial frequencies, each

separated by an octave scale. The multi-resolution approach is obtained by itera-

tively low-pass filtering and sub-sampling the input image, then only the outermost

bank of filter (i.e., the highest frequency one) is applied.

3.2.2 Boundary conditions

The problem of boundary conditions arises as soon as we need to consider values

outside the domain of definition Ω. Even with simple Gaussian smoothing, when

estimating results close to the boundaries, one needs to access values outside Ω. This

is solved generally by choosing some boundary conditions like Neumann or Dirichlet.

However, in our case, using such assumptions might introduce some strong errors

at the boundaries. For this reason, we proposed instead to work inside an inner

region denoted by Ωin in which only available values are taken into account (so that

no approximation or assumption has to be made), and then to interpolate values in

the remaining outer region denoted by Ωout. Note that this is an important issue to

consider, especially because we use a multi-scale approach since errors done at the

boundaries at low scales can spread a lot as scales are getting finer.

The way to defined the outer region Ωout is illustrated in Fig. 3.5(a). It is

constructed by first taking into account the region B1 in which V1 cells would need

values outside Ω, and then the regions B2 corresponding to MT cells that would

pool information from V1 cells in B1. So we have Ωout = B1∪B2 and Ωin = Ω\Ωout.

Given this definition of inner and outer regions (Fig. 3.5(b)), the idea is to make all

the estimations in Ωin and to interpolate values in the outer region Ωout (Fig. 3.5(c)).

Given EMT estimated in Ωin, we propose that

EMT (p) =
1

N(p)

∫

p′∈A
fα(‖p− p′‖)fγ(I(p)− I(p′))EMT (p′)dp′ ∀p ∈ Ωout, (3.12)

where A contains pixels at the inner boundary of Ωin (green region) where EMT is

well estimated, function fµ is defined as in (3.11), α and γ are parameters and N(p)

is a normalizing term

N(p) =

∫

p′∈A
fα(‖p− p′‖)fγ(I(p)− I(p′))dp′.



52 Chapter 3. What can we expect from a feedforward V1-MT model?

EV 1 EMT

v1

+

v1+

v2

S0

S2

S1

cδv2

cδv1

cδv0

x,y∗

x,y∗

x,y∗

t∗

t∗

t∗

Warp

Warp

v2

EV 1 EMT

EV 1 EMT

Figure 3.3: Multi-scale approach: In this example, three scales are represented

(L = 3). Pyramidal decomposition is denoted by Sl with (l = 0 . . . L − 1) (l = 0

is the finer scale). At a scale l, the estimated residual optical flow (δ̂vl) plus the

optical flow coming from the coarser scale (vl+1) is used to warp the sequence of the

spatially filtered images at scale l − 1.
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ωx
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≡
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Figure 3.4: Equivalence between a multi-scale approach and the corresponding

multi-resolution approach. This figure shows the amplitude spectra of three banks

of Gabor filters with three spatial peak radial frequencies and eight spatial orienta-

tion: this frequency representation is a slice obtained for a fixed ωt, the (ωx, ωy, ωt)

amplitude spectra of the bank of filters is shown in Fig. 3.2. Processing the image at

full resolution by using the three banks of filters is equivalent to apply the outermost

bank of filters to the three sub-sampled images.

This method is based on luminance similarities using the same idea as developed in

Sec. 3.1.3. Note that other interpolation methods could be used instead.

3.2.3 Unreliable regions

A problem is found with regions having a null spatio-temporal content, which hap-

pens for example in the blank wall problem. In that case, locally, it is not possible to
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Figure 3.5: Illustration of the filling-in approach used to deal with boundary con-

ditions and the unreliable regions. (a) How inner domain Ωin (in grey) is defined

taking into account V1 filter spatial size and V1 to MT pooling. Ωout (in red) corre-

sponds to B1 ∪B2 (see text). (b) Image domain showing the inner region Ωin where

exact computations can be done (i.e., without any approximation), the outer region

Ωout where an interpolation scheme is applied, and an example of unreliable region

explained in (d). (c) Illustration of the interpolation scheme for a pixel p ∈ Ωout,

showing the spatial neighbourhood associated with the spatial support of the inte-

gration and in green the region A which is used to estimate the interpolated values.

(d) Same as (c) but in the case of an unreliable region.

find a velocity. Given a threshold T , a pixel p will be categorised as unreliable if and

only if EMT (p, t, d, vc) < T for all d and vc. For these pixels, the same interpolation

as (3.12) is proposed (Fig. 3.5(d)).

3.3 Results

3.3.1 Parameters settings

Table 3.2 gives parameters used in our simulations. The size of the spatial support

of the V1 RF was chosen so that fine details in real-world sequences at high image

resolution could be processed. V1 and MT RFs process the visual signal within

an average time of 200 ms [DeAngelis 1995, Pack 2001], which corresponds to five

frames for a standard video acquisition device, thus we have chosen the temporal

support of the filters in order to match this constraint. With this choice, we can

not have tuning to velocities higher than one pixel per frame (ppf), i.e., one ppf

corresponds to the maximum temporal frequency (see (3.3)) that can be sampled

for the Nyquist theorem. This limitation has been addressed here by considering

a multi-scale approach, as explained in Sec. 3.2.1. The number of scales depends

on the size of the input images and on the speed range (a priori unknown). For

the Middlebury videos we chose six spatial scales. It is worth noting that to avoid

the introduction of a loss of balance between the convolutions with the even and

odd Gabor filters, the contribution of the DC component is removed [Clausi 2000].

Finally, we set the support of the spatial pooling Gσpool
to five which is in accordance
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Ground truth FFV1MT (L = 1) FFV1MT (L = 3) FFV1MT (L = 5)

AAE=52.21±4.43 AAE=10.32±5.78 AAE=6.20±3.82

EPE=1.79±0.08 EPE=0.36±0.22 EPE=0.24±0.14

Figure 3.6: Influence of the number of spatial scales. The FFV1MT model is tested

with L=1, 3 and 5 scales. The color code used to show optical flow is in the inset

on the first image. This color code will be used in all figures to represent optical

flow. Note that the aperture problem is partially solved by considering a scale-space

approach, where the effective receptive field size of MT increases and thus takes into

consideration 2-D cues that are present at a distance. This can be readily observed

by the results on bars with different lengths.

with findings reported in literature [Albright 1987, Bayerl 2004].

3.3.2 Analysis of proposed approaches

In this section, we evaluate the proposed FFV1MT model using synthetic and real

sequences to show the intrinsic properties of our approach. When ground truth

optical flow is available, average angular error (AAE) and endpoint error (EPE)

will be estimated (with associated standard deviations) [Baker 2011].

The influence of the number of spatial scales is shown in Fig. 3.6. In this sequence

a dashed bar moves rightward with velocity (2,0) ppf. Results show that increasing

the number of scales improves the results. It is worth noting that the aperture

problem is correctly solved by considering three spatial scales in the small segments,

whereas five spatial scales are needed to handle longer segments, though a residual

optical flow at the finest scale is not correctly recovered in the middle of the longest

segment, since the spatial support of the RFs is too small with respect to the visual

feature.

The next example in Fig. 3.7 is on another synthetic video that represents a

textured shape moving on top of a translating background. Optical flow result

show a good estimation of the optical flow except in the neighbourhood of objects

boundaries (which are also here motion boundaries). The FFV1MT–TF approach

looks qualitatively better, however it does not improve the quantitative performance.

It might be due to the noisy texture of this synthetic sequence.

In order to analyze the roles of the different stages of the model, Fig. 3.8
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Description Parameter Value Equation

V1

RF spatial scale σ 2.27 pixels (3.1)

... and spatial support SS 11× 11 pixels, (3.1)

Time constant of the exp. decay τ 2.5 frames (3.2)

... and temporal support TS 5 frames (3.2)

Spatial radial peak frequency fs 0.25 cycles/pixel (3.1)

Temporal radial peak frequencies ft {0, 0.10, 0.15, 0.23} cycles/frame (3.2)

Number of spatial contrast orientations N 8 (from 0 to π) (5.2)

... and sampling θi θ = kπ/N, k = 0..N − 1 (5.2)

Number of component speeds M 7 (3.3)

... and sampling vc {−0.9,−0.6,−0.4, 0, 0.4, 0.6, 0.9} (3.3)

Semi-saturation constant ε 10−9 (5.2)

MT

Std dev of the Gaussian spatial pooling σpool 0.9 pixels (5.1.2)

... and spatial support 5× 5 pixels (5.1.2)

Decoding step

Number of MT direction tuning directions 2 (3.9)

... and sampling d {0, π/2} (3.9)

Algorithm

Number of scales L 6

Spatial parameter of the interpolation α 2.5 pixels (3.12)

Luminance parameter of interpolation γ 1/6 of luminance range (3.12)

Other parameters for FFV1MT-TF model

Spatial parameter α {0.50, 0.83, 1.16, 1.50, 1.83} (3.10)

as a function of spatial scale

Range parameter β 1/6 of energy range (3.10)

Luminance parameter γ 1/6 of luminance range (3.10)

Table 3.2: Parameter values used in our simulations for the FFV1MT model and its

extension FFV1MT-TF. Equation number refers to the equation where it has been

first introduced.
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shows the V1 and MT activities. The first row shows ‖EV 1‖θ(p, vc) =(∑N
i=1E

V 1(p, θi, v
c)2
)1/2

: the activities do not identify specific tuning speeds, since

all the spatial orientations are pooled in the norm and the tuning speeds are com-

ponent speeds, i.e., they are orthogonal to the spatial orientation of the cell. The

second row shows ‖EV 1‖vc(p, θ) =
(∑M

i=1E
V 1(p, θ, vci )

2
)1/2

: the cells are elicited

by the spatial orientation of the shape, the V1 layer shows a tuning on the spa-

tial orientation. The third and fourth rows show EMT (p, 0, vc) and EMT (p, π/2, vc)

maps, respectively. At MT layer, a speed tuning emerges: on the left, the energies

are higher for the region related to the shape, this means that there is a negative

speed for the horizontal and vertical velocities related to the shape. On the right,

the energies are higher for the background (for the third row, only), since the back-

ground moves rightwards. These results confirm that the V1 layer has a tuning

on the spatial orientation (cells respond to the spatial orientation of the shape),

whereas at MT layer, a speed tuning no more related to spatial orientation emerges

(i.e., the aperture problem is solved).

In Fig. 3.9 we show the distribution of EMT at different positions to understand

its relation to velocities. By observing the distribution of MT energies in four

different positions on the original image (indicated as (a), (b), (c) and (d) in Fig. 3.7),

we see how the MT layer encodes the velocities. In particular: the behaviours in

(a) and (c) are affected by the values of the neighbouring borders, thus there are no

prominent activities; in (b), which corresponds to a point on the foreground shape

sufficiently far from borders given the actual spatial support of the filters, cells tuned

to negative speeds (vc1) on both horizontal and vertical direction (EMT with d = 0

and d = π/2, respectively) have the maximum response; in (d), which corresponds

to a point on the background, only the response of the horizontal direction has a

maximum for positive horizontal speed (vc7).

Fig. 3.10 shows the results of the FFV1MT model on the classical realistic

Yosemite sequence with clouds. We obtain AAE=5.57 which is better than former

biologically-inspired models such as the original Heeger approach (AAE=11.74, with

44.8% of reliable pixels,[Barron 1994]) and the neural model from Bayerl and Neu-

mann (AAE=6.20, [Bayerl 2004]). One can also make comparisons with standard

computer vision approaches such as Pyramidal Lucas and Kanade (AAE=6.41), mod-

ified Horn and Schunk (AAE=5.48 with 32.9% of reliable pixels, [Barron 1994]) and

3DCLG (AAE=6.18, [Bruhn 2005]), showing a better performance of the FFV1MT.

The FFV1MT–TF approach shows a slightly better performance in particular close

to motion discontinuities.

3.3.3 Performance evaluation on Middlebury dataset

In this section, we benchmark our approach on the computer vision dataset Mid-

dlebury [Baker 2011]1. The sequences in this dataset bring several challenges, such

as sharp edges, high velocities and occlusions. Figure 5.6 show results obtained on

1http://vision.middlebury.edu/flow/data/
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the training dataset, which has public available ground truth. The AAEs and EPEs

show that FFV1MT is able to recover reliable optical flows, though some issues

remain open. Smooth effects are present on edges and fine details (see Grove2 and

Grove3), FFV1MT–TF partially solves this issue, as shown in RubberWhale and

Urban2. The δAAE maps highlight the differences in the AAEs between FFV1MT

and FFV1MT–TF, showing that the latter is better on edges as expected (red tones).

In presence of high image velocity large occlusions occur, on which both approaches

fail (see left-hand side of Urban3). In this case, the worst performance of FFV1MT–

TF method is due to the fast movements of edges that undermines the luminance

similarity principle on which it is based.

Figure 3.12 show results obtained on the test dataset. Higher errors coincide

with occlusions (see, e.g., Urban sequence) and sharp edges (see, e.g., Urban and

Wooden sequences), similarly to what was observed on the training set. Results can

be further analysed through the Middleburg website and compared to a variety of

state-of-the-art algorithms. It is worth noting that our FFV1MT model is the only

neural model for motion estimation shown in the table so far.

Code

We think that this work could act as a good starting point for building scalable

computer vision algorithms for motion processing that are rooted in biology. For

that reason we shared the code in order to facilitate research in this direction,

Matlab implementation of the FFV1MT model has been made available on Mod-

elDB [Hines 2004]: http://senselab.med.yale.edu/modeldb/.

3.4 Conclusion

In this chapter, we have presented an approach that is based on a model primarily

developed to account for various physiological findings related to motion processing

in primates. Starting from the classical hierarchical feedforward processing model

involving V1 and MT cortical areas, which is usually limited to a single spatial scale,

we have extended it to consider the whole range of frequencies by adapting a multi

scale approach and analysed the efficacy of the approach in estimating the dense

optical flow in real world scenarios by considering an efficient velocity decoding step.

We have tested the performance of our model using synthetic stimuli as well as

the standard Middlebury dataset. Results demonstrated that V1-MT feedforward

model can be successfully used to compute optical flow in real videos. A qualitative

evaluation indicates that model could recover velocity vectors in regions with coarse

textures quite well, but typically fails to achieve robust estimates in regions with

very fine texture or regions with sharp edges. This was expected, since the V1-MT

feedforward model does not take into account the details of lateral interactions and

scale space issues that need to be tackled in order to solve the blank wall problem

and tackle regions with motion boundaries. In order to address blank wall problem,

we proposed a simple extension of our baseline model using trilateral filtering at

http://senselab.med.yale.edu/modeldb/
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MT level as a way to simulate lateral interactions between MT cells. Results were

slightly improved suggesting that one should further focus on lateral interactions

and possibly feedback into the models to better deal with real videos.

Moreover, this work has opened up several interesting questions, which could be

of relevance to biologists as well, for example what could be the afferent pooling

strategy of MT when there are multiple surfaces or occlusion boundaries within

the MT receptive field? Can a better optical flow map be recovered by considering

different multi-scale strategies? We visit these questions in the subsequent chapters.

ß
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Sample input Ground truth FFV1MT FFV1MT–TF

Figure 3.7: Results on a synthetic video: A translating shape is moving with velocity

v = (−3,−3) ppf on top of a translating background moving with velocity v = (4, 0)

ppf. Results are AAE=3.56±14.40, EPE=0.26±0.86. for FFV1MT and AAE=3.70±14.78,

EPE=0.27±0.86 for FFV1MT–TF.

‖EV 1‖θ(·, vc)

vc1 vc2 vc3 vc4 vc5 vc6 vc7

‖EV 1‖vc(·, θ)

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

EMT (·, 0)

EMT (·, π/2)

vc1 vc2 vc3 vc4 vc5 vc6 vc7

Figure 3.8: V1 and MT activities on the synthetic video shown in Fig. 3.7 (see

text).

(a) (b) (c) (d)

Figure 3.9: Distribution of MT energy at positions indicated in Fig. 3.7.
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Sample input Ground truth FFV1MT FFV1MT–TF

AAE=5.57 ± 12.27 AAE=4.58 ± 9.35

EPE=0.23 ± 0.39 EPE=0.20 ± 0.33

Figure 3.10: Performance of the FFV1MT and FFV1MT–TF models on the classical

Yosemite sequence with clouds. The color code is the same as in Fig. 3.6.
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Sample Ground FFV1MT FFV1MT FFV1MT–TF FFV1MT–TF δAAE

input truth output AAE map output AAE map

Sequence FFV1MT FFV1MT–TF

AAE ± STD EPE ± STD AAE ± STD EPE ± STD

grove2 4.28 ± 10.25 0.29 ± 0.62 3.96 ± 10.00 0.26 ± 0.60

grove3 9.72 ± 19.34 1.13 ± 1.85 9.40 ± 18.39 1.10 ± 1.74

Hydrangea 5.96 ± 11.17 0.62 ± 0.96 5.74 ± 11.03 0.59 ± 0.86

RubberWhale 10.20 ± 17.67 0.34 ± 0.54 9.38 ± 15.21 0.31 ±0.46

urban2 14.51 ± 21.02 1.46 ± 2.13 13.62 ± 10.23 1.19 ±1.58

urban3 15.11 ± 35.28 1.88 ± 3.27 16.22 ± 2.21 1.69 ±2.85

Figure 3.11: Sample results and error measurements on Middlebury training set.

δAAE=AAEFFV 1MT − AAEFFV 1MT−−TF is represented with a color code, where

red and blue tones are for positive and negative values, respectively.
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Sample input Ground FFV1MT FFV1MT

input truth output AAE map

Sequence AAE EPE

All (Rank) - Disc. (Rank) All (Rank) - Disc. (Rank)

Army 12.02(102) - 23.3(102) 0.33(100) - 0.64(100)

Mequon 10.7(94) - 26.6(103) 0.79(94) - 1.90(103)

Schefflera 15.6(96) - 29.0(101) 1.33(104) - 1.90(101)

Wooden 16.6(102) - 36.3(105) 1.38(103) - 2.98(104)

Grove 6.51(105) - 6.40(103) 1.76(105) - 1.99(105)

Urban 16.2(104) - 30.7(105) 2.33(105) - 3.64(106)

Yosemite 3.41(74) - 5.44(88) 0.16(66) - 0.18(83)

Teddy 12.3(101) - 18.8(102) 1.81(100) - 2.64(100)

Figure 3.12: Sample results and error measurements of FFV1MT model on Mid-

dlebury test set. By the time of evaluation 107 algorithms are benchmarked by the

website, and Rank indicates the relative performance of the method with respect to

others for both the entire sequence (All) and for discontinuities (Disc.). The results

are public at http://vision.middlebury.edu/flow/eval

http://vision.middlebury.edu/flow/eval


Chapter 4

Adaptive pooling and activity

spread for Optical Flow

In this chapter, we study the impact of local context of an image (contrast and 2D

structure) on spatial motion integration by MT neurons. This study has been in-

spired by the limitations of the feedforward V1-MT model presented in the previous

chapter to deal with the complex real world scenes. In particular, we address the

difficulties encountered by the model due to isotropic spatial pooling in regions close

to texture/motion boundaries. The key contributions of this chapter can be stated

as follows:

• We propose an extension to the FFV1MT model with adaptive processing by

focussing on the role of local context which indicates the reliability of the local

velocity estimates. The extended model takes into consideration a network

structure representative of V1, V2 and MT areas.

• We incorporate three functional principles observed in primate visual system:

contrast adaptation, adaptive afferent pooling and MT activity spread that is

conditioned upon the 2D image structure.

• We evaluate the proposed model, referred to as APMD (Adaptive Pooling

and Motion Diffusion) using the Middlebury optical flow estimation dataset.

Results demonstrated improved performance by the AMPD model compared

to the baseline FFV1MT model.

4.1 Local motion analysis by FFV1MT model

For each neuron in the cortical hierarchy, one can associate a receptive field defined

by the region in the visual field that elicits a response. Receptive fields are first

small and become larger going deeper in the hierarchy [Orban 2008]. The first

local analysis of motion is done at the V1 cortical level. The small receptive field

size of V1 neurons, and their strong orientation selectivity, poses several difficulties

when estimating global motion direction and speed, as explained in Sec. 2.1 and

illustrated in Fig. 4.1. In particular, any local motion analyzer will face blankwall

problem, aperture problem and selection ambiguity due to presence of multiple

motions [Bradley 2008].

In terms of optical flow estimation, feedforward computation involving V1 and

MT could be sufficient in the case of regions without any ambiguity. On the contrary,
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(a) (b) (c) (d)

Figure 4.1: Estimation motion from local observations: (a) blank wall problem:

at position A, the absence of texture gives no information to estimate motion; (b)

aperture problem: at position A, only the 1D component of the flow is known; (c)

multiple motion: at position A, receptive field integrates different motion informa-

tions; (d) Illustration of a pooling step with the corresponding receptive fields.

recovering velocity at regions where there is local ambiguity such as the aperture

or the blank wall problems would require pooling reliable information from far, less

ambiguous regions in the surrounding. Such non-local information is thought to be

conveyed by the intricate network interactions (short-range, or recurrent networks,

and long-range) often involving areas processing form based cues such as V2 and

V4 (see [Masson 2010] for reviews).

4.2 Biological vision solution

4.2.1 Cortical hierarchy

Here, we present a caricature of the motion processing pipeline that has been sug-

gested after extensive studies in monkeys [Orban 2008], an extension to the mini-

malistic feedforward V1-MT view. The cortical areas considered V1, V2 and MT

are illustrated in Figure 4.2. Motion information is extracted locally through a set of

spatiotemporal filters tilling the retinotopic representation of the visual field in area

V1. However, these direction-selective cells exhibit several non-linear properties as

the center response is constantly modulated by the surrounding inputs conveyed

by feedback and lateral inputs. Context modulations are not only implemented by

center-surround interactions in areas V1 and MT. For instance, other extra-striate

areas such as V2 or V4 project to MT neurons to convey information about the

structure of the visual scene, such as the orientation or color of local edges.

4.2.2 Contrast adaptive processing

The structure of neuronal receptive fields is not static as it has long been

thought [Fairhall 2014]. Rather, it adapts to the local context of the image so

that many of the tuning functions characterizing low-level neurons are in fact dy-

namical (e.g. [Sharpee 2006]). A first series of evidence comes from experiments

where the properties of the local inputs change the classical receptive field. For
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instance orientation-tuning in area V1 and speed tuning of MT neurons are sharper

when tested with broad-band texture inputs, as compared to low-dimension gratings

(e.g., [Freeman 2013, Priebe 2003]). Moreover, spatial summation function often

broadens as contrast decreases or noise level increases [Sceniak 1999]. These obser-

vations are complemented by experiments varying the spatial context of this local

input. For instance, surround inhibition in V1 and MT neurons becomes stronger

at high contrast and center-surround interactions exhibit a large diversity in terms

of their relative tunings. Moreover, the spatial structure of these interactions is

often more diverse in shape than the classical Mexican-hat (see [Bradley 2008] for

a review). Lastly, at each decoding stage, it seems nowadays that tuning functions

are weighted by the reliability of the neuronal responses, as varying for instance

with contrast or noise levels [Ma 2014]. Still, these highly adaptive properties have

barely been taken into account when modelling visual motion processing. Here, we

model some of these mechanisms to highlight their potential impact on optic flow

computation. We focus on both the role of local image structure (contrast, tex-

tureness) and the reliability of these local measurements in controlling the spatial

propagation mechanisms. We investigated how these mechanisms can help solving

local ambiguities, and segmenting the flow fields into different surfaces while still

preserving the sharpness and precision of flow estimation.

4.3 Extended Model (APMD)

The baseline model involving a feedforward processing from V1 to MT is largely

devised to describe physiological and psychophysical observations on motion esti-

mation when the testing stimuli were largely homogeneously textured regions such

as moving gratings and plaids. Hence the model is limited in the context of dense

Figure 4.2: Illustration of the motion processing pathway, with the main cortical ar-

eas involved in motion estimation (area V1) and integration (area MT). Interactions

with the form pathway are represented by V2 and V4 cortical areas. This cartoon

illustrates the variety of connectivities: feedforward (in gray), short- and long-range

lateral (in red) and feedback (in blue).
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flow estimation for natural videos as it has no inherent mechanism to deal with

associated sub problems such blank wall problem, aperture problem or occlusion

boundaries.

Building on recent results summarized in Sec. 4.2.2 we model some of these

mechanisms to highlight their potential impact on optic flow computation. Consid-

ering inputs from area V2, we focus on the role of local context (contrast and image

structure) indicative of the reliability of these local measurements in (i) controlling

the pooling from V1 to MT and (ii) adding lateral connectivity in MT.

4.3.1 Area V2: Contrast and Image Structure

Our goal is to define a measure of contrast which is indicative of the aperture and

blank wall problems using the responses of spatial Gabor filters. There exist several

approaches to characterize the spatial content of an image from Gabor filter. For

example, in [Kovesi 1999] the authors propose the phase congruency approach which

detects edges and corners irrespectively of contrast in an image. In dense optical

flow estimation problem, region with texture are less likely to suffer blank wall and

aperture problems even though edges are susceptible to aperture problem. So phase

congruency approach cannot be used directly and we propose the following simple

alternative approach.

Let hθi the Gabor filter for edge orientation θi, we define

R(p) = (Rθ1(p), . . . , RθN (p)) where Rθi(p) = |hθi ∗ I|(p).

Given an edge orientation at θi, Rθi is maximal when crossing the edge and ∇Rθi

indicate the direction to go away from edge.

Then the following contrast/cornerness measure is proposed as follows, taking

into consideration the amount of contrast at a given location and also ensuring that

contrast is not limited to a single orientation giving raise to aperture problem.

µ(R)(p) =
1

N

∑

i

Rθi(p), (4.1)

C(p) =Hξ(µ(R(p))(1− σ2(R(p))/σ2
max), (4.2)

where µ(R(p)) (resp. σ2(R(p))) denote the average (resp. variance) of components

of R at position p, Hξ(s) is a step function (Hξ(s) = 0 if s ≤ ξ and 1 otherwise)

and σ2
max = maxp′ σ

2(R(p)). The term Hξ(µ(R(p)) is an indicator of contrast as it

measures the Gabor energies: in regions with strong contrast or strong texture in

any orientation this term equals to one; in a blank wall situation, it is equal to zero.

The term (1− σ2(R(p))/σ2
max) measures how strongly the contrast is oriented in a

single direction: it is higher when there is only contrast in one direction and lower

when there is contrast in more than one orientation (thus it is an indicator of where

there is aperture problem).
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4.3.2 Area MT: V2-Modulated Pooling

Most of the models currently pool V1-afferents using a linear fixed receptive field

size, which does not adapt itself to the local gradient or respect discontinuities in

spatio-temporal reposes. This might lead to degradation in the velocity estimates

by blurring edges/kinetic boundaries. Thus it is advantageous to make the V1 to

MT pooling adaptive as a function of texture edges.

We propose to modify the pooling stage as follows

EMT (p, t; d, vc) = F

(
N∑

i=1

wd(θi)P̃(EV 1)(p, t; θi, v
c)

)

,

where the spatial pooling become functions of image structure. We propose the

following texture-dependent spatial pooling:

P(EV 1)(p, t; θi, v
c) = (4.3)

1

N̄(p, θi)

∑

p′

fα(‖R‖(p))(‖p− p′‖)gi(p, p′)EV 1(p, t; θi, v
c)

where N̄(p, θi) =
∑

p′ fα(‖R‖(p))(‖p − p′‖)gi(p, p′) is a normalizing term. The two

weights are now depending on image structure. The variance of the distance term α,

i.e., the size of the integration domain, now depends on the structure Rθi as follows

α(‖R‖(p)) = αmaxe
−η

‖R‖2(p)
rmax , (4.4)

where η is a constant, rmax = maxp′{‖R‖2(p′)}. Then there is an additional term

gi(p, p
′) to enable anisotropic pooling close to image structures so that discontinuities

could be better preserved. Here we propose to define gi by

gi(p, p
′) = Sλ,ν

(

− ∇Rθi(p)

‖∇Rθi‖+ ε
· (p′ − p)

)

, (4.5)

where Sλ,ν = 1/(1 + exp(−λ(x− ν))) is a sigmoid function and ε a small constant.

