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Introduction

A decision maker is required to be well informed in order to choose the best action or policy.

If some relevant information is missing, bad decisions can be made. For that reason, she might

bene�t from acquiring additional information prior to selecting an action. In some situations,

this information is publicly available and the decision maker can learn it by reading a book or

scienti�c publication. However, the expected bene�t might not justify the required time and

e�ort to understand it. In other situations, the missing information is privately held and it is

either impossible or prohibitively costly to acquire it directly. For example, �rms have private

information about their activities and it is di�cult for regulators to access it if they do not

willingly reveal it. In both types of situations, the decision maker may choose communication

as a way to learn more information instead of direct acquisition.

Depending on the problem at hand, the informed party can send one of two types of messages

(or a combination of both): cheap talk and hard evidence. Cheap talk messages are statements

that can be sent regardless of the true state of the world. As such, their meaning results from

the interaction itself and the preferences of the parties involved. By contrast, hard evidence

carries an intrinsic meaning because every piece of evidence can be produced in some states

and not in others. In that sense, it certi�es that the true state is in a certain subset of states.

In the present thesis, I study frameworks where at least some information can be certi�ed

through hard evidence. Many economic settings satisfy this condition. For instance, taxpayers

can be audited and asked to provide o�cial documents regarding their income, employer in-
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terview job applicants and may test their abilities before hiring them and food producers are

required to prove their products are harmless for consumers.

It is natural to assume that some statements cannot be certi�ed. Usually it is possible for an

agent to prove that he masters a skill by performing a task. However, it is not possible to prove

the opposite. For instance, one can perform card tricks to show his sleight-of-hand abilities.

But in a card game, participants cannot be sure that players are not capable of cheating using

the same techniques because there is no test to prove it.

More generally, one can hide evidence if it is detrimental to reveal it. In some settings, agents

are required by law to disclose all information but some information is inevitably concealed in

the absence of proper incentives to reveal it. In fact, enforcing disclosure in this manner

requires knowledge about information storage and legal authority to seize it. Although this

might be the case in some court mandated investigations, it is generally not feasible in ordinary

situations and economic interactions. For that reason, the decision maker needs to focus on

providing incentives for revelation and cannot expect the informed party to abide by such legal

requirements.

In the present thesis, I consider two frameworks satisfying the aforementioned conditions.

The �rst is a setting where a decision maker has to evaluate a claim or respond to a request

made by an individual or an institution. Information in this context is private and di�cult to

access if the party sending the request is not willing to reveal it.

In some cases, information is certi�ed by a trusted third party. In other cases, certi�cation

takes place during the interaction: the decision maker needs to verify the presented evidence,

possibly with the help of the informed party. I focus on situations where at least some infor-

mation falls in the latter category. In real life applications, the need for veri�cation induces a

limitation on the amount of certi�able information that can be exchanged during the interaction

between the decision maker and the informed agent. For instance, veri�cation can be costly

or time consuming. If in addition, the decision maker is overloaded with activities or has to
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quickly select an action, she would not be able to verify all information the agent is willing to

present.

These constraints determine the amount of information that can be veri�ed before the

decision is made. For example, a �nancial auditor cannot examine every single transaction of

a �rm in the limited time he can allocate to this task. Assuming there are N transactions and

the auditor veri�es n transactions before making a decision, one can de�ne the set of certi�able

events as the set of all possible choices of n among N transactions. In general, a certi�able event

is a statement that can be veri�ed before the �nal decision given the constraints of the problem

at hand. A useful benchmark is obtained by relaxing these constraints so that all certi�able

events can be veri�ed at once. In the example above, this is equivalent to having as much time

as necessary to examine all N transactions. The impact of these constraints can be studied by

comparing implementable outcome functions in the original setting and this benchmark. In the

�rst two chapters, I consider situations where implementation is e�ectively restricted by such

constraints and identify ways in which the decision maker can undo this restriction or at least

enlarge the set of implementable outcome functions in order to implement better outcomes.

An outcome function is a mapping from states to actions and it is implemented if the action it

speci�es for every state is chosen when the state is realized. Once a set of certi�able events is

de�ned, we can interchangeably say that the agent certi�es an event or that the decision maker

veri�es it because in both cases the same constraints apply.

In the �rst chapter, I study the basic framework where the informed agent's preferences over

the decision maker's actions are independent of the state. It o�ers a good description of settings

where the decision maker chooses a reward, a budget allocation or a wage for the agent who

wants the action to be as high as possible. I compare two types of communication mechanisms,

namely unilateral and bilateral communication, under the condition that the same amount of

information can be veri�ed in both cases. In unilateral communication, only the agent sends a

message to the decision maker. In bilateral communication, the decision maker can also actively
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communicate with the agent. The additional exchange of messages allows the decision maker

to in�uence the choice of the event that needs to be certi�ed. I argue that the decision maker

can bene�t from bilateral communication even though she does not verify more information

than in unilateral communication.

In the canonical bilateral communication mechanism, the agent announces the state of the

world, the decision maker asks him to certify a certain event among those that can be certi�ed in

the announced state. Then she bases her decision on his ability to do so. In addition, the agent

truthfully reveals the state in the �rst stage. This mechanism is canonical in the sense that it

achieves any result that can be achieved using any other bilateral communication mechanism.

In order to show that decision maker can bene�t from active communication, I �rst show that

bilateral and unilateral achieve the same results if and only if there are no e�ective limitations

on information veri�cation. Therefore, as long as time and cost constraints apply as explained

above, bilateral communication allows the decision maker to implement more outcome functions

than unilateral communication. However, these additional outcome functions do not necessarily

constitute an improvement.

The main result of this chapter essentially states that if information certi�cation is limited

so as to prevent the decision maker from achieving her �rst-best in unilateral communication

then she strictly bene�ts from bilateral communication.

A �rst-best outcome function is an outcome function that maps every state to an action

that maximizes the decision maker's payo� in that state. Limited certi�cation prevents the

decision maker from achieving her �rst-best in unilateral communication if three conditions are

satis�ed. First, the �rst-best needs to be well-de�ned. In other words, in every state there is

at least one action that gives the decision maker her maximal payo� in that state. Second, no

�rst-best outcome function is implementable in unilateral communication. Otherwise, it would

not be possible to make any improvements. Finally, there needs to be at least one �rst-best

outcome function that is implementable in the benchmark where certi�cation is unlimited: if
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unlimited time and resources can be allocated to information veri�cation, the decision maker

can achieve her maximal payo� in every state.

Under these conditions, bilateral communication allows the decision maker to improve the

outcome in comparison with unilateral communication thereby reducing the impact of certi�-

cation limitation while verifying the same amount of information.

In the second chapter, which results from a joint work with my advisor Frédéric Koessler

(CNRS, Paris School of Economics), we consider a similar framework but we do not require

agent's preferences to be state independent. We focus on the di�erence between limited and un-

limited certi�cation and we study the way ambiguous mechanisms can exploit agent's ambiguity

aversion to enlarge the set of implementable outcome functions.

In the aforementioned bilateral communication mechanism, after the agent announces his

type the decision maker selects an event according to a certain probability distribution and asks

him to certify it. If the decision maker uses a set of probability distributions instead of a single

distribution, the communication mechanism is called ambiguous. The use of such a mechanism

generates ambiguous beliefs for the agent in a similar way to the use of an Ellsberg urn where

the proportion of balls of each color is unknown.

We focus on settings where the agent is ambiguity averse in the sense of maxmin expected

utility. It describes an extreme case of ambiguity aversion where the agent anticipates the worst

case scenario. If the decision maker uses the whole set of possible probability distributions in

the ambiguous mechanism, the agent acts as if certi�cation is unlimited. Under unlimited certi-

�cation, an agent who announces a state but cannot prove some certi�able events of that state

knows that the decision maker will discover that he misreported it. Under limited certi�cation

and an ambiguous mechanism that uses all probability distributions, the worst case scenario

for the same agent is to be asked to certify an event that he cannot certify. Therefore, he

anticipates that the decision maker will also discover that he misreported the state.

The main result of this chapter is that any allocation rule that is implementable with unlim-
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ited certi�cation is also implementable with limited certi�cation and ambiguous mechanisms if

the agent is ambiguity averse in the sense of maxmin expected utility. Ambiguous mechanisms

completely eliminate the e�ect of limited certi�cation in that case. We also show that the result

holds if there are multiple agents.

In addition, we show that the converse is true if there is only one agent and a worst outcome.

A worst outcome is an action that gives the agent his minimal payo� in all states. Such an

outcome does not exist in general because agent's preferences may depend on the state. But

if it exists, it can be used if certi�cation is unlimited to implement all outcome functions that

can be implemented using ambiguous mechanisms.

In the last chapter, I consider a di�erent framework where the decision maker does not

respond to a request but rather seeks advice by sequentially consulting informed agents before

choosing an action that a�ects her payo� and the payo� of all informed agents.

In many economic settings, decision makers rely on the advice of informed agents. If they

have the same objectives, revelation is guaranteed and there is no strategic interaction. If she

consults an agent who is biased but his bias is known it may well be enough to extract all

information. But if agents' preferences are unknown, I argue that sequential consultation of

more than one agent can be bene�cial to the decision maker even though she incurs a cost due

to waiting time, delayed actions or information processing.

Unlike the �rst two chapters, the decision maker does not design a mechanism but simply

plays a game where she consults informed agents until she decides to stop and choose an action.

I consider two settings where the decision maker has to choose a scalar action and every agent

has one of two types: his payo� is state independent and is either strictly increasing or strictly

decreasing in the action.

In the �rst setting, states and actions are binary. They can take values 0 and 1. The decision

maker wants to choose the action that matches the state while every agent wants her to choose

his favorite action regardless of the state. As in the �rst two chapters, information is certi�able
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so that the agent can credibly reveal the state if he is consulted or remain silent if he chooses

to do so.

The decision maker wants to reduce her uncertainty about the state before choosing an

action and she bene�ts from sequential consultation if prior uncertainty is high enough. As she

consults informed agents, she either learns the state because an agent reveals it or she acquires

information from silent agents if types are not equiprobable. In that case, a silent agent is more

likely to be in the state where the majority remains silent so that the decision maker updates

her belief by increasing the probability of that state.

As a consequence, a bad decision can be made if only agents of the minority are consulted

in the state where they prefer to withhold information. It is therefore possible for agents of

the minority to persuade the decision maker to choose their favorite action when she should

not by remaining silent, as long as she does not encounter an agent of the majority before her

uncertainty about the state becomes low enough.

In the second setting, I consider a richer environment where the state and action can take

any value between 0 and 1. The decision maker wants to match the state and faces a quadratic

loss function if her action is di�erent from the state. A consulted agent can certify any interval

containing the true state so that he chooses the precision of the information he reveals.

In the case where sequential consultation is not allowed, there exists a unique equilibrium

and it turns out that the message space richness does not a�ect the result. This equilibrium

has the same outcome as the one that obtains when the agents can only reveal the state or

remain silent.

But if the decision maker can consult more than one agent, it is possible to have an equi-

librium where she consults only one agent and uses her ability to keep seeking advice to make

him reveal more precise information. The agent does so only to prevent her from consulting

other agents. He sends a message that is precise enough to make her stop and choose an action

thereby guaranteeing that he is the only one to in�uence her decision. I show the existence of
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such an equilibrium for a low enough consultation cost and equiprobable types. The analysis

in general is tricky due to the additional information that the decision maker can acquire when

types are not equiprobable as in the �rst setting.
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Chapter 1

Bilateral communication and hard

evidence

1.1 Introduction

In a persuasion problem, an agent wishes to in�uence a principal who has to implement an

outcome. The agent privately knows the state of the world, also called his type, and has hard

evidence about it. Any certi�ed message that proves a non trivial statement is considered hard

evidence. Formally, a piece of evidence is a message certifying a certain event. Namely, that

the agent belongs to a certain subset of types. Not all events are necessarily certi�able and the

set of certi�able events depends on the problem at hand.

The principal ignores the state of the world which is relevant to her decision, but she can

interact with the agent before implementing an action. The standard setting to model such an

interaction is the sender-receiver game: the agent (sender) presents information to the principal

(receiver) by sending a message containing certi�able information before the principal chooses

an outcome. We call this setting the unilateral communication framework. In contrast, the

bilateral communication setting is one where both the agent and the principal are active in the
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communication phase, exchanging messages sequentially.

As an illustration, consider the example of a hiring process. The agent is the applicant who

knows his skills and abilities which de�ne his type. The principal is the employer who does

not observe that information so she interviews him before making a decision. If the employer

can learn all information during the interview, she would not gain from being active in the

communication phase. However, in some cases only some information can be certi�ed: for

example it might not be possible to test all the skills the applicant claims to master due to

cost or time constraints. In such cases, bilateral communication might allow the employer to

improve the outcome by choosing what the applicant has to certify based on his claims instead

of letting him choose the information he presents as in unilateral communication.

In the unilateral communication framework, the principal has to choose an implementation

rule that assigns an outcome to every possible message the agent can send. In the bilateral

communication framework, the principal has to design the communication mechanism in ad-

dition to the implementation rule. The communication mechanism speci�es the active player

and the set of available messages at each node. The implementation rule, in this case, speci�es

the outcome possibly as a function of the history of exchanged messages.

Our goal is to study and compare both frameworks. To that end, we impose the restriction

that the same amount of information can be certi�ed in both settings. This guarantees that

any di�erence of implementable outcomes is only the result of the bilateral exchange of non-

certi�able information between the principal and the agent.

We show that the canonical mechanism in bilateral communication has the following simple

structure: a three-stage communication mechanism where (i) the agent announces his type, (ii)

the principal asks him to certify a speci�c event, (iii) he certi�es an event of his choice, and

an implementation rule that selects the outcome based on the announced type and whether

the requested event was certi�ed. Namely, for the implementation of an outcome function

f , if the agent announces type t and certi�es the requested event then f(t) is implemented,
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otherwise a punishment action is implemented. By applying Theorem 6 of Bull and Watson

[2007], who study the introduction of hard evidence to mechanism design, we obtain a partial

characterization of the canonical mechanism. In order to explicitly determine the principal's

message in step (ii) and the implementation rule, we use the fact that there is only one agent

with type-independent preferences.

Having identi�ed the canonical mechanism, we establish the necessary and su�cient condi-

tions for the implementation of any outcome function in both settings and we show that the

sets of implementable outcome functions coincide if and only if the normality condition is sat-

is�ed. This condition states that every type can certify a maximal evidence event, i.e. an event

that is equivalent to certifying all information about that type. In other words, unilateral and

bilateral communication are outcome equivalent only when there are no e�ective limitations

on the amount of information that can be certi�ed. Bilateral communication is potentially

bene�cial to the principal only in settings where normality is not satis�ed. The hiring process

is an example of such a setting if it is not possible to certify all (available) events (at least for

some types).

Our main result gives su�cient conditions for bilateral communication to improve the out-

come for the principal in comparison with unilateral communication. It is essentially shown

that if the principal's �rst-best is well de�ned (not necessarily by a unique outcome function)

and is not achievable in unilateral communication but would be achieved if any amount of infor-

mation can be certi�ed then bilateral communication strictly increases the principal's expected

payo�. In other words, the principal gains from being active in the communication phase if

she is unable to achieve her �rst-best in unilateral communication because of the cost or time

constraints that limit information certi�cation.

As an extension, we examine whether the results in the literature about commitment and

outcome randomization hold in our framework. Sher [2011] studies the unilateral communica-

tion setting and shows that under a concavity assumption, namely that the principal's utility
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function is a type-dependent concave transformation of the agent's utility function, the prin-

cipal needs neither commitment over the implementation rule nor randomization of outcome.

These results are in fact generalizations of the �ndings of Glazer and Rubinstein [2006] who

considered only binary action spaces, for which the concavity assumption is always satis�ed.

Hart et al. [2016] show that commitment is unnecessary for a class of certi�ability structures

(which satisfy normality) and strongly single-peaked preferences. We show that, in bilateral

communication under the conditions of our main result and the concavity assumption stated

above, randomization is not necessary if the action space is continuous but we give an example

with a discrete action space where it is needed. We also give an example where commitment is

necessary under the same conditions.

Related Literature Certi�able information has been extensively studied in both sender-

reciever games and mechanism design by authors such as Green and La�ont [1986], Glazer

and Rubinstein [2001, 2004], Forges and Koessler [2005], Bull [2008], Deneckere and Severinov

[2008], Ben-Porath and Lipman [2012], Kartik and Tercieux [2012], Koessler and Perez-Richet

[2014], Sher [2011], Sher and Vohra [2015], Singh and Wittman [2001], Strausz [2016]. These

papers, among others, give rise to important results about implementable allocation rules and

some of them establish a revelation principle for settings with certi�able information.

Bull and Watson [2007] study hard evidence in a general mechanism design setting (with

multiple agents) and characterize a three-stage communication mechanism in Theorem 6 which

we use to determine the canonical bilateral communication mechanism as explained above.

We also apply the revelation principle in unilateral communication given in their Theorem 2.

Moreover, we show that unilateral and bilateral communication are outcome equivalent if and

only if normality is satis�ed. The if part holds in general and is established in their Theorem

5. The only if part relies on the agent's type-independent preferences.
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Sher [2014] is closely related to our work but focuses on a framework where the decision

space of the principal is binary. It is shown for instance, that unilateral communication is

optimal under foresight which is a condition related to, but weaker than normality. We note

that our main result does not apply in that framework because it requires punishment to be

non optimal which is impossible with a binary action space.

1.2 The model

1.2.1 The environment

Consider a setting where a principal faces an agent who is privately informed about his type t

in a �nite set of agent types T . The principal ignores t but knows the probability distribution

of types. We assume the existence of a certi�ability structure C ⊆ 2T , where for every t ∈ T

there exists C ∈ C such that t ∈ C. We denote by C(t) = {C ∈ C : t ∈ C} the set of events the

agent can certify when his type is t.

The principal has to implement an action a in A. Prior to her decision, she can communicate

with the agent. The principal's goal is to design the communication mechanism along with an

implementation rule. There are two types of communication mechanisms:

• Unilateral Communication: Only the agent is active in the communication. He can certify

an event C in C (which has to be in C(t) if his type is t) and (possibly) send a message

m in some predetermined set (independent of the true type).

• Bilateral Communication: Both the agent and the principal partake in sequential com-

munication. The mechanism has to specify the active player at each node and the set of

available messages at that node. The only constraint is that, along every possible path,

the agent must have exactly one node at which he can certify an event C in C. At every

node, the active player chooses a message from a predetermined set of messages.
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With these de�nitions, we can analyze the bene�t of active communication for the principal

insofar as the same amount of information is certi�ed in both mechanisms: if bilateral commu-

nication increases the principal's expected payo� in comparison with unilateral communication

then the di�erence is due only to the non-certi�able information that is exchanged back and

forth between the agent and the principal.

The requirement that the agent does not certify more than one event in C corresponds

to given constraints on the amount of information that can be veri�ed during an interaction

between the agent and the principal1. For example, such constraints apply if the agent has

limited time to present this information or the principal has limited time to check it. Hiring

processes generally fall in this category when it is impossible to verify whether the applicant

�ts all the requirements of the job. Recruiters have to decide which aspects to verify and which

aspects to ignore.

The implementation rule speci�es the principal's action for every possible history in the

communication mechanism. In the case of unilateral communication, the history contains ex-

actly one node so that the principal's action is simply a function of the information that the

agent presents.

An outcome function f : T → ∆(A) is a mapping from types to lotteries over actions. The

agent has a utility function u : A→ R which is independent of his type. Let a0 denote an action

such that u(a0) = mina∈A u(a) whenever the minimum exists2. Throughout the chapter, a0 will

be called the punishment action and the value of u(a0) will be set to 0 w.l.o.g. We also assume

that u is not constant over A (otherwise all outcome functions would be implementable). The

principal has a utility function v : T ×A→ R which not only depends on the action she chooses

1This is essentially without loss of generality because if we want to model a limitation to N events in-
stead of one, we would have to replace C with the set of events that combine up to N elements of C, i.e.
{∩ni=1Ci s.t. for all i, Ci ∈ C and n ≤ N}.

2It is implicitly assumed that the minimum exists in all the results stated in this chapter. But essentially,
the results still hold with minor modi�cations if this assumption is not satis�ed. See Appendix for a study of
the case where the in�mum is not reached.
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to implement, but also on the type of the agent.

1.2.2 The canonical form

Consider the following communication mechanism:

De�nition 1.1. A three-stage communication mechanism is a bilateral communication mech-

anism with the following timing:

• Stage 1 : The agent reports a type.

• Stage 2 : The principal asks the agent to certify a particular event.

• Stage 3 : The agent certi�es an event of his choice.

In stage 1, the agent makes a claim by reporting a type t ∈ T . Then the principal asks him

to certify a particular event in C. Her choice at stage 2, is given by σ : T → ∆(C) with σ(t;C)

denoting the probability of asking the agent to certify C given that he announced type t. In

stage 3, the agent certi�es C ′ (either the requested C or a di�erent event).

