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Thesis overview 

The excellent physical properties of Gallium Nitride (GaN), Aluminium Nitride (AlN) 

and related alloys (AlGaN) make the solid-state electronic devices based on an 

AlGaN/GaN heterojunction the most interesting candidate for the next generation of 

power electronics, in particular for space applications. Unfortunately, this young 

technology suffers from reliability difficulties and memory effects (i.e. charge-trapping 

phenomena). In the last decades, much effort has been devoted to investigating the 

reliability and trapping effects of this technology. These investigations have identified 

several physical and technological challenges and have contributed to improve the 

maturity of the technology. The most significant effort to develop this technology for 

space applications was made by the American and European space agencies: the 

national aeronautics and space administration (NASA) and the european space agency 

(ESA). In particular, in Europe, this research was initially funded through national 

agencies, innovative component development activities at ESA and EU defense 

initiatives, such as the Korrigan, and great² (GaN Reliability Enhancement and 

Technology Transfer Initiative) projects [1], [2]. An important step towards using the 

European GaN technology in satellites has been done by ESA with the first in-orbit 

demonstration of an X-band transmitter using GaN monolithic microwave integrated 

circuit (MMIC) technology on board the PROBA-V mission. This transmitter has now 

been successfully operating in space for image and data transmission for more than 24 

months, as shown in [2]. Among the industries supported by ESA and French space 

agency (centre national d’études spatiales (CNES)), Thales Alenia Space in Toulouse 

has currently developed a new generation of RF Front-End chain in GaN (MMIC) 

technology.  

In this context, the present joint Ph.D. collaboration between the XLIM laboratory and 

the University of Padova was developed in order to make some improvements in 

reliability measurements and trapping characterization. 

This work was supported on the one hand by the Thales Alenia Space in Toulouse 

through the “DEFIS-RF” ANR project (ANR-13-CHIN-0003) under the supervision of 

Dr. Jean-Luc Muraro and on the other hand by the French space agency (CNES) 

through contract 131223/00 under the supervision of Jean-Luc Roux. This joint Ph.D. 

collaboration has benefited from two different environments based on both the 



 

university and industrial approaches. Moreover, this Ph.D. research has brought 

together the knowledge and skills of distinguished universities, namely, the University 

of Padova and the University of Limoges, the former on reliability and the latter on RF 

device modeling. 

The main topics of this Ph.D. research concerned the characterization and the modeling 

of charge-trapping dynamic dispersion and reliability studies with an advanced time-

domain methodology of GaN-based high electron mobility transistors. 

Chapter 1 includes a brief introduction to the properties and capabilities of GaN 

technology and its promising applications in the space world. 

In Chapter 2, a new investigation of charge-trapping is discussed from DC to radio-

frequency operation mode, based on pulsed I/V measurements, DC and RF drain current 

measurements, and low-frequency dispersion measurements. An extensive analysis of 

the main charge-trapping mechanisms and the related deep levels identified in state-of-

art GaN-based high electron mobility transistors are presented. 

In Chapter 3, the determination and validation of a nonlinear electro-thermal 

AlGaN/GaN model for CAD application is described with a new additive thermal trap 

model to take into account the nonlinear dynamic behavior of trap states and their 

associated temperature variation. 

In Chapter 4, an advanced time-domain methodology is introduced to investigate device 

reliability and determine its safe operating area for different overdrive conditions and 

different output load impedance conditions.  

Lastly, the key points and the novel experimental results of this Ph.D. research are 

presented. 
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1 Background 

 Introduction  

In this first part of this chapter a brief overview of the properties and capabilities of the more 

promising wide band-gap semiconductors based on AlGaN/GaN high-electron mobility 

transistors for the gamut of power electronics applications, from power conditioning to 

microwaves, is presented. In the second part, the potential usage of this technology in satellite 

equipment for telecommunications, navigation, Earth observation and science missions is 

illustrated.   

 GaN based semiconductors 

The greatest scientific and technological revolution of the last century has no doubt changed 

the world. Nowadays, the need of communication and data processing are fulfilled thanks to 

the field effect transistor (FET) introduced in the beginning of 20th century. Its principle was 

filed by Julius Lilienfeld in 1925. After the Second World War, at AT&T Bell Labs, William 

Shockley at the head of a research group decided to attempt the building of a triode 

(transistor’s precursor) like solid-state electronic device. 

Later, the history of solid-state electronic devices was marked by the introduction of the high-

electron mobility transistor (HEMT). The HEMT was first demonstrated by Mimura et al. at 

Fujitsu Labs in 1980 [3]. The invention of the HEMT represented the latest triumph of band-

gap engineering and molecular beam epitaxy. Moreover, the HEMT in III-V compound 

semiconductors was based on the concept of modulation doping first demonstrated by Dingle 

et al. at Bell Labs in 1978 [4]. A modulation-doped structure creates a two-dimensional 

electron gas at the interface between two semiconductors of different band-gaps, which is the 

principle of a heterostructure device.  

Today, RF and microwave applications are satisfied by different mature semiconductor 

technologies, such as Si, GaAs, and other III-V semiconductors. However, the wide band-gap 

semiconductors, in particular those based on GaN, are the most promising technologies for 

the next generation applications in communications, signal processing, electrical power 

management and imaging. Its performance has attracted attention as a highly promising 
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material for electronic applications because of its excellent transport properties, high critical 

electric field, robustness and thermal stability when compared to GaAs.  

 

Figure 1-1: Comparison of GaN with Si and GaAs semiconductors [5]. 

TABLE 1 
COMPARISON OF THERMAL AND ELECTRONIC PROPERTIES FOR DIFFERENT SEMICONDUCTORS AND HETEROSTRUCTURES [6] 

Characteristic Silicon Gallium 

Arsenide 

Indium 

Phosphide 

Silicon 

Carbide 

Gallium 

Nitride 

Bandgap (eV) 1.1 1.42 1.35 3.25 3.49 

Electron Mobility at 

300 °K (cm²/Vs) 

1500 8500 5400 700 1000-2000 

Saturated Electron 

Velocity (x107cm/s) 

1 1.3 1 2 2.5 

Critical Breakdown 

Field (MV/cm) 

0.3 0.4 0.5 3 3.3 

Thermal Conductivity 

(W/cm °K) 

1.5 0.5 0.7 4.5 >1.5 

Relative Dielectric 

Constant εr 

11.8 12.8 12.5 10 9 

The GaN-based devices currently have advantages for high-cost microwave applications 

where device performance is more critical. When compared with other highly commercialized 

Maximum frequency 
 Due to factors including 

high electric field 

saturation speed and low 

parasitic capacity 

High breakdown  
 Due to wide bandgap 

High maximum current density 

 Due to factors including high carrier 

density and high electron mobility 

Noise Factor 
 Due to factors including low 

carrier scattering and low RF 

losses. 
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 Due to factors including wide 

bandgap and high potential barrier. 
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semiconductors such as Si and GaAs, GaN-based semiconductors have five key advantages:  

high operating temperatures, high critical electric field, high current densities, high-speed 

switching, and low on-resistances. A schematic comparison of these five figures of merit is 

given in Figure 1-1. These different materials can be compared using the Johnson figure of 

merit (JFoM), which gives a power-frequency limit based on material properties: 

 
𝐽𝐹𝑜𝑀 =

𝑣𝑠𝑎𝑡𝐸𝐵𝐷
2𝜋

 
(1-1) 

 

where 𝑣𝑠𝑎𝑡 is the saturation velocity and 𝐸𝐵𝐷 is the electric field at which impact ionization 

initiates breakdown. The GaN JFoM is approximately 27.5 times higher than Si and more 

than 10 times better than GaAs [7]. Si and GaAs materials are expected to be replaced by 

wide-band gap GaN material due to the increase of power and frequency request for future 

communication applications. The GaN material demonstrates promising superior 

performances over its competitors as shown in Table 1, due to piezoelectric and spontaneous 

polarization induced effects, the two-dimensional electron gas (2DEG) sheet carrier 

concentration (ns) of AlGaN/GaN structure is very high (experimental values up to 1013 cm-2) 

in comparison with III-V semiconductors. Furthermore, an exciting prospect in the near future 

is the monolithic integration of GaN HEMT and III-V CMOS devices to give a new lease on 

life to Moore’s Law. The lack of bulk GaN source material has to the need for GaN growth on 

mismatched substrates such as Si, SiC and sapphire. Moreover, the development of GaN for 

RF electronics was significantly aided by the intense development of light-emitting diodes 

(LEDs). 

1.2.1 Two-dimensional electron gas 

As described in the previous section, the unique feature of AlGaN/GaN HEMTs is 2DEG 

channel formation. The sheet carrier density and the confinement of the two-dimensional 

electron gas located close to the interface of undoped and doped AlGaN/GaN heterostructures 

is due to the bending of the bands. The accumulation of attracted mobile carriers (electrons in 

the case of a positive sheet charge σ) in this two-dimensional electron gas is confined in a 

quantum well along the heterojunction and relies both on piezoelectric and spontaneous 

polarization induced effects, as shown in Figure 1-2. The piezoelectric effects can exert a 

substantial influence on the concentration and distribution of free carriers in strained group-III 

nitride heterostructures. Indeed, in AlGaN/GaN based transistor structures, the piezoelectric 
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polarization of the strained AlGaN barrier layer is more than five times that of AlGaAs/GaAs 

structures, which corresponds to an increasing current density. The very high mobility of 

confined electrons in the quantum well and high saturation velocity associated to GaN make 

up the key feature of AlGaN/GaN HEMTs. 

 

Figure 1-2: Polarization and charges in AlGaN/GaN HEMTs [5]. 

The induced sheet charge σ created at the interface between the AlGaN layer and the GaN 

layer of AlGaN/GaN heterostructures grown along the [0001] direction (c-axis) (GaN), shown 

in Figure 1-2, can be written as the sum of spontaneous and piezoelectric polarization charges 

at AlGaN and GaN layers (the piezoelectric polarization 𝑃𝑃𝐸−𝐺𝑎𝑁 is considered negligible).    

 |𝜎| = |𝑃𝑆𝑃−𝐴𝑙𝐺𝑎𝑁 + 𝑃𝑃𝐸−𝐴𝑙𝐺𝑎𝑁 − 𝑃𝑆𝑃−𝐺𝑎𝑁| (1-2) 

In order to compensate this induced positive sheet charge at the AlGaN interface, an 

accumulation of free electrons will appear at the GaN interface, as illustrated in Figure 1-2. 

The sheet electron concentration nS(x) can be calculated by using the total bound sheet charge 

(x) (illustrated in Figure 1-3) and the following equation [8]: 

 𝑛𝑠(𝑥) =
𝜎(𝑥)

𝑞
−
𝜀0𝜀𝑟(𝑥)

𝑞2𝑑
[𝑞𝛷𝑏(𝑥) + 𝐸𝐹(𝑥) − ∆𝐸𝑐(𝑥)] (1-3) 

where σ is the polarization induced sheet charge density, q is the electron charge, (ε0, εr) are 

the vacuum and relative permittivities, d is the thickness of the AlGaN barrier, qb is the 

Schottky barrier of the gate contact on top of AlGaN, EF is the position of the Fermi level 

with respect to the edge of the GaN conduction band energy, and ΔEc(x) is the offset of 

conduction band energy at the AlGaN/GaN interface.  
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Figure 1-3: Charge distribution, electric field and energy band diagram of an 

AlGaN/GaN HEMT heterostructure [5]. 
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 GaN technology for satellite equipment  

As already mentioned, GaN technology is currently under development and qualification not 

only for high power amplifier (HPA) module but also for other applications like low noise 

amplifier (LNA), mixer and local oscillator in a space environment. This technology offers 

significant advantages for space industries in terms of size reduction/integration, DC power 

consumption, linearity and RF power. 

Solid-state power transistors have, over the past 40 years, started to replace vacuum 

technology in the vast majority of microwave systems, but the revolution is not complete. In 

particular, the high RF power microwave and millimeter-wave radar and communications 

transmitter applications are dominated by microwave tubes for frequency capabilities greater 

than 100 GHz, and for high device operating temperature capabilities greater than about 250 

◦C. Nowadays, at lower frequency ranges (L/C/S band), GaN-based solid state power 

amplifiers (SSPA) obtain impressive RF performance, such as for a Galileo-like navigation 

satellite 230 W [9], a 170 W L-Band achieved by Thales Alenia Space [10] and the 80 W C-

band, which are comparable to a travelling-wave amplifier tube (TWTA) solution but with a 

smaller size and more flexible architecture.  

 

Figure 1-4: Improvements along the RF chain of satellite receivers [11]. 

The improvements along the RF chain of satellite receivers are shown in [11], the majority of 

the functions of the equipment can be replaced by GaN technology with a reduction in the  

number of MMICs, thus lower equipment cost and increased robustness and linearity of HPA, 

LNA and mixer modules. 
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 GH50-10 process 

In this thesis, the modeled and characterized device is an 8x250 µm AlGaN/GaN GH50-10 

HEMTs (from the UMS foundry). A schematic cross section of the active region of a GH50-

10 transistor is shown in Figure 1-5. 

 

Figure 1-5: Schematic cross section of the active region of GH50-10 transistor [12]. 
 

The major features of the GH50-10 process extracted from [12] are the following: 

 HEMT MOCVD active layer on 3-inch semi-insulating SiC substrate with high sheet-

resistance uniformity 

 Isolation by ion implantation 

 0.5 μm T and Γ shaped gold gate with diffusion barriers with low resistance suitable 

for high frequency operation. The gate foot lithography is made with an e-beam 

whereas the gate head lithography is made with an I-line stepper. 

 30Ω/sq TaN resistors, 640Ω/sq semiconductor resistors and 1000Ω/sq TiWSi resistors 

 Thick gold electroplating for interconnects and line reinforcement 

 Air bridges to overcome device topography 

 SiN-protection of the wafer front side 

 100 μm substrate thickness with via interconnects for source contacting / connection 

to ground pads 

 Power density 5 W/mm @ 2 GHz 

 Operating frequencies up to 6 GHz 

 Operating voltage Vds = 50 V 

 Maximum voltage Vdsmax = 150 V 

 Pinch-off voltage Vp = -2.2 V 
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 Drain saturation current Idss = 420 mA/mm 

 Transconductance Gm= 190 mS/mm @ Vgs = 0V 

 Gate and Drain leakage currents Igl, Idl< 200 μA/mm @ Vds = 50 V, Vgs = -7 V 

 Conclusion  

This chapter briefly introduced the properties and advantages of GaN in microwave systems 

with a particular emphasis on space applications. An example of an RF chain of a satellite 

receiver was presented, but is currently under development to replace most of the functions of 

the equipment with GaN technology. The presented Ph.D. research was focused on this 

context, more specifically on HPA modules. At the end of this chapter, further details on the 

technology process of the studied GaN device was also presented. 
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2 Investigation of trapping phenomena 

 Introduction 

The AlGaN/GaN HEMTs, as described in the first chapter, have shown impressive 

performance in terms of high electron mobility, high power density, high cut-off frequency 

and high thermal conductivity. As a consequence, HEMT devices should replace the 

preceding technologies in most RF and power commercial markets. However, GaN 

technology suffers severely from dispersion phenomena called trapping effects that, combined 

with thermal effects (self-heating), limit their initial expectation.  

The aim of this chapter is the understanding of the trapping phenomena, in particular the 

reduction of their effects during real operation mode using appropriate bias conditions. 

This chapter presents a detailed trap investigation protocol to obtain a complete overview of 

trap behavior from DC to radio-frequency operation mode based on combined pulsed I/V 

measurements, DC and RF drain current measurements and low-frequency (LF) dispersion 

measurements. The thermal pulsed I/V measurement technique is used to determine the 

thermal resistance, something which is necessary to calculate the Arrhenius plot. Finally, a 

discussion and comparison of the Arrhenius plot results of these trap investigation techniques 

are depicted.  

 Basics of trapping phenomena  

Traps, in solid-state physics, are any locations within a material (generally in a 

semiconductor) that limit the movement of holes (i.e., energy levels, related to the absence of 

an electron/hole within a crystal structure and present between the forbidden energy-gap of 

semiconductor). Trapping effects have required many years to be understood in several 

semiconductor technologies like FET and GaAs MESFETs. However, in spite of extensive 

investigation of trapping phenomena, the physics of the active defects is not completely 

understood in GaN HEMTs. So, a deep knowledge of the origin of the traps, their location, 

and the physical mechanisms of a trap are important for the optimization of the performance 

of these devices. The GaN material contains high densities of defects, mostly due to 

crystalline imperfections, which result from the growth of the material (like impurities in the 

crystal lattice, dangling bonds on the surface, and lattice mismatches with foreign substrates 
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such as SiC and sapphire and impurities in the crystal lattice) and the processing of the 

device. 

These imperfections generate trap centers within the band-gap of a semiconductor that 

facilitate the creation of a free electron in the conduction band and a hole in the valance band. 

These processes need a smaller amount of energy than a direct band-to-band transition. There 

are two types of traps: donors and acceptors. A donor-like state can be both positive (ability to 

emit an electron) or neutral (when filled). Acceptor-like states can be both negative 

(possibility of capturing an electron) or neutral (when empty). 

The defects can be classified in terms of their energy level: the traps with an energy-level 

close to the conduction or valence bands (<1eV) are called shallow-level traps, which are 

responsible for parasitic doping effects. Traps with an energy level deeper within the 

forbidden band-gap are called deep level traps. The process of trapping and de-trapping 

follows the Shockley–Read–Hall theory [13]–[15] which describes the interactions between 

the free-carriers (electrons and holes) and the generation/recombination mechanisms for a 

deep level transition to or from a band (as illustrated in Figure 2-1). 

 
Figure 2-1: The basic processes of transition: (a) hole emission (an electron jumps from 

the valence band to the trapped level), (b) hole capture (an electron drops from an 

occupied trap to the valence band, and a hole disappears), (c) electron emission (an 

electron jumps from the trapped level to the conduction band) and (d) electron capture 

(an electron drops from the conduction band to an unoccupied trap). 

In particular, we focus only on the traps related to the conduction band, the same argument 

can be used for the valence band. To calculate the rate of an occupied trap’s density or a 

function of time, an analysis of the capture and emission processes needs to be considered. 

Considering all recombination–generation processes, the overall occupancy trap rate in the 

conduction band is equal to 
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 𝜕𝑛𝑇
𝜕𝑡

= (𝑐𝑛(𝑁𝑇 − 𝑛𝑇) − 𝑒𝑛𝑛𝑇) 
(2-1) 

 
 

 

where 𝑐𝑛, 𝑁𝑇 , 𝑛𝑇  and 𝑒𝑛 are respectively the electron capture rate, the number of defect states, 

the number of defect states filled with electrons and the electron emission rate. In thermal 

equilibrium where every process is balanced by its inverse process, in Equation (2-1) the 

number of emitted electrons from traps must be equal to the number of those captured 

(thus 𝜕𝑛𝑇 / 𝜕𝑡 = 0). Therefore, the relationship between the capture and the emission rate for 

the conduction band can be defined as 

 𝑒𝑛
𝑐𝑛
= (

𝑁𝑇
𝑛𝑇

− 1) 
(2-2) 

 

The occupancy probability of trap’s energy level is given by the Fermi-Dirac distribution: 

 𝑁𝑇
𝑛𝑇

=
1

1 + 𝑒𝑥𝑝 (
𝐸𝑇 − 𝐸𝐹
𝑘𝑇

)
 

(2-3) 

 
 

 

where 𝐸𝑇 is the energy level, 𝐸𝐹 is a reference energy called the Fermi level, 𝑘 is the 

Boltzmaann constant (in eV T−1) and T is the temperature (in K). Considering the Fermi 

equations, Equation (2-2) can be rewritten as  

 𝑒𝑛
𝑐𝑛
= 𝑒𝑥𝑝 (

𝐸𝑇 − 𝐸𝐹
𝑘𝑇

) 
(2-4) 

 

The capture rate of electrons 𝑐𝑛, which represents the ratio of the trapped electrons density to 

unoccupied trap states, can be expressed as 

 𝑐𝑛 = 𝜎𝑛𝑣𝑛𝑛 (2-5) 

 

where 𝜎n, 𝑣𝑛 and 𝑛 represent respectively the capture cross-section, the thermal velocity of 

the electrons, and the number of free-electrons in the conductance band. The last two 

parameters can be expressed as  

 
𝑣𝑛 = (

3𝑘𝑇

𝑚∗
)
1/2

 
(2-6) 

 

and  

 
𝑛 = 𝑁𝑐𝑒𝑥𝑝 (−

𝐸𝐶 − 𝐸𝐹
𝑘𝑇

) 
(2-7) 
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The conduction-band effective density of state Nc is expressed as 

 
𝑁𝑐 = 2𝑀𝑐 (

2𝜋𝑚∗𝑘𝑇

ℎ2
)
3/2

 
(2-8) 

 

where 𝑚∗ is the effective mass of the electron, ℎ is the Planck’s constant, and 𝑀𝐶 is the 

number of conduction band minima. 

Substituting Equations (2-5), (2-6), (2-7) and (2-8) in to Equation (2-4), we obtain the 

expression of emission electron rate of deep level:  

 1

𝜏𝑛
= 𝑒𝑛 = 𝛾𝑇2𝜎𝑛𝑒𝑥𝑝 (−

𝐸𝑛
𝑘𝑇
) 

(2-9) 

 

where 

 𝛾 = 2√3(2𝜋)3/2𝑘2𝑚∗ℎ−2 (2-10) 

 

and 

 
𝜎𝑛 = 𝜎∞𝑒𝑥𝑝 (

∆𝐸𝜎
𝑘𝑇

) 
(2-11) 

 
 

 

where 𝜏𝑛 represents the electron emission time constant, 𝜎∞ the capture cross section at 𝑇 =

∞, 𝐸𝑛 the apparent activation energy, which is in this case may significantly differ from the 

zero-field binding energy of the trap with respect to the conduction-band, and Δ𝐸𝜎  is the 

activation energy of the capture cross-section. 

In order to obtain the properties of traps (such as their physical location in the structure of the 

device), it is necessary to extrapolate the Arrhenius plots of the traps and their signatures in 

terms of activation energies and capture cross-sections. The determination of the emission 

time constant for different techniques, drain current transient (DCT) and LF dispersion 

measurements, is fully discussed in the following.  

The activation energy and capture cross-section parameters are the fundamental 

characteristics of a trapping center. In fact, a comparison with other identified activation 

energies and capture cross-sections in different devices can help to understand the 

mechanisms of charge-trapping and to determine the location of the trapping centers in a 

device. 

In GaN-based transistors, the parasitic charge moving of the traps on the surface and/or in the 

bulk affects the density of the 2DEG channel, causing a modulation of the drain current that is 
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determined by the effective channel thickness as well as the output conductance and 

transconductance in the low-frequency range [16]. For this reason, an advanced trapping 

characterization protocol is proposed in the following paragraph and is based on: 

 Pulsed I/V measurements, carried out at several quiescent bias points to quantify the  

current-collapse (CC), to obtain a preliminary characterization and to understand 

which trapping mechanisms may affect the transistor’s performance [17]; 

 DC and RF drain current transient spectroscopy [18], [19] through stretched multi-

exponential fitting of the DCT measurements [20] can provide information about the 

activation energy and capture cross-section of the trap levels; 

 Output conductance frequency dispersion and transconductance frequency 

dispersion [21], [22] based on low-frequency 2-port S-parameter measurements can 

provide information on the characteristics of the trap levels (such as 𝐸𝐴 and 𝜎𝑐) 

promoted by small–signal excitation at a fixed bias point. 

 Trapping characterization methodology 

2.3.1 Pulsed I/V characterization  

Pulsed I/V measurement is carried out to obtain a preliminary and quick characterization in 

order to understand which trapping mechanisms may affect the transistor’s performance. This 

technique is very useful because it allows distinguishing the trapping effects from the thermal 

effects (normally these effects have time constants with the same order of magnitude) and 

then evaluate only the electrical phenomena of a trap state. One of the most common trap 

effects is called CC [23], as shown in Figure 2-2.  

The ID-VD characteristics in Figure 2-2 obtained before and after the application of a high 

drain bias with quiescent point Q’ show a dynamic increase of the knee voltage and a 

decrease of the drain current due to large gate-drain voltage swings [24], [25]. These two 

phenomena are still sufficient to cause a substantial reduction in output power (shown in 

Figure 2-2), where the maximum output power is proportional to the product of the maximum 

current and voltage swings and in Class A is equal to 

 
𝑝 ≅

1

8
∆𝑉∆𝐼 

(2-12) 
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Thus, these CC effects are related to the presence of deep level which promotes the specific 

trapping phenomena. The main effects related to CC are the gate-lag effect and the drain-lag 

effect [26].  

 

Figure 2-2: Schematic of ID-VD characteristics before (dashed curves) and after (full 

curves) the application of a high drain bias. The maximum device output power with 

and without trap effects is plotted in red and yellow rectangles respectively. 

The gate-lag effect is a delayed response of the drain current when a gate voltage variation is 

applied and this is due principally to two mechanisms [17], [27]. The first one has been 

associated with the ionized donor states located on the surface between the gate and the drain 

electrodes [25], [28] which influence the series resistances in the source and drain access 

regions. The ionized donor states can capture a free electron and thus reduce the 2DEG 

density. Vetury et al.[25] explains that the extension of the depletion region is due to the 

increase of ionized donor states. This effect can be modeled as a second virtual gate when a 

negative gate pulse is applied. The de-trapping transient associated to this effect shows a slow 

constant time (in the order of milliseconds-seconds) [27]. The mechanism of a virtual gate is 

shown in Figure 2-3. 
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Figure 2-3: Schematic of gate-lag mechanism: (case 1) presence of ionized donor traps, 

(case 2)  trap charged with reduction of the 2DEG density [25]. 

The second one is related to the positive shift of the pinch-off voltage for negative gate bias 

that is due to charge trapping under the gate [17]. These traps are normally located in the 

AlGaN or GaN layers and have faster de-trapping kinetic processes. 

In a recent work [29], using a simple simulation framework, it has been demonstrated that a 

passivation dielectric that minimizes surface leakage and creates a high density of shallow 

traps at the surface is necessary to minimize the formation of a virtual gate and eliminate gate-

lag phenomena. The use of a passivation layer and gate field plating in the last generation of 

GaN-based transistors has allowed the almost complete reduction of gate-lag effects. 