Note that this term is used only in regions where ‖∇Rθi‖ is greater than a threshold.

Fig. 4.3(a) gives examples of the pooling coefficients at different p locations.

4.3.3 MT Lateral Interactions

We model the lateral iterations for the velocity information spread (from the regions

where there is less ambiguity to regions with high ambiguity, see Sec. 4.1) whilst

preserving discontinuities in motion and illumination. To do so, we propose an

iterated trilateral filtering defined by:

un+1(p) =
1

N̄(p)

∑

p′

W (p, p′)un(p′), (4.6)

cn+1(p) = cn(p) + λ( max
p′∈N (p)

cn(p′)− cn(p)) (4.7)

u0(p) = EMT (p, t; θi, v
c), (4.8)

c0(p) = C(p), (4.9)
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(a) (b) (c) (d)

Figure 4.3: Impact of local contrast on pooling strategy: (a) Sample input indicating

two different locations being sampled. (b) (A) Anisotropy term, (B) Spatial term,

(C) Pooling region.

where

W (p, p′) = cn(p′)fα(‖p− p′‖)fβ(cn(p)(un(p′)− un(p)))

fγ(I(p
′)− I(p))un(p′), (4.10)

and N (p) is a local neighbourhood around p. The term c(p′) ensures that more

weight is given naturally to high confidence estimates; The term c(p) inside fβ
ensures that differences in the MT responses are ignored when confidence is low

facilitating the diffusion of information from regions with high confidence and at

the same time preserves motion discontinuities or blurring at the regions with high

confidence.

4.4 Results

In order to test the method a multi-scale version of both the baseline approach

(FFV1MT) and approach with adaptive pooling (APMD) are considered. The

method is applied on a Gaussian pyramid with 6 scales, the maximum number

of scales that could be reliably used for the spatio-temporal filter support that has

been chosen.

A first test was done on Yosemite sequence as it is widely used in both computer

vision and biological vision studies (see Fig. 4.4, first row). For APMD method

we obtain AAE=3.00 ± 2.21. This can be compared to what has been obtained

with previous biologically-inspired models such as the original Heeger approach

(AAE=11.74◦, but estimated 44.8% of the most reliable regions, see [Barron 1994])

and the neural model from Bayerl and Neumann (AAE=6.20◦, [Bayerl 2004]), show-

ing an improvement. One can do comparisons with standard computer vision ap-
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Figure 4.4: Sample results on Yosemite sequence and a subset of Middlebury

training set. δAAE = AAEFFV 1MT - AAEAPMD

proaches such as Pyramidal Lucas and Kanade (AAE=6.41◦) and Horn and Schunk

(AAE=6.41◦, [Horn 1981]), showing comparable performance.

The results on the Middlebury training set show improvements of the proposed

method with respect to the FFV1MT(see Table 4.1). For qualitative comparison,

sample results are also presented in Fig.4.4. The relative performance of extended

method can be understood by observing δAAE, difference between the FFV1MT

AAE map and the AAE map of APMD which are presented in Fig. 4.4 (last column):

the improvements are prominent at the edges, e.g. see the δAAE column for the

RubberWhale and Urban2 sequence. A close up view of the results obtained for

RubberWhale sequence are presented in Fig. 4.5. Qualitatively the sharp details

of the object boundaries in the motion map are much better preserved in case of

APMD when compared to FFV1MT. Th

This model still has several limitations:

• Noisy edge extraction: The spatio-temporal filter based edge extraction is

still noisy. At lower scales if the pooling direction is wrongly estimated it

would effect the flow estimation for considerably large region as we rely on the

warping scheme.

• Limitations of the anisotropy: The anisotropic pooling that has been consid-
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Rubber Whale

frame 10 frame 11

ground truth optical flow - FFV1MT optical flow - APMD

angular error - FFV1MT angular error - APMD FFV1MT-APMD

Figure 4.5: Results on rubber whale sequence from Middlebury training dataset.
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FFV1MT APMD

Sequence AAE ± STD EPE ± STD AAE ± STD EPE ± STD

grove2 4.28 ± 10.25 0.29 ± 0.62 4.07 ± 9.29 0.27 ± 0.56

grove3 9.72 ± 19.34 1.13 ± 1.85 10.66 ± 19.25 1.11 ± 1.61

Hydrangea 5.96 ± 11.17 0.62 ± 0.96 5.48 ± 11.10 0.50 ± 0.69

RubberWhale 10.20 ± 17.67 0.34 ± 0.54 8.87 ± 13.16 0.30 ± 0.42

urban2 14.51 ± 21.02 1.46 ± 2.13 12.70 ± 19.92 1.09 ± 1.31

urban3 15.11 ± 35.28 1.88 ± 3.27 12.78 ± 31.36 1.32 ± 2.25

Table 4.1: Error measurements on Middlebury training set

ered does not always ensure that signals from different motion surfaces are not

combined together. Particularly in regions which have very fine structures.

• Lack of inter-scale interactions: The model is originally inspired by the pro-

posal from Heeger et al. [Heeger 1988, Simoncelli 1998], which analyses the

filter responses at multiple scales simultaneously and thus could be picking up

on the best possible scale for analysis. In our model we don’t have inter-scale

interactions.

• MT decoding: Currently the model uses linear decoding scheme by sparsely

sampling the velocity along the cardinal axes. This would mean that at mo-

tion boundaries instead of selecting one of the motion component the model’s

estimated velocity is shifted towards the other component due to averaging.

4.5 Conclusion

In this chapter, we have proposed a new algorithm that incorporates three func-

tional principles observed in primate visual system, namely contrast adaptation,

image structure based afferent pooling and ambiguity based lateral interaction. Even

though, local context based information propagation and adaptive pooling seem to

improve the flow estimation near the object/motion boundaries, the model does

not outperform the latest computer vision methods. One particular aspect is that,

by considering a scale-space and warping approach, we are not taking into account

inter-scale interactions and by also considering a linear decoding scheme we are

missing out on over-all population shape that might be indicative of the presence

of multiple motion surfaces, such as a transparent surface/motion boundary. In

the next chapter, we examine the velocity decoding problem and also the impact of

considering the spatio-temporal filter outputs at multiple scales simultaneously.





Chapter 5

Decoding MT Motion Response

for Optical Flow Estimation

Representation of motion in terms of spatio-temporal motion energies extracted at

V1 stage remains a dominant hypothesis in visual neuroscience. Thus, decoding the

motion energies is of natural interest for developing biologically inspired computer

vision algorithms for dense optical flow estimation. In this chapter:

• We address the decoding problem by evaluating four strategies for motion es-

timation starting from spatio-temporal energies extracted at V1 stage: inter-

section of constraints, maximum likelihood, linear regression on MT responses

and neural network based regression using multi scale-features.

• We characterize the performances and the current limitations of the differ-

ent strategies, in terms of recovering dense flow estimation using Middlebury

benchmark dataset widely used in computer vision and highlight key aspects

for future developments.

The chapter is organised as follows. In Sect. 5.1, we present the basis of this

approach which is a feedforward model of V1 and MT cortical areas response. It is

a summary of the model presented in chapter 3. In Sect. 5.2, given MT population

responses, we propose four decoding strategies to estimate optical flow. These four

strategies are then evaluated and discussed in Sect. 5.3 using classical sequences

from the literature.

5.1 V1-MT model for motion processing

5.1.1 Area V1: Motion Energy

Let us consider a gray scale image sequence I(p, t), for all positions p = (x, y)

inside a domain Ω and for all time t > 0. Our goal is to find the optical flow

v(p, t) = (vx, vy)(p, t) defined as the apparent motion at each position p and time t.

Simple cells are characterized by the preferred spatial orientation θ of their con-

trast sensitivity in the spatial domain and their preferred velocity vc in the direction

orthogonal to their contrast orientation often referred to as component speed. The

receptive fields of the V1 simple cells are classically modelled using band-pass filters

in the spatio-temporal domain. In order to achieve low computational complex-

ity, the spatio-temporal filters are decomposed into separable filters in space and
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time. Spatial component of the filter is described by Gabor filters h and temporal

component by an exponential decay function k. We define the following complex

filters:

h(p; θ, fs) =Be

(

−(x2+y2)

2σ2

)

ej2π(fscos(θ)x+fssin(θ)y),

k(t; ft) =e(−
t
τ )ej2π(ftt),

where σ and τ are the spatial and temporal scales respectively, which are related to

the spatial and temporal frequencies fs and ft and to the bandwidth of the filter.

Denoting the real and imaginary components of the complex filters h and k as he, ke
and ho, ko respectively, and a preferred velocity (speed magnitude) vc = ft/fs, we

introduce the odd and even spatio-temporal filters defined as follows,

go(p, t; θ, v
c, σ) =ho(p; θ, fs)ke(t; ft) + he(p; θ, fs)ko(t; ft),

ge(p, t; θ, v
c, σ) =he(p; θ, fs)ke(t; ft)− ho(p; θ, fs)ko(t; ft).

These odd and even symmetric and tilted (in space-time domain) filters characterize

V1 simple cells. Using these expressions, we define the response of simple cells, either

odd or even, with a preferred direction of contrast sensitivity θ in the spatial domain,

with a preferred velocity vc and with a spatial scale σ by

Ro/e(p, t; θ, v
c, σ) = go/e(p, t; θ, v

c, σ)
(p,t)∗ I(p, t). (5.1)

The complex cells are described as a combination of the quadrature pair of simple

cells (5.1) by using the motion energy formulation,

E(p, t; θ, vc, σ) = Ro(p, t; θ, v
c, σ)2 +Re(p, t; θ, v

c, σ)2,

followed by a normalization. Assuming that we consider a finite set of orientations

θ = θ1 . . . θN , the final V1 response is given by

EV 1(p, t; θ, vc, σ) =
E(p, t; θ, vc, σ)

∑N
i=1E(p, t; θi, vc, σ) + ε

, (5.2)

where 0 < ε ≪ 1 is a small constant to avoid divisions by zero in regions with no

energies, which happens when no spatio-temporal texture is present.

5.1.2 Area MT: Pattern Cells Response

MT neurons exhibit velocity tuning irrespective of the contrast orientation. This

is believed to be achieved by pooling afferent V1 responses in both spatial and

orientation domains followed by a non-linearity [Simoncelli 1998]. The response of a

MT pattern cell tuned to the speed vc and to direction of speed d can be expressed

as follows:

EMT (p, t; d, vc, σ) = F

(
N∑

i=1

wd(θi)P(EV 1)(p, t; θi, v
c, σ)

)

,
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where wd represents the MT linear weights that give origin to the MT tuning (see

example in Fig. 5.1). It can be defined by a cosine function shifted over various

orientations [Maunsell 1983a, Rust 2006], i.e.,

wd(θ) = cos(d− θ) d ∈ [0, 2π[.

Then, P(EV 1) corresponds to the spatial pooling and is defined by

P(EV 1)(p, t; θi, v
c, σ) =

1

A

∑

p′

fα(‖p− p′‖)EV 1(p, t; θi, v
c, σ), (5.3)

where fα(s) = exp(s2/2α2), ‖.‖ is the L2-norm, α is a constant, A is a normalization

term (here equal to 2πα2) and F (s) = exp(s) is a static nonlinearity chosen as an

exponential function [Rust 2006]. The pooling defined by (5.3) is a spatial Gaussian

pooling.

Figure 5.1: Example of a MT direction (d = π/5) tuning curve for moving plaid

stimuli that span all the speed directions.

5.2 Decoding of the velocity representation of area MT

In order to engineer an algorithm capable of recovering dense optical flow estimates,

we need to address the problem of decoding the population responses of tuned MT

neurons. Indeed, a unique velocity vector cannot be recovered from the activity

of a single velocity tuned MT neuron as multiple scenarios could evoke the same

activity. However, a unique vector can be recovered from the population activity.

In this paper, the velocity space was sampled by considering MT neurons that span

over the 2-D velocity space with a preferred set of tuning speed directions d in [0, 2π[

and also a multiplicity of tuning speeds vc.

Four strategies are described below. The first three strategies, called intersection
of constraints, maximum likelihood and learned linear decoding are based on coarse-

to-fine approach in order to consider multiple spatial frequencies fs and to compute
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large velocities. This approach is illustrated in Fig. 5.2 and described in chapter 3.

Here the decoding stage will impact the quality of the optical flow extracted at each

scale as it is used for the warping. In the third strategy an optimal linear decoding

is learned and is applied at each scale. Alternatively, the fourth strategy, called

regression with neural network, learns to estimate optical flow by considering the V1

responses at all the scales together.

EV 1 EMT
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v1+

v2
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cδv1

cδv0

x,y∗
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Warp

v2

EV 1 EMT

EV 1 EMT

Figure 5.2: Coarse-to-fine approach for optical flow based on a V1-MT model 3. At

each scale, decoding is needed to warp V1 motion energies at the coarser scale.

5.2.1 Intersection of Constraints Decoding

The MT responses are obtained through a static nonlinearity described by an expo-

nential function, thus we can linearly decode the population activities [Rad 2011].

Since the distributed representation of velocity is described as a function of two

parameters (speed and direction), first we linearly decode the speed (velocity mag-

nitude) for each speed direction, then we apply the intersection of constraints (IOC)

mechanism [Bradley 2008] to compute the speed direction. The speed along direc-

tion d can be expressed as:

vd(p, t; d, σ) =

vcM∑

vci=vc1

vciE
MT (p, t; d, vci , σ). (5.4)

Then the IOC solution is defined by:

~v = argmin
~w
{G(~w)},

where G(~v) =
∑dQ

di=d1
(vdi − ~v · [cos di sin di]T )2,

(5.5)
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where (·)T indicates the transpose operation. The analytic solution of Eq. 5.5 gives:

vx = 2
Q

∑dQ
di=d1

vd(p, t; di, σ) cos di

vy = 2
Q

∑dQ
di=d1

vd(p, t; di, σ) sin di.
(5.6)

5.2.2 Maximum Likelihood Decoding

The MT activities (see Fig 5.3 for an example of a MT population response that

shows a peak for the direction and the speed present in the input stimulus) can

be decoded with a Maximum Likelihood (ML) technique [Pouget 1998]. In this

Figure 5.3: An example of MT population response at a given image point p, for a

random dot sequence that moves at vx = 0.3 and vy = 0.3 pixel/frame. The speed

directions d have 19 values in the range [0, 2π[, and the speeds vc have 7 values in

the range ±1 pixel/frame.

paper, the ML estimate is performed through a curve fitting, or template matching,

method. In particular, we decode the MT activities by finding the Gaussian function

that best match the population response. The position of the peak of the Gaussian

corresponds to the ML estimate.

5.2.3 Linear Decoding Through Learned Weights

We can learn the two-dimensional matrix of weights W that are used to linearly

decode the MT activities (~v = EMTW for each image pixel p). To learn such

weights, we have considered a dataset of 8 × 7 random dot sequences with known

speeds (both vx and vy, 8 directions and 7 speeds), which cover the spatio-temporal

filters’ range, and we have minimized a cost function to compute the best weights

W . The cost function is defined by:

||RW − vgt||2 + λ||W||2, (5.7)

where R is a matrix whose rows contain the MT population responses (for the whole

training set), W is the vector of weights, and vgt contains the ground truth speeds.

It is worth to note that such procedure has been carried out at a single spatial

scale. Since we use random dots, we have considered the average MT responses,

and λ = 0.05. Figure 5.4 shows the learned two-dimension matrix of weights.
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Figure 5.4: Two-dimensional matrix of weights learned through sequences of random

dots. The matrices on the left and on the right are used to decode vx and vy,

respectively.
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Figure 5.5: Neural network based regression for optical flow estimation.

5.2.4 Decoding with Regression using Neural Network

For the regression using neural network, spatio-temporal energies representative of

the V1 complex cell responses are computed across various scales and are concate-

nated to form an input vector of dimension 504 ( 6 scales × 12 orientations × 7

velocities). The feature computation stage is illustrated in Fig. 5.5. It is worth to

note that in this decoding strategy we do not use the coarse to fine approach. A

feedforward network comprising of a hidden sigmoidal layer and a linear output layer

with 400 neurons in the hidden layer and 2 neurons in the output layer, computing

velocity along x and y axis is considered. The hidden layer can be interpreted as MT

cells tuned to different velocities. For training the network, sub sampled features

by a factor of 30 from Middlebury sequences are used and the network is trained

for 500 epochs using back propagation algorithm till the RMSE of the network over

the training samples has reached 0.3. Note that we only have a single network or a

regressor and it is applied to all pixels. For training and simulating the experiment

PyBrain package has been used.
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5.3 Experimental Evaluation and Discussion

Table 5.1 shows the average angular errors (AAE) and the end-point errors (EPE),

and the corresponding standard deviations, by considering the Middlebury training

set and the Yosemite sequence. Results for the four decoding strategies (intersec-

tion of constraints, maximum likelihood, linear decoding with learned weights, and

regression using Neural Networks) are reported. Some sample optical flows for the

four decoding methods are reported in Figure 5.6. The results show that the in-

tersection of constraints approach gives estimates similar to the ones obtained by

considering a linear decoding through learned MT weights. A fitting with Gaussian

functions to implement a maximum likelihood decoding does not perform as well as

the IOC approach: this is due to the actual MT activity pattern, and to the fact

that MT population responses for low speed has several peaks and it is hard to fit

a Gaussian.
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of constraints Likelihood Learned Weights using NN
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Figure 5.6: Sample results on a subset of Middlebury training set and on the

Yosemite sequence.

Observing the results obtained after decoding suggests that scale-space with

warping procedure is not well suited for analysis with spatio-temporal features and

is inducing larger errors when compared to the regression scheme where the spatio-

temporal motion energies across scales are simultaneously taken into consideration.
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Intersection of constraints Maximum Likelihood Learned Weights Regression using NN

Sequence AAE ± STD EPE ± STD AAE ± STD EPE ± STD AAE ± STD EPE ± STD AAE ± STD EPE ± STD

grove2 4.33 ± 10.28 0.30 ± 0.62 9.78 ± 21.08 0.74 ± 1.30 4.59 ± 9.69 0.32 ± 0.59 5.17 ± 8.49 0.37 ± 0.54

grove3 9.65 ± 19.02 1.14 ± 1.83 13.73 ± 25.70 1.47 ± 2.32 9.94 ± 18.79 1.15 ± 1.79 9.67 ± 15.39 1.01 ± 1.42

Hydrangea 5.98 ± 11.19 0.62 ± 0.97 8.88 ± 20.41 0.85 ± 1.44 6.34 ± 11.83 0.65 ± 1.00 3.22 ± 6.21 0.29 ± 0.41

RubberWhale 10.16 ± 17.73 0.34 ± 0.54 16.28 ± 26.31 0.73 ± 1.45 10.07 ± 16.65 0.34 ± 0.51 7.61 ± 8.98 0.25 ± 0.26

urban2 5.21 ± 10.17 0.58 ± 1.06 14.24 ± 20.37 1.51 ± 1.94 16.46 ± 22.81 1.49 ± 1.91 4.59 ± 9.69 0.32 ± 0.59

urban3 15.78 ± 35.94 1.90 ± 3.24 18.24 ± 39.45 1.82 ± 2.91 14.05 ± 33.29 1.74 ± 3.07 5.76 ± 17.49 0.80 ± 1.51

Yosemite 3.49 ± 2.86 0.16 ± 0.16 5.34 ± 7.24 0.31 ± 0.69 3.80 ± 2.98 0.18 ± 0.18 20.09 ± 14.74 0.86 ± 0.87

all 9.14 ± 16.86 0.85 ± 1.35 12.36 ± 22.94 1.06 ± 1.72 9.32 ± 16.56 0.84 ± 1.29 8.02 ± 11.57 0.56 ± 0.80

Table 5.1: Error measurements on Middlebury training set and on the Yosemite

sequence.

This is in accordance with earlier model by [Heeger 1988], where plane fitting in

spatio-temporal domain has been adapted, indicating that inter-scale interactions

are critical in velocity decoding. The neural network based regression has preserved

motion edges much better when compared to the warping scheme in most of the

sequences, but however it fails in the Yosemite sequence, which indicates that there

is some diffusion happening in regions without motion energy as could be seen in the

sky region of the optical flow map of the yosemite sequence in Fig. 5.6. The responses

of the network need to be more smooth to better match the ground truth, however

this is to be expected as this regression scheme does not have any neighbourhood

interactions and smoothness criterion in place. This needs to be further investigated

by incorporating spatial pooling of the motion energies and spatial interactions at

the MT level into the model. On the whole, this indicates that restoring spatial

acuity of motion estimation by population decoding is a little studied problem and

there is a large scope for improvement as the current decoding schemes do not

perform on par with state of the art results in computer vision.

Overall, the results obtained using three different architectures, FFV1MT,

APMD and regression based decoding indicate that recurrent interactions both in

feature domain and spatial domains play a dominant role in motion integration and

ambiguity resolution. Though in APMD model, we incorporate spatial diffusion

using trilateral filtering, the feedforward approach typically fails to switch between

integration and segregation contextually. This implies that we need to better un-

derstand the role played by recurrent interactions about which dynamics could give

us a hint.
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Role of recurrent interactions in

motion integration





Chapter 6

MT Dynamics

One of the central questions in computational neuroscience is to understand how

different forms of neuronal interactions such as feedforward, lateral and feedback

interactions play a role in sensory data processing leading to low level percepts. In

sensory systems, different computational rules are often evident in different neuronal

subpopulations. Considering low level motion, most previous models of motion inte-

gration by MT cells [Simoncelli 1998, Rust 2006, Perrone 2008] explain their specific

tuning functions by having multiple feedforward inputs, largely ignoring the role of

recurrent connectivity, a hallmark of cortical circuits. Therefore they fail to explain

the dynamics of these tuning functions and the fact that different behaviours can

be achieved by a single subpopulation when varying the spatiotemporal properties

of the input [Xiao 2015]. In this chapter, we examine the following questions:

• Can recurrent feature domain interactions between directionally tuned MT

cells result in different computational properties such as vector averaging,

component selection or component retention behaviour?

• Can the recurrent interactions explain the temporal evolution of the tuning

behaviour?

• Can the network attractor properties explain the dynamic transitions in tuning

behaviour with respect to the structure of the driving input?

In particular, we study the dependence of the network behaviour with respect

to the feature domain center-surround interactions, such centre-surround recurrent

mechanisms may be widely applicable to explain contextual modulations in sensory

processing.

6.1 Background

Sensory information flows are highly complex and ambiguous with multiple lo-

cal sensory events occurring simultaneously. Once these events have been accu-

rately extracted, a challenging computational task faced by any sensory system is

to integrate or segment them in order to encode behaviourally-relevant informa-

tion. The difficulty of such a computation is illustrated by visual motion pro-

cessing. Local motion signals must be selectively integrated in order to recon-

struct the direction and speed of a particular surface from the dense and clut-

tered image flow in oder to overcome the aperture problem [Braddick 1993]. But

the same set of signals must also be segregated from the many others that could
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belong to other surfaces, multiple surfaces could fall with-in the receptive field

of the cell as in the case of motion boundaries or overlapping motion surfaces

as in the case of transparency. The rules governing motion integration and seg-

mentation have been extensively investigated at perceptual and physiological lev-

els [Movshon 1985, Qian 1994, Braddick 1997, Treue 2000, Grossberg 2001]. For

instance, when presented with two motion directions, or two motion direction dis-

tributions, the primate visual motion system can group them according to simple

(i.e., vector average) or complex (i.e., intersection-of-constraints) rules. It can also

segment them by either suppressing one of the two inputs (i.e., winner-take-all)

or by simultaneously representing both of them as in motion transparency. Em-

pirical evidence has been found at both single-cell or population levels for each of

these computations in the middle temporal (MT) cortical area of monkeys, a pivotal

processing stage in object motion computation [Born 2005]

The classical physiological approach is to identify sub-populations of MT neu-

rons whose behaviours fit with these different computations, thanks to differential

weighting (e.g. [Xiao 2015, McDonald 2014, Treue 2000, Movshon 1985]). When

presented with plaids made of two superimposed sinusoidal gratings drifting in dif-

ferent directions, some cells encode only one of the two components (component

cells) while others encode the pattern motion direction after combining them (pat-

tern cells) [Movshon 1985]. However, recent modelling studies have suggested that

these two subpopulations span a continuum along which directionally-selective in-

puts are differently weighted [Rust 2006]. A similar idea was recently proposed by

Xiao and Huang [Xiao 2015] to explain the different types of direction tuning ob-

tained in response to single or bidirectional dot patterns. A majority of MT cells ex-

hibits a single peak tuned to either one of the component or to their mean direction,

implementing either a winner-take-all or a vector average computation. Others show

two peaks, thus representing the two, overlapping motion directions [Xiao 2015].

There are serveral difficulties with the differential weighting hypothesis. First,

one cannot reliably predict the cell responses to bidirectional random dot patterns

from their responses to plaids [Xiao 2015]. Second, one must take into account

the complex temporal dynamics of the tuning functions that can shift over time

from, say the vector average to either the winner-take-all or the transparency so-

lutions [Xiao 2015, Treue 2000]. Indeed, integration and segmentation appear as

threads of a complex dynamical computation where inhibition and excitation are

shaped adaptively given the spatiotemporal properties of the inputs. Whereas

the vast majority of previous theoretical studies on motion integration in area

MT have focused on two stage linear-nonlinear computation describing the feed-

forward scheme [Qian 1994, Rust 2006, Perrone 2008], only a few computational

studies have shown that these different cell tuning can be the output of a dynami-

cal system where MT subpopulation are recurrently connected, forming a balanced

excitation-inhibition network [Wang 1997, Chance 1999, Ponce-Alvarez 2013]. How-

ever, they have not studied in detail the interplay between connectivity and driving

input leading to the eventual tuning curves. For instance, [Wang 1997] considers a

three layer architecture where V1 cells provide input to MT component cells and

MT component cells provide input to MT pattern cells. By consequence, the pos-

sibility to make a single sub-population exhibit different kinds of tuning is ruled

out. [Ponce-Alvarez 2013] are focussed on noise induced correlations in tuning func-

tions, thus do not study the changes in attractor strength of the solutions induced
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due to the structure of the input.

From a computational perspective, understanding the excitatory and in-

hibitory interactions betweens neurons at the physiological level and groups of

neurons at a functional level has been a topic of great interest and has been

studied using both discrete [Ellias 1975, Cohen 1983, Majani 1989, Yuille 1989,

Cohen 1990, Wolfe 1991, Coultrip 1992, Kaski 1994, Raijmakers 1996, Fukai 1997,

Hahnloser 1998, Mao 2007, Arkachar 2007, Martí 2012] and continuous represen-

tations [Wilson 1973, Amari 1977, Ben-Yishai 1995, Carandini 1997, Hutt 2003,

Coombes 2005] of the abstract feature space.

Under discrete settings, [Ellias 1975] studied on-center off-surround inhibition

using shunting type of interactions. They demonstrated various behaviors such

as inputing broadening, contrast modulation, peak splitting, formation of spurious

peaks etc., under a variety of activation functions with different levels of steepness,

excitatory and inhibitory strengths. However, only random/rectangular input acti-

vations were considered. One of the popular problem in discrete settings is also the

emergence of winner take all (WTA) behavior or k-winner take all (kWTA) behav-

ior, which attempted to identify the number of simultaneously active units at steady

state. [Yuille 1989] analytically derived conditions for emergence of WTA behavior

for shunting type of interactions. [Cohen 1990] showed the occurrence of Hopf bi-

furcations in on-center off-surround SNNs with symmetric negative feedback and no

self-inhibition. [Ermentrout 1992] has shown that delayed inhibition could lead to

oscillatory solutions. [Hahnloser 1998] showed that global inhibition may give rise

to multistable WTA mechanism in a recurrent network of neurons but considered a

linear activation function above threshold. [Fukai 1997] considered uniform lateral

inhibition and showed that ratio of strengths between lateral inhibition and self-

inhibition leads to either WTA or winners-share-all behaviors. [Xie 2002] extended

the work to a grouping of potential winners in the WTA networks beyond single

neuron or uniformly arranged groups of neurons.

