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Introduction

Tout ce qui était n’est plus ; tout ce qui sera n’est pas encore.
Ne cherchez pas ailleurs le secret de nos maux.

Alfred de Musset,
La Confession d’un enfant du siècle.

De la modélisation multi-fréquentielle

pour la prévision économique

La crise financière mondiale, la crise des dettes souveraines, les récessions qu’ont
endurées et qu’endurent aujourd’hui encore, en ce début d’année 2014, nombre de
pays parmi les plus riches, témoignent de la difficulté d’anticiper les fluctuations
économiques, même à des horizons proches. La prévision économique à court terme
à l’échelle macroéconomique dans un ensemble globalisé et interdépendant, est un
exercice aussi complexe qu’essentiel pour la définition de la politique économique et
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monétaire contemporaine. En effet, économistes, politiques, banquiers, journalistes,
citoyens, employés et employeurs, consommateurs, producteurs et investisseurs, tous
scrutent les conditions économiques actuelles, anticipées, espérées, prédites ou prévues,
et adaptent en conséquence leurs comportements, politiques et décisions. Ainsi, la
publication trimestrielle des chiffres du taux de croissance du Produit Intérieur Brut
(PIB), qui représente l’évolution de l’ensemble de la valeur ajoutée qu’une économie
produit durant une certaine période, tel que défini par la comptabilité nationale, attise
les passions et anime les débats. Bien que le PIB fasse l’objet de critiques, il constitue
aujourd’hui l’indicateur privilégié de la santé économique d’un pays et concentre à ce
titre l’intérêt premier des économistes et prévisionnistes. Les recherches effectuées ces
trois dernières années dans le cadre de la thèse de doctorat qui est présentée dans
ce manuscrit se sont attachées à étudier, analyser et développer des modélisations de
prévision. Nous identifions dans cette introduction les problématiques qui ont struc-
turé nos travaux.

Notre travail de thèse, qui débuta en 2011, intervient à la suite de la crise financière
2008-2009. Cette période, dont il fut espéré qu’elle soit celle de la reprise économique
après la récession, vit finalement poindre une nouvelle crise européenne. Le sauvetage
de la Grèce, la création de différents mécanismes européens (FESF puis MES), les aides
financières dispensées aux pays en difficultés en contrepartie de lourds plans de rigueur,
le pacte de stabilité renforcé, l’usage de politiques monétaires non conventionnelles par
la Banque Centrale Européenne : en Europe les évènements s’enchainèrent et la crois-
sance, bien que redevenue positive durant quelques trimestres en 2009, resta faible et
inégale jusqu’en 2014. Ces épisodes de récession mirent à mal les méthodes de mod-
élisations classiques qui n’arrivaient pas à anticiper de manière précise les fluctuations
proches des taux de croissance. Les modèles économétriques de prévisions reposent, en
effet, généralement sur des régressions qui cherchent à expliquer et à prédire une série
d’intérêt, dans notre cas la croissance économique, par un ensemble d’informations
contemporaines et passées. Les données disponibles sur lesquelles baser une analyse
prédictive n’ont jamais été aussi importantes mais toutes ne sont pas considérer de
manière équivalente. Les statistiques de l’industrie, de l’emploi, les enquêtes d’opinion,
les prix de matières premières, d’actions, d’obligations cotées en temps quasi continu,
les indicateurs du marché immobilier, sont autant de variables explicatives et de pré-
dicteurs potentiels de la croissance économique d’un pays. Discerner l’information
du bruit revient parfois à séparer le bon grain de l’ivraie. On remarquera toutefois
que les séries temporelles issues de l’économie réelle et financière ne présentent pas
les mêmes caractéristiques, tant au niveau de leur fréquence d’échantillonnage que de
leur apport prédictif. Se posent subséquemment des questions quant à l’utilisation de
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ces données : quelle agrégation temporelle est la plus judicieuse ? Quels indicateurs
sont à considérer ? Comment spécifier un modèle de prévision ? Quel horizon de
prévision est le plus adéquat ? Et si d’aventure, la modélisation que nous proposions
était empiriquement convenable, quelle interprétation économique donner à ses résul-
tats ? Quelle confiance devons-nous attribuer à ses prévisions ? Nos travaux de thèse
entendent apporter quelques éléments de réponse à ces questionnements.

Un ensemble d’informations hétérogène

L’ensemble des données économiques sur lequel baser un modèle de prévision est
vaste. La collecte des statistiques mesurant l’évolution des différents marchés de
l’économie est en effet institutionnalisée depuis longtemps dans de nombreux pays.
Afin d’identifier les variables explicatives essentielles à toute modélisation prédictive,
nous définirons tout d’abord trois grandes familles d’indicateurs économiques. (i) Tout
d’abord, les variables “réelles” (appelées hard data): il s’agit d’indicateurs mensuels de
l’activité économique tels que les statistiques d’emploi, données de consommation,
indices de production, etc. Elles reflètent de manière effective l’activité mesurée de
l’économie, et entrent, de manière indirecte, dans le calcul de la croissance. Ces vari-
ables sont donc par nature coïncidentes, en termes d’horizon optimal de prévision. (ii)
Les séries dites softs : ces données sont issues d’enquêtes de conjoncture, ou d’opinion,
réalisées mensuellement auprès des consommateurs ou des chefs d’entreprise. Celles-
ci entendent mesurer les conditions économiques actuelles voire les anticipations des
différents agents (propension à consommer, nouvelles commandes industrielles, etc.).
Celles-ci ont généralement tendance à être avancées par rapport au cycle économique.
(iii) Enfin, les variables financières, et plus généralement liées aux marchés financiers,
parmi lesquelles sont concernées : indices boursiers, obligations, prix de matières pre-
mières, taux d’intérêt, taux de change, etc. Les variables financières sont généralement
absentes des modélisations économétriques. En effet, celles-ci sont intrinsèquement
volatiles, il est donc difficile de discerner leur véritable apport prédictif d’un point
de vue macroéconomique. De plus, la fréquence temporelle des données financières
est presque continue et donc difficile à appréhender dans le cadre d’une modélisation
trimestrielle. Le lien entre sphère financière et économie réelle est toutefois patent,
en particulier durant la période récente: les sévères récessions que de nombreux pays
ont subies en 2009 sont en effet perçues comme les répercussions directes de la crise
financière et bancaire mondiale de 2008. Certains travaux de la littérature suggèrent
que ces séries financières peuvent être utiles lorsqu’elles sont correctement utilisées. La
volatilité des variables financières est notamment une mesure évidente de l’incertitude
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économique. La volatilité est une notion statistique bien précise, il s’agit d’une mesure
de l’amplitude des variations des signaux financiers, celle-ci n’est malheureusement
pas observable ou mesurable, elle est donc sujette à l’estimation d’un modèle. Nos
travaux considèrent la volatilité financière comme un indicateur prédictif des fluctua-
tions économiques futures.

Le choix des variables à privilégier dans le cadre de prévisions macroéconomiques est
délicat et dépend fortement de l’horizon de prévision. Il existe différentes méthodes
permettant de réduire l’ensemble d’information aux variables possédant une véritable
significativité statistique. La sparsité, qui caractérise un ensemble peuplé majoritaire-
ment de zéros, revêt dans ce cadre une importance tout particulière. Lorsque l’un
des éléments est nul, il n’est, par essence, pas statistiquement significatif. Un ensem-
ble sparse réalise donc indirectement une sélection des variables les plus importantes.
Cette technique est notamment envisagée dans le cadre de l’un de nos projets de
recherche sur la sélection de modèle pour la prévision économique.

Une temporalité particulière

La croissance, s’entend le taux de croissance du PIB réel d’un pays, est généralement
issue des comptes nationaux calculés par l’institut statistique du pays concerné et
est traditionnellement dévoilée trimestriellement. En France, le chiffre rendu public
par l’INSEE est un résultat comptable reposant sur les données de consommation,
d’investissement, de variations de stocks, d’exportations et importations, et représen-
tant la production de valeur ajoutée durant la période. Sa publication intervient de
manière retardée par rapport au trimestre en question et fait, de plus, l’objet de révi-
sions successives, ne délivrant un résultat définitif que plusieurs années plus tard. En
France, le chiffre de croissance est connu environ un mois et demi après la fin du
trimestre en question (e.g. mi-mai pour le 1er trimestre). Ce décalage dans le temps
n’a, en particulier, permis d’identifier la récession française débutée en mars 2008, qu’à
partir de novembre 2008. On mesure ainsi la nécessité d’anticiper précisément les fluc-
tuations à un horizon très court. Il ne s’agit plus de prévoir la période future mais bien
la période actuelle. En effet, les délais de parution et les révisions successives des séries
économiques ont même contraint les prévisionnistes à envisager des analyses prospec-
tives à des horizons intra-période, appelées nowcasting ; e.g. prévoir la croissance du
premier trimestre au mois de janvier. De telles modélisations sont définies de manière à
mobiliser l’information contemporaine disponible. Il convient de noter que les données,
issues des trois familles que nous avons décrites précédemment, à partir desquelles nous
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souhaitons construire une méthodologie prédictive sont certes nombreuses et probable-
ment informatives mais présentent des fréquences d’échantillonnages bien différentes.
Leur utilisation requiert donc l’élaboration de modélisations multi-fréquentielles adap-
tées. Ce schéma temporel particulier ne doit pour autant pas représenter un obstacle
à la modélisation mais bien constituer l’une de ses caractéristiques fondamentales.
Dompter cette temporalité constitue un véritable enjeu pour les économistes et une
gageure de notre travail de recherche.

