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Abstract

This thesis focuses on the coupling between flow, ablation, and radiation phenomena encountered
in the stagnation region of atmospheric entry vehicles with carbon-phenolic thermal protection
systems (TPS). The research is divided into three parts: 1) development of numerical methods
and tools for the simulation of hypersonic, non equilibrium flows over blunt bodies, 2) implemen-
tation of a new radiation transport model for calculating nonequilibrium radiative heat transfer in
atmospheric entry flows, including ablation contaminated boundary layers, and 3) application of
these tools to study real flight conditions.

A review of the thermochemical nonequilibrium models and governing equations for atmospheric
entry flows is made, leading to a generalized framework, able to encompass most popular models
in use today. From this, a new software library called MUlticomponent Thermodynamic And
Transport properties for IONized gases, written in C++ (MUTATION++) is developed, providing
thermodynamic, transport, chemistry, and energy transfer models, data, and algorithms, relevant
to nonequilibrium flows. In addition, the library implements a novel method, developed in this
work, for the robust calculation of linearly constrained, multiphase equilibria, which is guaranteed
to converge for all well posed constraints, a crucial component of many TPS response codes.

The steady-state flow along the stagnation line of an atmospheric entry vehicle is computed
using a one-dimensional, finite-volume tool, based on the dimensionally reduced Navier-Stokes
equations. Coupling with ablation is achieved through a steady-state ablation boundary condition
using finite-rate heterogeneous reactions at the surface and imposed equilibrium compositions of
pyrolysis outgassing.

The High Temperature Gas Radiation (HTGR) database provides accurate line-by-line (LBL)
spectral coefficients. From a review of the major mechanisms contributing to the radiative heat flux
for atmospheric entry vehicles, several contributions are added to the HTGR database, including
H lines, C3 Swings and UV electronic systems, and photoionization of H, H2, and CH. The
Hybrid Statistical Narrow Band (HSNB) model is implemented to reduce the CPU time required
to compute accurate radiative heating calculations when many species are present. New SNB
parameters are computed for the H2 Lyman and Werner systems, by adjusting the Doppler and
Lorentz overlap parameters to fit curves of growth for each narrow band. Comparisons with band-
averaged LBL transmissivities show excellent agreement with the SNB parameters. It’s shown that
the HSNB method provides a speedup of two orders of magnitude and can accurately predict wall
radiative fluxes to within 5% of LBL results. A novel spectral grid adaptation is developed for
atomic lines and is shown to provide nearly identical results compared to the high-resolution HSNB
method with a 20-fold decrease in CPU time. The HSNB model yields greater accuracy compared
to the Smeared-Rotational-Band model in the case of Titan entry, dominated by optically thick
CN radiation.

The effects of coupled ablation and radiation are studied for Earth entries. It’s shown that
ablation products in the boundary layer can increase the radiation blockage to the surface of the
vehicle. In particular, the C3 UV and CO 4+ band systems and photoionization of C contribute
significantly to absorption when enough carbon is present. An analysis of the Apollo 4 peak
heating condition shows coupled radiation and ablation effects reduce the conducted heat flux by
as much as 35% for a fixed wall temperature of 2500 K. Comparison with the radiometer data
shows excellent agreement, partially validating the coupling methodology and radiation database.
The importance of accurately modeling the amount of carbon blown into the boundary layer is
demonstrated by contrasting the results of other researchers.





Résumé

Cette thèse est centrée sur le couplage entre les phénomènes d’écoulement, d’ablation et de rayon-
nement au voisinage du point d’arrêt de véhicules d’entrée atmosphérique pourvus d’un système
de protection thermique de type carbone-phénolique. La recherche est divisée en trois parties :
1) le développement de méthodes numériques et d’outils pour la simulation d’écoulements hyper-
soniques hors équilibre autour de corps émoussés, 2) la mise en œuvre d’un nouveau modèle de
transport du rayonnement hors équilibre dans ces écoulements, y compris dans les couches limites
contaminées par les produits d’ablation, et 3) l’application de ces outils à des conditions réelles de
vol.

La librairie MUTATION++ a été développée en C++ sur la base d’une formulation générale
englobant les modèles hors équilibre thermo-chimique les plus couramment utilisés pour fermer
les équations gouvernant les écoulements hypersoniques. Les propriétés thermodynamiques et de
transport de gaz ionisés multi-composants sont calculés, ainsi que les taux de production chim-
ique et de transfert d’énergie. Un nouvel algorithme permet un calcul robuste de la composition
d’équilibre de mélanges multiphasiques sous contraintes linéaires, garantissant la convergence de
la méthode pour les problèmes contraints bien posés, une composante essentielle aux nombreux
codes de réponse pour les matériaux.

L’écoulement stationnaire le long de la ligne d’arrêt de l’écoulement autour d’un véhicule spatial
est simulé à l’aide d’une méthode de volumes finis appliquée aux équations de Navier-Stokes réduites
à une dimension. Le couplage avec l’ablation est réalisé à l’aide d’une condition aux limites utilisant
un modèle de chimie hétérogène avec des taux de réaction surfaciques finis et une composition
d’équilibre des gaz de pyrolyse.

La base de données de rayonnement des gaz à haute température (HTGR) fournit des propriétés
radiatives spectrales précises de type raie-par-raie (LBL). Après évaluation des principaux mécan-
ismes contribuant au flux radiatif à la paroi, plusieurs contributions ont été ajoutées dans HTGR
: les raies atomiques de H, les systèmes électroniques de C3 Swings et UV, et la photoionisation de
H, H2 et CH. Le modèle hybride statistique à bande étroite (HSNB) est mis en œuvre pour réduire
le coût CPU nécessaire au calcul précis du transfert par rayonnement en présence de nombreuses
espèces. De nouveaux paramètres SNB sont calculés pour les systèmes H2 Lyman et Werner, en
ajustant les paramètres de chevauchement Doppler et Lorentz de façon à reproduire les courbes de
croissance pour chaque bande étroite. Les comparaisons avec les transmittivités LBL moyennées
par bande montrent un excellent accord avec les résultats SNB. La méthode HSNB fournit une ac-
célération de deux ordres de grandeur avec une précision de 5% sur les flux radiatifs pariétaux par
rapport aux résultats LBL. Une nouvelle méthode d’adaptation de la grille spectrale est développée
pour les raies atomiques, fournissant des résultats très proches de ceux obtenus par la méthode
HSNB à haute résolution tout en réduisant d’un facteur 20 le coût CPU. Le modèle HSNB apporte
aussi une précision accrue par rapport au modèle de gaz gris par bandes dans l’étude d’une entrée
dans l’atmosphère de Titan, dominée par le rayonnement optiquement épais de CN.

Les effets du couplage entre l’ablation et le rayonnement sont étudiés pour les rentrées terrestres.
Il est démontré que les produits d’ablation dans la couche limite peuvent augmenter le blocage
radiatif à la surface du véhicule. Pour les conditions de flux maximum d’Apollo 4, les effets de
couplage entre le rayonnement et l’ablation réduisent le flux conductif de 35%. L’accord avec les
données radiométriques est excellent, ce qui valide partiellement la méthode de couplage et la base
de données radiatives. L’importance d’une modélisation précise du soufflage du carbone dans la
couche limite est également établie.
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ul

Be Elemental stoichiometry coefficient matrix

B magnetic field

cp specific heat at constant pressure

cv specific heat at constant volume

D binary diffusion coefficient

e energy

E energy of a particle or energy level

E electric field

E′ electric field in hydrodynamic velocity frame

fab absorption spectral line profile
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f ie induced emission spectral line profile

f se spontaneous emission spectral line profile

f oscillator strength

g relative velocity between two particles

g species pure Gibbs function

g̃ species non-dimensionalized pure Gibbs function

G mixture Gibbs function

G̃ mixture normalized Gibbs function

h enthalpy

H set of heavy species

Ī identity matrix

I radiant intensity

Ib Planck function

J diffusive mass flux

j conduction current

k mean absorption coefficient per partial pressure of absorbing
species

L set of energy levels

M molecular weight

m particle mass

n number density

nH number of heavy species

nP number of phases

nS number of species

N species moles

N species mole vector

N̄ phase moles

N̄ phase moles vector

p pressure

P radiative power

P set of phases indices

P phase summation function

P phase summation matrix
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q charge

q convective heat flux

qr radiative heat flux

Q partition function

Q̄ reduced collision integral

R specific gas constant, Rj = Ru/Mj

R reaction rate of progress

R set of reaction indices

s entropy

Sse spontaneous emission cross-section for bound-free process

Sie induced emission cross-section for bound-free process

Sabs absorption cross-section for bound-free process

S set of species indices

T temperature

Te free electron translational temperature

Tel electronic temperature

Th heavy particle translational temperature

Tr rotational temperature of molecules

Tv vibrational temperature of molecules

u hydrodynamic velocity

V diffusion velocity

V set of vibrating molecules

W mean black equivalent line width

x mole fraction

y mass fraction

Greek Symbols

α absorptivity or absorptance

β line overlap parameter for narrow band

χe free electron thermal diffusion ratio

χh heavy particle thermal diffusion ratio

χneq non-equilibrium coefficient used for bound-free processes

ϵ emittance or emissivity

η emission coefficient
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η shear viscosity

κ absorption coefficient

κ bulk viscosity

λ thermal conductivity

λe free-electron thermal conductivity

λh heavy particle thermal conductivity

µ reduced mass of two particles

Π̄ viscous stress tensor

ω̇ mass production rate due to chemical reactions

Ω collision integral

ΩCV chemical-vibrational energy coupling term

ΩET heavy-electron translational energy relaxation rate

ΩEV electron-vibrational energy relaxation rate

ΩI thermal energy lost provided by electrons during electron impact
reactions

ΩVT vibrational-translational energy relaxation rate

ΩVV vibrational-vibrational energy relaxation rate

φ̇ mass production rate due to photochemical reactions

ρ mass density

ρ̂ molar density

ρ reflectivity or reflectance

σ wavenumber

τ transmissivity

τET heavy-electron translational energy relaxation time

τVT vibrational-translational energy relaxation time

θB non-Boltzmann equilibrium parameter

ν
′

forward stoichiometry coefficient

ν
′′

backard stoichiometry coefficient

Acronyms

ANL Argonne National Laboratory

ATcT Active Thermochemical Tables

BRVC Boltzmann rovibrational collisional

CEA Chemical Equilibrium with Applications



Acronyms xxv

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CG Conjugate-Gradient

CR Collisional-Radiative

DNRS Dimensionally Reduced Navier Stokes

EDC Eddy Dissipation Concept

EDL Entry, Descent, and Landing

EPE Element Potential Equations

ESA European Space Agency

FV Finite Volume

GFC Gibbs function continuation

GMRES Generalized minimum residual

GSI gas-surface interactions

HSNB Hybrid Statistical Narrow Band

HTGR High Temperature Gas Radiation

HWHM half-width at half-maximum

LBL line-by-line

LHTS Local Heat Transfer Simulation

LTE local thermodynamic equilibrium

MPGFC multiphase Gibbs function continuation

MT multi-temperature

MUSCL Monotone Upstream Centered Schemes for Conservation Laws

NASA National Aeronautics and Space Administration

NIST National Institute for Standards and Technology

OOP Object-Oriented Programming

ODE Ordinary Differential Equation

PAH Polycyclic Aromatic Hydrocarbons

PES potential energy surface

QCT quasi-classical trajectory

RCCE Rate-Controlled Chemical Equilibrium

RCCE-GALI RCCE using greedy algorithm with local improvement

RRHO Rigid-Rotor Harmonic-Oscillator

RRM Relaxa tion-Redistribution method



xxvi Acronyms

RTE Radiative Transport Equation

RVC rovibrational collisional

SNB Statistical Narrow-Band

SRE Specified Reaction Efficiency

STANJAN Stanford-JANAF

STS State-to-State

TN Thermochemical Network

TOPBASE The Opacity Project atomic database

TPS Thermal Protection System

TRC Thermochemical Research Center

UML Unified Modeling Language

VC vibronic-specific collisional

XML eXtensible Markup Language



CHAPTER 1

Introduction

“At first they thought the steam was escaping somewhere, but, looking upwards, they saw
that the strange noise proceeded from a ball of dazzling brightness, directly over their heads,
and evidently falling towards them with tremendous velocity. Too frightened to say a word,
they could only see that in its light the whole ship blazed like fireworks and the whole
sea glittered like a silver lake. Quicker than tongue can utter, or mind can conceive, it
flashed before their eyes for a second, an enormous [meteor] set on fire by friction with the
atmosphere, and gleaming in its white heat like a stream of molten iron gushing straight
from the furnace."

— Jules Verne, (translated from Autour de la lune)

1.1. Historical Perspective on Space Exploration

In his 1870 novel, Autour de la lune (Around the moon), the prolific French writer Jules Verne
describes the reentry of his fictitious spacecraft, a Columbiad projectile, from the viewpoint of
the sailors aboard the recovery ship. Apart from a few physical inaccuracies – for instance, you
can’t hear an object moving towards you faster than the speed of sound – Verne had no way of
knowing that he had imagined the scene that would take place nearly one hundred years later as
the sailors aboard the USS Hornet (and indeed the rest of the world) awaited the return of the
world’s first lunar explorers: Neil Armstrong, Buzz Aldrin, and Michael Collins, aboard the Apollo
11 Command Module, Columbia. The space race, which began as a cold war struggle between the
United States and the Soviet Union in the late 1950’s, had culminated in the successful completion
of the most daunting technological challenge in human history. Human exploration of the lunar
surface returned a wealth of scientific knowledge concerning the geological formation of the Moon as
well as clues regarding the early history of our own planet. Beyond the scientific and technological
advancements, the lunar program served to fuel our collective curiosity about our place in the
universe through images like the ones broadcast aboard Apollo 8 on Christmas Eve, 1968, of the
lunar Earthrise.

Unlike those early days of space exploration, the bulk of the space missions in the proceeding
decades have been largely robotic in nature, with the notable exception of the more than 16
years of continuous human presence in space aboard the international space station. However, the
technological and scientific achievements of these missions are no less important or awe inspiring.
Notable scientific advancements from these missions include the discovery of liquid hydrocarbon
lakes on the surface of Saturn’s moon Titan by the joint NASA/ESA Cassini-Huygens mission and
the recent discoveries of organic matter on the surface of Mars and in the coma of the Wild 2
comet by the NASA Mars Science Laboratory and Stardust missions, respectively.

1.2. Entry, Descent, and Landing

A common feature of most planetary exploration or sample return missions, is the need to enter
into the atmosphere of a celestial body at high velocity. Atmospheric entry is the first phase of a
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Figure 1.1.: Entry, Descent, and Landing sequence for the Mars Science Laboratory (source:
NASA/JPL).

mission’s Entry, Descent, and Landing (EDL) sequence. As the name suggests, the purpose of the
EDL sequence is to bring the spacecraft safely to the surface of the planet from its initial cruise
velocity. One of the most technologically advanced EDL sequences to date is that of the NASA
Mars Science Laboratory’s (MSL) Curiosity rover, which was successfully deployed on the Martian
surface on the 6th of August, 2012. A diagram of this sequence is shown in Fig. (1.1). Among
the many achievements of the MSL landing were the first ever controlled entry phase which is
responsible for the most accurate Martian landing in history, targeting a landing ellipse of just
7 km by 20 km, and an innovative sky crane which lowered the Curiosity rover to the surface,
preventing damage to the rover from the the dust and rocks blown around by conventional landing
jets.

From the standpoint of energy, an EDL sequence is responsible for reducing the kinetic and
potential energy of the spacecraft, measured relative to the planet’s surface, to zero. The bulk
of this energy is dissipated during the entry phase by converting the kinetic energy of the vehicle
into thermal energy in the surrounding atmosphere through the formation of a strong bow-shock
ahead of the vehicle. In general, about 90% of the energy dissipated to the atmosphere is carried
away from the vehicle through convection and radiation, leaving about 10% to be absorbed back
into the vehicle as thermal energy. A Thermal Protection System (TPS) is used to mitigate this
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Figure 1.2.: Flight regimes in Earth’s atmosphere. Trajectories of various vehicles are shown in
solid lines. Dashed lines represent the onset of real gas effects. Bullets indicate the trajectory point
of maximum heating. Adapted from Howe [1] and Rivell [2].

heat load and ensure that the temperature limits of critical components on board are not exceeded
during the entry phase.

In general, two categories of TPS have been used for atmospheric entry, depending on the entry
velocity and expected heat load. A velocity / altitude map for Earth entry is given in Fig. (1.2)
which shows the flight profiles of several vehicles. For moderate entry velocities, reusable heat
shields, like the one used on NASA’s Space Shuttle vehicle, can be used to dissipate heat by re-
radiating the energy back into the free stream. Reusable heat shields are designed to withstand
multiple uses without need for replacement or repair. They are typically constructed from carbon
or silicon carbide materials which have high emissivities at high temperatures in order to promote
re-radiation. In practice, the use of reusable heat shields is limited to relatively slow entry velocities
on the order of about 7 - 8 km/s, corresponding to Earth orbital velocities. For the space exploration
missions of interest, such as Apollo or sample return from Mars or distant asteroids, entry velocities
are greater 10 km/s and ablative thermal protection systems must be used. Like reusable materials,
ablators dissipate a significant amount of heat through radiation. However, unlike reusables,
ablators are designed for single use, dissipating the remaining heat by converting thermal energy
into decomposition and degradation of the material itself, causing the surface of the ablator to recess
over time. Ablative TPS are generally constructed from rigid carbon fiber or silicon composites,
impregnated with an organic resin matrix which serves as a pyrolyzing binder and provides strength
to the overall TPS structure.

As will be shown in the following section, the aerothermal environment surrounding a vehicle
during atmospheric entry is extremely complex. As such, prediction of the heating rate which is
experienced by the thermal protection system remains an imperfect art. For example, prediction
uncertainty for Martian entry remains as high as 60% for laminar convective heating [3]. In addi-
tion, the accurate characterization of the thermal protection system response to the imposed heat
load adds further uncertainties due to the complexity of the decomposition and recession processes.
Together, these uncertainties make selecting the right TPS type and thickness a challenging task,
as mission designers have to balance minimizing the TPS mass while minimizing the risk of fail-
ure. A classic example is the NASA Galileo probe. Launched on October 18, 1989, Galileo spent
over 8 years studying Jupiter and its moons. On September 21, 2003, after 14 years in space,
Galileo ended its mission by entering the Jovian atmosphere with a relative velocity of 47.5 km/s,
representing the most severe atmospheric entry environment ever attempted. The reentry probe,
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Figure 1.3.: Diagram of the Galileo atmospheric entry probe (left) and the estimated TPS thick-
ness before and after entry (right). Recession diagram is modified from the work of Laub and
Venkatapathy [4].

depicted on the left of Fig. (1.3) employed a fully dense carbon phenolic forebody TPS, designed
to withstand the extreme heating environment so that on board sensors could collect valuable
data about the atmosphere of Jupiter. Meanwhile, recession sensors embedded in the TPS itself,
allowed direct measurement of the TPS performance during entry. The estimated recession profile
of the Galileo TPS is shown on the right of Fig. (1.3). The data shows that the stagnation point
recession was far less than predicted, while the recession at the shoulder was greater and nearly
lead to a complete burn through which would have prematurely destroyed the probe. Fortunately,
Galileo was a huge success for the American space exploration program, however, the recession
data serves to underline the importance of being able to accurately characterize the aerothermal
heating environment during atmospheric entry.

Failure to accurately predict the heat loads and associated material response of the TPS during
the design phase can lead to catastrophic mission failure. In order to mitigate these failures,
large safety factors are typically applied to the thickness of ablative TPSs during the design of
atmospheric entry vehicles. Fig. (1.4) shows the percentage of total vehicle mass devoted to the
thermal protection system versus the total expected heat load imposed for several vehicles. As can
be seen in the figure, the TPS mass fraction scales proportionally to the total heat load, and reaches
as high as 50% in the case of Galileo. High TPS mass fractions mean that less mass is available for
fuel or scientific payloads. Reducing the uncertainties associated with atmospheric entry heating,
could allow for a reduction in the added TPS mass by excessive safety factor margins.

1.3. Atmospheric Entry Phenomena

The environment surrounding an atmospheric entry vehicle during entry represents a highly com-
plex, coupled, multiphysics problem. Broadly speaking, the various phenomena which affect the
resulting heat flux to the vehicle can be split into three domains: the aerothermal flow field,
thermal protection material response, and thermal radiation. A diagram depicting some of these
phenomena is shown in Fig. (1.5).

1.3.1. Shock Layer Physics

As the entry vehicle collides with the previously undisturbed atmospheric gases, a bow shock is
formed upstream of the vehicle, compressing and energizing the translational energy modes of the
gas particles. The temperature downstream of the shock can reach tens of thousands of degrees,
depending on the atmospheric entry conditions. Collisions between these energized molecules
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Figure 1.4.: Percentage of vehicle mass used for thermal protection for several atmospheric vehi-
cles. Data compiled from [5].

Figure 1.5.: Diagram of various physicochemical phenomena occurring in
the environment surrounding an atmospheric entry vehicle. Adapted from
http:// class.tamu. edu/projects/pecos .

http://class.tamu.edu/projects/pecos
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transfer some of the translational energy into the internal energy modes of the gas causing the
translational energy to relax. In general, rotational and vibrational mode excitation is induced
before excitation of the electronic modes.

Once the vibrational modes of the molecules become sufficiently energetic, additional collisions
provide the energy necessary to break their inter-nuclear bonds, leading to dissociation. In air, for
example, dissociation leads to the formation of atomic nitrogen and oxygen from N2 and O2. At the
same time, Zelodvich exchange reactions between atoms and molecules form NO which can then
dissociate as well. In the Martian atmosphere, on the other hand, dissociation of CO2 creates CO
and O2 molecules and finally O atoms. Further collisional excitation of the atoms and molecules
excites the bound electrons to higher electronic states. If the electrons become sufficiently excited,
they may be stripped from their parent species, forming a plasma. In air, this process begins
with the associative ionization of the NO molecule (N + O −−⇀↽−− NO+ + e– ), producing a singly
ionized NO+ and a free electron. The positive molecule is then typically neutralized through a
charge exchange reaction with N or O, stripping an electron from one of those atoms to form
ionized N+ or O+. Over time, the associative ionization reactions build up the concentration of
free electrons until a critical mass is formed. At this point, electron impact ionization reactions,
create a chain reaction and the level of ionization increases dramatically. This process is called
the electron avalanche. A similar process is also found during Martian entries, starting from the
associative ionization of CO. However, Martian entries typically occur at a slower velocities than
those on Earth, leading to far less ionization in general.

In addition to dissociation and ionization, collisional excitation may lead to thermal radiation
as excited atoms and molecules spontaneously emit a photon and drop to a lower energy state.
The radiant energy can then be absorbed by other atoms and molecules in the flow field, causing
particles to jump to higher energy levels, or directly absorbed by the surface of the vehicle. Emission
and absorption from bound levels to other bound levels is referred to as bound-bound radiation.
The emission and absorption spectra of bound-bound processes is highly oscillatory in nature due to
the many transitions between discrete internal energy levels of atoms and molecules. For sufficiently
energetic atoms and molecules, absorption of a photon may lead to dissociation or ionization. In
particular, the photo-dissociation of O2 and photo-ionization of N and O are common in air.
These processes are called bound-free since the particles in question begin the process bound to
one another and are separate or “free” at the end. The reverse processes are likewise termed free-
bound. Finally, free electrons may also contribute to radiation. As an electron passes through
the electric field of another charged particle, it may undergo a deceleration and emit a photon
with energy equal to the difference between the kinetic energy of the electron before and after the
collision. This process is known as Bremsstrahlung from the german words bremsen for “to brake”
and strahlung for “radiation”. Bremsstrahlung is also called free-free radiation, since transitions
occur between two unbound electrons. Bound-free and free-free processes exhibit a continuous
spectrum, since the energy transitions are not limited to discrete jumps.

A significant portion of the energy emitted is radiated out of the shock layer into the free stream,
reducing the temperature of the shock layer gas. This process is referred to as radiative cooling.
For cases in which radiation is a significant source of heat transfer, radiative cooling may introduce
a strong coupling mechanism between the flow and radiation fields and must be taken into account
in order to accurately predict the heat flux reaching the surface of the vehicle. Assessing the
importance of this coupling mechanism for a given entry is typically done by considering the
so-called Goulard number Γ [6],

Γ =
2qrad

0.5ρ∞u3
∞

, (1.1)

which is the ratio of the adiabatic (uncoupled) radiative flux, approximated as twice the surface
flux, to the total energy flux. As a general rule of thumb radiation coupling can be neglected
for conditions in which Γ < 0.01 . For higher values of the Goulard number, radiation coupling
should be considered. In addition, for strongly radiating shock layers, the internal energy modes
of the free stream ahead of the shock may be sufficiently excited by absorption processes to cause
photo-ionization leading to the generation of free electrons. The effect of this precursor ionization
on the shock structure and the ensuing thermochemical relaxtion processes downstream of the
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shock remains an open research problem.
The collisional and radiative processes described above act to alter the thermodynamic state of

the gas as the various energy modes transition from the equilibrium state of the undisturbed free
stream to a different equilibrium state downstream of the shock. During this transition period,
the gas may go through a series of thermochemical nonequilibrium states until sufficient collisions
have occurred. The length of the nonequilibrium zone behind a shock is dependent on a number of
factors, including the free stream density and composition as well as the vehicle size and velocity.
The accurate prediction of the nonequilibrium states in this zone is crucial for the correct descrip-
tion of the radiative and convective heat flux on the surface of the vehicle. For example, in the
case of the Huygens probe which entered the atmosphere of the Saturnian moon Titan on January
14, 2005, the radiative heat flux was found to be reduced between 2 to 15 times of that computed
using an equilibrium assumption when nonequilibrium electronic populations of the CN molecule
were considered [7].

1.3.2. Material Response

As the flow progresses towards the surface of the vehicle, a boundary layer develops due to viscous
interactions between the plasma and the surface. Thermal and species gradients near the surface
generate a convective heat flux into the vehicle via conduction and diffusion. In addition, irradi-
ation of the surface by the radiant emission from the shock layer further increases the heat flux
experienced by the vehicle. As the temperature of the surface rises, the bulk of the energy is re-
radiated back into the free stream by the thermal protection material while the rest of the energy
is conducted inside. For the carbon-phenolic thermal protection systems of interest in this work,
the heat flux is mitigated through two main processes, called pyrolysis and ablation. Fig. (1.6)
describes the phenomenology of the material response associated with carbon-phenolic thermal
protection systems. Before atmospheric entry, the thermal protection material is in its virgin
state, comprised of a carbon fibers impregnated with a phenolic resin matrix. As the the surface
heats up during entry, a wave of heat is conducted into the virgin material. Once the temperature
in the material rises above a certain level, the phenolic resin undergoes an endothermic thermal
decomposition in which the chains of the polymer matrix begin to break, known as pyrolysis.

The pyrolysis gases formed during the thermal decomposition of a phenolic resin are strongly
dependent on the molecular structure of the original polymer and the local temperature at which
decomposition occurs. Phenolic resins are generally formed through a polycondensation reaction
which occurs when a combination of phenol (C6H5OH) and formaldehyde (CH2O) are heated in
the presence of a catalyst. When excess formaldehyde is present in the mixture, a basic (alkaline)
catalyst is used to promote cross-linking of the polymer through ethylene bridges, forming a novolac
resin. When there is an excess of phenol, a resole type resin is produced in the presence of an
acidic catalyst. Depending on the formaldehyde to phenol ratio, reaction temperature, catalyst,
reaction time, and distillation amount, a wide variety of phenolic resin structures may be obtained,
with various degrees of cross-linking and impurities. Linear polymers have a minimal amount
of cross-linking and a repeated stoichiometry of C7H6O, while fully cross-linked polymers can
be characterized by a stoichiometry of C15H12O2. Typical polymer structures fall somewhere
in between these idealized cases due to incomplete cross-linking and the presence of impurities
embedded in the resin, such as nitrogen [10].

A significant number of experimental studies have been performed to characterize the thermal
decomposition of various types of carbon-phenolic resins and TPS. In particular, several important
studies have measured the composition of the pyrolysis gases produced versus temperature for
various materials, including novolac [11] and resol [12] resins, carbon-phenolic [13], and PICA [14,
15]. While some variability exists, the thermal decomposition of a phenolic resin can generally be
described in three temperature regimes. Between 300 ◦C to 600 ◦C, small molecules which are not
linked to the bulk polymer (left over from resin formation) are allowed to escape. In addition, ether
and nitrogen linkages begin to break, forming a mixture of aldehydes, cresols, and azomethines.
The most significant pyrolysis gas formed in this stage is typically water. From 600 ◦C to 900 ◦C,
the bulk of the pyrolysis gases are formed. A significant shrinkage of the polymer occurs due to
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Figure 1.6.: Phenomenology of thermal protection material response. Top two micrographs are
taken from [8] while the bottom is taken from [9].
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the creation of carbon-carbon bonds between aromatic rings, forming a polyaromatic char. Several
gases may be formed in this range, such as H2, CH4, H2O, CO, CO2, and volatile aromatics such
as phenol (C6H5OH) and benzene (C6H6). Finally, above about 900 ◦C, dehydrogenation further
shrinks the polymer forming mostly H2 and other small noncarbonacious molecules.

Once formed, the pyrolysis gases are convected and diffused through the porous material, driven
by a pressure gradient originating in the pyrolysis zone. As the gases flow towards the surface they
may react with one another to form new compounds or dissociate further. Closer to the surface,
the gas passes through a char layer, leftover from the completion of the pyrolysis processes. In some
cases, the presence of carbonaceous pyrolysis gases leads to coking, in which some of the carbon
in the gas is redeposited onto the polyaromatic char. At the surface of the thermal protection
system, the pyrolysis gases generated inside are convected into the boundary layer. Atmospheric
gases, diffusing to the surface, interact with the carbon fibers and carbonaceous char. In air, for
example, nitrogen and oxygen atoms may undergo a catalytic recombination at the surface to form
N2 and O2. In addition, oxidation and nitridation reactions may remove carbon from the surface,
causing the surface to recess and generating CO, CO2, and CN. At temperatures above about
3000K, the carbon surface begins to sublimate, generating carbonaceous species such as C, C2,
and C3, and increasing the surface recession rate. In extreme cases, surface spallation can also
occur, in which large particles are ejected from the surface due to mechanical and thermal loads.
Spallation is highly undesirable since it can dramatically increase the recession rate with little
thermodynamic benefit. When combined, the processes which remove material from the surface
are collectively known as ablation.

1.3.3. Flow, Material, Radiation Coupling

The gaseous products of ablation and pyrolysis are blown into the boundary layer where they may
react with the atmospheric gases coming from the shock layer. For strong mass blowing rates,
the boundary layer can be blown off of the surface, significantly reducing the thermal gradients at
the surface and decreasing the convective heat flux. Depending on their type and concentration,
ablation and pyrolysis gases may block a significant amount of the incoming radiation as well,
through absorption. This process, known as radiation blockage, is still not fully characterized, due
to the complexity of the phenomena leading to the creation of the ablation and pyrolsyis gases. To
further complicate matters, certain ablation products such as CO, CN, and C3 are known to be
strong radiators, leading to the possibility that ablation may actually increase the radiative flux to
the vehicle through spontaneous emission of these species as they are heated in the boundary layer.
For example, Johnston et al. [16] have shown for a simplified boundary layer in air, contamination
with ablation products may block radiation in the vacuum ultraviolet through increased absorption,
while increasing it in the infrared and visible regions of the spectrum due to emission from CO,
C2, and CN.

Finally, as the flow moves across the surface of the ablator, the boundary layer thickness tends
to grow. For larger vehicles, the laminar boundary layer flow can transition to turbulent, which
may significantly increase the convective heating rate to the surface. As the flow wraps around the
leading corner of the vehicle, a significant decompression and separation occurs, generating a large,
turbulent wake. As the wake cools, previously dissociated atmospheric gases and ablation products
may recombine. For Martian entries, a significant radiative heat flux can occur on the backshell
of the vehicle due recombination of CO2 which is a strong emitter in the infrared region. This
phenomena may become increasingly important for future missions aiming to send increasingly
large vehicles to Mars.

1.4. State-of-the-Art Flow-Radiation Tools

In this section, the current state-of-the-art of numerical prediction and modeling of atmospheric
entry flows is briefly reviewed with a focus on topics relevant to this thesis. A more detailed review
of the relevant literature is made throughout the thesis, as necessary. For a review of experimental
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studies of ablation phenomena, the reader is referred to the recent work of Helber [17]. In gen-
eral, state-of-the-art TPS design tools typically split the solution of the aerothermal environment
surrounding atmospheric entry vehicles into three computational domains: the flow field, material
response of the TPS, and the radiation field. Each computational domain is then solved in a loosely
coupled fashion. This approach proved successful for a number of atmospheric entry cases when
coupling phenomena are secondary to other features of the flow. Recently, a unified approach for
flow / material coupling has been developed by Schrooyen [18] which computes the solution of an
ablating, porous medium in the same computational domain as the flow.

On the other hand, past numerical investigations have shown several major radiation coupling ef-
fects, including (i) radiative cooling of the shock layer due to the strong emission of the plasma [19–
21], (ii) the production of precursor chemical compounds ahead of the shock [22], and (iii) the pro-
motion of ablation products released by the heat shield which may in turn contribute to increased
radiation blockage in the boundary layer [16]. At high altitudes corresponding to low densities,
the need to consider detailed nonequilibrium radiation appeared since the middle of the 1980s [23]
and thermodynamic and chemical nonequilibrium flowfield solvers, coupled to radiative transfer,
became common in the 1990s [24, 25].

A review of the thermochemical nonequilibrium models and governing equations used for hyper-
sonic flows is detailed in the next chapter. In general, these models rely on the multicomponent,
reacting Navier-Stokes equations [26] and are typically solved using finite-volume shock capturing
methods [27, 28]. Thermochemical nonequilibrium is accounted for using simple multitemperature
models [26, 29, 30] which split the internal energy of atoms and molecules into different modes
assumed to be at equilibrium at different temperatures.

The numerical simulation of radiative transfer is a challenging problem because of the spa-
tial, angular, and spectral dependence of the radiation field. The reference approach for treating
the spectral dependence is the Line-By-Line (LBL) method which consists in finely discretizing
the radiative properties over the relevant spectral range. These radiative properties depend on
level populations and on fundamental spectroscopic data gathered in spectral databases such as
NEQAIR [31, 32], SPRADIAN [33], MONSTER [34], SPECAIR [35]. The High Temperature Gas
Radiation (HTGR) spectral database, previously developed at the EM2C laboratory at Centrale-
Supélec for O2-N2 and CO2-N2 plasma applications [36–40], will be used in this work. HTGR gath-
ers up-to-date atomic spectroscopic data from various sources (such as NIST [41] and TOPbase [42])
together with exhaustive and accurate calculations of diatomic molecular spectra and atomic line
shapes. It includes bound-bound atomic and molecular transitions, bound-free transitions result-
ing from various mechanisms, and free-free transitions. The covered spectral range is [1000 -
200,000 cm−1] and the targeted maximum temperature is 50,000 K. The HTGR database has been
used in several studies for LBL radiative transfer calculations in hypersonic entries. In particular,
Lamet et al. [43] performed uncoupled radiation simulations of the Fire II flight experiment using
a two-temperature approach to model the thermal nonequilibrium. More recently, Lopez et al. [44]
carried out coupled flow-radiation simulations of the relaxation behind a shock wave in air with a
consistent state-to-state modeling of the atomic electronic levels.

A full LBL closely coupled flowfield-radiation model has been developed by Feldick et al. [45] for
Earth hypersonic reentries. They used the tangent slab approximation and introduced optimized
variable wavelength steps to decrease the computational costs. The full LBL simulations were suc-
cessfully compared to a hybrid line-by-line-gray model where molecular radiation in optically thin
systems was assumed to be gray inside narrow bands. However, although the LBL method is very
accurate, the large number of radiative transitions that have to be taken into account makes it very
computationally expensive and impractical for coupled simulations in complex geometries. The
Smeared-Rotational-Band (SRB) model is a common way to simplify the calculation of molecular
radiation but its accuracy is restricted to small optical thicknesses. It has been used for instance
in Ref. [46], together with a LBL treatment of atomic radiation.

More sophisticated approaches for radiative property modeling include the k-distribution meth-
ods which are based on the distribution functions of the absorption coefficient over the whole
spectrum (for example, [47]) or over spectral narrow bands [48]. They have been widely used
for modeling IR radiation in the field of atmospheric physics or for combustion applications, but
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also for modeling visible, UV and VUV radiation of astrophysical (Opacity Distribution Function
model of Ref. [49]) or thermal [50] plasmas. Recently, such models have been developed in the
framework of hypersonic nonequilibrium flows for air mixtures [51, 52] and also in carbonaceous
atmospheres [53]. They are based on the Full-Spectrum Correlated-k approach (FSCK) previously
developed for IR applications [54] and use efficient tabulations and rescaling of the various required
distribution functions against temperatures, molecular electronic state populations, and a typical
Stark width of the atoms. The accuracy of these approaches was demonstrated by successful
comparisons with LBL results. In the case of carbonaceous atmospheres [53], where only three
non-overlapping molecular band systems are considered, such an approach is very efficient and
easy to implement. Moreover, it retains a description of radiative properties in terms of absorption
coefficients and is therefore applicable to any radiation solver. For more arbitrary gas mixtures
such as ablation contaminated boundary layers, a large number of overlapping, non-weak molecular
electronic systems, absorbing in the Voigt regime, and whose induced emission contribution may
not be negligible, have to be accounted for. In this case, the multi-scale MS-FSCK approach can
become tedious to implement. Moreover, the spectral information is completely lost when using
such full-spectrum approaches. This is not an intrinsic limitation if one is only interested in heat
transfer with gray walls, but such models do not enable comparisons with experiments done in
limited spectral ranges.

Recently, Lamet et al. [55] have developed the Hybrid Statistical Narrow Band (HSNB) model,
combining a Statistical Narrow-Band (SNB) model for optically thick molecular systems with a
box model for optically thin molecular systems and continua, and a LBL description of atomic
lines. Band parameters have been computed using the HTGR database and tabulated against
translational-rotational and vibrational temperatures. The HSNB model can easily include new
radiating species and electronic systems, and arbitrary electronic populations may be specified. In
addition, it can be applied to predict the radiative flux in the case of non-gray walls. However,
the accuracy of the HSNB model has not yet been assessed in the case of ablation contaminated
boundary layers. Moreover, no study to date has demonstrated the efficiency of the HSNB model
necessary for coupled flow, radiation, ablation calculations.

1.5. Objectives and Outline of the Thesis

The goal of this work is to develop physicochemical models and numerical methods for the study
of the complex, coupled, multiphysics phenomena associated with atmospheric entry plasmas.
In particular, the thesis is focused on the coupling between the flow, ablation, and radiation
phenomena encountered in the stagnation region of the flow surrounding atmospheric entry vehicles
with carbon-phenolic thermal protection systems. Three broad objectives have been identified:

1. Many models associated with the complex thermochemical nonequilibrium phenomena sum-
marized in Section 1.3 require substantial amounts of basic data and specialized algorithms
to evaluate properties of the flow field during the course of a Computational Fluid Dynamics
(CFD) calculation. For example, the solution of accurate transport properties for partially
ionized plasmas requires the evaluation of many collision integrals, proportional to the square
of the number of binary interactions in the species mixture. These data can be tedious to im-
plement or difficult to find and are often “hard coded” in many modern hypersonic CFD tools
in use today. The first objective of this work is therefore to develop a new software library ca-
pable of providing a centralized repository for the basic physico-chemical models, algorithms,
and data relevant to nonequilibrium plasma flows.

2. The accuracy of the HSNB model has been successfully demonstrated against reference LBL
solutions in previous work for uncoupled radiative heat transfer in nonequilibrium atmo-
spheric entry flows. However, as discussed in the previous section, the accuracy and efficiency
of the model has not yet been assessed using a coupled approach with ablation contaminated
boundary layers. A second objective of this thesis is to develop a numerical approach for
calculating coupled flow, radiation, and ablation solutions along the stagnation line of at-
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mospheric entry vehicles and to assess the accuracy and efficiency of HSNB model using the
new approach.

3. Lastly, a third objective is to study the effects of flow, radiation, and ablation coupling on
the predicted heat fluxes at the stagnation point of real atmospheric entry vehicles, using the
tools developed in the previous objectives.

The thesis is divided into a total of eight chapters, including this introduction.

Chapter 2 presents a review of the thermochemical nonequilibrium models and governing equa-
tions applicable to hypersonic flows and atmospheric entry. In addition, the necessary closure
models for thermodynamics, transport fluxes, chemical reaction rates, and energy transfer
mechanisms are reviewed. The main goals of this review is to lay the groundwork for the
numerical tools described in later chapters and to develop a generalized system of governing
equations, capable of encompassing all relevant thermochemical nonequilibrium models in
use today.

Chapter 3 details the calculation of the radiative source terms which enter into the governing
equations presented in Chapter 2. A review of important radiative mechanisms is outlined,
followed by a description of the HTGR database, used to compute high resolution emission
and absorption spectra for the flow fields studied in this work. The HSNB model is also
presented as a method for reducing the computational time required for calculating the
radiative source terms. Several new contributions to both the HTGR and HSNB databases
for modeling radiation in ablation contaminated boundary layers are detailed.

Chapter 4 presents the development of a new software library called “MUlticomponent Thermo-
dynamic And Transport properties for IONized gases, written in C++” (Mutation++).
Building on the results of Chapter 2, the library provides thermodynamic, transport, chem-
istry, and energy transfer models, data, and algorithms, relevant to nonequilibrium flows. It
has been written in C++ using modern, object oriented designed techniques in an effort to
maximize its efficiency and extensibility.

Chapter 5 describes a novel algorithm for the solution of linearly constrained, multiphase equilib-
ria. Multiphase equilibrium calculations are a crucial component of many material response
codes. The new algorithm developed in this work, called Multiphase Gibbs Function Con-
tinuation (MPGFC), is shown to be provably robust for all well posed problems. The merits
and efficiency of the algorithm are discussed in detail.

Chapter 6 presents the remaining numerical tools developed in this work. The steady-state flow
along the stagnation line of an atmospheric entry vehicle is computed using a one-dimensional,
finite-volume tool, based on the dimensionally reduced Navier-Stokes equations for stagna-
tion line flows. In an effort to limit the scope of this thesis, coupling with ablation is achieved
through a steady-state ablation boundary condition, in place of a full material response solu-
tion methodology. The boundary condition accounts for finite-rate heterogeneous reactions
at the surface and imposed equilibrium compositions of pyrolysis out-gassing based on the
steady-state ablation assumption. Computation of the radiative source terms is performed
using the Tangent Slab approximation.

Chapter 7 applies the numerical tools and algorithms described in the previous chapters to real
flight conditions, in particular, key trajectory points along the entries of the Fire II, Apollo
4, and Huygens vehicles. The relative accuracy and computational efficiency of the HSNB
method is assessed, compared to LBL calculations for stagnation point radiative heating
calculations. In addition, the effects of coupled flow, radiation, and ablation phenomena on
the predicted heating rates are discussed.

Chapter 8 summarizes the main contributions of the thesis and provides perspective for possible
future work.
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Governing Equations for Hypersonic Flows

2.1. Introduction

Atmospheric entry vehicles operate in the hypersonic flow regime due to their extreme velocities
relative to the atmosphere in which they enter. Hypersonic flight is characterized by velocity
timescales on the same order of magnitude as the chemical and kinetic timescales of the shocked
gas. Under such conditions, thermal and chemical nonequilibrium may dominate the aerothermal
environment surrounding the entry vehicle. In addition, radiative heating becomes important as
atoms and molecules are excited to higher internal energy levels. These phenomena have substantial
effects on vehicle heating and aerodynamic forces affecting its trajectory and must be accurately
characterized during the design phase.

This chapter reviews the approaches typically used to model thermochemical nonequilibrium and
radiative heat transfer in hypersonic flow fields for atmospheric entry. In particular, the various
species internal energy partitioning models are discussed as well as the closure models employed
to compute the necessary thermodynamic, transport, and chemistry properties required to close
the governing equations. One contribution of this chapter is to formulate the governing equations
using a generalized notation, valid for most thermochemical models of interest in the literature.
As will be shown, this framework represents a powerful tool for abstracting away the physico-
chemical models from the governing equations for hypersonic flows and forms the basis of the
Mutation++ library presented in Chapter 4.

2.2. Review of Energy Partitioning Models

Quantum mechanics dictates that atoms and molecules are permitted only discrete energy lev-
els [56]. For atoms, this energy is contained within translational and electronic energy modes.
Molecules have two additional energy storage modes via rotation and vibration of the molecule.
In general, all energy modes are coupled. For weakly interacting particles (dilute gases), however,
translational energy may be considered decoupled from the internal energy. Note that this use of
“internal energy” should not be confused with the typical fluid dynamic description of the internal
energy of a gas, which includes translational energy. Here, internal energy is meant to differentiate
between energy associated with the translation of the center of mass of a particle and the energy
associated with the relative motion of its constituents (nuclei and electrons). While translational
energy levels are discrete, the spacing between levels is extremely small. For all practical purposes,
this permits a semi-classical approach in which translational energy is assumed continuous while
internal energy is left discrete. Furthermore, it is assumed that the populations of internal energy
levels satisfy Maxwell-Boltzmann statistics, such that the quantum effects differentiating bosons
(Bose-Einstein statistics) and fermions (Fermi-Dirac statistics) are negligible [56].

Fig. (2.1) provides potential energy curves of N2 for selected electronic energy states of the
molecule. Energy levels are measured from the zero point energy of the molecule (energy of the
ground state at 0K). Vibrational energy levels are denoted with tick marks for each electronic state.
Rotational levels are spaced even closer together between vibrational levels. Individual particles
may jump from one state to another through collisional or radiative (de)excitation processes or
react with other particles to form an entirely different species.
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Figure 2.1.: Potential energy curves for selected electronic states of N2, measured from the ground
state. Lowest vibrational energy levels are indicated by tick marks. Curves reproduced from [57].

A complete description of any flow field requires knowledge of the energy state of all particles
in the flow and their positions, versus time. In principle, each and every particle could be tracked
individually, however this represents an insurmountable computational problem. A less costly
approach is instead to track the population of particles in each internal energy state as the number
of energy states is vastly smaller than the number of particles in continuum flows. This approach,
known as the State-to-State approach, can also represent a daunting computational challenge
as the number of populated rovibronic energy states for simple diatomic molecules can be on
the order of tens of thousands. Because of this, many different approaches have been adopted
in the literature for treating nonequilibrium energy distributions. Such models are known as
“energy partitioning” models as they generally describe the way energy is distributed or partitioned
among the allowable energy states of a given atom or molecule. In this section, various energy
partitioning models are reviewed. The discussion of each model is ordered loosely by their departure
from equilibrium and more generally, in chronological order of when each model was successfully
employed in modern CFD computations for hypersonic flow fields. This review is not intended
to represent a comprehensive list of all energy partitioning models (indeed, many of these models
are routinely mixed to form hybrid models) however, it serves to discuss the major features and
assumptions of each.

2.2.1. Thermal Equilibrium

When the excitation/deexcitation processes are in equilibrium (flow timescale much larger than
kinetic timescale), the mixture is in local thermal equilibrium. Under these conditions, the dis-
tribution of energy levels for a given species follows a Boltzmann distribution, for non-degenerate
gases. Denoting the set of all species indices in a gas mixture as S and the set of all electronic
levels of atom j or rovibronic levels of molecule j as Lj , then the Boltzmann distribution is given
as

nl
j =

nj

Qint
j (T )

alj exp

(

−
El

j

kBT

)

, j ∈ S, l ∈ Lj , (2.1)
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where nl
j is the number density of species j with energy level l, nj =

∑

l n
l
j is the total number

density of species j, El
j is the internal energy of level (j, l) relative to the zero point energy of

species j, and alj is the degeneracy of the level. The quantity Qint
j is called the internal partition

function for species j and is given by

Qint
j (T ) =

∑

l∈Lj

alj exp

(

−
El

j

kBT

)

, j ∈ S. (2.2)

Note that the only unknowns present in Eq. (2.1) are the number density of species j, nj , and
the mixture temperature T . These quantities must be determined through suitable governing
equations which are discussed in the next section.

When thermal equilibrium is no longer valid, a suitable energy partitioning model must be used
to provide the distribution of energy levels for each species. The following subsections review the
most common models found in the literature.

2.2.2. Multitemperature Models

The thermal nonequilibrium models which are still used today for aerospace engineering applica-
tions can be attributed to the works of Park [58–60] and Lee [29, 61] in the mid to late 1980’s
who developed so-called multi-temperature models. The main idea behind multi-temperature
(MT) models is that the energy associated with any internal level can be separated into vari-
ous energy modes. When the fine structure is neglected, all internal energy levels of a diatomic
molecule may be enumerated by the electronic, rotational, and vibrational quantum numbers, n, J ,
ν, respectively. Electronic states may be characterized by the label 2S+1Λ where 2S+1 is the spin
multiplicity and Λ is the absolute value of the electronic orbital momentum on the internuclear
axis. Under this notation, the electronic degeneracy is then given as ael

j = (2−δ0,Λ)(2S+1), where
δ is the Kronecker delta. The rotational degeneracy is simply ar

j = 2J + 1. Vibrational states are
not degenerate (av

j = 1).
Assuming that each energy mode is decoupled from the others, a rovibronic energy level l =

(n, J, ν) of a diatomic molecule j, could be split according to [61], such that

El
j ≡ Ej(n, J, ν) = Eel

j (n) + Er
j(J) + Ev

j (ν), (2.3)

where Eel
j , Er

j , and Ev
j are the electronic, rotational, and vibrational contributions to energy level

l. Each energy mode is then assumed to represent a thermal bath in equilibrium at a separate
temperature, yielding

nl
j =

nj

Qint
j (Tel, Tr, Tv)

alj exp

(

−
Eel

j (n)

kBTel
−

Er
j(J)

kBTr
−

Ev
j (ν)

kBTv

)

, (2.4)

where alj = ael
j a

r
ja

v
j and Qint

j (Tel, Tr, Tv) is the multitemperature internal partition function of
species j,

Qint
j (Tel, Tr, Tv) =

∑

l∈Lj

alj exp

(

−
Eel

j (n)

kBTel
−

Er
j(J)

kBTr
−

Ev
j (ν)

kBTv

)

= Qel
j (Tel)Q

r
j(Tr)Q

v
j (Tv).

(2.5)

The assumption of perfect separability of the energy modes allows the internal partition function
to be split into a product of partition functions for each mode as is shown on the second line of
Eq. (2.5), where the partition function for mode m can be written generically as

Qm
j (Tm) =

∑

k∈Lm
j

amj (k) exp

(

−
Em

j (k)

kBTm

)

, (2.6)
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where Lm
j is the set of pure energy levels for mode m.

Eqs. (2.4) and (2.5) drastically reduce the number of unknowns required to model thermal
nonequilibrium as compared to those required for State-to-State (STS) models. However, decou-
pling of the internal degrees of freedom as in Eq. (2.3) is a strong assumption and may introduce
significant errors in the thermodynamic properties of the gas. Based on the Born-Oppenheimer
approximation, electronic motion may be decoupled from the nuclear motion above relatively low
temperatures, below the range of interest for atmospheric entry simulations [62]. Unfortunately,
this is not the case for rotation and vibration due to a strong coupling caused by centrifugal forces
created by rotation and the dependence of the moment of inertia of a vibrating molecule on the
internuclear distances between its constituent nuclei. In addition, since the rotational and vibra-
tional spectroscopic constants depend on the electronic states, the rovibrational energy may exhibit
a strong coupling with the electronic energy of a molecule, even when the Born-Oppenheimer ap-
proximation is appropriate.

Jaffe [63] first introduced a “general” MT model which takes into account rovibrational energy
coupling in a consistent way for diatomic molecules by introducing the following energy splitting,

El
j ≡ Ej(n, J, ν) = Eel

j (n) + Er
j
′(n, J, ν) + Ev

j
′(n, J, ν), (2.7)

where Eel
j (n) is the pure electronic energy for electronic state n and

Er
j
′(n, J, ν) = Er

j(n, J) + Erv
j (n, J, ν) (1− α), (2.8)

Ev
j
′(n, J, ν) = Ev

j (n, ν) + Erv
j (n, J, ν) α, (2.9)

where Er
j(n, J) and Ev

j (n, ν) are the pure rotational and vibrational energies for electronic level n
and Erv

j (n, J, ν) is the rotation-vibration interaction energy. The parameter 0 ≤ α ≤ 1 in Jaffe’s
model is used to distribute the rovibrational interaction energy into rotational and vibrational
modes. There is no physical basis for this distribution, however it has been shown that this
parameter has little effect on thermodynamic properties for diatomic air species [43, 63].

When all of the interaction energy is added to the vibrational mode (α = 1), the following
generic MT distribution is obtained for diatomic molecules,

nl
j =

njalj
Qint

j

exp

(

−
Eel

j (n)

kBTel
−

Er
j(n, J)

kBTr
−

Ev
j (n, ν) + Erv

j (n, J, ν)

kBTv

)

, (2.10)

where the internal partition function may be written as

Qint
j =

∑

n

(2 − δ0,Λ(n))(2S(n) + 1) exp

(

−
Eel

j (n)

kBTel

)

×

∑

J

(2J + 1) exp

(

−
Er

j(n, J)

kBTr

)

×

∑

ν

exp

(

−
Ev

j (n, ν) + Erv
j (n, J, ν)

kBTv

)

(2.11)

Eqs. (2.10) and (2.11) provide a consistent, general MT model for describing nonequilibrium state
distributions. Like the Park and Lee models in Eqs. (2.4) and (2.5), the general model significantly
reduces the number of parameters required to describe nonequilibrium flows. However, it is im-
portant to note that the partition function in Eq. (2.11) cannot be split into separable modes as
in Eq. (2.5) due to the coupled summation over the level quantum numbers.

The MT models presented in this section may be easily adapted to polyatomic species with more
degrees of freedom [64, 65]. In general, any polyatomic species j with na

j nuclei have 3na
j − (Lj +3)

normal vibrational modes, where Lj = 2 for linear molecules and Lj = 3 for nonlinear molecules.
Each new vibrational mode can be enumerated with an additional vibrational quantum number
and the corresponding energy partitioning updated. It should also be noted that the models shown
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here all assumed a single temperature for each energy mode, however it is common for example to
have separate vibrational temperatures for each vibrational mode in each molecule. The separable
and nonseparable MT models presented above can be easily generalized by appending a species
subscript to the temperatures (e.g., Tvj for a vibrational mode of species j).

MT models have been used with great success since the late 1980’s for a variety of CFD applica-
tions [26, 27, 29, 43, 58–61, 66–71]. However, because they are based on Boltzmann distributions,
these models are valid for only small departures from equilibrium [72]. With recent advancements
in computational efficiency and multiprocessor computer architectures, collisional models have be-
come more feasible. In particular, state-specific and energy binning models are discussed in the
next sections.

2.2.3. State-Specific Models

State-specific models attempt to increase the validity range of MT models beyond small departures
from equilibrium by modeling some states as pseudo-species [7, 73, 74]. In general, the energy of a
particular molecular state is split into two categories: 1) modes assumed to be in full nonequilibrium
and must be treated as pseudo-species, and 2) those which follow a Boltzmann distribution with
all the modeling possibilities presented in Section 2.2.2.