The drain-lag effect is a delayed response of the drain current induced when a very high 

drain voltage and very negative gate voltage (higher than the pinch-off voltage VP) during DC 

pulses are applied. It produces a modulation of the depletion layer into the active region due 

to free electrons’ being injected into the buffer. The drain-lag mechanism is explained in 

Figure 2-4 when the drain pulse is applied. Figure 2-4 shows the impact of traps related to the 

buffer on the 2DEG channel when the drain pulsed is applied: (1) the initial state, the device 

is at equilibrium 𝑁𝑑
+=𝑁𝑎

− the density of ionized donors is equal to the density of ionized 

acceptor when 𝐸=0. (2) A very high drain voltage and very negative gate voltage are applied. 

They produce a very strong vertical electric field due to the high drain voltage and high 

leakage current due to very negative gate voltage. These two phenomena induce a capture of 

free-electrons in the 2DEG channel by the donor trap, thus the density of ionized donors is 

reduced to 𝑁𝑑
′+ and becomes neutral. (3) The device comes back to initial state when the VGS 

and VDS are pulsed down. The device is no longer submitted to a strong vertical electric field  
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Figure 2-4: Schematic of trapping and de-trapping process of traps located in the buffer 

(hypothesis 𝐍𝐃 > 𝐍𝐚) [5], [30]. 
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and high leakage current, so the captured electrons in the last step are re-emitted with a slow 

emission process. Therefore, the capture and emission processes are asymmetric. Hence, in a 

GaN-based transistor the capture time constants are in the order of a few nanoseconds and the 

emission time constants on the order of a few microseconds to minutes. 

 Pulsed measurement test bench 

A schematic of the set-up used for pulsed I/V characterization is shown in Figure 2-5. The 

set-up is based on a 250V/10A pulsed I/V BILT AMCAD system [31]. The pulsed I/V 

measurements obtained with this set-up can be used for trapping investigation and the 

extraction of a nonlinear current source model of the transistor. The gate and drain current 

measurements are made using differential voltage measurements at the terminals of a 

resistance into the gate (10 Ω) and drain (0.5 Ω) probe respectively. The pulse generation and 

the voltage/current measurement are synchronized by an internal trigger. In the system, it is 

possible also to consider parasitic effects (introduced by the cable, connector, bias tees…) 

with a special DC calibration. This DC calibration consists of measuring the resistance path 

from probe head (I/V original reference planes) to on-wafer probing. The use of bias tees is 

conditioned by the type of device under test (DUT), e. g. it is recommended for transistors 

with large areas. It must also be considered that the use of bias tees introduces a degradation 

of the ID-VD characteristic especially in the ohmic region. 

 

Figure 2-5: Block diagram of pulsed I/V experimental set-up.  
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The principle of pulsed I/V measurements is shown in Figure 2-6. Pulsed I/V measurements 

are carried out in quasi isothermal conditions. Therefore, the gate and drain of the device are 

pulsed from a quiescent-bias point (𝑉𝐺𝑄 , 𝑉𝐷𝑄) corresponding to a fixed trapping state to the 

measurement-bias point (𝑉𝐺𝑀, 𝑉𝐷𝑀). In order to overcome the self-heating effect and therefore 

to investigate principally the electrical phenomena due to the trapping effects, the pulse-width 

of the gate and drain are chosen as small as possible, within the limit of pulse generation. 

Moreover, the duration of the pulse period must be much longer than the pulse-width, so as to 

be sure that the device returns to its steady-state conditions. The timing specification used for 

the following pulsed I/V measurement is described in Figure 2-7 with a pulse duty cycle 

(defined as 𝑃𝑊𝐺𝐴𝑇𝐸 𝑃𝐸𝑅𝐼𝑂𝐷⁄ ) equal to 99 and the I/V TRACE WINDOW represents the part 

of the pulse employed to determine the average currents and voltages for every measurement-

bias point. 

 

Figure 2-6: Principle of pulse I/V measurement. 

 

Figure 2-7: Pulse timing diagram of pulse I/V measurement. 
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 Pulsed I/V characterization for trapping investigation 

In order to identify and quantify the trapping effects a specific trapping pulsed I/V protocol 

has been developed, based on pulsed I/V characterization for different quiescent bias points: 

 Q1: (VGQ, VDQ)=(0V,0V) which corresponds to negligible electron trapping; 

 Q2: (VGQ, VDQ)=( -5V,0V) which may favor the trapping of electrons under the gate 

region (gate-lag); 

 Q3: (VGQ, VDQ)=( -5V,40V) which may favor the trapping of electrons under the gate-

drain region (drain-lag); 

 Q4: (VGQ, VDQ)=( -1.9V,40V) which is representative of electron trapping under class 

AB bias condition (IDS=50mA at VDQ=40V). 

Figure 2-8(a) reports the results of pulsed ID-VD characterization and Figure 2-8(b) shows the 

gm variation (extracted from ID-VG measurements). The results of pulsed ID-VD measurements 

indicate that the device is less sensitive to gate-lag than to drain-lag: the gate filling pulse VGQ 

has a negligible effect on the device characteristics, while the application of VDQ induces a 

strong CC and degrades the RON value. By comparing the OFF-state quiescent bias point (-5V, 

40 V) with the SEMI-ON state, class AB bias condition (same VDQ but VGQ=-1.9 V), it can be 

noticed that the CC is relatively unchanged but the RON degradation is enhanced. 

 

Figure 2-8: (a) ID-VD and (b) gm (derived from ID-VG) pulsed characterizations for 

different quiescent bias points of 8x250x0.5µm² AlGaN/GaN HEMT. 

Transconductance (gm) measurements, shown in Figure 2-8(b), show that the drain-lag (point 

Q3) induces both a positive threshold voltage shift and a reduction in gm (-15% at peak and 

more pronounced at higher VGS). The Q4 quiescent point presents the same threshold voltage 

shift and a slightly more pronounced decrease in gm with respect to Q3. The threshold voltage 

shift and a reduction in gm for Q3 and Q4 quiescent point conditions suggest that CC is related 

to negative charge trapping both under the gate and in the access regions.  

(b) 
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One figure of merit to evaluate and quantify the impact of trapping effects on the device’s 

characteristics is the slump ratio (SR), defined as the saturation drain current in trapping 

conditions such as Q2, Q3 and Q4 measured at (𝑉𝐺𝑀; 𝑉𝐷𝑀) = (0𝑉; 10𝑉) divided by the 

saturation drain current in negligible trapping condition Q1 measured at (𝑉𝐺𝑀; 𝑉𝐷𝑀) =

(0𝑉; 10𝑉). 

Table 2 summarizes the drop of saturation current due to CC. Notice that the SR has a strong 

decrease in the drain-lag and Class AB operation bias point. This indicates that traps excited 

by a high electric field will cause dispersion in RF performance.  

TABLE 2 

SLUMP RATIO UNDER PULSED I/V  

 COLD (Q1) GATE-LAG (Q2) DRAIN-LAG 

(Q3) 

CLASS AB 

BIAS (Q4) 

𝐼𝐷𝑆(𝑉𝐺𝑀;𝑉𝐷𝑀)=(0𝑉;10𝑉)(𝐴) 0,90 0,88 0,66 0,65 

SR // 0,98 0,73 0,72 

 Pulsed I/V characterization for channel temperature 

investigation 

In order to estimate the junction temperature of GaN-based HEMTs, something which is 

essential to deteremine the Arrhenius plot, an electrical methodology to determine the thermal 

resistance is used [32]. This methodology is based on pulsed I/V measurements, which uses a 

small pulse-width. Thus, the self-heating of the device can be assumed negligible and the 

junction temperature can be considered dependent of the dissipated power of the quiescent 

bias point. The extraction of RTH consists in the characterization of the on-resistance (RON) 

and saturation drain current (IDS,SAT) variations with respect to the temperature and is based on 

two steps: 

 Thermal calibration. RON and IDS,SAT are measured at cold quiescent bias point 

condition (VGQ, VDQ)=(0V,0V) and at different chuck temperatures. At this condition, 

there is no dissipated power and the channel temperature can be considered the same 

as the chuck temperature. 

The thermal pulsed I/V measurements are carried out in cold network condition (VGQ, 

VDQ)=(0V,0V) and for 25°C-150°C temperature range (Figure 2-9(a)).  

 Dissipation power calibration. In this case, RON and IDS,SAT are measured at a fixed 

chuck temperature (25°C) and the pulses are issued from different quiescent bias 
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points. The power dissipation and consequently the channel temperature are set by the 

quiescent bias point (VGQ VDQ). The pulsed I/V measurements are carried out at 

various bias points (VGQ=-1V, VDQ= 4-40V) and at 25°C chuck temperature (Figure 

2-9(b)). 

This technology has very slow trapping phenomena. Hence, between successive 

measurements a relaxation period is applied to the device without any electric bias. The 

estimated RON and IDS,SAT in Figure 2-10 present for both conditions a linear relationship with 

temperature and power dissipation: a negative slope for IDS,SAT and a positive slope for RON. 

The thermal resistance can be defined classically as the relationship between the channel 

temperature and power dissipation [33]: 

 
𝑅𝑇𝐻 =

∆𝑇

∆𝑃𝐷𝐼𝑆𝑆
 

(2-13) 

 

Thus, the thermal resistance is simply the ratio of the slope of the temperature and of the 

power dissipation. The thermal resistance can be extracted from the linear region (RON) and 

from the saturation region (IDS,SAT). In our case the thermal resistance is determined from the 

saturation region (IDS,SAT) because the linear region, where RON is calculated, has a parasitic 

effect introduced by the bias tees. The thermal resistance extracted from the IDS,SAT 

measurement is estimated to be 14 C°/W. 

 

Figure 2-9: (a) Pulsed I/V characteristics (@VGS=-1V) at cold network (VGQ, 

VDQ)=(0V,0V) with zero power condition (in red circles) and at different chuck 

temperatures. (b) Pulsed I/V characteristics (@VGS=-1V) from various bias points 

(VGQ=-1V, VDQ= 4-40V) (in red circles) and at a chuck temperature equal to 25°C. 
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Figure 2-10: (a) Extracted pulsed IDS,SAT (@VDS=30V) and RON as a function of chuck 

temperature TAMB (@ PDISS=0 W), (b) Extracted pulsed IDS,SAT (@VDS=30V) and RON 

versus power dissipation. 

The measured device is soldered onto a copper tungsten mount. The 3-D finite-element 

simulations with ANSYS software are performed separately on a 0.5x8x250 μm² AlGaN/GaN 

HEMT (Figure 2-11) and on a copper tungsten mount (Figure 2-12). The overall thermal 

resistance obtained by the finite-element simulations is 

 
𝑅𝑇𝐻_𝐴𝑁𝑆𝑌𝑆 = 𝑅𝐷𝐸𝑉𝐼𝐶𝐸 + 𝑅𝑀𝑂𝑈𝑁𝑇 =

15

2.5
+
25

4
≅ 12.25 °𝐶/𝑊 

(2-14) 

In the first approximation, the channel temperature determined with these two techniques 

gives similar results. Thus, the estimated thermal resistance is validated with 3-D finite-

element simulations. 

 

Figure 2-11: Thermal resistance for a 0.5x8x250 μm² AlGaN/GaN HEMT by 3-D finite 

element simulation with ANSYS software for a dissipated power equal to 2.5 W. 
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Figure 2-12: Thermal resistance for a copper tungsten mount by 3-D finite element 

simulation with ANSYS software for a dissipated power equal to 4 W. 

2.3.2 Drain current transient spectroscopy  

The previous pulsed I/V characterization is very useful for investigating the CC. But, its 

measurement window (<1 ms) does not provide any information about the dynamic behavior 

of the trap state. For this reason, DCT spectroscopy [18]–[20], [34]–[36], known as current 

mode deep level transient spectroscopy (I-DLTS), is used to investigate the time evolution of 

carriers in the trapping process and therefore to identify the associated deep level.  

 Drain current transient set-up 

The experimental set-up used for DCT measurements is shown in Figure 2-13. In this set-up, 

the drain current transient is determined by measuring the differential voltage on a resistive 

load (RSENSE=10Ω) connected between the drain of transistor and the drain pulser (Agilent 

33220A arbitrary waveform generator). The drain pulse signal is linearly amplified to reach 

the required values of drain current and voltage. The digital sampling oscilloscope (Tektronix 

TDS 645C) and gate pulser (Agilent 33220A arbitrary waveform generator) are trigged by a 

synchronous pulsed signal generated by a drain pulser. The delay introduced by the linear DC 

PA (FLC voltage amplifier) has a negligible effect on the synchronized biasing and DC 

measurement of the transistor.  
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Figure 2-13: Block diagram of thermal DCT measurement set-up. 

The principle of drain current measurement technique is shown in Figure 2-14. The device is 

biased for 100 s in filling condition (VGS,F;VDS,F), thus inducing a specific trapping state. 

Subsequently, the device is switched to a different bias point in a low-field and low-power on-

state (VGS,M;VDS,M); the recovery of drain current related to charge de-trapping is measured 

over 7 time decades (from 10 µs to 100 s) with multiple recording techniques by means of a 

digital sampling oscilloscope. The measured drain current transients are later elaborated with 

dedicated fitting to obtain the associated time-constant spectrum. 

 

Figure 2-14: Principle of the drain current transient measurement technique: the device 

is biased for 100 s in filling condition (VGS,F;VDS,F), then it is biased in de-trapping 

condition (VGS,M;VDS,M), for another 100 s to measure drain current transient and to 

obtain a trapping analysis with the related time-constant spectrum [37].  
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 Time constant extraction methodology 

In the literature, several mathematical approaches to fit the de-trapping transient data and to 

extrapolate both time constants and trap amplitudes are reported: 

 polynomial: the fitting of transient data with a polynomial function and the 

extrapolation of time constant from the peak of associated drain current derivative 

[20]; 

 multi-exponential: the fitting of transient data with a least mean square function by 

the sum of 100 exponentials with fixed time constants and variable amplitude 

coefficients, and the determination of the time constant by the analysis of the peak of 

associated drain current derivative [18]; 

 stretched multi-exponential: the fitting of the data by a stretched multi-exponential 

function and the determination of the time constant by the analysis of the peak of the 

derivative that corresponds to the time constant of the de-trapping behavior [20]. 

Bisi et al. [20] implemented and compared these three methods to evaluate which method has 

the best performance and precision in determining the time constant. The comparison of the 

different fitting algorithms is depicted in Figure 2-15. It appears that the three methods 

involve three different behaviors: the quasi-ideal exponential transient labeled “T1” in Figure 

2-15 is correctly detected by all fitting methods. On the contrary, the “T2D” process has a 

complex stretched multi-exponential behavior. In this case, it is only with the stretched multi-

exponential fitting that the time constants are correctly extracted: the polynomial and the 

multi-exponential fits present spectral dispersion introducing additional parasitic components 

in more to the real time constant. In conclusion, the best method in terms of precision and 

physical sense is the stretched multi-exponential fit. Following these considerations, this 

method has been adopted to extract the time constant in our study. The stretched multi-

exponential function can be expressed as 

 
𝐼𝐷𝑆,𝑓𝑖𝑡𝑡𝑖𝑛𝑔(𝑡) =∑𝐴𝑖𝑒

−(
𝑡
𝜏𝑖
)
𝛽𝑖

𝑁

𝑖

+ 𝐼𝐷𝑆,𝑓𝑖𝑛𝑎𝑙 

 

(2-15) 

where 𝐴𝑖, 𝜏𝑖 and 𝛽𝑖, are fitting parameters corresponding respectively to the trap amplitude, 

time constant and stretching parameter (0<𝛽𝑖<1) of N detected charge-trappings. In the 

trapping (de-trapping) behavior, 𝐴𝑖>0 (𝐴𝑖<0) corresponds to emission and 𝐴𝑖<0 (𝐴𝑖>0) 
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corresponds to the capture process. These parameters are numerically calculated and the plot 

obtained gives a time constant spectrum [20]. 

 

Figure 2-15: Comparison between the three data fitting solutions: though the pure-

exponential T1 process is correctly detected by all the fitting methods, the non-

exponential T2D signal is properly detected only by stretched exponential fit, since its 

detection by polynomial fit and fixed-tau-multi-exponential fit is affected by spectral 

dispersion [20]. 

Another point that strongly affects the DCT results is the choice of the de-trapping bias point. 

The de-trapping bias point (or measuring-bias point) can be chosen in the linear region or in 

the saturation region, depending on the intended application of the device, i.e., in the linear 

region for switch operation mode and in the saturation region for RF operation mode. 

As shown by Bisi et al. [20] in Figure 2-16, the choice of the de-trapping bias point can 

impact the transient results. The device measured in the linear region presents one weak 

emission process, on the contrary the transient measured in the saturation region presents two 

emission processes. This difference in the measured peaks is due to the fact that the DUT in 

Bisi et al. [20] are sensitive principally to the threshold voltage. This threshold voltage shift 

impacts the value of the current more seriously in the saturation region than in the linear 

(ohmic) region.  
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Figure 2-16: (a) Drain current transients performed in the linear and saturation regions 

and (b) related differential signals: in good agreement with pulsed measurement, 

transients recorded in linear region detect only a weak emission process, while those 

recorded in saturation region reveal much higher current collapse and the presence of 

two emission processes-labeled T1 and T2 [20]. 

 Drain current transient results  

To achieve complementary information about the CC, DCT measurements are carried out, 

starting from three different filling bias conditions (VGS,F;VDS,F) (corresponding to the 

quiescent bias points used in the previously described pulsed I/V measurements). The results 

are shown in Figure 2-17. The OFF-state condition defined by (VGS,F;VDS,F)=(-5V;10V) 

induces negligible trapping. The emission process “E4” shows a high drain voltage 

dependence and clearly appears for the two following conditions: OFF-state defined by 

(VGS,F;VDS,F)=(-5V;40V) and SEMI-ON state defined by (VGS,F;VDS,F)=(-1.9V;40V). 

Furthermore, the emission process “E2” and the capture process “E3” are mostly induced by 

the (VGS,F;VDS,F)=(-1.9V;40V) bias condition. In order to investigate the properties of traps for 

the SEMI-ON state, the DCT measurements are carried out at different temperatures. 

Therefore, the determined time constants with applied temperature correction (the 

determination of the thermal resistance is presented in Section 2.3.1.3) allows us to determine 

the activation energy 𝐸𝐴 and the capture cross-section 𝜎𝑐 by using Equation (2-9).The time 

spectrum analysis and Arrhenius plot are represented in Figure 2-18(b) and Figure 2-18(c), 

respectively. The analysis for the SEMI-ON state is very interesting because it gives 

information about which traps will affect the class AB operation bias point of the transistor in 

a power amplifier. It can be noticed that all emission and capture processes “E2”, “E3” and 

“E4” will take place in this class AB operation bias point. The Arrhenius plot analysis will be 

discussed in Section 2.4. 
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Figure 2-17: (a) DCT recorded and fitting for three different trapping conditions at 

80°C. (b) Related time spectrum analysis (measured for a 8x250x0.5 µm² AlGaN/GaN 

HEMT).  

 

Figure 2-18: (a)  DCT recorded and fitting in SEMI-ON state condition for 80°C to 

130°C temperature range, (b) related time spectrum analysis and (c) related Arrhenius 

plot. 
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 Filling Time Dependence 

To obtain more information on the dynamic behaviour of trap, the evolution of the “E2”, 

“E3”, and “E4” time spectrum results is reported versus the duration of the filling pulse in 

Figure 2-19(a). For this investigation, the trapping phenomena were induced by applying 

(VGS,F,VDS,F)= (-1.9V, 40V) at constant temperature (100°C). The width of filling time varies 

from 100 µs to 100 s. As described in Figure 2-19, the “E4” amplitude increases with time 

and saturates for a long pulse width. This behavior can be explained by two possible 

hypotheses. The first one is related to the presence of linear line defects, possibly due to 

dangling bonds along dislocation core sites. As described in [38], the concentration of the 

ionized defects has a logarithmic dependency on the duration of the filling pulse (tp) 

according to the following formula: 

 
𝑛𝑇(𝑡𝑝) = 𝑐𝑛𝜏𝑁𝑇𝑙𝑛 (1 +

𝑡𝑝

𝜏
) 

(2-16) 

where cn, ,τ and NT respectively represent the capture probability, the characteristic time for 

the capture barrier build-up and the total concentration of the defects. Before the saturation of 

trap occupancy, the charge filling-time may produce a reduction in the capture rate due to the 

repulsive interaction between the free electrons and the increased negatively charged traps. 

The second one is related to the presence of acceptor-like traps, where the filling-time is 

associated with the emission of holes to the valence-band [39]. Simultaneously, the “E2” 

amplitude decreases when the pulse width increases up to a value which corresponds to the 

saturation of ionized trap “E4”. The evolution of “E4” and “E2” amplitudes with the filling 

time suggests that there may exist an equilibrium between the ionization of the two trap states. 

 

Figure 2-19: (a) E2 and E4 time spectrum analysis and (b) related amplitude processes 

dependency on the filling pulse duration. 
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 Capture Mechanism: Dependence on Gate Bias and 

Temperature 

To further investigate the trapping behavior due to the RF working conditions, a complete 

analysis of the dependence of the CC on the gate quiescent bias point (swept from -5V to -

1.5V) is performed. It allows emulating the RF sweep condition (that corresponds to a 

constant DC value of VDS and an increase DC value of IDS with the increase of input power 

level). The results of this CC analysis (evaluated at VGS=0V and VDS=10V) are summarized 

in Figure 2-20. It shows that for the OFF-state (VGS<-2,4V) the CC is constant and for the 

ON-state (VGS>-2,4V) the CC increases significantly with the drain current IDS. These 

variations cannot be due to the temperature increase when the drain current increases because 

Figure 2-20 proves that the CC does not depend on the temperature of the device. The CC 

increase for the ON-state can rather be attributed to the injection of hot electrons towards 

traps located in the buffer. This hypothesis is also proposed in [40], which demonstrated an 

increase of the amplitude of the process with an increase of the gate quiescent bias point. It 

was then demonstrated that the CC is strongly correlated to the value of the gate quiescent 

bias conditions in the ON- state. 

 

Figure 2-20: Thermal dependence of CC and IDS on the gate quiescent bias point for a 40 

V drain quiescent bias point. 

The CC measured with this method should possibly be attributed to the trap “E4” which 

makes a major contribution to the overall current collapse of the transient, as shown in Figure 

2-17. 
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2.3.3 Nonlinear microwave drain current transient spectroscopy  

In the last years, many research groups [41]–[46] have shown that the nonlinear dynamics of 

the dispersion effects play a major role in the modification of the large-signal performances 

when the device is fed by modulated signals like RF pulses or telecommunications signals.  

The time constants associated to these dynamic effects can cover a large range of values from 

tenths of ns to several minutes and are related to the characteristics of the RF signal in a very 

complex way.  

In order to get an insight into the impact of the trapping effects responsible for the 

modifications in the RF performance, a drain current analysis under RF operation mode is 

used. The analysis of the charge-trapping through the bias drain current monitoring during RF 

excitation is of fundamental importance as it provides information about the nonlinear 

dynamics of the trapping effects in the RF large-signal operation mode. Moreover, this 

information can be introduced into a CAD model to predict the RF dispersion of the devices. 

In this case, the previously developed trapping investigation techniques (such as pulsed I-V, 

drain current transient spectroscopy, and admittance spectroscopy) can give complementary 

information. All these methods suffer from the fact that the device does not work under real 

large-signal conditions. In this section, the RF trapping analysis is carried out with different 

combinations of DC and RF signal excitations to involve different trapping effects:  

 Pulsed RF drain current transient measurement (DC continuous and RF pulse); 

 Pulsed DC and RF drain current transient measurement (DC pulse and RF pulse); 

 CW RF drain current transient measurement (DC continuous and CW RF). 

 Pulsed RF drain current transient measurement  

The first set of measurements used for the trapping investigation due to RF excitation is based 

on drain current evaluation when a RF pulse is applied. Thus, this trapping analysis technique 

can be applied to GaN-based HEMT for radar application.  

2.3.3.1.1 Pulsed RF drain current transient set-up 

The experimental set-up used for both RF waveforms and drain current measurements is 

shown in Figure 2-21. In order to characterize the DUT under a single pulse measurement, the 

RF signal must have the shape shown in Figure 2-22. This pulse has a variable width (PW) 
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and magnitude. The total acquisition time, which allows monitoring the average drain current, 

has a range between ms to tenths of seconds in order to identify very slow de-trapping 

phenomena.  

 

Figure 2-21: Block diagram of the RF experimental set-up based on LSNA system. 

Moreover, the measurement algorithm requires the periodicity of the RF pulse which is 

contradictory with this approach. In order to overcome this difficulty, a two-step 

characterization protocol has been developed. It allows managing the large duration of the 

transients, which can run from seconds to hundreds of seconds.  

 

Figure 2-22: Drain current measurement principle for RF trapping characterization for 

a single pulse RF excitation. 

The first step of the measurement method consists in performing CW time-domain large-

signal load-pull RF measurements using the LSNA. The details of LSNA set-up and 

calibration are depicted in Section 4.3.1. The time-domain RF voltages and currents and the 

CW power performance are obtained by the LSNA at the DUT planes. Of course, the output 

tuner allows modifying the RF loading of the device and thus the shapes of the drain and gate 

voltages and currents which could impact the trapping effects.  

The second step consists in the measurement of the slow transient variations of the bias drain 

current when a single pulse large-signal excitation is applied or removed. Typical RF PWs 

range from 1 ms to 200 ms, which is sufficient to excite the traps, as the de-trapping time 

constants are much slower than the trapping ones. One assumes that the load conditions do 
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not differ between the CW conditions in the first step of measurement and the single RF 

filling pulse in the second step. This ensures that the large-signal RF waveforms are very 

close in the two experiments. The quiescent point is applied to the DUT by means of two 

external bias tees connected to the DC power supply. The DC-path frequency bandwidth of 

these bias tees allows applying pulses of 200 ns time duration (a value below the time 

constants sought in the single pulse experiment). The broadband current sensor (120 MHz 5 A 

AC/DC hall current probe) connected to a digital sampling scope Tektronix DPO7054 (500 

MHz bandwidth, 10 GS/s, 8 bit) allows the measurement of the drain current when the RF 

input signal is turned OFF. The whole system is calibrated in DC by comparison of its 

measurement with a DC ampmeter. The results are analyzed through the mathematical 

approach described in Section 2.3.2.2 to extract the time constants of the traps. 

 All the measurements are performed on-wafer with a probe station equipped with a thermal 

chuck. The devices are soldered onto a copper tungsten mount which is assembled on the 

chuck thanks to a thermal paste. The temperature of the chuck is recorded through a 

temperature sensor assembled at the base of the transistor mounting. 