De�nition 1.2. For given f : T → ∆(A) and σ : T → ∆(C), the (σ, f)-mechanism is a

three-stage communication mechanism along with an implementation rule such that:

• σ is used in stage 2.

• If the agent certi�es the requested event the outcome f(t) is implemented, otherwise the

punishment action a0 is implemented.

As we show in the last part of this section, (σ, f)-mechanisms are canonical in the sense

that we can restrict attention to such mechanisms when studying the implementation of a given

outcome function f . Furthermore, this implementation is achieved with truthful reporting in

the �rst stage: if σ is such that for every type t, an agent of type t has no incentive to report
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a di�erent type and is able to certify any C that is requested with positive probability σ(t;C)

(i.e. the support of σ(t) is in C(t)) then f is implementable in the (σ, f)-mechanism.

Proposition 1.1. If f is implemented using a general bilateral communication mechanism and

a general implementation rule then there exists σ : T → ∆(C) such that it is also implemented

in the (σ, f)-mechanism with truthful reporting in stage 1.

Proof. See Appendix.

The argument of this proof is split in two steps. First, note that a bilateral communication

mechanism is an extensive form game with three types of nodes :

• Message nodes : one player (principal or agent) sends a message to the other.

• Certi�cation nodes : the agent certi�es an event.

• Terminal nodes : the principal implements an outcome.

such that along every path in the game tree, there is exactly one certi�cation node. Theorem 6

of Bull and Watson [2007] guarantees that if an outcome function is implementable using such

a general mechanism then it is also implementable using a three-stage mechanism with truthful

reporting in stage 1:

• Stage 1 : the agent reports his type to the principal.

• Stage 2 : the principal sends a message to the agent.

• Stage 3 : the agent certi�es an event.
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This mechanism is similar to our three-stage communication mechanism except that instead

of directly asking for evidence, the message of stage 2 identi�es an information set for the agent

in the original extensive form game, more speci�cally, the one where he has to present evidence.

In the second step, we use the fact that, in our framework, there is only one agent whose

preferences are the same across types in order to show that we can restrict attention even

further and focus only on (σ, f)-mechanisms.

1.3 Implementable outcome functions

Proposition 1.1 asserts that an outcome function f is implementable in bilateral communication

if and only if there exists σ that implements it (in the (σ, f)-mechanism). In this section, we de-

termine the necessary and su�cient conditions for an outcome function to be implementable in

bilateral communication. Then, we characterize implementable outcome functions in unilateral

communication and identify the link between the two types of mechanisms.

Lemma 1.1. σ implements f with truthful reporting if and only if 3

∀t, σtt = 1

∀t, t′ σt′t ≤
u(f(t′))

u(f(t))

where σt′t =
∑

C∈C(t′) σ(t;C) is the probability for an agent of type t′ to successfully persuade

the principal that he is of type t.

Proof. See Appendix.

The �rst set of conditions say that the principal asks only for events that an agent of

the announced type can certify. This guarantees that if the agent reports truthfully then the

3u(f(t)) denotes in general the expectation of agent's utility given the lottery over actions f(t).
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principal will certainly implement the right outcome. The second set of conditions are in fact the

incentive compatibility constraints of the agent, which ensure that he reports his type truthfully

in the �rst stage. Truthful reporting in stage 1 is necessary to implement the outcome function,

and these conditions make sure that the agent has incentive to tell the truth and that the

principal does not make the mistake of asking an agent who reported his true type for evidence

he cannot present, which in turn, would induce punishment erroneously.

Using Lemma 1.1 we can determine the necessary and su�cient conditions for an outcome

function f to be implementable in bilateral communication. We focus on the strategies satisfying

the �rst set of conditions, i.e. strategies such that the support of σ(t) is contained in C(t) for all

types t, and we study the existence of an incentive compatible strategy among them. Consider

an indexing of types in T from 1 to n : T = {t1, . . . , tn}. Let qk be the number of events that are

certi�able by type tk: qk = card(C(tk)). C(tk) may then be written as C(tk) = {C1
k , . . . , C

qj
k }.

The vector σ(tk, C)|C∈C(tk) describes a point Mk in Rqk . Using this de�nition, the second set of

conditions of Lemma 1.1 can be interpreted as linear inequalities satis�ed by the coordinates

of the Mk's for k ∈ {1, . . . , n}. From this formulation, we can derive the following result about

the implementability of an outcome function f :

Proposition 1.2. An outcome function f is implementable in bilateral communication if and

only if for all k ∈ {1, . . . , n}, the following linear program Pk has a value greater than or equal

to 1:

Max c · x

s.t. Ax ≤ b

x ≥ 0,

where x, c ∈ Rqk , b ∈ Rn−1 and A a matrix (n−1)× qk. ∀l ∈ {1, . . . , qk},∀j ∈ {1, . . . , k−1, k+

1, . . . , n}, cl = 1, bj =
u(f(tj))

u(f(tk))
and Ajl = 1{tj∈Cl

k}
.
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Proof. From Lemma 1.1, we know that f is implementable (in bilateral communication) if and

only if there exists a strategy σ such that

∀k, σkk = 1

∀k, ∀j, σjk ≤
u(f(tj))

u(f(tk))

For a given k ∈ {1, . . . , n}, let x ∈ Rqk denote the vector σ(tk, C)|C∈C(tk), i.e. xl = σ(tk, C
l
k).

The condition σkk = 1 is then equivalent to the condition
∑

l∈{1,...,qk} xl = c·x = 1, where c ∈ Rqk

and ∀l, cl = 1. Consider the matrixA such that, ∀l ∈ {1, . . . , qk},∀j ∈ {1, . . . , k−1, k+1, . . . , n},

Ajl = 1{tj∈Cl
k}
. We can then write σjk = (Ax)j for every j. By de�ning the vector b ∈ Rn−1 such

that bj =
u(f(tj))

u(f(tk))
, we conclude that the set of conditions on σjk for j ∈ {1, . . . , k−1, k+1, . . . , n}

is equivalent to Ax ≤ b. So far, we have shown that f is implementable if and only if for every

k there exists a vector x ∈ Rqk , with positive coordinates, such that

c · x = 1

Ax ≤ b

If such a vector exists, then the value of Pk is at least 1. Conversely, if x∗ is the solution of

Pk, with v = c · x∗ greater than 1, then the vector x = 1
v
x∗ satis�es the conditions above.

The implementability of an outcome function f is therefore equivalent to conditions on the

values of n linear programs. Moreover, if these conditions are satis�ed then we obtain a σ that

implements f : σ such that σ(tk, C)|C∈C(tk) is a solution of Pk divided by its value.

In the second part of this section, we focus on implementation in unilateral communication.

The standard revelation principle (see Theorem 1 of Bull and Watson [2007] or Proposition 2 of

Myerson [1982]) applies in this context: if an outcome function f is implementable in unilateral
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communication then it is implementable in a unilateral communication mechanism where the

agent reports a type and certi�es an event in C with truthful type reporting. Using this fact,

we can characterize implementable outcome functions in unilateral communication.

In bilateral communication, σ is called deterministic if for every type t, there exists an event

C that is requested with certainty if type t is announced in stage 1, i.e. σ(t;C) = 1.

De�nition 1.3. An outcome function f is implementable in deterministic bilateral communi-

cation if there exists a deterministic σ such that f is implemented in the (σ, f)-mechanism.

The fact that a deterministic σ maps every type to one event with certainty makes it

possible to reduce the communication game to a single stage as in the models of Glazer and

Rubinstein [2006] and Sher [2011]. Consider an outcome function f and a deterministic σ that

implements it. In the (σ, f)-mechanism, if the agent announces a type t then the principal

asks him for some C with certainty (which can be denoted σ(t)), and if he certi�es it the

outcome f(t) is implemented, otherwise the outcome a0 is implemented. It becomes clear that

f is implementable in unilateral communication as follows: if an agent of type t reports t and

certi�es σ(t) then f(t) is implemented, otherwise a0 is implemented.

Notice that if an agent wants to get the outcome f(t) for some type t, he just has to be able to

certify σ(t). Therefore if the agent strictly prefers f(t) to f(t′), then the incentive compatibility

constraint implies that t′ is not in σ(t). This property is formalized in the following de�nition:

De�nition 1.4. An outcome function f is evidence compatible if for every type t there exists

C in C(t) such that:

∀t′, if u(f(t′)) < u(f(t)) then t′ /∈ C.

The evidence compatibility of an outcome function f means that every type t can certify

an event that no type with a worse outcome than f(t) can certify. The previous analysis shows

that if an outcome function is implementable in deterministic bilateral communication then it

is evidence compatible.
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We conclude this analysis with the following equivalence result:

Proposition 1.3. Let f be an outcome function. The three following statements are equivalent:

(i) f is implementable in unilateral communication.

(ii) f is evidence compatible.

(iii) f is implementable in deterministic bilateral communication.

Proof. See Appendix.

Propositions 1.2 and 1.3 characterize the sets of implementable outcome functions in bilat-

eral and unilateral communication. In the remainder of this section, we identify the necessary

and su�cient condition for these sets to coincide. This analysis is interesting insofar as it

allows us to determine when the principal can potentially bene�t from being active in the

communication phase. Let c∗(t) denote the intersection of all events that type t can certify:

c∗(t) =
⋂

C∈C(t)

C,

De�nition 1.5. The certi�ability structure C is called normal4 if for every type t there exists

a certi�able event providing maximal evidence about t, that is:

∀t ∈ T, c∗(t) ∈ C

Proposition 1.4. The sets of implementable outcome functions in unilateral and bilateral com-

munication coincide if and only if the certi�ability structure is normal.

Proof. First, note that outcome functions that are implementable in unilateral communication

are also implementable in bilateral communication (see Proposition 1.3).

4This condition is called normality by Bull and Watson [2007]. It has also been called the full reports
condition by Lipman and Seppi [1995] and the minimal closure condition by Forges and Koessler [2005].
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If the certi�ability structure is normal, Theorem 5 of Bull and Watson [2007] implies that

outcome functions that are implementable in bilateral communication are also implementable in

unilateral communication. More speci�cally, assume that the certi�ability structure is normal

and consider an outcome function f that is implementable in bilateral communication. From

normality and Lemma 1.1 we get that f is evidence compatible and therefore implementable in

unilateral communication (by Proposition 1.3). Thus the two sets of implementable outcome

functions coincide under normality.

To prove the converse, we assume that the certi�ability structure is not normal and we

construct an outcome function that is implementable in bilateral communication but not im-

plementable in unilateral communication. Under non-normality there exists a type t such that

c∗(t) /∈ C. c∗(t) is not empty (it contains at least t) and does not contain all types: if we had

c∗(t) = T then C(t) = {T} and as a consequence c∗(t) would be in C.

Consider an action a such that u(a) > u(a0) = 0 and the outcome function fλ de�ned by:

fλ(t) =


a if t ∈ c∗(t)

(a0; a) with proba. (λ; 1− λ) if t /∈ c∗(t)

Types in c∗(t) can certify any event that t can certify. Any type that is not in c∗(t) is unable

to certify at least one event in C(t). The outcome function fλ separates types in two sets and

gives a higher payo� to the set of types that can certify any event in C(t). Let λ = 1
card(C(t)) ,

and consider σ de�ned as follows:

σ(t;C) =


λ if t ∈ c∗(t) and C ∈ C(t)

1 if t /∈ c∗(t) and C = T

0 otherwise

In the (σ, fλ)-mechanism, if the agent reports a type t in c∗(t) (i.e., he wants to get the payo�
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u(a) with certainty), the principal selects an element in C(t) randomly (with equal probability)

and asks him to certify it. If the agent reports any other type, he is not required to certify any

event and he gets u(a) with probability 1− λ and 0 with probability λ. It is readily veri�able

that this mechanism implements fλ for any λ smaller than λ.

We now show that fλ is not implementable in unilateral communication by proving that it

is not evidence compatible (see Proposition 1.3). Indeed, the evidence compatibility condition

of fλ would imply that there exists C in C(t) that does not contain any type t outside of c∗(t).

Such an event can only be c∗(t) which is not in C. Thus, fλ is not evidence compatible.

Example 1.1. Let T = {t1, t2, t3} and C = {{t1, t3}, {t2, t3}}. C does not satisfy normality:

c∗(t3) = {t3} is not certi�able. Implementable outcome functions in unilateral communica-

tion are the evidence compatible outcome functions. If f is evidence compatible, it follows

that u(f(t3)) ≥ max{u(f(t1)), u(f(t2))}. The reason is that t1 (respectively, t2) cannot cer-

tify an event that does not contain t3. Moreover, u(f(t3)) cannot be strictly greater than

max{u(f(t1)), u(f(t2))}, otherwise t3 would have to certify an event that contains neither t1

nor t2, i.e. the event {t3} which is not certi�able. If u(f(t3)) = max{u(f(t1)), u(f(t2))}, it is

easy to check that f is evidence compatible. In conclusion, f is implementable in unilateral

communication if and only if:

u(f(t3)) = max{u(f(t1)), u(f(t2))}.

Implementable outcome functions in bilateral communication are those that satisfy the

conditions of Proposition 1.2. For type t1 (respectively, t2), we only need to have u(f(t1))

(respectively, u(f(t2))) smaller or equal to u(f(t3)). For type t3, the value of the following

linear program has to be greater or equal to 1:
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Max x1 + x2

s.t. x1 ≤
u(f(t1))

u(f(t3))

x2 ≤
u(f(t2))

u(f(t3))

x1 ≥ 0, x2 ≥ 0.

That is equivalent to the following condition: u(f(t1)) + u(f(t2)) ≥ u(f(t3)). In conclusion,

f is implementable in bilateral communication if and only if:

max{u(f(t1)), u(f(t2))} ≤ u(f(t3)) ≤ u(f(t1)) + u(f(t2)).

Because C does not satisfy normality, bilateral communication allows the implementation of

more outcome functions than unilateral communication. If the certi�cation structure is normal-

ized, i.e. if the event c∗(t3) = {t3} is added to C, it is easy to check that f is implementable in uni-

lateral (respectively, bilateral) communication if and only if u(f(t3)) ≥ max{u(f(t1)), u(f(t2))}.

1.4 The value of bilateral communication

We know that bilateral communication enlarges the set of implementable outcome functions if

and only if the certi�ability structure C does not satisfy normality (see Proposition 1.4). In this

section, we establish su�cient conditions for bilateral communication to (strictly) increase the

principal's expected payo�. Assume the action space A is a subset of R (with a0 = minA and

A 6= {a0}), the agent's utility function u is increasing, and both u and v are continuous (on

any interval I ⊆ A). Frameworks where the principal chooses a reward, a salary or a budget

allocation for the agent �t this description.
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De�nition 1.6. An outcome function f is weakly evidence compatible if

∀t,∀t′, if u(f(t′)) < u(f(t)) then t′ /∈ c∗(t).

Recall that an outcome function f is evidence compatible if every type t can certify an event

that no type with an outcome worse than f(t) can certify. Weak evidence compatibility only

requires that for every type t, no type with an outcome worse than f(t) can certify all events

in C(t). Note that if C satis�es normality, both notions are equivalent.

Remark 1.1. If an outcome function f is implementable in bilateral communication then it

is weakly evidence compatible. Indeed, if f is not weakly evidence compatible then there exist

two types t and t′ such that t′ is in c∗(t) and u(f(t′)) < u(f(t)) and therefore the incentive

compatibility constraint of t′ is violated because he can perfectly mimic t. However, weak

evidence compatibility is not su�cient for implementation (see Example 1.3).

As a consequence of this observation and Proposition 1.4, there exist outcome functions that

are weakly evidence compatible but not evidence compatible if C does not satisfy normality.

De�nition 1.7. The principal's utility function v is single-plateau if for every type t there

exists at and at such that v(t, ·) is strictly increasing before at, constant between at and at, and

strictly decreasing after at, i.e. for any action a in [at, at], v(t, a) = v(t, at) = v(t, at) and for all

actions a′ and a′′ in A:

if a′′ < a′ ≤ at or at ≤ a′ < a′′ then v(t, a′′) < v(t, a′).

If in addition at = at = a∗t for every type t, then v is single-peaked at a∗.

Example 1.2. In the hiring process example, assume the agent has (regardless of t) a quadratic

disutility of work: if he works h hours, his disutility is h2

2
. If the wage he obtains is a then his

surplus is h(a − h
2
). Therefore the optimal number of hours for the agent is h = a. Let st be
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the gross hourly surplus that an agent of type t generates. The principal's payo� if she hires

type t at an hourly wage a is therefore v(t, a) = a(st − a). It is single-peaked at st
2
.

Let A∗t = arg maxa∈A v(t, a) and if it is nonempty for all t, i.e. if v(t, ·) reaches its maximum

in A for all t, let F ∗(v) denote the set of �rst-best outcome functions:

F ∗(v) = {f : T → ∆(A)|f(t) ∈ ∆(A∗t )},

If v is single-plateau, A∗t = [at, at] and the principal wants his action to be in A∗t if the

agent's type is t, or as close as possible to this interval.

Proposition 1.5. Bilateral communication strictly increases the principal's expected payo� if

(i) For all t, A∗t nonempty and a0 /∈ A∗t .

(ii) No �rst-best outcome f ∗ in F ∗(v) is evidence compatible.

(iii) There exists a weakly evidence compatible �rst-best outcome f ∗ in F ∗(v).

If randomization over actions is not allowed the result holds if in addition, v is single-plateau

and A is an interval.

Proof. See Appendix.

Proposition 1.5 gives su�cient conditions for bilateral communication to improve the out-

come for the principal in comparison with unilateral communication. Such an improvement

results only from the principal being active in the communication phase given that the same

constraints on information certi�cation apply.

Condition (i) guarantees the existence of at least one �rst-best outcome function, which

would be implemented if the principal can observe the agent's type. It also states that, regard-

less of the agent's type, punishment is not optimal. Under this condition, if f is an optimal
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outcome function in unilateral communication then u(f(t)) > 0 for all t. As a consequence, the

threat of punishment can be used to increase the principal's expected payo� through bilateral

communication (regardless of the speci�cs of utility functions and type distribution).

Condition (ii) guarantees that no �rst-best outcome function f ∗ is implementable in uni-

lateral communication (by Proposition 1.3). This condition is necessary for bilateral communi-

cation to improve the outcome for the principal.

Condition (iii) states that there exists a weakly evidence compatible �rst-best outcome

function f ∗. This implies that f ∗ would be implementable in unilateral communication if the

certi�cation structure is normalized, i.e. if the maximal evidence events {c∗(t)}t∈T are added

to C. In other words, f ∗ can be implemented if the principal can ask the agent to certify all

events in C(t) when he reports type t. Under this condition, the constraint on the amount of

evidence that can be certi�ed is the reason that the principal is unable to achieve her �rst-

best in unilateral communication. Note that under conditions (ii) and (iii), C does not satisfy

normality (see De�nition 1.6).

In general, the result depends on the possibility of randomization over actions. But if v

is single-plateau and A is an interval, it holds even if randomization is not allowed: instead

of improving the outcome by �nding an implementable function with a higher probability of

choosing an optimal action, we can simply choose a closer action to the interval of optimal

actions.

Example 1.3. Consider an employer (principal) who wants to design a hiring process for a job

at her �rm. There are di�erent pro�les (types in the set T ) of applicants that �t the description

of this job. However, these pro�les are not equally valued by the employer due to di�erences

in productivity. The action space is R+: she chooses the wage at which she is willing to hire

an applicant (agent). The punishment action is to reject the application, i.e. to choose a wage

equal to 0. The applicant wants the highest possible wage. The hiring process is subject to a

time limit which implies that a limited amount of information (about the applicant's skills) can
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be veri�ed. Therefore, a certi�ability structure C can be de�ned.

If the principal wants to implement an allocation f , where f(t) is the wage for type t, she

can use canonical form bilateral communication mechanism. The hiring process starts when

the agent reports a type t by sending his curriculum vitae (which describes his pro�le). The

principal then asks him to certify an element of C by testing his abilities in certain tasks and/or

by asking for third party certi�cations (such as diplomas). If the applicant passes the test

and/or provides the required certi�cates, he is hired at wage f(t). Otherwise, he is not hired

(punishment action). For simplicity, we choose to preclude randomization over actions because

they represent wages. A similar analysis can be conducted if randomization is allowed.

Let T = {t1, t2, t3} and C = {{t1, t3}, {t2, t3}}: there are two skills and three possible types

with the possibility to verify only one skill during the hiring process. The �rst type masters

the �rst skill, the second masters the other, while the third masters both skills. Note that C

does not satisfy normality: c∗(t3) = {t3} is not certi�able.

Let u(a) = a: the agent's utility is equal to his wage. Assume that the employer's utility

v single-peaked at a∗. We give an instance where this condition is satis�ed in Example 1.2 (a

change of variable would allow us to have u(a) = a and keep v single-peaked).