Les approches théoriques ou empiriques que nous présentons sont généralement basées
sur des méthodologies de régressions linéaires classiques à ceci près que les variables in-
corporées sont de fréquences différentes, à savoir que notre série temporelle d’intérêt est
observée à fréquence basse (trimestrielle) et que les variables explicatives sont échan-
tillonnées à fréquence haute (journalière ou mensuelle). Nous raisonnons dans un pre-
mier temps de manière contemporaine, la notion de prévision n’intervient qu’une fois
le modèle établi. La situation est la suivante : pour expliquer une donnée trimestrielle
(par exemple celle du 1er trimestre disponible fin mars), on considère par exemple les
4 dernières données d’une variable réelle mensuelle (mars, février, janvier et décem-
bre), et les 6 derniers mois de données d’une variable financière journalière (au moins
20×6 = 120 données journalières d’octobre à mars). L’idée première serait de pondérer
chacune de ces valeurs par un coefficient que l’on estimerait, cette stratégie est inen-
visageable pour un problème de grande dimension : l’utilisation des deux variables
explicatives précédentes impliquerait l’estimation d’au moins 124 paramètres. Il s’agit
d’un problème récurrent avec des échantillons finis. La modélisation que nous pro-
posons cherche à concilier le mélange des fréquences d’échantillonnage et la parcimonie
nécessaire à son estimation. Dans la droite ligne de la littérature des modèles à re-
tards échelonnés, dont les travaux de Shirley Almon sont, selon nous, l’une des pierres
angulaires, la méthodologie MIDAS (de l’anglais Mixed Data Sampling), développée et
popularisée par Eric Ghysels et ses coauteurs, entend conjurer les divers problèmes de
modélisation que nous avons énumérés. L’idée est simple et pour autant innovante: les
poids présents devant chacune des données à haute fréquence, permettant l’agrégation
temporelle, sont liés par une fonction. Il ne s’agit donc plus d’estimer chacun de ces
poids mais les paramètres de cette fonction. Le problème d’optimisation sous-jacent
voit dès lors sa dimension réduite. Une telle méthodologie s’adapte ainsi automatique-
ment aux données qu’elle entend modéliser et informe, par la forme de la fonction, de
la capacité prédictive de celles-ci.

La thèse qui est présentée dans ce manuscrit entend étudier la modélisation tem-
porelle pour la prévision macroéconomique. Nous évoquons à cet effet dans un pre-
mier chapitre les éléments fondamentaux de l’économétrie. Nous abordons en effet
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la modélisation multi-fréquentielle telle qu’elle a été conçue et pensée, à la frontière
entre modèles à retards échelonnés et agrégation temporelle. Le deuxième chapitre
regroupe les résultats de deux travaux empiriques qui illustrent l’intérêt économique
de telles modélisations. Le premier montre l’apport prédictif macroéconomique que
constitue l’utilisation de la volatilité des variables financières en période de retourne-
ment conjoncturel. Le second traite de l’estimation en temps réel de la croissance
mondiale annuelle. Le troisième chapitre s’étend ensuite sur l’analyse bayésienne de
ces modèles à fréquences multiples. L’inférence bayésienne qui repose sur la déduction
de la probabilité d’un évènement à partir des probabilités d’autres évènements déjà
connues est en effet au coeur de nos recherches. Nous explorons notamment par ce
biais de nouvelles méthodes d’estimation, de sélection de modèles, et nous présentons
un travail empirique issu de l’adjonction d’une volatilité stochastique à notre modèle.
Enfin, le quatrième chapitre apparait comme une conséquence et une suite logique des
travaux menés jusqu’alors. Il s’agit d’une étude des techniques de sélection de vari-
ables à fréquences multiples dans l’optique d’améliorer la capacité prédictive de nos
modélisations. Diverses méthodologies sont à cet égard développées, leurs aptitudes
empiriques sont comparées, et certains faits stylisés sont esquissés. Cette dernière
étude achève ainsi cette thèse, mais ouvre de nombreuses perspectives et présage de
nouvelles recherches.
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On mixed-frequency modeling

and economic forecasting

Economic downturn and recession that many countries experienced in the wake of the
global financial crisis demonstrate how important but difficult it is to forecast economic
fluctuations, especially within a short time horizon. Economists, politicians, bankers,
journalists, employees and employers, consumers, producers and investors, all tried
hard to decipher economic conditions - both current and anticipated - in order to best
adjust their economic behavior. Thus, the quarterly publication of the Gross Domestic
Product (GDP), which represents the evolution of the aggregate values added within a
given time period always attracts public attentions and incites debates. Notwithstand-
ing subject to criticisms, the GDP constitutes a main indicator of economic health of
a country and as such constitutes the primary interest of economists and forecasters.
The doctoral dissertation conducted over the past three years studies, analyses and
develops models for macroeconomic forecasting. This introduction aims at identifying
the main issues that have motivated our research works.

Our doctoral research began in 2011 in the wake of the 2008-2009 financial crisis. By
then, the world economy went through a "double dip" instead of heading towards a re-
covery path as many economists had previously forecast. Due to the unexpected shock
of the European sovereign debt crisis, the economic outlook in Europe was especially
unpredictable and has been weak even until today. A number of audacious actions
have been, however, taken to put the European economies back on track: bailout
of Greece, creation of the European crisis mechanism (EFSF then ESM), financial
support provided to countries under financial strain with heavy austerity measures
counterpart, reinforcement of the European financial stability pact, the use of uncon-
ventional monetary policies by the European Central Bank. Recent economic events
have cast serious doublets on standard methods of economic prediction which failed
to provide accurate economic snapshot and forecast for policymaking in time of crisis.
In fact, econometric forecasting models are usually based on regressions that seek to
explain and predict a variable of interest - the economic growth rate in our studies -
through a range of contemporaneous and historical information. However, the volume
of available data for economic forecasting is huge. An important achievement would be
to determine the more relevant indicators from: industrial figures, employment statis-
tics, opinion surveys, prices of commodities, stocks, bonds quoted in quasi-continuous
time, indicators of real estate market, etc. These time series can potentially be ex-
planatory variables to predict economic growth but they also can contain noise. To
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only extract relevant information from these variables is as difficult as to separate the
wheat from the chaff. It can also be noticed that time series coming from real and
financial economy do not have the same characteristics, both in terms of sampling
frequency and predictive power. To most efficiently these time series of different fre-
quency for our forecasting models requires us to think about the following questions:
what is the most adequate temporal aggregation strategy? Which indicators should
be considered? How to specify a forecasting model? Which forecasting horizon to be
consider? What is the economic interpretation of forecasting results? What confidence
level should be used? Our thesis aims to provide some answers to these questions.

A set of heterogeneous information

The set of information coming from economic activity is vast and disparate. The
collection of data measuring the performance in every market of the economy has
indeed been institutionalized for many years in many countries. In order to iden-
tify variables which are essential to predictive modeling, we first define three major
types of economic indicators. (i) Real data (also called hard data): monthly indicators
of economic activity, such as employment figures, consumption data, production in-
dices, etc.. They reflect realized economic activity and are used to calculate economic
growth rate. These variables are coincident with the business cycle in terms of optimal
forecast horizon. (ii) Soft data: These data usually from opinion surveys conducted
in a monthly basis with consumers or producers. The soft data measure economic
agents’ perception of current economic conditions or their expectations (propensity to
consume, new orders, etc.). These variables generally lead economic cycles. (iii) Fi-
nancial data are more generally related to financial markets: stock indexes, bonds,
commodity prices, interest rates, exchange rates, etc.. The financial data are generally
less frequently used in macroeconomic forecasting models. Indeed, financial data are
inherently volatile and therefore it is difficult to discern their real predictive input from
a macroeconomic point of view. In addition, the temporal frequency of financial data
is almost continuous and hence difficult to use in the context of a quarterly modeling.
However, the macro-financial linkages are obvious, especially during the recent period:
the severe recessions that many countries has experienced since 2009 are indeed seen
as the direct result of the global financial and banking crisis of 2008. Moreover, the
volatility of financial variables - magnitude of changes in financial signals - is often
considered as a measure of economic uncertainty. Unfortunately, the volatility is not
observable or measurable, it requires the specification of an adequate modeling. Our
works consider financial volatility as a predictor of future economic fluctuations.
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For macroeconomic forecasting, how to choose explanatory variables from the above
mentioned three types of data, is tricky and heavily depends on the forecast horizon.
There is a dilemma regarding this choice: on the one hand we want to include as much
explanatory variables as possible to increase the predictive power of the model; on
the other hand, facing the limited sample size, we need to care about model sparsity.
There exist various methods to reduce the information set with respect to statistical
significance. The sparsity, that characterizes a set populated primarily with zeros,
is an important concept which indirectly carries a selection of the most important
variables. In fact, when one element in the set is equal to zero, this means that it is
not statistically significant. This technique is used in one of our research projects on
model selection for economic forecasting.

A problem of temporality

The economic growth, i.e. the growth rate of real GDP of a country, is related to
national accounts and hence usually computed in a quarterly basis by national sta-
tistical institutes. In France, economic growth released by INSEE is calculated using
data on consumption, investment, changes in inventories, exports and imports. It
represents the sum of the values added during a certain period. Thea data release of
the GDP growth in a given quarter is lagged and subject to ex-post revisions until the
final evaluation is provided several years later. In France, the first release of the GDP
growth estimate occurs about a month and a half after the end of that quarter (e.g.
mid-May for the first quarter). For instance, the recession started in March 2008 in
France while the GDP data only confirmed that in November. This situation proves
the necessity to precisely anticipate economic fluctuations even at very short horizons.
It requires consideration of the current period as specific range of prediction. Indeed,
due to the publication delay and the subsequent revisions, forecasters have developed
intra-period forecasting techniques. This is called nowcasting, namely to predict the
growth rate in first quarter in January. Such models are designed to take into ac-
count available contemporaneous information. However, notice that the real, soft and
financial data presented above are usually sampled at various frequencies. To fully
explore information contained in these data requires developing models compatible
with mixed-frequency framework. Nevertheless, this specific temporal pattern must
not be an obstacle to the modeling but rather constitutes one of its fundamental char-
acteristics. Dealing with this temporality issue is a real challenge for economists and
a motivation of our research.
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Theoretical and empirical approaches that we propose are generally based on standard
linear regressions methodologies using variables with different frequencies: while the
target variable is observed at low frequency (usually quarterly), explanatory variables
are sampled at higher frequencies (daily or monthly). Here is a concrete example of
our general forecast methodology: to explain the first quarter GDP growth rate at
the end of March, we shall consider any real variables available since December of last
year (March, February, January and December) as well as financial variables available
since last October(financial data are sampled at daily frequency thus have at least
20 x 6 = 120 data points). Parametrizing linear regression in such context would
imply the use, and the estimation of at least 124 parameters, that can be a problem
in finite samples. Therefore short-term forecasting models should both allow the use
of mixed frequency data and parsimony. In line with the literature of distributed lag
models of which Shirley Almon’s work is, in my opinion, a cornerstone, the Mixed-Data
Sampling (MIDAS) methodology has been developed and popularized by Eric Ghysels
and his coauthors in the last decade to suit these purposes. In fact, the underlying
idea is simple but innovative; weight coefficients that allow the temporal aggregation of
high-frequency data rely on a function with a small number of parameters. Those are
estimated as part of the whole optimization process. Such data-driven methodology
exploits the predictive ability of our set of information to improve empirical results.