Cambier [73] introduced an electronic-specific Collisional-Radiative (CR) model for molecular
plasmas, in which each electronic mode of a given molecule is treated as a separate pseudo-species.
We will denote this species with the subscript j(n) for the nth electronic state of species j. The
number of particles of species j at the electronic state n is given by

nj(n) =
∑

νJ

nnJν
j . (2.12)

The rovibrational levels in each electronic state are then populated according to a Boltzmann
distribution at the species rotation and vibration temperature, such that for diatomic molecules,

nl
j ≡ nnJν

j =
nj(n)a

nJν
j

Qint
j(n)

exp

(

−
Eel

j (n)

kBTel
−

Er
j(n,J)

kBTrj
−

Ev
j
′(n,J,ν)

kBTvj

)

, (2.13)

where the rovibrational partition function for electronic state n is given by

Qint
j(n) = exp

(

−
Eel

j (n)

kBTel

)

∑

νJ

anJνj exp

(

−
Er

j(n,J)

kBTrj
−

Ev
j
′(n,J,ν)

kBTvj

)

, (2.14)

and Ev
j
′(n, J, ν) represents the energy partitioned into the vibrational mode as was done in Eq. (2.9).

Notice that the term anj exp(−Eel
j (n)/kBTel) (with arbitrary Tel) in Eq. (2.13) is canceled out when

the rovibrational partition function is substituted into the equation, however we have opted to in-
clude this term in the definition of the partition function in order to obtain a general relation for
thermodynamic properties later on (see Section 2.4).

When applied to atoms, electronic-specific models, like the one above, represent the most rigorous
nonequilibrium model possible. In this case, the approach is typically referred to as a full STS model
which is discussed in Section 2.2.4. Under some conditions, a large number of atomic and molecular
electronic states may be populated, requiring many pseudo-species to be retained in the energy
partitioning model. To reduce the system size, some researchers propose to group close electronic
states [73] into a single pseudo-species. Relations similar to Eqs. (2.13) and (2.14) can then be
obtained by summing over all electronic levels in each group. Care should be taken when grouping
electronic levels to take into account the distribution of energy accross the levels, major radiative
transitions, and chemistry coupling [73, 75]. As an example, consider the electronic states of N2
shown in Fig. (2.1). The low lying states in the figure will dissociate to two N(4S0) atoms while
the upper states will dissociate to N(4S0) and N(2D0). Based on this observation, grouping lower
electronic states of N2 with higher states will introduce errors in the dissociation of N2 and should
be avoided if possible.
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Vibronic-specific collisional (VC) models have also been widely used in the literature [74]. Here,
all vibrational-electronic (vibronic) states are treated as a pseudo-species by summing over all
rotational levels,

nj(nν) =
∑

J

nnJν
j , (2.15)

and appropriate relationships are derived for the number densities and state-specific internal par-
tition functions as was done for the electronic-specific case. VC models are important for studying
preferential dissociation rates of high-lying vibrational levels [74], among other things. In general
however, the large number of vibronic states of a given molecule, make VC models impractical in
multidimensional CFD simulations.

2.2.4. State-to-State Models

The most rigorous energy partitioning models are the so-called STS or collisional models which
treat all internal energy levels as pseudo-species [76–78]. When all collisional processes are taken
into account and assuming that the corresponding rate coefficients are correct, collisional models
accurately capture all nonequilibrium phenomena occuring in the flow field.

The STS approach makes no assumption on the distribution of energy states and thus no tem-
perature has been introduced into the expression for the number densities of individual levels.
However, it is still useful to define a partition function for the internal energy of a single en-
ergy state in order to correctly evaluate the thermodynamics associated with each level. This
will become more clear when the thermodynamics associated with such models are developed in
Section 2.4.1. The partition function for a single energy state l for species j is thus given by,

Ql
j(T ) = alj exp

(

−
El

j

kBT

)

, (2.16)

where the choice of T is arbitrary.
With the advancement of computational resources, accurate STS collision cross sections and

reaction rates can now be computed with quasi-classical trajectory (QCT) methods using potential
energy surfaces (PESs) obtained from detailed ab initio quantum chemistry calculations [79]. For
example, Panesi et al. [78] have recently developed a rovibrational collisional (RVC) model for the
N2(1Σg

+)–N(4Su) system based on STS rate coefficients developed at NASA Ames Research Center
[80–83]. The NASA Ames database provides consistent thermodynamic and kinetic data for 9390
rovibrational levels of the N2 ground electronic state. Such models allow us to study nonequilbrium
chemistry and energy exchange processes with an unprecedented level of detail and remove much
of the empiricism involved in the energy partitioning methods previously discussed. However,
because of the large number of unknowns, molecular STS models are currently relegated to 0D
reactors or simple 1D flows [76–78, 84–95]. In addition, when radiative heat transfer is considered,
the electronically excited states of molecules like N2 must also be accounted for, significantly
increasing the size and complexity of STS models.

2.2.5. Coarse-Grain and Energy Binning Models

The reduced nonequilibrium models presented thus far have all made use of the concept of separable
internal energy modes (e.g., Eq. (2.3)). However, these approaches do not have a physical basis
because energy modes are in fact coupled. Coarse-grained models [72, 75, 96, 97] provide an
alternative approach which attempts to decrease the resolution of STS models by grouping close
energy levels into bins. For a species j with energy levels l ∈ Lj , the levels are ordered and grouped
into bins labeled with index b ∈ Bj. We will denote the set of level indices belonging to bin b for
species j as Ibj . Each bin is then treated as a pseudo-species, requiring a mass conservation
equation to be solved for the population of the bin.

Various strategies have been proposed for which parameter to conserve [96], including the total
number density of all levels in each bin or the number density of the lowest level in the bin. The
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levels in each bin can then be populated according to a particular distribution function. In the
case of a uniform distribution, levels are populated according to

nl
j =

alj
ãb

ñb, (2.17)

where ãb =
∑

l∈Ibj
alj and ñb are the bin degeneracy and number density, respectively. Levels may

also be populated using a Boltzmann distribution at the translational temperature of the heavy
particles. In that case,

nl
j =

alj

Q̃
int
b

exp

(

−
∆El

bj

kBTh

)

, (2.18)

where ∆El
bj ≡ El

j − Ẽb, Ẽb is the energy of the lowest level in bin b, and the bin partition function
is

Q̃
int
b =

∑

l∈Ibj

alj exp

(

−
∆El

bj

kBTh

)

. (2.19)

The uniform distribution above does not retrieve equilibrium and thus a Boltzmann distribution
is typically preferred [72].

While still relatively young, coarse-grained models show a great deal of promise for the efficient
computation of nonequilibrium phenomena. For example, Munafò et al. [72, 97] have performed a
bin convergence study for the relaxation of shock-heated nitrogen using a Boltzmann rovibrational
collisional (BRVC) model based on the NASA Ames nitrogen STS database [80–83] and have
shown that accurate relaxation times and post-shock conditions are obtained with just 20 bins. In
that work, bins were formed using uniform energy discretizations of 9390 rovibrational levels of
the N2 ground electronic state. The resulting size of the system of conservation equations is on
par with the number of equations typically solved in the state-specific models. However, coarse-
grain models make no assumptions on the nature of the nonequilibrium phenomena, except for
the intrabin distribution, and can be generated to any level of resolution from detailed ab initio
STS data obtained from accurate quantum chemistry calculations.

2.3. Governing Equations

The nonequilibrium models presented in the previous sections provide relationships for individual
level populations as functions of independent mass and energy variables. Additional conservation
equations are required to relate these parameters to the flow field. Before proceeding with the
description of these equations, a few preliminary assumptions and notations are introduced, defin-
ing the framework around which general governing equations are written, valid for any energy
partitioning model. Following this setup, the necessary equations to model both thermochemical
equilibrium and nonequilibrium, hypersonic, plasma flows are presented.

2.3.1. Preliminaries

We begin by considering a partially ionized gas phase mixture composed of nS distinct chemical
species, including neutral and ionized atoms and molecules, and free electrons. The set of species
indices which enumerate each species in the mixture is denoted as S = {e} ∪ H = {1, . . . , nS},
where the set of heavy species H has been defined for convenience and e represents the index of
free electrons. In addition, the set of chemical elements which combine to form the species set S
is denoted as E = {1, . . . , nE}, where nE ≤ nS is the number of elements considered. Following
convention [65], E contains the electron as well, in order to track the electric charge of each species.
An elemental stoichiometry matrix Be

ji defines the number of atoms (or electrons) i ∈ E used to
form the species j ∈ S. From purely stoichiometric arguments, the species masses and charges are
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then written as

mj =
∑

i∈E

me
iB

e
ji, ∀ j ∈ S, (2.20)

qj = −qeB
e
je, ∀ j ∈ S, (2.21)

where mj and me
i are the particle masses of species j and element i, while qj and qe are the

elemental charge of species j and free electrons, respectively.
Following the discussion of Section 2.2, each species is assigned an energy partitioning model,

requiring the definition of at least one pseudo-species per species in the mixture. The set of pseudo-
species indices which belong to a species j ∈ S is denoted S∗

j such that the set of all pseudo-species
in the mixture is given as S∗ = {e} ∪H∗ = ∪j∈SS∗

j = {1, . . . , nS∗

}, where nS∗

≥ nS is the total
number of pseudo-species defined by the species energy partitioning models. Pseudo-species, by
definition, share the same mass and charge as the physical species which they model. Thus, the
density of a species j ∈ S is given as

ρj =
∑

k∈S∗
j

ρk = mj

∑

k∈S∗
j

nk, (2.22)

where ρk and nk are the mass and number densities, respectively, of pseudo-species k ∈ S∗
j . Apart

from the pseudo-species themselves, species energy partitioning models also define the separation
of energy modes belonging to each pseudo-species. It is now assumed that each energy mode δ,
in the set of nM

k separable modes Mk belonging to each pseudo-species k ∈ S∗, represents an
energy bath with average specific energy ekδ = ekδ(Tkδ), characterized by suitable thermodynamic
relations in terms of a partition function Qδ

k = Qδ
k(Tkδ) and temperature Tkδ. Upon careful

review, it can be seen that this assumption encompasses all of the partitioning models described in
Section 2.2, except the generalized MT model of Jaffe which defines a multitemperature partition
function. The generalized MT model is convenient for approximating nonequilibrium molecular
energy level populations, necessary for the calculation of molecular radiative spectra [55]. However,
to the author’s knowledge, no rigorous theory for the conservation of energy in a multitemperature
thermal bath has yet been developed. Therefore, no penalty has been paid by this restriction in
terms of developing the necessary governing equations. Furthermore, from the separability of the
energy modes, the total energy of a pseudo-species k ∈ S∗ can be written as

ek =
∑

δ∈Mk

ekδ(Tkδ) + ek0, (2.23)

where ek0 is the zero-point energy of the species.
Finally, a set of global energy modes are now defined which represent collections of thermal

baths, in equilibrium with one another and characterized by a single temperature. The set of all
nM global energy modes is denoted M = {1, . . . , nM}. The set of separate energy modes belonging
to a pseudo-species k ∈ S∗ which are assigned to a global mode m ∈ M is then defined as Mm

k ,
such that Mk = ∪m∈MMm

k . In addition, for each global mode m ∈ M, a temperature Tm is also
defined, such that

Tkδ = Tm, ∀ δ ∈ Mm
k ,m ∈ M, k ∈ S∗. (2.24)

Following these definitions, the total specific energy of the global mode m ∈ M is given by

em =
1

ρ

∑

k∈S∗

ρke
m
k (Tm), (2.25)

where ρ =
∑

k∈S∗ ρk is the total density of the mixture and the specific energy of pseudo-species
k ∈ S∗ associated with global mode m ∈ M is

emk (Tm) =
∑

δ∈Mm
k

ekδ(Tm). (2.26)
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Note that the specific energy emk is defined per mass of pseudo-species k, while em is per mass
of the mixture. Furthermore, when the energy em for m ∈ M and the mixture composition are
known, Eq. (2.25) represents an implicit relation for the solution of the temperature Tm.

In summary, a full thermochemical model is described by the list of species considered (char-
acterized by Be

ji for j ∈ S and i ∈ E), the species energy partitioning models (characterized by
ekδ(Tkδ) for δ ∈ Mk, k ∈ S∗

j , and j ∈ S), and the global thermal nonequilibrium model (charac-
terized by Tkδ = Tm for δ ∈ Mm

k , k ∈ S∗, and m ∈ M). When nM = 1, thermal equilibrium is
enforced. Conversely, when nM > 1, thermal nonequilibrium is envisaged in the thermochemical
model. With this framework in place, a generic set of governing equations may be written, valid
for all thermochemical models expressible with this notation. Two particular cases are considered:
1) multicomponent, partially ionized, plasma flows in thermochemical nonequilibrium (nM ≥ 1),
and 2) flows in local thermodynamic equilibrium (LTE) (nM = 1). In both cases, the effects of an
electromagnetic field and thermal radiation are taken into account.

In principle, the governing equations should be derived from a suitable kinetic theory based
on a generalized Chapmann-Enskog perturbative solution of the Boltzmann equation [56, 98, 99]
accounting for 1) thermal nonequilibrium of translational energy, 2) the influence of the electro-
magnetic field, 3) excitation of internal energy modes through inelastic collisions and radiative
processes, 4) reactive collisions, and 5) photochemical processes. However, no such uniform theory,
incorporating all of these phenomena, currently exists. While significant progress has been made in
this direction [100–102], current state-of-the-art models rely instead on the principle of generalized
balancing to describe the evolution of extensive flow field quantities, namely the conservation of to-
tal or partial mass, momentum, and energy [65]. The resulting governing equations derived in this
way for the two cases considered here are presented in the next sections. Closure of the governing
equations in terms of thermodynamic, transport, and chemical properties, are then presented.

2.3.2. Thermochemical Nonequilibrium

This section presents the necessary equations to model flows in thermochemical nonequilibrium
using the general thermochemical model introduced in the previous section. In general, these con-
sist of nS∗

mass, 1 momentum, and nM energy conservation equations. Chemical nonequilibrium
is described by a set of elementary chemical reactions involving the nS∗

pseudo-species in S∗. For
convenience, it is assumed that heavy species translation thermalizes to the same temperature Th

and electrons thermalize to Te, which may be different than Th. In addition, the semi-classical
approach in which translational energy is treated as continuous while internal energy is discrete
according to quantum mechanics, is recalled from Section 2.2.

Pseudo-species mass conservation

Conservation of mass for each pseudo-species k is written as

∂

∂t
(ρk) +∇ · (ρku) +∇ · (ρkV k) = ω̇k + φ̇k, ∀ k ∈ S∗ (2.27)

where u is the mass-averaged mixture velocity,

ρu =
∑

k∈S∗

ρkuk, (2.28)

and uk is the average velocity for the pseudo-species k. Diffusion velocities are defined as Vk ≡
uk − u and are linearly dependent, such that

∑

k∈S∗

ρkVk = 0. (2.29)

The source terms on the right-hand-side of Eq. (2.27) account for the mass production of species k
due to elementary homogeneous chemical reactions, ω̇k, and radiative processes, φ̇k, respectively.
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Note that the species mass production due to ablation and pyrolysis has been entirely neglected
in Eq. (2.27), as only the flow and radiative fields are considered here, sufficiently far from the
thermal protection system. When modeling the flow near and inside a charring, porous ablator,
these terms must be taken into account. All chemical and photochemical processes satisfy element
and charge conservation, leading to

∑

k∈S∗

ω̇k = 0, and (2.30)

∑

k∈S∗

φ̇k = 0. (2.31)

The evaluation of chemical production rates are detailed in Section 2.6.1, while photochemical
processes are discussed in Chapter 3.

Total mass continuity

Summing Eq. (2.27) over all species and energy levels and substituting in Eqs. (2.28 - 2.31) yields
the total mass conservation, or continuity, equation,

∂

∂t
(ρ) +∇ · (ρu) = 0. (2.32)

Note that Eq. (2.32) remains valid regardless of the thermochemical model employed and is a
direct consequence of conservation of mass. In practice two options are possible for the solution of
the nS∗

pseudo-species densities: 1) solution of nS∗

pseudo-species mass balance equations, or 2)
the solution of nS∗ − 1 pseudo-species mass balance equations supplied with the total continuity
equation. In the first option, the total density can be found from the sum of the pseudo-species
densities, while in the second, the missing pseudo-species density is found from the total density
minus the known species densities. In practice, this choice is generally a matter of preference.

Momentum conservation

Conservation of total momentum yields

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · Π̄+ nqE′ + j ×B, (2.33)

where n =
∑

k∈S∗ nk is the mixture number density, q =
∑

k∈S∗ xkqk is the mixture charge, xk =
nk/n the mole fraction of pseudo-species k, j =

∑

k∈S∗ jk is the mixture conduction current,
jk = nkqkVk is the conduction current for species k, E′ = E + u ×B is the electric field in the
hydrodynamic velocity frame, E is the electric field, and B is the magnetic field. The terms on
the right-hand-side of Eq. (2.33) account for pressure, viscous, and electric forces, respectively. For
electrically neutral gas mixtures, the term nqE′ vanishes. The radiation pressure is neglected and
the static pressure is given by the combination of the perfect gas and Dalton’s laws,

p =
∑

k∈H∗

ρkRkTh + ρeReTe, (2.34)

where Rk = kB/mk is the specific gas constant for species k. The exact form of the viscous
stress tensor Π̄ is determined by the type of energy partitioning model used and is discussed in
Section 2.5.1.

Total energy conservation

The total energy of the system is also conserved. Total energy conservation is written as

∂

∂t
(ρE) +∇ · (ρHu) = ∇ · (Π̄u)−∇ · q + P + j ·E′, (2.35)
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where the specific total energy of the gas E is the sum of mixture “internal" and kinetic energies,

E = e+
1

2
u · u, (2.36)

with the specific “internal” energy written as

e =
1

ρ

∑

k∈S∗

ρkek =
∑

m∈M

em(Tm). (2.37)

The word “internal” is written in quotes here to indicate the conventional thermodynamic definition
of internal energy, including the translational modes. Likewise, the total specific enthalpy is given
as

H = E +
p

ρ
. (2.38)

The four terms on the right-hand-side of Eq. (2.35) account for work done on the fluid due to
viscous forces, heating due to conduction and diffusion, energy emitted or absorbed through thermal
radiation, and the total Joule heating, respectively. The total heat flux vector q is described in
Section 2.5.3 while the calculation of the radiative power P is detailed in Chapter 3.

Free-electron energy conservation

Conservation of free electron energy is expressed as,

∂

∂t
(ρeee) +∇ · (ρeeeu+ peu) = u ·∇pe −∇ · qe + Ωe + je ·E′ + Pe. (2.39)

The second term in Eq. (2.39) accounts for the convection of the enthalpy of free electrons, while
the third term represents the work done on electrons by an electric field induced from an electron
pressure gradient. Typically, these two terms are combined, resulting in

∂

∂t
(ρeee) +∇ · (ρeeeu) = −pe∇ · u−∇ · qe + Ωe + je ·E′ + Pe. (2.40)

Eq. (2.40) is usually preferred over Eq. (2.39) as it simplifies the resulting Eigen system for the
convective flux, necessary in various upwind schemes [26], when the non conservative term −pe∇·u
is discretized as a source term. This pragmatic choice remains questionable at best, however the
correct treatment of the electron energy equation is beyond the scope of this thesis and will not be
addressed here. The last four terms in Eq. (2.40) account for conduction and diffusion of electron
energy, electron energy exchanged from other energy modes, Joule heating, and electron energy
absorbed or emitted through radiative processes. Note that electrons do not contribute to the
viscous shear stress due to their small mass compared to heavy particles, thus there is no work
done on electrons by viscous forces. The electron heat flux vector qe is detailed in Section 2.5.3.

The electron energy transfer source Ωe is split into several components,

Ωe =
∑

n∈M

Ωen + ΩCe, (2.41)

where Ωen accounts for exchange between electrons and heavy particles due to elastic and inelastic
collisions while ΩCe accounts for energy provided to the free electron thermal bath through chemical
reactions. These terms are detailed in Section 2.7. Lastly, the radiative source term is discussed
in Chapter 3.
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Internal energy conservation

Finally, conservation of any purely internal energy mode m may be written as

∂

∂t
(ρem) +∇ · (ρemu) = −∇ · qm + Ωm + Pm. (2.42)

The expression of the heat flux vector for an internal energy mode qm is given in Section 2.5.3.
The remaining two source terms in Eq. (2.42) account for energy exchanged from another mode to
mode m through collisional and radiative processes, respectively. The collisional source term Ωm

is generally written as
Ωm =

∑

n∈M
n̸=m

Ωmn + ΩCm, (2.43)

where the first term accounts for relaxation with translation and internal energy modes through
elastic and inelastic collisions and ΩCm accounts for energy gained (or lost) through reactive
collisions.

Conservation of mass and energy leads to the following constraints on the energy transfer terms,
∑

m∈M

ΩCm = 0, (2.44)

Ωnm + Ωmn = 0, m, n ∈ M. (2.45)

Two popular energy MT models are the so called two temperature (2T) and three temperature
(3T) models [26, 92]. The 3T model splits the energy into three groups, namely heavy translational-
rotational energy, vibrational energy, and electronic-electron energy. The 2T model combines the
vibrational energy and electronic-electron energy into a single thermal bath. In both cases, the
total energy conservation equation is solved in conjunction with two or one additional energy
equations. The corresponding energy equations for the 3T model are given as

∂

∂t
(ρev) +∇ · (ρevu) = −∇ · qv + ΩVT − ΩEV + ΩCV + Pv, (2.46)

∂

∂t
(ρee) +∇ · (ρeeu) = −pe∇ · u−∇ · qe + ΩET + ΩEV − ΩI + Pe, (2.47)

where ΩVT accounts for vibration-translation energy exchange, ΩEV accounts for energy exchange
between electronic-electron and vibrational modes, ΩCV accounts for vibrational energy gained
through chemical processes, ΩET is the energy transferred from heavy particle to electron transla-
tional modes through elastic collisions, and ΩI is the energy lost by the electron thermal bath due
to electron impact reactions (ionization, excitation, dissociation, etc.). Summing the two equations
above yields the 2T model internal energy equation,

∂

∂t
(ρeve) +∇ · (ρeveu) = −pe∇ · u−∇ · qev + ΩVT + ΩET + ΩCV − ΩI + Pve. (2.48)

The treatment of the radiative source terms in the 3T and 2T models remains unclear. In practice,
for the 2T model, a practical choice is to neglect radiative energy transfer to the rotational mode
such that all radiant power is converted to vibration and electronic energy. See Chapter 3 for a
in-depth discussion of this topic.

2.3.3. Local Thermodynamic Equilibrium

So far, the main emphasis of this chapter was to establish the thermochemical nonequilibrium
models and conservation equations used to simulate hypersonic flows. Such models are necessary
when characteristic time scales of the flow match or fall below the kinetic time scales, causing
significant departures from equilibrium. However, it is often necessary to simulate flows relevant
to hypersonics which fall in the LTE regime, such that the thermochemical equilibrium can be



2.4. Thermodynamics 25

assumed. Examples include flow field rebuilding of plasma torch test facilities [103] and Mars
return vehicle entry simulations [16].

Under LTE conditions, all energy states of every species are assumed to be in equilibrium at a
single mixture temperature T (nM = 1). Species densities ρj are an implicit function of elemental
densities ρei and the mixture energy,

ρj = f(ρei ∀ i ∈ E ; ρe(T )), (2.49)

where the mass density of element i is given by

ρei =
∑

j∈S

Be
ji
me

i

mj
ρj , ∀ i ∈ E . (2.50)

The unspecified function f in Eq. (2.49) may represent the minimization of the system-wide Gibbs
free energy or equivalently, the simultaneous solution of nS formation reaction equations. The
reader is referred to Chapter 5 for an in-depth discussion on this topic.

Eqs. (2.49) and (2.50) may be used to significantly reduce the number of conservation equations
required to simulate flows in LTE. The following subsections describe the conservation of mass,
momentum, and energy for LTE flows.

Elemental mass conservation

Summing Eq. (2.27) over all species and weighting by Be
jim

e
i /mj , nE elemental mass conservation

equations are obtained, yielding

∂

∂t
(ρei ) +∇ · (ρeiu) +∇ · Je

i = 0 ∀ i ∈ E , (2.51)

where element mass diffusion fluxes are,

Je
i = ρeiV

e
i =

∑

j∈S

Be
ji
me

i

mj
ρjV j , ∀ i ∈ E . (2.52)

Element diffusion velocities are readily obtained from Eqs. (2.50) and (2.52) and can be expressed
as

V e
i =

Je
i

ρei
=

1

xe
i

∑

j∈S

xjB
e
jiVj ,

∑

i∈E

ρeiV
e
i = 0, (2.53)

where xe
i is the elemental mole fraction for element i. The linear dependence of the element

diffusion velocities makes use of the relation mj =
∑

i B
e
jim

e
i .

Momentum and total energy conservation

Momentum and total energy conservation for equilibrium flows remains identical to Eq. (2.33) and
Eq. (2.35) shown for nonequilibrium flows.

2.4. Thermodynamics

The governing equations described in the previous section require the evaluation of mixture and
species thermodynamic properties. In particular, energy and enthalpy are explicitly necessitated
by the conservation of energy. As will be shown in the proceeding sections, other thermodynamic
properties are also required for the evaluation of the transport, chemistry, and energy transfer
terms. This section provides general descriptions of the necessary thermodynamic properties in
terms of the species partition functions detailed in Section 2.2.
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2.4.1. Thermodynamics of Pure Gases

Relations for the thermodynamic properties of pure gases are derived from statistical mechanics
[56]. Recall from Eq. (2.23) that the energy of a given species or pseudo-species k ∈ S∗ is the
sum of the energy attributed from each separable energy mode (or thermal bath) δ ∈ Mk, where
the energy of each mode is a function of a separate temperature Tkδ. Following the semi-classical
approach described in Section 2.2, it is convenient to organize these modes into translational and
internal energy, such that

ek = ekt(Tkt) +
∑

δ∈Mint
k

ekδ(Tkδ) + ek0 (2.54)

where ekt is the translational energy of pseudo-species k and Mint
k denotes the set of all other

energy modes which contribute to the internal energy, such that Mk = {t} ∪Mint
k . Furthermore,

the energy in each internal mode δ ∈ Mint
k is split into a set of discrete energy levels l ∈ Lδ

k
according to quantum mechanics and the temperature describes the distribution of these level in
the Boltzmann limit,

nl
kδ

nk
=

alkδ
Qkδ(Tkδ)

exp

(

−
El

kδ

kBTkδ

)

, (2.55)

Qkδ =
∑

l∈Lδ
k

alkδ exp

(

−
El

kδ

kBTkδ

)

, (2.56)

where alkδ and El
kδ are the degeneracy and energy of level l ∈ Lδ

k, respectively, and Qkδ is the
partition function for pseudo-species k ∈ S∗ and internal mode δ ∈ Mint

k . Note that all of the
energy partitioning models discussed in Section 2.2, except for the MT model of Jaffe, can be
described by Eqs. (2.55) and (2.56). Recall that, in the case of the STS model, the partition
function is written for a single energy level only. It this case, Eq. (2.55) reduces to nl

kδ = nk as
expected. From these assumptions, the translational and internal energies are now readily given
as

ekt =
3

2
RkTkt, (2.57)

ekδ =
1

ρk

∑

l∈Lδ
k

nl
kδE

l
kδ = RkT

2
kδ

∂

∂Tkδ

(

lnQkδ

)

, ∀ δ ∈ Mint
k (2.58)

where Tkt = Th, k ∈ H∗ and Tkt = Te, k = e, according to the assumptions made in Section 2.3.2.
The first expression given in Eq. (2.58) is simply the definition of the average energy of a distribution
of energy states. The second expression is easily derived by substitution of Eqs. (2.55) and (2.56).
The benefit of defining a STS partition function in Eq. (2.16) is now clear, since it allows the
inclusion of the STS model under the general notation of Eq. (2.58).

Pseudo-species enthalpies hk and entropies sk for k ∈ S∗ are likewise split into translational and
internal modes, such that

hk = hkt +
∑

δ∈Mint
k

hkδ + ek0, (2.59)

sk = skt +
∑

δ∈Mint
k

skδ, (2.60)

where hkδ ≡ ekδ + pkδ/ρk, pkδ, and skδ are the enthalpy, pressure, and entropy associated with
each thermal bath δ ∈ Mk. The thermodynamic pressure is zero for all but the translational
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modes, permitting the enthalpies to be written as

hkt = ekt +RkTkt, (2.61)

hkδ = ekδ, ∀ δ ∈ Mint
k . (2.62)

The translational and internal entropies for pseudo-species k ∈ S∗ are found to be

skt = Rk

[

5

2
+ lnQkt − lnnk

]

, (2.63)

skδ = Rk

[

Tkδ
∂

∂Tkδ

(

lnQkδ

)

+ lnQkδ

]

, ∀ δ ∈ Mint
k , (2.64)

where the volumetric translational partition function is evaluated as

Qkt =

(

2πmkkBTkt

h2

)3/2

. (2.65)

When computing the entropy of free electrons, it is important to take into account their spin. The
electron spin yields a degeneracy of 2 in the “internal” partition function such that Qint

e = 2 (zero
energy of electron “ground state” measured from zero point energy).

Species Gibbs free energies are necessary for the computation of equilibrium constants, as will
be shown in Section 2.6. The Gibbs energy for a pseudo-species k ∈ S∗ is defined as

gk =
∑

δ∈Mk

gkδ, (2.66)

gkδ ≡ hkδ − Tkδskδ. (2.67)

In Section 2.3.1, a generic set of global energy modes, representing collections of thermal baths
in thermal equilibrium with one another, was also defined. It is necessary to derive the thermody-
namic properties of these global modes as well for the solution of the governing equations which
necessitates the formulation of the contribution of each species or pseudo-species to these proper-
ties. Since each of the modes δ ∈ Mk are assumed to be separable for a pseudo-species k ∈ S∗,
the contribution of species k to any extensive thermodynamic property of the mixture αm for the
global mode m ∈ M is readily given by

αm
k =

∑

δ∈Mm
k

αkδ(Tm). (2.68)

Eq. (2.68) is a generalization of Eq. (2.26) to any extensive thermodynamic property of interest.
Finally, species specific heats are required for the evaluation of transport properties as well as in

the solution of temperatures from given energies. Using Eq. (2.68), pseudo-species specific heats
are defined per constant pressure and volume for each global energy mode m ∈ M and species
k ∈ S∗ as

cp
m
k =

(

∂hk

∂Tm

)

p

=
∑

δ∈Mm
k

d hkδ

d Tm
, (2.69)

cv
m
k =

(

∂ek
∂Tm

)

V

=
∑

δ∈Mm
k

d ekδ
d Tm

, (2.70)

where hkδ and ekδ are evaluated at the global temperature Tm corresponding to δ ∈ Mm
k .
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2.4.2. Formation Enthalpies

In general, it is not possible to calculate or measure species zero-point energies. Fortunately, they
are not necessary since only the change in enthalpy is important for modeling thermochemical
processes. In particular, the governing equations require the enthalpy gradient to be known and
chemical equilibrium constants are based on enthalpy changes across a reaction (see Section 2.6).
The heat of formation or formation enthalpy ∆hf,i(T ) of any substance i is the energy required
to create one mole of that substance from its elements in their standard conditions. The standard
condition of an element is the form in which it naturally exists at the standard state temperature
and pressure (298.15K and 1 atm). For example, the formation enthalpy of carbon dioxide is the
change in enthalpy across the formation reaction

C(graphite) + O2 −−→ CO2,

where C(graphite) and O2 are the natural forms of carbon and oxygen atoms at the standard state
conditions.

It is trivial to show that the change in formation enthalpies across any reaction is equal to the
change in zero-point energies across the same reaction [104]. Therefore, in practice, the zero-point
energies ek0 in Eqs. (2.54) and (2.59) are replaced with species formation enthalpies at standard
state conditions computed relative to reference species with defined formation enthalpies of zero.
Reference species are chosen based on the elements in their natural state at standard conditions
(i.e.,: N2, O2, C(graphite), H2, Ar, etc.). Note that this is a practical convention used in much
of the literature, however using a different convention would not change the underlying equations
governing the transport of mass, momentum, and energy.

2.4.3. Mixture Thermodynamic Properties

Mixture thermodynamic quantities are derived from pure species quantities through mixing rules.
For a perfect gas, mixture thermodynamic properties are simply the sum of pure species properties
weighted by the composition of the mixture. Thus, mixture energies, enthalpy, entropy, and specific
heats are given as

e =
1

ρ

∑

k∈S∗

ρkek, (2.71)

em =
1

ρ

∑

k∈S∗

ρke
m
k , ∀ m ∈ M, (2.72)

h =
1

ρ

∑

k∈S∗

ρkhk, (2.73)

s =
1

ρ

∑

k∈S∗

ρk(sk −Rk lnxk), (2.74)

g =
1

ρ

∑

k∈S∗

ρk(gk −Rk lnxk), (2.75)

cmp =
1

ρ

∑

k∈S∗

ρkc
m
pk, ∀ m ∈ M, (2.76)

cmv =
1

ρ

∑

k∈S∗

ρkc
m
vk, ∀ m ∈ M, (2.77)

where the −Rk lnxk term in Eqs. (2.74) and (2.75) accounts for the entropy of mixing.
For flows in LTE, the mixture composition is a function of a single temperature T , pressure p, and

elemental mole fractions. Under these conditions, the composition’s dependence on temperature
must be taken into account in the formulation of specific heats. The equilibrium specific heat at
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constant pressure is thus

cp,eq ≡
(

∂h

∂T

)

p

=
∑

k∈S∗

[

ykcpk + hk

(

∂yk
∂T

)

p

]

, (2.78)

where yk = ρk/ρ is the mass fraction of species k, evaluated at equilibrium. The first term in
the sum of Eq. (2.78) is call the “frozen” specific heat since it matches the specific heat of a non-
LTE mixture in which the composition is taken as constant or frozen. The second term is called
the “reactive” specific heat as it accounts for chemical reactions in equilibrium. The equilibrium
specific heat at constant volume is similarly written as

cv,eq ≡
(

∂e

∂T

)

V

=
∑

k∈S∗

[

ykcvk + ek

(

∂yk
∂T

)

V

]

(2.79)

= cp,eq +

[

p

ρ2
−
(

∂e

∂p

)

T

(

∂p

∂ρ

)

T

](

∂ρ

∂T

)

p

,

where the second relation in terms of cp,eq is provided for convenience. Note that for an ideal gas,
ρ = pMmix/(RuT ), and thus at equilibrium

∂ρ

∂p
=

ρ

Mmix

∑

i∈S∗

Mi
∂xi

∂p
+
ρ

p
. (2.80)

The equilibrium mole and mass fraction derivatives in Eqs. (2.78) and (2.80) may be easily obtained
from the solution of the equilibrium mole fractions. See Chapter 5 for more details.

2.5. Transport

Closure of the transport fluxes is achieved through a multiscale Chapman-Enskog perturbative
solution of the Boltzmann equation [98, 105]. Graille et al. [100] have derived a rigorous kinetic
model for multicomponent plasmas accounting for the influence of the electromagnetic field and
thermal nonequilibrium between free electrons and heavy particles. They showed through a dimen-
sional analysis that the correct scaling of the Boltzmann equation is obtained by using a scaling
parameter equal to the square-root of the ratio between the electron mass and a characteristic
heavy-particle mass. Magin et al. [106] have provided explicit expressions for the transport co-
efficients in terms of binary collision integrals based on the approach in [107] for weakly ionized
and unmagnetized plasmas. These works have neglected the treatment of internal energy in the
transport systems. Treatment of internal energy is presented in the book of Giovangigli [99]. In
addition, Nagnibeda and Kustova [101] have proposed a transport theory accounting for internal
energy and thermal nonequilibrium effects. In this work, the transport of internal energy is treated
simply by neglecting inelastic collisions.

2.5.1. Stress Tensor

The viscous stress tensor in Eq. (2.33) is defined as

Π̄ = η
[

∇u+ (∇u)T −
2

3
∇ · uĪ

]

+ κ∇ · uĪ − preacĪ. (2.81)

where η and κ are the dynamic (shear) and bulk (volume) mixture viscosities and preac is called the
chemical pressure. For STS models, the bulk viscosity is zero. Bruno and Giovangigli [108] provide
an important discussion of the various effects contributing to the bulk viscosity in nonequilibrium
plasmas. This term is nearly always neglected in hypersonic flow calculations under the assumption
that κ/η ≪ 1. However, Giovangigli et al. [109] have shown that this assumption is not always
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valid for larger polyatomic gases. The chemical pressure is given by

preac =
∑

r∈R

yrRr, (2.82)

where yr and Rr are the chemical pressure coefficient and the net rate of progress for reaction
r, respectively. For gases in the Maxwellian regime, the chemical pressure term vanishes in the
viscous stress tensor and is generally thought to be small in comparison to the other terms. In this
work, both bulk viscosity and chemical pressure effects are neglected.

The dynamic viscosity η is obtained from the first Laguerre-Sonine polynomial approximation
of the Chapman-Enskog expansion. The resulting expression requires the solution of the linear
system

η =
∑

i∈H∗

αη
i xi,

∑

j∈H∗

Gη
ijα

η
j = xi ∀ i ∈ H∗,

(2.83)

where Gη
ij is the viscosity transport matrix depending on the species mole fractions and binary

collision integrals, detailed in Appendix A. Notice that electrons do not contribute to mixture
viscosity due to the mass disparity with heavy particles.

2.5.2. Diffusion Fluxes

Species diffusion velocities can be obtained from the multicomponent diffusion coefficient matrix
Dij by

Vi = −
∑

j∈S∗

Dij

(

dj + χh
j∇ lnTh + χe

j∇ lnTe

)

, (2.84)

where dj are the species specific driving forces defined as

dj =
∇pj

nkBTh
−

yjp

nkBTh
∇ ln p− κjE (2.85)

with κj ≡ xjqj/(kBTh) − yjq/(kBTh), q =
∑

i∈S xiqi is the mixture charge, and E is the electric
field. The species diffusion fluxes, Ji = ρiVi, satisfy the mass conservation constraint, such that
∑

i∈S∗ Ji = 0. Furthermore, the driving forces and κi values are linearly dependent, namely
∑

i∈S∗ di = 0 and
∑

i∈S∗ κi = 0.
An equivalent formulation of the species diffusion velocities are found from the solution of the

generalized Stefan-Maxwell equations [110],
∑

j∈S∗

GV
ijVj = −d′

i + κiE, ∀ i ∈ H∗, (2.86)

∑

j∈S∗

GV
ejVj = − (d′

e + κeE)
Th

Te
, (2.87)

where the modified driving forces are

d′
j =

∇pj
nkBTh

−
yjp

nkBTh
∇ ln p+ χh

j∇ lnTh + χe
j∇ lnTe. (2.88)

The multicomponent diffusion coefficient matrix Dij and the diffusion transport system matrix
GV

ij are functions of the species binary collision integrals and compositions. The exact expressions
for these matrices are given in Appendix A.
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2.5.3. Heat Flux

The heat flux vector in Eq. (2.35) accounts for the energy transferred through diffusion, thermal
diffusion, and conduction, such that

q =
∑

k∈S∗

ρkhkVk + nkBTh

∑

k∈S∗

(

χh
k + χe

k

)

Vk −
∑

m∈M

λm∇Tm, (2.89)

where χh
k and χe

k are heavy particle thermal diffusion ratios for pseudo-species k ∈ S∗ and λm =
λtm + λint

m is the effective thermal conductivity of the global energy mode m ∈ M which can be
split into translational λtm and internal λint

m components. From the assumption in Section 2.3.2
that heavy particles thermalize at temperature Th and electrons at Te, the translational thermal
conductivities can be written as

λtm = αh
mλh + αe

mλe, (2.90)

where λh and λe are the thermal conductivities associated with translation of heavy particles and
electrons, respectively, and the constants αh

m and αe
m indicate whether or not the global mode

m ∈ M includes translational energy of heavy particles and electrons, respectively. Thus, αh
m = 1

when heavy particle translational energy is included in the thermal bath m, and αh
m = 0 otherwise.

Likewise, αe
m = 1 when free-electron translational energy is included in the thermal bath m, and

αe
m = 0 otherwise.
The electron heat flux from Eqs. (2.39) and (2.40) and internal energy heat flux from Eq. (2.42)

are given as,

qe = ρeheV e + nkBTh

∑

k∈S∗

χe
k V k − λe∇Te, (2.91)

qm =
∑

k∈S∗

ρkh
m
k Vk − λm∇Tm, (2.92)

where the flux qm in Eq. (2.92) is valid only for purely internal energy modes (αh
m = αe

m = 0).
The heavy particle translational thermal conductivity is obtained from the second order Laguerre-

Sonine polynomial approximation of the Chapman-Enskog expansion. The resulting expression
requires the solution of the linear system similar to that of the dynamic viscosity,

λh =
∑

i∈H∗

αλh

i xi,

∑

j∈H∗

Gλh
ij α

λh
j = xi ∀ i ∈ H∗.

(2.93)

The transport matrix Gλh

ij is given in Appendix A and is a function of species mole fractions and
binary collision integrals.

Heavy particle thermal diffusion ratios may then be computed via

χh
i =

5

2

∑

j∈H∗

Λ01
ij α

λh
j , ∀i ∈ H∗ (2.94)

χh
e = 0, (2.95)

where Λ01
ij is another transport matrix based on binary collision integrals and αλh is obtained from

the solution of the linear system in Eq. (2.93). Heavy particle thermal diffusion ratios satisfy the
expression

∑

i∈H∗ χh
i = 0. Note that free electrons do not contribute to the mixture viscosity,

heavy particle thermal conductivity, or the heavy particle thermal diffusion ratios.
Expressions for the electron thermal conductivity, λe, and thermal diffusion ratios, χe

i , may be
obtained from second or third order Laguerre-Sonine approximations (denoted by (2) or (3)) and
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are given by

λe(2) =
x2
e

Λ11
ee
, (2.96)

λe(3) =
x2
eΛ

22
ee

Λ11
eeΛ

22
ee −

(

Λ12
ee

)2 , (2.97)

and

χe
i (2) =

5

2

Te

Th
xe

Λ01
ie

Λ11
ee

∀ i ∈ S∗, (2.98)

χe
i (3) =

5

2

Te

Th
xe

Λ01
ieΛ

22
ee − Λ02

ieΛ
12
ee

Λ11
eeΛ

22
ee − (Λ12

ee)
2 ∀ i ∈ S∗. (2.99)

The Λlk
ie and Λlk

ee matrices are complex functions of the binary collision integrals for heavy-
electron and electron-electron interactions. The electron thermal diffusion ratios satisfy the relation
∑

i∈H∗ χe
i +χe

eTe/Th = 0. Magin et al. [106] have studied the convergence of the λe and χe
i due to

the Laguerre-Sonine order and found that differences can exist in the levels of approximation even
in plasmas with relatively low degrees of ionization. Therefore, the third order expressions should
be used in practice.

Finally, the thermal conductivity associated with the internal energy of mode m ∈ M, is given
by the so called Euken corrections, such that

λint
m =

∑

k∈H∗

ρic
m,int
pk

∑

j∈H∗ xj/Dkj
, (2.100)

where Dkj is the binary diffusion coefficient for pseudo-species k and j, defined in Appendix A,
and the internal specific heat for mode m has been defined as

cm,int
pk =

∑

δ∈Mm,int

k

(

∂hkδ

∂Tkδ

)

p

, (2.101)

where Mm,int
k = Mm

k ∩Mint
k indicates the intersection of sets Mk and Mint

k . It can be shown
that the Euken corrections are exact when the internal energy modes are separable and inelastic
collisions are neglected [107].

2.6. Chemical Kinetics

Chemistry plays a major role in the accurate description of hypersonic flows. This section details
the important chemical kinetic models relevant to hypersonics and how they fit into the governing
equations described in Section 2.3. In the first subsection, a description of the species production
rates for flows in thermal equilibrium is presented. The effects of thermal nonequilibrium are then
discussed. Finally, the relevant models used to simulate heterogeneous chemistry at the surface of
an ablating heat shield are briefly introduced.

2.6.1. Homogeneous Chemistry (Gas Phase)

The chemical production source term found in Eq. (2.27) accounts for the production and destruc-
tion of individual species through elementary chemical reactions. Every elementary (single-step)
chemical reaction r, in the set of reactions R, can be described through the general formula,

∑

k∈S∗

ν
′

krAk ⇀↽
∑

k∈S∗

ν
′′

krAk,
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where ν
′

kr and ν
′′

kr are the forward and reverse stoichiometric coefficients for species Ak in reaction
r. As an example, for the water-gas shift reaction,

CO+H2O −−→ CO2 +H2,

the forward stoichiometric coefficients of CO and H2O and the reverse stoichiometric coefficients
of CO2 and H2 are all equal to unity, while all other stoichiometric coefficients are zero. For
elementary reactions, the overall order of a reaction is the sum of the reactant stoichiometric
coefficients.

A rigorous derivation of the chemical production rate from kinetic theory yields an expression
of the form,

ω̇k = ω̇0
k + ω̇1

k, (2.102)

where ω̇0
k is the zero-order Maxwellian production rate and ω̇1

k is a first-order perturbation [111].
The structure of the first-order term has been studied by Giovangigli [99] for general reacting
mixtures in the strong reaction regime and is found to be a sum of quadratics in the forward and
backward rates of progress for each reaction plus a linear term in the rates of progress multiplied by
the velocity divergence. Estimates for several simplified cases has shown ω̇1

k to be small compared to
the zero-order term [112–116] and it is typically neglected in CFD calculations. In the Maxwellian
regime, ω̇1

k is exactly zero.

Law of Mass Action

Zero-order production rates are compatible with the Law of Mass Action which states that the rate
of production of a reaction product is proportional to the product of the reactant densities raised
to their stoichiometric coefficients [117]. For example, the rate of change of the number density of
carbon dioxide in the water-gas shift reaction, may be written as

∂

∂t
(nCO2

) = kf nCO nH2O,

where the proportionality constant kf is called the reaction rate coefficient and is not a function
of the reactant densities. The subscript f denotes that the rate coefficient is for the “forward”
process.

In general, reactions are reversible and the reverse process must be taken into account. The
molar rate-of-progress for any homogeneous reaction r is given as

Rr = kf,r
∏

j∈S∗

ρ̂j
ν
′

jr − kb,r
∏

j∈S∗

ρ̂j
ν
′′

jr , (2.103)

which represents the net rate of moles of reactants which are destroyed to form products with units
of mol/m3s. ρ̂j = ρj/Mj is the molar density or concentration of species j and kb,r represents the
backward reaction rate coefficient for reaction r. At equilibrium, the rate-of-progress of all reactions
is zero, which yields the following relationship between the forward and backward rate coefficients,

kf,r
kb,r

≡ Keq,r =
∏

j∈S∗

(ρ̂∗j )
(ν

′′

jr−ν
′

jr), (2.104)

where Keq,r is called the equilibrium constant for reaction r and the superscript ∗ on the species
concentrations is used to denote equilibrium quantities. The equilibrium constant is related to the
change in Gibbs free energy across a reaction ∆G◦

r by

Keq,r =

(

p◦

RuT

)∆νr

exp

(

−
∆G◦

r

RuT

)

, (2.105)

where ∆νr =
∑

j∈S∗(ν
′′

jr − ν
′

jr) is the difference in reaction orders in the forward and reverse
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directions and ∆G◦
r =

∑

j∈S∗(ν
′′

jr − ν
′

jr)G
◦
j is the change in Gibbs energy across the reaction, where

G◦
j is the standard state molar Gibbs energy of species j, and Ru is the universal gas constant.

The left-hand-side of Eq. (2.104) is only a function of temperature while the right-hand-side is only
a function species concentrations. Therefore, Eq. (2.104) remains valid under all conditions, not
just at chemical equilibrium.

Using Eq. (2.103), the total mass production rate for a species k due to all reactions considered
is readily given by

ω̇k = Mk

∑

r∈R

(ν
′′

kr − ν
′

kr) Rr, k ∈ S∗. (2.106)

The difference in backward and forward stoichiometry coefficients in Eq. (2.106) relates the number
of moles of species k created or destroyed by the reaction r to the molar rate-of-progress for that
reaction.

Rate coefficients

For second- and third-order reactions, the rate coefficient depends on

1. the frequency of collisions between reactants,

2. the fraction of such collisions with sufficient energy for the reaction, and

3. the fraction of those collisions which actually react.

First-order reactions, such as predissociation (for example N2 −−→ 2 N), do not depend on the
collision rate as these reactions occur spontaneously. Instead, the rate coefficients depend on
the energy of the reactant above some threshold energy. For example, predissociation occurs
when a molecule in a quasi-bound vibrational energy state, above the dissociation energy level,
spontaneously dissociates.

For the majority of reactions of interest in hypersonics, the reaction rate coefficients may be
expressed as

kf (T ) = AT β exp

(

−
Ea

RuT

)

, (2.107)

where the pre-exponential term represents the temperature dependence of the collision frequency
and the exponential term, called the Boltzmann factor, specifies the fraction of collisions with
energy greater than the activation energy of the reaction, Ea. Eq. (2.107) is called the (modified)
Arrhenius rate law after the Swedish physicist Svante Arrhenius who originally proposed the de-
pendence of the reaction rate on the activation energy of the reaction. While the formula has some
theoretical basis, the rate constants A, β, and Ea are usually determined experimentally as their
theoretical values often do not provide sufficient accuracy. This is largely due to the difficulty in
describing the third dependency of the rate coefficient listed above, namely the fraction of collisions
with sufficient energy that actually cause a reaction (embedded in the constant A). This fraction
is called the steric factor and depends on the collision dynamics and relative orientation of the
reacting species.

A promising alternative to the experimentally determined rate coefficients are those integrated
from effective reaction cross sections, based on QCT calculations using accurate PESs from quan-
tum mechanics. For example, statistical mechanics provides the following expression for the state-
to-state rate coefficient kf for a reaction going from initial state i to final state j [79],

kf (Th) =
1

3
(2RuTh)

3
2 (µπ)−

1
2

∫ ∞

0
σij(Ei)Ei exp

(

−
Ei

RuTh

)

dEi, (2.108)

where σij is the effective cross section of reaction as a function of the translational energy of the
initial state Ei. Rate coefficients computed in this way could be tabulated versus temperature or
fitted to an Arrhenius form for efficient use in hypersonic CFD codes.
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Third-body reactions

Some reactions require an additional species to provide or remove energy from the reactants,
though the species remains inert. Consider, for example, the heavy-particle impact dissociation of
the nitrogen molecule by collisions with N and O atoms,

N2 +N −−⇀↽−− N+N+N,

N2 +O −−⇀↽−− N+N+O.

In this case, N and O are called third bodies and provide the necessary energy for N2 to overcome
its dissociation energy and dissociate. Likewise, in the reverse direction, the third-body species
remove sufficient energy from the two N atoms and allow them to recombine. It is common to
denote a generic third-body species in a chemical reaction with the letter M, such that

N2 +M −−⇀↽−− N+N+M

represents all heavy-particle impact nitrogen dissociation reactions.
Each third body considered in a third-body reaction represents a unique elementary chemical

pathway. However, the activation energy required in a given third-body reaction is the same,
regardless of which third-body provides that energy. It is therefore common to assume that the
rate coefficients associated with the reactions of different third bodies differ only by a constant
factor. Upon simple review of Eqs. (2.103) and (2.104), this allows the net rate-of-progress for a
third-body reaction, considering all third bodies, to be written as

Rr =

[

kf,r
∏

j∈S∗

ρ̂j
ν
′

jr − kb,r
∏

j∈S∗

ρ̂j
ν
′′

jr

]

∑

j∈S∗

αjr ρ̂j , (2.109)

where the stoichiometric coefficients are only assigned to non third-body species. The constant αjr

parameters are called third-body efficiency factors and represent the ratio of the forward reaction
rate coefficient associated with the third body j to the reference rate coefficient kf,r. Evaluating
the rates-of-progress for third-body reactions in this way can significantly decrease the size of a
given reaction mechanism as well as the time necessary to compute the species chemical production
rates.

2.6.2. Effect of thermal nonequilibrium on reaction rates

For strong nonequilibrium flows, the distribution of internal energy states can play an important
role in the description of kinetic rates. The most accurate method for treating nonequilibrium
rates is with a full STS model, like those described in Section 2.2.4. However, since such models
remain prohibitively expensive from a computational standpoint, most hypersonic CFD codes rely
on MT models. For this reason, an extensive literature exists on the study of nonequilibrium
reaction kinetics and many models have been proposed, in particular for the dissociation of oxygen
and nitrogen molecules (i.e., [58, 60, 90, 91, 118–127]).

In general, nonequilibrium models multiply the equilibrium rate coefficient by a nonequilibrium
factor Φ,

kf (Tf , Tint) = keq
f (Tf ) Φ(Tf , Tint), (2.110)

where keq
f (Tf ) represents the forward rate coefficient in thermal equilibrium as discussed in the

previous section, evaluated at the heat-bath temperature Tf , and Φ is a function of Tf and an
internal temperature Tint. At thermal equilibrium, Φ = 1. Classically, the temperature Tf repre-
sents the temperature of the thermal bath which provides the energy for the reaction to proceed.
For third-body reactions, the translational energy of the inert particle is typically chosen as the
thermal bath. Thus, for heavy-particle impact reactions, generally Tf = Th, while for electron-
impact reactions the convention is Tf = Te. For some reactions, the choice of Tf remains an active
area of research. The dependence of Eq. (2.110) on an internal temperature Tint relies on the type
of reaction considered and in some cases, Tint may represent more than one temperature.
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Table 2.1.: Summary of important homogeneous chemical processes occurring in hypersonics. Re-
action formulas represent general processes. State-specific reactions include indices in parentheses
to indicate electronic/rovibronic states. The associated forward and backward temperatures used to
evaluate reaction rates for each general process are also given.

Reaction Tf Tb

Associative ionization and dissociative recombination
A + B −−⇀↽−− AB+ + e– Th Te

Charge exchange
A+ + B −−⇀↽−− A + B+ Th Th

Electron impact dissociation and recombination
AB + e– −−⇀↽−− A + B + e– Te Te

Electron impact excitation and de-excitation
A(i) + e– −−⇀↽−− A(j) + e– , j > i Te Te

Electron impact ionization and ion recombination
A + e– −−⇀↽−− A+ + e– + e– Te Te

Electronic attachment and detachment
A + e– + M −−⇀↽−− A– + M Te Th

Exchange
AB + CD −−⇀↽−− AC + BD Th Th

Heavy particle impact dissociation and recombination
AB + M −−⇀↽−− A + B + M T q

hT
1−q
v Th

Heavy particle impact excitation and de-excitation
A(i) + M −−⇀↽−− A(j) + M, j > i Th Th

Heavy particle impact ionization and ion recombination
A + M −−⇀↽−− A+ + e– + M Th Th

The nonequilibrium backward rate coefficient is typically evaluated using the equilibrium con-
stant from Eq. (2.104), such that

kb(Tb) =
keq
f (Tb)

Keq(Tb)
, (2.111)

where Tb is the temperature describing the thermal bath for the reverse process. A summary of
important reaction types and the choice of temperatures used in this work for Tf and Tb are shown
in Table 2.1. Some of the commonly used models for the nonequilibrium factor for several reactions
are presented in the following subsections.

Dissociation and recombination

Molecules with a higher vibrational state require less translational energy to dissociate than those
at lower lying vibrational energy levels. Thus, the distribution of vibrational energy states of a
molecule can have a large impact on the average rate at which the molecule dissociates. Disso-
ciation models are typically split into two groups: preferential and non-preferential dissociation.
Preferential dissociation assumes that molecules at high vibrational states are more likely to disso-
ciate than those at lower states. Thus, molecules at low lying vibrational states must “ladder-climb”
to higher vibrational states through excitation processes before being allowed to dissociate. Pref-
erential dissociation models result in an incubation period behind strong shock waves in which the
vibrational energy builds up before molecules can dissociate. In effect, this serves to lengthen the
nonequilibrium zone and shock stand-off distances. Conversely, non-preferential models impose
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the same likelihood that a molecule will dissociate from all vibrational levels. Three important
nonequilibrium models for dissociation and recombination are presented here.