As established in Example 1.1, f is implementable in unilateral communication if and

only if f(t3) = max{f(t1), f(t2)} and implementable in bilateral communication if and only

if max{f(t1), f(t2)} ≤ f(t3) ≤ f(t1) + f(t2). We can easily check that f is weakly evidence

compatible if and only if f(t3) ≥ max{f(t1), f(t2)}.

Let a∗3 be strictly larger than a∗1 and a
∗
2: the �rst-best wage for t3 is strictly higher than the

�rst-best wages for t1 and t2. That means a∗ is weakly evidence compatible but not evidence

compatible. If in addition, a∗k > 0 for all k then all conditions of Proposition 1.5 are satis�ed.

Therefore, bilateral communication strictly increases the principal's payo� in comparison with

unilateral communication. In the remainder, we examine how the payo� increase is achieved.

Assume w.l.o.g that a∗1 = mink a
∗
k.
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If a∗ is such that a∗3 ≤ a∗1+a
∗
2 then it is implementable in bilateral communication. Otherwise,

consider f optimal in unilateral communication. We have f(t3) = max{f(t1), f(t2)}. Moreover,

f(tk) is in [a∗1, a
∗
3] for all k because f is optimal (in unilateral communication) and v is single-

peaked. We show how to construct a function f̂ that gives the principal a higher payo� than

f .

If f is such that f(t1) ≤ f(t2) = f(t3) < a∗3, de�ne f̂ such that f̂(tk) = f(tk) for k in {1, 2}

and

f̂(t3) = min{f(t1) + f(t2), a
∗
3}.

f̂ is implementable in bilateral communication. Given that f(t1) ≥ a∗1 > 0, it follows that

f(t3) < f̂(t3) ≤ a∗3. Consequently, f̂ gives a strictly higher payo� to the principal than f

(because v is single-peaked).

If f is such that f(t1) ≤ f(t2) = f(t3) = a∗3, de�ne f̂ such that f̂(tk) = f(tk) for k in {1, 3}

and

f̂(t2) = max{f(t3)− f(t1), a
∗
2}.

f̂ is implementable in bilateral communication. We have a∗2 ≤ f̂(t2) < f(t3). Therefore,

f̂ gives a strictly larger payo� to the principal than f (because v is single-peaked). Similar

arguments apply if f(t2) < f(t1) = f(t3).
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1.5 Extensions

1.5.1 Tightness of Proposition 1.5

In this section, we focus on the conditions of the main result. Note that if A∗t is empty for

a given type t, these conditions are not well de�ned. For that reason, we assume that A∗t is

nonempty for all t and we show that if any of the other conditions of Proposition 1.5 is dropped

we can construct an example where the result does not hold, i.e. where the outcome is not

improved by bilateral communication. In all examples we have u(a) = a, T = {t1, t2, t3} and C =

{{t1, t3}, {t2, t3}} as in Example 1.3. In the general case, i.e. when randomization is allowed,

we choose A = R+ and single-peaked piecewise linear v which ensures that randomization over

actions does not improve the outcome for the principal.

Non-optimal punishment condition

Let a∗ be such that 0 = a∗1 < a∗2 < a∗3. a∗ is weakly evidence compatible but not evidence

compatible. Let v(t1, a) = −2a and v(tk, a) = −|a − a∗k| for k in {2, 3} and assume types are

uniformly distributed.

Let f be an optimal outcome function in bilateral communication. Implementation condi-

tions (see Example 1.3) ensure that max{f(t1), f(t2)} ≤ f(t3) ≤ f(t1) + f(t2). If f(t1) = 0,

then we necessarily have f(t2) = f(t3) and it is in [a∗2, a
∗
3] (because v is single-peaked at a∗).

Such a function is also implementable in unilateral communication. If f(t1) > 0 then f(t3)

must be equal to f(t1)+f(t2) and below a∗3: otherwise we would increases the principal's payo�

by lowering f(t1). It follows that the principal's optimization problem is
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Max v(t1, a1) + v(t2, a2) + v(t3, a1 + a2)

s.t. a1 ≥ 0, a2 ≥ 0,

a1 + a2 ≤ a∗3.

Under these constraints, we have

v(t1, a1) + v(t2, a2) + v(t3, a1 + a2) = −a1 + a2 + v(t2, a2)− a∗3.

It follows that a1 = 0 at the optimum. Therefore, f(t1) cannot be strictly positive. In

conclusion, the optimal f is implementable in unilateral communication and the outcome is not

improved by bilateral communication.

Evidence compatibility conditions

It is obvious that if a �rst-best outcome function is evidence compatible then the result does

not hold because it is implementable in unilateral communication. Condition (ii) is necessary

for the result to hold.

Let v(tk, a) = −|a−a∗k| for all k with 0 < a∗1 < a∗3 < a∗2. Condition (iii) is not satis�ed in this

case because a∗ is the unique �rst-best and is not weakly evidence compatible. If f is optimal

in bilateral communication then we necessarily have f(t1) = a∗1 and f(t2) = f(t3) ∈ [a∗3, a
∗
2],

thus it is implementable in unilateral communication. Bilateral communication cannot improve

the outcome.
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Without randomization over actions

Now we assume randomization over actions is not allowed and we show that if A is not an

interval or v is not single-plateau, we can construct an example where the result does not hold.

The action space is not an interval: Let v(tk, a) = −|a−a∗k| for all k with 0 < a∗1 < a∗2 < a∗3

and a∗1 + a∗2 < a∗3. If A = [0, a∗2] ∪ [a∗3,+∞), it is easy to see that if f is optimal in bilateral

communication then f(t1) = a∗1 and f(t2) = f(t3) ∈ {a∗2, a∗3}. Therefore, it is also implementable

in unilateral communication.

The principal's utility is not single-plateau: Assume types are uniformly distributed.

Let A = R+ and v(tk, a) = −2|a− a∗k| for k in {1, 2} with 0 < a∗1 < a∗2. However, let v(tk, ·) be

increasing strictly increasing. Let there be a∗3 strictly higher than a
∗
1 +a∗2. Let v(t3, ·) be strictly

increasing for a < a∗2, constant between a
∗
2 and a

∗
1 + a∗2, strictly increasing between a∗1 + a∗2 and

a∗3, and strictly decreasing for a > a∗3. Assume in addition that v(t3, ·) is piecewise linear with a

slope equal to 1 (in absolute value) outside the interval [a∗2, a
∗
1 + a∗2]. a

∗ is the unique �rst-best

and it satis�es the conditions of Proposition 1.5, i.e. it is weakly evidence compatible but not

evidence compatible and a∗k > 0 for all k. But v is not single-plateau.

The optimal outcome function in unilateral communication is f such that f(t1) = a∗1 and

f(t2) = f(t3) = a∗2. Any outcome function f̂ such that f̂(t1) = a∗1, f̂(t2) = a∗2 and f̂(t3) ∈

[a∗2, a
∗
1 + a∗2] is implementable in bilateral communication and gives the same expected payo�

to the principal as f . To see that such f̂ is optimal, we need to observe that in order to have

v(t3, f̃(t3)) > v(t3, f̂(t3)), we need to have f̃(t3) > a∗1 + a∗2. If f̃ is implementable, f̃(t3) ≤

f̃(t1) + f̃(t2) and therefore:

f̃(t3)− (a∗1 + a∗2) ≤ (f̃(t1)− a∗1) + (f̃(t2)− a∗2).
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Given the chosen function v, namely the fact that v(t1, ·) and v(t2, ·) have a twice larger

slope than v(t3, ·), it follows that f̃ decreases the principal's payo� in comparison with f .

1.5.2 Optimal solutions: Randomization over actions and Commit-

ment

An outcome function f is optimal if it maximizes the principal's expected payo� among the

set of implementable outcome functions. In unilateral communication, Sher [2011] shows that

there exists an optimal function that does not involve randomization over actions and can

be implemented without the principal's commitment if the following concavity assumption is

satis�ed: the principal's utility function is a type-dependent concave transformation of the

agent's utility function. Hart et al. [2016] show that commitment is unnecessary for a class of

certi�ability structures satisfying a stronger condition than normality if the principal's prefer-

ences are strongly single-peaked, that is every convex combination of elements of {v(t, ·}t∈T is

single-peaked.

In this section, we show that under the conditions of Proposition 1.5 and the concavity

assumption stated above, randomization over actions is not needed if the action space is an

interval and we give an example with a discrete action space where it is necessary. We also give

an example where commitment is necessary at the optimum under the same conditions.

We focus on settings where the conditions of Proposition 1.5 are satis�ed because it guaran-

tees that bilateral communication is bene�cial and it is then interesting to study the properties

of optimal solutions in comparison with unilateral communication.

Randomization over actions

The result of Sher [2011] about randomization holds whether the principal's actions space A

is continuous or discrete. We show that it holds in bilateral communication if A is an interval
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and we give an example that illustrates the need for randomization for discrete A.

Proposition 1.6. Assume the conditions of Proposition 1.5, A is an interval and the following

concavity assumption are satis�ed: for all t, there exists a concave function ct such that v(t, ·) =

ct(u(·)). Then there exists an optimal outcome function in bilateral communication f such that

for all t, f(t) ∈ A.

Proof. Consider an outcome function f . For a given type t, the outcome f(t) is a distribution

over actions. Let Ef(t)(u) be the expected utility of an agent under the lottery f(t). Because u

is continuous over A, there exists an action f̂(t) ∈ A such that.

u(f̂(t)) = Ef(t)(u)

This de�nes a deterministic outcome function f̂ . If f is implementable then f̂ is also imple-

mentable (because the agent's expected utilities are identical for both outcome functions). Now

we compare the principal's utilities under f and f̂ when she faces an agent of type t.

Ef(t)(v(t, ·)) = Ef(t)(ct(u))

≤ ct(Ef(t)(u)) (concavity of ct)

≤ ct(u(f̂(t))) = v(t, f̂(t)).

The principal is therefore (weakly) better o� not randomizing over actions. The conclusion

follows.

As we can see in the proof above, the fact that A is an interval plays an essential role in

the argument. In the following example, we consider a discrete actions space and we �nd that

randomization is necessary at the optimum.

46



Example 1.4. Consider a setting where u(a) = a, T = {t1, t2, t3} and C = {{t1, t3}, {t2, t3}} as

in Example 1.3. Assume types are uniformly distributed, A = {0, 1, 3} and let the principal's

utility function be given by the following table:

v(t, a) 0 1 3
t1 0 1 0
t2 0 1 0
t3 0 1 3

Note that the concavity assumption is satis�ed. The best deterministic outcome function

in this case is one such that type t3 receives the action 3 along with one of the other two types,

while the remaining type receives the outcome 1. The utility of the principal for such a function

is V = 4. This function is not optimal though. The optimal solution assigns action 3 to type

t3 and the same randomized outcome to types t1 and t2 such that action 1 has a probability 3
4

and action 3 has a probability 1
4
. The optimal payo� of the principal is V = 9

2
.

Commitment

We now give an example where commitment is necessary at the optimum in bilateral commu-

nication under the conditions of Proposition 1.5 and the concavity assumption.

Example 1.5. Consider the same framework as Example 1.1 with the utility functions of

Example 1.2. Namely, T = {t1, t2, t3}, C = {{t1, t3}, {t2, t3}}, A = [0,+∞), u(a) = a2

2
and

v(t, a) = a(st − a) with st the surplus that type t generates. Assume in addition that st1 =

st2 = 1 and st3 = 2. v is single peaked at a∗ = (1
2
, 1
2
, 1) which is weakly evidence compatible

but not evidence compatible. Also, punishment is not optimal regardless of the agent type. All

conditions of Proposition 1.5 are satis�ed. In addition the concavity assumption is satis�ed: for

every type t, v(t, ·) = ct(u(·)), where ct(x) = st
√

2x − 2x. In fact, the strict concavity ensures

that there can be no randomization over actions at the optimum.
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It follows from the characterization given in Example 1.1 that f , such that f(tk) = ak for

all k, is implementable if and only if

max{a21, a22} ≤ a23 ≤ a21 + a22.

The optimal solution is such that a1 = a2 = 1+
√
2

4
and a3 = 2+

√
2

4
. The principal needs

commitment in order to implement this outcome function because these actions are not rational

given her beliefs at the time of implementation: for example, when choosing action a3 = 2+
√
2

4
,

she knows that the agent's type is t3 and her rational decision would be a = 1.

1.6 Appendix

Proof of Proposition 1.1. Bull and Watson [2007] show that if f is implemented in a general

mechanism, then it is also implemented in a special three-stage mechanism characterized by

g : T ×M × C → ∆(A) and σ : T → ∆(M) with truthful reporting at stage 1. g(t,m,C) is

the outcome when the agent reports t, the principal sends message m and the agent certi�es

C. σ(t;m) is the probability that the principal sends the message m if the agent reports t.

Therefore, for every type t and every message m, there must exist an event Ct,m in C(t) such

that the outcome f(t) is implemented whenever the agent announces t, the principal sends m

and the agent shows C. Formally:

∀t,∀m,∃Ct,m ∈ C(t) such that g(t,m,Ct,m) = f(t)

For every type t, let φt be a mapping from messages m to events Ct,m :

∀m,φt(m) ∈ C(t) and g(t,m, φt(m)) = f(t)
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Incentive compatibility constraints are given by:

∀t,∀t′,
∑
m

σ(t′,m) max
C∈C(t)

u(g(t′,m,C)) ≤ u(f(t)).

Consider the mechanism σ̂ and ĝ de�ned by:

• ∀t,∀C, σ̂(t, C) =
∑

m∈φ−1
t (C) σ(t;m).

• ∀t,∀C, ĝ(t, C, C) = f(t).

• ∀t,∀C ′ 6= C, ĝ(t, C, C ′) = a0.

We can easily check that ∀t,∑C∈C(t) σ̂(t, C) = 1. Note that this is a description of the three-

stage (σ̂, f)-mechanism. In order to prove that σ̂ and ĝ implement f , we check that incentive

compatibility constraints are satis�ed. First, using the de�nition of σ̂, we have:

∀t, ∀t′,
∑
C

σ̂(t′, C) max
C′∈C(t)

u(ĝ(t′, C, C ′)) =
∑
C

∑
m∈φ−1

t′ (C)

σ(t′,m) max
C′∈C(t)

u(ĝ(t′, C, C ′))

By de�nition, if m ∈ φ−1t′ (C) then g(t′,m,C) = g(t′) = ĝ(t′, C, C), and for C ′ 6= C, we have

u(g(t′,m,C ′)) ≥ u(a0) = u(ĝ(t, C, C ′)). Therefore

∀t,∀t′,
∑
C

σ̂(t′, C) max
C′∈C(t)

u(ĝ(t′, C, C ′)) ≤
∑
C

∑
m∈φ−1

t′ (C)

σ(t′,m) max
C′∈C(t)

u(g(t′,m,C ′))

The r.h.s term is equal to
∑

m σ(t′,m) maxC∈C(t) u(g(t′,m,C)) and we �nally get:

∀t,∀t′,
∑
C

σ̂(t′, C) max
C′∈C(t)

u(ĝ(t′, C, C ′)) ≤ u(f(t)).
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Which proves that σ̂ implements f .

Proof of Lemma 1.1. Given the structure of the (σ, f)-mechanism, σ implements f with

truthful reporting if and only if (i) the support of σ(t) is in C(t) and (ii) no type has an

incentive to misreport.

Let σt′t =
∑

C∈C(t′) σ(t;C) denote the probability for an agent of type t′ to successfully

persuade the principal that he is of type t. Using this notation, (i) states that for all t,

σtt = 1. (ii) describes the incentive compatibility constraints and states that for all t and t′,

σt′tu(f(t)) ≤ u(f(t′)). Note that for t such that u(f(t)) = 0, these conditions are satis�ed and

do not constrain the choice of σ(t). Therefore, we can write (ii) as follows:

∀t, t′σt′t ≤
u(f(t′))

u(f(t))
,

with the right hand side equal to +∞ if u(f(t)) = 0.

Proof of Proposition 1.3. Let f be an outcome function. Recall the three statements:

(i) f is implementable in unilateral communication.

(ii) f is evidence compatible.

(iii) f is implementable in deterministic bilateral communication.

In order to prove the equivalence, we will show the following implications: (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii) Consider an outcome function f implementable in unilateral communication. Using

the revelation principle, we know that there must exist a unilateral communication mech-

anism that implements it with truthful type reporting. For every type t, there must exist

at least C in C(t) such that if the agent reports t and certi�es C, the principal implements

f(t). Consequently, if t′ is such that u(f(t′)) < u(f(t)) then t′ /∈ C: otherwise t′ bene�ts

from deviating by reporting t and certifying C. Therefore, f is evidence compatible.
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(ii)⇒(iii) If f is evidence compatible, de�ne the deterministic σ such that for every t, σ(t) is

an element of C(t) that contains no type t′ with u(f(t′)) < u(f(t)). It is guaranteed to

exist by evidence compatibility. It is readily veri�ed that σ implements f .

(iii)⇒(i) If there exists a deterministic σ that implements f , consider the following imple-

mentation rule in unilateral communication: if the agent reports type t and certi�es σ(t)

implement f(t), otherwise implement a0. This mechanism implements f .

Proof of Proposition 1.5. Let f be an optimal outcome function in unilateral communica-

tion. Proposition 1.3 guarantees the existence of deterministic σ that implements f in bilateral

communication. Our goal is to slightly modify the (σ, f)-mechanism so that we obtain an im-

plementable outcome function f̂ with a strictly higher expected payo� for the principal than

f .

Let f ∗ be a weakly evidence compatible element of F ∗(v) (it is guaranteed to exist by

condition (iii)). Consider an indexing of types in T from 1 to n : T = {t1, . . . , tn}. Given

that A∗tk is nonempty for all k, let ak (respectively, ak) denote its largest (respectively, smallest)

element. Let the indexing be such that u(f(t1)) ≤ u(f(t2)) ≤ · · · ≤ u(f(tn)) and if there

exist k and l such that u(f(tk−1)) < u(f(tk)) = u(f(tk+1)) = · · · = u(f(tk+l)) < u(f(tk+l+1)),

rearrange the indexing so that u(f ∗(tk)) ≤ u(f ∗(tk+1)) ≤ · · · ≤ u(f ∗(tk+l)).

For any two lotteries over actions µ, µ′ and any α ∈ [0, 1] let L(µ, µ′, α) = (1− α)µ + αµ′.

If u(f(tk)) is in [u(ak), u(ak)] then v(tk, f(tk)) is necessarily maximal because f is optimal.

Otherwise f(tk) can be replaced with L(ak, ak, α) where α is such that u(f(tk)) = αu(ak)+(1−

α)u(ak). This would make v(tk, f(tk)) maximal without a�ecting the evidence compatibility

constrains of f .

Condition (ii) implies that f is not in F ∗(v) (because f is evidence compatible). Therefore,

using the previous observation, there must exist k̃ such that u(f(tk̃)) is not in [u(ak̃), u(ak̃)],
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and as a consequence v(tk̃, f(tk̃)) < v(tk̃, f
∗(tk̃)). Let J = {j : u(f(tj)) = u(f(tk̃))}. It follows

that there exist l, l′, m and m′ such that

J = {k̃ − l, · · · , k̃ − l′, · · · , k̃, · · · , k̃ +m′, · · · , k̃ +m}

with: 
u(f ∗(tj)) < u(f ∗(tk̃)) if k̃ − l ≤ j < k̃ − l′

u(f ∗(tj)) = u(f ∗(tk̃)) if k̃ − l′ ≤ j ≤ k̃ +m′

u(f ∗(tj)) > u(f ∗(tk̃)) if k̃ +m′ < j ≤ k̃ +m

It follows from condition (i) that ak > a0 for all k. Therefore, u(f(t1)) > 0: otherwise

f(t1) = a0 and it would be possible to improve the outcome for the principal (and the agent

incidentally) by replacing f(t1) with L(a0, a1, α) where α > 0 is small enough for f to remain

evidence compatible (the same argument applies if more than one type receive the punishment

action). Let ε be such that 0 < ε < min{u(f(t1))
u(f(tk̃))

, 1
2
}. We now construct an outcome function f̂

that gives the principal a strictly higher expected payo� than f by having v(t, f̂(t)) ≥ v(t, f(t))

for all t and v(tk̃, f̂(tk̃)) > v(t, f(tk̃)).

(I) If u(f(tk̃)) > u(ak̃) then we necessarily have m > m′: if m is equal to m′, we can replace

f(tj) with L(f(tj), f
∗(tj), αj) for every j in J with αj > 0 such that this lottery gives

the agent a payo� equal to max{u(f ∗(tk̃)), u(f(tk̃−l−1))}. This change would increase

the principal's expected payo� without a�ecting the evidence compatibility of f , which

contradicts the fact that f is optimal in unilateral communication.

Let J = {k̃ − l, · · · , k̃ + m′} and J = {k̃ + m′ + 1, · · · , k̃ + m}. J contains k̃ and J is

nonempty because m > m′. We also have u(f ∗(j)) > u(f ∗(j′)) for all j ∈ J and j′ ∈ J .

