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Préface

Les graphes sont des structures mathématiques très adaptées pour mo-
déliser les interactions parmi des objet/individus à étudier. De nom-

breux types de réseaux réels peuvent être modélisés à travers des graphes,
tels que les réseaux de transport, les réseaux de transactions financières
ou les réseaux sociaux comme Facebook ou Linkedin. Quand on observe
un réseau d’interactions, le temps entre en jeu de deux manières diffé-
rentes : on peut étudier les instants auxquels les interactions ont lieu et
les durées de ces interactions. Les travaux de cette thèse se limitent à la
première dimension temporelle. Chaque interaction est donc considérée
comme instantanée pour des raisons de simplicité. L’évolution du réseau
repose ainsi sur les temps des interactions uniquement. Dans ce contexte,
les graphes peuvent être utilisés de deux manières différentes pour modé-
liser les réseaux :

1. Temps discret. Un réseau est observé à des instants différents et
un graphe est associé à chacun de ces instants. Deux nœuds d’un
graphe sont connectés si une ou plusieurs interactions entre eux sont
observées dans le réseau à l’instant correspondant. Les interactions
sont donc agrégées entre un instant d’observation et le suivant et les
dates exactes des interactions sont perdues. Un réseau dynamique
est enfin représenté par une séquence de graphes.

2. Temps continu. Plusieurs arcs connectent les nœuds d’un graphe.
Chaque arc est donc uniquement associé à une paire de nœuds et à
un instant temporel. Il n’y a pas d’agrégation temporelle dans ce cas
et les instants exacts des interactions ne sont pas perdus. Le réseau
dynamique est donc représenté par un seul graphe multiple dont les
arcs sont étiquetés par les temps d’interaction.

Dans cette thèse ces deux visions sont adoptées alternativement. Nous
proposons de nouvelles méthodes d’apprentissage non supervisé qui
visent à partitionner les sommets d’un graphe dynamique en classes ho-
mogènes au sens où les sommets d’une même classe ont des profils d’in-
teraction similaires. Pour éviter des problèmes d’identifiabilité les groupes
de nœuds ne changent pas dans le temps. Par ailleurs, les approches pro-
posées visent à détecter des changements structurels dans la façon dont
les groupes de nœuds interagissent entre eux. Le point de départ de cette
thèse est le stochastic block model (SBM), une approche probabiliste initia-
lement utilisée en sciences sociales. Dans la version standard du modèle,
les nœuds d’un graphe sont répartis dans des classes et la probabilité
d’apparition d’un arc entre deux nœuds dépend uniquement des classes
auxquelles ils appartiennent. Comme aucune hypothèse n’étant faite sur
les probabilités d’interaction, SBM est un modèle très flexible qui permet
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2 Préface

de capturer des structures topologiques différentes et variées (hubs, stars,
communautés, etc.).

Tout en gardant une approache de modélisation par blocs (comme
dans SBM) dans le contexte des graphes dynamiques, les principales
contributions de cette thèse sont les suivantes :

1. Nous introduisons une nouvelle extension dynamique du SBM, ap-
pelée dSBM, qui utilise des processus de Poisson non homogènes
pour modéliser les interactions parmi les paires de nœuds d’un
graphe dynamique, en temps discret et continu. Les fonctions d’in-
tensité des processus ne dépendent que des classes des nœuds
comme dans SBM. De plus, ces fonctions d’intensité ont des pro-
priétés de régularité sur des intervalles temporels qui sont à estimer,
et à l’intérieur desquels les processus de Poisson redeviennent ho-
mogènes.

2. Un récent algorithme d’estimation pour SBM, qui repose sur la maxi-
misation d’un critère exact (ICL exacte) est ici adopté pour estimer
les paramètres de dSBM et sélectioner simultanément le modèle op-
timal. À notre connaissance, c’est la première fois que cet algorithme
est utilisé dans le cadre d’un modèle SBM dynamique.

3. Un algorithme exact pour la détection de rupture dans les séries tem-
porelles, la méthode « pruned exact linear time » (PELT), est étendu
pour faire de la détection de rupture dans des données de graphe
dynamique selon le modèle dSBM.

4. Le modèle dSBM est étendu ultérieurement pour faire de l’analyse
de réseau textuel dynamique. Les réseaux sociaux sont un exemple
de réseaux textuels : les acteurs s’échangent des documents (posts,
tweets, etc.) dont le contenu textuel peut être utilisé pour faire de
la classification et détecter la structure temporelle du graphe dy-
namique. Le modèle que nous introduisons est appelé « dynamic
stochastic topic block model » (dSTBM).

Ce manuscrit est organisé de la façon suivante.
Dans le premier chapitre nous faisons état des principales notions de

théorie des graphes et des propriétés connues des réseaux réels. Deux
définitions formelles de graphe dynamique sont énoncées. Ensuite, nous
présentons les principaux modèles génératifs existants pour les graphes
(statiques et dynamiques) et les méthodes d’estimation introduites dans
la littérature pour ces modèles. Enfin, nous introduisons des outils statis-
tiques (pas forcement liés à l’analyse de réseau) qui sont à la base de nos
travaux.

Dans le deuxième chapitre, deux versions du modèle dSBM sont pré-
sentées pour l’analyse des réseaux dynamiques en temps discret. Une pro-
cédure d’inférence est ensuite détaillée. Elle vise à maximiser (de façon
gloutonne) la vraisemblance intégrée des données complétées : ceci per-
met d’estimer les paramètres du modèle tout en sélectionnant simultané-
ment le nombre de classes.
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Le troisième chapitre introduit une version du modèle dSBM pour
l’analyse de graphes dynamiques en temps continu. La méthode propo-
sée assure une forme de détection de rupture dans l’évolution temporelle
de ce type de graphes. L’inférence repose sur une approche variationnelle
classique dont une partie est basée sur le PELT.

Le quatrième chapitre revient sur les graphes dynamiques en temps
discret. Les réseaux dynamiques textuels sont pris en compte, le modèle
dSTBM est présenté et une procédure d’inférence est détaillée. Un critère
de sélection de modèle est enfin formellement dérivé.

À la fin de chaque chapitre, nous conduisons des expériences sur des
données simulées et réelles. Ces expériences nous servent à la fois à tester
les points forts et les faiblesses de nos méthodes et à les comparer avec
des approches concurrentes.

Cette thèse a fait l’objet de quatre articles dont trois d’ores et déjà
publiés. Le deuxième chapitre du présent manuscrit traite des thèmes in-
troduits en Corneli et al. (2016b;a). Le troisième chapitre correspond à
Corneli et al. (2017) et le quatrième chapitre fait l’objet d’un papier qui à
été rècemment soumis.





Abstract

Graphs are mathematical structures very suitable to model interactions
between objects or actors of interest. Several real networks such

as communication networks, financial transaction networks, mobile tele-
phone networks and social networks (Facebook, Linkedin, etc.) can be
modelled via graphs. When observing a network, the time variable comes
into play in two different ways: we can study the time dates at which
the interactions occur and/or the interaction time spans. This thesis only
focuses on the first time dimension and each interaction is assumed to be
instantaneous, for simplicity. Hence, the network evolution is given by the
interaction time dates only. In this framework, graphs can be used in two
different ways to model networks:

1. Discrete time. A network is observed at several times and a graph
is associated with each observation time. Two vertices of a graph
are connected if one or more interactions occurred between them
in the corresponding time frame. Thus, interactions are aggregated
between two consecutive observation times and the exact interaction
dates are lost. In this context, a dynamic network is represented by
a sequence of graphs.

2. Continuous time. Several edges are allowed to connect the vertices
of a graph at different times. One edge is uniquely associated with
a pair of nodes and a time point. No aggregation is required and
interaction times are never lost. Therefore, a dynamic network is
represented by a single multiple graph whose edges are labelled by
the interaction times.

In this thesis both these perspectives are adopted, alternatively. We
consider new unsupervised methods to cluster the vertices of a graph into
groups of homogeneous connection profiles. In this manuscript, the node
groups are assumed to be time invariant to avoid possible identifiability
issues. Moreover, the approaches that we propose aim to detect structural
changes in the way the node clusters interact with each other. The building
block of this thesis is the stochastic block model (SBM), a probabilistic
approach initially used in social sciences. The standard SBM assumes
that the nodes of a graph belong to hidden (disjoint) clusters and that
the probability of observing an edge between two nodes only depends
on their clusters. Since no further assumption is made on the connection
probabilities, SBM is a very flexible model able to detect different network
topologies (hubs, stars, communities, etc.).

By adapting the block modelling perspective of SBM to dynamic
graphs, the main contributions of this thesis are the following:
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6 Abstract

1. We introduce a new extension of SBM for dynamic graphs. The
proposed approach, called dSBM, adopts non homogeneous Poisson
processes to model the interaction times between pairs of nodes in
dynamic graphs, either in discrete or continuous time. The intensity
functions of the processes only depend on the node clusters, in a
block modelling perspective. Moreover, all the intensity functions
share some regularity properties on hidden time intervals that need
to be estimated.

2. A recent estimation algorithm for SBM, based on the greedy max-
imization of an exact criterion (exact ICL) is adopted for inference
and model selection in dSBM. To the best of our knowledge, this
is the first time this algorithm is adopted for inference in dynamic
stochastic block models.

3. An exact algorithm for change point detection in time series, the
"pruned exact linear time" (PELT) method is extended to deal with
dynamic graph data modelled via dSBM. The approach we propose
can be used for change point analysis in graph data.

4. A further extension of dSBM is developed to analyse dynamic net-
works with textual edges (like social networks, for instance). In this
context, the graph edges are associated with documents exchanged
between the corresponding vertices. The textual content of the docu-
ments can provide additional information about the dynamic graph
topological structure. The new model we propose is called "dynamic
stochastic topic block model" (dSTBM).

This manuscript is organized as follows.
In the first chapter, we pass through the main notions of graph theory

and review some stylized facts about real networks. Two formal defini-
tions of dynamic graph are provided. Then, the main existing generative
models for static and dynamic random graphs are presented along with
their associated inference procedures. Finally, some statistical tools not
necessarily related with network analysis are described in detail since they
are used in later chapters.

In the second chapter, two versions of dSBM are introduced, both deal-
ing with discrete time dynamic graphs. The corresponding inference pro-
cedure aims to maximize the complete data integrated log-likelihood, thus
allowing us to learn the model parameters and select the number of clus-
ters at the same time.

In the third chapter, we model continuous time dynamic graphs via
dSBM and focus on clustering and change point analysis in graph data. A
standard variational approach is adopted for the inference and one step of
the estimation algorithm relies on the PELT method.

Finally, the fourth chapter introduces the dSTBM for discrete time dy-
namic graph with textual edges. The inference procedure is detailed and
a model selection criterion is formally obtained.

The last part of each chapter is devoted to experiments on both simu-
lated and real data. These experiments allow us to highlight the features
of the proposed approaches and to compare them with alternative meth-
ods. Three papers were published during this thesis. The two works of
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Corneli et al. (2016b;a) are discussed in detail in the second chapter of
the present manuscript. The third chapter focuses on the topics detailed
in Corneli et al. (2017) and the fourth chapter corresponds to a recently
submitted paper.





1Background

This preliminary chapter introduces the main concepts and existing
works this thesis builds upon. In Section 1.1, we recall some defi-

nitions of graph theory and list some stylized facts about real networks.
Two different definitions of dynamic graphs are provided, in continuous
and discrete time, respectively. After reviewing some of the main existing
methods to cluster vertices in static graphs, Section 1.2 focuses on gen-
erative models for random graphs. The stochastic block model (SBM) is
a building block of this thesis, therefore it is discussed apart and treated
in more detail. In the last part of the section, some existing probabilistic
approaches for dynamic graph analysis are mentioned and briefly dis-
cussed. Section 1.3 details a variational expectation maximization (EM)
procedure to perform inference in SBM and introduces the main existing
model selection criteria to select the number of latent groups in mixture
models. Finally, Section 1.4 is divided into three independent parts. The
former introduces a stochastic process that will be employed in the fol-
lowing chapters to generalize SBM to dynamic graphs. The second part
of this section recalls some results on change point analysis in time series.
These results will be employed in Chapter 3. Finally, we introduce a prob-
abilistic model for statistical analysis of documents that will be extended
to the context of dynamic network analysis in Chapter 4.

9
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1.1 Graphs and data modelling

Roughly speaking graphs are mathematical structures used to model pair-
wise relations between objects. Since the pioneer work of Moreno (1934),
graphs have been used to model phenomena of interest in many scientific
fields. A non-exhaustive list of such fields includes physics (Albert and
Barabási 2002), economics (Snyder and Kick 1979), biology (Barabási and
Oltvai 2004, Palla et al. 2005) and history (Villa et al. 2008). This thesis
focuses on applications in social sciences where graphs are used to model
relational ties between actors (see e.g. Nowicki and Snijders 2001, Isella
et al. 2011).

1.1.1 Basic graph theory and networks

We start by providing a formal definition of graph.

Definition 1.1 A graph is an ordered pair G = (V , E), where V is a set of N vertices (or nodes)
and E is a set of edges. One edge connects two nodes and the graph is directed
if connections between vertices are asymmetric and the pairs (i, j) are ordered. It
is undirected if the pairs (i, j) are not ordered and hence interactions between
vertices are symmetric.

 

 

 

 

 

 

 

 

 

 

 

(a) Directed graph.

 

 

 

 

 

 

 

 

 

 
 

(b) Unirected graph.

Figure 1.1 – Two Graphs. The red points are the graph nodes and both directed links
(Figure 1.1a) and undirected links (Figure 1.1b) are shown.

A directed graph can be seen in Figure 1.1a and an undirected one in
Figure 1.1b. Self loops are not considered in both figures, meaning that
vertices are not allowed to interact with themselves. The edges of a graph
can be weighted by a function f : E → E, for any set E.

Definition 1.2 A graph is binary if E = {0, 1}.

When a graph is binary an interaction between two nodes i and j ei-
ther occurs (an edges connects i and j) or does not (no edge connects the
two nodes). In Chapters 2 and 3, we focus on weighted graphs (i.e. not
binary) where E = N∗. In our case, an edge connecting two nodes is as-
sociated with the number of interactions that occurred between them in



12 Chapter 1. Background

a predefined time period, but interpretations are possible depending on
the context. For instance, in the last chapter of this thesis a more com-
plex framework is considered, in which edges are associated with textual
contents.

A graph is entirely characterized by its adjacency matrix, defined in the
following

Definition 1.3 A N × N adjacency matrix X can be associated with a graph G, such that the
entry (i, j) of such matrix, denoted Xij, is equal to one if an edge connects i to j,
zero otherwise.

Notice that the adjacency matrix of an undirected graph is symmetric
whereas the one of a directed graph is not. An N × N weight matrix W
can also be associated with a weighted graph, such that if Xij = 1 then
Wij is equal to the weight associated with the edge connecting i and j.
Conversely, when Xij = 0, also Wij = 0.

Remark 1.1 In the reminder of this thesis, with a slight abuse of notation, we refer to W as to
the adjacency matrix and denote it X.

For instance, when E = N∗ and each edge is associated with the num-
ber of connections that occurred between the corresponding pair of nodes,
the following notation is adopted

Xij =

{
k ∈N∗ if k interactions occured between i and j
0 if no interaction occured between i and j

.

An important notion in graph theory is the one of degree.

Definition 1.4 The degree of a node is the number of nodes to whom it is connected (a.k.a. its
neighbours) whereas the total degree of a graph is |E |, namely the total number
of edges.

The total degree of a graph as well as each node’s degree can be
inferred from the adjacency matrix. For instance, in undirected binary
graphs without self loops the total degree is equal to the number of non-
null entries in the adjacency matrix divided by two. Similarly, the degree
of node i is equal to the sum of the elements on the i-th row (or column)
of the adjacency matrix. The definition of path follows.

Definition 1.5 A path from a vertex i to a vertex j is a sequence of edges in E starting at vertex
i and ending at vertex j.

If there exists at least one path between every pair of vertices then the
graph is said to be connected.

As mentioned at the beginning of this section, graphs are used to
model pairwise relations between actors. More specifically, actors are rep-
resented by the graph vertices and relations by the graph edges. The best
suited kind of data that can be modelled by graphs is network data.

Remark 1.2 In the reminder of this thesis, the word network is referred to the real object
corresponding to the mathematical object called graph.
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For instance transportation networks, electric networks, social net-
works (Facebook, Twitter, etc.) are not graphs themselves and different
modelling choices can lead to different graphs corresponding to the same
network (this point is clarified in the following section).

The graphs associated with most real networks are known to share
some properties (Albert et al. 1999, Barabasi and Albert 1999, Amaral et al.
2000, Newman 2003), for example

1. Sparsity: the total degree is linear in N.

2. Heterogeneity: very high degree for few vertices and low degree for
most of them. In scale-free networks the node degrees follow a
power law distribution.

3. Assortative mixing or homophily: a vertex tends to associate preferen-
tially with other vertices that are similar to him in some way.

4. Small-World Effect: most pairs of vertices seem to be connected by a
short path through the graph.

5. Community structure: this very important feature is discussed in de-
tail in Section 1.2.

1.1.2 Dynamic graphs

Now, let us assume that some network data involving N actors is ob-
served. The actors interacted with each other (possibly repeatedly) at
specific times and these times are recorded. For instance, an interac-
tion could correspond to a tweet or an e-mail sent from one actor to an-
other at some time of the day. What we observe is an interaction dataset
D = {(im, jm, tm)}1≤m≤M, subset of {1, . . . , N}2 × R+, in which a triple
(i, j, t) represents an interaction between actors i and j, at time t. The
temporal period under study is the interval [0, T] and tM+1 (i.e. the next
interaction time) is not observed before T.

How can this interaction dataset be translated into a graph? Although
the answer is not unique, this issue is addressed by Casteigts et al. (2012)
in very general terms. They extended the definition of graph 1.1 to the
following

Definition 1.6 A dynamic graph is defined by G = (V , E , T , φ, ζ) where

1. The lifetime T is the period under study, in our case [0, T].

2. φ : E × T → {0, 1} is called presence function and indicates whether a
given edge is available at a given time.

3. ζ : E × T → R+ called latency function, indicates the time it takes to
cross a given edge if starting at a given date.

Based on this definition we propose some changes to introduce two
new definitions of dynamic graph that can be used to model the dataset
D. First of all, in this thesis the function ζ(·) is neglected and all the
interactions in D are assumed to be instantaneous.
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Remark 1.3 All the network analysis approaches described in the following make the implicit
assumption that interaction time spans do not play a significant role in the general
behaviour of the actors.

As in Casteigts et al. (2012) two nodes i and j can be connected by
multiple edges, each one associated with a different time point. Such
a graph is called multiple graph and the presence function φ(·) is null
everywhere but at the interaction times.

Definition 1.7 Continuous time dynamic graph. A continuous time dynamic graph is a
multiple graph defined by G = (V , E , T , φ).

Notice that time is modelled as a continuous variable rather than a dis-
crete one1. This definition of dynamic graph will be employed in Chapter
3, where the interaction times t1, . . . , tM in the dataset D are seen as ran-
dom variables generated by stochastic point processes (see Section 3.1.2).

Although the continuous time approach illustrated so far is completely
general and has the advantage of preserving information (e.g. the exact
order and times in which interactions occur), statistical models in dynamic
network analysis usually are in discrete time. To illustrate this alternative
approach, a time partition of the interval [0, T] is introduced such that

[0, T] =
U⋃

u=1

Iu, ∃U ∈N∗ (1.1)

where I1, . . . , IU are pairwise disjoint time sub-intervals not necessarily of
the same size. For each pair of vertices (i, j) in D the corresponding edges
can be aggregated on the time intervals of the above partition to obtain
a sequence of U adjacency matrices. Hence, the entry (i, j) in the u-th
matrix counts the number of interactions between the vertices i and j that
occurred during Iu (see Remark 1.1). Alternatively, in a binary framework,
the same entry is one if at least one interaction between i and j occurred
over Iu, zero otherwise. As seen in the previous section, an adjacency
matrix corresponds to a static graph as defined in 1.1. The dataset D is
then modelled as a sequence of static (possibly weighted) graphs. Hence,
the following definition can be provided

Definition 1.8 Discrete time dynamic graph. In a discrete time framework, dynamic graph is
synonym of sequence of static graphs (a.k.a. snapshots).

Notice that the time partition introduced in (1.1) defines the finest level
of information we have access to. The exact time at which an interaction
occurred as well as the interaction orders inside each time interval of the
partition are lost with aggregation. As we will see in the following chap-
ters, a three dimensional tensor Y can be introduced to keep notations
uncluttered. For instance, in the binary case Yiju = 1 means that an inter-
action from node i to node j occurred during the time interval Iu.

Remark 1.4 The tensor Y is the natural extension of the adjacency matrix X to the dynamic
framework.

1 A similar framework for dynamic graphs was proposed by Guigourès et al. (2015).
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(a) First quarter (b) Second quarter

(c) Third quarter (d) Fourth quarter

Figure 1.2 – The Enron e-mail data set viewed as a dynamic graph. Each graph corre-
sponds to a quarter of 2001.

In Figure 1.2, the popular Enron communication network (http:
//www.cs.cmu.edu/~./enron/), containing all e-mail exchanges be-
tween 149 employees of the company is represented as a discrete time
dynamic graph. Each snapshot corresponds to a quarter of the year 2001.
The discrete time view described so far will play a central role in Chapters
2 and 4.

1.2 Generative models for random graphs

In a probabilistic perspective, the edges of a (static or dynamic) graph can
be modelled as random variables. In this context, the graph is said to be
random. This modelling choice allows us to answer to questions like: what
is the probability that one edge occurs between two vertices? Which is the

http://www.cs.cmu.edu/~./enron/
http://www.cs.cmu.edu/~./enron/
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expected number of edges between two vertices in a multiple graph? Etc.
This section reviews the main existing generative models for static and
dynamic random graphs.

1.2.1 Static graphs

Several existing methods in network analysis aim to detect communities.

Definition 1.9 A community is a densely connected group of vertices having fewer connections
outside the group.

A graphical representation of a graph with three communities can be
seen in Figure 1.3. Most of the existing approaches for community detec-

 
 

 

 

 

 
 

 

 
 

 

 

 
 

 
  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

   

 
 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1.3 – Example of an undirected network with three communities.

tion either rely on the maximization of the modularity score (Newman and
Girvan 2004) or the spectral properties of the graph Laplacian (this is the
case of spectral clustering algorithms, see von Luxburg 2007, for instance).
For a detailed survey of existing techniques for community detection the
reader is referred to Fortunato (2010). These non-probabilistic techniques
are popular in the literature and ad-hoc algorithms have been developed
to reduce the computational burden and deal with large dataset (see e.g.
Blondel et al. 2008, Noack and Rotta 2008). However, algorithms based on
the modularity maximization have been proved to be biased, even asymp-
totically (Bickel and Chen 2009).

Another class of probabilistic approaches modelling graph edges as
random variables proved to be flexible and capable of retrieving complex
heterogeneous structures in networks (Airoldi et al. 2008, Goldenberg et al.
2009). In contrast, at the time of writing these approaches cannot compete
with the ad-hoc algorithms mentioned above in terms of computational
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complexity (however there are some recent very promising contributions
in this direction, see e.g. Brault and Channarond 2016).

This thesis mainly focuses on a probabilistic approach known as
stochastic block model (SBM, Holland et al. 1983, Wang and Wong 1987,
Nowicki and Snijders 2001). Due to the importance of this generative
model in the following chapters, we take some time to describe it in de-
tails.

Stochastic block model. SBM (Holland et al. 1983, Wang and Wong 1987,
Nowicki and Snijders 2001) assumes that the vertices of a graph are par-
titioned into K hidden groups, denoted by A1, . . . ,AK. Each node i is
associated with a random variable (r.v.) Zi, such that Zi = k if and only if
i ∈ Ak. The latent r.v. Zi is assumed to follow a multinomial distribution

P(Zi = k) = πk, ∀k ∈ {1, . . . , K},

where the vector of cluster proportions is denoted by π = (π1, . . . , πK)
and

K

∑
k=1

πk = 1.

We denote by Z = {Z1, . . . , ZN} the set of all the latent variables Zi. The
equivalent 0-1 notation Zi = (Zi1, . . . , ZiK), with Zik = 1 if node i belongs
to the k-th cluster, 0 otherwise, will be used interchangeably when no
confusion arises. In this case, Z is an N × K matrix whose i-th row is the
vector Zi. Recall that X denotes the adjacency matrix of the graph. This
matrix entries are now assumed to be random variables. For instance,
when dealing with binary graphs the random variable Xij is equal to 1 if
one edge connects node i to node j. Otherwise Xij = 0. Conditionally on
Z, Xij is assumed to be drawn from a Bernoulli distribution

Xij|ZikZjg = 1 ∼ B(Xij; θkg), ∀k, g ∈ {1, . . . , K}

whose parameter θ only depends on the groups of i and j, respectively.
So, if vertex i belongs to cluster Ak and vertex j to cluster Ag, the proba-
bility that one edge between them occurs is θkg. The last very important
assumption in the SBM is that the entries of X are all independent random
variables, conditionally on Z.

A variant of the SBM focuses on weighted graphs in which Xij counts
the number of interactions between i and j. In this context conditionally
on Z to be known, Xij follows a Poisson distribution

Xij|ZikZjg = 1 ∼ P(Xij; λkg), ∀k, g ∈ {1, . . . , K} (1.2)

where

P(Xij; λkg) :=
λ

Xij
kg

Xij!
exp(−λkg)

and Λ denotes a K×K matrix whose entry (k, g) is λkg, the expected num-
ber of interactions between any node in cluster k and any node in cluster
g. A graphical representation of this model can be seen in Figure 1.4.
Since no further constraints are imposed on the matrix Λ, SBM can de-
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Xij

Λ

Zi Zj

π

Figure 1.4 – Graphical representation of SBM for weighted graphs with Poisson dis-
tributed weights. This representation enlightens the statistical dependence between the
observed (blue circle) random variable Xij and the hidden (white circle) random variables
Zi and Zj. The model parameters Λ and π are not circled.

tect communities of nodes but also more complicated structures like hubs
which make networks locally dense (Daudin et al. 2008), stars (Latouche
et al. 2011) and non-assortative structures (Corneli et al. 2016b). Several
inference procedures have been developed for SBM aiming at estimating
both the set Z and the number of components K. They are discussed in
the next sections.

Extensions of SBM and other generative models. Several extensions of
SBM have been proposed for static graphs, for instance:

1. The mixed membership stochastic block model (MMSBM) of Airoldi
et al. (2008), which captures partial membership and allows each
vertex to have a distribution over a set of classes, while SBM assumes
that each vertex of a graph belongs to a single class.

2. The degree corrected SBM allows nodes in the same group to have
different degrees, hence providing a more flexible model for real-
world networks (Karrer and Newman 2011).

3. The random subgraph model (RSM, Jernite et al. 2014) is a gener-
alization of SBM dealing with static weighted graphs. A partition
of nodes (corresponding to subgraphs) is assumed to be available
and node memberships to latent clusters vary from one subgraph to
another. Notice that, when a single subgraph coinciding with the
whole graph is provided a priori, RSM reduces to SBM.

Several probabilistic approaches for random graphs, alternative to
SBM, were introduced in the literature. Two of them are reported without
exhaustive intent.
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1. The exponential random graph model (ERGM, Robins et al. 2007)
employs a logistic regression to model the probability of interactions
between vertices of a static graph. In this context, a set of user de-
fined statistics are introduced to account for statistical dependence
between edges.