The PhD thesis dissertation aims at investigating mixed-frequency modeling for macroe-
conomic forecasting. The first chapter is dedicated to time series econometrics within
a mixed-frequency framework. In particular, we examine distributed lag models and
temporal aggregation schemes and introduce the MIDAS methodology. The second
chapter contains two empirical works. The first study sheds light on macro-financial
linkages by assessing the leading role of the daily financial volatility in macroeconomic
prediction during the Great Recession. The second proposes a real-time monthly indi-
cator of global economic outlook using nowcasting methodology. Both studies illustrate
the macroeconomic forecasting power of mixed-frequency models. The third chapter
extends mixed-frequency model into a Bayesian framework. Indeed, the Bayesian
inference, which is basically based on the deduction of the probability of an event
using the probabilities of other events, is of a particular interest for our research. We
explore model selection through Bayesian methods of estimation and present an em-
pirical study using a stochastic volatility augmented MIDAS model. The fourth chap-
ter focuses on variable selection techniques in mixed-frequency models for short-term
forecasting. We address the selection issue by developing MIDAS-based dimension
reduction techniques and introducing two novel approaches using either a method of
penalized variable selection or a Bayesian stochastic search variable selection. These
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features integrate a cross-validation procedure that allows automatic in-sample selec-
tion based on recent forecasting performances. Our model succeeds in constructing an
objective variable selection with broad applicability.
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Chapter 1

Economic modeling with
mixed-frequency data

The Great Recession has led many governments in developed economies to strongly
adapt their monetary and fiscal policies, especially by using unconventional policy
tools. Those events have therefore heightened the interest of economists in under-
standing and above all in preventing downturns and recessions. Practitioners and
forecasters have especially emphasized the necessary re-assessment of the usual econo-
metric models and hence their ability to really anticipate the business cycle. Ng and
Wright (2013) particularly emphasized that "this Great Recession is important not
only because of its impact on the economic well-being of consumers and firms, but also
because it once again led econometricians and macroeconomists to question the ade-
quacy of their analysis. [...] It has involved a full-blown financial crisis that brought
the role of financial markets back to center-stage of business cycle analysis". In this
thesis we propose to study the econometrics of short term macroeconomic forecasting
and more specifically focus on mixed-frequency modeling involving financial data. In
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this respect, we will introduce the main concepts, consider the literature, develop some
new tools and discuss their efficiency with several empirical exercises. A key element
in macroeconomics modeling is the time structure that makes the whole economy con-
sistent. For instance, we can frequently observe a time lag between a policy decision
or an economic event and their relative effects in the national accounts main aggre-
gates data. That can be due to different causes: the structure of the economy, the
international outlook, or perhaps just the availability of data. In this context, taming
this specific temporal scheme is the essence of any macroeconomic forecasting model.

In order to track the variable of interest {yt}t, we base our regression model on one
or several variables supposed to be informative and relevant, that we denote {xτ}τ .
An increase of the industrial production (xτ = IPτ ) inevitably leads to an expansion
of the Gross Domestic Product (yt = GDPt). Yet, the effect of such increase may be
either lagged, gradually diffused or inexistent depending on other factors (economic
structure). Moreover, the facts that various economic time series are sampled at
different frequencies prevents an efficient use of available data. We propose in this
chapter to discuss those issues by reviewing the econometrics of mixed-frequency data.

1.1 Distributed lag models

In this section we discuss the econometrics of distributed lag models. We first consider
that {yt}t and {xτ}τ are two stationary time series processes observed at different fre-
quencies. The gap between those two frequencies is defined using the coefficient κ
such as t = τκ; thus, κ<1, xτ is observed at an higher frequency than {yt}t. Further-
more we define xκt := xτκ. For instance, if we consider the quarterly GDP growth as
the dependent variable {yt}t and one monthly explanatory variable {xτ}τ , we get a
frequency gap coefficient κ equal to 1/3.

For all t, we assume that yt is not only determined by xκt but also by a weighted sum of
the K past values of the explanatory variable: {xκt−(K−1), . . . , x

κ
t−1, x

κ
t }. In such case,

we obtain a regression model that involves distributed lags which is of the form

yt =
K−1∑
k=0

wk x
κ
t−k + et, (1.1)

where we assume that every element of xt is independent of the stochastic process et.
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Considering a finite number of lagged xt requires the choice of a lag length K and sets
wk = 0 when k > K. The length of the lag may be known, defined via a cross validation
procedure, or assumed to be infinite. Notice that when K is too large, least squares
do not allow estimation of the equation (1.1). An infinite number of parameters in the
model would require further assumptions to allow a tractable specification.

In contrast, the fact that K is greater than one relies on a more general and under-
lying hypothesis. Indeed, it is assumed that the impact of the dependent variable to
the independent variable does not only affect a single point in time but it may be
distributed over a certain number K of future points in time. Although this lagged
effects assumption seems reasonable since the equation mixes sampling frequencies, it
involves strong economic postulates on the structure of the lag effect. In macroeco-
nomics, its shape can particularly have a direct interpretation: it can represent an
institutional constraint, a habit persistence or an expectational effect and hence may
be considered as a real stylized effect. Finally, it can be noticed that the frequency
of the explanatory variable does not really matter in this regression equation (1.1).
That can be either greater, lower or equal to the standard imposed by the variable
of interest yt. In this respect, the use of κ as the fraction of time associated to the
possible temporal gap is more informative than mathematically necessary. We will
focus on temporal aggregation methods and their econometric consequences later on
in this chapter.

Shirley Almon reviewed in her thesis defended at Harvard in 1964 the main contri-
butions of this field, especially Koyck (1954), Eisner (1960) and Solow (1960), and
developed new techniques in econometrics of distributed lag. Almon (1965) published
a part of her PhD thesis in Econometrica in which she proposed a polynomial dis-
tributed lag structure that would become the main reference in distributed lags:

wk =

p∑
j=0

θjk
j, where k = 0, . . . , K − 1, (Almon)

As long as the polynomial order p is substantially lower than K, this method con-
stitutes a parsimonious approximate fit to least squares estimates, whose estimation
is simple. The polynomial Almon allows the use of an intercept coefficient θ0. As-
suming that the et is a normally distributed white noise process WN (0, σ2), we have
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Y = Xβ + e = XQθ + e where

Y =

y1

...
yT

 , X =

xK xK−1 · · · x1

...
...

...
xT xT−1 · · · xT−K+1

 , θ =

θ1

...
θp

 ,

and Q =


1 1 · · · 1

2 22 · · · 2p

...
... . . . ...

K K2 · · · Kp

 . (1.2)

By applying least squares on the Almon polynomial as defined by (1.2), we obtain the
estimator θ̂ = ((XQ)′(XQ))−1 (XQ)′Y , and as a consequence the estimator β̂ = Qθ̂

which follows the normal distribution N
(
β, σ2Q ((XQ)′(XQ))−1Q′

)
. It has been em-

phasized by Shiller (1973) that the Almon distributed lag technique relies "on a polyno-
mial of known degree, over a known interval, but with unknown coefficients". Indeed,
this method could be plagued by model misspecifications regarding its polynomial
degree (usually small) and its projection space (usually R+). Yet, Teräsvirta (1980)
showed that those exogenous prior specifications can sometimes improve estimation
accuracy, specially when facing small samples, large model error variance, and smooth
lag function. That is rather common when dealing with macroeconomic issues.

Many papers have later on studied statistical specifications of the Almon lag technique,
we refer among others to Schmidt and Waud (1973) and to Schmidt and Sickles (1975).
Shiller (1973) proposed a Bayesian way to introduce a finite distributed lag model with
stochastic coefficients. He suggested to use priors on linear combinations of parameters
to overlook erratic shapes like tidy smooth curves produced by polynomial lag models,
especially the Almon form. Dhrymes (1971) and Sims (1974) provided surveys on
distributed lag models. The book of Judge et al. (1985) also represented an important
contribution to the literature (chapters 9 and 10 are dedicated to finite and infinite
distributed lags). Recently, Ghysels et al. (2002) have conceived up-to-date distributed
lag models by developing the MIDAS standing for MIxed DAta Samping which can
be viewed as a generalization of the Almon technique. Those will be introduced in
Section 1.3 and studied in detail in this thesis.
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1.2 Temporal aggregation

Difference in sampling frequency emerges as a recurrent problem in the context of
short term forecasting. Since we focus on predicting economic growth which is usually
quarterly (or yearly), we obviously base the analysis on pertinent variables regardless
of their sampling frequencies. Most series about real economic activity, as the produc-
tion indices, opinion surveys, data on new orders, job statistics and price indices are
monthly sampled. The situation is displayed in the Figure 1.1.
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Figure 1.1: Temporal scheme

We define t as the time index for the lowest sampling frequency (quarterly for ex-
ample) and τ as the highest frequency (monthly in this setup 1.1). Thus, the issue
of the underlying temporal aggregation of the distributed lag matter arises. In fact
when dealing simultaneously with monthly and quarterly variables, a standard way to
proceed is to temporally aggregate the high frequency variable in order to assess de-
pendence between variables sampled at the same frequency. This strategy transforms
a high frequency series {xτ}τ into a low frequency process {xt}t using an adapted ag-
gregation method. In order to comply with macroeconomic conditions, we assume that
data are available at the earliest at the end of the month depending on the publication
schedule.

1.2.1 Aggregation schemes and bridge equation

The standard aggregation methods are stock or flow depending on the nature of the
variable. From those two aggregating schemes, we derive five cases:

(i) Stock aggregation is defined as

xt = {xt}t = {xτκ}τ , (1.3)

In the case described by Figure (1.1) in which we aggregate monthly data to
obtain a quarterly series, κ is equal to 1/3. Stock aggregation retained only one
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third of the elements in xτ . This technique particularly suits data series in level,
for instance expressed in dollars (GDP, money stock, etc.), in terms of people
(population, census, etc.) or in goods.

(ii) Flow aggregation is of the form

xt = {xt}t =

{
κ−1∑
i=0

xτκ+i

}
τ

, (1.4)

When the elements of x are flow variables, the aggregated process is made of
(partial) sums of the disaggregated ones. Flow magnitudes include spending,
saving, or income. Stock and Flow aggregation techniques are the two main
ways of thinking about temporal aggregation. The next two methods are directly
derived from flow aggregation.