Marrone and Treanor [119], building on the work on Hammerling et al. [118] for non-preferential
dissociation, derived an expression for the nonequilibrium factor assuming that higher vibrational
energy levels were more likely to dissociate. The resulting expression may be written as

Φ(Th, Tv) =
Qv

j (Th) Qv
j (TF )

Qv
j (Tv) Qv

j (−U)
, (2.112)

1

TF
=

1

Tv
−

1

Th
−

1

U
, (2.113)

where U is a fictitious temperature used to adjust the probability of dissociation from a given
vibrational energy level and is usually taken to be U = D/3kB and D is the dissociation energy
of the molecule. Under thermal equilibrium, Tv = Th and TF = −U such that Φ(Th, Tv) = 1 as
expected. When U = ∞, the non-preferential model of Hammerling is obtained. Qv

j represents
the partition function for a truncated harmonic-oscillator. According to Marrone and Treanor,
the negative value −U represents the “vibrational temperature” at which molecules are formed by
recombination.

Park [58, 60] developed a simple phenomenological model to describe the nonequilibrium dis-
sociation of nitrogen which remains widely used today. When applied to the Arrhenius rate law,
Eq. (2.107), Park’s model is given as

Φ(Th, Tv) = T β
a Th

−β exp

(

Ea

RuTh
−

Ea

RuTa

)

, (2.114)

where Ta = Th
qTv

1−q, for 0 ≤ q ≤ 1, is an “average” temperature. Park originally suggested to use
a geometric mean such that q = 0.5, though this was later improved by Sharma [120] to q = 0.7 in
order to better match experimental data. Typically, this model is implemented by treating Φ = 1
and simply evaluating the equilibrium rate coefficient with Tf = Ta. It is well known that Park’s
model substantially under predicts dissociation rates when Tv ≪ Th, however it remains a popular
choice in hypersonic CFD codes because of its simplicity.

Finally, Macheret [123, 124, 127] derived a model based on the assumption of impulsive collisions
and rigid-rotor harmonic oscillators. The resulting expression for the nonequilibrium factor may
be written as

Φ(Th, Tr, Tv) =
1

keq
f (Th)

[

kl(Th, Tr, Tv) + kh(Tv)

]

, (2.115)

kl(Th, Tr, Tv) ∝ exp

[

−
D

Ta
+ 6α2D

(

1

Ta
−

1

Th

)]

, (2.116)

kh(Tv) ∝ exp

(

−
D

Tv

)

, (2.117)

where kl and kh represent the contribution of low and high vibrational energy levels of the dissoci-
ating molecule to the dissociation rate coefficient, Ta = αTv+(1−α)Tk is an “average” temperature,
Tk = (Th +

√
αTr)/(1 +

√
α) is the “kinetic” temperature, and α is a simple factor related to the

masses of the colliding species. The proportionality factors which complete the expressions for the
low and high rate coefficients depend on the type of collision partners involved (diatom-diatom
or diatom-atom) and are described in detail in [124]. Macheret’s model has been shown to accu-
rately describe nitrogen dissociation rates under nonequilibrium conditions as compared to those
obtained to detailed STS rates [128]. Furthermore, the model does not require any tuned or empir-
ically derived parameters, which represents a major advantage to the models of Park and Treanor
and Marrone.
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Other reactions

The effect of internal energy on nonequilibrium reaction rates is typically modeled for dissociation
reactions only due to the important role they play behind strong shock waves. However, models
also exist for other types of reactions as well. For example, Knab et al. [122, 125] have developed
expressions similar to those described above for dissociation reactions which model the nonequi-
librium factor for exchange, associative ionization, and electron impact ionization and dissociation
reactions. These expressions are not given here for the sake of brevity.

2.6.3. Heterogeneous Chemistry (Gas-Surface Interaction)

As with homogeneous chemistry mechanisms, heterogeneous chemistry plays an important role in
the description of the thermochemical environment surrounding hypersonic vehicles. In particular,
an accurate prediction of the heat flux to the surface of a vehicle may depend strongly on the
correct solution of catalysis and ablation processes occurring at the gas-surface interface, known
in general as gas-surface interactions (GSI). These processes may strongly affect the composition
of the boundary layer, which in turn may alter the convective or radiative heating at or near the
vehicle surface. For Martian entries, these effects have also been shown to be important down
stream as ablated species radiate and increase the radiative flux to the back-shell of the vehicle.
Typically, GSI models are implemented as boundary conditions along the vehicle surface. In
this section, the relevant heterogeneous chemical processes and the corresponding models used to
simulate them are reviewed.

For non-ablating thermal protection systems, catalysis may play an important role in the heating
to the surface of the TPS. In particular, for Earth entries, catalytic recombination of the N2, O2,
and NO at the surface,

N+N −−⇀↽−− N2,

O+O −−⇀↽−− O2,

N+O −−⇀↽−− NO,

are well known. Catalytic reactions do not participate in the surface mass balance but can promote
substantial heat transfer. As an example, the reactions shown above release approximately 950,
500, and 630 kJ per mole of product, respectively [129].

Surface participating reactions involve both heat and mass transfer between the surface and
surrounding gas. As such, these reactions always include reactants originating from the TPS
material. Examples include the nitridation or oxidation of solid carbon C(s),

C(s) + N −−⇀↽−− CN,

C(s) + O −−⇀↽−− CO,

C(s) + O2 −−⇀↽−− CO2,

the passive and active oxidation of silicon carbide,

SiC(s) + 2O2 −−⇀↽−− SiO2(s) + CO2,

SiC(s) + 3O −−⇀↽−− SiO2(s) + CO,

SiC(s) + O2 −−⇀↽−− SiO + CO,

SiC(s) + 2O −−⇀↽−− SiO + CO,

and the sublimation of solid carbon to form C, C2, or C3. In general, there are two types of models
which are used to describe surface chemistry and these are discussed below.
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Specified reaction efficiency models

Perhaps the most widely used GSI model in hypersonics is the Specified Reaction Efficiency
(SRE) model. These models describe the mass production rate of a species at the surface as
the product of the mass flux of the reactant impinging on the surface Γi and a reaction efficiency
γr which takes a value between 0 and 1. For example, the surface mass production rate of O and
O2 (in kg/ms) as a result of the catalytic recombination reaction O + O −−→ O2 is given as

ω̇O = −γOΓO = −γO
ρO
4

√

8kBTh

πmO
, (2.118)

ω̇O2
= −

ω̇O

2
. (2.119)

Note that the production rate of O2 is half the destruction rate of O since two O atoms are required
to form a single O2 molecule. SRE models are often called “gamma” models because the symbol γ
is the typical choice for the reaction efficiency. The surface heat flux associated with the oxygen
recombination reaction above is then computed as

qO2
= ω̇O2

Ediss
O2

, (2.120)

where Ediss
O2

is the dissociation energy O2 in J/kg.
For sublimation, there is no reactant which impinges on the surface. Therefore, the reverse

process must be taken into account leading to the following expression for the production rate of
C3 due to the sublimation reaction C3(s) −−⇀↽−− C3,

ω̇C3
= (ρ∗C3

− ρC3
)
γC3

4

√

8kBTh

πmC3

, (2.121)

where ρ∗C3
is the equilibrium surface density of C3. Park et al. [69] provide the following expression

for the equilibrium C3 density,

ρ∗C3
= MC3

1.9× 107T−1
w exp

(

−
59410

Tw

)

, (2.122)

where Tw is the wall temperature.
SRE models are widely used in the hypersonics community because of their ease of use and

small data requirements. However there are a number of significant drawbacks to such models.
For starters, the laws of thermodynamics are not satisfied because most reactions are assumed
to be irreversible. With no alternative, these models assume that all of the heat produced (or
consumed) by a reaction at the surface is entirely absorbed or provided by the surface itself. In
addition, SRE models remain simple to implement for a single reaction, however when multiple
reactions are considered which contain the same reactants, care must be taken to ensure that
the reaction efficiencies associated with a single reactant do not sum to a value greater than 1.
Finally, SRE models do not accurately describe the underlying physics occurring during gas-surface
interactions which is discussed in following section. In spite of these issues, the SRE model has
been used in this work due to its simplicity (see Chapter 6). To provide contrast to the SRE model
however, a higher fidelity class of GSI models is briefly described in the next section.

Finite-rate models

The SRE model presented above assumes that gas-surface reactions occur in a single step, however
in reality these reactions are the result of multiple processes which occur at finite rates. In general,
surface reactions are only allowed at a finite number of “active sites” on the surface. These active
sites are highly dependent on the topology and chemical structure of the surface and are reaction
dependent. Fig. (2.2) describes some important GSI elementary processes that may occur. When
gaseous species collide with the surface, they may be adsorbed by an available active site. Con-
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Figure 2.2.: Idealized gas-surface interactions.

versely, atoms may desorb from occupied sites to form gaseous species. Adsorbed species may also
diffuse along the surface between active sites. A Langmuir-Hinshelwood reaction occurs between
two adsorbed species or atoms in the bulk phase which combine and are released as a gaseous
molecule. Recombination may also occur through an Eley-Rideal mechanism in which a gaseous
species reacts with an adsorbed or bulk species, which is then released from the surface.

Finite-rate surface chemistry models describe the net surface reactions as a series of the ele-
mentary processes shown in Fig. (2.2). For example, Marschall et al. [129] describe the catalytic
recombination of oxygen atoms on a silica surface through the following elementary processes,

O+ (s) −−⇀↽−− O(s),

O2 + (s) −−⇀↽−− O2(s),

O+O(s) −−⇀↽−− O2(s),

O+O(s) −−⇀↽−− O2 + (s),

O+O2(s) −−⇀↽−− O2 +O(s),

where (s), O(s), and O2(s) represent active sites in the bulk phase and absorbed oxygen atom
and molecule, respectively. The first two reactions account for the adsorption of oxygen atoms
and molecules onto the bulk surface. Each reaction converts an active site in the bulk phase to
active sites on adsorbed oxygen atoms. The third reaction represents adsorption of an oxygen
atom onto an active O site to form an O2 site. Finally, the last two reactions represent the
Eley-Rideal recombination of oxygen. Each of these processes may occur at different temperature
dependent rates. Furthermore, the reverse processes are related to the forward reaction through an
equilibrium constant. The heat flux to the surface of a material is then related to the rate of change
in the density of active sites. Thus, a finite-rate surface chemistry model ensures the conservation
of mass and energy at the surface. However, as can be seen by this simple example, finite-rate
models require significantly more data than that required in the SRE models. In addition, the
initial distribution of active sites on a surface remains a difficult parameter to determine for most
applications. Some finite-rate models assume that the active site density follows a steady-state
solution, allowing for this parameter to be determined analytically. A detailed analysis of finite-
rate surface chemistry models is beyond the scope of this thesis and thus only this simple discussion
is provided.

2.7. Energy Transfer Mechanisms

As previously discussed, nonequilibrium kinetics are most accurately described by full STS models.
However, as these models are extremely costly, most CFD codes resort to the use of MT models
instead. For such models, the energy transferred between different energy modes is not explicitly
determined through the reaction mechanism and must therefore be modeled by the various energy
transfer source terms presented in Section 2.3.2. In general, energy transfer mechanisms fall into
two categories: energy relaxation processes and chemical energy exchange processes. Both are
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described in detail in the following subsections.

2.7.1. Energy relaxation processes

Energy relaxation is the process in which two distributions of energy states exchange energy through
elastic and inelastic collisions and “relax” to a final equilibrium distribution. For the MT models,
relaxation processes describe the exchange of energy between different energy modes with Boltz-
mann distributions described by separate temperatures. In general, we are interested in how the
average or total energy of one mode equilibrates with another.

Vibration-translation energy exchange

Vibration-translation energy exchange plays a major role in the relaxation behind strong shock
waves. We first consider a harmonic-oscillator interacting with a single heat bath of translational
energy. The rate of change for this harmonic-oscillator’s vibrational energy, measured from the
ground state, is written

∂

∂t
(ρje

v
j ) = hνj

∞
∑

i=1

i
∂

∂t
(ni

j), (2.123)

where νj represents the characteristic frequency of vibration for species j and ∂ni
j/∂t is the rate

of change of the number density of vibrational level i due to (de)excitation processes.
For weak binary interactions [56], transitions may be assumed to occur only between neighboring

vibrational states. Under these conditions, the following rate equation is then easily derived,

∂

∂t
(ni

j) = −ki,i+1
j ni

j + ki+1,i
j ni+1

j − ki,i−1
j ni

j + ki−1,i
j ni−1

j , (2.124)

where ka,bj represents the rate coefficient for the transition from vibrational state a to b for species
j. The rate coefficients depend primarily on a) the number of collisions between oscillators and
molecules of the heat bath with sufficient energy to cause transition and b) the probability that such
a collision results in a transition. For harmonic-oscillators, the rate coefficients are proportional to
the vibrational quantum number, ki,i−1

j = ik1,0j [30]. Thus, using detailed balancing to relate the
excitation and deexcitation rate coefficients, Eq. (2.124) may be rewritten as

∂

∂t
(ni

j) = k1,0j

{

− ini
j + (i + 1)ni+1

j + exp

(

θvj
Th

)[

− (i + 1)ni
j + ini−1

j

]}

, (2.125)

where θvj = hνj/kB is the characteristic vibrational temperature for species j.
Substituting Eq. (2.125) in Eq. (2.123) and simplifying the summation over states yields the

Landau-Teller form [130] for vibrational energy relaxation,

∂

∂t
(ρje

v
j ) = ρj

ev∗j (Th)− evj
τVT
j

, (2.126)

where ev∗j (Th) denotes the vibrational energy for a Boltzmann distribution at temperature Th and
τVT
j = [k1,0j (1− exp(−θvj /Th)]−1 is the relaxation time. Physically, the relaxation time represents

the time in seconds required for the difference (ev∗j (Th)−evj ) to fall to 1/e of its original magnitude
in a constant heat bath. Eq. (2.126) shows that the vibrational energy tends to equilibrate with
the translational heat bath at a linear rate which is proportional to the degree of nonequilibrium.
It is important to note that no assumptions were made on the distribution of vibrational states
in the derivation of Eq. (2.126) or the degree of nonequilibrium. However, the assumption of
harmonic-oscillators is only valid for low vibrational states, limiting the validity of the formulation
to small departures from equilibrium and relatively low vibrational temperatures.

The theoretical treatment of the relaxation time present in Eq. (2.126) is very difficult. Millikan
and White [131] have shown that many diatomic collision systems can be described by the simple
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phenomenological formula at low temperatures (< 8000K),

(1− xe) p τ
MW
j [atm s] =

∑

s∈H

xs exp
[

ajs(T
− 1

3 − bjs)− 18.42
]

(2.127)

where ajs = 1.16× 10−3 µ
1
2

js θ
v
j

4
3 , bjs = 0.015µ

1
4

js, and µjs is the reduced molecular weight of the
vibrator j and heat bath species s. At high temperatures, the Millikan and White model under-
predicts the relaxation time because it does not take into account the limiting of excitation rates
due to the finiteness of elastic collision cross-sections. Park [67] proposed the simple formula for
the relaxation time at high temperatures,

τP
j =

(

nj

√

8kBTh

πmj
σv
j

)−1

, (2.128)

where σv
j is an effective cross-section for vibrational relaxation. In addition, at high temperatures,

the kinetic energy of the gas becomes much greater than the vibrational energy gap between excited
vibrational levels. In this regime, vibrational excitation and deexcitation behave classically and the
vibrational energy may be treated as continuously distributed, leading to a diffusion-like equation
for the rate of change in the density of a vibrational state [30]. In order to combine the diffusion
and Landau-Teller models, Park [60] has suggested a correction to the relaxation time for shock
heated flows, such that

τVT
j =

(

τMW
j + τP

j )

∣

∣

∣

∣

Ts − Tvs

Ts − Tvj

∣

∣

∣

∣

s−1

, (2.129)

where Ts and Tvs are the heavy-particle translational and vibrational temperatures immediately
behind the normal shock wave. The parameter s = 3.5 exp(−5000/Ts) acts as a bridging function
between the high and low temperature regimes. For one-dimensional problems, the high tempera-
ture correction is straight forward to implement. For two- and three-dimensional flows, the shock
wave location should be based on a streamwise trace from the local point to the shock front, though
in practice the average post shock temperature is typically used instead [26].

When separate vibrational temperatures are used to describe the vibrational energy distributions
of each vibrating molecule, the resulting energy transfer terms for each vibrator j are easily derived
from Eq. (2.126), such that

ΩVT
j = ρj

evj (Th)− evj (Tvj)

τVT
j

, (2.130)

where the superscript ∗ has been dropped because the vibrational energy is assumed to follow a
Boltzmann distribution. If all vibrators have the same vibrational temperature, then the source
term is simply the net energy transfer due to each molecule,

ΩVT =
∑

j∈V

ΩVT
j =

∑

j∈V

ρj
evj (Th)− evj (Tv)

τVT
j

. (2.131)

The Landau-Teller form for vibration-translation energy exchange has several limitations, which
may severely limit its accuracy. For example, anharmonicity, rovibration coupling effects, and
real collision dynamics are not taken into account. Nikitin and Troe [132] provide a historical
review of energy transfer models developed since the landmark paper of Landau and Teller in 1936
[130]. In general, these models build on the original Landau-Teller formulation by incorporating a
more detailed Master equation than Eq. (2.124) and using higher fidelity collision dynamics such
as those obtained through QCT calculations. Despite the many advances, Eqs. (2.127 - 2.131)
remain widely used in the field of hypersonics due to their ease of implementation and small data
requirements.
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Free electron-vibration energy exchange

Electron-impact vibrational (de)excitation processes play an important role in the energy exchange
between electrons and molecules. In particular, the resonant electron impact nitrogen excitation
reaction

N2(X
1Σg

+; v) + e− −−→ N2
−(2Πg) −−→ N2(X

1Σg
+; w) + e−, w > v

is known to be very efficient. Electron impact excitation reactions for other air molecules are
negligible [27]. Studies of electron-vibration energy exchange for nitrogen plasmas suggest that
this process may be modeled with a Landau-Teller rate equation [133–135], where

ΩEV
j = ρj

evj (Te)− evj (Tvj)

τEV
j

. (2.132)

Laporta and Bruno [135] have developed analytical expressions for the relaxation time τEV
j based

on STS calculations using accurate theoretical cross sections.

Vibration-vibration energy exchange

When separate vibrational energy equations are attributed to each vibrating molecule, the vibra-
tional energy exchanged between each of these vibrators should be taken into account. Knab et
al. [122] have proposed the following consistent model for vibrational energy exchange,

ΩVV
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√

8RuTh

π

∑

s∈V

σjsPjs
ρs
Ms

ρj

[

evj (Th)

evs(Th)
evs(Tvs)− evj (Tvj)

]

, (2.133)

where Pjs is the exchange probability, taken to be 0.01 [122]. Panesi [128] has shown vibration-
vibration energy exchange to be of secondary importance for nonequilibrium air flows.

Elastic energy exchange between free electrons and heavy particles

Elastic energy exchange between free electrons and heavy particles has been studied in-depth for
partially ionized nonequilibrium plasmas based on kinetic theory [100, 107]. This energy exchange
follows the Landau-Teller form, such that

ΩET = ρe
ee(Th)− ee(Te)

τET =
3

2
ρeRe

Th − Te

τET . (2.134)

The average relaxation time is derived directly from kinetic theory as

1
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√
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πme
Q̄(1,1)

ei , (2.135)

where Q̄(1,1)
ei is the reduced collision integral for the electron-heavy interaction.

2.7.2. Chemical energy exchange processes

Chemical energy exchange processes result from reactive collisions between particles in which en-
ergy is transferred in order to promote the reaction. Important coupling mechanisms are described
below.

Electron-impact ionization

Electron-impact ionization reactions result in a lowering of the overall electron translational energy
since the free-electrons provide the energy necessary to ionize the heavy particle. It is important
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to take this energy transfer mechanism into account, in particular to accurately describe electron
avalanche. The amount of energy lost from the electron bath is modeled as

ΩI =
∑

r∈I

∆hrRr, (2.136)

where I is the set of electron impact ionization reactions and ∆hr and Rr are the molar reaction
enthalpy and rate of progress for the ionization reaction r. The reaction enthalpy represents the
average energy required to ionize the heavy particle in reaction r and the rate of progress is equal
to the rate of electron impact ionization reactions. Note that this model assumes that all the
energy required to ionize a given species comes from the free-electrons which may overestimate the
rate of electron energy loss.

Vibration-chemistry-vibration coupling

When molecules are created or destroyed through chemical reactions, vibrational energy is added
or removed from the gas. This creates an important coupling mechanism between the vibrational
energy distribution of a given molecule and the rate of creation or destruction of that molecule,
which in turn effects the net vibrational energy exchange of the gas. Vibration-chemistry-vibration
coupling is strongly related to the vibrational chemical nonequilibrium model in use. As such, the
models are split again into preferential and non-preferential dissociation categories.

Preferential dissociation leads to the following general expression for the vibration-chemistry
energy transfer source term,

ΩCV
m = Mm

∑

r∈R

Rr

[

ν
′′

mG
′′

rm − ν
′

mG
′

rm

]

, (2.137)

where G
′

rm and G
′′

rm are the average vibrational energy gained or lost per mass of molecule m
associated with the forward and reverse process of reaction r. The actual form of these parameters
must be consistent with the vibration-chemistry model being employed. For example, in the case
of the Treanor and Marrone model [119] discussed in Section 2.6.2, these average energies become

G
′

rm =
Rmθvm

exp(−θvm/U)− 1
−

RmθDm
exp(−θDm/U)− 1

, (2.138)

G
′′

rm =
Rmθvm

exp(−θvm/TF )− 1
−

RmθDm
exp(−θDm/TF )− 1

, (2.139)

where θDm is the dissociation energy of molecule m (associated with the dissociation reaction r) and
TF and U were defined in Eq. (2.113).

Non-preferential models assign equal probability to a molecule dissociating from any vibrational
energy state. Therefore, the average vibrational energy lost or gained by a molecule which dissoci-
ates or recombines is equal to the average vibrational energy of the molecule itself, evm (regardless
of energy distribution). Therefore, for non-preferential dissociation Eq. (2.137) readily assumes
the form proposed by Candler and MacCormack [27],

ΩCV
m = c1e

v
mω̇m, (2.140)

where the factor c1 is introduced as a preferential dissociation factor. For c1 = 1, Eq. (2.140)
represents a non-preferential dissociation model while for c1 > 1, a simple preferential model is
obtained.
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2.8. Concluding Remarks

The goal of this chapter was to present the general governing equations for hypersonic, atmospheric
entry flows. Hypersonic flows are characterized by flow time scales on the order of chemical and
relaxation time scales which result in significant thermal and chemical nonequilibrium phenomena.
Thermal nonequilibrium is treated through the use of so-called energy partitioning models in which
assumptions are made on the relative distribution of populated energy states for each component
of the flow. Various energy partitioning models have been reviewed in this chapter and their role in
the governing fluid equations has been detailed. In particular, both thermochemical nonequilibrium
and LTE flows have been considered.

Closure models for the thermodynamic, transport, and chemistry properties, whose evaluation is
required to solve the governing equations, have also been presented. In general, all properties have
been shown to be functions of the local state of the fluid. General relations for thermodynamic
properties were provided, based on the a statistical mechanics description of individual species
energy partitioning models and associated partition functions. Transport properties were presented
based on a perturbative Chapmann-Enskog solution of the scaled Boltzmann equation, which
results in linear transport systems defined in terms of temperature dependent collision integrals
and species concentrations. Chemical production rates were formulated in terms of the Law of Mass
Action. The effect of thermal nonequilibrium was also considered and several common models for
nonequilibrium rate coefficients were presented. In addition, several important energy transfer
models were discussed in the context of a MT approach.

Radiation was largely ignored in this chapter, except in the presentation of the governing equa-
tions. The computation of radiative source terms represents a significant numerical and theoretical
effort. In addition, the treatment of radiation in the governing equations alters the general nature
of the equations from differential to integro-differential. For these reasons, the discussion of radi-
ation has been postponed until Chapter 3. Finally, it is worth noting that this chapter presented
the governing equations in a general manner. The specific models and data used in this work are
presented in Chapter 4.





CHAPTER 3

Radiative Transfer for Atmospheric Entry

3.1. Introduction

The radiative heat flux, energy source, and photochemical source terms required to couple radiative
transfer to the fluid dynamic conservation equations, were presented in Chapter 2. As will be
evident from the following sections, the accurate calculation of these quantities involves a significant
modeling and numerical effort. This chapter is broken into three distinct sections. Section 3.2
provides an introduction to radiation for atmospheric entry applications. Section 3.3 details the
HTGR database, used in this work to compute high resolution emission and absorption spectra.
Finally, Section 3.4 derives the so-called hybrid statistical narrow band model, used in this work
to significantly improve the performance of radiative transfer calculations.

3.2. Radiative Transfer in Participating Media

This section provides a short introduction to the basics of modeling radiative transfer in partici-
pating media, in particular, gases. The various radiative processes which occur in gases are first
outlined, followed by a description of the governing equations for radiation transport including
the radiative boundary conditions typically used for atmospheric entry applications. Finally, the
radiative surface heat flux, energy source, and species mass production rates due to photochemical
processes are detailed.

3.2.1. Radiative Processes in Gases

Radiative processes in gaseous media can be grouped into three categories, namely bound-bound,
bound-free or free-bound, and free-free processes. Each one is discussed below.

Bound-bound

Bound-bound processes are radiative transitions between bound electronic states of atoms or rovi-
bronic states of molecules. Bound-bound transitions can occur through absorption,

A(l) + hcσ −−→ A(u),

spontaneous emission,
A(u) −−→ A(l) + hcσ,

and induced emission,
A(u) + hcσ −−→ A(l) + 2 hcσ.

Each process is depicted graphically in Fig. (3.1). Spontaneous emission occurs when an atom or
molecule at an upper energy state u with energy Eu spontaneously emits a photon with energy
hcσ and falls to a lower energy state l with energy El = Eu − hcσ. Absorption is the opposite
process, in which a photon with energy hcσ is absorbed to raise the energy from El to Eu. Apart
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Figure 3.1.: Types of atomic bound-bound transitions between arbitrary upper and lower energy
states.

from spontaneous emission, atoms and molecules may also emit a photon in the presence of an-
other passing photon. This process is called induced or stimulated emission. Induced emission is
sometimes referred to as negative absorption.

As electronic and rovibronic levels are quantized, bound-bound transitions result in discrete
spectral lines corresponding to emission and absorption of specific photon energies, centered around
the wavelength of the transition energy. Several factors contribute to the broadening of these
spectral lines. These details are discussed in Section 3.3.1.

Bound-free and free-bound

Bound-free processes are radiative transitions between a bound and unbound energy states. Bound-
free processes included photoionization

A+ hcσ −−→ A+ + e−,

photodissociation
AB+ hcσ −−→ A+ B,

dissociative photoionization
AB+ hcσ −−→ A+ B+ + e−,

and photodetachment processes
A− + hcσ −−→ A+ e−.

Each bound-free process absorbs a photon at a high enough energy to fully dissociate or ionize the
absorbing species into two or three separate particles. Free-bound processes represent the opposite
transitions, in which two or three particles recombine, emitting the excess energy as a photon.
The energy of the dissociation products are essentially not quantized, thanks to the translational
energy of the particles. Therefore, bound-free processes result in a near continuous emission and
absorption spectrum above the ionization or dissociation energy of the bound state.

Free-Free

A free electron may interact with the electric field of an atom or molecule, causing the electron to
decelerate and the resulting energy lost by deceleration is emitted as a photon

A+ e− −−→ A+ e− + hcσ.

This mechanism is called Bremsstrahlung radiation after the German word for brake radiation
because the free electron is slowed in the process. The reverse process is known as inverse
Bremsstrahlung radiation. Because the translational energy of the free electron is essentially con-
tinuous, the resulting Bremmstrahlung spectrum is also continuous.
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3.2.2. The Radiative Transport Equation

Each radiative mechanism discussed in the previous section contributes to the net emission and
absorption of photons. The energy carried by a photon at wavenumber σ is given hcσ. Therefore,
emission and absorption of photons results in a net energy transfer between points in the flow field,
or from the flow field to the vehicle surface.

The radiant intensity Iσ(x, ŝ) is defined as the photon energy flux per unit area, per elementary
solid angle, per wavenumber, in the direction ŝ at wavenumber σ and position x. In the absence
of scattering, the steady Radiative Transport Equation (RTE) describes the variation of spectral
intensity Iσ along a ray with length parameter s as

dIσ
ds

= ŝ ·∇Iσ(ŝ) = ησ − κσIσ(ŝ), (3.1)

where ησ and κσ are the local emission and absorption coefficients at point s along the ray.
Photons may be emitted in any direction. Therefore, the spectral emission coefficient is inde-

pendent of direction and represents the total photon energy emitted per volume, per time, per
wavenumber, and per elementary solid angle. The absorption coefficient represents the fraction of
photon energy absorbed by the gas over a unit distance, and is independent of direction as well.
In general, these coefficients are functions of the local energy level populations of the participating
gaseous species. They will be described in more detail in Section 3.3.

Under radiative equilibrium conditions, the intensity follows Planck’s law such that

Iσ = Ibσ ≡ 2hc2σ3
[

exp
( hcσ

kBT

)

− 1
]−1

, (3.2)

and the emission and absorption coefficients are related through Kirchhoff’s law by ησ = Ibσκσ.
This relation is also satisfied for flows in thermo-chemical equilibrium.

The formal solution of Eq. (3.1) may be written as

Iσ(s) = Iσ(0)τσ(0, s) +

∫ s

0
ησ(s

′)τσ(s
′, s)ds′, (3.3)

where the spectral transmissivity τσ between points s′ and s is given by Beer’s law,

τσ(s
′, s) = exp

(

−
∫ s

s′
κσ(s

′′) ds′′
)

. (3.4)

The integral inside the exponential is called the optical thickness of the gas. When the optical
thickness is large, the transmissivity approaches zero, indicating that no radiation is transmitted
through the gas. Conversely, for optically thin media, the transmissivity approaches unity and all
radiation is transmitted.

3.2.3. Boundary Conditions

Eq. (3.3) represents an integral equation for the solution of the radiant intensity at a given point
in space, in the direction defined by the ray. This equation may be solved by integrating along the
ray from a known boundary condition, Iσ(0). Two types of boundaries will be considered in this
work.

Diffuse surfaces

Vehicle surfaces are assumed to be diffuse, and opaque, such that

Iσ(xw, ŝ) = ϵσI
b
σ(Tw) +

ρσ
π

∫

n̂·ŝ′<0
Iσ(xw, ŝ

′) |n̂ · ŝ′| dΩ′, n̂ · ŝ > 0, (3.5)
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where ϵσ and ρσ are the local spectral emittance and reflectance of the surface and n̂ is the outward
facing surface normal. Emittance represents the fraction of black body radiation emitted by the
surface, while reflectance represents the fraction of incoming intensity that is reflected away from
the wall. For an opaque surface, the reflectance is related to the absorptance ασ of the surface by

ρσ = 1− ασ, (3.6)

where the absorptance represents the fraction of incoming energy absorbed by the material at the
surface. Also, for a diffuse surface, the emittance and absorptance are independent of direction,
leading to ϵσ = ασ.

The integral in Eq. (3.5) represents the spectral irradiation, or incoming spectral flux, onto the
surface. For partially reflecting boundaries (ϵ < 1), the reflective term in Eq. (3.5) imposes a
coupling between the incoming and outgoing intensities at the boundaries.

Free-stream boundaries

It is assumed that free-stream boundaries are sufficiently far from the shock layer to ensure that all
temperatures associated with the flow field are equal and relatively low. Under these assumptions,
the domain boundaries may be treated as black walls at the local temperature, such that

Iσ(x∞, ŝ) = Ibσ(T∞), (3.7)

where the subscript ∞ represents the free-stream quantity.

3.2.4. Coupling to Fluid Dynamics

Once the intensity field is known, the solution must be coupled back to the mass and energy
transport equations derived in Chapter 2 via the radiative surface heat flux, power, and species
mass production rates due to photochemical processes.

Heat flux and its divergence

The total radiative flux at any location in the flow field is given by the integral of intensity over
all wavenumbers and directions,

qr =

∫ ∞

0

∫

4π
Iσ(ŝ) ŝ dΩ dσ. (3.8)

We may also construct the total radiative energy fluxes going into and out of a wall with surface
normal n̂, respectively as

qrin =

∫ ∞

0

∫

n̂·ŝ<0
Iσ(xw, ŝ) |n̂ · ŝ| dΩ dσ, (3.9)

qrout =

∫ ∞

0

∫

n̂·ŝ>0
Iσ(xw, ŝ) |n̂ · ŝ| dΩ dσ. (3.10)

Using Eq. (3.5), the total radiative heat flux on a gray, diffuse, and opaque surface is then given as

qrw = qrout − qrin = ϵ(σT 4
w − qrin). (3.11)

Finally, the heat flux itself is not a particularly useful parameter within the flow field. Instead,
the radiative power, defined by the negative divergence of the heat flux is required to determine
the amount of radiant energy being deposited or emitted at any given point. Using Eqs. (3.1) and
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(3.8), the radiative power may be written as

−∇ · qr =−∇ ·
∫ ∞

0

∫

4π
Iσ(ŝ) ŝ dΩ dσ

=

∫ ∞

0
κσGσ − 4πησ dσ,

(3.12)

where Gσ is called the spectral incident radiation,

Gσ ≡
∫

4π
Iσ(ŝ) dΩ. (3.13)

Photochemical source terms

The bound-bound and bound-free processes described in Section 3.2.1 alter the chemical compo-
sition of the gas through emission or absorption of photons and are known collectively as pho-
tochemical processes. The net rate of production of photons at wavenumber σ from a reversible
photochemical process is equal to the net photon energy emitted by that process, divided by the
energy of a single photon, hcσ. Using the definition of the emission and absorption coefficients for
a single photochemical process, it is then plain to see that the net production rate of a species (or
pseudo-species) j is given as

φ̇j =
mj

hc

∑

p

νpj

∫ ∞

0

1

σ

∫

4π

(

κpσIσ − ηpσ
)

dΩ dσ

=
mj

hc

∑

p

νpj

∫ ∞

0

κpσGσ − 4πηpσ
σ

dσ,

(3.14)

where the sum over p represents the sum over all photochemical processes and νpj is the stoichiom-
etry difference of species j across process p.

3.3. High Temperature Gas Radiation Database

The emission and absorption coefficients required in the solution of the RTE presented in the
previous section are taken from the HTGR spectroscopic database [36, 37, 39, 40]. An overview of
the database is presented in this section. In addition, new mechanisms which have been added in
this work are highlighted. Contributions to the emission and absorption coefficients are split into
bound-bound transitions and bound-free and free-free continua. Total emission and absorption
coefficients are obtained by summing each contribution. All radiative mechanisms included in the
database are summarized in Table 3.1.

3.3.1. Bound-Bound Transitions

Radiative transitions between bound energy levels of an arbitrary species A follow the general
form,

A(l) + hcσ −−⇀↽−− A(u), El < Eu. (3.15)

The emission and absorption coefficients for all such transitions are given by

ησ =
∑

ul

nu
Aul

4π
hcσf se

ul(σ − σul) (3.16)

κσ =
∑

ul

[

nlBluf
ab
ul (σ − σul)− nuBulf

ie
ul(σ − σul)

]

hσ (3.17)
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Table 3.1.: A summary of the radiative mechanisms included in the HTGR database and used
in this work. The first reference corresponds to the spectroscopic data while the second reference
corresponds to the SNB parameters (when applicable).

Species Process / Upper - Lower Spectral Range Ref.
Band System Electronic States [1000 cm−1]

C Lines [39]
Bremsstrahlung 1 - 200 [39], [137]
Photoionization 1 - 200 [39], [137]

C+ Lines [39]
Bremsstrahlung 1 - 200 [39], [137]
Photoionization 1 - 200 [39]

C– Photodetachment 1 - 200 [39], [137]

C2 Balik-Ramsay b3Σ−
g − a3Πu 1 - 48 [39], [137]

Deslandres-d’Azambuja C1Σg − A1Πu 1 - 42 [39], [137]
Fox-Herzberg e3Σg − a3Πu 5 - 51 [39], [137]
Mulliken D1Σ+

u − X1Σ+
g 28 - 77 [39], [137]

Phillips A1Σg − X1Σ+
g 1 - 49 [39], [137]

Swan d3Σg − a3Πu 1 - 43 [39], [137]
Photoionization 1 - 200 [39], [137]

C3 Swings A1Πu − X1Σ+
g 20 - 35 [138], here

UV 1Σ+
u − X1Σ+

g 30 - 74 [139], here

CH AX A2∆ − X2Π 1 - 37 [40], [40]
BX B2Σ− − X2Π 1 - 27 [40], [40]
CX C2Σ+ − X2Π 1 - 40 [40], [40]
Infrared X2Π − X2Π 1 - 27 [40], [40]
Photoionization 85 - 193 [140], here

CN LeBlanc B2Σ+ − A2Πi 1 - 54 [39], [137]
Red A2Πi − X2Σ+ 1 - 58 [39], [137]
Violet B2Σ+ − X2Σ+ 4 - 62 [39], [137]
Photoionization 1 - 200 [39], [137]

CO Third positive b3Σ+
g − a3Π 13 - 43 [39], [137]

Fourth positive A1Π − X1Σ+ 11 - 90 [39], [137]
Hopfield-Birge B1Σ+ − X1Σ+ 14 - 91 [39], [137]
Infrared X1Σ+ − X1Σ+ 1 - 77 [39], [137]
Photoionization 1 - 200 [39], [137]

CO+ Baldet-Johnson B2Σ+ − A2Πi [39], [137]
Comet-tail A2Πi − X2Σ+ [39], [137]
First negative B2Σ+ − X2Σ+ [39], [137]

CO2 Infrared X1Σ+
g − X1Σ+

g 0.25 - 8.3 [141], [142]

H Lines here
Photoionization here

H2 Lyman B1Σ − X1Σ 60 - 120 [143], here
Werner C1Π − X1Σ 60 - 120 [143], here
Photoionization [144], here

N Lines 1 - 200 [37]
Photoionization 1 - 200 [37], [55]
Bremsstrahlung 1 - 200 [37], [55]

N+ Lines 1 - 200 [37]
Bremsstrahlung 1 - 200 [37], [55]

N– Photodetachment 1 - 200 [37], [55]

N2 First positive B3Πg − A3Σ+
u 1 - 42 [36], [55]

Second positive C3Πu − B3Πg 1 - 40 [36], [55]
Birge-Hopfield 1 b1Πu − X1Σ+

g 55 - 117 [36], [55]
Birge-Hopfield 2 b

′1Σ+
u − X1Σ+

g 36 - 124 [36], [55]

Caroll-Yoshino c
′1
4 Σ+

u − X1Σ+
g 54 - 123 [36], [55]

Worley o13Πu − X1Σ+
g 71 - 121 [36], [55]

Continued on next page
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Table 3.1 – Continued from previous page

Species Process / Upper - Lower Spectral Range Ref.
Band System Electronic States [1000 cm−1]

Worley-Jenkins c13Πu − X1Σ+
g 67 - 116 [36], [55]

Photoionization 1 - 200 [37], [55]
Bremsstrahlung 1 - 200 [37], [55]

N2
+ First negative B2Σ+

u − X2Σ+
g 1 - 42 [36], [55]

Second negative C2Σ+
u − X2Σ+

g 26 - 77 [36], [55]
Meinel A2Πu − X2Σ+

g 1 - 49 [36], [55]

NO 11 000Å D2Σ+ − A2Σ+ 1 - 22 [36], [55]
β B2Πr − X2Πr 7 - 74 [36], [55]
β
′

B
′2∆− X2Πr 22 - 69 [36], [55]

δ C2Πr − X2Πr 15 - 75 [36], [55]
ϵ D2Σ+ − X2Πr 16 - 68 [36], [55]
γ A2Σ+ − X2Πr 7 - 66 [36], [55]
γ
′

E2Σ+ − X2Πr 23 - 73 [36], [55]
Infrared X2Πr − X2Πr 1 - 37 [36], [55]
Photoionization 1 - 200 [37], [55]

O Lines 1 - 200 [37]
Photoionization 1 - 200 [37], [55]
Bremsstrahlung 1 - 200 [37], [55]

O+ Lines 1 - 200 [37]
Bremsstrahlung 1 - 200 [37], [55]

O– Photodetachment 1 - 200 [37], [55]

O2 Schumann-Runge B3Σ−
u − X3Σ−

g 14 - 60 [36], [55]
Photoionization 1 - 200 [37], [55]
Photodissociation 1 - 200 [37], [55]
(Schumann-Runge)
Bremsstrahlung 1 - 200 [37], [55]

where the summation over ul denotes summation over all bound-bound transitions from an upper
energy level u to a lower energy level l and Aul , Blu, Bul, and f se

ul , f
ab
ul , and f ie

ul correspond to
Einstein coefficients and spectral line profiles for spontaneous emission, absorption, and induced
emission, respectively [136]. Line centers are given by hcσul = Eu −El, for each transition u → l.
Detailed balancing under thermal equilibrium yields the following relationships for the Einstein
coefficients and line shapes [136],

Bulf
ie
ul(σ − σul) =

1

8πhcσ3
Aulf

se
ul(σ − σul), (3.18)

Bluf
ab
ul (σ − σul) =

1

8πhcσ3
Aulf

se
ul(σ − σul)

au
al

exp
[hc(σ − σul)

kBT

]

. (3.19)

In addition, the spontaneous emission Einstein coefficient is related to the oscillator strength of a
particular line via

Aul =
2πσ2

ulq
2
e

ϵ0mec

al
au

flu. (3.20)

Line shapes

Various line broadening mechanisms contribute to the line shape of an individual line. Doppler
broadening results from the relative motion of a radiating particle to the observer. A pure Doppler
profile can be derived from kinetic theory assuming a Maxwellian velocity distribution [145], such
that

fD
ul(σ − σul) =

1

γDul

√

ln 2

π
exp

[

− ln 2
(σ − σul)2

(γDul)
2

]

, (3.21)

where γDul is the half-width at half-maximum (HWHM) of the Doppler line shape, given by

γDul = σul

√

2 ln 2 kBTh

mc2
, (3.22)
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Figure 3.2.: Description of the Voigt line profile and comparison with Doppler and Lorentz shapes.

with m, the mass of the radiating particle. As can be seen from the equation, Doppler broadening
is proportional to σ

√
Th.

Pressure broadening occurs when a radiating particle interacts with a charged (Stark) or neutral
(Resonance, van der Waals, etc.) particle through collisions. The resulting line shape under the
impact approximation is Lorentzian. A pure Lorentz profile is given by

fL
ul(σ − σul) =

1

π

(γLul)
2

(γLul)
2 + (σ − σul)2

, (3.23)

where γLul is the Lorentz HWHM. Lorentz half-widths are proportional to the average collision
frequency of the gas (e.g., for hard-spheres, γLul ∝ p/

√
Th).

When both Doppler and Lorentz broadening are important, the combined line shape follows
from a convolution of the two profiles, yielding the so-called Voigt profile,

fV
ul(σ − σul) =

1

γDul

√

ln 2

π
K
(√

ln 2
(σ − σul)

γDul
,
√
ln 2

γLul
γDul

)

,

K(x, y) =
y

π

∫ ∞

−∞

e−ξ2

(x− ξ)2 + y2
dξ.

(3.24)

Unfortunately, no analytical expression exists for the Voigt profile. Several numerical approaches
have been developed to compute the Voigt profile accurately and quickly, typically relying on ratio-
nal function approximations [146–149]. In this work, the method of Drayson [146] has been used,
modified by moving the outer loop over wavenumbers into the function evaluation as suggested by
Schreier [149].

Fig. (3.2) shows a comparison of the Doppler, Lorentz, and Voigt profiles, normalized by their
respective HWHM. The “exact” value of the Voigt HWHM, γV , has been computed through a
simple Newton procedure using the Drayson Voigt approximation [146]. Two common approxima-
tions to the Voigt half-width are also shown. The first approximation in Fig. (3.2b) was originally
developed by Whiting [150] and is found to be accurate to about 1%.
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Atomic lines

It is convenient to express electronic energy level populations of atoms in terms of Boltzmann
populations at an electronic temperature Tel. Introducing a non-Boltzmann parameter θBk ≡ nk/nB

k
for an arbitrary electronic level k of atom A, the number density of level k can be expressed as

nk = θBk
nA

Qint
A (Tel)

ak exp
(

−
EA

k

kBTel

)

, (3.25)

where nB
k represents the Boltzmann number density of level k and nA is the total number density

for the atom. Qint
A (Tel) is the atomic internal (electronic) partition function evaluated at Tel.

Inserting Eq. (3.25) along with Eqs. (3.18 - 3.20) into Eqs. (3.16) and (3.17), the emission and
absorption coefficients associated with a single transition u → l for an atom A are given as

ηAσ,ul =
hσq2e
2ϵ0me

θBu
nA

Qint
A

exp
( −EA

u

kBTel

)

alflu σ
2
ul f

se
ul(σ − σul), (3.26)

κAσ,ul =
1

2hc2σ3

[θBl
θBu

exp
( hcσ

kBTel

)

− 1
]

ηAσ,ul. (3.27)

The total emission and absorption coefficients associated with atomic lines are obtained by summing
Eqs. (3.26) and (3.27) over all considered atoms and transitions. Note that in equilibrium, the non-
Boltzmann parameters are equal to unity and Eq. (3.27) is simply a statement of Kirchhoff’s law.

Previous compilations of the necessary line data (alflu, EA
u , and σul) for N, O, N+, O+ [37] as well

as C and C+ [39] have been made using the NIST atomic line database [41]. Line shapes associated
with spontaneous emission are assumed to be Voigt to account for Doppler and neutral collisional
broadening at a temperature Th and Stark broadening at temperature Te. Stark broadening
parameters for these lines are computed based on a semi-classical approach using line oscillator
strengths of The Opacity Project atomic database (TOPBASE) [42] and compiled in [37, 39, 151].

H transitions have also been added in this work using the NIST database for line positions and
strengths. The simple approximation of Zoby et al. [152] is retained for Stark broadening, based
on [153], expressing the Lorentz half-width of hydrogen lines as

γLul [eV] = 1.05× 10−15 (n2 −m2) n2/3
e−

{

0.642 n = m+ 1

1 otherwise
, (3.28)

where n and m are the principle quantum numbers of the upper and lower electronic states and
m = n+1 indicates the first line in each series. The hydrogen electronic partition function is given
simply as

Qint
H (Tel) =

40
∑

k=1

2k2 exp
[ Ry

kBTel

( 1

k2
− 1
)]

, (3.29)

where the level cutoff of 40 has been used in order to match the maximum level retained in the
NIST line database. Ry is the Rydberg constant, defined as the ionization energy of the hydrogen
ground state.

Molecular electronic systems

The HTGR database contains the necessary line information for several air and carbonaceous
molecules. Chauveau et al. [36] have included 19 electronic systems of N2, N2

+, NO, and O2 for
high temperature air radiation calculations for atmospheric reentry and electric arc applications.
Babou et al. [39] extended the database to include 16 electronic systems of C2, CN, CO, and CO+.
In addition, 4 electronic systems of CH have been presented by Soufiani et al. [40]. CO2 infrared
transitions have been included based on the CDSD-4000 spectroscopic database [141]. Prasanna et
al. [143] have recently compiled line data for the H2 Lyman and Werner bands based on the work
of Abgrall et al. [154] and Dabrowski et al. [155].
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Finally, averaged C3 absorption cross-sections for the Swings (A1Πu − X1Σ+
g ) [138] and UV

(1Σ+
u −X1Σ+

g ) [139] systems have been added in this work for the calculation of SNB parameters
presented in Section 3.4, however high-resolution line data has not been included due to lack of
data in the literature.

3.3.2. Bound-Free Processes

Bound-free processes, such as photoionization (e.g., N + hcσ −−⇀↽−− N+ + e– ) or photodissociation
(e.g., O2 + hcσ −−⇀↽−− O + O), follow the general formula

AB(i) + hcσ −−⇀↽−− A(j) + B(k), (3.30)

where A(j) and B(k) represent dissociation products at energy levels j and k respectively from the
dissociation of an arbitrary species AB(i) at level i through absorption of a photon with energy
hcσ. Lamet et al. [43] have presented a formal approach to calculate absorption and emission
coefficients for all such mechanisms, which is summarized here.

The relative velocity g of the dissociation products is obtained from conservation of energy as

1

2
µg2 = hcσ + EAB

i − EA
j − EB

k , (3.31)

where µ is the reduced mass of species A and B and EX
i represents the energy of species X at

level i, with all energies relative to a common reference energy. Introducing effective cross-sections
relative to spontaneous emission Sse

jk,i, induced emission Sie
jk,i, and absorption Sabs

i,jk, for bound-
free processes which are analogous to the Einstein coefficients for bound-bound transitions, the
emission and absorption coefficients are given by

ηbfσ =
∑

ijk

nA
j n

B
k hcσ gSse

jk,i(σ) 4πg
2 f0(g)

dg

dσ
, (3.32)

κbfσ =
∑

ijk

[

nAB
i Sabs

i,jk(σ)− nA
j n

B
k gSie

jk,i(σ) 4πg
2 f0(g)

dg

dσ

]

hσ, (3.33)

where f0(g) represents the distribution function of the relative velocity between the dissociation
products A and B. The summation over ijk represents the summation over all transitions corre-
sponding to Eq. (3.30). At equilibrium, the intensity satisfies Planck’s law. Therefore, substituting
Eqs. (3.32) and (3.33) into Eq. (3.1) yields the following relationships for bound-free cross-sections
[43],

Sse
jk,i(σ) = 2hcσ3 Sie

jk,i(σ), (3.34)

Sie
jk,i(σ) =

h2

4πµ2g2c

ai
ajak

Sabs
i,jk(σ). (3.35)

Assuming the relative velocity distribution function is Maxwellian at a temperature Trel and sub-
stituting the above relations into Eqs. (3.32) and (3.33), the following expressions are obtained for
the bound-free emission and absorption coefficients,

ηbfσ = 2h2c2σ4
∑

ijk

nA
j n

B
k

ξµ(Trel)

ai
ajak

Sabs
i,jk exp

(EA
j +EB

k −EAB
i −hcσ

kBTrel

)

, (3.36)

κbfσ = hσ
∑

ijk

Sabs
i,jk

[

nAB
i −

nA
j n

B
k

ξµ(Trel)

ai
ajak

exp
(EA

j +EB
k −EAB

i −hcσ

kBTrel

)]

, (3.37)
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where the volumetric translational partition function is given as

ξµ(Trel) =
(2πµkBTrel

h2

)3/2
. (3.38)

Atomic photoionization

Atomic photoionization absorption cross-sections Sabs
i have been taken from TOPBASE [42] for

N, N+, O, and O+ [37] as well as C and C+ [39]. Additional cross-sections for H have been added
to the database in this work. These cross-sections are related to the effective cross-sections in
Eqs. (3.36) and (3.37) by

Sabs
i (σ) = hσ

∑

jk

Sabs
i,jk(σ), (3.39)

where the summation over jk represents the sum over all electronic levels of the ion and the
unique electron energy level with a degeneracy of 2. Fig. (3.3) shows the computed equilibrium
absorption cross-sections at various temperatures for H as obtained from TOPBASE. Equilibrium
cross-sections are obtained by averaging the level cross-sections, weighted by the Boltzmann distri-
bution at the given temperature. Starting with the general formulation in Eqs. (3.36) and (3.37)
and assuming the electronic energy levels of the ion are populated according to a Boltzmann dis-
tribution at Tel and that Trel = Tel, the emission and absorption coefficients associated with the
photoionization of an atom A at level i are given by

ηA,bf
σ,i = 2hc2σ3 exp

(

−
hcσ

kBTel

) nA

QA
χneqai exp

(

−
EA

i

kBTel

)

Sabs
i (σ), (3.40)

κA,bf
σ,i =

1

2hc2σ3

[ θBi
χneq exp

( hcσ

kBTel

)

− 1
]

ηA,bf
σ,i , (3.41)

where the non-equilibrium factor is given by

χneq =
nA+ne

nA

QA

2ξme(Te)QA+

exp
( EA

ion

kBTel

)

. (3.42)

In the above expressions we have used the non-Boltzmann parameter of Eq. (3.25) to account
for possible nonequilibrium in the neutral atom electronic energy levels. EA

ion is the ionization
energy of the atom corrected by the Debye ionization lowering, QA and QA+ are the atom and
ion partition functions, and nA, nA+ , and ne are the total number densities of the atom, ion, and
free electrons respectively. Summing Eqs. (3.40) and (3.41) over all electronic levels for each atom
yields the total emission and absorption coefficients associated with atomic photoionization. Note
that in LTE, θBi and χneq are both unity, and Kirchhoff’s law is recovered in Eq. (3.41) as for the
bound-bound case.

Molecular photoionization

Photoionization absorption cross-sections for molecules are typically only provided at room tem-
perature. Therefore, the following pragmatic approach is used to compute emission and absorption
coefficients [55],

ησ = 2hc2σ3 exp
(

−
hcσ

kBTe

)

nmolχ
neqSabs(σ), (3.43)

κσ =
1

2hc2σ3

[ 1

χneq exp
( hcσ

kBTe

)

− 1
]

ησ, (3.44)

where

χneq =
nionne

nmol

Qmol(Te, Te, Te)

2ξme(Te)Qion(Te)
exp

(Emol
ion

kBTe

)

. (3.45)
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The database includes appropriate molecular photoionization absorption cross-sections for C2, CN,
CO, N2, NO, and O2 [37, 39]. The cross-sections for N2, NO, and O2 actually correspond to global
absorption cross-sections, including dissociative photoionization, however these contributions are
at least an order of magnitude less than photoionization [37] and are therefore treated as pure
photoionization in this work. In addition, photoionization of CH and H2 have been added in this
work using absorption cross-sections taken from [140] and [144, 156], respectively, and are plotted
in Fig. (3.3). The sharp drop-offs in the CH and H2 cross-sections correspond to the ionization
energy of those molecules. For example, the ionization energy of H2 is approximately 15.6 eV or
about 126 000cm−1. Therefore, only photons with at least that much energy can ionize H2.

An example hydrogen absorption spectrum is shown in Fig. (3.4) for a pure hydrogen plasma in
LTE, at a temperature and pressure of 6000K and 0.3 bar respectively. Under these conditions, H2
accounts for just 0.1% of the mixture by volume, however the Lyman and Werner bands dominate
the absorption spectrum. Photoionization of H2 is the dominate contribution to the absorption
spectrum for wavenumbers above the ionization energy.
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Figure 3.3.: Equilibrium photoionization absorption cross-sections of CH, H, and H2, used in this
work. Data for each species has been taken from [140], [42], and [144, 156], respectively.

Other bound-free mechanisms

The HTGR databse includes photodetachment of the C– , N– , and O– anions [37, 39]. In general,
these processes are not well understood. The database relies on simple absorption cross-sections
related to the most dominate contributions to the photodetachment of each species. Typically,
these species are not included in CFD calculations for atmospheric entry flows. In this case, the
populations of the negative ions are computed assuming a Saha equilibrium at Te.

Schumann-Runge photodissociation of O2 is also considered, using LTE absorption cross-sections
compiled in [37]. The extension to a MT approach is presented by Lamet et al. [43].
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Figure 3.4.: LTE hydrogen absorption spectrum at T = 6000K and p = 0.3 bar.

3.3.3. Free-Free Processes

Free-free transitions, known as Bremsstrahlung radiation, occur when an electron emits a photon
after passing through the electric field of a neutral or ionic species. Bremsstrahlung radiation of
the atomic ions C+, N+, and O+ is considered using Kramers’ formula [157] corrected by a Gaunt
factor [37, 39]. Inverse Bremsstrahlung radiation of C [39], and N, O, N2, and O2 [37] is also
included through estimated absorption cross-sections obtained from the literature.