2. The latent position model (LPM, Hoff et al. 2002) assumes that ver-
tices in a graph have unobserved positions in a d-dimensional Eu-
clidean latent space. Relying on a logistic regression, the probabil-
ity of one interaction between two nodes depends on both network
statistics and the nodes latent position. The basic idea is that the
nearer two nodes are, the more likely they are to interact. The LPM
was extended for community detection purposes by Handcock et al.
(2007), where latent positions of nodes are assumed to follow multi-
variate Gaussian mixtures, whose parameters as well as proportions
have to be estimated.

1.2.2 Dynamic graphs

Statistical models for dynamic graphs are usually discrete in time (see Sec-
tion 1.1.2), i.e. predefined time intervals are considered and interactions
during those time intervals are aggregated to obtain snapshots. Some of
these models aim to extend SBM to the dynamic case. Yang et al. (2011)
proposed a dynamic version of SBM allowing nodes to change cluster at
time t+ 1 depending on their cluster at time t. The switching probabilities
are all characterized by an homogeneous transition matrix. An alternative
approach, relying on a non-homogeneous Markov chain, is proposed in
Xu and Hero III (2013). Based on the central limit theorem, the sequence
of connectivity matrices is seen as the hidden states sequence of a dynamic
system, generating noisy, observed statistics. The authors rely on Kalman
filtering along with the Rauch-Tung-Striebel smoother for inference. The
work of Yang et al. (2011) was generalized by Matias and Miele (2017) to
deal with more general types of edges. In their paper, they also showed
that restrictions have to be imposed to the connectivity matrix in dynamic
extensions of SBM in which both the connectivity parameters and the clus-
ter memberships vary over time. These restrictions are needed in order to
avoid identifiability issues. Other static variants of the SBM have also been
adapted to the dynamic context. For instance, Xing et al. (2010), Ho et al.
(2011) and Kim and Leskovec (2013) extended the MMSBM in order to
look for overlapping clusters of nodes, through time.

Other existing approaches in discrete time dynamic network analy-
sis are based on the generative models, other than SBM, mentioned in
the previous section. For example, the dynamic random subgraph model
(DRSM, Zreik et al. 2016) was built upon the RSM to uncover clusters
within subgraphs provided a priori. Based on the exponential random
graph model (ERGM), Hanneke et al. (2010) developed a more general
class of models not limited to clustering purposes: the temporal expo-
nential random graph model (TERGM). In this framework, the evolution
of network snapshots is modelled through a Markov Chain whose transi-
tion probabilities depend on some user-defined functions accounting for
sufficient statistics which usually involve the adjacency matrices at time
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t and t − 1. For inference, the authors rely on an approximated maxi-
mum likelihood approach involving both Gibbs sampling and a gradient
descent algorithm. A similar view is adopted by Krivitsky and Handcock
(2014) who introduced an hypothesis of separability (i.e. conditional inde-
pendence) between appearing and disappearing connections between two
consecutive snapshots of the dynamic graph. This assumption justifies the
name STERGM (separable TERGM) and allows the model to gain in ease
of specification and tractability. While in ERGM network statistics are de-
fined globally (e.g. density, stability, reciprocity, etc.), they are built at the
actors level (e.g. degree, past behaviour, etc.) in stochastic actor-oriented
models for network change (SAOM, Snijders 1996). In SAOM, a dynamic
graph undergoes instantaneous changes involving a single edge (appear-
ing or disappearing) at a time. The waiting time between two change
opportunities is an exponential r.v. and when a node i has the opportu-
nity to change connection, the probability that it connects to j is computed
via a logit regression involving several statistics. Inference is based on
method of moments. Finally, the latent position model (LPM) was also
extended by Sarkar and Moore (2005), Friel et al. (2016), Sewell and Chen
(2015; 2016) to deal with dynamic binary or weighted graphs. In a recent
work, Durante et al. (2016) allow the node coordinates in latent space to
evolve in continuous time via nested Gaussian processes to account for
non stationarity in real networks.

Although very popular, the discrete dynamic network models de-
scribed so far share a common drawback: aggregating data leads to a
loss of information and the choice of the time intervals used to build the
snapshots has a strong impact on the inference results (Matias et al. 2015).
As mentioned in Section 1.1.2, in order to deal with dynamic interactions
on a continuous time frame a natural choice is to consider point processes.
Thus, Matias et al. (2015) relied on the so called (doubly stochastic) non
homogenous Poisson processes (NHPP, see Section 1.4.1). Following a
SBM like approach, nodes are assumed to belong to hidden clusters. Each
pair of nodes is then associated to a NHPP whose intensity function de-
pends on the respective clusters. A variational expectation maximization
(VEM, see Section 1.3.1) algorithm is finally employed to estimate these
functions non-parametrically and to uncover the clusters. This work is
partially related to Dubois et al. (2013) who relied on a parametric form
for the intensity functions, which depend on the past network history and
other predefined statistics. An alternative approach is detailed in Chap-
ter 2 of this thesis, where the intensity functions of the Poisson processes
are assumed to be piecewise constant on predefined time intervals, each
time interval belonging to a hidden time cluster. In this model, the value
of each intensity function at time t not only depends on the clusters of
nodes, but also on the corresponding time cluster.

Not relying on Poisson processes, but still in continuous time
Guigourès et al. (2012; 2015) proposed a different model. Based on the
non-parametric MODL approach, (Boullé 2010), the triclustering tech-
nique of Guigourès et al. (2012; 2015) aims to simultaneously uncover
groups of nodes and time segments characterized by a stationary edges
distribution. Although powerful and flexible, this technique is somewhat
blind to some intensity changes: time segments cannot be detected when
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Model/Paper Time Reference Model
D C

Xu and Hero III (2013) SBM
Yang et al. (2011) SBM
Matias and Miele (2017) SBM
Xing et al. (2010) MMSBM
Ho et al. (2011) MMSBM
Kim and Leskovec (2013) MMSBM
Zreik et al. (DRSM, 2016) RSM
Hanneke et al. (TERGM, 2010) ERGM
Krivitsky and Handcock (STERGM, 2014) ERGM
Sarkar and Moore (2005) LPM
Friel et al. (2016) LPM
Sewell and Chen (2015) LPM
Sewell and Chen (2016) LPM
Durante et al. (2016) LPM
Matias et al. (2015) SBM
Dubois et al. (2013) ERGM, SBM
Guigourès et al. (2012; 2015) MODL

Table 1.1 – Summary of the models for dynamic graph modelling mentioned in Section
1.2.2.

the type of connectivity structure is persistent through time but subject
to parallel shifts in the interaction intensity levels. This point will be dis-
cussed in more detail in Section 3.3.1, when one of the models that we
developed is compared with MODL.

We finally cite some recent works that could be extended to model in-
teractions between vertices in dynamic graphs relying on Hawkes point
processes (Hawkes 1971). These processes take into account mutual de-
pendence between pairs of nodes and self-exciting dynamics. Several ap-
proaches have been used to perform inference, both in parametric and
non parametric frameworks. For instance, Xu et al. (2016) rely on maxi-
mum likelihood whereas Achab et al. (2016) developed a moment match-
ing method. Although Hawkes processes are a natural extension of Pois-
son processes, they are less easily interpretable and their use implies an
important additional effort during the inference step.

Table 1.1 summarizes the main features of the approaches mentioned
so far.

1.3 Inference in stochastic block model

As said in the previous section, SBM is the generative model we rely on in
the following chapters. It is then crucial to review the inference techniques
introduced in the literature for this model. In the following, we consider
weighted graphs in which the entries of the adjacency matrix X count
the number of interactions between the corresponding pairs of nodes (see
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Remark 1.1). Hence, (1.2) can be rewritten as

p(Xij|Zi, Zj, Λ) = P(Xij; λZiZj) =
K

∏
k,g

(
P(Xij; λkg)

)ZikZig .

Recalling that Zi and Zj are independent and follow a multinomial dis-
tribution of parameter π, the following joint probability distribution is
obtained

p(Xij, Zi, Zj|Λ, π) =
K

∏
k,g

(
P(Xij; λkg)πkπg

)ZikZjg (1.3)

and summing over all possible values of Zi and Zj leads to the marginal
probability distribution

p(Xij|Λ, π) =
K

∑
k,g
P(Xij; λkg)πkπg.

As it can be seen, the number of edges between a pair of nodes (i, j) fol-
lows a mixture of Poisson distributions. It is well known that the standard
approach to obtain maximum-likelihood (ML) and maximum a posteriori
(MAP) estimates in mixture models is the expectation maximization (EM)
algorithm (A. P. Dempster 1977). However, due to the graphical structure
of SBM, the posterior probability of Z given X, Λ and π is not tractable
and the EM algorithm cannot be used to estimate the model parameters.
To tackle this issue, many inference procedures have been introduced in
the literature such as variational EM (VEM, Daudin et al. 2008), varia-
tional Bayes EM (VBEM, Latouche et al. 2012), Gibbs sampling (Nowicki
and Snijders 2001), allocation sampler (Mc Daid et al. 2013) and greedy
search (Côme and Latouche 2015).

Since the last two chapters of this thesis rely on the VEM algorithm for
the inference, we describe here its main features.

1.3.1 Variational decomposition and EM algorithm

In this section, the number of clusters K is assumed to be known. This
hypothesis will be relaxed in the following section. Recalling that X is a
N × N adjacency matrix and Z an N × K cluster matrix (in 0-1 notations),
the complete data log-likelihood for SBM can be explicitly obtained

log p(X, Z|Λ, π) =
N

∑
i=1

N

∑
j 6=i

log p(Xij, Zi, Zj|Λ, π), (1.4)

where

1. the probability distributions on the right hand side of the equality
are detailed in (1.3) and

2. we used the conditional independence of {Xij}i,j given Z.

Maximizing this log-likelihood with respect to Λ and π is feasible but
would require the knowledge of Z.
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Let us now denote by q(·) a generic probability distribution on the ma-
trix Z. In the following, Eq denotes the expectation taken with respect to
the probability distribution q(·) and z denotes an outcome of the random
matrix Z. It can be proven that the observed data log-likelihood can be
decomposed as (Neal and Hinton 1998)

log p(X|Λ, π) = L(q(·); Λ, π) + KL(q(·)||p(·|X, Λ, π)), (1.5)

where

L(q(·); Λ, π) : = Eq

[
log
(

p(X, Z|Λ, π

q(Z)

)]
= ∑

z
q(z) log

(
p(X, z|Λ, π

q(z)

)
,

(1.6)

where the sum is taken over all the possible outcomes of Z and KL denotes
the Kullback-Leibler divergence between q(·) and p(·|X, Λ, π)

KL(q(·)||p(·|X, Λ, π)) : = −Eq

[
log
(

p(Z|X, Λ, π

q(Z)

)]
= −∑

z
q(z) log

(
p(z|X, Λ, π

q(z)

)
.

(1.7)

Since the Kullback-Leilbler divergence is non negative and null if and only
if q(·) = p(·|X, Λ, π), it is clear that

1. the functional (1.6) is a lower bound for log p(X|Λ, π) and

2. the following equality holds

log p(X|Λ, π) = L(pZ|X(·); Λ, π), ∀Λ, π

where pZ|X(·) is a shorthand notation for the posterior distribution
of Z given X, Λ and π.

The distribution pZ|X(·), however, is not tractable in SBM (see Daudin
et al. 2008, for details) and we can only minimize the KL divergence with
respect to a tractable family of distributions q(·). The approximating dis-
tributions are assumed to be of the form

q(Z) =
N

∏
i=1

q(Zi) =
N

∏
i=1

K

∏
k=1

τZik
ik , (1.8)

where the τiks are positive and ∑K
k=1 τik = 1, for all i. This hypothesis can

be rephrased by saying that under the q(·) distribution, node to cluster
assignments are independent given the adjacency matrix. Hence, the VEM
algorithm consists in alternatively maximizing the lower bound (1.6) with
respect to the probability distribution q(·) in the above equation and the
model parameters (Λ, π) up to convergence. Two important works of
Celisse et al. (2012) and Bickel et al. (2013) proved the consistency and
asymptotic normality of maximum-likelihood and variational estimators
obtained using the mean field variational approximation (1.8) for standard
SBM.
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1.3.2 Model Selection

So far, the number of groups K was assumed to be known but in real
applications this hypothesis is often too simplistic. Two popular model
selection criteria, the Akaike information criterion (AIC, Akaike 1974) and
the Bayesian information criterion (BIC, Schwarz 1978), rely on asymp-
totic approximations of the observed data integrated log-likelihood to se-
lect the number of groups in mixture models. However, they have both
been shown to be prone to over fitting in particular circumstances (see for
example Celeux and Soromenho 1996, Biernacki et al. 2000) and, more im-
portant, the observed data log-likelihood is not tractable in SBM. Hence
neither AIC nor BIC can be computed for SBM.

A third model selection criterion, the integrated classification likeli-
hood (ICL, Biernacki et al. 2000) plays a crucial role in the next chapters
and it is illustrated in the following in the context of SBM with Poisson
distributed weights. For a more general and detailed survey about model
selection criteria the reader is referred to Claeskens and Hjort (2008).

1.3.3 Integrated classification likelihood (ICL)

This criterion was developed as a model selection criterion for Gaussian
mixtures and it focuses on retrieving relevant clustering rather than den-
sity estimation as in BIC. If BIC relies on an asymptotic approximation of
the observed data integrated log-likelihood, ICL is based on an asymptotic
approximation of the complete data integrated log-likelihood. In the SBM
case

p(X, Z|K) =
∫

Λ,π
p(X, Z, |Λ, π)p(Λ, π|K)dΛdπ, (1.9)

where p(Λ, π|K) is any prior distribution over the pair (Λ, π) conditional
on K. To keep notations uncluttered, conditioning on K is omitted hence-
forth, nonetheless the following equations are conditioned on K. Making
the further assumption that p(Λ, π) factorizes over Λ and π, the following
holds

p(X, Z) =
∫

Λ,π
p(X|Z, Λ)p(Z|π)p(Λ)p(π)dΛdπ

=
∫

Λ
p(X|Z, Λ)p(Λ)dΛ

∫
π

p(Z|π)p(π)dπ

= p(X|Z)p(Z),

(1.10)

and hence
log p(X, Z) = log p(X|Z) + log p(Z).

In order to approximate the two log-probabilities on the right hand side
of the equality, the following strategy can be adopted

1. A Laplace approximation is employed to approximate the first term
in an analogous manner to the standard derivation of BIC

log p(X|Z) ≈ max
Λ

log p(X|Z, Λ)− K2

2
log N(N − 1),

where K2 is the dimension of Λ and N(N − 1) the number of obser-
vations, namely the entries of the adjacency matrix X in a directed
graph without self loops.
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2. A Jeffreys’ non informative prior is used to obtain a formulation
of p(Z) and an approximation of the Gamma function through the
Stirling formulas (see Biernacki et al. 2000, for details) finally leads
to

log p(Z) ≈ max
π

log p(Z|π)− K− 1
2

log(N).

Notice that this last approximation would be the same for any mixture
model with N observations and Z following a multinomial distribution of
parameter π. The ICL criterion for SBM can finally be formulated as

ICL(K) = max
Λ,π

log p(X, Z|Λ, π)− K2

2
log N(N − 1)− K− 1

2
log N. (1.11)

The above criterion is obtained for standard SBM in Daudin et al.
(2008). In their case, the first penalty term in the above equation looks
slightly different since they consider undirected graphs.

The above criterion can be computed for several values of K and the
the number of groups leading to the highest ICL is finally retained. We
recall that Z is not observed and it needs to be estimated in order to use
the ICL. A possible approach consists into applying the VEM algorithm to
the data (for a fixed K) and replace Z by its MAP estimates according to
q(·) in (1.8).

The ICL criterion plays a fundamental role in the following chapters,
since it is used for model selection in Chapter 4, in the context of a dy-
namic extension of SBM. For the same model, in Chapter 2, an exact ver-
sion of this criterion is formally obtained and maximized relying on a
Bayesian approach.

1.4 Other important statistical tools

The three independent topics discussed in this section are employed in the
reminder of this thesis and although not necessarily relating with network
analysis, they are illustrated in some details.

1.4.1 Non homogeneous Poisson process

This stochastic point process is used in the following to model interac-
tions between a pair of nodes in dynamic graphs. The reader in referred
to Thompson (1988), Kallenberg (2006) for a formal definition of point
process and a general treatment of point processes theory, whose deeper
understanding is outside the scope of the present thesis. However, when
the Poisson point process is defined on the real line (as it is the case in this
thesis), it is possible to adopt the useful interpretation of counting process
which simplifies the exposition. This view is adopted for instance in Nor-
ris (1998) to define the well known homogeneous Poisson process. In the
reminder of this manuscript, with a slight abuse of notation, when writing
"non homogeneous Poisson process" we refer to the counting counterpart
of the non homogeneous Possion point process.

Definition 1.10 Let {M(t)}t≥0 be an increasing, right continuous integer-valued process start-
ing from 0. Let λ(·) be a strictly positive integrable function. Then {M(t)}t≥0
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is a non homogeneous Poisson process (NHPP) if it has independent increments
and for all s ≤ t

M(t)−M(s) ∼ P
(∫ t

s
λ(u)du

)
. (1.12)

Obviously, when λ(·) is a constant function, {M(t)}t≥0 reduces to a
homogeneous Poisson process whose increments are stationary, which is
not the case for the NHPP.

Consider the following sequence of random arrival times

0 < ν1 < ν2 < · · · < νm < . . . , (1.13)

counted by {M(t)}t≥0. The following two events are the same one

{M(t) = m} iff {νm ≤ t < νm+1}.

In the following chapters, arrival times will model the interaction times
between nodes of a graph. However, when dealing with discrete time
dynamic graphs (Definition 1.8) the observed interaction times are in some
way "neglected", since we are only interested in their number in a certain
time frame. Conversely, when modelling dynamic graphs in continuous
time (Definition 1.7), the interaction times will be fully part of the inference
procedure. In this last case, the following proposition will play a crucial
role.

Proposition 1.1 Consider the following ordered time points

0 = t0 < t1 < · · · < tm < T.

The event of observing the first m arrival times in (1.13) at t1, . . . , tm and not
observing νm+1 before T has the following likelihood

pν,m(t1, . . . , tm)P(νm+1 ≥ T|νm = tm) = exp
(
−
∫ T

0
λ(u)du

) m

∏
j=1

λ(tj),

(1.14)
where pν,m(·) is a shorthand notation for the joint density of the first m arrival
times ν1, . . . , νm.

Proof. First of all, notice that the likelihood on the left hand side of the
above equation includes the additional term P(νm+1 ≥ T|νm = tm) to
account for the incomplete knowledge of the event νm+1, which is only
known to happen after T. This phenomenon is called right censoring and
is very common in survival analysis (see e.g. Zhou 2015).

We now condition on the event {νj = tj} for j ∈ {1, . . . , m− 1}. The
following equality holds

P(νj+1 > t|νj = tj) = P
(

M(t)−M(tj) = 0|νj = tj
)

= P
(

M(t)−M(tj) = 0
)

= exp
(
−
∫ t

tj

λ(u)du
)

,

for all t ≥ tj, due to 1.12. By taking the first derivative with respect to t
of the above probability and changing the sign, the following conditional
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probability density function is obtained for νj+1

fνj+1(t|νj = tj) = λ(t) exp
(
−
∫ t

tj

λ(u)du
)

.

Notice that, due to the incremental independence of the NHPP, the arrival
times previous to νj can be neglected. Hence the following equalities hold

pν,m(t1, . . . , tm) =
m

∏
j=1

fνj(tj|νj−1 = tj−1) =
m

∏
j=1

(
λ(tj) exp

(
−
∫ tj

tj−1

λ(u)du
))

= exp
(
−
∫ tm

0
λ(u)du

) m

∏
j=1

λ(tj),

where we used t0 = 0 and the proof is concluded by observing that

P(νm+1 > T|νm = tm) = exp
(
−
∫ T

tm

λ(u)du
)

1.4.2 Multiple change point detection in univariate time series.

In the time series literature, change point analysis is a central and widely
studied topic. An exhaustive review of this field is outside of the scope
of this thesis. However, in Chapter 3, an existing algorithm for multiple
change point detection in time series (PELT, Killick et al. 2012) is adapted
to deal with graph data. Hence, this section introduces some basics in
change point analysis and details the PELT algorithm.

An ordered sequence of real data x1, . . . , xN is assumed to be observed.
The generative model for such data includes D− 1 ordered change points
η1 < η2 < · · · < ηD−1, each one being a natural number between 1 and
N− 1. Roughly speaking, when a change point occurs the statistical prop-
erties of the data change. More specifically, the change points define D
segments ]ηd−1, ηd] and

p(xi) = g(xi; θd) if xi ∈]ηd−1, ηd], ∀i (1.15)

where g(·) is a density function depending on a parameter θ varying be-
tween segments. The data points are all assumed to be independent. In
contrast they are identically distributed only on each time segment. The
generative model outlined so far can be used to estimate the number D− 1
of change points and their locations. Formally, by adopting the convention
η0 = 0 and ηD = N the following minimization problem can be stated

min
η1 ,...,ηD−1,D

{
D

∑
d=1

[
C(xηd−1+1, . . . , xηd)

]
+ h(D)α

}
, (1.16)

where C(·) is a cost function associated with the observations on segment
]ηd−1, ηd], h(D) accounts for the number of free parameters in the model
and α is a constant depending on the number of observations only. Hence-
forth, the function h(·) is assumed to be linear in D

h(D) := kD, ∃k ∈N∗ (1.17)
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which is a common assumption in the literature. Similarly, two standard
choices for the constant α are α = N (AIC penalty) or α = log(N)/2 (BIC
penalty), but other penalties can be considered (see e.g. Picard et al.
2005, Eckley et al. 2011). Although several choices are possible for the cost
function C(·), in this thesis we only focus on the negative log-likelihood

C(xηd−1+1, . . . , xηd) : = −max
θd

log p(xηd−1+1, . . . , xηd |θd)

= −max
θd

ηd

∑
i=ηd−1+1

log p(xi|θd),
(1.18)

where the last equality comes from the independence assumption formu-
lated above.

Notice that in real applications, the number of change points is un-
known and has to be estimated. Hence, the minimization problem (1.16)
involves both η1, . . . , ηD−1 (change point locations) and D (the number of
change points).

Binary Segmentation. Several approaches have been proposed to solve
(1.16). One of the most popular is Binary Segmentation (A. J. Scott 1974),
an approximate method relying on the "divide and conquer" paradigm.
This method begins by looking for a single change point on the entire
time series. This means that it looks for η such that

C(x1, . . . , xη) + C(xη+1, . . . , xN) + 2kα < C(x1, . . . , xN) + kα.

If no change point is detected the method stops. If a change point is de-
tected it splits the dataset into two segments and the method looks for a
single change point on each segment and so on until no further change
points are detected. Binary Segmentation is an approximate method since
it does not explore all the possible combinations of η1, . . . , ηD−1 for all D
smaller equal than N. However, it has the advantage of being computa-
tionally efficient, resulting in an O(N log N) calculations to detect both
the number of change points and their location.

Optimal Partitioning. A very popular exact method, exploring the whole
segmentation space to provide estimates of both {η1, . . . , ηD−1} and D, in
an O(N2) calculation, was proposed by Jackson et al. (2005). This method
(a.k.a. "Optimal Partitioning") relies on dynamic programming (Bellman
1954) and employs the value function F(·)

F(N, D) := min
η1,...,ηD−1

{
D

∑
d=1

[C(xηd−1+1, . . . , xηd) + kα]

}
, (1.19)

where we made use of (1.17). Therefore, F(·) keeps track of the lowest
value of (1.16) attainable by segmenting N observations into D segments.
The method relies on the following crucial recursion

F(N, D) = min
ηD−1

{
min

η1 ,...,ηD−2

D−1

∑
d=1

[C(xηd−1+1, . . . , xηd) + kα] + C(xηD−1+1, . . . , xN) + kα

}
= min

ηD−1

{
F(ηD−1, D− 1) + C(xηD−1+1, . . . , xN) + kα

}
.

(1.20)
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Algorithm 1: Optimal Partitioning
Require:

A set of data (x1, . . . , xN), where xi ∈ R.
A cost function C(·).
A penalty α not depending on change points.

Initializations: F(0) = −kα, cp(0) = NULL.
for η∗ in 1, . . . , N do

Calculate F(η∗) = min0≤η<η∗
[
F(η) + C(xη+1, . . . , xη∗) + kα

]
.

Let η =argmin0≤η<η∗
[
F(η) + C(xη+1, . . . , xη∗) + kα

]
.

cp(η∗) = (cp(η), η).
end for

Ensure: The change points stored in cp(N).

The main intuition in the above recursion is that the optimal segmentation
on a subset of data can be used to inform the optimal segmentation when
adding one more data to the sequence. And this is exactly what Optimal
Partitioning does by using backward the above recursion. Pseudocode
Algorithm 1 illustrates how the algorithm works. The first line inside the
for loop looks for the optimal last change point location between 0 and
η∗ − 1 and store it in η. Once this is done, the subset of data x1, . . . , xη∗ is
optimally partitioned and this information is used in the following steps to
find and place other change points (if any) before N. Notice that, for each
data point xi, the algorithm tests each time point previous to i as possible
last change point location. This explains the quadratic complexity of the
algorithm.

Pruned Exact Linear Time (PELT). The PELT algorithm was introduced
by Killick et al. (2012) as an exact segmentation algorithm, based on Opti-
mal Partitioning, which is speeded up via pruning. As mentioned, at the
i-th step of the for loop, in Algorithm 1, all the time points previous to i are
tested as locations for the last optimal change point. However, it proves
that some removed values not optimal at one step of the for loop can never
be optimal in subsequent iterations and do not need to be checked again.
More in details, assume that t1 is a time point such that 0 ≤ t1 < t2 and

F(t1) + C(xt1+1, . . . , xt2) + kα > F(t2).

The above equation states that t1 is not the location of the last change point
prior to t2. If moreover

F(t1) + C(xt1+1, . . . , xt2) > F(t2), (1.21)

then t1 can never be the optimal last change point location prior to t3 for
all t3 > t2.

Proof. First of all, notice that due to the definition provided in (1.18) the
following statement holds

C(xt1+1, . . . , xt2) + C(xt2+1, . . . , xt3) ≤ C(xt1+1, . . . , xt3).
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Then, from (1.21) it follows

F(t2) + C(xt2+1, . . . , xt3) + kα

< F(t1) + C(xt1+1, . . . , xt2) + C(xt2+1, . . . , xt3) + kα

≤ F(t1) + C(xt1+1, . . . , xt3) + kα,

stating that t2 can never be the last optimal change point location before
t3.

In Killick et al. (2012), the authors proved that, under some assump-
tions concerning the generative models of both data and change points,
the PELT algorithm has a computational cost linear in the number of ob-
servations (O(N)). The reader is referred to that paper for more details
and a pseudocode of the original algorithm. A pseudocode of the modi-
fied algorithm dealing with graph data is provided in Chapter 3.

1.4.3 Latent Dirichlet allocation for statistical analysis of texts

The last chapter 4 of this thesis describes a new model for clustering and
performing statistical analysis in weighted dynamic graphs with textual
edges (i.e. a text is associated with each edge). Communications via social
media like Facebook, Twitter or Linkedin are examples of textual net-
works: interactions between individuals consist in messages whose con-
tent can be used to capture information. Probabilistic approaches for net-
work analysis not involving text analysis were discussed in the previous
sections. In Chapter 4, some methods improving joint analysis of texts
and networks will be illustrated. This section offers an overview of some
existing models for statistical analysis of documents and focuses on one of
such models in particular, the latent Dirichlet allocation (LDA, Blei et al.
2003).