(iii) Averaging relies on a particular flow scheme defined as

xt = {xt}t =

{
κ−1∑
i=0

1

κ
xτκ+i

}
τ

, (1.5)

This technique corresponds to an average sampling. This scheme is for instance
adapted to rate and index series (like opinion surveys on household spending or
business climate).

(iv) Weighted averaging is straightforwardly defined as

xt = {xt}t =

{
κ−1∑
i=0

wi
κ
xτκ+i

}
τ

, (1.6)

where w1 + . . . + wκ = 1. This strategy can be assimilated to a distributed lag
method as defined in (1.1) with K = κ.

(v) Mariano and Murasawa (2003) argued that, in the case of the temporal aggrega-
tion of the quarterly GDP, this time series is a geometric mean of latent monthly
random sequence. They therefore proposed a specific weighting scheme based on
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three-period differences as follows

xt =
1

3

(
xt + xt−1/κ + xt−2/κ

)
+

1

3

(
xt−1/κ + xt−2/κ + xt−3/κ

)
+

1

3

(
xt−2/κ + xt−3/κ + xt−4/κ

)
=

1

3
xt +

2

3
xt−1/κ + xt−2/κ +

2

3
xt−3/κ +

1

3
xt−4/κ

This strategy relies on some strong economic assumptions and provide a specific
aggregation scheme that should be used carefully.

Then, in a second step, the aggregated time series are simply incorporated into a
regression model (or even a distributed lag model). This bridge equation links the
low-frequency variable yt and the time-aggregated variable xt as follows:

yt = β0 + β1xt + et (1.7)

Yet, in the context of macroeconomic forecasting, last values of the time-aggregated
process may be unobserved. Short-term forecasting method usually involves all the
available information and thus faces "the real-time data flow" described by Banbura
et al. (2012). In fact, the time of the last available observation can differ from series to
series. This important feature of real time analysis is due to publication delays. That
is referred to as the ragged-edge of the information set. As an example, in France,
the first quarterly GDP estimate is released approximately 45 days after the end of
quarter. This situation is roughly the same in others countries (∼ 30 days for US
and UK, ∼ 45 days for Germany, ∼ 50 days for Japan). Moreover, this permanent
lag emphasizes the importance of short term forecasting especially in terms of policy
implication. That vicious circle situation involves predictive models which can deal
with this feature. We will see that there exist different ways to make forecasts in this
context.

1.2.2 Direct vs. iterated approach

We distinguish two predicting approaches: the direct forecasting method which con-
sists in a horizon-set estimated regression and the iterated multistep method, which
iterates forward to the horizon a one-period ahead forecasts. Those two schools of
though are opposed. While iterated forecasts are theoretically more efficient if the
one-period ahead model is well specified, direct forecasts are more robust to model
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misspecification. In this respect, Chevillon (2007) proposes an overview of the whole
literature on this topic; another interesting work is the paper of Marcellino et al.
(2006) that focuses on the empirical comparison of both methods for macroeconomic
forecasting purposes.

We define h the forecasting horizon in the lower frequency time units (the same as
t) and denote the h ahead prediction by t+ h|t. As proved in Hamilton (1994), the
forecast of yt at t+h that minimizes the Mean Square Error is the expectation of yt+h
conditional on Ft:

ŷt+h|t = E[yt+h|Ft] (1.8)

where the σ-field Ft represents all the information available at time t.

The relationship of interest at the hth horizon described in (1.8) is the Direct multi step
method. It involves a direct estimate of the horizon specific model. By contrast, the
iterated procedure relies on multiperiod ahead one-step estimation defined as follows:

ŷt+1|t = E[yt+1|Ft]
ŷt+2|t = E[yt+2|Ft+1]

...

ŷt+h|t = E[yt+h|Ft+h−1] (1.9)

Despite the fact that those iterated single-period models can not be too badly mis-
specified because of the proximity to the forecasting target, this strategy gradually
leads to an increase in the variance compared to the direct multi-step estimator of the
forecast. Those methods have each their advantages and disadvantages depending on
the horizon and the stochastic properties of the data. In our works, we will consider
the direct multistep procedure, the iterated method will be explored in future research.

1.2.3 Forecasting with model-based aggregated data

In a multifrequency setup, the iterated multistep forecasting method is a two steps
procedure that requires first or model-based temporal aggregated series to be plugged
then into a bridge equation to obtain the forecasts. In fact, the explanatory variables
are first expanded using generally forecasting equation associated to linear model (AR,
ARMA or even vector autoregressive models in the multivariate case) to fill the missing
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(unobserved) values of the period. The temporal aggregation of ARMA processes
has been widely studied in the literature forecasting literature, we refer to Abraham
(1982) and Lütkepohl’s work (see Lütkepohl, 2007). Formally, assuming that the
process {xτ}τ of high frequency variables has a VAR(r) structure such that xτ =

ν +A1xτ−1 + · · ·+Arxτ−r + ητ , we forecast x̂t = x̂τ/κ using the direct procedure (1.8)
such as follows

x̂t = E[xt|Ft−1] = E[xt|{xs|s < t}]. (1.10)

Then, data are aggregated to the lowest frequency, in order to obtain conditions to the
linear regression, namely the bridge equation, from which one gets forecasts. Thus,
assuming that the aggregation is just a flow aggregation, we have xt = 1

3
xt−2 + 1

3
xt−1 +

1
3
x̂t. Then, using the direct forecast specification within bridge equation (1.7), that

forwardly gives ŷt+h|t = β̂0 + β̂1 xt, where β̂0 and β̂1 are OLS estimates.

Nevertheless, Marcellino (1999) shown that the use of temporally aggregated data can
lead to a loss of economic properties, such as Granger-causality, structural invariance
or cointegration. Grigoryeva and Ortega (2012) have proposed a large review of fi-
nite sample forecasting methods and have developed a new "hybrid" scheme for the
forecasting of temporal aggregates coming from ARMA processes. It consists in using
high frequency data for estimating the model and in making prediction based on the
corresponding aggregated model and data. The model parameters are therefore esti-
mated using all the information available with the bigger sample size provided by the
disaggregated data. In many cases, aggregation based approaches lead unfortunately
to a loss of information due to either exogenous specifications far from data reality or
errors accumulation (from the multistep procedure).
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1.3 MIDAS regression models

Gathering both distributed lags and temporal aggregation literature and introducing
some new generalization features, Ghysels and his coauthors have developed the MI-
DAS (Mixed Data Sampling) regression model. The MIDAS aims at accommodating
the temporal aggregation by using a specific class of time series models that involves
parsimony and flexibility. Derived from the distributed lag models technique, this
novel econometric tool is based on both a regression structure and a weight function
which tracks the high frequency lags of the explanatory variables.

In the same context as the equation (1.1), the MIDAS aims at explaining yt using the
lags of the explanatory variable xκt sampled at the frequency tκ; it can be written as
follows:

yt = β0 + β1mK(θ, L)xκt + εt. (MIDAS)

We notice that the MIDAS combines usual linear regression features with an aggre-
gation structure defined by the function mK . Ghysels et al. (2002) and Ghysels et al.
(2007) showed that both the intercept β0 and the variable coefficient β1 can easily
hold some helpful empirical interpretations. The idiosyncratic term εt stands for the
residuals. We will now focus on the MIDAS kernel function mK , on its specifications
and its estimation.

1.3.1 Almon function and weighting scheme

The kernel function mK is specify with respect to a parameter θ and to the past
values of xκt . We define the lag operator as Lkxκt = Lkxτκ = xt/κ−k. The number of
lags K is exogenous; as we already discussed in the previous sections, the choice of K
may be statistically tested or empirically assessed. The parameters family {β0, β1, θ}
is estimated (estimation techniques will be discussed later on). However, it can be
noted that the presence of the β1 coefficient implies that the function mK provides
normalized weights for the K past values of xt. We define:

mK(θ, L) :=
K−1∑
k=0

ϕ(k, θ)∑K−1
l=0 ϕ(l, θ)

Lk. (Weigth function)
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This expression of the Weigth function is the common form of the MIDAS as it has been
popularized over the last decade. Many parametrizations of this weight function have
been proposed depending on the number of coefficients or the shape of the function ϕ.
Models for mixed-frequency data has been recently reviewed by Foroni and Marcellino
(2013b). One can notice that the Almon expression, that combines equations (1.1)
with the Almon form, is a specific case of the MIDAS that can be written as:

β1mK(θ, L) =
K−1∑
k=0

(∑
j

θkk
j

)
Lk (1.11)

The recent MIDAS literature initiated by Ghysels et al. (2002) has preferred non-linear
expressions for the weight function including mainly two forms: the Beta lag and the
exponential Almon lag function. Those are defined below:

− The normalized Beta probability density function is defined as follows:

ϕ(k, θ) = ϕK(k, θ1, θ2) =
k
K

θ1−1 (
1− k

K

)θ2−1
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
(1.12)

where Γ(θ) =
∫∞

0
e−xxθ−1dx. The size of the polynomial p is defined with respect

to both regression performances and parsimony. Note that the Beta lag form al-
lows interesting features depending on its specification. For instance, restricting
the argument size of the function (1.12) to a unique parameter θ1 amounts to
imposing decreasing weights values. This weighting scheme which incorporates
only one hyper parameter θ1 is of the form

ϕ(k, θ) = ϕK(k, θ1) = θ1(1− k)θ1−1 (1.13)

In terms of economic interpretation, downwards sloping property can represent
a desirable feature especially in a direct multistep forecasting setup.

− Another popular expression of the MIDAS weight function is the exponential
Almon lag form, which can be written as:

ϕ(k, θ) = ϕ(k, θ1, . . . , θp) = exp

(
p∑
j=1

θjk
j

)
(1.14)

That formula is derived from the Almon function in a straight forward way.
Using exponential function forces the weights to be positive (see Judge et al.,
1985). The exponential Almon function is specified in the literature with two
parameters (p = 2 in equation (1.14)): ϕ(k, θ1, θ2) = exp (θ1k + θ2k

2) .
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Those two forms provide a flexible and parsimonious data-driven weights scheme that
involves a small set of parameters and hence is fully adapted to small samples. Fig-
ure 1.2 exhibits different shapes of the exponential Almon lag weight function with
respect of the choice of its two parameters θ = (θ1, θ2).

Figure 1.2: Exponential Almon lag weighting structure of the MIDAS with K=12

Kvedaras and Zemlys (2012) have proposed a test for the evaluation of statistical
acceptability of a functional constraint which is imposed on parameters in the MIDAS
regression. Andreou et al. (2010) have also put forward a test to examine if equal
weights in aggregating time series are suitable in a mixed-frequency regression model.