For every j in J , note that tj′ /∈ c∗(tj) for all j′ ∈ J because f ∗ is weakly evidence

compatible. Let Cj denote the event σ(tj). Cj may contain types tj′ with j′ ∈ J but
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cannot be certi�ed by any type tk with k < k̃ − l (because σ implements f).

Let σ̂ be identical to σ except for types tj with j in J . For each of these types and every

j′ such that j′ ∈ J and tj′ ∈ Cj choose Cjj′ in C(tj) that does not contain tj′ . Let lj be

the number of Cjj′ 's. If lj = 0, let σ̂(tj, Cj) = 1. Otherwise, let σ̂(tj, Cj) = 1 − ε and

σ̂(tj, Cjj′) = ε
lj
for each Cjj′ . Let l̃ = maxj∈J lj.

Let f̂ be identical to f except for types tj′ such that j′ ∈ J . For each of these types,

let f̂(tj′) = L(f(tj′), f
∗(tj′), αj′) with αj′ > 0 such that this lottery gives the agent an

expected payo� equal to u(f(tk̃))− η for some η satisfying the following condition:

0 < η ≤ u(f(tk̃))−max{u(f ∗(tk̃)), u(f(tk̃−l−1))}.

This outcome function gives the principal a strictly higher expected payo� than f . If

l̃ = 0, f̂ would be evidence compatible and f would not be optimal in unilateral com-

munication. Therefore l̃ > 0 and σ̂ is not deterministic. Moreover, σ̂ implements f̂

if

(1− ε

l̃
)u(f(tk̃)) ≤ u(f(tk̃))− η

εu(f(tk̃)) ≤ u(f(t1))

The �rst condition guarantees that types tj′ such that j′ ∈ J have no incentive to deviate

and is satis�ed for η > 0 small enough. The second condition guarantees that types

below tk̃−l have no incentive to deviate and is satis�ed by de�nition of ε.

(II) If u(f(tk̃)) < u(ak̃) then l > l′: if l is equal to l′, we can replace f(tj) with L(f(tj), f
∗(tj), αj)

for every j in J with αj > 0 such that this lottery gives the agent a payo� equal to
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min{u(f ∗(tk̃)), u(f(tk̃+m+1))}. This change would increase the principal's expected pay-

o� without a�ecting the evidence compatibility of f , which contradicts the fact that f is

optimal in unilateral communication.

Let J = {k̃− l, · · · , k̃− l′−1} and J = {k̃− l′, · · · , k̃+m}. J is nonempty because l > l′

and J contains k̃. We also have u(f ∗(j)) > u(f ∗(j′)) for all j ∈ J and j′ ∈ J so that we

construct σ̂ in the same way as in (I).

Let f̂ be identical to f except for types tj with j in J . For each of these types, let

f̂(tj) = L(f(tj), f
∗(tj), αj) with αj > 0 such that this lottery gives the agent an expected

payo� equal to u(f(tk̃)) + η for some η satisfying the following condition:

0 < η ≤ min{u(f ∗(tk̃)), u(f(tk̃+l+1))} − u(f(tk̃)).

Similarly to (I), this outcome function gives the principal a strictly higher expected payo�

than f and we have l̃ > 0 and σ̂ non-deterministic. Moreover, σ̂ implements f̂ if

(1− ε

l̃
)(u(f(tk̃)) + η) ≤ u(f(tk̃))

ε(u(f(tk̃)) + η) ≤ u(f(t1))

These conditions are analogous to those of (I) and are satis�ed for η > 0 small enough.

This concludes the proof in the general case.

In order to prove the result when v is single-plateau, A is an interval and randomization

over actions is not allowed, we simply have to replace L(a, a′, α) with the action (1−α)a+αa′

for any actions a and a′.
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Study of the case where a0 does not exist. This happens when infa∈A u(a) is not attained.

If infa∈A u(a) = −∞ then the punishment can be as big as the principal wants. Formally, f is

implementable if and only if there exists α ∈ R and σ such that

∀t, t′ σt′tu(f(t))− (1− σt′t)α ≤ u(f(t′))

First, note that if t′ ∈ c∗(t) then σt′t is necessarily equal to 1 which implies u(f(t)) ≤ u(f(t′)).

Consider the following mechanism : if the agent reports type t, ask for all events in C(t) with the

same probability. Then ∀t, t′, if t′ /∈ c∗(t), the above inequality is satis�ed for α large enough.

Because we have a �nite number of such inequalities, we can take the largest α to satisfy all of

them. We conclude that if infa∈A u(a) = −∞, f is implementable if and only if

∀t, t′, if u(f(t′)) < u(f(t)) then t′ /∈ c∗(t),

that is, f weakly evidence compatible. If the punishment can be as large as we want, all weakly

evidence compatible outcome functions are implementable and the limitation on information

certi�cation has no e�ect.

If on the other hand infa∈A u(a) is �nite, we can set it to 0 w.l.o.g and denote by aε an

action such that u(aε) = ε for all ε > 0. By continuity of u, such action always exists. In this

case, f is implementable if and only if there exists σ such that

∃ε > 0 s.t ∀t, t′ σt′tu(f(t)) + (1− σt′t)ε ≤ u(f(t′))

⇔ ∀t, t′ if u(f(t′)) < u(f(t)) then σt′tu(f(t)) < u(f(t′))

We conclude that σ implements f i�

∀t, t′, if u(f(t′)) < u(f(t)) then σt′t <
u(f(t′))

u(f(t))
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Implementation results follow from Lemma 1.1, where, in this context, certain inequalities

are replaced with strict inequalities. The subsequent results still hold but have to be modi�ed

accordingly.
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Chapter 2

Hard evidence and ambiguity aversion

2.1 Introduction

Consider a situation in which a decision-maker wants to implement di�erent actions in di�erent

states of the world, but does not observe the true state while an informed agent does. Because

the agent's interest might not be aligned with the decision-maker's preferences, he can be asked

to certify�either partially or totally�the information he reports. When certain constraints (like

time, complexity, cost, or technological constraints) preclude the option of unlimited informa-

tion certi�cation, the decision-maker has to choose which information has to be certi�ed by

the agent. An easy way to illustrate this framework is to consider a situation with multidi-

mensional states (representing, for example, all transactions and activities of a �rm) where the

decision-maker (for example, a �nancial auditor) has to choose one dimension of the state to

be certi�ed by the �rm.

There are several ways to choose which activities to investigate. The �rst and most basic

is to de�ne rules that associate an activity to investigate to each possible state: for example,

investigate the largest activity. The problem with such deterministic rules is that they let

the agent know with certainty which dimension is going to be investigated, which implies
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that he could easily manipulate the decision; hence, the set of implementable allocations will

usually be rather small. The second way is for the decision-maker to use mixed strategies: for

example, choose randomly between all activities with equal probability. Using such a rule, it

could be more di�cult for the agent to manipulate the decision, thereby enlarging the set of

implementable allocations.

Although requesting information certi�cation with mixed strategies could improve the sit-

uation for the decision-maker, it does not eliminate the e�ect of the limitation on information

certi�cation. The original idea of this article is to show that if the agent is ambiguity averse in

the sense of maxmin expected utility [Gilboa and Schmeidler, 1989], then requesting informa-

tion certi�cation with an ambiguous (instead of a pure or mixed) strategy completely eliminates

the e�ect of limited certi�cation. The reason behind this is that an agent who is ambiguity

averse in the sense of maxmin expected utility always anticipates the worst case scenario. In

the audit example, if the auditor chooses an activity using an ambiguous strategy, an agent

who lies about one or more activities gets investigated on one of these activities in the worst

case scenario. Therefore, he would act exactly as if all activities were going to be investigated.

In this sense, ambiguity saves time on information investigation.

We prove this result in a general model: any allocation rule that is implementable with

unlimited certi�cation (with or without ambiguity) is also implementable with limited certi�-

cation and ambiguity if agents are averse to ambiguity in the sense of maxmin expected utility.

We give examples where the converse assertion does not hold, but show that the equivalence

holds if there is a single agent and a worst outcome.

Related Literature The topic of mechanisms with certi�able information has been actively

investigated in the literature such as in Ben-Porath and Lipman [2012], Bull [2008], Bull and

Watson [2007], Deneckere and Severinov [2008], Glazer and Rubinstein [2001, 2004], Green and

La�ont [1986], Forges and Koessler [2005], Kartik and Tercieux [2012], Koessler and Perez-
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Richet [2014], Sher [2011], Sher and Vohra [2015], Singh and Wittman [2001], Strausz [2016].

These papers, among others, give rise to important results about implementable allocation rules

and some of them establish a revelation principle for settings with certi�able information.

Ambiguity has recently been incorporated into mechanism design mainly in two di�erent

ways: either through incomplete preferences as in Lopomo et al. [2013] or through the strategic

use of ambiguity as in Bose and Renou [2014] and Di Tillio et al. [2012]. In a model of insurance

under moral hazard, Lang and Wambach [2013] have shown how uncertainty about an insurer's

cost of an audit leads to ambiguity about the probability of an audit, which in turn induces

ambiguity-averse agents to undertake less fraud. In this chapter, we allow the designer to use

ambiguous communication devices, but unlike the cited papers we consider mechanism design

problems with certi�able information.

In section 2.2, we present the model. In section 2.3, we give a characterization of the im-

plementable allocation rules under unlimited information certi�cation. In section 2.4, we show

that ambiguity allows to implement all those allocation rules in settings of limited information

certi�cation. We also show that if there exists a worst outcome, then any allocation rule that is

implementable with ambiguity is also implementable under unlimited information certi�cation.

In section 2.5, we discuss the implications of our results for communication games with certi�-

able information, and their limits in settings with multiple agents or other types of ambiguity

averse preferences.

2.2 Model

Consider a mechanism designer with a set of alternatives denoted by A, and an agent1 who

is privately informed about his type t ∈ T . The utility of the agent when his type is t ∈ T

and alternative a ∈ A is implemented is u(a; t). In this section, the agent evaluates lotteries

1Section 2.5 discusses which of our results extend to multiple agents.
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according the expected utility.

We assume that the agent can certify some of his information to the designer. This ability

to disclose hard evidence is represented by a certi�ability structure C ⊆ 2T , where for every

t ∈ T there exists C ∈ C such that t ∈ C. We denote by C(t) = {C ∈ C : t ∈ C} the set of

events the agent can certify when his actual type is t, and

c∗(t) =
⋂

C∈C(t)

C,

the intersection of all these events.2

De�nition 2.1. The certi�ability structure C satis�es normality3 if for every t there exists a

certi�able event providing maximal evidence about type t. That is, c∗(t) ∈ C(t) for every t ∈ T .

The normalized certi�ability structure of C is the normal certi�ability structure C∗ de�ned by

C∗ ≡ C ∪ {c∗(t) : t ∈ T}.4

In the environment 〈T, C, A, u〉 the designer would like to implement an allocation rule

f : T → A. A dynamic mechanism (with unlimited certi�cation) is an extensive form game for

the agent with moves of Nature and with perfect recall, that satis�es the following properties:

the information structure is compatible with the assumption that the agent privately knows his

type; every decision node is either a cheap talk node with an arbitrary number of cheap talk

messages (from the agent or from Nature), or a certi�cation node, where the agent of type t

2The certi�ability structure de�ned above could be deduced from any arbitrary message correspondence
M(t), t ∈ T , by letting C(t) ≡ {M−1(m) : m ∈ M(t)}. The number of messages inM(t) may be larger than
in C(t) because several messages inM(t) may certify the same event in C(t), but since we consider mechanisms
with arbitrary sets of additional cheap talk messages, taking the certi�ability structure as a primitive of the
model is without loss of generality.

3This terminology is due to Bull and Watson [2007]. The normality condition has also been called the full
reports condition by Lipman and Seppi [1995] and the minimal closure condition by Forges and Koessler [2005].

4We could also de�ne the normalized certi�ability structure of C by the smallest set of events including C
which is closed under intersection without a�ecting any of the results below.
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must certify an event in C(t); �nally, each terminal node is associated to an alternative in A.

A dynamic mechanism with limited certi�cation is a dynamic mechanism in which there is one

and only one certi�cation node in every path through the tree.

The allocation rule f : T → A is implementable (with unlimited certi�cation) if there exists

a dynamic mechanism and an optimal strategy for the agent inducing the allocation rule f .

It is implementable with limited certi�cation if there exists a dynamic mechanism with limited

certi�cation and an optimal strategy for the agent inducing the allocation rule f .

A direct mechanism is a mechanism in which each type t simultaneously sends a cheap talk

message from the set T and certi�es an event in C(t) to the designer. The strategy of the agent

in a direct mechanism is truthful if he sends the cheap talk message t when his type is t.

The allocation rule f : T → A is directly and truthfully implementable if there exists a

direct mechanism and a strategy that is both truthful and optimal for the agent inducing the

allocation rule f .

2.3 Implementation without Ambiguity

Forges and Koessler [2005] have shown that an allocation rule is implementable (with unlimited

certi�cation) given a certi�ability structure C if and only if it is directly and truthfully imple-

mentable given the normalized certi�ability structure C∗, with a mechanism in which each type

t is asked to certify the event c∗(t) ∈ C∗(t). In particular, if C is normal, implementation with

limited or unlimited certi�cation is equivalent to direct and truthful implementation.

Let

M(t) ≡ {s ∈ T : c∗(s) ∈ C∗(t)}.

The set M(t) represents the set of types of the agent that type t is able to mimic without being

observed by the designer if the latter is expecting that each type s certi�es c∗(s). Notice that

c∗(s) ∈ C∗(t)⇔ C∗(s) ⊆ C∗(t) ⇔ C(s) ⊆ C(t).
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For every S ⊆ T , let

INTIR(S) = {x ∈ RS : ∃σ(S) ∈ ∆(A), xt ≥ u(σ(S); t) ∀ t ∈ S},

be the individually rational payo�s for the agent given S. That is, a payo� pro�le is individually

rational given S if there exists a strategy σ(S) for the designer that gives a lower payo� to every

type in S. Notice that when S = T individual rationality as de�ned above corresponds to the

de�nition of individual rationality of Myerson [1991, p. 282].

Proposition 2.1. The allocation rule f : T → A is implementable (with unlimited certi�cation)

if and only if the following conditions are satis�ed:

u(f(t); t) ≥ u(f(s); t), for every t ∈ T and s ∈M(t); (2.1)

(u(f(t); t))t∈S ∈ INTIR(S), for every S ∈ C. (2.2)

Proof. Directly from the arguments above and the revelation principle for certi�able informa-

tion in Forges and Koessler [2005].

The �rst condition in the proposition guarantees that no agent type has an incentive to

deviate to messages sent on the equilibrium path, while the second condition guarantees that

the designer can punish observable deviations (i.e., when the agent certi�es a set of types S

which is not in {c∗(t) : t ∈ T}).

Notice that if there is a message certifying no information, i.e., T ∈ C, then condition (2.2)

simpli�es to the standard individual rationality condition:

∃σ ∈ ∆(A) such that u(f(t); t) ≥ u(σ; t), for every t ∈ T.

We say that an alternative a ∈ A is a worst outcome if u(a; t) ≤ u(a; t) for every a ∈ A
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and t ∈ T . When there exists a worst outcome, condition (2.2) is always satis�ed whatever the

allocation rule and the certi�ability structure.

With limited certi�cation, dynamic mechanisms could implement more allocation rules than

direct mechanisms. To see this, consider the following example.5

Example 2.1. The set of types is T = {t1, t2, t3}, the certi�ability structure is C = {{t1, t2}, {t2, t3}, T}

(which is not normal), the set of alternatives is A = {a1, a2, a3, a0}, and the agent's utility as a

function of the agent's type t ∈ T and the alternative a ∈ A is given by

u(a; t) =

a1 a2 a3 a0

t1 0 1 1 −β

t2 0 0 0 −β

t3 1 1 0 −β

where β ≥ 0.

Consider the allocation rule f(ti) = ai, i = 1, 2, 3. Clearly, this allocation rule is imple-

mentable with unlimited certi�cation: each type certi�es the smallest event he is able to certify

with the normalized certi�ability structure C∗ = {{t1, t2}, {t2}, {t2, t3}, T}, and the worst out-

come a0 is chosen o� the equilibrium path (i.e., when the agent certi�es the event T ).

However it is not directly implementable with limited certi�cation. Indeed, to induce action

a2 with probability one when the agent's type is t2, a direct mechanism should induce action

a2 with probability one after the agent has reported that his type is t2 and has certi�ed the

event {t1, t2} or {t2, t3}. If a2 is induced after certifying {t1, t2}, then type t1 has an incentive

to mimic type t2; if a2 is induced after certifying {t2, t3}, then type t3 has an incentive to mimic

type t2.

As shown by Bull and Watson [2007], when normality is not satis�ed (as in the above exam-

5Similar examples appear in Glazer and Rubinstein [2001, 2004], Bull and Watson [2007] and Bull [2008].
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ple), the set of implementable allocation rules with limited certi�cation can still be characterized

in a canonical way, but with a three-stage mechanism: in the �rst stage, the agent reports his

type to the designer; in the second stage, the designer sends a message to the agent; �nally,

in the last stage, the agent certi�es some information to the designer. With such a dynamic

mechanism, the allocation rule f in the previous example is implementable even with limited

certi�cation, as long as β ≥ 1, with the following dynamic mechanism: the designer asks the

agent who has reported type t1 to certify {t1, t2}, he asks the agent who has reported type t3

to certify {t2, t3}, and he asks the agent who has reported type t2 to certify {t1, t2} or {t2, t3}

with the same probability. If the agent fails to certify the event asked by the designer, then the

worst outcome a0 is implemented.

2.4 Implementation with Ambiguous Mechanisms

In the previous example, the allocation rule f is directly implementable with unlimited cer-

ti�cation, it is not directly implementable with limited certi�cation, but it is implementable

with limited certi�cation and a dynamic mechanism. However, an allocation rule which is

implementable with unlimited certi�cation is not necessarily implementable with a dynamic

mechanism with limited certi�cation. To see that, consider again Example 2.1. The allocation

rule f(ti) = ai, i = 1, 2, 3, cannot be implemented with limited certi�cation when β < 1. In-

deed, if the designer asks type t2 to certify {t1, t2} with probability p ≥ 1/2, then type t1 has

an incentive to mimic type t2, and if he asks type t2 to certify {t1, t2} with probability p ≤ 1/2,

then type t3 has an incentive to mimic type t2.

Assume now that the agent is averse to ambiguity in the sense of maxmin expected util-

ity [Gilboa and Schmeidler, 1989], and that the designer can use ambiguous communication

strategies. More precisely, dynamic mechanisms are extended to allow nature (communication

by the designer) to choose sets of probability distributions over messages instead of a single
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probability distributions over messages. Following the terminology of Riedel and Sass [2013],

the designer can use mechanisms in which Nature uses Ellsberg communication strategies (i.e.,

sets of probability distributions over messages) instead of standard strategies (i.e., probability

distributions over messages). Then at each information set, the agent evaluates his local strat-

egy with the minimal expected utility from this strategy, where the minimum is taken over all

possible probability distributions compatible with the designer's (ambiguous) communication

strategy.6 An allocation rule f is implementable with an ambiguous mechanism if there exists

a dynamic mechanism, an ambiguous communication strategy for the designer and an optimal

strategy for the agent inducing f .

To illustrate this extension, consider the previous example and assume that the designer

ambiguously asks the agent who reported type t2 in the �rst stage to certify either {t1, t2}

or {t2, t3} according to a set of probability distributions P ⊆ ∆({{t1, t2}, {t2, t3}}). If P =

{(p, 1 − p)} we are back to a standard communication strategy for the designer as above.

Consider the same mechanism as above, but assume that P = ∆({t1, t2}, {t2, t3}): the designer

asks type t2 to certify either {t1, t2} or {t2, t3} with an imprecise probability, and as before, if the

agent fails to certify the event asked by the designer, then the worst outcome a0 is implemented.

With this mechanism, the maxmin expected utility of type t1 who mimics type t2 is

min
p∈[0,1]

(
pu(a2; t

1) + (1− p)u(a0; t
1)
)

= u(a0; t
1) = −β ≤ 0,

and his maxmin expected utility if he reports his true type to the designer is simply u(a1; t
1) = 0.

Similarly, the maxmin expected utility of type t3 who mimics type t2 is

min
p∈[0,1]

(
pu(a0; t

3) + (1− p)u(a2; t
3)
)

= u(a0; t
3) = −β ≤ 0,

6As in Bose and Renou [2014] we assume prior-by-prior updating (full Bayesian updating), and that the agent
is a consistent planner (Siniscalchi, 2011), i.e., at every information set he maximizes his minimal expected utility
at this information set given the strategies he will actually follow.
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and his maxmin expected utility if he reports his true type to the designer is u(a3; t
3) = 0. It is

therefore optimal for the agent to report his true type: the allocation rule f is implementable

with an ambiguous mechanism7 and limited certi�cation under the same conditions on β as

the implementation condition without ambiguity and with unlimited certi�cation. The next

proposition shows that this is general.