3.4. The Hybrid Statistical Narrow Band Model

It is evident from the previous sections that the accurate solution of the radiant intensity field
requires a massive computational undertaking. To solidify this fact, recall that the RTE must
be integrated along lines of sight passing through each point in the flow field, in every direction,
and at every wavenumber. The emission and absorption coefficients, required to solve the RTE,
are dependent on the local energy level populations of each species which may change rapidly
throughout the flow field, thanks to the strong thermochemical nonequilibrium that is characteristic
of hypersonic flows. In addition, because of the quantized nature of bound-bound transitions, the
emission and absorption coefficients have strong spectral variations, requiring millions of spectral
points to accurately resolve the spectral intensity for typical atmospheric entry problems. The
computational complexity is further increased when coupled solutions are needed, as a new intensity
field is required for each update of the radiative source terms.

In this section, the HSNB model is described which significantly reduces the computational com-
plexity of computing the radiative intensity by decreasing spectral detail of the resulting solution.
To begin, we recall that contributions of each radiative mechanism to the spectral emission and
absorption coefficients are additive, allowing Eq. (3.3) to be rewritten as

Iσ(s) = Iσ(0)
∏

k∈R

τkσ (0, s) +
∑

k∈R

∫ s

0
ηkσ(s

′)
∏

k′∈R

τk
′

σ (s′, s) ds′, (3.46)
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where R is the set of all considered radiative mechanisms (atomic lines, molecular systems, and con-
tinuum processes) and the superscripts k and k′ represent contributions to the emission coefficient
and transmissivities of an individual radiative mechanism.

Using X
∆σ

to denote the band-averaged quantity

X
∆σ ≡

1

∆σ

∫ σ2

σ1

X dσ, (3.47)

for a spectral narrow-band ∆σ, ranging from σ1 to σ2, integration of Eq. (3.46) over a narrow-band
yields

Iσ(s)
∆σ

= Iσ(0)
∆σ ∏

k∈R

τkσ (0, s)
∆σ

+
∑

k∈R

Ikσ(s)
∆σ

, (3.48)

where the band-averaged intensity associated with contribution k is given as

Ikσ(s)
∆σ

=

∫ s

0
ηkσ(s

′)τkσ (s
′, s)

∆σ ∏

k′∈R
k′ ̸=k

τk′

σ (s′, s)
∆σ

ds′. (3.49)

The following assumptions have been made to arrive at Eqs. (3.48) and (3.49):

1. absorption is statistically uncorrelated from the band-averaged boundary intensity over a
narrow-band, and

2. only self absorption is correlated with emission for a narrow-band.

The first assumption is generally valid because only highly emissive boundaries are considered in
this work, and thus

Iσ(0)
∆σ

≈ ϵ∆σ Ibσ(Twall)
∆σ

. (3.50)

The second assumption is more subtle, but is likely valid as there are no physical reasons for the
absorption of one mechanism to be significantly correlated to the emission of another.

Lamet et al. [55] have proposed to separate the set of radiative mechanisms into three groups: 1)
optically thick molecular systems, 2) optically thin molecular systems and continua, and 3) atomic
lines. The band-averaged quantities required in Eq. (3.48) can then be computed using a specific
model, depending on which of the three groups the contribution belongs. This allows the total
intensity to be split according to

Iσ
∆σ

= Ibound
σ

∆σ
+ Ithick

σ

∆σ
+ Ibox

σ

∆σ
+ Iat

σ
∆σ

, (3.51)

where Ibound
σ

∆σ
, Ithick

σ

∆σ
, Ibox

σ

∆σ
, and Iat

σ
∆σ

correspond to the band-averaged intensities from
the boundaries and the three groups listed above, respectively. Optically thick systems are treated
using a statistical narrow band approach, detailed in Section 3.4.1, while thin systems and continua
are treated with a simple box model presented in Section 3.4.2. Due to the relatively small number
of lines associated with electronic transitions of atoms, atomic lines are treated using a full line-
by-line (LBL) approach, discussed in Section 3.4.3. When the groups are coupled together, the
resulting method is called the Hybrid Statistical Narrow Band model [55].

3.4.1. Optically Thick Molecular Systems

The molecular systems presented in Section 3.3 are considered thick if the optical depth of the
system maxσ(κkσl) is greater than 0.1 for a homogeneous slab of pure gas in thermal equilibrium
at T = 8000K, p = 2atm, and l = 10 cm. This criterion represents a conservative estimate for
typical atmospheric entry conditions.
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For optically thick systems, the self absorption term in Eq. (3.49) is approximated as

ηkσ(s′)τkσ (s′, s)
∆σ

=
ηkσ(s′)

κkσ(s′)

∂

∂s′
τkσ (s′, s)

∆σ

≈
ηkσ(s′)

κkσ(s′)

∆σ
∂

∂s′
τkσ

∆σ
(s′, s). (3.52)

Under thermal equilibrium conditions, this approximation is valid because the emission and ab-
sorption coefficients satisfy Kirchhoff’s law, and thus the ratio is equal to the Planck function,
Eq. (3.2), and is uncorrelated over a narrow band to the transmissivity of the system. Lamet et
al. [55] have shown that Eq. (3.52) also remains valid in thermal nonequilibrium for the range of
conditions representative of atmospheric entry flows. For example, it was shown that for an ex-
treme temperature ratio of Tr/Tv = 2, the maximum error introduced by the splitting in Eq. (3.52)
for the N2 Birge-Hopfield 2 system was less than 10% and in general, far less than 1%.

We now consider the intensity along a discretized ray with constant thermochemical properties
between points si such that φσ(s) = φσ(si) for si ≤ s < si+1, where φσ represents any spectral
radiative property. Inserting Eq. (3.52) into Eq. (3.49), the band-averaged intensity associated
with a thick molecular system k at point sj along such a ray may be expressed as

Ikσ(sj)
∆σ

=
j−1
∑

i=1

[

τkσ (si+1, sj)
∆σ

− τkσ (si, sj)
∆σ
] ηkσ
κkσ

(si)

∆σ
∏

k′∈R
k′ ̸=k

τk′

σ (s∗i , sj)
∆σ

, (3.53)

where the mean equivalent point s∗i has been introduced, such that

τkσ (s
∗
i , sj)

∆σ
≡
√

τkσ (si, sj)
∆σ

τkσ (si+1, sj)
∆σ

, (3.54)

in order to simplify the spatial integration in Eq. (3.49). The introduction of s∗i is a pragmatic
choice with little impact on the solution (e.g., see [71]).

The band-averaged emission to absorption coefficient ratio is only a function of the local state
of the gas, and thus can be easily tabulated. What remains is to define how to compute the mean
transmissivity which depends on integration along the ray.

Uniform path

The SNB model assumes that individual lines are randomly located within a narrow band and that
the strengths of the lines follow a given probability distribution. We first consider a homogeneous
path of length l. Meyer and Goody [136] have shown that the mean transmissivity of a narrow
band along this path will be

τσ(l)
∆σ

= exp
(

−
W

δ

)

, (3.55)

where δ = ∆σ/N is the average line spacing for the N lines in the spectral band and W is the
mean black equivalent line width of the band, defined as

W =
1

N

N
∑

i=1

∫ +∞

−∞

[

1− exp(−κiσ l)
]

dσ, (3.56)

with κiσ representing the contribution of the ith line to the spectral absorption coefficient.
Table 3.2 provides a summary of analytical expressions for the mean black equivalent line width,

assuming Lorentz or Doppler line shapes with unique half widths γL0 and γD0 in the band, for three
common line strength probability distribution functions. It is clear from the table that WL/δ and
WD/δ depend on only three parameters, k, βL, and βD, regardless of the line intensity distribution
function. k is the mean absorption coefficient per partial pressure of the absorbing species, while
β characterizes the degree of line overlap for Lorentz or Doppler line shapes.

Unfortunately, there is no analytical expression for the mean black equivalent line width in the
Voigt regime. The approximate expression of Ludwig et al. [158] has been retained in this work
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Table 3.2.: Summary of analytical relationships for mean black equivalent line widths for a uniform path of length l, corresponding to different
probability distribution functions P (S) of line strength S. k is the mean absorption coefficient per partial pressure pa of species a.

P (S) k Lorentz profile Doppler profile

βL WL/δ βD WD/δ

Uniform
δ(S − S0) S0

δ
γL
0

δ
2πβLL

( palk

2πβL

)a γD
0

δ

√

π
ln 2

βDD
(palk

βD

)b

Goody exponential
1
S0

exp
(

−
S
S0

) S0

δ
γL
0

δ
palk

√

1 + palk

4βL

γD
0

δ

√

π
ln 2

βDE
(palk

βD

)c

Malkmus tail inverse-exponential

exp
(

− S
Sm

)

− exp
(

− RS
Sm

)

S lnR

Sm

δ lnR
πγL

0

δ lnR 2βL

(

√

1 +
palk

βL

− 1
)

γD
0

δ lnR

√

π
ln 2

βDH
(palk

βD

)d

aL(x) = xe−x[I0(x) + I1(x)]
bD(x) = 1√

π

∫∞
−∞[1− exp(−xe−ξ2)]dξ

cE(x) = 1√
π

∫∞
−∞

xe−ξ2

1+xe−ξ2
dξ

dH(x) = 1√
π

∫∞
−∞ ln(1 + xe−ξ2)dξ
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for computing the Voigt width as

WV

δ
= palk

√

1− Ω−1/2,

Ω =

[

1−
(

1

palk

WD

δ

)2]−2

+

[

1−
(

1

palk

WL

δ

)2]−2

− 1.

(3.57)

The Ludwig formula has the advantage that the correct solution is obtained in a pure Lorentzian
or Doppler regime.

Non-uniform path

Both the classical Curtis-Godson and Lindquist-Simmons approaches [159] are considered for com-
puting W/δ along a non-uniform path. The Curtis-Godson method assumes that non-uniform
paths may be treated the same as a uniform path, using path-averaged properties. The pressure
path length u, mean absorption coefficient k

∗
per partial pressure pa of the absorbing species, and

mean overlap parameter β
∗

are defined as

u =

∫ s

s′
pa(s

′′)ds′′, (3.58)

k
∗
=

1

u

∫ s

s′
pa(s

′′)k(s′′)ds′′, (3.59)

β
∗
=

1

uk
∗

∫ s

s′
pa(s

′′)k(s′′)β(s′′)ds′′. (3.60)

The expressions given in Table 3.2 and Eq. (3.57) can then be reused along a non-homogeneous
path by replacing pal with u, k with k

∗
, and βL,D with β

∗

L,D. The resulting expressions for the
Lorentz and Doppler mean black equivalent line widths are given in Table 3.3 for the line strength
distributions of interest in this work and Eq. (3.57) is updated accordingly,

WV

δ
= uk

∗
√

1− Ω−1/2,

Ω =

[

1−
(

1

uk
∗

WD

δ

)2]−2

+

[

1−
(

1

uk
∗

WL

δ

)2]−2

− 1.

(3.61)

The Lindquist-Simmons approach consists in finding a suitable expression for the local spa-
tial derivative of the mean black equivalent width in the Lorentz and Doppler regimes and then
computing W/δ through numerical integration,

W

δ
(s′, s) = −

∫ s

s′

1

δ

∂

∂s′′
W (s′′, s)ds′′, (3.62)

where the derivative ∂W/∂s′′ is a function of both local and averaged parameters. Table 3.3
provides the expressions necessary to compute the mean black equivalent width derivatives for both
Lorentz and Doppler regimes [160]. The Voigt mean black equivalent widths are then obtained
using Eq. (3.61) as in the Curtis-Godson approximation.

3.4.2. Optically Thin Molecular Systems and Continua

The band-averaged intensity associated with optically thin systems and continua may be expressed
as

Ikσ(sj)
∆σ

=
j−1
∑

i=1

ηkσ(si)
∆σ ∏

k′∈R

τk′

σ (s∗i , sj)
∆σ

, (3.63)
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Table 3.3.: Summary of analytical relationships for mean black equivalent line widths for a non-
uniform path using the Curtis-Godson and Lindquist-Simmons approximations.

Line shape Curtis-Godson Lindquist-Simmons

P (S) W
δ
(s′, s) −

1
δ

∂
∂s′′

W (s′′, s)
[

pa(s
′′)k(s′′)

]−1

Lorentz: x = uk
∗
/2βL

∗
, ρ = βL(s

′′)/βL
∗

Malkmus 2βL
∗
(
√
1 + 2x− 1) 2xρ+ (1− ρ2)

√
1 + 2x

(1− ρ2 + 2x)
√
1 + 2x

Doppler: x = uk
∗
/βD

∗
, ρ = βD(s′′)/βD

∗

Goody βD
∗
E(x)a 1√

π

∫ +∞

−∞

exp(−ξ2)
[1+x exp(−ρ2ξ2)]2

dξ

Malkmus βD
∗
H(x)a 1√

π

∫ +∞

−∞

exp(−ξ2)

1+x exp(−ρ2ξ2)
dξ

aE(x) and H(x)are defined in Table 3.2.

where self absorption is assumed to be uncorrelated to the emission of the mechanism k. This is
valid for optically thin systems because the spectral transmissivity is nearly unity over the entire
band. In the case of continuum contributions, Eq. (3.63) is also valid due to the low spectral
variability of continuum absorption and emission coefficients. For example, the photoionization
absorption cross-sections shown in Fig. (3.3) may be assumed to be constant over a narrow spectral
band.

The band averaged transmissivity for optically thin systems and continua are computed using
the simple Box model [145], such that

τkσ (s
′, s)

∆σ
= exp

(

−
∫ s

s′
κkσ(s

′′)
∆σ

ds′′
)

. (3.64)

In practice, the use of the Box model allows us to reduce all optically thin systems and continua
into a single pseudo mechanism which we denote with super script “box” notation. Denoting the
set of optically thin and continua contributions as Rbox, Eq. (3.49) may be summed over all such
contributions to yield

Ibox
σ (sj)

∆σ
=
∑

k∈Rbox

Ikσ(sj)
∆σ

=
j−1
∑

i=1

ηbox
σ (si)

∆σ
τbox
σ (s∗i , sj)

∆σ ∏

k′∈R
′

box

τk′

σ (s∗i , sj)
∆σ

, (3.65)

where R
′

box denotes all contributions not belonging to Rbox, and the pseudo mean transmissivity
for all Box model contributions simplifies to,

τbox
σ (s∗i , sj)

∆σ
=

exp

[

−
(si+1 − si)

2
κbox
σ (si)

∆σ
−

j−1
∑

k=i+1

(sk+1 − sk)κbox
σ (sk)

∆σ
]

. (3.66)

based on Eqs. (3.54) and (3.64) for the discretized ray discussed in Section 3.4.1. The pseudo mean
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Figure 3.5.: Absorption coefficient spectrum of N, O, N+, and O+ lines for the wavenumber range
1000 cm−1 to 100 000cm−1 at 1 bar and 15 000K. Mole fractions for N, O, N+, O+ are 0.67, 0.13,
0.08, and 0.02 respectively.

absorption and emission coefficients are given simply by the sum over all contributions in Rbox,

κbox
σ (s)

∆σ
=

∑

k∈Rbox

κkσ(s)
∆σ

, and (3.67)

ηbox
σ (s)

∆σ
=

∑

k∈Rbox

ηkσ(s)
∆σ

. (3.68)

The use of Eq. (3.66) can greatly reduce the number of exponential and square-root evaluations
required to compute the transmissivity of all thin and continua contributions, especially when a
large number of spatial points or radiative mechanisms are required for accurate radiative heat
transfer calculations.

3.4.3. Atomic Lines

Unfortunately, the SNB and Box models are not suitable for atomic spectra due to the weak
spectral density of atomic lines [55]. Therefore, the contribution of atomic lines to the band-
averaged intensity is taken to be

Iat
σ (sj)

∆σ
=

j−1
∑

i=1

[

τat
σ (si+1, sj)− τat

σ (si, sj)
]ηat

σ

κat
σ

(si)

∆σ
∏

k∈R
k ̸=at

τkσ (s
∗
i , sj)

∆σ
, (3.69)

where [τat
σ (si+1, sj)− τat

σ (si, sj)]ηat
σ /κat

σ (si)
∆σ

is obtained exactly from a LBL calculation. Han-
dling atomic spectra in this way is not too penalizing because the typical number of atomic lines
is relatively minimal (on the order of one thousand) compared to that of molecular systems which
may contain millions of individual lines. A notable example is the CO2 infrared spectrum which
contains over 600 million lines [141].

In addition to the significantly smaller line count, the spacing between atomic lines allows for a
highly reduced spectral mesh size when only atoms are considered. Fig. (3.5) shows an example
atomic absorption spectrum obtained with the HTGR database, relevant to atmospheric reentry, in
which significant spacing is present between many of the lines. A notable contribution of this work,
first presented in [161], was to develop a spectral mesh adaptation algorithm which minimizes the
number of spectral points required to compute the band-averaged product in Eq. (3.69).
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Fixed point adaptive mesh

Da Silva [162] has developed fixed, 5, 7, 9, and 11 point stencils for approximating the Voigt line
shape based on the estimated line center, line wing, and far wing regions of each line. For a given
line, the estimated distance from the line center, to the line wing, ∆σW , and far wing, ∆σFW ,
boundaries are computed by

∆σ = 2
π (1 + ζ) γL + βγD. (3.70)

For ∆σW , the values of the {ζ,β} constants are taken to be {1, 1.8}, while for ∆σWF , they are
chosen as {2.6, 5.8} based on an analysis of Lorentz and Doppler line profiles by Lino da Silva.
The 11 point line stencil, which will be used in this work, is then taken to be σul,σul ±∆ where
∆ is the 5 point half-stencil

∆ =
{

1
8γV ,

1
2γV ,∆σW ,∆σFW , 25

2 γV
}

.

γV =
√

γ2D + γ2L is the estimated Voigt half-width. For each atomic line, the 11 points above are
added to the overall spectral mesh. It was shown that such a mesh provides a reasonably accurate
resolution of line intensities for low pressure atmospheric entry conditions due to the low degree
of line broadening in that regime [162]. This method will therefore be used as a benchmark for a
slightly more detailed algorithm presented in the next section.

Augmenting with bisection

The fixed point method above is likely to work well in spectral regions with a high number of
electronic transitions and with a large degree of line overlap because the majority of the points
are distributed around the line centers. For areas in which there are large distances between
neighboring line centers, the method is likely to provide poor estimates of spectral quantities due
to the large error in interpolating the spectral values in the far line wing regions.

For this reason, the 11 point stencil in the previous section has been modified to ensure the far
line wing regions are correctly handled. To begin, the complete line list for all atoms considered
is first ordered by ascending line center values. Then, each region between two consecutive lines
is considered. It is assumed that consecutive lines have little overlap, and thus the regions around
each line center can be assumed to be well approximated by the line shape corresponding to
that line alone, and not by other lines in the same vicinity. For each consecutive line pair, an
adaptive mesh is then created based on the two corresponding line shapes. We will denote the
left line shape properties with the superscript L, and the right properties with an R. First, the
approximate “center" point between each line is defined simply as σLR = (σL

ul + σR
ul)/2. Next the

following set of points are added to the mesh based on the 11 point stencil above, but ensuring
that points added for each line do not overlap one another.

σL
ul +∆L, ∀ ∆L < σLR − σL

ul

σR
ul −∆R, ∀ ∆R < σR

ul − σLR

For lines which are sufficiently close, the above procedure will prevent unnecessary points from
being added to the spectral grid. Note that it may easily be adapted to any other fixed point
stencil based on line shape widths.

For lines which are very far apart in comparison to their line widths, the region around σLR

will likely be poorly resolved. Therefore, the above set of points are augmented by adding points
recursively to the center region by successively bisecting the two intervals closest to the last points
added by the stencil above until the spacing between the outermost two stencil points for each line
is at least half the size of the spacing between the outermost stencil point and the next point. In
other words, two bisection fronts are propagated towards the line centers until the spacing between
points matches that of the two outermost stencil points of each line.

Fig. (3.6) and Fig. (3.7) show both the absorption spectra and band averaged curves of growth
for two spectral regions from Fig. (3.5) as obtained using the adaptive meshes compared to high
resolution spectra. In the small wavenumber range 10 000cm−1 to 12 000cm−1 shown in Fig. (3.6),
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Figure 3.6.: Atomic absorption coefficients and curves of growth using adaptive spectral grids,
compared to a high-resolution mesh, for the spectral range 10 000cm−1 to 12 000cm−1. Same
conditions as in Fig. (3.5).
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Figure 3.7.: Atomic absorption coefficients and curves of growth using adaptive spectral grids,
compared to a high-resolution mesh, for the spectral range 75 000cm−1 to 77 000cm−1. Same
conditions as in Fig. (3.5).

both adaptive methods work well. This is largely due to the fact that there are many spectral
lines close to one another, and while some of them are very weak, they still contribute grid points
in the wing regions of stronger lines. The differences become much more apparent in the larger
wavenumber range 75 000cm−1 to 77 000cm−1 as in Fig. (3.7). Here, the atomic lines are far
enough apart such that the 11 point stencil is not wide enough to encompass the far wing regions
of some lines. Therefore, large interpolation errors are clearly visible in the absorption spectrum
using only these points, while the points augmented with the bisection algorithm represent the
true spectrum well. The affect this interpolation error has on the computed curves of growth is
also clearly visible, with a significant error shown even at a column length of 1mm for both band
regions.

Conditions for line width calculations

A careful reader will note that the conditions for calculating the line widths in the previous sub-
sections were not specified. In general, the spectral mesh should remain constant for all points in
the flow field in order to integrate along each ray. However, the above mesh adaptation scheme
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would generate different spectral meshes for each spatial location thanks to the variation in mixture
temperatures and pressure.

In practice, the spectral mesh is computed using a “representative” spatial point from the flow
field calculation. Using the temperatures and species number densities at this point, line widths
are computed for each atomic line and the adaptive mesh is generated according to the procedure
detailed in the previous subsections. The choice of this point is somewhat arbitrary. A pragmatic
choice was made in this work to use the point with the maximum translational temperature as the
representative point when generating the atomic spectral mesh. In order to investigate the utility
of this choice, the adaptive spectral mesh size and error in the wall radiative heat flux relative to
a high resolution mesh, associated with all locations in a typical flow field, are given in Fig. (3.8).
From the figure, it is clear that the mesh size is loosely correlated with the combination of pressure
and temperature, following the scaling of the line half widths discussed in Section 3.3.1. However,
it is important to note that atomic line radiation is only one component of the total radiative
heat flux and the errors shown in Fig. (3.8) are not indicative of the error on the total heat flux,
when all contributions are included. A more thorough investigation of the impact the choice of
representative flow field point has on the overall accuracy and efficiency of the HSNB method could
be made in the future.

3.4.4. Putting It All Together: The HSNB Database

SNB parameters have been generated using the spectroscopic data from the HTGR database
described in Section 3.3. SNB parameters for air systems were computed by Lamet et al. [55] while
the majority of the parameters for contributions from carbonaceous species have been computed by
Depraz et al. [137]. An SNB model for carbon dioxide was recently developed by Rivière et al. [142,
160] based on the extensive CDSD-4000 spectroscopic database [141]. Lastly, SNB parameters for
the C3 Swings and UV band systems, H2 Lyman and Werner bands, as well as CH, H, and
H2 photoionization have been computed in this work based on the data presented in Section 3.3.
Table 3.4 summarizes the parameters stored in the SNB database for the different types of radiative
contributions.

Optically thick molecular systems

The SNB model is used to treat optically thick molecular systems. The SNB parameters, k, η,
η/κ, βD, and βL, have been tabulated for narrow bands of 1000 cm−1 ranging from 1000 cm−1

to 200 000cm−1 assuming a two-temperature model (ie: Th = Tr, Tv = Tel = Te). Air systems
are treated with a temperature grid of 500 ≤ Tr ≤ 50 000K and 500 ≤ Tv ≤ 25 000K [55] while
carbonaceous systems use a grid of 500 ≤ Tr ≤ 26 000K and 500 ≤ Tv ≤ 16 000K [137]. Extensions
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Figure 3.8.: Example Fire II flow field (left) and adaptive spectral mesh characteristics obtained
using each point in the flow field as the reference condition for line half widths (right) for lines of
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Table 3.4.: Relationship between stored database quantities and SNB parameters required for each radiative contribution. Barred symbols in the table
body represent stored quantities. p, pa, and pe are the mixture static pressure, partial pressure of the species on the absorption side of each process,
and free-electron pressure, respectively, in Pa.

Type / # of κσ
∆σ ησ

∆σ ησ/κσ
∆σ

βD βL

Model Params.

Optically thick molecular systems (non-predissociative)
SNB 5 pak(Tr, Tv) paη(Tr, Tv) η/κ(Tr, Tv) βD(Tr, Tv) pβL(Tr, Tv, 10

5 Pa)10−5

Optically thick molecular systems (predissociative)
SNB 6 pak(Tr, Tv) paη(Tr, Tv) η/κ(Tr, Tv) βD(Tr, Tv) a(Tr, Tv)p+ b(Tr, Tv)
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Figure 3.9.: Comparison of band-averaged transmissivities between full LBL and SNB models for
the H2 Werner system at 1 atm.

of the expressions in Table 3.4 to account for cases when the electronic levels are not populated
according to a Boltzmann distribution at Tv (ie: electronic specific CR or Boltzmann at Tel ̸= Tv)
have been previously reported by Lamet et al. [55].

The parameters k, η, and η/κ have been computed by averaging LBL spectra for each temper-
ature condition and are stored per partial pressure of the absorbing species.

The mean overlap parameters, βD, and βL, have been adjusted using a non-linear least squares
procedure to best match band-averaged curves of growth computed using LBL calculations in pure
Doppler and Lorentz regimes (resp.). It was found that a Malkmus distribution best matched
LBL results for the Lorentz overlapping parameter for all systems [55, 137]. Since Lorentz broad-
ening is proportional to pressure, βL is tabulated at a total pressure of 1 bar and the actual value
is retrieved by multiplying by p in bar. When predissociative broadening is taken into account,
two parameters, a and b, are tabulated to account for the constant offset, as shown in Table 3.4.
Which group each species belongs to is shown graphically in Fig. (3.10).

For the Doppler overlap parameter, it was found that the Goody distribution gave the best
results for air systems, while the Malkmus worked best for carbonaceous systems. A similar study
was conducted in this work during the development of SNB parameters for the H2 Lyman and
Werner systems. Mean transmissivities for both systems using adjusted values of βD assuming
both Goody and Malkmus distributions have been systematically compared to LBL results for
various temperature and pressure combinations. Example mean transmissivities for the H2 Werner
system at 1 atm are shown in Fig. (3.9). Based on this analysis, it was determined the Malkmus
distribution was best suited for computing βD, in agreement with other non-air systems.
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Optically thin molecular systems

Optically thin molecular systems are treated using the Box model as shown in Section 3.4.2. The
required averaged quantities, κ and η, have been tabulated using the same procedure as for the
thick systems. Which systems are considered thick or thin is shown in Fig. (3.10).

Continua

Continua are also treated using the Box model. However, for each continuum process detailed in
Sections. (3.3.2) and (3.3.3), the band-averaged parameters are only functions of a single tempera-
ture. Therefore, parameters for all continuum processes are tabulated using a single temperature.
Nonequilibrium values can then be retrieved using the expressions in Table 3.4.

3.5. Concluding Remarks

In this chapter, the necessary ingredients for coupling radiation with the fluid conservation equa-
tions have been detailed. In particular the radiative heat flux, power, and photochemical mass
production terms were given as integral functions of the radiant intensity field. The solution of
the RTE for the intensity was also given, including appropriate boundary conditions typical of
atmospheric entry problems.

The various bound-bound, bound-free, and free-free radiative mechanisms which contribute to
the spectral emission and absorption coefficients of the gas have been summarized. These coeffi-
cients are computed with the HTGR database which has also been summarized in this chapter.
In particular, a focus was placed on the implementation of nonequilibrium spectral emission and
absorption coefficients for each type of radiative mechanism. The data required and their sources
for each mechanism have been carefully enumerated, including mechanisms added to the database
in this work. The new contributions include hydrogen lines, C3 Swings and UV systems, as well
as the photoionization of H, H2, and CH.

The HSNB model has been described in detail, which combines the statistical narrow band, box,
and adaptive line-by-line models as an efficient and accurate alternative to the full line-by-line
solution of the intensity field. The narrow band parameters required for the model implementa-
tion have been thoroughly presented for each radiative mechanism. SNB parameters have been
computed in this work for the H2 Lyman and Werner systems, by adjusting the Doppler and
Lorentz overlap parameters to fit curves of growth for each narrow band. Comparisons with band-
averaged transmissivities computed with the line-by-line approach show excellent agreement with
the resulting SNB parameters for these systems.

Lastly, a new adaptive mesh algorithm tailored to the spectra of atomic lines has also been
presented in this work. The algorithm combines a simple fixed point stencil designed to accurately
capture line centers with an adaptive bisection algorithm for the placement of spectral points in
the far line wing regions of atomic lines. The computational benefits of this method as compared
to conventional line-by-line approaches will be demonstrated in Chapter 7.
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CHAPTER 4

Development of Mutation++

“The best computer is a man, and it’s the only one that can be mass-produced by unskilled
labor."

— Wernher von Braun

4.1. Introduction

As was shown in Chapter 2, several different thermochemical models can be used for hypersonic
flows depending on the problem of interest and the level of fidelity required in the solution. The
thermochemical model used has a direct effect on the evaluation of physicochemical properties
necessary to solve the governing equations. These include thermodynamic and transport properties,
chemical production rates, and energy transfer rates. The evaluation of each of these properties
further depends on the selection of a variety of specialized algorithms and physicochemical data
including species partition functions, transport collision integrals, and reaction rate coefficients.
The implementation, testing, and maintenance of all of the physicochemical models, algorithms,
and data required to simulate hypersonic flows represent a significant cost in terms of human
resources and time necessary to develop a hypersonic CFD tool. Furthermore, as newer models,
algorithms, or data become available, a significant amount of work is typically needed to update
existing CFD codes when the thermochemical model is embedded directly in the code.

These observations have led to the desire to reduce the work necessary to implement new models
and algorithms and centralize their development into a single software library which may be used
by multiple CFD codes to maximize code reuse and testing. As a result, one outcome of this
thesis was the development of a new software library called “MUlticomponent Thermodynamic
And Transport properties for IONized gases, written in C++” (Mutation++). The library was
designed with several goals in mind, including

1. provide accurate thermodynamic, transport, and chemical kinetic properties for multicom-
ponent, partially ionized gases,

2. ensure the efficient evaluation of these properties using state-of-the-art algorithms and data
structures,

3. be easily extendable to incorporate new data or algorithms as they become available,

4. interface to any CFD tool through a consistent and logical interface,

5. use self-documenting database formats to decrease data transcription errors and increase
readability, and

6. be open source to promote code and data sharing among different research groups.

Solutions to the first three goals have been previously developed by Bottin et al. [103] in the
PEGASE library and more recently by Magin [163] in the MUTATION library. These predecessors
were developed in the procedural Fortran programming language and were primarily aimed at the



74 Chapter 4. Development of Mutation
++

accurate and efficient evaluation of thermodynamic and transport properties for a few mixtures
relevant to atmospheric entry. Mutation++ builds on these works, using the C++ language and
advanced Object-Oriented Programming (OOP) programming techniques. In particular, starting
from about 50 species in MUTATION, this work extends the reach of the thermodynamic data
to over 1200 species through the incorporation of new databases. An advanced equilibrium solver
has also been developed as part of the library for computing linearly constrained, multiphase
equilibria. This algorithm is presented in Chapter 5. A new collision integral database has also
been developed which accepts user-defined collision integral formats and provides an extensible
way to manage the default behavior for missing data. In addition, the library successfully provides
a level of abstraction between any generic CFD tool and the thermochemical models employed by
exploiting the structure of generalized governing equations for hypersonic flows, combined with
modern OOP techniques.

It is worth noting that some of the features in Mutation++ already exist in other libraries, such
as Cantera [164], Chemkin [165], CEA [166], and EGlib [167]. However, these libraries tend to
focus either on combustion related problems in thermal equilibrium or are specialized in providing
only certain types of properties. The Mutation++ library is designed from the ground up with
hypersonic plasma flows and nonequilibrium effects in mind.

In the context of this thesis, the library has been coupled with the numerical tools described
in Chapter 6 to provide the solutions obtained in Chapter 7. This chapter presents the object-
oriented design and validation of Mutation++. In the next section, a short introduction to
OOP concepts in C++ is presented in order to define the vocabulary used throughout the rest
of the chapter. Section 4.3 gives a brief overview of the design of the library including how it
interfaces with a generic CFD code. The next three sections provide a more detailed discussion
of the thermodynamic, transport, and chemical kinetics data and algorithms used. Finally, some
concluding remarks are presented in Section 4.7.

4.2. Object Oriented Software Design in C++

C++ is a general-purpose programming language, supporting (among others) procedural, objected-
oriented, and generic programming paradigms [168]. Procedural languages such as C or Fortran
rely on blocks of code, known as procedures (also known as functions or subroutines), which are
run in serial to complete a task. In contrast, OOP languages break the description of a task into a
collection of objects which each have specific attributes and functionality. The task is then solved
through the interaction of different objects. In C++, the definition of a type of object is called a
class. Classes represent the prototypes from which objects are created and describe the attributes
a type of object has and what methods the objects can perform to modify those attributes (known
as member variables in C++). For example, a class could be used to describe a person. The person
class will be denoted as Person. A Person has attributes such as their name and gender and
can perform actions such as walking or talking. Several Person objects can then be created to
model a collection of people.

A brief review of a few important C++ concepts used in the design and implementation of
Mutation++ is presented below. This is by no means a complete or thorough review of the topic.
For more detailed information, the reader is referred to dedicated works on the C++ language
such as [168–170].

Data encapsulation

Data encapsulation is a central feature of OOP in which data about specific objects are encapsulated
in those objects. From a design standpoint, data encapsulation allows users of a class to ignore
the implementation of the class and instead focus on how it should be used.
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Polymorphism and abstraction

Polymorphism allows classes to inherit or extend the attributes and functionality of another class
or classes. A class which extends another class is called the child class or subclass and the class
which is extended is called the parent or base class. Base classes can also be abstract, meaning
that they do not fully implement all of their methods, instead forcing child classes to provide the
appropriate implementation. Polymorphism and abstraction are very important components in
OOP. They provide the ability to have a collection of objects which share the same interface but
may have different behaviors.

Templates and metaprogramming

C++ supports generic programming through templates. A templated class or method is a generic
program unit which acts on a general type. A simple example would be an Array type which
consists of an ordered collection of numbers. In C++, a “number” can be represented by a variety
of different types such as integers or floating point decimal numbers. Instead of creating multiple
classes which provide exactly the same behavior for each numeric type, such as IntegerArray
and FloatArray, a templated class could be used to write a generic array type. The templated
version is written as Array<T>, where <T> denotes the Array class excepts a generic template
parameter T. Then, in order to create an array of integers, one simply writes Array<int>.

Templates are evaluated at compile-time, meaning that all generic template classes in C++ be-
come specific classes when compiled. For example, the compiler will actually create two separate
array classes when it sees Array<int> and Array<float>. Compile-time template evaluation
provides an extremely powerful programming technique to be used in C++, known as metapro-
gramming. Template metaprogramming allows certain methods or algorithms to be evaluated at
compile-time, which can provide significant performance improvements over conventional program-
ming techniques.

Self registration

Self registration is a programming pattern in which concrete child classes can be instantiated as
a base class using a given name represented as a string. In short, self registration allows a user
to select a particular implementation of a base class, without needing to know how to create
that specific type of object. As will be shown in this chapter, self registration has been used in
Mutation++ to enable a variety of interchangeable models and algorithms to be selected by a user
through a string loaded from an input file. For a more detailed discussion of the self registration
pattern, see the work of Lani [171].

Class diagrams

Finally, the remainder of the chapter makes use of a diagram style, known as a class diagram,
in order to convey certain aspects of the design of the Mutation++ library. Class diagrams are
part of the Unified Modeling Language (UML) which provides structural and behavior diagram
formats for representing object-oriented software designs. In particular, they represent the static
relationship between individual classes which form a software solution. Fig. (4.1) provides a generic
example of a UML class diagram, depicting the format used here for representing class attributes
and methods, composition, aggregation, abstract classes, inheritance, templated classes, and the
self registration pattern.

4.3. Overview of the Library

This section provides a general overview of the Mutation++ library. To begin, a general set of
governing equations is presented, encompassing all of the energy partitioning and thermochemical
nonequilibrium models discussed in Chapter 2. A separation between the solution of the governing



76 Chapter 4. Development of Mutation
++

Parameter

Class1

attribute

method()
AbstractClass

<<self register>>

ChildClass1 ChildClass2

Composition Class2

Aggregation

TemplateClass

Figure 4.1.: Example UML class diagram.

equations and the evaluation of the physicochemical properties is then illustrated and used to
define the high-level design of Mutation++.

4.3.1. Generalized System of Governing Equations

The governing equations presented in Chapter 2 for hypersonic flows can be described generally
by the equation,

∂

∂t
U +∇ · F c +∇ · F d = Sk + Sr, (4.1)

where the conservative variable and convective and diffusive flux vectors are
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and the kinetic and radiative source term vectors are written as
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, (4.3)

where the tilde on top of the mass and internal energy variables indicates that these parameters
expand to fit the size of the energy partitioning model being used. For example, when a thermo-
chemical nonequilibrium model is used, ρ̃j = ρj , ∀ j ∈ S∗. If instead, chemical equilibrium with
elemental demixing is assumed, then ρ̃j = ρej , ∀ j ∈ E . If the mixture is frozen or in equilibrium
without elemental demixing, then only the total continuity equation is needed and ρ̃j = ρ. The
diffusive fluxes, internal energies, and source terms scale in the same way. The ψ̃m in the kinetic
source term vector is unity if the internal energy mode m contains the electron energy and zero
otherwise.

Regardless of which model is used, the total density, energy, and enthalpy are given as

ρ =
∑

j∈S∗

ρj(Ũ ), (4.4)

ρE =
∑

j∈S∗

(ρe)j(Ũ) +
1

2
ρu · u, and (4.5)

ρH = ρE + p(Ũ), (4.6)

where Ũ = [ρ̃j , ρe, ρẽ
m]T is the thermochemical state-vector. The exact functional dependence

each thermochemical property has on the state vector depends on the model being used.
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Figure 4.2.: Relational dependence between Mutation++ and a CFD solver.

Mixture

ThermodynamicsTransport Kinetics

StateModel
<<self register>>

Figure 4.3.: Overview of the Mutation++ library.

4.3.2. The State Model

The mapping U 3→ Ũ which converts the conservative variable vector to the thermochemical state
vector, introduced in the previous section, is independent on the thermochemical model employed,
since the static energy density can always be constructed from conserved quantities. Therefore,
from the point-of-view of a CFD code, the numerical method used to solve Eq. (4.1) is independent
of the thermochemical model, since the form of the governing equations does not change. This
observation leads to a clear separation between the CFD solver and the physicochemical modeling
used for a given problem and provides the foundation of the Mutation++ library.

The relational dependence between a CFD solver and Mutation++ is given in Fig. (4.2). The
CFD code is responsible for the solution of the governing equations. This includes the selection
of the geometry, coordinate system, numerical solution methods, and boundary conditions. Con-
versely, Mutation++ handles the evaluation of thermodynamic and transport properties, chemical
production and energy transfer rates, depending on the desired physicochemical model and given a
generic state vector from the CFD code. The link between CFD and Mutation++ has been called
a state model in this work. A state model represents a specific thermochemical model, interprets
the state vector given by the CFD tool, and provides state-dependent properties back. For ex-
ample, an equilibrium state model would interpret the state vector as element densities and total
static energy and know that the thermal conductivity is a combination of heavy, electron, internal,
and reactive terms. Using this state model concept allows different physicochemical models to be
interchanged in a single CFD code and maximizes the reuse of data and algorithms necessary for
computing thermochemical properties.

4.3.3. High-level Design

Fig. (4.3) provides an overview of the design of the Mutation++ library. The library is split
into three main modules - thermodynamics, transport, and kinetics - which are implemented as
classes. A Mixture class inherits the methods of each module in order to provide all of the
functionality in a single class. Organizing the library in this way promotes data encapsulation
and extendability. The Thermodynamics class owns a StateModel which implements the state
model concept described in the previous subsection. The StateModel is self registering, allowing
a user to change the model being used at any time using a simple string. In the following sections,
each of the modules presented in Fig. (4.3) are discussed in further detail.
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4.4. Thermodynamics

This section details the design of the thermodynamics module in Mutation++. Two thermody-
namic database formats have been considered: a simple Rigid-Rotor Harmonic-Oscillator (RRHO)
model, and a database of polynomial curve-fits developed at NASA Glenn Research Center. Both
models are described in the following sections, followed by an overview of the object-oriented design
of the thermodynamics module.

4.4.1. The Rigid-Rotor and Harmonic Oscillator Model

Under the RRHO approximation, the internal energy of a molecule i is partitioned into separate
rotation, vibration, and electronic contributions, allowing the internal partition function to be
written as

Qint
i = Qr

i(Tr)Q
v
i (Tv)Q

el
i (Tel), (4.7)

according to the discussion presented in Section 2.2.2. In order to compute the rotational contri-
bution, the molecule is treated as a rigid-rotor and characterized by a constant moment of inertia
Ii. The vibrational contribution is determined by assuming that each vibrational mode k of the
molecule may be treated as a harmonic-oscillator with frequency νki. Under these assumptions,
the rotational, vibrational, and electronic partition functions may be expressed as [172]

Qr
i(Tr) =

1

σi

(

Tr

θri

)

Li
2

, (4.8)

Qv
i (Tv) =

∏

k

[

1− exp

(

−
θvki
Tv

)]−1

, (4.9)

Qel
i (Tel) =

∑

k

ael
ki exp

(

−
θelki
Tel

)

, (4.10)

where θri = h2/(8π2IikB) is a characteristic temperature for rotation, θvki = hνki/kB are char-
acteristic temperatures for each vibrational mode k, and θelki = Eel

ki/kB are the characteristic
temperatures associated with the electronic level k, having energy Eel

ki and degeneracy ael
ki. Con-

stants σi and Li describe the symmetry and linearity of the molecule. For linear molecules, the
steric (or symmetry) factor, σi, is defined as 1 for unsymmetric molecules (CO, NO, etc.) and 2 for
symmetric ones (N2, O2, CO2, etc.). For nonlinear polyatomic molecules, the value of σi depends
on the molecule geometry. Finally, Li is 2 for linear molecules and 3 for nonlinear molecules. These
basic data are typically determined through quantum mechanics calculations requiring accurate
force potentials between each interacting particle in a molecule. Data for many species relevant to
atmospheric entry, have been collected in the works of Gurvich et al. [172–177].

Substitution of Eqs. (4.7 - 4.10) into Eqs. (2.58 - 2.66) yields relations for the pure species
thermodynamic properties obtained with the RRHO model (translation is treated classically).
Expressions for species energy, enthalpy, and entropy are summarized in Table 4.1 and the resulting
contributions to the enthalpies of N2 and CO2 are shown in Fig. (4.4) as example.

4.4.2. NASA Thermodynamic Polynomials

One of the more commonly used data sources are the National Aeronautics and Space Adminis-
tration (NASA)thermodynamic polynomial databases of Gordon and McBride [178–181] provided
with the NASA Chemical Equilibrium with Applications (CEA) program [166, 182]. The data for
the majority of the species are provided by calculations made at NASA Glenn Research Center
by Gordon and McBride. The remainder of the species data is taken from several other sources,
namely the thermodynamic tables of Gurvich et al. [183], the National Institute for Standards and
Technology (NIST) Thermochemical Research Center (TRC) tables [184], and the NIST-JANAF
thermochemical tables [185, 186]. The NASA polynomials come in either 7- or 9-coefficient forms.
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Table 4.1.: Rotational, vibrational, and electronic contributions to pure species thermodynamic
properties based on the RRHO model.

Mode
emi
Ri

hm
i

Ri

smi
Ri

−
hm
i

RiT
, −

gmi
RiT

Rotation
Li

2
T er

i
Li

2
ln

(

T

θri

)

− lnσi

Vibration
∑

k

θvki

[

exp

(

θvki
T

)

− 1

]−1

ẽv
i −

∑

k

ln

[

1− exp

(

−θvik
T

)]

Electronic Qel
i
−1∑
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ael
kiθ

el
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)
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Figure 4.4.: Contributions to species enthalpies using the rigid-rotor and harmonic-oscillator
model.

Species thermodynamic properties are computed as

cpi = Ri

4+q
∑

j=0

aijT
j−q, hi =

∫

cpidT + bi1RiT, si =

∫

cpi
T

dT + bi2Ri, (4.11)

where q = 0 for the 7-coefficient format or q = 2 for the 9-coefficient format and the a and b
parameters are provided by the database, typically for multiple temperature ranges.

While the CEA database is used extensively, several drawbacks may decrease the overall accu-
racy of computations made using its dataset. For example, the database has been constructed
using a range of computational methods and experimental results, without regard to the consis-
tency of species enthalpies of formation. Ruscic et al. [187, 188] introduced the concept of the
Thermochemical Network (TN) which relates the species enthalpy of formation to one another
through thermochemically relevant data from literature. A TN can be used to develop a statisti-
cally correlated set of formation enthalpies across all of the species in the database. This ensures
consistency in the formation enthalpy for each species and improves the estimated accuracy of
each value. Furthermore, a TN allows new data to be processed easily and provides insight into
which experimental or numerical investigations can most readily impact and expand the currently
available set of thermochemical information. The Argonne National Laboratory (ANL) maintains
an updated TN published in the Active Thermochemical Tables (ATcT) [189] which is considered
the most accurate and self consistent source for species formation enthalpies.

While the ATcT provides a set of consistent formation enthalpies for many species, it does not
provide the additional thermodynamic data required to build a useful database. However, Burcat
et al. [190] currently maintain a vast thermodynamic database which is linked to the formation
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enthalpies provided by the ATcT. In total, it consists of 1031 species with the desired elements,
of which, 249 have been linked to the ATcT. The majority of the species thermodynamic data in
Burcat’s database were selected from a range of sources including CEA and journal articles. A
significant number of species have been updated based on quantum mechanical calculations using
the so called G3B3 methodology [190].

Blanquart et al. [191–194] have computed thermodynamic properties for large Polycyclic Aro-
matic Hydrocarbons (PAH) for the study of soot formation. The database currently includes 64
PAH species ranging from benzene (C6H6) to coronenen (C24H12). Optimized geometric structures
of each molecule were obtained using the B3LYP/6-31++G(d,p) method. Enthalpies of formation
were determined using the G3MP2//B3 method with group corrections to account for systematic
inaccuracies and are consistent with ATcT.

Finally, Goldsmith et al. [195] have recently computed highly accurate thermochemical data
for 219 small hydrocarbon species using the RQCISD(T)/cc-PV∞QZ//B3LYP/6-331++G(d,bp)
method to compute electronic energies. Consistency with the ATcT was also ensured by using a
bond additivity correction method which removed systematic errors in the enthalpy of formation
of each species.

In a parallel work to this thesis, a composite database valid for carbon-phenolic mixtures relevant
to ablation has been developed based on a critical review of the above data sources. Special care
was taken to identify like-species, shared between multiple sources, and to maximize the consistency
of formation enthalpies with the ATcT. The resulting database includes more than 1200 neutral
and ionized species containing C, H, O, and N and is included in the Mutation++ library in the
NASA 9-coefficient format. The details of this database have been published in [196].

A comparison of mixture thermodynamic properties computed for equilibrium air is provided in
Fig. (4.5) using both the RRHO model presented above and the NASA 9-coefficient polynomial
database. Where possible, comparisons with the equilibrium air curve-fits of D’Angola et al. [197]
are also shown. In general, agreement is excellent between all three databases. The largest differ-
ences occur in the values of the frozen specific heat ratios at 1 atm between the RRHO model and
the NASA polynomials above 12 500K. However, this translates into negligible differences in the
computed speeds of sound as is shown in Fig. (4.5d).

4.4.3. Object-Oriented Design

A simplified class diagram, describing the structure of the thermodynamics module in Mutation++,
is given in Fig. (4.6). The Thermodynamics class is responsible for providing pure species
and mixture thermodynamic functions to the Mixture class. Thermodynamics contains the
StateModel, ThermoDB, and MultiPhaseEquilSolver objects. The equilibrium solver is
responsible for computing equilibrium compositions at fixed temperature, pressure, and element
fractions. A robust equilibrium solution algorithm has been developed in this work for linearly
constrained, multiphase equilibria, and is presented in Chapter 5.

A StateModel is a self registering object representing which state model is being used to de-
scribe the state of the mixture as discussed in Section 4.3.2. Three concrete StateModel types
have been implemented in this work. The EquilStateModel represents a mixture in thermo-
chemical equilibrium including the effect of elemental demixing. The ChemNonEqStateModel

and ChemNonEqTTvStateModel represent mixtures in chemical and thermochemical nonequi-
librium, respectively.
ThermoDB provides an interface for computing pure species (or pseudo-species) thermodynamic

properties. It is also responsible for managing the loaded Species and Elements in the mixture.
The type of thermodynamic database being used is selected by the user through the self registration
of the ThermoDB type. A special eXtensible Markup Language (XML) format has been created
in the development of the library for representing the RRHO model and can be loaded with the
RrhoDB type. The format is human readable, extensible, and self-documenting. In addition, both
the NASA-7 and -9 thermodynamic polynomial formats have been implemented.

The simple architecture shown in Fig. (4.6) provides an extensible framework for introducing new
state models or thermodynamic database types in Mutation++, without the need for extensive
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Figure 4.5.: Mixture thermodynamic properties of equilibrium air at various pressures.

coding or redesign. In addition, users can easily change state models at runtime, which may be
beneficial in some applications. Lastly, by hiding the thermodynamic database and state model
selections from the rest of the library, the approach forces the other modules to be written in a
more general and extensible way.
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Figure 4.6.: UML diagram of Mutation++ thermodynamics module.

4.5. Transport Fluxes

This section describes the transport module in Mutation++. In particular, the constraints on
and design of the collision integral database, necessary for computing transport coefficients, is
described. Transport algorithms are reviewed, and a selection of transport properties are also
compared with literature results for several mixtures.

4.5.1. Collision Integrals

The solution of transport coefficients is based on the evaluation of the collision integrals which are
weighted averages over the Maxwellian distribution of collision cross-sections for each pair of species
considered in a given mixture [98, 198]. The weighting depends on the Sonine polynomial order
(l, s) used in the spectral method to solve the integro-differential kinetic equation resulting from
the Chapman-Enskog solution procedure [199]. For mixtures in thermal nonequilbrium, collision
integrals of order (l, s) for the interaction of two colliding species (i, j) may be written compactly
as,

Ω(l,s)
ij (Tij) =

(

kBT ij

2πµ̃ij

)
1
2
∫ ∞

0
exp(−γ2) γ2s+3 Q(l)

ij dγ, (4.12)

where Tij is the temperature associated with the interaction (i, j), µ̃ij is a modified reduced mass of
the colliding system, γ is the ratio of kinetic and thermal energy, γ2 = µ̃ijg2/(2kBTij), g is the rel-
ative collision velocity, and Q(l)

ij is the generalized collision cross-section. For neutral or neutral-ion
interactions between heavy species, Tij = Th, while Tij = Te for collisions between a free electron
and another species. As will be shown, charged interactions have an additional temperature de-
pendence from the introduction of the Debye length in the screened Coulomb interaction potential.
The modified reduced mass is evaluated as µ̃ij = µij , µ̃ij = me, and µ̃ij = me/2 for heavy-heavy,
electron-heavy, and electron-electron interactions, respectively. Collision cross-sections are defined
as

Q(l)
ij = 2π

∫ ∞

0

(

1− cosl χij

)

b db, (4.13)

where χ and b are the deflection angle and impact parameter describing a binary collision (see for
example [98]). The deflection angle is given from classical mechanics as

χij = π − 2b

∫ ∞

rm

dr/r2
√

1− b2/r2 − φij(r)/
(

1
2µijg2

)

, (4.14)

where r is the distance between particles, rm the distance of closest approach, and φij(r) is the
spherical interaction potential.
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It is convenient to express collision integrals in terms of dimensional, reduced collision integrals
Q̄(l,s)

ij [200], defined as

Q̄(l,s)
ij = πσ2

HSΩ
(l,s)∗
ij

=
4(l+ 1)

(s+ 1)![2l+ 1− (−1)l]

∫ ∞

0
exp(−γ2) γ2s+3 Q(l)

ij dγ,
(4.15)

where Ω(l,s)∗
ij are the standard reduced collision integrals normalized by the corresponding hard-

sphere values [198] and πσ2
HS is the hard-sphere cross-section. Reduced collision integrals represent

the deviation from the rigid-sphere values and are often used since they have a weaker dependence
on temperature than Eq. (4.12), making them easier to represent with curve-fits. Notice that the
hard-sphere cross-section is not actually needed to evaluate the reduced collision integrals. The
following ratios also occur frequently enough in the calculation of transport properties, that they
are explicitly defined as

A∗
ij = Q̄(2,2)

ij /Q̄(1,1)
ij , (4.16)

B∗
ij =

(

5Q̄(1,2)
ij − 4Q̄(1,3)

ij

)

/Q̄(1,1)
ij , (4.17)

C∗
ij = Q̄(1,2)

ij /Q̄(1,1)
ij , (4.18)

E∗
ij = Q̄(2,3)

ij /Q̄(2,2)
ij , (4.19)

F ∗
ij = Q̄(3,3)

ij /Q̄(1,1)
ij , (4.20)

G∗
ij = Q̄(4,4)

ij /Q̄(2,2)
ij . (4.21)

Tables A.1 and A.2 provide practical expressions for the linear transport systems in terms of
reduced collision integrals and ratios based on the derivation of Magin and Degrez [107] for par-
tially ionized and unmagnetized plasmas. The derivation is based on a modified Chapman-Enskog
perturbative solution of the scaled Boltzmann equation, using the electron to heavy particle mass
ratio as the scaling parameter. The effects of chemistry and internal energy on the transport sys-
tems are neglected. Instead, the Euken corrections for internal energy have been used. Only one
non-vanishing Sonine polynomial order is retained for heavy-heavy interactions. Two non-vanishing
orders are retained for interactions involving electrons. A summary of the required collision in-
tegral data necessary to compute each transport coefficient based the expressions of Magin and
Degrez is provided in Table 4.2. As is shown by last row in the table, the total number of collision
integrals required to compute all of the transport coefficients scales with the number of species
squared, since all collision pairs must be taken into account. As an example, the 11-species air
mixture, consisting of 5 neutrals (N, O, N2, O2, and NO) and their first ions and free electrons,
has 66 unique collision pairs and requires the evaluation of 273 collision integrals, based on Ta-
ble 4.2. Thus, the data requirements for transport properties grows significantly faster than for
thermodynamics, which grows linearly with the number of species.

The preferred method to computed collision integrals is to numerically integrate from accurate
ab initio potential energy surfaces. Such data is available for several important collision systems.
Recent reviews of available collision integral data for neutral-neutral interactions are provided
by Wright et al. [201, 202] for air, Mars, and Venus mixtures and collision integrals have been
tabulated versus temperature up to 20 000K. The review of Bruno et al. [203] has been used
for Jupiter mixtures and provides accurate curve-fits suitable for collision integral calculations
up to 50 000K. When potential energy surfaces are not available, collision integrals are typically
integrated from model interaction potentials. The evaluation of these potentials is typically split
into four groups: neutral-neutral, ion-neutral, electron-neutral, and charged interactions. The
following subsections review commonly used potentials for each type of interaction and present the
data sources for collision integrals required in this work.
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Table 4.2.: Summary of required collision integral data for each transport coefficient µ(ξ) with
Sonine polynomial order ξ, including number of unique collision integrals which must be evaluated
for each coefficient. Note that some integrals are required by several coefficients.