1.3.2 The MIDAS NLS estimator

We assume that the disturbance term εt is normally distributed with density given by

F (εt) =
1√
2πσ

exp

(
− ε2

t

2σ2

)
(1.15)

Henceforth, we denote by φ the family of the unknown parameters, i.e. φ = {β0, β1, θ, σ}
and we define Xt(φ) = X (φ, xt) = β0 + β1mK(θ, L)xκt . Assuming that the sample size
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is T , for all t = 0, . . . , T , the conditional probability distribution of yt is therefore
given by:

F (yt|xt;φ) =
1√

2πσ2
exp

(
−

T∑
t=1

yt − (β0 + β1mK(θ, L)xt)

2σ2

)
,

=
1√

2πσ2
exp

(
−

T∑
t=1

yt −Xt(φ)

2σ2

)
(1.16)

The log-likelihood function can be written as:

lnF (Y |φ) =
T∑
t=1

lnF (yt|xt;φ) =
1

2
ln 2π − T

2
lnσ2 − T

2σ2

T∑
t=1

(yt −Xt(φ))2 ,

(1.17)

which is maximized with respect to φ. However, in the context of the non linear
regression model, it can be noticed that the min/max-imization problem (like the
Newton-Raphson algorithm) are simplified by expressing σ̂2 as a function of β̂ and θ̂.
That is achieved by solving the first order condition for σ̂2 which has the solution:

σ̂2 =
1

T

T∑
t=1

(
yt −Xt(φ̂)

)2

. (1.18)

Thus maximising the log-likelihood function leads to redefining the unknown param-
eter vector as φ = {β0, β1, θ} ≡ {β, θ}.

This likelihood is maximized when the sum of squared residuals S(φ) = (yt −Xt(φ))2

is minimized:

φ̂ = arg min
φ

S(φ) (1.19)

Then, differentiating S(φ),

∂S(φ)

∂φ
=
∂ (yt −Xt(φ))2

∂φ
= −2 (yt −Xt(φ))2 ∂ (yt −Xt(φ))

∂φ
(1.20)

Setting the partial derivatives equal to 0 produces equations that determine the re-
gression coefficients. There is no closed-form solution to the nonlinear least squares
problem. We use instead numerical algorithms to find parameters value which mini-
mize 1.191.1 . Nevertheless the nonlinear least square estimator has some asymptotic

1.1 Gradient formula in the case of the exponential Almon lag function is provided in
Appendix A.
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properties. Assuming that the gradient of ∇Xt(φ) =
[
∂Xt(φ)
∂φ

]
exists, the MIDAS non-

linear least square estimator φ̂ is asymptotically1.2 normal:

√
T (φ̂− φ)

d−→ N
(
0, σ2 E[∇Xt(φ)∇Xt(φ)′]−1

)
(1.21)

This result has been rigorously proved by Jennrich (1969)1.3 . We refer to Judge et al.
(1985), Chapter 6, for further details in nonlinear statistical models. In fact, MIDAS
regression models are usually estimated using standard iterative optimization. The
nonlinear specifications ϕ require numerical optimization to determine solutions (e.g.
Levenberg-Marquardt algorithm or any other gradient descent method).

It has been proved that misspecifications due to a flat temporal aggregation lead to
an inconsistency of the estimator. Andreou et al. (2010) have studied the asymptotic
properties of the MIDAS nonlinear least squares estimator. They proposed to decom-
pose the conditional mean of the MIDAS regression to assess the consequences of flat
temporal aggregation. Following their prescriptions, we derive from the MIDAS equa-
tion a sum of two terms: an aggregated term based on flat weights and a non linear
term which higher order differences of the high frequency process:

yt = β xlt + β xnlt (θ) + ut (1.22)

where the first term is the averaging aggregation such as defined in (1.5): xlt =∑K−1
k=0

1
K
xt−k. The second one xnlt is defined as the difference between the MIDAS

structure weights and the flat weights, and hence it depends on the hyperparameter
θ. It is of the following form:

xnlt (θ) = mK(θ, L)xt − xlt =
K−1∑
k=0

(
ϕ(k, θ)∑K−1
l=0 ϕ(l, θ)

− 1

K

)
xt−k. (1.23)

The nonlinearity of the xnlt (θ) term is due to the nonlinear weighting scheme of MI-
DAS regression model according to the form of the function ϕ. Furthermore, using
this simple framework, Andreou et al. (2010) exhibit that the traditional least squares
estimator that involves regression models with a flat aggregation scheme is inconsis-
tent. They showed that its asymptotic bias depends on the matrix of coefficients of
the regression (1.23) of the nonlinear ("omitted") term on the linearly aggregated co-

1.2 Convergence in distribution.
1.3 Three assumptions are necessary to prove the asymptotic normality of the nonlinear
least squared estimator: (i) the parameter space is compact (closed and bounded)
and φ is its interior point, (ii) the function S(φ) is continuous in φ, then last (iii)
p limT−1S(φ) exists, is non-stochastic, and its convergence is uniform in φ.
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variates xlt. In their paper, they also provide some theoretical results on asymptotic
and finite sample properties in difference cases of regression models. They especially
focus on the slope coefficient, denoted by β1 in our setting. They especially derived
the formula (1.21) to give in general the asymptotic variance of the NLS estimator of
β1 (the slope coefficient):

AVar(β̂1) =
σ2 E[x2

θ] Var[xθ]

Var[xθ] (E[x2
θ]E[x(θ)]2 − E[x(θ)xθ]2)− (E[x2

θ]E[x(θ)]− E[x(θ)xθ]E[xθ])
2

(1.24)

where x(θ) = mK(θ, L)xκt to simplify notation and xθ = ∇xnlt (θ).

We will assess those results using some Monte Carlo simulations on a Data Generating
Process (DGP) and real economic data in the next two subsections.

Monte Carlo simulations

We now examine the properties of the MIDAS NLS estimator in the regression model
using a Monte Carlo analysis. Our simulation design uses the following Data Gener-
ating Process (DGP) of a MIDAS regression model:

yt = β0 + β1mK(θ1, θ2, L)xκt + εt, (1.25)

where we define the followings specifications:

− the innovations are i.i.d. and normally distributed: εt ∼ N (0, σ2), with σ2 = 0.1

− the parameter values are β0 = 0.5, β1 = 4, θ1 = 2 and θ2 = −0.5.

− the MIDAS kernel is based on an exponential Almon lag polynomial which we
define as

mK(θ1, θ2, L) =
K−1∑
k=0

wk(θ)L
k =

K−1∑
k=0

exp (θ1k + θ2k
2)∑K−1

l=0 exp (θ1l + θ2l2)
Lk (1.26)

− the covariate xκt = xt/κ = xτ is an AR(1) process: xκτ = c+λxκτ +ηt with c = 0.3,
λ = −0.8 and ητ ∼ N (0, σ2

e) with σ2
e = 0.8.

− we consider four aggregation horizons κ = {1/3, 1/12, 1/22} which correspond to
the four aggregation schemes: the month-to-quarter, the month-to-year, and the
day-to-month, respectively. We also define four sample size T = {30, 50, 100, 500}
and K = κ.
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We compare the estimation results with the theoretical results of Andreou et al. (2010)
to assess the real scope of the asymptotic properties for various sample sizes. In their
paper, Andreou et al. (2010) have proved that the asymptotic variance of β̂1 is such
as described in (1.24); under conditional homoskedasticity when considering a MIDAS
regression model with xκt is an AR(1) process (as described in our simulation process)
the asymptotic variance of β̂1 is of the form

AVar(β̂1) =
σ2E[x2

θ]

Var[xθ]E[x2
θ]− E[x(θ)xθ]2

(1.27)

where

E[x2
θ] =

σ2
e

1− λ2

(
κ−1∑
k=1

∂wk(θ)

∂θ
(1− λκ−k)

)2

+ σ2
e

κ−1∑
k=1

(
κ−k−1∑
l=0

∂wl+1(θ)

∂θ
λκ−k−(l+1)

)2

,

Var[x(θ)] =
σ2
e

1− λ2

(
1−

κ−1∑
k=1

wk(θ)(1− λκ−k)

)2

+ σ2
e

κ−1∑
k=1

(
κ−k−1∑
l=0

wl+1(θ)λκ−k−(l+1)

)2

,

E[x(θ)xθ] =
σ2
e

1− λ2

(
κ−1∑
k=1

∂wk(θ)

∂θ
(1− λκ−k)

)
×

(
κ−1∑
k=1

wk(θ)(1− λκ−k)− 1

)

+ σ2
e

κ−1∑
k=1

((
κ−k−1∑
l=0

∂wl+1(θ)

∂θ
λκ−k−(l+1)

)
×

(
κ−k−1∑
l=0

wl+1(θ)λκ−k−(l+1)

))
.

Note that the asymptotic distribution of the estimator β̂1 given by (1.21) and specified
by the asymptotic variance (1.27) for the AR(1) regressor also depends on the sample
size T .

We also use the nonparametric bootstrapping technique put forward by Efron (1979).
It involves the random resampling, with replacement, of elements from the original
data to generate a replicate data vector with the same size. The distribution of those
replicates around the observed data is a correct approximation of the distribution of
observed data sets on the true that generates the data sets but is unknown. These repli-
cates are then used as the series of interest so that it allows parameter re-estimation
and hence sample a parameter distribution. Bootstrap can be interpreted as a measure
of the repeatability of the estimates. Using this framework, we run 1000 simulations
of the DGP (1.25) that we compare with both the theoretical asymptotic density and
the bootstrapping distribution. The results are exhibited in Figure 1.3.
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(a) κ = 1/3, T = 20 (b) κ = 1/12, T = 20 (c) κ = 1/22, T = 20

(d) κ = 1/3, T = 50 (e) κ = 1/12, T = 50 (f) κ = 1/22, T = 50

(g) κ = 1/3, T = 100 (h) κ = 1/12, T = 100 (i) κ = 1/22, T = 100

(j) κ = 1/3, T = 500 (k) κ = 1/12, T = 500 (l) κ = 1/22, T = 500

Figure 1.3: Distributions of simulated, asymptotic and bootstrapped NLS estimators across
different samples sizes T and different temporal lag horizon κ.
The dashed black line is the theoretical asymptotic distribution, the solid orange line is the simulated
draw distribution, the histogram represents the bootstrapping sample and the solid black line is its
normal distribution fit.
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Several conclusions can be drawn from these simulations. First, the MIDAS NLS es-
timator is unbiased and provides errorless figures even for the smallest sample size
(T = 50). Note also that the temporal gap κ does not really influence the conver-
gence of the estimator in terms of mean but it impacts its variance. In fact, the
MIDAS NLS estimator is more efficient for both high frequency processes (and high
aggregation horizon 1/κ) and obviously with large sample size. Second, we observe
that bootstrapping distribution may sometimes be shifted from the simulation dis-
tribution. While the simulation distribution relies on 1000 simulated estimates, the
bootstrapping distribution is only based on one model and hence is centered on its
NLS estimate. Nevertheless, we note that both distributions are similar in variance.
That proves that our bootstrapping procedure is suitable for making inference on the
MIDAS structure. Finally, simulation graphs also show that theoretical asymptotic
estimator of β1 is obviously not adapted to small size.