2.3.3.1.2 Pulsed RF drain current transient measurements’ results 

Several studies on DC trapping effects in GaN transistor have noticed that some parameters 

play a fundamental role for the traps such as filling bias conditions, filling time and 

temperature [18], [20]. The objective of this research is to investigate the influence of the 

following RF measurements’ parameters on the charge trap behavior:  

 Input power level; 

 PW; 

 Output load impedance; 

 Temperature. 

In Figure 2-23, CW time-domain load-pull characterization of the transistor operating in class 

AB (IDS=25 mA/mm at VDS=40 V) at a frequency of 4 GHz is presented for two different 

output load impedances: 

 Impedance corresponding to the matching of the transistor for maximum PAE (shown 

in Figure 2-23 in solid line) ZLOAD_maxPAE(f0)= 20.5+j44 Ω.  

 Fifty Ohm impedance (shown in Figure 2-23 in solid line with circle) ZLOAD_50Ohm(f0)= 

50Ω corresponding to a mismatched impedance for the transistor considered. 
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Figure 2-23: RF power performances measured at 4 GHz (class AB operation mode), in 

solid line, for maximum PAE at impedance equal to ZLOAD_maxPAE(f0)= 20.5+j44 Ω and in 

solid line with circle for impedance equal to ZLOAD_50Ohm(f0)= 50Ω. 

 Input power level dependence  

Bias drain current measurements at different single pulse RF input power levels are 

performed for a fixed PW= 200 ms, as shown in Figure 2-24. Figure 2-24 shows the value of 

the average drain current immediately after the cut-off of the RF excitation. This reveals an 

increasing number of electrons trapped when the input power increases. The load-cycle 

shown in the insert of Figure 2-24 exhibits drain voltage excursion up to 80 V at maximum 

output power and a drain current excursion up to 1.5 A.   

 

Figure 2-24: (a) Bias drain current measurements during single pulse excitation for 

fixed PW=200 ms, ZLOAD_maxPAE and at 25°C. While the time range measurement is 10 s, 

results are shown for a reduced time range to exhibit the linear shape of the pulses. (b) 

Corresponding extrinsic CW output load-lines derived from wave measurement at f0, 2f0 

and 3f0. 
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The results obtained for fixed PW, Zload_maxPAE and input power variation are summarized in 

Figure 2-25. They indicate the presence of two traps in the trapping/de-trapping process. At 

relatively low input power only the trap, labeled “T1” in the Figure 2-25(b), is observed. As 

the input power increases, the number of electrons trapped increases as previously mentioned 

and the trap, labeled as “T2” in Figure 2-25(b), becomes predominant. Moreover, for the high 

compression gain (Pin = 25 dBm (7 dB comp.) and Pin=27 dBm (9 dB comp.)), there can be 

observed a saturation of drain current during the pulse (in Figure 2-24) that produces an 

equivalent saturation of the CC (in Figure 2-25(a)) evaluated at 1 ms after the RF pulse is 

OFF. This indicates that the majority of the traps are ionized under such high compression 

levels. It must be noted that for an input power above 22 dBm a decrease of the magnitude of 

“T1” is observed while the magnitude associated with “T2” keeps increasing. Moreover, the 

“T1” has an emission time constant significantly lower than “T2”. 

 

Figure 2-25: (a) De-trapping drain current transient measurements and stretched multi-

exponential fitting (PW=200 ms, ZLOAD_maxPAE and at 25°C). (b) Time constant analysis 

of de-trapping transient. 

The increasing magnitude of the peak associated to “T2”, as shown in Figure 2-25(b), 

indicates that the ionization of this trap appears for large voltage excursion. This is due to a 

selective ionization of those deep level traps which are located in the buffer [28]. The detailed 

mechanism of the physical process remains to be determined. Moreover, the decrease of the 

magnitude of the peak associated to “T1” for input power above 22 dBm suggests that some 
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of the electrons trapped at this level are re-emitted during the 200 ms RF pulse. More 

surprisingly, the time constants of the traps are increasing when the power level is increased. 

This is in contradiction with Shockley-Read-Hall model: the expected increase of the 

temperature of the device which should lead to a decrease of those time constants.  

 Pulse-width dependence  

Bias drain current transient measurements are carried out, in order to achieve complementary 

information on the trapping phenomena (“T1” and “T2”), for a PW variation from 1 ms to 

200 ms at fixed Pin=25 dBm (7 dB comp.) as shown in Figure 2-26.  

 

Figure 2-26: Bias drain current measurements during single pulse excitation for 

different PWs and at fixed Pin=25 dBm, ZLOAD_maxPAE and 25°C. While the time range 

measurement is 10 s, results are shown for a reduced time range to exhibit the linear 

shape of the pulses. 

As in the previous section, the two trap emission processes: “T1” and “T2” are identified in 

Figure 2-27. The time constant associated to “T1” is constant with the PW duration and its 

amplitude decreases with the PW duration while the time constant and amplitude associated 

to “T2” increase with PW duration. Moreover, the initial and final values of the drain current 

variations remain constant whatever the PW is. Also, the sum of the amplitudes Ai of “T1” 

and “T2” is constant with PW variations (as shown in Figure 2-27(a)). One can conclude that 

the number of electrons trapped, for PWs above 1ms, depend only on the input power. 

However, the results shown in Figure 2-27 clearly demonstrate that the PW changes the 

repartition of these electrons between the two trap phenomena at the end of the RF pulse. This 

is due to the fact that the capture time constant of “T2” is in the range of the duration of the 

pulses. Once again this measurement clearly confirms that the trapping process and not the 

higher temperatures reached during RF excitation is responsible for the CC. A careful 

examination of  Figure 2-27(b) and Figure 2-28(b), reveals that the time constant of “T1” does 
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not change with the PW. Considering the extreme sensitivity of this time constant to 

temperature changes, this signifies that the temperature at 1 ms after the RF OFF is the same 

for all the PW considered. For a filling pulse of 1 ms “T1” are completely ionized while most 

of “T2” are not ionized. Therefore, when the PW increases some of the electrons captured by 

“T1” are re-emitted and captured by “T2” before they are finally released in the channel with 

emission time constant of “T2”. This experiment clearly demonstrates the strong interaction 

between the two trap phenomena. This remains to be modeled through physical simulation.  

 

Figure 2-27: De-trapping drain current transient measurements and stretched multi-

exponential fitting (Pin=25 dBm, ZLOAD_maxPAE and at 25°C). (b) Time constant analysis 

of de-trapping transient.  

 

Figure 2-28: (a) “T1” and “T2” amplitude processes versus PW durations (b) “T1” and 

“T2” time constant processes versus PW durations. 
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 Output load impedance dependence  

To study the trapping phenomena as a function of the output load impedance, two different 

load impedances are chosen: the maximum of PAE impedance (that is normally the one 

chosen for HPA design) and one of 50 Ω. Results for maximum PAE impedance have been 

presented previously. 

 

Figure 2-29: (a) Bias drain current measurements during single pulse excitation for 

fixed PW=200 ms, ZLOAD_50Ohm and at 25°C. While the time range measurement is 100 s, 

results are shown for a reduced time range to exhibit the linear shape of the pulses. (b) 

Corresponding extrinsic CW output load-lines derived from wave measurement at f0, 2f0 

and 3f0. 

 

Figure 2-30: (a) De-trapping drain current transient measurements and stretched multi-

exponential fitting (PW=200 ms, ZLOAD_50Ohm  and at 25°C). (b) Time constant analysis of 

de-trapping transient. 



Investigation of trapping phenomena   
 

39 

 

In Figure 2-29, the bias drain current measurement at different RF input power levels (for 

fixed PW=200 ms and ZLOAD_50Ohm) is reported. The time constant spectrum in Figure 2-30(b) 

shows the presence of “T1” and “T2”. The amplitude and time constant of “T1” and “T2” 

have a similar trend to the traps in case of maximum PAE impedance, with lower time 

constants (the experimental values are compared in Section 2.3.3.1.4). 

 Temperature dependence 

Temperature dependence was investigated using single pulse RF measurement at maximum 

of PAE impedance, at fixed PW=200 ms and fixed Pin=25 dBm (7dB comp.) for several 

temperatures. The results described in Figure 2-31 therefore indicate that for fixed 25 dBm 

input power level, the drain current value during single pulse RF excitation has decreased 

slightly with the increase of temperature. Figure 2-32(a) shows that the CC at 1 ms after RF 

OFF decreases with the increase of temperature because the emission process is activated by 

temperature and at that time a number of electrons have already been released.  

 

Figure 2-31: Bias drain current measurements during single pulse excitation for 

different temperatures at fixed Pin=25 dBm, PW=200 ms and ZLOAD_maxPAE. While the 

time range measurement is 10 s, results are shown for a reduced time range to exhibit 

the linear shape of the pulses. 

The time constant spectrum in Figure 2-32(b) shows that the peak related to “T2” shifts 

leftwards when the temperature increases and this shift is in agreement with DCT. In this case 

only the “T2” is activated for temperatures above 40°C. At 25°C, it can be observed that “T1” 

is detected and that the amplitude of “T2” peak for this temperature is lower than expected. 

As already observed, there is a strong interaction between the two trapping phenomena “T1” 

and “T2”; the fact that the trap “T1” is present at 25°C suggests that there is a transfer of 

electrons from trap “T1” to trap “T2” at 25°C, indeed the amplitude of “T2” peak is increased 

and “T1” has disappeared at 40°C, thus “T1” may be not a trap signature. 
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Figure 2-32: (a) De-trapping drain current transient measurements and stretched multi-

exponential fitting (Pin=25 dBm, PW=200 ms & ZLOAD_maxPAE). (b) Time constant 

analysis of de-trapping transient. 

2.3.3.1.3 Comparison of the RF pulse and DC pulse trapping effects  

 Gate DC pulse drain current transient set-up 

To investigate the CC due to single pulse RF excitation, the DC drain current pulse technique 

is used. This technique is based on single gate pulsing from semi-on state (VG_QP in Figure 

2-33) to on-state voltage (VG_PULSE in Figure 2-33). By choosing VG_QP and VD_QP in such a 

way that the quiescent bias point is the same as for the single RF pulse experiment, the initial 

trap state of the device is the same for the two experiments. The on-state gate voltage is 

selected in order to get the same value of the drain current as the average one obtained when 

the DUT is driven by single pulse RF excitation. The drain voltage is fixed to the same value 

of class AB quiescent point. This technique is already used in [47] to explain the CC and the 

attendant trapping effects under RF excitation.  

The measurement set-up (in Figure 2-33) is based on the use of an Agilent 33220A arbitrary 

waveform generator for gate pulsing and a BILT AMCAD power supply to apply the DC 

drain value. The drain and gate voltages are applied to the DUT by means of two external bias 

tees with RF port connected to 50 Ω. Therefore, the state of the device is the same as in the 
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previous experiment apart from the fact that there is no RF signal applied. The bias drain 

current is measured with a large bandwidth current sensor (120 MHz 5 A AC/DC current 

probe) connected to a digital sampling scope Tektronix TDS 5104 (1 GHz bandwidth, 5 GS/s, 

8 bit). The output pulse signal generated by the gate pulse power supply (Sync signal in 

Figure 2-33) is used to trigger the digital sampling scope. The system was controlled remotely 

and automatically by a SCILAB program. 

 

Figure 2-33: Block diagram of experimental set-up for gate DC pulse mode. 

 Gate DC pulse drain current transient measurements’ 

results 

The DC investigation is carried out on the same device by means of the drain current pulse 

technique based on gate DC pulse mode (described in the following), to highlight the de-

trapping transient characteristics when a gate DC pulse and constant drain voltage are applied.  

 

Figure 2-34: Bias drain current measurements during single gate pulse excitation for 

different gate voltage values during the pulse, at fixed PW=200 ms and with RF port of 

bias tees connected to 50 Ω. While the time range measurement is 10 s, results are shown 

for a reduced time range to exhibit the linear shape of the pulses. 
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As shown in Figure 2-33, the RF port of the bias tees are connected to 50 Ω to ensure that the 

transistor is in the same RF loading as in the single pulse RF measurement with 50 Ω load 

impedance.  

The results of this DC investigation are summarized in Figure 2-34. The values of VG_QP and 

VD_QP are chosen to bias the device in class AB operation mode (-1.98 V and 40 V for gate 

voltage and drain voltage respectively, for this GaN technology). The results of de-trapping 

transient for different gate pulse voltage values are presented in Figure 2-35. The magnitude 

of the CC (in Figure 2-35(a)) and the time constant associated to “T2” (in Figure 2-35(b)) 

show a significant increase with an increase of VG-PULSE. This increase can rather be attributed 

to the injection of hot electrons towards traps located in the buffer [40]. This is the same 

mechanism seen with pulsed I/V measurement in Section 2.3.2.5. It can be observed that the 

CC at 1 ms after the gate DC pulse is OFF increases with the amplitude of the gate filling 

pulse.  

 

Figure 2-35: (a) De-trapping drain current transient measurements and stretched multi-

exponential fitting for different gate voltage values during the pulse (PW=200 ms & RF 

port of bias tees connected to 50 Ω). (b) Time constant analysis of de-trapping transient. 
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2.3.3.1.4 Discussion of the results  

The results of comparing the CCs, trap amplitudes and time constants as a function of 

variations in the values of the drain current pulses are summarized in Figure 2-36. It can be 

observed that at high drain currents there are large differences in the amplitudes and time 

constants of the “T2” time spectrum between pulse DC measurements and pulse RF 

measurements.  

This is due to the fact that the DC testing has a fixed drain voltage value and thus the electric 

field is constant. In RF testing the high gate and the high drain voltage excursions are applied 

simultaneously and promote very deep trapping processes [28]. The results of comparing the 

trap amplitudes and time constants as functions of the input power level variation for different 

output load impedances are presented in Figure 2-37. For high gain compression, the “T2” 

time constants in ZLOAD_50Ω case are quite one decade higher than in the ZLOAD_maxPAE case. 

This appears to be in disagreement with the fact that for Pin=25 dBm the extrinsic drain 

voltage excursion is 50 V (in Figure 2-29(b)) for the ZLOAD_50Ω case and in the ZLOAD_maxPAE 

case is equal to 80 V (in Figure 2-24(b)). Thus, a higher drain voltage excursion results in a 

slower relaxation time. But in this case the drain current level during single pulse RF 

excitation is higher. For the time being, it is difficult to draw a general conclusion about the 

impact of RF voltage and current excursions on the emission time constants. 

 

Figure 2-36: Comparison of (a) CC, (b) “T2” amplitude and (c) “T2” time constant 

between DC drain current pulse measurement in red and 50 load impedance single pulse 

RF measurement in blue. 
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The logarithmic dependence of the “T2” amplitude on the PW, as shown in Figure 2-28(b), 

should be related to the presence of linear line defects, possibly due to dangling bonds along 

the dislocation core sites as reported in [38]. The previous hypothesis is also strengthened by 

the observed logarithmic dependence of the time constant on the RF input power level (Figure 

2-37(b)).The time constant range and the peak amplitude of trap “T2” suggest that this is 

related to the deep level “E4” detected in Section 2.3.3.2.2.3. 

 

Figure 2-37: Comparison of (a) trap amplitude and (b) time constant between single 

pulse RF measurement as a function of input power levels for different output load 

impedance: maximum of PAE (solid line with triangle) and 50 Ω (solid line with square). 

 Pulsed DC and RF drain current transient measurement  

The pulsed RF drain current transient measurement described in the previous section has 

shown its limitations in the evaluation of de-trapping effect in the way that the de-trapping 

condition after RF OFF is fixed by the continuous DC bias point of class AB condition and 

ambient temperature. In this section, the classic pulsed DC drain current transient 

measurements described in Section 2.3.2 are adapted, adding an RF excitation in filling 

condition to allow the microwave trapping characterization methodology (for determining EA 

and σc).  

2.3.3.2.1 Experimental Set-up 

The set-up used for the analysis of the trap responsible for RF dispersion effects is shown in 

Figure 2-38. The device is initially kept in a trapping condition by applying both a DC filling 

pulse (VDF; IDF) and an RF filling pulse for 100 s, thus inducing a specific trapping state. 

Subsequently, the RF excitation is switched OFF and the device is biased in the saturation 

region (VDM; IDM) for another 100 s to evaluate the de-trapping transient, as shown in Figure 
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2-39. The recovery of drain current related to charge de-trapping is measured over 5 time 

decades (from 1 ms to 100 s) with a current sensor connected to a digital sampling scope. 

Thereafter, the de-trapping transient results are fitted with a stretched multi-exponential 

function to extrapolate the time constant from the peak of the ∂IDS/∂log(t) curves.  

 

 

Figure 2-38: Block diagram of microwave drain current spectroscopy set-up. 

 

 

Figure 2-39: Timing diagram of microwave drain current spectroscopy. 

The RF waveforms are continuously measured at the DUT planes during the filling phase 

using an LSNA. The generation of DC (by gate and drain pulsers) and RF (by pulsed-RF 

generator) excitations and the measuring of the DC current and RF waveforms are 

synchronized by an arbitrary waveform generator. 
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2.3.3.2.2 Experimental Results and Discussion  

For this trapping investigation the 8x250µm GH 50-10 AlGaN/GaN HEMT was operated in 

class AB (IDS=25 mA/mm at VDS=40 V) at a frequency of 4 GHz for an optimum PAE 

impedance ZLOAD_opt,PAE(f0)=19.5+j68Ω. The CW RF power performance (shown in Figure 

2-40) was measured before the trapping investigation. One of the trapping mechanisms 

responsible of the modification of the large-signal RF performance is shown in Figure 2-41. 

The ID-VG characterization is performed before and several times after 100 s of RF stress at 

Pin equal to 27 dBm in class AB operation mode – this input power corresponds to a high 

compression level of 12 dB. The results of gm (derived from ID-VG) measurements in Figure 

2-41 show a threshold voltage (VTH) positive shift after RF stress. This VTH positive shift 

indicates an accumulation of negative charges trapped under gate region [20]. In order to 

further investigate the trapping phenomena responsible for the VTH shift, microwave drain 

current transient measurements are carried out. In the following, we investigate the influence 

of the bias point (VDM; IDM) in de-trapping condition, the input power level and the 

temperature on the dynamic behavior of the charge-trapping. 

 

Figure 2-40: RF power performances at 4 GHz (class AB operation mode) for maximum 

PAE at ZLOAD_opt,PAE(f0)=19.5+j68Ω. 
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Figure 2-41: Variation of gm (derived from ID-VG characteristic) before and after 100 s 

of RF stress at Pin equal to 27 dBm in class AB operation mode. 

 Bias point dependence in de-trapping condition 

The dependence of the de-trapping behavior is investigated by drain current transient 

measurements for different bias point (VDM; IDM) in the de-trapping condition as shown in 

Figure 2-42. The trap state is fixed with a DC filling bias condition equal to (VDF; IDF)=(40 V; 

50 mA) and with a RF filling condition with Pin equal to 27 dBm. The shape of the current in 

Figure 2-42 shows that for a fixed IDS and an increase of VDS, the de-trapping processes are 

accelerated. In the same way, for a fixed VDS and increase of IDS the time constants become 

faster. These accelerations of emission process are firstly due to the increase of the power 

dissipation for fixed VDM, leading to an increase of the operating temperature of device, and 

secondly to the Poole-Frenkel effect when VDM increases. Indeed, the measurement results in  

Figure 2-43 obtained for a fixed IDS show that the emission rate increases exponentially with 

the square root of the applied field, according to the Poole-Frenkel model [48]. In Figure 2-43 

the error bar indicates the estimated variation of de-trapping time constant due to the channel 

temperature increases. In the following measurements, (VDM; IDM)= (5 V; 100 mA) is chosen. 

The low drain voltage allows to minimize the electric-field effect during the monitoring while 

a drain current equal to 100 mA allows a better investigation of trapping effects. 
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Figure 2-42: De-trapping drain current transient measurements and stretched multi-

exponential fitting for different bias points (VDM; IDM) in de-trapping condition with a 

DC filling bias condition of (VDF; IDF)=(40 V, 50 mA) and an RF filling condition of Pin 

equal to 27 dBm. 

 

Figure 2-43: Emission rate as a function of the square root of the applied voltage (VDM) 

during the de-trapping condition for a fixed IDS equal to 50 mA (min–max time constants 

variation with junction temperature estimation reported on the error bars). 

 RF Input power level dependence  

In order to investigate the trapping effects due to DC and RF excitations, the drain current 

measurements are carried out firstly with no RF excitation and then with increasing RF input 

power, as shown Figure 2-44(a). The associated load-lines responsible to RF trapping effects 

are illustrated in Figure 2-44(c). In particular, the de-trapping drain current transient 

measurements and the associated time constant analysis are depicted respectively in Figure 

2-44(b) and Figure 2-44 (d). The DC mode gives rise to two trapping phenomena: one capture 

process and one emission process labeled, respectively, “E3” and “E4”. The capture process 

“E3” disappears with an increase of input power. The increase of CC versus Pin at 1 ms after 

the filling phase, which corresponds consequently to the increase of “E4” trap density, is due 

to the fact that more and more trap centers “E4” have been excited by the increasing electric 

field (capture process). The electric field increases promote an increase in the high gate and 
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high drain voltage excursions [42]. The trap centers “E4” are possibly located in the buffer 

[28].  

 

Figure 2-44: (a) Drain current measurements recorded with and without a variable level 

of RF excitation at 60°C. (c) Corresponding extrinsic output load-lines derived from 

waveforms at f0, 2f0 and 3f0 measured at 90 s after starting RF pulse. (b) De-trapping 

drain current transient measurements and stretched multi-exponential fitting without 

RF excitation and with an increase to power input level at 60°C. (d) Related time 

spectrum analysis of de-trapping transient. 

In the time range [100 ms – 100 s] “E4” emission process is observed and shown in Figure 

2-44(d). The electric field is fixed by the bias point (VDM; IDM) and does not vary. Moreover, 

the junction device temperature can be considered as stabilized (i.e. determined only by the 

bias point (VDM; IDM), and independent of the previous filling excitations). Then, we do not 

expect the emission time constant to vary with the different previous filling excitations. In 

Figure 2-44(d), it is observed that the emission time constant has only a small variation in the 

time range [~2.5 – ~6 s] with increasing input power level and exhibits a saturation when the  

input power level is above 21 dBm. This emission time constant variation is negligible with 

respect to the ones of Arrhenius plot in Figure 2-47, which is equal to two decades with only 

40 °C temperature variation. Thus, to a approximation, only the amplitude of current recovery 

varies, due to the increasing of ionized trap density with respect to Pin in the filling phase. In 
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Figure 2-44(b), it is also possible to evaluate the impact of the trapping effect due to DC and 

RF excitations: the CC at 1 ms after filling condition and the “E4” trap density for a RF filling 

pulse at Pin equal to 27 dBm are 25% more important than the DC ones. 

 Temperature dependence 

For a deeper understanding of the properties of the involved levels “E3” and “E4”, the drain 

current transients are measured at several temperatures in DC and RF filling conditions (with 

Pin equal to 27 dBm), in Figure 2-45(a), respectively, Figure 2-46(a), to extrapolate the 

Arrhenius plot. The results of the Arrhenius plot shown in Figure 2-47 present two trap 

signatures, namely “E3” and “E4”, obtained from DC excitation with apparent activation 

energies of 0.73 eV and  0.75 eV and capture cross section of 1.4×10-15 cm-2 and 1.4×10-14 

cm-2. Figure 2-45 shows also that the trap “E3” gives only a minor contribution to overall 

temperature de-trapping transients. One trap signature “E4” is identified from the RF 

excitation with activation energy 0.85 eV and cross section 9.4×10-15 cm-2. The Arrhenius plot 

results are corrected to consider device self-heating. 

 

Figure 2-45: (a) De-trapping drain current measurement recorded and stretched multi-

exponential fitting without RF excitation (VDF; IDF)=(40 V; 50 mA) for 50°C to 90°C 

temperature range, (b) Related time spectrum analysis of de-trapping transient. 
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As was noticed in the last section, the emission process “E4” obtained from RF excitation 

presents a similar dynamic behavior to the one obtained from DC excitation. Remarkably, the 

trap signal amplitude is higher under RF excitation, while the time constant is longer. Thus, 

we suppose that level “E4” obtained from DC excitation and from RF excitation has the same 

nature, while the density of the ionized traps changes with the excitation conditions. 

 

.  

Figure 2-46: (a) De-trapping drain current measurement recorded and stretched multi-

exponential fitting at (VDF; IDF)=(40 V; 50 mA) with RF Pin=27 dBm for 50°C to 90°C 

temperature range, (b) Related time spectrum analysis of de-trapping transient. 

 

Figure 2-47: Arrhenius plot of the signature detected from RF excitation (Pin=27dBm) 

and DC excitation with apparent activation energies (EA) and capture cross sections (σc). 
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 CW RF drain current transient measurement 

One way to characterize these trapping phenomena on new SSPA generation based on 

AlGaN/GaN HEMTs under CW large-signal excitations is based on multiple and consecutive 

power sweep measurements and a drain current transient measurement after the last power 

sweep. The set-up used for these characterizations is shown in Section 2.3.3.1.1 based on an 

LSNA system, but it is possible use a cheaper solution based on VNA and a scope.  

 

Figure 2-48: Three consecutive RF power performances until 10 dBc measured at 4 GHz 

(class AB operation mode) for maximum PAE at impedance equal to ZLOAD_maxPAE(f0)= 

22.5+j58Ω. Corresponding extrinsic CW output load-lines derived from wave 

measurement at f0, 2f0 and 3f0 of the first power sweep. 

In order to understand how the class operation mode is sensitive to trapping effects, we have 

carried out three consecutive power sweep measurements up to 10 dB compression in class 

AB operation mode (IDS=25 mA/mm at VDS=50 V) at a frequency of 4 GHz and for an 

impedance corresponding to the matching of the transistor for maximum PAE 

ZLOAD_maxPAE(f0)= 22.5+j58 Ω. The measurement results in Figure 2-48 (a) and (b) show 

principally that after the first power sweep, the output power, gain and drain current present 

an important drop for low input power level due to trapping phenomena which are excited by 

varying large-signal excitations in high compression gain, as shown by the CW output load-

lines in Figure 2-48(c). Subsequently, the second and third power sweeps indicate that the 
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device changes its class operation mode from class AB to class B. This class operation 

changing is due to trapping effects which impacts the drain current at low input power. 

Indeed, as shown in Figure 2-49, the extrinsic CW output load-lines at an input power level 

equal to -5 dBm present a strong reduction for the second and third power sweeps. 