In the continuous case, this competition has been studied using neural field

equations, these are integro-differential equations describing the time evolution of

the population activity operating at a continuum limit. Studies addressed vari-

ous problems such as formation of bumps and wave patterns explaining hallucina-

tions [Wilson 1973, Amari 1977, Hutt 2003, Coombes 2005], emergence and prop-

erties of orientiation selecitivty [Ben-Yishai 1995, Carandini 1997]. However, these

models studied the properties of network in terms of their autonomous behaviour

with no specific driving input.

These aforementioned studies could be broadly classified into two types, one

which derive closed form analytical solutions and others which rely on numerical

continuation and bifurcation analysis techniques. Analytical proofs for characteriz-

ing and understanding the behaviour of the networks can be quite complicated in

the presence of non-linearities, noise and unstructured input. Numerical continu-

ation and bifurcation analysis tools are used to understand the behaviour of these

complex networks in situations where closed form analytical solutions can be dif-

ficult to derive. Bifurcation analysis identifies the crucial parameters and regimes

under which the behaviour of the network changes qualitatively.

[Raijmakers 1996] is one of the few works which reported numerical bifurcation

analysis using On-center Off-surround interactions among neurons using shunting

neural networks (SNN). However, the input considered there was transient. The
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network was primarily used to explore content addressable memory. [Mao 2007]

also studied the behavior of recurrent neural networks with lateral inhibition in

terms of emergence of Winner Take All behaviours. Bifurcation analysis tools were

also considered in continuous settings such as[Ellias 1975]. But both in discrete and

continuous settings, neither of the studies did consider structured driving input.

Structured input plays a crucial role as it provides a mapping between stim-

uli used in experiments to the driving input considered in the models. Such at-

tempts to consider structured driving input in case of understanding motion inte-

gration dynamics has been applied in few studies such as [Giese 1998, Rankin 2011,

Rankin 2014]. However, these studies are focused at the level perceptual decision

making and do not take into account different kinds of stimulus categories and

tuning behaviours of different sub-populations.

While these studies depict clear interest in understanding the role of recurrent

interactions there are two important aspects that have been ignored so far. There

are instances where bifurcation with inputs to neural field models have been consid-

ered but no special attention to the shape/characteristics of the input has been paid.

For example, studies in memory/winner take all or K-winner take all, usually input

is a randomly generated vector. This leaves a wide gap open for understanding spe-

cific response characteristics of a network with respect to the characteristics of its

specific input. At the same time, it is impractical to characterize the network with

respect to all different inputs using bifurcation analysis but it is possible to consider

a particular class of stimuli. In this work, we propose to use a linear combination

of localized Gaussian bumps as an input class of interest given the ubiquitous evi-

dence for Gaussian like tuning response exhibited by populations of neurons. Apart

from the structure of the input another very interesting aspect of the study is the

connectivity kernel that governs the strength of local excitation/inhibition. Even

though various kinds of connectivities are studied such as uniform lateral inhibition,

center-surround inhibition (Mexican Hat) or lateral inhibition with various degrees

of self excitation, a parametrized choice of the kernel with associated trade-off has

never been established. In this study we attempt to provide insights into the trade-

off of choosing a kernel by modelling these three instances as a continuum using a

weighted difference of Gaussians.

Herein, using numerical simulations, we study the interplay between connectivity

and input to show how it shapes single unit and population tuning.

6.2 Model Description

We model the behaviour of MT neurons using an empirical voltage based ring net-

work that describes the local mean field potential of a group of directionally tuned

neurons under different inputs and centre-surround interactions. We primarily focus

on the properties of the steady state solutions such as the shape of the direction

tuning functions, their number of peaks at convergence and the peak positions with

respect to the driving inputs. Let u(θ, t) denote the activity of the neurons tuned

to motion direction θ ∈ [−π, π) and the population dynamics are described by the

following neural field equation,

du(θ, t)

dt
= −u(θ, t) +

∫ π

−π
J(θ − φ)S(µu(φ, t), th)dφ+ ki ∗ Iext(θ),
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where, J is the connectivity kernel defined as a weighted difference of Gaussians

Jge,σe,gi,σi
(θ) = geG(θ, σe) − giG(θ, σi), G(θ, σ): Gaussian function, ge: excitatory

strength, σe: extent of excitatory surround, gi: inhibitory strength, σi: extent of

inhibitory surround. S is a sigmoid function (µ regulates the sigmoidal gain) and

Iext is the driving input representative of the motion stimuli.

At the continuum limit, upon discretization using N samples, the network repre-

sents a sub-population of N directionally tuned MT neurons with a smoothly varying

directional preference, represented by an angle θ (Fig. 6.1A). Each cell receives affer-

ent input (Iext) from a V1 layer, where stimuli are encoded by Gaussian distributions

for each motion input (Fig. 6.1B). The width of the Gaussian bump describes the

inherent uncertainity in the local motion estimations at V1 stage. Distributions are

broader for gratings than for random dot patterns, reflecting the broader direction-

tuning of V1 cells reported in these two conditions [Albright 1984, Mante 2005]. The

input is defined by the peak width of each Gaussian distribution (PW) and the peak

separation between the two Gaussian distribution (PS), corresponding to a bidirec-

tional motion stimuli. This formulation allows us to encode a variety of stimuli such

as gratings, plaids and RDKs with different levels of uncertainities. MT neurons also

receive input from the local recurrent interactions (Fig. 6.1C). This local recurrent

connectivity depends only on the directional difference, being locally excitatory and

laterally inhibitory. It implements a typical centre-surround connectivity kernel in

feature space, described by a weighted difference between the Gaussians. Note that

we chose to preserve higher order harmonics rather than appealing to a three mode

approximation [Curtu 2004, Rankin 2014]. The connectivity kernel is defined by two

parameters, the extent of lateral excitation (α) and the strength of the inhibition

(β) as illustrated in Figure 6.1C.

6.3 Numerical study of the model

Exploration of the connectivity space with J̃α,β
The impact of main parameters governing the nature of local recurrent interac-

tions, the extent of lateral excitation and strength of lateral inhibition are studied

using a family of weighted DoG kernels, J̃α,β(θ) = Jgeα ,σeα ,giα+β,σi
(θ). In par-

ticular, we study the case of uniform lateral inhibition, so σi is fixed to a large

value (σi = 10π). α is a parameter to smoothly vary the extent of excitatory

surround from a narrow (σea) to a broad (σeb) bump, depending on a parameter

α: σeα = σea + α (σeb − σea). The other parameters describing the difference of

Gaussian functions, geα and giα are estimated in a closed form with the constraint

that, first two Fourier coefficients of J̃α,0,
̂̃Jα,0[0] = −1 and ̂̃Jα,0[1] = 1, which gives

geα = e−
σ2
eα
2 and giα = 1+geα

0.0797 . β is a free parameter to regulate the strength of

lateral inhibition. While considering slow evolution of the inhibition, the inhibi-

tion strength giα is allowed to evolve slowly governed by the following equation.

gi(t) = gilow + (giα + β − gilow)(1− exp(−t
τI
));

6.3.1 Derivation of the closed form constraints used in J̃α,β

Considering weighted Difference of Gaussian kernels Jα,β(θ) = Jgeα ,σeα ,giα+β,σiα
(θ),

where Jα,β(θ) = geαwc(θ, σeα)− giwc(θ, iα) and wc(θ, σ) is a Gaussian function over
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Figure 6.1: The ring model, its different behaviours and the likelihoods of conver-

gence. (A) Illustration of ring network modelling visual motion integration at MT

cells level, with V1 input and recurrent connections. (B) Input defined by two Gaus-

sian distributions parametrized by PS and PW, allowing to represent both RDK and

plaids. (C) Centre-surround connectivity kernel in feature space parametrized by α

and β defining a family of kernels. (D) Bifurcation diagram as a function of param-

eter PS (PW=10, α = 0, β = −10) showing corresponding stable solutions (a,b,c)

and unstables ones (d,e) for each branch. Three kinds of solutions co-exist: vec-

tor average (VA), winner-take-all (WTA) and transparency (T). Note that referring

to [Xiao 2015], winner-take-all will also be designated as side-biased (SB) and trans-

parency as two-peaked (TP). (E), (F) show attractor strength of each steady-state

solutions (a,b,c), measured as a probability of reaching it from repeated simula-

tions with randomised 100 initial conditions, varying respectively input parameters

(α = 0, β = −10) and connectivity parameters (PS=120, PW=10). Overlaid curves

in white are two parameter continuations of the bifurcations indication theoretical

transitions in set of stable solutions that co-exist.

the continuous variable θ with a standard deviation σ. Our motif is to derive a

set of parameters (gec , σec , gic , σic) such that when the kernel is discretized between

an open internal [−π, π) with N samples, the first two Fourier coefficients of the
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Discrete Fourier Transform Ĵ [r] of the sampled kernel satisfies the constraints Ĵ [0] =

0 and Ĵ [1] = 1 while having a free homotopy variable α which allows us to smoothly

transit between kernels having different excitatory widths σea to σeb .

We begin by deriving the Fourier coefficients Ĵ . The Fourier transform of a

continuous-time Gaussian function of variance σ2 is also a Gaussian

wc(θ) =
1√
2πσ

e
−θ2

2σ2
F←→ Wc(Ω) = e

−Ω2

2( 1
σ2 ) (6.1)

Considering a discrete time Gaussian sequence created by sampling the continuous-

time Gaussian function wc(θ) at a sampling interval of T

w[n] = wc(nT ) =
1√
2πσ

e
−n2T2

2σ2 (6.2)

The discrete time Fourier transform of w[n] is given by

W (ω) =
1

T

∞∑

k=−∞

Wc

(
ω − 2πk

T

)
(6.3)

Considering a band limited signal 1
σ < π

3T the DTFT is only significantly con-

tributed by k=0 term, giving the approximation

W (ω) =
1

T
Wc

(ω
T

)
(6.4)

Now considering a finite sequence of samples of length M, the Discrete Fourier

Transform of the signal is a sample of the DTFT at locations ω = 2πr
M for 0 ≤ r <

M − 1

W [r] =
1

T
Wc

(
2πr

MT

)
(6.5)

Considering a weighted difference of Gaussians kernel

Jc(θ) = gewc(θ, σe)− giwc(θ, σi) (6.6)

The FT of this continuous function sampled between the interval [−π, π) with a

sequence of length N then the time period T = 2π
N . Then the DFT of the connectivity

kernel is given by

Ĵ [r] = ge
N

2π
Wc (r, σe)− gi

N

2π
Wc (r, σi) (6.7)

In case of uniform lateral inhibition We need to define a smooth transition

from Kernel JA defined by the parameters (gea, σea, gia, σia) to kernel JB defined

by parameters (geb, σeb, gib, σib). Considering the two dimensional parameter space

of excitatory and inhibitory sigmas, then defining a smooth transition amounts to

finding the weights (gec, gic) that correspond to a chosen point (σec, σic) on the

line joining the two points (σea, σia) and (σeb, σib) in the parameter space. If we

consider the σia and σib to be large, then by following equation 12 and approximating

the Fourier transform of the inhibitory kernel to be a constant we get the Fourier

transform of JA, denoted by ĴA as

ĴA[r] =

{
gea

N
2πWc (r, σea)− giaC1, if r = 0

gea
N
2πWc (r, σea) , if r > 0

(6.8)
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Considering σia = σib >> 2π , then only change in parameter space is governed by

excitatory width,

σec = σea + α(σeb − σea) (6.9)

So now applying the constraints ĴC [0] = −1 and ĴC [1] = 1

ĴC [0] = −1 = gec
N

2π
− gicC1 (6.10)

ĴC [1] = 1 = gec
N

2π
Wc (r = 1, σec) (6.11)

It implies

gec =
1

N
2πWc (r = 1, σec)

(6.12)

and

gic =
1 + gec

N
2π

C1
(6.13)

Parameter values, initial conditions and numerical computations

The parameters used for the numerical simulations are gathered in Table 6.1. In

case of simulations without noise, standard ode solver, ODE23T is used with abso-

lute tolerance value set to 10−12. For the simulations with noise, Euler Maruyama

method is being used. In the simulations initial conditions are set to a low level

of random activity. In order to carry out numerical continuation and bifurcation

analysis, Auto07p package is used, allowing us to track the bifurcation point in one

and two-dimensional parameter space. For bifurcation analysis computations are

carried out in the absence of noise for a variety of combination of driving input and

connectivity kernels. The feature space is discretized into 404 samples and values

of the coefficients used are chosen so that the equation is at continuum limit.

Results

6.3.2 Network behaviour

Using numerical bifurcation analysis we first identified the stable solutions and the

parameter regimes over which these different solutions coexist. When the network

is stimulated with a bidirectional input, varying the distance between the two input

peaks (PS) leads to different types of solution. These are shown in a bifurcation

diagram in Fig. 6.1D, where stable solution branches are solid and unstable branches

dashed. The tuning curves of the three stable solutions are indicated in the right

panels and corresponded to the three main cell tuning already reported[Xiao 2015].

Cases a, b and c correspond to the observed vector average (VA), winner-take-all

(WTA) and transparency (T) tuning functions, respectively. For small PS value,

VA is the only possible solution. For large PS value, WTA or T coexist. For an

intermediate range (95 . PS . 130), we identify a critical operating regime for

the model, where it is capable of producing the three prototypical tuning types in

one small parameter region. We observed that the WTA solution was side-biased,

indicating that the other, competing input was not fully suppressed, similar to the

empirical evidence in macaque area MT [Xiao 2015]. Unstable solution branches
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Description Parameter Value

Number of samples in [−π, π) N 404

Sigmoid threshold th 3.0

Sigmoid gain λ 16.0

Input gain ki 0.1

Population time constant τp 1.0, 5.0, 10.0

Inhibition time constant τI 30-100

Homotopy variable to regulate excitation width α [0,1]

Inhibition offset β [-10,15]

Excitation width σeα = σea + α (σeb − σea) [11.5◦(σea), 60◦(σeb))

Inhibitory width σi 1800(>> 360)

Excitation strength geα e−
σ2
eα
2

Inhibition strength giα
1+geα
0.0797

Peak Separation PS (0, 180]

Peak width PW 5◦-30◦

Table 6.1: Parameter values used in the numerical studies

(d,e) can link the stable branches, but are not critical in this study. Stable solution

branches terminate at bifurcations. The intersection of a and d is a pitchfork bifur-

cation, of d and b a fold bifurcation and of c and e a fold bifurcation. These can

be tracked in terms of two parameters (Fig. 6.1E) to demarcate entire parameter

regions where different solution types exist (a two-parameter phase diagram for the

model).

The network behaviour is best characterized by maps of attractor strength that

reveal which of the stable solutions identified in the bifurcation analysis dominates.

Attractor strength of each solution, measured as a probability of reaching it from

repeated simulations with randomised initial conditions, was computed at every

combination external parameters (input: PS,PW) and internal parameters (connec-

tivity kernel: α, β) (Fig. 6.1E,F). Although in a given parameter regime two or more

types of solutions can coexist as stable solutions, the network might be much more

likely to converge to one of these from a random initialisation. In, Fig 6.1E, for

large peak separation, the transparency case dominated over a large range of peak

width. Conversely, narrow peaks that are widely separated yielded to the WTA

solution. The likelihood of the VA solution was maximal for small peaks separation,

regardless of the PW. In Fig 6.1F, we observe that maintaining two peaks at popu-

lation level requires both low inhibition and narrow excitation whereas VA requires

low inhibition but broad excitation. The WTA solution is highly probable across

a wide range of inhibition strength and excitation extent. Thus, the emergence of

the different neural solutions to the motion integration and segmentation problem

results from the interplay between the properties of the inputs and the shape of the

centre-surround interactions. Moreover, these different types of direction tuning are

solutions of a single dynamical system.
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6.3.3 Local recurrent interactions lead to prototypical tuning be-
haviours found in MT

Recording single unit activity in macaque area MT, Xiao and Huang [Xiao 2015]

investigated the neuronal responses to random dot patterns made of either one or two

motion direction inputs. Interestingly, they documented prototypical behaviours as

shown in Fig. 6.2A. For a fixed direction difference between motion directions of a

dot pattern, the authors found three different classes of cells. Type A1 represents the

vector average (VA) of the two motion inputs while A4 superposes them, yielding

to a two peaked tuning function (TP). The two other examples (A2, A3) form a

single class that suppress one or the other of the two inputs. These side-biased (SB)

cells implement a weak winner-take-all computation where an influence from the

suppressed inputs can still be seen. Here we show that a population of direction

selective cells can produce these prototypical behaviours under the influence of local

recurrent interactions.

We simulated the network by sequentially varying the pattern direction of the

driving input. Figure 6.2B, illustrates the MT population direction preference, as

a function of the average input motion direction. Four cases are presented, corre-

sponding to different parameters of the input and different recurrent connectivity

regime (Fig. 6.2C). Sampling the population vertically or horizontally provides the

MT population tuning (Fig. 6.2D) and a single cell tuning (Fig. 6.2E). Column

B1 shows that the network accurately represents a unidirectional input. Column

B4 illustrates the population and single cell tuning for two widely separated in-

puts (120deg), for the same recurrent connectivity, with a low inhibition regime

(β = −10). The two peaks are preserved, yielding to a bimodal tuning function.

Notice that each peak is now sharper than observed with a single direction input.

Narrowing the input direction difference to 90deg (clolumn B2) changed the tuning

functions at both population and single-cell levels, with now the vector average be-

ing represented. Thus, as reported by [Xiao 2015] and others [McDonald 2014], VA

and TP solutions can be achieved, depending on the spatiotemporal properties of

the input (Fig. 6.2, compare B4 with A4 and B2 with A1). Using the same input as

in B4, column B3 illustrates that the network shifted to a winner-take-all (WTA)

solution when inhibition strength is increased (β = 10). Here an input bias to

the −60◦ direction was incorporated (Fig. 6.2D, column B3, orange curve). In our

model, a high inhibition regime with bias introduced through afferent connection

strengths leads to a robust side-biased behaviour. A similar case with symmetric

input is considered in Fig. 6.3B. Notice however that a small response to the sup-

pressed direction is still evident, due to the local recurrent excitation. Single cell

activities are more variable than in the population activity. This can happen when

the network is operating in a parameter regime where different solutions co-exist

with one attractor largely (but not totally) dominating and the noise in the input

driving the network through the possible stable solutions(see Figure 6.1).

6.3.4 Attractor bias leads to consistent tuning and predicts fluc-
tuations in component selection

One of the hallmarks of recurrent interactions is the existence of multiple stable

solutions for the same set of parameters albeit with different attraction strengths.
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Figure 6.2: Local recurrent interactions lead to prototypical tuning behaviours found

in MT. (A) Four examples of prototypical single cell tuning behaviours found in

MT (Adapted from Xiao and Huang, J. of Neuroscience 2015 [Xiao 2015]. Blue and

green curves show the tuning functions obtained when presented with a dot pattern

moving coherently in one of the two directions. Red curves show the tuning functions

obtained with the two direction components overlapped, forming a bidirectional

pattern. (B) Simulated the network by sequentially varying the pattern direction

of the driving input for a uni-directional stimulus (column B1) and bi-directional

ones (columns B2–B4). (C) Connectivity kernels used in each cases. (D) MT

population tuning obtained from B by doing a vertical cut. (E) Single MT cell

tuning obtained from B by doing an horizontal cut.

Under this multi-stability, the network could converge to any of the stable solutions

states and it would manifest as a random fluctuations at a single cell level. Obser-

vations pertaining to stable tuning behaviour could be emerging from the regimes

where one of the attractor is dominant either due to parameter regime or structure

of the driving input. For example, strong affinity towards vector average or two-

peaked solution could be due to the network operating at regime where VA or two

peaked solutions are the dominant attractors. The steady tuning of side bias could
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be due to a slight asymmetry in the afferent and network operating in a winner

take all domain, the component of the input with lower amplitude would be sup-

pressed. In feedforward models, this kind of component suppression would require

a huge amount of asymmetry in the feedforward inputs. Considering recurrent in-

teractions, even a slight bias would result in consistent suppression of one of the

components.

One prediction of our network model is that tuning functions could exhibit fluc-

tuations as the network could select either one of the components when stimulated

with input having purely symmetric component strength. This is evident in the

bifurcation diagram shown in Figure 1B, where different computational solutions

can coexist for a given input range. Therefore, we presented repeated trails with

bidirectional inputs having different motion direction difference and/or various de-

grees of strength difference between the two motion components. In experimen-

tal studies, this latter manipulation would correspond to selectively decreasing the

signal-to-noise ratio for one component. All other parameters regarding recurrent

connectivity were kept constant. Fig. 6.3.A shows that population direction tuning

remains largely unchanged when the angular difference between the two component

motions was small (−60◦) and the relative strength was varied. In Fig.. 6.3.B how-

ever, the population tuning was remarkably stable with asymmetric inputs but was

highly fluctuating when the two motion components have the same strength.
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Figure 6.3: Tuning behaviour changes with respect to the separation of the com-

ponents and asymmetry in the input. We simulated the network by sequentially

varying the pattern direction of the driving input as in Fig. 6.2B, with (A) PS=60,

and (B) PS=120. For both cases, a comparison is made between symmetric and

asymmetric input. Other parameters are fixed (PW=20, α = 0, β = −5).

6.3.5 Predicting tuning behaviour for different spatiotemporal
properties of bidirectional motion inputs

One remarkable properties of pattern motion integration in macaque area MT is

that cell responses to bidirectional plaid patterns cannot be fully predicted from

bidirectional random dot patterns, and reciprocally [Xiao 2015, McDonald 2014].

The transitions in the behaviour of the cells classified to be side biased, two peaked

or averaging using RDKs when stimulated by plaids are presented in Fig. 6.4.D.

Recurrent interactions may play a role in shaping the cell response properties to the

exact spatio-temporal properties of the motion input.

In our model, we can examine these translations by examining the attractor

strength of the stable solutions across variety of internal parameters allowing us
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Supporting parameter 
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0

Figure 6.4: Predicting tuning behaviour with respect to stimuli. A,B,C: Convergence

probabilities to stable solutions when the network is driven with inputs representa-

tive of plaid and RDK stimuli. The maps indicate the probability of convergence to

particular solution when the network is simulated with the input using connectivity

parameters (α, β), measured using 100 trials. D: Transitions in the tuning behaviour

of the cells that exhibited a particular type of tuning behaviour when tested using

RDKS to Plaid stimuli (Data from Table. 2 of [Xiao 2015]). E: The percentage of

overlap in the parameter regimes that support specific tuning behaviour when the

network is driven with input representative of the two stimuli. This overlap is in-

dicative of the plausible transitions in the tuning behaviour of the cell with respect

to input.

to visualize how the attractor strengths would shift from one stimulus category to

other by simple superposition as illustrated in Fig. 6.4. We started by measuring the

attractor strength of each solution at different connectivity regimes from repeated
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trials (100) using the specific input. We then constructed a likelihood map from this

condition. Once the likelihood maps for all the solution types across different input

conditions are obtained, we identified the connectivity regimes which could support

transitions in one type of tuning for a particular input to other types of tuning with

a different input by overlaying the thresholded maps. The percentage of the overlap

within the range of parameters tested is presented in Fig. 6.4.E. Interestingly, some

of the experimentally observed transitions could not be explained by changes in the

driving input alone: for example transition from transparency to vector averaging

cannot be observed without a shift in the overall excitatory and inhibitory structure

towards a broader excitatory extent and stronger inhibition. This could potentially

indicate a systemic contextual modulation in motion integration driven by form

based cues. Another broad trend that has been observed is that transparency, or

co-existence of two peaks is supported by local ambiguity. In case of sharp input, the

likelihood of two peaks is very little. At the same time, the likelihood of VA increases

with increased ambiguity. This could indicate that, when ambiguity is low spatially

a salt and pepper kind of tuned populations selecting a particular component could

be used the by system to represent transparency. When such stimuli are spatially

proximal, it could lead to fluctuating perception.

6.3.6 Temporal dynamics

Experimentally it has been shown that neurons develop the selectivity for a par-

ticular direction after the 60-80ms of time delay [Smith 2005, Xiao 2015]. Here

we tested the hypothesis that slow onset of inhibition could lead to such tempo-

ral evolution of the selectivity and transition in the tuning behaviour. To do so,

the inhibition strength (β) is allowed to evolve temporally on a slower time scale.

The intuition behind this observation is that uninhibited lateral interactions could

lead to integration early on developing a broadly tuned response and later on the

activity can be shaped by the inhibition. The results obtained using two different

input configurations in confirmation with this hypothesis can be found in Fig. 6.3.6.

As expected, early lateral interactions allowed the spread of the activity leading to

broad tuning. The onset of inhibition later on shaped the tuning to resemble one of

the prototypical solutions based on the the eventual strength it converges into. This

could hint at a possibility of early integration of sensory inputs not only in vision

but also in other modalities.

More interestingly, our model could not find a transition from a broad VA like

response to two peaked response that was reported by [Xiao 2015]. The transitions

reported could be seen in Fig. 6.6. In case of RDK stimuli whose motion directions

are separated by 600, the temporal evolution of two peaked behaviour from a broad

untuned response has been reported Fig. 6.6.b, however, our model could not find

this type of transition. There are two potential causes for it. Firstly, the likelihood

of two peaked solution is very low when the driving input considered was sharp as

in the case of RDKs. So, the model with highly likelihood jumps from a Vector

Average solution branch to side bias (WTA) branch. Even if we set inhibition

such that only vector average or two peaked solutions are only stable solutions,

it takes a lot of noise for the system to destabilize from VA solution and reach a

two-peaked solution branch. Second, there is qualitative change in the early tuning

that has been reported when two motion components considered are closer (600)
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Figure 6.5: Temporal tuning behaviour. A-F (1,2) illustrate the system exhibiting

side bias. A-F (3,4) illustrate the system exhibiting two peaked behaviour. A1, A3:

evolution of lateral inhibition strength. A2, A4: connectivity kernels sampled at

different time intervals. B1, B3: Input and initial conditions of the network. B2,

B4: Population tuning at convergence. C1, C3: Early tuning behaviour observed in

simulations. C2, C4: Early tuning behaviour observed in experimental recordings.

D1, D3: Temporal dynamics observed in simulations. D2, D4: Temporal dynamics

experimentally observed with RDKs [Xiao 2015].

versus farther apart in direction space (900, 1350). This can be readily observed

by comparing Fig. 6.6.a and 6.6.d. In 6.6.a, the activity seems to spread from the

center or VA direction and in case of 6.6.d, the activity seems to spread from the

constituent component directions. The reason for this qualitative shift is unknown

and needs further investigation.

6.4 Discussion

We have shown that a variety of tuning behaviours observed in the sub-populations

of macaque direction selective MT neurons could be explained by a recur-
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1350600 600 900

(a) Side biased (b) Two peaked (c) Side biased (d) Side biased

Figure 6.6: Illustrating temporal evolution of tuning. a,c,d: show side biased tuning

behaviour evolving from an early broad response. b: shows two peaked behaviour

evolving after an early untuned reponse, our model does not capture this transition.

Figure adapted from [Xiao 2015].

rently interacting group of cells tuned to different directions. Previous stud-

ies have attributed the different tuning behaviours to functionally different sub-

populations [Movshon 1985, Rust 2006, McDonald 2014]. Even though we do not

refute the existence of distinct cell types, using local feature domain recurrent in-

teractions we have not only reproduced different types of tuning but can explain

change of tuning depending on the input type. Experimental evidence suggests that

tuning behaviour emerges temporally, [Smith 2005, Pack 2001] have demonstrated

that pattern selectivity emerges over a delay of 60-70 ms, [Xiao 2015] have shown

that component selectivity could emerge after an initial preference for vector aver-

aging. These observations have been modelled earlier using functional feedforward

models such as [Rust 2006, Perrone 2008] but these models require considering cells

with different temporal sensitivity and also cannot necessarily link the computa-

tional elements such as tuned versus untuned normalization or strong feedforward

inhibition that model parameters demand. Local recurrent have so far received lit-

tle attention despite being speculated by [Smith 2005, Xiao 2015] in this chapter

we have demonstrated that local recurrent interactions can explain the temporal

emergence of tuning behaviours.