µ(ξ) Collision Integrals Number∗

η(1) Q̄
(1,1)
ij , Q̄

(2,2)
ij nH(nH + 1)

λh(2) Q̄
(1,1−3)
ij , Q̄

(2,2)
ij 2nH(nH + 1)

λint Q̄
(1,1)
ij nH(nH + 1)/2

λe(2) Q̄
(1,1−3)
ie , Q̄

(2,2)
ee ae(3nH + 1)

λe(3) Q̄
(1,1−5)
ie , Q̄

(2,2−4)
ee ae(5nH + 3)

χh
i (2) Q̄

(1,1−2)
ij nH(nH + 1)

χe
i (2) Q̄

(1,1−3)
ie , Q̄

(2,2)
ee ae(3nH + 1)

χe
i (3) Q̄

(1,1−5)
ie , Q̄

(2,2−4)
ee ae(5nH + 3)

Vk(1) Q̄
(1,1)
ij , Q̄

(1,1)
ie nH(nH + 1)/2 + aenH

Vk(2) Q̄
(1,1−3)
ij , Q̄

(1,1−3)
ie , Q̄

(2,2)
ij , Q̄

(2,2)
ee 2nH(nH + 1) + ae(3nH + 1)

σe(1) Q̄
(1,1)
ie aenH

σe(2) Q̄
(1,1−3)
ie , Q̄

(2,2)
ee ae(3nH + 1)

All Q̄
(1,1−3)
ij , Q̄

(2,2)
ij , Q̄

(1,1−5)
ie , Q̄

(2,2−4)
ee 2nH(nH + 1) + ae(5nH + 3)

∗ ae is 1 if free electrons are present in the mixture, 0 if not

Neutral-neutral interactions

A wide range of potential functions have been developed in the literature to model neutral-neutral
interactions [198]. The Lennard-Jones (12-6) and Stockmayer potentials have been used extensively
to model non-polar and polar gases. The Stockmayer potential superimposes the Lennard-Jones
potential and a dipole-dipole interaction, such that [204]

φ(r) = 4φ0ij

[(

σij
r

)12

−
(

σij
r

)6

+ δ

(

σij
r

)3]

, (4.22)

where δ is function of the dipole moments and angular dependence of the dipole-dipole interaction,
φ0ij is the maximum energy of attraction (potential well depth), and σij satisfies φij(σij) = 0
for δ = 0 (non-polar case). When either species is non-polar, δ = 0 and Eq. (4.22) reduces to
the Lennard-Jones (12-6) potential. The Stockmayer potential permits the use of pre-tabulated
collision integrals Q̄(l,s)

ij (T ∗, δ)/σ2
ij as a function of reduced temperature T ∗ = kBTh/φ0ij and species

dipole moments. Monchick and Mason [204] provide accurate tables for Q̄(1,1)
ij , Q̄(2,2)

ij , A∗
ij , B

∗
ij ,

C∗
ij , F ∗

ij , and G∗
ij . The Lennard-Jones potential parameters and dipole moments are available

for many interactions in the literature. For interactions not found in the literature, the Lorentz
and Berthelot combination rules may be used to approximate the potential parameters from pure
species interaction data, namely

φ0ij ≈
1

2
(φ0ii + φ0jj), and (4.23)

σij ≈
√
σiiσjj . (4.24)

Other combination rules may also be used (see for example [205]).
The Lennard-Jones (12-6) potential provides a reasonably accurate description of the long range
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interaction for many collision pairs. At higher temperatures, the short range interaction dominates
and more accurate potentials are necessary. The Born-Mayer type potential,

φij(r) = aij exp(−bijr), (4.25)

parameterized by the parameters aij and bij , can be fit to a more complicated potential or exper-
imental data [206] to provide accurate short-range interactions. Sokolova and Magin [207] have
developed a “sewing” method for combining the Born-Mayer and Lennard-Jones potentials into a
potential which is accurate at short and long separation distances. Bellemans and Magin [208]
have computed curve-fits of the form,

Q̄(l,s)
ij (x = lnT ) = exp(Aijx

3 +Bijx
2 + Cijx+Dij), (4.26)

for several collision pairs relevant to carbon-phenolic ablation mixtures based on numerical inte-
gration of the sewn potential.

Other potentials have also been developed to model short and long range interactions in a
consistent way. For example, the Tang-Toennies potential, described in the next section, combines
both Born-Mayer and Lennard-Jones-like terms for the short and long range interactions. Pirani
[209–211] has developed the phenomenalogical potential

φij(r) = φ0ij

[

m

n(x) −m

(

1

x

)n(x)

−
n(x)

n(x)−m

(

1

x

)m]

, (4.27)

where x = r/rm, φ0ij and rm are the maximum depth and location of the potential well, n(x) =
β+4x2, β is a model parameter ranging from 6 to 10 based on the hardness of the of the interacting
electronic distribution densities, and m depends on the type of interaction (m = 6 for neutral-
neutral, m = 4 for ion induced dipole, m = 2 for ion permanent dipole, and m = 1 for ion-ion
collisions). Correlation formulas provide estimates of the potential features φ0ij , rm, and β based on
fundamental physical properties of colliding species (polarizability, charge, and number of electrons
effective in polarization). Laricchiuta et al. [212] have fitted reduced collision integrals over a wide
range of reduced temperatures in the form

ln

(

Q̄(l,s)
ij

πσ2
HS

)

=

[a1 + a2x]
exp{[x− a3]/a4}

exp{[x− a3]/a4}+ exp{[a3 − x]/a4}

+a5
exp{[x− a6]/a7}

exp{[x− a6]/a7}+ exp{[a6 − x]/a7}
,

(4.28)

ai =
2
∑

j=0

cijβ
j , (4.29)

where x = ln kBT/φ0i j and the equivalent rigid-sphere radius is given as σHS = ξ1βξ2rm and
(ξ1, ξ2) = (0.8002, 0.049256) for neutral-neutral interactions and (0.7564, 0.064605) for ion-neutral
interactions.

Ion-neutral interactions

The Langevin (polarization) potential has been used extensively for modeling ion-neutral interac-
tions and represents a special case of the inverse power potential,

φij(r) = −
d

rδ
(4.30)

for δ = 4 and d = z2j q
2
eαi/8πϵ0, where αi is the dipole polarizability of the neutral species and zj

represents the elementary charge of the ion. The inverse power potential permits a closed form
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Table 4.3.: Ratios of Q̄(l,s)
ij /Q̄(1,1)

ij for the Langevin potential.

l,s 2 3 4 5
1 0.833 0.729 0.656 0.602
2 0.870 0.761 0.685
3 0.842

solution of the collision integrals, such that

Q̄(l,s)
ij =

4π(l + 1)

(s+ 1)![2l+ 1− (−1)l]
A(l)(δ)

√

d δ

kBTh
Γ

(

s+ 2−
2

δ

)

, (4.31)

where A(1)(4) = 0.5523, A(2)(4) = 0.3846, A(3)(4) = 0.6377, and Γ is the gamma function for real
numbers. Using the parameters for the Langevin potential, the diffusion integral is given as,

Q̄(1,1)
ij = 424.443zjπ

√

αi

Th
. (4.32)

Other integrals are constant ratios of the above. These ratios are given in Table 4.3 for the
necessary integrals. The Langevin potential is useful when no data is available for a given collision
as it only requires the polarizability of the neutral species, which may be found easily for most gases.
Polarizabilities for neutral species considered in this work are provided in Appendix D. Levin and
Wright [213] have compared this potential with accurate collision data for some important ion-
neutral collisions in air and found the accuracy to be about 40% over the temperature range of
interest. Capitelli [214] has shown that this error can be as high as 100% for the K+-Ne and
K+-Xe collisions, suggesting that care should be taken when using this potential.

Levin and Wright [213] have proposed to use an effective Tang-Toennies potential for ion-neutral
collisions,

φij(r) = φ0ij exp(−r/β)−
∞
∑

n=2

[

1− exp(−r/β)
2n
∑

k=0

(r/β)k

k!

]

C2n

r2n
, (4.33)

which combines an exponential repulsion term, dominate at short-range, with damped dispersion
and polarization terms for the long-range interaction. For n > 5, the dispersion coefficients C2n

are given by the recursive relation

C2n+4 = C2n−2(C2n+2/C2n)
3. (4.34)

The lower order dispersion coefficients and the short-range coefficients φ0 and β may be estimated
given C6 and the dipole, quadrupole, and octopole polarizabilities of the ion and neutral species
as discussed in [213].

For collisions between ions and their parent neutral, resonant charge transfer can significantly
increase the momentum-transfer cross-section and should be taken into account for collision in-
tegrals with odd l. Charge transfer does not affect the viscosity cross-section due to symmetry.
Typically, resonant charge transfer is considered through the simple mixing rule [215], such that

Q̄(l,s)
ij =

√

(

Q̄(l,s)
ij,ex

)2
+
(

Q̄(l,s)
ij,el

)2
, odd l, (4.35)

where Q̄(l,s)
ij,ex and Q̄(l,s)

ij,el are the collision integrals computed with pure charge transfer and elastic
momentum-transfer cross-sections, respectively.

Collision integral data for ion-neutral collisions have been taken from several sources. Levin
and Wright [213] provide tabulated diffusion and viscosity integrals for air interactions based on
integrated Tang-Toennies potentials. In addition, Wright et al. [201] suggest that constant values
of 1.2 and 0.85 are sufficient for the ratios B∗ and C∗ which has been used as a default for all
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ion-neutral interactions when no other data is available. In a second work, Wright et al. [202]
have also computed ion-neutral integrals for Mars and Venus mixtures, based on a combination of
Langevin and Tang-Toennies models. Bruno et al. [203] provide accurate collision integral data
for Jupiter species as well. Finally, the Langevin potential has been used for all other ion-neutral
interactions required in this work.

Electron-neutral interactions

Unfortunately, it is difficult to use engineering approximations when computing electron-neutral
collision integrals, due to the complexity of the interactions. Often these data are assembled from
elastic or momentum cross sections as functions of energy, as determined from beam scattering
or swarm measurements [201]. The most accurate method for computing collision integrals for
electron-neutral interactions is through numerical integration of the differential elastic cross sec-
tions, dσ/dΩ. Differential cross sections can be integrated over all scattering angles to provide
integral cross sections versus energy,

Q(l)
ei (E) = 2π

∫ π

0

dσ

dΩ
(1− cosl χ) sinχdχ. (4.36)

The resulting cross sections can then be integrated over energy, assuming a Boltzmann energy
distribution, to determine the required collision integrals versus temperature.

Wright et al. [201, 202] provide tables for Air, Mars, and Venus, electron-neutral collision
integrals based on integrated differential cross sections, obtained from a careful review of the
literature. A selection of these integrals are plotted in Fig. (4.7).

Charged interactions

Collisions between charged particles can be accurately modeled using the screened Coulomb po-
tential shielded by the Debye length (Debye-Hückel potential),

φij(r) =
zizj
r

q2e
4πϵ0

exp

(

−
r

λD

)

, (4.37)

where zi and zj are the elementary charges of colliding species. The Debye length (radius) rep-
resents the characteristic length over which charged particles in a plasma are shielded from other
charged particles. When both electrons and ions are considered in the shielding, the Debye length
is given as

λ2D =
ϵ0kB/q2e

ne/Te +
∑

j∈H z2jnj/Th
. (4.38)

It is not clear whether ions should be included in the shielding or not. When they are neglected,
the sum in the denominator should be removed. For neutral plasmas with Te = Th, the Debye
length simplifies to

λ2D =
ϵ0kBTe

2q2ene
. (4.39)

Mason, Munn, and Smith [216] have accurately integrated the Coulomb potential and provide
tabulated attractive and repulsive diffusion and viscosity integrals, as well as the ratios A∗, B∗,
C∗, E∗, F ∗, and G∗ versus a reduced temperature,

T ∗ =
λDkBT

q2e/(4πϵ0)
. (4.40)

Devoto [200] later extended these tabulations to include Q̄(1,4)
ij , Q̄(1,5)

ij , and Q̄(2,4)
ij which are neces-

sary for the third-order electron transport coefficients, as shown in Table 4.2. From Eq. (4.40), the
reduced temperature is a function of the electron temperature and number density through the de-
pendence on the Debye length. The tables provided by Devoto are valid for reduced temperatures
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Figure 4.7.: Selected reduced collision integrals for various types of interactions.

ranging from 0.1 to 10000, which is a stricter limit than those provided by Mason, Munn, and
Smith. Fig. (4.8) shows T ∗ versus T for equilibrium air and Jupiter mixtures as well as a fictitious
fully ionized gas (xe = 0.5) over a large pressure range representative of atmospheric entry. At
high temperatures, all the curves coincide with the fully ionized gas, as expected. At temperatures
lower than 5000K, ionization is negligible and thus Coulomb interactions are unimportant. It is
therefore clear from the figure that the range of T ∗ provided by Devoto is sufficient to describe all
conditions of interest for atmospheric entry applications.

Fig. (4.9) provides an example of the attractive and repulsive Coulomb collision integrals for
equilibrium air at 1 atm. When compared to the neutral interactions shown in Fig. (4.7), Coulomb
collision integrals are orders of magnitude larger. This is due to the fact that the Coulomb forces
acting on colliding ions is much stronger than those acting on non-charged interactions.
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Recurrence relations

Differentiating Eq. (4.15) yields the following recurrence relation,

Q̄(l,s+1)
ij = Q̄(l,s)

ij +
Tij

s+ 2

dQ̄(l,s)
ij

dTij
. (4.41)

This expression provides a method for computing any collision integral with order (l, s+ 1) from
the integral (l, s) and its first derivative. Applying the recurrence relation for successive orders
yields a more general expression,

Q̄(l,s+n)
ij =

n
∑

k=0

ank T k
ij

dkQ̄(l,s)
ij

dT k
ij

, (4.42)
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for any integer n ≥ 0. The coefficients ank satisfy the recurrence relationship (s+ 2)ank = (s + 2 +
k)an−1

k + an−1
k−1 with an0 = 1 and ann = (s + 2)−n. It is easily verified that Eq. (4.41) is retrieved

for n = 1. In principle, Eq. (4.42) could be used to compute all necessary collision integrals in
Table 4.2 given only the integrals corresponding to an (l, s) − order of (1,1) and (2,2) and their
derivatives (up to fourth order for l = 1 and second order for l = 2). In practice, however, it is
difficult to evaluate higher order derivatives from the data generally given in the literature.

Fig. (4.10) shows a typical example using the Q̄(1,s)
ij integrals for the (e– , H2) collision pair for

1 ≤ s ≤ 5. In the figure, solid lines represent the original curve-fits provided by Bruno et al. [203].
Dashed lines represent the same integrals computed using the general recurrence expression in
Eq. (4.42) from order (1,1) while the symbols represent recurrence from the original data at one
order lower. All derivatives were computed using a simple first order finite-difference scheme. From
the figure, we can see that the error in the recurrence relation increases as the level of recurrence
increases. This is due to error in the derivative approximations as well as errors in the original
curve-fits which get propagated through each level of recurrence. However, using only one level
of recurrence yields a reasonable approximation to the original data. The recurrence results for
(1,4) and (1,5) are in excellent agreement, suggesting that Bruno et al. probably used Eq. (4.41)
to compute these integrals in the first place.

4.5.2. Transport Algorithms

The solution of the transport fluxes typically represents a significant portion of the required CPU
time for many CFD applications. In principle, the computation of transport coefficients can be split
into two steps: 1) calculation of the necessary collision integrals and 2) formation and solution of
the linear transport systems. Several solution methodologies have been proposed in the literature
for reducing the necessary CPU cost of one or both of these steps. A review of transport algorithms
has been given by Magin and Degrez [106]. Some key points are discussed here.
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Figure 4.11.: Comparison of shear viscosity of air at 1 atm and the relative CPU time required
for different solution algorithms.

Heat flux and stress tensor

Viscosity, heavy-particle thermal conductivity, and thermal diffusion ratios all require the solution
of a linear system of the form

µ =
∑

i∈H∗

αµ
i xi,

∑

j∈H∗

Gµ
ijα

µ
j = xi ∀ i ∈ H∗,

(4.43)

as shown in Section 2.5 where µ is η or λh. Classical approaches [198] to solve these systems either
use a determinant method whereby µ = {η,λh} is computed via

µ = −
∣

∣

∣

∣

Gµ x
xT 0

∣

∣

∣

∣

/|Gµ|, (4.44)

or simplified mixture rules such as those developed by Gupta and Yos [217] or Wilke [218]. Ern and
Giovangigli [219, 220] propose instead to formulate symmetric positive definite transport systems
allowing the linear systems to be solved quickly using a direct method such as the Cholesky
(LDLT ) decomposition or with iterative methods such as the Conjugate-Gradient (CG) method.
Solution via LDLT requires a computational cost which scales with O(n3/6) while the CG method
is O(mn2), where m is the number of iterations performed. It is therefore obvious that iterative
methods are competitive when the number of iterations does not exceed n/6.

Fig. (4.11) shows the performance comparison of the Wilke, Gupta-Yos, CG, and LDLT methods.
Three CG solutions are presented in the figure: the first iterated until convergence was reached to
machine precision, the second and third cases represent using only 1 and 2 iterations respectively.
Fig. (4.11a) provides the computed shear viscosity for equilibrium air (11 species) at 1 atm obtained
with each method. Fig. (4.11b) shows the required CPU time to compute the viscosity versus the
number of heavy species, relative to the maximum time. From the figure it is clear that the
Gupta-Yos method can be competitive below about 9000 K, however at higher temperatures the
accuracy decreases significantly. The CG method converges to the exact LDLT solution after only
2 iterations and is slightly faster, as expected. In practice however, the direct method should
be prefered when finite-differences are used to compute the Jacobians necessary in implicit time
integration schemes since the iterative procedures may introduce small oscillations in the result.
These results are consistent with those obtained by Magin and Degrez [106] who studied the
performance of these methods for equilibrium air.
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Diffusion velocities

Diffusion velocities can be computed using multicomponent diffusion coefficients or, equivalently,
a generalized Stefan-Maxwell equation as shown in Section 2.5.2. When internal energy is ne-
glected, the multicomponent diffusion coefficients require the solution of nS linear systems of size
ξnS , where nS is the number of species and ξ is the Sonine polynomial order [219]. Ern and
Giovangigli [221] have developed iterative algorithms to compute the multicomponent diffusion
coefficient matrix which have been shown to be competitive with direct solvers.

In this work, the generalized Stefan-Maxwell system of Eqs. (2.86) and (2.87) is preferred over
the transport systems for the multicomponent diffusion matrix. The Stefan-Maxwell system can
be written as,

∑

j∈S∗

GV
ij(ξ)V j(ξ) = −dΘ

i
′ + κΘi E, i ∈ S∗, (4.45)

for Sonine polynomial order ξ and with the mass constraint
∑

j∈S∗

yjV j = 0, (4.46)

where κΘi = κiΘi, dΘ
i
′ = d′

iΘi and Θi = Th/Ti. The matrix GV ∈ RnS×nS

, given in Appendix A,
is symmetric positive semi-definite. Magin and Degrez [106] have shown that GV can be replaced
with the non-singular form, GV + αyyT , where α is a constant with the same order as the GV ,
such as 1/maxij Dij . For a known electric field, Eq. (4.45) can be solved using the CG algorithm
for constrained systems, with projector P = Ī − RV yT /(yTRV ), where RV

i = 1, i ∈ H∗ and
RV

e = Te/Th. Alternatively, the non-singular form can be solved using the LDLT decomposition.
When the electric field is ambipolar, the Stefan-Maxwell system is supplied with the ambipolar

constraint,
∑

j∈S∗ κjV j = 0, and the electric field is solved along with the diffusion velocities,

[

GV (ξ) −κΘ/s
−κT /s 0

] [

V (ξ)
sE

]

= −
[

dΘ′

0

]

, (4.47)

where s = ∥κ∥ is a scaling factor used to improve numerical robustness. This system is indefinite
and non-symmetric. A nonsingular form can be created using the mass constraint as above and
solved using standard Gaussian elimination with pivoting. The singular form can be solved with
the Krylov iterative technique, such as the Generalized minimum residual (GMRES) algorithm
[222] with projector P. Both the known electric field and ambipolar cases of the Stefan-Maxwell
equations retain the same form at any Sonine polynomial order.

Approximations to the Stefan-Maxwell equations can also be obtained for partially ionized plas-
mas. For an ambipolar electric field, a generalization of Ramshaw and Chang’s diffusion model
[106] leads to the solution of heavy species diffusion velocities via the linear system

∑

j∈H∗

ĜV
ij(ξ)V j(ξ) = −d′

i +
κi
κe

d′
e, (4.48)

under the mass constraint
∑

j∈H∗

yjV j(ξ) = 0, (4.49)

where ĜV is given in Appendix A. The electron diffusion velocity and ambipolar electric field
are then obtained from xeqeVe =

∑

j∈H∗ xjqjVj and E = d′
e/κe, respectively. The matrix ĜV is

symmetric and singular. A non-singular form is again introduced as ĜV + aŷŷT , where ŷ is the
vector of heavy-species mass fractions. As with the full Stefan-Maxwell system, the non-singular
form of Eq. (4.48) can be solved using the Cholesky factorization or the singular form can be solved
using the CG algorithm with an appropriate projector. Magin and Degrez [106] have shown that
Ramshaw’s model provides reasonably accurate diffusion velocities for a significantly reduced cost
as compared to solving the full generalized Stefan-Maxwell system. In addition, it was shown that
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Figure 4.12.: Simplified UML diagram for the design of the transport module.

only first order Sonine polynomial terms are required for convergence.

4.5.3. Object-Oriented Design

A simplified class diagram of the transport module is given in Fig. (4.12). The module is respon-
sible for providing all functions relevant to the computation of transport fluxes in Mutation++.
Transport algorithms are implemented through the use of self registering algorithm classes. For
example, the abstract class ThermalConductivityAlgorithm provides the necessary interface
that all thermal conductivity algorithms must include, namely functions for computing the thermal
conductivity and thermal diffusion ratios. Specific algorithms are then implemented by creating
a concrete class which implements the interface. For thermal conductivity, four algorithms have
been implemented in this work: the Wilke and GuptaYos mixture rules and the solution of the
Chapman-Enskog linear transport system, solved either with the Cholesky decomposition (LDLT )
or with iterative CG method. This pattern has also been used for the calculation of the multicom-
ponent diffusion matrix and shear viscosity. Collision integral data is fed to each algorithm via the
CollisionDB class which manages the efficient computation of the necessary collision integrals.

Collision integral database

An overview of the collision integral database is provided in Fig. (4.13). The design of the collision
integral database has several important features, including

1. Collision integrals are only loaded when needed. This prevents the unnecessary errors from
not finding data which isn’t actually used and ensures that certain algorithms only compute
the desired collision integrals. For example, the Wilke algorithm only requires integrals of
collisions between the same species.

2. The database is self documenting. The XML format allows references to be included with the
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Figure 4.13.: Simplified UML diagram for the design of the collision integral database.

data and by providing the data in the same format as the data source, there is no guesswork
in determining exactly what data is being used.

3. Users can easily add new data formats without having to recompile the library. This is
enabled through the self registration of the collision integral types.

4. The default behavior used when data is missing can be easily configured inside the input file.
For example, when a specific ion-neutral collision pair is not explicitly given in the database,
the Langevin potential could be used if the polarizability of the neutral is provided.

5. Collision integral tables can be computed at run-time to improve the performance of the
database.

6. Consistency between integrals and defined ratios are automatically enforced.

CollisionDB is organized into a map of CollisionGroup objects and a vector of CollisionPairs.
The collision pairs represent each possible pair of species in the mixture and are responsible for
determining the type of collision and loading collision integrals from the XML database when
needed. The map of collision groups hold a collection of groups of collision integrals which can be
identified by a given name. For example, the group “Q11ij” represents the set of reduced collision
integrals of order (1,1) for all pairs of heavy species. CollisionDB is responsible for providing
the CollisionGroup corresponding to the given name on demand. If a group is not already
loaded, then it will first use the collision pairs to load all of the necessary integrals in the group.
The temperature dependence of the collision integrals is also determined by the group name.

Collision integrals themselves are implemented by extending the self registering CollisionIntegral
type. The base class provides a consistent interface so that all collision integral types know whether
or not they can be tabulated, what convention they adhere to (should there be a factor of π ap-
plied or not), etc. Concreate CollisionIntegral types may even be functions of other collision
integrals. For example, the FromAstColInt type can compute either Q̄(1,1)

ij , Q̄(2,2)
ij , or A∗

ij given
the other two integrals. Using this framework, any collision integral format can be used in the
database by simply creating a new concrete CollisionIntegral type and implementing the
correct function for computing the integral from the given data.
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4.5.4. Transport Properties

This section serves to both demonstrate and validate the calculation of transport coefficients for
several equilibrium, partially ionized mixtures. For reference, Fig. (4.14) shows the equilibrium
compositions of the three mixtures considered here. The first mixture represents equilibrium
air, considering the eleven species comprised of N, N2, O, O2, NO, and their first ions plus free
electrons. The second mixture is equilibrium carbon-dioxide. Eight species are considered: CO2,
CO, O2, O, C, O+, C+, and e– . The last mixture is equilibrium Jovian atmosphere consisting of
the nine species H2, H2

+, H, H+, H– , He, He+, He++, and e– . The equilibrium compositions have
been computed using the Gibbs energy minimization procedure detailed in Chapter 5 at constant
pressure of 1 atm.

Viscosity

The equilibrium shear viscosities of each of the mixtures shown in Fig. (4.14) are presented in
Fig. (4.15). In addition, the viscosity of several frozen mixtures corresponding to the equilib-
rium compositions at specified temperatures are also shown. For the air and CO2 cases, these
temperatures are 300K, 5000K, 10 000K, 15 000K, and 20 000K. For the Jupiter mixture, the
temperatures are taken to be 300K, 3500K, 13 000K, 30 000K, and 50 000K in order to accom-
modate the larger temperature range.

Two general trends can be seen in Fig. (4.15). The first is that viscosity tends to increase with
temperature for a fixed mixture composition as is visible from the frozen cases. The second is
that viscosity decreases with increasing levels of ionization. Both trends are easily predicted by
considering the viscosity of a pure gas i (given in Appendix A),

ηi =
5

16

√
πkBTmi

Q̄(2,2)
ii

, (4.50)

where mi and Q̄(2,2)
ii are the mass and reduced collision integral of the gas. As was noted in

Section 4.5.1, the collision integrals for resonant charge transfer and charged interactions are sig-
nificantly larger than other collisions due to Coulomb forces. Thus, as the level of ionization
increases, these interactions dominate and the viscosity decreases due to the inverse proportional-
ity with Q̄(2,2)

ii .
Fig. (4.15) includes comparisons with literature results for both the air and Jupiter mixtures. For

air, the computed viscosity is compared to the result obtained by D’Angola et al. [197] who have
developed a set of accurate curve-fits for equilibrium air thermodynamic and transport properties.
The Jupiter result is compared with the calculations of Bruno et al. [203] based on a review of
accurate collision integral data for Jupiter mixtures. Only minor differences can be seen in both
cases. In the air case, the differences can be attributed small differences in the collision integral
data used in this work compared to [197], while in the Jupiter case, the differences are a result of
slightly different equilibrium compositions as a result of the thermodynamic data used in [203].

Diffusion fluxes

For a mixture in thermochemical equilibrium with constant pressure and element fractions, species
diffusion velocities may be expressed from Eqs. (2.84) and (2.85) as,

Vi = −
∑

j∈S

Dij

[

∂xj

∂T
+

(χh
j + χe

j)

T

]

∇T +E
∑

j∈S

Dijκj , ∀ i ∈ S, (4.51)

where ∂xj/∂T are the derivatives of equilibrium species mole fractions with respect to tempera-
ture. It will be shown in Chapter 5 that these derivatives can be evaluated cheaply during the
solution of the equilibrium compositions. In principle, when element fractions are assumed con-
stant, the mole fraction derivatives should be constrained to prevent elemental demixing [224, 225]
through the diffusion of elements. The electric field E can either be specified in Eq. (4.51), or
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Figure 4.14.: Equilibrium compositions of selected mixtures at 1 atm.



4.5. Transport Fluxes 97

0 4000 8000 12000 16000 2000010-1

100

101

Temperature, K

V
is

co
si

ty
,c

P

Mutation++ (equilibrium)

D’Angola et al. [197]

Mutation++ (frozen)

(a) 11-species air.

0 4000 8000 12000 16000 2000010-1

100

101

Temperature, K

V
is

co
si

ty
,c

P

Mutation++ (equilibrium)

Mutation++ (frozen)

(b) 8-species CO2.

0 10000 20000 30000 40000 5000010-2

10-1

100

101

Temperature, K

V
is

co
si

ty
,c

P

Mutation++ (equilibrium)

Bruno et al. [203]

Mutation++ (frozen)

(c) 9-species Jovian atmosphere.

Figure 4.15.: Viscosities of selected mixtures at 1 atm.



98 Chapter 4. Development of Mutation
++

determined explicitly from the ambipolar constraint which assumes that there is no net electric
current,

∑

i∈S niqiVi = 0. Under this assumption, the ambipolar electric field is given as

Ea = E∇T
a ∇T

E∇T
a =

∑

i∈S niqi
∑

j∈S Dij

[∂xj

∂T +
(χh

j +χe
j )

T

]

∑

i∈S niqi
∑

j∈S Dijκj
,

(4.52)

where E∇T
a denotes the ambipolar electric field per temperature gradient. The computed am-

bipolar electric fields for equilibrium air and CO2 at 1 atm are shown in Fig. (4.16). The effect
of thermal nonequilibrium is also simulated by artificially increasing the heavy particle transla-
tional temperature after computing the equilibrium compositions. As can be seen in the figure,
Ea increases unbounded with decreasing temperature as a result of the denominator in Eq. (4.52)
going to zero as the degree of ionization vanishes. The bumps present in the electric field of both
mixtures from 5000K to 8000K correspond to the dissociation of N2 and CO which increase the
magnitude of the mole fraction derivatives for air and CO2, respectively.

Species equilibrium diffusion fluxes per temperature gradient are shown in Fig. (4.17) for the
first and second Sonine polynomial approximations for both air and CO2. The diffusion fluxes were
computed using the equivalent formulation of the Stefan-Maxwell system, for constant pressure,
equilibrium mixtures, neglecting thermal diffusion. It is clear from the figure that the diffusion
fluxes correctly sum to zero at all temperatures, according to the conservation of mass and the
definition of the diffusion velocities. Positive values of the diffusion fluxes in Fig. (4.17) indicate
that those species diffuse along the direction of the temperature gradient, while negative fluxes
indicate moving against the gradient. For example, consider the diffusive fluxes of N2 and N which
are nearly balanced around 7000K in Fig. (4.17a). In this region, the level of N2 dissociation is
increasing with increasing temperature, resulting in nearly equal and opposite gradients in the mole
fractions of N2 and N, with respect to temperature. As the temperature increases, the equilibrium
mixture has more nitrogen atoms and less molecules, resulting in N2 diffusing towards the higher
temperature region and N diffusing away due to Fickian diffusion.

Heat flux

Using Eq. (4.51), the equilibrium, isobaric mixture heat flux can be expressed as

q = −(λh + λe + λint + λr + λs)∇T, (4.53)
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where λr and λs are the reactive and Soret thermal conductivities written as

λr =
∑

i,j∈S

ρihiDij

[

∂xj

∂T
+

(χh
j + χe

j)

T
− κjE

∇T
a

]

, and (4.54)

λs = p
∑

i,j∈S

(

χh
i + χe

i

)

Dij

[

∂xj

∂T
+

(χh
j + χe

j)

T
− κjE

∇T
a

]

. (4.55)

These terms act as effective thermal conductivities which arise from the dependence on tempera-
ture for equilibrium mole fractions. Here, the reactive thermal conductivity includes the effect of
elemental demixing.

Butler and Brokaw [224, 226] developed a formulation of the reactive thermal conductivity
which enforces zero elemental demixing by considering a set of nr = nS − nE formation reactions
at equilibrium and neglecting thermal diffusion and external forces. The Butler-Brokaw formula



100 Chapter 4. Development of Mutation
++

0 5000 10000 15000 20000

0

1

2

3

4

5

Temperature, K

T
he

rm
al

co
nd

uc
ti
vi

ty
,
W

/m
K

λh

λe

λint

Reactive

Soret

Total

This work, Eq. (4.54)

This work, Butler-Brokaw

Murphy [215]

Figure 4.18.: Components of thermal conductivity for equilibrium air at 1 atm.

can be written in terms of the solution of a linear system [226],

λr =
1

kBT 2

nr
∑

i=1

wi∆Hi,

nr
∑

j=1

Aijwj = ∆Hi,

(4.56)

where ∆Hi is the enthalpy change across the formation reaction i and Aij is an nr ×nr symmetric
positive definite matrix, which is a function of species mole fractions, formation reaction stoichio-
metric coefficients, and binary diffusion coefficients. Eq. (4.56) has been widely used to compute
the reactive thermal conductivity for equilibrium gases because it does not require the explicit cal-
culation of the multicomponent diffusion coefficients or mole fraction derivatives as is required by
Eq. (4.54). In addition, the formula can provide better agreement with experimentally determined
thermal conductivities, which can be attributed to the absence of elemental demixing. However,
for CFD simulations of flows in thermochemical equilibrium, the expression in Eq. (4.54), resulting
from the Chapman-Enskog solution of the Boltzmann equation, should be used since elemental
demixing can occur.

Fig. (4.18) compares the contributions of each of the thermal conductivies presented in Eq. (4.53)
for equilibrium air. Below about 2500K, the heat flux is solely due to conduction of translational
and internal energy of heavy particles. As the temperature rises and chemical reactions produce
gradients in species mole fractions, diffusion becomes the dominant mode of heat transport, re-
flected in the reactive thermal conductivity. The three peaks in the reactive term in Fig. (4.18)
can be attributed to (from left to right) dissociation of O2, dissociation of N2, and ionization of
N and O. Good agreement is obtained between the Butler-Brokaw formula and Eq. (4.54) below
10 000K, however Butler-Brokaw underestimates the reactive thermal conductivity in the third
peak. Above about 17 000K, ionization of N and O produce enough free electrons to make con-
duction of electron energy the dominant term in the heat flux. The Soret thermal conductivity is
negligible at all temperatures.

The thermal conductivities shown in Fig. (4.18) are compared with the results of Murphy [215].
Excellent agreement is obtained for the conduction of heavy particle energy. Good agreement is
also found for the reactive thermal conductivity computed using the Butler-Brokaw formula, which
was used by Murphy. However, the second peak of the reactive thermal conductivity of Murphy
is about 15% higher than computed in this work with the Butler-Brokaw formula. This is most
likely a result of different collision integral data used for the N2 –N interaction.
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A small difference can also be seen in the electron thermal conductivity at high temperatures.
Fig. (4.19) compares the electron thermal conductivity of equilibrium air at 1 atm computed at both
second and third Sonine polynomial orders. Both electron shielding and electron / ion shielding are
considered for the calculation of the Debye length in the shielded Coulomb potential. For reference,
the electron thermal conductivity of a fully ionized mixture is also shown. Several observations
can be made. The first is that the electron thermal conductivity requires a polynomial order of
3, following the conventional convergence rule of two nonvanishing Sonine polynomials for ionized
mixtures [227]. Second, ion shielding increases the electron thermal conductivity by decreasing
the effective range of the shielded Coulomb potential for electron-ion interactions. As expected,
all results converge to the fully ionized case at high temperatures. The result of Murphy is in
excellent agreement when only electron shielding is considered, explaining the difference observed
in Fig. (4.18), in which ion shielding is considered as well.

Finally, Fig. (4.20) compares the total thermal conductivity of air at 1 atm to those computed nu-
merically by D’Angola et al. [197], Capitelli et al. [228], and Murphy [215] using the Butler-Brokaw
formula, and the results obtained experimentally by Azinovsky et al. [229]. Similar agreement is
obtained as was detailed for the result of Murphy. The difference between the experimental data
and the computation in the second peak around 7000K is due to the N2 –N collision integral data
based on more accurate calculations, as previously discussed.

4.6. Chemical Kinetics

The goal of the chemical kinetics module in Mutation++ is the efficient and robust computation
of species production rates due to finite-rate chemical reactions. The derivation of the production
rate of a species k ∈ S∗ due to homogeneous chemical reactions was presented in Section 2.6.1.
We consider production rates in the form

ω̇k = Mk

∑

r∈R

νkrRr

= Mk

∑

r∈R

(ν
′′

kr − ν
′

kr)

[

kf,r(Tfr)
∏

j∈S∗

ρ̂j
ν
′

jr − kb,r(Tbr)
∏

j∈S∗

ρ̂j
ν
′′

jr

]

Θr,
(4.57)

where Θr =
∑

j∈S∗ αjrρ̂j if reaction r is a thirdbody reaction and Θr = 1 otherwise. The forward
reaction rate is assumed to be a function of a single, reaction-dependent temperature Tfr and the
backward rate is determined from equilibrium as kb,r(Tbr) = kf,r(Tbr)/Keq,r(Tbr) where Tbr is a
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Figure 4.20.: Thermal conductivity of equilibrium air at 1 atm.

reaction-dependent temperature for the backward rate.
In principle, the evaluation of Eq. (4.57) is straight-forward. However, several features of the

chemical kinetics module are worth mentioning, regarding the object-oriented and efficient solution
of species production rates. A simplified class diagram of the module is presented in Fig. (4.21). The
module contains a list of Reaction objects which are loaded from an XML reaction mechanism
file, provided by the user. The rest of the module is comprised of a set of computational “managers”,
which are responsible for the efficient evaluation of individual parts of Eq. (4.57). These include
the evaluation of reaction rates, operations associated with the reaction stoichiometry (the sum
and products in Eq. (4.57)), and the evaluation of the thirdbody term, Θr. An additional manager
class is responsible for evaluating the Jacobian of species production rates, necessary for implicit
time-stepping CFD algorithms. Finally, the Kinetics class orchestrates the use of each of these
managers to build up the evaluation of Eq. (4.57) and its Jacobian with respect to species densities
and temperatures. A more detailed discussion of a few specific points is presented in the following
subsections.

4.6.1. Automatic Reaction Type Recognition

As was mentioned previously, the temperature dependence of reaction rates is determined by
the type of reaction. This differs from typical combustion applications which are in thermal
equilibrium. The temperature dependence can either be input by the user or determined from
the type of reaction. When reactions are loaded by Mutation++, their type is automatically
determined in order to associate the correct forward and backward temperatures necessary to
evaluate the reaction rates. A list of reactions considered and their corresponding forward and
backward temperatures is provided in Table 2.1.

The problem of automatically determining the type of a given reaction is well posed in the
context of a classification tree [230]. Classification trees are a specialization of decision trees in
which the result of the tree is to classify a list of objects into a finite set of discrete classes given a
set of predictor variables which characterize the objects. Several algorithms have been developed in
the literature for the automatic creation of classification trees from a set of training data, however
these are not necessary in this context since reactions can be categorized from a relatively small set
of predictors. As an example, the classification tree developed in this work for all non-STS reactions
in Table 2.1 is presented in Fig. (4.22). The tree is traversed from left to right, starting at a root
node. The root and internal nodes are colored yellow and represent properties of the reaction in
consideration. In particular, they have all been formulated in terms of three basic yes/no questions.

1. Is there an electron / ion in the reactants / products?
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Figure 4.21.: Simplified UML diagram of the kinetics module.

2. Is there an inert electron / heavy species?

3. Are there more reactants than products?

These properties are easily determined from the reaction stoichiometry. The red leaf nodes in the
tree represent the result of the classification tree which in this case is the fourteen reaction types
considered. In practice, classification trees can be represented as tree or graph data structures.
However, for this simple case the usual “if/else if/else” construct has been used.

The use of a classification tree has several advantages. To begin, the logic can be represented
and easily understood through the use of a flow diagram like Fig. (4.22). If a considered reaction is
one of the considered types, then it is guaranteed to be correctly classified. In addition, Fig. (4.22)
represents a fairly well balanced tree, leading to a correct result in as little as two and at most five
branches. A disadvantage with this approach is that an incorrect classification will be made for a
reaction with a type not considered in the tree and in general it is not possible to know if this has
happened. Therefore, it is up to the user to know which reaction types have been implemented,
and those which have not.

4.6.2. Efficient Evaluation of MT Reaction Rates

The evaluation of reaction rate coefficients can occupy a considerable amount of CPU time when
large reaction mechanisms are considered. The RateManager class, shown in Fig. (4.21), is
responsible for optimizing as much as possible this process. This section provides an overview of
the necessary steps for decomposing the rate coefficient calculation into efficient parts.

We first recall that for Arrhenius type reaction rates, the rate coefficients for reaction r are given
as

kf,r(Tfr) = ArT
βr

fr exp

(

−
θr
Tfr

)

, and (4.58)

kb,r(Tbr) =
kf,r(Tbr)

Keq,r(Tbr)
, (4.59)
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Figure 4.23.: Order of operations for efficient evaluation of MT rate coefficients.

where Keq,r is the equilibrium constant

Keq,r(Tbr) =

(

p◦

RuTbr

)∆νr

exp

(

−
∆G◦

r(Tbr)

RuTbr

)

. (4.60)

From a numerical standpoint, evaluating Eqs. (4.58 - 4.60) requires 2(nS + 1) add/multiply op-
erations, 3 divisions, 2 powers, and 2 exponentials per reaction (not including the calculation of
species standard-state Gibbs energies). The division, power, and exponential operations remain
expensive on modern computer architectures, requiring anywhere from 4 to 50 times more clock
cycles. The situation is improved conventionally by considering the natural logarithm of the rate
coefficients,

ln kf,r(Tfr) = lnAr + βr lnTfr −
θr
Tfr

, and (4.61)

ln kb,r(Tbr) = ln kf,r(Tbr) +
∑

j∈S∗

(

ν
′′

rj − ν
′

rj

)

[

G◦
j

RuTbr
− ln

(

p◦

RuTbr

)]

. (4.62)

Evaluating the logarithm of the rate coefficients and then exponentiating requires only nS + 4 ad-
d/multiply operations and 2 exponentials per reaction, avoiding the power and division operations
altogether, assuming the necessary lnT , 1/T , and ln p/RuT terms are pre-computed for each group
of reactions which share the same temperature dependence. The number of add/multiply opera-
tions can also be significantly reduced by recognizing that the maximum number of non-thirdbody
species participating in any single reaction is 4 and therefore at most 4 terms will be nonzero in
the summation in Eq. (4.62). Optimizations of this type are discussed in the next section.

Based on this analysis, Fig. (4.23) shows an example of the order of operations used by the
RateManager class to compute the rate coefficients in an efficient way. In this example, the re-
action mechanism consists of 14 reactions which have 3 separate RateLawGroups, corresponding
to 3 rate law and temperature dependence combinations. In the first step, the natural logarithms



106 Chapter 4. Development of Mutation
++

of the forward rate coefficients are computed, including those used in the backward rate coeffi-
cient evaluation. Note that for Arrhenius rate laws, Eq. (4.61) can be efficiently evaluated for a
whole group using a matrix-vector product in order to minimize the effect of cache thrashing. In
the example, groups 2 and 3 share the same rate law and temperature dependence in both the
forward and backward directions, therefore the forward coefficient at the backward temperature is
not reevaluated. In a second step, the logarithm of the backward rate coefficients are evaluated
using Eq. (4.62). Finally, the entire vector of forward and backward rate coefficients are exponen-
tiated. Evaluating the entire vector at once allows for additional compiler optimizations, such as
vectorization.

4.6.3. Stoichiometric Operations

The result of the summations and products in Eqs. (4.57) and (4.62) are functions of the stoichio-
metric coefficients for all species in the species set for a given reaction. An important observation
however, is that at most four species can have non-zero stoichiometric coefficients for any given
reaction. It is therefore inefficient to evaluate these summations and products by looping explic-
itly over all species. The class StoichiometryManager shown in Fig. (4.21) is responsible for
evaluating these operations in an efficient way by keeping track of species indices which contribute
to each reaction and providing suitable stoichiometric operations.

4.7. Concluding Remarks

This chapter detailed the design of Mutation++, a new software library written in C++ for
providing physicochemical models, data, and algorithms for use in hypersonic CFD codes. The
library has been designed using modern OOP techniques in an effort to maximize its extendability
and efficiency. The driving principle behind Mutation++ is the ability to separate the underlying
thermochemical model from the set of governing equations solved by the CFD tool. A generic
set of governing equations was presented which encompasses all of the energy partitioning and
thermochemical nonequilibrium models presented in Chapter 2. The concept of a state model was
also introduced to provide the link between CFD and Mutation++. At a high level, the library
is organized into three modules: thermodynamics, transport, and chemical kinetics.

Two separate thermodynamic databases were presented in the framework of the thermodynamics
module: one based on the RRHO energy partitioning model and the other based on the NASA
thermodynamic polynomials. Pure species thermodynamic properties were derived based on the
RRHO assumption and a summary of the resulting analytical expressions for these properties was
presented using fundamental properties of the molecules. Using an object-oriented approach, both
databases are seamlessly integrated and can be selected by the user at run-time. A comparison
of mixture thermodynamic properties for equilibrium air, using both databases and the work of
D’Angola et al. [197], serves to validate the implementation of the module.

The transport module was split roughly into the calculation of transport collision integrals and
a discussion of transport algorithms. The collision integrals were defined for a multitemperature
gas in which heavy species and free electrons thermalize at different temperatures. A summary of
the necessary collision integrals required to compute all of the transport properties presented in
Chapter 2 was provided. In addition, an extensive review of common interaction potentials used to
compute collision integrals was made for neutral-neutral, ion-neutral, electron-neutral, and charged
particle interactions. It was shown that collision integral data comes in a wide variety of formats in
the literature and that the OOP approach used in the design of the Mutation++ collision integral
database allows for each of these formats to be integrated in a simple and efficient way. Transport
algorithms were also reviewed in this chapter based on a previous work by Magin and Degrez [107].
Transport properties for equilibrium air, CO2, and Jupiter were compared with relevant literature
results in order to validate the transport module.

A few important aspects of the chemical kinetics module were also presented in this chapter
including an object-oriented approach for the efficient calculation of species chemical production
rates. In addition, a classification tree was developed to enable the automatic classification of
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chemical reactions in order to determine the correct temperature dependence of individual reaction
rates in a multitemperature context.

The Mutation++ library has been coupled to the computational tools presented in Chapter 6
and applied to several atmospheric entry simulations in Chapter 7. Apart from the direct con-
tribution to this thesis, it is worth mentioning that Mutation++ has contributed to a number
of other applications as well. These include the study of biomass pyrolysis [231], state-to-state
catalytic recombination of nitrogen flows, [232], transport properties of carbon-phenolic ablation
mixtures [208], atmospheric entry of meteors [233, 234], and uncertainty quantification for high
enthalpy, plasma wind tunnels [235]. Finally, the library is available for download, open source, at
https://sync.vki.ac.be/mpp/mutationpp.

https://sync.vki.ac.be/mpp/mutationpp




CHAPTER 5

Linearly Constrained Multiphase Equilibria

“Gibbs is the greatest mind in American history."

— Albert Einstien, (c. 1925)

5.1. Introduction

The efficient and robust computation of multiphase, constrained equilibrium compositions is an
important topic over a wide range of fields including combustion, aerospace and (bio)chemical engi-
neering, metallurgy, paper processes, and the design of thermal protection systems for atmospheric
entry vehicles (e.g., [236–241]). For a detailed history and list of applications, the reader is referred
to the treatises by van Zeggeren and Storey [242] or Smith and Missen [243].

Prior to the work of White et al. [244], the equilibrium constant formulation was primarily
used to compute equilibrium compositions for ideal, gas phase mixtures. The equilibrium constant
formulation works by assigning formation reactions to each species based on a set of base or
component species which are chosen a priori for the given reaction system. Kuo [117] cites several
disadvantages that hindered researches using this method including difficulties in extending the
method to non ideal equations of state, testing for the presence of condensed species and numerical
complications with the use of component species.

In 1958, White, Johnson, and Dantzig [244] introduced the concept of free-energy minimization
and proposed a numerical solution technique using the method of steepest decent. White [245]
later elaborated on the advantages of free-energy minimization and the use of element potentials
in the solution of equilibrium compositions, including the possibility to treat any general chemical
system without the necessity of specifying the formation reactions. In addition, the use of element
potentials allowed for the solution of linear systems whose size scaled with the number of elements
rather than species, present in the mixture. This fact alone offers a significant computational
advantage when considering large chemical systems.

Today, both the equilibrium constant formulation and the free-energy minimization methods
are widely used. Most commercial and general purpose research codes implement various numer-
ical methods for solving the free-energy minimization problem, however the equilibrium constant
formulation is still used in certain applications [103, 239]. Perhaps one of the most widely used equi-
librium codes today is the Stanford-JANAF (STANJAN) code by Reynolds [246] who popularized
the element potential method for constrained Gibbs free-energy minimization by developing a nu-
merical solution procedure to the minimization problem which solves the so-called “dual problem.”
Part of the success of the STANJAN method lies in its powerful initialization and preconditioning
procedures which help make STANJAN extremely robust for most problems. The CEA code devel-
oped by Gordon and McBride [166, 182] is also used heavily, helped by the success of the detailed
thermodynamic database developed at NASA Glenn Research Center [181], which it employs.

In addition to the normal mass balance constraints, so called “generalized constraints” [247] on
the equilibrium solution have been used in a wide range of applications [238] and in particular, are
an integral component of the Rate-Controlled Chemical Equilibrium (RCCE) [247–261] method.
Some important examples of constraints used in the RCCE method include constraints on the
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total number of moles, the number of free valence electrons, and the number of O–O bonds,
among many others [238, 260]. Bishnu et al. [262, 263] added the ability to include general linear
constraints on the equilibrium solutions to both STANJAN and CEA. They found that, under
certain conditions, both the constrained versions of STANJAN and CEA failed to converge to
a solution. In general, these situations arise when the linear constraints force the equilibrium
composition near the boundary of the feasible region imposed by the hyperplane defined by the
constraints.

In an effort to provide a provably robust, constrained equilibrium solver, Pope [264, 265] devel-
oped the Gibbs function continuation (GFC) method which solves the element potential equations
for an ideal gas mixture under general linear constraints. Since its development, the GFC method
has been successfully embedded into a variety of more complex turbulent combustion modeling
algorithms, including the Eddy Dissipation Concept (EDC) [266, 267], RCCE using greedy algo-
rithm with local improvement (RCCE-GALI) [259], and the Relaxa tion-Redistribution method
(RRM) [268]. One drawback of the GFC method however, is that it is only capable of computing
equilibrium compositions of gas phase mixtures.

The purpose of this chapter is to present a generalization of the GFC method to mixtures
with multiple ideal phases and to provide a more rigorous mathematical analysis of its robust-
ness and stability. The new method is referred to as the multiphase Gibbs function continuation
(MPGFC) method. This work was recently published in [269]. In Section 5.2, the necessary equa-
tions to describe constrained chemical equilibrium for any number of ideal phases are reviewed.
Section 5.3 develops the mathematical basis of the MPGFC method, followed by a detailed overview
of a practical implementation of the algorithm in Section 5.4.1. Finally, two numerical test cases
will be presented to demonstrate some key features of the algorithm in Section 5.4.2.

5.2. Constrained Chemical Equilibrium

5.2.1. Free Energy Minimization

Consider a chemical system composed of any number of ideal phases. The set of indices which
denote all species in this system is S =

{

1, . . . , nS
}

= ∪m∈PSm where nS is the total number
of species considered, P =

{

1, . . . , nP
}

is the set of phase indices with nP the number of phases,
and Sm denotes the set of species indices belonging to phase m. Note that each species belongs
to a single phase. If a particular chemical species occurs in (for example) three phases, then it is
treated as three different species. Since all phases are ideal, the normalized Gibbs function for this
system is

G̃ ≡
G

RuT
=
∑

m∈P

∑

j∈Sm

N j

(

g̃j + lnN j − ln N̄m

)

, (5.1)

where N j is the number of moles of species j and g̃j(T , p) is the non-dimensional Gibbs function of
pure species j at the system temperature T and pressure p, Ru is the molar universal gas constant,
and N̄m is the total moles in phase m, sometimes referred to as the phase moles of phase m.

N̄m =
∑

j∈Sm

N j , ∀ m ∈ P . (5.2)

The vector of nP phase moles, N̄ , can thus be expressed as

N̄ = P
TN , (5.3)

where N ∈ RnS

is the vector of species moles and P ∈ RnS×nP

is a “phase summation matrix”
whose elements are defined as

P jm ≡ δpjm. (5.4)

The symbol δpjm is the familiar Kronecker Delta function and the subscript pj is used to denote
the index of the phase in P to which the species j belongs. In other words, for all m in P and all
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j in Sm, pj = m. The two notations of the phase index are used for convenience, depending on
the situation. For instance, Eq. (5.1) may be equivalently written as

G̃ =
∑

j∈S

N j

(

g̃j + lnN j − ln
∑

k∈Spj

Nk

)

. (5.5)

The non-dimensional Gibbs function for a pure species j is given by

g̃j(T , p) =
Hj(T )

RuT
−

S◦
j (T )

Ru
+

{

ln p
p◦ , j ∈ gas phase

0, otherwise
, (5.6)

where Hj is the molar enthalpy of pure species j and S◦
j , its molar entropy evaluated at the

standard state pressure p◦.
If the total moles of each element i in the mixture is denoted by cei , then conservation of mass

dictates that
∑

j∈S

Be
jiN j = cei ∀ i ∈ E , (5.7)

where Be
ji is the stoichiometric coefficient for the ith element in species j. E = {1, . . . , nE} denotes

the set of element indices for the nE considered elements in the mixture. Eq. (6.40) is often referred
to as the mass balance relations or constraints. It states that the available atoms in a mixture
must be shared amongst each of the species in the mixture (regardless of phase). In addition to
these physically imposed constraints, it is often useful to impose other constraints on the system.
Therefore, we consider the set of nG additional linear constraints on the number of moles of each
species, G = {1,. . . ,nG}, such that

∑

j∈S

Bg
jiN j = cgi ∀ i ∈ G. (5.8)

Using matrix notation, the total constraints imposed on the composition are thus given by

B
TN = c, (5.9)

where

B =
[

Be Bg
]

∈ RnS×nC

, c =

[

ce

cg

]

∈ RnC

, (5.10)

and nC = nE + nG are the total number of linear constraints whose indices compose the set
C = {1, . . . , nC}. As a clarifying example, consider a 5-species mixture composed of four gaseous
species, C, CO, CO2, and O2, and solid graphite, C(gr), with an imposed constraint on the total
mixture moles, N̄mix. Table 5.1 shows the corresponding B and P matrices associated with this
system. Note that the first two columns of B correspond to the mass balance constraints in
Eq. (6.40) while the last column corresponds to the constraint on the total mixture moles.

For a given B, c, and a fixed temperature and pressure, the LTE composition for a chemical
system is the one which minimizes G̃, Eq. (5.1), while satisfying the linear constraints in Eq. (5.9).

5.2.2. Constraint Potentials

The Lagrange multiplier method is a well known technique for solving constrained minimization
problems and will be used here. To begin, the Gibbs function and mass balance constraints are
combined to form the Lagrangian, L,

L = G̃−
∑

i∈C

λi
(

∑

j∈S

BjiN j − ci
)

=
∑

j∈S

N j

(

g̃j + lnN j − ln
∑

k∈Spj

Nk

)

−
∑

i∈C

λi
(

∑

j∈S

BjiN j − ci
) (5.11)
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Table 5.1.: Example constraint matrices B and P for a 5-species CO2 mixture with constraints
placed on the total mixture moles, N̄mix.

B columns P columns

Species C O N̄mix Gas C
(gr)

C 1 0 1 1 0
CO 1 1 1 1 0
CO2 1 2 1 1 0
O2 0 2 1 1 0
C(gr) 1 0 1 0 1

through the use of Lagrange multipliers, λi. Setting the derivative of the Lagrangian with respect
to the species moles to zero provides the necessary conditions for the solution of the minimization
problem. Namely,

∂L

∂N j
=

∂G̃

∂N j
−
∑

i∈C

λiBji

= g̃j + lnN j − ln
∑

k∈Spj

Nk −
∑

i∈C

λiBji

= 0, ∀ j ∈ S.