 

Figure 2-49: Extrinsic CW output load-lines derived from wave measurement at f0, 2f0 

and 3f0 for Pin=-5 dBm for the three power sweeps. 

In order to further investigate the effect of the bias point on these trapping phenomena, two 

consecutive power sweep measurements and drain current transient measurements are carried 

out for fixed IDS and for fixed VDS conditions. The analysis of the recovery drain current 

transient measurements by the multiexponential fit (in Equation (2-15)), already used in the 

lasts sections, allows to extract the time constant.  

To analyze the RF degradation due to trapping effects, the figures of merit, for a fixed input 

power level (𝑃𝐼𝑁) are defined as  

 
𝐼𝐷𝑆 𝐷𝑅𝑂𝑃(𝑃𝐼𝑁) =

𝐼𝐷𝑆,1𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁) − 𝐼𝐷𝑆,2𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁)

𝐼𝐷𝑆,1𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁)
∙ 100 

(2-17) 

  

𝐺𝑎𝑖𝑛 𝐷𝑅𝑂𝑃(𝑃𝐼𝑁) = 𝐺𝑎𝑖𝑛1𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁) − 𝐺𝑎𝑖𝑛2𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁) 
 

(2-18) 

  

𝑃𝑜𝑢𝑡 𝐷𝑅𝑂𝑃(𝑃𝐼𝑁) = 𝑃𝑜𝑢𝑡1𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁) − 𝑃𝑜𝑢𝑡2𝑆𝑊𝐸𝐸𝑃(𝑃𝐼𝑁) 
 

(2-19) 

 

and the time constant. 

The first characterization consists of an RF performance measurements for a fixed IDS equal to 

50 mA and an increasing VDS, first 30 V, then 40 V and 50 V. As shown in Figure 2-50 and 

more clearly summarized in Table 3, the power gain, drain current and output power decrease 

at low input power level with respect to the increasing of VDS. It must be noticed that the 

trapping effects and consequently their time constants decrease with increasing VDS due to the 

Poole–Frenkel effect, as shown in Section 2.3.3.2.2.1.  
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Figure 2-50: Two consecutive (a) gain, (b) drain current and (c) output power 

performances for fixed IDS=50 mA and different VDS equal to 30 V, 40 V and 50 V. 

The second characterization consists of RF performance measurements for a fixed VDS equal 

to 50 V (thus for a fixed electric field) with increasing values of IDS  equal to 0 mA, 25 mA, 

50 mA, 75 mA and 100 mA. In this case, the drop of power gain, drain current and output 

power decreases when IDS increases down to practically 0 for a drain current for 100 mA, as 

shown in Figure 2-51 and more clearly summarized in Table 4. This can be explained in two 

ways: 

 For high IDS values the power gain is in the saturation region at lower input power level, as 

shown in Figure 2-53, thus the variation of bias drain current due to the trapping effect 

from A to A’ does not impact the power gain because it is still in the saturation region. 

Therefore, the gain is desensitized to trapping effects. Another way is that in the linear 

gain region, the variation of bias drain current due to the trapping effect from B to B’ 

corresponds to a large drop of the power gain. 

 An increase of IDS corresponds to an increase of the operating temperature of the device, 

which produces a time constant activation as shown in Figure 2-52(b). Thus, the recovery 

gain time depends principally on the device’s operating temperature. 
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Following these considerations, it is suggested to bias the device at IDS equal to 100 mA in 

order to reduce the trapping effects.  

 

Figure 2-51: Two consecutive (a) gain, (b) drain current and (c) output power 

performances for fixed VDS=50 V and different IDS equal to 0 mA, 25 mA, 50 mA, 75 mA 

and 100 mA. 

 

 

Figure 2-52: Recovery drain current transient measurement after second power sweep 

with varying of VDS (a) and IDS (b).  
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TABLE 3 

FIGURE OF MERIT AT FIXED IDS 

VDS (V)  IDS DROP (%) 

[Pin=-5dBm] 

Gain DROP (dB) 

[Pin=-5dBm] 

Pout DROP (dBm) 

[Pin=-5dBm] 
Time constant (s) 

30  76.3 4.47 2.58 186.2 

40  68.8 4.16 2.53 93.32 

50  57.6 3.97 1.69 65.31 

TABLE 4 

FIGURE OF MERIT AT FIXED VDS 

IDS (mA)  IDS DROP (%) 

[Pin=-5dBm] 

Gain DROP (dB) 

[Pin=-5dBm] 

Pout DROP (dBm) 

[Pin=-5dBm] 
Time constant (s) 

0  // 11.9 14.1 // 

25  65.4 6.85 5.36 106.6 

50  57.6 3.97 1.69 65.3 

75  36.5 0.38 0.48 17.5 

100  21.9 0 0 8 

 

 

Figure 2-53: Schematic of trapping effect on power gain as a function of the drain 

current. 

With this technique, we demonstrated that it is possible to control the trapping phenomena by 

choosing the value of the bias point and thus identify a trapping desensitization operating 

zone. Indeed for (IDS; VDS)=(100 mA; 50 V) the gain drop is cancelled and the time constant 

is noticeably reduced, so the trapping effect can be considered neutralized. Whereas for very 

low IDS the RF performances are more impacted, with the consequence that the trapping 

effects are exacerbated. Lastly, one notices that the trapping effect are more sensitive to 

varying IDS than to varying VDS. 
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2.3.4 Low-frequency dispersion measurements 

The output conductance and transconductance of GaN HEMTs have been observed to change 

significantly at low-frequencies (10 Hz - 100 MHz) [16], [49]. So, in order to gather 

complementary information on trapping effects under class AB biasing, the dispersion of the 

LF Y-parameters are investigated through measurements of the small-signal S-parameters in 

the 100 Hz to 1 GHz frequency range. These S-parameter measurements were carried out at 

several temperatures using an Agilent E5061b LF-HF vector network analyzer [50] to 

determine the dispersion of gd(f) and gm(f). As illustrated in Figure 2-54, the VGS is applied to 

an external LF bias tee with a DC port connected to the power supply and the RF port 

connected to port 2 of the VNA. In order to cover the broadband from 100 Hz to 1 GHz LF 

Y-parameter measurements are performed in two sub-bands: with an LF home-made resistive 

bias tee [49] from 100 Hz to 10 MHz and with a commercial bias tee (Picosecond 5546) from 

10 MHz to 1 GHz. The characteristics of the bias tees in terms of return and insertion loss are 

shown in Figure 2-55. The drain terminal is connected to an internal bias system (port 1) in 

the network analyzer. An on-wafer SOLT calibration is performed at each individual 

temperature. 

 

Figure 2-54: Block diagram of the LF Y-parameters measurement set-up in 2-port 

configuration for the characterization of gd(f) and gm(f). 
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Figure 2-55: (a) Return loss and (b) insertion loss of LF bias tees used for LF Y-

parameter measurements. 

So, the Y-parameters are calculated from measured S-parameters [51]. Empirically, the effect 

of carrier trapping on the frequency dispersion of the output conductance and 

transconductance can be modeled as reported in [21]. The dispersion effects are taken into 

account with an additional voltage dependent current source (which represents the injection 

mechanism in trap state) in an RC circuit as shown in Figure 2-56. 

 

Figure 2-56: Empirically equivalent circuit model for output conductance and 

transconductance dispersions. 

According to this small-signal model at low-frequency, gm(f) and gd(f) can be deduced from 

the Y-parameters of the DUT, respectively Y21 and Y22 parameters by the following 

equations: 
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τn=Cn/gn corresponds to the time constant of the trapping process. For the determination of the 

time constants, the derivative forms of the imaginary part of Y21 and Y22 are used. In this way, 
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the time constants due to gm(f) dispersion can be determined either from the peak values of the 

imaginary part of Y21 (fimag[Y21]=1/2πτn) and the time constants due to gd(f) dispersion can be 

determineed from the peak values of the imaginary part of  Y22 (fimag[Y22]=1/2πτn). The number 

of traps of gm(f) (gd(f)) is defined by the number of peaks of the imaginary part of Y21 (Y22) or 

by the number of inflexion points of the real part of Y21 (Y22) [9]. As has been demonstrated, 

the peak values of the imaginary parts of Y21 and Y22 at several temperatures allows 

determining the EA and c (associated respectively to gm(f) and gd(f) dispersion) using the 

Arrhenius formula (2-11) and substituting the emission rate with the reciprocal of the time 

constant (en=1/τn). A temperature correction is applied to determine EA and c. 

 LF Y-parameter measurement results  

 LF Y-parameter measurements for the SEMI-ON state (VGS; VDS)=(-1.9V,40V) were carried 

out at different temperatures to obtain the Arrhenius plots shown in Figure 2-57 and Figure 

2-58. This analysis is focused only on Y21 and Y22 because the experimental data of Y11 and 

Y12 do not show any dispersion. The Y-parameters, depicted in Figure 2-57 and Figure 2-58, 

show that above 100 MHz, the contribution of the intrinsic capacitances of the small-signal 

model is not negligible. The Y21-measurement shows two distinct transition frequencies in 

Real[Y21] and two distinct peaks in Imag[Y21], proving that gm(f) dispersion presents two 

trapping phenomena. The peak of the imaginary part of Y21 corresponds to the transitions in 

the transconductance (the real part of Y21). Figure 2-57(a) shows a significant decrease of the 

transconductance (Real[Y21]) amplitude with the increase of the temperature due to thermal 

effects. On the one hand, the first transition appears at LF (approximately 5-10 KHz for 

80°C). On the other hand Real[Y21] increases when the frequency decreases. The conclusion 

of these two last observations is that the trap (labeled “E2”) can be associated to an emission 

process. Considering that Real[Y21] decreases when the frequency decreases and considering 

that the time constant of trap “E1” is approximately 1µs, the trap “E1” can be associated to a 

capture process. Output conductance dispersion for the same device is presented in Figure 

2-58. The real part of Y22 (Real[Y22]) corresponding, to a first approximation, to the output 

conductance, shows one inflection point. So gd(f) dispersion presents one trap that 

corresponds to trap “E2” found by gm(f) dispersion according to [52].  
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Figure 2-57: (a) Real [Y21]  versus frequency for 80°C to 130°C temperature range, (b) 

Imag[Y21] versus frequency for 80°C to 130°C temperature range and (c) related 

Arrhenius plot . 

 

Figure 2-58: (a) Real [Y22]  versus frequency for 80°C to 130°C temperature range, (b) 

Imag [Y22] versus frequency for 80°C to 130°C temperature range and (c) related 

Arrhenius plot. 
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Moreover, for the process “E2” we found the same time constants by gd(f) and gm(f) 

dispersions. Thus, the traps “E1” and “E2” are promoted by two mechanisms: the first one 

appears only when the small-signal is applied to the gate port, this suggests that the trap is 

located under the gate. The second trapping mechanism is due to hot electrons as explained in 

Section 2.3.2.5. The transconductance and output conductance frequency dispersions 

promoted by the process “E2” can be explained in this way: if the de-trapping time constant is 

much higher than the signal period (the traps are frozen), the traps cannot respond as quickly 

as the applied voltage. On the other hand, when the de-trapping time constant is of the same 

order as the signal period, trapped electrons due to the injection of highly energetic (hot) 

electrons are emitted and they participate in the RF current-carrying process giving rise to 

frequency dispersion in the device. 

 Identification of deep levels 

 

Figure 2-59: Summary of Arrhenius plot of the deep levels, obtained from different 

drain current transient measurements performed during the research for this thesis. 

A summary of the Arrhenius plot obtained from different drain current transient 

measurements performed during the research for this thesis is shown in Figure 2-59. The deep 

levels “E4”=1 eV, “E3”=0.86 eV and “E2”=0.64 eV are identified by DC drain current 

transient measurements carried out using the set-up at the University of Padova described in 

Section 2.3.2.1. The deep levels “E4”=0.75 eV, and “E3”=0.73 eV are identified with DC 

drain current transient measurements and the deep level “E4”=0.83 eV is identified with RF 
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drain current transient measurements carried out using the set-up at the XLIM laboratory 

described in Section 2.3.3.2.1. All XLIM laboratory measurements are carried out with use of 

bias tees. Thus, due to the parasitic effects of the bias tees, the drain current recording is 

started at 1 ms. Therefore, the trapping effect labeled “E2” is outside of the time windows for 

the measurements and it cannot be detected. Moreover, the differences between the EA and σc 

of deep level “E4” between DC drain current transient measurements carried out at the 

University of Padova and at the XLIM laboratory can be explained by the fact that the 

characterized DUTs came from the same technology but different production runs. In 

conclusion, the deep levels “E3” and “E4” detected by the conventional DC DLTS 

measurement set-up and by the DC DLTS measurement set-up with bias tees involve the 

same trap-center. 

In order to understand and interpret the possible physical origin of a trap, the trap properties 

(EA and σc) are compared to deep levels previously reported in the literature, which are 

summarized in Figure 2-60 and Table 5. 

 

Figure 2-60: Arrhenius plot of deep levels “E1”, “E2”, “E3” and “E4” detected within 

this thesis research. Presentation of trap states reported in previous papers for 

comparison (data taken from [20] and references therein). 
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TABLE 5 

DATABASE OF DEEP LEVELS IN GAN-BASED DEVICES (DATA TAKEN FROM[20] AND REFERENCES THEREIN) 

reference papers 
 

Analyzed samples 
Deep level 

energy (eV) 
Interpretations 

Umana-Membreno [53], Park 

[54], Arehart [55] 

 various GaN-based 

devices 

EC-0.09/0.27 Nitrogen vacancies 

Okino [56]  AlGaN/GaN HEMTs EC-0.34 Possible AlGaN surface 

Verzellesi [57]  AlGaN/GaN HEMTs EV+0.3 Surface 

Umana-Membreno [53]  n-GaN EC-0.355 Mg impurities 

Caeser [58], Tapajna [35]  various GaN-based 

devices 

EC-0.44/0.45 C/O/H impurities, possibly in 

nitrogen substitution position 

Umana-Membreno[59], Arehart 

[55], Chung [60], Hacke 

[61],Osaka [62],Kindl [63] 

 various GaN-based 

devices 

EC-0,5/0.69 Nitrogen antisites 

Cardwell [64]  AlGaN/GaN HEMTs EC-0.57 influenced by Fe dopant 

Wang [65]  n-GaN EC-0.58 C or H impurities 

Wang [65],Meneghini [40]  various GaN-based 

devices 

EC-0.62/0.66 GaN native defect 

Okino [56]  AlGaN/GaN MIS-

HEMTs 

EC-0.68 Surface 

Silvestri [66]  HEMT EC-0.72 Fe dopant 

Asghar [67]  GaN pn diode EC-0.76 Nitrogen antisites 

Stocco [68]  AlGaN/GaN HEMT EC-0.80 Gallium vacancy 

Fang[69]  n-type GaN on 

sapphire 

EC-0.89 Nitrogen antisites 

Auret [70],Fang[71]  various GaN-based 

devices 

EC-0.95/1.02 Treading dislocation 

Arehart [55],Arehart [72]  various GaN-based 

devices 

EC-1.28 Carbon interstial defect 

Arehart [55],Arehart [72]  various GaN-based 

devices 

EC-2.6/2.64 VGa or VGa-H or VGA-2H 

Arehart [73]  AlGaN (Al 30%) EC-3.11 Cation vacancy 

Sasikumar [74],Arehart [55]  various GaN-based 

devices 

EC-3.2/3.22 Residual Mg acceptor 

Arehart [55],Arehart [72]  various GaN-based 

devices 

EC-3.22/3.28 CN substitution 

Arehart [73]  AlGaN (Al 30%) EC-3.93 Mg impurities 

 

From Table 5 and [37] , the defects are principally due to:  

 native defects in GaN with Gallium vacancy (VGa) as acceptor level and Nitrogen 

vacancy (VN) as donor level.  
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 high presence of hydrogen impurities in GaN (complexes with VGa and C-H).  

 carbon atoms can be incorporated with gallium substitutionals (CGa) or nitrogen 

substitutionals(CN) in order to obtain a highly insulating GaN layer. 

 oxygen impurity in nitrogen substitutional (ON) that has a shallow donor level. 

 iron impurities is commonly presented in GaN technology to reach a semi-insulating 

GaN. 

The overall Arrhenius plot provided by I-DLTS, transconductance and output-conductance 

frequency dispersion measurements is shown in Figure 2-60. From Figure 2-60, the emission 

process “E2” obtained from DCT measurements is characterized by EA=0.64eV and σc 

=3.9x10-14cm2. The emission trap process obtained from transconductance and output-

conductance frequency dispersion measurements is characterized by EA=0.61eV and σc 

=1.2x10-14 cm2. For the first time, to our knoweledge, the correspondence of the trap 

characteristics allows concluding that the same trap level “E2” is determined from the two 

different measurements. Moreover, the imaginary parts of Y21 and the Y22 in Figure 2-57 and 

Figure 2-58 show a rightward shift of the peaks when the temperature increases. This 

frequency shift, from 5 kHz (at 80°C) to 65 kHz (at 130°C), converted in the time-domain 

corresponds to the same time constant shift observed in the DCT measurements (Figure 

2-18(a)) when the temperature increases. This level “E2” is supposed to be due to a native 

defect of GaN, based on comparison with previous reports [20], [40], [68]. The level “E3” 

(EA=0.86eV; σc =8.7x10-13 cm2) obtained from DCT measurements, reveals a similar 

signature to the deep levels already associated to nitrogen-related defects [19], [35], [61], [72] 

present in the GaN layer. The level “E4” (EA=1eV; σc =5.0x10-13 cm2) characterized by DCT 

measurements, shows a correspondence with the signature of the deep levels associated to 

extended defects in GaN [7], [20], [27], [62]. Finally, the level “E1” (EA=0.25eV; σc =1.6x10-

17 cm2) characterized by LF Y21 measurements, shows again a correspondence with the 

signature of the deep levels associated to nitrogen-related defects [30], [31]. 

 Conclusions 

In this chapter, a detailed and innovative investigation of the trapping processes in 

AlGaN/GaN HEMTs from DC to radio-frequency range is described. The first part of this 

chapter introduced the theoretical concepts on electron capture/emission phenomena needed 

to understand and characterize the trap mechanism and the determination of an Arrhenius 

plot.  
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Successively, the methods and the associated set-ups for the trapping investigation developed 

during the research for this Ph.D. thesis have been presented. This trapping investigation is 

based on combined pulsed I/V measurements (which provide an identification of the possible 

trap position), DCT investigation (which provide data on the large-signal voltage steps de-

trapping transient, suitable for deep level analysis), nonlinear microwave DCT investigation 

(which provide the RF deep level analysis) and LF transconductance and output-conductance 

measurements (which provide small-signal trap analysis). The conclusions of this chapter on 

trapping investigation are summarized below: 

 The pulsed I/V measurements under class AB bias condition detected a shift in the 

threshold voltage, a significant increase in the resistivity of the gate–drain access 

region, and a decrease in the transconductance peak. Moreover, pulsed I/V 

characterization carried out at several temperatures shows that the CC increases when 

the gate quiescent bias point increases (due to hot electrons), in accordance with [83].  

 The properties of the trap responsible for CC are investigated with DC DCT. This 

technique has evidenced three traps with the following activation energies: “E4”=1 

eV, “E3”= 0.86 eV and “E2”=0.64 eV.  

 The transconductance and output-conductance frequency technique principally 

identified a trap level “E2”=0.61 eV which has been found to have a good matching 

with the trap level “E2” identified by the DC DCT technique. The trap level “E2” 

corresponds to the faster trap phenomena detected by the DC DCT technique. The trap 

level “E2” is supposed to be due to a native defect in GaN. The features of the pulsed 

I/V measurement suggest that these defects are located in the GaN buffer layer.  

 The DC DCT technique is very powerful because of the sensitivity of the drain current 

to the trap parameter analysis. The time constant and amplitude of the traps are 

determined from the Arrhenius plot for trapping or de-trapping phenomena. Real-time 

trapping behavior is observed thanks to accurate records over a 7-decade time scale 

allowing the investigation of slow and fast trapping phenomena. 

  The transcondutance and output-conductance frequency dispersion technique can 

provide trap information (EA and c) using small-signal excitations close to real CW 

RF operation mode. This trapping determination method (LF Y21 and LF Y22) is based 

on the 2-port S-parameters measurement that directly provides information about the 

current corresponding to gm and gd (to a first approximation). The advantage of this 

method lies in the sensitivity of gm and gd to the drain-lag trapping effects. LF Y-
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parameter characterization is very accurate because it is based on the use of VNA 

measurements. This method provides a fast characterization of trapping phenomena 

but suffers from the lack of a quantitative determination of the trap density. The 

complexity of the LF dispersion characterization and the scarcity of its analysis makes 

it difficult to determine at the moment a detailed theoretical model of trap “E1”.  But, 

the technique for determining the activation energies and capture cross-sections for the 

detected traps, based on temperature-dependent measurements of the imaginary parts 

of Y22 and Y21, is demonstrated. 

 The nonlinear microwave DCT measurements allow investigating the trapping 

characteristics corresponding to the nonlinear RF dynamics of the dispersion effects in 

GaN HEMTs. The method consists of the measurement and analysis of de-trapping 

drain current transients after 100 s of RF excitation.  

 It is demonstrated how the choice of bias point in the de-trapping condition allows 

accelerating the slow emission process for the increase in power dissipation and for 

the Poole–Frenkel effect.  

 The nonlinear microwave DCT measurement results show also that the increase of the 

load-line excursions produce a stronger impact of the de-trapping behavior in terms of 

CC after RF OFF and trap amplitude. Therefore, an increase in the RF level involves 

the excitation of more and more “E4” trap centers. The trapping mechanism due to RF 

excitation is attributed to a positive threshold voltage shift that indicates a negative 

charge-trapping under the gate region. 

 The comparison between the DC and RF testing results demonstrated that the impact 

of trapping phenomena appears more severe under single pulse large-signal RF 

excitation than under only single pulse DC excitation. 

 The nonlinear microwave DCT load-pull measurements for two different output load 

impedances (maximum of PAE and mismatched impedances) have revealed that the 

trapping phenomena impact is lower when the transistor is optimally matched at its 

output port to reach maximum PAE performance.  

 The nonlinear microwave DCT analysis has evidenced the deep level “E4”=0.75 eV. 

The level “E4” is also detected in DC excitation but with an increase of the density of 

the ionized traps. 

 The nonlinear microwave DCT results have put in evidence the sensitivity of the traps 

to the: 
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 Input power level; 

 Pulse-width; 

 Temperature; 

 Load impedance; 

 Operating bias point. 

 The nonlinear microwave DCT measurements have demonstrated that it is possible to 

control the trapping phenomena by choosing the value of operating bias point and thus 

identify a trapping desensitization operating zone. 

In conclusion, in this chapter we have identified the trap levels present in this commercial 

GaN GH50 technology from UMS foundry due principally to native defects of the GaN. 

Moreover, we have also demonstrated the strong impact on the RF performance of the 

trapping effects and their sensitivity to many factors. Thus, this thesis research has identified a 

way to make the SSPA insensitive to trapping effects in real RF operating conditions, by 

choosing the correct operating bias point value in order to reach the trapping desensitization 

operating zone.  

  



 

 

68 

 Introduction 

3 Nonlinear Electro-Thermal model of 

AlGaN/GaN HEMT  

 Introduction 

The new SSPA generation based on AlGaN/GaN HEMTs is currently under development for 

replacing the preceding technologies. As described in the previous chapter, GaN technology is 

still subject to memory effects, such as trapping and thermal effects. The aim of electrical 

modeling is to allow designers to simulate the nonlinear behavior of the device under complex 

electrical signals. Thus, it is of fundamental importance to provide a compact model in CAD 

tools which takes into account the dispersion phenomena of GaN-based HEMT in order to 

predict correctly the RF performance during real RF operating conditions. The resultant 

nonlinear electro-thermal AlGaN/GaN HEMT model including large-signal dynamic trapping 

effects becomes a necessary tool for designers to assess the performance of the high 

efficiency solid state power amplifier required by the market [84]. 

In this chapter a modeling methodology for AlGaN/GaN HEMTs is presented, in particular 

our contribution with respect to previous works [30], [41]. This contribution mainly consists 

in the introduction of a new additive thermal-trap model which takes into account the 

dynamic behavior of trap states and their associated temperature variation and the validation 

of the model at different temperatures. The building of the new thermal-trapping model is 

based on the large trapping investigation and measurements carried out in the last chapter. 

 Modeling methods for HEMTs 

There are different kinds of models that can be less or more complex according to the goal of 

modeling the device. For example, for understanding the physical phenomena, such as the 

charging mechanisms between the semi-conductor layers due to trapping and thermal effects, 

a physical model is used. This model is described by physical laws and includes technological 

parameters (e.g., device layout, doping, and layer size). The physical model is generally 

performed using 2-D solving of charge transport equations for the electrical characteristics. In 

the case of thermal simulation, a 3-D finite element simulation involves meshes with 

thousands of nodes in order to take into account the various effects. This modeling approach 

requires a heavy simulation load and does not fit with circuit simulation. 
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A phenomenological model or compact transistor model allows decreasing the number of 

parameters used. The purpose of the model is to reproduce the phenomena involved in the 

device, with a simplification of the complexity of the physical structure. This modeling 

approach is proposed in [85] and depicted in Figure 3-1. This model is also called a semi- 

physical model because the equations are determined from the physics (in the case of 

definition of the diodes) or following a mathematical law for a better modeling of the 

phenomenon (e.g., CGS and CGD) and a better convergence of the model. With the emerging 

new generations of characterization methods and instruments, a new type of model is 

developed that is called a behavioral model. This behavioral model [86] is based on the neural 

network (NN) approach [87] and/or X-parameter measurements [88], [89] and it can be 

determined directly from large-signal measurements. It also allows more rapid determination 

and correct prediction of the physical phenomena involved in the device. But it does not 

provide access to the model parameters, as it is described by a large number of parameters 

which have no direct physical meaning. Behavioral models are considered “black box” 

models, where only the responses of the component to some controlled stimuli are known, 

and are consequently validated only under the operating conditions measured. For research 

purposes, we have chosen the phenomenological or compact model, which provides a good 

trade-off between simulation speed and modeling flexibility. 

 

Figure 3-1: Identification of intrinsic and extrinsic parameters based on physical 

structure of HEMT for a phenomenological model. 
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 Modeling methodology  

The equivalent device circuit used to describe the nonlinear AlGaN/GaN HEMT characteristic 

including trapping and thermal effects is shown in Figure 3-2. The modeling methodology 

flow, required for a complete device extraction is based on four different steps, as shown in 

Figure 3-3.  

 

Figure 3-2: Structure of the nonlinear model including trapping and thermal effects. 