Canonical competition at perceptual and neuronal levels/Theoreti-
cal link between cortical responses and perception

Considering the feature space local recurrent interactions could be a step in estab-

lishing the connection between low-level neural dynamics associated with sensory

processing and perceptual dynamics, including transparency. This requires us to

understand the behaviour to be expected under different kinds of interactions. Our

study, establishes that competitive recurrent interactions in the feature space that

have been explored earlier at macroscopic(perceptual level) [Rankin 2014] earlier can

account for different tuning behaviours observed at the neuronal level [Xiao 2015].

These local recurrent interactions could be a key to connect low level neuronal dy-
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namics with high level perceptual dynamics.

Contextual modulation leads to multiple behaviours from the same
network

It is well known in the experimental literature that directional tuning can vary signif-

icantly based on the type of the stimuli used, for example Type 1 plaid, Type 2 plaid

or Random Dot Kinematograms. The pattern/component cells respond differently

to RDKs, which has been demonstrated by [Xiao 2015]. These kinds of dynamic

changes in the behaviour can be attributed to both changes in the spatio-temporal

input representative of local ambiguity as well as the contextual modulations that

can occur in the network in terms of lateral excitation and inhibition strength. Our

model provides a systemic way to investigate role of each of these factors. Our simu-

lations facilitate prediction of most likely changes in the tuning under same context

and also lets us estimate contextual changes (internal parameters) the network has

to undergo such as improved extent of lateral excitation or increased inhibition

strength to explain the observations.

Multi-stability and unclassified response

Recurrence as observed could lead to multi-stability. Multi-stability at sub-

population levels could manifest itself as fluctuations at single cell across trials,

leading to a lack of specific tuning behaviour or high variance in cells response

across trials. This is a potential factor for explaining the cause for unclassified cells

seen in the MT area. There could be a potential sub-group which fluctuates on

component selection under symmetric driving input, which could be stabilised by

changing the contrast in one of the driving components. This is a prediction that

could be tested experimentally. The effective internal parameters could be changing

with respect to stimulus type, for example RDKs versus Plaids.

General theoretical results for a ring network

We have presented a detailed numerical study that elucidated the behaviour of a

ring network with neurons interaction in a on-center off-surround manner, going

beyond traditional characterization of the network in terms of the solution space

in autonomous mode we have proposed a structured driving input which facilitated

the representation of stimuli used in physiology and psychophysics. Our proposal

reduced the study into four critical variables, two of them reflective of external

attributes that could be controlled, peak width and peak separation and two internal

parameters, excitatory extent and inhibition strength. The bifurcation analysis gives

us an idea of the stable solutions and parameter regimes where each of the solutions

are stable, a complementary stochastic trials indicate the strength of the stable

solutions. This computational characterization of the network is broadly applicable

for modelling studies and can be used to model other experimental observation in

identical scenarios.
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6.5 Conclusion

Recurrent local interactions in the feature domain can reproduce variety of tuning

behaviours that have been reported in literature. Interestingly, proto-typical tun-

ing curves that have been reported form the stable solutions of the ring network

under center-surround connectivity. The attraction strength of different stable so-

lutions can potentially explain the dynamic changes in the tuning behaviour that

has been observed physiologically. These recurrent interactions could potentially

form a bridge between the models of motion integration and models that capture

transparency as they eliminate the need for different sub-populations and strong

competition. These recurrent interactions need to be further investigated using

spatialized version for developing generic models which can work under different

stimulus categories.



Part IV

Towards synergistic models in

vision...





Chapter 7

Task centric exploration of

biological and computer vision

The basic premise of the thesis is that scaling up models in biological vision would

be mutually beneficial for both computer and biological vision. In parts II and

III, we have shown that evaluating models rooted in biological vision taking a task

centric view gave us insights to better constrain the models and explore the role

of recurrent interactions. A natural question to ask is how could computer vision

benefit from studies in biological vision. The goal of this chapter is to examine how

novel computer vision approaches could be developed from the biological insights. It

is a manifesto for developing and scaling up models rooted in experimental biology

(neurophysiology, psychophysics, etc.) leading to an exciting synergy between stud-

ies in computer vision and biological vision. Our conviction is that the exploding

knowledge about biological vision, the new simulation technologies and the identi-

fication of some ill-posed problems have reached a critical point that will nurture a

new departure for a fruitful interdisciplinary endeavour. The resurgence of interest

in biological vision as a rich source for designing principles for computer vision is

evidenced by recent books [Petrou 2008, Frisby 2010, Hérault 2010, Pomplun 2012,

Cristobal 2015, Liu 2015] and survey papers [Tsotsos 2014, Cox 2014]. However, we

feel that these studies were more focused on computational neuroscience rather than

computer vision and, second remain largely influenced by the hierarchical feedfor-

ward approach, thus ignoring the rich dynamics of feedback and lateral interactions.

This chapter is organised as follows. In Sec. 7.1, we revisit the classical view of

the brain as a hierarchical feedforward system [Kruger 2013]. We point out its lim-

itations and portray a modern perspective of the organisation of the primate visual

system and its multiple spatial and temporal anatomical and functional scales. In

Sec. 7.2, we appraise the different computational and theoretical frameworks used to

study biological vision and re-emphasise the importance of putting the task solving

approach as the main motivation to look into biology. In order to relate studies in

biological vision to computer vision, we focus in Sec. 7.3 on three archetypal tasks:

sensing, segmentation and motion estimation. These three tasks are illustrative be-

cause they have similar basic-level representations in biological and artificial vision.

However, the role of the intricate, recurrent neuronal architecture in figuring out

neural solutions must be re-evaluated in the light of recent empirical advances. For

each task, we will start by highlighting some of these recently-identified biological

mechanisms that can inspire computer vision. We will give a structural view of

these mechanisms, relate these structural principles to prototypical models from

both biological and computer vision and, finally we will detail potential insights

and perspectives for rooting new approaches on the strength of both fields. Finally,

based on the prototypical tasks reviewed, we will propose in Sec. 7.4, three ways to

identify which studies from biological vision could be leveraged to advance computer
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vision algorithms.

7.1 Deep cortical hierarchies?

7.1.1 The classical view of biological vision

The classical view of biological visual processing that has been conveyed to

the computer vision community from visual neurosciences is that of an ensem-

ble of deep cortical hierarchies (see [Kruger 2013] for a recent example). In-

terestingly, this computational idea was proposed in computer vision by David

Marr [Marr 1982] even before its anatomical hierarchy was fully detailed in dif-

ferent species. Nowadays, there is a general agreement about this hierarchical

organisation and its division into parallel streams in human and non-human pri-

mates, as supported by a large body of anatomical and physiological evidences

(see [Ungerleider 1994, Van Essen 2003, Markov 2013] for reviews). Fig. 7.1(a)–(b)

illustrates this classical view where information flows from the retina to the primary

visual cortex (area V1) through two parallel retino-geniculo-cortical pathways. The

magnocellular (M) pathway conveys coarse, luminance-based spatial inputs with a

strong temporal sensitivity towards Layer 4Cα of area V1 where a characteristic

population of cells, called stellate neurons, immediately transmit the information

to higher cortical areas involved in motion and space processing. A slower, parvo-

cellular (P) pathway conveys retino-thalamo-cortical inputs with high spatial reso-

lution but low temporal sensitivity, entering area V1 through the layer 4Cβ. Such

color-sensitive input flows more slowly within the different layers of V1 and then

to cortical area V2 and a network of cortical areas involved in form processing.

The existence of these two parallel retino-thalamo-cortical pathways resonated with

neuropsychological studies investigating the effects of parietal and temporal cortex

lesions [Ungerleider 1982], leading to the popular, but highly schematic, two visual

systems theory [Ungerleider 1982, Ungerleider 1994, Milner 2008] in which a dorsal

stream is specialised in motion perception and the analysis of the spatial structure of

the visual scene whereas a ventral stream is dedicated to form perception, including

object and face recognition.

At the computational level, the deep hierarchies concept was reinforced by the

linear systems approach used to model low-level visual processing. As illustrated in

Fig. 7.1(c), neurons in the primary visual system have small receptive fields, paving a

high resolution retinotopic map. The spatiotemporal structure of each receptive field

corresponds to a processing unit that locally filters a given property of the image. In

V1, low-level features such as orientation, direction, color or disparity are encoded

in different sub-populations forming a sparse and overcomplete representation of

local feature dimensions. These representations feed several, parallel cascades of

converging influences so that, as one moves along the hierarchy, receptive fields

become larger and larger and encode for features of increasing complexities and

conjunctions thereof (see [DeYoe 1988, Roelfsema 2000] for reviews). For instance,

along the motion pathway, V1 neurons are weakly direction-selective but converge

onto the medio-temporal (MT) area where cells can precisely encode direction and

speed in a form-independent manner. These cells project to neurons in the median

superior temporal (MST) area where receptive fields cover a much larger portion of

the visual field and encode basic optic flow patterns such as rotation, translation
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or expansion. More complex flow fields can be decoded by parietal neurons when

integrating these informations and be integrated with extra-retinal signals about eye

movements or self-motion [Bradley 2008, Orban 2008]. The same logic flows along

the form pathway, where V1 neurons encode the orientation of local edges. Through

a cascade of convergence, units with receptive fields sensitive to more and more

complex geometrical features are generated so that neurons in the infero-temporal

(IT) area are able to encode objects or face in a viewpoint invariant manner (see

Fig. 7.1(c)).

Object recognition is a prototypical example where the canonical view of hier-

archical feedforward processing nearly perfectly integrates anatomical, physiological

and computational knowledges. This synergy has resulted in realistic, computational

models of receptive fields where converging outputs from linear filters are nonlin-

early combined from one step to the subsequent one [Cadieu 2007, Nandy 2013].

It has also inspired feedforward models working at task levels for object categori-

sation [Serre 2007b, Serre 2007a] as illustrated in Fig. 7.1(d), prominent machine

learning solutions for object recognition follow the same feedforward, hierarchical

architecture where linear and nonlinear stages are cascaded between multiple layers

representing more and more complex features [Hinton 2006b, Cox 2014].

7.1.2 Going beyond the hierarchical feedforward view

Despite its success in explaining some basic aspects of human perception such as

object recognition, the hierarchical feedforward theory remains highly schematic.

Many aspects of biological visual processing, from anatomy to behaviour, do not fit

in this framing. Important aspects of human perception such as detail preservation,

multi-stability, active vision and space perception for example cannot be adequately

explained by a hierarchical cascade of expert cells. Furthermore, taking into account

high-level cognitive skills such as top-down attention, visual cognition or concepts

representation needs to reconsider this deep hierarchies. In particular, the dynam-

ics of neural processing is much more complex than the hierarchical feedforward

abstraction and very important connectivity patterns such as lateral and recurrent

interactions must be taken into account to overcome several pitfalls in understand-

ing and modelling biological vision. In this section, we highlight some of these key

features that should greatly influence computational models of visual processing.

We also believe that identifying some of these problems could help in reunifying

natural and artificial vision and addressing more challenging questions as needed

for building adaptive and versatile artificial systems which are deeply bio-inspired.

Visual processing starts at the retina and the lateral geniculate nucleus

(LGN) levels. Although this may sound obvious, the role played by these two

structures seems largely underestimated. Indeed, most current models take images

as inputs rather than their retina-LGN transforms. Thus, by ignoring what is being

processed at these levels, one could easily miss some key properties to understand

what makes the efficiency of biological visual systems. At the retina level, the

incoming light is transformed into electrical signals. This transformation was origi-

nally described by using the linear systems approach to model the spatio-temporal

filtering of retinal images [Enroth-Cugell 1984]. More recent research has changed

this view and several cortex-like computations have been identified in the retina of
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Figure 7.1: The classical view of hierarchical feedforward processing. (a) The two

visual pathways theory states that primate visual cortex can be split between dorsal

and ventral streams originating from the primary visual cortex (V1). The dorsal

pathway runs towards the parietal cortex, through motion areas MT and MST. The

ventral pathway propagates through area V4 all along the temporal cortex, reaching

area IT. (b) These ventral and dorsal pathways are fed by parallel retino-thalamo-

cortical inputs to V1, known as the Magno (M) and Parvocellular pathways (P).

(c) The hierarchy consists in a cascade of neurons encoding more and more com-

plex features through convergent information. By consequence, their receptive field

integrate visual information over larger and larger receptive fields. (d) Illustration

of a machine learning algorithm for, e.g., object recognition, following the same hi-

erarchical processing where a simple feedforward convolutional network implements

two bracketed pairs of convolution operator followed by a pooling layer (adapted

from [Cox 2014]).

different vertebrates (see [Gollisch 2010, Kastner 2014] for reviews, and more details

in Sec. 7.3.1). The fact that retinal and cortical levels share similar computational

principles, albeit working at different spatial and temporal scales is an important

point to consider when designing models of biological vision. Such a change in per-

spective would have important consequences. For example, rather than considering

how cortical circuits achieve high temporal precision of visual processing, one should

ask how densely interconnected cortical networks can maintain the high temporal

precision of the retinal encoding of static and moving natural images [Field 2007],

or how miniature eye movements shapes its spatiotemporal structure [Rucci 2015].

Similarly, the LGN and other visual thalamic nuclei (e.g., pulvinar) should no

longer be considered as pure relays on the route from retina to cortex. For instance,

cat pulvinar neurons exhibit some properties classically attributed to cortical cells,

as such pattern motion selectivity [Merabet 1998]. Strong centre-surround interac-

tions have been shown in monkeys LGN neurons and these interactions are under the
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control of feedback cortico-thalamic connections [Jones 2012]. These strong cortico-

geniculate feedback connections might explain why parallel retino-thalamo-cortical

pathways are highly adaptive, dynamical systems [Mumford 1991, Cudeiro 2006,

Briggs 2008]. In line with the computational constraints discussed before, both

centre-surround interactions and feedback modulation can shape the dynamical

properties of cortical inputs, maintaining the temporal precision of thalamic firing

patterns during natural vision [Andolina 2007].

Overall, recent sub-cortical studies give us three main insights. First, we should

not oversimplify the amount of processing done before visual inputs reach the cortex

and we must instead consider that the retinal code is already highly structured,

sparse and precise. Thus, we should consider how cortex takes advantage of these

properties when processing naturalistic images. Second, some of the computational

and mechanistic rules designed for predictive-coding or feature extraction can be

much more generic than previously thought and the retina-LGN processing hierarchy

may become again a rich source of inspiration for computer vision. Third, the exact

implementation (what is being done and where) may be not so important as it varies

from one species to another but the cascade of basic computational steps may be

an important principle to retain from biological vision.

Functional and anatomical hierarchies are not always identical. The deep

cortical hierarchy depicted in Fig. 7.1(b) is primarily based on gross anatomical con-

nectivity rules [Zeki 1993]. Its functional counterpart is the increasing complexity

of local processing and information content of expert cells as we go deeper along

the anatomical hierarchy. There is however a flaw in attributing the functional hi-

erarchy directly to its anatomical counterpart. The complexity of visual processing

does increase from striate to extra-striate and associative cortices, but this is not

attributable only to feedforward convergence. A quick glance at the actual cortical

connectivity pattern in non-human primates would be sufficient to eradicate this

textbook view of how the visual brain works [Hegdé 2007a, Markov 2013].

For example, a classical view is that the primary visual cortex represents

luminance-based edges whereas higher-order image properties such as illusory con-

tours are encoded at the next processing stages along the ventral path (e.g., areas

V2 and V4) [Peterhans 1991]. Recent studies have shown however that illusory

contours, as well as border ownerships can also be represented in macaque area

V1 [Zhou 2000, Lee 2001]. Moreover, multiple binocular and monocular depth cues

can be used to reconstruct occluded surfaces in area V1 [Sugita 1999]. Thus, the

hierarchy of shape representation appears nowadays more opaque than previously

thought [Hegde 2007b] and many evidences indicate that the intricate connectivity

within and between early visual areas is decisive for of the emergence of figure-ground

segmentation and proto-objects representations [Piech 2013, von der Heydt 2015].

Another strong example is visual motion processing. The classical feedforward

framework proposes that MT cells (and not V1 cells) are true speed-tuned units.

It has been thought for decades that V1 cells cannot encode the speed of a mov-

ing pattern independently of its spatiotemporal frequencies content [Rodman 1987].

However, recent studies have shown that there are V1 complex cells which are speed

tuned [Priebe 2006]. The differences between V1 and MT regarding speed coding

are more consistent with a distributed representation where slow speeds are rep-

resented in V1 and high speeds in area MT rather than a pure, serial processing.
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Decoding visual motion information at multiple scales for elaborating a coherent

motion percept must therefore imply a large-scale cortical network of densely recur-

rently interconnected areas. Such network can extend to cortical areas along the

ventral stream in order to integrate together form and complex global motion in-

puts [Zhuo 2003, Hedges 2011]. One final example concerns the temporal dynamics

of visual processing. The temporal hierarchy is not a carbon copy of the anatomi-

cal hierarchy depicted by Felleman and Van Essen. The onset of a visual stimulus

triggers fast and slow waves of activation travelling throughout the different cortical

areas. The fast activation in particular by-passes several major steps along both

dorsal and ventral pathways to reach frontal areas even before area V2 is fully ac-

tivated (for a review, see [Lamme 2000]). Moreover, different time scales of visual

processing emerge from both the feedforward hierarchy of cortical areas but also

from the long-range connectivity motifs and the dense recurrent connectivity of lo-

cal sub-networks [Chaudhuri 2015]. Such rich repertoire of temporal time windows,

ranging from fast, transient responses in primary visual cortex to persistent activity

in association areas, is critical for implementing a series of complex cognitive tasks

from low-level processing to decision-making.

These three different examples highlight the fact that a more complex view of

the functional hierarchy is emerging. The dynamics of biological vision results from

the interactions between different cortical streams operating at different speeds but

also relies on a dense network of intra-cortical and inter-cortical (e.g., feedback)

connections. Designing better vision algorithms could be inspired by this recurrent

architecture where different spatial and temporal scales can be mixed to represent

visual motion or complex patterns with both high reliability and high resolution.

Dorsal/ventral separation is an over-simplification. A strong limitation of

grounding a theoretical framework of sensory processing upon anatomical data is

that the complexity of connectivity patterns must lead to undesired simplifications

in order to build a coherent view of the system. Moreover, it escapes the complexity

of the dynamical functional interactions between areas or cognitive sub-networks.

A good example of such bias is the classical dorsal/ventral separation. First, inter-

actions between parallel streams can be tracked down to the primary visual cortex

where a detailed analysis of the layer 4 connectivity have shown that both Magno

and Parvocellular signals can be intermixed and propagated to areas V2 and V3 and,

therefore the subsequent ventral stream [Yabuta 292]. Such a mixing of M- and P-

like signals could explain why fast and coarse visual signals can rapidly tune the most

ventral areas along the temporal cortex and therefore shape face recognition mecha-

nisms [Giese 2003]. Second, motion psychophysics has demonstrated a strong influ-

ence of form signals onto local motion analysis and motion integration [Mather 2012].

These interactions have been shown to occur at different levels of the two parallel

hierarchies, from primary visual cortex to the superior temporal sulcus and the

parietal cortex [Orban 2008]. These interactions provide many computational ad-

vantages used by the visual motion system to resolve motion ambiguities, interpolate

occluded information, segment the optical flow or recover the 3D structure of ob-

jects. Third, there are strong interactions between color and motion information,

through mutual interactions between cortical areas V4 and MT [Thiele 2001a]. It

is interesting to note that these two particular areas were previously attributed to

the ventral and dorsal pathways, respectively [Livingstone 1988, DeYoe 1988]. Such
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strict dichotomy is outdated as both V4 and MT areas interact to extract and mix

these two dimensions of visual information.

These interactions are only a few examples to be mentioned here to highlight

the needs of a more realistic and dynamical model of biological visual processing. If

the coarse division between ventral and dorsal streams remains valid, a closer look

at these functional interactions highlight the existence of multiple links, occurring

at many levels along the hierarchy. Each stream is traversed by successive waves

of fast/coarse and slow/precise signals so that visual representations are gradually

shaped [Roelfsema 2005]. It is now timely to consider the intricate networks of intra

and inter-cortical interactions to capture the dynamics of biological vision. Clearly,

a new theoretical perspective on the cortical functional architecture would be highly

beneficial to both biological and artificial vision research.

A hierarchy embedded within a dynamical recurrent system. We have al-

ready mentioned that spatial and temporal hierarchies do not necessarily coincide as

information flows can bypass some cortical areas through fast cortico-cortical connec-

tions. This observation led to the idea that fast inputs carried by the Magnocellular

stream can travel quickly across the cortical networks to shape each processing stage

before it is reached by the fine-grain information carried by the Parvocellular retino-

thalamo-cortical pathway. Such dynamics are consistent with the feedforward deep

hierarchy and are used by several computational models to explain fast, automatic

pattern recognition [Rousselet 2004, Thorpe 2009].

Several other properties of visual processing are more difficult to reconcile with

the feedforward hierarchy. Visual scenes are crowded and it is not possible to pro-

cess every of its details, Moreover, visual inputs are often highly ambiguous and

can lead to different interpretations, as evidenced by perceptual multi-stability.

Several studies have proposed that the highly recurrent connectivity motif of the

primate visual system plays a crucial role in these processing. At the theoretical

level, several authors recently resurrected the idea of a “reversed hierarchy" where

high-level signals are back-propagated to the earliest visual areas in order to link

low-level visual processing, high resolution representation and cognitive informa-

tion [Bullier 2001, Hochstein 2002, Ahissar 2004, Gur 2015]. Interestingly, this idea

was originally proposed more than three decades before by Peter Milner in the

context of visual shape recognition [Milner 1974] and had then quickly diffused to

the computer vision research leading to novel algorithms for top-down modulation,

attention and scene parsing (e.g., [Fukushima 1987, Tsotsos 1993, Tsotsos 1995]).

At the computational level, in [Lee 2003] the authors reconsidered the hierarchi-

cal framework by proposing that concatenated feedforward/feedback loops in the

cortex could serve to integrate top-down prior knowledge with bottom-up obser-

vations. This architecture generates a cascade of optimal inference along the hi-

erarchy [Roelfsema 2000, Lee 2003, Rousselet 2004, Thorpe 2009]. Several compu-

tational models have used such recurrent computation for surface motion integra-

tion [Bayerl 2004, Tlapale 2010, Perrinet 2012], contour tracing [Brosch 2015a] or

figure-ground segmentation [Roelfsema 2002].

Empirical evidence for a role of feedback has long been difficult to gather in

support to these theories. It was thus difficult to identify the constraints of top-

down modulations that are known to play a major role in the processing of complex

visual inputs, through selective attention, prior knowledge or action-related inter-
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nal signals. However, new experimental approaches begin to give a better picture

of their role and their dynamics. For instance, selective inactivation studies have

begun to dissect the role of feedback signals in context-modulation of primate LGN

and V1 neurons [Cudeiro 2006]. The emergence of genetically-encoded optogenetic

probes targeting the feedback pathways in mice cortex opens a new era of intense re-

search about the role of feedforward and feedback circuits [Luo 2008, Issacson 2011].

Overall, early visual processing appears now to be strongly influenced by different

top-down signals about attention, working memory or even reward mechanisms, just

to mention. These new empirical studies pave the way for a more realistic perspec-

tive on visual perception where both sensory inputs and brain states must be taken

into account when, for example, modelling figure-ground segmentation, object seg-

regation and target selection (see [Lamme 2000, Squire 2013, Kafaligonul 2015] for

recent reviews).

The role of attention is illustrative of this recent trend. Mechanisms of bottom-

up and top-modulation attentional modulations in primates have been largely in-

vestigated over the last three decades. Spatial and feature-based attentional signals

have been shown to selectively modulate the sensitivity of visual responses even in

the earliest visual areas [Motter 1993, Reynolds 2000]. These works have been a

vivid source of inspiration for computer vision in searching for a solution to the

problems of feature selection, information routing and task-specific attentional bias

(see [Itti 2001, Tsotsos 2011]), as illustrated for instance by the Selective Tuning

algorithm of Tsotsos and collaborators [Tsotsos 1995]. More recent work in non-

human primates has shown that attention can also affect the tuning of individual

neurons [Ibos 2014]. It also becomes evident that one needs to consider the effects

of attention on population dynamics and the efficiency of neural coding (e.g., by de-

creasing noise correlation [Cohen 2009]). Intensive empirical work is now targeting

the respective contributions of the frontal (e.g., task-dependency) and parietal (e.g.,

saliency maps) networks in the control of attention and its coupling with other cog-

nitive processes such as reward learning or working memory (see [Buschman 2015]

for a recent review). These empirical studies led to several computational mod-

els of attention (see [Tsotsos 2011, Tsotsos 2015, Bylinskii 2015] for recent reviews)

based on generic computations (e.g., divisive normalisation [Reynolds 2009], syn-

chrony [Fries 2005] or feedback-feedforward interactions [Khorsand 2015]). Nowa-

days, attention appears to be a highly dynamical, rapidly changing processing that

recruits a highly flexible cortical network depending on behavioural demands and

in strong interactions with other cognitive networks.

The role of lateral connectivity in information diffusion. The processing

of a local feature is always influenced by its immediate surrounding in the im-

age. Feedback is one potential mechanisms for implementing context-dependent

processing but its spatial scale is rather large, corresponding to far-surround mod-

ulation [Angelucci 2006]. Visual cortical areas, and in particular area V1, are char-

acterised by dense short- and long-range intra-cortical interactions. Short-range

connectivities are involved in proximal centre-surround interactions and their dy-

namics fits with contextual modulation of local visual processing [Reynaud 2012].

This connectivity pattern has been overly simplified as overlapping, circular excita-

tory and inhibitory areas of the non-classical receptive field. In area V1, these sub-

populations were described as being tuned for orthogonal orientations correspond-
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ing to excitatory input from iso-oriented domains and inhibitory input from cross-

oriented ones. In higher areas, similar simple schemes have been proposed, such as

the opposite direction tuning of center and surround areas of MT and MST receptive

fields [Born 2005]. Lastly, these surround inputs have been proposed to implement

generic neural computations such as normalisation or gain control [Carandini 2011].

From the recent literature, a more complex picture of centre-surround interac-

tions has emerged where non-classical receptive fields are highly diverse in terms

of shapes or features selectivity [Xiao 1995, Cavanaugh 2002, Webb 2003]. Such di-

versity would result from complex connectivity patterns where neurons tuned for

different features (e.g., orientation, direction, spatial frequency) can be dynamically

interconnected. For example, in area V1, the connectivity pattern becomes less and

less specific with farther distances from the recording sites. Moreover, far away

points in the image can also interact through the long-range interactions which

have been demonstrated in area V1 of many species. Horizontal connections ex-

tend over millimetres of cortex and propagate activity at a much lower speed than

feedforward and feedback connections [Bullier 2001]. The functional role of these

long-range connections is still unclear. They most probably support the waves of

activity that travel across the V1 cortex either spontaneously or in response to a vi-

sual input [Sato 2012, Muller 2014]. They can also implement the spread of cortical

activity underlying contrast normalisation [Reynaud 2012], the spatial integration of

motion and contour signals [Reynaud 2012, Gilad 2013] or the shaping of low-level

percepts [Jancke 2004].

A neural code for vision? How is information encoded in neural systems is still

highly disputed and an active field of theoretical and empirical research. Once again,

visual information processing has been largely used to decipher the neural coding

principles and its application for computer sciences. The earliest studies on neuronal

responses to visual stimuli have suggested that information is encoded in the mean

firing rate of individual cells and its gradual change with visual input properties. For

instance cells in V1 labelled as feature detectors are classified based upon their best

response selectivity (stimulus that invokes maximal firing of the neuron) and several

non-linear properties such gain control or context modulations which usually varied

smoothly with respect to few attributes such as orientation contrast and velocity,

leading to the development of tuning curves and receptive field doctrine. Spiking

and mean-field models of visual processing are based on these principles.