Proposition 2.2. If the allocation rule f : T → A is implementable (with unlimited certi�ca-

tion) then it is also implementable with an ambiguous mechanism with limited certi�cation if

the agent is averse to ambiguity in the sense of maxmin expected utility.

Proof. Consider an environment 〈T, C, A, u〉 and an allocation rule f which is implementable

(with unlimited certi�cation). We construct below a dynamic and ambiguous mechanism to-

gether with an optimal strategy for the agent which implements f with limited certi�cation.

The mechanism is very similar to the three-stage mechanism of Bull and Watson [2007], with

the di�erence that in the second stage the designer sends a message to the agent using an am-

biguous strategy (a set of probability distributions over messages) instead of a mixed strategy

(a single probability distribution over messages).

In the �rst stage, the agent reports his type with a cheap talk message s ∈ T to the designer.

In the second stage, after receiving a message s ∈ T from the agent, the designer sends a

message R(s) ∈ C(s) to the agent, interpreted as a request to the agent for the certi�cation of

the event R(s), according to the ambiguous communication strategy ∆(C(s)).

In the third stage, the agent certi�es the event R(s) requested by the designer in the second

stage.

Finally, the alternative f(s) is implemented if the agent has certi�ed the event requested by

the designer. Otherwise, if the event S ∈ C certi�ed by the agent in the third stage does not

7This mechanism is constructed such that the agent faces ambiguity at the �rst stage (report) and a decision
problem under certainty at the last stage (certi�cation). Therefore, consistent plans consist in choosing a report
that maximizes the minimal expected utility given the designer's ambiguous communication strategy and his
anticipated certi�cation decisions.
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correspond to the event R(s) requested by the designer in the second stage, then the alternative

is chosen according to the same distribution σ(S) used in the original mechanism.

Consider an agent type t. We show below that the agent has no incentive to report another

type s 6= t in the �rst stage, and in the third stage he has no incentive to certify an event

di�erent than the one requested by the designer when the agent is able to certify the event

requested by the designer.

In the third stage, if the agent is able to certify the event requested by the designer and

certi�es it then he gets u(f(t); t). If he certi�es another event S ∈ C(t) he gets u(σ(S); t),

which is smaller than u(f(t); t) by condition (2.2) in Proposition 2.1. When he can, it is

therefore optimal for the agent to certify the event requested by the designer. If the agent

cannot certify the event requested by the designer, then it is optimal to certify an event in

arg maxS∈C(t) u(σ(S); t).

In the �rst stage, if the agent reports a type s ∈ T where C(s) ⊆ C(t), then s ∈M(t). So by

condition (2.1) in Proposition 2.1 we have u(f(t); t) ≥ u(f(s); t), meaning that type t has no

incentive to report s. If he reports a type s such that C(s) * C(t), then it is possible (according to

the ambiguous communication strategy of the designer) that the designer requests the agent to

certify an event R(s) /∈ C(t); in this case the expected utility of the agent is maxS∈C(t) u(σ(S); t),

which is smaller than u(f(t); t) by condition (2.2) in Proposition 2.1. Hence, the minimal

expected utility of the agent (where the minimum is taken over all communication strategies

of the designer) is smaller than u(f(t); t), and therefore the agent has no incentive to deviate

from truthfully reporting his own type.8

In general, the converse of the previous proposition does not hold: an allocation rule might

be implementable with an ambiguous mechanism (and limited certi�cation) without being im-

8Notice that, in general, a deviation to a non-deterministic strategy for an ambiguity averse player may
be bene�cial while no pure strategy is; however, it is readily observed that the strategy of the agent in the
mechanism considered in the proof of the proposition is still optimal if he can use non-deterministic strategies.
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plementable (with unlimited certi�cation). To see that, consider the following example.

Example 2.2. The set of types is T = {t1, t2}, the (normal) certi�ability structure is C =

{{t1}, {t2}, T} and the agent's utility as a function of the agent's type t ∈ T and the alternative

a ∈ A = {a1, a2, a3, a4} is given by

u(a; t) =

a1 a2 a3 a4

t1 0 2 −1 2

t2 2 0 2 −1

Since the certi�ability structure is normal, implementation with limited certi�cation is equiv-

alent to implementation with unlimited certi�cation. From Proposition 2.1 we know that the

allocation rule f(ti) = ai, i = 1, 2 is not implementable because

(u(f(t1); t1), u(f(t2); t2)) = (0, 0) /∈ INTIR(T ).

This allocation rule is however implementable with an ambiguous mechanism inducing the

alternatives a3 and a4 with the whole set of probability distributions over {a3, a4} when the

agent certi�es the event T . Indeed, with such a mechanism, any type t who deviates by not

certifying the event {t} gets

min
p∈[0,1]

(pu(a3; t) + (1− p)u(a4; t)) = −1 < u(f(t); t).

In the previous example it is interesting to note that the introduction of ambiguity in the

choice of alternatives does enlarge the set of implementable allocation rules. This contrasts with

the case without certi�able information, where ambiguity in the choice of alternatives does not

allow to implement more allocation rules than without ambiguity (see, for example, Bose and

Renou, 2014); in particular, without information certi�cation, introducing ambiguity is useless
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(for implementing a social choice function) if there is only one agent.

The next proposition shows that what happens in the previous example cannot happen if

there exists a worst outcome:

Proposition 2.3. Assume that there exists a worst outcome and that the agent is averse to

ambiguity in the sense of maxmin expected utility. If the allocation rule f : T → A is imple-

mentable with an ambiguous mechanism and limited certi�cation, then it is also implementable

(with unlimited certi�cation).

Proof. Consider an environment 〈T, C, A, u〉 with a worst outcome a, and an allocation rule

f which is implementable with an ambiguous mechanism and limited certi�cation. With such

a mechanism and the associated optimal strategy of the agent inducing the allocation rule f ,

the outcome is by de�nition f(t) with probability one for every type t of the agent. In order

to prove the result, we only need to show that f satis�es the conditions of Proposition 2.1.

First, modify this mechanism by assigning alternative a to every terminal node reached with

probability 0 given the agent's strategy. Clearly, with this new mechanism the strategy of the

agent is still optimal. Now modify the mechanism further by replacing each certi�cation node

by a sequence of successive certi�cation nodes, and modify the strategy of the agent in such a

way that he certi�es all sets in C(t) (both along and o� the equilibrium path). This is equivalent

to asking the agent of type t to certify c∗(t) at each of his certi�cation nodes. The allocation

rule f is still implemented with this new mechanism and strategy, and the strategy of the agent

is still optimal. Now, if the agent's type is t and he follows the strategy above he gets f(t) with

probability one, and if he deviates he gets either f(s) with s ∈ M(t), or the worst outcome a.

Since such a deviation should not be pro�table, the conditions of Proposition 2.1 are satis�ed,

and therefore a direct mechanism with unlimited certi�cation can be used to implement to same

allocation rule.

An important corollary of the two previous propositions is that if there is a worst outcome,
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then the set of allocation rules that are implementable with an ambiguous mechanism (and

limited or unlimited certi�cation) exactly coincides with the set of implementable allocation

rules (with unlimited certi�cation).

2.5 Discussion

Implications for communication games with certi�able information. Our results also

have implications for sender-receiver communication games with certi�able information: if there

is a fully revealing equilibrium under the certi�ability con�guration C∗, then under any certi�-

ability con�guration C whose normalized certi�ability con�guration is C∗, there is also a fully

revealing equilibrium if communication is bilateral and dynamic and the receiver can use am-

biguous communication strategies. Indeed, since full information revelation induces the �rst

best for the receiver, such an ambiguous communication strategy is obviously a best response

for the receiver. For instance, in Example 2.1, if the receiver's utility is given by

a1 a2 a3 a0

t1 1 −2 −2 0

t2 −2 1 −2 0

t3 −2 −2 1 0

then the ambiguous mechanism used by the receiver to implement f is a best response to the

agent's strategy.

Multiple agents. Proposition 2.2 can be extended to environments with multiple agents, by

considering (weak) implementation, and without making speci�c assumption on agents' utility

functions and prior beliefs. Each agent i's set of types is Ti, i ∈ {1, . . . , n}, and they have a

common prior p ∈ ∆(T ), where T = ×iTi. The utility of agent i is ui(a, t), for a ∈ A and t ∈ T .
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The individually rational payo�s can be generalized as follows in settings with n agents. For

every agent i, for every Si ⊆ Ti, let

INTIRi(Si) = {x ∈ RSi : ∃σ(Si) : T−i → ∆(A), xt ≥
∑

t−i∈T−i

p(t−i | ti)ui(σ(Si, t−i); ti, t−i) ∀ ti ∈ Si},

be the individually rational payo�s for agent i given Si. That is, a payo� pro�le is individually

rational given Si if for every combination of types t−i of agents other than i, there exists a

strategy σ(Si, t−i) ∈ ∆(A) for the designer that gives a lower interim expected payo� to every

type in Si. Then, Proposition 2.1 is generalized as follows: An allocation rule f : T → A is

implementable (with unlimited certi�cation) if and only if the following conditions are satis�ed

for every i ∈ N :

∑
t−i∈T−i

p(t−i | ti)ui(f(t); t) ≥
∑

t−i∈T−i

p(t−i | ti)u(f(si, t−i); t), for every ti ∈ Ti and si ∈Mi(ti);

(2.3)

(
∑

t−i∈T−i

p(t−i | ti)ui(f(ti, t−i); ti, t−i))ti∈Si
∈ INTIRi(Si), for every Si ∈ Ci. (2.4)

In addition, we say that f is implementable with ambiguous mechanisms if there exists

a dynamic mechanism, an ambiguous communication strategy of the designer and a pro�le of

strategies for the agents such that, at each information set, each player maximizes his minimum

expected utility given others' strategies and his own strategy at the other information sets. The

proof of Proposition 2.2 uses the same mechanism as in the single-agent case: if every agent

j 6= i is truthful in the �rst stage and certi�es the event requested by the designer in the third

stage, then agent i faces the same decision problem as in the single-agent case except that his

utility ui(·; t) is replaced by his interim expected utility
∑

t−i∈T−i
p(t−i | ti)ui(·; ti, t−i).

However, Proposition 2.3 does not extend when there are multiple agents; this has already

been observed in the literature when information is not certi�able (see, in particular, Bose and
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Renou, 2014); the reason is that ambiguous communication could modify agents' perceptions

about other agents' types, and could therefore relax their incentive constraints. A simple

example is provided below:

Example 2.3. There are two agents, and each agent i ∈ {1, 2} has two possible types, ti ∈

{t1, t2}, that are uniformly distributed. Information is not certi�able. The utilities of the agents

as a function of the type pro�le and alternative a1 or a2 are given by:

a1 t1 t2

t1 0,1 2, 0

t2 0, 0 0,1

a2 t1 t2

t1 −1, 0 0,1

t2 0,1 0, 0

Clearly, the allocation rule

f(t1, t2) =


a1 if t1 = t2

a2 if t1 6= t2,

is not implementable with any unambiguous mechanism: when agent 1's type is t1 and he

reports type t2 to the designer, his expected payo� is (1/2)u1(a2; t
1, t1) + (1/2)u1(a1; t

1, t2) =

−(1/2)1 + (1/2)2 instead of (1/2)u1(a1; t
1, t1) + (1/2)u1(a2; t

1, t2) = 0 (adding a worse outcome

would not modify this conclusion). However, if agent 2 �rst uses an ambiguous communication

strategy before agent 1 reveals his type to the designer, then agent 1 has no incentive to

deviate anymore if the communication strategy of agent 2 to agent 1 is su�ciently imprecise;

for example, if agent 2 sends messages m1 and m2 to agent 1 according to the whole set of

probability distributions ∆(m1,m2) whatever his type, then after any such message the set of

beliefs of agent 1 about agent 2's type would be whole set, and the maxmin utility derived from

a deviation of agent 1 when his type is t1 would be minp∈[0,1](−p+ 2p) = −1 < 0.9

9Equivalently, agent 2 can �rst reveal his type to the designer, who then sends messages m1 and m2 to
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Other ambiguity averse preferences. Throughout the chapter, we assumed that agents

are ambiguity averse in the sense of maxmin expected utility. Our main result is that am-

biguous mechanisms and limited certi�cation allow to implement all allocation rules that are

implementable with unlimited certi�cation. In short, ambiguity completely eliminates the e�ect

of certi�cation limitation. This result clearly relies on the extreme ambiguity aversion of MEU,

and it does not necessarily hold for less extreme preferences. For example, consider the case

of α-maxmin expected utility (α-MEU). An agent who has α-MEU preferences maximizes the

weighted average of the minimal and maximal expected utilities with α (1 − α, respectively)

being the weight of the minimum (maximum, respectively). We can easily check that if an

allocation rule is implementable with the three-stage ambiguous mechanisms proposed in the

proof of Proposition 2.2 for a given α, then it is also implementable with the same mechanism

for any α′ greater than α. Clearly, the converse does not hold. For instance, under α-MEU,

the ambiguous mechanism with limited certi�cation used in Example 2.1 will implement the

allocation rule f(ti) = ai, i = 1, 2, 3 only if α ≥ 1
1+β

. Therefore, when α is not large enough, am-

biguity does not completely eliminate the e�ect of certi�cation limitation, and implementable

allocation rules will depend more �nely on the environment and on the agent's sensitivity to

ambiguity.

agent 1 according to the previous ambiguous communication strategy. Thus, the mechanism described here is
consistent with our de�nition of ambiguous mechanisms.
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Chapter 3

Seeking advice

3.1 Introduction

Decision makers have the di�cult task of choosing among alternative policies and projects

without direct access to the relevant information. Acquiring this information may be di�cult

and very costly or even impossible for the decision maker. One way to solve this issue is to

simply rely on the advice of an informed party. Obviously, if they have identical preferences

then this would completely eliminate the problem. Unfortunately, these preferences are usually

misaligned due to a variety of reasons. For example, in a �rm, an informed employee may be

biased in favor of a certain project because it might bene�t his career more than other projects.

When information is hard, the decision maker can still learn it by consulting a biased agent if

his bias is known. Well established results of unraveling (see for example Milgrom [1981] and

Grossman [1981]) may apply in this setting allowing the elicitation of all information despite

the bias. However, if the bias is unknown the previous argument could fail and it might not be

su�cient to consult one agent.

In this chapter, the decision maker takes advantage of the presence of multiple informed

agents with unknown biases in order to learn more information than she would when facing
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only one agent. By consulting more agents, the decision maker increases her chances of learning

information but agents' silence can be informative enough to make her stop seeking advice and

choose an action without acquiring the missing information.

In organizations for example, information is usually dispersed in the hierarchy due to in-

herent structural reasons and to specialization (see for example Marschak and Radner [1972],

Walker [1998] and Dessein [2002]). For instance, the most informed members about the suit-

ability of a given project are not those who have to decide whether to invest in the project

but rather those who would have to implement it subsequently. Moreover, informed agents

might not have the same goals as decision makers who have to rely on their advice but have

the possibility of consulting more than one of them.

We consider a model with two possible states and two alternative actions for the decision

maker. Choosing the right action in this context amounts to guessing the true state. There are

two types of agents: each agent is biased in favor of one of the two actions regardless of the state.

Agents know the true state and, if consulted, can either reveal it or remain silent. Information

is hard and agents cannot lie. The decision maker chooses at each period whether to consult

an agent or stop and select an action. In the main version of the model, if a consulted agent

chooses to reveal the state, the decision maker processes the presented information at a cost

which represents the e�ort and time she has to allocate (to read a report or attend a meeting,

for example). In Section 3.4.2, we consider two other versions where the decision maker incurs

a constant cost per consultation or discounts future payo�. We show that we obtain essentially

the same results as in the main version.

In equilibrium, the decision maker starts seeking advice only if her uncertainty about the

state of the world is high enough. Her goal is to reduce her uncertainty before making a decision.

She keeps consulting agents until she either learns all the information -by encountering an agent

who is willing to reveal it- or her uncertainty is reduced to a level that does not justify consulting

more agents. It is important to note that learning does not happen only when the agent reveals
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information. If agents types (biases) are not equiprobable, encountering an agent who withholds

information is also informative: the decision maker updates her belief by putting a higher weight

on the state where the majority type withholds information. Therefore, the decision maker can

stop seeking advice after consulting a certain number of agents who did not reveal the state.

In this case, she can also make a choice that di�ers from the one she would have made based

on her prior beliefs.

If the decision maker does not learn the state by the time she stops seeking advice, it is

possible that she makes a bad decision. This can happen if she encounters only agents from the

minority (in terms of bias distribution) and they withhold information. Agents of the minority

are therefore able to in�uence the decision maker so that she chooses their favorite action when

she should not, provided that she does not encounter any agent of the majority.

We observe that the decision maker requires a lower level of uncertainty about the state

before choosing an action if the processing cost or uncertainty about agents preferences de-

creases. Consider a level of uncertainty about the state such that she is indi�erent between

choosing an action and seeking more advice. If the processing cost decreases she would strictly

prefer consulting more agents as she expects a lower loss. The same applies if uncertainty about

agents preferences decreases because she expects a higher gain as agents silence becomes more

informative.

When the cost decreases, the decision maker consults more agents before stopping to choose

an action. However, she generically consults less agents when she is less uncertain about their

bias. Although she requires a lower level of uncertainty about the state, the increase of agents

silence informativeness has a greater e�ect on the number of consultations.

We characterize the maximum number of consulted agents in equilibrium and we show that it

increases inde�nitely when the processing cost vanishes or uncertainty about agents preferences

approaches its maximum. However, the average number of consultations always has a �nite

limit.
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In section 3.5, we consider an alternative model with a richer state space that allows agents

to reveal more or less precise information about the state. The state space is an interval and the

message can be any interval containing the true state. We characterize the unique equilibrium

outcome when the decision maker can consult only one agent and we show that it is the same

as the outcome that would obtain if the agent can only reveal the state or remain silent. In

other words, if sequential consultation is not allowed, the richness of the message space has no

impact on the outcome. When sequential consultation is allowed, we �nd an equilibrium where

the decision maker consults exactly one agent and uses the possibility of further consultation

as a threat to extract more precise information. The consulted agent sends a message that is

just precise enough to make the decision maker stop which allows him to in�uence her decision

in his favor to a certain extent. We show the existence of such an equilibrium for a low enough

consultation cost and equiprobable types.

Related Literature The issue of dispersed information within organizations has been studied

in the literature and it is often better to delegate decision rights to informed agents rather than

try to elicit information through communication (see Aghion and Tirole [1997] and Dessein

[2002] for example). We depart from this literature by considering a setting where it is best to

keep decision rights because the divergence between the preferences of the decision maker and

the agents is extreme.

This chapter is also related to the literature on strategic communication. Since the work of

Crawford and Sobel [1982] on cheap talk games and of Milgrom [1981] on persuasion games,

an extensive literature has been developed on both types of sender-receiver games. In the

present work, the sender is the agent, the receiver is the decision maker and the information

is veri�able as in persuasion games. In the cheap talk literature, Le Quement [2016] models

the interaction between consumers and product reviewers through sequential consultation of

informed senders who use cheap talk messages and who either share the receiver's preferences
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or are biased toward high actions. Our contribution is to study sequential consultation in the

context of hard information and explore its e�ect on learning and decision making.

Uncertainty over the agent's preferences, formulated similarly to Wolinsky [2003], is an

important feature of our model: the decision maker has two alternatve actions (0 or 1) and the

agent either wants action 1 (type H) or action 0 (type L). This uncertainty causes the failure

of the unravelling argument which was presented by Milgrom [1981] and Grossman [1981] and

states that full revelation occurs in equilibrium because the decision maker assumes the lowest

possible value (of the state variable) that is consistent with reported information. The result

holds precisely because the sender's goal is to persuade the decision maker that this value is

as high as possible, which is only true for type H in our model while type L has the opposite

goal. Other authors such as Dziuda [2011] introduce uncertainty over the level of strategic

sophistication of the sender by having a proportion of non-strategic (or honest) senders who

always report all their private information. In the cheap talk literature, some authors studied

models where the bias is uncertain (see for example Li [2005] and Dimitrakas and Sara�dis

[2005]).

The agent's preferences are independent of his private information. Matthews and Postle-

waite [1985], Milgrom and Roberts [1986], Shin [1994], Glazer and Rubinstein [2004] and Sher

[2011] among others also consider state-independent preferences in models of veri�able messages

games. However, some papers in persuasion games literature consider state-dependent prefer-

ences, see for example Seidmann and Winter [1997], Forges and Koessler [2005], Giovannoni

and Seidmann [2007] and Mathis [2008].

3.2 Model

A decision maker (DM) has to choose an action a in A = {0, 1}. Her payo� depends on her

action and on the state of the world s which is in S = {0, 1}. The probability of state 1 is
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denoted π. DM does not observe s but she can sequentially consult informed agents in the

organization. Information is hard and the agent's messages are veri�able (or certi�ed) in the

following sense: if the state is s, then he can certify s or remain silent.