(5.12)

The physical meaning of the Lagrange multipliers is evident when Eq. (5.11) is differentiated
with respect to the constraint constants, ci, yielding

∂L

∂ci
=
∂G̃

∂ci
+ λi = 0 ⇒ λi = −

∂G̃

∂ci
. (5.13)

Therefore, λi is a dimensionless number which represents the negative rate of change in the normal-
ized Gibbs energy of the equilibrium system with respect to a change in the constraint constant,
ci. In addition, Eq. (5.12) may be rewritten such that

∑

i∈C

λiBji =
∂G̃

∂N j
≡

µj

RuT
, ∀ j ∈ S, (5.14)

where µj is called the chemical potential of species j for the given chemical system. Because of this
relationship, the Lagrange multipliers are often referred to as element potentials when they are
associated with elemental mass balance constraints, or simply constraint potentials for a general
constraint.

Finally, Eq. (5.12) may also be rewritten to yield the Element Potential Equations (EPE)[246],

N j = N̄pj exp
(

− g̃j +
∑

i∈C

λiBji

)

, ∀j ∈ S, (5.15)

which show that the number of moles of each species, N j , in a mixture at equilibrium are functions
of only their phase moles, N̄pj , and the nC constraint potentials, λi, corresponding to each con-
straint i. Note that when written in terms of species mole fractions, xj = N j/N̄pj , the constraint
potentials λi completely define the equilibrium composition of each phase for a fixed temperature
and pressure (but not the amount of each phase present in the mixture). Substitution of Eq. (5.15)
into Eqs. (5.3) and (5.9) leads to a nonlinear system of nP +nC equations and as many unknowns:
N̄m, ∀ m ∈ P, and λi, ∀ i ∈ C. The robust solution of this nonlinear system is the focus of the
following sections.
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5.2.3. Coordinate Transfer and Matrix-Vector Representation

The following sections make use of a coordinate transformation which simplifies the development
of the multiphase Gibbs function continuation method. This transformation is similar to the one
made by Pope in the original development of the single-phase method. Instead of dealing directly
with species moles, it is convenient to use their square-root,

yi ≡
√

N i. (5.16)

The purpose of this change of variables will become evident later. Using Eq. (5.15), the vector
y ∈ RnS

may be expressed in matrix-vector notation as a function of the element potential vector,
λ ∈ RnC

, and phase mole vector N̄ ∈ RnP

by

y = exp
(

−g̃ +Bλ+P ln N̄
)

1
2 . (5.17)

Here, the exponential, logarithm, and square-root operators act element-wise on their vector argu-
ment. Note also that P in Eq. (5.17) is used to transform the nP -sized vector ln N̄ into a nS-sized
vector with repeated values depending on the phase of each species. This construction will be used
throughout the paper. Finally, the matrices Y ∈ RnS×nS

, B̃ ∈ RnS×nC

, and P̃ ∈ RnS×nP

are
defined as

Y ≡ diag (y) , B̃ ≡ YB, P̃ ≡ YP. (5.18)

Using the above notation, the constrained chemical equilibrium problem defined in Eqs. (5.3) and
(5.9) may be written as

P̃
Ty = N̄ (5.19)

B̃
Ty = c (5.20)

5.3. Multiphase Gibbs Function Continuation

Newton’s method, or a variant thereof, is the most common method for solving nonlinear equations
such as Eqs. (5.19) and (5.20)). In general, the convergence of Newton’s method for a Lipshitz
continuous, nonlinear system, F (x) = 0, is q-quadratic when the initial iterate, x0, is close enough
to a root of F , x∗, and the system Jacobian within the region around the root is nonsingular [270].
In fact, quadratic convergence is only guaranteed when the initial guess, x0, is close enough to the
real solution, x∗, to satisfy the condition

∥x0 − x∗∥2 <
∥F′(x∗)∥2
γκ(F′(x0))

, (5.21)

where F′(x) is the system Jacobian evaluated at x, γ is the Lipschitz constant for F′, and κ(F′(x))
is the condition number of F′(x). The condition number is a measure of how close a matrix is
to being singular, increasing to infinity when the matrix is singular. Thus, as the Jacobian of the
system approaches a singular matrix, the corresponding bound on the initial guess’s proximity to
the actual solution becomes nearly zero. For the equilibrium problem of Eqs. (5.19) and (5.20),
situations often arise in which the system Jacobian approaches a singular matrix causing the
Newton convergence to stagnate.

The MPGFC method avoids the above difficulties by converting Eqs. (5.19) and (5.20) into an
initial value problem which may be integrated robustly through the use of a continuation parameter.
To begin, the multiphase residual vector, R ∈ RnC+nP

, is formally expressed as a function of the
solution vector, x̃, and the Gibbs vector, g̃(T , p), such that

R (x̃, g̃) =

[

B̃T

P̃T

]

y −
[

c
N̄

]

, and x̃ ≡
[

λ
ln N̄

]

, (5.22)
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where B̃, P̃, and y are implicit functions of x̃ as shown in Eqs. (5.17) and (5.18). Eqs. (5.19) and
(5.20) may now be written in terms of the residual vector as R(x̃∗, g̃) = 0, which implicitly defines
the equilibrium point x̃∗ for a fixed T and p. The solution of this nonlinear system via Newton’s
method is not guaranteed to succeed, based on the arguments made above. Instead, we define a
new Gibbs energy vector ĝ, linearly parameterized by a continuation parameter s, such that

ĝ(s) = ĝ(0) + s [g̃ − ĝ(0)] , (5.23)

where ĝ(0) denotes ĝ at s = 0. Replacing g̃ with ĝ, the equation R(x̂, ĝ(s)) = 0 now implicitly
defines a path of pseudo-equilibrium points x̂(s), parameterized by s, where x̂(1) = x̃∗. As ĝ(0) is
arbitrary, there are an infinite number of such paths, however, given a set of initial values of ĝ(0)
and x̂(0) which satisfy R(x̂(0), ĝ(0)) = 0, the equilibrium point can be determined by tracing the
path of pseudo-equilibrium points from s = 0 to s = 1, via

x̃∗ = x̂(1) =

∫ 1

0

dx̂

ds
ds+ x̂ (0) , (5.24)

where the tangent vector, dx̂/ds = [dλ/ds, d ln N̄/ds]T , can be derived from the implicit relation
dR(x̂, ĝ(s))/ds = 0. Note that the ‘hat’ symbol is left off of λ and N̄ for convenience but their
dependence on s will be clear based on the context. Given a ĝ(0), the path x̂(s) is smooth and
unique because ĝ(s) is linear from Eq. (5.23) and the existence and uniqueness of the equilibrium
problem is well known (see for example [271]).

In its most basic form, the MPGFC method solves for the equilibrium point x̃∗ by numerically
integrating the initial value problem of Eq. (5.24) using a simple Euler scheme.The derivatives,
dλ/ds and d ln N̄/ds, can be computed robustly by exploiting a feature of least-squares solutions.
In addition, special care must be taken to ensure that the correct condensed phases are included in
the equilibrium solution. Further improvements to the efficiency and global accuracy of the method
are obtained by using an adaptive step-size, ∆s, as well as Newton’s method (when possible) to
reduce errors in the numerical integration. The mathematical basis for each of these issues are
presented in the following subsections while Section 5.4.1 will detail the exact MPGFC solution
algorithm.

5.3.1. Initial Conditions

The initial conditions, ĝ(0), λ(0), and ln N̄ (0), must satisfy the constraint R(x̂(0), ĝ(0)) = 0.
Therefore, the initial species moles vector, N(0), must satisfy Eqs. (5.19) and (5.20). There are an
infinite number of species mole vectors which can satisfy the underdetermined constraint system
in Eq. (5.20). The vector space of all such vectors will be denoted by

B =
{

N ∈ RnS

: B
TN = c, N j ≥ 0

}

. (5.25)

We now define two species compositions contained in this vector space. The Min-G composition,

Nmin-g = argmin
N∈B

NT g̃, (5.26)

minimizes the sum of species Gibbs energies while satisfying the constraints in Eq. (5.20), ap-
proximating the minimization of Eq. (5.1) without regard to the energy of mixing. The Max-Min
composition,

Nmax-min = argmax
N∈B

(

min
j∈S

N j

)

, (5.27)

is the composition which maximizes the smallest single species moles and still satisfies Eq. (5.20).
Both compositions can be formulated as the solution to a linear programming problem which can
be easily solved via the Simplex algorithm [272]. The Min-G composition is useful because it
estimates the equilibrium moles of the major species. However, at most nC species in Nmin-g will
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be non-zero, while the rest are exactly zero. The Max-Min composition is strictly positive but far
from the equilibrium composition as it does nothing to minimize G̃. Therefore, Pope [264] has
suggested that a linear combination of the Min-G and Max-Min compositions,

N(0) = Nmin-g(1− α) +Nmax-minα, (5.28)

provides a good approximation of the major equilibrium species while ensuring that all species
moles are strictly positive and that Eq. (5.20) is satisfied. The value of α is typically taken to
be 0.01 such that the Min-G composition dominates, and the major species moles are still well
approximated by the initial solution.

The Gibbs phase rule [273] says that, for a fixed temperature and pressure, the maximum number
of phases allowed in an equilibrium solution are the total number of constraints imposed on it, nC .
In order to ensure that the initial conditions satisfy the phase rule, only the phases which have
non-zero moles in the Min-G solution are kept for the Max-Min solution. As the maximum number
of non zero species in the Min-G solution is equal to the number of constraints, this is sufficient to
ensure the phase rule is satisfied.

Eq. (5.19) is then directly satisfied by taking

ln N̄(0) = ln
(

P
TN(0)

)

. (5.29)

Note the necessity of having a strictly positive N(0) in order for the logarithm above to be well
defined.

Eqs. (5.28) and (5.29) ensure that R = 0 (recall that y =
√
N from Eq. (5.16)). All that remains

is to determine ĝ(0) and λ(0) which are consistent with N(0) through the EPE, Eq. (5.17). First,
λ(0) is computed as the least-squares solution of the EPE using the Gibbs energy vector, g̃.

λ(0) = argmin
λ

∥

∥Bλ− lnN (0) +P ln N̄ (0)− g̃
∥

∥

2
(5.30)

Finally, ĝ(0) is chosen such that Eq. (5.17) is exactly satisfied.

ĝ(0) = Bλ(0)− lnN(0) +P ln N̄(0) (5.31)

5.3.2. Computing the Tangent Vector

The derivatives, dλ/ds and d ln N̄/ds, at constant R, are obtained from the implicit relations
found when the residual is differentiated with respect to s and set equal to zero, such that

dR

ds
=

d

ds

[

B̃Ty

P̃Ty − N̄

]

= 0. (5.32)

From Eq. (5.17), the following relationship can be easily determined.

d

ds
(Yy) = Y

2

[

B
dλ

ds
−

dĝ

ds
+P

d

ds
(ln N̄)

]

= Y

[

B̃
dλ

ds
−Y

dĝ

ds
+ P̃

d

ds
(ln N̄ )

] (5.33)

Note that dĝ/ds is a known function from Eq. (5.23), namely dĝ/ds = g̃− ĝ(0). Using Eq. (5.33),
the first term in Eq. (5.32) can be written as

d

ds

(

B̃
Ty
)

= B̃
T

[

B̃
dλ

ds
−Y

dĝ

ds
+ P̃

d

ds
(ln N̄)

]

. (5.34)

We now seek a dλ/ds such that d(B̃Ty)/ds = 0 is satisfied regardless of the value of d ln N̄/ds.
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To begin, dλ/ds, is decomposed into two components,

dλ

ds
= λ̇g − Λ̇

y d

ds
(ln N̄), (5.35)

where λ̇g ∈ RnC

and Λ̇y ∈ RnC×nP

are obtained via the minimum-norm solutions to the following
least-squares problems

λ̇g = argmin
λ̇

∥

∥

∥

∥

B̃λ̇−Y
dĝ

ds

∥

∥

∥

∥

2

, (5.36)

Λ̇
y = argmin

Λ̇

∥

∥

∥
B̃Λ̇− P̃

∥

∥

∥

2
. (5.37)

The solutions of Eqs. (5.36) and (5.37) may be stably computed using the singular value decom-
position of B̃, regardless of its rank. In addition, their residuals reside in the null space of B̃T ,
based on a general property of least squares solutions. Thus,

B̃
T
(

B̃λ̇g −Y
dĝ

ds

)

= 0, (5.38)

B̃
T
(

B̃Λ̇
y − P̃

)

= 0. (5.39)

Using this fact and substituting Eq. (5.35) into Eq. (5.34) and rearranging, we then have

B̃
T

[

B̃λ̇g −Y
dĝ

ds
−
(

B̃Λ̇
y − P̃

) d

ds
(ln N̄)

]

= 0. (5.40)

The usefulness of the decomposition of dλ/ds in Eq. (5.35) is now evident because it ensures that
the first term in Eq. (5.32) is always satisfied, regardless of the value of d ln N̄/ds.

The phase moles derivatives, d ln N̄/ds, are determined from the second implicit relation defined
in Eq. (5.32), namely

d

ds

(

P̃
Ty − N̄

)

= P̃
T

(

P̃
d

ds
(ln N̄ )−Y

dĝ

ds
+ B̃

dλ

ds

)

−
dN̄

ds
= 0 (5.41)

Making use of the following relationship for d ln N̄/ds when R = 0,

d

ds
(ln N̄) = diag(N̄)−1 dN̄

ds
=
(

P̃
T
P̃

)−1 dN̄

ds
, (5.42)

and substituting in Eq. (5.35) for dλ/ds, Eq. (5.41) may be written as

P̃
T
B̃Λ̇

y d

ds
(ln N̄) = P̃

T

(

B̃λ̇g −Y
dĝ

ds

)

. (5.43)

Eq. (5.43) represents a linear system of equations for the solution of d ln N̄/ds. We now introduce
the matrix M ≡ P̃T B̃Λ̇y ∈ RnP×nP

for convenience. The structure of this matrix is studied in
detail in Appendix B. In particular, M is symmetric and positive definite when the phase moles
are non zero. In fact, the eigenvalues of M, denoted β1 ≥ βm ≥ βnP , have the following upper and
lower bounds:

N̄m ≥ βm(M) ≥
βm(CTC)

∥B̃∥22
≥ 0, ∀ m ∈ P , (5.44)

where C ≡ B̃T P̃ ∈ RnC×nP

has column vectors, cm, which represent the amount of elements or
constraint constants which are associated with the phase m. It is trivial to show that

∑

m∈P cm = c.
For the single phase case, M becomes a scalar M and the bounds on the eigenvalues given in
Eq. (5.44) become the bounds on M itself. In this special case, the lower bound on M is readily
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given as M ≥ ∥c∥22/∥B̃∥22, which is strictly positive. In the development of the single phase
GFC method, Pope [265] derived a similar equation as Eq. (5.43) (divided by the total moles of
the mixture) and placed an identical lower bound on the scalar quotient (D in Pope’s notation)
through other means. In Pope’s derivation, the physical meaning of the scalar was unknown,
and furthermore, the proof of positivity cannot be readily extended to consider multiple phases.
However, the eigenvalue analysis given in Appendix B, and whose result is given by the bounds in
Eq. (5.44), directly relates the eigenvalues of M to the moles in each phase and is applicable to
any number of phases (including the single phase case). Furthermore, the upper bound of N̄m on
the eigenvalues of M informs a practical method for determining when M approaches a positive
semidefinite matrix.

With a careful treatment of nearly empty phases, Eq. (5.43) can be solved in a robust and
efficient manner using the Cholesky factorization for symmetric positive definite systems, ensuring
that the derivatives dλ/ds and d ln N̄/ds can be determined in a fully robust way.

5.3.3. Newton’s Method

As the Euler integration scheme approximates the pseudo-equilibrium path in a linear way, errors
may accumulate during the course of the numerical integration. Therefore, after each new solution
is obtained in the numerical integration of Eq. (5.24), Newton’s method is used to attempt to reduce
the residual below a specified global error tolerance for a fixed value of s (fixed ĝ). Newton’s method
corresponds to solving the following linear system for successive updates in the pseudo-equilibrium
solution,

J
(

x̃k+1 − x̃k
)

= −R(x̃k, ĝ), (5.45)

where the superscript k denotes the kth solution iterate and the system Jacobian, J, is determined
to be

J ≡
∂R

∂x̃
=

[

B̃T B̃ B̃T P̃

P̃T B̃ P̃T P̃

]

−
[

0 0

0 diag
(

N̄
)

]

. (5.46)

Note that the parentheses on the right hand side of Eq. (5.45) denote that the residual is evaluated
at (x̃k, ĝ), while those on the left simply distribute the matrix vector product to both x̃k+1 and
x̃k.

In some situations, the above system may be singular, making it impossible to converge the
solution further after taking a continuation step. In such cases, the Newton iterations are aban-
doned and the residual is reduced by reducing the step-size used for the numerical integration and
retaking the step.

5.3.4. Inclusion of Condensed Phases

The initialization procedure presented in Section 5.3.1 typically does a good job of predicting
which condensed phases should be present in the equilibrium mixture through the Min-G solution.
However, it is possible that the phases present in the initial solution are not the correct ones
which minimize the Gibbs free energy. Furthermore, it is also possible that some phases, which
are correctly included in the initial solution, are removed during the course of the integration of
Eq. (5.24). Therefore, at the end of the integration of Eq. (5.24), a check must be performed to
determine whether or not a previously neglected phase can in fact minimize the system Gibbs energy
further. Since the equilibrium solution represents a stationary point of the Lagrange function
(∂L = 0), Eq. (5.12) yields the necessary condition for a new phase to be included. Namely, if

g̃c −
∑

i∈C

λ∗iBci < 0, (5.47)

for any condensed species c, which has not yet been included in the equilibrium solution, then
adding the phase to which species c belongs will decrease the overall Gibbs energy at equilibrium.
This is sometimes referred to as the vapor pressure test. When multiple phases meet this criteria,
the one with the most negative change in the Gibbs energy is added.



118 Chapter 5. Linearly Constrained Multiphase Equilibria

When it is determined that a new phase should be included, a phase redistribution procedure is
performed which distributes moles of the largest (in terms of quantity) species into the new phase
while satisfying the mass balance constraint of Eq. (5.20). This is done in the following way. First,
the current solution of the species moles vector, N , is extended by the number of species in the
new phase. If the new phase has index m, then the extended species vector, denoted by N ext, is
computed as

N ext
j =

{

N j , j ∈ S
N̄m/nS

m, j ∈ Sm
. (5.48)

where N̄m is the desired number of initial moles in the phase m, and nS
m denotes the number of

species in that phase. The constraint matrix B, the phase summation matrix P, and the species
index set are also extended accordingly.

We then search for an update in the nC largest species of N ext which will satisfy the mass
balance constraints through the solution of the linear system,

B
T∆Nmax = c−B

TN ext, (5.49)

where the vector ∆Nmax is defined to be a vector of zeros except for the elements representing
the nC largest species. Note that Eq. (5.49) represents a linear system with nC equations and nC

unknowns. Furthermore, a suitable update can always be obtained by using the singular value
decomposition of the sub matrix of BT representing the nC maximum species, even when that
matrix is rank deficient.

Finally, a new initial species moles vector is computed by applying the update to N ext,

N(0) = N ext +∆Nmax. (5.50)

It is easy to verify that that this new N(0) vector satisfies Eq. (5.20). With a new N (0), the
solution is then reinitialized and the integration procedure is repeated to solve Eq. (5.24). This
whole process must be repeated until all necessary phases are included in the equilibrium mixture
according to Eq. (5.47).

5.4. Practical Implementation

5.4.1. Solution Algorithm

The previous section detailed the mathematical basis for the MPGFC method. However, in order
to create an efficient and robust equilibrium solver, several algorithmic details must be developed.
An overview of the full MPGFC algorithm is presented in this section.

For a fixed temperature, pressure, and constraint vector, the initial moles of each species are
determined using Eqs. (5.26 - 5.28). Following initialization, the proceeding steps are then used to
compute the integral in Eq. (5.24).

1. The initial solution x̂(0) and Gibbs energy vector ĝ(0) are computed according to Eqs. (5.29 - 5.31).
The continuation parameter and step size are also initialized as s = 0 and ∆s = 1.

2. Compute the tangent vector of the pseudo-equilibrium path, dx̂/ds at s using Eqs. (5.35 - 5.37),
and Eq. (5.43).

3. Next, integrate the solution forward along the pseudo-equilibrium path with an Euler inte-
gration over ∆s,

x̃0(s+∆s) = x̂(s) +
dx̂

ds
∆s. (5.51)

The superscript 0 is used to denote the initial iterate for the Newton iteration procedure.
The Gibbs energy vector is also updated via Eq. (5.23) at s+∆s.
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4. Newton’s method is then used to reduce the residual vector below a specified tolerance, ϵabs,
using Eq. (5.45) and Eq. (5.46). The Newton iterations are stopped when either (i) the
iterations converge, such that

∥R(x̃k, ĝ(s+∆s))∥2 ≤ ϵabs, (5.52)

(ii) a maximum number of iterations is reached, or (iii) the residual norm increases above
the norm of the previous iterate.

5. Following the Newton iterations, the new solution vector is tested against the following
criteria:

∥R(x̃k, ĝ(s+∆s))∥2 ≤ max [(1 + ϵrel) ∥R(x̂(s), ĝ(s))∥2 , ϵabs] . (5.53)

If the above inequality holds true, then the iterate k is accepted and the solution is updated
as x̂(s) = x̃k, s = s+∆s, and the step-size ∆s is increased via

∆s = min (s− 1, 2∆s) . (5.54)

Otherwise, the solution is not updated and ∆s is reduced by a factor of 2 and the algorithm
continues at Step 3. Note that the term (1+ϵrel) in Eq. (5.53) prevents the step-size ∆s from
decreasing to zero, allowing the solution to progress with a small increase in the residual.

6. If s = 1 after the above step, then the solution vector corresponds to the equilibrium solution
for the included phases. If not, the solution procedure is continued starting from Step 2.

7. The phase inclusion test is checked to see if any additional phases should be included in the
equilibrium mixture, according to Eq. (5.47). If it is determined that a previously excluded
phase can reduce the Gibbs energy of the equilibrium solution, then Eqs. (5.48 - 5.50) are
used to compute a new initial species moles vector N(0) with the addition of the new phase,
and Eq. (5.24) must be reintegrated starting from Step 1.

Figure (5.1) provides a graphical overview of the MPGFC method to help clarify the algorithm,
of which several aspects are worth elaborating on. To start with, while the Newton iteration
procedure attempts to bring the residual below an absolute tolerance, ϵabs, it is indicated in Step
5 that the solution is accepted as long as Eq. (5.53) is valid for some small ϵrel. This is done to
allow the integration to proceed for a small enough ∆s even when the Newton procedure cannot
converge. Typically, if such a situation is encountered, allowing the solution to proceed forward
will eventually allow the Newton iterations to converge and maintain an acceptable error tolerance
on the solution. In the worst case scenario, the MPGFC method breaks down to a simple Euler
integration with small step sizes.

In some cases, a particular phase tends towards zero as the integration in s is computed. Since
the robustness of the MPGFC method relies on including only nonempty phases, these phases
must be removed when the number of moles fall below some tolerance. Because of this, a small
adaptation is included in the Newton procedure which first removes any phases meeting this criteria,
before computing the system Jacobian. If the Newton iteration is rejected in Step 5, then the
original phase ordering must be remembered. This introduces some extra book keeping in the
algorithm, though it does not greatly affect the overall complexity or the necessary coding required
to implement it.

Finally, the choice of solution variable ln N̄ as opposed to N̄ for the phase moles is an important
one for two reasons. First, the algebra necessary to develop the method is made more simple.
Second, and more importantly, is that this choice automatically guaranties that the phase moles
are strictly positive, further guarantying the species moles are strictly positive as well. This makes
the necessary coding far easier because negative moles and mole fractions do not have to be dealt
with as in other equilibrium solution methods (see for example, CEA [166]).
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Input:
T, p, c

Initialize N (0)
Eqs. (5.26 - 5.28)

Initialize λ(0),
ln N̄(0), g̃(0)

Eqs. (5.29 - 5.31)

Compute dx̃/ds
Eqs. (5.35-5.37,

5.43)

Compute Trial
Solution

Eq. (5.51)
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Figure 5.1.: Flow diagram of the solution procedure for the MPGFC method at a given fixed
temperature and pressure.

5.4.2. Some Examples

The MPGFC method has been implemented in the Multicomponent Thermodynamic and Trans-
port Properties for Ionized Gases in C++ (Mutation++) library1[274]. Among other things,
Mutation++provides thermodynamic properties of individual species and has an option of in-
cluding the thermodynamic database [181] used in the NASA CEA [166, 182] code which will be
used for all of the results presented here.

Constrained Single Phase Mixture

As previously mentioned in the introduction, Bishnu et al. [262] developed a linearly constrained
version of the CEA and STANJAN codes and performed several numerical experiments to judge the
overall robustness of the two methods with constraints in addition to the mass balance constraints.
One such set of calculations used a simple 8-species H2O mixture comprised of H, O, OH, H2, O2,
H2O, HO2, and H2O2 in which the total moles of the mixture were constrained. This constraint
may be written as

∑

j∈S

N j = Nmix (5.55)

1Available for download at https://www.mutationpp.org

https://www.mutationpp.org
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Figure 5.2.: Water mixture composed of 4 moles of H and 2 moles of O at 1500K and 1 atm with
total number of moles constrained between the limits of 2 and 6 moles.

Note that this is the same constraint as was used for the example in Table 5.1.
If the elemental moles of H and O are 4mol and 2mol respectively, then the above constraint on

the total moles of the mixture limits the feasible region of equilibrium solutions to 2 ≤ Nmix ≤ 6.
On the boundaries of this feasible region, the species moles are determined completely by the
constraints themselves: at Nmix = 2, NH2O = 2 while all other species are zero, and at Nmix = 6,
NH = 4 and NO = 2 with the other species zero. Bishnu found that at these boundaries, CEA failed
to converge to a solution at 1500K and 1 atm.

Figure (5.2) shows the equilibrium mole fractions obtained using the MPGFC method for this
H2O mixture at 1500K and 1 atm with the mixture moles constrained over the span of the feasible
region. It is clear from the figure that the MPGFC method can successfully solve the equilibrium
solution even at the boundaries of the feasible region. Perhaps more importantly, the use of the
Simplex algorithm when determining the initial conditions (Eqs. (5.26) and (5.27)) allows the
method to detect when a set of input constraints have no feasible region, and an appropriate error
message may be presented to the user.

A Multiphase Example

In many fields, multiphase equilibrium solutions are used to make engineering calculations or to
understand complex chemical processes. As an example of a multiphase problem, a calculation has
been performed with a Silicon-Phenolic mixture which has been used to study complex ablation
phenomena occurring at the surface of some ablator materials during atmospheric entry [275].
Figure (5.3) shows the results of a calculation with the complex Si–C6H5OH mixture. Because
CEA treats all condensed phases as pure phases, each condensed phase was treated separately in
the MPGFC calculation (though the algorithm described here can be used on any general set of
ideal phases).

It is clear from Fig. (5.3) that the results obtained with the MPGFC method compare exactly
with those obtained using CEA. It should also be noted that CEA was not able to converge
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Comparison between results obtained with CEA and the MPGFC method. All condensed species are considered as separate, pure phases.
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Figure 5.4.: Eigenvalues of the matrix P̃T B̃Λ̇y at s = 1 for the equilibrium solution in Fig. (5.3)
with the associated upper and lower bounds from Eq. (5.44).

for temperatures below 400K due to its poor initial estimate of the solution. Therefore, the
CEA solution begins at 400K in Fig. (5.3).

One interesting feature of the solution is how the solid silicon-oxide transforms between each of
its 3 stable forms. Due to the pure condensed phase assumption, there is a discontinuity in the
mole fractions around 1700K when it becomes more preferential for the Si to combine with C to
form solid SiC(β) rather than combining with O to form solid SiO2 in its β-crystalline state. The
carbon needed to form SiC is taken from the graphite when this change occurs, causing a steep
drop in the C(gr) mole fraction at 1700K.

Figure (5.4) shows the computed eigenvalues of the linear system matrix, M ≡ P̃T B̃Λ̇y, from
Eq. (5.43), along with the corresponding eigenvalue bounds given in Eq. (5.44). It is interesting to
note that the eigenvalues tend to stay close to their upper limit, which is equal to the phase moles
of the phase corresponding to each eigenvalue. This may be explained by decomposing M as,

M = P̃
T
P̃+ P̃

Try. (5.56)

where ry = B̃Λ̇y − P̃ is the residual of the least squares solution for Λ̇y in Eq. (5.37). From this,
it is easy to see that the mth eigenvalue of M is exactly

βm (M) = N̄m + βm
(

P̃
T ry

)

, (5.57)

because P̃T P̃ is diagonal with diagonal entries equal to the phase moles of each phase. From
Eq. (5.57), it is clear that the eigenvalues of M tend towards the phase moles as the residual in
Eq. (5.37) decreases. Note also that the mth column of ry is essentially the residual of Eq. (5.37)
corresponding to the phase m. Therefore, when the least squares system can be exactly satisfied
for a given phase, the eigenvalue of M corresponding to that phase is exactly the number of phase



124 Chapter 5. Linearly Constrained Multiphase Equilibria

moles. In Fig. (5.4), this is clearly evident for the eigenvalues of the solid phases of SiO2. Since
all of the Si in the equilibrium solution is contained in solid SiO2 (see Fig. (5.3)), the least squares
problem in Eq. (5.37) corresponding to SiO2 can be exactly satisfied.

5.5. Mole Fraction Derivatives

It is often necessary to know the derivative of the equilibrium species mole fractions with respect
to temperature, pressure, or elemental mole fractions. Indeed, all of these are required in the
full computation of diffusion driving forces for mixtures in LTE, as shown in Section 2.5. From
Eq. (5.15), it is easy show that the derivative of equilibrium mole fractions with respect to any
variable α must satisfy

∂xj

∂α
= xj

(

−
∂g̃j
∂α

+
∑

i∈C

Bji
∂λi
∂α

)

, j ∈ S. (5.58)

Gibbs free energy derivatives are easily derived for temperature and pressure as

∂g̃j
∂T

= −
Hj(T )

RuT 2
, and

∂g̃j
∂p

=

{

1
p , j ∈ gas phase
0, otherwise

. (5.59)

The element potential derivatives can be stably computed using the same procedure as in Sec-
tion 5.3.2. In particular, the derivatives are split such that

∂λ

∂α
= λ̇α − Λ̇

α ∂

∂α
(ln N̄), (5.60)

where λ̇α ∈ RnC

and Λ̇α ∈ RnC×nP

are obtained via the minimum-norm solutions to the following
least-squares problems

λ̇α = argmin
λ̇

∥

∥

∥

∥

B̃λ̇−Y
∂g̃

∂α

∥

∥

∥

∥

2

, (5.61)

Λ̇
α = argmin

Λ̇

∥

∥

∥
B̃Λ̇− P̃

∥

∥

∥

2
, (5.62)

and the phase mole derivatives are computed via the solution of the linear system

P̃
T
B̃Λ̇

α ∂

∂α
(ln N̄ ) = P̃

T

(

B̃λ̇α −Y
∂g̃

∂α

)

. (5.63)

The solution of the above linear system is well posed based on the arguments made in Section 5.3.2
and Appendix B.

Figure (5.5) compares the mole fraction derivatives for the water mixture in Fig. (5.2) obtained
with Eqs. (5.58 - 5.63) and a finite-difference approximation. While the results are in perfect
agreement as expected, the analytical solution offers a significant savings in computation effort
compared to the finite-difference approximation.

5.6. Concluding Remarks

In this chapter, the single phase Gibbs function continuation method has been extended to a
general multiphase algorithm. To the author’s best knowledge, this represents the first time the
Gibbs function continuation method has been extended to a general multiphase system and that
the MPGFC method is the first multiphase, constrained equilibrium solution algorithm which is
guaranteed to converge for all well posed constraints. The major contributions are listed as follows:
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Figure 5.5.: Mole fraction derivatives with respect to temperature and pressure for the water
mixture from Fig. (5.2). The expressions in Eqs. (5.58 - 5.63) were used to compute the analytical
results and are compared against results obtained using a finite-difference approximation.

• The phase moles have been added to the solution vector with the necessary mathematical
adjustments developed for the GFC methodology.

• A procedure to ensure that the Gibbs phase rule is satisfied has been included in the ini-
tialization procedure along with a phase redistribution technique to ensure all phases are
correctly included.

• Strictly positive (upper and lower) bounds have been placed on the eigenvalues of the linear
system matrix necessary for computing the tangent vector of the pseudo-equilibrium path in
a robust manner.

• Furthermore, it was shown that the eigenvalues tend toward the moles of each included phase
as the residual of the least squares solution for Λ̇y decreases.

• The eigenvalue analysis has been used to develop a sensible procedure for removing phases
from the equilibrium solution, namely when the moles in a phase drop below a specified
tolerance.

The above points were demonstrated on two numerical test cases which serve to highlight some
of the features of the method. A single phase case demonstrated the use of constraints on the
equilibrium mixture and the robustness of the method when the solution lies on the edge of the
feasible region. A multiphase example was used to show, first and foremost, that the method
provides the correct solution when compared to the well established CEA code, and secondly that
the underlying eigenvalue analysis is correct.

Finally, the MPGFC method is shown to be a reliable and robust algorithm for computing
linearly constrained, multiphase, chemical equilibrium solutions. The method has been included
in the Mutation++ library, presented in Chapter 4, which is available as a free, open source,
software package.





CHAPTER 6

Numerical Methods and Codes

6.1. Introduction

The purpose of this chapter is to present the numerical tools developed in this thesis which are used
in the following chapter to study coupled flow, radiation, and ablation phenomena for atmospheric
entry vehicles. Unsteady, three-dimensional, coupled simulations of atmospheric entry vehicles with
ablative heat shields remain extremely costly undertakings due to the large number of species,
chemical reactions, and physical phenomena involved. As a result, these types of simulations
are often performed with lower fidelity modeling and approximate coupling strategies between
radiation, ablation, and flow solutions.

Since the primary focus of this work is to study these complex interactions, only the steady-state
stagnation stream line is considered. As will be shown, considering only the stagnation line of an
atmospheric entry vehicle substantially reduces the cost in terms of CPU time required to obtain
meaningful solutions. These savings can then be reinvested by using higher fidelity physicochemical
models and coupling strategies. In addition, this approach provides the ability to make accurate
engineering predictions of stagnation point heating in a relatively short time. A few drawbacks of
this approach is that 3D and unsteady effects are not considered. However, such effects are out of
the scope of this thesis.

The chapter is organized as follows. Section 6.2 details the derivation and discretization of the
governing equations for the flow field along the stagnation line of an atmospheric entry vehicle.
Coupling with the material response is approximately modeled through a steady-state ablative
boundary condition. Section 6.3 presents the development of two numerical tools which are used
in this work for the solution of radiative transport along the stagnation line using the LBL and
HSNB methodologies. Finally, Section 6.4 discusses the strategies used to compute coupled simu-
lations.

6.2. Stagnation Line Flow

This section details the code developed for modeling the stagnation line flow field. The governing
equations, numerical methods, and boundary conditions used in this work are summarized in
the following sections. The two-temperature thermochemical nonequilibrium model presented in
Chapter 2 is used to illustrate the governing equations derived for the stagnation line. In principle,
however, any thermochemical nonequilibrium model could be used with this approach.

6.2.1. Dimensionally Reduced Navier-Stokes Equations

We follow the methodology of Klomfass and Müller [276] for deriving a 1D plasma flow model along
the stagnation-line of a spherical body with radius R0 as shown in Fig. (6.1). Non-spherical bodies
are modeled using an equivalent sphere radius R0 which correctly reproduces certain desired flow
features. For example, Turchi et al. [277] have shown that the Local Heat Transfer Simulation
(LHTS) methodology can be used to define an equilivalent sphere radius to match subsonic plasma
wind tunnel conditions with actual flight conditions, through appropriate similarity conditions. In
this work, equivalent sphere radii have been determined in order to match expected shock standoff
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Figure 6.1.: Spherical body of radius R0 subjected to a hypersonic flow with uniform velocity u∞.
Azimuth and zenith angles are φ and θ, respectively.

distances, based on the work of Park [278] for the Apollo 4 vehicle. More details, specific to each
case considered, are given in Chapter 7.

Using physical considerations and the assumption of axi-symmetric flow (∂/∂φ = 0), Klomfass
and Müller assume the following radial dependence for mass fractions and temperatures,

ys = ȳs(r), (6.1)
T = T̄ (r), (6.2)

T ve = T̄ ve(r), (6.3)

while velocities and pressures are split into radial and tangential components following

ur = ūr(r) cos θ, (6.4)
uθ = ūθ(r) sin θ, (6.5)

p− p∞ = p̄(r) cos2 θ, (6.6)

pe − pe,∞ = p̄e(r) cos
2 θ, (6.7)

where the pressure is assumed to follow a Newtonian approximation [104] and the overline symbol
indicates stagnation line quantities. Introducing this decomposition into the 3D Navier-Stokes
equations in spherical coordinates and then taking the limit when θ tends to zero leads to the
Dimensionally Reduced Navier Stokes (DNRS) equations for the stagnation-streamline quantities
of the form

∂U

∂t
+
∂Fc

∂r
+
∂Fd

∂r
= Sc + Sd + Sk + Sr, (6.8)

where U is the conservative variable vector and Fc and Fd are the convective and diffusive fluxes,

U =

⎡

⎢

⎢

⎢

⎢

⎣

ρs
ρur

ρuθ

ρE
ρeve

⎤

⎥

⎥

⎥

⎥

⎦

, Fc =

⎡

⎢

⎢

⎢

⎢

⎣

ρsur

ρu2
r + p

ρuruθ

ρurH
ρureve

⎤

⎥

⎥

⎥

⎥

⎦

, and Fd =

⎡

⎢

⎢

⎢

⎢

⎣

Jrs
−τrr
−τrθ

qr − τrrur

qver

⎤

⎥

⎥

⎥

⎥

⎦

. (6.9)

Sc and Sd are convective and diffusive source terms resulting from the expansion along the
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stagnation-line and are written as

Sc = −
(ur + uθ)

r

⎡

⎢

⎢

⎢

⎢

⎣

2ρs
2ρur

3ρuθ − 2 p−p∞

ur+uθ

2ρH
2ρeve

⎤

⎥

⎥

⎥

⎥

⎦

, and (6.10)

Sd = −
1

r

⎡

⎢

⎢

⎢

⎢

⎣

2Jrs
2(τθθ − τrr + τrθ)

τθθ − 3τrθ
2(qr − τrrur − τrθur − τθθuθ)

2qver

⎤

⎥

⎥

⎥

⎥

⎦

. (6.11)

Finally Sk and Sr are the internal kinetic and energy transfer and radiative source term vectors,
respectively, where

Sk =

⎡

⎢

⎢

⎢

⎢

⎣

ω̇s

0
0
0

Ωve

⎤

⎥

⎥

⎥

⎥

⎦

, and Sr =

⎡

⎢

⎢

⎢

⎢

⎣

φ̇s
0
0
P
Pve

⎤

⎥

⎥

⎥

⎥

⎦

. (6.12)

The overline symbol introduced in Eqs. (6.1 - 6.7) to designate stagnation-line quantities has been
omitted for the sake of clarity. The DNRS equations are supplied with appropriate boundary
conditions at the free-stream radius r = R∞ and the vehicle surface r = R0. The boundary
conditions used in this work are discussed in Section 6.2.3.

The total energy and the vibrational-electronic-electron energy per unit volume are defined as
ρE =

∑

s ρses+ρu
2
r/2 and ρeve =

∑

s ρse
ve
s . Only the radial velocity component contributes to the

kinetic energy due to the ansatz Eqs. (6.4 - 6.7). Note that the formation energy is not included
in eve. This point is important for the source terms described below. The total enthalpy is defined
as usual by H = E + p/ρ.

The radial species diffusion fluxes Jrs are obtained by solving the approximate Stefan-Maxwell
equations for heavy species with an ambipolar electric field as discussed in Section 4.5.2. The
radial heat fluxes are defined by

qr =
∑

s

Jrshs − λtr
∂T

∂r
− λve

∂T ve

∂r
, (6.13)

qver =
∑

s

Jrsh
ve
s − λve

∂T ve

∂r
, (6.14)

where λtr and λve are the thermal conductivities of the energy modes in equilibrium with the
temperatures T and T ve respectively, hs = es + ps/ρs, hve

s = eves for s ̸= e and hve
e = evee + pe/ρe.

The components of the viscous stress tensor τrr, τrθ and τθθ are given by

τrr =
4

3
η

(

∂ur

∂r
−

ur + uθ

r

)

, (6.15)

τrθ = η

(

∂uθ

∂r
−

ur + uθ

r

)

, (6.16)

τθθ = −
1

2
τrr, (6.17)

where η is the shear viscosity.
In Eq. (6.12) ω̇s are the collisional species mass production rates. Reaction rate constants are

assumed to follow an Arrhenius law (see Section 2.6.1). Forward reaction constants are taken from
the literature depending on the mixture considered. Backward reaction constants are computed
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such that equilibrium relations are satisfied [7]. The nonequilibrium temperatures used for the for-
ward and backward rates in this work have already been presented in Table 2.1. Ωve represents the
rate of translational energy being converted to vibration-electronic-electron energy and is written
as

Ωve = −pe

(

∂ur

∂r
+ 2

ur + uθ

∂r

)

+
∑

s∈M

ρs
ev0s − evs
τV T
s

+ ρe
et0e − ete
τET

+
∑

s

eves ω̇s −
∑

p∈R

∆HpRp. (6.18)

The first term on the right-hand-side of Eq. (6.18) represents the internal work done by the electron
pressure. The second term represents vibration-translation energy exchange where ev0s and evs are
vibrational energies of species s at the temperature T and T ve, respectively. The third term corre-
sponds to electron-heavy translation energy exchange where et0e and ete are translational energies
of electrons at the temperature T and T ve, respectively. The expressions shown in Eq. (2.129) and
Eq. (2.135) are used in this work for the associated relaxation times τV T

s and τET
s , respectively.

The fourth term represents the coupling between chemistry and vibrational-electronic energy. Fi-
nally, the fifth term accounts for the energy removed from the electron bath due to the set R
of electron impact ionization and dissociation reactions, where Rp is the molar rate of progress
and ∆Hp =

∑

s νspe
f
s/Ms is the chemical heat released per unit mole (νsp is the stoichiometric

coefficient for reaction p and Ms is the molar mass of species s) of reaction p.
Lastly, φ̇s represents the mass production rate of species s due to photochemical reactions, P is

the total radiative energy source term and Pve is the radiative energy source term for the energy
modes in equilibrium with T ve. The numerical solution of the radiative source terms is presented
in Section 6.3.

6.2.2. Discretization

The numerical solution of the DNRS stagnation-line equations derived in the previous section has
been developed by Munafò [97] for nitrogen STS flows. This implementation has been extended
in this work to general thermochemical non-equilibrium models, however the numerical methods
remain unchanged from the original work of Munafò. The stagnation-line equations of Eq. (6.8) are
solved via the method-of-lines. The spatial and temporal discretizations are summarized below.

Spatial Discretization

The stagnation-line equations are discretized in space between the surface radius R0 and free-
stream radius R∞ using the Finite Volume (FV) method. The resulting discretization yields the
following Ordinary Differential Equation (ODE) for the temporal variation of the cell-averaged
conservative variables in cell i,

∂Ui

∂t
∆ri + F̃

c
i+ 1

2
− F̃

c
i− 1

2
+ Fd

i+ 1
2
− Fd

i− 1
2
=
(

Sc
i + Sd

i + Sk
i + Sr

i

)

∆ri, (6.19)

where ∆ri = ri+ 1
2
− ri− 1

2
is length of cell i. The numerical inviscid flux F̃

c
i+ 1

2
is computed using

Roe’s approximate Riemann solver [279], such that

F̃
c
i+ 1

2
=

1

2

[

Fc(Ui+1) + Fc(Ui)
]

−
1

2

∣

∣A(Û)
∣

∣

[

Ui+1 − Ui

]

. (6.20)

∣

∣A(Û)
∣

∣ is the dissipation matrix, defined as
∣

∣A(Û)
∣

∣ = R(Û)
∣

∣Λ(Û)
∣

∣L(Û), where R, L, and Λ are
the right eigenvector, left eigenvector, and diagonal eigenvalue matrices associated with the inviscid
flux Jacobian A = ∂Fc/∂U = RΛL. The exact expressions used for the eigensystem matrices are
provided in Appendix C. The hat symbol on the conservative variable vector in Eq. (6.20) denotes
the Roe averaged state, evaluated using the linearization of Prabhu [280] with the entropy fix of
Harten and Hyman [281] in order to prevent the occurrence of expansion shocks.
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Second-order accuracy in space is achieved by reconstructing upwind variables at the cell inter-
face. For robustness, the reconstruction is performed on primitive variables, P = [ρs, ur, uθ, T, T ve]T , s ∈ S∗

[27]. For a generic primitive variable p, the reconstructed “left” (L) and “right” (R) values at an
interface i+ 1/2 are computed using the Monotone Upstream Centered Schemes for Conservation
Laws (MUSCL) scheme [282],

pLi+1/2 = pi +
1

2
φ(rLi )(pi − pi−1), (6.21)

pRi+1/2 = pi+1 −
1

2
φ(1/rRi+1)(pi+2 − pi+1), (6.22)

where φ(r) is a slope limiter function. Here, r represents the ratios of consecutive differences, such
that

rLi =
pi+1 − pi
pi − pi−1

, (6.23)

rRi+1 =
pi+2 − pi+1

pi+1 − pi
. (6.24)

The van Albada limiter [283] has been used in this work, following the implementation of Munafò
[97]. Conservative variables are then built from reconstructed primitive variables and the second-
order numerical flux is computed according to F̃

c
i+1/2 = F̃

c
i+1/2(U

L
i+1/2,U

R
i+1/2).

The diffusive fluxes and source terms are computed using primitive variables. Primitive variables
are computed at the face i+ 1

2 for the diffusive fluxes using a simple weighted average, such that
for a generic primitive variable p

pi+ 1
2
=

pi+1∆ri+1 + pi∆ri
∆ri+1 +∆ri

. (6.25)

Likewise, primitive variable gradients are computed using a central difference scheme at the face,
(

∂p

∂r

)

i+ 1
2

= 2

(

pi+1 − pi
∆ri+1 +∆ri

)

. (6.26)

Cell-centered gradients are computed using a two point central finite difference for the diffusive
flux source term, such that

(

∂p

∂r

)

i

= 2

(

pi+1 − pi−1

∆ri+1 + 2∆ri +∆ri−1

)

. (6.27)

Temporal Discretization

Eq. (6.19) is integrated in time from an initial time level of n = 0 using the implicit Backward-Euler
method,

δUn
i

∆ti
∆ri + F̃

c n+1
i+ 1

2
− F̃

c n+1
i− 1

2
+ Fd n+1

i+ 1
2

− Fd n+1
i− 1

2

=
(

Sc n+1
i + Sd n+1

i + Sk n+1
i + Sr k

i

)

∆ri, (6.28)

where δUn
i = Un+1

i − Un
i and ∆ti is the local time-step based on the Courant-Friedrichs-Lewy

(CFL) number according to Blazek [284],

∆ti =
CFL∆ri

[

|ur|+ a+ 1
∆r max

(

4
3
η
ρ ,

λ
cv

)]

i

, (6.29)

where a is the numerical speed of sound presented in Appendix C. In practice, the CFL number
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is typically ramped up from about 0.01 to 100 by multiplying by 10 every 1000 iterations or so.
For simplicity, the initial solution for uncoupled simulations is taken as the free-stream conditions.
Coupled simulations are discussed in Section 6.4. The radiative source term in Eq. (6.28) is treated
explicitly at a lagged time level k = n − (n mod nr) where nr is the number of flow time-steps
computed between updates to the radiative source term and (n mod nr) represents the modulus
of the integer division of n by nr.

The numerical inviscid flux is linearized using the method of Liou and van Leer [285],

F̃
c n+1
i+ 1

2
≈ F̃

c n
i+ 1

2
+A

+
i δU

n
i +A

−
i+1δU

n
i+1, (6.30)

where the positive-negative split Jacobians are A± = RΛ±L. Their expressions are provided in
Appendix C. The diffusive fluxes and source term are linearized in two steps. In the first step, the
fluxes and source terms are rewritten as a sum of the terms which are linearly dependent on the
gradient of conservative variables plus those which are not, such that

Fd n
i+ 1

2
= A

d n
i+ 1

2

(

∂U

∂r

)n

i+ 1
2

+B
d n
i+ 1

2

, (6.31)

Sd n
i = A

d n
s i

(

∂U

∂r

)n

i

+B
d n
s i . (6.32)

To simplify the linearization procedure, the matrices Ad and Ad
s are computed assuming a Fickian

diffusion model using the self-consistent effective diffusion coefficients of Ramshaw and Chang [286].
Expressions for the matrices Ad, Ad

s , Bd, and Bd
s are provided in Appendix C. In the second step,

the gradients in Eqs. (6.31) and (6.32) are computed according to Eqs. (6.26) and (6.27) and the
resulting expressions are linearized around time-level n, such that

Fd n+1
i+ 1

2

≈ Fd n
i+ 1

2
+ 2Ad n

i+ 1
2

(

δUi+1 − δUi

∆ri+1 +∆ri

)

+
∂Bd n

i+1/2

∂Un
i

δUn
i +

∂Bd n
i+1/2

∂Un
i+1

δUn
i+1, (6.33)

Sd n+1
i ≈ Sd n

i + 2Ad n
s i

(

δUi+1 − δUi

∆ri+1 + 2∆ri +∆ri−1

)

+
∂Bd n

s i

∂Un
i

δUn
i , (6.34)

where the matrices Ad and Ad
s have been assumed constant during the linearization. For simplicity,

the last two Jacobians in Eq. (6.33) are approximated as

∂Bd n
i+1/2

∂Un
i

≈
∂Bd n

i

∂Un
i

, (6.35)

∂Bd n
i+1/2

∂Un
i+1

≈
∂Bd n

i+1

∂Un
i+1

, (6.36)

where the expressions for ∂Bd/∂U and ∂Bd
s/∂U are given in Appendix C.

Finally, the convective and kinetic source terms are linearized through a simple Taylor series
expansion, such that

Sc n+1
i ≈ Sc n

i +
∂Sc n

i

∂Un
i

δUn
i , (6.37)

Sk n+1
i ≈ Sk n

i +
∂Sk n

i

∂Un
i

δUn
i . (6.38)

The source term Jacobians are computed analytically to increase stability and the resulting ex-
pressions are presented in Appendix C.

The substitution of Eqs. (6.30 - 6.38) into Eq. (6.28) leads to a block-tridiagonal linear system
of equations which is solved at each time-step using the Thomas algorithm [281] for the update in
the conservative variables. This procedure is repeated until a steady-state solution is reached.
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6.2.3. Boundary Conditions

Boundary conditions are imposed using primitive variables at ghost-cells [281]. The different
boundary conditions used in this work are described below. The wall boundary conditions are
imposed at a radius r = R0, while free-stream conditions are imposed at r = R∞.

Isothermal, non-catalytic, no-slip wall

When ablation coupling is neglected, the wall of the vehicle is assumed to be non-ablative, non-
catalytic, and isothermal at T = T ve = Tw for a prescribed wall temperature Tw. A no-slip
condition for the velocity is prescribed, where (ρur)w = (ρuθ)w = 0. Finally, species partial
pressures are assumed constant across the wall.

Isothermal, steady-state ablation

Coupling with ablation and pyrolysis phenomena is obtained by way of a steady-state ablation
boundary condition using the procedure detailed by Turchi et al. [287]. A detailed species mass
balance at the surface yields the following relationship,

(ρiur)w + (Jri)w = ṁc,i + ṁg,i, ∀ i ∈ S, (6.39)

in which the first two terms are the convective and diffusive mass fluxes of species i at the surface
and ṁc,i and ṁg,i represent the char and pyrolysis gas blowing rates respectively at the surface
for species i. Summing the species mass balance over all species, we have

(ρur)w = ṁc + ṁg, (6.40)

where ṁc =
∑

i∈S ṁc,i and ṁg =
∑

i∈S ṁg,i. The recession rate of the surface, ṡc, and the virgin
layer, ṡv, are given as

ṡc =
ṁc

ρc
, ṡv =

ṁg

ρv − ρc
(6.41)

where ρc and ρv are the densities of the char and virgin materials respectively. Under the steady-
state ablation assumption, the surface and virgin layer recess at the same rate, leading to the
following expression for the pyrolysis blowing rate:

ṁg =

(

ρv
ρc

− 1

)

ṁc. (6.42)

The ratio ρv/ρc is by definition greater than one and may be determined experimentally for a given
TPS material. Substituting Eqs. (6.40) and (6.42) into Eq. (6.39), we have

ρv
ρc

ṁc

(

ρi
ρ

)

w

+ (Jri)w = ṁc,i +

(

ρv
ρc

− 1

)

yg,iṁc, ∀ i ∈ S, (6.43)

where yg,i is the mass fraction of species i in the pure pyrolysis gas. When equilibrium is assumed
for the pyrolysis gas composition, yg,i is fixed based on the surface temperature, pressure, and the
given elemental composition of the pyrolysis gas. The char mass blowing rate is determined from
the following four elementary reactions considered at a pure carbon surface.

C(s) + O −−→ CO (6.44)
2C(s) + O2 −−→ 2CO (6.45)
C(s) + N −−→ CN (6.46)
3C(s) −−⇀↽−− C3 (6.47)

The reaction probabilities for the two oxidation reactions and the sublimation reaction have been
taken from Park [69], while the nitridation reaction probability is taken from Suzuki [288] based
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Figure 6.2.: Diagram of the tangent slab approximation.

on a recent experimental investigation by Helber et al. [8] on the nitridation of Graphite in a pure
Nitrogen plasma. Note that the sublimation reaction is considered reversible such that carbon
may condense on the surface. In addition to the heterogeneous reactions listed above, all ions
are recombined at the wall in order to ensure that there is no electrical charge across the surface.
Catalytic recombination of neutral species is neglected. For a fixed wall temperature and pressure,
Eq. (6.43) represents a nonlinear system of nS equations for the nS unknown species densities
at the wall which can be solved using a simple Newton iterative procedure. An energy balance
could also be coupled to this system to solve for the temperature at the wall, however we will
only consider a fixed wall temperature in this work in order to simplify the analysis. Finally, the
ablative boundary condition is closed with the addition of the following constraints at the wall:

(T )w = (T ve)w = Tw, (6.48)
(

∂p

∂r

)

w

= 0, (6.49)

(uθ)w = 0. (6.50)

Free-stream

Free-stream boundary conditions are implemented as a supersonic inlet [281] in which temperature,
velocity and species mass densities are imposed.

6.3. 1D Radiative Transfer

This section describes the tools developed for the solution of the radiative source terms along the
stagnation line. The tangent slab approximation has been used to model the radiative properties
in the flow field. The tangent slab approximation assumes that the flow field can be divided into
constant property slabs which extend to infinity in all directions tangent to the stagnation line
as shown in Fig. (6.2). In the figure, the stagnation line is divided into n discrete points sj with
1 ≤ j ≤ n which separate n−1 constant property slabs. Under this assumption, a radiative property
φσ can then be expressed as only a function of the tangential distance from the stagnation point
φσ(s) = φσ(sj) for sj ≤ s < sj+1. This simplification greatly reduces the numerical complexity of
computing radiative source terms.