Aside of from changes in mean firing rates, other interesting features of neural

coding is the temporal signature of neural responses and the temporal coherence of

activity between ensembles of cells, providing an additional potential dimension for

specific linking, or grouping, distant and different features [von der Malsburg 1981,

Von der Malsburg 1999, Singer 1999]. In networks of coupled neuronal assemblies,

associations of related sensory features are found to induce oscillatory activities

in a stimulus-induced fashion [Eckhorn 1990]. The establishment of a tempo-

ral coherence has been suggested to solve the so-called binding problem of task-

relevant features through synchronization of neuronal discharge patterns in ad-

dition to the structural patterns of linking pattern [Engel 2001]. Such synchro-

nizations might even operate over different areas and therefore seems to support

rapid formations of neuronal groups and functional subnetworks and routing sig-

nals [Fries 2005, Buschman 2015]. However, the view that temporal oscillatory
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states might define a key element of feature coding and grouping has been chal-

lenged by different studies and the exact contribution of these temporal aspects of

neural codes is not yet fully elucidated (e.g., [Shadlen 1999] for a critical review).

By consequences, only a few of bio-inspired and computer vision models rely on the

temporal coding of information.

Although discussing the many facets of visual information coding is far beyond

the scope of this review, one needs to briefly recap some key properties of neural

coding in terms of tuning functions. Representations based on the tuning func-

tions can be basis for the synergistic approach advocated in this thesis. Neurons

are tuned to one or several features, i.e., exhibiting a strong response when stimuli

contains a preferred feature such as local luminance-defined edges or proto-objects

and low or no response when such features are absent. As a result, neural feature

encoding is sparse, distributed over populations (see [Pouget 2013, Shamir 2014]

and highly reliable [Perrinet 2015] at the same time. Moreover, these coding prop-

erties emerge from the different connectivity rules introduced above. The tuning

functions of individual cells are very broad such that high behavioural perfor-

mances observed empirically can be achieved only from some nonlinear or prob-

abilistic decoding of population activities [Pouget 2013]. This could also imply

that visual information could be represented within distributed population codes

rather than grand-mother cells [Pouget 2003, Lehky 2013]. Tuning functions are

dynamical: they can be sharpened or shifted over time [Shapley 2003]. Neural

representation could also be relying on spike timing and the temporal structure

of the spiking patterns can carry additional information about the dynamics of

transient events [Thorpe 2001, Perrinet 2004]. Overall, the visual system appears

to use different types of codes, one advantage for representing high-dimension in-

puts [Rolls 2010].

7.2 Computational studies of biological vision

7.2.1 The Marr’s three levels of analysis

At conceptual level, much of the current computational understanding of bio-

logical vision is based on the influential theoretical framework defined by David

Marr [Marr 1982] and colleagues. Their key message was that complex systems,

like brains or computers, must be studied and understood at three levels of de-

scription: the computational task carried out by the system resulting in the ob-

servable behaviour, the instance of the algorithm used by the system to solve the

computational task and the implementation that is emboddied by a given system

to execute the algorithm. Once a functional framework is defined, the compu-

tational and implementation problems can be distinguished, so that in principle

a given solution can be embedded into different biological, or artificial physical

systems. This approach has inspired many experimental and theoretical research

in the field of vision [Granlund 1978, Hildreth 1987, Daugman 1988, Poggio 2012].

The cost of this clear distinction between levels of description is that many of

the existing models have only a weak relationship with the actual architecture of

the visual system or even with a specific algorithmic strategy used by biological

systems. Such dichotomy contrasts with the growing evidence that understand-

ing cortical algorithms and networks are deeply coupled [Hildreth 1987]. Human



7.2. Computational studies of biological vision 113

perception would still act as a benchmark or a source of inspiring computational

ideas for specific tasks (see [Andreopoulos 2013] for a good example about ob-

ject recognition). But, the risk of ignoring the structure-function dilemma is that

computational principles would drift away from biology, becoming more and more

metaphorical as illustrated by the fate of the Gestalt theory. The bio-inspired re-

search stream for both computer vision and robotics aims at reducing this fracture

(e.g. [Petrou 2008, Hérault 2010, Frisby 2010, Cristobal 2015] for recent reviews).

7.2.2 From circuits to behaviours

A key milestone in computational neurosciences is to understand how neural cir-

cuits lead to animal behaviours. Carandini [Carandini 2012] argued that the gap

between circuits and behaviour is too wide without the help of an intermediate level

of description, just that of neuronal computation. But how can we escape from the

dualism between computational algorithm and implementation as introduced by

Marr’s approach? The solution depicted in [Carandini 2012] is based on three prin-

ciples. First, some levels of description might not be useful to understand functional

problems. In particular sub cellular and network levels are decoupled. Second, the

level of neuronal computation can be divided into building blocks forming a core set

of canonical neural computations such as linear filtering, divisive normalisation, re-

current amplification, coincidence detection, cognitive maps and so on. These stan-

dard neural computations are widespread across sensory systems [Fregnac 2015].

Third, these canonical computations occur in the activity of individual neurons

and especially of population of neurons. In many instances, they can be related to

stereotyped circuits such as feedforward inhibition, recurrent excitation-inhibition

or the canonical cortical microcircuit for signal amplification (see [Sheperd 2010] for

a series of reviews). Thus, understanding the computations carried out at the level

of individual neurons and neural populations would be the key for unlocking the

algorithmic strategies used by neural systems. This solution appears to be essential

to capture both the dynamics and the versatility of biological vision. With such a

perspective, computational vision would regain its critical role when mapping cir-

cuits to behaviours and could rejuvenate the interest in the field of computer vision

not only by highlighting the limits of existing algorithms or hardware but also by

providing new ideas. At this cost, visual and computational neurosciences would be

again a source of inspiration for computer vision. To illustrate this joint venture,

Figure 7.2 illustrates the relationships between the different functional and anatom-

ical scales of cortical processing and their mapping with the three computational

problems encountered with designing any artificial systems:how, what and why.

7.2.3 Neural constraints for functional tasks

Biological systems exist to solve functional tasks so that an organism can survive.

Considering the existing constraints, many biologists consider the brain as a "bag

of tricks that passed evolutionary selection", even though some tricks can be us-

able in different systems or contexts. This biological perspective highlights the

fact that understanding biological systems is tightly related to understanding the

functional importance of the task at hands. For example, there is in the mouse

retina a cell type able to detect small moving objects in the presence of a fea-
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Figure 7.2: Between circuits and behaviour: rejuvenating the Marr approach. The

nervous system can be described at different scales of organisation that can be

mapped onto three computational problems: how, what and why. All three aspects

involve a theoretical description rooted on anatomical, physiological and behaviour

data. These different levels are organised around computational blocks that can be

combined to solve a particular task.

tureless or stationary background. These neurons could serve as elementary de-

tectors of potential predators arriving from the sky [Zhang 2012]. In the same

vein, it has been recently found that output of retinal direction-selective cells are

kept separated from the other retino-thalamo-cortical pathways to directly influ-

ence specific target neurons in mouse V1 [Cruz-Martin 2014]. These two very spe-

cific mechanisms illustrate how evolution can shape nervous systems. Computa-

tion and architecture are intrinsically coupled to find an optimal solution. This

could be taken as an argument for ignoring neural implementations when build-

ing generic artificial systems. However, there are also evidence that evolution has

selected neural microcircuits implementing generic computations such as divisive

normalisation. These neural computations have been shown to play a key role in

the emergence of low-level neuronal selectivities. For example divisive normalisa-

tion has been a powerful explanation for many aspects of visual perception, from

low-level gain control or attention [Reynolds 2009, Carandini 2011]. The role of

feedforward-feedback connectivity rules of canonical microcircuits in predictive cod-

ing have been also identified [Bastos 2012] and applied in the context of visual

motion processing [Dimova 2009]. These examples are extrema lying on the contin-

uum of biological structure-function solutions, from the more specific to the more

generic. This diversity stresses the needs to clarify the functional context of the

different computational rules and their performance dynamics so that fruitful com-

parisons can be made between living and artificial systems. This can lead to a

clarification about which knowledge from biology is useful for computer vision.

Lastly, these computational building blocks are embedded into a living organism

and low-to-high vision levels are constantly interacting with many other aspects of

animal cognition [Vetter 2014]. For example, the way an object is examined (i.e.,

the way its image is processed) depends on its behavioural context, whether it

is going to be manipulated or only scrutinised to identify it. A single face can be

analysed in different ways depending upon the social or emotional context. Thus, we
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must consider these contextual influence of "why" a task is being carried out when

integrating information (and data) from biology [Willems 2011]. All these above

observations stress the difficulty of understanding biological vision as an highly

adapted, plastic and versatile cognitive system where circuits and computation are

like Janus face. However, as described above for recurrent systems, understanding

the neural dynamics of versatile top-down modulation can inspired artificial systems

about how different belief states can be integrated together within the low-level

visual representations.

7.2.4 Matching connectivity rules with computational problems

In Sec. 7.1, we have given a brief glimpse of the enormous literature on the intri-

cate networks underlying biological vision. Focusing on primate low-level vision, we

have illustrated both the richness, the spatial and temporal heterogeneity and the

versatility of these connections. We illustrate them in Fig. 7.3 for a simple case, the

segmentation of two moving surfaces. Figure 7.3(a) sketches the main cortical stages

needed for a minimal model of surface segmentation [Orban 2008, Tlapale 2010]. Lo-

cal visual information is transmitted upstream through the retinotopicaly-organized

feedforward projections. In the classical scheme, V1 is seen as a router filtering

and sending the relevant information along the ventral (V2, V4) or dorsal (MT,

MST) pathways [Kruger 2013]. We discussed above how information flows also

backward within each pathway as well as across pathways, as illustrated by con-

nections between V2/V4 and MT in Fig. 7.3) [Markov 2014]. One consequence

of these cross-over is that MT neurons are able to use both motion and color in-

formation [Thiele 2001a]. We have also highlighted that area V1 endorses a more

active role where the thalamo-cortical feedforward inputs and the multiple feed-

back signals interact to implement contextual modulations over different spatial

and temporal scales using generic neural computations such surround suppression,

spatio-temporal normalisation and input selection. These local computations are

modulated by short and long-range intra-cortical interactions such as visual features

located far from the non-classical receptive field (or along a trajectory) can influence

them [Angelucci 2003]. Each cortical stage implements these interactions although

with different spatial and temporal windows and through different visual feature

dimensions. In Fig. 7.3, these interactions are illustrated within two (orientation

and position) of the many cortical maps founds in both primary and extra-striate

visual areas. At the single neuron level, these intricate networks result in a large

diversity of receptive field structures and in complex, dynamical non-linearities. It is

now possible to collect physiological signatures of these networks at multiple scales,

from single neurons to local networks and networks-of-networks such that connec-

tivity patterns can be dissected out. In the near future, it will become possible to

manipulate specific cell subtype and therefore change the functional role and the

weight of these different connectivities.

How these connectivity patterns would relate to information processing? In

Fig. 7.3(b) as an example, we sketch the key computational steps underlying moving

surface segmentation [Braddick 1993]. Traditionally, each computational step has

been attributed to a particular area and to a specific type of receptive fields. For

instance, local motion computation is done at the level of the small receptive fields of

V1 neurons. Motion boundary detectors have been found in area V2 while different
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subpopulation of MT and MST neurons are responsible for motion integration at

multiple scales (see Sec. 7.3.3 for references). However, each of these receptive

field types are highly context-dependent, as expected from the dense interactions

between all these areas. Matching the complex connectivity patterns illustrated in

Fig. 7.3(a) with the computational dynamics illustrated in Fig. 7.3(b) is one of the

major challenges in computational neurosciences [Fregnac 2015]. But it could also

be a fruitful source of inspiration for computer vision if we were able to draw the rules

and numbers by which the visual system is organised at different scales. So far, only

a few computational studies have taken into account this richness and its ability to

adaptively encode and predict sensory inputs from natural scenes (e.g., [Beck 2010,

Bouecke 2011, Tlapale 2011b]. The goal of this review is to map such recurrent

connectivity rules with the computational blocks and their dynamics. Thus, in

Sec. 7.3 (see also Tables 7.2 and 7.1), we will recap some key papers from the

biological vision literature in a task centric manner in order to show how critical

information gathered at different scales and different context can be used to design

innovative and performing algorithms.

In the context of the long-lasting debate about the precise relationships between

structures and functions, we shall briefly mention the recent attempts to derive

deeper insight about the processing hierarchy along the cortical ventral pathway.

It has been suggested that deep convolutional neural networks (DCNNs) provide a

potential framework for modelling biological vision. A directly related question is de-

gree of similarity between the learning process implemented over several hierarchies

in order to build feature layers of different selectivities with the cellular functional

properties that have been identified in different cortical areas [Kriegeskorte 2015].

One proposal to generate predictive models of visual cortical function along the

ventral path utilises a goal-driven approach to deep learning [Yamins 2016]. In a

nutshell, such an approach optimises network parameters regarding performance on

a task that is behaviourally relevant and then compares the resulting network(s)

against neural data. As emphasised here, a key element in such a structural learn-

ing approach is to define the task-level properly and then map principled opera-

tions of the system onto the structure of the system. In addition, several param-

eters of deep networks are usually defined by hand, such a the number of layers

or the number of feature maps within a layer. There have been recent proposals

to optimise these automatically, e.g., by extensive searching or using genetic algo-

rithms [Pinto 2009, Bergstra 2013].

7.2.5 Testing biologically-inspired models against both natural and
computer vision

The dynamics of the biological visual systems have been probed at many different

levels, from the psychophysical estimation of perceptual or behavioural performance

to the physiological examination of neuronal and circuits properties. This diversity

has led to a fragmentation of computational models, each targeting a specific set of

experimental conditions, stimuli or responses.

Let consider visual motion processing in order to illustrate our point. When

both neurally and psychophysically motivated models have been developed for a

specific task such as motion integration for instance, they have been tested using

a limited set of non-naturalistic inputs such as moving bars, gratings and plaid
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Figure 7.3: Matching multi-scale connectivity rules and computational problems for

the segmentation of two moving surfaces. (a) A schematic view of the early visual

stages with their different connectivity patterns: feedforward (grey), feedback (blue)

and lateral (red). (b) A sketch of the problem of moving surface segmentation and its

potential implementation in the primate visual cortex. The key processing elements

are illustrated as computational problems (e.g., local segregation, surface cues, mo-

tion boundaries, motion integration) and corresponding receptive field structures.

These receptive fields are highly adaptive and reconfigurable, thanks to the dense

interconnections between the different stages/areas

patterns (e.g., [Nowlan 1994, Rust 2006]). These models formalise empirical laws

that can explain either the perceived direction or the emergence of neuronal global

motion direction preference. However, these models are hardly translated to ve-

locity estimations in naturalistic motion stimuli since they do not handle scenar-

ios such as lack of reliable cues or extended motion boundaries. By consequence,

these models are very specific and not applicable directly to process generic motion

stimuli. To overcome this limitation, a few extended computational models have

been proposed that can cope with a broader range of inputs. These computational

models handle a variety of complex motion inputs [Grossberg 2001, Tlapale 2010]

but the specific algorithms have been tuned to recover coarse attributes of global

motion estimation such as the overall perceived direction or the population neu-

ronal dynamics. Such tuning strongly limits their ability to solve tasks such as

dense optical flow estimation. Still, their computational principles can be used

as building blocks to develop extended algorithms that can handle naturalistic in-

puts [Perrone 2012, Solari 2015]. Moreover, they can be evaluated against standard

computer vision benchmarks [Baker 2011, Butler 2012]. What is still missing are de-

tailed physiological and psychophysical data collected with complex scenarios such

as natural or naturalistic images in order to be able to further constrain these mod-

els.

A lesson to be taken from the above example is that a successful synergistic

approach between artificial and natural vision should first establish a common set

of naturalistic inputs against which both bio-inspired and computer vision models

can be benchmarked and compared. This step is indeed critical for identifying

scenarios in which biological vision systems deviate with respect to the definition
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adopted by the computer vision. On the other side, state-of-the-art computer vision

algorithms shall also be evaluated relative to human perception performance for the

class of stimuli widely used in psychophysics. For the three illustrative tasks to be

discussed below, we will show the interest of common benchmarks for comparing

biological and computer vision solutions.

7.2.6 Task-based versus general purpose vision systems

Several objections can be raised to question the need for a synergy between natu-

ral and biological vision. A first objection is that biological and artificial systems

could serve different aims. In particular, the major aim of biological vision studies

is to understand the behaviours and properties of a general purpose visual sys-

tem that could subserve different types of perceptions or actions. This generic,

encapsulated visual processing machine can then be linked with other cognitive sys-

tems in an adaptive and flexible way (see [Pylyshyn 1999, Tsotsos 2011] for exam-

ple). By contrast, computer vision approaches are more focused on developing task

specific solutions, with an ever growing efficiency thank to advances in algorithms

(e.g., [LeCun 2015, Mnih 2015]) supported by growing computing power. A second

objection is that the brain might not use the same general-purpose (Euclidean) de-

scription of the world that Marr postulated [Warren 2012]. Thus perception may

not use the same set of low-level descriptors as computer vision, dooming the search

for common early algorithms. A third, more technical objection is related to the low

performance of most (if not all) current bio-inspired vision algorithms when solving

a specific task (e.g., face recognition) when compared to state-of-the-art computer

vision solutions. Moreover, bio-inspired models are still too often based on over-

simplistic inputs and conditions and not sufficiently challenged with high-dimension

inputs such as complex natural scenes or movies. Finally, artificial systems can

solve a particular task with a greater efficiency than human vision for instance,

challenging the need for bio-inspiration.

These objections question the interest of grounding computer vision solution on

biology. Still, many other researchers have argued that biology can help recasting

ill-based problems and showing us to ask the right questions and identifying the

right constraints [Zucker 1981, Tsotsos 2014]. Moreover, to mention one recent ex-

ample, perceptual studies can still identify feature configurations that cannot be

used by current models of object recognition and thus reframing the theoretical

problems to be solved to match human performance [Ullman 2016]. Finally, re-

cent advances in computational neurosciences has identified generic computational

modules that can be used to solve several different perceptual problems such as

object recognition, visual motion analysis or scene segmentation, just to mention

a few (e.g. [Carandini 2011, Cox 2014, Fregnac 2015]). Thus, understanding task-

specialised subsystems by building and testing them remains a crucial step to unveil

the computational properties of building blocks that operate in largely unconstrained

scene conditions and that could later be integrated into larger systems demonstrating

enhanced flexibility, default-resistance or learning capabilities. Theoretical studies

have identified several mathematical frameworks for modelling and simulating these

computational solutions that could be inspiring for computer vision algorithms.

Lastly, current limitations of existing bio-inspired models in terms of their perfor-

mance will also be solved by scaling up and tuning them such that they pass the
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traditional computer vision benchmarks.

We propose herein that the task level approach is still an efficient framework for

this dialogue. Throughout the next sections, we will illustrate this standpoint with

three particular examples: retinal image sensing, scene segmentation and optic flow

computation. We will highlight some important novel constraints emerging from

recent biological vision studies, how they have been modelled in computational

vision and how they can lead to alternative solutions.

7.3 Solving vision tasks with a biological perspective

In the preceding sections, we have revisited some of the main features of biolog-

ical vision and we have discussed the foundations of the current computational

approaches of biological vision. A central idea is the functional importance of the

task at hand when exploring or simulating the brain. Our hypothesis is that such

a task centric approach would offer a natural framework to renew the synergy be-

tween biological and artificial vision. We have discussed several potential pitfalls

of this task-based approach for both artificial and bio-inspired approaches. But we

argue that such task-centric approach will escape the difficult, theoretical question

of designing general-purpose vision systems for which no consensus is achieved so

far in both biology and computer vision. Moreover, this approach allow us to bench-

mark the performance of computer and bio-inspired vision systems, an essential step

for making progress in both fields. Thus, we believe that the task-based approach

remains the most realistic and productive approach. The novel strategy based on

bio-inspired generic computational blocks will however open the door for improving

the scalability, the flexibility and the fault-tolerance of novel computer vision solu-

tions. As already stated above, we decided to revisit three classical computer vision

tasks from such a biological perspective: image sensing, scene segmentation and op-

tical flow.1 This choice was made in order to provide a balanced overview of recent

biological vision studies about three illustrative stages of vision, from the sensory

front-end to the ventral and dorsal cortical pathways. For these three tasks, there

are a good set of multiple scales biological data and a solid set of modelling studies

based on canonical neural computational modules. This enables us to compare these

models with computer vision algorithms and to propose alternative strategies that

could be further investigated. For the sake of clarity, each task will be discussed

with the following framework:

Task definition. We start with a definition of the visual processing task of inter-

est.

Core challenges. We summarise its physical, algorithmic or temporal constraints

and how they impact the processing that should be carried on images or sequences

of images.

Biological vision solution. We review biological facts about the neuronal dy-

namics and circuitry underlying the biological solutions for these tasks stressing

1See also, recent review articles addressing other tasks: object recognition [Andreopoulos 2013],

visual attention [Tsotsos 2011, Tsotsos 2015], biological motion [Giese 2003].
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the canonical computing elements being implemented in some recent computational

models.

Comparison with computer vision solutions. We discuss some of the current

approaches in computer vision to outline their limits and challenges. Contrasting

these challenges with known mechanisms in biological vision would be to foresee

which aspects are essential for computer vision and which ones are not.

Promising bio-inspired solutions. Based on this comparative analysis between

computer and biological vision, we discuss recent modelling approaches in biological

vision and we highlight novel ideas that we think are promising for future investi-

gations in computer vision.

7.3.1 Sensing

Task definition. Sensing is the process of capturing patterns of light from the

environment so that all the visual information that will be needed downstream to

cater the computational/functional needs of the biological vision system could be

faithfully extracted. This definition does not necessarily mean that its goal is to

construct a veridical, pixel-based representation of the environment by passively

transforming the light the sensor receives.

Core challenges. From a functional point of view, the process of sensing (i.e.,

transducing, transforming and transmitting) light patterns encounters multiple chal-

lenges because visual environments are highly cluttered, noisy and diverse. First,

illumination levels can vary over several range of magnitudes. Second, image forma-

tion onto the sensor is sensitive to different sources of noise and distortions due to

the optical properties of the eye. Third, transducing photons into electronic signals

is constrained by the intrinsic dynamics of the photosensitive device, being either bi-

ological or artificial. Fourth, transmitting luminance levels on a pixel basis is highly

inefficient. Therefore, information must be (pre-)processed so that only the most

relevant and reliable features are extracted and transmitted upstream in order to

overcome the limited bandpass properties of the optic nerve. At the end of all these

different stages, the sensory representation of the external world must still be both

energy and computationally very efficient. All these aforementioned aspects raise

some fundamental questions that are highly relevant for both modelling biological

vision and improving artificial systems.

Herein, we will focus on four main computational problems (what is computed)

that are illustrative about how biological solutions can inspire a better design of

computer vision algorithms. The first problem is called adaptation and explains

how retinal processing is adapted to the huge local and global variations in lumi-

nance levels from natural images in order to maintain high visual sensitivity. The

second problem is feature extraction. Retinal processing extracts information about

the structure of the image rather than mere pixels. What are the most impor-

tant features that sensors should extract and how they are extracted are pivotal

questions that must be solved to sub-serve an optimal processing in downstream

networks. Third is the sparseness of information coding. Since the amount of infor-

mation that can be transmitted from the front-end sensor (the retina) to the central
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processing unit (area V1) is very limited, a key question is to understand how spa-

tial and temporal information can be optimally encoded, using context dependency

and predictive coding. The last selected problem is called precision of the coding,

in particular what is the temporal precision of the transmitted signals that would

best represent the seaming-less sequence of images.

Biological vision solution. The retina is one of the most developed sensing

devices [Gollisch 2010, Masland 2011, Masland 2012]. It transforms the incoming

light into a set of electrical impulses, called spikes, which are sent asynchronously

to higher level structures through the optic nerve. In mammals, it is sub-divided

into five layers of cells (namely, photoreceptors, horizontal, bipolar, amacrine and

ganglion cells) that forms a complex recurrent neural network with feedforward

(from photoreceptors to ganglion cells), but also lateral (i.e., within bipolar and

ganglion cells layers) and feedback connections. The complete connectomics of some

invertebrate and vertebrate retinas now begin to be available [Marc 2013].

Regarding information processing, an humongous amount of studies have shown

that the mammalian retina can tackle the four challenges introduced above using

adaptation, feature detection, sparse coding and temporal precision [Kastner 2014].

Note that feature detection should be understood as "feature encoding" in the sense

that there is non decision making involved. Concerning adaptation, it is a crucial

step, since retinas must maintain high contrast sensitivity over a very broad range of

luminance, from starlight to direct sunlight. Adaptation is both global through neu-

romodulatory feedback loops and local through adaptive gain control mechanisms

so that retinal networks can be adapted to the whole scene illuminance level while

maintaining high contrast sensitivity in different regions of the image, despite their

considerable differences in luminance [Shapley 1984, Demb 2008, Thoreson 2012].

It has long been known that retinal ganglion cells extract local luminance pro-

files. However, we have now a more complex view of retinal form processing. The

retina of higher mammals sample each point in the images with about 20 distinct

ganglion cells [Masland 2011, Masland 2012] associated to different features. This

is best illustrated in Fig. 7.4, showing how the retina can gather information about

the structure of the visual scene with four example cell types tilling the image. They

differ one from the others by the size of their receptive field and their spatial and

temporal selectivities. These spatiotemporal differences are related to the different

sub-populations of ganglion cells which have been identified. Parvocellular (P) cells

are the most numerous are the P-cells (80%). They have a small receptive size

and a slow response time resulting in a high spatial resolution and a low temporal

sensitivity. They process information about color and details. Magnocellular cells

have a large receptive field and a low response time resulting in a high temporal

resolution and a low spatial sensitivity, and can therefore convey information about

visual motion [Shapley 1990]. Thus visual information is split into parallel stream

extracting different domains of the image spatiotemporal frequency space. This

was taken at a first evidence for feature extractions at retinal level. More recent

studies have shown that, in many species, retinal networks are much smarter than

originally thought. In particular, they can extract more complex features such as

basic static or moving shapes and can predict incoming events, or adapt to tem-

poral changes of events, thus exhibiting some of the major signatures of predictive

coding [Gollisch 2010, Masland 2011, Masland 2012].
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(a) (b) (c) (d)

Figure 7.4: How retinal ganglion cells tile a scene extracting a variety of features.

This illustrates the tiling of space of a subset of four cell types. Each tile covers

completely the visual image independently from other types. The four cell types

shown here correspond to (a) cell with small receptive fields and center-surround

characteristics extracting intensity contrasts, (b) color coded cells, (c) motion direc-

tion selective cells with a relatively large receptive field, (d) cells with large receptive

fields reporting that something is moving (adapted from [Masland 2012], with per-

missions).

A striking aspect of retinal output is its high temporal precision and sparseness.
Massive in vitro recordings provide spiking patterns collected from large neuronal

assemblies so that it becomes possible to decipher the retinal encoding of complex

images [Pillow 2008]. Modelling the spiking output of the ganglion cell populations

have shown high temporal precision of the spike trains and a strong reliability across

trials. These coding properties are essential for upstream processing what will ex-

tract higher order features but also will have to maintain such high precision. In

brief, the retina appears to be a dense neural network where specific sub-populations

adaptively extract local information in a context-dependent manner in order to pro-

duce an output that is both adaptive, sparse, over complete and of high temporal

precision.

Another aspect of retinal coding is its space-varying resolution. A high-resolution

sampling zone appears in the fovea while the periphery looses spatial detail. The

retinotopic mapping of receptors into the cortical representation can be characterized

formally by a non-linear conformal mapping operation. Different closed-form models

have been proposed which share the property that the retinal image is sampled in a

space-variant fashion using a topological transformation of the retinal image into the

cortex. The smooth variation of central into peripheral vision may directly support

a mechanism of space-variant vision. Such active processing mechanism not only

significantly reduces the amount of data (particularly with a high rate of peripheral

compression) but may also support computational mechanisms, such as symmetry

and motion detection.