 

Figure 3-3: Modeling methodology flow for the extraction of a nonlinear model 

including trapping and thermal effects. 
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The method for parameters extraction shown in Figure 3-3 is developed as follows 

1. Determination of extrinsic (Rg, Lg, Cpg, Rd, Lg, Cpd, Rs and Ls) and intrinsic (Cgs, Cgd, 

Cds, Ri, Rgd, Gm, Gd and τ) parameters of small-signal model for a fixed bias point. 

2. Determination of the large-signal model: 

2.1. Definition of drain current source, gate-source diode and gate-drain diode by the 

fitting of pulsed I/V characteristic. 

2.2. Extraction of nonlinear capacitances CGS and CGD from S-parameter measurements at 

different bias points located on an ideal load-line. 

3. Addition of the trapping modeling blocks that modulate the instantaneous drain current 

value through the variation of intrinsic gate voltage and pinch-off voltage. 

4. Addition of the thermal dependency of the drain current source, trapping model, gate-

source diode and gate-drain diode. 

 Device modeling process 

3.4.1 Small-signal model  

The equivalent small-signal model or linear model of HEMT is shown in Figure 3-4. It is 

composed of two kinds of parameter: the intrinsic and the extrinsic parameters. The last one 

corresponds to the parasitic elements due to access lines and metallization.  

 

Figure 3-4: Equivalent small-signal model of HEMT. 

The quality of the nonlinear model is strongly dependent on the accuracy of the extrinsic 

parameters. Thus, for the extraction of the small-signal model, an optimization method 
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(developed in XLIM laboratory) is used [30]. The small-signal model is extracted from small-

signal pulsed S-parameter measurements. 

 Pulsed S-parameters measurements 

The S-parameters are measured under pulsed condition to extract the small-signal model at 

fixed quiescent bias point close to real operation condition. The measurement set-up is similar 

to the previously described pulsed I/V test bench in 2.3.1.1 with the addition of a pulsed VNA 

(Rohde & Schwarz ZVA40 and ZVAx modules) to measure pulsed S-parameters as shown in 

Figure 3-5. An on-wafer calibration is performed to obtain the pulsed S-parameters at both 

ports of the DUT. This calibration is performed in CW mode (SOLT, TRM, etc…) because 

the pulsed calibration can deteriorate due to the linearity and dynamic range of the receiver’s 

mixer and the losses due to the internal switch in the ZVAX. 

The principle of pulsed S-parameter measurements consists of generating the RF signal for 

each measurement bias point (VGS,M ;VDS,M ) of the pulsed I-V network and performing the S-

parameters acquisition as depicted in Figure 3-6. Thus as previous discussed, the thermal and 

trap states are fixed by the quiescent bias point (VGS,Q ;VDS,Q ). The pulsed RF signal is 

synchronized with the pulsed I/V excitation with a reference signal generated by the pulsed 

I/V system (BILT AMCAD). The dynamic range from CW to pulsed mode decreases when 

the duty cycle of the pulses is reduced as indicated in Equation (3-1). 

 
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑑𝐵) = − 20. log [

𝑃𝑢𝑙𝑠𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑃𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ
] 

(3-1) 

 

Thus, the pulse-period and pulse-width are chosen in order to limit the dynamic reduction 

while maintaining a quasi-isothermal state and a fixed trapping state. The measurement 

condition for pulsed S-parameter measurements are summarized in Figure 3-7 (1 µs of RF 

pulse-width, 1.2 µs of gate pulse-width and 1.4 µs of drain pulse-width with an identical pulse 

period of 10 µs). 
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Figure 3-5: Block diagram of pulsed S-parameters experimental set-up. 

 

Figure 3-6: Principle of pulse S-parameter measurement. 
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Figure 3-7: Pulse timing diagram of pulse S-parameter measurement. 

 Extraction of the small-signal model 

The method for the model extraction allows the direct determination of extrinsic parameters 

provided the intrinsic parameters are frequency independent. The procedure is the following: 

 The intrinsic admittance parameters [YINT] are obtained from the measured S-

parameters by successive transformation of the matrix of measured S-parameters (as 

depicted in Figure 3-8). 

 Then, the extrinsic parameters are analytically calculated at each frequency, from the 

[YINT] matrix using the following equations:  

 𝐶𝑔𝑑 =
−𝐼𝑚(𝑌12)

𝜔
[1 + (

𝑅𝑒(𝑌12)

𝐼𝑚(𝑌12)
)
2

] 
(3-2) 

 𝑅𝑔𝑑 =
−𝑅𝑒(𝑌12)

(𝐶𝑔𝑑. 𝜔)2
[1 + (

𝑅𝑒(𝑌12)

𝐼𝑚(𝑌12)
)
2

] 
(3-3) 

 𝐶𝑔𝑠 =
𝐼𝑚(𝑌11) + 𝐼𝑚(𝑌12)

𝜔
[1 + (

𝑅𝑒(𝑌11) + 𝑅𝑒(𝑌12)

𝐼𝑚(𝑌11) + 𝐼𝑚(𝑌12)
)
2

] 
(3-4) 

 𝐺𝑑 = 𝑅𝑒(𝑌12) + 𝑅𝑒(𝑌22) 
(3-5) 

 𝐶𝑑𝑠 =
𝐼𝑚(𝑌12) + 𝐼𝑚(𝑌22)

𝜔
 

(3-6) 

 𝑅𝑖 =
𝑅𝑒(𝑌11) + 𝑅𝑒(𝑌12)

(𝐶𝑔𝑠. 𝜔)2
[1 + (

𝑅𝑒(𝑌11) + 𝑅𝑒(𝑌12)

𝐼𝑚(𝑌11) + 𝐼𝑚(𝑌12)
)
2

] 
(3-7) 

 𝐺𝑚 = √(𝐴2 + 𝐵2)(1 + 𝑅𝑖2𝐶𝑔𝑠2𝜔2) 
(3-8) 

 𝜏 =
−1

𝜔
. 𝑎𝑟𝑐𝑡𝑎𝑛 [

𝐵 + 𝐴. 𝑅𝑖. 𝐶𝑔𝑠. 𝜔

𝐴 − 𝐵. 𝑅𝑖. 𝐶𝑔𝑠. 𝜔
] 

(3-9) 
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where:  

 
𝐴 = 𝑅𝑒(𝑌21) − 𝑅𝑒(𝑌12) (3-10) 

 
𝐵 = 𝐼𝑚(𝑌21) − 𝐼𝑚(𝑌12) (3-11) 

 

An optimization algorithm process allows adjusting the extrinsic parameters in order the 

intrinsic parameters be frequency independent, thus validating the small-signal circuit 

topology [30].  

 

Figure 3-8: Extraction algorithm used to determine the intrinsic Y-parameters matrix 

[90]. 

Generally, the extraction methods used to determine the extrinsic parameters are based on S-

parameter measurements at different bias point conditions [91]. A simplified approach used in 

[92] for a first determination of intrinsic parameters, was adapted for the GaN device in 

collaboration with K. Kahil [ K. Kahil personal communication] at the XLIM laboratory for 

use in this research thesis. LF S-parameter measurements allow estimating the ranges of 

values of the intrinsic parameters, which are introduced in the optimization loop in order to 

determine the extrinsic parameters. In the LF range, the extrinsic parameters, in Figure 3-4, 

can be considered negligible, therefore the intrinsic parameter equations (3-2)-(3-11) become 
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𝐶𝑔𝑑 =
−𝐼𝑚(𝑌12)

𝜔
 

(3-12) 

𝑅𝑔𝑑 =
−𝑅𝑒(𝑌12)

(𝐶𝑔𝑑. 𝜔)2
 

(3-13) 

𝐶𝑔𝑠 =
𝐼𝑚(𝑌11) + 𝐼𝑚(𝑌12)

𝜔
 

(3-14) 

𝐺𝑑 = 𝑅𝑒(𝑌12) + 𝑅𝑒(𝑌22) (3-15) 

𝐶𝑑𝑠 =
𝐼𝑚(𝑌12) + 𝐼𝑚(𝑌22)

𝜔
 

(3-16) 

𝑅𝑖 =
𝑅𝑒(𝑌11) + 𝑅𝑒(𝑌12)

(𝐶𝑔𝑠. 𝜔)2
 

(3-17) 

𝐺𝑚 = 𝑅𝑒(𝑌21) (3-18) 

 𝜏 =
−1

𝜔
. 𝑎𝑟𝑐𝑡𝑎𝑛 [

𝐵 + 𝐴. 𝑅𝑖. 𝐶𝑔𝑠. 𝜔

𝐴 − 𝐵. 𝑅𝑖. 𝐶𝑔𝑠. 𝜔
] 

(3-19) 

where: 

 
𝐴 = 𝑅𝑒(𝑌21) − 𝑅𝑒(𝑌12) (3-20) 

 
𝐵 = 𝐼𝑚(𝑌21) − 𝐼𝑚(𝑌12) (3-21) 

 

These equations are applied to the LF CW S-parameters measured at (IDS;VDS)=(50 mA;40 

V), using the set-up in Section 2.3.4. The intrinsic parameter results extracted using this 

approach are shown in Figure 3-9.  

It can be observed from the previous results that this LF approach give good results and 

provides thermally dependent intrinsic parameters. Thus, they constitute very good starting 

values for the global optimization of the S-parameters at higher frequencies which include the 

parasitic access. 
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Figure 3-9: The intrinsic parameter results extracted by LF S-parameters measured at 

(IDS;VDS)=(50 mA;40 V) for different temperatures. 

 Extraction of extrinsic and intrinsic parameters   

The bias dependent small-signal parameters are extracted for I/V network issued from a 

quiescent bias point equal to the one used in the RF condition. The quiescent bias point 

chosen for the determining the small-signal model corresponds to (IDS,Q ; VDS,Q)= (50 mA, 40 

V).  

TABLE 6 

VALUES OF EXTRINSIC AND INTRINSIC PARAMETERS AT 

(IDS,Q ; VDS,Q)= (IDS,M ; VDS,M)= (50 mA, 40V) & TCHUCK=25°C 

EXTRINSIC PARAMETERS 

Rg (Ω) Rd (Ω) Rs (Ω) Lg (pH) Ld (pH) Ls (pH) Cpg (pF) Cpd (fF) 

0.4 0.9 0.2 39.5 34 2 0.52 1.69 

INTRINSIC PARAMETERS  

Cgs (pF) Cgd (fF) Ri (Ω) Rgd (Ω) Cds (pF) τ (ps) gm (mS) gd (mS) 

3.88 66.3 1.55 73 57.6 3.97 245 1.69 
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The pulsed S-parameter measurements are carried on all measurement bias points of the I/V 

network under quiescent bias point (IDS,Q ; VDS,Q)= (50 mA, 40 V). The values of the elements 

of the small-signal equivalent circuit obtained at a bias point (IDS,M ; VDS,M)= (50 mA, 40 V), 

are summarized in Table 6 and a comparison between the measured and modeled S-

parameters is given in  Figure 3-10. Once the extrinsic elements are determined the process 

can be repeated for the set of bias points chosen to obtain the multi-bias small-signal circuit. 

 

Figure 3-10: Measurements (red solid line) and simulation results (black dotted line) of 

pulsed S-parameter measurements at (IDS,Q ; VDS,Q)= (IDS,M ; VDS,M)= (50 mA, 40V) from 

0.5 GHz to 12 GHz. 

3.4.2 Nonlinear model   

The nonlinear HEMT model includes the intrinsic nonlinear current sources shown in Figure 

3-11. It consists of the access resistances (Rg, Rd, Rs), the main drain current source IDS, the 

two Schottky gate diodes (IGS, IGD) and the breakdown current source IBK. 

 

Figure 3-11: Intrinsic nonlinear current sources of HEMT. 
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 Nonlinear current source model 

The fundamental effect of FET is described by a nonlinear current source controlled by VDS 

and VGS. The model (derived from the model proposed by Tajima [93]) has been modified to 

take into account the HEMT effect as shown in [90]. Moreover, an accurate current source 

model has been developed in the XLIM laboratory by Jardel et al. [94], which allows to 

predict the IDS-VDS characteristic for positive and negative values of the drain voltage. The 

model equations are: 

 𝐼𝐷 = 𝐼𝐷𝑆 − 𝐼𝐺𝐷 = 𝐼𝐷𝑆𝑆 ∙ 𝑑ℎ𝑦𝑝[𝑉𝐷𝑆𝑁 + 𝐴 ∙ 𝑉𝐷𝑆𝑁
3] ∙ 𝑉𝐺𝑆𝑁 (3-22) 

with 

 𝑉𝐺𝑆𝑁 = 𝑉𝐺𝑆𝑁𝑙𝑖𝑛 ∙ [1 +
𝑉𝑃0
𝑣𝑃
]
𝑁

 (3-23) 

 𝑉𝐷𝑆𝑁 =
𝑉𝐷𝑆

𝑉𝐷𝑆𝑁 ∙ [1 +𝑊 ∙ (𝑉𝐺𝑆𝑁 − 1)]
 (3-24) 

 𝑣𝑝 = 𝑉𝑃0 + 𝑎𝑏𝑜𝑣𝑒 [−𝑉𝐷𝑆, 𝛽𝑁𝐸𝐺 , 0] + 𝑃 ∙ 𝑉𝐷𝑆 (3-25) 

 𝑉𝐺𝑆𝑁𝑙𝑖𝑛 = 𝑎𝑏𝑜𝑣𝑒 [
𝑉𝐺𝐶𝑂𝑀 + 𝑣𝑝

𝑎𝑏𝑜𝑣𝑒 (𝑉𝑆𝐴𝑇𝑃𝑂𝑆 + 𝑣𝑃 + 𝑣𝑃0, 𝑉𝑆𝐴𝑇𝑁𝐸𝐺 ,
−𝑣𝑃
𝑣𝑃0

)
, 𝛼𝑉𝑝, 0] (3-26) 

 
𝑉𝐺𝐶𝑂𝑀 = 𝑢𝑛𝑑𝑒𝑟 [

1

2
𝑉𝐺𝑆 + 𝑢𝑛𝑑𝑒𝑟 (

𝑉𝐺𝑆
2
, 𝑆𝑆𝐴𝑇1𝑃𝑂𝑆, 𝑉𝐺𝑆𝐴𝑇1𝑃𝑂𝑆) , 𝑆𝑆𝐴𝑇1𝑃𝑂𝑆, 𝑉𝐺𝑆𝐴𝑇1𝑃𝑂𝑆] (3-27) 

 
𝑉𝐷𝑆𝑁 =

𝑉𝐷𝑆
𝑉𝐷𝑆𝑁 ∙ [1 +𝑊 ∙ (𝑉𝐺𝑆𝑁 − 1)]

 (3-28) 

 𝛼𝑉𝑝 = 𝑎𝑏𝑜𝑣𝑒 (𝑢𝑛𝑑𝑒𝑟 (− 𝑉𝐷𝑆, 𝑆𝑆𝐴𝑇𝑁𝐸𝐺 , 𝑉𝑆𝐴𝑇𝑁𝐸𝐺), 10
−4, −𝑔𝑀𝑠𝑚𝑜𝑜𝑡ℎ) (3-29) 

 𝐴 = 𝑐𝑣𝑎𝑙 (𝐴𝑃𝑂𝑆, 𝐴𝑁𝐸𝐺 , 𝑉𝐷𝑆, 𝑅𝐻𝑂) (3-30) 

 𝑊 = 𝑐𝑣𝑎𝑙 (𝑊𝑃𝑂𝑆,𝑊𝑁𝐸𝐺 , (𝑉𝐺𝑆 + 𝑉𝑃0), 𝑅𝐻𝑂) (3-31) 

Equations (3-22)-(3-31) are composed of continuous mathematical functions: the function 

dhyp (Equation (3-32)) allows reconstructing the envelope of the current (it is similar to a 

hyperbolic tangent). The function cval (Equation (3-33)) allows changing the value of the 

variable a when the third parameter V reaches 0 V, with a “smooth” transition, the nature of 

which is governed by the parameter αTRVAL. Lastly, the functions above (Equation (3-35)) and 

under (Equation (3-36)) allow a saturation at the values xn and xp respectively, with a 

“smooth” transition governed by the parameter a. An example of the behavior of the last two 
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functions for different values of the parameter a and for a given xn and xp equal to 1 are shown 

in Figure 3-12. 

 𝑑ℎ𝑦𝑝(𝑥) =  
𝑥

√1 + 𝑥2
 (3-32) 

 𝑐𝑣𝑎𝑙(𝑥𝑃𝑂𝑆, 𝑥𝑁𝐸𝐺 , 𝑉, 𝛼𝑇𝑅𝑉𝐴𝐿) =
𝑥𝑃𝑂𝑆 − 𝑥𝑁𝐸𝐺

2
∙ tanh(𝛼𝑇𝑅𝑉𝐴𝐿 ∙ 𝑉) +

𝑥𝑃𝑂𝑆 − 𝑥𝑁𝐸𝐺
2

 (3-33) 

 ℎ𝑦𝑝𝑓𝑛𝑒𝑔(𝑥) =

{
 
 

 
 

1

2 ∙ (√1 + 𝑥2 − 𝑥)
 𝑖𝑓 𝑥 > 1

−1

2 ∙ 𝑥 ∙ (1 + √1 +
1
𝑥2
)

 𝑒𝑙𝑠𝑒
 (3-34) 

 𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑎, 𝑥𝑛) =

{
 
 

 
 𝑥 + 𝑎 ∙ ℎ𝑦𝑝𝑓𝑛𝑒𝑔 (

−(𝑥 + 𝑥𝑛)

𝑎
)  𝑖𝑓 𝑥 > −𝑥𝑛

−𝑥𝑛 + 𝑎 ∙ ℎ𝑦𝑝𝑓𝑛𝑒𝑔 (
(𝑥 + 𝑥𝑛)

𝑎
)  𝑒𝑙𝑠𝑒

 (3-35) 

 𝑢𝑛𝑑𝑒𝑟(𝑥, 𝑎, 𝑥𝑝) =

{
 
 

 
 𝑥𝑝 − 𝑎 ∙ ℎ𝑦𝑝𝑓𝑛𝑒𝑔 (

(𝑥𝑝 − 𝑥)

𝑎
)  𝑖𝑓 𝑥 > 𝑥𝑝

𝑥 − 𝑎 ∙ ℎ𝑦𝑝𝑓𝑛𝑒𝑔 (
(𝑥 − 𝑥𝑝)

𝑎
)  𝑒𝑙𝑠𝑒

 (3-36) 

 

Figure 3-12: Comparison of the function (a) above(x,a,xn) with xn equal to 1 and varying 

the value of the parameter a and of the function (b) under(x,a,xp) with xp equal to 1, also 

varying a. 

The output current source modeled by 19 parameters is therefore more accurate than the 

modified Tajima model which is modeled by only 13 parameters. In the following, the 

description of the parameter roles in the non-linear model equations is given by 

 IDSS: drain current saturation; 

 P: output conductance parameter (gd); 

 Vp0: pinch-off voltage; 
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 Vdsp: slope in the ohmic area (corresponds to RON); 

 Wpos: curvature of knee zone (for positive drain voltages values); 

 Wneg: curvature of knee zone (for negative drain voltages values); 

 Aneg: linear slope in the ohmic area (for negative drain voltage values); 

 Apos: linear slope in the ohmic area (for positive drain voltages values); 

 Vsat1pos: gate voltage for first gm saturation (at high VGS values and for positive 

drain voltages values); 

 Ssat1pos: smoothness of gm saturation due to the value of the parameter Vsat1pos; 

 Vsat2pos: gate voltage for second gm saturation (at halfway VGS values and for 

positive drain voltages); 

 Ssat2pos: smoothness of current saturation governed by the parameter Vsat2pos; 

 N: curvature of gm in the middle of I/V network; 

 Ssatneg: smooth of current saturation (for negative drain voltages); 

 Vsatneg: gate voltage for current saturation; 

  gmsmth: smoothing around pinch-off voltage area; 

 Rho: smooth transition between the two parameters of the function cval. 

The parameter values of nonlinear current source model are determined from pulsed I/V 

measurements in hot condition and are shown in Table 7. 

TABLE 7 
 PARAMETER VALUES OF OUTPUT CURRENT SOURCE  

OUTPUT CURRENT SOURCE 

IDSS P Vp0 Vdsp Wpos Wneg Apos Aneg 

0.95 0.0009 1.54 2.73 1.5 0 0.01 0.01 

Ssat1pos Ssat2pos Vsat1pos Vsat2pos N Ssatneg Vsatneg gmsmth 

0.02 0.85 5 1.72 2.08 0.87 0.993 0.14 

Rho 

1 

The gate contact is modeled by the gate-drain and gate-source diode equations including both 

forward and reverse conductions of gate current. The diodes are modeled by the classical 

equations: 

 𝐼𝑔𝑠 = 𝐼𝑠𝑔𝑠. [𝑒
𝑞.𝑉𝑔𝑠
𝑁𝑔𝑠.𝑘.𝑇 − 1] (3-37) 
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 𝐼𝑔𝑑 = 𝐼𝑠𝑔𝑑. [𝑒
𝑞.𝑉𝑔𝑑
𝑁𝑔𝑑.𝑘.𝑇 − 1] (3-38) 

 

The parameter values for the gate-drain and gate-source diodes are extracted from pulsed I/V 

measurements in hot condition for high gate-source voltages and are shown in Table 8. 

TABLE 8 

PARAMETER VALUES OF GATE-DRAIN AND GATE-SOURCE DIODE 

GATE-DRAIN AND GATE-SOURCE DIODE 

𝐼𝑠𝑔𝑠 Ngs 𝐼𝑠𝑔𝑑 Ngd 

1.12·10-14 1.5 1.6·10-14 1.5 

The drain-to-gate breakdown phenomenon is modeled by a current source Ibk, which gives an 

exponential increase in the gate-to-drain current when the breakdown voltage VGD is reached. 

For modeling this exponential increase a soft quasi-exponential function (exp_soft) is used to 

improve the simulation convergence [94]. 

 𝐼𝑏𝑘 = 𝐼𝑎𝑣𝑔𝑑. [𝑒𝑥𝑝_𝑠𝑜𝑓𝑡(𝛼𝑔𝑑𝑉𝑑𝑠)] (3-39) 

However, for the GaN technology studied in this thesis, the nonlinear breakdown source is not 

considered because the breakdown voltages are far beyond the operating voltages. 

 Nonlinear capacitances model  

The gate-to-source and gate-to-drain capacitances Cgs and Cgd present a nonlinear 

dependence on both control voltages VGS and VGD [94] which can be modeled with a one 

dimensional model. Moreover, the one dimensional capacitance model provides better 

convergence than 2D models. Thus, the nonlinear Cgs and Cgd are extracted under operation 

condition which for power amplifier application, are along the ideal large-signal operating 

load-line. Generally, from the multi-bias measured S-parameters, the resulting values of Cgs 

and Cgd along the estimated load-line behave similarly to the one shown in Figure 3-13. 

These shapes can be precisely fitted with hyperbolic tangent equations: 

 𝐶𝑔𝑥 = 𝐶0 +
𝐶1 − 𝐶0
2

[1 + tanh(𝑎(𝑉𝑔𝑥 + 𝑉𝑚))] −
𝐶2
2
[1 + tanh(𝑏(𝑉𝑔𝑥 + 𝑉𝑝))] (3-40) 

where Cgx and VGx stand for the gate-to-x capacitance and voltage, respectively, i.e. (Cgs and 

VGS) or (Cgd and VGD). The seven modeling parameters (C0, C1, C2, a, b, Vp and Vm) are 

different for each of the capacitance models. 



Nonlinear Electro-Thermal model of AlGaN/GaN HEMT   
 

83 

 

 

Figure 3-13: Typical shapes of (a) Cgd VS VGD and (b) Cgs VS VGS. 

The Cgs and Cgd parameters are extracted from multi-bias pulsed S-parameter measurements 

issuing from the I/V hot network bias point (IDS,Q ; VDS,Q)= (50 mA, 40V). The comparison 

between of the extracted Cgs and Cgd values along the estimated load-line and the modeled 

Cgs and Cgd are shown in Figure 3-14. The values of the different parameters of the Cgs and 

Cgd models are shown in Table 9. 

 

Figure 3-14: Comparison of experimental (red solid line with circle) values and modeled 

(black dotted line) values of (a) CGS and (b) CGD versus VGS and VGD , respectively, along 

the estimated load-line. 

TABLE 9 
PARAMETER VALUES OF CGS AND CGD 

Parameter values of Cgs 1D equation 

C0 (pF) C1 (pF) C2 (pF) A B Vm(V) Vp (V) 

1.2 3.2 -5 4 0.5 2.2 -0.5 

Parameter values of Cgd 1D equation 

C0 (pF) C1 (pF) C2 (pF) A B Vm(V) Vp (V) 

0.06 2.84 10 0.083 1 -4 -3 
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3.4.3 Nonlinear trapping and thermal current source model 

As already established, AlGaN/GaN HEMTs are still subject to memory and thermal effects. 

In particular, these trapping effects that have been deeply studied in the previous chapter 

present a nonlinear dynamic variation of the dispersion effects under modulated signals such 

as RF pulses. This dynamic behavior plays a major role in the modification of its large-signal 

performance. Moreover, self-heating also plays a major role under large-signal operation 

mode of transistors and affects their reliability. Indeed, several parameters such as carrier 

mobility and saturation velocity, are sensitive to temperature, leading to a reduction of drain 

current and power gain. Furthermore, traps are also very sensitive to temperature. So, there is 

a need to integrate the nonlinear RF dynamic effects and their thermal variation into a large-

signal electro-thermal HEMT model. 

The trapping effects are modeled through the modulation of the drain current source by gate 

and drain stimulus. The AlGaN/GaN model employed an intrinsic output current given by 

Equation (3-41). It is a nonlinear parametric function of the instantaneous intrinsic gate and 

drain voltages VGS(t) and VDS(t), temperature, intrinsic gate voltage that corresponds to the 

gate-lag effect and intrinsic pinch–off voltage VP0_INT that corresponds to the drain-lag effect. 

These gate-lag and drain-lag components have a strong dependency on the trap charge, firstly, 

and on the temperature, secondly. 

 𝐼𝐷𝑆(𝑡) = 𝑓𝑁𝐿 (𝑉𝐺𝑆(𝑡), 𝑉𝐷𝑆(𝑡), 𝑇°, 𝑉𝐺𝑆_𝐼𝑁𝑇, 𝑉𝑃0_𝐼𝑁𝑇(𝑡, 𝑉𝐶(𝑡), 𝑇°))  (3-41) 

Thus, the gate-lag and the drain-lag effects are modeled by adding trap sub-circuits to the 

nonlinear circuit model that dynamically modify the actual gate and pinch-off control 

voltages, respectively. 