DM wants to choose the action that matches the state. Her utility function uD : A×S → R

is given by:

uD(a, s) = 1{a=s}.

Let a∗(π) = 1{π≥ 1
2
} denote DM 's optimal action when she believes that the state is 1 with

probability π.

There is uncertainty over agents' preferences which are independent of the state. Similarly

to Wolinsky [2003], each agent can be of type L or H with p denoting the probability of type

L. Type L strictly prefers action 0, while type H strictly prefers action 1. The agent's payo�

is 1 if his preferred action is chosen and b < 1 if the other action is chosen.

Before the game starts, Nature draws the state s according to the prior distribution. At

the beginning of each period t in N, DM decides whether to seek advice or choose an action. If

she chooses to seek advice, Nature draws an informed agent (whose type is L with probability

p), who either discloses s or remains silent. The game ends when DM chooses an action.

Revelation is costless for the agent. In the main model, DM incurs the cost of processing

the information denoted c if an agent reveals the state but bears no cost if he is silent. In

section 3.4.2, we consider variants of the model where the DM incurs a consultation cost or

discounts future payo� and we show that we obtain similar results. In section 3.4.3, we examine

the case where DM can choose to avoid the processing cost by learning that the agent wants

to reveal the state without receiving the message.
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3.3 Equilibrium analysis

In this section, we study the Perfect Bayesian Equilibria (PBE) of this game. The nature of

the equilibrium depends on agent's time preferences. If b is positive, agents prefer immediate

decisions: conditional on knowing the action to be chosen at the end, both types prefer DM to

implement it immediately. If b is negative, each type prefers an immediate decision conditional

on his favorite action being chosen but would rather cause DM to delay her decision otherwise.

We assume without loss of generality that the decision maker chooses to stop whenever

indi�erent between stopping and continuing to seek advice.

Remark 3.1. An agent's equilibrium strategy depends only on b and his type. In equilibrium,

type L (respectively, H) reveals information in state 0 (respectively, 1) regardless of b because

it guarantees that DM chooses his preferred action immediately. Given agents time preferences

and b non zero1, type L (respectively, H) is not indi�erent between revealing the state and

remaining silent in state 1 (respectively, 0). Consequently, agents' equilibrium strategies are

pure.

Lemma 3.1. There exists no PBE such that only one type withholds information in one state

(type L in state 1 or type H in state 0).

Proof. Consider a PBE such that type L withholds information in state 1 while type H reveals

information in state 0. In that case, the decision maker would learn that the state is 1 when the

agent remains silent and therefore she would choose action 1. This would give type H incentive

to deviate and remain silent in state 0.

Lemma 3.1 ensures that there are two types of PBE:

1If b is zero, agents are indi�erent between an immediate and a delayed decision conditional on their preferred
action not being chosen. Consequently, we obtain multiple equilibria, but they are of the same nature as those
of positive and negative b. For that reason, we discard this case.
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1. Full revelation PBE: both types reveal information in both states.

2. Partial revelation PBE: type L (respectively, H) reveals information if and only if the

state is 0 (respectively, 1).

We focus mainly on the setting where agents prefer to delay the bad action and biases are

not equiprobable. In this case, we observe learning in equilibrium (partial revelation PBE)

and a possibility for the minority to in�uence DM by withholding information. But �rst, we

analyze the situations where agents prefer immediate decisions or biases are equiprobable.

3.3.1 Agents prefer immediate decisions

Assume that b is positive so that agents prefer immediate decisions whether DM implements

their favorite action or not.

Proposition 3.1. If agents strictly prefer immediate decisions then there exists a unique PBE.

In equilibrium, both types reveal information in both states (full revelation). DM consults at

most one agent:

• if c ≥ 1
2
she chooses action a∗(π) without seeking advice.

• if c < 1
2
:

� if c < π < 1 − c, she consults exactly one agent, learns the state and chooses the

right action.

� otherwise, she chooses action a∗(π) without seeking advice.

• O� equilibrium path, i.e. if the agent reveals no information, she continues seeking advice.

Proof. First, we check that this strategy pro�le is indeed a PBE. Given full revelation, the

decision maker is willing to consult an agent if and only if her expected payo� (1− c) is greater
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than her expected payo� if she chooses a∗(π) which is max{π, 1 − π}. Given the decision

maker's strategy, full revelation is the agent's best response because of the strict preference for

immediate decisions and the fact that the decision maker continues seeking advice until she

learns the state.

Second, we prove that this is the only PBE. In a full revelation PBE, the decision maker

has to continue seeking advice o� equilibrium path because otherwise at least one type in one

state would deviate to withholding information. In a partial revelation PBE, if p = 1
2
, DM 's

belief would not change after encountering a silent agent and she would continue seeking advice

until she learns the state, which gives incentive to agents to deviate to full revelation given their

preference for immediate decisions. If p 6= 1
2
, DM 's belief would change after encountering a

silent agent but this belief change can potentially bene�t only one of the two types withholding

information which gives the other type incentive to deviate and reveal the state.

Since both types prefer immediate decisions in both states, we obtain full revelation in

equilibrium when the decision maker seeks advice. This is case if the processing cost is low

enough (c < 1
2
) and uncertainty about the state is high enough (c < π < 1− c).

3.3.2 Agents prefer delayed bad outcomes

If b is negative, agents want the decision to be delayed if it is not their favorite action. The

equilibrium behavior changes so that each type reveals the state only if the corresponding action

is good. Given these preferences, there can be no full revelation PBE.

Proposition 3.2. If p = 1
2
and agents strictly prefer delayed bad outcomes then there exists

a partial revelation PBE and it is unique. In equilibrium, type L (respectively H) reveals the

information only in state 0 (respectively 1). DM 's equilibrium strategy is:

• if c ≥ 1
2
she chooses action a∗(π) without seeking advice.
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• if c < 1
2
:

� if c < π < 1− c, she seeks advice until she learns the state and then chooses the right

action.

� otherwise, she chooses action a∗(π) without seeking advice.

Proof. In a partial revelation PBE, DM 's belief remains unchanged when she encounters a

silent agent because p = 1
2
. Therefore, for every belief π, she would either choose a∗(π) without

seeking advice or seek advice until she learns the state. Her payo� if she chooses a∗(π) without

seeking advice is max{π, 1−π}. Her payo� is she seeks advice until she learns the state is 1−c.

In order to conclude, we only need to compare the two payo�s.

Note that although strategies are di�erent, the outcome in this case is similar to that of

the full revelation equilibrium of Proposition 3.1: DM learns the state and chooses the right

action if the prior is in (c, 1− c) and she chooses the optimal action based on her prior without

consultation otherwise. The only di�erence is the timing of her decision as she might consult

more than one agent in this setting.

If the cost c is low enough and uncertainty about the state is high enough, DM would

continue to seek advice inde�nitely until she learns the state. The reason is that withholding

information is not informative at all because p = 1
2
. If p is di�erent from 1

2
, agent's silence

becomes informative. Let π0 = π and πt denote DM 's (updated) belief that the state is 1 after

encountering silent agents for t periods:

πt =
ptπ

ptπ + (1− p)t(1− π)
.

Proposition 3.3. If p > 1
2
and agents strictly prefer delayed bad outcomes then there exists

a partial revelation PBE and it is unique. In equilibrium, type L (respectively H) reveals the

information only in state 0 (respectively 1). DM 's equilibrium strategy is:
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• if c ≥ p she chooses action a∗(π) without seeking advice.

• if c < p, there exist two beliefs π and π such that π < 1
2
< π = p(1−c)

p(1−c)+(1−p)c and at each

period t:

� if π < πt < π, she seeks advice.

� otherwise, she stops and chooses action a∗(πt).

Proof. See Appendix.

Note that if p < 1
2
, we obtain an analogous result by symmetry (by relabeling the states,

for example). In the remainder of the section, we focus on the case where p > 1
2
without loss of

generality. Under the assumptions of Proposition 3.3, the decision maker learns information on

equilibrium path both from agents who reveal information and those who remain silent. Her

belief evolves over time and it is possible that she stops seeking advice after encountering silent

agents only.

More speci�cally, if c is smaller than p and DM 's prior belief π0 = π is in (π, π), she starts

seeking advice. If the agent is silent she updates her belief to π1 = pπ0
pπ0+(1−p)(1−π0) which is

greater than π0 (because p > 1
2
). If π1 is below π, she seeks advice again. This process is

repeated until she either learns the state or arrives at a belief πt above π after encountering

silent agents for t periods. If DM learns the state, she chooses the right action and her payo�

is 1− c. However, if she does not learn the state and stops at a belief over π she chooses action

a = 1. Therefore, if s = 1 and DM encounters only agents of type L (the majority type for

p > 1
2
), she still chooses the right action at the end. But if s = 0 and she encounters only

agents of type H (the minority type), she ends up making a bad decision.

Learning on the equilibrium path makes it possible for agents of the minority type to mislead

DM to make the wrong decision, by remaining silent. A major di�erence between this case

and the previous one (p = 1
2
) is the fact that DM never continues to seek advice inde�nitely.
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For any given p and c, there exists a maximal number of consultations in equilibrium.

Let π̃n = (1−p)n−1(1−c)
(1−p)n−1(1−c)+pn−1c

for n in N. This sequence is de�ned so that if DM seeks advice

at belief π̃n and the agent is silent, the updated belief after consultation is π̃n−1. Moreover, π̃0

coincides with π. Therefore, if π is in (π, π)∩ [π̃n, π̃n−1) (for non zero n) then DM seeks advice

for at most n periods: if she does not learn the state by the n-th consultation, her posterior

belief is above π, therefore she stops seeking advice and chooses action a = 1. The expected

payo� of the decision maker at a belief π in (π, π) ∩ [π̃n, π̃n−1) is:

vn(π, p, c) = π(pn + (1− pn)(1− c)) + (1− π)(1− (1− p)n)(1− c).

By rearranging the terms, we get vn(π, p, c) = an(p, c)π + bn(p, c) where

an(p, c) = pnc+ (1− p)n(1− c)

bn(p, c) = (1− (1− p)n)(1− c).

For every n, the payo� functions vn and vn+1 coincide at π̃n (ensuring the continuity of

DM 's expected payo�). Furthermore, an is strictly positive for all n and an+1(p, c) is strictly

smaller than an(p, c) for all c and all p in (1
2
, 1). These observations allow us to de�ne DM 's

expected payo� of seeking advice as v(π, p, c) = maxn∈N vn(π, p, c) (see Figure 3.1) .

Proposition 3.4. Under the assumptions of Proposition 3.3 and c < p, we have:

• π is increasing in p and decreasing in c.

• π is decreasing in p and increasing in c.

Proof. We have π = p(1−c)
p(1−c)+(1−p)c and therefore π is increasing in p and decreasing in c. In order

to determine how π varies with the parameters, we use the variations of DM 's expected payo�.
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Figure 3.1: DM 's expected payo� (for some �xed p and c). The function v is represented in
red.

Note that for all n, vn is decreasing in c and increasing in p. Therefore, v is also decreasing in

c and increasing in p. For any given p and c, v is continuous, strictly increasing and piecewise

linear in π. In addition, π(p, c) is the unique belief π for which v(π, p, c) = 1 − π. Therefore,

an increase in p (or a decrease in c) induces a decrease in π(p, c).

Proposition 3.4 asserts that the interval of beliefs such that DM seeks advice is enlarged

(in the sense of inclusion) if the cost of processing information or the uncertainty about the

agent's type decreases. When c decreases, DM has a larger incentive to seek advice. When p

increases, the uncertainty about types decreases and agent's silence is seen as more informative

which makes it more interesting to seek advice. In fact, if the true state is 0, an increase in p

leads to an increase of the probability of learning the state and a decrease of the probability of

wrongfully choosing action 1. If the true state is 1, an increase in p leads to an increase of the

probability of not learning the state and choosing the action 1 without incurring the cost of
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Figure 3.2: Probability of a bad decision for π = 0.5 and c = 0.3

information processing. In other words, the decrease of uncertainty is bene�cial in both states.

Probability of bad decisions If DM 's prior belief is in (π, π) ∩ [π̃n, π̃n−1), she consults at

most n agents before choosing an action. Therefore, her �nal decision is:

• In state 1: action 1 with certainty.

• In state 0:

� action 1 if she encounters n silent agents.

� action 0 otherwise.

DM chooses the wrong action if and only if the state is 0 and she encounters n (silent)

agents of type H. Note that only the minority (type H for p > 1
2
) bene�ts from DM 's mistake.

The probability of this mistake is (1−π)(1−p)n. In order to understand how this probability

changes when the parameters p and c change, we need to determine the way they a�ect n. Recall

that π̃n = (1−p)n−1(1−c)
(1−p)n−1(1−c)+pn−1c

. It is readily veri�able that π̃n is decreasing in c and p for n strictly

larger than 1. We also know that π̃0 = π is increasing in p and decreasing in c (Proposition 3.4).
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Finally, π̃1 = 1 − c is independent of p and decreasing in c. As a consequence, starting with

given parameters (p, c) and a belief π in (π, π) ∩ [π̃n, π̃n−1) for some n, we can say that if p or

c increases then the maximum number of consultations n at π weakly decreases.

Note that the probability of a bad decision depends on c only through n. However, it

depends on p through the e�ect on the distribution of types and also through n. If the cost c

decreases, this probability decreases because of the induced increase of the maximum number of

consultations n. A small increase in p (so that π remains in [π̃n, π̃n−1)) reduces this probability

as the proportion of type H agents is reduced. However, the e�ect of a large increase in p is not

clear due to countervailing e�ect on the maximum number of consultations n: when p increases,

DM spends less time seeking advice (i.e. n decreases) which can increase her probability of

making a bad decision. Figure 3.2 illustrates this idea for π = 1
2
and c = 3

10
. The points

where the mistake probability jumps up are the values of p where the maximum number of

consultations (at this prior) decreases by 1. Between the points of discontinuity, the maximum

number of consultations is constant and the probability decreases when p increases as explained

above.

As stated in the proof of Proposition 3.4, DM 's expected payo� increases with p. This

holds regardless of its impact on the probability of bad decisions. The reason is that DM

always bene�ts from an increase of p in state 1 through two e�ects. First, it increases the

probability of choosing action 1 without learning the state and incurring the processing cost.

Second, if the change in p is large enough to decrease the maximum number of consultations,

then this probability is even larger. In fact, it jumps up at the same discontinuity points as the

probability of bad decisions.

We already established that an increase of the probability of a bad decision bene�ts the

minority (type H) and hurts the majority (type L)2. The proportion of minority agents is

(1 − p). As we can see in Figure 3.2, the minority would prefer this proportion to be large

2This is true if we ignore the e�ect of the timing of the decision and only consider the decision itself.
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enough so that DM has a high probability of only encountering agents of their type, but not

too large that she consults too many agents.

Proposition 3.5. Under the assumptions of Proposition 3.3 and c < p, we have

1− π < π < c.

Proof. For given p and c, v is strictly increasing in π therefore v(π) < v(π). We also know

that v(π) = 1− π and v(π) = π, which implies that 1− π < π.

In order to prove the second inequality, we show that v is above 1− c for all beliefs π. For

any given n, we have

vn(π, p, c)− (1− c) = πpnc− (1− π)(1− p)n(1− c)

which is strictly positive for all π above π̃n (and therefore for all beliefs where it coincides with

v). To conclude, apply this inequality to the particular case of π:

v(π) = 1− π > 1− c.

Remark 3.2. DM 's expected payo� is strictly larger than 1− c, which is her expected payo�

from seeking advice if p = 1
2
. The di�erence is due to the additional information carried by

agents silence when p 6= 1
2
.

Proposition 3.5 gives upper and lower bounds to π. Given that π converges to 1− c when p

decreases toward 1
2
, we deduce that π converges to c in that case. These bounds also allow us

to approximate the maximum number of consultations.
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Corollary 3.1. Under the assumptions of Proposition 3.3 and c < p, the maximum number of

consultations n∗ is either nc or nc + 1, where

nc =

⌈
1 + 2

ln 1−c
c

ln p
1−p

⌉
.

Proof. See Appendix.

nc is the maximum number of consultations at belief π = c. In equilibrium, if DM 's prior

belief is 1−π she chooses action 0 without consulting any agent. But if she were to seek advice

at that prior, her updated belief after encountering one silent agent would be c. Therefore,

the maximum number of consultations at any belief between π and c is either nc or nc + 1

(in particular, π by Proposition 3.5). Note that nc increases if the processing cost c decreases

or the uncertainty about agents type decreases (i.e. p increases). In particular, if c decreases

toward 0 or p decreases toward 1
2
, nc (and as a consequence n∗) goes to in�nity. That is, DM

is willing to seek advice longer as the cost vanishes or the uncertainty about types increases.

Combining this observation with the fact that π and π converge respectively to c and 1− c,

we obtain the equilibrium of Proposition 3.2 at the limit when p decreases toward 1
2
.

Average number of consulted agents The average number of consulted agents for a prior

belief π in (π, π) ∩ [π̃n, π̃n−1) is:

nc,p(π) =
n−1∑
k=1

k(π(1− p)pk−1 + (1− π)p(1− p)k−1) + n(πpn−1 + (1− π)(1− p)n−1).

It can be shown that

nc,p(π) = π
1− pn
1− p + (1− π)

1− (1− p)n
p

.
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When the cost c vanishes, the maximum number of consulted agents (n) goes to in�nity

but the average number of consulted agents nc,p(π) has a �nite limit value np(π) = π
1−p + 1−π

p
.

Similarly, when p goes to 1
2
, n diverges3 but nc,p(π) limit value is 2 which is the average number

of consulted agents in the equilibrium of Proposition 3.2.

3.4 Extensions

3.4.1 Commitment

In this section, we show that commitment cannot help the decision maker improve her expected

payo�. In other words, she would not gain from ignoring the information she learns from agents

silence or making dynamically inconsistent decisions.

If DM has commitment power, she can choose (conditional on her prior belief) a maximum

number of consultations in advance and the action she would implement if she does not learn

the state, which we subsequently call the default action. Assuming we know which action that

is, we can determine the optimal maximum number of consultations and the resulting expected

payo�. Then, we compare the obtained payo�s for the two possible default actions with the

equilibrium payo� and conclude by observing that commitment does not help DM .

Although DM updates her belief along the equilibrium path and makes dynamically consis-

tent decisions, her equilibrium strategy can be seen as the combination of a maximum number

of consultations and a default action for each prior, where the default action is 1. The previous

analysis shows that v(π, p, c) = maxn∈N vn(π, p, c), therefore the equilibrium strategy speci�es

the optimal maximum number of consultations for the default action 1.

We now need to determine the optimal maximum number of consultations for the default

action 0. Let wn(π, p, c) denote the expected payo� of seeking advice for at most n periods and

3Assuming c > 1
2 and π is in (c, 1− c) in order to guarantee DM seeks advice at prior π in the limit.
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choosing action 0 if all n agents are silent. We can write wn(π, p, c) = αn(p, c)π+βn(p, c) where

αn(p, c) = −((1− p)nc+ pn(1− c))

βn(p, c) = (1− c) + (1− p)nc.

For every n, the payo� functions wn and wn+1 coincide at π̂n de�ned as:

π̂n =
(1− p)n−1c

(1− p)n−1c+ pn−1(1− c) .

Note that the sequence π̂n is strictly decreasing in n. In addition, αn is strictly negative for

all n and |αn+1(p, c)| < |αn(p, c)| for all c and all p in (1
2
, 1). Therefore, for every belief π the

maxn∈Nwn(π, p, c) is either w0(π, p, c) = 1 − π or w∞(π, p, c) = 1 − c. In other words, if the

default action is 0, it is optimal to either not seek advice and choose action 0 or seek advice

inde�nitely until she learns the state. We know that DM 's equilibrium payo� is greater than

1− π and 1− c which implies that DM has no incentive to commit to 0 as default action. In

conclusion, commitment has no bene�t for the decision maker regardless of the default action.

3.4.2 Cost of waiting for information

In this section, we examine two variants of the model with di�erent cost structures. Throughout

the chapter, we studied a model that is well suited to situations where the information is

di�cult to process. In this section, we call it the c-model. Here, we focus on contexts where the

information is easy to process once obtained and the opportunity cost of additional consultations

is dominant. We show that similar results hold in these settings.

Consultation cost: κ-model Consider the case where DM does not incur any cost to

process the information, but she incurs a cost κ > 0 every time she consults an agent. We
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obtain an equilibrium of the same form as in the c-model. Proposition 3.6 states analogous

results to Propositions 3.1, 3.2 and 3.3. As before, π is determined explicitly and π is de�ned

implicitly. We observe that π is increasing in p and decreasing in κ, which is similar to the

result of Proposition 3.4. Also, π is increasing in κ due to the fact that DM 's expected payo�

is decreasing in κ. However, the e�ect of a change in p on DM 's expected payo� and as a

consequence on π is ambiguous. DM 's expected payo� at a belief π in (π, π) ∩ [π̃n, π̃n−1) is
4

vn(π, p, κ) = π(1− κ1− pn
1− p ) + (1− π)(1− (1− p)n)(1− κ

p
).