Two separate codes have been developed in this work for computing the radiative source terms
along the stagnation line, under the tangent slab approximation. The first is specialized for full
LBL calculations, while the second is used with the HSNB model. Each code is summarized below.
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6.3.1. LBL Tangent Slab

The tangent slab geometry depicted in Fig. (6.2) allows the RTE given in Eq. (3.1) to be greatly
simplified to,

cos θ
∂

∂s
Iσ(s, θ) = ησ(s)− κσ(s)Iσ(s, θ), (6.51)

where θ is the angle between the ray direction and the stagnation line and s is the normal coordinate
between the two walls in Fig. (6.2) or along the stagnation line in this work. Note that this s is
distinctly different than the s used in Eq. (3.1) which is the coordinate along the ray. Writing
µ = cos θ, the formal solution to Eq. (6.51) is given by

Iσ(s, µ) = Iσ(b, µ) τσ(b, s, µ) +
1

µ

∫ s

b
ησ(s

′) τσ(s
′, s, µ) ds′, (6.52)

where b represents the tangential coordinate of the boundary from which a ray with angle cosine
µ starts from. The spectral transmissivity is given as

τσ(s
′, s, µ) = exp

(

−
∫ s

s′

κσ(s′′)

µ
ds′′
)

. (6.53)

Using the formalism of Section 3.4.1, the intensity at a point sj in the direction µ for the constant
property slab geometry in Fig. (6.2) is found to be

Iσ(sj , µ) = Iσ(s1, µ) τ(s1, sj , µ) +
j−1
∑

i=1

η

κ
(si)
[

τ(si+1, sj , µ)− τ(si, sj , µ)
]

, 0 ≤ µ ≤ 1, (6.54)

and

Iσ(sj , µ) = Iσ(sn, µ) τ(sn, sj , µ) +
n−1
∑

i=j

η

κ
(si)
[

τ(si, sj , µ)− τ(si+1, sj , µ)
]

, −1 ≤ µ < 0. (6.55)

The radiative heat flux can then be computed as

qrσ(sj) = 2π

∫ 1

−1
Iσ(sj , µ)µ dµ. (6.56)

Assuming black walls, the integrals over the angle cosine may be computed analytically, resulting
in the final expression for the tangent slab heat flux,

qrσ(sj) = 2π

{

Ibσ(T1)E3

( j−1
∑

i=1

κi∆si

)

− Ibσ(T2)E3

( n−1
∑

i=j

κi∆si

)

+
j−1
∑

i=1

ησ
κσ

∣

∣

∣

∣

i

[

E3

( j−1
∑

k=i+1

κk∆sk

)

− E3

( j−1
∑

k=i

κk∆sk

)]

−
n−1
∑

i=j

ησ
κσ

∣

∣

∣

∣

i

[

E3

( i−1
∑

k=j

κk∆sk

)

− E3

( i
∑

k=j

κk∆sk

)]}

,

(6.57)

where κi and ηi are respectively the spectral absorption and emission coefficients for slab i, T1 and
T2 are the temperatures of the boundaries at s1 and sn, and ∆si = si+1 − si is the thickness of
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Figure 6.3.: Selected exponential integrals En(x).

the ith slab. E3 is the exponential integral function, where

En(x) =

∫ 1

0
µn−2 exp

(

−
x

µ

)

dµ, n ≥ 0. (6.58)

The exponential integral functions satisfy the recurrence relation nEn+1(x) = exp(−x)− xEn(x),
leading to the expression

En(x) =
1

(n− 1)!

[

(−x)n−1E1(x) + exp(−x)
n−2
∑

i=0

(n− i− 2)!(−x)i
]

, (6.59)

which relates all the exponential integral functions with n > 1 to E1. The case of n = 1 is usually
approximated using curve-fits based on accurate numerical integration or series expansions. For
n = 0, the simple analytical expression, E0(x) = x−1 exp(−x), can be used. The general behavior
of the exponential integrals is shown in Fig. (6.3).

The tangent slab approximation allows for a significant reduction in computational effort neces-
sary to evaluate the radiative heat flux and source term along the stagnation line when LBL calcu-
lations are performed. All LBL calculations performed in this work are computed using Eq. (6.57).
The spectral coefficients are provided by the HTGR library discussed in Chapter 3. The average
radiative source term in the slab bounded by sj and sj+1 is readily obtained from,

−∇ · qr(sj+ 1
2
)∆sj = qr(sj)− qr(sj+1), (6.60)

where sj+ 1
2
= (sj + sj+1)/2 denotes the location of the center of the slab.

6.3.2. HSNB Tangent Slab

Unfortunately, the HSNB methodology does not allow for the analytical treatment of the angular
integration using exponential integrals as was shown for the LBL case in the previous section. This
is most easily seen by considering the expression for the mean transmissivity in Eq. (6.53) applied
to a homogeneous path between points s1 and s2. From Eq. (6.53), the average transmissivity over
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a narrow spectral band, integrated over the direction cosine µ may be written as
∫ 1

0
τσ

∆σ dµ =
1

∆σ

∫

∆σ
E2 (κσ(s2 − s1)) dσ. (6.61)

If instead, we compute the band-average assuming a tailed-inverse exponential distribution for
Lorentz broadening (see Table 3.2), then we have

∫ 1

0
τσ

∆σ dµ =

∫ 1

0
exp

(

−2β

(

√

1 +
k(s2 − s1)

βµ
− 1

))

dµ, (6.62)

where k and β are the SNB model parameters. These two equations show that transmissivity
integrated over the direction cosine can be calculated using the E2 exponential integral in the
monochromatic case, but when averaged over a narrow band, an angular discretization must be used
to perform the integration due to the non-Beerian expression of the narrow band transmissivity.

Discretizing the direction cosine space into discrete intervals ∆µi with center µi, the heat flux
is numerically integrated at each point sj according to

qr(sj) = 2π

∫ ∞

0

∫ 1

−1
Iσ(sj , µ)µ dµ dσ

≈ 2π
∑

∆σ

nµ
∑

i=1

Iσ
∆σ
(sj , µi)µi ∆µi ∆σ,

(6.63)

where Iσ
∆σ
(sj , µi) is the band-averaged intensity at the point sj in the direction corresponding

to µi for band ∆σ, and the sum over ∆σ corresponds to the sum over all narrow bands. The
band-averaged intensity is computed using the HSNB method detailed in Section 3.4 for a path
constructed from the tangent slab geometry ending at point sj and beginning at the appropriate
boundary corresponding to the direction cosine µi.

Eq. (6.63) represents four nested loops. The inner-most loop is performed over the line-of-sight
necessary to compute the band-averaged intensity at a given spatial point and direction, Iσ

∆σ
(sj , µi).

The angular integration is then performed by looping over each point in the angular discretization.
Next the spectral integration is performed by looping over each narrow band of the HSNB model.
Finally, this procedure must be performed at all spatial locations along the stagnation line. Thus
the numerical complexity for the integration of the radiative flux using Eq. (6.63) is proportional
to n(n − 1)nµnb/2. Once the flux has been calculated, its divergence is calculated according to
Eq. (6.60).

The band-averaged spectral incident radiation at a point sj may be computed using the same
angular integration strategy used for the flux, namely

G
∆σ
(sj) = 2π

∫ 1

−1
Iσ

∆σ
(sj , µ) dµ ≈ 2π

nµ
∑

i=1

Iσ
∆σ
(sj , µi)∆µi. (6.64)

Finally, the species photochemical production rate for species s may be computed at the center of
each slab through the discretization of Eq. (3.14),

φ̇s(sj+ 1
2
) =

ms

hc

∑

p

νps

∫ ∞

0

[

κpσ(sj)Gσ(sj+ 1
2
)− 4π ηpσ(sj)

]dσ

σ
,

≈
ms

hc

∑

p

νps
∑

∆σ

[

κp
∆σ
(sj)G

∆σ
(sj+ 1

2
)− 4π ηp

∆σ
(sj)

]∆σb
σ

,

(6.65)

where the sums over p and ∆σ represent the sums over all bound-free processes and spectral narrow
bands, respectively, and σ = (σ1 + σ2)/2 is the center of each narrow band. κp∆σ and ηp

∆σ are
the narrow band absorption and emission coefficients, respectively, for the photochemical process
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Figure 6.4.: Difference in computed wall radiative flux versus different sizes of the angular dis-
cretization with 1000 angular points taken as reference. Flow field taken from the Fire II 1634 s
case presented in Section 7.3.1.

p as provided by the HSNB database. The incident radiation is approximated at the slab center
by averaging, G

∆σ
(sj+ 1

2
) = (G

∆σ
(sj) +G

∆σ
(sj+1))/2.

The treatment of the angular discretization and boundary conditions are discussed in the fol-
lowing subsections.

Angular discretization

A uniform angular discretization is constructed via

µi = 1− (i − 0.5)∆µi, (6.66)

∆µi =
2

nµ
, (6.67)

where 1 ≤ i ≤ nµ and nµ is number of angular points. A total of 20 points over the range
−1 ≤ µ ≤ 1 has been used for all calculations presented in this work. This choice is based on an
angular grid convergence study for typical flow fields. An example convergence result is shown in
Fig. (6.4) for the Fire II 1634 s case presented in Section 7.3.1. The relative precision loss on the
wall radiative flux with 20 angular points is about 0.3% when compared to a reference solution
with 1000 points. This is about one order of magnitude smaller than the accuracy that can be
expected with the HSNB method compared to full LBL results. Thus, 20 points is a reasonable
choice for the angular discretization.

Reflecting boundaries

The boundary condition in Eq. (3.5) is discretized as

Iσ
∆σ
(s1, µj) = ϵ1Ibσ

∆σ
(T1) +

1− ϵ1
π

∑

µi<0

Iσ
∆σ
(s1, µi) |µi|∆µi, µj > 0, (6.68)

Iσ
∆σ
(sn, µj) = ϵ2Ibσ

∆σ
(T2) +

1− ϵ2
π

∑

µi>0

Iσ
∆σ
(sn, µi) |µi|∆µi, µj < 0, (6.69)

where ϵ1 and ϵ2 are the emissivities of the first and second wall respectively. These equations
represent a coupling between the outgoing intensity of each wall through reflection of the incoming
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Figure 6.5.: Flowchart representing the strategy used for each type of coupling considered in this
work.

intensity. When one or both walls in Fig. (6.2) are treated as reflecting boundaries, the outgoing
average intensity at the walls is solved iteratively. The process begins by initializing the outgoing
intensities using black walls at the wall temperatures. Eqs. (6.68) and (6.69) are then evaluated to
update the outgoing intensities at each wall. This process is repeated until the outgoing intensities
differ between successive iterations by less than 10−6W/cm− sr in each narrow band. Typically,
this condition was met after only two iterations for the cases presented in this work.

6.4. Coupling Strategies

Four different coupling strategies are considered in Chapter 7: flow only, coupled flow and radiation,
coupled flow and ablation, and fully coupled. This section describes how each coupled solution
type is obtained using the stagnation line flow solver and radiation transport codes presented in
the previous sections. An overview of each coupling strategy is shown in Fig. (6.5).

Uncoupled

When radiation and ablation are both ignored, the stagnation line code is used to solve the
DNRS equations presented in Section 6.2.1 with Sr = 0 and an isothermal, non-catalytic, and
no-slip boundary condition. The solution is iterated implicitly from an initial solution until a
steady state solution is obtained using the methods described in Section 6.2.2. The convergence
criteria used in this thesis for all solutions is a drop in the initial residual by six orders of magnitude.

Coupled flow and radiation

When radiation coupling is considered the radiative source terms are added explicitly to the previ-
ous algorithm. The radiative source terms are updated typically every 200 flow iterations using the
code described in Section 6.3.2. Starting from an uncoupled solution, time integration is performed
until steady state is reached. In order to reduce the computational time, radiative calculations
are carried out on a coarse mesh in which the convective cells are grouped by five based on an
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extensive grid convergence analysis. Finally, radiative source terms are linearly interpolated from
the cell centers of the radiation mesh to the cell centers of the flow mesh.

Coupled flow and ablation

Ablation coupling is obtained via the steady-state ablation boundary condition described in Sec-
tion 6.2.3. Starting from an uncoupled solution, a new solution is converged with the updated
boundary condition. The uncoupled flow solution is first obtained considering only the species
relevant to the shock layer chemistry. Once converged, the additional products of ablation and py-
rolysis are added to the mixture and initialized with negligible densities. The chemical mechanism
is also updated accordingly. This solution is then used as the initial conditions for coupled flow
and ablation calculation.

Fully coupled

Fully coupled solutions are obtained using a mix of the partially coupled methods described above.
An uncoupled solution is first obtained and used as initial conditions for a coupled ablation solution.
This solution is then used as the initial conditions for the fully coupled solution. Computing
intermediate solutions in this way helps to avoid numerical difficulties associated with trying to
compute the radiative source terms and ablation boundary condition before the shock and boundary
layers have developed.

6.5. Concluding Remarks

This chapter presented the numerical tools developed to study coupled flow, radiation, and ablation
effects for atmospheric entry flows. The focus was placed on modeling the stagnation streamline
in an effort to maximize the fidelity of the phyiscochemical models and coupling strategies. Three
codes have been developed to model flow and radiative transfer along the stagnation line.

The dimensionally reduced Navier-Stokes equations for multicomponent, reacting, and radiating
flows along the stagnation streamline were presented. The equations have been discretized in space
using a second-order FV method and their steady-state solution via the method-of-lines was also
presented. Ablation coupling is achieved through a steady-state ablation boundary condition.

Radiation coupling is treated explicitly. Two treatments of the RTE have been considered: 1) a
full LBL solution using spectra produced by the HTGR database discussed in Chapter 3, and 2)
solution via the HSNB methodology. Both solutions make use of the tangent-slab approximation
for the three-dimensional geometry of the radiation field ahead of the vehicle. An analytical
treatment of the angular integration via exponential integrals is used for the LBL case in order to
significantly reduce the solution cost. It was shown that this is not possible when the HSNB model
is used, due to the non-Beerian nature of the SNB approximation. Instead, numerical integration
is performed on a discretized angular domain and it was shown that 20 angular points provides
sufficient accuracy, based on a grid convergence study.

Finally, four coupling strategies are envisaged: no coupling, coupled flow and ablation, coupled
flow and radiation, and fully coupled. The methodology used for each strategy has been presented.
While it was not discussed in this chapter, it is important to mention that the codes developed in
this work have been verified against other numerical solutions [72, 289]. The tools developed in
this chapter are used in Chapter 7 to study several atmospheric entry vehicles.



CHAPTER 7

Applications and Results

7.1. Introduction

Previous chapters have been dedicated to the description of the physico-chemical models and algo-
rithms developed in this thesis for atmospheric entry simulations. In this chapter, several applica-
tions are presented in which the HSNB methodology is analyzed in terms of its overall accuracy and
efficiency. The model is then used to study the effects of flow-radiation and flow-radiation-ablation
coupling on the predicted convective and radiative heating to different atmospheric vehicles using
the numerical tools developed in the previous chapter.

Two key questions regarding the use of the HSNB method are addressed, namely

1. How does the HSNB model compare to LBL results for flight conditions relevant to atmo-
spheric entry?

2. What is the cost/benefit analysis in terms of speed and accuracy of the adaptive HSNB method
presented in Chapter 3 as compared to the high-resolution HSNB method?

The effects of coupled flow, radiation, and ablation are discussed, based on stagnation line simula-
tions of real flight vehicles. Finally, the various conclusions drawn in this chapter are summarized
in the last section.

7.1.1. Vehicles and Flight Conditions

This section details the various vehicles and flight conditions considered in the rest of the chapter.
A summary of the different flight conditions is presented in Table 7.1 for each vehicle. In addition,
the specific thermodynamic, transport, and chemistry data used for each of the mixtures presented
in the following sections is summarized in Appendix D.

Fire II

The Fire II vehicle was the second of two early successful reentry flight tests conducted during
the Apollo era in order to help reduce uncertainties in the predicted aerothermal environment
surrounding the Apollo reentry capsule. Launched on May 22, 1965, Fire II reentered Earth’s
atmosphere with a velocity of 11.35km/s at a flightpath angle of −14.7◦. The Fire reentry package
consisted of a blunt spherical forebody with a conical afterbody as shown in Fig. (7.1) and flew
with a nominal 0◦ angle of attack. The forebody was constructed of three beryllium calorimeter
shields designed to be ejected before reaching their melting point. Each shield was sandwiched
between phenolic-asbestos insulation layers for protection until the desired exposure times. Thus,
Fire II data is split into three distinct data-gathering periods, each with a different nose radius. A
series of sensor plugs embedded with thermocouples provided in-depth temperature profiles of each
beryllium shield allowing estimation of the surface temperature of the stagnation region during each
data-gathering period [290]. In addition, three total radiometers provided integrated intensities
over a wavelength range of 0.2µm to 4.0µm at the stagnation point and two off-axis locations [291].
A spectral radiometer was also located at the stagnation point, providing a 0.004µm wavelength
resolution from 0.3µm to 0.6µm.



1
4
2

C
h
ap

te
r
7
.
A
p
p
lic

at
io

n
s

an
d

R
es

u
lt
s

Table 7.1.: Conditions for the vehicle trajectory points considered in this work. Altitude h, equivalent sphere radius of the vehicle R0, wall temperature
Tw and free stream conditions (temperature T∞, velocity u∞, total mass density ρ∞ and mass fractions y∞).

Atmosphere Vehicle Flight Time h R0 Tw T∞ u∞ ρ∞
y∞ [%] s km m K K km/s kg/m3

Earth Fire II 1634.0 76.42 0.935 615.0 195.0 11.36 3.72× 10−5

77.6 - 23.3 (N2-O2) 1642.66 53.87 0.805 480.0 273.0 10.56 7.17× 10−4

1645.0 48.40 0.805 1520.0 285.0 9.83 1.32× 10−3

Apollo 4 30 032.0 59.79 2.85 2500.0 246.04 10.25 3.41× 10−4

Titan Huygens 189.0 273.2 1.25 2000.0 176.6 5.13 2.96× 10−4

98.84 - 1.16 (N2-CH4) 191.0 267.9 1.25 1000.0 183.0 4.79 3.18× 10−4
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Figure 7.1.: Schematic of Fire II entry vehicle from [290].

Three trajectory points of the Fire II reentry are considered in this chapter, corresponding to the
first two data-gathering periods. A summary of the free-stream flow parameters at each trajectory
point is presented in Table 7.1. Since the forebody of Fire II was spherical, the exact nose radius
is used for the stagnation-line simulations presented in the following sections. The 11-species, two
temperature, air mechanism by Park [69] is used to model the flow field chemistry. A description
of the reactions and their rate constants are provided in Table D.2. The EM2C-HTGR database
has been used for the calculation of spectral emission and absorption coefficients, both for the LBL
and HSNB calculations. The contributions of 19 diatomic systems of N2, N2

+, NO, and O2 as
listed in Table 3.1 have been included in the calculations, as well as atomic lines of N, O, N+, O+,
and continuum processes.

Apollo 4

Apollo 4 was the first all-up unmanned flight test of the Saturn V rocket and Apollo vehicle. The
flight test was conducted on November 9, 1967, and was designed to test many of the onboard
systems during real flight conditions, including a test of the Apollo heat shield at simulated lunar
return speed and angle. To this day, the flight test remains one of only a hand-full of successful
flights of a fully instrumented heat shield into Earth’s atmosphere, providing valuable flight data
which can be used to validate computational tools.

The Apollo 4 command module was a 33◦ sphere-segment with a nose radius of 4.69m and at
peak heating conditions, flew at an angle of attack of 25◦ [5]. Peak radiative heating occurred
30 032 s after launch during reentry at an altitude of 59.79km and with a velocity of 10.252km/s
[292]. The free-stream density was determined by Ried et al. [292] to be 3.41× 10−4 kg/m3 based
on pressure measurements onboard which results in a free-stream temperature of about 246K. At
these conditions, Park [278] determined an equivalent sphere radius of 2.85m to reproduce the
shock standoff distance measured by Ried et al. [292] using Schlieren imagery. In addition, Park
[278] assumed a fixed wall temperature of 2500K which will also be used in this analysis. Finally,
the TPS material is assumed to have a virgin to char density ratio of ρv/ρc = 2 and an emissivity
value of ϵ = 0.85 following Johnston et al. [16].

The air mechanism presented for the Fire II vehicle above has also been used for all Apollo
4 simulations when ablation is not considered (uncoupled and flow-radiation coupling). When
ablation is considered, the air mechanism has been supplied with additional species relevant to
carbon-phenolic ablation and pyrolysis, namely C, C+, H, H+, C2, C2H, C3, CO, CO2, CN, HCN,
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and H2. To reduce the number of species considered, the minor air species N2
+, O2

+, and NO+

are neglected, making the total number of species 20. The resulting reaction mechanism is given
in Table D.3. Lastly, all of the available radiative mechanism listed in Table 3.1 corresponding to
the 20 species air-ablation mechanism have been considered.

Huygens

The Huygens probe, developed by the European Space Agency (ESA), successfully landed on the
surface of Titan, one of Saturn’s moons, on January 14, 2005. The probe was designed to spend
a few hours in the Titan atmosphere to study its composition and gather other important data
[293] as it descended to the surface. Huygens entered the Titan atmosphere with a relatively low
velocity of 6.2 km/s. The reentry vehicle geometry was comprised of a 60◦ half-angle sphere-cone
forebody with a diameter of 2.7m and nose radius of 1.25m. The nominal angle of attack was
0◦. The forebody heatshield comprised of a small layer of AQ60, a phenolic-silica ablator. Since
the angle of attack was 0◦, the nose radius of 1.25m has been used in this work as the equivalent
sphere radius.

The nominal Titan atmosphere is about 98.4% N2 and 1.4% CH4 by volume (as measured by
Huygens [293]). Small amounts of CN are created in the shock-heated gas which can produce
significant radiative heating. The Huygens entry is therefore interesting from a radiation modeling
standpoint due to the strong molecular radiation emitted by the CN violet and red systems. In
addition, it has been shown that thermal nonequilibrium effects play an important role, namely
the non-Boltzmann population of the CN(B) state during the early trajectory points significantly
reduces the predicted radiative heating [7, 294].

For the trajectory points considered in this work (Table 7.1), thermal nonequilibrium effects
are weak and ionization is insignificant. A mixture of 13 species (N, C, H, N2, C2, H2, CN, NH,
CH, CH2, CH3, CH4, HCN) at thermal equilibrium is envisaged. Chemical reactions and rates
are taken from the work of Gokcen [295] and are presented in Table D.4. The electronic band
systems of N2 (Birge-Hopfield 1 and 2, Worley-Jenkins, Worley, Caroll-Yoshino), CN (violet, red,
LeBlanc), and C2 (Philips, Mulliken, Deslandres-D’Azambuja, Ballik and Ramsay, Fox-Herzberg,
Swan) (presented in Table 3.1) have been considered for the coupled calculations.

7.2. Accuracy and Efficiency of HSNB Model

This section analyzes the accuracy and efficiency of different aspects of the HSNB model including
the LBL spectral grid adaptation schemes for atomic lines and the difference between the Curtis-
Godson and Lindquist-Simmons methods for computing mean black equivalent line widths. The
aim is to understand the accuracy of the HSNB methodology, compared to reference LBL results
for uncoupled simulations over a variety of flight conditions. The lessons learned in this section
are then applied to the following sections for coupled simulations.

7.2.1. Adaptive HSNB

In Section 3.4.3, two algorithms were introduced for generating an adaptive spectral mesh for
the LBL treatment of atomic lines in the HSNB method. The first consisted of a fixed 11-point
stencil based on the Voigt half-width of each atomic line. The second extended this methodology
by bisecting the areas between lines in order to better capture line wing regions. In this section,
the accuracy and efficiency of both algorithms are compared to full LBL results (including the
treatment of molecular lines) for realistic flow fields. LBL solutions are obtained using a fixed
spectral mesh, consisting of 4 420 667 points spaced logarithmically from a spacing of 0.01 cm−1

at 1000cm−1 to a spacing of 0.12 cm−1 at 200 000cm−1. In order to quantify the error in the
HSNB approximation without an adaptive spectral mesh, an additional HSNB case is considered,
in which the spectral mesh used for atomic lines is taken to be the high resolution spectral mesh
used for the full LBL case. This method will be denoted as HSNB Hi-Res.
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Figure 7.2.: Simulated temperature profiles along the stagnation line of the Fire-II vehicle.

The Fire II flight experiment [290, 291] has been widely used to validate and compare coupled and
uncoupled flow/radiation simulations [40, 55, 296] for two primary reasons: (i) the flight conditions
provide both strong thermochemical nonequilibrium and equilibrium conditions in the shock layer,
and (ii) (perhaps more importantly) there is little other flight data to be used for such purposes.
For these reasons, the Fire II conditions will also be used here. Specifically, the 1634 s and 1645 s
trajectory points have been considered since they produce strong thermochemical nonequilibrium
and equilbrium flow fields.

The computed stagnation line temperature distribution for both trajectory points are shown
in Fig. (7.2). It is clear from the figure that a significant thermochemical nonequilibruim exists
at 1634 s in the shock and boundary layer regions due to the low free stream density. However,
by 1645 s, the density has risen two orders of magnitude, causing the shock layer to be nearly in
thermal equilibrium.

Fig. (7.3) shows a comparison of the radial and stagnation point radiative heat fluxes for the
1634 s trajectory point. The radial heat flux is defined as the net radiative flux in the direction away
from the surface and is given by Eq. (6.57) for the LBL case and Eq. (6.63) for the HSNB cases.
Therefore, a negative radial flux indicates the flux is towards the vehicle. The stagnation point
radiative flux is plotted in Fig. (7.3) as positive going into the body for convenience. The radial
heat flux profile appears as expected, with emission in the hot shock layer into the free stream
and boundary layer. All of the HSNB results compare reasonable well with that of the LBL
solution, but over-predict the heat flux at the stagnation point. The HSNB with high resolution
and bisection grid results are essentially the same, showing better agreement with the full LBL
solution than the HSNB 11 point fixed stencil mesh.

The spectral wall directed heat flux shown in Fig. (7.3) shows the contribution of the error
in the total stagnation point radiative heat flux due to each wavenumber band. Note that a
significant portion of the differences between the fixed stencil and the other methods occur in the
higher wavenumber region between 50 000cm−1 to 100 000cm−1. This is due to the fact that the
radiative flux in the VUV region is dominated by a few strong atomic lines. For strong lines, the
line wing regions contribute significantly to the radiative transfer. With the fixed point stencil,
the far line wing regions are not well resolved as previously discussed in Section 3.4.3.

The same comparison is made for the 1645 s trajectory point in Fig. (7.4). Note that the radial
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(b) Wall directed heat flux.

Figure 7.3.: Comparison of radiative heat fluxes for the 1634 s case obtained using different
methods.

flux field has a slightly different behavior than in the 1634 s case due to the thin shock region.
Again, the results obtained with HSNB using the high resolution spectral mesh and that obtained
using the bisection algorithm have excellent agreement with the full LBL solution. However, the
fixed point adaptive mesh yields significant errors in the radial flux field. The spectral flux obtained
at the stagnation point shows why. Unlike the 1634 s case, which was at a relatively low pressure
condition, the 1645 s has a significant Lorentz broadening of the atomic lines. Increased broadening
leads to more significant self absorption in the line centers, further magnifying the contribution of
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(b) Wall directed heat flux.

Figure 7.4.: Comparison of radiative heat fluxes for the 1645 s case obtained using different
methods.

the line wings to the radiative transfer. Thus, poorly resolved line wings with the fixed point mesh
results in significant errors in the radiative flux.

Table 7.2 summarizes the results for each of the methods at both trajectory points, including
errors in the calculated wall heat flux, and the CPU time required to compute the radiative flux,
relative to the time with the bisection method. The CPU time required for the full flux calculation
is two orders of magnitude less for the adaptive HSNB methods compared to the LBL solution,
while the high-resolution HSNB model allows a one order of magnitude reduction. In practice,
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Table 7.2.: Timing and error statistic comparison for adaptive HSNB methods for the uncoupled Fire II 1634 s and 1645 s cases. CPU times are
relative to that obtained with the HSNB-Bisect method and were obtained using a single processor. The number of spectral grid points per atomic line
is based on the total 3,333 atomic lines included in the database for N, O, N+, and O+, though not all lines fall within the considered spectral range
of 1000 cm−1 to 200 000cm−1.

Trajectory Spectral Points per Relative % % qr,wall−qLBL
r,wall

qLBL
r,wall

, %
Point Method Grid Size Atomic Line CPU Time Spectra Integration

1634 s LBL 4,420,667 - 146.7 99.0 1.0 -
HSNB, Hi-Res 4,420,667 1,326.3 21.7 59.2 40.8 5.2
HSNB, 11 Point 33,735 10.1 0.96 14.9 85.1 11.3
HSNB, Bisect 40,976 12.3 1.00 16.8 83.2 6.0

1645 s LBL 4,420,667 - 131.6 99.0 1.0 -
HSNB, Hi-Res 4,420,667 1,326.3 24.7 63.0 37.0 -1.6
HSNB, 11 Point 33,735 10.1 0.95 17.1 82.9 27.9
HSNB, Bisect 41,669 12.5 1.00 19.3 80.7 -0.55
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the adaptive HSNB methods required between 60 s to 90 s for 30 spatial grid points, while the
LBL solution was completed in about 2.5 h, running on a single core of an Intel(R) Core(TM)
i7-4770K CPU. Differences in CPU times for the different trajectory points are caused primarily
by the assigned spectral window for each atomic line which was taken to be 10 000 times the Voigt
half-width for these calculations. The 1645 s case has significantly more Lorentz broadening of the
atomic lines, which increases the number of spectral grid points that the line shape of each atomic
line must be computed over. This is reflected in the fact that the percentage of time required to
compute the line spectra is proportionally more at 1645 s than at 1634 s.

It can also be seen in Table 7.2 that for the full LBL calculations, 99% of the total CPU time
is spent just generating the spectra, and only 1% is spent performing the spatial, angular, and
spectral integration. This is in large contrast to the HSNB methods which clearly tend to spend
more time in the integration as the number of atomic spectral grid points is reduced. This is to
be expected, when it is considered that the time required for the computation of the spectra is
proportional to the product of the number of lines with the number of spectral and spatial grid
points. The integration time, however, is proportional to the product of the spectral and spatial
grid points only. Therefore, it is clear that since the number of lines considered is significantly
lowered using the HSNB methodology (by a factor of ≈ 1000), a significant amount of the overall
reduction in CPU time is due to the spectral property calculation. It should also be noted that the
HSNB formulation does not permit the use of the En integral exponential functions to “analytically"
perform the angular integration in the tangent slab formulation as is typically done in most RTE
solvers. Therefore, there is an additional cost required to compute the angular integration included
in the HSNB results. This additional complexity and cost is justified when the overall CPU cost
requirements are considered.

Finally, the accuracy of the adaptive HSNB methods are compared to LBL. The relative percent
difference of the stagnation point radiative heat flux between the HSNB solutions and that of the
LBL calculations are given in the last column of Table 7.2. In all cases the high resolution HSNB
result provides a very good estimate of the full LBL heat flux, with a maximum error of just
5.2%. For the fixed point adaptive grid, the HSNB formulation provides a reasonable result for
the 1634 s case with an 11.3% difference from LBL results. However, there is a 27.9% difference
observed for 1645 s, which is likely not acceptable for most applications. When the fixed point
mesh is augmented with the bisection method, this error is seen to disappear, and the adaptive
mesh provides a flux estimate close to the high resolution HSNB formulation. Interestingly, this
adaptive approach provides an even better estimate to the LBL solution than the high resolution
spectral mesh for the 1645 s case. However, since the total error is less than 1%, it is assumed that
this was just a lucky outcome, and that the high resolution and adaptive HSNB methods should
be considered to provide essentially the same results. Therefore, the bisection method will be used
throughout the remainder of this chapter where ever the HSNB method is considered.

7.2.2. Curtis-Godson versus Lindquist-Simmons

For a homogeneous optical path, analytical expressions can be derived for the mean black equiva-
lent width W/δ introduced in Eq. (3.55) for mean transmissivity calculations. These expressions
depend on the broadening mechanism and a prescribed distribution law for line intensities within
the narrow band and are functions of two parameters: a mean absorption coefficient k and an
overlapping parameter β.

For a non homogeneous optical path, the Curtis-Godson approximation consists in using the
expressions derived for homogeneous media with averaged parameters ku∗ and β∗ that we define
according to

ku∗ =

∫ s

s′
p(s′′)k(s′′)ds′′, (7.1)

β∗ =
1

ku∗

∫ s

s′
β(s′′)p(s′′)k(s′′)ds′′. (7.2)

Expressions of the mean black equivalent width WL(s′, s)/δ and WD(s′, s)/δ for both Lorentz and
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Figure 7.5.: Radiative power comparison between Curtis-Godson and Lindquist-Simmons approx-
imations for the Fire II 1634 s test case.

Doppler broadening are given in Table 3.2. Eq. (3.57) is used to obtain the mean black equivalent
width in the Voigt broadening regime, as proposed by Ludwig et al. [158].

An alternative approach for treating non-uniform optical paths is the Lindquist-Simmons ap-
proximation [159]. It consists in finding an expression for the space derivative of the mean black
equivalent width and then integrating it over the path in order to get the mean transmissivity

τσ(s′, s)
∆σ

= exp

(

1

δ

∫ s

s′

∂W (s′′, s)

∂s′′
ds”

)

. (7.3)

The expressions of ∂WL(s′′, s)/∂s′′ and ∂WD(s′′, s)/∂s′′ for Lorentz and Doppler broadening used
in this work are given in Table 3.3. They involve both local parameters k(s′′), β(s′′) and aver-
aged parameters ku∗, β∗. After the spatial integration, Eq. (3.57) is used to get the mean black
equivalent width in the Voigt regime, as is done in the Curtis-Godson approach.

A comparison between the HSNB Curtis-Godson and the HSNB Lindquist-Simmons is given in
Fig. (7.5) for the Fire II (1634 s) test case. The difference between the two approximations is
very tiny and for most of the points is much lower than the difference between HSNB Lindquist-
Simmons and LBL calculations. However, we can see a much larger discrepancy in the free stream,
where the radiative power predicted by the HSNB Curtis-Godson model becomes negative while
it remains positive for the HSNB Lindquist-Simmons and LBL models. A negative energy source
term in this cold region is a major computational issue for coupling as negative temperatures can
be predicted after a few iterations. Therefore, the Lindquist-Simmons approximation has been
chosen for all coupled simulations presented in this work, though it requires around three times
more computational time.

7.2.3. Comparison with Smeared Rotational Band Model

In order to assess the accuracy and the efficiency of the HSNB model, a comparison with the
rigorous Line-By-Line (LBL) method is carried out. In LBL calculations, radiative properties of
the plasma are computed from the spectroscopic HTGR database, presented in Chapter 3, on a
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Table 7.3.: Comparison between LBL, HSNB-Weak and HSNB models for Fire II (1634 s), Fire
II (1642.66 s) and Huygens (191 s) cases. Incident radiative fluxes and computational times for
one radiation calculation.

Case Quantity LBL HSNB-Weak HSNB

Fire II (1634 s) Wall flux [W/cm2] 146.78 151.94 150.85
CPU time [s] 20480 41 242

Fire II (1642.66 s) Wall flux [W/cm2] 553.78 578.81 581.97
CPU time [s] 19140 51 250

Huygens (191 s) Wall flux [W/cm2] 82.68 104.26 86.24
CPU time [s] 13158 5 105

high resolution spectral grid of 4.4 × 106 points in order to capture correctly all the atomic and
molecular lines.

It is also interesting to compare the HSNB model with the Smeared-Rotational-Band model,
which is often used as a simple model to treat molecular radiation but may lead to a strong over-
estimation of radiative fluxes. For this purpose, we implemented a model similar to the Smeared-
Rotational-Band that will be called hereafter HSNB-Weak. It consists in computing the mean
transmissivity of thick molecular systems using the simple Box model (Eq. (3.64)) instead of the
SNB model described in Section 3.4.1.

For the three entry conditions described previously (Fire II (1634 s, 1642.66 s) and Huygens
(191 s)), calculations have been performed with the LBL, HSNB-Weak and HSNB models from
the same flow field corresponding to the coupled result obtained with the HSNB model. Table 7.3
gives the incident radiative flux at the wall, together with the total computational time for one
radiation calculation, for the different combinations of models and test cases. Compared to the
reference LBL solutions, the HSNB model provides an accurate prediction of the incident radiative
flux, with an error between 3 and 5 % and a speed up factor around 80 for the computational
time. Most of the computational gain comes from the calculation of LBL molecular spectra which
is very expensive due to the large number of molecular lines.

From Table 7.3, the HSNB-Weak model provides reasonably accurate results for Earth entry with
a difference of 3.5 and 4.5 % for the two trajectory points. However, for the Titan entry case, the
incident radiative flux is over-predicted by 26 %. These are expected results based on a previous
assessment of Smeared-Rotational-Band models in Ref. [46]. Concerning the computational times,
the HSNB-Weak model is 5 times faster than the HSNB model for Earth entry cases. The Lindquist-
Simmons approximation used for computing mean transmissivities over non homogeneous paths
for thick molecular systems (see Section 7.2.2) is responsible for the lower computational efficiency
of the HSNB model.

The spectral and cumulated incident radiative fluxes at the wall are displayed in Fig. (7.6) for the
early trajectory point (1634 s) of the Fire II experiment. It can be seen that the complex structure
of the LBL spectral flux is correctly captured by both HSNB and HSNB-Weak models, with a
good agreement on the total cumulated flux (see Table 7.3 for numerical values). The incoming
radiation mostly arises from molecular and atomic transitions in the Vacuum Ultraviolet. The
accuracy of the HSNB model should also be assessed regarding the total radiative energy source
term along the stagnation line. Fig. (7.6) also shows this distribution together with the difference
with LBL calculations normalized by the absolute maximum value of the total radiative source
term. The differences do not exceed 5 % for both HSNB and HSNB-Weak models. The highest
discrepancies are located near the shock position, where the radiation emission is at a maximum.

The spectral and cumulated incident radiative fluxes at the wall and the total radiative source
term along the stagnation line are shown for the Titan test case in Fig. (7.7). While the HSNB
model reproduces with a good accuracy the LBL calculation, both the spectral flux and the total
radiative source term are strongly over-predicted by the HSNB-Weak model. This failure comes
from an incorrect treatment of the CN-Violet molecular system in the spectral range [25,000 -
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Figure 7.6.: Fire II 1634 s. Comparison between LBL, HSNB-Weak and HSNB models. Left:
spectral and cumulated incident fluxes at the wall. Right: total radiative source term along the
stagnation line and differences with LBL calculations normalized by the maximum absolute value.
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Figure 7.7.: Huygens 191 s. Comparison between LBL, HSNB-Weak and HSNB models. Left:
spectral and cumulated incident fluxes at the wall. Right: total radiative source term along the
stagnation line and differences with LBL calculations normalized by the maximum absolute value.

29,000 cm−1]. For this case, the value of the HSNB model is clearly realized.

7.2.4. Comparison with literature results

The accuracy of the HSNB model has been assessed in the previous sections by comparison with
LBL results, where both HSNB parameters and LBL radiative properties were obtained from the
HTGR spectroscopic database. The purpose of this section is to compare the HSNB model with
results obtained by other researchers.

Huygens (189 s)

We have considered the LBL radiation simulation of Bansal and Modest [53] of the trajectory point
t = 189 s of the Huygens probe entry from an uncoupled flow field taken from Johnston [297] where
nonequilibrium populations of the CN electronic states were considered.

In order to compare with their results we have computed the radiative source term along the
stagnation line with both the HSNB model and the LBL approach. For the CN electronic states,
both Boltzmann populations and nonequilibrium populations based on the QSS model of Bose et
al. [298] have been taken into account. The flow field computed by Johnston [297] is reproduced
in Fig. (7.8) and the comparison is shown in Fig. (7.9) for the CN red and violet systems. It can
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Figure 7.8.: Flow field of Huygens stagnation line at 189 s, reproduced from Johnston et al. [297].
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be seen for a given population assumption, the LBL and HSNB results computed in this work
provide similar results. When the QSS model is used, good agreement is obtained between the
LBL results of Bansal and Modest [53] with both LBL and HSNB. Note that nonequilibrium effects
are non-negligible in the considered simulation and lead to about 16% difference at the peak value
of the radiative source term.

7.3. Flow-Radiation Coupling

In this section, the results of coupled flow-radiation simulations obtained with the HSNB model
are compared to the results of uncoupled simulations to show how radiative transfer affects the
aerothermodynamic fields and heat fluxes at the wall of the vehicle. Three cases are considered,
namely the 1634 s and 1642.66 s Fire II and 191 s Huygens flow fields. Flow-radiation coupling for
these simulations is performed using the methodology presented in Section 6.4.
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Table 7.4.: Fire II 1634 s. Standoff distance δ, conductive flux at the wall qw, radiative flux at the
wall qradw and incoming radiative intensity at the wall Iw over spectral intervals ∆σ1 = [16 667 cm−1

to 33 333 cm−1] and ∆σ2 = [2500 cm−1 to 50 000cm−1].

Case δ qw qradw Iw(∆σ1) Iw(∆σ2)
cm W/cm2 W/cm2 W/cm2sr W/cm2sr

Uncoupled 5.36 94.9 203.6 2.05 8.57
Coupled 5.05 76.3 150.0 2.12 7.16
Coupled QSS 5.21 76.5 74.7 1.28 4.71
Flight Data - - - 0.1 1.3

7.3.1. Fire II (1634 s)

The Fire II flight conditions of the early trajectory point at 1634 s correspond to a high veloc-
ity entry into a low density atmosphere (see Table 7.1). The plasma flow around the vehicle is
then in strong thermal nonequilibrium that may not be correctly described by multi-temperature
models [92].

In order to investigate non-Boltzmann effects, we implemented for this particular case the
Quasi-Steady State (QSS) model proposed by Johnston [297]. For each radiation calculation,
non-Boltzmann populations of electronic levels of N and O as well as the first electronic levels (X,
A, B, C) of N2 and N2

+ are determined from simple correlations depending on the macroscopic
state of the flow (electron temperature, total number densities). An additional assumption is made
concerning N2 VUV systems (Birge-Hopfield 1 and 2, Worley-Jenkins, Worley, Caroll-Yoshino) in
which the population of the upper energy levels of these transitions, which are above the dissoci-
ation limit, are computed according to a chemical equilibrium assumption with atomic nitrogen.
The non-Boltzmann populations are taken into account in the HSNB model using Eqs. (3.26) and
(3.27) for atomic radiation and using expressions given by Lamet et al. [55] for band parameters
of molecular systems. It should be underlined that this QSS model used for radiation is not consis-
tent with the flow modeling, though it provides a first approximation of thermal non-equilibrium
effects. The full consistent state-to-state coupling between flow and radiation has been recently
achieved for instance in [44] for atomic electronic states.

Table 7.4 compares the uncoupled, coupled (Boltzmann, 2T), and coupled QSS results concerning
the shock standoff distance, the conductive flux, and the radiative flux at the wall. The coupling
effect is to decrease all of these quantities due to the radiative cooling associated with the strong
radiative emission in the shock layer. The shock layer thickness decreases because the plasma
density increases and the heat fluxes decrease because the temperature levels are lower. In the
coupled QSS case, the same trends are obtained but to a lesser extent. Table 7.4 also shows the
incoming radiative intensity at the wall over two specific spectral ranges corresponding to the
experimental flight data, given with an uncertainty of 20 %. All uncoupled, coupled, and coupled
QSS results are far from the flight data, although the QSS case is much closer than the two others.

Fig. (7.10) displays temperatures along the stagnation line for the uncoupled, coupled, and
coupled QSS cases. The uncoupled temperature profile can be split into four regions from right to
left: the free-stream, the shock, the equilibrium plateau and the boundary layer close to the wall.
Because of the low density, the shock region is wide and in strong thermal nonequilibrium. In
the boundary layer, Tv is slightly greater than T , because of atomic recombination which creates
vibrational energy. When radiation is considered (coupled case), the temperature distributions
are significantly affected. The shock layer spreads out and the equilibrium zone is shortened.
Radiative cooling lowers the peak and plateau temperatures. In particular, the maximum of Tv

decreases from 14 670K (uncoupled) to 13 470K (coupled). Another interesting feature is that the
free-stream region is no longer at thermal equilibrium because the radiation absorption from the
shock increases electronic and vibrational energy.

Fig. (7.10) also shows the species molar fractions along the stagnation line. For the uncoupled
case, the main chemical mechanisms are the dissociation of molecular nitrogen and oxygen and
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Table 7.5.: Fire II 1642.66 s. Standoff distance δ, conductive flux at the wall qw, radiative flux
at the wall qradw and incoming radiative intensity at the wall Iw over spectral intervals ∆σ1 =
[16 667 cm−1 to 33 333 cm−1] and ∆σ2 = [2500 cm−1 to 50 000cm−1].

Case δ qw qradw Iw(∆σ1) Iw(∆σ2)
cm W/cm2 W/cm2 W/cm2sr W/cm2sr

Uncoupled 4.06 635.6 791.3 11.65 71.01
Coupled 4.01 617.0 581.7 9.28 53.63
Flight Data - - - 10.5 63.0

the ionization of atomic nitrogen and oxygen through the shock. A significant amount of nitrogen
monoxide is also produced in the shock region. The ionization level is quite important in the plateau
as the electron molar fraction reaches 0.15. In the boundary layer, the ionization level drops down
and atomic nitrogen starts recombining. For the coupled case, the fall of the two temperatures slows
down the ionization reactions and the electron molar fraction reaches a maximum of 0.08. The free-
stream region ahead of the shock becomes chemically reacting under the effect of radiation: atomic
oxygen is produced by photodissociation and electrons are produced mainly by photoionization of
molecular oxygen.

These coupling effects on temperature and composition are also noticeable in Fig. (7.10) for
the coupled QSS case, however they are much weaker. In order to understand this behavior, the
radiative source term along the stagnation line is plotted in Fig. (7.11) and split according to the
atomic, molecular, and continua emission contributions. From uncoupled to coupled calculations,
the peak of the radiative source term is decreased by a factor two due to radiative cooling. From
coupled to coupled QSS calculations, the peak of the radiative source term is further reduced and
atomic contribution almost vanishes at the shock location. The reason is that the Tv Boltzmann
distribution leads to an overestimation of the population of the highest electronic energy levels of
atomic N and O, as well as N2 and N2

+. In particular, for the N2 VUV systems, the dissocia-
tion equilibrium assumption makes the population of the upper electronic energy level associated
with these systems close to zero and thus cancels their contribution to radiation. The remaining
molecular emission peak in Fig. (7.11) comes mostly from NO radiation, of which electronic energy
levels are assumed to be populated according to the temperature Tv. An incorrect treatment of
the thermal state of NO might be responsible of the remaining discrepancies between the coupled
QSS results and the flight data.

7.3.2. Fire II (1642.66 s)

The Fire 2 flight conditions of the trajectory point t = 1642.66 s correspond to a quasi-thermal
equilibrium situation. Due to the higher density, the kinetic energy transfer between the internal
energy modes is much faster than for the trajectory point t = 1634 s. Thus, the QSS model has
not been considered in this case.

Table 7.5 shows the computed shock standoff distance and conductive and radiative flux at the
wall for the coupled and uncoupled simulations. As can be seen, the standoff distance and the
conductive flux slightly decrease and the radiative flux diminishes by around 25% when radiation
is coupled to the flow. In addition, coupled results are in fair agreement with flight data which
are given with an uncertainty of 20%. Temperatures and composition along the stagnation line
are shown in Fig. (7.12). For the uncoupled case, the flow is in thermal equilibrium everywhere
except in the shock region. A chemical equilibrium zone with flat molar fraction profiles is clearly
distinguishable between the boundary layer and the shock. The electron molar fraction is around
0.07 in this zone. When radiation is considered, as for the previous trajectory point, the vibration-
electronic-electron temperature Tv increases and a slight fraction of O, e– and O2

+ are produced
in the free stream by photodissociation and photoionization of O2. The temperature is slightly
decreased in the shock layer, leading to a lower ionization level.
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Figure 7.10.: Fire II 1634 s. Temperatures and composition along the stagnation line.
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Figure 7.13.: Huygens 191 s. Temperature and CN molar fraction along the stagnation line.

7.3.3. Huygens (191 s)

This Titan entry case has been selected to show the ability of the HSNB model to handle strong
optically thick molecular radiation. For early trajectory points, a state-to-state electronic specific
model of the CN molecule is required [7, 297] as was shown in Section 7.2.4. As thermal nonequi-
librium modeling has been already discussed for the Fire II t = 1634 s case, we will focus here on
an quasi-equilibrium case at the trajectory point t = 191 s.

The temperature and CN molar fraction along the stagnation line are plotted in Fig. (7.13).
In the shock layer, we can notice a lower temperature due to radiative cooling and a higher CN
molar fraction because of lower dissociation rates. When coupled radiation effects are taken into
account, the standoff distance decreases from 10.77 cm (uncoupled) to 10.33 cm (coupled), the con-
ductive heat flux decreases from 24.2W/cm2 to 22.0W/cm2 and the radiative flux decreases from
95.6W/cm2 to 80.57W/cm2. The radiative flux obtained in the uncoupled case is in agreement
with [294]. They found a radiative flux of 75W/cm2 but they applied to their results a correction
coefficient of 0.75 to model the 3D effects.

The role of CN radiation, especially the CN-violet system, has been highlighted when discussing
the accuracy of the HSNB model in Section 7.2.3. Indeed, it can be seen in Fig. (7.14) that the
dominant contributors to radiation are the CN-violet, followed by the CN-red molecular systems.
N2 radiation also contributes significantly at the emission peak. However, C2 radiation is weak.
When radiation is coupled to the flow, the emission is reduced at the peak because of the lower
temperature.

7.4. Ablation-Flow-Radiation Coupling

This section presents a study of the effects associated with the coupling between flow, ablation,
and radiation. In particular, the study is aimed at carbon-phenolic thermal protection systems
ablating in air.

7.4.1. Radiative Absorption by Ablation Products

Before studying the effects of coupled radiation and ablation, it is useful to first see the impact
ablation products might have on the absorptivity of the boundary layer. Following Johnston et
al. [16], a typical hypersonic boundary layer is simulated as a 1 cm constant property slab at 5000K
and 0.5 bar. The composition of the gas in the slab is computed as an equilibrium mixture with
elemental mass fractions taken as a linear combination of pure air and a pure ablation product
composition,

yk = yair
k (1− α) + αyabl

k , 0 ≤ α ≤ 1. (7.4)
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Figure 7.14.: Huygens (191 s). Total radiative source term along the stagnation line.

Table 7.6.: Elemental mass fractions used to simulate a hypersonic boundary layer contaminated
with ablation products based on Ref. [16].

Gas yN yO yC yH

Air 0.76 0.24 0.0 0.0
Ablation Products 0.04 0.01 0.9 0.05

When α = 0, a pure air composition is obtained, when α = 1 a pure ablation and pyrolysis gas.
Table 7.6 gives the elemental compositions which were used in the following analysis. The ablation
gas composition is taken from [16] and roughly corresponds to a mixture of 60% pyrolysis gas and
40% char by volume for a linear resin with 56% char yield with nitrogen impurities.

For reference, Fig. (7.15) shows the resulting equilibrium species mole fractions versus the α
parameter for this fictitious boundary layer. When α < 0.2, all of the carbon introduced by the
ablation mixture is consumed by the available oxygen from the air mixture, producing CO. As
the ratio of ablation to air mixtures increases, all of the available oxygen is consumed and the
remaining carbon goes into the formation of atomic carbon, and to a lesser extent CN. Finally as
α surpasses 0.5, the abundance of carbon in the slab forms pure carbonaceous species C2 and C3.

Fig. (7.16) shows the total mean transmissivities, τσ∆σ, for several values of α for the simulated
boundary layer, as well as the individual mean transmissivities, τkσ

∆σ
, of the major contributions

to absorption for a 50% air and 50% ablation products mixture using the HSNB model. From
the figure, it is clear that even with a small amount of carbonaceous species present, the spectral
transmittance of the gas is significantly reduced in the visible and UV spectral regions. The two
most absorptive molecular band systems are the CO 4th positive and the C3 UV systems, however
the CN Violet and Red systems as well as the C2 Deslandres-d’Azambuja, Mulliken, and Swan
systems also play an important role below 50 000cm−1. When enough carbon is present in the
mixture, the gas becomes opaque in the vacuum UV due to the addition of photoionization of C
atoms. It is also important to note that a significant difference in the spectral transmissivities
exists between the α = 0.2 and α = 0.5 cases. This is because at low carbon concentrations, most
of the carbon goes into forming CO and to a lesser extent, CN as shown in Fig. (7.15). As the
carbon concentration increases however, a significant amount of it is used to form C atoms, and C2
and C3 molecules which are shown to contribute significantly to the absorptivity of the mixture. It
is therefore important to accurately model the amount of carbon which enters the boundary layer
in order to correctly determine the amount of radiation which may be absorbed before reaching
the surface of the vehicle.
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7.4.2. Apollo 4 Peak Radiative Heating Analysis

The proposed model has been used to study the effects of coupled ablation and radiation phenomena
occurring along the stagnation line of the Apollo 4 vehicle during atmospheric entry at peak
radiative heating.

Fig. (7.17) shows the computed stagnation line temperature profiles for the four coupling strate-
gies: flow only, flow with radiation, flow with ablation, and fully coupled. As can be seen from
the figure, the dominant effect on the shock standoff distance and equilibrium temperature profile
is due to the addition of the radiation source terms in the governing equations. As the energy is
radiated out of the shock layer, the shock standoff distance is decreased, a phenomenon known
as radiative cooling. Looking at the temperature profile in the boundary layer, it is clear that
absorption of the shock layer radiation in the boundary layer, serves to increase the temperature
gradient at the wall. This is most clearly seen in the case of flow and radiation coupling because
the boundary layer is not being cooled by the relatively cold ablation and pyrolysis outgassing.
In front of the shock, the vibrational-electronic-electron temperature is increased due to radiative
absorption and photochemical processes.

Fig. (7.18) shows the effect of coupled ablation on the species concentrations in the boundary
layer. As can be seen, the major products of the ablation and pyrolysis gas injection are CO, C,
H2, and H. The CO is largely formed by the oxidation reaction at the wall which consumes the
incoming oxygen diffusing in from the boundary layer edge. Nitridation plays a far less import
role as the CN number densities show. In fact, the CN formed by nitridation is quickly destroyed
through dissociation reactions before being reproduced by several exchange reactions occurring a
few mm from the surface. This behavior has been well characterized by Turchi et al. [287] for
modeling plasmatron and arc-jet experiments with ablators. As was shown in Fig. (7.16), C2 and
C3 can be major absorbers, however from Fig. (7.18) it is clear that the relative concentrations of
those carbonaceous species is too low to make a significant impact.

Table 7.7 shows the individual components of the wall heat flux at the stagnation point of Apollo
4 using the various coupling strategies considered. Each component is related through the surface
energy balance for charring ablators,

qconv
w + ϵ(qrin − σT 4

w)− ṁg(hw − hg)− ṁc(hw − hc)− qcond = 0, (7.5)
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Table 7.7.: Components of stagnation point heat flux in W/cm2 for Apollo 4 at 30 032 s after launch using different coupling strategies. The wall
temperature was fixed at 2500K for each case.

Coupling ϵqrin −ϵσT 4
w qdiff

w qcond
w qconv

w −ṁg(hw − hg) −ṁc(hw − hc) qcond

Flow 279.92 −188.28 0.0 119.77 119.77 - - 211.41
Flow / Abl. 254.74 −188.28 38.62 95.31 133.93 1.55 −5.99 195.95
Flow / Rad. 196.64 −188.28 0.0 168.42 168.42 - - 176.78
Fully Coupled 194.44 −188.28 37.77 97.38 135.15 1.70 −5.79 137.22
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Figure 7.16.: Average spectral transmissivities for a 1 cm slab of several equilibrium mixtures of
air and ablation gases at 5000K and 0.5 bar. The mixture elemental mass fraction for element k
is determined by yair

k (1−α)+αyabl
k such that α = 0 results in a pure air mixture while an α = 1 is

a pure ablation gas. Note that the total transmissivity of the mixture as plotted in (a) is obtained
as the product of each contribution which is shown for the α = 0.5 case in (b).

where the convective heat flux qconv
w = qdiff

w +qcond
w is the sum of the diffusive and conductive heating

from the gas, ϵqrin is the radiative flux from the flow field absorbed at the surface, and ϵσT 4
w accounts

for energy emitted by the ablator surface. The next two terms represent the enthalpy of the injected
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Figure 7.17.: Computed temperature profiles along the stagnation line of Apollo 4 at 30 032 s after
launch with various levels of flow/radiation/ablation coupling.

pyrolysis and char gases. hw is the enthalpy of the gas at the surface determined from the gas
composition and temperature while hc and hg are the enthalpies of the solid char and pyrolysis
gas, respectively. For this work, the char enthalpy is taken to be the enthalpy of pure graphite
at 2500K and the pyrolysis gas enthalpy is computed assuming an equilibrium composition at
the surface temperature and pressure. Finally, qcond is the heat conducted into the ablator and
represents the inability to relieve the convective and radiative heating through emission, ablation,
and pyrolysis. For a fixed surface temperature, qcond is computed using the surface energy balance
in Eq. (7.5).