One of the earliest models for statistical analysis of documents is LSI
(Latent Semantic Indexing, Papadimitriou et al. 1998). It allows to detect
linguistic notions such as synonymy from a data weighting called "term
frequency - inverse document frequency" (tf-idf). A probabilistic extension
of the latent semantic indexing (a.k.a. pLSI) was proposed by (Hofmann
1999), who modelled the words of a document as a mixture of multinomial
random variables. In this context, the hidden groups of words were re-
ferred to as "topics", meaning that each word of a document is associated
with a single topic.

Based on pLSI, LDA assumes that words in a document follow a mix-
ture distribution over latent topics. Moreover, when several documents
are taken into account a vector of topic proportions (i.e. the relative num-
ber of words associated with each topic) is independently generated for
each document, according to a Dirichlet distribution. More in details, let
us consider a corpus of D documents made out of words from a dictio-
nary containing T(W) words. Each document is denoted by Wd, d ≤ D,
and contains a sequence of NWd words such that, using a zero-one coding,
we have

Wd
nw = 1,

if the n-th word in the d-th document is the word w in the dictionary, zero
otherwise. Each document Wd is associated with a latent vector θd drawn
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from a Dirichlet distribution

θd ∼ Dir(α = (α1, . . . , αL)),

where L is the number of topics. Hence θd is a L-vector such that ∑L
l=1 θdl =

1 and θdl is the expected proportion of words extracted from the l-th topic
in document Wd. As said, the topic proportions (θ1, . . . , θD) associated
with each document are assumed to be independent. Moreover, a latent
vector Vd whose length is NWd is associated with each document such that

Vd
nl = 1

if the n-th word in document Wd is extracted from the l-th topic, zero
otherwise. Vd is assumed to follow a multinomial distribution, such that

Vd
n ∼M(1, θd)

and the random variables
Vd

1 , . . . , Vd
NWd

are conditionally independent given θd.
In a similar fashion, Wd

n follows a multinomial distribution condition-
ally on Vd

Wd
n |Vd

nl = 1 ∼M(1, βl = (βl1, . . . , βlT(W))),

where ∑T(W)

w=1 βlw = 1. Under this assumption, βlw is the probability that
world w in the dictionary is extracted from the l-th topic. The random
variables

Wd
1 , . . . , Wd

NWd

are conditionally independent given Vd.
Based on these assumptions, the complete data likelihood of LDA can

be decomposed as follows

p(W, V, θ|β, α) = p(W|V, β)p(V|θ)p(θ|α)

=
D

∏
d=1

(
p(θd|α)

NWd

∏
n=1

p(Wd
n |Vd

n , β)p(Vd
n |θd)

)
.

A graphical model representation of the LDA model can be seen in Figure
1.5.

Several inference procedures have been proposed for LDA. For in-
stance a VEM approach was adopted in the original paper of Blei et al.
(2003) and a collapsed variational Bayes EM algorithm was presented in
Teh et al. (2006).

Due to the independence of the variables Vd
n , one drawback of LDA

consists in its blindness with respect to eventual correlation between top-
ics. A correlated topic model (CTM) was developed by Blei and Lafferty
(2007) to address this issue. Similarly the relational topic model (RTM,
Chang and Blei 2009) models the links between documents as binary ran-
dom variables conditioned on their content, but ignores the community
ties between the authors of these documents. RTM is extended to deal
with weighted graphs by Sun et al. (2009). For a detailed survey on prob-
abilistic topic models the reader is referred to Blei (2012).
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Figure 1.5 – Graphical model representation of LDA for the d-th document. The boxes
are plates representing replicates. The outer plate represents documents, while the inner
plate represents the repeated choice of topics and words within a document.

Conclusion

In this chapter, we reviewed important notions of graph theory and graph
clustering. Several approaches for static and dynamic network analysis
were presented with a particular emphasis on the stochastic block model
(SBM). Estimation and model selection for this model were addressed and
some extensions to dynamic graphs were presented, both in discrete and
continuous time. Finally, we introduced and detailed three topics (NHPP,
PELT and LDA) massively used in the following chapters.



2A dynamic extension of the

stochastic block model

This chapter introduces and details a dynamic stochastic block model
(dSBM) in which interactions between nodes of a discrete time dy-

namic graph (see Section 1.1.2) are counted by non homogeneous Poisson
processes (NHPPs). The proposed approach aims to cluster vertices of
a dynamic network in time invariant groups, whose number has to be
estimated. Section 2.1 describes the dSBM model in detail. Possible over-
fitting problems of this model are discussed and a regularized version
solving these issues is proposed. In Section 2.2, an exact version of the
ICL criterion for dSBM is formally obtained. A maximization algorithm
based on a greedy search approach is detailed. This approach allows to
simultaneously estimate both the cluster memberships and the number of
clusters. In the last part of the section, a maximum-likelihood estimator
is developed to estimate the integrated intensity functions of the NHPPs
in a non parametric fashion. Section 2.3 focuses on experiments on both
simulated and real data allowing us to highlight the main features of the
proposed methodology.

33
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2.1 The dynamic stochastic block model (dSBM)

In this chapter we employ stochastic processes to count the interactions
between the pairs of nodes of a dynamic graph. Each process is uniquely
associated with a pair of nodes. We adopt a discrete time modelling ap-
proach and focus on the increments of the stochastic processes on a user
defined partition. A more general, continuous time view (see Section 1.1.2)
is adopted in the next chapter. Graphs are assumed to be directed and self
loops are not allowed. All results presented in this chapter can easily be
generalized to account for undirected interactions.

Block modelling. Since the proposed approach relies on the stochastic
block model (SBM), we revise the notations introduced in Section 1.2. A
graph consists in N nodes, interacting as frequently as wanted during the
time interval [0, T]. SBM assumes that nodes belong to hidden groups that
solely explain the way in which nodes interact to each other. Using the
same notations of the previous chapter, vertices are clustered in K groups
A1, . . . ,AK and a hidden cluster membership set Z = {Z1, . . . , ZN} is
introduced such that

Zi = k iff i ∈ Ak, k ∈ {1, . . . , K}.

The random component Zi is assumed to follow a multinomial distribu-
tion with parameter vector π = (π1, . . . , πK), such that

P(Zi = k) = πk with
K

∑
k=1

πk = 1.

The above equation says that the i-th node belongs to group Ak with prob-
ability πk. In addition, the random variables {Zi}1≤i≤N are assumed to be
independent. Thus

p(Z|π, K) =
N

∏
i=1

πZi =
K

∏
k=1

π
|Ak |
k , (2.1)

where |Ak| denotes the cardinal of Ak or, equivalently, the number of
nodes assigned to the k-th cluster. So far the setup is identical to the one
in Section 1.2 and we recall that the number of groups K is unknown and
has to be estimated.

Non homogeneous Poisson processes. As mentioned in Section 1.1.2,
stochastic processes can be introduced to count interactions between pairs
of nodes in a dynamic graph. Indeed, the value of the process associ-
ated with the pair (i, j) at time t is the number of interactions that took
place from i to j up to time t. A possible choice for the counting process
associated with each pair of nodes is the non homgeneous Poisson pro-
cess (NHPP), introduced in Section 1.4.1. In more details, we denote by
{Mij(t)}t≤T the stochastic process counting the interactions from node i
to node j up to time t. Two assumptions are made:

1. The processes associated with different pairs of nodes are condition-
ally independent given Z. Then, since we are considering directed
graphs, there are N × (N − 1) independent processes.
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2. Mij(·) is a non homogeneous Poisson process conditionally on Z,
whose intensity function only depends on Zi and Zj

p(Mij(t)|Z, λ, K) =
(
∫ t

0 λZiZj(s)ds)Mij(t)

Mij(t)!
exp

(
−
∫ t

0
λZiZj(s)ds

)
,

for all t ≤ T where λ = {λkg(t)}1≤k,g≤K denotes the set of the in-
stantaneous intensity functions.

For each t ∈ [0, T] and conditionally on Z, the above assumptions
tell us that Mi1 j1(t) and Mi2 j2(t) are two independent random variables
whenever the pair (i1, j1) is different from (i2, j2). Moreover these two
r.v. are Poisson distributed and they have the same distribution only if
(Zi1 , Zj1) = (Zi2 , Zj2).

Remark 2.1 In the reminder of this thesis, with a slight abuse of language, we say that the
process Mij(·) is a "non homogeneous Poisson process", but this statement is
correct uniquely conditionally on Z to be known.

This can easily be seen via the characteristic function of the random
variable Mjl(t), for a fixed t and a fixed pair of nodes (j, l)

E
[
exp

(
iµMjl(t)

)
|Z
]
= exp

(
g(t, Zj, Zl)(eiµ − 1)

)
, ∀t ≤ T (2.2)

where

g(t, Zj, Zl) :=
∫ t

0
λZjZl (s)ds,

i is the imaginary unit and µ is a real constant. On the right hand side
of (2.2) we can see the characteristic function of a Poisson distributed
r.v. whose parameter is g(t, Zj, Zl). When Z is unobserved, however,
g(t, Zj, Zl) is a random variable and computing the unconditional expec-
tation leads to

E
[
exp

(
iµMjl(t)

)]
= E

[
E
[
exp

(
iµMjl(t)

)
|Z
]]

=
K

∑
k=1

K

∑
g=1

exp
(

g(t, k, g)(eiµ − 1)
)

πkπg,

which is not at all the characteristic function of a Poisson distributed ran-
dom variable.

2.1.1 Discrete time version

Consider a partition of the interval [0, T] based on a set of U + 1 time
points

0 = t0 < t1 < · · · < tU−1 < tU = T, (2.3)

that defines U intervals Iu := [tu−1, tu[ of arbitrary length ∆u. Consider
two nodes i and j. The number of interactions between these two nodes,
on each time interval Iu is counted by the following random variable

X Iu
ij := Mij(tu)−Mij(tu−1), u ∈ {1, . . . , U}. (2.4)
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Hence, X Iu
ij measures the increment over the time interval Iu of the NHPP

counting the interactions from i to j. If we denote Xij the random vector

Xij := (X I1
ij , . . . , X IU

ij )
T ,

thanks to the incremental independence of NHPPs, the following condi-
tional probability can be obtained

p(Xij|Z, λ) =
U

∏
u=1

 (
∫

Iu
λZiZj(s)ds)X Iu

ij

X Iu
ij !

exp
(
−
∫

Iu

λZiZj(s)ds
) . (2.5)

Remark 2.2 Notice that the above probability distribution is conditional on K being known
and it should be written p(Xij|Z, λ, K). However, to keep notation uncluttered,
such dependency is omitted.

Remark 2.3 The vector Xij can be seen as a time series of independent not identically dis-
tributed random variables.

Notations can be simplified further by employing integrated intensity
functions (a.k.a. IIFs) Λkg(·), defined on [0, T] by

Λkg(t) :=
∫ t

0
λkg(s)ds,

for all k, g. The increments of the IIFs on Iu are denoted by

∆ΛIu
kg := Λkg(tu)−Λkg(tu−1), ∀u ∈ {1, . . . , U}. (2.6)

Remark 2.4 If λkg(·) is assumed constant on Iu, namely

λkg(t) :=
U

∑
u=1

λkgu1Iu(t),

where 1Iu(·) is the indicator function on Iu and λkgu > 0, then the following
equality holds

∆ΛIu
kg = ∆uλkgu.

This condition, however, is not required in the reminder of this chapter and no
assumption is formulated about the shape of λkg(·)1.

Equation (2.5) can be rewritten as

p(Xij|Z, ∆Λ) =
U

∏
u=1

 (∆ΛIu
ZiZj

)X Iu
ij

X Iu
ij !

exp
(
−∆ΛIu

ZiZj

) , (2.7)

where ∆Λ is a K×K×U tensor, whose entry (k, g, u) is ∆ΛIu
kg. In a similar

manner, the N × N ×U tensor X = {X Iu
ij }i,j,u is defined.

1On the contrary, a very similar assumption will play a crucial role in the following
chapter.
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The assumption of conditional independence of the processes
{Mij(·)}i,j immediately leads to

p(X|Z, ∆Λ) =
N

∏
i,j

p(Xij|Z, ∆Λ). (2.8)

To simplify the rest of this chapter the following short hand notations are
used

∏
i,j

∏
k,g

∏
u

:=
N

∏
i=1

N

∏
j=1
j 6=i

K

∏
k=1

K

∏
g=1

U

∏
u=1

∏
Zi=k

∏
Zj=g

 := ∏
i:

Zi=k

∏
j:

Zj=g

 .

The conditional distribution of X given Z and ∆Λ is

p(X|Z, ∆Λ) = ∏
i,j

∏
u

 (∆ΛIu
ZiZj

)X Iu
ij

X Iu
ij !

exp
(
−∆ΛIu

ZiZj

)
= ∏

k,g
∏

u

(
(∆ΛIu

kg)
Skgu

Pkgu
exp

(
−|Ak||Ag|∆ΛIu

kg

))
,

(2.9)

where
Skgu = ∑

Zi=k
∑

Zj=g
X Iu

ij

is the total number of interactions from cluster k to cluster g (possibly
equal to k) during the time interval Iu and

Pkgu = ∏
Zi=k

∏
Zj=g

X Iu
ij !.

Relying on (2.1) and (2.9) the complete data likelihood for dSBM is
obtained

p(X , Z|∆Λ, π) = p(X|Z, ∆Λ)p(Z|π). (2.10)

and a graphical representation can be seen in Figure 2.1.

2.1.2 Constraints on the integrated intensity functions

As it will be shown in Section 2.3.1, the model presented so far is prone
to over fitting when the number of sub-intervals U is large compared to
N. For example, if too many intervals are used then there will be just one
event per interval and thus over fitting will occur.

However, imposing some constraints to the intensity functions
{Λkg(t)}k,g can solve the over fitting problem.

Let us consider a fixed pair of clusters (k, g). So far, the increments
{∆ΛIu

kg}u≤U were all distinct parameters (indeed the tensor ∆Λ has di-
mension K × K × U). A constraint can be introduced by assigning the
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X

∆Λ

Zπ

Figure 2.1 – Graphical representation of dSBM. The observed three dimensional tensor
X depends on the hidden set Z and the model parameter ∆Λ.

time intervals (I1, . . . IU) to different time clusters and by assuming that
the IIF increments are identical for all the time intervals belonging to the
same time cluster. Formally D time clusters (C1, . . . , CD) are introduced
and a set of hidden variables Y = {Y1, . . . , YU} is associated with the time
intervals (I1, . . . , IU) such that

Yu = d iff Iu ∈ Cd.

Each random variable Yu is assumed to follow a multinomial distribution
depending on parameter ρ

P(Yu = d) = ρd with
D

∑
d=1

ρd = 1.

This means that the time interval Iu is assigned to the time cluster Cd with
probability ρd. In addition, the variables Y1, . . . , YU are assumed to be
independent

p(Y|ρ, D) =
U

∏
u=1

ρYu =
D

∏
d=1

ρ
|Cd|
d , (2.11)

where |Cd| is the cardinality of Cd, i.e. the number of time intervals as-
signed to the d-th time cluster. The constraint introduced in this section
can be illustrated as follows. Assume that two distinct time intervals Iu
and Il not necessarily adjacent belong to the same time cluster Cd. It fol-
lows that

Yu = Yl = d.

With a slight abuse of notation, we then assume that

∆ΛIu
kg = ∆ΛIl

kg =: ∆Λd
kg ∀k, g. (2.12)

Hence, in this new formulation of dSBM, the random variable X Iu
ij is

assumed to depend on both Z and Y

p(X Iu
ij |Z, Y, ∆Λ) =

(∆ΛYu
ZiZj

)X Iu
ij

X Iu
ij !

exp (−∆ΛYu
ZiZj

). (2.13)
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X

∆Λ

YZ ρπ

Figure 2.2 – Graphical representation of CdSBM. The observed tensor X now depends
on both Z (node clusters) and Y (time clusters).

Remark 2.5 Notice that the new Poisson parameter ∆ΛYu
ZiZj

replaces ∆ΛIu
ZiZj

in the previous
version. It means that the dependence on the time interval Iu is replaced by the
dependence on the time cluster of Iu, namely Yu.

In this framework, a unique parameter ∆Λd
kg is associated with the

interactions from nodes in cluster Ak to nodes in cluster Ag during the
time intervals in time cluster Cd. As a consequence, the tensor ∆Λ has now
dimension K×K×D instead of K×K×U. Since in practical applications
D is significantly smaller than U, we obtained an important reduction of
the number of parameters in the model.

The conditional distribution of X given Z and Y is

p(X|Z, Y, ∆Λ) =∏
i,j

∏
u

 (∆ΛYu
ZiZj

)X Iu
ij

X Iu
ij !

exp
(
−∆ΛYu

ZiZj

)
∏
k,g

∏
d

(
(∆Λd

kg)
Skgd

Pkgd
exp

(
−|Ak||Ag||Cd|∆Λd

kg

))
,

(2.14)

where
Skgd = ∑

Zi=k
∑

Zj=g
∑

Yu=d
X Iu

ij (2.15)

is the number of interactions from nodes in cluster Ak, to nodes in cluster
Ag, during the time intervals in time cluster Cd and where

Pkgd = ∏
Zi=k

∏
Zj=g

∏
Yu=d

X Iu
ij !. (2.16)

Assuming that Z and Y are independent and using (2.14), (2.11) and (2.1)
the complete data likelihood is given by

p(X , Z, Y|∆Λ, π, ρ) = p(X|Z, Y, ∆Λ)p(Z|π)p(Y|ρ) (2.17)

and a graphical representation can be seen in Figure 2.2.
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Summary

Two generative dSBM models were defined:

dSBM K is the number of latent node clusters, Z labels node member-
ships to clusters and π is the parameter of the multinomial distri-
bution followed by Z. The tensor ∆Λ has dimension K × K × U.
Given Z and ∆Λ, the model generates a tensor of interaction counts
X according to (2.9).

CdSBM: it is a constrained version of dSBM. The number of time clusters
is D and Y labels the time intervals memberships to time clusters.
The parameter ρ characterizes the multinomial distribution of Y. In
CdSBM, ∆Λ is a K×K×D tensor and given Z, Y and ∆Λ, the model
generates a tensor of interaction counts X according to (2.14).

In the remaining of this chapter, when not differently stated the expression
"the model" refers to dSBM.

The following very important remark concludes the section.

Remark 2.6 The way CdSBM is formulated is in no way the only possible solution to impose
regularity constraints to the integrated functions {Λkg(·)}k,g. An alternative
approach would be to formulate a segmentation constraint, i.e. forcing each
temporal cluster to contain only adjacent time intervals. This approach is adopted
and detailed in the following chapter.

2.2 Inference

The present section derives an inference procedure to estimate the labels
Z and Y as well as the number of clusters K and time clusters D in a
dynamic graph simulated according to CdSBM. Notice that, if dSBM is
considered instead of CdSBM, the inference task reduces to the estimation
of Z and K only. Therefore, an inference procedure allowing us to learn
CdSBM is a more general one.

A standard solution to estimate Z, Y, K and D would be to rely on a
variational EM algorithm (see Sections 1.3.1 and 1.3.2) to estimate Z and
Y for any pair (K, D) varying in a certain range. Then, the ICL model
selection criterion (described in Section 1.3.3) could be used to select the
values of K and D. However, this approach can be computationally very
expensive since a VEM algorithm needs to be run for each value of K and
D varying in {1, . . . , Kmax} × {1, . . . , Dmax} for some Kmax and Dmax.

An alternative inference procedure can be developed by following
Côme and Latouche (2015). From a Bayesian perspective, they obtained an
exact version of the ICL criterion for the standard stochastic block model
and maximized it directly with respect to the number of clusters (K) and
cluster memberships (Z). The maximization was performed relying on a
greedy search approach. They ran several experiments on simulated and
real data showing that their approach provided more accurate estimates
than those obtained by variational inference or MCMC techniques. Sim-
ilar findings are provided in Wyse et al. (2017), in the context of latent
block models (LBMs) for bipartite graphs: the greedy ICL approach out-
performs its competitors in both computational terms and the accuracy of
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the provided estimates. In the following section we adapt the approach in-
troduced by Côme and Latouche (2015) to our context. We formally obtain
the exact ICL for CdSBM and detail a greedy search strategy to maximize
it.

2.2.1 Exact ICL for dSBM

In the remaining of this chapter the expressions "ICL" or "exact ICL" will
be used interchangeably when no confusion arises.

From a Bayesian perspective the CdSBM model parameters ∆Λ, π and
ρ are assumed to be latent random variables following a prior joint distri-
bution. This distribution is conditional on K and D being known and it is
denoted by p(∆Λ, π, ρ|K, D). When introducing the ICL criterion for SBM
(Section 1.3.3) we saw that this criterion aimed to approximate the com-
plete data integrated log-likelihood. Similarly, the exact ICL for CdSBM is
nothing more than its complete data integrated log-likelihood

ICL(Z, Y, K, D) : = log p(X , Z, Y|K, D)

= log
(∫

p(X , Z, Y|∆Λ, Φ)p(∆Λ, Φ|K, D)d∆ΛdΦ
)

,

(2.18)

where Φ = {π, ρ}. Notice that the marginalization over all model pa-
rameters naturally induces a penalization on the number of clusters and
time clusters. If the function ICL(·) in (2.18) could be maximized directly,
estimates of Z, Y, K and D would be available. Obviously, no closed form
solution for such a maximization exists. However, the integral in the above
equation can be decomposed by adopting the following independence as-
sumption on the prior distribution

p(∆Λ, π, ρ|K, D) = p(∆Λ|K, D)p(π|K)p(ρ|D).

Hence

ICL(Z, Y, K, D) = log
(∫

∆Λ
p(X|∆Λ, Z, Y, K, D)p(∆Λ|K, D)d∆Λ

)
+ log

(∫
π

p(Z|π, K)p(π|K)dπ

)
+ log

(∫
ρ

p(Y|ρ, D)p(ρ|D)dρ

)
= log p(X|Z, Y, K, D) + log p(Z|K) + log p(Y|D).

(2.19)

In general, the last three terms on the right hand side of above equality
do not have an explicit form, since the corresponding integrals cannot be
explicitly computed. However, a sensible choice of prior distributions over
the model parameters can fix this issue. Conjugate prior distributions are
the most natural choice.

Gamma prior distribution. In order to integrate ∆Λ out and obtain a
closed formula for log p(X|Z, Y, K, D), on the right hand side of (2.19),
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∆Λd
kg is assumed to follow a Gamma distribution

p(∆Λd
kg|a, b) =

ba

Γ(a)
(∆Λd

kg)
a−1e−b∆Λd

kg , (2.20)

where a, b > 0 and Γ(·) is the gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt, x ∈ R+.

Notice that the positive parameters a and b could vary as a function of
(k, g, d). However, in the following we assume that they are constant for
simplicity. The joint density of ∆Λ is obtained via the following indepen-
dence assumption

p(∆Λ|K, D) =
K

∏
k,g

D

∏
d

p(∆Λd
kg|a, b). (2.21)

Equations (2.20) and (2.21) can be rephrased by saying that the random
variables {∆Λd

kg}k,g,d are i.i.d following a Gamma(∆Λ; a, b) distribution.
By multiplying the likelihood in (2.14) with the above probability den-

sity function the joint distribution of the pair (X , ∆Λ) follows

p(X , ∆Λ|Z, Y, K, D) =
K

∏
k,g

D

∏
d

[
ba

Γ(a)Pkgd
e−∆Λd

kg[|Ak ||Ag||Cd|+b](∆Λd
kg)

Skgd+a−1
]

,

where Skgd and Pkgd were defined in (2.15) and (2.16), respectively. The
functional form of a Gamma distribution can be recognised and the above
probability can now be integrated w.r.t. ∆Λ to obtain

p(X|Z, Y, K, D) =
K

∏
k,g

D

∏
d

Lkgd, (2.22)

with

Lkgd :=
ba

Γ(a)Pkgd

Γ(Skgd + a)

[|Ak||Ag||Cd|+ b]Skgd+a . (2.23)

The above probability depends on the values of the hyper parameters a
and b. A non informative prior for the Poisson distribution would corre-
spond to limiting cases of the Gamma family, when b tends to zero. A
possible choice is to set a = 1 to obtain DK2 i.i.d. exponential random
variables {∆Λd

kg}k,g,d. The value of b remains an open issue. In all the
experiments we carried out, the parameters a and b were set equal to one
in order to have unitary mean and variance for the Gamma distribution.

Dirichlet prior distribution. In order to obtain a closed form for p(Z|K)
and p(Y|D) a factorizing Dirichlet prior distribution is attached to the pair
(π, ρ), namely

p(π, ρ|K, D) =DirK(π; α, . . . , α)×DirD(ρ; β, . . . , β),
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where the parameters of each distribution (α and β) were set constant for
simplicity. As proven in Appendix 2.4.1 the joint integrated distribution
for the pair (Z, Y), reduces to

p(Z, Y|K, D) =
Γ(αK)
Γ(α)K

∏K
k Γ(|Ak|+ α)

Γ(N + αK)
Γ(βD)

Γ(β)D
∏D

d Γ(|Cd|+ β)

Γ(U + βD)
. (2.24)

A common choice (adopted in the experiments in the next section) con-
sists in fixing α and β to 1 to get uniform distributions. Alternatively, α
and β could be set equal to 1/2 to obtain Jeffreys’ non informative prior
distributions.

A graphical representation of Bayesian dSBM and CdSBM can be seen
in Figure 2.3.

2.2.2 ICL maximization

The complete data integrated log-likelihood (a.k.a. exact ICL) in (2.19) has
to be maximized with respect to the four unknowns Z, Y, K and D, which
are discrete variables. Obviously no closed formulas can be obtained and
it would be computationally prohibitive to test every combination of the
four unknowns. However, a greedy search strategy can be adopted to get a
local optimum. The main idea is to start with an initial clustering of nodes
and time intervals and then to alternate between an exchange phase where
nodes/intervals can move from one cluster to another and a merge phase
where clusters/time clusters are merged. Exchange and merge operations
are locally optimal and the following remark holds

Remark 2.7 The greedy search algorithm detailed in the following is guaranteed to increase
the ICL at each step and to converge to a local maximum. Randomization can be
used to explore several local maxima but the convergence to a global maximum is
not guaranteed.

The algorithm is described in detail in the rest of this section. An
analysis of its computational complexity is provided in Appendix 2.4.2.

Initialization. Initial values are fixed for both K and D, say Kmax and
Dmax. These values may be fixed equal to N and U respectively and each
node (respectively time interval) would be alone in its own cluster (resp.
time cluster). Alternatively, simple clustering algorithms (k-means, hierar-
chical clustering or spectral clustering) may be used to obtain initial values
of Z and Y for some Kmax � N and Dmax � U. This choice should be
preferred to speed up the greedy search.

Greedy - Exchange (GE). A shuffled sequence of all the nodes (resp.
time intervals) in the graph is created. One node (resp. time interval) is
chosen and is moved from its current cluster (resp. time cluster) into the
cluster (resp. time cluster) leading to the highest increase in the ICL, if
any. This step is called greedy exchange (GE). GE is applied to every node
(resp. time interval) in the shuffled sequence. This iterative procedure is
repeated until no further improvement in the exact ICL is possible. No-
tice that, when a node (resp. time interval) is alone inside its cluster, an
exchange becomes a merge of two clusters (see below).
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X

∆Λ

Zπ

α

a, b

(a) Graphical representation of Bayesian dSBM.

X

∆Λ

Z Yπ ρ

α β

a, b

(b) Graphical representation of Bayesian CdSBM.