It can be divided into two components: v∞(π, p, κ) the expected payo� of a naive DM who

would seek advice until she learns the state (without updating her beliefs when the agent is

silent) and v+n (π, p, κ) her additional gain from learning.

v∞(π, p, κ) = π(1− κ

1− p) + (1− π)(1− κ

p
)

v+n (π, p, κ) = π
κpn

1− p − (1− π)(1− κ

p
)(1− p)n

If p increases, v+n (π, p, κ) increases: the bene�t from learning is greater if the bias of the

agent is less uncertain. However, the e�ect of such an increase on v∞(π, p, κ) depends on π:

for π small enough, the state is more likely to be 0 so an increase in the proportion of type L

agents is bene�cial whereas the opposite is true for π large enough. The overall e�ect on DM 's

expected payo� is not clear and π is not always in the region where v∞ is increasing in p.

However, we observe numerically that π is decreasing in p, which is the same result as in

the c-model (see Proposition 3.4). Figure 3.3 shows the typical shapes of π as a function of p.

The di�erence between the two plotted cases is that for κ above 1
4
, there are values of p

4See proof of Proposition 3.6.
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Figure 3.3: π as a function of p for κ = 0.2 and κ = 0.4.

such that there is no consultation in equilibrium (π is set equal to 1
2
in that case) whereas this

is impossible if κ is below 1
4
.

Moreover, the probability of bad decisions is expressed in the same way as in the c-model

so that the analysis and conclusions about the probability of bad decisions hold in this setting

as well. The di�erence is that DM 's expected payo� from consultation may not be monotonic

in p for all priors and consultation cost κ. Also, the sequence of beliefs π̃n is now given by:

π̃n =
(1− p)n(p− κ)

(1− p)n(p− κ) + pnκ
.

It follows that for n ≥ 1, π̃n is decreasing in p and κ so that we reach a similar conclusion

about the way the parameters a�ect the maximum number of consultations at a given prior π

in (π, π)∩ [π̃n, π̃n−1) for some n: if p or κ increases then the maximum number of consultations

weakly decreases. This observation allows us to conclude that if κ increases, the probability of

bad decisions decreases: DM is willing to consult more agents. The e�ect of a change in p is

exactly the same as in the c-model.

Proposition 3.6. 1. If agents strictly prefer immediate decisions then there exists a unique

PBE. In equilibrium, both types reveal information in both states (full revelation). DM
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consults at most one agent in equilibrium:

• if κ ≥ 1
2
she chooses action a∗(π) without seeking advice.

• if κ < 1
2
she consults exactly one agent if π is in (κ, 1 − κ), learns the state and

chooses the right action. Otherwise, she chooses action a∗(π) without consultation.

• O� equilibrium path, i.e. if the agent reveals no information, she continues seeking

advice.

2. If agents strictly prefer delayed bad outcomes then there exists a partial revelation PBE

and it is unique. In equilibrium, type L (respectively H) reveals the information only in

state 0 (respectively 1).

(a) If p = 1
2
, DM 's equilibrium strategy is:

• if κ ≥ 1
4
she chooses action a∗(π) without seeking advice.

• if κ < 1
4
she seeks advice until she learns the state if π is in (2κ, 1 − 2κ).

Otherwise, she chooses action a∗(π) without seeking advice.

(b) If p > 1
2
, DM 's equilibrium strategy is:

• if κ ≥ p
2
she chooses action a∗(π) without seeking advice.

• if κ < p
2
, there exist two beliefs π and π such that π < 1

2
< π = 1 − κ

p
and at

each period t:

� if π < πt < π, she seeks advice.

� otherwise, she stops and chooses action a∗(πt).

Proof. See Appendix.

Discounting future payo�: δ-model Here DM incurs no processing cost as well, but

she has a discount factor δ in (0, 1) which expresses her preference for the present. We can
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interpret an increase in δ as a reduction of the cost of waiting. Indeed, the analysis and results

are identical to the κ-model with this interpretation. Proposition 3.7 states analogous results

to Proposition 3.6. We also observe numerically that π is decreasing in p.

Proposition 3.7. 1. If agents strictly prefer immediate decisions then there exists a unique

PBE. In equilibrium, both types reveal information in both states (full revelation). DM

consults at most one agent in equilibrium:

• if δ ≤ 1
2
she chooses action a∗(π) without seeking advice.

• if δ > 1
2
she consults exactly one agent if π is in (1 − δ, δ), learns the state and

chooses the right action. If π ≤ 1 − δ or π ≥ δ, she chooses action a∗(π) without

seeking advice.

• O� equilibrium path, i.e. if the agent reveals no information, she continues seeking

advice.

2. If agents strictly prefer delayed bad outcomes then there exists a partial revelation PBE

and it is unique. In equilibrium, type L (respectively H) reveals the information only in

state 0 (respectively 1).

(a) If p = 1
2
, DM 's equilibrium strategy is:

• if δ ≤ 2
3
she chooses action a∗(π) without seeking advice.

• if δ > 2
3
she seeks advice until she learns the state if π is in (2(1−δ)

2−δ ,
δ

2−δ ). Other-

wise, she chooses action a∗(π) without seeking advice.

(b) If p > 1
2
, DM 's equilibrium strategy is:

• if δ ≤ 1
1+p

she chooses action a∗(π) without seeking advice.

• if δ > 1
1+p

, there exist two beliefs π and π such that π < 1
2
< π = δp

1−δ(1−p) and

at each period t:
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� if π < πt < π, she seeks advice.

� otherwise, she stops and chooses action a∗(πt).

Proof. See Appendix.

3.4.3 Processing cost avoidance

In the main model, DM has to process the information if it is presented. In this section, we

relax this assumption: if an agent is willing to reveal the state, DM chooses whether to accept

the report, consult another agent or implement an action. We study the issues that arise in

this case and provide a solution for p close to 1
2
.

First, we observe that the equilibrium of Proposition 3.3 is not an equilibrium in this context.

The reason is that if DM encounters an agent that wants to reveal the state at time t, DM has

an incentive to deviate from accepting the report to the following strategy: reject the report

and follow the strategy of Proposition 3.3 at time t+ 1. The expected payo� of this strategy is

exactly the equilibrium expected payo� which is higher than 1− c (see Remark 3.2).

Second, there cannot be an equilibrium where type L (respectively H) reveals the informa-

tion only in state 0 (respectively 1). In fact, given this strategy DM 's belief π increases if the

agent is silent and decreases if he wants to reveal the state. DM would learn for free and she

would have an incentive to learn inde�nitely without incurring the processing cost and as a

consequence she would never choose an action.

This shows the limits of the model in this context. Indeed, if the number of consultations is

large it is reasonable to take a consultation cost into account. Let κ > 0 denote this cost with

κ small in comparison to c.

Note that Proposition 3.2 holds here. Namely, if p = 1
2
DM seeks advice at beliefs π in

(c, 1− c) until she learns the state. If we take κ into account, then this interval is replaced with

(c+ 2κ, 1− c− 2κ) because the average number of consultations is 2. The equilibrium expected
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payo� at these beliefs is 1− c− 2κ.

Consider p = 1
2

+ ε. For small enough ε > 0, there exists a similar equilibrium to that of

Proposition 3.3: the expected payo� from consultation is 1 − c − 2κ + O(ε) which is smaller

than 1− c for small ε. Thus, it is optimal for DM to process information when it is presented

if p is close to 1
2
.

3.5 Alternative model: information precision

In the binary state space model, the analysis of sequential consultation is tractable but the

information structure is not �exible. In this section, we assume the state space is a compact

interval and the veri�able messages structure is such that the agent can certify any compact

interval containing the true state. This structure is rich enough to allow him to reveal the state,

remain silent or to make a true statement of any intermediary precision about the state.

We characterize an equilibrium in the basic game, i.e. the game without sequential consulta-

tion, and show that all PBE are outcome equivalent. In the game with sequential consultation,

we �nd an equilibrium where DM consults one agent (under certain conditions) and where the

possibility of sequential consultation serves as a threat that allows her to extract more precise

information. In fact, agents equilibrium messages are just precise enough to make her stop and

choose an action rather than continue to seek advice from other agents.

DM has to choose an action a in A = [0, 1]. Her payo� depends on her action and on the

state of the world s which is uniformly distributed in S = [0, 1]:

uD(a, s) = 1− l(a, s) = 1− (a− s)2,

where l is the loss function. As before, agents are either of type L or H with utility functions

depending only on DM 's action. The payo� of type L (respectively, H) is strictly decreasing

(respectively, increasing) in a. Information is veri�able in the following sense: if the state is s,
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then the set of available messages is

M(s) = {[x, y] s.t. 0 ≤ x ≤ s ≤ y ≤ 1}.

In the basic game, Nature draws s according to the uniform prior on S and then draws an

agent whose type τ is L with probability p and H with probability 1− p. The agent observes

s and sends a message m in M(s) to the decision maker who then chooses an action a in A.

Let mτ (s) denote the message that an agent of type τ sends when the state is s, and let a(m)

be DM 's action after receiving message m. The quadratic loss function of DM implies that on

the equilibrium path a(m) is equal to the expected value of s given the message m.

In the game with sequential consultation, Nature draws s according to the uniform prior on

S. Then, DM can start consulting agents. At the beginning of every period t in N, she decides

whether to consult an agent or to stop and choose an action. If she chooses to consult an agent,

Nature draws an informed agent from the same distribution (type L or H with probability p

and 1 − p respectively), who sends a message in M(s) to DM . If she stops and chooses an

action the game ends. Notice that similarly to the basic game, DM 's action is also the expected

value of s given all the messages she received.

3.5.1 Game without sequential consultation

In this section, we study the basic game where a single agent is drawn and the decision maker

has to choose an action after receiving a message from that agent. The goal of this section is

to construct a Perfect Bayesian Equilibrium (PBE) of this game and to show that its outcome

is the unique PBE outcome.

Let â be an action in [0, 1] and consider DM 's strategy â and agents strategies m̂L and m̂H
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de�ned as follows5 6:

â([x, y]) =


y if y < â

â if x ≤ â ≤ y

x if â < x

m̂L(s) =


[0, s] if s ≤ â

[0, 1] if â < s

m̂H(s) =


[0, 1] if s < â

[s, 1] if â ≤ s

In words, the strategy â selects the action â whenever it is justi�able, i.e. whenever it is in

the certi�ed interval, and it selects the closest action to â in the certi�ed interval otherwise. It is

therefore easy to check that m̂L and m̂H are best responses of types L and H to â respectively.

Therefore (â, m̂L, m̂H) is a PBE if and only if â is sequentially rational.

Proposition 3.8. The strategy pro�le (â, m̂L, m̂H) is a PBE if and only if

â =

√
p

√
p+
√

1− p.

Proof. If (â, m̂L, m̂H) is a PBE then on the equilibrium path, action â is sequentially rational

when [0, 1] is certi�ed, i.e. when the agent remains silent. Given the uniform prior over S and

the probability p that the agent's type is L, this condition is equivalent to (for p ∈ (0, 1)):

5The strategy â is reminiscent of the strategy used by Giovannoni and Seidmann [2007] to construct the
pooling equilibrium of Proposition 3.3. in a setting with multiple types who have single-peaked utilities and
prefer the decision maker to be uninformed rather than fully informed.

6The message [0, s] (respectively [s, 0]) used in m̂L (respectively m̂H) could be replaced by any message of
the form [x, s] (respectively [s, y]) with 0 ≤ x ≤ s (respectively s ≤ y ≤ 1) without a�ecting the argument or
the result.
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â =
(1− p)

∫ â
0
sds+ p

∫ 1

â
sds

(1− p)â+ p(1− â)

which can be rearranged under the following form: p(1− â)2 = (1− p)â2 or equivalently

â

1− â =

√
p

1− p

and therefore

â =

√
p

√
p+
√

1− p.

This expression can be extended to the cases where p is equal to 0 or 1. If p = 0, i.e.

the agent is of type H with certainty, then â = 0 is the only value for which â is sequentially

rational: it is the skepticism strategy implied by the unravelling argument which holds in this

case. The same is true if p = 1, in which case â = 1.

In order to prove the converse assertion, we have to show that â is sequentially rational. For

all messages that are not sent in equilibrium, there exists a belief, consistent with the certi�ed

information, that justi�es the action selected by â (i.e., this strategy selects an action in the

certi�ed interval). On equilibrium path, given strategies m̂L and m̂H, it is sequentially rational

to choose action x (respectively y) if [x, 1] (respectively [0, y]) is certi�ed. Finally, we have

already shown that action â is sequentially rational when [0, 1] is certi�ed.

In the remainder, let â =
√
p

√
p+
√
1−p . The outcome ω̂ of this equilibrium as a function of the

state s and agent's type τ is given by the following mapping:

ω̂(s, τ) =


â if (s ≤ â, τ = H) or (s ≥ â, τ = L)

s otherwise.

Proposition 3.9. ω̂ is the unique PBE outcome of the game.
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Proof. Consider a PBE strategy pro�le (a,mL,mH) and let ω denote the outcome of this

PBE. Let aS = a(S) be the action that is chosen if the agent certi�es the whole set S = [0, 1],

i.e. if he remains silent7. The message m = S is always available to the agent and therefore we

have ω(s, L) ≤ aS and ω(s,H) ≥ aS for every s in S8. The message m = {s} is available only

in state s. It follows that ω(s, L) ≤ s and ω(s,H) ≥ s for all s.

Assume that for some state s ≥ aS, ω(s, L) = ã < aS. Let [x, y] be an interval that type L

certi�es with positive probability in state s. This implies that [x, y] contains s. It follows from

ω(s, L) < aS that x < aS and that there exists a state s such that x ≤ s < ã and at least one

type certi�es [x, y] in s with positive probability in equilibrium. This is necessary to ensure

that a([x, y]) = ã is sequentially rational. However, it contradicts at least one of the conditions

ω(s,H) ≥ aS > ã and ω(s, L) ≤ s < ã. Therefore, we have

ω(s, L) = aS, for all s ≥ aS.

Similarly, we can show that

ω(s,H) = aS, for all s ≤ aS.

Assume that for some state s > aS, ω(s,H) = ã > s. Analogously to the previous argument,

this would require the existence of some state s > ã and of a message that is certi�ed with

positive probability by type H in state s and by at least one type in state s so that choosing

ã after receiving this message is sequentially rational. This leads us again to a contradiction

given that ω(s,H) ≥ s > ã and ω(s, L) ≤ aS < ã. Finally, we get

ω(s,H) = s, for all s > aS.

7We restrict attention to pure strategies of the DM because it is never optimal to randomize given the
quadratic loss function.

8The outcome ω is deterministic due to the strictly monotonic preferences of both agent types and to the
fact that a is pure.
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Similarly, we can show that

ω(s, L) = s, for all s < aS.

It remains to prove that aS = â. LetMS denote the set of messages sent in equilibrium for

which DM chooses the action aS. Note that if instead of receiving the messages contained in

MS, DM only learned certi�ably that the message is inMS, the sequentially rational action

would still be aS. Moreover, learning that the message is inMS is equivalent to learning that

the following statement is true: (s ≤ aS, τ = H) or (s ≥ aS, τ = L). It follows that aS satis�es

the same condition as â and is therefore equal to â. In conclusion, ω = ω̂.

Proposition 3.9 shows that in the game without sequential consultation, the equilibrium

outcome is the same as the one we would obtain if the agents could either reveal the state or

remain silent: the richness of the set of available messages does not a�ect communication. In

the next section, we show that if sequential consultation is allowed, information of intermediate

precision can be revealed in equilibrium even when DM consults only one agent.

3.5.2 Game with sequential consultation

In this section, DM can consult multiple agents sequentially. We focus on the case p = 1
2
where

in equilibrium, DM would not gain additional information from receiving the same message

more than once (similarly to the binary state model with equiprobable types) which makes the

analysis more tractable. In fact, learning happens only if new information is presented which

precludes the kind of learning we observe in Proposition 3.3.

We look for a PBE where DM consults exactly one agent and uses the possibility of further

consultations as a threat to extract more precise information. In this type of equilibrium, she

consults one agent at cost κ and chooses an action based on the message he certi�es. The

agent's strategies in such equilibria depends only on the state s and agent's type τ , similarly
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to equilibrium strategies in the basic game. We call such an equilibrium a single-consultation

PBE.

Note that there exist multiple equilibria in this setting. Our goal is simply to construct an

equilibrium where DM receives the most precise information while consulting only one agent

and agents send the least informative message while giving DM incentive to stop consultation

and choose an action. In other words, when an agent is consulted he captures DM 's attention

and in�uences her decision in his favor but the resulting error is small enough to make her stop.

First, we show that the equilibrium of section 3.5.1 (â, m̂L, m̂H) is generically not an equi-

librium in this setting. Then, we de�ne an equilibrium satisfying the conditions above for a

small enough consultation cost κ.

Claim 3.1. (â, m̂L, m̂H) de�nes a single-consultation PBE only if κ = 1
24
.

Proof. It follows from the analysis of section 3.5.1 that m̂L and m̂H are best responses of types

L and H respectively to â. Therefore, (â, m̂L, m̂H) de�nes a single-consultation PBE if and

only if (i) it is optimal for DM to seek advice and (ii) it is sequentially rational to stop after

consulting exactly one agent and choose the action of strategy â.

(i) Seeking advice is optimal if and only if DM 's expected payo� is greater than the expected

payo� from choosing an action without consultation. The optimal action in that case is the

expected value of s which is 1
2
given the uniform prior, and the expected loss is therefore:

∫ 1

0

(s− 1

2
)2ds =

1

12
.

If DM consults exactly one agent, she incurs the cost κ and given that she expects to follow

the strategy â, her expected loss (in addition to the consultation cost) is

∫ 1

0

1

2
(s− 1

2
)2ds =

1

24
.
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In conclusion seeking advice is optimal if and only if κ+ 1
24
≤ 1

12
, i.e. κ ≤ 1

24
.

(ii) On the equilibrium path, it is sequentially rational to stop seeking advice and follow the

strategy â if the certi�ed interval is of the form [0, y] (with y ≤ 1
2
) or [x, 1] (with x ≥ 1

2
) because

these messages fully reveal the state in equilibrium. If the agent remains silent, DM 's updated

belief is identical to her uniform prior9. DM 's expected loss if she stops seeking advice and

follows strategy â is therefore 1
12
.

In order to compute the expected loss of further consultations, note that if DM continues

after receiving the message [0,1] in the �rst period, she expects to continue at each period as

long as she receives the same message (because her belief does not change) and to stop if she

receives a di�erent message, in which case she would learn the state. At each period, there

is a probability 1
2
to receive the message [0,1] and a probability 1

2
to receive a fully revealing

message. Her expected loss is therefore

κ
+∞∑
n=1

n(
1

2
)n = 2κ.

Consequently, it is optimal to stop consulting and follow strategy a on the equilibrium path

if and only if 2κ ≥ 1
12
, i.e. κ ≥ 1

24
. The conclusion follows.

If κ is too large, DM simply chooses the prior optimal action without consultation, whereas

if it is too small she would continue seeking advice if she receives a non-informative message

in the �rst period. In the former case there is an equilibrium in which DM chooses action 1
2

without asking for information (expecting that agents follow strategies m̂L and m̂H). In order

to �nd an equilibrium in the latter case, we �rst determine how informative a message has to

be in order to make it optimal for DM to stop seeking advice regardless of her belief.

9The fact that p = 1
2 simpli�es the analysis by eliminating free learning similarly to what we observe in the

binary state space model.
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Let η denote the largest message size for which it is always optimal to stop and choose an

action: it is the largest d such that if [x, y] with y − x ≤ d is certi�ed, it is optimal for DM to

stop consultation for every possible belief.

Lemma 3.2. η = 2
√
κ.

Proof. Suppose [x, y] such that y = x + d is certi�ed. Let Z be the random variable that

describes DM 's belief after receiving this message. If DM stops, she chooses the action E(Z)

and her expected loss is Var(Z). Let W = (Z − x+y
2

)2. By de�nition, we have Var(Z) ≤ E(W ).

Given that Z is a.s. in [x, y], we have W ≤ d2

4
and therefore Var(Z) ≤ d2

4
. The expected loss

of continuing to seek advice after receiving the message [x, y] is greater or equal to κ as DM

has to incur the consultation cost. Therefore, if d2

4
≤ κ it is optimal to stop seeking advice for

every possible belief.

For Z such that P(Z = x) = P(Z = y) = 1
2
we have E(Z) = x+y

2
and Var(Z) = d2

4
. The

expected loss of continuing to seek advice after receiving the message [x, y] is equal to κ if DM

expects to learn the state with certainty. For these beliefs, it is not optimal to stop seeking

advice if d2

4
> κ. The conclusion follows.