It can also be noticed that, the theoretical estimation is too restrictive than the reality
in terms of variance even in the case of large sample size. That means that convergence
towards this theoretical asymptotic variance requires a very large sample size and hence
is not reliable when dealing with macroeconomic time series.

Empirical assessment

We have seen that the MIDAS NLS estimator provides pertinent results on simulated
data and is well adapted to underlying aggregation issues within regression models.
Let now see its efficiency on real economic data. In this respect, we build a standard
macroeconomic framework that explains the US quarterly GDP using the US monthly
IPI; the model equation is the following:

GDPQ
t = β0 + β1mK(θ1, θ2, L) IPIMt + εt (1.28)

where M = κ = 1/3 and the parameter family {β0, β1, θ1, θ2} is estimated using the
MIDAS NLS method. The lag length coefficient is exogenously defined as K = 10.
We assess our model on two sample sizes: T = 40, 10 years of data corresponding to
the period from 1996:q1 to 2005:q5, and T = 100 (25 years) from 1989:q1 to 2013:q4.
We use a bootstrapping approach to draw the parameters distribution and hence to
define their confidence intervals1.4 . We compare those results with the asymptotical
distribution of MIDAS NLS estimator (as given in (1.21) and in (1.24)). The results
are presented in Table 1.1 and displayed in Figures 1.4 and 1.5.

1.4 We run some test for residuals autocorrelation (Ljung-Box Q-test, sample autocor-
relation function plots, etc.).
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(a) (b)

Figure 1.4: Regression results over the period 1996:q1-2005:q4 (T = 40), MSE=0.17.

(a) (b)

Figure 1.5: Regression results over the period 1989:q1-2013:q4 (T = 100), MSE=0.19.
On the left-hand side (1.4a and 1.5a), the dashed black line is the theoretical asymptotic distribution,
the histogram represents the simulated draws and the solid black line is its normal distribution fit.
On the right-hand side (1.4b and 1.5b), the dashed blue line is the observed values of GDPt while
the red fan chart depicts the bootstrapped distribution of the fitted series ĜDP t.

β̂1 Bootstrap CI Asymptotic CI
Sample size
T = 40 (1996:q1-2005:q4) 0.97 [0.64;1.33] [0.90;1.04]
T = 100 (1989:q1-2013:q4) 1.07 [0.91;1.27] [1.01;1.12]

Table 1.1: Slope coefficient estimates and its relative confidence interval (CI) at 95% for
two different sample sizes.
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It turns out that estimation accuracy is obviously related to the sample size, neverthe-
less it seems that the model fits the data quite well across periods (see Figures 1.4b
and 1.5b). Moreover, it can be noticed that the theoretical variance is smaller than
the empirical variance coming from the bootstrapping estimates, as already observed
in the Monte Carlo simulations. This theoretical formula is not adapted to the empir-
ical macroeconomic issues which we deal with. In contrast, bootstrapping has provide
useful inferences on MIDAS regression parameters.

1.3.3 Various specifications of MIDAS regression models

There is a growing literature using MIDAS models in order to deal with multi fre-
quencies and hence facing particular economic or forecasting issues. In this respect,
various extensions or specifications have been recently introduced. We especially refer
to the thesis of Foroni (2012) in which she addresses different issues related to the use
of mixed-frequency data.

Multiple explanatory variables

When working with economic issues, we face a data-rich environment. As we already
discussed, forecasting macro-aggregates involves the use of both explanatory variables
coming from various sectors of activity regardless of their sampling frequency and the
technical specifications they require. The MIDAS regression models can be extended
to the multivariate setting in order to provide a flexible and reasonable framework for
this problem. Considering n explanatory variables each sampled at its own frequency
κi, the MIDAS regression model becomes:

yt = β0 +
n∑
i=0

βimKi
(θi, L)xκit,i + εt. (1.29)

The number of lags Ki involved in the regression may also be different for each covari-
ate. To explain quarterly series, a daily explanatory variable would normally include
more lags than monthly series. Thus, defining the T × (n + 1) matrix of explanatory
variables X(θ) as follows

X(θ) =

1 mK1(θ1, L)xκ11,1 · · · mKn(θn, L)xκn1,n
...

... . . . ...
1 mK1(θ1, L)xκ1T,1 · · · mKn(θn, L)xκnT,n

 , (1.30)
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we can write the MIDAS regression in matrix form such that

Y = X(θ)β + ε (1.31)

where we have parameter vectors β = (β0, β1, . . . , βn)′ and θ = (θ1, . . . , θn), with
respect to the number of θi, i = 1, . . . , n, used in the weight function, and the residual
vector ε = (ε1, . . . , εT )′.

Unrestricted MIDAS model

Foroni et al. (2013) have proposed a new parametrization for the MIDAS that relies on
a linearization of the distributed lag function called unrestricted MIDAS (U-MIDAS).
That can be assimilated to the expression (1.1) where all the parameters are estimated
using OLS. The U-MIDAS model is based on a linear lag polynomial that can be
written as:

c(L)yτ = δ(L)xκτ−1 + ετ , (1.32)

where c(L) = (1 − c1L
1 − . . . − ccLc), δ(L) =

(
δ0 + δ1L

1 + δdL
d
)
and where {yτ}τ is

the disaggregated process {yt}t (the underlying des-aggregation scheme is supposed to
be known, as well as the polynomial orders c and d1.5). Then, forecasts are obtained
using a form of direct estimation approach (see Foroni et al. (2013) for details).

Empirically, it has been showed that this technique works quite well as long as the
gap between the low and the high frequency is not too large; typically month to
quarter or quarter to year. In such cases, one can indeed easily consider the U-MIDAS
as a powerful macroeconomic model and therefore as a competitive benchmark for
forecasting purposes.

Measuring volatility with MIDAS

Mixed-frequency setting is also of particular interest in the context of volatility mod-
eling. Ghysels et al. (2005) have proposed a MIDAS estimator of volatility computed
as a realized volatility; that is, by using a weighted average of lagged squared daily
returns as a proxy of monthly conditional variance. In the wake of French et al. (1987),
Andersen, Bollerslev or Shephard have popularized the use of data sampled at a higher
frequency to calculate an ex-post measure of volatility. Here, the sample variance (or

1.5 In practise, those could be defined using information criteria.
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realized volatility) of the previous month of returns {rτ}τ :

RVt =

(
D−1∑
d=0

r2
τ−d

)1/2

(1.33)

where D is the number of data of the considered period (the number of days in a
month is usually set at N = 22). In their paper, Ghysels et al. (2005) proposed a risk
return tradeoff model that involves a MIDAS setup derived from the (1.33) such that

Rt+1 = µ+ γRV midas
t + νt+1 (1.34)

where νt ∼ iidN (0, σ2
nu) and RV midas

t = Var[Rt+1|Ft] for which they assume that

RV midas
t = D

D−1∑
d=0

ϕ(d, θ1, θ2)∑D−1
l=0 ϕ(l, θ1, θ2)

r2
τ−d (1.35)

They estimate the parameters θ jointly with µ and γ via QMLE.

Furthermore, Engle et al. (2006) introduced GARCH MIDAS models that combine
GARCH process with MIDAS polynomial structure. Then, Colacito et al. (2011) have
recently extended the idea of component models for volatility in introducing DCC
MIDAS models in order to capture volatility dynamics within a MIDAS structure.

Extensions of the MIDAS

Different extensions of the MIDAS model have been developed in the literature. A first
extension is introducing an autoregressive term in the MIDAS regression framework.
In the macroeconomic forecasting context, adding AR element usually improves the
forecasting accuracy especially when considering macroeconomic aggregates like the
GDP (see Stock and Watson (2002)). However, Clements and Galvão (2009) high-
lighted that this strategy could lead to a misspecification due to a seasonal response
of {yt}t to {xt}t. They suggest to introduce the AR term as a common factor to avoid
this inconvenience.

Another interesting extension has been proposed by Marcellino and Schumacher (2010),
they have developed a new approach that combines factor models with the MIDAS
framework. In particular, this Factor-Augmented MIDAS model will be described
and exploited for different empirical studies in this dissertation in Chapters 2 and 4.
Some other models incorporate regime changes in the parameters; we refer to the
Markov switching MIDAS model proposed by Guérin and Marcellino (2013) or to the
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smooth transition MIDAS models introduced by Galvão (2013). Recently, the MIDAS
framework has been extended to multivariate specifications, we refer especially to the
mixed-frequency vector autoregressive models developed in Foroni et al. (2014) and to
the recent paper of Götz and Hecq (2014) on causality.

A review of all these techniques has been proposed for nowcasting purposes by Foroni
and Marcellino (2013a); Sestieri (2014) has discussed their paper and highlighted the
main results. In their work, Claudia Foroni and Massimiliano Marcellino conclude
that: (i) Although no model significantly outperforms the others, it seems that both
bridge models and AR-MIDAS models tend to improve the nowcasting performances.
(ii) Pooling information using factor models improves the nowcasting accuracy. It
can be noted that their results are obtained using both single indicator models and
forecast combinations within each class of models. That point is of interest in the next
Chapters.

MIDAS regression models





Chapter 2

Macroeconomic forecasting
with mixed-frequency data

2.1 Financial volatility as a macroeconomic

leading indicator

This section is based on the paper entitled "Forecasting growth during the Great Reces-
sion: is financial volatility the missing ingredient?", written with Laurent Ferrara and
Juan-Pablo Ortega and published in Economic Modelling, no. 36(C) (January 2014).