Figure 2.3 – Graphical representation of dSBM and CdSBM from a Bayesian perspective.
The red plates contain the random variables (both observed and hidden) in the Frequentist
version of the two models. From a Bayesian view, the model parameters (∆Λ, π, ρ) are
seen as latent random variables. The blue plates contain the random variables (both
observed and hidden) in the Bayesian version of the two models.

The ICL needs not to be evaluated before and after each swap since
possible increases can be computed directly, thus reducing the computa-
tional cost. Let us consider first the case of time intervals. Moving an
interval Iu from the cluster Cd′ to cluster Cl induces a change in the ICL
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given by

∆E,T
d′→l :=ICL(Z, Y∗, K, D)− ICL(Z, Y, K, D),

=

[
log p(Z, Y∗|K, D) + ∑

k,g,d
log L∗kgd

]

−
[

log p(Z, Y|K, D) + ∑
k,g,d

log Lkgd

]
,

where Y∗ and L∗kgd refer to the new configuration where Iu ∈ Cl . It can
easily be shown that ∆d′→l reduces to

∆E,T
d′→l =

log
(

Γ(|Cd′ | − 1 + β)Γ(|Cl |+ 1 + β)

Γ(|Cd′ |+ β)Γ(|Cl |+ β)

)
+ ∑

k,g
log

(
L∗kgd′L

∗
kgl

Lkgd′Lkgl

)
. (2.25)

The case of nodes is slightly more complex. When a node is moved from
cluster Ak′ to Al , with k′ 6= l, the change in the ICL is

∆E,V
k′→l := ICL(Z∗, Y, K, D)− ICL(Z, Y, K, D),

which simplifies into

∆E,V
k′→l = log

(
Γ(|Ak′ | − 1 + α)Γ(|Al |+ 1 + α)

Γ(|Ak′ |+ α)Γ(|Al |+ α)

)
+ ∑

g≤K
∑

d≤D
log L∗k′gd + ∑

g≤K
∑

d≤D
log L∗lgd

+ ∑
k≤K

∑
d≤D

log L∗kk′d + ∑
k≤K

∑
d≤D

log L∗kld

−∑
d

log(L∗k′k′d + log L∗k′ ld + log L∗lk′d + log L∗lld)

− ∑
g≤K

∑
d≤D

log Lk′gd − ∑
g≤K

∑
d≤D

log Llgd

− ∑
k≤K

∑
d≤D

log Lkk′d − ∑
k≤K

∑
d≤D

log Lkld

+ ∑
d
(log Lk′k′d + log Lk′ ld + log Llk′d + log Llld),

where Z∗ and L∗kgd refer to the new configuration where the node is in
cluster Al .

Greedy - Merge (GM). Once the GE step is concluded, all possible
merges of pairs of clusters (resp. time clusters) are tested and the best
merge is finally retained. This step is called greedy merge (GM) and it is
repeated until no further improvement in the ICL is possible.

In this case too, the ICL does not need to be explicitly computed. Merg-
ing in fact time clusters Cd′ and Cl into Cl leads to the following ICL mod-
ification

∆M,T
d′→l :=ICL(Z, Y∗, K, D− 1)− ICL(Z, Y, K, D)

= log
(

p(Z, Y∗|K, D− 1)
p(Z, Y|K, D)

)
+ ∑

k,g

(
log L∗kgl − log Lkgd′Lkgl

)
(2.26)
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Notice that if d ≤ l, then l has to be replaced by l − 1 inside L∗kgl .
When merging clusters Ak′ and Al into the cluster Al , the change in

the ICL can be expressed as follows

∆M,V
k′→l :=ICL(Z∗, Y, K− 1, D)− ICL(Z, Y, K, D) =

= log
(

p(Z∗, Y|K− 1, D)

p(Z, Y|K, D)

)
+

+ ∑
g≤K

∑
d≤D

(log L∗lgd + log L∗kld)−∑
d

log L∗lld

− ∑
g≤K

∑
d≤D

log Lk′gd − ∑
g≤K

∑
d≤D

log Llgd

− ∑
k≤K

∑
d≤D

log Lkk′d − ∑
k≤K

∑
d≤D

log Lkld

+ ∑
d
(log Lk′k′d + log Lk′ ld + log Llk′d + log Llld).

Optimization strategies. Two issues emerge:

1. The optimization order of nodes and time intervals. We could either
run the greedy algorithm for nodes and time intervals separately or
choose a hybrid strategy that switches and merges nodes and time
intervals alternatively, for instance;

2. whether to execute merge or switch movements at first.

The second topic has been largely discussed in the context of modular-
ity maximization for community detection in static graphs (see Section
1.2.1). One of the most commonly used algorithms is the so-called Lou-
vain method (Blondel et al. 2008) which proceeds in a rather similar way
as the one chosen here, i.e. switching nodes from clusters to clusters and
then merging clusters. This is also the strategy used in Côme and La-
touche (2015) for static SBM. Combined with a choice of sufficiently small
values of Kmax and Dmax, this approach gives very good results at a reason-
able computational cost. We recall that more complex approaches based
on multilevel refinements of a greedy merge procedure have been shown
to give better results than the Louvain method in the case of modular-
ity maximization. The reader is referred to (Noack and Rotta 2008) for a
detailed review of these approaches. However, the computational com-
plexity of those approaches is acceptable only because of the very specific
nature of the modularity criterion and with the help of specialized data
structures. Such tools cannot be leveraged for ICL maximization.

The first issue (the optimization order) is hard to manage since the
shape of the function ICL(·) is unknown. Three optimization strategies
are developed in the following:

1. GE + GM for time intervals and then GE + GM for nodes (Strategy
A);

2. GE + GM for nodes and then GE + GM for times (Strategy B);

3. Mixed GE + mixed GM (Strategy C).
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In mixed GE a node is chosen in the shuffled sequence of nodes and moved
to the cluster leading to the highest increase in the ICL. Then a time in-
terval is chosen in the shuffled sequence of time intervals and placed in
the best time cluster and so on, alternating between nodes and time inter-
vals until no further increase in the ICL is possible. The mixed GM works
similarly. In all the experiments involving CdSBM, the three optimization
strategies are tested and the one leading to the highest ICL is retained.
A pseudocode of the greedy search algorithm (strategy A) can be seen in
Algorithm 2.

2.2.3 Non-parametric estimation of integrated intensities

This section focuses at first on dSBM and assumes that the pair (Z, K)
is either known or estimated via the inference procedure described in the
previous section. In such a framework, no hypothesis has been formulated
about the shape of the functions {Λkg(·)}{k,g≤K}. In the following we show
how the tensor ∆Λ can be estimated and how its estimates can be used to
further estimate the integrated intensity functions {Λkg(·)}{k,g≤K}. Over
the considered time partition, ∆Λ can be directly estimated by maximum
likelihood (ML) from (2.9)

log p(X|Z, ∆Λ) = ∑
k,g

∑
u

[
Skgu log(∆ΛIu

kg)− |Ak||Ag|∆ΛIu
kg

]
+ c,

where c regroups all terms in (2.9) not depending on ∆Λ. By taking the
first order derivative with respect to ∆ΛIu

kg and setting it equal to zero, it
follows that

∆̂Λ
Iu
kg =

Skgu

|Ak||Ag|
, ∀(k, g), (2.27)

where ∆̂Λ
Iu
kg denotes the ML estimator of ∆ΛIu

kg = Λkg(tu) − Λkg(tu−1).

Hence, ∆ΛIu
kg can be estimated by maximum likelihood as the total number

of interactions on the sub-graph corresponding to the connections from
cluster Ak to cluster Ag, over the time interval Iu, divided by the number
of potential binary connections on this sub-graph.

Once the tensor ∆Λ estimated, a point-wise, non-parametric estimator
of Λkg(tu) is defined by

Λ̂kg(tu) =
u

∑
l=1

∆̂Λ
Il
kg, ∀(k, g) (2.28)

for all time points tu in the user defined partition (2.3), recalling that
Λkg(0) = 0. Thanks to the properties of the ML estimator, together with
the linearity of (2.28), Λ̂kg(tu) is known to be an unbiased and convergent
estimator of Λkg(tu). Notice, however, that this is true only if the estimated
Z is the true one.

Remark 2.8 The maximum likelihood estimator in (2.28) can be viewed as an extension to
random graphs and mixture models of the non-parametric estimator proposed in
Leemis (1991). In that article, N-trajectories of independent NHPPs sharing the
same intensity function are observed and the proposed estimator is obtained via
method of moments.
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Algorithm 2: Greedy search algorithm (CdSBM, Strategy A)
Require:

A (N × N ×U) tensor X whose entry (i, j, u) is X Iu
ij

An initial number of clusters K and time clusters D
Initial clustering algorithms f (·) (nodes) and g(·) (time intervals)

Initializations:
Z ← f (X, K)
Y ← g(X, D)

%% Exchange - time intervals
seq← shuffle({1, . . . , U})
while ICL increases do

for idx in 1, . . . , U do
u← seq[idx]
d′ ← Y[u]
bck← 0 %% benchmark
bs← (null, null) %% best switch
for l in 1, . . . , D do

if l == d′ then
break

end if
∆E,T

d′→l ← TestSwitch(u, l)
if ∆E,T

d′→l > bck then
bck← ∆E,T

d′→l
bs← (u, l)

end if
end for
if bck > 0 then

DoSwitch(bs[1], bs[2])
DoUpdate %% Y, ICL, D and other statistics

end if
end for

end while
%% Merge - Time intevals
while ICL increases do

bck← 0
bm← (null, null) %% best merge
for d in 1, . . . , D− 1 do

for l in d + 1, . . . , D do
∆M,T

d→l ← TestMerge(d, l)
if ∆M,T

d→l > bck then
bck← ∆M,T

d→l
bm← (d, l)

end if
end for
if bck > 0 then

DoMerge(bm[1], bm[2])
DoUpdate %% Y, ICL, D and other statistics

end if
end for

end while
%% Exchange - Nodes
. . .
%% Merge - Nodes
. . .

Ensure: Estimates of Z, Y, K and D.
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Of course, (2.28) is only defined on the time points tu in (2.3), whereas
it would be desirable to have a an estimator of Λkg(·) over the whole time
interval [0, T]. A straightforward approach (adopted in the experiments)
is to consider the following piecewise linear estimator

Λ̂kg(t) =
U

∑
u=1

[
Λ̂kg(tu−1) +

Λ̂kg(tu)− Λ̂kg(tu−1)

tu − tu−1
(t− tu−1)

]
1[tu−1 ,tu[(t),

(2.29)
defined for all t ∈ [0, T], which is a linear interpolation of the estimators in
(2.28). Notice, once more, that this is a consistent and unbiased estimator
of Λkg(t) at times {tu}u≤U only, even when the estimated Z is the actual
one.

Remark 2.9 In the context of dynamic SBMs with non-homogeneous Poisson counting pro-
cesses, a very similar approach is independently developed by Matias et al. (2015)
with two main differences

1. They focus on the estimation of the instantaneous intensity functions
{λkg(·)}k,g.

2. The considered time partition is not fixed a priori but adaptively selected
(via inference) at each step of the VEM algorithm that they use.

When considering the CdSBM, instead of dSBM, (2.27) and (2.28) are
replaced by

∆̂Λ
d
kg =

Skgd

|Ak||Ag||Cd|
(2.30)

Λ̂kg(tu) =
u

∑
l=1

∆̂Λ
Yl
kg, (2.31)

where the first equation is an immediate consequence of (2.14). Although
the estimator in (2.29) can also be used in CdSBM, one point should be
noted. In dSBM each interval Iu corresponds to a potentially different
slope of the function Λ̂kg(·). In contrast, in CdSBM only D different slopes
are allowed, one for each time cluster.

Remark 2.10 In CdSBM, the estimated integrated intensity functions defined in (2.29) have
the same slope on the time intervals belonging to the same cluster.

Due to this constraint, (2.29) cannot be defined "non-parametric" in
case of CdSBM.

2.3 Experiments

This section focuses on experiments on both synthetic and real data. The
greedy algorithm described in Section 2.2.2 was implemented in C++ and
it is referred to as "greedy ICL" henceforth. A Euclidean hierarchical clus-
tering was used to initialize Z (and Y when testing CdSBM) .
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2.3.1 Simulated Data

First Scenario. We start by showing how dSBM can be used to efficiently
estimate Z and K in frameworks where a static SBM fails. The dynamic
graphs simulated in this section consist in 50 (N) nodes, grouped in two
hidden clusters A1 and A2 and 100 (U) time intervals of unitary length.
Two time clusters C1 and C2 are considered, each one containing a cer-
tain number of time intervals I1, . . . IU . If Iu is in C1, X Iu

ij is drawn from
a Poisson distribution P(PZiZj), otherwise from P(QZiZj), where PZiZi (re-
spectively QZiZj ) is the element in position (Zi, Zj) in the matrix P (resp.
Q). The matrices P and Q are given by

P =

(
ψ 1
1 ψ

)
and Q =

(
1 ψ
ψ 1

)
,

where ψ is a free parameter in [1, ∞). The setup ψ = 1 corresponds to
the degenerate case in which all nodes belong to the same, unique clus-
ter. During C1, higher values of ψ > 1 correspond to a stronger com-
munity structure. During C2, higher values of ψ correspond to a higher
non-assortative structure, in which there are more between cluster interac-
tions than within cluster interactions. In this section, ψ is set equal to 4

and the proportions to each group are set equal, namely π = (1/2, 1/2).
The number of time intervals assigned to each time cluster is assumed to
be equal to U/2 and the following assignment is used

C1 :={I1, . . . , I25} ∪ {I51, . . . , I75},
C2 :={I26, . . . , I50} ∪ {I76, . . . , I100}.

This setup defines two integrated intensity functions (IIFs), called Λ1(·)
and Λ2(·). The former is associated with the NHPPs counting interactions
within clusters, the latter is associated with the NHPPs counting interac-
tions between clusters. These IIFs can be observed in Figure 2.4a and, as
explained in Section 2.2.3, they can be estimated non-parametrically once
Z and K are known.

A tensor X, of dimension N × N ×U, is simulated. Its entry (i, j, u)
counts the number of interactions from node i to node j over the time in-
terval Iu. The greedy ICL algorithm was run on X. In order to compare
dSBM with a static SBM, we relied on the Gibbs sampling approach intro-
duced by Nouedoui and Latouche (2013) to fit a static SBM with Poisson
distributed edges. Henceforth, their approach is referred to as Poisson-
SBM. Hence, the simulated interactions stored in X were aggregated over
the whole time horizon [0, 100] to obtain an N × N adjacency matrix. The
Poisson-SBM was run on this adjacency matrix. The experiment was re-
peated 50 times and estimates of Z were provided at each iteration. Each
estimate Ẑ is compared with the true Z for both dSBM and SBM. Notice
that, while the estimation procedure greedy ICL allows us to select the
number of clusters K, this is not true for the Gibbs sampling of Nouedoui
and Latouche (2013). Hence, SBM was provided with the true number
of clusters, K = 2. Adjusted rand indexes (ARI, Rand 1971) were em-
ployed to asses the estimates. The ARI takes values between zero and one.
An ARI equal to one means that the estimated Z coincides with the actual



52 Chapter 2. A dynamic extension of the stochastic block model

0 20 40 60 80 100

0
50

10
0

15
0

IIFs
Λ
( t)

time

(a)

0 20 40 60 80 100

0
50

10
0

15
0

IIFs

Λ
( t)

time

(b)

Figure 2.4 – Real 2.4a and estimated 2.4b integrated intensity functions (IIFs) according
to the generative model in the first scenario (ψ = 4). In blue, the intensity function Λ1(·)
represents the mean number of interactions within clusters. In red, Λ2(·) represents the
mean number of interactions between clusters.

one (up to label switching). An ARI equal to zero corresponds to an incon-
sistent clustering. While the true structure (Z, K) is always recovered by
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Firs Scenario: ARIs
Model ARI (Z) ARI (Y)
CdSBM 0.98 (0.1414) 0.96 (0.1385)
dSBM 0 (0) -
SBM 0 (0) -

Table 2.1 – Average ARIs for dSBM models and Poisson-SBM (standard deviations
inside parenthesis). 50 dynamic graphs were simulated according to the first setup with
N = 50 and U = 1000, SBM was provided with the true value of K = 2.

dSBM and 50 unitary values of the ARI are obtained, SBM never succeeded
in recovering any hidden structure present in the data and produced 50

null ARIs. This is not surprising, since the time clusters exhibit opposite
interactivity patterns (community vs. non-assortative) which cancel each
other out when aggregating interactions through time.

Relying on an efficient estimate of Z, the two integrated intensity func-
tions Λ1(·) and Λ2(·) can be estimated via (2.29). The results can be
observed in Figure 2.4b, where the estimated functions (coloured dots)
overlap the real functions.

Over fitting. So far, we did not need to introduce the constrained model
to recover the true values of Z and K. This is due to the reasonably lower
value of U. This section shows how dSBM can no longer recover the true
structure (Z, K) when the number of time intervals U (which is propor-
tional to the number of free parameters) grows. The same setup of the
previous paragraph is considered with a lower ψ

P =

(
1.4 1
1 1.4

)
and Q =

(
1 1.4

1.4 1

)
.

Despite a lower contrast (ψ reduces form 4 to 1.4) for U = 100 dSBM still
estimates the true pair (Z, K) at each iteration (not reported). Consider
now a finer partition of [0, 100], obtained by setting U = 1000 and ∆u =
0.1. The intensity matrices Q and P are scaled coherently with ∆u, leading
to

P =

(
0.14 0.1
0.1 0.14

)
and Q =

(
0.1 0.14
0.14 0.1

)
.

The time cluster assignment now is

C1 : = {I1, . . . , I250} ∪ {I501, . . . , I750}
C2 : = {I251, . . . , I500} ∪ {I751, . . . , I1000}

According to this modified setup, 50 dynamic graphs were simulated
over the interval [0, 100]. Notice that each unitary time interval now con-
tains 10 graph snapshots. The tensor X associated which each dynamic
graph has dimension 50× 50× 1000.

The greedy ICL algorithm for both models dSBM and CdSBM was
run on each simulated tensor X. The clustering results are reported in
Table 2.1. Let us start with dSBM. It placed all nodes in the same, unique
group. This leads to a null ARI for Z, at each iteration. As mentioned in
Section 2.2.1, the ICL penalizes the number of parameters and since the
tensor ∆Λ has dimension K× K×U, for a fixed K when moving from the
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larger decomposition (U = 100) to the finer one (U = 1000) the number
of free parameters in the model is approximatively2 multiplied by 10. The
increase in the complete-data log-likelihood occurring when increasing
the number of groups from K = 1 to K = 2 is not sufficient to compensate
the penalty due to the higher number of parameters and hence the ICL
decreases. Therefore, the maximum value of ICL is attained for K = 1
and a single cluster of nodes is detected. Model CdSBM allows to tackle
this issue. When the integrated intensity functions Λ1(·) and Λ2(·) are
constrained to have the same slope on time intervals belonging to the same
time cluster (see remark 2.10), we basically reduce the third dimension of
the tensor ∆Λ from U (1000) to D (2). A hierarchical clustering algorithm
was used to initialize the time labels Y, and the initial number of time
clusters was set to Dmax =

√
U. In an attempt to avoid convergence to local

maxima, ten estimates are built for each tensor and the estimate leading
to the best ICL is finally retained. The clustering results for CdSBM can
be observed in the first line of Table 2.1. These results were obtained
relying on the optimization strategy A. The other two strategies described
in Section 2.2.2, namely B and C, led to similar results in terms of both
final ICL and ARIs (not reported).

Second Scenario. This paragraph focuses on CdSBM only. The simu-
lated dynamic graphs consist in 50 nodes, belonging to three clusters
A1,A2,A3. The interactions take place over 50 times intervals of uni-
tary length, belonging to three time clusters (denoted C1, C2, C3). Both
node and time clusters are assumed to be balanced, on average, by fixing
π = ρ = (1/3, 1/3, 1/3).

A random tensor X, whose dimension is N × N ×U is simulated ac-
cording to the following rule

X Iu
ij ∼ P(PZiZj(u))

where

P(u) = Q1C1(u) +
√

γQ1C2(u) + γQ1C3(u), u ∈ {1, . . . , 50} (2.32)

and

Q =

ψ 2 2
2 ψ 2
2 2 ψ

 .

Here, ψ is a free parameter in [2,+∞), γ > 0 and 1C is the indicator func-
tion over the set C. Hence, P(u) is equal to Q when Iu belongs to C1, to√

γQ when Iu belongs to C2 and to γQ when Iu belongs to C3. The sim-
ulated dynamic graphs are affected by a persistent community structure
whereas the expected number of interactions differs from a time cluster to
another. Both the community structure and the non-stationary behaviour
can be more or less obvious based on the value of ψ and γ. This section
does not consider the non-parametric estimation of the NHPP intensities
and only inspects how the greedy ICL algorithm behaves for different val-
ues of the pair (ψ, γ). Hence, for a fixed value of the pair, 50 dynamic

2The dimension of the vector π does not change.
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(a) Time clustering (ψ = 2).
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(b) Node clustering (γ = 1).

Figure 2.5 – Box plots of ARIs for both clusterings of nodes and time intervals (CdSBM).
Both clusterings reach the maximum effectiveness for higher values of the contrast param-
eters.

graphs were generated and estimates of the labels Z and Y were provided
for each graph. The greedy search algorithm following the optimization
strategy A, led to the best results (see next section for more details). In
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Figure 2.6 – Comparison between CdSBM and SBM with Poisson links in a stationary
framework (a single time cluster, γ = 1).

order to avoid convergence to local maxima, ten estimates of labels are
provided for each graph and the pair (Ẑ, Ŷ) leading to the highest ICL is
finally retained. The experiments show that for sufficiently large values
of ψ and γ, the true structure can always be recovered. This can be seen
in detail for two special cases illustrated in Figure 2.5. In Figure 2.5a, γ
varies in the range [1, 1.05, . . . , 1.4] and ψ is set equal to 2, corresponding
to a single community (the Erdős-Rényi model). The setup γ = 1 corre-
sponds to a degenerate case and no time structure affects the interaction
frequencies. Hence it is not surprising that the algorithm assigns all the
time intervals to the same cluster (null ARI). The higher the value of γ
the more effective the clustering is up to a perfect recovery of the planted
structure (ARI of 1). In particular the true time structure is fully recovered
for all the fifty graphs when γ is higher than 1.3. Similar findings can be
observed in Figure 2.5b, about node clustering, when γ = 1. In this case,
any time structure is present and persistent communities are detected by
the model as ψ increases. In this last setup, it is interesting to make a
comparison with Poisson-SBM, which is expected to give similar results
to those shown in Figure 2.5b. As done in the previous scenario, SBM was
run on the adjacency matrix obtained by aggregating the simulated inter-
actions. The experiment was repeated 50 times for each value of ψ in the
set {2.15, 2.35, 2.55}. Figure 2.6 compares the ARIs produced by the two
models. The greedy ICL for CdSBM recovers the true structure at levels
of contrast lower than those required by the Gibbs sampling algorithm for
Poisson-SBM. This comparison shows that, in a stationary framework, the
dSBM model works at least as well as a static SBM. The difference in terms
of performance between the two models in this context, is certainly due to
the greedy search approach which is more effective than Gibbs sampling,
as expected (Côme and Latouche 2015).

Optimization strategies As mentioned in the previous section, the opti-
mization strategy A was more efficient than the two other strategies out-
lined in Section 2.2.2. This can also be seen in the following test. The pair
(γ, ψ) is set to (1, 2.15) and 50 dynamic graphs are simulated according
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Figure 2.7 – Adjusted Rand indexes for Z produced by CdSBM according to the three
different optimization strategies outlined in Section 2.2.2.

to the same settings discussed so far. Three different estimates of Z are
obtained, one for each strategy, and ARIs for Z are computed. Results in
Figure 2.7 can be compared with the mean value of the final ICL for each
strategy, in Table 2.2.

mean ICL
strategy A −70845.64
strategy B −70894.67
strategy C −70885.22

Table 2.2 – Mean values of the final ICL attained by different strategies.

2.3.2 Real data

The dataset used in this section was collected during the ACM Hy-
pertext conference held in Turin, June 29th - July 1st 2009. We fo-
cus on the first conference day (24 hours) and consider a dynamic
graph with 113 (N) nodes (conference attendees) and 96 (U) time in-
tervals (the consecutive quarter-hours in the period: 8am of June 29th
- 7.59am of June 30th). The graph edges model the proximity face to
face interactions between the conference attendees. An interaction is
recorded when two attendees are face to face, nearer than 1.5 meters
for a time period of at least 20 seconds. More information about the
way the data were collected can be found in Isella et al. (2011) or by
visiting the website http://www.sociopatterns.org/datasets/
hypertext-2009-dynamic-contact-network/.

http://www.sociopatterns.org/data sets/hypertext-2009-dynamic-contact-network/
http://www.sociopatterns.org/data sets/hypertext-2009-dynamic-contact-network/
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The data set we considered consists of several lines similar to the fol-
lowing one

ID1 ID2 Time Interval (15m) Number of interactions
52 26 5 16

It means that conference attendees 52 and 26, between 9am and 9.15am,
have spoken for 16× 20s ≈ 5m30s.

The initial number of groups Kmax was set to 20 and Z was initialized
randomly, namely each node was assigned to a cluster following a multi-
nomial distribution. The greedy search algorithm for dSBM was run 10

times on the considered dataset, each time with a different initialization
and estimates of Z and K were provided in 13.81 seconds, on average. The
final values of the ICL can be observed as a box plot in Figure 2.8.
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Figure 2.8 – Box plot of the ten final values of the ICL produced by the greedy ICL
algorithm for different initializations (dSBM).

The estimates associated with the highest ICL correspond to 5 groups
of nodes. Figure 2.9 focuses on cluster A4, containing 48 nodes. The top
figure shows the time cumulated interactions within the cluster. As it can
be seen the connectivity pattern for this cluster is very representative of the
entire graph (see also Figure 2.10a): between 13pm and 14pm and 18pm
and 19.30pm there are significant increases in the interaction intensity.
The estimated integrated intensity function (IIF) for the interactions inside
cluster A4 can be observed in Figure 2.9b. The function has a higher slope
on those time intervals where attendees in the cluster are more likely to
have interactions. The vertical red lines delimit two important times of
social gathering3:

1. 13.00-15.00 - lunch break.

2. 18.00-19.00 - wine and cheese reception.
3More information at http://www.ht2009.org/program.php.

http://www.ht2009.org/program.php
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Figure 2.9 – in Figure 2.9a, cumulated aggregated connections for each time interval for
cluster A4 . In Figure 2.9b the estimated IIF for interactions inside cluster A4. Vertical
red lines delimit the lunch break and the wine and cheese reception.

The CdSBM can be used to assign time intervals on which interactions
have similar instantaneous intensity to the same time cluster. The greedy
ICL algorithm for CdSBM was run on the dataset by using the optimiza-
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tion strategy C described at the end of Section 2.2.2 (other strategies lead
in this case to similar results) and the initial number of clusters Dmax was
set equal to 20. The time clustering provided by the greedy ICL algorithm
can be observed in Figure 2.10. The top figure shows the aggregated in-
teractions in the whole network for each quarter-hour during the first day.
In the bottom figure, interactions taking place in time intervals assigned
to the same time cluster have the same shape/color. Two important things
should be noticed:

1. The obtained clustering seems meaningful: the three time intervals
corresponding to the highest interaction levels are placed in the same
cluster (blue), apart from all the others. More in general, each cluster
is associated with a certain intensity level, so time intervals in the
same time cluster share the same global interactivity pattern.