In the following part the trapping model based on gate-lag and drain-lag sub-circuits and the 

parameter extraction of the drain-lag model will be presented. Lastly, the temperature 

dependent parameters of the current source and trapping model will be determined. 

 The gate-lag sub-circuit 

The gate-lag sub-circuit, that is depicted in schematic form in Figure 3-15, operates as an 

envelope detector on the gate-to-source voltage VGS(t) so as to modify itself and calculate the 

new intrinsic gate-to-source voltage VGS_INT(t) of the current source by the 

charging/discharging of the capacitance CTRAP  according to a physical exponential law. 
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During a capture process that corresponds to a decrease of VGS, the capacitance CTRAP charges 

through the resistance RCAP (with a capture time constant τCAP≅RCAP ·CTRAP as RCAP≪ 𝑅𝐸𝑀𝐼 ). 

In contrast, during an emission process, which corresponds to an increase of VGS, the 

capacitance CTRAP discharges through the resistance REMI (with an emission time constant 

τEMI≅ REMI · CTRAP). This model also takes into account the following assumption of a strong 

dissymmetry of GaN technology between the capture and emission time constants. The 

capture time constant is assumed to fall into the nanoseconds-microseconds range while the 

emission time constant is assumed to fall into the microseconds-seconds range in GaN 

HEMTs. 

 

Figure 3-15: Schematic of gate-lag model [94]. 

Finally, the intrinsic actual gate-to-source voltage VGS_INT(t) is calculated as the instantaneous 

capacitor voltage VC(t) multiplied by a factor k shown in Figure 3-15. This factor controls the 

amplitude of the trap and is calculated as 

 𝑘(𝐼𝐷𝐸𝑆𝑇) = 𝑘𝑟𝑒𝑙 ∙ 𝐼𝐷𝐸𝑆𝑇(𝑉𝐺𝑆) ∙ 𝐴𝐷𝐿 (3-42) 

with   

𝐼𝐷𝐸𝑆𝑇(𝑉𝐺𝑆) = 𝐺𝑚𝐷𝐶 ∙ [𝑉𝐺𝑆 − 𝑉𝑃𝐼𝑁𝐶𝐻−𝑂𝐹𝐹] (3-43) 

 

where 𝐺𝑚𝐷𝐶 and ADL are fitting parameters while krel is the sum of each trap contribution 

kreln in the case of n different trap states. 

 𝑘𝑟𝑒𝑙 =∑𝑘𝑟𝑒𝑙𝑛

𝑛

1

 (3-44) 

Therefore, the instantaneous gate control voltage VGS_int obtained from the gate-lag model is 

defined by the following equation: 

 𝑉𝐺𝑆_𝑖𝑛𝑡 = 𝑉𝐺𝑆 + 𝑘(𝐼𝑑𝐸𝑆𝑇). (𝑉𝐺𝑆 − 𝑉𝐶) (3-45) 

So that the actual drain current will be expressed as 
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 𝐼𝐷𝑆 = 𝑓(𝑉𝐺𝑆_𝑖𝑛𝑡, 𝑉𝑑𝑠) (3-46) 

 

The gate-lag effect in this AlGaN/GaN technology has been reduced strongly by passivation 

and field plate as shown in Section 2.3.1.2. Thus, the gate-lag model is not implemented in 

our intrinsic output current source model.  

 The drain-lag sub circuit  

As already shown in the previous chapter, the drain-lag effect still remains the main trap 

phenomenon that affects the large-signal operation mode. Thus, this paragraph focuses on the 

development of an accurate additive trap model mainly based on the recent work of Jardel et 

al. [41]. The model implemented in this thesis allows predicting the dynamic behavior of trap 

states from DC to the radio-frequency operation mode. The trap dynamic behavior is taken 

into account by the modification of correction term to the pinch-off voltage. The pinch-off 

voltage shift has been identified in this technology as the main cause of the trapping effects 

during RF large signal operation as shown in Figure 2-41. The nonlinear current source 

equations presented in Section 3.4.2.1 have been modified in order to add a correction term to 

the pinch-off voltage (VP0) formulation and also to the parameter IDSS (determining the steady 

state current). To ensure, as much as possible a physical behavior summarized by the 

expression of the density of carriers in the channel as shown in Equation (3-47), both 

contributions are written in order to maintain the proportionality relationship between VP0 

(VTH in Equation (3-47)) and IDSS (qns in Equation (3-47)). 

 𝑞𝑛𝑠(𝐸𝑓 , 𝑉𝐺𝑆) = 𝐶0[𝑉𝐺𝑆 − 𝑉𝑇𝐻] (3-47) 

 

The new nonlinear current source equations taking into account the trapping effects are 

 𝐼𝐷 = 𝐼𝐷𝑆𝑆,𝑇𝑅𝐴𝑃 ∙ 𝑑ℎ𝑦𝑝[𝑉𝐷𝑆𝑁 + 𝐴 ∙ 𝑉𝐷𝑆𝑁
3] ∙ 𝑉𝐺𝑆𝑁 (3-48) 

 𝑣𝑝 = 𝑉𝑃0𝐼𝑁𝑇(𝑡, 𝑉𝑐(𝑡)) + 𝑎𝑏𝑜𝑣𝑒 [−𝑉𝐷𝑆, 𝛽𝑁𝐸𝐺 , 0] + 𝑃 ∙ 𝑉𝐷𝑆 (3-49) 

 
𝐼𝐷𝑆𝑆,𝑇𝑅𝐴𝑃 = 𝐼𝐷𝑆𝑆 ∙ (

𝑉𝑃0𝐼𝑁𝑇(𝑡, 𝑉𝑐(𝑡))

𝑉𝑃0
) 

(3-50) 

 

where 𝑉𝑃0𝐼𝑁𝑇(𝑡, 𝑉𝑐(𝑡)) is the instantaneous output voltage of the drain-lag sub-circuit depicted 

in Figure 3-16. This thermal-trap model is based on the same charging/discharging principle 
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as the gate-lag model.  The instantaneous capacitor voltage VC(t) modifies the pinch-off 

voltage in order to control the nonlinear drain current source. In the model, the amplitude of 

the capture and emission processes of each trap is controlled by the ATRAP parameter whereas 

the constant factor KVP is used to adjust the weight of all trap effects into VP0_INT(t). 

 

Figure 3-16: Schematic of drain-lag model. 

An example of a chronogram of the drain-lag impact observed in dynamic I/V conditions is 

presented in Figure 3-17. It shows the evaluation of the internal voltages in the drain-lag 

model. For this example VDS,HIGH  is assumed large enough to involve a capture process and 

the pulse-width  is large enough to observe emission and capture process: 

1) The emission process appears when the drain voltage varies from VDS,HIGH  to VDS,LOW, 

the diode of the drain-lag sub-circuit is blocked and the capacitor CTRAP is discharged 

through REMI with an associated time constant τEMI. The instantaneous capacitor 

voltage is multiplied by ATRAP,EMI and subtracted from VDS. The resulting transient is 

multiplied by KVP  and subtracted from VP0. The final output voltage VP0_INT directly 

shapes the transient of the IDS drain current. 

2) The capture process appears when the drain voltage varies from VDS,LOW  to VDS,HIGH 

assuming that the emission process is completed. The diode of the drain-lag sub-

circuit conducts and the capacitor CTRAP is charged through RCAP with an associated 

time constant τCAP. The instantaneous capacitor voltage is multiplied by ATRAP,CAP and 

subtracted from VDS. The resulting transient is multiplied by KVP  and subtracted from 

VP0. The final output voltage VP0_INT directly shapes the transient of the IDS drain 

current. 
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Figure 3-17: Chronogram of internal voltages and drain current in the drain-lag sub-

circuit model. 

 Extraction of drain-lag sub-circuit 

The method for the drain-lag model extraction is based on pulsed I/V measurements, LF CW 

S-parameter measurements and DCT measurements. It is possible to identify one trap state 

from LF CW S-parameter measurements and two other different trap states from DCT 

measurements. Therefore, three trap states are modeled in the drain-lag sub-circuit. The trap 

state sub-circuit model is represented in Figure 3-16. 

The first step of the extraction method is based firstly on LF CW S-parameter measurements. 

It consists more specifically in the output conductance frequency dispersion analysis that is 

very sensitive to the drain-lag phenomenon. This characterization allows determining the time 

constant of trap by the frequency peak value of imaginary part of Y22, as demonstrated in 

Section 2.3.4. Then, it is easy to implement the trap model with the deduced time constants 

(τ=REMI × CTRAP) from the results of the measurements of the imaginary part of Y22. This low-
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frequency S-parameter measurements method has the major advantage, in addition to pulsed 

I/V measurements, of making the traps only dependent on the biasing of the transistor. Figure 

3-18 shows the comparison of low-frequency Y22-parameter variation between measured and 

simulated results at 80°C. In the following, this trapping phenomenon is labeled “E2”.  

 

Figure 3-18: Measurement (blue solid line) and simulation results (black dotted line) of 

imaginary part of Y22 from 100 Hz to 10 MHz frequency range at IDS =25 mA/mm and 

VDS=40 V at 80°C. 

The second step of modeling the trap consists of analyzing the bias drain current measured 

during DC excitation. The trap model described in Jardel et al. [41], is then modified to 

simplify and make easier the extraction of the parameter values of the drain-lag model (ATRAP 

and τ in Figure 3-16) by fitting the drain current transient measurement results after stress DC 

condition. The stretched multi-exponential function used to fit the measured results is 

described by Equation (2-15). The measurement and simulation results of drain current 

analysis consists in 100 s of DC filling pulse (VDF; IDF)=(40V;50mA) and another 100 s in the 

DC de-trapping condition (VDM; IDM)=(5V;100mA) are shown in Figure 3-19. In particular, 

the de-trapping transient simulation exhibits the CC after the transition and the time constants 

of the two trapping phenomena: the capture process labeled “E3” and the emission process 

labeled “E4” (the impact of “E3” is minimal). The capture process is implemented with 

negative trap amplitude. The modeling of the drain current is realized on ADS software using 

a transient simulation. In order to simplify the parameter extraction of the drain-model for 

modeling the drain current transient, we have added a diode branch with REMI in this way the 

τEMI= REMI × CTRAP. Therefore, the emission time constant does not depend on RCAP. This 

modification is used only for the trap state model that issues from DCT measurement.  
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Figure 3-19: (a) Drain current measurement (blue solid line) and simulation results 

(black dotted line) for 100 s device is biased under DC filling pulse (VDF; IDF)=(40V; 50 

mA), subsequently biased for another 100 s in the de-trapping condition (VDM; IDM)=(5 

V; 100 mA) at 60°C. (b) De-trapping transient measurements (blue solid line) and 

simulation results (black dotted line) at 60°C. 

 

Figure 3-20: Measurement (crosses) and simulation results (solid line) of pulsed I/V 

characteristic in (a) cold condition, (b) gate-lag condition, (c) drain-lag condition and (d) 

hot condition with TON/TOFF=1µs/99µs and VGS from 0V to -4V (-0.5V/step). 

Lastly, the amplitudes of the trap density ATRAP and pinch-off voltage correction term KVP (in 

Figure 3-16) are refined to predict the correct dispersion level of pulsed I/V measurements at 

different quiescent points, drain current transient measurement excitations, and low-frequency 

CW S-parameter measurements. A virtual pulsed test bench is realized on ADS software 

using a transient simulation to obtain the pulsed I/V characteristic of the model. The 

comparison of measured and modeled pulsed I/V characteristics at different quiescent bias 
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points is shown in Figure 3-20. As shown in Figure 3-20 the model shows a good match with 

the measurements in drain-lag and hot conditions. However, in cold and gate-lag conditions, 

the amplitude of the drain current for a high gate voltage is not attained (the trap amplitude is 

too weak for high gate voltages). 

 Thermal electrical model extraction 

The trap states are strongly sensitive to the device’s operating temperature. It is then 

necessary to accurately estimate the junction temperature to predict the dynamic behavior of 

the traps at several temperatures.  

In order to model the temperature evolution, the thermal analog circuit shown in Figure 3-21 

is used. The temperature rises exponentially as a function of time for a fixed dissipated power. 

Thus, a suitable electrical representation consists of parallel R-C cells with different time 

constants (τn= Rn×Cn). The dissipated power, calculated in the intrinsic current source, is 

represented as a current source in the input of the R-C network, and the self-heating is 

implemented by the output circuit voltage. The ambient temperature is associated with an 

initial voltage. The junction temperature device is dependent on the power dissipation by 

adding the room temperature as a voltage source. 

To estimate the thermal impedance versus time, a 3-D finite-element simulation with ANSYS 

software was performed by applying a dissipated power of 2.25 W/mm. Thus, the equivalent 

thermal RC-network model is determined by the 3-D finite-element simulation, as shown in 

Figure 3-22. The 3-D finite element simulations were provided by R. Sommet. 

 

Figure 3-21: Thermal analog circuit implemented in the nonlinear current source model. 
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Figure 3-22: Thermal impedance versus time. The solid line with square in red 

corresponds to 3-D finite element simulation for a dissipated power equal to 2.25 W/mm 

obtained by ANSYS software. The solid line in blue corresponds to the values given by 

the electrical model with four RC cells. 

3.4.3.4.1 Thermal dependence of output current source  

The thermal dependence of the output current source is extracted from pulsed I/V network 

measurements in hot condition (VDS,Q; IDS,Q)=(40 V; 50 mA) at different temperatures as 

shown in Figure 3-23. It can be observed that the saturation drain current decreases when the 

temperature increases. It can be also seen that the pinch-off shifts leftward with an increase in 

temperature. In order to model the thermal variation of the pulsed IDS-VDS and IDS-VGS 

characteristics a thermal linear dependency is applied on the drain current saturation 

parameter, output conductance parameter and pinch-off voltage parameter: 

 𝐼𝐷𝑆𝑆 =  𝐼𝐷𝑆𝑆0 ∙ (1 + 𝛼𝐼𝑑𝑠𝑠 ∙ 𝑇) (3-51) 

 𝑃 =  𝑃0 ∙ (1 + 𝛼𝑃0 ∙ 𝑇) (3-52) 

 𝑉𝑃0 =  𝑉𝑃00 ∙ (1 + 𝛼𝑉𝑝0 ∙ 𝑇) (3-53) 

   

The parameters for the thermal dependence of the output current source are shown in Table 

10. 
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Figure 3-23: Measurement (solid line) and simulation results (crosses) at several 

temperatures of pulsed (a) IDS-VDS characteristic in hot condition (VDS,Q; 

IDS,Q)=(40V;50mA) at VGS=0V, (b) IDS-VGS characteristic at VDS=40 V and (c) zoom of 

IDS-VGS characteristic at VDS=40 V. 

TABLE 10 
THERMAL DEPENDENCY PARAMETERS OF OUTPUT CURRENT SOURCE 

IDSS0 αIdss P0 αP0 VP0 αVP0 

1.02 -0.0025 0.0001 -0.00001 1.6 0.0008 

 

3.4.3.4.2 Thermal-trap model  

In the thermal-trap model, it is assumed that each defect is represented by a capacitance CTRAP 

and that the values of the resistances RCAP and REMI determine respectively the capture and 

emission time constants [95]. Hence, a change of capture/emission time constant due to an 

increase of temperature corresponds to a change of capture/emission resistance. Therefore, in 

this drain-lag model, the temperature dependence of the traps is incorporated into the capture 

RCAP(T°) and emission REMI(T°) resistances. Assuming that the trap density does not change 

with temperature, the multiplying factor ATRAP remains constant with respect to the 

temperature variation. This model also makes the assumption of a strong dissymmetry of GaN 

technology between the capture and emission time constants. Indeed, the capture time 

constant usually falls into the nanoseconds-microseconds range during the trapping phase 

while the emission time constant falls into the microseconds-seconds range during the de-

trapping phase in GaN HEMTs. With this assumption on the capture time constants, the 
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temperature dependence of the capture process is not applied. To summarize, three charge-

trapping RC networks coupled with diodes were implemented in thermal drain-lag model. 

The first one takes into account the small-signal dispersion that has a fast emission time 

constant (in the microseconds-milliseconds range) as trap phenomenon “E2”. The second and 

third RC networks are used to model the slow dispersion due to the large-signal operation 

mode, where the associated slow time constants are in the milliseconds-minutes range, such 

as trap phenomena “E3” and “E4”. 

The new drain-lag sub-circuit including the thermal dependence is shown in Figure 3-24. 

Each resistance follows a thermal dependence as given in Equation (3-54).  

 𝑅𝐸𝑀𝐼(𝑇) =  𝑅𝐸𝑀𝐼0 ∙ 𝑒
(𝛼𝐸𝑀𝐼∙𝑇) (3-54) 

 

 

Figure 3-24: Schematic of thermal drain-lag model. 

TABLE 11 
THERMAL DEPENDENCE OF EMISSION RESISTANCES 

REMI0_E2 αEMI_E2 REMI0_E3 αEMI_E3 REMI0_E4 αEMI_E4 

0.015 -0.0055 4.7 -0.076 101.5 -0.065 

 

The thermal activation of traps “E2”, “E3” and “E4” and therefore their emission resistance 

variations are determined by LF Y22 measurements for “E2” and DCT measurements for “E3” 

and “E4” at different temperatures. The parameter values of Equation (3-54) are shown in 

Table 11 for the three traps identified. In the case of capture process “E3” during the de-

trapping transient, as described before, the trap amplitude (ATRAP) is assumed to be negative, 

so as to predict the drain current reduction. Consequently, the thermal dependence of the trap 

is applied to REMI to produce the correct temperature variation of the emission process. 

The leftward frequency shift of trap “E2” and the rightward time constant shift of trap “E3” 

and “E4” with increasing temperature are correctly modeled.  
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Figure 3-25(a) compares the LF Y22-parameter of the measured and simulated results when 

the temperature varies from 80°C to 130°C.  

Figure 3-26(a) presents the comparison of DCT measurements and corresponding transient 

simulation for DC pulse excitation (shown in Figure 2-14) with the two voltage levels (VDS,F; 

IDS,F)=(40 V; 50 mA) and (VDS,M; IDS,M)=(5 V; 100 mA) at different temperatures.  

Figure 3-27(a) compares the measurement and envelope simulation results of GaN HEMT 

driven by an RF pulse signal (corresponding to a 27 dBm input average power) at different 

temperatures. In this experiment, the GaN HEMT is also biased with a synchronized DC pulse 

signal with voltage levels (VDS,F; IDS,F)=(40 V; 50 mA) and (VDS,M; IDS,M)=(5 V; 100 mA). For 

both DCT comparison results are only shown during the de-trapping transients as shown in 

Figure 3-26(a) and Figure 3-27(a) and demonstrated a good agreement between measured and 

simulated results validating the new developed electro-thermal model with the new thermally 

dependent trapping model. 

This new model accurately predicts the increase of average drain current due to the slow 

emission processes after DC transition and after cut-off of the pulsed RF excitation. Thanks to 

the determination of the trapping model parameter assisted with stretched multi-exponential 

fitting, the de-trapping phenomena shown in Figure 3-26(a) and in Figure 3-27(a) improved 

the model accuracy with respect to [41]. Moreover, for each trapping analysis simulation, the 

related Arrhenius plot is determined by substituting the simulated emission rate in the 

Arrhenius formula (2-11). The good agreement between the measured and simulated 

Arrhenius plots of the “E2”, “E3” and “E4” trap signatures are shown in Figure 3-25(b), 

Figure 3-26(b) and Figure 3-27(b). 

 

Figure 3-25: (a) Measurement (solid line) and simulation results (black dotted line) of 

imaginary part of Y22 from 100 Hz to 10 MHz frequency range at IDS =25 mA/mm and 

VDS=40 V for different temperatures. (b) Related Arrhenius plot. 
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Figure 3-26: (a) DCT Measurement (clear solid line) and simulation results (black 

dotted line) of de-trapping average drain current transients in (VDS,M; 

IDS,M)=(5V;50mA/mm) condition after 100 s in (VDS,F; IDS,F)=(40V;25mA/mm) for 

different temperatures. (b) Related Arrhenius plot. 

 

Figure 3-27: (a) DCT Measurement (clear solid line) and simulation results (black 

dotted line) of de-trapping average drain current transients in (VDS,M; 

IDS,M)=(5V;50mA/mm) condition after 100 s in (VDS,F; IDS,F)=(40V;25mA/mm) for 

different temperatures and when the HEMT is driven by a pulse signal (27 dBm input 

average power). (b) Related Arrhenius plot. 

3.4.4 Model validation 

The thermal nonlinear model is firstly validated under small-signal excitation for the bias 

point corresponding to the RF application operation mode (IDS; VDS)= (50 mA, 40V). Indeed, 

some model parameters are adjusted (e.g.  CGS, CGD, gm and gd) during the successive 

nonlinear modeling phases. Finally, the comparison between measured and simulated S-

parameters are shown in Figure 3-28.  



Nonlinear Electro-Thermal model of AlGaN/GaN HEMT   
 

97 

 

 

Figure 3-28: Measurement (red solid line) and simulation results (black dotted line) of 

pulsed S-parameter measurement at (IDS,Q ; VDS,Q)= (IDS,M ; VDS,M)= (50 mA, 40V) from 

0.5 GHz to 12 GHz frequency range. 

The more important model validation step is the one performed under large-signal operating 

mode. In this case, the nonlinear model is expected to be as faithful as possible to the RF 

measurement. Figure 3-29 shows the good agreement between the measured CW RF 

performances for 4 GHz in class AB operation mode (IDS =25 mA/mm at VDS=40 V for a 

fixed temperature of 25°C and maximum PAE impedance ZloadMAXPAE(f0) equal to 20.5+j44 

Ω) and the electro-thermal model with thermal drain-lag circuits. 

 
Figure 3-29: Measurements (blue solid line) and simulation results (black dotted line) of 

the CW RF performances in class AB operation mode at 4 GHz, temperature 25°C and 

ZloadMAXPAE(f0)=20.5+j44 Ω. 

To validate the large-signal dynamic, the drain current transient measurements during pulsed-

DC and pulsed-RF excitation are compared with new model in Figure 3-30. This comparison 

shows that the increase of average drain current, time constant and trap amplitude after the 
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filling phase with respect to the input power’s increasing is correctly modeled and is due to 

the capture and emission trap process excited by gate and drain large-signal voltage 

excursions during the RF excitation. 

 

Figure 3-30: (a) Drain current measurement (solid line) and simulation results (black 

dotted line) of 100s under DC filling pulse (VDS,F; IDS,F)=(40V;50mA) and different input 

power and without input power and after another 100 s under de-trapping condition 

(VDS,M; IDS,M)=(5V;100mA) at 60°C. (b) De-trapping transient measurements (solid line) 

and simulation results (black dotted line) at 60°C. 

Unfortunately, the model has an inconsistency in the trap modeling. It can be observed with 

the comparison of LF Y22 parameter measurements and the simulation results presented in 

Figure 3-31. This figure shows that the simulated results of the real part of Y22, when “E2”, 

“E3” and “E4” trap models are activated, do not agree with the measurement results. But it 

can be noted that the gd value determined from the measurement is closer to the gd value 

determined from the simulation with “E2” only activated. This inconsistency of the trapping 

model during small-signal operation mode can be explained firstly by the model’s simplicity 

and secondly by the fact that we simulate several trapping phenomena detected with different 

operating modes which may be not involved during this operation mode. At the moment, the 

role of the trapping phenomena in LF Y-parameter dispersion is not completely clear, so 

complementary physical simulations are necessary to understand these trapping phenomena 

and consequently propose a new trap model which agrees with the LF Y22-parameter 

measurements. 
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Figure 3-31: (a) Measurement (red solid line), simulation results (black solid line) with 

all traps activated and modeling (black dotted line) with different traps activated of (a) 

real and (b) imaginary parts of Y22 at IDS =25 mA/mm and VDS=40 V at 80°C.  

 Conclusion  

This chapter presents a method and an operating process to extract the nonlinear electro-

thermal AlGaN/GaN model for CAD application with a new additive thermal-trap model to 

take into account the dynamic behavior of the trap states and their associated temperature 

variation. The extraction of a nonlinear electro-thermal model of AlGaN/GaN HEMT and its 

performance evaluation are based on pulsed I/V measurements, multi-bias pulsed S-parameter 

measurements and pulsed large-signal measurements. In particular, a new method for the 

extraction method of the intrinsic parameters is used. It is based on LF S-parameter 

measurements. One challenge of this work is to propose a new thermal-trap model which 

takes into account the dynamic behavior and to reach a good agreement for low-frequency 

small-signal CW S-parameter results on the one hand and for large-signal pulsed-RF results 
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on the other hand at different temperatures. This thermal-trap model allows accurately 

predicting the physical temperature activation of the traps and also the thermal signature of 

the traps. It is also demonstrated that the extrapolation of trap model parameters by stretched 

multi-exponential function of drain current transient measurements during pulsed-RF 

excitations allows greatly improving the low-frequency simulations of the drain current. The 

presented thermal-trap model correctly models the pinch–off voltage shift due to trapping 

phenomena and temperature. Unfortunately, the trap model has an inconsistency in the 

simulation of real part of Y22. A possible perspective for the continuation of this research 

would certainly be the resolution of the trap model’s inconsistency, but also the introduction 

of a pulse-width dependence into the trap amplitude and time constant parameters of the 

thermal-trap model for radar and telecommunication applications.   
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4 Time-domain large-signal reliability 

investigation of AlGaN/GaN HEMT 

 Introduction 

As is well established, AlGaN/GaN HEMTs are a promising candidate for RF power 

applications in space equipment due to their excellent performance. However, this technology 

requires extensive study of its reliability and its conditions of use. Reliability is a prerequisite 

for space equipment, because it must work for at least 15 years (satellite operating lifetimes 

can range from five to ten years for Earth observation missions and up to eighteen years for 

telecommunication satellites [2]). Moreover, the power amplifier is a circuit function that 

must work under constraining operating conditions (high currents, high temperatures, high-

frequency operation, high gate-source and drain-source voltage excursions, and high power). 

Therefore, reliability aspects are of paramount importance. So, the wear out failure 

mechanisms must be understood and modeled to achieve some advances for design tools. One 

of the failure mechanisms recently identified in GaN HEMTs is the generation of deep levels 

due to a trapping effect which is extensively discussed in Chapter 2. 