In the wake of the financial and banking crisis, virtually all industrialized countries
experienced a very severe economic recession during the years 2008 and 2009, generally
referred to as the Great Recession. This recession has shed light on the necessary re-
assessment of the contribution of financial markets to the economic cycles. There is
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a huge volume of work in the literature that underlines the leading role of financial
variables in the forecasting of macroeconomic fluctuations. For example, Kilian (2008)
reviewed the impact of energy prices shocks, especially oil prices, on macroeconomic
fluctuations; Hamilton (2003) put forward a non-linear Markov-Switching model to
predict the US Gross Domestic Product (GDP) growth rate using oil prices. Stock
and Watson (2003) have proposed a review on the role of asset prices for predicting
the GDP, while Claessens et al. (2012) have empirically assessed interactions between
financial and business cycles. Recently, Ferrara and Marsilli (2013) have evaluated the
predictive power of some major financial variables to anticipate GDP growth in Euro
Area countries during the Great Recession2.1 .

Nevertheless, there are only very few studies in the literature dealing with the impact
of financial volatility on macroeconomic fluctuations. Among the rare existing refer-
ences, Hamilton and Lin (1996) have shown evidence of relationships between stock
market volatility and US industrial production through non-linear Markov-Switching
modeling; Ahn and Lee (2006) have estimated bi-variate VAR models with GARCH
errors for both industrial production and stock indices in five industrialized countries.
Chauvet et al. (2012) have recently analyzed the predictive ability of stocks and bonds
volatilities over the Great Recession using a monthly aggregated factor. Indeed, they
estimate a monthly volatility common factor based on realized volatility measures for
stock and bond markets. They show that this volatility factor largely explains macroe-
conomic variable during the 2007-2009 recession, both in-sample and out-of-sample.

In this section, we aim at assessing the impact of financial volatility on output growth
in three advanced economies (US, UK, and France) using a MIDAS model capable of
putting together daily and monthly sampled explanatory variables in order to predict
the quarterly GDP growth rate; this approach has been explained in detail in Chap-
ter 1. We use two well-known daily sampled financial ingredients, namely, commodity
and stock prices, combined with a monthly industrial production index to empirically
show the gain in prediction performance for various forecasting horizons, when daily
financial volatility is included in the mixed-frequency models. Our study provides
conclusive empirical proof that this approach increases the predictive accuracy during
a period that includes the last Great Recession for the three considered countries.

2.1 This work, entitled Financial variables as leading indicators of GDP growth: Evi-
dence from a MIDAS approach during the Great Recession written with Laurent Fer-
rara, is presented in Appendix B.
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2.1.1 Financial volatility and real economic activity

We aim at assessing the predictive content of the daily volatility of financial variables
regarding the gross domestic product (GDP) using the MIDAS approach introduced
in Ghysels et al. (2004). This forecasting strategy allows the use of explaining vari-
ables sampled at different frequencies avoiding at the same time the loss of information
associated to data temporal aggregation; this is achieved by exploiting parsimoniously
parametrized weight functions that specify the importance of each covariate along
their past in an economically reasonable fashion. A major motivation for exploring
this scheme is the well known fact that hard data, generally sampled with monthly fre-
quency, convey additional information to anticipate the GDP that is, in turn, quarterly
measured. Using the MIDAS approach we will go a step further and will incorporate
in the forecasting setup a combination of monthly and daily sampled covariates. This
approach has already been studied by Andreou et al. (2013) who show the pertinence,
from the point of view of increase in the forecasting power, of combining monthly
macroeconomic indicators with daily financial explaining data. The GDP prediction
proposed in their work is constructed via the weighted combination of a number of
individual MIDAS based forecasts obtained by using a single financial covariate at a
time. The authors have indeed used an important financial dataset in order to con-
struct a rich family of separate MIDAS forecasts; their combination yields satisfactory
results and shows the predictive relevance of daily information in the macroeconomic
context. Our work can be seen as an extension, focusing on the financial volatility as
predictor of the real GDP growth during the Great Recession.

Let yQt be a quarterly sampled stationary variable that we aim at predicting, XM
t

is a vector of NM stationary monthly quoted variables, and XD
t is a vector of ND

stationary daily variables. We use the multivariate MIDAS model we introduced
in (1.29) enabling the mixing of daily and monthly information:

yQt = α +

ND∑
i=1

βi mKD
(θi) X

D
i,t +

NM∑
j=1

γj mKM
(ωj) X

M
j,t + φ yQt−1 + εQt , (2.1)

where εQt is a white noise process with constant variance and α, β, θ, γ, ω are the
regression parameters to be estimated. We also include a first order autoregressive term
in the expression (2.1) as it has been showed that it generally improves forecasting
accuracy based on leading indicators (see for example Stock and Watson (2003)).
The mK function in equation (2.1) prescribes the polynomial weights that allow the
frequency mixing. In this respect, we use a Beta restricted function which we defined
in (1.13). While other weight function specifications often employed in the literature

Financial volatility as a macroeconomic leading indicator



41

like the exponential Almon form, relies on the use of at least two parameters, the Beta
restricted function involves only one parameter. Additionally it imposes decreasing
weight values which is a desirable feature in view of the direct multistep forecasting
setup that we adopt later on in the empirical application that we will carry out later
on.

As one of the main objectives of our work consists in providing evidence of the macroe-
conomic predictive content of financial volatilities, a crucial issue is the estimation of
volatility. Given that volatility is not directly observable, several methods have been
developed in the literature to estimate it. The most straightforward approach to this
problem relies in the use of the absolute value of the returns as a proxy for volatility;
unfortunately, the results obtained this way are generally very noisy (see Andersen
and Bollerslev, 1998). This difficulty can be partially fixed by using an average of this
noisy proxy over a given period; this method yields one of the most widely used notion
of volatility, namely the realized volatility (as described in (1.33) and used, for exam-
ple, in Chauvet et al., 2012). Since our goal is working with daily financial volatility,
the realized approach would require intraday data whose availability may be an issue
and that, additionally, requires a delicate handling (overnight effects, price misrecord-
ings, etc). An alternative convenient approach appears to be the volatility filtered
out of a GARCH-type parametric family (see Engle, 1982 and Bollerslev, 1986). The
AR(p)-GARCH(r,s) specification is given by

rDt = ψ0 + ψ1 r
D
t−1 + · · ·+ ψp r

D
t−p + wt,

wt = vDt ηt,

(vDt )2 = c+
r∑
i=1

aiw
2
t−i +

s∑
j=1

bj (vDt−j)
2,

(2.2)

where ψ0 is a constant, ψ = (ψ1, . . . , ψp) is a p-vector of autoregressive coefficients and
{ηt}t ∼WN(0, 1). In order to ensure the existence of a unique stationary solution and
the positivity of the volatility, we assume that ai > 0, bj ≥ 0 and

∑r
i=1 ai+

∑s
j=1 bj < 1.

Estimated daily volatilities {v̂Dt }t stemming from equation (2.2) will be considered as
explanatory variables of the macroeconomic fluctuations using the MIDAS regression
equation (2.1), with XD

i,t = v̂Di,t.

Finally, when using general regression models for forecasting purposes at a given hori-
zon h > 0, forecasters can either predict covariates or implement direct multi-step
forecasting (see Section 1.2.2 and Chevillon (2007) for a review). The idea behind
direct multi-step forecasting is that the potential impact of specification errors on the
one-step-ahead model can be reduced by using the same horizon both for estimation
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and for forecasting at the expense of estimating a specific model for each forecasting
horizon. In our work we adopt the direct multi-step forecasting and assume that the
predictor yQt+h|t of the GDP quarterly growth rate, for any forecasting horizon h, is
given by

yQt+h|t = α̂(h) +

ND∑
i=1

β̂
(h)
i mKD

(θ̂
(h)
i ) v̂Di,t +

NM∑
j=1

γ̂j mKM
(ω̂

(h)
j )XM

j,t + φ̂(h) yQt , (2.3)

where
{
α̂(h), β̂

(h)
1 , . . . , β̂

(h)
ND
, θ̂

(h)
1 , . . . , θ̂

(h)
ND
, γ̂

(h)
1 , . . . , γ̂

(h)
NM

, ω̂
(h)
1 , . . . , ω̂

(h)
NM

, φ(h)
}
are the non-

linear least squares estimates (2ND + 2NM + 2 parameters need to be estimated).

2.1.2 Empirical results

In this section we focus on the GDP growth prediction. We implement the model
previously introduced in equation (2.3) in order to assess the forecasting ability of the
volatility of two financial variables, namely commodity and stock prices (i.e. ND = 2)
in comparison with the monthly industrial production (i.e. NM = 1). The variable
that we want to predict is the quarterly growth rate of the real GDP (expressed in
percentage and denoted GDPt) of three countries: US, France, and the UK, as released
by the corresponding national offices of statistics in July 2013. Details concerning
sources and the datasets are given in Table 2.12.2

Quarterly output

GDP
Real US GDP growth (Bureau of Economic Analysis) 1976q1:2010q4
French GDP growth (INSEE ) 1988q1:2010q4
UK GDP growth (Office for National Statistics) 1988q1:2010q4

Daily volatilities
CRB CRB spot price index (Commodity Research Bureau) 01jan1964:31dec2010

SP
S&P500 index (Standard & Poors) 01jan1964:31dec2010
CAC40 index (Euronext Paris) 03aug1987:31dec2010
FTSE100 index (FTSE) 01jan1987:31dec2010

Monthly series

IPI
US industrial production index manuf. (Fed. Reserve) jan1976:dec2010
French industrial production index manuf.(INSEE ) jan1988:dec2010
UK industrial production index manuf. (ONS ) jan1988:dec2010

Table 2.1: Description of indicators and covariates

2.2 All the data have been downloaded from Datastream.
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We consider as explanatory daily variables the CRB index of commodity prices and
the main national stock price indices of those three countries, namely the S&P500, the
CAC40, and the FTSE100, that we denote generically as CRBt and SPt. Note that
stock prices for France and the UK begin later than for the US (1987 instead of 1975).
For all daily returns of financial variables, we estimate their volatility on the available
sample by using a AR(1)-GARCH(1,1) specification as in the equation (2.2). The
model orders have been selected using the Bayes Information Criterion (BIC). Since
we are using a standard maximum likelihood estimator for the GARCH process and
not a robust one (see for example, Charles and Darné, 2005, or Carnero et al., 2012) we
have smoothed out outliers from all returns via a 99.5% Winsorization (for instance the
Black Monday outlier in the S&P500 series occurring October 19th, 1987). Estimates
of daily volatility for both variables, denoted {v̂Dt,CRB}t and {v̂Dt,SP}t, are presented in
Figure 2.1.