2. Once more, we recall that time clusters do not have to contain adja-
cent time intervals and this is one of the main differences between
the approach considered in this chapter (time clustering) and the one
adopted in the following chapter (segmentation).

Conclusion

This chapter introduced and detailed a dynamic extension of SBM (called
dSBM) to cluster the nodes of a discrete time dynamic graph in scenarios
where the static SBM fails. The chosen approach consists into partitioning
the time horizon over which interactions are observed into sub-intervals of
fixed length. Those intervals provide aggregated interaction counts that
are increments of non homogeneous Poisson processes. To avoid over-
fitting problems, a constrained version of dSBM (CdSBM) is developed.
CdSBM assigns the time intervals of the user defined partition in such
a way that the time series of the interaction counts is stationary on each
time cluster. The next chapter addresses two main topics. First, it extends
the approach presented in this chapter to model continuous time dynamic
graphs (see Definition 1.7). Then, it focuses on change point analysis for
graph data.
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(a) Aggregated connections.
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(b) Clustered time intervals.

Figure 2.10 – in Figure 2.10a, aggregated connections for each time interval for the whole
network. In Figure 2.10b interactions of the same form/color take place on time intervals
assigned to the same cluster (CdSBM).
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2.4 Appendix

2.4.1 Joint integrated probability of labels

Consider at first Z, following a multinomial distribution of parameter π.
The vector π, of length K is assumed to follow a Dirichlet prior distribu-
tion

p(π|α, K) =
Γ(αK)
Γ(α)K

K

∏
k=1

πα−1
k .

The joint probability for the pair (Z, π) is obtained by multiplying the
above equation by (2.1)

p(Z, π|α, K) =
Γ(αK)
Γ(α)K

K

∏
k=1

π
|Ak |+α−1
k .

This is still a Dirichlet probability density function of parameters (|A1|+
α, . . . , |AK|+ α) and integration with respect to π is straightforward

p(Z|α, K) =
Γ(αK)
Γ(α)K

∫
π

K

∏
k=1

π
|Ak |+α−1
k dπ,

=
Γ(αK)
Γ(α)K

∏k≤K Γ(|Ak|+ α)

Γ(∑K
k=1(|Ak|+ α))

×
∫

π
Dir(π; |A1|+ α, . . . , |AK|+ α)dπ,

=
Γ(αK)
Γ(α)K

∏k≤K Γ(|Ak|+ α)

Γ(N + αK)
.

This integrated probability corresponds to the first term on the right hand
side of (2.24). The second term of (2.24) is obtained similarly and the joint
probability distribution p(Z, Y|K, D) follows by independence.

2.4.2 Computational complexity of the greedy search

To evaluate the computational complexity of the proposed algorithm, we
assume that the gamma function can be computed in constant time (see
Press et al. 2007). The core computational task consists in evaluating the
change in ICL induced by exchanges and merges. The main quantities
involved in those computations are the (Lkgd)1≤k≤g,1≤d≤D. The next para-
graph details how to handle those quantities and the following one anal-
yses the cost of the exchange and merge operations.

Data structures. To keep formulas uncluttered, the following additional
notation is introduced

Pkgd := |Ak||Ag||Cd|.

The quantities (Lkgd)1≤k≤g,1≤d≤D are stored in a three dimensional ar-
ray that is never resized (it occupies a O(K2

maxDmax) memory space) so
that at any time during the algorithm, accessing to a value or modifying
it can be done in constant time. The needed quantities to compute an
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increase/decrease of the ICL are Lkgd, Skgd, Pkgd and Rkgd and they are
handled in a similar way.

In addition, aggregated interaction counts are maintained and updated
for each time interval and each node. For instance, for a time interval Iu
the following statistics is considered

Skgu := ∑
Zi=k

∑
Zj=g

X Iu
ij ,

and similar quantities such as Pkgu. In a similar manner, for a node i

Sigd := ∑
cj=g

∑
yu=d

X Iu
ij

and other related quantities are stored. The memory occupied by those
structures is in O(N2U). Cluster memberships and clusters sizes are also
stored in arrays.

In order to evaluate the ICL change induced by an operation, we need
to compute its effect on Lkgd to obtain L∗kgd. This can be done in constant
time for one value. For instance moving time interval Iu from Cd′ to Cl
implies the following modifications:

1. Skgd′ is reduced by Skgu while Skgl is increased by the same quantity;

2. Pkgd′ is divided by Pkgu while Pkgl is multiplied by the same quantity;

3. Rkgd′ is decreased by |Ak||Ag| (or |Ak|(|Ak| − 1)) while Rkgl is in-
creased by the same quantity.

When an exchange or a merge is actually implemented, all the data
structures are updated. The update cost is dominated by the other phases
of the algorithm. For instance when Iu is moved from d′ to l, the following
updates are needed:

1. cluster memberships and cluster sizes, which is done in O(1);

2. Lkgd′ and Lkgl for all k and g, which is done in O(K2);

3. aggregated counts and products, such as Sigd′ and Sigl , which is done
in O(NKD).

Considering that K ≤ N and D ≤ U, the total update cost is in O(NKD)
for time interval related operations and in O(UK2) for node related oper-
ations.

Exchanges. The calculation of ∆E,T
d′→l , for a time interval cluster exchange,

from (2.25) involves a sum with K2 terms. As explained above each term is
obtained in constant time, thus the total computational time is in O(K2).
This has to be evaluated for all time clusters and for all time intervals,
inducing a total cost of O(UDK2).

Similarly, the calculation of ∆E,V
d′→l involves a fix number of sums with

at most KD terms in each sum. The total computational time is therefore
in O(KD). This had to be evaluated for each node and for all node clusters
inducing a total cost of O(NK2D).
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Notice that the total cost evaluated so far is the one of a full exchange
round where all time intervals (or all nodes) are considered once. This
evaluation does not take into account the reduction in the number of clus-
ters generally induced by exchanges.

Merges. Merges are very similar to exchanges in terms of computational
complexity. They involve comparable sums that can be computed effi-
ciently using the data structures described above. The computational cost
for one time cluster merge round is in O(D2K2) while it is in O(K3D) for
node clusters.

Total cost. The worst case complexity of one full exchange phase
(with each node and each time interval considered once) is O((N +
U)DmaxK2

max). The worst case complexity of one merge with mixed GM
is O(DmaxK2

max(Dmax + Kmax)) which is smaller than the previous one for
N ≥ Kmax and U ≥ Dmax. Thus the worst case complexity of one "itera-
tion" of the algorithm is O((N + U)DmaxK2

max).
Unfortunately, the actual complexity of the algorithm, while obviously

related to this quantity, is difficult to evaluate for two reasons. First, there
is no way to estimate the number of exchanges needed in the exchange
phase (apart from bounding them with the number of possible partitions).
Secondly, in practice we observed that exchanges reduce the number of
clusters, especially when Dmax and Kmax are high (i.e. close to U and N,
respectively). Thus the actual cost of one individual exchange reduces
very quickly during the first exchange phase leading to a vast overestima-
tion of its cost using the proposed bounds. As a consequence, the merge
phase is also quicker than evaluated by the bounds.

A practical evaluation of the behaviour of the algorithm, while outside
the scope of this thesis, would be very interesting to assess it potential use
on large data sets.



3Multiple change point

detection in dynamic graphs

As explained in Section 1.1, by adopting a continuous time point of
view a sequence of time stamped interactions in continuous time can

be seen as a dynamic graph. This definition is alternative to the one em-
ployed in the previous chapter and does not require any aggregation of
the data. The approach outlined in this chapter aims to uncover hidden
node groups in continuous time dynamic graphs, based on a SBM-like gen-
erative model. As in the previous chapter, node groups are not allowed to
change in time. However, the interaction intensities between groups are
assumed to display abrupt changes (a.k.a. "change points") whose number
and location must be inferred from the data. Hence, we develop a VEM
algorithm (introduced in Section 1.3.1 for SBM) to estimate the model pa-
rameters, the number of clusters and their content and the number and
locations of the change points. As it will be seen, the change point detec-
tion is part of the maximization step of the algorithm. We show that the
pruned exact linear time method (PELT, Killick et al. 2012), originally de-
veloped for univariate time series change point detection, can be adapted
to perform change point detection in dynamic graphs.

65
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3.1 A generative model for continuous time dynamic

graphs

As detailed in Section 1.1.2, the finite set

D := {(im, jm, νm)}1≤m≤M,

where νm denotes the m-th interaction time and (im, jm) is the pair of nodes
actually interacting at time νm defines a continuous time dynamic graph
with N interacting nodes. Here, the interaction times are denoted by the
Greek letter ν (and no longer by t) since they are seen as random times,
from a generative point of view. In this chapter, self interactions are not
considered and the pair (iu, ju) is assumed to be not ordered (undirected
graph). The illustrated approach can easily be extended to deal with di-
rected graphs. The time period under study is the interval [0, T] and M is
the total number of interactions occurring up to time T. Without loss of
generality, D can be sorted with respect to the time variable and instanta-
neous interaction times (see Remark 1.3) are assumed to be unique

0 = ν0 < ν1 < · · · < νM < T.

The interaction time νM+1 is not observed before time T.

3.1.1 Time-stamped interactions as point processes

Let us consider two fixed nodes, i and j. We denote M(i,j) the number of
edges between i and j, namely the number of distinct times ν such that
(i, j, ν) ∈ D. Without loss of generality, those interaction times can be
sorted into the following list1

A(i,j) := {ν(i,j)1 , . . . , ν
(i,j)
M(i,j)}, (3.1)

with ν
(i,j)
1 < ν

(i,j)
2 < · · · < ν

(i,j)
M(i,j) . In probabilistic terms, A(i,j) can be seen

as a point process. As such a point process takes values in [0, T], it is
naturally associated to a counting process {M(i,j)(t)}t∈[0,T]. The random
variable M(i,j)(t) counts the number of interactions, between i and j, that
happened before (or exactly at) t, i.e.

M(i,j)(t) =
∣∣∣A(i,j)∩]0, t]

∣∣∣ ,

where |S| denotes the cardinal of the set S.
As we saw in the previous chapter, a simple yet flexible generative

model to generate the interaction times in A(i,j) is the non-homogeneous
Poisson process (NHPP)2. This chapter, however, does not only focuses
on the increments of such process on a predefined grid, but it looks at
NHPPs in more details. Hence, the process associated with the pair (i, j)

1In the previous chapter, Ak denoted the k-th cluster of nodes. This notation is no
longer used in this chapter and the letter A is uniquely involved in (3.1).

2As detailed in Section 1.4.1, when saying non-homogeneous Poisson process, we refer
to the counting process.
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is characterized by an intensity function κ(i,j)(·), positive and integrable
on [0, T]. Denoting

κ̄(i,j)(t) =
∫ t

0
κ(i,j)(s)ds, t ≤ T,

assuming that A(i,j) is associated with a NHPP with intensity function
κ(i,j) means that for all t ∈ [0, T], M(i,j)(t) follows a Poisson distribution
with parameter κ̄(i,j)(t).

As in the previous chapter, the proposed model adopts a block mod-
elling perspective. Hence, Z still denotes a set of cardinality N, whose
elements are independent hidden random variables following a multino-
mial distribution of parameter π

P(Zi = k) = πk, ∀k ∈ {1, . . . , K}
and ∑K

k=1 πk = 1. In the reminder of this chapter, an equivalent 0-1 nota-
tion will be used interchangeably for Z. Hence, Z also denotes a N × K
matrix, whose line is the vector Zi = (Zi1, . . . , ZiK) and Zik = 1 if and only
if the i-th node is in the k-th cluster, zero otherwise. We stress that the pair
(Z, K) is unknown and fixed in time.

Then, the following assumptions hold:

1. given Z, for all i > j the interaction times in A(i,j) are counted by
N(N− 1)/2 independent non-homogeneous Poisson processes with
intensity functions {κ(i,j)(·)}i>j;

2. there are K(K + 1)/2 positive integrable functions λ = {λkg(·)}k,g

defined on [0, T] such that κ(i,j)(t) = λZiZj(t) for all t ∈ [0, T].

With those assumptions, the conditional likelihood of a set of interactions
A(i,j) between two nodes i and j is given by (Proposition 1.1)

p(A(i,j)|Zi = k, Zj = g, λkg) =
M(i,j)

∏
m=1

λkg(ν
(i,j)
m ) exp

(
−Λkg(T)

)
, (3.2)

with

Λkg(t) :=
∫ t

0
λkg(s)ds.

Remark 3.1 Notice that as the interaction times in A(i,j) are assumed to be counted by a NH
Poisson process, all the interaction times are distinct (almost surely). This justifies
the assumption used at the beginning of the present section.

The data set D can be seen as the union of all the A(i,j), with the
added information of the interacting pairs at each interaction time: the
pair (im, jm) corresponds to the nodes actually having an interaction at
time νm. Combining (3.2) applied to all the NHPPs with the conditional
independence assumption between them, we obtain the following com-
plete data likelihood

p(D, Z|λ, π) = p(D|Z, λ)p(Z|π)

= exp

(
−

N

∑
j>i

ΛZiZj(T)

)
M

∏
m=1

λZim Zjm
(νm)

N

∏
i=1

πZi .
(3.3)

Once more, it is worth stressing that no aggregation of data was employed
so far.
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3.1.2 Modelling the intensity functions

The generative model introduced in the previous section does not make
any assumption on the shape of the intensity functions λ(·). As explained
in Section 2.1.2, some restrictions on λ(·) are needed to avoid over-fitting
problems. Moreover, we look for a model being able to emphasize abrupt
changes in the way existing clusters interact with each other. To account
for these issues, we assume that the intensity functions of the NHPPs
are piecewise constant and that the D time intervals on which they are
constant are shared between all functions. Hence, we assume that there
are D− 1 discontinuity points

0 = η0 < η1 < · · · < ηD−1 < ηD = T, (3.4)

such that for all 1 ≤ d ≤ D, 1 ≤ k ≤ K and 1 ≤ g ≤ K, λkg(·) is constant
on [ηd−1, ηd[. Therefore

λkg(t) =
D

∑
d=1

λkgd1[ηd−1ηd[(t), ∀k, g ∈ {1, . . . , K}, (3.5)

where λkgd := λkg(ηd−1) and 1G(.) is the indicator function over a set G3.
In the following, η = {η1, . . . , ηD−1} denotes the set of discontinuity points
and λ is the (K× K× D) tensor4 with elements λkgd.

A crucial consequence of the assumption (3.5) is that on an interval
[ηd−1, ηd[, all the Poisson processes are homogeneous and thus the graph
does not exhibit any temporal structure. On the contrary, the intensity
functions are allowed to change arbitrarily from one interval to the next
one, accounting for abrupt changes in the interaction patterns between
clusters. Therefore, a discontinuity point ηd corresponds to a sudden
change in the graph structure. For this reason, the discontinuity points
in η are called "change points" henceforth.

Taking into account (3.5) allows us to simplify the complete data log-
likelihood as shown in the following proposition.

Proposition 3.1 Using the constraint (3.5), the complete data log-likelihood becomes

log p(D, Z|θ) =

−
D

∑
d=1

K

∑
k,g

[
λkgd∆d

(
N

∑
j>i

ZikZjg

)
− log(λkgd)

(
N

∑
j>i

ZikZjgX(d)
ij

)]

+
N

∑
i=1

K

∑
k=1

Zik log πk, (3.6)

where

1. θ := {η, λ, π}
3Since the whole time interval [0, T] is considered, the intensity functions can be as-

sumed (exceptionally) left continuous in t = T, i.e. λkg(T) = λkg(ηD−1).
4We use the same notation to denote the set of K(K + 1)/2 intensity functions and the

tensor because under our assumptions they correspond to two different views of the same
object. Notice that the frontal slices of λ are symmetric K×K matrices since we are dealing
with undirected graphs.
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2. ∆d is the size of the interval [ηd−1, ηd[,

3. X(d)
ij := M(i,j)(ηd) − M(i,j)(ηd−1) is the increment of the process

{M(i,j)(t)}t∈[0,T] over the segment [ηd−1, ηd[, i.e. the number of inter-
actions that occurred between i and j during the time interval [ηd−1, ηd[.

Proof. See appendix 3.5.1.

3.2 Estimation

This section focuses on the inference of the model proposed above. This
involves estimating the number of clusters (K), the number of segments
(D) and the model parameters θ. Therefore, we introduce first a penal-
ized likelihood criterion to maximize for model selection. A variational
approximation for this criterion is then adopted, leading to a variational
expectation maximization (VEM) algorithm, introduced in Section 1.3.1
for static SBM. It is finally shown how to integrate an efficient change
point detection algorithm in the maximization step of VEM to estimate
the piecewise constant intensities.

3.2.1 Penalized likelihood

Given the set of all the observed interactions D, our goal is to estimate
the number K of node clusters and their content Z. Similarly we must
estimate the number D of change points as well as their location η.

A natural quality measure in this context is the observed data (inte-
grated) log-likelihood

log p(D|K, η, D) = log
(∫

λ,π
p(D, λ, π|K, η, D)dλdπ

)
= log

(∫
λ,π

p(D|λ, π, K, η, D)p(λ, π)dλdπ

)
,

(3.7)

where p(λ, ν) is any prior distribution over the pair (λ, ν). Unfortunately
this marginal log-likelihood does not have an analytical form, so we pro-
pose to replace it with a penalized log-likelihood (BIC-like) term

max
λ,π

log p(D|K, η, D, λ, π)− 1
2

C(K, D) log α, (3.8)

where

C(K, D) := K− 1 +
K(K + 1)D

2
,

accounts for the number of model parameters. The term α in (3.8) is re-
lated to the number of observations and will be discussed in Section 3.2.4.
We consider the following optimization problem for inference

max
K,η,D,λ,π

[
log p(D|K, η, D, λ, π)− 1

2
C(K, D) log α

]
. (3.9)

While this allows us to avoid to consider directly the data (integrated)
log-likelihood, two difficulties remain: log p(D|K, η, D, λ, π) is not di-
rectly calculable and the optimization over η and D is a complex non con-
vex problem. This issues are tackled as following: a variational approach
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is used in order to derive a tractable lower bound of log p(D|K, η, D, λ, π)
(see Sections 3.2.2 and 3.2.3) while a change point detection technique is
considered to address the optimization over η and D (see Section 3.2.4).

3.2.2 A variational bound

The first difficulty mentioned above is that computing the log-likelihood
term log p(D|K, η, D, λ, π) is not feasible. Indeed, it involves summing
over all the KN possible outcomes of the set Z, i.e.

log p(D|K, η, D, λ, π) = log

(
∑
z

p(D, z|K, η, D, λ, π)

)
,

where z denotes an outcome of Z. Moreover, p(Z|D, K, η, D, λ, π) cannot
be factorized so the standard EM algorithm cannot be considered for in-
ference. This point was discussed for the static SBM in Section 1.3.1. For
more details, see also Daudin et al. (2008).

Therefore, we introduce an approximate distribution q(Z) for Z and
use a standard variational decomposition

log p(D|K, η, D, λ, π) =

L (q; K, η, D, λ, π) + KL (q(·)||p(·|D, K, η, D, λ, π)) ,

where

L (q; K, η, D, λ, π) = ∑
z

q(z) log
p(D, z|K, η, D, λ, π)

q(z)

= Eq

[
log

p(D, Z|K, η, D, λ, π)

q(Z)

]
,

and KL denotes the Kullback-Leibler divergence between the true and
approximate posterior distribution q(·) of Z, given the data and model
parameters

KL (q(·)||p(·|D, K, η, D, λ, π)) = −∑
z

q(z) log
p(z|D, K, η, D, λ, π)

q(z)

= −Eq

[
log

p(Z|D, K, η, D, λ, π)

q(Z)

]
.

In the above equations, Eq denotes the expectation taken with respect to
the distribution q(·).

Since log p(D|K, η, D, λ, π) does not depend on the distribution q(·),
maximizing L with respect to q(·) is equivalent to minimizing the KL
divergence (over q(·) also).

As the KL divergence is non negative, L (q; K, η, D, λ, π) is obviously a
lower bound of log p(D|K, η, D, λ, π) for all q(·), thus we use the standard
variational bounding method. In our case, it consists in replacing the
problem (3.9) by

max
K,η,D,λ,π,q(·)

f (q(·), K, η, D, λ, π) , (3.10)
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where

f (q(·), K, η, D, λ, π) = L (q; K, η, D, λ, π)− 1
2

C(K, D) log α. (3.11)

As in Section 1.3.1, the posterior Z distribution, is approximated by a
factorizing distribution

q(Z) =
N

∏
i=1

q(Zi) =
N

∏
i=1

K

∏
k=1

τZik
ik , (3.12)

where τik ≥ 0, for all k and
K

∑
k=1

τik = 1.

This leads to the following expression for L.

Proposition 3.2 If q(·) is of the form (3.12), then

L (q; K, η, D, λ, π) =

−
D

∑
d=1

K

∑
k,g

[
λkgd∆d

(
N

∑
j>i

τikτjg

)
− log(λkgd)

(
N

∑
j>i

τikτjgX(d)
ij

)]

+
N

∑
i=1

K

∑
k=1

τik log
πk

τik
. (3.13)

Proof. This expression can easily be obtained by taking the expectation
with respect to q(·) of the log-likelihood in (3.6) and by adding the follow-
ing entropy term

H(q) : = −Eq[log q(Z)] =

= −Eq

[
N

∑
i=1

K

∑
k=1

Zik log(τik)

]
=

N

∑
i=1

K

∑
k=1

τik log(τik).

3.2.3 Variational expectation maximization

The problem (3.10) is solved relying on a VEM algorithm which optimizes
the function f (q(·); K, η, D, λ, π) with respect to η, D, λ, π, and with re-
spect to q(·), alternately. In contrast, the number K of clusters is consid-
ered fixed in the present section. Section 3.2.5 details how the selection of
K is handled.

Given η, D, λ and π, the optimization with respect to q(·) is straight-
forward. This corresponds to the E step of the algorithm and it is illus-
trated in the next section. Then, given q(·), the parameters λ as well as
π are optimized away, and we use a change point detection procedure to
maximize the criterion with respect to η and D. The optimization with
respect to η, D, λ and π corresponds to the M step of the algorithm. The
E and M steps are then iterated until convergence.
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Maximization with respect to τ (E step)

The E step is based on the following proposition.

Proposition 3.3 A first order condition for f (q(·), K, η, D, λ, π) to be maximal with respect to
q(·) in (3.12) is

τik =
πk

C
exp

{
−

D

∑
d=1

K

∑
g=1

[
λkgd∆d

(
N

∑
j 6=i

τjg

)
− log(λkgd)

(
N

∑
j 6=i

τjgX(d)
ij

)]}
,

where C is a normalizing constant, such that

K

∑
k=1

τik = 1,

∀i ∈ {1, . . . , N}, k ∈ {1, . . . , K}.

Proof. See Appendix 3.5.2.

In the E step of the algorithm, the τiks are updated in turn until conver-
gence of. This corresponds to a fixed point procedure, as in Daudin et al.
(2008) for instance. We emphasize that τik is the (approximate) posterior
probability for node i to be in cluster k, given the data and model param-
eters. Thus, the clustering structure uncovered by the method is encoded
through the N × K matrix τ, whose element (i, k) is τik.

Maximization with respect to π

Notice that f (q(·), K, η, D, λ, π) can be written as

f (q(·), K, η, D, λ, π) =
N

∑
i=1

K

∑
k=1

τik log
πk

τik
+ g(q(·), K, η, D, λ),

where the function g regroups all the term in (3.11) not depending on π.
Thus, q(·) and K being fixed, maximizing f with respect to η , D, λ, π can
be done independently on π and on the other parameters. The estimated
value for π (under the constraint ∑K

k=1 πk = 1) is then

π̂k =
∑N

i=1 τik

N
, ∀k ∈ {1, . . . , K}. (3.14)

Maximization with respect to λ

Maximizing f with respect to λ leads to the following estimates

λ̂kgd =


∑N

j>i τikτjgXd
ij

∆d ∑N
j>i τikτjg

when g > k,

∑N
j 6=i τikτjkXd

ij

∆d ∑N
j 6=i τikτjk

when g = k.

(3.15)

Notice that contrary to π̂, λ̂ does depend on η and D, which are also
considered in the M optimization step.
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Maximization with respect to η and D

Obviously, we have

max
η,D,λ,π

f (q(·), K, η, D, λ, π) = max
η,D

max
λ,π

f (q(·), K, η, D, λ, π) .

Thus, q(·) and K being fixed, for any value of η (and hence D) f can be
evaluated in λ̂ and π̂ obtained via (3.14) and (3.15). In more details

max
λ,π

f (q(·), K, η, D, λ, π) =
D

∑
d=1
G([ηd−1, ηd[)−

1
2

K(K + 1)D
2

log α + const,

(3.16)
where all the terms which do not depend on η and/or D have been ab-
sorbed into the constant const and

G([ηd−1, ηd[) :=

−
K

∑
k,g

[
λ̂kgd∆d

(
N

∑
j>i

τikτjg

)
− log(λ̂kgd)

(
N

∑
j>i

τikτjgX(d)
ij

)]
. (3.17)

Notice that the criterion to maximize (now with respect to η and D) is a
sum of independent components: each gain function G([ηd−1, ηd[) applies
only to interactions that take place in the time interval [ηd−1, ηd[. Notice
in particular that for a given d, the λ̂kgd are obtained from the quantities

X(d)
ij which correspond themselves to interaction counts during the time

segment [ηd−1, ηd[.

3.2.4 Segmentation

The criterion (3.16) must be maximized with respect to η and D and it has
the general form used in change point detection problems. This can be
seen by comparing (3.16) with equation (1.16) in Section 1.4.2. In (1.16),
a cost function (to minimize) is associated with each time segment. In
contrast, we introduce in this chapter a gain function (to maximize) to be
consistent with the problem formulation used so far. Anyway, the two
definitions are equivalent since the cost function can be thought as a gain
function multiplied by -1. We now show how the efficient algorithms for
change point detection introduced in Section 1.4.2 can be adapted to solve
the maximization problem (3.16).

Dynamic programming

Let us first recall that the maximization problems based on additive crite-
ria, like (3.17), can be solved exactly via a form of dynamic programming
(Jackson et al. 2005). In general terms, dynamic programming leverages
the structure of an optimization problem in order to formulate it with the
help of recurrence equations than can in turn be solved efficiently in an
iterative way, via some form of memorization. In order to apply this prin-
ciple to the maximization of (3.16), let us denote F(s, W) the maximum of
said criterion for at most W− 1 change points η1, . . . , ηW−1 restricted to the
interval ]0, s] (and thus η0 = 0 and ηD = W). We denote η ⊂ [0, s] and
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|η| = W the corresponding constraints on the set of change points. The
true maximization problem consists in finding F(T, D), but as always in
dynamic programming, solving a more complex problem enables to solve
more efficiently the one under study.

It can be shown (following Jackson et al. 2005, Killick et al. 2012) that

F(T, D) = max
η⊂[0,T],|η|=D′ ,D′≤D

[
D′

∑
d=1

(
G([ηd−1, ηd[)−

1
2

K(K + 1)
2

log α

)]
,

= max
ζ∈]0,T]

{
max

η′⊂[0,ζ],|η′|=W,W≤D−1

[
W

∑
d=1

(
G([η′d−1, η′d[)−

1
2

K(K + 1)
2

log α

)]

+ G([ζ , T[)− 1
2

K(K + 1)
2

log α

}
,

= max
ζ∈]0,T]

[
F(ζ , D− 1) + G([ζ , T[)− 1

2
K(K + 1)

2
log α

]
. (3.18)

This shows that finding F(T, D) can be done recursively by finding the
values of F(ζ , D − 1) for any ζ. This recursion is very similar to the one
in (1.20). Intuitively, the idea consists in moving the position of the last
change point ζ in order to maximize the criterion by using the knowledge
of the maximal value of the criterion when using one less change point
(hence the use of F(ζ, D− 1)).