There is a large, and expanding body of literature proposing models of retinal

processing. We attempted to classify them and isolated three main classes of models.

The first class regroups the linear-nonlinear-poisson (LNP) models [Odermatt 2012].

In its simplest form, a LNP model is a convolution with a spatio-temporal kernel

followed by a static nonlinearity and stochastic (Poisson-like) mechanisms of spikes
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generation. These functional model are widely used by experimentalists to char-

acterise the cells that they record, map their receptive field and characterise their

spatiotemporal feature selectivities [Chichilnisky 2001]. LNP models can simulate

the spiking activity of ganglion cells (and of cortical cells) in response to synthetic

or natural images [Carandini 2005] but they voluntarily ignore the neuronal mech-

anisms and the details of the inner retinal layers that transform the image into a

continuous input to the ganglion cell (or any type of cell) stages. Moreover, they

implement static non-linearities, ignoring many existing non-linearities. Applied

to computer vision, they however provide some inspiring computational blocks for

contrast enhancement, edge detection or texture filtering.

The second class of models has been developed to serve as a front-end for subse-

quent computer vision task. They provide bio-inspired modules for low level image

processing. One interesting example is given by [Benoit 2010, Hérault 2010], where

the model includes parvocellular and magnocellular pathways using different non-

separable spatio-temporal filter that are optimal for form or motion detection.

The third class is based on detailed retinal models reproducing its circuitry, in

order to predict the individual or collective responses measured at the ganglion cells

level [Wohrer 2009, Lorach 2012]. Virtual Retina [Wohrer 2009] is one example of

such spiking retina model. This models enables large scale simulations (up to 100,000

neurons) in reasonable processing times while keeping a strong biological plausibility.

These models are expanded to explore several aspects of retinal image processing

such as (i) understanding how to reproduce accurately the statistics of the spiking

activity at the population level [Nasser 2013], (ii) reconciling connectomics and sim-

ple computational rules for visual motion detection [Kim 2014] and (iii) investigat-

ing how such canonical microcircuits can implement the different retinal processing

modules cited above (feature extraction, predictive coding) [Gollisch 2010].

Comparison with computer vision solutions. Most computer vision systems

are rooted on a sensing device based on CMOS technology to acquire images in a

frame based manner. Each frame is obtained from sensors representing the envi-

ronment as a set of pixels whose values indicate the intensity of light. Pixels pave

homogeneously the image domain and their number defines the resolution of images.

Dynamical inputs, corresponding to videos are represented as a set of frames, each

one representing the environment at a different time, sampled at a constant time

step defining the frame rate.

To make an analogy between the retina and typical image sensors, the dense

pixels which respond slowly and capture high resolution color images are at best

comparable to P-Cells in the retina. Traditionally in computer vision, the major

technological breakthroughs for sensing devices have aimed at improving the density

of the pixels, as best illustrated by the ever improving resolution of the images we

capture daily with cameras. Focusing of how videos are captured, one can see that

a dynamical input is not more that a series of images sampled at regular intervals.

Significant progress have been achieved recently in improving the temporal resolu-

tion with advent of computational photography but at a very high computational

cost [Liu 2014]. This kind of sensing for videos introduces a lot of limitations and

the amount of data that has to be managed is high.

However, there are two main differences between the retina and a typical image

sensor such as a camera. First, as stated above, the retina is not simply sending
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an intensity information but it is already extracting features from the scene. Sec-

ond, the retina asynchronously processes the incoming information, transforming

it as a continuous succession of spikes at the level of ganglion cells, which mostly

encode changes in the environment: retina is very active when intensity is changing,

but its activity becomes quickly very low with a purely static stimulation. These

observations show that the notion of representing static frames does not exist in bi-

ological vision, drastically reducing the amount of data that is required to represent

temporally varying content.

Promising bio-inspired solutions. Analysing the sensing task from a biologi-

cal perspective has potential for bringing new insights and solutions related to the

four challenges outlined in this section. In terms of an ideal sensor, it is desired to

have control over the acquisition of each pixel, thus allowing a robust adaptation

to different parts of the scene. However, this is difficult to realize on the chip as

it would mean independent triggers to each pixel, thus increasing the information

transfer requirements on the sensor. In order to circumvent this problem, current

CMOS sensors utilize a global clock trigger which fails us to give a handle on lo-

cal adaptation, thus forcing a global strategy. This problem is tackled differently

in biologically inspired sensors, by having local control loops in the form of event

driven triggering rather than a global clock based drive. This helps the sensor to

adapt better to local changes and avoids the need for external control signals. Also,

since the acquisitions are to be rendered, sensory physiological knowledge could

help in choosing good tradeoffs on sensor design. For example, the popular Bayer

filter pattern has already been inspired by the physiological properties of retinal

color sensing cells. With the advent of high dynamic range imaging devices, these

properties are beginning to find interesting applications such as low range displays.

This refers to the tone mapping problem. It is a necessary step to visualize high-

dynamic range images on low-dynamic range displays, spanning up to two orders

of magnitude. There is a large body of literature in this area on static images

(see [Kung 2007, Bertalmío 2014] for reviews), with approaches which combine lu-

minance adaptation and local contrast enhancement sometimes closely inspired from

retinal principles, as in [Meylan 2007, Benoit 2009, Ferradans 2011, Muchungi 2012]

just to cite a few. Recent developments concern video-tone mapping where a few

approaches have been developed so far (see [Eilertsen 2013] for a review). We

think it is for videos that the development of synergistic models of the retina is

the most promising. Building on existing detailed retinal models such as the Vir-

tual Retina [Wohrer 2009] (mixing filter-based processing, dynamical systems and

spiking neuron models), the goal is to achieve a better characterization of retinal

response dynamics which will have a direct application here.

The way that retina performs feature detection and encodes information in space

and time has received relatively little attention so far from the computer vision com-

munity. In most cases, retina-based models rely on simple caricatures of the retina.

The FREAK (Fast Retina Keypoint) descriptor [Alahi 2012] is one example where

only the geometry and space-varying resolution has been exploited. In [Alahi 2012],

the "cells" in the model are only doing some averaging of intensities inside their

receptive field. This descriptor model was extended in [Hilario Gomez 2015] where

ON and OFF cells were introduced using a linear-nonlinear (LN) model. This gives

a slight gain of performance in a classification task, although it is still far from the
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state-of-the-art. These descriptors could be improved in many ways, by taking into

account the goal of the features detected by the 20 types of ganglion cells mentioned

before. Here also the strategy is to build on existing retinal models. In this context,

one can also mention the SIFT descriptor [Lowe 2001] which was also inspired by

cortical computations. One needs to evaluate the functional implication at a task

level of some retinal properties. Examples include the asymmetry between ON and

OFF cells [Pandarinath 2010] and the irregular receptive field shapes [Liu 2009].

One question is whether we would still need inspiration from the retina to build

new descriptors, given the power of machine learning methods that provides auto-

matically some optimized features given an image database? What the FREAK-

based models show is that it is not only about improving the filters. It is also about

how the information is encoded. In particular, what is encoded in FREAK-based

models is the relative difference between cell responses. Interestingly, this is exactly

the same as the rank-order coding idea proposed as an efficient strategy to per-

form ultra-fast categorization [VanRullen 2002], and which has been reported in the

retina [Portelli 2014]. This idea has been exploited for pattern recognition and used

in many applications as demonstrated by the products developed by the company

Spikenet (http://www.spikenet-technology.com). This means that the retina should

serve as a source of inspiration not only to propose features, but more importantly,

how it encodes these features at a population level.

The fact that the retinal output is sparse and has a high temporal preci-
sion conveys a major advantage to the visual system, since it has to deal with

only a small amount of information. A promising bio-inspired solution is to de-

velop frame-free methods, i.e., methods using sparse encoding of the visual infor-

mation. This is now possible using event-based vision sensors where pixels au-

tonomously communicate the change and grayscale events. The dynamic vision

sensor (DVS) [Lichtsteiner 2008, Liu 2010] and the asynchronous time-based image

sensor (ATIS) [Posch 2011] are two examples of such sensor using address-event

representation (AER) circuits. The main principle is that pixels signal only signif-

icant events. More precisely, an event is sent when the log intensity has changed

by some threshold amount since the last event (see Fig. 7.5). These sensors pro-

vide a sparse output corresponding to pixels that register a change in the scene,

thus allowing extremely high temporal resolution to describe changes in the scene

while discarding all the redundant information. Because the encoding is sparse,

these sensors appear as a natural solution in real-time scenarios or when energy

consumption is a constraint. Combined with what is known about retinal circuitry

as in [Lorach 2012], they could provide a very efficient front-end for subsequent

visual tasks, in the same spirit of former neuromorphic models of low-level process-

ing as in [Benoit 2010, Hérault 2010]. They could also be used more directly as

a way to represent visual scenes, abandoning the whole notion of a video that is

composed of frame-sequences. This provides a new operative solution that can be

used to revisit computer vision problems (see [Liu 2015] for a review). This field is

rapidly emerging, with the motivation to develop approaches more efficient than the

state-of-the-art. Some examples include tracking [Ni 2011], stereo [Rogister 2012],

3D pose estimation [Valeiras 2016], object recognition [Orchard 2015] and optical

flow [Benosman 2011, Tschechne 2014b, Brosch 2015b, Giuliani 2016].
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Figure 7.5: How DVS sensor generate spikes. (a) Example of a video with fast

motions (a juggling scene). DVS camera and DVS output: Events are rendered

using a grayscale colormap corresponding to events that were integrated over a

brief time window (black = young, gray = old, white = no events). (b) DVS

principle: Positive and negative changes are generated depending on the variations

of log(I) which are indicated as ON and OFF events along temporal axis (adapted

from [Lichtsteiner 2008], with permissions).

7.3.2 Segmentation and figure-ground segregation

Task definition. The task of segmenting a visual scene is to generate a mean-

ingful partitioning of the input feature representation into surface- or object-related

components. The segregation of an input stimulus into prototypical parts, char-

acteristic of surfaces or objects, is guided by a coherence or homogeneity property

that region elements share. Homogeneities are defined upon feature domains such

as color, motion, depth, statistics of luminance items (texture), or combinations of

them [Pal 1993, Martin 2001]. The specificity of the behavioural task, e.g., grasping

an object, distinguishing two object identities, or avoiding collisions during naviga-

tion, may influence the required detail of segmentation [Ballard 2000, Hayhoe 2005].

In order to do so, contextual information in terms of high-level knowledge represen-

tations can be exploited as well [Borenstein 2008]. In addition, the goal of segmen-

tation might be extended in regard to eventually single out a target item, or object,

from its background in order to recognise it or to track its motion.

Core challenges. The segmentation of a spatio-temporal visual image into re-

gions that correspond to prototypical surfaces or objects faces several challenges

which derive from distinct interrelated subject matters. The following themes re-

fer to issues of representation. First, the feature domain or multiple domains need

to be identified which constitute the coherence or homogeneity properties relevant

for the segregation task. Feature combinations as well as the nested structure of

their appearance of coherent surfaces or objects introduces apparent feature hierar-

chies [Koenderink 1984, Koenderink 2012]. Second, the segmentation process might

focus on the analysis of homogeneities that constitute the coherent components

within a region or, alternatively, on the discontinuities between regions of homoge-

neous appearances. Approaches belonging to the first group focus on the segregation
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of parts into meaningful prototypical regions utilising an agglomeration (clustering)

principle. Approaches belonging to the second group focus on the detection of dis-

continuous changes in feature space (along different dimensions) [Nothdurft 1991]

and group them into contours and boundaries. Note that we make a distinction

here to refer to a contour as a grouping of oriented edge or line contrast elements

whereas a boundary already relates to a surface border in the scene. Regarding

the boundaries of any segment, the segmentation task itself might incorporate an

explicit assignment of a border ownership (BOwn) direction label which implies the

separation of figural shape from background by a surface that occludes other scenic

parts [Peterson 2008, Kogo 2013]. The variabilities in the image acquisition pro-

cess caused by, e.g., illumination conditions, shape and texture distortions, might

speak in favor of a boundary oriented process. On the other hand, the complexity

of the background structure increases the effort to segregate a target object from

the background, which argues in favour of region oriented mechanisms. It should

be noted, however, that the region vs boundary distinction might not appear as

binary as in the way outlined above. Considering real world scenes the space-time

relationships of perceptual elements (defined over different levels of resolution) are

often defined by statistically meaningful structural relations to determine segmen-

tation homogeneities [Witkin 1983]. Here, an important distinction has been made

between structure that might be influenced by meaning and primitive structure that

is perceived even without a particular interpretation.

While the previous challenges were defined by representations, the following

themes refer to the process characteristic of segmentation. First, the partition-

ing process may yield different results given changing view-points or different noise

sources during the sensing process. Thus, segmentation imposes an inference prob-

lem that is mathematically ill-posed [Poggio 1985]. The challenge is how a reliability,

or confidence, measure is defined that characterises meaningful decompositions re-

lating to reasonable interpretations. To illustrate this, Fig. 7.6 shows segmentation

results as drawn by different human observers. Second, figural configurations may

impose different efforts for mechanisms of perceptual organisation to decide upon

the segregation of an object from the background and/or the assignment of figure

and ground direction of surface boundaries. A time dependence that correlates with

the structural complexity of the background has in fact been observed to influence

the temporal course needed in visual search tasks [Wolfe 2002].

Biological vision solution. Evidence from neuroscience suggests that the vi-

sual system uses segmentation strategies based on identifying discontinuities and

grouping them into contours and boundaries. Such processes operate mainly in a

feedforward fashion and automatic, utilising early and intermediate-level stages in

visual cortex. In a nutshell, contrast and contour detection is quickly accomplished

and is already represented at early stages in the visual cortical hierarchy, namely

areas V1 and V2. The assignment of task-relevant segments happens to occur af-

ter a slight temporal delay and involves a recurrent flow of lateral and feedback

processes [Roelfsema 2006, Scholte 2008, Roelfsema 2011].

The grouping of visual elements into contours appears to follow the Gestalt

rules of perceptual organisation [Koffka 1935]. Grouping has also been studied in

accordance to the ecological validity of such rules as they appear to be embed-

ded in the statistics of natural scenes [Brunswik 1953]. Mechanisms that entail
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Figure 7.6: Example of possible segmentation results for a static image drawn by

different human observers. Lower images shows segmentations happening at differ-

ent levels of detail but consistent with each other (adapted from [Arbelaez 2011]).

contour groupings are implemented in the structure of supragranular horizontal

connections in area V1 in which oriented cells preferentially contact like-oriented

cells that are located along the orientation axes defined by a selected target neu-

ron [Kapadia 1995, Bosking 1997]. Such long-range connections form the basis

for the Gestalt concept of good continuation and might reflect the physiological

substrate of the association field, a figure-eight shaped zone of facilitatory cou-

pling of orientation selective input and perceptual integration into contour seg-

ments [Grossberg 1985, Field 1993, Geisler 2001]. Recent evidence suggests that

the perceptual performance of visual contour grouping can be improved by mecha-

nisms of perceptual learning [Li 2008]. Once contours have been formed they need

to be labelled in accordance to their scene properties. In case of a surface partially

occluding more distant scenic parts the border ownership (BOwn) or surface be-
longingness can be assigned to the boundary [Koffka 1935]. A neural correlate of

such a mechanism has been identified at different cortical stages along the ventral

pathway, such as V1, V2 and V4 areas [Zhou 2000, O’Herron 2011]. The dynamics

of the generation of the BOwn signals may be explained by feedforward, recurrent

lateral and feedback mechanisms (see [Williford 2013] for a review).

Such dynamical process of feedback, called re-entry [Edelman 1993], recursively

links representations distributed over different levels. Mechanisms of lateral inte-

gration, although slower in processing speed, seem to further support intra-cortical

grouping [Kapadia 1995, Kapadia 2000, Gilbert 2013]. In addition, surface segrega-

tion is reflected in a later temporal processing phase but is also evident in low levels

of the cortical hierarchy, suggesting that recurrent processing between different cor-

tical stages is involved in generating neural surface representations. Once boundary

groupings are established surface-related mechanisms ”paint”, or tag, task-relevant

elements within bounded regions. The feature dimensions used in such grouping

operations are, e.g., local contour orientations defined by luminance contrasts, di-

rection and speed of motion, color hue contrasts, or texture orientation gradients.

As sketched above, counter-stream interactive signal flow [Ullman 1995] imposes a

temporal signature on responses in which after a delay a late amplification signal

serves to tag those local responses that belong to a region (surrounded by contrasts)
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which has been selected as a figure [Lamme 1995] (see also [Roelfsema 2007]). The

time course of the neuronal responses encoding invariance against different figural

sizes argues for a dominant role of feedback signals when dynamically establishing

the proper BOwn assignment. Grouping cells have been postulated that integrate

(undirected) boundary signals over a given radius and enhance those configura-

tions that define locally convex shape fragments. Such fragments are in turn en-

hanced via a recurrent feedback cycle so that closed shape representations can be

established rapidly through the convexity in closed bounding contours [Zhou 2000].

Neural representations of localized features composed of multiple orientations may

further influence this integration process, although this is not firmly established

yet [Anzai 2007]. BOwn assignment serves as a prerequisite of figure-ground segre-

gation. The temporal dynamics of cell responses at early cortical stages suggest that

mechanisms exist that (i) decide about ownership direction and (ii) subsequently en-

hance regions (at the interior of the outline boundaries) by spreading a neural tag-

ging, or labelling, signal that is initiated by the region boundary [Roelfsema 2002]

(compare the discussion in [Williford 2013]). Such a late enhancement through

response modulation of region components occurs for different features, such as ori-

ented texture [Lamme 1999] or motion signals [Roelfsema 2007], and is mediated

by recurrent processes of feedback from higher levels in the cortical hierarchy. It

is, however, not clear whether a spreading process for region tagging is a basis for

generating invariant neural surface representations in all cases. All experimental in-

vestigations have been conducted for input that leads to significant initial stimulus

responses while structure-less homogeneous regions (e.g., a homogeneous coloured

wall) may lead to void spaces in the neuronal representation that may not be filled

explicitly by the cortical processing (compare the discussion in [Pessoa 1998]).

Yet another level of visual segmentation operates upon the initial grouping repre-

sentations, those base groupings that happen to be processed effortlessly as outlined

above. However, the analysis of complex relationships surpasses the capacities of

the human visual processor which necessitates serial staging of some higher-level

grouping and segmentation mechanisms to form incremental task-related groupings.

In this mainly sequential operational mode visual routines establish properties and

relations of particular scene items [Ullman 1984]. Elemental operations underlying

such routines have been suggested, e.g., shifting the processing focus (related to

attentional selection), indexing (to select a target location), coloring (to label ho-

mogeneous region elements), and boundary tracing (determining whether a contour

is open or closed and items belonging to a continuous contour). For example, con-

tour tracing is suggested to be realized by incremental grouping operations which

propagate an enhancement of neural firing rates along the extent of the contour.

Such a neural labelling signal is reflected in a late amplification in the temporal

signature of neuronal responses. The amplification is delayed with respect to the

stimulus onset time with increasing distances of the location along the perceptual

entity [Jolicoeur 1986, Roelfsema 2011] (that is indexed by the fixation point at

the end of the contour). This lead to the conclusion that such tracing is laterally

propagated (via lateral or interative feedforward and feedback mechanisms), lead-

ing to a neural segmentation of the labelled items delineating feature items that

belong to the same object or perceptual unit. Maintenance operations then inter-

face such elemental operations into sequences to compose visual routines for solving

more complex tasks, like in a sequential computer program. Such cognitive opera-
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tions are implemented in cortex by networks of neurons that span several cortical

areas [Roelfsema 2005]. The execution time of visual cortical routines reflects the

sequential composition of such task-specific elemental neural operations tracing the

signature of neural responses to a stimulus [Lamme 2000, Roelfsema 2005].

Comparison with computer vision solutions. Segmentation as an interme-

diate level process in computational vision is often characterised as one of agglom-

erating, or clustering, picture elements to arrive at an abstract description of the

regions in a scene [Pal 1993]. It can also be viewed as a preprocessing step for ob-

ject detection/recognition. It is not very surprising to see that even in computer

vision earlier attempts were drawn towards single aspects of the segmentation like

edge detection [Marr 1980, Canny 1986, Lindeberg 1998] or grouping homogeneous

regions by clustering [Coleman 1979]. The performance limitations of both these

approaches independently have led to the emergence of solutions that reconsidered

at the problem as a juxtaposition of both edge detection and homogeneous region

grouping with implicit consideration for scale. The review paper by [Freixenet 2002]

presents various approaches that attempted in merging edge based information and

clustering based information in a sequential or parallel manner. The state of the

art techniques that are successful in formulating the combined approach are vari-

ants of graph cuts [Shi 2000], active contours, and level sets. At the bottom of

all such approaches is the definition of an optimisation scheme that seeks to find

a solution under constraints such as, e.g., smoothness or minimising a measure of

total energy. These approaches are much better in terms of meeting human de-

fined ground truth compared to simpler variants involving discontinuity detection

or clustering alone. The performance of computer vision approaches to image par-

titioning has been boosted recently by numerous contributions utilizing DCNNs for

segmentation (e.g., [Noh 2015, Hong 2015, Hong 2016]). The basic structure of the

encoder component of segmentation networks is similar to the hierarchical networks

trained for object recognition [Krizhevsky 2012]. For example, the AlexNet has been

trained by learning a hierarchy of kernels in the convolutional layers to extract rich

feature sets for recognition from a large database of object classes. Segmentation

networks [Noh 2015, Hong 2015] have been designed by adding a decoder scheme to

expand the activations in the category layers through a sequence of deconvolutions

steps such as in autoencoder networks [Hinton 2006a]. Even more extended versions

include a mechanism of focused attention to more selectively guide the training pro-

cess using class labels or segmentations [Hong 2016]. The hierarchical structure of

such approaches shares several features of cortical processing through a sequence

of areas with cells that increase their response selectivity at the size of their re-

ceptive fields over different stages in the cortical hierarchy. However, the explicit

unfolding of the data representation in the deconvolution step to upscale to full

image resolution, the specific indexing of pixel locations to invert the pooling in the

deconvolution, and the large amount of training data are not biologically plausible.

A major challenge is still how to compare the validity and the quality of segmen-

tation approaches. Recent attempts emphasise to compare the computational results

- from operations on different scales - with the results of hand-drawn segmentations

by human subjects [Fowlkes 2007, Arbelaez 2011]. These approaches suggest pos-

sible measures in judging the quality of automatic segmentation given that ground

truth data is missing. However, the human segmentation data does not elucidate
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the mechanisms underlying the processes to arrive at such partitions. Instead of a

global partitioning of the visual scene, the visual system seems to adopt different

strategies of computation to arrive at a meaningful segmentation of figural items.

The grouping of elements into coherent form is instantiated by selectively enhanc-

ing the activity of neurons that represent the target region via a modulatory input

from higher cortical stages [Lamme 1995, Lamme 1998]. The notion of feedback

to contribute in the segmentation of visual scenes has been elucidated above. Re-

cent computer vision algorithms begin to make use of such recurrent mechanisms as

well. For example, since bottom-up data-driven segmentation is usually incomplete

and ambiguous the use of higher-level representations might help to validate initial

instances and further stabilise their representation [Ullman 2007, Borenstein 2008].

Along this line, top-down signalling applies previously acquired information about

object shape (e.g., through learning), making use of the discriminative power of frag-

ments of intermediate size, and combines this information with a hierarchy of ini-

tial segments [Ullman 2002]. Combined contour and region processing mechanisms

have also been suggested to guide the segmentation. In [Arbelaez 2011], multi-scale

boundaries are extracted which later prune the contours in a watershed region-filling

algorithm. Algorithms of figure-ground segregation and border-ownership computa-

tion have been developed for computer vision applications to operate under realistic

imaging conditions [Stein 2009, Sundberg 2011]. These were designed to solve tasks

like shape detection against structured background and for video editing. Still,

the robust segmentation of an image into corresponding surface patches is hard to

accomplish in a reliable fashion. Performance of such methods mentioned above de-

pends on parametrization and the unknown complexity and properties of the viewed

scene. Aloimonos and coworkers proposed an active vision approach that adopted

biological principles like the selection and fixation on image regions that are sur-

rounded by closed contours [Mishra 2009, Mishra 2012]. The key here is that in

this approach only the fixated region (corresponding to a surface of an object or the

object itself) is then segmented based on an optimization scheme using graph-cut.

All image content outside the closed region contour is background w.r.t. the selected

target region or object. The functionality requires an active component to relocate

the gaze and a region that is surrounded by a contrast criterion in the image.

Promising bio-inspired solutions. Numerous models that account for mech-

anisms of contour grouping have been proposed to linking orientation selective

cells [Grossberg 1985, Grossberg 1997, Li 1998]. The rules of mutual support utilize

a similarity metric in the space-orientation domain giving rise to a compatibility,

or reliability measure [Kellman 1991] (see [Neumann 2001] for a review of generic

principles and a taxonomy). Such principles migrated into computer vision ap-

proaches [Parent 1989, Medioni 2000, Kornprobst 2000] and, in turn, provided new

challenges for experimental investigations [Sigman 2001, Ben-Shahar 2004]. Note

that the investigation of structural connectivities in high dimensional feature spaces

and their mapping onto a low-dimensional manifold lead to define a "neurogeom-

etry" and the basic underlying mathematical principles of such structural princi-

ples [Petitot 2003, Citti 2014].

As outlined above, figure-ground segregation in biological vision segments an im-

age or temporal sequence by boundary detection and integration followed by assign-

ing border ownership direction and then tagging the figural component in the interior
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of a circumscribed region. Evidence suggests that region segmentation by tagging

the items which belong to extended regions involves feedback processing from higher

stages in the cortical hierarchy [Scholte 2008]. Grossberg and colleagues proposed

the FACADE theory (form-and-color-and-depth [Grossberg 1985, Grossberg 1993])

to account for a large body of experimental data, including figure-ground segrega-

tion and 3D surface perception. In a nutshell, the model architecture consists of

mutually coupled subsystems, each one operating in a complementary fashion. A

boundary contour system (BCS) for edge grouping is complemented by a feature

contour system (FCS) which supplements edge grouping by allowing feature qual-

ities, such as brightness, color, or depth, to spread within bounded compartments

generated by the BCS.

The latter mechanism has recently been challenged by psychophysical exper-

iments that measure subject reaction times in image-parsing tasks. The re-

sults suggest that a sequential mechanism groups, or tags, interior patches along

a connected path between the fixation spot and a target probe. The speed

of reaching a decision argues in favor of a spreading growth-cone mechanism

that simultaneously operates over multiple spatial scales rather than the wave-

like spreading of feature activities initiated from the perceptual object bound-

ary [Jeurissen 2016]. Such a mechanism is proposed to also facilitate the assign-

ment of figural sides to boundaries. BOwn computation has been incorporated in

computer vision algorithms to segregate figure and background regions in natural

images or scenes [Ren 2006, Hoiem 2011, Sundberg 2011]. Such approaches use local

configurations of familiar shapes and integrate these via global probabilistic models

to enforce consistency of contour and junction configurations [Ren 2006] of learning

of templates from ensembles of image cues to depth and occlusion [Hoiem 2011].

Feedback mechanisms as they are discussed above, allow to build robust bound-

ary representations such that junctions may be reinterpreted based on more global

context information [Weidenbacher 2009]. The hierarchical processing of shape from

curvature information in contour configurations [Rodriguez Sanchez 2012] can be

combined with evidence for semi-global convex fragments or global convex config-

urations [Craft 2007]. Such activity is fed back to earlier stages of representation

to propagate contextual evidences and quickly build robust object representations

separated from the background. A first step towards combining such stage-wise

processing capacities and integrating them with feedback that modulates activi-

ties in distributed representations at earlier stages of processing has been suggested

in [Tschechne 2014a]. The step towards processing complex scenes from uncon-

strained camera images, however, still needs to be further investigated.