Remark 3.3. Lemma 3.2 implies that there can be no fully revealing equilibrium. A consulted

agent can always make DM stop if he sends a message of smaller size than η. For such a

message, DM 's action is necessarily in the interval. Consequently, in any state at least one of

the two types bene�ts from sending such a message.

For a small enough κ, consider the strategies mη
L and mη

H de�ned as follows:

mη
L(s) =



[0, s] if 0 ≤ s < η

[0, 2η] if η ≤ s ≤ 2η

[s− η, s] if 2η < s < 1− η

[1− 2η, 1] if 1− η ≤ s ≤ 1
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mη
H(s) =



[0, 2η] if 0 ≤ s ≤ η

[s, s+ η] if η < s < 1− 2η

[1− 2η, 1] if 1− 2η ≤ s ≤ 1− η

[s, 1] if 1− η < s ≤ 1

If type L (respectively, H) follows strategy mη
L (respectively, mη

H) he certi�es the interval

[s− η, s] (respectively, [s, s+ η]) in state s if s is far enough from the boundaries. By de�nition

of η, given such a message it is optimal for DM to stop seeking advice. Near the boundaries,

mη
L and mη

H) mimic m̂L and m̂H respectively.

In order to construct a single-consultation PBE where agents strategies are mη
L and mη

H, we

need to specify both on and o� equilibrium path decisions of DM . On the equilibrium path,

assuming that it is sequentially rational to stop seeking advice for information after exactly one

period, DM 's optimal action would be:

aη(m) =



y if m = [0, y] and y < η

η if m = [0, 2η]

x+ η
2

if m = [x, x+ η] and η < x < 1− 2η

1− η if m = [1− 2η, 1]

x if m = [x, 1] and x > 1− η

For fully revealing messages, DM chooses the right action. For all other messages, she

chooses the middle point of the certi�ed interval which is optimal due to the symmetries of the

model.

O� equilibrium messages can be separated in two categories. The �rst contains every o�

equilibrium message that certi�es a subset of some equilibrium message. For such a message
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m = [x, y], DM can stop seeking advice and choose the action:

aη([x, y]) =



y if y ≤ η

η if η ∈ [x, y] ⊂ [0, 2η]

x if [x, y] ⊂ [η, 2η]

x+y
2

if y < x+ η and η < x < 1− 2η

y if [x, y] ⊂ [1− 2η, 1− η]

1− η if 1− η ∈ [x, y] ⊂ [1− 2η, 1]

x if x ≥ 1− η

These decisions are rational (actions are in the certi�ed interval, so that there exists a belief

that justi�es them) and do not provide any incentive to agents to deviate from mη
L and mη

H.

Indeed, they are similar to o� equilibrium decisions of â near the boundaries. For messages

far from the boundaries, DM would select the middle point of the interval which means that

agents have no incentive to certify an interval smaller than η.

The second category contains every message that is not a subset of an equilibrium message.

These are exactly the messages m = [x, y] such that y − x > η, x < 1 − 2η and y > 2η. As

shown in the proof of Lemma 3.2, the belief that the state is x with probability 1
2
and y with

probability 1
2
justi�es continuing to seek advice if DM expects to learn the true state in the

next period, which is the case under this belief and given the strategies mη
L and mη

H. Extending

the de�nition of DM 's strategy, let aη(m) be to continue seeking advice, for such messages m.

Proposition 3.10. (aη,mη
L,m

η
H) is a single-consultation PBE if and only if κ ≤ 1

36
.

Proof. First, we show that there are no pro�table deviations from mη
L and mη

H for agents. As

it is argued above, there is no incentive to send o� equilibrium messages of the �rst category.

We need to show it is also the case for the second category of o� equilibrium messages. If an
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agent certi�es [x, y] such that y−x > η, x < 1− 2η and y > 2η he expects DM to keep seeking

advice. He expects her to receive an equilibrium message in the second period. Let [x′, y′] be

its intersection with [x, y] and assume DM chooses aη([x′, y′]). This action is rational and the

deviation is not pro�table for the same reasons as before.

This guarantees that (aη,mη
L,m

η
H) is a single-consultation PBE if and only if the strate-

gies are well de�ned, seeking advice and stopping after exactly one period is optimal on the

equilibrium path.

The strategies are well de�ned if and only if η ≤ 1− 2η, which is equivalent to

κ ≤ 1

36
.

DM 's expected loss in such an equilibrium is the consultation cost κ together with a convex

combination of 0 (if the message is fully revealing near the boundaries), η2

4
(for equilibrium

messages of size η) and η2

3
(if the message is [0, 2η] or [1− 2η, 1]). Therefore her expected loss

is smaller than 7
3
κ which is in turn smaller than 1

12
(her expected loss if she does not consult)

for all κ ≤ 1
36
. As a consequence, it is optimal to start seeking advice.

Stopping after receiving an equilibrium message certifying an interval of size η is optimal

(see Lemma 3.2). Also, it is optimal to stop and follow the strategy aη if the certi�ed interval

is of the form [0, y] (with y ≤ η) or [x, 1] (with x ≥ 1− η). After receiving the message [0, 2η],

DM 's posterior belief is that the state is uniformly distributed in [0, 2η]. Her expected loss if

she stops and chooses action η is η2

3
while her expected loss from continuing to seek advice is

2κ (same computation as in the proof of Claim 3.1). It follows that it is optimal to stop after

consulting one agent if [0, 2η] is certi�ed. The same applies for message [1− 2η, 0].

For κ small enough, we have an equilibrium where the certi�ed interval is of size 2
√
κ

and the loss is 2κ, for states far enough from the boundaries: DM incurs the consultation
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cost κ and then chooses an action that is
√
κ away from the true state so that she loses an

additional κ. In contrast, if sequential consultation is not allowed and DM can consult only

one agent, her expected loss is κ + 1
24
. Although DM does not actually consult more agents

in the equilibrium we constructed, she bene�ts from the possibility of sequential consultation

to extract information and get a higher payo�. In this equilibrium, she is less likely to choose

the action that matches the state (it can happen only in states near the boundaries, with an

ex-ante probability of η = 2
√
κ) but the expected loss is reduced in comparison with the basic

game due to error size reduction.

3.6 Appendix

Proof of Proposition 3.3. Assume (p > 1
2
). First, we note that in equilibrium, given p and

c, DM 's decision at any point in time depends only on her belief at that time and that her

decisions are dynamically consistent.

We show that there exists no equilibrium such that DM seeks advice for every belief π ∈

(0, 1). Such an equilibrium would require DM to seek advice until she learns the state for all

prior beliefs in (0, 1), which implies that c has to be equal to zero because DM 's expected

payo� at prior π using this strategy is 1− c while her payo� if she stops is max{π, 1−π} which

is higher for π high enough.

Consider the strategy that consists of seeking advice exactly once, i.e. consulting one agent

and stopping right afterwards whether he reveals the state or not. The expected payo� of this

strategy depends on whether the prior belief is below or above 1−p because the posterior belief

if the agent is silent would be respectively below or above 1
2
, namely:
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π(1− p)(1− c) + (1− π)(p(1− c) + (1− p)) if π ≤ 1− p

π(p+ (1− p)(1− c)) + (1− π)p(1− c) if π > 1− p.

Using these payo�s, we �rst observe that there exists an equilibrium such that DM never

seeks advice if and only if c ≥ p. Then we determine the set of beliefs Π1 such that DM seeks

advice if she expects to stop after one period regardless of the result. Π1 is empty if c ≥ p.

Otherwise (i.e. if c < p), Π1 is an interval (π1, π1) containing
1
2
such that

π1 =
p(1− c)

p(1− c) + (1− p)c

and

π1 =


1−p(1−c)

1+p+(1−2p)(1−c) if (1−p)2
p2+(1−p)2 ≤ c < p

pc
pc+(1−p)(1−c) if 0 < c < (1−p)2

p2+(1−p)2

Consider a belief π0 in (0, 1) and the sequence of beliefs (πk)k∈Z such that:

∀k, πk+1 =
pπk

pπk + (1− p)(1− πk)
.

This is the unique sequence of beliefs that contains π0 such that if DM 's belief is πk and she

encounters a silent agent, she updates her belief to πk+1. Using the fact that DM does not seek

advice inde�nitely in equilibrium, the optimal decision is to stop and choose action a∗(πk) = 1

for all k such that πk ≥ π1. Furthermore, if πk is in Π1, the optimal decision is to continue

seeking advice. Finally, if πk ≤ π1 and DM stops at πk then she also stops at all πk′ such that

k′ < k. Therefore, if Π1 is not empty, there exist k and k with πk ≤ π1 and πk < π1 ≤ πk+1

such that DM seeks advice at belief πk if and only if k ≤ k ≤ k. However, if Π1 is empty, DM

does not seek advice no matter her beliefs.
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In the remainder of the proof, assume c < p ensuring that Π1 is not empty. Consider the

sequence of beliefs (πk)k∈Z with π0 = π1. For a given n ≥ 1, consider a belief π in [π−n, π−n+1).

The analysis above implies that DM 's equilibrium strategy at belief π is either to stop and

choose action a∗(π) or to seek advice for at most n periods10.

Let vn(π, p, c) denote the expected payo� of the decision maker at belief π from seeking

advice for n periods at most:

vn(π, p, c) = π(pn + (1− pn)(1− c)) + (1− π)(1− (1− p)n)(1− c).

De�ne φp,c : (0, 1
2
) → R such that φp,c(π) = vn(π,p,c)

1−π if π is in [π−n, π−n+1) ∩ (0, 1
2
). φp,c is

continuous, strictly increasing and takes values above and below 1. As a consequence there exists

a unique π such that φp,c(π) = 1. Moreover, π ≤ π1 with equality if and only if π1 ≥ π−1 = 1−c.

In conclusion, DM seeks advice if and only if her belief is in the interval (π, π) such that

π = π1 and φp,c(π) = 1.

Proof of Corollary 3.1. Let nc denote the maximum number of consultations at the belief

π = c. Proposition 3.5 ensures that

1− π < π < c.

IfDM seeks advice at prior belief 1−π (which does not happen in equilibrium), her posterior

belief if the agent is silent is

p(1− π)

p(1− π) + (1− p)π = c.

This guarantees that the maximum number of consultations at the belief π is either nc or

10To seek advice for at most n periods is to start seeking advice and to stop after encountering (i) an agent
who reveals the state or (ii) silent agents for n periods.
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nc + 1. nc satis�es π̃nc ≤ c < π̃nc−1 which is equivalent to

(
p

1− p

)nc−2

<

(
1− c
c

)2

≤
(

p

1− p

)nc−1

,

thus,

nc − 1 < 1 + 2
ln 1−c

c

ln p
1−p
≤ nc,

which implies that nc =
⌈
1 + 2

ln 1−c
c

ln p
1−p

⌉
.

Proof of Proposition 3.6. 1. The argument of the proof of Proposition 3.1 applies in this

case. The only di�erence is that DM 's payo� from consultation is 1− κ.

2. (a) The argument of the proof of Proposition 3.2 applies in this case. The only di�erence

is that DM 's expected payo� from consultation is:

1− κ
+∞∑
k=1

n(
1

2
δ)n = 1− 2κ.

(b) The proof of this result follows the same steps as the proof of Proposition 3.3. Assume

(p > 1
2
). In equilibrium, given p and κ, DM 's decision at any point in time depends

only on her belief at that time and that her decisions are dynamically consistent.

There exists no equilibrium such that DM seeks advice for every belief π ∈ (0, 1).

Such an equilibrium would require DM to seek advice until she learns the state for

all prior beliefs in (0, 1), which requires κ to be 0 because DM 's expected payo�

at prior π using this strategy is lower than 1 − κ while her payo� if she stops is

max{π, 1− π} which is higher for π high enough.

Using the payo�s expressed in Figure 3.4, we �rst check that there exists an equilib-
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0 1
1
2

1− p

(i)

(ii)

1− pπ − κ (1− (1− p)(1− π)− κ

1− π π

Prior belief π

Figure 3.4: Expected payo�s: (a) DM consults exactly one agent, (b) DM chooses a∗(π)
without consultations

rium such that DM never seeks advice if and only if κ ≥ p
2
. Then we determine the

set of beliefs Π1 such that DM seeks advice if she expects to stop after one period

regardless of the result. Π1 is empty if κ ≥ p
2
. Otherwise, Π1 is an interval (π1, π1)

containing 1
2
such that

π1 = 1− κ

p

and

π1 =


κ

1−p) if κ < (1− p)2

κ+1−p
2−κ if (1− p)2 ≤ δ < p

2

Consider a belief π0 in (0, 1) and the sequence of beliefs (πk)k∈Z such that:

∀k, πk+1 =
pπk

pπk + (1− p)(1− πk)
.

This is the unique sequence of beliefs that contains π0 such that if DM 's belief is πk

and she encounters a silent agent, she updates her belief to πk+1. Using the same

argument as in the proof of Proposition 3.3, we conclude that if Π1 is not empty,

there exist k and k with πk ≤ π1 and πk < π1 ≤ πk+1 such that DM seeks advice
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at belief πk if and only if k ≤ k ≤ k. However, if Π1 is empty, DM does not seek

advice no matter her beliefs.

In the remainder of the proof, assume κ < p
2
ensuring that Π1 is not empty. Consider

the sequence of beliefs (πk)k∈Z with π0 = π1. For a given n ≥ 1, consider a belief π

in [π−n, π−n+1). The analysis above implies that DM 's equilibrium strategy at belief

π is either to stop and choose action a∗(π) or to seek advice for at most n periods.

Let vn(π) denote the expected payo� of the decision maker at belief π from seeking

advice for at most n periods:

vn(π, p, κ) = π + (1− π)(1− (1− p)n)

−κ(
n−1∑
k=1

k(π(1− p)pk−1 + (1− π)p(1− p)k−1) + n(πpn−1 + (1− π)(1− p)n−1))

= π(1− κ1− pn
1− p ) + (1− π)(1− (1− p)n)(1− κ

p
)

De�ne φp,κ : (0, 1
2
) → R such that φp,κ(π) = vn(π,p,κ)

1−π if π is in [π−n, π−n+1) ∩ (0, 1
2
).

It is possible to show that φp,δ is continuous. Moreover, it is strictly increasing for

κ ≤ 1 − p and has a V -shape otherwise. It takes values above and below 1 and its

limit at π = 0 is 1 − κ
p
< 1. As a consequence there exists a unique π such that

φp,κ(π) = 1. Moreover, π ≤ π1 with equality if and only if π1 ≥ π−1.

In conclusion, DM seeks advice if and only if her belief is in the interval (π, π) such

that π = π1 and φp,κ(π) = 1.

Proof of Proposition 3.7. 1. The argument of the proof of Proposition 3.1 applies in this

case. The only di�erence is that DM 's payo� from consultation is δ.
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0 1
1
2

1− p

(i)

(ii)

δ(1− pπ) δ(1− (1− p)(1− π))

1− π π

Prior belief π

Figure 3.5: Expected payo�s: (a) DM consults exactly one agent, (b) DM chooses a∗(π)
without consultations

2. (a) The argument of the proof of Proposition 3.2 applies in this case. The only di�erence

is that DM 's expected payo� from consultation is:

+∞∑
k=1

(
1

2
δ)k =

δ

2− δ .

(b) The proof of this result follows the same steps as the proof of Proposition 3.3. Assume

(p > 1
2
). In equilibrium, given p and δ, DM 's decision at any point in time depends

only on her belief at that time and that her decisions are dynamically consistent.

There exists no equilibrium such that DM seeks advice for every belief π ∈ (0, 1).

Such an equilibrium would require DM to seek advice until she learns the state for

all prior beliefs in (0, 1), which requires δ to be 1 because DM 's expected payo� at

prior π using this strategy is

δπ(1− p)
+∞∑
k=0

(δp)k + δ(1− π)p
+∞∑
k=0

(δ(1− p))k = δ(π
1− p
1− δp + (1− π)

p

1− δ(1− p))

while her payo� if she stops is max{π, 1− π} which is higher for π high enough.
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Using the payo�s expressed in Figure 3.5, we �rst check that there exists an equilib-

rium such that DM never seeks advice if and only if δ ≤ 1
1+p

. Then we determine the

set of beliefs Π1 such that DM seeks advice if she expects to stop after one period

regardless of the result. Π1 is empty if δ ≤ 1
1+p

. Otherwise, Π1 is an interval (π1, π1)

containing 1
2
such that

π1 =
δp

1− δ(1− p)

and

π1 =


1−δp

1+δ(1−p) if 1
1+p

< δ ≤ p
1−p(1−p)

1−δ
1−δp if p

1−p(1−p) < δ < 1

Consider a belief π0 in (0, 1) and the sequence of beliefs (πk)k∈Z such that:

∀k, πk+1 =
pπk

pπk + (1− p)(1− πk)
.

This is the unique sequence of beliefs that contains π0 such that if DM 's belief is πk

and she encounters a silent agent, she updates her belief to πk+1. Using the same

argument as in the proof of Proposition 3.3, we conclude that if Π1 is not empty,

there exist k and k with πk ≤ π1 and πk < π1 ≤ πk+1 such that DM seeks advice

at belief πk if and only if k ≤ k ≤ k. However, if Π1 is empty, DM does not seek

advice no matter her beliefs.

In the remainder of the proof, assume δ > 1
1+p

ensuring that Π1 is not empty.

Consider the sequence of beliefs (πk)k∈Z with π0 = π1. For a given n ≥ 1, consider a

belief π in [π−n, π−n+1). The analysis above implies that DM 's equilibrium strategy

at belief π is either to stop and choose action a∗(π) or to seek advice for at most n

periods.

Let vn(π) denote the expected payo� of the decision maker at belief π from seeking
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advice for at most n periods:

vn(π, p, δ) = δπ((1− p)
n−1∑
k=0

(δp)k + δn−1pn) + δ(1− π)p
n−1∑
k=0

(δ(1− p))k

= δπ((1− p)1− (δp)n

1− δp + δn−1pn) + δ(1− π)p
1− (δ(1− p))n

1− δ(1− p)

De�ne φp,δ : (0, 1
2
) → R such that φp,δ(π) = vn(π,p,δ)

1−π if π is in [π−n, π−n+1) ∩ (0, 1
2
).

It is possible to show that φp,δ is continuous, strictly increasing and takes values

above and below 1. As a consequence there exists a unique π such that φp,δ(π) = 1.

Moreover, π ≤ π1 with equality if and only if π1 ≥ π−1.

In conclusion, DM seeks advice if and only if her belief is in the interval (π, π) such

that π = π1 and φp,δ(π) = 1.
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Information certi�able : révélation et persuasion

Mehdi Ayouni

Résumé

Dans de nombreuses situations, les décideurs sont amenés à choisir une action ou une politique sans

être parfaitement informés. De plus, il est parfois di�cile ou coûteux d'acquérir directement les infor-

mations manquantes. Dans ce cas, ils peuvent solliciter l'aide des institutions ou individus informés.

Ces derniers peuvent essayer d'in�uencer la décision en leur faveur en cachant ou en ne présentant

qu'une partie de l'information. Dans cette thèse, j'examine des situations où certaines informations

sont certi�ables ou véri�ables. En d'autres termes, un agent informé peut prouver certaines déclara-

tions en présentant des preuves ou le décideur peut véri�er l'exactitude de ces déclarations. Puisque

la véri�cation peut être coûteuse ou prenante, le décideur ne peut souvent véri�er qu'une partie de

l'information reçue. Ces contraintes déterminent la quantité d'information qui peut être véri�ée avant

la prise de décision. Les deux premiers chapitres portent sur des modèles adaptés aux situations où

le décideur doit évaluer une déclaration ou répondre à une demande faite par un individu ou une in-

stitution. Dans le troisième chapitre, je considère un cadre légèrement di�érent où le décideur peut

consulter des agents informés de manière séquentielle avant de choisir une action.

Mots Clés : Information certi�able, Communication stratégique, Persuasion, Mécanismes
de communication, Théorie des jeux.

Abstract

In many situations, decision makers do not observe all relevant information which undermines their

ability to choose the best action or policy. Moreover, it can be di�cult or costly to directly acquire

the missing information. In such cases, the decision maker may acquire information from privately

informed parties with potentially di�erent objectives. The issue is that they may try to in�uence the

outcome in their favor either by withholding or selectively reporting information. This thesis is focused

on settings where at least some information is certi�able or veri�able. In other words, the informed

party can prove certain statements by presenting hard evidence or the decision maker can verify the

accuracy of received claims and documents. Since veri�cation can be costly or time consuming, the de-

cision maker might be able to only partially check the claim. These constraints determine the amount

of information that can be veri�ed before the decision is made. The �rst two chapters focus on models

that best describe settings where the decision maker has to evaluate a claim or respond to a request

made by an individual or institution. In the third chapter, I consider a slightly di�erent framework

where the decision maker may seek advice by sequentially consulting informed agents.

Keywords: Certi�able information, Strategic communication, Persuasion, Communication
mechanisms, Game theory.
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