Restriction on the change point locations

There are two issues in (3.18): a maximal number of change points has to
be specified and the optimization over ζ (i.e. over the position of a given
change point) remains an open problem. While in theory this optimization
is straightforward, the key point of the recurrence in (3.18) is the possibil-
ity of memorizing F(ζ , D − 1) for all values of ζ. Indeed, the dynamic
programming algorithm proceeds by computing and memorizing F(ζ , 1)
for all ζ, and then computes and memorizes F(ζ , 2) using F(ζ , 1), etc.

Therefore, one has to reduce the search space for the change points to
a finite set. In practice, this corresponds to fix a U ∈ N∗ and introduce a
grid of points which are a priori change point candidates:

P = {t0, . . . , tU}

such that
0 = t0 < t1 < · · · < tU = T.

A natural choice for P is the set of all interaction times in D, but other
choices can be adopted, such as intermediate times between interactions
(e.g., times of the form νm+1+νm

2 ) or arbitrary regular grids. Notice that
choosing a grid immediately solves the problem of choosing the maximal
value for D: it is exactly U.

The choice of P has several consequences. Firstly, the computational
cost of the dynamic programming (with or without pruning) is directly
linked to U (see below for details). Secondly, P acts as a minimal time
resolution constraint. Thus, a high value of U allows to pinpoint change
points very precisely but at a high computational cost, and vice versa.
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Therefore, both computational and expert considerations should be taken
into account for choosing P . If the computational load is acceptable, using
the set of all interaction times offers a maximal resolution, but this choice
might emphasize unneeded details.

The last consequence of the choice of P concerns the value of α in the
penalized log-likelihood (3.8). According to the hypotheses on the gen-
erative model, we observe N(N − 1)/2 conditionally independent NHPP
trajectories. Each trajectory is observed on the intervals [tu, tu+1[ via inter-
action counts. Those interaction counts are independent per the general
definition of NHPP (1.10). Thus, we have α = UN(N − 1)/2 independent
observations. Notice that the choice of P affects both the gain functions
G(·), via different change point candidates, and the penalty term, via α.
Hence, the inference procedure adapts to the choice of U. Moreover, in all
the experiments we carried out, we observed that the estimated values for
D do not change for a sufficiently large U5. This remark certainly supports
the choice of fixing P equal to the set of all interactions that occurred in
D, leading to a maximal resolution setup.

Pruned exact linear time

In the reminder of this section, we assume that a partition P is set, induc-
ing U time sub-intervals. The pruned exact linear time (PELT) method of
Killick et al. (2012) for change point detection in univariate time series was
introduced in Section 1.4.2 and is now considered to solve (3.18).

First of all, notice that directly using the recursive decomposition in
(3.18) for maximization has a cost of O(K2U2). Indeed this recursion cor-
responds to the Optimal Partitioning method (Jackson et al. 2005) which
has a quadratic complexity in the number of observations as we showed in
Section 1.4.2. In contrast, the cost function introduced in that section can
be efficiently computed in constant time (for each time segment) whereas
the gain function in (3.17) involves O(K2) calculations. Moreover, we re-
call that, in the Optimal Partitioning method, for each point tu in P the
gain of setting tu′ as the last change point before tu has to be computed
for all tu′ < tu.

Fortunately, as it was the case for univariate time series, some can-
didate change points can be pruned through the optimization routine.
This is the principle of PELT and in practice it allows to speed up the ex-
ploration of the segmentation space. We use the following result whose
general statement and formal proof are given in Section 1.4.2.

Again, consider tu′ and tu such that tu′ < tu and tu′ is not the last
change point before tu. Namely(

F(tu′ , U − 1) + G([tu′ , tu[)−
1
2

K(K + 1)
2

log α

)
< F(tu, U).

Moreover if tu′ fulfils the condition

F(tu′ , U − 1) + G([tu′ , tu[) < F(tu, U),

then the time point tu′ can never be the optimal last change point prior to
tu′′ , for all tu′′ > tu. This statement is true for all gain functions satisfying

5The same holds for the selected number of groups K (see Section 3.2.5).
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the following condition

G([tu′ , tu[) + G([tu, tu′′ [) ≥ G([tu′ , tu′′ [), tu′ < tu < tu′′ . (3.19)

Proposition 3.4 The condition (3.19) is fulfilled by the gain function G(·) defined in (3.17).

Proof. See appendix 3.5.3.

Roughly speaking, the above proposition allows us to speed up the
change point detection algorithm by reducing the number of candidate
change points to look for. The PELT algorithm to perform the maximiza-
tion of f (·) with respect to η and D is detailed in the pseudocode Algo-
rithm 3.

Algorithm 3: PELT for dynamic SBM
Require:

A grid 0 = t0 < t1 < · · · < tU = T.
An (N × N ×U) tensor X whose entry6(i, j, u) is X(u)

ij
A matrix τ of variational probabilities.
The penalty α = UN(N − 1)/2.
A fixed positive number of clusters K.
The gain function G(.).

Initializations: F(0) = 1
4 K(K + 1) log α, cp(0) = NULL, R1 = {0}.

for η∗ in 1, . . . , U do
Calculate F(η∗) = maxη∈Rη∗

[
F(η) + G([tη , tη∗ [)− F(0)

]
.

Let η =argmaxη∈Rη∗

[
F(η) + G([tη , tη∗ [)− F(0)

]
.

Set cp(η∗) = [cp(η), η].
Set Rη∗+1 = {η ∈ Rη∗ ∪ {η∗} | F(η) + G([tη , tη∗ [) ≥ F(η∗)}.

end for

Ensure: The change points stored in cp(U).

3.2.5 Selection of K and initialization clusters

As any EM like approach, the algorithm proposed for inference depends
on some initializations. Notice, however, that once initial values of τ and
K are provided, the other model parameters (D, θ) = (D, η, λ, π) are es-
timated in the maximization (M) step and those estimates are employed
in the E step to obtain a better estimate of τ and so on until the crite-
rion f (q(·), K, η, D, λ, π) in (3.11) no longer increases (i.e. convergence).
For a fixed value of K the initialization of τ can be obtained in several
ways. For example a N × N adjacency matrix can be built by aggregating
all the interactions over the time interval [0, T]. Hence the entry (i, j) of
this adjacency matrix corresponds to M(i,j), with the previous notations.
Then, clustering algorithms like k-means, hierarchical clustering or spec-
tral clustering can be used to get an estimate of Z. Finally the initial matrix
τ is built such that τik is one if Zi = k, zero otherwise. Another method

6Notice that in case the minimal partition is used, X(u)
ij is trivially equal to one for the

pair (i, j) interacting at tu−1 and zero for all the other pairs.
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to initialize τ consists in applying a k-means clustering on the rows of
the N ×UN matrix corresponding to the mode-1 unfolding of the tensor
X (see Kolda and Bader 2009, for more details). In the experiments in
Section 3.3, all mentioned initialization techniques are attempted. The ini-
tialization leading to the highest final value of the lower bound is finally
retained.

So far, we have assumed that the number of clusters was fixed. How-
ever, in practice K is unknown and has to be inferred from the data. Again,
we rely on the criterion defined in (3.11) which involves a penalization
term over K. Recalling that the optimal number of segments is selected
by the PELT procedure (see Section 3.2.3), the VEM algorithm described
in this section is run for different values of K in {1, . . . , Kmax}, for some
fixed Kmax, and the value K maximizing the criterion is retained. The
pseudocode Algorithm 4 summarizes the whole estimation routine.

Algorithm 4: VEM algorithm
Require:

A maximum number of clusters Kmax.
A set D of M interactions.
The criterion f (·) in (3.11).

Initializations: Store← vector(Kmax), Pmts← list(Kmax)
for K in 1, . . . , Kmax do

τ ← Some clustering algorithm
{D, θ} ← Maximization(τ,D)
while f (·) increases do

τ ← Expectation(D, D, θ)
{D, θ} ← Maximization(τ,D)

end while
Store[K]← f (K, D, τ, θ)
Pmts[K]← {τ, θ}

end for
K∗ ← argmax(Store).

Ensure: The estimated parameters in Pmts[K∗].

3.3 Experiments

3.3.1 Simulated datasets

Some experiments on simulated data are carried out to test the proposed
approach. Our model (called hereafter PELT-Dynamic SBM) is compared
with the triclustering approach proposed in Guigourès et al. (2012; 2015),
which is referred to as MODL, although MODL is a more generic tech-
nique (Boullé 2010). As pointed out in the introduction, this method is
non-parametric and looks for node clusters and time segments. It is based
on a combinatorial generative model estimated via a maximum a poste-
riori approach. As our model, it has no user tunable parameter and is
therefore fully automated.
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Figure 3.1 – Interactions pattern between clusters on each time segment. Each node in
a graph represents a group of vertices. Each group only interacts with neighbour groups
during the corresponding time segment (e.g. clusters 1 and 2 only interact with each
other in Figure 3.1c, as well as clusters 3 and 4).

First scenario. The experiments considered in this section are related
to the simulation setup in Section III.A of Guigourès et al. (2012). Each
simulated graph is made of 40 nodes, grouped into four clusters: 5 vertices
are in clusters 1 and 2, 10 vertices in cluster 3 and 20 vertices in cluster
4. The time interval [0, 100] is split into four segments (I1 = [0, 20[, I2 =
[20, 30[, I3 = [30, 60[ and I4 = [60, 100[) and each segment is associated
with a specific interaction pattern between clusters, as illustrated in Figure
3.1. For each number of edges varying from 50 to 10000, 50 dynamic
graphs are simulated according to the following procedure:

1. A vertex as well as a random interaction time are drawn uniformly
in {1, . . . , 40} and [0, 100], respectively. The vertex is then assigned
to its cluster and the interaction time to its segment.

2. If the cluster of the selected vertex is connected to one or more clus-
ters over the considered time segment (see Figure 3.1), a second ver-
tex is drawn uniformly at random in the union of these clusters, and
an edge is generated.

3. The first two steps are repeated until the desired number of edges is
reached.

4. Finally, 30% of edges are rewired uniformly at random.

The only difference between the current setup and the one used in
Guigourès et al. (2012) is that we assume that graphs are undirected. No-
tice that the generative process for those data is neither a Poisson based
model nor the combinatorial model used by MODL.

For estimation purposes, a regular grid P (Section 3.2.4) with uni-
tary length time intervals is used for PELT-Dynamic SBM. Both algorithms
(PELT-Dynamic SBM and MODL) are applied to the generated interaction
data and results are assessed at an aggregated level (cluster numbers) and
at a more refined level relying on the adjusted Rand indexes (Rand 1971,
introduced in the previous chapter).

In Figure 3.2 the mean number of clusters K (respectively time seg-
ments, D) found by the two methods is plotted in blue (resp. green) as a
function of the number of edges.

As it can be seen, MODL provides more accurate estimates of both
K and D for a small number of edges, while PELT-Dynamic SBM needs
denser graphs to recover the true number of clusters and time segments.
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Figure 3.2 – The average number of clusters and time segments detected by MODL and
PELT-Dynamic SBM versus number of simulated edges.
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Figure 3.3 – ARIs for the change points (η).

These results are confirmed in Figures 3.3 and 3.4. For each number
of edges, adjusted Rand indexes (ARIs) are computed to asses the quality
of the estimates provided for Z and η by the two models. Regarding
the change point locations, since the selected grid P contains 100 time
intervals, it is natural to introduce "label" random variables, say Y :=
{Y1, . . . , YU}, such that Yu = d iff the u-th interval in the grid is assigned
to Id, d ∈ {1, . . . , 4}. Hence, having a true Y and an estimated one, the ARI
compares them to assess the quality of the found segmentation. When
no change point is detected the ARI is zero, conversely when η̂1 = 20,
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Figure 3.4 – ARIs for the cluster memberships (Z).

η̂2 = 30 and η̂3 = 60 the ARI is one. For each number of edges, two box-
and-whiskers plots are produced, one for MODL (on the left hand side)
and the other for our method (right hand side).

As pointed out above, the data are not generated according to our
model nor to MODL combinatorial one. However, our model is still para-
metric which might explain the less accurate estimates provided here as
compared to MODL. We show in the following sections that when the
data are generated with a model closer to our model, the results are quite
different.

Second scenario. The graphs generated in the second simulation sce-
nario are made of 75 nodes, grouped into two clusters and undirected
interactions are simulated over the time interval [0, 10]. This interval is
split into three segments I1 = [0, η1[, I2 = [η1, η2[, I3 = [η2, 10[, where the
change points η1 and η2 are set equal to 2.1 and 6.9, respectively. Inter-
actions are simulated by thinning (Lewis and Shedler 1979) according to
the model we introduced in Section 3.1, based on the following intensity
functions (IFs)

λZiZj(t) =

{
0.11I1(t) + 0.21I2(t) + 0.051I3(t) if Zi = Zj

0.051I1(t) + 0.11I2(t) + 0.0251I3(t) if Zi 6= Zj,

for all j > i. Thus, the IFs define a persistent community structure through
time in which the intensity of the interactions within clusters is twice the
intensity of the interactions between clusters. The following simulating
procedure is used to generate 50 dynamic graphs:

1. Each vertex is assigned to one of the two clusters with probability
1/2.
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Figure 3.5 – Boxplots over 50 simulations of the ARIs for the clustering structures
obtained by SBM, MODL and PELT-Dynamic SBM for scenario 2. More details in the
text.

2. Interactions between each pair of nodes (i, j) are simulated according
to the NHPP with IF λZi ,Zj(t).

Again, to introduce some noise in the data, 10% of edges are randomly
rewired. Considering this new setup, we aim at evaluating the clusters
uncovered by our methodology along with the estimates of the change
point locations η1 and η2. The grid P of all observed interactions in D
was considered for inference. As mentioned in Section 3.2.4, this allows
to pinpoint change points more accurately. The use of such a grid is made
possible here because of the limited number of interactions generated.

Figure 3.5 compares the clustering results obtained by applying three
different models, namely MODL, PELT-Dynamic SBM and SBM dealing
with Poisson links, as in Section 2.3.1. Static SBM was applied on the
aggregated adjacency matrix, where the interactions between each pair of
nodes are summed up over the time interval [0, 10]. PELT-Dynamic SBM
was initialized relying on a spectral clustering algorithm applied to the
aggregated graph Laplacian. Note that, unlike MODL and PELT-Dynamic
SBM, static SBM was provided with the true number of clusters. Not
surprisingly, the three models can recover the hidden node groups most of
the time, with SBM/PELT-Dynamic SBM slightly outperforming MODL.
Notice also that, due to a persistent community structure, SBM works well
on the aggregated dataset. In contrast, the next section illustrates a setup
in which interactions aggregation leads to a huge loss of information.

The interest of PELT-Dynamic SBM shows up when looking at change
point detection. Indeed, SBM cannot deal with it and due to the particular
generative structure adopted in this section, MODL cannot recover any
time cluster and considers the dynamic graph as stationary. More pre-
cisely, in order to avoid parametric assumptions, MODL uses rank based
modeling for numerical values. In the triclustering context of Guigourès
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Figure 3.6 – Kernel density estimates over 50 simulations of the change points estimated
by PELT-Dynamic SBM, for scenario 2. The true values of η1 and η2 are given by the
red vertical lines.

et al. (2012; 2015) this means that interaction times are replaced by inter-
action ranks. This explains why MODL is blind to the time structure in
the present scenario.

In contrast, PELT-Dynamic SBM always retrieves the right number of
change points in the data. The change point estimates can be observed
in Figure 3.6 and Kernel density estimates are plotted along with the true
change points as red vertical lines. This illustrates the accuracy of the pro-
posed estimation procedure and its superiority to MODL in this situation.

Third scenario. This section aims at illustrating that aggregating inter-
actions can lead to an important loss of information. Thus, each graph
generated is made of 100 nodes clustered in two groups, with 50 nodes
each. Moreover, the time interval [0, 12] is split into four segments of
equal size delimited by the change points η1 = 3, η2 = 6 and η3 = 9.
Finally, interactions are simulated by thinning according to the following
IFs

λZiZj(t) =

{
0.051I1(t) + 0.11I2(t) + 0.051I3(t) + 0.11I4 if Zi = Zj

0.11I1(t) + 0.051I2(t) + 0.11I3(t) + 0.051I4 if Zi 6= Zj,

for all j > i and Id denotes the d-th segment. By construction, integrating
the IFs over [0, 12] leads to

Λ11(T) = Λ12(T) = Λ21(T) = Λ22(T) = 3.8.

Thus, the average number of interactions is the same for all pairs of clus-
ters which makes clusters indistinguishable when aggregating the interac-
tions over the whole time interval. As for the previous simulation scenar-
ios, 50 dynamic graphs are generated and 10% of edges of each graph are
rewired uniformly at random. MODL as well as PELT-Dynamic SBM are
then used to uncover clusters of vertices and to segment the time interval.
A regular grid P with unitary length time intervals is considered. The
results are presented in Figure 3.7 as ARIs for both the change points and
the cluster memberships. In this context, PELT-Dynamic SBM provides
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Figure 3.7 – Boxplots of the ARIs for groups of nodes 3.7b and change points 3.7a as
found by SBM, MODL and PELT-Dynamic SBM in Setup 3. In Figure 3.7a, SBM is
not considered since it cannot provide estimates for change points.

more reliable estimates than MODL, which fails to retrieve any cluster
or temporal structure, in most cases. It’s a form of extreme blindness to
the whole structure of the data induced by the blindness to the temporal
structure. Note that the results for PELT-Dynamic SBM are similar when
relying on a grid with a higher time resolution. The results for SBM are
not reported in Figure 3.7b since this model cannot provide any time seg-
mentation. Moreover, as illustrated in Figure 3.7a, the clustering results
obtained via SBM are poor. As anticipated, when aggregating interactions
through time, the assortative and non-assortative structures cancel out.
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Summary. The scenarios studied in this section show that PELT-
Dynamic SBM is able to recover both the cluster and the temporal
structure of dynamic graphs without the need for a strong prior aggrega-
tion of the interactions (a minimal aggregation is used for computational
reasons in some of the experiments). In particular, we highlighted how
PELT-Dynamic SBM outperforms static SBM when clustering nodes, in
situations where aggregating interactions leads to important information
losses. Moreover, unlike MODL, PELT-Dynamic SBM discovers structural
changes that are only based on a modification of the interaction intensi-
ties. Thus, both approaches have different use cases. In particular, the
temporal structure of the data is more easily captured by our model than
by MODL.

3.3.2 Real data

We now focus on a cycle hire usage dataset, publicly available at http://
api-portal.tfl.gov.uk/docs. It characterizes the interactions that
occurred on September 9, 2015, between the Santander stations of London.
The considered dynamic graph is made of 735 nodes and 64514 undirected
edges (with no self loops), collected with a minute precision over the day.
One edge connecting nodes i and j at a given time corresponds to a cycle
hire from station i to station j or, conversely from station j to station i. To
limit the computational burden of the segmentation step, we relied on a
regular grid P corresponding to 96 time intervals of 15 minutes. PELT-
Dynamic SBM was then applied several times, for different values of K
ranging from 0 to 20. The highest value of the criterion f (defined in (3.11))
was attained for K = 11 clusters and D = 5 time segments. MODL does
not find any temporal structure in those data despite obvious changes
in the aggregated intensities (see Figure 3.9). Results are presented in
Figure 3.8. The Santander stations are plotted on a London map7, different
symbols/colors correspond to different clusters identified by the model.
Interestingly (and as expected), generally nearby stations are placed in the
same cluster and the geographical distance between them plays a key role.
In Figure 3.9, an histogram of the interaction times in the whole graph is
provided. Two peaks are visible around 8.30 and 18.30. The five segments
detected by the methodology are delimited by the vertical red lines in
the figure. A strong alignment can be observed between the histogram
and the estimated segments. In particular, the two observed picks are
clearly associated with segment 2 and 4, respectively. We now focus on
the results for node cluster 3 (identified by the symbol + in Figure 3.8)
which is made of stations from central London. This cluster is a clear
community with higher interaction values within the group than outside.
This can be seen in Figure 3.10, which gives some examples of intra-group
and inter-groups IFs related to cluster 3. The results are presented for
clusters 1 (�) and 7 (©) which are geographically adjacent to cluster 3,
and for clusters 4 (×) and 10 (⊗), which are not. Overall, as mentioned,
the within group IF (on the top) is the highest at each time. However, this
figure also highlights an interesting temporal pattern. Indeed, it appears

7Map data are available from http://www.openstreetmap.org and copyrighted
OpenStreetMap contributors.

http://api-portal.tfl.gov.uk/docs
http://api-portal.tfl.gov.uk/docs
http://www.openstreetmap.org
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Figure 3.8 – The 11 clusters found by PELT-Dynamic SBM represented here with 11
different symbols/colors on the left hand side.
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Figure 3.9 – An histogram shows how frequent interactions (cycle hires) are during the
day. The vertical lines correspond to the estimated change points.
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Figure 3.10 – Estimated IFs for groups (3, ·). Groups 1 and 7 are geographically adjacent
to cluster 3 whereas 4 and 10 are not.

that the between-groups IFs for the adjacent clusters are higher in the
morning and in the evening than for the rest of the day. A somehow
similar pattern is observed for clusters 4 and 10 but with much lower
values in general. This is coherent with cycles being hired more often to
go to a station which is not geographically far.

In order to highlight another feature of the proposed methodology,
some results regarding cluster 8 are discussed. More specifically, Table 3.1
provides the aggregated interactions between clusters 7 (©) and 8 (∗), over
the segments uncovered. In the first segment, 16 interactions occurred be-
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tween vertices of cluster 8 and 47 between vertices of cluster 8 and vertices
of cluster 7. Thus, cluster 8 exhibits a non-assortative connectivity pattern
with less within group edges than between groups edges. Conversely, dur-
ing the time segment C2, there are more intra-group edges (502), within
cluster 8, than between groups 8 and 7. This corresponds to a community
pattern. Looking through all the time segments, we can observe that the
community and non-assortative pattern for cluster 8 alternates through
time. Thus, clustering the vertices while detecting change points in the
intensity of the interactions is mandatory here since the connectivity pat-
terns of the data set keep changing. Therefore, any method aggregating
the data would miss important information present in the data. In conclu-

104 47

47 16

midnight-6.45

742 441

441 502

6.45-9.45

1106 368

368 338

9.45-17

912 419

419 984

17-19.45

572 128

128 108

19.45-midnight

Table 3.1 – Aggregated interactions for clusters 7 (©) and 8 (∗) during the five seg-
ments uncovered. On the main diagonal of each table, the numbers of interactions within
clusters are reported: for cluster 7 on the left/top, for cluster 8 on the right/bottom. Inter-
actions between clusters are outside the main diagonal. Community structure for cluster
8 is highlighted in blue. Non-assortative structure for cluster 8 is highlighted in red.

sion, the uncovered clusters as well as the change point locations seems to
be meaningful on a ground truth basis and PELT-Dynamic SBM proved to
be fit to uncover interaction patterns that could not easily be detected by
other static or dynamic clustering algorithms.

3.4 Conclusion

In this chapter, we proposed a new model for continuous time dynamic
graphs adopting non-homogeneous Poisson processes. This model allows
us to perform change point analysis of graph data and cluster the graph
vertex simultaneously. The next chapter goes back to discrete time dy-
namic graph analysis and focuses on a special family of networks, i.e.
communication networks. As we will see, this kind of networks can
be modelled via graphs whose hedges are associated with textual con-
tents. The dSBM introduced in Chapter 2 will be extended to analyse
such graphs and exploit the textual information.
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3.5 Proofs

3.5.1 Proof of Proposition 3.1

Proof. Notice, first, that the central factor on the right hand side of the
equality in (3.3) can be written as

M

∏
m=1

λZim Zjm
(νm) =

M

∏
m=1

N

∏
j>i

(
λZiZj(νm)

)1A(i,j) (νm)
,

where 1G(·) is the indicator function on a set G and A(i,j) has been defined
in (3.1). By inverting the product on the right hand side, because of the
indicator function we get

N

∏
j>i

M

∏
m=1

(
λZiZj(νm)

)1A(i,j) (νm)
=

N

∏
j>i

M(i,j)

∏
m=1

λZiZj(ν
(i,j)
m )

=
N

∏
j>i

M(i,j)

∏
m=1

[
K

∏
k,g

(λkg(ν
(i,j)
m ))ZikZjg

]
,

where ν
(i,j)
m are the interaction times in the set A(i,j), whose cardinality is

M(i,j). Thanks to (3.5), the following holds

N

∏
j>i

M(i,j)

∏
m=1

[
K

∏
k,g

(λkg(ν
(i,j)
m ))ZikZjg

]
=

N

∏
j>i

M(i,j)

∏
m=1

[
K

∏
k,g

D

∏
d=1

λ
ZikZjg1[ηd−1,ηd [

(ν
(i,j)
m )

kgd

]

=
K

∏
k,g

D

∏
d=1

λ
∑N

j>i ZikZjg(M(i,j)(ηd)−M(i,j)(ηd−1))

kgd .

(3.20)

Note that the last equality employs the definition of counting process

M(i,j)(t) =
M(i,j)

∑
m=1

1]0,t](ν
(i,j)
m ).

By replacing (3.20) into (3.3) and using that

ΛZiZj(T) =
K

∑
k,g

Λkg(T)ZikZjg =
D

∑
d=1

K

∑
k,g

λkgd∆dZikZjg,

it suffices to take the logarithm of the likelihood and the proposition is
proven.

3.5.2 Proof of Proposition 3.3

Proof. The following objective function is taken into account

L (q(Z); K, η, D, λ, π) +
N

∑
i=1

li

(
K

∑
k=1

τik − 1

)
.

This function has to be maximized with respect to τ. Moreover, since
the lines of the matrix τ sum to one N Lagrange multipliers l1, . . . , lN are
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introduced. The most difficult step consists in taking the partial derivative
of the objective function with respect to τi0k0 . We first focus on those terms
of L(·) depending on d

Q(τ, θ) := −
D

∑
d=1

K

∑
k,g

(
λkgd∆d

(
N

∑
i=1

N

∑
j>i

τikτjg

)
− log(λkgd)

(
N

∑
i=1

N

∑
j>i

τikτjgX(d)
ij

))
.

Hence

∂Q(τ, θ)

∂τi0k0

=
D

∑
d=1

∂

∂τi0k0

(
−

N

∑
i=1

N

∑
j>i

K

∑
k,g

τikτjgλkgd∆d

)

+
D

∑
d=1

∂

∂τi0k0

(
N

∑
i=1

N

∑
j>i

K

∑
k,g

τikτjgX(d)
ij log(λkgd)

)

= −
D

∑
d=1

[
N

∑
j>i0

K

∑
g=1

τjg∆dλk0gd +
N

∑
j<i0

K

∑
g=1

τjg∆dλgk0d
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+
D

∑
d=1

[
N

∑
j>i0

K

∑
g=1

τjgX(d)
i0 j log(λk0gd) +

N

∑
j<i0

K

∑
g=1

τjgX(d)
ji0

log(λgk0d)

]

= −
D

∑
d=1

[
N

∑
j 6=i0

K

∑
g=1

τjg∆dλk0gd −
N

∑
j 6=i0

K

∑
g=1

τjgX(d)
i0 j log(λk0gd)

]
,

where the last equality comes from the symmetry (i.e. interactions are
undirected) of the frontal slices of tensors X and λ. Notice that the last
term in the above equation is the function inside the exponential in Propo-
sition 3.3. The remaining terms of L(·), not involving d, can be differen-
tiated straightforwardly. Imposing the partial derivatives of L(·) equal to
zero and using the above equation leads to the following system{

log(τi0k0) = log(πk0)−
∂Q(τ,θ)

∂τi0k0
+ li0 − 1

∑K
k0=1 τi0k0 = 1 ∀(i0, k0).