Taken together, biological vision seems to flexibly process the input in order to

extract the most informative information from the optic array. The information is

selected by an attention mechanism that guides the gaze to the relevant parts of

the scene. It has been known for a long time that the guidance of eye movements

is influenced by the observer’s task of scanning pictures of natural scene content

[Yarbus 1967]. More recent evidence suggests that the saccadic landing locations are

guided by contraints to optimize the detection of relevant visual information from the

optic array [Hayhoe 2005, Ballard 2009]. Such variability in fixation location has

immediate consequences on the structure of the visual mapping into an observer

representation. Consequently, segmentation might be considered as a separation

problem that operates upon a high-dimensional feature space, instead of statically
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separating appearances into different clusters. For example, in order to separate a

target object against the background in an identification task fixation is best located

approximately in the middle of the central surface region [Hayhoe 2005]. Symmet-

ric arrangement of bounding contours (with opposite direction of BOwn) helps to

select the region against the background to guide a motor action. In order to gen-

erate stable visual percept of a complex object such information must be integrated

over multiple fixations [Hayhoe 1991]. In case of irregular shapes, the assignment

of object belongingness requires a decision whether region elements belong to the

same surface or not. Such decision-making process involves a slower sequentially

operating mechanism of tracing a connecting path in a homogeneous region. Such a

growth-cone mechanism has been demonstrated to act similarly on perceptual rep-

resentations of contour and region representations which might tag visual elements

to build a temporal signature for representations that define a connected object

(compare [Jeurissen 2016]). In a different behavioral task, e.g., obstacle avoidance,

the fixation close to the occluding object boundary helps to separate the optic flow

pattern of the obstacle from those of the background [Raudies 2012]. Here, the ob-

stacle is automatically selected as perceptual figure while the remaining visual scene

structure and other objects more distant from the observer are treated as back-

ground. These examples demonstrate evidence that biological segmentation might

be different from computer vision approaches which incorporates active selection

elements building upon much more flexible and dynamic processes.

7.3.3 Optical flow

Task definition. Estimating optical flow refers to the assignment of 2-D veloc-

ity vectors at sample locations in the visual image in order to describe their dis-

placements within the sensor’s frame of reference. Such a displacement vector field

constitutes the image flow representing apparent 2-D motions from their 3-D veloc-

ities being projected onto the sensor [Verri 1987, Verri 1989]. These algorithms use

the change of structured light in the retinal or camera images, posing that such 2-D

motions are observable from light intensity variations (and thus, are contrast depen-

dent) due to the change in relative positions between an observer (eye or camera)

and the surfaces or objects in a visual scene.

Core challenges. Achieving a robust estimation of optical flow faces several chal-

lenges. First of all, visual system has to establish form-based correspondences across

temporal domain despite the fact that physical movements induced geometric and

photometric distortions. Second, velocity space has to be optimally sampled and

represented to achieve robust and energy efficient estimation. Third, the accuracy

and reliability of the velocity estimation is dependent upon the local structure/form

but the visual system must achieve a form independent velocity estimation. Diffi-

culties arise from the fact that any local motion computation faces different sources

of noise and ambiguities, such as for instance the aperture and problems. Therefore,

estimating optical flow requires to resolve these local ambiguities by integrating dif-

ferent local motion signals while still maintaining segregated those that belong to

different surfaces or objects of the visual scene (see Fig. 7.7(a)). In other words,

image motion computation faces two opposite goals when computing the global ob-

ject motion, integration and segmentation [Braddick 1993]. As already emphasised
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(a) (b)

Figure 7.7: Core challenges in motion estimation. (a) This snapshot of a moving

scenes illustrates several ideas discussed in the text: inset with the blue box shows

the local ambiguity of motion estimation while the yellow boundary shows how

segmentation and motion estimation are intricated. (b) One example of transparent

motion encountered by computer vision, from an X-ray image (from [Auvray 2009]).

in Sec. 7.3.2, any computational machinery should be able to keep segregated the

different surface/object motions since one goal of motion processing is to estimate

accurately the speed and direction of each of them in order to track, capture or avoid

one or several of them. Fourth, the visual system must deal with complex scenes that

are full of occlusions, transparencies or non-rigid motions. This is well illustrated

by the transparency case. Since optical flow is a projection of 3D displacements in

the world, some situations yield to perceptual (semi-) transparency [McOwan 1996].

In videos, several causes have been identified, such as reflections, phantom special

effects, dissolve effects for a gradual shot change and medical imaging such as X-rays

(for example see Fig. 7.7(b)). All of these examples raise serious problems to current

computer vision algorithms.

Herein, we will focus on four main computational strategies used by biological

systems for dealing with the aforementioned problems. We selected them because we

believe these solutions could inspire the design of better computer vision algorithms.

First is motion energy estimation by which the visual system estimates a contrast

dependent measure of translations in order to indirectly establish correspondences.

Second is local velocity estimation: contrast dependent motion energy features must

be combined to achieve a contrast invariant local velocity estimation after de-noising

the dynamical inputs and resolving local ambiguities, thanks to the integration of lo-

cal form and motion cues. The third challenge concerns the global motion estimation
of each independent object, regardless its shape or appearance. Fourth, distributed
multiplexed representations must be used by both natural and artificial systems to

segment cluttered scenes, handle multiple/transparent surfaces, and encode depth

ordering to achieve 3D motion perception and goal-oriented decoding.

Biological vision solution. Visual motion has been investigated in a wide

range of species, from invertebrates to primates. Several computational prin-

ciples have been identified as being highly conserved by evolution, as for in-
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stance local motion detectors [Hassenstein 1956]. Following the seminal work

of Werner Reichardt and colleagues, a huge amount of work has been achieved

to elucidate the cellular mechanisms underlying local motion detection, the con-

nectivity rules enabling optic flow detectors or basic figure-ground segmenta-

tion. Fly vision has been leading the investigation of natural image coding as

well as active vision sensing. Several recent reviews can be found elsewhere

(e.g. [Borst 2014, Borst 2011, Alexander 2010, Silies 2014]). In the present review,

we decided to restrain the focus on the primate visual system and its dynamics.

In Fig. 7.3, we have sketched the backbone of the primate cortical motion stream

and its recurrent interactions with both area V1 and the ’form’ stream. This figure

illustrates both advantages and limits of the deep hierarchical model. Below, we

will further focus on some recent data about the neuronal dynamics in regards with

the four challenges identified for a better optic flow processing.

As already illustrated, the classical view of the cortical motion pathway is a

feedforward cascade of cortical areas spanning from the occipital (V1) to the pari-

etal (e.g. area VIP, area 7) lobes. This cascade forms the skeleton of the dorsal

stream. Areas MT and MST are located in the deep of the superior temporal sul-

cus and they are considered as a pivotal hub for both object and self-motion (see,

e.g., [Orban 2008, Bradley 2008, Pack 2008] for reviews). The motion pathway is ex-

tremely fast, with the information flowing in less that 20ms from the primary visual

area to the frontal cortices or brainstem structures underlying visuomotor transfor-

mations (see [Lamme 2000, Bullier 2001, Masson 2012, Lisberger 2010] for reviews).

These short time scales originate in the Magnocellular retino-geniculo-cortical input

to area V1 carrying low spatial and high temporal frequencies luminance information

with high contrast sensitivity (i.e., high contrast gain). This cortical input to layer

4β projects directly to the extra striate area MT, also called the cortical motion

area. The fact that this feedforward stream by-passes the classical recurrent circuit

between area V1 cortical layers is attractive for several reasons. First, it imple-

ments a fast, feedforward hierarchy fitting the classical two-stage motion computa-

tion model [Nakayama 1985, Hildreth 1987]. Direction-selective cells in area V1 are

best described as spatio-temporal filters extracting motion energy along the direction

orthogonal to the luminance gradient [Emerson 1992, Conway 2003, Mante 2005].

Their outputs are integrated by MT cells to compute local motion direction and

speed. Such spatio-temporal integration through the convergence of V1 inputs has

three objectives: extracting motion signals embedded in noise with high precision,

normalising them through centre-surround interactions and solving many of the

input ambiguities such as the aperture and correspondance problems. As a conse-

quence, speed and motion direction selectivities observed at single-cell and popula-

tion levels in area MT are largely independent upon the contrast or the shape of

the moving inputs [Born 2005, Bradley 2008, Orban 2008]. The next convergence

stage, area MST extracts object-motion through cells with receptive fields extend-

ing up to 10 to 20 degrees (area MSTl) or optic flow patterns (e.g., visual scene

rotation or expansion) that are processed with very large receptive fields covering

up to 2/3 of the visual field (area MSTd). Second, the fast feedforward stream illus-

trates the fact that built-in, fast and highly specific modules of visual information

are conserved through evolution to subserve automatic, behaviour-oriented visual

processing (see, e.g. [Masson 2012, Dhande 2014, Borst 2014] for reviews). Third,

this anatomical motif is a good example of a canonical circuit that implements a
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sequence of basic computations such as spatio-temporal filtering, gain control and

normalisation at increasing spatial scales [Rust 2006]. The final stage of all of these

bio-inspired models consist in a population of neurons that are broadly selective

for translation speed and direction [Simoncelli 1998, Perrone 2012] as well as for

complex optical flow patterns (see e.g., [Grossberg 1999, Layton 2014] for recent ex-

amples). Such backbone can then be used to compute biological motion and action

recognition [Giese 2003, Escobar 2012] similar to what was observed in human and

monkey parietal cortical networks (see [Giese 2015] for a recent review).

However, recent physiological studies have shown that this feedforward corner-

stone of global motion integration must be enriched with new properties. Figure 7.3

depitcs some of these aspects, mirroring functional connectivity and computational

perspectives. First, motion energy estimation through a set of spatio-temporal fil-

ters was recently re-evaluated to account for the neuronal responses to complex

dynamical textures and natural images. When presented with rich, naturalistic

inputs, responses of both V1 complex cells and MT pattern-motion neurons be-

come contrast invariant [Priebe 2003, Cui 2013] and more selective (i.e., their tun-

ing is sharper) [Priebe 2003, Gharaei 2013]. Their responses become also more

sparse [Vinje 2000] and more precise [Baudot 2013]. These better sensitivities could

be explained by a more complex integration of inputs, through a set of adaptive,

excitatory- and inhibitory-weighted filters that optimally sample the spatiotemporal

frequency plane [Nishimoto 2011]. Second, centre-surround interactions are much

more diverse, along many different domains (e.g. retinotopic space, orientation, di-

rection) than originally depicted by the popular Mexican-hat model. Such diversity

of centre-surround interactions in both areas V1 and MT most certainly contributes

to several of the computational nonlinearities mentioned above. They involve both

the classical convergence of projections from one step to the next but also the dense

network of lateral interactions within V1 as well as within each extra-striate areas.

These lateral interactions implement long-distance normalisation, seen as centre-

surround interactions at population level [Reynaud 2012] as well as feature grouping

between distant elements [Gilad 2013]. These intra- and inter-cortical areas interac-

tions can support a second important aspect of motion integration: motion diffusion.

In particular, anisotropic diffusion of local motion information can play a critical

role in global motion integration by propagating reliable local motion signals within

the retinotopic map [Tlapale 2010]. The exact neural implementation of these mech-

anisms is yet unknown but modern tools will soon allow to image, and manipulate,

the dynamics of these lateral interactions. The diversity of excitatory and inhibitory

inputs can explains how the aperture problem is dynamically solved by MT neurons

for different types of motion inputs such as plaid patterns [Rust 2006], elongated

bars or barber poles [Tsui 2010]) and they are thought to be important to encode

optic flow patterns [Mineault 2012] and biological motion [Escobar 2012]. Finally,

the role of feedback in this context-dependent integration of local motion has been

demonstrated by experimental [Hupé 1998, Nassi 2014] and computational stud-

ies [Bayerl 2004, Bayerl 2007a] and is now addressed at the physiological level de-

spite the considerable technical difficulties (see [Cudeiro 2006] for a review). Overall,

several computational studies have shown the importance of the adaptive normalisa-

tion of spatiotemporal filters for motion perception; see [Simoncini 2012] illustrating

how a generic computation (normalisation) can be adaptively tuned to match the

requirement of different behaviours.
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Global motion integration is only one side of the coin. As pointed out by Brad-

dick [Braddick 1993], motion integration and segmentation works hand-in-hand to

selectively group the local motion signals that belong to different surfaces. For in-

stance, some MT neurons integrate motion signals within their receptive field only

if they belong to the same contour [Huang 2007] or surface [Stoner 1992]. They

can also filter out motion within the receptive field when it does not belong to the

same surface [Snowden 1991, Stoner 1992], a first step for representing motion trans-

parency or structure-from-motion in area MT [Grunewald 2002]. The fact that MT

neurons can thus adaptively integrate local motion signals, and explain away others

is strongly related to the fact that motion sensitive cells are most often embedded

in distributed multiplexed representations. Indeed, most direction-selective cells are

also sensitive to binocular disparity [Lappe 1996, Qian 1997, Smolyanskaya 2013],

eye/head motion [Nadler 2009] and dynamical perspective cues [Kim 2015] in order

to filter out motion signals from outside the plane of fixation or to disambiguate

motion parallax. Thus, depth and motion processing are two intricate problems

allowing the brain to compute object motion in 3D space rather than in 2D space.

Depth-motion interaction is only one example of the fact that motion path-

way receives and integrates visual cues from many different processing mod-

ules [Ohshiro 2011]. This is again illustrated in Fig. 7.3, where form cues can

be extracted in areas V2 and V4 and sent to area MT. Information about the

spatial organisation of the scene using boundaries, colours, shapes might then

be used to further refine the fast and coarse estimate of the optic flow that

emerges from the V1-MT-MST backbone of the hierarchy. Such cue combina-

tion is critical to overcome classical pitfalls of the feedforward model. Notewor-

thy, along the hierarchical cascade, information is gathered over larger and larger

receptive fields at the penalty that object boundaries and shapes are blurred.

Thus, large receptive fields of MT and MST neurons can be useful for track-

ing large objects with the eyes, or avoiding approaching ones, but they certainly

lower the spatial resolution of the estimated optic flow field. This feedforward,

hierarchical processing contrasts with the sharp perception that we have of the

moving scene. Mixing different spatial scales through recurrent connectivity be-

tween cortical areas is one solution [Cudeiro 2006, Gur 2015]. Constraining the

diffusion of motion information along edges or within surface boundaries in cer-

tainly another as shown for texture-ground segmentation [Self 2013]. Such form-

based representations play a significant role in disambiguation of motion informa-

tion [Geisler 1999, McCarthy 2012, Mather 2012, Heslip 2013]. It could also play a

role in setting the balance between motion integration and segmentation dynamics,

as illustrated in Fig. 7.3(b).

Over the last two decades, several computational vision models have been pro-

posed to improve optic flow estimation with a bio-inspired approach. A first step is

to achieve a form-independent representation of velocity from the spatio-temporal

responses from V1. A dominant computational model was proposed by Heeger

and Simoncelli [Simoncelli 1998], where a linear combination of afferent inputs from

V1 is followed by a non linear operation known as untuned divisive normalisa-

tion. This model, and it subsequent developments [Rust 2006, Nishimoto 2011,

Simoncini 2012] replicates a variety of observations from physiology to psychophysics

using simple, synthetic stimuli such as drifting grating and plaids. However, this

class of models cannot resolve ambiguities in regions lacking of any 2D cues because
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of the absence of diffusion mechanisms. Moreover, their normalisation and weighted

integration properties are still static. These two aspects may be the reason why

they do not perform well on natural movies. Feedback signals from and to MT and

higher cortical areas could play a key role in reducing these ambiguities. One good

example was proposed by [Bayerl 2004] where dynamical feedback modulation from

MT to area V1 is used to solve the aperture problem locally. An extended model of

V1-MT-MST interactions that uses centre-surround competition in velocity space

was later presented by [Raudies 2011], showing good optic flow computations in the

presence of transparent motion. These feedback and lateral interactions primarily

play the role of context dependent diffusion operators that spread the most reli-

able information throughout ambiguous regions. Such diffusion mechanisms can be

gated to generate anisotropic propagation, taking advantage of local form informa-

tion [Tlapale 2010, Beck 2010]. An attempt at utilising these distributed represen-

tation for integrating both optic flow estimation and segmentation was proposed

in [Nowlan 1994]. The same model explored the role of learning in establishing the

best V1 representation of motion information, although this approach was largely

ignored in optic flow models contrary to object categorisation for instance. In brief,

more and more computational models of biological vision take advantages of these

newly-elucidated dynamical properties to explain motion perception mechanisms.

But it is not clear how these ideas perfuse to computer vision.

Comparison with computer vision solutions. The vast majority of computer

vision solutions for optical flow estimation can be split into four major computational

approaches (see [Sun 2010, Fortun 2015] for recent reviews). First, a constancy

assumption deals with correspondence problem, assuming that brightness or color

is constant across adjacent frames and assigning a cost function in case of deviation.

Second, the reliability of the matching assumptions optimised using priors or a

regularisation to deal with the aperture problem. Both of these solutions pose

the problems as an energy function and optical flow itself is treated as an energy

minimisation problem. Interestingly, a lot of recent research has been done in this

area, always pushing further the limits of the state-of-the-art. This research field

has put a strong emphasis on performance as a criterion to select novel approaches

and sophisticated benchmarks have been developed. Since the early initiatives,

current benchmarks cover a much wider variety of problems. Popular examples are

the Middleburry flow evaluation [Baker 2011] and, more recently the Sintel flow

evaluation [Butler 2012]. The later has important features which are not present

in the Middlebury benchmark: long sequences, large motions, specular reflections,

motion blur, defocus blur, and atmospheric effects.

Initial motion detection is a good example where biological and computer vision

research have already converged. The correlation detector proposed by Hassenstein

and Reichardt [Hassenstein 1956] serves as a reference for a velocity sensitive mech-

anisms to find correspondences of visual structure at image locations in consecutive

temporal samples. Formal equivalence of correlation detection with a multi-stage

motion energy filtering has been demonstrated [Adelson 1985]. There are now sev-

eral examples of spatiotemporal filtering models that are used to extract motion

energy across different scales. Initial motion detection is ambiguous since motion

can locally be measured only orthogonal to an extended contrast. This is called

the aperture problem and mathematically it gives an ill-posed problem to solve.
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For example, in gradient-based methods, one has to estimate the two velocity com-

ponents from a single equation called the optical flow constraint. In spatiotem-

poral energy based methods, all the spatiotemporal samples lie on a straight line

in frequency space and the task is to identify a plane that passes through all of

them [Bradley 2008]. Computer vision has dealt with this problem in two ways: by

imposing local constraints [Lucas 1981] or by posing smoothness constrains through

penalty terms [Horn 1981]. More recent approaches are attempted to fuse the two

formulations [Bruhn 2005]. The penalty term plays a key role as a diffusion operator

can act isotropically or anisotropically [Black 1998, Scherzer 2000, Aubert 2006]. A

variety of diffusion mechanisms has been proposed so that, e.g., optical flow disconti-

nuities could be preserved depending on velocity field variations or image structures.

All these mechanisms have demonstrated powerful results regarding the successful

operation in complex scenes. Computational neurosciences models also tend to rely

on diffusion mechanisms too, but they differ in their formulation. A first differ-

ence stems from the fact that local motion estimation is primarily based on the

spatio-temporal energy estimation. Second, the representation is distributed, allow-

ing multiple velocities at the same location, thus dealing with layered/transparent

motion. The diffusion operator is also gated based on the local form cues also relying

on the uncertainty estimate which could possibly be computed using the distributed

representation [Nowlan 1994].

Promising bio-inspired solutions. A modern trend in bio-inspired models of

motion integration is to use more form-motion interactions for disambiguating in-

formation. This should be further exploited in computer vision models. Future

research will have to integrate the growing knowledge about how diffusion pro-

cesses, form-motion interaction and multiplexing of different cues are implemented

and impact global motion computation [Tsui 2010, Rasch 2013, McDonald 2014].

Despite the similarities in the biological and artificial approaches to solve optical

flow computation, it is important to note that there is only little interaction hap-

pening between computer vision engineers and biological vision modellers. One

reason might be that biological models have not been rigorously tested on regular

computer vision datasets and are therefore considered as specifically confined to

laboratory conditions only. It would thus be very interesting to evaluate models

such as [Simoncelli 1998, Bayerl 2007a, Brinkworth 2009, Tlapale 2011b] to iden-

tify complementary strengths and weaknesses in order to find converging lines of

research investigations. Figure 7.8 illustrates work initiated in this direction where

three bio-inspired models that have been tested on the Middlebury optical flow

dataset [Baker 2011]. Each of these models describe a potential strategy applied

by the biological visual systems to solve motion estimation problem. The first

model [Solari 2015], demonstrates the applicability of a feedforward model that has

been suggested for motion integration by MT neurons [Rust 2006] for estimation

of optical flow by extending it into a scale-space framework and applying a linear

decoding scheme for conversion of MT population activity into velocity vectors.

The second model [Medathati 2015a] investigates the role of contextual adaptations

depending on form based cues in feedforward pooling by MT neurons. The third

model [Bouecke 2011] studies the role of modulatory feedback mechanisms in solving

the aperture problem.

Some elements of the mechanisms discussed above (e.g. the early motion detec-
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Figure 7.8: Comparison between three biological vision models tested on the

Rubberwhale sequence from Middlebury dataset [Baker 2011]. First column illus-

trates [Solari 2015], where the authors have revisited the seminal work by Heeger

and Simoncelli [Simoncelli 1998] using spatio-temporal filters to estimate optical flow

from V1-MT feedforward interactions. Second column illustrates [Medathati 2015a],

an extension of the Heeger and Simoncelli model with adaptive processing algorithm

based on context-dependent, area V2 modulation onto the pooling of V1 inputs onto

MT cells. Third column illustrates [Bouecke 2011], which incorporates modulatory

feedbacks from MT to V1. Optical flow is represented using the colour-code from

Middlebury dataset.

tion stage, [Heeger 1988]) have already been incorporated in recent computer vision

models, For instance, the solution proposed by [Wedel 2009] uses a regularisation

scheme that considers different temporal scales, namely a regular motion mechanism

(using short exposure frames) as well as a slowly integrating representation (using

long exposure frames), the latter resembling the form pathway in the primate vi-

sual system [Sellent 2011]. The goal there was to reduce inherent uncertainty in

the input [Mac Aodha 2013]. Further constraining the computer vision models by

simultaneously including some of the above-described mechanisms (e.g. tuned nor-

malisation through lateral interactions, gated pooling to avoid estimation errors,

feedback-based long range diffusion) may lead to significant improvements in optic

flow processing methods and engineering solutions.

7.4 Discussion

In Sec. 7.3 we have revisited three classical computer vision tasks and discussed

strategies that seemed to be used by biological vision systems in order to solve
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Reference Model Application Code

Vanrullen et al., 2002 [VanRullen 2002] Spatial model based on difference-of-Gaussian

kernels at different scales

Object recognition using the idea

of latency coding

#

Benoit et. al., 2010 [Benoit 2010] Spatio-temporal model of retinal parvocellular

and magnocellular pathways (also includes a V1

model)

Low level image processing  

Wohrer et al., 2009 [Wohrer 2009] Spiking retina model with contrast gain control

(Virtual Retina)

Comparisons to single cell record-

ings and large scale simulations

 

Lorach et al., 2012, [Lorach 2012] Retina-inspired sensor combining an asyn-

chronous event-based light sensor (DVS) with a

model pulling non-linear subunits to reproduce

the parallel filtering and temporal coding of the

majority of ganglion cell types

Target artificial visual systems

and visual prosthetic devices

#

S
e
n
s
in

g

Martinez et al., 2013, [Martinez-Alvarez 2013] Compiler-based framework with an ad hoc lan-

guage allowing to produce accelerated versions of

the models compatible with COTS microproces-

sors, FPGAs or GPUs (Retina Studio)

Target visual prosthetic devices #

Parent et al., 1989 [Parent 1989] Model of curve detection and boundary grouping

using tangent orientation and local curvature in-

formation

Tested on artificial noisy images

for curve evaluation and natural

images from different domains

#

Ren et al., 2006 [Ren 2006] Figure-ground assignment to contours in natural

images based on mid-level visual shapes (so-called

shapemes) and global consistency enforcement for

contour junctions

Bottom-up figure-ground label as-

signment in still images of large

data bases with human ground

truth labellings

#

Bornstein et al., 2008 [Borenstein 2008] Model for image segmentation combining bottom-

up processing (to create hierarchies of segmented

uniform regions) with top-down processing (to

employ shape knowledge from prior learning of

image fragments)

Tested on data sets with four

classes of objects to demonstrate

improved segmentation and recog-

nition performance

#

Rodriguez et al., 2012 [Rodriguez Sanchez 2012] Computational model of mid-level 2D shape rep-

resentation utilizing hierarchical processing with

end-stopping and curvature selective cells

Tested on artificial shape config-

urations to replicate experimental

findings from neurophysiology

#

Azzopardi et al., 2012 [Azzopardi 2012] Computational model of center-surround and

orientation selective filtering with non-linear

context-dependent suppressive modulation and

cross-orientation inhibition

Tested on two public data sets

of natural images with contour

ground truth labellings

#

S
e
g
m
e
n
t
a
t
io

n

Tschechne, 2014 [Tschechne 2014a] Recurrent network architecture for distributed

multi-scale shape feature representation, bound-

ary grouping, and border-ownership direction as-

signment

Tested on a selection of stimuli

from public data sets

#

Heeger, 1988 [Heeger 1988] Feed forward model based on spatio-temporal mo-

tion energy filters

Used to simulate psychophysical

data and Yosemite sequence

#

Nolan et al., 1994 [Nowlan 1994] Model based on spatio-temporal motion energy fil-

ters with a selection mechanism to deal with oc-

clusions and transparency

Optical flow estimation, tested on

synthetic images only

#

Grossberg et al., 2001 [Grossberg 2001] Dynamical model representative of interactions

between V1, V2, MT and MST areas

Grouping and optical flow estima-

tion, tested on synthetic images

only

#

Bayerl et al., 2007 [Bayerl 2007a] Recurrent model of V1-MT with modulatory feed-

backs and a sparse coding framework for neural

motion activity patterns

Optical flow estimation, tested us-

ing several real world classical

videos

#

Tlapale et al., 2010 [Tlapale 2010] Dynamical model representative of V1-MT inter-

actions and luminosity based motion information

diffusion

Optical flow estimation, tested on

synthetic images only

#

Perrone et al., 2012 [Perrone 2012] Model explaining the speed tuning properties of

MST neurons by afferent pooling from MT

Optical flow estimation, tested

on synthetic and two natural se-

quences

#

Tschechne et al., 2014 [Tschechne 2014b] Model of cortical mechanisms of motion detection

using an asynchronous event-based light sensor

(DVS)

Motion estimation with limited

testing for action recognition

#

O
p
t
ic

a
l

f
l
o
w

Solari et al., 2015 [Solari 2015] Multi-scale implementation of a feedforward

model based on spatio-temporal motion energy fil-

ters inspired by [Heeger 1988]

Dense optical flow estimation,

evaluated on Middlebury bench-

mark

 

Table 7.1: Prominent models for each of the three tasks considered in Sec. 7.3.
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Biological mechanism Experimental paper Models

Visual adaptation [Shapley 1984, Thoreson 2012,

Kastner 2014]

[Wohrer 2009, Hérault 2010]

Feature detection [Kastner 2014] [Hérault 2010]

Sparse coding [Pillow 2008] [Lorach 2012]

Precision [Pillow 2008] [Lorach 2012]S
e
n
s
in

g

Surveys [Masland 2011, Masland 2012] –

Contrast enhancement and shape

representation

[Geisler 2001] [Azzopardi 2012,

Rodriguez Sanchez 2012]

Feature integration and segmenta-

tion

[Brunswik 1953, Peterhans 1991,

Field 1993, Bosking 1997,

Kapadia 2000, Sigman 2001,

Wolfe 2002, Li 2008, Gilad 2013]

[Grossberg 1985, Grossberg 1997,

Martin 2001, Neumann 2001,

Ben-Shahar 2004, Cadieu 2007,

Borenstein 2008, Arbelaez 2011]

Border ownership and figure-

ground segregation

[Lamme 1995, Lamme 1998,

Hupé 1998, Zhou 2000,

Peterson 2008, Jeurissen 2013,

Self 2013, Yang 2014]

[Grossberg 1993, Ren 2006,

Craft 2007, Fowlkes 2007,

Hoiem 2011, Tschechne 2014a]

Continuation and visual routines [Jolicoeur 1986, Kellman 1991,

Poort 2012, Kogo 2013]

[Hayhoe 2005, Raudies 2010]

S
e
g
m
e
n
t
a
t
io

n

Surveys - [Hérault 2007, Benoit 2010,

Cox 2014]

Motion energy estimation [Emerson 1992, Conway 2003,

Mante 2005, Rust 2005]

[Adelson 1985, Heeger 1988,

Simoncelli 1998]

Local velocity estimation [Thiele 2001b, Rust 2006,

Priebe 2006, Bradley 2008,

Nishimoto 2011]

[Nishimoto 2011, Solari 2015]

Global motion integration [Huang 2007] [Nowlan 1994, Grossberg 2001,

Bayerl 2007a, Tlapale 2010,

Perrone 2012]

Distributed multiplexed representa-

tions

[Maunsell 1983b, Basole 2003,

Nadler 2009, Huk 2012,

Smolyanskaya 2013]

[Buracas 1996, Lappe 1996,

Qian 1997, Fernandez 2002,

Ohshiro 2011]

O
p
t
ic

a
l

f
l
o
w

Surveys [Pack 2008, Nakayama 1985] [Bouecke 2011]

Table 7.2: Summary of the strategies highlighted in the text to solve the different

task, showing where to find more details about the biological mechanisms and which

models are using these strategies.

them. Tables 7.1 and 7.2 provide a concise summary of existing models for each

task, together with key references about corresponding biological findings. From

this meta-analysis, we have identified several research flows from biological vision

that should be leveraged in order to advance computer vision algorithms. In this

section, we will briefly discuss some of the major theoretical aspects and challenges

described throughout the review.
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7.4.1 Structural principles that relate to function

Studies in biological vision reveal structural regularities in various regions of the

visual cortex. For decades, the hierarchical architecture of cortical processing has

dominated, where response selectivities become more and more elaborated across

levels along the hierarchy. The potential for using such deep feedforward architec-

tures for computer vision has recently been discussed by [Kruger 2013]. However,

it appears nowadays that such principles of bottom-up cascading should be com-

bined with lateral interactions within the different cortical functional maps and

the massive feedback from higher stages. We have indicated several computations

(e.g., normalisation, gain control, segregation...) that could be implemented within

and across functional maps by these connectivity motives. We have shown the

impact of these interactions on each of the three example tasks (sensing, segmen-

tation, optic flow) discussed throughout this article. We have also mentioned how

these bio-inspired computational blocks (e.g., normalisation) can be re-used in a

computer vision framework to improve image processing algorithms (e.g., statisti-

cal whitening and source separation [Lyu 2009], pattern recognition [Jarrett 2009]).