Based on Table 7.7, radiation coupling is the dominant contributor to the overall difference in
the heat flux between no coupling and the fully coupled solution. Radiative cooling reduces the net
radiative flux to the surface by as much as 90% while absorption of radiation in the boundary layer
increases the conductive heat flux by about 40%. In total, coupling with radiation reduces the heat
conducted into the surface from 211.41W/cm2 to 176.78W/cm2, or by about 16%. When coupled
ablation is considered, the diffusive heat flux becomes important, adding up to about 38W/cm2.
However, the outgassing due to ablation and pyrolysis reduces the conductive heat flux by about
20% such that the overall effect on the convective heating rate is nearly unchanged when compared
to no coupling. Ablation products in the boundary layer also contribute about a 28% reduction
in the net radiative heating rate due to increased absorption in the boundary layer. In total, the
combined effects of coupled radiation and ablation reduce the heat conducted in the material from
211.41W/cm2 to 137.22W/cm2, or 35%.

The individual contributions to the incoming band-averaged radiant intensity at the stagnation
point for a ray along the stagnation line are shown in Fig. (7.19) for both the flow/radiation
coupling and fully coupled simulations. Here, the individual intensities are defined as the emitted
intensity of each contribution (molecular system, atomic lines, or continuum process) reaching the
wall. Using the SNB formulation from Eq. (3.49), the band-averaged intensity from a contribution
k is given by

Ikσ(s)
∆σ

=

∫ s

0
ηkσ(s

′)τkσ (s
′, s)

∆σ ∏

k′ ̸=k

τk′

σ (s′, s)
∆σ

ds′. (7.6)

From Fig. (7.19), it is clear the addition of ablation products in the boundary layer has little
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Figure 7.18.: Number densities for coupled flow/ablation calculation for Apollo 4 30 032 s trajec-
tory point. The symbols represent the number densities of Air species when ablation coupling is
neglected.

effect on the incoming intensities at the wall. Based on the simplified boundary layer analysis in
Section 7.4.1, this is likely due to the low carbon mass flux from the wall. In both the radiation
coupling and fully coupled solutions, the dominant contributions to the radiative heat flux are
atomic lines, nitrogen photoionization, and the N2 UV systems. The major effects due to abla-
tion seem to be from the CN violet system and the absorption due to C photoionization above
about 100 000cm−1. However, the cumulative heat flux for the entire spectrum shows only about
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Figure 7.19.: Wall-directed average spectral and cumulative intensities for a ray along the stag-
nation line for Apollo 4 at 30 032 s after launch for both flow/radiation and fully coupled solutions.
The spectral intensity is stacked based on individual contributions. Diagonal bars represent free-
free contributions, cross-hatching represents bound-free contributions, and solid shading indicates
bound-bound contributions.
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Figure 7.20.: Comparison of the cumulative intensity above 3226 cm−1 to the onboard radiometer
measurement reported by Ried et al. [292].

1W/cm2sr difference between the solutions with and without ablation coupling.
Finally, Fig. (7.20) compares the cumulative intensity to the radiometer measurement made

onboard Apollo 4 at 30 032 s after launch. The radiometer had a spectral range between 0.4 eV to
6.2 eV (3226 cm−1 to 50 006 cm−1) and was recessed about 7 cm below the surface of the ablator
at the peak heating condition[16]. At the peak heating point, the measured intensity was about
23W/cm2sr with a noise of about 3W/cm2sr according to Ried et al. [292]. In Fig. (7.20), the
measurement is compared to the intensities computed with both the radiation coupling only and
the fully coupled solutions. In addition, the influence of the radiometer cavity is also considered
by adding a 7 cm constant property slab with the temperature, pressure, and species densities of
the surface behind the ablator wall as was done by Johnston et al. [16]. The surface temperature
was fixed at 2500K and the pressure is found to be about 0.34 atm. The species number densities
at the surface can be obtained from Fig. (7.18).

Good agreement with the radiometer measurement is obtained for all three cases. The radiome-
ter cavity has little effect on the cumulative intensity over the spectral range measured by the
radiometer which supports the assumption by Park [278] that carbon was only present in small
amounts in the radiometer cavity based on the lack of observed carbon residue on the radiometer
window post-flight. This result varies from that of Johnston et al. [16] who performed a similar
comparison and found that agreement with the radiometer measurement could only be obtained
when absorption in the cavity was considered. This is most likely due to the differences in ablation
models imposed, whereby the fixed mass flux imposed by Johnston increases the amount of carbon
injected into the boundary layer, which in turn generates significantly more C2 and C3 that can
act as strong absorbers as shown in the previous section. Such sensitivities in the model therefore
provide a clear motivation for increased fidelity in the ablation and pyrolysis modeling.
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7.5. Concluding Remarks

This chapter has proven the ability of the HSNB model to accurately and efficiently predict ra-
diation effects on hypersonic entry flows. In general, the method provides a speedup of at least
two orders of magnitude and can accurately predict wall radiative heat fluxes to within 5% com-
pared to LBL calculations. The novel spectral grid adaptation method developed in this thesis
for atomic lines was shown to provide nearly identical results with 20 times speedup compared
to the original high-resolution HSNB method. This significant improvement is possible due to
the small amount of atomic lines as compared to those typically treated for molecular systems.
Concerning molecular radiation, the HSNB model provides a significant improvement compared to
the Smeared-Rotational-Band model in the case of Titan entry dominated by optically thick CN
radiation.

The Lindquist-Simmons and Curtis-Godson approximations to the mean black equivalent line
width for non-uniform media were also compared in this chapter. The Lindquist-Simmons method
was found to be about three times slower than the Curtis-Godson method for Fire II. It was also
shown that the Curtis-Godson approach can provide small negative radiative source terms in the
free-stream region, causing numerical instabilities in coupled calculations. For this reason, all
coupled cases were computed using the Lindquist-Simmons approach.

Taking into account the coupling with radiation, both convective and radiative heat fluxes at
the wall decrease. The standoff distance is reduced due to radiative cooling of the shock layer. For
Earth entry cases, we observed slower ionization levels as well as the appearance of O, e− and O+

2
in the free stream produced by the photodissociation and the photoionization of O2.

The analysis of the first trajectory point of the Fire II experiment has shown that the two temper-
ature approach was not satisfactory to model the thermal nonequilibrium state of the plasma. The
results obtained using non-Boltzmann electronic populations provided by the QSS model of John-
ston [297] were closer to the flight data even if discrepancies still remain. For such entry conditions
(high velocity, low density), a self-consistent electronic specific collisional-radiative model should
be developed. The HSNB model could be used since it is compatible with arbitrary populations of
electronic states.

Finally, the effects of coupled ablation and radiation were studied for Earth entries. It was shown
that for a simulated boundary layer, ablation products in the boundary layer can significantly
increase the radiation blockage to the surface of the vehicle. In particular, the C3 UV and CO
fourth positive band systems as well as photoionization of C atoms contribute significantly to
absorption when enough carbon is present. An analysis of the Apollo 4 peak heating condition
showed that coupled radiation and ablation effects can reduce the conducted heat flux by as much as
35% for a fixed wall temperature of 2500K. Comparison with the radiometer data taken during the
Apollo 4 flight showed excellent agreement for the peak heating condition, partially validating the
coupling methodology and radiation database. In addition, the importance of accurately modeling
the amount of carbon which is blown into the boundary layer was demonstrated by contrasting
the results of this study to those obtained by Johnston et al. [16].





CHAPTER 8

Conclusions and Perspectives

This thesis presented the development of physicochemical models and numerical methods for the
study of the complex, coupled, multiphysics phenomena associated with atmospheric entry flows.
In particular, the research focused on the coupling between the flow, ablation, and radiation
phenomena encountered in the stagnation region of atmospheric entry vehicles with carbon-phenolic
thermal protection systems. Broadly speaking, the following objectives have been achieved, based
on the goals outlined in Chapter 1.

1. Development of a new software library capable of providing a centralized repository for the
basic physicochemical models, algorithms, and data relevant to nonequilibrium plasma flows.

2. Development of a numerical approach for calculating coupled flow, radiation, and ablation
solutions along the stagnation line of atmospheric entry vehicles and to assess the accuracy
and efficiency of HSNB model using the tools developed.

3. Application of these tools to study real flight conditions of interest in an effort to gain a
greater understanding of the coupled flow, radiation, and ablation phenomena occurring in
atmospheric entry flows.

In the next section, the specific conclusions and contributions of this thesis are summarized in
more detail. Lastly, some perspectives on future work are given in Section 8.2.

8.1. Contributions of This Work

In Chapter 2, a review of the thermochemical nonequilibrium models and the corresponding gov-
erning equations used to simulate hypersonic flows was made. From this review, a generalized
notation was developed, capable of describing most of the popular nonequilibrium models in use
today, including state-to-state, multitemperature, and local thermodynamic equilibrium models.
Using this notation, a general set of governing equations were derived from the standard conserva-
tion of mass, momentum, and energy equations for multicomponent, reacting, radiating, partially
ionized and weakly magnetized plasmas. The thermodynamic, transport, chemical kinetic, and
energy transfer models necessary to close the governing equations were then presented, consistent
with the generalized notation. While the models presented in Chapter 2 are not original, the de-
velopment of a consistent notation capable of encompassing most thermochemical nonequilibrium
models of interest is a valuable contribution for a number of reasons. For starters, a vast literature
is available describing numerous thermochemical nonequilibrium models relevant to atmospheric
entry. As was shown in Chapter 2, these models can be derived from many different assump-
tions with varying levels of fidelity and are often inconsistent with one another. By placing each
model into a consistent mathematical framework, the similarities and differences between them
can be readily assessed. Perhaps more importantly, the generalized model presented in this work
provides the machinery needed to abstract the physicochemical models used in modern hyper-
sonic CFD tools away from the implementation of the discretization and solution of the governing
equations.

This concept was demonstrated through the development of the Mutation++ software library,
presented in Chapter 4. Written using modern, objected oriented programming techniques in C++,
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Mutation++ provides thermodynamic, transport, chemistry, and energy transfer models, data,
and algorithms, relevant to flows in thermochemical nonequilibrium as well as LTE flows. The driv-
ing principle behind Mutation++ is the ability to separate the underlying thermochemical model
from the set of governing equations solved by CFD tools, using the framework from Chapter 2.
The library builds on previous Fortran libraries developed at the von Karman Institute for the
efficient computation of accurate thermodynamic [103] and transport [163] properties for partially
ionized gas mixtures. In particular, the scope of the thermodynamic and transport data has been
vastly expanded through implementation of the NASA thermodynamic polynomial databases and
the creation of a specialized XML format for the storage of binary collision integrals. In addi-
tion, Mutation++ implements a novel method for the robust calculation of linearly constrained,
multiphase equilibria, a crucial component of many thermal protection material response codes.
To the author’s best knowledge, the MPGFC algorithm presented in Chapter 5, is the first such
algorithm guaranteed to converge for all well-posed constraints. While it was originally developed
to improve the robustness of multiphase equilibrium routines required in certain ablation models,
the MPGFC algorithm has wide ranging applications.

Chapter 6 presented the other numerics tools developed in this work. The steady-state flow
along the stagnation line of an atmospheric entry vehicle is computed using a one-dimensional,
finite-volume code, based on the dimensionally reduced Navier-Stokes equations for stagnation
line flows. The flow solver was developed in a previous thesis for modeling STS nitrogen flows
[72] and has been extended in this work to general thermochemical nonequilibrium mixtures, by
coupling with the Mutation++ library. Coupling with ablation is achieved through a steady-state
ablation boundary condition using finite-rate heterogeneous reactions at the surface and imposed
equilibrium compositions of pyrolysis outgassing.

Concerning radiation coupling, the HTGR database from the laboratory EM2C at Centrale-
Supélec has been used to provide accurate LBL spectra. Based on a review of the major radiative
mechanisms contributing to the radiative heat flux for atmospheric entry vehicles, several contri-
butions were added to the HTGR database in this work, including hydrogen lines, C3 Swings and
UV systems, as well as the photoionization of H, H2, and CH. The HSNB model has also been
implemented in this work in order to significantly reduce the computational resources required to
compute accurate radiative heating calculations when many species are present in the flow field.
SNB parameters have been computed for the H2 Lyman and Werner systems, by adjusting the
Doppler and Lorentz overlap parameters to fit curves of growth for each narrow band. Comparisons
with band-averaged transmissivities computed with the LBL approach show excellent agreement
with the resulting SNB parameters for these systems. In general, the method provides a speedup
of at least two orders of magnitude and can accurately predict wall radiative heat fluxes to within
5% compared to LBL calculations. In addition, a novel spectral grid adaptation method has been
developed for atomic lines and was shown to provide nearly identical results as compared to the
original high-resolution HSNB method with a 20-fold decrease in the computational time. Con-
cerning molecular radiation, the HSNB model provides a significant improvement compared to
the Smeared-Rotational-Band model in the case of Titan entry, dominated by optically thick CN
radiation.

Finally, the effects of coupled ablation and radiation have been studied for Earth entries in
Chapter 7. It was shown that for a simulated boundary layer, ablation products in the boundary
layer can significantly increase the radiation blockage to the surface of the vehicle. In particular,
the C3 UV and CO fourth positive band systems as well as photoionization of C atoms contribute
significantly to absorption when enough carbon is present. This is the first time that the HSNB
model has been used to simulate ablation contaminated boundary layer flows. An analysis of the
Apollo 4 peak heating condition showed that coupled radiation and ablation effects can reduce
the conducted heat flux by as much as 35% for a fixed wall temperature of 2500K. Comparison
with the radiometer data taken during the Apollo 4 flight showed excellent agreement for the
peak heating condition, partially validating the coupling methodology and radiation database. In
addition, the importance of accurately modeling the amount of carbon which is blown into the
boundary layer was demonstrated by contrasting the results of other researchers.
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8.2. Future Work and Perspectives

This work represents a first step in the direction of understanding fully coupled flow, radiation,
and ablation phenomena for atmospheric entry vehicles. The effectiveness of the HSNB model for
accurately and efficiently computing radiative heating in highly nonhomogeneous, nonequilibrium
flow fields has been clearly demonstrated. However, the steady-state ablation boundary condition
used in this work is not sufficient to gain a complete picture of the possible radiation-ablation
coupling mechanisms at work in real atmospheric entry flows. In addition, the effects of a 3-
dimensional flow field have been completely ignored in an effort to limit the scope of the thesis
to a manageable workload. Using the tools developed in this work only, it is not possible to
draw conclusions regarding the interaction of ablation products and the radiative heating on the
backshell of an entry vehicle. A reasonable step in this direction could be the use of a 3D radiation
transport code based on the Monte Carlo Ray Tracing (MCRT) technique and the HSNB method,
coupled with a single domain flow / material response solver like the one recently developed by
Schrooyen [18]. For example, Rouzaud et al. have developed MCRT/SNB code for studying the
radiative heating on a Martian orbiter [299]. This tool was later extended to use the full HSNB
model for nonequilibrium air flows by Lamet et al. [300], however the presence of ablation products
has not yet been studied.

As discussed in Chapter 4, the Mutation++ library has already been used by other researchers
for a variety of applications related to hypersonics and ablation. These include the study of
biomass pyrolysis [231], state-to-state catalytic recombination of nitrogen flows, [232], transport
properties of carbon-phenolic ablation mixtures [208], atmospheric entry of meteors [233, 234], and
uncertainty quantification for high enthalpy, plasma wind tunnels [235]. However, the library is
useful for many other applications which are not directly obvious upon first glance. One interesting
example is the study of the Sun’s chromosphere which shares many of the phenomena experienced
during atmospheric entry, including thermochemical nonequilibrium and strong radiation coupling.
A major difference however, is the presence of strong electromagnetic fields which dominate the
Sun’s landscape. Under such conditions, transport properties are no longer isotropic for ionized
plasmas due to the gyroscopic motion of free electrons (and to a lesser extent, ions) around the
magnetic field lines. Current approaches for the simulation of the solar chromosphere use simplified
models like the one of Braginskii [301] for computing anisotropic transport coefficients [302, 303].
Recently, Graille, Magin, and Massot developed a unified fluid model for multicomponent plasmas
in thermal nonequilibrium accounting for the influence of the electromagnetic field [100]. While not
presented in this thesis, explicit expressions for asymptotic solutions of the anisotropic transport
properties have recently been derived using a spectral Galerkin projection, supplied with Laguerre-
Sonine polynomial basis functions, and implemented in Mutation++ [304]. Coupling this new
model with the tools used in solar chromosphere studies is a straight forward avenue for future
research which may lead to a better understanding of the complex processes involved in that region
of our star.
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APPENDIX A

Transport Systems

This appendix describes the evaluation of the linear transport systems necessary for computing
the multicomponent transport properties shown in Chapter 2. For the most part, these equations
summarize the results of [106], and are reproduced here for completeness.

Binary diffusion coefficients are given as
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Shear viscosity coefficients for heavy particles read
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As discussed in Chapter 2, the transport systems result from Laguerre-Sonine polynomial approx-
imations of the Chapmann-Enskog approximation to the nondimensionalized Boltzmann equation.
The resulting systems are summarized in Table A.1 and Table A.2 for heavy-heavy interactions
and all electron interactions, respectively. The correction functions for heavy-heavy interactions,
φij , i, j ∈ H, are given in first and second order approximations as
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and for heavy-electron interactions, φie, i ∈ H, as
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Only first order solutions have been used in this work.
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Table A.1.: Summary of heavy particle transport subsystems, i, j ∈ H.
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For simplicity, the usual expressions for collision integral ratios,
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have been used in Table A.1 as well as the following relationship in Table A.2,
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ie , i ∈ S, k, l ∈ {0, 1, 2}. (A.13)
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Table A.2.: Summary of heavy particle-electron and electron-electron transport subsystems, i ∈ H.

System Formula

GV
ie = G̃V

ie −
Te

Th

xixe

Die
(1 + φie)

GV
ee = G̃V

ee

∑

i∈H

xixe

Die
(1 + φie)

Λ̃01
ie xi

Te

Th

(

5
2
Q̄(1,1)

ej − 3Q̄(1,2)
ej

)

Λ̃02
ie xi

Te

Th

(

35
8
Q̄(1,1)

ej −
21
2
Q̄(1,2)

ej + 6Q̄(1,3)
ej

)

Λ̃00
ee

∑

j∈H

xjQ̄
(1,1)
ej

Λ̃01
ee

∑

j∈H

xj

(

5
2
Q̄(1,1)

ej − 3Q̄(1,2)
ej

)

Λ̃02
ee

∑

j∈H

xj

(

35
8
Q̄(1,1)

ej −
21
2
Q̄(1,2)

ej + 6Q̄(1,3)
ej

)

Λ̃11
ee

∑

j∈H

xj

(

25
4
Q̄(1,1)

ej − 15Q̄(1,2)
ej + 12Q̄(1,3)

ej

)

+ xe

√
2Q̄(2,2)

ee

Λ̃12
ee

∑

j∈H

xj

(

175
16

Q̄(1,1)
ej −

315
8

Q̄(1,2)
ej + 57Q̄(1,3)

ej − 30Q̄(1,4)
ej

)

+ xe

√
2

(

7
4
Q̄(2,2)

ee − 2Q̄(2,3)
ee

)

Λ̃22
ee

∑

j∈H

xj

(

1225
64

Q̄(1,1)
ej −

735
8

Q̄(1,2)
ej +

399
2

Q̄(1,3)
ej − 210Q̄(1,4)

ej + 90Q̄(1,5)
ej

)

+ xe

√
2

(

77
16

Q̄(2,2)
ee − 7Q̄(2,3)

ee + 5Q̄(2,4)
ee

)





APPENDIX B

MPGFC M Matrix Properties

This appendix provides proof of several important properties of the matrix M ≡ P̃T B̃Λ̇y from
Eq. (5.43).

Definition. The so called hat matrix for the least squares problem B̃Λ̇y = P̃ is defined as

H ≡ B̃

(

B̃
T
B̃

)−1
B̃

T , (B.1)

The following results are trivial from the definition of the hat matrix, H.

Result 1. H is idempotent, meaning Hk = H for all powers k and the eigenvalues of H are either
0 or 1.

Result 2. H is symmetric positive semidefinite, H ≽ 0.

Result 3. The matrix (I−H) is idempotent and symmetric positive semidefinite, (I−H) ≽ 0.

Definition. The matrix M ∈ RnP×nP

is defined for convenience such that

M ≡ P̃
T
B̃Λ̇

y, (B.2)

where P̃ and B̃ are defined in Eq. (5.18) and Λ̇y solves the least squares problem, B̃Λ̇y = P̃. We
further enforce that B̃ is full rank, namely rank(B̃) = nC .

Result 4. M = P̃THP̃

Proof. The normal equations solve the least squares problem, B̃Λ̇y = P̃, such that

Λ̇
y =

(

B̃
T
B̃

)−1
B̃

T
P̃ (B.3)

Substituting the above relation into Eq. (B.2) yields the result.

Result 5. M is symmetric positive semidefinite, M ≽ 0.

Proof. This is a trivial result following Results 2 and 4.

Result 6. When Eq. (5.19) is satisfied, the kth largest eigenvalue of M is upper bounded by the
kth largest phase moles, βk (M) ≤ N̄k.

Proof. From Results 3 and 4, we may write

P̃
T
P̃−M = P̃

T (I−H) P̃ ≽ 0, (B.4)

which shows that P̃T P̃ ≽ M. Therefore, the Courant minimax principle provides that

βk
(

P̃
T
P̃

)

≥ βk (M) , (B.5)

where βk(·) represents the kth largest eigenvalue of the matrix in parentheses. When Eq. (5.19) is
satisfied, P̃T P̃ = diag

(

N̄
)

, and βk
(

P̃T P̃

)

= N̄k where N̄k is the phase moles of the kth largest
phase.
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Definition. The matrix C ∈ RnC×nP ≡ B̃T P̃ has column vectors cm =
∑

k∈Sm
NkB̃(k, :), ∀ m ∈

P which represent the amount of elements (or general constraints) contained in each phase m.
Note that C1 =

∑

m∈P cm = c where c is the constraint vector from Eq. (5.9).

Result 7. If C ∈ RnC×nP ≡ B̃T P̃ has full column rank (meaning rankC = nP), then the
eigenvalues of M are lower bounded by the eigenvalues of the matrix ∥B̃∥−2

2 CTC which are strictly
positive, βk(M) ≥ βk(CTC)/∥B̃∥22 > 0.

Proof. Letting σ1 = ∥B̃∥2 denote the largest singular value of B̃, the difference M−CTC/σ2
1 can

be written as

M−
1

σ2
1

C
T
C = C

T

[

(

B̃
T
B̃

)−1
−

1

σ2
1

I

]

C. (B.6)

The term inside the brackets is symmetric and positive semi-definite because the smallest eigenvalue
of (B̃T B̃)−1,

βmin

(

(

B̃
T
B̃

)−1
)

=
1

βmax

(

B̃T B̃

) =
1

σ2
1

, (B.7)

is equal to the nC repeated eigenvalue of I/σ2
1 . Since C is full rank, we have

M ≽
1

σ2
1

C
T
C, (B.8)

and invoking the Courant minimax principle again yields

βk(M) ≥
1

σ2
1

βk(C
T
C). (B.9)

Finally, since C is full rank, the product CTC forms the Gramian of the linearly independent
column vectors of C which is guaranteed to be symmetric positive definite with strictly positive
eigenvalues.

Result 8. When nP = 1, M = M is a strictly positive scalar with a lower bound, M ≥ ∥c∥22/∥B̃∥22.

Proof. From Result 7, with nP = 1, we have easily

M = β(M) ≥
1

σ2
1

β
(

cT c
)

=
∥c∥22
∥B̃∥22

. (B.10)



APPENDIX C

Stagnation Line Jacobians

C.1. Convective Flux Jacobian and Eigensystem

The convective Jacobian A = ∂F c/∂U for stagnation line flows is derived for a general thermo-
chemical nonequilibrium model using the notation defined in Section 2.3.1, where the conservative
and convective flux vectors are given as

U = [ρi, ρur, ρuθ, ρE, ρem]T , (C.1)

F c = [ρiur, ρu
2
r + p, ρuruθ, ρurH, ρure

m]T , (C.2)

where the densities and energies expand for i ∈ S∗ and m ∈ {2, . . . , nM}, respectively. Before
proceeding with the Jacobian calculation, the partial derivatives of the static pressure with respect
to the conservative variables are first obtained as

∂p

∂U
= [Φj , −β1ur, 0, β

1, βn − β1], (C.3)

where

Φj ≡
∂p

∂ρj
= RjTj + ρ

∑

m∈M

RmΥmj, (C.4)

Υmj ≡
∂Tm

∂ρj
=
δm1(u2

r/2−∆hf,j)− emj
ρcmv

, (C.5)

Rm = αm
h

∑

k∈H∗

ykRk + αm
e yeRe, (C.6)

βm =
Rm

cmv
. (C.7)

Using the αm
h and αm

e parameters, the translational temperature associated with a species j ∈ S∗

can be expressed in terms of the temperatures associated with the global energy modes m ∈ M as

Tj =
∑

m∈M

[δejα
m
e + (1− δej)α

m
h ]. (C.8)
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With these relations in hand, the convective Jacobian is straightforwardly computed after writing
the flux vector with conserved quantities and pressure and differentiating, yielding

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ur(δij − yi) yi 0 0 0

Φj − u2
r ur(2 − β1) 0 β1 βn

−uruθ uθ ur 0 0

ur(Φj −H) H − β1u2
r 0 ur(β1 + 1) urβn

−urem em 0 0 δmnur

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.9)

for i, j ∈ S∗ and m,n ∈ {2, . . . , nM}. Note that i and m expand in rows while j and n expand in
columns. This notation is used throughout this appendix to simplify matrix expressions.

The eigensystem A = RΛL is derived using the similarity transformation

A =
∂F c

∂U
=
∂U

∂V

∂V

∂U

∂F c

∂U

∂U

∂V

∂V

∂U
=
∂U

∂V
Ã
∂V

∂U
, (C.10)

where V = [ρi, ur, uθ, p, em] is the natural variable vector, designed to simplify the eigenvalue
problem for the matrix Ã. Since the eigenvalues of Ã and A are the same, due to the similarity
transformation, the calculation of the eigensystem for A proceeds as follows. First, the Jacobians
associated with the natural variable vector V are computed and Ã is built from the straightforward
matrix multiplication,

Ã =
∂V

∂U

∂F c

∂U

∂U

∂V
. (C.11)

Next, the eigensystem of Ã is computed as Ã = R̃ΛL̃, where L̃ and R̃ are the left and right
eigenvector matrices associated with the diagonal eigenvalue matrix Λ. Finally, the left and right
eigenvector matrices associated the convective Jacobian are then easily computed by

L = L̃
∂V

∂U
, R =

∂U

∂V
R̃. (C.12)

To begin, the Jacobians associated with the natural variable vector are found to be

∂V

∂U
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δij 0 0 0 0

−ur/ρ 1/ρ 0 0 0

−uθ/ρ 0 1/ρ 0 0

Φj −β1ur 0 β1 βn − β1

−em/ρ 0 0 0 δmn/ρ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.13)

and

∂U

∂V
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δij 0 0 0 0

ur ρ 0 0 0

uθ 0 ρ 0 0

Θj ρur 0 1/β1 ρ(1−
βn

β1
)

em 0 0 0 δmnρ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.14)
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where Θj = u2
r + [

∑

k∈M(βk − β1)ek − Φj ]/β1. Substitution of Eq. (C.9) and Eqs. (C.13) and
(C.14) into Eq. (C.11) yields

Ã =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δijur ρi 0 0 0

0 ur 0 1/ρ 0

0 0 ur 0 0

0 p(1 + β1) 0 ur 0

0 0 0 0 δmnur

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (C.15)

As can be seen, Ã is much more sparce than A, which greatly simplifies the eigenvalue analysis.
From Eq. (C.15), the following characteristic equation for the eigenvalue λ is readily obtained,

(ur − λ)n
S∗

+nM

[

(ur − λ)2 −
p

ρ
(1 + β1)

]

= 0. (C.16)

Solution of Eq. (C.16) for λ yields the eigenvalues λ = {ur, ur + a, ur − a}, where the eigenvalue
λ = ur is repeated nS∗

+ nM times and a is the numerical “sound speed” associated with the
convective Jacobian, defined as

a2 =
p

ρ
(1 + β1). (C.17)

Note that for a single temperature model, the sound speed reduces to the conventional result,
a2 = γp/ρ where γ is the ratio of mixture specific heats. Writing the eigenvalue matrix as

Λ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

urδij 0 0 0 0

0 ur + a 0 0 0

0 0 ur − a 0 0

0 0 0 ur 0

0 0 0 0 urδmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.18)

the right and left eigenvector matrices are obtained from the relations ÃR̃ = R̃Λ and L̃Ã = ΛL̃.
After some algebra, we obtain

R̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δij ρi ρi 0 0

0 a −a 0 0

0 0 0 1 0

0 ρa2 ρa2 0 0

0 0 0 0 δmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.19)
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and

L̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δij 0 0 −yi/a2 0

0 1/(2a) 0 1/(2ρa2) 0

0 −1/(2a) 0 1/(2ρa2) 0

0 0 1 0 0

0 0 0 0 δmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (C.20)

Finally, using Eq. (C.12), the final solution for the right and left eigenvectors associated with the
convective Jacobian are given as

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δij ρi ρi 0 0

ur ρ(ur + a) ρ(ur − a) 0 0

uθ ρuθ ρuθ ρ 0

Θj ρ(H+ura) ρ(H−ura) 0 ρ(1−
βn

β1
)

em ρem ρem 0 δmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.21)

and

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δij −
yiΦj

a2
β1uryi
a2

0 −
β1yi
a2

yi(β1 − βn)

a2

(Φj − ura)

2ρa2
(a− β1ur)

2ρa2
0

β1

2ρa2
(βn − β1)

2ρa2

(Φj + ura)

2ρa2
(a+ β1ur)

−2ρa2
0

β1

2ρa2
(βn − β1)

2ρa2

−uθ/ρ 0 1/ρ 0 0

−em/ρ 0 0 0 δmn/ρ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (C.22)

C.2. Positive-Negative Split Jacobians

In order to calculate the positive-negative split Jacobians,

A
± = RΛ

±
L, (C.23)

the eigenvalues are first labeled as

λ1 = ur, λ2 = ur + a, λ3 = ur − a, (C.24)

and the positive-negative eigenvalues are defined

λ±i =
λi ± |λi|

2
, i = {1, 2, 3}. (C.25)
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Inserting the positive-negative eigenvalues into Eq. (C.18) yields the positive-negative eigenvalue
matrix,

Λ
± =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λ±1 δij 0 0 0 0

0 λ±2 0 0 0

0 0 λ±3 0 0

0 0 0 λ±1 0

0 0 0 0 λ±1 δmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (C.26)

Note, from the definition of the positive-negative eigenvalues in Eq. (C.25), Λ+ is a diagonal matrix
with only the positive eigenvalues along the diagonal while the negative eigenvalues are zeroed out.
Conversely, Λ− has only negative eigenvalues along the diagonal with the positive eigenvalues
zeroed out. Substituting Eq. (C.26) into Eq. (C.23) yields the positive-negative split Jacobian
matrices.

C.3. Convective Source Term Jacobian

For the general thermochemical nonequilibrium model, the convective source term vector for the
stagnation line equations is given as

Sc = −
(ur + uθ)

r

[

2ρi, 2ρur, 3ρuθ − 2
p− p∞
ur + uθ

, 2ρH, 2ρem
]

, (C.27)

where the indices i ∈ S∗ and m ∈ {2, . . . , nM} expand accordingly. The convective source term
Jacobian then follows from a straightforward differentiation, such that

∂Sc

∂U
= −

2

r

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ū(δij−yi) yi yi 0 0

−urū (ur+ū) ur 0 0

−
3

2
uθū−Φj

3

2
uθ+urβ1 3

2
(ū+uθ) −β1 −(βn−β1)

ū(Φj−H) H−urūβ1 H ū(1+β1) ū(βn−β1)

−ūem em em 0 ūδmn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.28)

where ū = ur + uθ has been defined for convenience.

C.4. Diffusive Flux Jacobian

The stagnation line diffusive flux vector in the general thermochemical nonequilibrium model
notation is given as

F d = [ρiVri, −τrr, −τrθ, qr − τrrur, q
m
r ]T , (C.29)

where the indices i ∈ S∗ and m ∈ {2, . . . , nM} expand as usual. Linearization of F d is performed
by first rewriting the flux vector as a sum of the terms which are linearly dependent on the gradient
of conservative variables plus those which are not,

F d = A
d

(

∂U

∂r

)

+Bd. (C.30)
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The diffusion fluxes are then approximated according to the method of Ramshaw and Chang by

ρiVri = ρi
∑

j∈S∗

Dij
∂xj

∂r
, (C.31)

where Dij is the multicomponent diffusion coefficient for species i and j. After some algebra, this
relation may be written in terms of species density gradients via

ρiVri =
∑

j∈S∗

aij
∂ρj
∂r

, (C.32)

where the aij coefficients are

aij = yi
M

Mj

[

Dij −
∑

k∈S∗

Dikxk

]

. (C.33)

The velocity and temperature gradients are similarly written in terms of gradients of conserved
quantities such that

∂ur

∂r
=

1

ρ

∂(ρur)

∂r
−

ur

ρ

∑

i∈S∗

∂ρi
∂r

, (C.34)

∂uθ

∂r
=

1

ρ

∂(ρuθ)

∂r
−

uθ

ρ

∑

i∈S∗

∂ρi
∂r

, (C.35)

∂T1

∂r
=

1

ρc1v

⎡

⎣

∂(ρE)

∂r
−

nM

∑

m=2

∂(ρem)

∂r
− ur

∂(ρur)

∂r

⎤

⎦+
∑

i∈S∗

Υ1i
∂ρi
∂r

, (C.36)

∂Tm

∂r
=

1

ρcmv

∂ρem

∂r
+
∑

i∈S∗

Υmi
∂ρi
∂r

, ∀ m ∈ {2, . . . , nM}. (C.37)

The stress tensor components and radial heat fluxes can then be written as

τrr =
4

3
η

(

1

ρ

∂(ρur)

∂r
−

ur

ρ

∑

i∈S∗

∂ρi
∂r

−
ū

r

)

, (C.38)

τrθ = η

(

1

ρ

∂(ρuθ)

∂r
−

uθ

ρ

∑

i∈S∗

∂ρi
∂r

−
ū

r

)

, (C.39)

τθθ = −
1

2
τrr, (C.40)

and

qr =
∑

i∈S∗

bi
∂ρi
∂r

+ α1ur
∂(ρur)

∂r
− α1 ∂(ρE)

∂r
+

nM

∑

m=2

(

α1 − αm
) ∂(ρem)

∂r
, (C.41)

qmr =
∑

s∈S∗

bmi
∂ρi
∂r

− αm ∂(ρe
m)

∂r
, ∀ m ∈ {2, . . . , nM}, (C.42)

where αm = λm/ρcmv , ∀ m ∈ M and the bi and bmi coefficients are

bi =
∑

k∈S∗

hkaki −
∑

m∈M

λmΥmi, (C.43)

bmi =
∑

k∈S∗

hm
k aki − λmΥmi. (C.44)
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Using the above relations, Ad and Bd are then found to be

A
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, (C.45)

and

Bd = ū
µ

r

[

0,
4

3
, 1,

4

3
ur, 0

]T

, (C.46)

where the first and last zeros in Bd are expanded nS∗

and nM− 1 times, respectively. Finally, the
Jacobian of Bd with respect to the conservative variables is found to be

∂Bd
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=

1

r

η

ρ
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ū

4

3
(ū+ ur)

4

3
ur 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (C.47)

where the first and last rows and columns are expanded nS∗

and nM − 1 times, respectively.

C.5. Diffusive Source Term Jacobian

The diffusive source term vector written in the general thermochemical model notation is expressed
as

Sd = −
2

r

[

ρiVri, τθθ−τrr+τrθ,
(τθθ−3τrθ)

2
, qr−τrrur−τrθur−τθθuθ, q

m
r

]T

, (C.48)

where the indices i ∈ S∗ and m ∈ {2, . . . , nM} are expanded. The linearization of Sd proceeds in
the same way as was done for F d in the previous section, by first decomposing the vector as

Sd = A
d
s

(

∂U

∂r

)

+Bd
s . (C.49)
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Using the procedure detailed in the previous section, Ad
s and Bd

s are given as

A
d
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where

ci = bi +
µ

ρ

ur

3
(ū+ 3ur) , (C.51)

cr = β1ur +
µ

ρ

4

3

(

ur −
1

2
uθ

)

, (C.52)

d =
µ

ρ
(ū + ur), (C.53)

f =
1

6

µ

ρ
(2ū+ 7uθ), (C.54)

and

Bd
s =

µ

r2

[

0, −6ū, −
11

3
ū, −

2

3
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]T

, (C.55)

where ū⋆ = 7u2
r + 5uruθ − 2u2

θ. Finally, the Jacobian of Bd
s is found to be
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where

gr =
2

3
(15ur − 5uθ), (C.57)

gt =
2

3
(4ur − 5uθ). (C.58)

C.6. Kinetic Source Term Jacobian

Lastly, the kinetic source term vector for the general thermochemical model is given as,

Sk = [ω̇i, 0, 0, 0, Ω
m]T , (C.59)
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where the the species and energy production rates are functions of species densities and tempera-
tures,

ω̇i = ω̇i({ρk, k ∈ S∗}, {T n, n ∈ M}), i ∈ S∗, (C.60)

Ωm = Ωm({ρk, k ∈ S∗}, {T n, n ∈ M}), m ∈ {2, . . . , nM}. (C.61)

It is therefore convenient to calculate the kinetic source Jacobian using the chain rule,

∂Sk

∂U
=
∂Sk

∂P

∂P

∂U
, (C.62)

where P is the primitive variable vector

P = [ρi, ur, uθ, T1, Tm]T . (C.63)

The primitive variable Jacobian is found to be
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The source term Jacobian with respect to primitive variables is given as
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where the subscript P is used to emphasize that the derivatives are with respect to primitive
variables, rather than conservative ones. Multiplying the above two matrices yields
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where the derivatives with respect to conservative variables are found to be
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∂ρj
=

(

∂X

∂ρj

)

P

+
∑

l∈M

Υlj

(

∂X

∂Tl

)

P

, (C.67)

∂X

∂(ρur)
= −

ur

ρc1v

(

∂X

T1

)

P

, (C.68)
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for X = {ω̇i, Ωm}.



APPENDIX D

Mixtures and Data

This appendix details the various mixtures and data used for the simulations presented in Chap-
ter 7, including the the species involved, specific reactions considered, as well as the collision
integral data necessary to compute the transport coefficients.

D.1. Mixtures

The three mixtures described in Section 7.1.1 are summarized in Table D.1. The table provides
a list of species included in each mixture, the thermal nonequilibrium model employed, and the
number of species, reactions, and collision pairs. Species thermodynamic properties were computed
using the RRHO model as described in Section 4.4.1 using the rotational, vibrational, and electronic
characteristic temperatures and degeneracies provided by Gurvich et al. [173, 175]. The reaction
mechanisms and rate constants employed for each mixture are detailed in the proceeding section
followed by the collision integral data required to compute transport coefficients for each mixture.

Table D.1.: Summary of the three mixtures used in Chapter 7.

Mixture Species Noneq. # Species / # Collision
Name Model Reactions Pairs

air e– N+ O+ NO+ N2
+ O2

+ T , T ve 11 / 22 66
N O NO N2 O2

air-ablation e– N+ O+ N O NO N2 T , T ve 20 / 25 210
O2 C C+ H H+ C2

C2H C3 CO CO2 CN
HCN H2

Titan N C H N2 C H CN NH T 13 / 27 91
CH CH2 CH3 CH4 HCN
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D.2. Reaction Mechanisms

This section presents the reaction mechanisms used for each of the three mixtures summarized
in the previous section. For each mechanism, the corresponding reactions, rate constants, and
temperature dependencies are provided.

Table D.2.: Gas phase chemical reactions used in this work for air simulations. Forward reaction
rate coefficients are computed using the modified Arrhenius formula, kf (Tf ) = AT β

f exp(−θ/Tf).
Backward reaction rate coefficients are computed in order to satisfy equilibrium at the temperature
associated with the reverse reaction, kb = kf (Tb)/keq(Tb). The sources for the listed rate constants
are provided in the last column.

No. Reaction A β θ Ref.
m, s,mol K

associative ionization (Tf = T, Tb = T ve)
1. N + O −−⇀↽−− NO+ + e– 5.30× 106 0.00 31 900 [69]
2. O + O −−⇀↽−− O2

+ + e– 7.10× 10−4 2.70 80 600 [67]
3. N + N −−⇀↽−− N2

+ + e– 4.40× 101 1.50 67 500 [69]
charge exchange (Tf = T, Tb = T )

4. NO+ + O −−⇀↽−− N+ + O2 1.00× 106 0.50 77 200 [67]
5. N+ + N2 −−⇀↽−− N2

+ + N 1.00× 106 0.50 12 200 [67]
6. O2

+ + N −−⇀↽−− N+ + O2 8.70× 107 0.14 28 600 [67]
7. O+ + NO −−⇀↽−− N+ + O2 1.40× 10−1 1.90 26 600 [67]
8. O2

+ + N2 −−⇀↽−− N2
+ + O2 9.90× 106 0.00 40 700 [67]

9. O2
+ + O −−⇀↽−− O+ + O2 4.00× 106 0.09 18 000 [67]

10. NO+ + N −−⇀↽−− O+ + N2 3.40× 107 −1.08 12 800 [67]
11. NO+ + O2 −−⇀↽−− O2

+ + NO 2.40× 107 0.41 32 600 [67]
12. NO+ + O −−⇀↽−− O2

+ + N 7.20× 107 0.29 48 600 [67]
13. O+ + N2 −−⇀↽−− N2

+ + O 9.10× 107 0.36 22 800 [67]
14. NO+ + N −−⇀↽−− N2

+ + O 7.20× 107 0.00 35 500 [67]
electron impact dissociation (Tf = T ve, Tb = T ve)

15. N2 + e– −−⇀↽−− N + N + e– 3.00× 1018 −1.60 113 200 [69]
heavy particle impact dissociation (Tf =

√
TT ve, Tb = T )

16. N2 + M −−⇀↽−− N + N + M 7.00× 1015 −1.60 113 200 [69]
M = N O 3.00× 1016

17. O2 + M −−⇀↽−− O + O + M 2.00× 1015 −1.50 59 360 [69]
M = N O 1.00× 1016

18. NO + M −−⇀↽−− N + O + M 5.00× 109 0.00 75 500 [68]
M = N O NO 1.00× 1011

exchange (Tf = T, Tb = T )
19. NO + O −−⇀↽−− N + O2 8.40× 106 0.00 19 400 [69]
20. N2 + O −−⇀↽−− NO + N 5.70× 106 0.42 42 938 [69]

electron impact ionization (Tf = T ve, Tb = T )
21. O + e– −−⇀↽−− O+ + e– + e– 3.90× 1027 −3.78 158 500 [69]
22. N + e– −−⇀↽−− N+ + e– + e– 2.50× 1028 −3.82 168 200 [69]
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Table D.3.: Gas phase chemical reactions used in this work for coupled air and ablation sim-
ulations. Forward reaction rate coefficients are computed using the modified Arrhenius formula,
kf (Tf ) = AT β

f exp(−θ/Tf). Backward reaction rate coefficients are computed in order to satisfy
equilibrium at the temperature associated with the reverse reaction, kb = kf (Tb)/keq(Tb). The
sources for the listed rate constants are provided in the last column.

No. Reaction A β θ Ref.
m, s,mol K

electron impact dissociation (Tf = T ve, Tb = T ve)
1. N2 + e– −−⇀↽−− 2N + e– 1.00× 1019 −1.60 113 200 [305]

heavy particle impact dissociation (Tf =
√
TT ve, Tb = T )

2. N2 + M −−⇀↽−− 2N + M 7.00× 1015 −1.60 113 200 [305]
M = atoms 3.00× 1016

3. O2 + M −−⇀↽−− 2O + M 2.00× 1015 −1.50 59 750 [305]
M = H 0.00
M = atoms except H 1.00× 1016

4. C2 + M −−⇀↽−− C + C + M 3.70× 108 0.00 69 000 [305]
5. CN + M −−⇀↽−− C + N + M 2.50× 108 0.00 71 000 [305]
6. NO + M −−⇀↽−− N + O + M 5.00× 109 0.00 75 500 [305]

M = atoms 1.10× 1011

7. CO2 + M −−⇀↽−− CO + O + M 6.90× 1015 −1.50 63 275 [305]
M = atomic ions and H 1.40× 1016

M = neutral ions except H 1.40× 1016

8. CO + M −−⇀↽−− C + O + M 2.30× 1014 −1.00 129 000 [305]
M = atoms 3.40× 1014

9. C3 + M −−⇀↽−− C2 + C + M 6.30× 1010 −0.50 101 200 [305]
10. H2 + M −−⇀↽−− H + H + M 2.20× 108 0.00 48 300 [305]

exchange (Tf = T, Tb = T )
11. N2 + O −−⇀↽−− NO + N 6.40× 1011 −1.00 38 370 [305]
12. NO + O −−⇀↽−− N + O2 8.40× 106 0.00 19 450 [305]
13. CO + C −−⇀↽−− C2 + O 2.00× 1011 −1.00 58 000 [305]
14. CO + O −−⇀↽−− O2 + C 3.90× 107 −0.18 69 200 [305]
15. CO + N −−⇀↽−− CN + O 1.00× 108 0.00 38 600 [305]
16. N2 + C −−⇀↽−− CN + N 1.10× 108 −0.11 23 200 [305]
17. CN + O −−⇀↽−− NO + C 1.60× 107 0.10 14 600 [305]
18. CN + C −−⇀↽−− C2 + N 5.00× 107 0.00 13 000 [305]
19. CO2 + O −−⇀↽−− O2 + CO 2.10× 107 0.00 27 800 [305]
20. HCN + H −−⇀↽−− CN + H2 8.00× 105 0.02 85 537 [305]
21. C2H + H −−⇀↽−− C2 + H2 1.00× 106 0.00 16 770 [69]

electron impact ionization (Tf = T ve, Tb = T )
22. O + e– −−⇀↽−− O+ + e– + e– 3.90× 1027 −3.78 158 500 [69]
23. N + e– −−⇀↽−− N+ + e– + e– 2.50× 1028 −3.82 168 200 [69]
24. H + e– −−⇀↽−− H+ + e– + e– 2.20× 1024 −2.80 157 800 [69]
25. C + e– −−⇀↽−− C+ + e– + e– 6.35× 109 0.00 130 700 [69]
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Table D.4.: Gas phase chemical reactions used in this work for Titan simulations. Forward reac-
tion rate coefficients are computed using the modified Arrhenius formula, kf (T ) = AT β exp(−θ/T ).
Backward reaction rate coefficients are computed in order to satisfy equilibrium at the temperature
associated with the reverse reaction, kb = kf (T )/keq(T ). The rate constants are taken from Gökçen
[295].

No. Reaction A β θ
m, s,mol K

heavy particle impact dissociation
1. N2 + M −−⇀↽−− 2 N + M 7.00× 1015 −1.60 113 200

M = atoms 3.00× 1016

2. CH4 + M −−⇀↽−− CH3 + H + M 4.70× 1041 −8.20 59 200
3. CH3 + M −−⇀↽−− CH2 + H + M 1.02× 1010 0.00 45 600
4. CH3 + M −−⇀↽−− CH + H2 + M 5.00× 109 0.00 42 800
5. CH2 + M −−⇀↽−− CH + H + M 4.00× 109 0.00 41 800
6. CH2 + M −−⇀↽−− C + H2 + M 1.30× 108 0.00 29 700
7. CH + M −−⇀↽−− C + H + M 1.90× 108 0.00 33 700
8. C2 + M −−⇀↽−− 2C + M 1.50× 1010 0.00 71 600
9. H2 + M −−⇀↽−− 2 H + M 2.23× 108 0.00 48 350
10. CN + M −−⇀↽−− C + N + M 2.53× 108 0.00 78 000
11. NH + M −−⇀↽−− N + H + M 1.80× 108 0.00 37 600
12. HCN + M −−⇀↽−− CN + H + M 3.57× 1020 −2.60 62 845

exchange
13. CH3 + N −−⇀↽−− HCN + 2H 7.00× 107 0.00 0
14. CH3 + H −−⇀↽−− CH2 + H2 6.03× 107 0.00 7600
15. CH2 + N2 −−⇀↽−− HCN + NH 4.82× 106 0.00 18 000
16. CH2 + N −−⇀↽−− HCN + H 5.00× 107 0.00 0
17. CH2 + H −−⇀↽−− CH + H2 6.03× 106 0.00 −900
18. CH + N2 −−⇀↽−− HCN + N 4.40× 106 0.00 11 060
19. CH + C −−⇀↽−− C2 + H 2.00× 108 0.00 0
20. C2 + N2 −−⇀↽−− 2CN 1.50× 107 0.00 21 000
21. CN + H2 −−⇀↽−− HCN + H 2.95× 10−1 0.00 1130
22. CN + C −−⇀↽−− C2 + N 5.00× 107 0.00 13 000
23. N + H2 −−⇀↽−− NH + H 1.60× 108 0.00 12 650
24. C + N2 −−⇀↽−− CN + N 5.24× 107 0.00 22 600
25. C + H2 −−⇀↽−− CH + H 4.00× 108 0.00 11 700
26. H + N2 −−⇀↽−− NH + N 3.00× 106 0.50 71 400
27. H + CH4 −−⇀↽−− CH3 + H2 1.32× 10−2 3.00 4045
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D.3. Collision Integrals

Figs. (D.1 - D.3) present summaries of the collision integral data used for each collision pair in the
three mixtures presented in Section D.1. Each cell corresponding to a collision pair is color-coded
based on the type of collision represented. Depending on the type of collision, reference information
is also given for each collision pair detailing the source of the required collision integral data. All
attractive and repulsive charged collisions are treated as Coulomb interactions using the Debye-
Hückel potential as described in Section 4.5.1. All other collision integrals are either explicitly
taken from the given reference, or are computed using the Langevin (ion-neutral) or Lennard-
Jones (neutral-neutral) potentials. Pure species Lennard-Jones parameters and species dipole
polarizabilities used in this work are given in Table D.5. Lennard-Jones parameters for non-pure
interactions can be obtained from the Lorentz and Berthelot combination rules as described in
Section 4.5.1.
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Figure D.1.: Summary of collision integral data for the air mixture used in this work. Cell colors
represent type of collision (red : charged, orange : electron-neutral, green : ion-neutral, blue :
neutral-neutral). Numbers indicate reference source for each collision pair. + : attractive, − :
repulsive.
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Figure D.2.: Summary of collision integral data for the Titan mixture used in this work. Numbers
indicate reference source for each collision pair. LJ : Lennard-Jones (12-6) potential.
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Figure D.3.: Summary of collision integral data for the coupled air and ablation mixture used in
this work. Cell colors represent type of collision (red : charged, orange : electron-neutral, green :
ion-neutral, blue : neutral-neutral). Numbers indicate reference source for each collision pair. + :
attractive, − : repulsive, L : Langevin potential, LJ : Lennard-Jones (12-6) potential, C : copied
from e– –C data.
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Table D.5.: Pure species Lennard-Jones potential parameters and species dipole polarizabilities
used in this work.

Lennard-Jones
Species Parameters Polarizabilities

σ φ0/kB Ref. α Ref.
Å K Å

3

C 3.0 100.0 [306] 1.76 [202]
C2 3.913 78.8 [69] 5.58 [208]
CH 2.750 80.0 [307]
CH2 3.8 144.0 [308]
CH3 3.8 144.0 [308]
CH4 4.010 143.8 [309]
CN 3.856 75.0 [69] 2.00 [202]
CO 3.690 91.7 [69] 1.95 [202]
CO2 3.763 244.0 [308] 2.91 [202]
H 2.4 40.0 [306] 0.667 [203]
H2 2.827 59.7 [69]
HCN 3.630 569.1 [310] 2.53 [306]
N 2.98 119.0 [306] 1.10 [202]
N2 3.798 71.4 [69] 1.74 [202]
NH 2.650 80.0 [308]
NO 3.599 91.0 [69] 1.70 [202]
O 2.660 70.0 [306] 0.80 [202]
O2 3.467 106.7 [69] 1.58 [202]
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Résumé : Cette thèse est centrée sur le 
couplage entre les phénomènes d’écoulement, 
d’ablation et de rayonnement au voisinage du 
point d’arrêt de véhicules d’entrée 
atmosphérique pourvus d’un système de 
protection thermique de type carbone- 
phénolique. La recherche est divisée en trois 
parties : 1) le développement de méthodes 
numériques et d’outils pour la simulation 
d’écoulements hypersoniques hors équilibre 
autour de corps émoussés, 2) la mise en œuvre 
d’un nouveau modèle de transport du 
rayonnement hors équilibre dans ces 
écoulements, y compris dans les couches 
limites contaminées par les produits d’ablation, 
et 3) l’application de ces outils à des conditions 
réelles de vol. 
 

Les effets du couplage entre l’ablation et le 
rayonnement sont étudiés pour les rentrées 
terrestres. Il est démontré que les produits 
d’ablation dans la couche limite peuvent 
augmenter le blocage radiatif à la surface du 
véhicule. Pour les conditions de flux maximum 
d’Apollo 4, les effets de couplage entre le 
rayonnement et l’ablation réduisent le flux 
conductif de 35%. L’accord avec les données 
radiométriques est excellent, ce qui valide 
partiellement la méthode de couplage et la base 
de données radiatives. L’importance d’une 
modélisation précise du soufflage du carbone 
dans la couche limite est également établie. 
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phenomena for atmospheric entry 

Keywords : atmospheric entry, hypersonics, aerothermodynamics, radiation, ablation, coupling, 
multiphase equilibrium 

Abstract : This thesis focuses on the coupling 
between flow, ablation, and radiation 
phenomena encountered in the stagnation 
region of atmospheric entry vehicles with 
carbon-phenolic thermal protection systems.  
The research is divided into three parts : 1) 
development of numerical methods and tools 
for the simulation of hypersonic, non 
equilibrium flows over blunt bodies, 2) 
implementation of a new radiation transport 
model for calculating nonequilibrium radiative 
heat transfer in atmospheric entry flows, 
including ablation contominated boundary 
layers, and 3) application of these tools to study 
real flight conditions. 
The effects of coupled ablation and radiation 
are studied for Earth entries.  It’s shown that 
 

ablation products in the boundary layer can 
increase the radiation blockage to the surface of 
the vehicle. An analysis of the Apollo 4 peak 
heating condition shows coupled radiation and 
ablation effects reduce the conducted heat flux 
by as much as 35% for a fixed wall temperature 
of 2500 K. Comparison with the radiometer 
data shows excellent agreement, partially 
validating the coupling methodology and 
radiation database. The importance of 
accurately modeling the amount of carbon 
blown into the boundary layer is demonstrated 
by contrasting the results of other researchers. 
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