The solution is obtained after some manipulations and this concludes the
proof.

3.5.3 Proof of Proposition 3.4

Proof. The following definitions are introduced to keep the notation un-
cluttered

Skg : =
N

∑
j>i

τikτjg

Y[s,t[
kg : =

N

∑
j>i

τikτjg(M(i,j)(t)−M(i,j)(s)) ∀s < t.

Moreover, for every tue < tu f < tug , the following short hand notation is
used

∆e, f := tu f − tue
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and similarly for ∆ f ,g and ∆e,g. Hence, we get

G([tue , tug [) = ∑
k,g

[
max

λ
e,g
kg ∈]0,+∞[

(
−λ

e,g
kg ∆e,gSkg + log(λe,g

kg )Y
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kg
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λ
e,g
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−λ

e,g
kg ∆e, f Skg + log(λe,g

kg )Y
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kg
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[
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λ
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kg ∈]0,+∞[

(
−λ

e,g
kg ∆ f ,gSkg + log(λe,g

kg )Y
[tu f ,tug [

kg

)]

≤∑
k,g

 max
λ

e, f
kg ∈]0,+∞[

(
−λ

e, f
kg ∆e, f Skg + log(λe, f

kg )Y
[tue ,tu f [

kg

)
+ ∑

k,g

 max
λ

f ,g
kg ∈]0,+∞[

(
−λ

f ,g
kg ∆ f ,gSkg + log(λ f ,g

k,g )Y
[tu f ,tug [

kg

)
= G([tue , tu f [) + G([tu f , tug [),

where the first and the last equalities come from the definition of G(·).
This concludes the proof.





4Topic modelling in dynamic

networks with textual edges

So far in this thesis we focused on generative models allowing us to per-
form clustering, time clustering or segmentation in dynamic graphs,

based on the observed interactions between vertices. Either in a discrete
time framework (Chapter 2) or in a continuous one (Chapter 3), the in-
teraction frequency was the unique source of information exploited by
the proposed approaches. More generally, as detailed in the first chapter,
several existing clustering techniques for static and/or dynamic network
analysis are based on the graph structure, namely the presence/absence of
interactions between nodes, the frequency of such interactions, the num-
ber of neighbours of nodes, etc. However, the increasing volume of com-
munications via social networks such as Linkedin, Twitter and Facebook
has being motivating researches on new techniques accounting for both
the network connectivity and the textual contents associated with interac-
tions. Such a networks can be modelled via graphs as detailed in Section
4.1. As we saw in the previous chapters, when dealing with dynamic
graphs, it is of interest to be able to detect changes in the graph structure
(structural changes) that can affect either the node groups composition or
the way existing groups interact. In both cases, as shown in this chapter, a
joint analysis of text contents and network connectivity can provide very
important insights.

Section 4.2 introduces a new probabilistic approach for the clustering
of nodes in dynamic graphs accounting for texts associated with graph
edges. We consider discrete time dynamic graphs (as in Chapter 2) and
partially rely on the CdSBM model (introduced in Section 2.1.2) which is
referred to as dSBM henceforth. Hence, vertices are clustered in groups
which are homogeneous both in terms of interaction frequency and dis-
cussed topics. Two edges are clustered together if the corresponding mes-
sages share the same majority topic. Moreover, a dynamic graph will be
considered stationary on a time horizon if the proportions of topics dis-
cussed between each pair of nodes do not change in time during that hori-
zon. In Section 4.3, a classification variational expectation-maximization
(C-VEM) algorithm is adopted to perform inference and a model selection
criterion is also developed to select the number of node groups, time clus-
ters and topics. In Sections 4.4 and 4.5, experiments on both simulated
and real data are carried out to assess the proposed methodology.
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4.1 Statistical approaches for the joint analysis of

texts and networks

The following definition is adopted henceforth.

Definition 4.1 A textual network is a network in which interactions between agents are charac-
terized by a textual content.

Social networks or e-mail communication networks are example of tex-
tual networks.

Among probabilistic methods for text analysis, the latent Dirichlet al-
location model (LDA, Blei et al. 2003) is quite popular. This generative
model was illustrated in the first chapter, Section 1.4.3. As explained,
the basic idea of LDA is that documents are represented as random mix-
tures over latent topics where each topic is characterized by a distribu-
tion over words. The topic proportions follow a Dirichlet distribution.
The author-topic (AT, Steyvers et al. 2004, Rosen-Zvi et al. 2004) and the
author-recipient-topic (ART McCallum et al. 2005) models partially extend
LDA to deal with textual networks. Although providing authorship and
information about recipients, these models do not account for the network
structure, e.g. the way vertices are connected.

A first attempt to take into account the network structure along with
the textual content of the interactions is due to Zhou et al. (2006). The
authors propose two community-user topic (CUT) models: CUT1, model-
ing the communities based on the network structure only and the CUT2,
modeling the communities based on the textual information alone. More
recently, Pathak et al. (2008) extended the ART model by introducing the
community-author-recipient-topic (CART) model. In this context, authors
and recipients are assigned to latent communities and they are clustered
by CART based on homogeneity criteria, both in terms of connectivity
structure and textual content. Interestingly, the vertices in the associated
graph are allowed to belong to multiple communities and each pair of
nodes is associated with a specific topic. Although flexible, the models il-
lustrated so far rely on Gibbs sampling for the inference procedure, which
can be prohibitive when dealing with large graphs. An alternative model,
that can be fitted via variational EM inference, is the topic-link LDA (Liu
et al. 2009) performing both community detection and topic modeling.
This model employs a logistic transformation based on topic proportions
as well as author latent features. A family of 4 topic-user-community
models was proposed by Sachan et al. (2012). These models, accounting
for multiple community/topic memberships, discover topic-meaningful
communities in graphs with different types of edges. This is of particu-
lar interest in social network analysis. For instance, in Twitter there are
different types of interactions: follow, tweet, re-tweet, etc.

In order to overcome the limitations of previous methods in terms of
scalability and flexibility, the recent work of Bouveyron et al. (2016) intro-
duced the stochastic topic block model (STBM) along with an inference
procedure. This approach can exhibit node partitions that are meaning-
ful both regarding the graph structure and the topics, in directed and
undirected graphs. The graph structure analysis relies on SBM, whereas
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the textual analysis relies on LDA, allowing the model to characterize the
construction of documents. The inference procedure is based on a classi-
fication variational EM algorithm.

The methods described so far in this section deal with static graphs
whereas the main focus of this thesis is dynamic graphs. The new genera-
tive model introduced in the next section, called dynamic stochastic topic
block model (dSTBM), is inspired by STBM and relies on the dynamic SBM
(defined in Section 2.1.2) for network analysis and on LDA for topic mod-
eling. However, contrarily to LDA the topic proportions associated with
a document are allowed to change in time. We highlight that a dynamic
extension of the LDA model allowing both topics and topic proportions to
evolve in time was proposed by Blei and Lafferty (2006). Nonetheless, the
approach adopted in that paper is very different from the one presented
in this chapter (see Section 4.2.3 for further details.)

4.2 The dynamic stochastic topic block model (dSTBM)

The following section quickly reviews the dSBM introduced in Section
2.1.2 as "CdSBM" and introduces some simplifying assumptions. Section
4.2.2 describes how this model can be extended to deal with textual net-
works.

4.2.1 Simplified Block modelling

As in Chapter 2, graphs are assumed to be directed with N nodes and
without self loops. A discrete time view is adopted and a dynamic graph
is a sequence of static graphs (Definition 1.8). Recalling the notations used
in Chapter 2, X Iu

ij is the number of directed interactions from node i to node
j during the time interval Iu, defined according to the time partition (2.3).
To keep notations uncluttered, in the remaining of this chapter we use

Xiju := X Iu
ij .

As in Chapter 2 Xiju still follows a Poisson distribution whose parameter
only depends on the clusters of nodes i and j (respectively Zi and Zj) and
the time cluster of Iu (namely Yu). However, to simplify the exposition two
additional assumptions are made

1. The condition in Remark 2.4 is assumed to hold. Namely, the instan-
taneous intensity functions {λkg(·)}k,g are assumed to be constant
on each time interval {Iu}u of the user-defined partition.

2. Moreover, the user-defined partition in (2.3) is assumed to be regular,
namely

∆u := tu − tu−1 = ∆, ∀u ∈ {1, . . . , U}.

Notice that ∆ is now a simple time scale factor and can be set equal to
one without loss of generality. Indeed, when ∆ 6= 1, we can safety define
λ̃kgu := ∆λkgu and reduce to the previous case, with the following equality
being true

∆ΛIu
kg = λ̃kgu,



4.2. The dynamic stochastic topic block model (dSTBM) 97

where ∆ΛIu
kg is defined in (2.6).

The previous assumptions holding, the time constraint introduced in
Section 2.1.2 reduces to the following one

Xiju|ZikZjgYud = 1 ∼ P(λkgd),

where P(·) denotes the Poisson probability distribution function and Z
and Y are the very same as in Chapter 2. Furthemore, we recall that the
random variables Xiju are all independent conditionally on Z and Y to be
known.

A K × K × D tensor λ = {λkgd}k,g,d is introduced and the complete-
data likelihood of the model described so far can be obtained

p(X , Z, Y|λ, π, ρ) = p(X|Z, Y, λ)p(Z|π)p(Y|ρ), (4.1)

where p(Z|π) and p(Y|ρ) are defined in (2.1) and (2.11), respectively, and

p(X|Z, Y, λ) ∝
K

∏
k,g

D

∏
d

(
λkgd

)Skgd exp(−λkgdPkgd),

Skgd : =
N

∑
j 6=i

U

∑
u=1

ZikZjgYudXiju,

Pkgd : =
N

∑
j 6=i

U

∑
u=1

ZikZjgYud.

(4.2)

We point out that the likelihood p(X|Z, Y, λ) in the above equation is a
simplified version of (2.9). Moreover the 0-1 notation of Z and Y is em-
ployed in the definitions of Skgd and Pkgd.

4.2.2 Dynamic modelling of documents

The dSBM discussed so far can easily be extended to deal with textual net-
works, by assuming that a directed interaction characterizing the pair (i, j)
corresponds to a document sent from i to j. More specifically, Xiju corre-
sponds to the number of documents sent from i to j over the time interval
Iu. The documents counted by Xiju are considered as a single document,
obtained by concatenation and Liju denotes the number of words of such
a document. In the following, a dictionary containing T(W) words will be
considered and all words are extracted from the dictionary. Hence, W iju

n
will denote the n-th word (in the aggregated document) sent from i to j
during the time interval Iu. Using a zero-one notation, W iju

nw = 1 if the
word W iju

n is the w-th in the dictionary, 0 otherwise.
In line with the LDA model, a list of Q topics is introduced and each

word of a document is associated with one topic through a latent Liju-

vector, noted Viju. More in details, Viju
n = q iff the word W iju

n is associated
with the q-th topic. For each pair of node clusters (Ak, Ag) and a time
cluster Cd, a vector of topic proportions θkgd := (θkgdq)q≤Q is assumed to
follow a Dirichlet distribution

θkgd ∼ Dir(α = (α1, . . . , αQ)),
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such that ∑Q
q=1 θkgdq = 1. Hence, the n-th word in the document associated

with the triplet (i, j, Iu), namely W iju
n , is extracted from the latent topic q

according to the following conditional probability distribution

P(Viju
nq = 1|X , Z, Y, θ) =

K

∏
k,g

D

∏
d

θ
ZikZjgYud
kgdq

corresponding to a multinomial distribution of parameter θkgd. The fol-
lowing full conditional distribution is obtained

p(V|X , Z, Y, θ) =
N

∏
j 6=i

U

∏
u

Liju

∏
n

θZiZjYuViju
n

=
K

∏
k,g

D

∏
d

Q

∏
q

θ
∑N

j 6=i ∑U
u=1 ∑

Liju
n=1 ZikZjgYudViju

nq

kgdq ,

(4.3)

where the exponent counts the total occurrences, in the dynamic graph, of
words associated with the q-th topic, sent from cluster Ak to cluster Ag,
during the time cluster Cd and V := (Viju)i,j,u. Given V, the word W iju

n is
finally assumed to be drawn from a multinomial distribution

W iju
n |V

iju
nq = 1 ∼M(1, βq = (βq1, . . . , βqT(W))).

As a consequence, once we know that the word W iju
n is extracted from the

q-th topic, it is equal to the first word of the dictionary with probability
βq1, to the second word of the dictionary with probability βq2, etc. Hence,
β defines a Q× T(W) matrix of word assignment probabilities.

Remark 4.1 Notice that β (unlike θ and V) depends neither on node clusters nor on time
clusters. In particular, while the mean topic proportions in each document evolve
in time the mean word proportions in each topic do not.

Denoting by W = (W iju)i,j,u the whole set of documents appearing in
the whole network, the following conditional distribution is obtained by
independence

p(W|V, X , β) =
N

∏
j 6=i

U

∏
u

Liju

∏
n

βViju
n W iju

n

=
Q

∏
q=1

T(W)

∏
w=1

β
∑N

j 6=i ∑U
u=1 ∑

Liju
n=1 Viju

nq W iju
nw

qw ,

(4.4)

where the exponent counts the total occurrences, in the dynamic graph, of
the w-th word of the dictionary associated with the q-th topic.

The complete-data conditional distribution for the textual part of the
model is finally obtained by conditioning

p(W, V, θ|X , Z, Y, β) = p(W|V, X , β)p(Z|X , Z, Y, θ)p(θ)

and the joint distribution of the whole dSTBM model is

p(X , Z, Y, W, V, θ|λ, π, ρ, β) = p(W, V, θ|X , Z, Y, β)p(X , Z, Y|λ, π, ρ).
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Figure 4.1 – Graphical representation of the dynamic STBM model (dSTBM). The com-
plete data likelihood can be decomposed in two components: the dSBM component (red
plate) and the LDA component (green plate). More details in the text.

A graphical representation can be seen in Figure 4.1. Before to go further,
let us clarify the relation between dSTBM and LDA. Assuming that Z
and Y are known, the set of documents W can be reorganized such that
W = (W̃kgd)kgd where

W̃kgd = {W iju|ZikZjgYud = 1}

is the set of all documents sent from any vertex in Ak to any vertex in
Ag during the time cluster Cd. By marginalization over V, it can easily
be seen that each word W iju

n has a mixture distribution over topics which
only depends on the clusters of i and j and the time cluster of Iu. As a
consequence, all words in W̃kgd share the same mixture distribution over
topics and removing the knowledge of (k, g, d), W̃kgd can be seen as one
of K2 × D independent documents. This means that, if the pair (Z, Y) is
known, the generative model described so far in this section is the one of a
LDA model with K2×D independent documents, each one having its own
vector of topic proportions and sharing a matrix β of word probabilities.

4.2.3 Link with other existing models

Before discussing the inference, in the next section, it is worth highlighting
the relation between dSTBM and some of the existing models mentioned
so far, in this thesis.

1. Single time cluster (D = 1). In this case both λ and θ are constant
in time and dSTBM reduces to STBM (Bouveyron et al. 2016).

2. Single topic (Q = 1). When a single topic is used in the whole net-
work (e.g. actors talk about a single argument) there is no additional
information that can be extrapolated by the network relying on text
analysis. In this case, dSTBM reduces to the dSBM.
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3. Single cluster (K = 1). When all vertices are clustered into a single
group, the set of documents can be reorganized as W = (W̃d)d≤D
corresponding to D documents. Each one corresponds to a time
cluster and has its own topic proportions (θd)d≤D. This could be
seen as an original dynamic extension of the LDA model in which
the topic proportions evolve in time. From a generative point of
view, we stress that only D i.i.d. topic proportion vectors θ1, . . . , θD
are simulated. With respect to the original time partition, all docu-
ments sent in time intervals belonging to the same time cluster share
the same (previously) extracted topic proportion parameter. Notice
that the dynamic approach described so far is completely different
from the one adopted by Blei and Lafferty (2006). In that paper,
sequentially organized corpus of documents are taken into account
and both the Dirichlet parameter (α) and the topic parameter (β)
change in time according to (unit-root) autoregressive models com-
bined with multinomial-logit probabilities. Hence, from a generative
point of view at each time step t a new vector of topic proportions is
simulated based on αt.

4. Case K = D = 1. In line with the previous case, the set W can now
be considered as a single document with its own topic proportions.
The dSTBM model reduces in this case to an LDA model.

5. Case Q = D = 1. In presence of a single topic discussed in the whole
network (i.e. text analysis is useless), with Λ constant in time, the
dSTBM model reduces to SBM with weighted Poisson distributed
links, already used for comparison purposes in the experiences of
previous chapters.

4.3 Estimation

This section focuses on the inference procedure adopted to learn the model
parameters and provide estimates of Z, Y and V. In the last part of the
section, a model selection criterion is developed to select K, D and Q.

4.3.1 Variational inference

Let us assume for now, that the number of clusters (K), time clusters (D)
and the number of topics (Q) are known.

Consider the following complete-data integrated log-likelihood

log p(X , Z, Y, W|λ, π, ρ, β) = log ∑
V

∫
θ

p(X, Z, Y, W, V, θ|λ, π, ρ, β)dθ.

(4.5)
We aim to maximize it with respect to the model parameters (λ, π, ρ, β)
and the hidden label vectors (Z, Y). Unfortunately, (4.5) is not tractable
due to the summation over all possible values of V inside the logarithm.
Nonetheless, a variational decomposition of the above log-likelihood can
be employed to obtain a lower bound which can be directly maximized.
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This approach relies on the following equality

log p(X , Z, Y, W|ζ) = L(R(·); X , W, Z, Y, ζ)

+ KL(R(·)||p(·|X , W, Z, Y, ζ))
(4.6)

where ζ := {λ, π, ρ, β}, R(·) is any distribution over the pair (V, θ),

L(R(·); X , W, Z, Y, ζ) := ER

(
log

p(X , Z, Y, W, V, θ|ζ)
R(V, θ)

)
(4.7)

and, as usual, KL(·) denotes the Kullback-Leibler divergence between the
approximate and the true posterior distribution of the pair (V, θ) given
{X , W, Z, Y, ζ}

KL(R(·)||p(·|X , W, Z, Y, ζ)) := −ER

(
log

p(V, θ|X , Z, Y, W, ζ)

R(V, θ)

)
.

In the above equations, ER denotes the expectation taken with respect to
the distribution R(·). A mean field variational approximation is adopted
to approximate the true posterior distribution of the pair (V, θ)

R(V, θ) = R(V)R(θ) = R(θ)
N

∏
j 6=i

U

∏
u=1

Liju

∏
n=1

R(Viju
n ).

As previously observed the above equation corresponds to an indepen-
dence assumption on the hidden variables (in this case V and θ) with
respect to the approximate posterior distribution.

Since the integrated likelihood in (4.5) cannot be directly maximized,
the idea is to replace it with the lower bound L and maximize it with re-
spect to the parameters (λ, π, ρ, β), the approximate posterior distribution
R(V, θ) in the above equation and the hidden vectors Z and Y. Further-
more, as it can be seen in the graphical model in Figure 4.1, the full joint
distribution of the dSTBM can be decomposed into two parts. The one in
the red plate does not depend on the pair (V, θ). As a consequence, the
lower bound defined in (4.7), can be split into two parts also

L(R(·); X , W, Z, Y, ζ) = L̃(R(·); X , W, Z, Y, β) + log p(X , Z, Y|λ, π, ρ),
(4.8)

where

L̃(R(·); X , W, Z, Y, β) := ER

(
log

p(W, V, θ|X , Z, Y, β)

R(V, θ)

)
. (4.9)

Note that the joint distribution p(X , Z, Y|λ, π, ρ) is the same as in (4.1) and
corresponds to the dynamic SBM part of the model. Modulo the simplify-
ing assumptions discussed in the previous section, this joint distribution
appeared for the first time in (2.17). Furthermore, given Z and Y, the
first term on the right hand side of (4.8) only involves the pair (R(·), β)
while the second term only involves (λ, π, ρ). Hence, the maximization
algorithm that is detailed in the next section consists in alternating the
following two steps, up to convergence:

1. VEM step. For a given pair (Z, Y), the lower bound L is maxi-
mized with respect to the pair (R(·), β) (involving L̃) and the triplet
(λ, π, ρ) (involving the dSBM complete-data likelihood).
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2. Classification step. The lower bound L is maximized in a greedy
fashion with respect to the pair (Z, Y).

This algorithm alternating a variational EM routine with a clustering step
was used in Bouveyron et al. (2016) and is built upon the C-EM algorithm
(Celeux and Govaert 1991).

4.3.2 Maximization of the lower bound

In this section, the updating formulas for R(V, θ) and the model parame-
ters (λ, π, ρ, β) are provided by the following propositions. At the end of
the section, we discuss the maximization with respect to the pair (Z, Y).

Maximization of L with respect to R(V, θ). The updating formulas cor-
responding to the E step of the VEM algorithm are given in the following
two propositions.

Proposition 4.1 The VEM update step for distribution R(Viju
n ) is given by

R(Viju
n ) =M(Viju

n ; 1, φ
iju
n = (φ

iju
n1 , . . . , φ

iju
nQ))

where

φ
iju
nq ∝

(
T(W)

∏
w=1

βW iju
nw

qw

)
K

∏
k,g

D

∏
d

exp

(
ψ(γkgdq)− ψ(

Q

∑
q=1

γkgdq)

)ZikZjgYud

, ∀(n, q)

where φ
iju
nq is the approximate posterior probability of word W iju

n being in topic q
and ψ(·) is the digamma function.

Proof. In Appendix 4.7.1.

Proposition 4.2 The VEM update step for distribution R(θ) is given by

R(θ) =
K

∏
k,g

D

∏
d

Dir(θkgd; γkgd = (γkgd1, . . . , γkgdQ))

where

γkgdq = αq +
N

∑
j 6=i

U

∑
u=1

Liju

∑
n=1

ZikZjgYudφ
iju
nq , ∀(k, g, d).

Proof. In Appendix 4.7.2

Maximization of L with respect to the model parameters. The follow-
ing proposition provides the estimates of the model parameters (λ, π, ρ, β)
obtained through maximizing the lower bound in (4.7). The lower bound
L̃ in (4.9) is computed in the appendix.
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Proposition 4.3 The estimates of (β, λ, π) and ρ are given by

βqw ∝
N

∑
j 6=i

U

∑
u=1

Liju

∑
l=1

W iju
nwφ

iju
nq , ∀(q, w) (4.10)

λkgd =
Skgd

Pkgd
, ∀(k, g, d) (4.11)

πk ∝ |Ak|, ∀k, (4.12)
ρd ∝ |Cd|, ∀d, (4.13)

where Sqrl and Pqrl were defined in (4.2).

Proof. In Appendix 4.7.4.

Maximization of L with respect to the label vectors. Other parameters
being fixed, we now attempt to maximize Lwith respect to the pair (Z, Y).
Since this combinatorial problem cannot be attacked directly, due to the
huge number of cluster assignments to test (KN DU), a greedy search strat-
egy is employed to look for a local maximum. Greedy search strategies
were discussed in Chapter 2 when maximizing the ICL for the dSBM. In
this context, however, there are two important differences with respect to
the previous framework:

1. The function to be maximized is not the same.

2. The number of node clusters (K) and time clusters (D) is fixed. Hence,
cluster merges are not considered in this framework and nodes (re-
spectively time intervals) are only allowed to switch cluster (resp.
time cluster). If a node (resp. time interval) is alone in its own clus-
ter (resp. time cluster) then it cannot be moved.

Let us consider Z at first and assume that nodes are clustered in K ini-
tial groups (see section 4.3.3 for more details about this initial assign-
ment). If node i is currently in cluster Ak, the algorithm assesses the
increase/decrease in the lower bound L due to switching node i to the
cluster Ag for each g 6= k. The switch (if any) leading to the highest in-
crease of the lower bound is actually performed and the entire routine is
iteratively applied to all nodes until no further increase of L is possible.
The maximization with respect to Y works similarly: nodes are replaced
by time subintervals Iu and node clusters Ak by time clusters Cd.

As previously explained, a greedy search is never guaranteed to con-
verge to a global maximum. Hence a good strategy consists in per-
forming several independent greedy maximizations randomizing over the
node/time intervals moving order and finally choosing the values of
(Z, Y) leading to the highest value of the lower bound (see Section 2.2.2
for further details on this point).

4.3.3 Further issues

Initialization. Assuming that K, D and Q are known, the C-VEM algo-
rithm described in the previous section still needs some initial values of
(Z, Y) in order to provide estimates for the model parameters and the
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variational posterior distribution R(V, θ). The approach proposed in this
chapter for the initializations relies on a spectral clustering algorithm ap-
plied to proper similarity matrices. The initialization of Z is considered at
first. Recalling the definition of X = {Xiju}iju we proceed as follows

1. The VEM algorithm for the LDA model is a applied to the collection
of documents exchanged from all pair of nodes in the whole time
horizon. Note that these documents correspond to the entries of X
and the VEM algorithm provides the main topic discussed in each
document. Hence an N×N×U tensor MT (main topic) is obtained,
such that MTiju = q if and only if q is the main topic discussed in
the document sent form i to j, during the time interval Iu.

2. An M×M similarity matrix Ξ is obtained as follows

Ξ(i, j) =
U

∑
u=1

N

∑
h=1

δ(MTihu = MTjhu)XihuXjhu

+
U

∑
u=1

N

∑
h=1

δ(MThiu = MThju)XhiuXhju.

The rationale behind the above equation is quite intuitive: if i and j
have a common neighbour and they share with him the same main
topic, then the similarity between i and j increases. Two terms ap-
pear on the right hand side of the equality because we are dealing
with directed graphs.

3. A spectral clustering algorithm is applied to the graph Laplacian
associated with Ξ. This allows to cluster nodes into K groups and
produce an initial estimate of Z.

The initialization of Y is performed similarly. A U ×U similarity matrix
Σ is built such that two time intervals are similar if they share the same
main topic discussed in the whole network

Σ(u, v) =
N

∑
i=1

N

∑
j=1

δ(MTiju = MTijv)XijuXijv

for all pairs (u, v) ∈ U ×U such that u 6= v. A spectral clustering algo-
rithm if finally applied to the graph Laplacian associated with the similar-
ity matrix Σ to produce an initial estimate of Y.

Model selection. So far, the parameters K, D and Q were assumed to be
known, but in real world datasets this assumption is unrealistic. In order
to estimate these parameters, we adopts the ICL criterion (introduced in
Section 1.3.2 for SBM) to approximate the complete-data integrated log-
likelihood in (4.5). This approach extends the model selection criterion
proposed in Bouveyron et al. (2016) to the dynamic framework of this
chapter.
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Proposition 4.4 An integrated classification criterion (ICL) for the dSTBM is

ICLdSTBM = L̃(R(·); X , W, Z, Y, β)− Q(T(W) − 1)
2

log(DK2)

+ max
λ,π,ρ

log p(X , Z, Y|λ, π, ρ)

− DK2

2
log(UN(N − 1))− K− 1

2
log(N)− D− 1

2
log(U).