One fundamental aspect of lateral and feedback interactions is that they imple-

ment context-dependent tuning of neuronal processing, over short distance (e.g.

the classical centre-surround interactions) but also over much larger distances (e.g.

anisotropic diffusion, feature-based attention). We have discussed the emerging

ideas that these intricate, highly recurrent architectures are key ingredients to obtain

an highly-flexible visual system that can be dynamically tuned to the statistics of

each visual scene and to the demands of the on-going behavioural task on a moment-

by-moment basis. It becomes indispensable to better understand and model how

these structural principles, for which we are gaining more and more information

every day, relate to functional principles. What is important in sensing, segment-

ing and computing optical flow is not much what could be the specific receptive

fields involved in each of these problems but, rather to identify the common struc-

tural and computational architectures that they share (see Box 1). For instance,

bottom-up signal representations and top-down predictions would achieve a reso-

nant state in which the context re-enters the earlier stages of representation in order

to emphasise their relevance in a larger context [Grossberg 1980, Edelman 1993].

These interactions are rooted in the generic mechanisms of response normalisa-

tion based on non-linear divisive processes. A corresponding canonical circuit,

using spiking neurons representations, can then be proposed, as in [Brosch 2014]

for instance. Variants of such computational elements have been used in models

tackling each of these three example task; sensing, segmenting and optical flow

(e.g., [Bayerl 2004, Bayerl 2007a, Wohrer 2009, Tlapale 2010]) using either func-

tional models or neural fields formalism (see Box 1). More important, these differ-

ent models can be tested on a set of real-world images and sequences taken from

computer vision. This is just one exemple of the many different instances of opera-

tive solutions and algorithms that can be inspired from biology and computational

vision. It is important to consider that the computational properties of a given

architecture (e.g. recurrent connectivity) have been investigated in different theo-

retical perspectives (e.g, Kalman filtering) and different mathematical frameworks

(e.g., [Rao 1999, Dimova 2009, Perrinet 2012]). Some of the biologically-plausible

models assembled in Tables 7.1 offer a repertoire of realistic computational solutions
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that can be a source of inspiration for novel computer vision algorithms.

7.4.2 Data encoding and representation

Biological systems are known to use several strategies such as event-based sensory

processing, distributed multiplexed representation of sensory inputs and active sen-

sory adaptation to the input statistics in order to operate in a robust and energy

efficient manner. Traditionally, video inputs are captured by cameras that generate

sequences of frames at a fixed rate. The consequence is that the stream of spatio-

temporal scene structure is regularly sampled at fixed time steps regardless of the

spatio-temporal structure. In other words, the plenoptic function [Adelson 1991] is

sliced in sheets of image-like representations. The result of such a strategy is a highly

redundant representation of any constant features in the scene along the temporal

axis. In contrast, the brain encodes and transmits information through discrete

sparse events and this spiking encoding appears at the very beginning of visual in-

formation processing, i.e., at the retina level. As discussed in Sec. 7.3.1, ganglion

cells transmit a sparse asynchronous encoding of the time varying visual information

to LGN and then cortical areas. This sparse event-based encoding inspired develop-

ment of new type of camera sensors. Some events are registered whenever changes

occur in the spatio-temporal luminance functions which are represented in a stream

of events, with a location and time stamp [Lichtsteiner 2008, Liu 2010, Posch 2011].

Apart from the decrease in redundancy, the processing speed is no longer restricted

to the frame-rate of the sensor. Rather, events can be delivered at a rate that is only

limited by the refractory period of the sensor elements. Using these sensors brings

massive improvements in terms of efficiency of scene encoding and computer vision

approaches could benefit from such an alternative representation as demonstrated

already on some isolated tasks.

In terms of representation, examining the richness of receptive fields of cells

from retina of the visual cortex (such as in V1, MT and MST) shows that the visual

system is almost always using a distributed representation for the sensory inputs.

Distributed representation helps the system in a multiplicity of ways: It allows for

an inherent representation for the uncertainty, it allows for task specific modulation

and it could also be useful for representing the multiplicity of properties such as

transparent/layered motion [Pouget 2000, Simoncelli 2001]. Another important

property of biological vision that visual features are optimally encoded at the earliest

stages for carrying out computations related to multiplicity of tasks in higher areas.

Lastly, we have briefly mentioned that there are several codes to be used by visual

networks in order to represent the complexity of natural visual scenes. Thus, it shall

be very helpful to take into account this richness of representations to design systems

that could deal with an ensemble of tasks simultaneously instead of subserving a

single task at a time.

Recently, the application of DCNNs to solve computer vision tasks has boosted

machine performance in processing complex scenes, achieving human level perfor-

mance in certain scenarios. Their hierarchical structure and the utilisation of sim-

ple canonical operations (filtering, pooling, normalisation, etc.) motivated inves-

tigators to test their effectiveness in predicting cortical cell responses [Pinto 2009,

Güçlü 2015]. In order to generate artificial networks with functional properties

which come close to primate cortical mechanisms, a goal-diven modelling approach
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has been proposed which achieved promising results [Yamins 2014]. Here, the top-

layer representations should be constrained in the learning by the particular task

of the whole network. The implicit assumption is that such a definition of the

computational goal lies in the overlapping region of artificial and human vision sys-

tems, since otherwise the computational goals might deviate between systems as

discussed above [Tsotsos 2014] (his Fig.1). The authors argue that the detailed

internal structures might deviate from those identified in cortex, but additional

auxiliary optimisation mechanisms might be employed to vary structures under the

constraint to match the considered cortical reference system [Bergstra 2013]. The

rating of any network necessitates the definition of a proper similarity measure, such

as using dissimilarity measures computed from response patterns of brain regions

and model representations to compare the quality of the input stimulus representa-

tions [Kriegeskorte 2009].

7.4.3 Psychophysics and human perceptual performance data

Psychophysical laws and principles which can explain large amounts of empirical

observations should be further explored and exploited for designing robust vision al-

gorithms. However, most of our knowledge about human perception has been gained

using either highly artificial inputs for which the information is well-defined or natu-

ral images for which the information content is much less known. By contrast, human

perception continuously adjusts information processing to the content of the images,

at multiple scales and depending upon different brain states such as attention or cog-

nition. For instance, human vision dynamically tuned decision-boundaries related

to changes observed in the environment. It has been demonstrated that this adapta-

tion can be achieved dynamically by non-linear network properties that incorporate

activation transfer functions of sigmoidal shape [Grossberg 1980]. In [Chen 2010],

such a principle has been adopted to define a robust image descriptor that adjusts

its sensitivity to the overall signal energy, similar to human sensitivity shifts. One

of the fondamental advantages of these formalism is that they can render the bi-

ological performance at many different levels, from neuronal dynamics to human

performance. In other words, they can be used to adjust the algorithm parame-

ters to different levels of constraints shared by both biological and computer vision

[Tsotsos 2014]

Most of the problems in computer vision are ill-posed and observable data are

insufficient in terms of variables to be estimated. In order to overcome this lim-

itation, biological systems exploit statistical regularities. The data from human

performance studies either on highly controlled stimuli with careful variations in

specific attributes or large amounts of unstructured data can be used to identify the

statistical regularities, particularly significant for identifying operational parameter

regimes for computer vision algorithms. This strategy is already being explored in

computer vision and is becoming more popular with the introduction of larges scale

internet based labelling tools such as [Russell 2008, Vondrick 2013, Turpin 2014].

Classic examples for this approach in the case of scene segmentation are explo-

ration of human marked ground truth data for static [Martin 2001] and dynamic

scenes [Galasso 2013]. Thus, we advocate that further investigation on the front-end

interfaces to learning functions, decision-making or separation boundaries for clas-

sifiers might improve the performance levels of existing algorithms as well as their
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next generations. Emerging work such as [Scheirer 2014] illustrates the potential

in this direction. [Scheirer 2014] use the human performance errors and difficulties

for the task of face detection to bias the cost function of the SVM to get closer

to the strategies that we might be adapting or trade-offs that our visual systems

are banking on. We have provided other examples throughout the article but it is

evident that further linking learning approaches with low- and mid-levels of visual

information is a source of major advances in both understanding of biological vision

and designing better computer vision algorithms.

7.4.4 Computational models of cortical processing

Over the last decade, many computational models have been proposed to give a for-

mal description of phenomenological observations (e.g. perceptual decisions, popula-

tion dynamics) as well as a functional description of identified circuits. Throughout

this article, we have proposed that bio-inspired computer vision shall consider the

existence of a few generic computational modules together with their circuit imple-

mentation. Implementing and testing these canonical operations is important to

understand how efficient visual processing as well as highly flexible, task-dependent

solutions can be achieved using biological circuit mechanisms and and to implement

them within artificial systems. Moreover, the genericness of visual processing sys-

tems can be viewed as an emergent property from an appropriate assembly of these

canonical computational blocks within a dense, highly recurrent neural networks.

Computational neurosciences also investigate the nature of the representations used

by these computational blocks (e.g., probabilistic population codes, population dy-

namics, neural maps) and we have proposed how such new theoretical ideas about

neural coding can be fruitful to move forward beyond the classical isolated process-

ing units that are typically approximated as linear-non linear filters. For each of the

three example tasks, we have indicated several computational operative solutions

that can be inspiring for computer vision. Table 7.1 highlights a selection of papers

where even a large panels of operative solutions are described. It is beyond the scope

of this paper to provide a detailed mathematical framework for each problem de-

scribed or a comprehensive list of operative solutions. Still, in order to illustrate our

approach, we provide in Box 1 three examples of popular operative solutions that

can translate from computational to computer vision. These three examples are rep-

resentative of the different mathematical frameworks described above: a functional

model such as divisive normalisation that can be used for regulating population

coding and decoding; a population dynamics model such as neural fields that can

be used for coarse level description of lateral and feedback interactions and, lastly a

neuromorphic representation data and of event-based computations such as spiking

neuronal models.

The field of computational neurosciences has made enormous progress over the

last decades and will be boosted by the flow of new data gathered at multiple scales,

from behaviour to synapses. Testing popular computational vision models against

classical benchmarks in computer vision is a first step needed to bring together

these two fields of research, as illustrated above for motion processing. Translating

new theoretical ideas about brain computations to artificial systems is a promising

source of inspiration for computer vision as well. Both computational and computer

vision share the same challenge: each one is the missing link between hardware and
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behaviour, in search for generic, versatile and flexible architectures. The goal of this

review was to propose some aspects of biological visual processing for which we have

enough information and models to build these new architectures.

Box 1 | Three examples of operative solutions

Normalization is a generic operation present at each level of the visual processing flow, playing crit-

ical role in functions such as controlling contrast gain or tuning response selectivity [Carandini 2011].

In the context of neuronal processing, the normalization of the response Ri of a single neuron can

be written by

Ri =
Ii

n

ktunedIi
n +

∑

j Wij(Ij)n + σ
,

where I{.} indicates the net excitatory input to the neuron, (
∑

j) indicates the summation

over normalization pool, σ is a stabilization constant, Wij are weights, n and ktuned are the

key parameters regulating the behavior. When ktuned = 0 and n = 1 this equation represents

a standard normalization. When the constant ktuned is non-zero, normalization is referred to

as tuned normalization. This notion has been used in computational models for, e.g., tone

mapping [Meylan 2007] or optical flow [Bayerl 2004, Solari 2015].

The dynamics of biological vision results from the interaction between different cortical streams

operating at different speeds but also relies on a dense network of intra-cortical and inter-cortical

connections. Dynamics is generally modelled by neural fields equations which are spatially structured

neural networks which represent the spatial organization of cerebral cortex [Bressloff 2012]. For

example, to model the dynamics of two populations p1(t, r) and p2(t, r) (where p· is the firing

activity of each neural mass and r can be thought of as defining the population), a typical neural

field model is

∂p1
∂t

= −λ1p1
︸ ︷︷ ︸

decay

+ S

(∫

r′
W1→1(t, r, r

′)
︸ ︷︷ ︸

lateral

p1(t, r
′) +

∫

r′
W2→1(t, r, r

′)
︸ ︷︷ ︸

feedback

p2(t, r
′) + K(t, r)

︸ ︷︷ ︸

external input

)

,

∂p2
∂t

= −λ2p2
︸ ︷︷ ︸

decay

+ S

(∫

r′
W1→2(t, r, r

′)
︸ ︷︷ ︸

feedforward

p1(t, r
′) +

∫

r′
W2→2(t, r, r

′)
︸ ︷︷ ︸

lateral

p2(t, r
′)

)

,

where the weights Wi→j represent the key information defining the connectivities and S(·) is a

sigmoïdal function. Some example of neural fields model in the context of motion estimation

are [Tlapale 2010, Tlapale 2011b, Rankin 2014].

Event driven processing is the basis of neural computation. A variety of equations have been

proposed to model the spiking activity of single cells with different degrees of fidelity to biol-

ogy [Gerstner 2002]. A simple classical case is the leaky-integrate and fire neuron (seen as a simple

RC circuit) where the membrane potential ui is given by:

τ
dui
dt

= −ui(t) +RIt(t),

with a spike emission process: the neuron i will emit a spike when ui(t) reaches a certain threshold.

τ is time constant of the leaky integrator and R is the resistance of the neuron. When the neuron

belongs to a network, the input current is given by Ii(t) =
∑

j Wj→i

∑

f α(t − t
(f)
j ) where t

(f)
j

represents the time of the f -th spike of the j-th pre-synaptic neuron, α(t) represents the post synaptic

current generated by the spike and Wj→i is the strength of the synaptic efficacy from neuron j to

neuron i. This constitutes the building block of a spiking neural network. In term of neuromorphic

architectures, this principle has inspired sensors such as event-based cameras (see Sec. 7.3.1). From

a computation point of view, it has been used for biological vision [Wohrer 2009, Lorach 2012] but

also for solving vision tasks [Escobar 2009, Masquelier 2010].
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7.5 Conclusion

Computational models of biological vision aim at identifying and understanding the

strategies used by visual systems to solve problems which are often the same as the

one encountered in computer vision. As a consequence, these models would not only

shed light into functioning of biological vision but also provide innovative solutions

to engineering problems tackled by computer vision. In the past, these models were

often limited and able to capture observations at a scale not directly relevant to

solve tasks of interest for computer vision. More recently, enormous advances have

been made by the two communities. Biological vision is quickly moving towards

systems level understanding while computer vision has developed a great deal of

task centric algorithms and datasets enabling rapid evaluation. However, computer

vision engineers often ignore ideas that are not thoroughly evaluated on established

datasets and modellers often limit themselves to evaluating highly selected set of

stimuli. We have argued that the definition of common benchmarks will be critical

to compare biological and artificial solutions as well as integrating recent advances

in computational vision into new algorithms for computer vision tasks. Moreover,

the identification of elementary computing blocks in biological systems and their

interactions within highly recurrent networks could help resolving the conflict be-

tween task-based and generic approach of visual processing. These bio-inspired

solutions could help scaling up artificial systems and improve their generalisation,

their fault-tolerance and adaptability. Lastly, we have illustrated how the richness

of population codes, together with some of their key properties such as sparseness,

reliability and efficiency could be a fruitful source of inspiration for better repre-

sentations of visual information. Overall, we argue in this review that despite their

recent success, machine vision shall turn the head again towards biological vision as

a source of inspiration.
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Conclusion

In this thesis we studied low level motion estimation in primates. We have identified

that models in biological vision are heavily focussed on a subset of attributes or

“readouts” related to the experiments leading to a fragmented view of the underlying

processes. This introduces ambiguity in our understanding of the algorithmic and

implementational strategies followed by the visual system. Intuitively, scaling up

the models by taking a task centric approach could help us overcome this ambiguity.

Following this intuition, we first explored feedforward processing. We proposed

an optical flow estimation algorithm by scaling up a minimal V1-MT feedforward

model rooted in physiology. This involved three steps: selection of appropriate

spatio-temporal frequency sampling at V1 level, appropriate velocity space sam-

pling and decoding scheme at MT level and embedding the scheme in a scale-space

framework to cover large displacements. The proposed algorithm has been bench-

marked using Middlebury dataset and is publicly shared. Results demonstrated that

the model could estimate optical flow on complex naturalistic stimuli but has errors

at object and motion boundaries.

Motion estimation error near object and motion boundaries in the V1-MT feed-

forward model primarily arises due to isotropic spatial pooling of the motion ener-

gies. To minimize this kinds of errors we proposed an extension to the feedforward

model by considering adaptive pooling based on the local image structure. This is

done by considering inputs from V2 in the form of texture boundaries. This modi-

fication improved the performance of the model significantly and resulted in much

sharper flow estimates. However, this model has limitations as the texture edge de-

tection is noisy and linear decoding scheme that is being considered is susceptible to

errors when multiple motions are present. We addressed this problem by evaluating

four decoding strategies : intersection of constraints, maximum likelihood, linear

regression on MT responses with in the scale-space framework and neural network

based regression using multi scale-features. Considering dense sampling of the ve-

locity space did not improve the results. However, neural network based regression

has better performance hinting at the need to consider responses of the filters at

different scales simultaneously.

Explorations using feedforward models gave us insights into few aspects. The

V1-MT feedforward model considers pattern cells, which by their definition always

combine the constituent components. Then how does the system represent trans-

parency? Using a different sub-population of component cells? This would require

that pattern and component type responses to be consistent to different kinds of

stimuli. Current experimental evidence contradicts this requirement as tuning be-

haviour was shown switch across different kinds of stimuli such plaids/RDKs. This

prompted us to explore the potential role of recurrent interactions.

We studied the role of recurrent interactions using a ring network model un-

der neural fields formalism. By considering a structured driving input we showed
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that ring network is able to reproduce prominent tuning behaviours exhibited by

sub-populations of MT neurons to overlapping motion components. Compared to

previous models that are rooted in feedforward weighting hypothesis, our model

could explain the inherent difficulty in predicting the tuning behaviour to different

input classes such as RDKs versus plaids. The integration, selection and retention

behaviour exhibited by the single sub-population under recurrent interactions also

challenges the assumptions made by current spatial models of integration which

solve aperture problem by operating in a strong inhibition regime.

8.1 Future Work

Interfacing biological and computer vision

A rich variety of principles that have been discussed in earlier chapters could be

explored further.

Psychophysics based datasets

Psychophysicists have cleverly developed stimuli that can be used to probe the algo-

rithmic strategies adapted by the visual system. The stimuli are designed such that

critical factors that could be governing algorithmic decisions could be systemically

manipulated. Instead of constraining computer vision models directly using com-

plex naturalistic scenes, it could be interesting to use carefully curated set of stimuli

dealing with different aspects and progressively increasing the complexity. In the

era of data driven deep learning architectures, such an approach could be useful not

only to train the models but also to identify the eventual strategies adapted by the

networks. Here, I elaborate this idea in case of motion stimuli.

The flow estimation can be divided into the few different challenges as illustrated

in Fig.8.1

Figure 8.1: Illustrating problems faced by optical flow estimation algorithms.

• Estimation when there is no inherent ambiguity in the brightness patterns

– How to identifying appropriate scale for analysis?

– How to maintain contrast and illumination invariance?

• Estimation when there is no texture/2D cues available in a local region

– How to select appropriate 2D cues?
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– How to ensure that flow field is smooth within the region of ambiguity?

• Estimation when multiple motions are involved in a local region

– How to detection and preserve object and motion boundaries?

– How to identify overlaid moving surfaces?

Here I give few examples of stimuli used in psychophysics that can handle the

particular set of challenges described above.

• Scenario: 2D cues available without aperture effects

– Plaid patterns generated by overlaying moving gratings and parameters

such as speed of the gratings, spatial frequency of the gratings and con-

trast.

– Moving Random dots patterns.

• Scenario: No texture cues present

– Moving squares/diamonds of various sizes.

• Scenario: Locally 1D cues are present and no competing 2D cues

– Moving bars of various lengths and orientations.

• Scenario: Locally 1D cues present but with competing 2D cues

– Barber pole, where the line endings suggest different motions.

– Cross barber pole.

– Chopsticks illusion.

• Scenario: Motion or texture boundaries

– Moving gratings with partial overlap, to check leaks in 2D cue diffusion.

Figure 8.2 illustrates some of the scenarios discussed here.

Figure 8.2: Illustrating stimuli which are representative of various scenarios visual

system encounters in solving motion estimation problem. a-d: Illustration of com-

petition between 1D and 2D cues. e: Illustration of a motion boundary.

We present the output obtained using a recent deep learning

method [Dosovitskiy 2015] which has quite high performance metrics on modern

computer vision datasets to a very simple stimuli such as a moving bar in Figure.8.3.

We can readily observe the estimated flow is not confined to the object under

motion.
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Input  frame 0 Input  frame 1 Flownet-S large 
displacement

Flownet small 
displacement

Flow color 
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Figure 8.3: Optical flow estimation in case of a translating bar using two network

configurations from [Dosovitskiy 2015].

Event driven processing

Developing camera arrays that could leverage event driven asynchronous signalling

would be an interesting avenue to explore. There is a phenomenal growth in the

number cameras that are present on the portable devices like cell phones, for example

see Figure. 8.4. If we consider the traditional frame based cameras to construct such

arrays, the processing and storage requirements are going to be very high. This can

be tackled by following some of the tricks that visual system adapts such as event

driven processing. For example, hybrid camera architectures could be developed

following intuition from P-cells and M-cells in the retina. We could consider an

array made up of high speed low resolution gray scale event driven sensors and a

traditional slow speed high resolution color sensor. The complementary information

coming from these different kinds of sensors could be fused to produce high speed

high resolution color videos.

Figure 8.4: Illustrating increasing number of cameras on cell phones.

Balance in excitatory and inhibitory connections

An important aspect of the neural computation is the relative balance between exci-

tatory and inhibitory connections. Some of the prominent regularization strategies

considered in the literature can be seen in Table 8.5. Novel regularization strategies

could be developed by introducing constraints such as norm of excitatory weights

being equal to the norm of inhibitory weights.
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Figure 8.5: Regularization techniques considered in literature for training deep net-

works.

Neural field models

In case of the ring network model, the representation scheme developed is generic and

could be extended to analyse temporal dynamics of MT neurons in other scenarios:

Increasing the number of components

In chapter 6, we have considered the case of two overlapping motion components.

The study could be extended by considering additional components of motion. In

the model this would mean that input is a linear combination of three gaussian

bumps instead of two. Physiological data in this direction is already emerging,

for example [Jazayeri 2012] have reported recording using grating triplets. Fig. 8.6

illustrates stimuli with increasing number of motion components. We made prelim-

inary investigations into the behaviour of the ring network by considering an input

with three components. The two stable solutions we found are shown in Fig. 8.7.

A thorough bifurcation analysis needs to be done in order to identify all the stable

solutions. It would be very interesting to see if the set of stable solution would agree

with neuronal/perceptual recordings.

Temporal hyper plaids

In chapter 6, we have considered a time invariant input. Experimentally, temporal

windows of motion integration have also been investigated by switching the visibility

of the components along time as illustrated in Fig. 8.8. The tuning responses in

such conditions could be studied by considering a periodically varying input. Early

investigations of the response of the ring network with periodically switching input

components reflective of the hyper plaids revealed that as the frequency of the

switching increases, the network’s preference to component selectivity increases.

The behaviour of the network is presented in Fig. 8.9.
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Figure 8.6: Illustrating moving grating, plaid and triplaid stimuli.

Figure 8.7: Behaviour of the ring network with input representative of three com-

ponents, two stable solutions and associated temporal evolution of the population

response are shown.

Developing spatialised models

The ring network model considers feature domain recurrent interactions only. In-

corporation of spatial domain interactions would enable the model to deal with

naturalistic videos, thus it is a natural extension to be considered. We started to

work in this direction using a spatialized neural field model representative of V1 and

MT populations, as shown in Fig. 8.10. Using this model we attempted to describe

perceptual switching in case of barber pole stimuli. Earlier, [Rankin 2014] described

such switching using feature domain representation only. Thus, their model did not

provide insights into how the switching happens. Does it happen in a piecemeal

way or simultaneously across the space? Using our spatialised model, we began

investigating this question. So far, in our simulations, we have observed simultane-

ous switching across space. It needs to be further investigated to find or rule out

connectivity regimes that could support switching in a piecemeal manner. Details

about model could be found in [Medathati 2013]. The simulation of this model is

computationally very expensive. At the continuum limit, the model requires solving

around 106(2x256x256x64) unknowns. Inspired by the work by [Baladron 2013],

the model has been simulated with the help of GPUs.
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Figure 8.8: Illustrating temporal hyper-plaids, where visibility of the motion com-

ponents is switched periodically. Figure adapted from [Kumbhani 2014]

Figure 8.9: Illustrating the response selectivity of the ring network using periodically

switching input representative of the hyper-plaids.
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Figure 8.10: (a) A spatial neural field model representative of recurrently interacting

direction selective populations of neurons from areas V1 and MT. (b) The stimuli

are encoded based on the ambiguity in local motion estimation.
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