The aim of this chapter is to report an advanced time-domain methodology to investigate the 

device reliability and determine its safe operating area (SOA). This methodology was applied 

(by the Thales Alenia Space company) in order to carry out a further assessment of GH 50-10 

AlGAN/GaN for the SiC HFET technology already qualified [96]. The presented technique is 

based on the continued monitoring of the RF waveforms and DC parameters in order to assess 

the degradation of the transistor characteristics in RF power amplifiers. Moreover, a complete 

characterization protocol is associated to the time-domain methodology in order to obtain a 

nonlinear electro-thermal model that takes into account the RF performance variations during 

the RF stress and its degradation. This reliability model can be used by designers to predict 

the RF degradation during real RF overdrive operation conditions in the design phase. 

 

The first part of the chapter provides an overview of reliability test methodology and failure 

mechanisms.  

The second part presents first the set-up to determine the time-domain large-signal RF 

waveforms and secondly the complete characterization protocol for the reliability 

investigation. 
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The last part of this chapter shows the reliability results carried out in class AB operation 

mode under RF power step-stress and 240 hours RF life stress with time-domain waveform 

monitoring at high drain bias voltages and overdrive conditions (12 dB compression) for two 

different output load impedances corresponding to the optimum of PAE and to a mismatched 

impedance. 

 Reliability Testing 

Before presenting an accelerated reliability testing of AlGaN/GaN HEMTs, the following 

section summarizes some basic concepts to understand reliability analysis. 

4.2.1 Analysis of reliability  

The reliability of a population of devices (R) is defined as the number of devices 

𝑁(𝑡) surviving until the time (𝑡) divided by the total number of devices 𝑁 (i.e. R = 𝑁(𝑡) 𝑁⁄ ). 

The cumulative failure distribution function 𝐹(𝑡) is the probability that an item operating at 

time t=0 under the stated condition, fails at or before time 𝑡. Therefore, it is defined as 𝐹(𝑡) =

1 − 𝑅(𝑡). Its derivate represents the failure probability distribution function 𝑓(𝑡) = 𝜕𝐹(𝑡) 𝜕𝑡⁄  

and the probability of device failure between 𝑡 and 𝑡 + 𝜕𝑡 is equal to 𝑓(𝑡)𝜕𝑡. The mean time 

to failure (MTTF) is the average time to first failure under the specified experimental 

condition. It is calculated by integrating between 0 and ∞ the device lifetime (i. e.  𝑡 ∙ 𝑓(𝑡)𝜕𝑡) 

as shown in the following equation:  

 

𝑀𝑇𝑇𝐹 = ∫ 𝑡 ∙ 𝑓(𝑡)𝜕𝑡
∞

0

 
(4-1) 

 

For electronic devices generally two specific probability distribution function are considered 

the “lognormal” and the “Weibull” [97] in order to analyze reliability results and to 

characterize the failure mechanism. The measurement of reliability for semiconductors 

generally involves failure rates. The evolution of the failure rates for a population of 

semiconductor components (or any other sort of population) as a function of  time is 

described by the “bathtub” curve [98] in Figure 4-1. In particular, the Weibull distribution is 

used to mimic the “bathtub” curve. 
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Figure 4-1: Bathtub curve describing the time dependence of failure rate for an 

electronic device. 

The initial region that begins at time zero when a device begins to be used is characterized by 

a high but rapidly decreasing failure rate. This region is known as the early failure period or 

“infant mortality” period. “Infant mortality” failures are due to defects of the component 

occurring before the expected end of life. Defect-related problems are principally induced by 

manufacturing flaws (such as a missing process step, contamination, undetected excursions, 

wide variation, fabrication processes…). In order to weed out those defects, the manufacturers 

will often perform a “burn in” on all components. In the next region, the failure rate remains 

roughly constant and low. This period of a low failure rate is usually identified as the 

“random” failure period, and it characterizes the useful life of components where the lowest 

failure rate occurs. Finally, the failure rate begins to increase as materials wear out and 

degradation occurs at an ever increasing rate. This is known as the “wear out” failure period. 

End of life wear out refers to the natural process where components will begin to develop 

faults and problems. Gradual degradation in the parameters of a device is typically mimicked 

with accelerated life-test conditions.  

4.2.2 Accelerated life test 

Satellite communication systems (such as HPAs) are expected to have a long life and it is 

quite impractical to measure their reliability under ordinary conditions. Accelerated tests are 

used to obtain reliability predictions in a much shorter time than that required to produce a 

significant number of failures under normal operating conditions. So in general, the median 

time to failures are extrapolated by means of an accelerated factor [99] to induce a specific 

electrical constraint, such as 

 Temperature acceleration, 
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 Current acceleration (one of the principal wear out failure mechanisms is electro-

migration), 

 Voltage acceleration (involves the transistor but also the overall components around it, 

such as MIM capacitors sensitive to breakdown voltage, the voltage acceleration 

subsequently induces an electric field acceleration), 

 RF bias acceleration (one of major failure mechanisms is hot carrier injection). 

In order to determine the MTTF, the corresponding acceleration law depends on the involved 

failure mechanism (e.g. accelerated by temperature), the Arrhenius law is adopted and the 

MTTF is given by 

 

𝑀𝑇𝑇𝐹 = 𝛾0𝑒𝑥𝑝 (
𝐸𝑎
𝑘𝑇
) 

(4-2) 

 

where 𝛾0 is constant, 𝐸𝑎is the activation energy(eV), 𝑘 is Boltzmann’s constant and 𝑇 is 

absolute temperature (K). Both 𝛾0 and 𝐸𝑎 depend on the specific failure mechanism involved. 

The definition of “failure” is one of the most subjective and arbitrary aspects in measuring 

reliability, yet it is necessary to evaluate the median time to failure. The failure can be defined 

as, e.g., a reduction in the drain current by 10%, a increase in the leakage current by 10%, a 

reduction in gain by 1 dB, a reduction in output power by 1 dBm, a reduction in gain 

compression by 1 dBc. 

An example of accelerated testing of GaN-based heterojunction field effect transistors 

submitted to a three high temperatures operating life test is shown in Figure 4-2. Cumulative 

failure rates are recorded and the MTTF for each of the three temperatures is established. The 

Arrhenius plots of the MTTF determined at three different temperatures is shown in Figure 

4-2, which leads to an activation energy of about 2 eV and an extrapolated MTTF value 

greater than 107 hours at 150 °C.  

In the following, we summarize the main accelerated life tests: 

 HTS (high temperature storage test): The device is unbiased and stored at different 

temperatures. This test allows studying the thermal activation of the failure 

mechanism. 

 HTO (high temperature operating-life test): The device is biased under normal 

conditions and stored at different temperatures. This allows studying the combined 

effects of thermal and electrical stresses. 
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 HTRB (high temperature reverse bias): The device is biased under reverse condition 

close to breakdown voltage at high temperature. This allows to study the effects of 

high electric fields and temperatures. 

 

Figure 4-2: (Top) Three-temperature (3T) lifetime test data showing the cumulative 

failure rates versus time obtained at three different temperatures, namely, 180 °C, 285 

°C, and 310 °C. The σ values for 180 °C and 285 °C are approximately 1 but that at 310 

°C is 1.5, which might imply contribution by infant failure. (Bottom) Arrhenius plot of 

the MTTF determined at three different temperatures, namely,180 °C, 285 °C, and 310 

°C, which lead to an activation energy of about 2 eV and an extrapolated MTTF value 

greater than 107 hours at 150 °C [100]. 

In particular, the HTO test can be performed under either DC or RF operating conditions. 

Normally, DC testing is used for a preliminary investigation of the reliability, which is, in 

general, easier to set up and less expensive. In the other way, the RF life test can drive the 

device in real working conditions.  

In order to induce an accelerated degradation, these tests are performed with step-stress 

techniques (e.g., reverse gate step-stress, VDS step-stress, PIN step-stress and VDS step-stress 

with fixed PIN). 
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4.2.3 Physical failure mechanisms 

As a relatively new semiconductor technology, a lot of research groups have devoted much 

effort to the identification and understanding of the failure mechanisms of AlGaN/GaN 

HEMTs. In the following, we discuss some of the key failure mechanisms presented in the 

literature which have been identified though DC and/or RF characterization techniques. A 

recent publication, Meneghesso et al. [26] has highlighted failure mechanisms identified on 

GaN based HEMTs. They are reported on a cross-section in Figure 4-3. These mechanisms 

have never been clearly identified in the other semiconductors. 

 

Figure 4-3: Failure mechanisms recently identified on GaN HEMTs. Mechanisms 

identified in red (5, 6, 7, 8) are thermally activated mechanisms. Mechanisms 2 and 3 are 

related to the presence of hot electrons under high bias conditions. Mechanisms 1 and 4 

(green) are peculiar to GaN devices due to the polar and piezoelectric nature of this 

semiconductor [26]. 

These failure mechanisms can be divided into three main categories: 

 Failure mechanisms which can be associated with the properties of GaN based 

material. (mechanisms 1 and 4 in Figure 4-3) 

 Hot-electron induced degradation mechanisms (mechanisms 2 and 3 in Figure 4-3). 

 Thermally-activated mechanisms (mechanisms from 5 to 8 in Figure 4-3). 
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 Gate edge degradation 

Under RF operating conditions, the large RF gate and drain voltage swings can involve high 

electric fields particularly concentrated at the edge of the gate contact, which may producee a 

degradation of the reliability. This high electric field condition can also be studied under DC 

excitation (when high reverse bias voltages are applied to the gate, with the drain and gate 

voltages set to zero). Consequently, a degradation of the electrical characteristics can appear: 

 an increasing of gate leakage and CC; 

 an increase of drain-source resistance;  

 a decrease of saturation drain current. 

This degradation involves the presence or the generation of defects at the edge of the gate by 

higher electric fields which can produce an injection of electrons from the gate to the AlGaN 

barrier layer through a tunneling mechanism. A reverse-bias step-stress is carried out in OFF-

state with VD=VS=0 V, in order to verify the presence of this failure mechanism that appears 

when a strong gate leakage increase is obtained for a certain reverse voltage. Another 

powerful tool for reliability investigation that is normally used for the detection of hot-

electron phenomena is electroluminescence (EL) microscopy.  EL microscopy is used to 

detect the locations of a reverse current injection point and damaged areas. An example of 

false-color EL micrographs is shown in Figure 4-4. In the transfer length method (TLM), the 

device is submitted to a reverse bias step-stress with source and drain to ground.  Figure 4-4  

shows that after the step at -40 V, the EL spot and IG increase by 100x after starting being 

observed. An increase in VG shows an increase of the point density of the defects and an 

increase in the damage around each point. Moreover, the spots detected by EL were always 

located at the edge of the gate towards the drain and source, where the electric field is 

maximal. 
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Figure 4-4: EL microscopy images of a representative gated TLM HEMT sample. 

Images were taken at VG =10 V (with VS = VD = 0 V) after each step-stress. Dashed lines 

identify the device’s active area [26]. 

  Thermally activated failure mechanism 

Figure 4-5 shows a DC life test carried out at VDS=40 V and IDS=200 mA for different base-

plate temperatures. To investigate the degradation, the bias was stopped at regular intervals in 

order to carry out DC and pulsed I/V measurements of the device. The devices show in Figure 

4-5 and Figure 4-6 an increase of gate leakage and a decrease of drain current. Moreover, 

Figure 4-7 shows an enhancement of the trapping effects. 

 

Figure 4-5: Relative decrease in drain current for the four junction temperature of the 

DC test stress test at VDS = 40 V, ID = 200 mA. Devices periphery is 1.2 mm, gate length 

LG = 0.5 µm, and the source-to-drain distance LSD=3.7µm [26]. 
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Figure 4-6: Comparison of the gate leakage current in off-state in untreated (gray) and 

aged devices at VDS = 40 V, ID = 200 mA at different temperatures. Devices periphery is 

1.2 mm, gate length LG = 0.5 mm, and thesource-to-drain distance LSD = 3.7 mm. 

 

Figure 4-7: Pulsed DC characteristics measured in a representative device after 200 h of 

DC testing at 245 °C, with VDS = 40 V, ID = 200 mA. Devices periphery is 1.2 µm, gate 

length LG = 0.5 µm, and the source-to-drain distance LSD = 3.7 µm [26]. 

 Hot electron degradation 

Hot electron degradation is another failure mechanism that is involved when the device is 

driven in on-state at high VDS. Thus, the 2DEG channel of electrons is accelerated by a high 

electric field and reaches a high energy. The electron become “hot” when the electron can 

overcome the energy barrier and when its energy decreases due to collision with the crystal 

and with the formation of defects or dangling bonds (i.e. the trapping effect in the surface or 

in the GaN buffer). In order to assess the reliability with respect to hot electron degradation, 

the EL microscopy is used. 

In order to characterize hot electron effects, the EL measurements were carried out in [101] at 

different VGS and VDS levels as shown in Figure 4-8. At fixed VDS EL intensity has a non-

monotonic “bell-shaped” behavior. In OFF-state, VGS is smaller than the pinch-off value. 
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Thus, the gate-drain voltage and the electric field are maximal. But, there are no carriers into 

the channel so that no light is emitted. When VGS increases, the carriers begin to flow and 

they are accelerated by the electric field so that light is emitted. The emitted light is associated 

to the population of electrons in the channel. The light intensity increases with an increase in 

VGS until a certain value of VGS is reached. This value implies that the electrons have less 

energy so that the light intensity decreases. It is obvious that light is emitted with increasing 

VDS because the electric field increases thus the electrons are more energetic. The light 

intensity increases and defect density due to hot electrons increases.  

 

Figure 4-8: EL intensity vs VGS curves measured for different VDS levels on one of the 

analyzed samples (before any stress) [101]. 

 Time-domain continuous RF waveform monitoring under 

stress overdrive condition 

As is well explicated, among the various reliability tests, RF stress is an established technique 

to evaluate the lifetime of a transistor in RF power amplifiers, because the device works under 

realistic operating conditions. Conventional RF stress systems [102] are capable of measuring 

the DC parameters, and the input and output RF powers. An improved time-domain RF stress 

methodology with improved capabilities is proposed in this thesis. The system is extended to 

continually measure the calibrated time-domain RF waveforms at both ports of the nonlinear 

DUT, thanks to the use of an LSNA system. This methodology is expected to provide more 

information about the cause of the degradation mechanism. This approach is similar to [103]. 

In [103], the capability of the RF I/V waveform stress test procedure is shown. In this thesis, 

this approach is also applied to the GH50 technology, with an increase of stress time (240 
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hours) under very high compression operation mode in order to emulate a more realistic 

overdrive operating condition. 

4.3.1 Time-domain continuous RF waveform stress set-up 

The experimental set-up used for time-domain continuous RF waveform stress is based on the 

use of an LSNA measurement system configured in a load-pull test bench, as shown in Figure 

4-9. 

 

Figure 4-9.  Block diagram of the time-domain continuous RF waveforms stress set-up 

based on LSNA system. 

 

Figure 4-10: LSNA internal block diagram. 

The simplified internal principle of LSNA is shown in Figure 4-10. LSNA measures four 

periodic RF waves: the incident and reflected waves at input and output of the DUT from 600 

MHz up to 50 GHz with a dedicated test bench. The incident and reflected RF waves at both 

ports of the DUT are measured through two bidirectional couplers. These signals are then 

undersampled simultaneously by the four samplers of the front end of the LSNA. This 

undersampling principle allows the conversion and translation of the RF signal to IF 

bandwidth (10 MHz). The resulting IF signals are digitized by four synchronized ADCs. 
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Finally, a computer processes all the data to get the absolute phases and absolute amplitudes 

of the fundamental and harmonic frequencies [104]. The principle of frequency conversion-

translation is shown in Figure 4-11. In this example, the fundamental frequency is equal to 

FRF=1 GHz, the frequency of the FrancN synthesizer is equal to FLO=19.6 MHz. 

Consequently, the IF frequency is calculated as FIF = FRF − N × FLO with N the number of 

periods required to obtain the final digitalized signal. In the given example, the IF frequency 

corresponding to the FRF frequency is FIF=400 KHz. The same calibration is performed for 

other harmonics [104]. In order to obtain the calibrated RF voltage and current waveforms at 

the DUT planes, the LSNA needs a specific calibration protocol based on relative and 

absolute calibration. The error model used in the LSNA system is described in [106]. The 

error model in Equation (4-3) is only available for connectorized devices. The extension of 

the measurement system from connectorized devices to on-wafer devices implies an 

additional calibration between the a1 and b1 ports of the LSNA and the test set port1 RF 

input, because there are no power sensors or reference generators available on-wafer which 

can be used to determine 𝐾(𝑓) [107], [108]. 

 

Figure 4-11: LSNA Frequency down-converter principle [105]. 
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[

𝑎1𝐷𝑈𝑇(𝑓)
𝑎2𝐷𝑈𝑇(𝑓)
𝑎3𝐷𝑈𝑇(𝑓)
𝑎4𝐷𝑈𝑇(𝑓)

] = |𝐾(𝑓)| ∙ 𝑒𝑗∙𝜑
(𝐾(𝑓))

[

1 𝛽1(𝑓)
𝛾1(𝑓) 𝛿1(𝑓)

0       0
0      0

0       0
0       0

𝛼2(𝑓) 𝛽2(𝑓)
𝛾2(𝑓) 𝛿2(𝑓)

] ∙ [

𝑎1𝑚(𝑓)
𝑎2𝑚(𝑓)
𝑎3𝑚(𝑓)
𝑎4𝑚(𝑓)

] 

 

(4-3) 

 
 

 

The absolute calibration elements, the power meter sensor and the harmonic phase reference 

(HPR) are therefore connected to the port1 RF input (as shown in Figure 4-13) and the 

measurement results are transformed to the port1 probe tip according to Equation (4-4). 

 

[
𝑎1𝑝𝑜𝑟𝑡1(𝑓)

𝑎2𝑝𝑜𝑟𝑡1(𝑓)
] = 𝐿(𝑓) ∙ [

1 𝜆(𝑓)

µ(𝑓) 𝜈(𝑓)
] ∙ (𝐾(𝑓) ∙ [

1 𝛽1(𝑓)
𝛾1(𝑓) 𝛿1(𝑓)

])
−1

∙ [
𝑎1𝐷𝑈𝑇(𝑓)
𝑎2𝐷𝑈𝑇(𝑓)

] 
(4-4) 

 

The error coefficients 𝛽1(𝑓), 𝛾1(𝑓), 𝛿1(𝑓), 𝛼2(𝑓), 𝛽2(𝑓)𝛾2(𝑓) and 𝛿2(𝑓) are calculated from 

the on-wafer relative (SOLT) calibration. The error coefficient µ(𝑓), 𝜆(𝑓) and 𝜈(𝑓) are 

known after execution of the SOL calibration at the port1 RF input. 𝐿(𝑓) is known after 

connecting the harmonic phase and a power meter at port1 RF input. 

 

 

Figure 4-12: Configuration for on-wafer relative calibration. 

 

Figure 4-13: Configuration for on-wafer absolute magnitude and phase calibration. 
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4.3.2 Reliability test procedure 

The measurements of the continuous RF waveforms during the RF stress under overdrive 

condition consists on recording (every 10 minutes) the calibrated time-domain voltage and 

current waveforms of the DUT driven by a CW large signal and loaded with a fixed 

impedance at fundamental and harmonic frequencies. The DUT used for all stress tests is an 

8×250 µm GH 50 AlGaN/GaN HEMT. The reliability test procedure includes a monitored RF 

stress considering a 24 h or a 240 h step stress under overdrive condition at different given 

compression levels. A specific characterization protocol is carried out before and after each 

RF step-stress. The reliability test procedure is an adaptation of the one used in [102]. 

 Characterization protocols 

Two characterization protocols have been performed: the first, called the “short 

characterization protocol” is associated to a 24 h RF step-stress under overdrive operating 

condition. The second one, called the “full characterization protocol” is associated to 240 h 

step-stress under overdrive operating condition at a given compression value.  

The short characterization protocol is carried out before and after each RF 24 h step-stress at 

different compression gain values. This protocol, in addition to a DC I/V characterization for 

classic device degradation assessments, is extended with pulsed I/V measurements to quantify 

trapping effects, with pulsed S-parameter measurements, and with power sweep 

measurements. This short characterization protocol is also used to determine a nonlinear 

electro-thermal model [69] taking into account the RF performance variation during the RF 

stress and its degradation. Thus, the short characterization protocol is composed of the 

following measurements: 

 DC I/V measurements are carried out with a Keithley 4200 semiconductor 

characterization system (SCS) [109] equipped with two 4210 high power source 

measurement units (SMUs) for the gate and drain probes. In addition, the 4225-RPM 

(remote amplifier/switch module) are connected to the 4210 SMU that is at the gate, 

allowing a highly accurate characterization of the gate current. The DC I/V 

measurement allows the following characterizations: 

o Diode gate-source characterization with a VGS sweep from -8 V to 1 V with a 

0.05 V voltage step. 

o ID-VD characterization with a VDS sweep from 0 to 10 V and VGS sweep from        

-4 V to 0 V with a 0.5 V voltage step. 
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o ID-VG characterization with a VGS sweep from -8 V to 1 V and with VDS at 1 V, 

2 V, 5 V and 10 V. 

 Pulsed I/V measurements are carried out with the BILT AMCAD system described 

in Section 2.3.1.1 in order to quantify the impact of RF stress on trapping effects. The 

specific trapping pulsed I/V protocol developed in Section 2.3.1.2 is employed for this 

objective. The pulsed I/V measurements are performed at the following different 

quiescent bias points: 

o Cold network at bias point (VGQ, VDQ)=(0 V, 0 V);  

o Gate-lag network at bias point (VGQ, VDQ)=(-5 V, 0 V);  

o Drain-lag network at bias point (VGQ, VDQ)=(-5 V, 50 V);  

o Hot network at bias point (VGQ, VDQ)=(-1.9 V, 50 V) (under class AB bias 

condition with IDQ=50 mA and VDQ=50 V). 

 Pulsed S-parameter measurements are carried out with the same BILT AMCAD 

system and a Rohde & Schwarz ZVA40 VNA [110] equipped with ZVAx modules as 

described in Section 3.4.1.1. The pulsed S-parameters are determined for different 

biasing points corresponding to an ideal load-line (from 0.5 GHz to 20 GHz with 

frequency step of 0.5 GHz) obtained under the large-signal operating mode (quiescent 

point : VDQ=50 V and IDQ=50 mA). 

 Time-domain power sweep measurements are carried out with the properly 

calibrated LSNA system in the same conditions defined in the step-stress protocol. 

The full characterization protocol includes all the measurements of the short characterization 

protocol with the addition of a thermal resistance characterization based on thermal pulsed 

I/V measurements and a trap characterization based on LF Y22 measurements. The advanced 

and full characterization protocol is performed before and after each 240 h RF step-stress 

under overdrive operating conditions at the same compression gain value. Thus, the full 

characterization protocol is composed of the following measurements: 

 DC I/V measurements identical to the DC I/V measurements performed in the short 

characterization protocol. 

 Pulsed I/V measurements identical to the pulsed I/V measurements performed in the 

short characterization protocol. 

 Pulsed S-parameter measurements identical to the pulsed S-parameter 

measurements performed in the short characterization protocol. 
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 Time-domain power sweep measurements identical to the time-domain power 

sweep measurements performed in the short characterization protocol. 

 Additive RTH measurements are carried out with the BILT AMCAD system at 

different temperatures and different quiescent bias points, as described in Section 

2.3.1.3. 

 Additive LF Y22 measurements are carried out with an LF-HF vector network 

analyzer (Agilent E5061b) in 1-port configuration at different temperatures, as 

described in Section 2.3.4. 

 24-hour RF step-stress in overdrive condition 

An RF step-stress test is carried out in order to have a preliminary and quick evaluation of the 

degradation of the component’s performance when driven by a large RF CW signal at 

different compression gain values (in the high overdrive region). The large RF signal 

excitations drive the transistor to ensure that it works with forward and reverse gate current 

and that it operates at high drain voltage peak values. This operating condition corresponds to 

a compressed mode allowing an accelerated RF life test under a high electric field. The 24 h 

RF step-stress condition is summarized below: 

 The device is biased in class AB operation mode (50 mA of drain current at 50 V 

of drain voltage) at a 4 GHz fundamental frequency. 

 The 24 h RF step-stress is carried out at 4 dB, 8 dB and 12 dB compression gain.  

 Each RF operating test is carried out on two devices coming from the same wafer 

with similar characteristics. 

 Two load impedances are used during this 24 h RF operating test in order to 

emulate different operating conditions corresponding to: 

o PAE optimum load (ZLOAD_(f0)= 20.8+j44 Ω ); 

o mismatched impedance for the transistor equals to 50 Ω (ZLOAD(f0)= 50 Ω). 

The complete reliability test procedure with 24 h RF step-stress and the short characterization 

protocol is depicted in Figure 4-14.  
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Figure 4-14: Reliability test procedure with 24 h RF step-stress and short 

characterization protocol. 

 240-hour RF step-stress in overdrive condition 

A 240-hours RF step-stress test in the overdrive region is a more realistic operation life stress 

condition for space equipment under a very high overdrive condition. The 12 dB compression 

step-stress corresponds to the last and the highest compression gain level applied during the 

24 h step-stress protocol. The 240 h RF overdrive conditions (corresponding to the same 

stress conditions as the ones used in the previously described 24 h step-stress) are summarized 

below: 

 The devices are biased in class AB operation mode (50 mA of drain current at 50 

V of drain voltage) at a 4 GHz fundamental frequency. 

 240 hours of RF overdrive stress are carried out at 12 dB compression. 
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 Each RF operating test is carried out on two devices coming from the same wafer 

with similar characteristics. 

 Two load impedances are used during this 240 h RF operating test in order to 

emulate different operating conditions correspond to: 

o PAE optimum load (ZLOAD_(f0)= 20.8+j44 Ω ); 

o mismatched impedance for the transistor equals to 50 Ω (ZLOAD(f0)= 50 Ω). 

In order to detect an irreversible wear out mechanism, the full characterization protocol T3 

described in Figure 4-15 (after the 240 h RF overdrive stress) is performed after seven days of 

the end of RF stress. 

In order to measure the calibrated waveforms during the 240 hours, a calibration protocol is 

executed every 80 h. This value corresponds to the period for which the calibration 

coefficients remain valid in the XLIM laboratory environment. The completed reliability test 

procedure with 240 h RF overdrive stress and the full characterization protocol is depicted in 

Figure 4-15. 

 

Figure 4-15: Reliability test procedure with 240-hour RF overdrive stress and full 

characterization protocol.   