(4.14)

Proof. In Appendix 4.7.5.

4.4 Numerical Experiments

In the first part of this section, both dSTBM and the ICL model selection
criterion presented in the previous section, are tested on simulated data.
In order to highlight some peculiarities, dSTBM tested in three different
scenarios with four other models: the dynamic SBM , STBM (Bouveyron
et al. 2016), a standard SBM using the mixer package https://cran.
r-project.org/web/packages/mixer/index.html and LDA us-
ing the topicmodels package (Grün and Hornik 2011).

4.4.1 Simulation setups

In the following simulation setups, the parameter αq is assumed to be
equal to 1, inducing a uniform distribution over the topic proportions
θkgd. In each setup, 50 dynamic graphs are independently simulated and
the messages associated with graph edges are sampled from four texts
from BBC news. One text is about the birth of Princess Charlotte, the
second is about black holes in astrophysics, the third one focuses on UK
politics and the fourth on cancer diseases. Each message, associated with
one directed interaction, is made of 75 words. We finally stress that, the
message sampling procedure adopted in the following scenarios is not
exactly the one described in the previous sections for dSTBM. Each setup
is detailed in the following.

Scenario A. Nodes are grouped into three clusters and time intervals in two time
clusters. During the first time cluster, the graph exhibits a clear com-
munity structure: interactions within groups are more frequent than
interactions between groups. An opposite non-assortative structure
characterizes the graph during the second time cluster: interactions
between groups are more frequent than interactions inside groups.
Each group talks about a single topic and a fourth, shared topic,
is associated with the interactions between two different groups
(Q = 4). In order to introduce some noise, 10% of interactions within
each group is (randomly) associated to the shared topic (see Figures
4.2a and 4.2b). In this first scenario, the topic proportions do not
change in time.

Scenario B. In this second scenario, the dynamic graph maintains a persistent
community structure, whereas a structural time change occurs in
the topic proportions. Nodes are grouped into two clusters and time
intervals into two time clusters. Two topics are taken into account,

https://cran.r-project.org/web/packages/mixer/index.html
https://cran.r-project.org/web/packages/mixer/index.html
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(a) A. First time cluster (C1).
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(b) A. Second time cluster (C2).
 

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) B. First time cluster (C1).
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(d) B. Second time cluster (C2).
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(e) C. First time cluster (C1).
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(f) C. Second time cluster (C2).

Figure 4.2 – Dynamic graphs simulated according to three different setups (A,B and
C). The graph on the left (respectively right) hand side of each line is obtained through
aggregation of the interactions taking place on the first (resp. second) time cluster.
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Scenario A B C
N 100

U 100

K 3 2 4

D 2

Q 4 2 3

π (1/K, . . . , 1/K)
ρ (1/D, . . . , 1/D)

λ on C1

{
λkk1 = 0.03
λkg1 = 0.0075 g 6= k

{
λkk1 = 0.03
λkg1 = 0.0075 g 6= k

{
λkk1 = λ141 = λ411 = 0.03
λgk1 = 0.0075 otherwise

λ on C2

{
λkk2 = 0.0075
λgk2 = 0.03 g 6= k

{
λkk2 = 0.03
λgk2 = 0.0075 g 6= k

{
λkk2 = λ142 = λ412 = 0.03
λgk2 = 0.0075 otherwise

θ on C1


θ1111 = θ2212 = θ3313 = 1
θkg14 = 1 g 6= k
otherwise 0


θ1112 = θ2212 = 1
θkg11 = 1 g 6= k
otherwise 0


θ1112 = θ3312 = 1
θ2211 = θ4411 = 1
θkg13 = 1 g 6= k
otherwise 0

θ on C2


θ1121 = θ2222 = θ3323 = 1
θkg24 = 1 g 6= k
otherwise 0


θ1121 = θ2221 = 1
θkg22 = 1 g 6= k
otherwise 0


θ1121 = θ3321 = 1
θ2222 = θ4422 = 1
θkg23 = 1 g 6= k
otherwise 0

Table 4.1 – Parametrization in different setups.

corresponding to two of the four texts from the BBC news. Dur-
ing the first time cluster, each community talks preferentially about
the same topic (say T1) and a second topic T2 is reserved to inter-
actions between communities (Figure 4.2c). During the second time
cluster, the two topics have the opposite role. Hence, T2 is used for
the within community interactions whereas T1 is discussed between
members of different groups (Figure 4.2d). As in the previous setup,
10% of interactions inside each group is (randomly) associated with
the shared topic to introduce some noise.

Scenario C. This third scenario consists in a dynamic graph whose nodes are
grouped in four clusters. However, only two of these clusters are
real communities, with actors talking preferentially about a unique
topic inside the community. The other two clusters form a single
community and the topic they discuss about is the only discriminant.
Hence, three topics are considered: two clusters use one topic, the
other two clusters use another topic and a third topic is used for
communications between all different groups. In order to induce a
relevant time structure, the topics used within groups change from
a time cluster to another as illustrated in Figures 4.2e and 4.2f.

4.4.2 Benchmark results

A detailed description of the three scenarios mentioned so far can be seen
in Table 4.1. The C-VEM algorithm for dSTBM was run on 50 simulated
dynamic graphs in each scenario. In a first time, we focus on the cluster-
ing produced by the model when the number of clusters K, time clusters
D and topics Q are known. The clustering results for dSTBM, dSBM and
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Setup A
Model node ARI time ARI edge ARI
dSTBM 0.99 (0.06) 1 (0) 0.99 (0.06)
dSBM 1 (0) 1 (0) -
STBM 1 (0) - 0.66 (0.21)
SBM 0.01 (0.06) - -
LDA - - 0.73 (0.20)

Setup B
Model node ARI time ARI edge ARI
dSTBM 1 (0) 1 (0) 1 (0)
dSBM 0.98 (0.03) 0.00 (0.01) -
STBM 0.5 (0.5) - 0.02 (0.03)
SBM 0.99 (0.04) - -
LDA - - 1 (0)

Setup C
Model node ARI time ARI edge ARI
dSTBM 1 (0) 1(0) 1 (0)
dSBM 0.67 (0.05) 0.00 (0.01) -
STBM 1 (0) - 0.70 (0.10)
SBM 0.65 (0.04) - -
LDA - - 0.69 (0.15)

Table 4.2 – Clustering results for dSTBM, dSBM, STBM, SBM and LDA on 50 graphs
simulated according to the different setups. The true values of K, D and Q is assumed to
be known. The average ARI values are reported, with standard deviations inside brackets.

STBM can be seen in Table 4.2, where, as usual, ARI stands for adjusted
Rand index. The ARI was already used in previous chapters to assess
both node and time clusterings. In this chapter they are also used to asses
the edge clustering. In this context, the clustering measure "edge ARI"
in Table 4.2 is equal to one when the main topic used in each exchanged
document is correctly retrieved by the model. We recall that one docu-
ment is uniquely associated with a triplet (i, j, Iu) in the dynamic graph:
source node, destination node and time interval. Hence, the number of
exchanged documents coincides with the total degree of the simulated
dynamic graph. It follows that the edge ARI defined so far is not available
for both dSBM and STBM: the former does not deal with topics, the lat-
ter cannot recover information about the interactions taking place at time
Iu since this information is definitely lost, due to aggregation. However,
STBM can cluster the edges of the aggregated graph. Namely, it estimates
the main topic used by each pair of nodes during the whole time hori-
zon. Hence, the edge ARI for STBM can be calculated by assigning to all
edges associated with the pair (i, j) in the dynamic graph, the main topic
estimated for that pair by STBM.

Let us start from the first setup A. Not surprisingly, dSTBM and dSBM
have very similar performances and dSBM is slightly more accurate in
clustering nodes (ARI equal to one versus ARI equal to 0.99). This small
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difference however is not very significant and can be explained by the dif-
ferent initializations adopted by the two approaches. As mentioned above,
in this scenario the proportion of assigned topics (θ) is constant in time,
hence the structural change in the dynamic graphs can be fully detected
by dSBM and the analysis of documents does not bring any further in-
formation. This is the reason why the time ARI is equal to one for both
the approaches: the time structure can be recovered with or without the
analysis of documents. Since STBM cannot deal with dynamic graphs, the
C-VEM algorithm for this model is run on the static graph obtained by
aggregating the interactions/e-mails on the whole time horizon (Septem-
ber, 2001 - January, 2002). Despite of the structural change in the dynamic
graph (Figures 4.2a and 4.2b), the topics used for communications within
each community and between communities remain distinct on the whole
time horizon. This is the reason why STBM can correctly cluster nodes.
Similarly to STBM, the SBM model is run on the aggregated graph. Its
performance is poor since the community structure in C1 and the non-
assortative structure in C2 cancel each other out when aggregating inter-
actions over time.

Looking at the edge ARI, when aggregating interactions over time in-
formation is lost: this explains the edge ARI of 0.66 for STBM. The edge
ARI is slightly better for LDA which is applied to the whole collection of
documents (there is no aggregation).

Consider now the second setup B. Since the topic proportions are the
only time varying parameter, dSBM cannot see any time cluster (null time
ARI). Nonetheless, the persistent community structure allows it to recover
the actual node partition most of the time (node ARI of 0.98). A similar
result can be seen for SBM. Conversely, since each topic is alternatively
used for intra and inter community interactions (Figures 4.2c and 4.2d),
STBM suffers in recovering the actual node partition (node ARI of 0.5).
As explained before, the LDA model can be applied to the original set of
documents and in this case, not particularly noised, it performs very well.

The last scenario C is the hardest for dSBM. As in the previous case,
the topic proportions are the only time varying parameter and the time
clusters are not correctly detected by the model (null time ARI). More-
over, two clusters form a single community (Figures 4.2e and 4.2f) and are
only discriminated by the used topic. Hence the node ARI is never higher
than 0.7 for dSBM (and SBM too). Instead, in contrast with the previous
scenario, the inter-community topic (yellow color) is never employed for
intra-community interactions and STBM can recover the actual node par-
tition. Notice, however, that both STBM and LDA are performing worse
than dSTBM in clustering edges.

4.4.3 Model Selection

So far, the C-VEM algorithm for dSTBM was run on fifty simulated dy-
namic graphs for each setup and the actual number of groups K, time
clusters D and topics Q was assumed to be known. In real applications,
these three parameters must be estimated and this can be done for dSTBM
relying on the ICL model selection criterion developed in Proposition 4.4.
In terms of model selection, the third scenario C is by far the hardest to
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Setup C, ICL (dSTBM)
K/D 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 48 1 0 0 0

5 0 1 0 0 0 0

6 0 0 0 0 0 0

Table 4.3 – Frequency of selections by ICL for dSTBM (K, D, Q) on 50 simulated graphs
in the third scenario C. The actual values of (K, D, Q) are (4, 2, 3), respectively and the
actual value of Q is always selected by ICL and therefore it is not reported in the table.

deal with, due to the quite sophisticated dynamic graph structure. Hence,
we focus on this setup to assess the ICL criterion. The estimates of K, D
and Q, provided by ICL for dSTBM, are illustrated in Table 4.3. The actual
number of topics (Q = 3) is always detected by ICL and it is not reported
in the table. As it can be seen, the actual values of K and D are recovered
in 48 out of 50 cases.

4.5 Analysis of the Enron scandal

The famous scandal involving the energy company Enron Corporation
was publicized in October 2001. Two moths later, USA experienced the
largest bankruptcy failure up to that time. The first part of this section
describes the Enron data set we used, while the second part illustrates the
results obtained through applying the dSTBM model to the dataset.

4.5.1 Context and data

The Enron communication network is a popular data set containing all e-
mail exchanges between the 149 employees of the company. The original
dataset is available at http://www.cs.cmu.edu/~./enron/ and cover
the time horizon 1999-2002. The time window considered in the present
section spans from September, 3rd, 2001 to January, 28th, 2002, including
three key dates

1. September, 11th, 2001: the terrorist attacks to the Twin Towers and
the Pentagon (USA).

2. October, 31st, 2001: the Securities and Exchange Commission (SEC)
opened on investigation for fraud concerning Enron.

3. December, 2nd, 2001: Enron failed bankruptcy, resulting in more
than 4,000 lost jobs.

The selected time window is partitioned in weekly subintervals, thus cor-
responding to U = 21 weeks. As previously explained, the documents/e-
mails sent from i to j during each time interval Iu (a week) are aggregated
into a single document, obtained by concatenation. Each document is pre-
processed in a classical way: words are stemmed, very short words and
stop words are removed, punctuation and numbers are ignored.

http://www.cs.cmu.edu/~./enron/
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Figure 4.3 – Time clustering results obtained by ICL-dSTBM for the Enron data set
(Sept. 2001 - Jan. 2002). The black vertical line marks the day September, 11, 2001, the
blue vertical line marks the day October, 31st, 2001 (investigation opened by the SEC),
the red vertical line marks the day December, 2nd, 2001 (Enron’s bankruptcy).

Thus, each week is associated with a graph and one directed edge
of such graph, from i to j, corresponds to the e-mails sent from i to j
during the week. The whole dynamic graph is made of 4321 directed
edges, corresponding to the same number of exchanged documents. The
dictionary associated to these documents contains 49955 words.

4.5.2 Results

The VEM algorithm for dSTBM was run on this dataset for all values of
K, D and Q varying between 1 and 10, corresponding to 1000 runs and
ICL finally selected nine topics (Q = 9), six groups (K = 6) and four time
clusters (D = 4). For these values of K, D and Q the algorithm was run
several times, corresponding to different initializations and the clustering
results associated with the highest value of the ICL criterion were finally
retained.

In Figure 4.3, an histogram reports the frequency of exchanged e-mails
in the whole graph, each rectangle covers one week. Rectangles/weeks of
the same color are assigned to the same time cluster by dSTBM. Notice
that, although in dSTBM time intervals in the same cluster do not have to
be adjacent, the clustering reported in Figure 4.3 clearly detects four seg-
ments of adjacent time intervals and three corresponding change points,
one for each color change. It is worth noticing that the three change points
occur some days after the three key dates mentioned at the beginning of
the present section and represented in the figure by three vertical lines,
black, blue and red, respectively.

Figure 4.4 summarizes the main clustering results. Four graphs are
associated with the time clusters detected by the model. Each node in a
graph corresponds to a cluster of vertices and node sizes are proportional
to group membership probabilities π. Edge colors indicate the main topic
associated with group interactions. The larger the arrow is, the more fre-
quent the respective interactions are.

Some remarks can be made by looking at this figure.
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(a) Time cluster C1. (b) Time cluster C2.

(c) Time cluster C3 (d) Time cluster C4
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(e) Legend.

Figure 4.4 – Summary of the interaction intensities (λ, edge widths), group proportions
(π, node size) and majority topic for group interactions (edge colors) during each time
cluster.

.

1. Consider Group 4, consisting of 32 agents (mainly vice presidents,
CEOs and managers). The topic used by this group for internal com-
munications changes on each time segment: topic 9 in time clusters
1 and 4, topic 7 in time clusters 2, topic 8 in time cluster 3. Figure 4.5
shows the most representative words of each topic and can be used
in the attempt to understand the main theme of each topic. Topic 7
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Figure 4.5 – The 20 most representative words for each topic.

is discussed in details in the following. Topic 9 seems to be related to
trading activities, as the words "book","transferring" and "bid week"
suggest. The bid week, in particular, is the last week of the month
when producers sell their core production and consumers buy for
their core natural gas needs for the upcoming month. Topic 8 is very
difficult to decode. It seems to focus on TRV (Trader Report Viewer),
a project allowing traders to share their reports about particular is-
sues. For example, an e-mail dating November, 13, 2001 announced
to several employees that a report on West NG (West Virginia Nat-
ural Gas) prices was available. A "link from Excel" was provided in
the e-mail.

2. Topic 7 contains words like "afghanistan" and "taleban" and it is
clearly related to Enron activities in Afghanistan: Enron and the
Bush administration were suspected to work secretly with Talebans
before the 9/11 attacks. It is interesting to observe that this topic
appears in the graph during time cluster C2, starting on September,
24th, 2001, exactly two weeks after the 9/11 attacks.

3. Topic 5, only used for communication between clusters during the
time segment C2 is related to a backup plan developed to face pos-
sible work stoppages. In fact, some areas of the Enron Center North
building were put aside for recovery purposes and backup seats as-
signments were announced to employees in November 2001. Topic
5 as well as Topic 7 disappeared during the other time clusters.

4. Made of 18 components, with a similar composition of Group 4,
Group 6 mainly uses Topic 1 during the first three time clusters and
switches to Topic 4 after the company bankruptcy, during the fourth
segment. Topic 1 is related to the California electricity crisis in which
Enron was involved and which almost caused the bankruptcy of the
SCE-corp (Southern California Edison Corporation). Topic 4 seems
to be related to Netco, a set of trading activities bought by the Swiss
bank UBS after the Enron bankruptcy.

5. Group 5, 17 employees, looks like a real persistent community both
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(a) Time cluster C1.

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 
 

 
   

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

(b) Time cluster C2.
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(d) Time cluster C4.

Figure 4.6 – Clustering results obtained by ICL-dSTBM for the Enron data set (Sept.
2001 - Jan. 2002). Each graph corresponds to a time cluster.

in terms of interactivity pattern and used topic. This group focuses
during the whole time horizon on the technical Topic 3, about gas
deliveries (mmBTU are British thermal units).

Finally, Figure 4.6 shows four snapshots of the original Enron dataset.
Each snapshot is obtained by aggregating the interactions/e-mails over
the corresponding time cluster. Vertices of the same color are assigned to
the same cluster by the C-VEM algorithm and edges of the same color are
associated with the same majority topic on the considered time cluster.

4.6 Conclusion

We introduced in this chapter the dynamic stochastic topic block model
(dSTBM), a new probabilistic model aiming to cluster both vertices and
edges of a textual dynamic network. Moreover, relying on an external
time partition, it allows to uncover time clusters during which the graph
is stationary both in terms of structure (interaction frequency between
groups of nodes) and discussed topics. The inference procedure relies



4.6. Conclusion 115

on a classification VEM approach and an ICL model selection criterion is
developed in order to estimate the number of node groups, time clusters
and discussed topics. Numerical experiments on simulated data allowed
us to highlight the main features of the proposed methodology, which
proves to generalize several existing approaches. Finally, the application
of dSTBM to the Enron communication network leaded to meaningful
results.

Future researches could focus on a "clever" way to set a time partition,
either including this partition between the model parameters or adopting
a data driven choice (as done by Matias et al. 2015, for a dynamic SBM-like
model). Alternatively, the dSTBM model could be extended to deal with
overlapping clusters, allowing individuals to belong to multiple groups.
In this context, a starting point could be the mixed memberships SBM
(MMSBM, Airoldi et al. 2008).
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4.7 Proofs

4.7.1 Proof of Proposition 4.1

Proof. The VEM update step for the distribution R(Viju
n ), for all i, j, u and

n, is given by

log R(Viju
n ) = ER(Vri,j,u,n ,θ)[log p(W|V, X , β) + log p(V|X , Z, Y, θ)] + C
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+ C,

(4.15)

where the expectation is taken with respect to the distribution R(V, θ) con-
ditional on Viju

n to be fixed and C includes all the terms not depending on
Viju

n . The functional form of a multinomial distribution can be recognised
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n ) =M

(
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recalling that

Eθkgd [log θkgd] = ψ(γkgdq)− ψ(
Q

∑
q=1

γkgdq),

where ψ(·) denotes the digamma function.

4.7.2 Proof of Prososition 4.2

Proof. The VEM update step for distribution R(θ) is given by

log R(θ) = ER(V)[log p(V|X , Z, Y, θ)] + C
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(4.16)
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where C contains those terms not depending on θ. The functional form of
a Dirichlet distribution can be recognized

R(θ) =
K

∏
k,g

D

∏
d

Dir(θkgd; γkgd = {γkgd1, . . . , γkgdQ}),

with
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∑
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∑
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∑
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ZikZjgYudφ
iju
nq .

4.7.3 Derivation of the lower bound

Provided R(V, θ) given in Proposition 4.2 and Proposition 4.3, the func-
tional L̃(R(·); X , W, Z, Y, β) in (4.9) is given by
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where Γ(·) denotes the gamma function.

4.7.4 Proof of Proposition 4.3

Proof. The maximization of the functional in (4.9) with respect to β is con-
sidered at first. By isolating the terms depending on β and introducing Q
Lagrange multipliers accounting for the constraints ∑T(W)

w=1 βqw = 1, ∀q, we
obtain the following objective function

f (β) :=
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∑
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)
,

whose gradient can be easily computed and set equal to zero to find the
βqw in (4.10).

In a similar fashion, when optimizing with respect to π, the following
objective function is introduced

f (π) :=
N

∑
i=1

K

∑
k=1

Zik log πk + λ

(
K

∑
k=1

πk − 1

)
(4.17)

and its first derivative with respect to πk is set equal to zero to obtain the
stationary point in (4.12). The optimization with respect to ρ is analogous
and (4.11) is a consequence of the likelihood in (4.2).
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4.7.5 Proof of Proposition 4.4

Proof. A factorizing prior distribution being attached to the model
parameters, (λ, π, ρ, β), the integrated complete-data log-likelihood
log p(X , W, Z, Y|K, D, Q) can easily be written as

log p(X , W, Z, Y|K, D, Q) = log
∫

β
p(W|X , Z, Y, β, K, D, Q)p(β|Q)dβ

+ log
∫

λ
p(X|Z, Y, λ, K, D)p(λ|K, D)dλ

+ log
∫

π
p(Z|π, K)p(π|K)dπ

+ log
∫

ρ
p(Y|ρ, D)p(ρ|D)dρ,

(4.18)

where the dependency on (K, D, Q) is made explicit and the pair (V, θ)
is integrated out as in Section 4.3.1. Following the derivation of the ICL
criterion (Section 1.3.2), we rely on a BIC-like approximation of the second
term on the right hand side of the above equation to obtain

log
∫

λ
p(X|Z, Y, λ, K, D)p(λ|K, D)dλ ≈max

λ
log p(X|Z, Y, λ, K, D)

− K2D
2

log(NU(N − 1)).

Similarly the last two terms can be approximated as

log
∫
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π
log p(Z|π, K)− K− 1

2
log(N)

and

log
∫

ρ
p(Y|ρ, D)p(ρ|D)dρ ≈ max

ρ
log p(Y|ρ, D)− D− 1

2
log(U).

Notice that the last three approximations lead to the ICL criterion for
dSBM

ICLdSBM := max
λ

log p(X|Z, Y, λ, K, D)− K2D
2

log(NU(N − 1))

+ max
π

log p(Z|π, K)− K− 1
2

log(N)

+ max
ρ

log p(Y|ρ, D)− D− 1
2

log(U).

Notice also that the exact version of this criterion was maximized relying
on a greedy search approach in Chapter 2 for CdSBM.

Consider now the first term on the right hand side of (4.18). Recalling
that the documents W can be organized as W = (W̃kgd)k,g,d such that all
words in W̃kgd follow the same mixture distribution over topics, we adopt
the BIC-like approximation obtained in Bouveyron et al. (2016) corrected
by the number of documents in dSTBM

log
∫

β
p(W|X , Z, Y, β, K, D, Q)p(β|Q)dβ ≈ max

β
log p(W|X , Z, Y, β, K, D, Q)

− Q(T(W) − 1)
2

log(K2D).
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Since the first term on the right hand side of the above approxima-
tion is not tractable, it is replaced by its variational approximation
L̃(R(·); X , W, Z, Y, β), defined in (4.9), and the proposition is proven.





Conclusion

Due to the increasing amount of network data sets available, the sta-
tistical analysis of graphs is more and more developed. In this thesis we
focused on dynamic graph analysis. Two different definitions of dynamic
graph were provided, in continuous and discrete time, respectively. Both
the definitions were employed to develop new unsupervised methods to

1. cluster the vertices of a dynamic graph in classes of homogeneous
interactivity patterns and

2. detect structural changes in the way the node groups interact with
each other.

The building block of this thesis is the stochastic block model (SBM),
a mixture model that assigns the vertex of a graph to hidden, disjoint
groups. The probability that one edge occurs between two nodes only
depends on their groups and since no further assumption is formulated
about the interaction probability, SBM is a very flexible tool accounting for
different topological structures.

The original SBM (Holland et al. 1983, Wang and Wong 1987, Nowicki
and Snijders 2001) does not apply to dynamic graphs. Therefore, after il-
lustrating several approaches introduced in the literature to extend SBM to
dynamic graphs, in Chapter 2 we introduced our dynamic model, called
dSBM. In dSBM the vertices of a dynamic graph are grouped into hidden
clusters not time varying and the interactions between each pair of nodes
are modelled via a non-homogeneous Poisson process (NHPP) whose in-
tensity function only depends on the corresponding nodes clusters. All the
NHPPs are conditionally independent, given the groups. In a first time,
we focused on a discrete time framework by introducing a partition of the
whole time horizon. Interactions were aggregated on each time interval
of the partition and the intensity functions of the NHPPs were assumed
constant over hidden time clusters. Each time cluster contains some inter-
vals of the time partition. The time intervals in the same time cluster do
not have to be adjacent. The inference for dSBM is based on the greedy
maximization of the exact integrated classification likelihood (ICL). This
technique allowed us to perform clustering and model selection at the
same time.

In Chapter 3, dSBM was extended in order to model continuous time
dynamic graphs and not requiring any data aggregation. We developed
an exact algorithm for change point detection in graph data, based on the
pruned exact linear time (PELT) method for univariate time series and
we saw that a time segment can be seen as a time cluster only contain-
ing adjacent time intervals. A variational expectation maximization (VEM)
algorithm was used to estimate the model parameters and a BIC-based
criterion was employed for model selection.
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Finally, in Chapter 4 we focused on communication networks (e.g. so-
cial networks like Facebook, Twitter, etc.) and extended dSBM in order to
model such networks accounting for the annexed textual information. The
dynamic stochastic topic block model (dSTBM) we introduced associates
one interaction in a dynamic graph with an exchanged document. The
words of the document are assumed to follow a mixture distribution over
latent topics. Being a generalisation of the latent Dirichlet allocation (LDA)
method, our approach defines node groups that are homogeneous both in
terms of connection profiles and used topics. Moreover, a dynamic graph
is considered stationary on a hidden time segment if the interaction inten-
sities and the used topics do not change over the segment. A variational
EM was used for the inference and the number of topics, time clusters and
node groups was selected via an ad-hoc model selection criterion.

Perspectives

As mentioned in the previous chapters, there are several possible direc-
tions for future researches. Mainly:

1. For dSBM/CdSBM in discrete time it would be crucial to include
the time partition between the model parameters and infer the best
partition directly from the data. Furthermore, in order to make
the model more realistic, the assumption of common discontinuity
points should certainly be relaxed. Indeed, in real networks, some
external events could affect the behaviour of some groups uniquely.
Hence, we could imagine discontinuity points that are specific to
each pair of node groups and not common to the whole graph. Not
even in their number.

2. About dSBM in continuous time, we introduced an exact change
point detection algorithm that can be adopted to perform change
point analysis in graph data. The algorithm was speeded up via
pruning and in future work we will investigate in more details the
resulting computational complexity. In particular, it is crucial to un-
derstand if the complexity has an upper bound linear in U (for a
given K) and under what conditions.

3. One of the main drawbacks in the inference procedure for dSTBM
is the model selection, because the number of topics must be es-
timated in addition to the number of cluster and node clusters in
dSBM. Hence, it would be relevant to develop a faster model selec-
tion criterion, perhaps based on a greedy strategy as done in Chapter
2 for dSBM.
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