4.3.3 Time-domain stress test results  

In this section, the time-domain results are presented firstly for the preliminary 24h RF step-

stress test and secondly for the 240 h RF overdrive stress test. The results are shown for the 

two different load conditions (PAE optimum impedance and mismatched impedance). To 
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ensure a reliable characterization protocol all the measurements are carried out first on the 

reference sample and secondly on the stressed simple. 

 24-hour RF step-stress test results 

The time-domain RF performance measured during three consecutive applications of 24 hours 

of RF stress under PAE optimum load impedance and 50 Ω load impedance at 4 dB, 8 dB and 

12 dB compression gains are shown in Figure 4-16 and Figure 4-17 for the two tested devices. 

The monitored parameters during the stress are: the output power, the DC drain and gate 

currents, and the modulus and phase of the I2, V2, I1 and V1 RF waveforms (as depicted in 

Figure 4-9). They have not shown any important degradation (e.g., output power varying 

during the stress but with a final minor variation for all stress of 0.2 dBm under PAE optimum 

load impedance in Figure 4-16(a) and of 0.3 dBm under 50 Ω load impedance in Figure 

4-17(a)). In order to evaluate the degradation, the following figures of merit are determined 

by the short characterization protocol: 

 DC figures of merit include saturation drain current (at VDS equal to 10 V), peak of 

transconductance (at VDS equal to 4 V), and threshold voltage.  

 Trapping figures of merit include S.R. calculated in gate-lag, drain-lag and AB class 

condition. 

 RF figures of merit include small-signal parameters at 4 GHz, output power, PAE and 

drain current in saturation condition (at 3 dBc). 
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Figure 4-16: (a) Output power, (b) modulus and phase of I1 at f0 extracted from I1 RF 

waveforms curves, (c) drain current and (d) modulus and phase of I2 at f0 extracted 

from I2 RF waveforms curves monitored during RF Pin step-stress with PAE optimum 

load impedance. 

 

Figure 4-17: (a) Output power, (b) modulus and phase of I1 at f0 extracted from I1 RF 

waveforms curves, (c) drain current and  (d) modulus and phase of I2 at f0 extracted 

from (I2 RF waveforms curves) monitored during RF Pin step-stress with 50 Ω load 

impedance. 
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Figure 4-18: Comparison of figures of merit extracted from short characterization 

protocol before (T0) and after (T2, T4 and T6) each 24 h RF step-stress under the PAE 

optimum load impedance condition: (a) DC IV figures of merit, (b) trapping figures of 

merit (pulsed I/V measurements), (c) nonlinear power figures of merit and (d) small-

signal figure of merit at 4 GHz for device Q64 (solid line) and device U64 (dashed line).   

 

Figure 4-19: Comparison of figures of merit extracted from short characterization 

protocol  before (T0) and after (T2, T4 and T6) each 24 h RF step-stress under the 50 Ω 

load impedance condition: (a) DC IV figures of merit, (b) trapping figures of merit 

(pulsed I/V measurements), (c) nonlinear power figures of merit and (d) small-signal 

figure of merit at 4 GHz for device AC64 (solid line) and device Y64 (dashed line).   
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In Figure 4-18 and Figure 4-19 are shown respectively the comparison of these figures of 

merit before and after the 24 h RF step-stress (T1, T3 and T5) under PAE optimum 

impedance and mismatched impedance (50 Ω). The step-stress results are very different for 

the two devices and it is difficult to conclude whether or not they have the same degradation 

behavior. But, the comparison of the short characterization protocol before and after each 24 h 

step-stress in Figure 4-18 and Figure 4-19 for both load output impedances does not show any 

reduction of RF and DC performance and trapping effects. In conclusion, the short 24h stress 

period is not long enough to degrade the devices. Therefore, a longer stress period is applied. 

 240-hour RF overdrive stress test results  

The 240 h RF overdrive stress tests are applied to ensure that the device operates in a more 

realistic condition in order to determine an SOA during high overdrive condition at 12 dB 

compression. It corresponds to a constant 29 dBm input power applied to the devices under 

PAE optimum load impedance condition. But under the 50 Ω impedance load condition, it 

corresponds to a constant 31 dBm input power applied to the devices. The monitoring of the 

RF performance during the stress test is the same as that used for the 24 h step-stress, and is 

shown in Figure 4-20 and Figure 4-21, respectively for the PAE optimum load impedance 

condition and for 50 Ω load impedance condition. The variation of the RF and DC parameters 

during 240 hours of RF overdrive stress are summarized in Table 12 and Table 13 

respectively for the PAE optimum load impedance condition and for the 50 Ω load impedance 

condition.  

TABLE 12 

VARIATION OF RF AND DC PARAMETERS DURING 240 HOURS OF RF OVERDRIVE STRESS AT PAE OPTIMUM LOAD 

IMPEDANCE CONDITION 

DEVICE  ΔPout (dB) ΔIDS (mA) Δ|I2(f0)| (A) 

M52  0.5 28 0.07 

M64  0.4 19 0.03 

TABLE 13 

VARIATION OF RF AND DC PARAMETERS DURING 240 HOURS OF RF OVERDRIVE STRESS AT 50 Ω LOAD 

IMPEDANCE CONDITION 

DEVICE  ΔPout (dB) ΔIDS (mA) Δ|I2(f0)| (A) 

Q40  0.6 43 0.045 

Q76  0.8 60 0.05 

Q28  // // // 
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The time-domain stress results under the PAE optimum load impedance condition are shown 

in Figure 4-20. A decreasing trend for both devices (i.e., output power variation of 0.4 dB for 

device M64 and of 0.5 dB for device M52) is observed. In Figure 4-20, there can be observed 

a slight increase of drain current, output power and magnitude and phase of I2 during the first 

hour and a decrease of the same parameters after the first calibration at 80 hours of device 

M52. This variation is not observed with device M64. It can be concluded that the RF 

performance is not really affected by the stress. The time-domain stress results under 50 Ω 

load impedance condition are presented in Figure 4-21. A decreasing trend is seen for both 

devices: i.e., output power variation of 0.6 dB for the device Q40 and of 0.8 dB for the device 

Q76, which is twice as important a decrease of drain current than was observed under the 

PAE optimum load impedance condition. A catastrophic failure occurs for device Q28, as is 

clearly seen in Figure 4-22. After 200 hours of RF stress under the 50 Ω load impedance 

condition, device Q28 presents an increase of static gate current and an increase of static gate 

voltage that in dynamic behavior corresponds to increasing excursions of the input load 

cycles, as shown in Figure 4-22(a). This increase in the input load cycle excursion probably 

involves a degradation in the gate-source region which modifies the input impedance and that 

corresponds also to an increase of the input power of the device (the available power of the 

RF power generator is constant during the stress). Moreover, this increase in the input load 

cycle excursion corresponds to an increase of compression gain (until 18 dB compression 

before the catastrophic failure) and thus a decrease of output power and of output load cycles. 

Therefore, the static negative gate voltage increases until -6.5 V (Figure 4-22(f)) which in 

dynamic behavior corresponds to an increase of the V1 excursion until -30 V (Figure 4-22(a)) 

before catastrophic failure. The degradation and catastrophic failure of device Q28 is assumed 

to be due to the high compression operating condition during the overdrive condition and the 

higher device operating junction temperature (estimated to be 210 °C in Figure 4-23). The 

device operating junction temperature is estimated by using the following equation: 

 
𝑇𝐽 = (𝑃𝐼𝑁 − 𝑃𝑂𝑈𝑇 + 𝑃𝐷𝐶) ∙ 𝑅𝑇𝐻 + 𝑇𝐴𝑀𝐵 (4-5) 

 

This equation is applied to the monitoring of the DC and RF parameters during the 240 hours 

of RF overdrive stress and RTH is calculated as described in Section 2.3.1.3. The variations of 

estimated device operating junction temperatures during the 240 hours of RF overdrive stress 

under the PAE optimum load impedance condition and for the 50 Ω load condition are shown 

in Figure 4-23. It is possible to conclude that the wear out of device Q28 is probably due to 
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destruction by breakdown of the gate-source diode by the high reverse breakdown voltage (-

6.5 V in static voltage and -30 V in dynamic voltage) applied in the gate to source terminals. 

The results of the full characterization protocol carried out before and after the 240 hours of 

RF overdrive stress under the PAE optimum load impedance condition are shown in Figure 

4-24-Figure 4-28 and those under the 50 Ω load impedance condition are shown in Figure 

4-29-Figure 4-33. 
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Figure 4-20:(a) Output power, (b) modulus and phase of I1 at f0 extracted from 

recorded extrinsic I1 RF waveforms, (c) drain current, (d) modulus and phase of I2 at f0 

extracted from recorded extrinsic I2 RF waveforms, (e) extrinsic I1 RF waveforms vs 

extrinsic V1 RF waveforms and (f) extrinsic I2 RF waveforms vs. extrinsic V2 RF 

waveforms monitored during 240 hours of RF overdrive stress under the PAE optimum 

load impedance condition. 

 



 

 

126 

 Time-domain continuous RF waveform monitoring under stress overdrive condition 

 

 

Figure 4-21: (a) Output power, (b) modulus and phase of I1 at f0 extracted from 

recorded extrinsic I1 RF waveforms, (c) drain current, (d) modulus and phase of I2 at f0 

extracted from recorded extrinsic I2 RF waveforms, (e) extrinsic I1 RF waveforms vs 

extrinsic V1 RF waveforms and (f) extrinsic I2 RF waveforms vs. extrinsic V2 RF 

waveforms monitored during 240 hours RF overdrive stress under the 50 Ω load 

impedance condition. 
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Figure 4-22: Measurement window zoom (from 160 hours to 240 hours) of failure of 

device Q28 during 240 hours RF overdrive stress at 50 Ω impedance load (a) I1 RF 

waveforms vs. extrinsic V1 RF waveforms, (b) I2 RF waveforms vs. extrinsic V2 RF 

waveforms, (c) input power, output power, gain, (d) ΓIN, (e) drain and gate current and 

(f) drain and gate current variations. 

 

Figure 4-23: Junction device temperature estimation during 240 hours RF overdrive 

stress at (a) PAE optimum impedance and (b) 50 Ω impedance. 
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Figure 4-24: Comparison of DC I/V measurements before (solid line) and after (dashed 

line) 240 hours RF overdrive stress under the PAE optimum load impedance condition: 

(a) gate to source diode characteristics, (b) IDS vs. VGS characteristics at VDS=4 V, (c) IDS 

vs. VDS characteristics (VGS sweep from 0 V to -3 V, -0.5 V/step) and (d) gm 

characteristics (extracted by IDS vs. VGS characteristics). 

 

Figure 4-25: Comparison of pulsed S-parameter measurements at quiescent bias point 

(IDQ, VDQ)=(50 mA, 50 V) and pulsed bias point (VGM, VDM)=(-2 V, 50 V) before (solid 

line) and after (dashed line) 240 hours RF overdrive stress under the PAE optimum load 

impedance condition: (a) S21, (b) S11 and S22. 
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Figure 4-26: Comparison of time-domain RF power sweep measurements under class 

AB condition (Ids0=50 mA and Vds0=50 V) before (solid line) and after (dashed line) 240 

hours RF overdrive stress under the PAE optimum load impedance condition: (a) 

output power vs. input power, (b) PAE vs. input power, (c) Gain vs. input power and (d) 

drain current vs. input power characteristics. 

 

Figure 4-27: Comparison of pulsed I/V measurements before (solid line) and after 

(dashed line) 240 hours RF overdrive stress under the PAE optimum load impedance 

condition: (a) cold network, (b) gate-lag network, (c) drain-lag network, and (d) class 

AB network. 
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TABLE 14 

RTH ESTIMATION AT PRE- AND POST- 240 HOURS RF OVERDRIVE STRESS FOR PAE OPTIMUM LOAD IMPEDANCE 

CONDITION 

DEVICE  RTH (°C/W)at T0 (pre-stress) RTH (°C/W)at T2 (post-stress) 

M52  ~14 ~14 

M64  ~14 ~14 

 

 

Figure 4-28: Comparison of LF Y22 measurements before (in blue) and after (in red) 

240 hours RF overdrive stress at PAE optimum load impedance (a) of device M52 and 

(b) of device M64. 

 

Figure 4-29: Comparison of DC I/V measurements before (solid line) and after (dashed 

line) 240 hours RF overdrive stress under the 50 Ω load impedance condition: (a) gate to 

source diode characteristics, (d) IDS vs. VGS characteristics at VDS=4 V, (c) IDS vs. VDS 

characteristics (VGS sweep from 0 V to -3 V, -0.5 V/step) and (d) gm characteristics 

(extracted by IDS vs. VGS characteristics). 
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Figure 4-30: Comparison of pulsed S-parameter measurements at quiescent bias point 

(IDQ, VDQ)=(50 mA, 50 V) and pulsed bias point (VGM, VDM)=(-2 V, 50 V) before (solid 

line) and after (dashed line) 240 hours RF overdrive stress under the 50 Ω load 

impedance condition: (a) S21, (b) S11 and S22. 

 

Figure 4-31: Comparison of time-domain RF power sweep measurements under class 

AB condition (IDS0=50 mA and VDS0=50 V) before (solid line) and after (dashed line) 240 

hours RF overdrive stress under the 50 Ω load impedance condition: (a) output power 

vs. input power, (b) PAE vs. input power, (c) Gain vs. input power and (d) drain current 

vs. input power characteristics. 
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Figure 4-32: Comparison of pulsed I/V measurements before (solid line) and after 

(dashed line) 240 hours RF overdrive stress under the 50 Ω load impedance condition: 

(a) cold network, (b) gate-lag network, (c) drain-lag network and (d) class AB network. 

TABLE 15 

RTH ESTIMATION AT PRE- AND POST- 240 HOURS RF OVERDRIVE STRESS FOR 50 Ω LOAD IMPEDANCE CONDITION 

DEVICE  RTH (°C/W)at T0 (before stress) RTH (°C/W)at T2 (after stress) 

Q40  ~14 ~13 

Q76  ~14 ~13 

 

 

Figure 4-33: Comparison of LF Y22 measurements before (in blue) and after (in red) 

240 hours RF overdrive stress under the 50 Ω load impedance condition (a) of device 

Q40 and (b) of device Q76. 
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The comparison of the DC I/V curves and CW RF performance before and after 240 hours of 

RF overdrive stress under the 50 Ω load impedance condition (in Figure 4-29 and Figure 4-31 

respectively) shows a positive threshold voltage shift (around ΔVTH=0.05 V) in the IDS-VGS 

characteristic (Figure 4-29(b)) which corresponds to a saturation drain current drop in the IDS-

VDS characteristic (Figure 4-29(c)). Consequently, the average drain current, output power, 

gain and PAE versus input power curve are affected, as shown in Figure 4-31. This 

degradation mechanism is supposed to be strongly thermally activated; in fact, the stress has a 

stronger effect under the 50 Ω load condition, corresponding to a lower drain voltage 

excursion, higher average current, and thus higher device operating junction temperature (the 

average estimate during RF stress is around 220°C and 200°C from Figure 4-23). Under the 

optimum PAE load impedance condition, as shown in Figure 4-20, the DC and RF parameters 

during the RF life test have a minor variation, then the comparison of the DC I/V curves 

shows a slight positive threshold voltage shift which corresponds to a slight degradation of the 

average drain current versus input power characteristic (Figure 4-26(d)) at lower input power 

levels, indeed the device operating junction temperature obtained with the optimum PAE load 

impedance is 50% less than that reached with 50 Ω load impedance. The positive and 

negative pinch-off voltage shifts are one more common degradation and have been noticed 

during DC stress[111], [112] and RF stress [113]. In our case a positive pinch-off voltage 

shift is observed. This mechanism is similar to the trapping pinch-off voltage shift observed in 

Section 2.3.3.2.2 but in the stress study-case, it is irreversible.  

A decrease of static gate current in forward zone is observed in Figure 4-24(a) and Figure 

4-29(a) for both load output impedance condition. That is probably due to the high VGS sweep 

excursion (in Figure 4-20(e) and Figure 4-21(e)) under overdrive operating conditions. 

The trapping measurements (pulsed I/V measurements and LF Y22 measurements) included in 

the full characterization protocol show any trapping effects variation between the 

measurements carried out before and after stress. Indeed, the pulsed I/V measurements at 

different bias different quiescent bias points in Figure 4-27 and Figure 4-32, respectively for 

stress under the PAE optimum load impedance condition and under the 50 Ω load condition 

(the VGQ is corrected in post-stress measurements of the Class AB network to reach the same 

drain current used in the pre-stress measurements) do not show any important variations. This 

is also in accordance with the dynamic study of trapping phenomena with CW LF Y22 

measurements. The LF Y22 measurements carried out at different temperatures do not show 

any variations of frequency peaks between the pre-stress and post-stress measurements for 

both load impedance conditions in Figure 4-28 and Figure 4-33 (the VGS0 is corrected in the 
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post-stress measurements to reach the same drain current used in the pre-stress 

measurements). 

Therefore, the 240 hours RF overdrive stress test does not impact the trapping effect when the 

gate voltage  in the post-stress measurements is corrected to reach the same drain current used 

in the pre-stress measurements. 

The results for the S-parameters measured at the quiescent bias point (IDQ, VDQ)=(50 mA, 50 

V) and the measurement bias point (VGM, VDM)=(-2 V, 50 V) are shown Figure 4-25 and 

Figure 4-30 respectively for stress under the PAE optimum load impedance condition and 

under the 50 Ω load condition. The change in the S-parameters after the stress under the 50 Ω 

load condition is probably due to the fact that the measurement bias point (VGM, VDM)=(-2 V, 

50 V) has not been corrected to reach the same drain current used in the pre-stress 

measurements. 

The estimation of the thermal resistance is obtained with an electrical method described in 

Section 2.3.1.3 based on thermal pulsed I/V measurements. The results of the thermal 

resistance estimation are summarized in Table 14 and Table 15 respectively for stress under 

the PAE optimum load impedance condition and under the 50 Ω load condition. For both 

stresses under the different load impedance conditions, RTH is not impacted. 

 Conclusion 

In this chapter, a continuous monitoring of RF waveforms during an RF operating life test 

under overdrive conditions to assess the degradation of devices for space applications is 

presented. This time-domain methodology is applied first to a 24 h step-stress (short stress) 

and secondly to a 240 h RF overdrive stress (long stress). A short and full characterization 

protocol have been performed respectively in order to determine the nonlinear electro-thermal 

model described in the previous chapter.  

The first part of this chapter presented some methods of performing reliability analysis and 

tests. Moreover, an overview of the failure modes and mechanisms in GaN technology is also 

described.  

The second part of this chapter presents the time-domain reliability set-up based on an LSNA 

measurement system in load-pull configuration and the results of a 24 h step-stress and a 240 

h RF overdrive stress and their respective characterization protocols. The monitoring of RF 

waveforms during the 24 h step-stress for both load impedance conditions shows no variation 

of RF and DC performances. It is possible to conclude that the short step-stress period (24 h) 
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is not long enough to degrade the devices. Indeed, the monitoring of 240 hours of RF 

overdrive stress has shown that in this GaN technology, the RF degradation in class AB 

operation mode is due principally to a threshold voltage shift, which is more important under 

the 50 Ω condition with lower drain voltage excursion and higher average drain current 

(higher operating temperature) than for the PAE optimum load condition with higher drain 

voltage excursion. For future investigation one has the perspective of employing this time-

domain methodology to perform the same stress protocol at a high temperature fixed with a 

thermal chuck in order to investigate the effects of temperature on the degradation 

mechanisms.   

In conclusion, the potential of this set-up for analysing failures is demonstrated. For a more 

realistic reliability study, it is necessary to perform the time-domain RF stress with more 

devices and it will also be interesting to increase the period of stress. 

Due to the complexity of the set-up and the numerous calibrations required to cover the whole 

of the stress period, it is suggested to combine this time-domain technique with classic RF 

stress: using firstly the classical accelerated RF stress for a preliminary stress to identify the 

degradation, and then using the time-domain RF stress to obtain supplementary information 

on the degradation mechanism based on the analysis of time-domain RF waveforms. 
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5 Conclusion 

The work of this thesis is focused on three main topics: a trapping characterization 

methodology, a nonlinear electro-thermal model with a new thermal-trap model, and a time-

domain methodology to investigate the device reliability of GaN-based HEMTs. 

After a brief introduction of the properties and capabilities of GaN technology for space 

applications, the second chapter presented several characterization techniques in order to 

cover a broad frequency analysis from DC to radio-frequency range of the charge-trapping 

phenomena and the related parasitic effects in GaN-based HEMTs. This trapping 

characterization methodology is based on pulsed I/V measurements, DC and RF drain current 

measurements, and low-frequency dispersion measurements.  This allows quantifying the 

effects of charge-trapping phenomena and the related mechanisms. These measurements are 

also used to identify the involved deep trap states and their location in the structure of the 

HEMT, through the analysis of their activation energy and their capture cross-section. With 

this trapping investigation, four deep levels are detected and labeled as “E1”, “E2”,”E3” and 

“E4.” In particular, deep level “E2” was identified with a DC DCT technique and LF 

dispersion technique. Furthermore, the deep level “E4” was detected with the DCT technique 

during DC and RF excitations but with an increasing density of ionized traps. The trap 

sensitivity has been investigated as a function of the input power level, pulse-width, 

temperature, load impedance (for two different output load impedances corresponding to the 

optimum of PAE and to a mismatched impedance) and operating bias points. The analysis of 

the dependence of the trapping effect on the bias during the RF CW mode operation condition 

has demonstrated that the choice of the correct operating bias point value allows making the 

GaN-based HEMTs insensitive to trapping effects.  

The third chapter presents a methodology to extract a nonlinear electro-thermal model with a 

new additional thermal-trap model to take into account the dynamic behavior of the trap states 

and their associated temperature variations. For the extraction of a linear model of GaN-based 

HEMTs, a new technique, based on LF S-parameter measurements, is used. The new thermal-

trap model allows accurately modeling the physical pinch–off voltage shift and the trap 

temperature activation. The nonlinear electro-thermal model also allows accurately predicting 

the dynamic behavior during large-signal RF excitation. 

 



Conclusion   
 

137 

 

A time-domain RF waveform monitoring during an RF operating life test under overdrive 

conditions for reliability investigation is presented in the fourth chapter. The monitoring of 

RF waveforms is carried out for different step-stress periods of 24 h and 240 h and for two 

different output load impedances corresponding to the optimum of PAE and to a mismatched 

impedance. The RF waveform monitoring has shown the robustness, the capability to 

withstand very RF excitation, and great stability at very high compression levels without 

important degradation of this technology during 24h step-stress for both output load 

impedances. The conclusions are the same for 240 h step-stress for the optimum PAE load 

condition. But the 240 h step-stress, in overdrive condition, with a mismatched load 

impedance shows a stronger degradation, with a positive threshold voltage shift and a drop in 

saturation drain current, due principally to the high junction temperature reached by the 

devices during the RF stress. The time-domain reliability set-up has also shown its abilities to 

monitor failure events, for reliability analysis. 

In conclusion, both the trapping and reliability investigations show that the trapping effects 

and RF degradation respectively are more important under mismatched impedance conditions 

with lower drain voltage excursions and higher average drain currents (higher operating 

temperatures) than for the optimum PAE load condition with higher drain voltage excursions. 
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Trapping and Reliability Investigations in GaN-based HEMTs  

Abstract : GaN-based high electron mobility transistors (HEMTs) are promising candidates 

for future microwave equipment, such as new solid state power amplifiers (SSPAs), thanks to 

their excellent performance. A first demonstration of GaN-MMIC transmitter has been 

developed and put on board the PROBA-V mission. But this technology still suffers from the 

trapping phenomena, principally due to lattice defects. Thus, the aim of this research is to 

investigate the trapping effects and the reliability aspects of the GH50 power transistors for C-

band applications. A new trap investigation protocol to obtain a complete overview of trap 

behavior from DC to radio-frequency operation modes, based on combined pulsed I/V 

measurements, DC and RF drain current measurements, and low-frequency dispersion 

measurements, is proposed. Furthermore, a nonlinear electro-thermal AlGaN/GaN model with 

a new additive thermal-trap model including the dynamic behavior of these trap states and 

their associated temperature variations is presented, in order to correctly predict the RF 

performance during real RF operating conditions. Finally, an advanced time-domain 

methodology is presented in order to investigate the device’s reliability and to determine its 

safe operating area. This methodology is based on the continual monitoring of the RF 

waveforms and DC parameters under overdrive conditions in order to assess the degradation 

of the transistor characteristics in the RF power amplifier. 

Keywords: Gallium nitride, HEMTs, large-signal network analyzer (LSNA), microwave 

measurement, low-frequency dispersion, trapping effects, modeling, reliability. 

Investigation des effets de pièges et des aspects de fiabilité des transistors à haute 

mobilité d’électrons en Nitrure de Gallium 

Résumé : Les transistors à haute mobilité d’électrons (HEMTs) en nitrure de gallium (GaN) 

s’affirment comme les candidats prometteurs pour les futurs équipements à micro-ondes - tels 

que les amplificateurs de puissance à état solide (SSPA), grâce à leurs excellentes 

performances. Une première démonstration d'émetteur en technologie GaN-MMIC a été 

développée et embarquée dans la mission spatiale PROBA-V. Mais cette technologie souffre 

encore des effets de pièges par des défauts présents au sein de la structure. L’objectif de ce 

travail est donc l'étude d’effets de pièges et des aspects de fiabilité des transistors de 

puissance GH50 pour des applications en bande C. Un protocole d’investigation des 

phénomènes de pièges est présenté, qui permet l’étude des dynamiques des effets de pièges du 

mode de fonctionnement DC au mode de fonctionnement radiofréquence, basé sur la 

combinaison des  mesures IV impulsionnelles, des mesures de transitoires du courant de drain 

avec des impulsions DC et RF et des mesures de paramètres [S] en basse fréquence. Un 

modèle de HEMT AlGaN/GaN non-linéaire électrothermique est présenté, incluant un 

nouveau modèle thermique de pièges restituant le comportement dynamique de ces pièges et 

leurs variations en température afin de prédire correctement les performances en conditions 

réelles de fonctionnement RF. Enfin, une méthodologie temporelle pour l’évaluation de la 

fiabilité et de limites réelles d'utilisation de transistors dans l'amplificateur de puissance RF en 

régime d’overdrive (très forte compression), basée sur la mesure monitorée de Formes d'Onde 

Temporelles (FOT), est proposée. 

 

Mots clés : Nitrure de Gallium, HEMTs, large signal network analyzer (LSNA), mesures 

micro-ondes, dispersion basse fréquence, effets de pièges, modélisation, fiabilité. 