(a) CRB (b) SP500

(c) CAC40 (d) FTSE100

Figure 2.1: Volatilities estimated using GARCH models.

It is worth noting that, as it usually happens with financial time series, periods of
high volatility are clustered in time; nevertheless, the high volatility clusters do not
occur at the same time for both time series. The volatility of stock prices presents a
huge peak during the recent financial crisis, as well as several smaller peaks related to
specific events (Asian crisis, burst of the internet bubble, etc.). Since we focus on the
post 1973 oil crisis period (from 1975 to 2010), the commodity volatility exhibits only
one main peak related to the recent financial crisis. Some specific events also drive
commodity volatility dynamics such as the second oil shock in the early 1980s or the
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Asian crisis in the late 1990s. The information conveyed by both volatilities does not
seem redundant in spite of a recent increase in their correlation (see e.g. Creti et al.,
2012) and both variables are potentially useful in explaining GDP growth.

As monthly explanatory variable in (2.3) we use the Industrial Production manufac-
turing Index (IPI) that is well known by practitioners to be informative about the
evolution of macroeconomic variables in general and as to the dynamics of the GDP
growth in particular. Those series for the three countries are represented in Figure 2.2.
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Figure 2.2: GDP and IPI growth rates for the US, France, and the UK.
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In our study we carry out parameters estimation using the periods 1976q1-2006q4
for the US and 1988q1-2006q4 for France and the UK, then we implement an out-of-
sample experience over the period 2007q1 - 2010q4 that includes the Great Recession.
Concerning the forecasting experiment, given that financial data are always available
the last working day of any given month, we suppose that forecasts for a specific
quarter are computed at the end of each month, for 12 horizons that range from h = 0

(nowcasts computed at the end of the last month of the reference quarter) to h = 11/3

(forecasts computed 11 months before the end of the reference quarter). For any
time t the MIDAS regression optimally takes advantage of the fluctuations of the last
KM = 6 for the monthly series IPIt and KD = 90 for financial covariates v̂Dt,CRB and
v̂Dt,SP . As we have chosen a direct multi-step forecasting approach, model parameters
are estimated separately for each prediction horizon h, as in equation (2.3).

In a first step, we assess the specific impact of both financial volatilities on the GDP
growth process through a standard MIDAS model that relates daily variables with
a quarterly variable. Thus, the first model that we estimate, denoted Model Md,
contains as regressors the daily volatilities of both financial series, namely v̂Dt,CRB and
v̂Dt,SP :

GDP t+h|t = α̂(h) + β̂
(h)
1 mKD

(θ̂
(h)
1 ) v̂Dt,CRB + β̂

(h)
2 mKd

(θ̂
(h)
2 ) v̂Dt,SP + φ̂(h) GDP t.

(Md)

The second model, denoted Model Mm, contains only as regressors the monthly
growth rate of the IPI:

GDP t+h|t = α̂(h) + γ̂(h) mKM
(ω̂(h)) IPI t + φ̂(h) GDP t. (Mm)

Explaining GDP growth using industrial production is standard in the empirical litera-
ture on short-term macroeconomic forecasting, especially when using bridge equations
(see for example Diron, 2008, or Barhoumi et al., 2012). However, the monthly IPI
series is generally aggregated before using it in quarterly equations. Here, by using a
standard MIDAS equation, we allow for different weights concerning the contribution
of monthly IPI to GDP growth, adding thus more flexibility to the model.

The third model, denoted Model Mdm, contains as regressors both daily volatilities
and the monthly IPI:

GDP t+h|t = α̂(h) + β̂
(h)
1 mKD

(θ̂
(h)
1 ) v̂Dt,CRB + β̂

(h)
2 mKD

(θ̂
(h)
2 ) v̂Dt,SP

+ γ̂(h) mKM
(ω̂(h)) IPI t + φ̂(h) GDP t. (Mdm)

Chapter 2 − Macroeconomic forecasting with mixed-frequency data



46

To assess the forecasting accuracy of each model, we compute the Root Mean Square
Forecasting Errors (RMSFE), for all forecasting horizons h, based on differences be-
tween realized values GDPt+h and forecasted values GDPt+h|t on the 16 point forecasts
over the 4 years out of sample from 2007q1 to 2010q4. In order to have a measure
of the real predictive ability of financial market volatility, we also provide forecasting
results using a simple autoregressive model AR(1) as a benchmark:

GDP t+h|t = α̂(h) + φ̂(h) GDP t. (AR)

We note that an autoregressive element has always been added in the three models
to play the role of control variable and to potentially improve the prediction. Com-
paring the obtained results with those using Model (AR) help us measuring the real
contribution of the explanatory variables and financial data in particular.

For each model (Model Md, Model Mm, Model Mdm) and each forecast horizon
h, RMSFE(h) values are presented in Table 2.2. In addition, RMSFE(h) values, for h
ranging from zero to 11/3, are also plotted in Figure 2.3a for US, in Figure 2.3b for
France and in Figure 2.3c for the UK.

Forecasting horizons h
0 1/3 2/3 1 4/3 5/3 2 7/3 8/3 3 10/3 11/3

RMSFE(h) for the US
Model Md 0.63 0.73 0.77 0.90 0.93 0.97 1.03 1.05 1.08 1.12 1.13 1.12

Model Mm 0.67 0.68 0.76 0.93 1.00 0.99 1.05 1.05 1.05 1.07 1.07 1.07

Model Mdm 0.57 0.66 0.71 0.84 0.92 0.93 1.02 1.05 1.04 1.12 1.13 1.14

Model AR 0.86 0.86 0.86 0.99 0.99 0.99 1.07 1.07 1.07 1.09 1.09 1.09

RMSFE(h) for France
Model Md 0.61 0.62 0.62 0.69 0.69 0.70 0.82 0.82 0.80 0.98 1.02 0.99

Model Mm 0.51 0.53 0.53 0.70 0.73 0.72 0.78 0.77 0.79 0.88 0.83 0.84

Model Mdm 0.48 0.51 0.50 0.61 0.65 0.68 0.80 0.81 0.80 0.89 0.81 0.87

Model AR 0.62 0.62 0.62 0.73 0.73 0.73 0.82 0.82 0.82 0.86 0.86 0.86

RMSFE(h) for the UK
Model Md 0.74 0.76 0.78 0.99 1.01 1.04 1.19 1.20 1.22 1.34 1.35 1.37

Model Mm 0.84 0.85 0.91 1.04 1.10 1.23 1.30 1.30 1.27 1.29 1.32 1.31

Model Mdm 0.71 0.72 0.80 0.97 1.02 1.04 1.14 1.17 1.16 1.34 1.32 1.32

Model AR 1.10 1.10 1.10 1.29 1.29 1.29 1.36 1.36 1.36 1.37 1.37 1.37

Table 2.2: RMSFE(h) for quarterly GDP growth. The forecasting horizon h is in quarters.

As expected, RMSFE(h) for all models and all countries decrease when h tends to
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zero, reflecting the use of an information set of increasing size. Indeed, RMSFE(h) are
more than halved when h goes from 8/3 to zero. Especially, when 2/3 ≤ h ≤ 4/3, we
observe a strong negative slope, visible for all models. This is due to the integration
of the newly available GDP growth figure of the previous quarter.
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(a) RMSFE(h) for US
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(b) RMSFE(h) for France
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(c) RMSFE(h) for UK

Figure 2.3: RMSFE(h)
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An analysis of Figure 2.3a, Figure 2.3b, and Figure 2.3c shows that the Model Mdm

based on daily financial volatilities and monthly IPI unanimously provides the best
results for all horizons h for the three economies analyzed. This result proves in
a robust fashion that combining information coming from both macroeconomic and
financial sources appears to be a good strategy when forecasting GDP. We are in
agreement in this point with much of the literature on macroeconomic forecasting and
nowcasting that underlines the usefulness of either combining information (for example
through dynamic factor models, see e.g. Giannone et al. (2008)) or combining forecasts
(see e.g. Timmermann (2006)). In fact, the forecasting gain obtained by using the
Model Mdm becomes important already for h ≤ 1. We also note that between h = 4/3

and h = 7/3, the contribution of financial volatilities to the forecasting accuracy is
remarkable, specially for the US and the UK economies, as RMSFE(h) stemming
from Model Mdm and Model Md are almost similar. This result is interesting for
practitioners in the sense that using industrial production to predict GDP with a
lead of four to seven months does not appear useful; only financial volatilities help in
this range of horizons. Nevertheless, we note that the forecasting results for the UK
are leaded by the financial Model Md while it appears that the Model Mm does
not really contribute, not even for short term horizons, to the predictive accuracy of
the combined Model Mdm. These results suggest that financial variables play an
important role in forecasting the real UK economy. This has often been underlined in
the literature; we refer, among others, to Simpson et al. (2001).

When we are close to the target date, that is during the quarter before the release
(i.e. h ≤ 1), the IPI tends to increase its impact on the forecast in particular in the
case of the US and France. This stylized fact has been also observed in empirical
papers pointing out the increasing role of hard variables on macroeconomic forecasts
when we are close to the release date, while financial variables have a stronger impact
for longer horizons (we refer for example to Angelini et al., 2011). Our study shows
that the information contained on the industrial output series cannot replace the one
associated to financial volatility; both sources of information are playing an important
role, but at various horizons.
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2.2 Nowcasting the world growth

This section is based on the working paper entitled "Nowcasting Global Growth", writ-
ten with Laurent Ferrara. It proposes new models to forecast the current state of the
global economy. This research is currently used for policy analysis and decision-making
at the Banque de France.

Assessing world economic growth in real-time is a key point for macroeconomists in
charge of monitoring global economic issues but also a real challenge for econometri-
cians. There is currently no global statistical institute in charge of providing official
quarterly national accounts at a global level, in spite of recent efforts in this direction
coordinated by international institutions. In this respect, the OECD now releases real
GDP growth rate figures for the G20 aggregate on a quarterly basis, based on a com-
mon work with several other institutions, such as IMF, BIS, ECB or Eurostat, within
the framework of the G20 Data Gaps Initiative2.3 .

This G20 GDP has the great advantage of being sampled on a quarterly basis, but
presents the drawbacks of (i) starting only in 2002 which somewhat limits the econo-
metric analysis and (ii) focusing only on G20 countries leaving aside around 15% of
world GDP. In addition, GDP figures are released around 70 days after the end of
the quarter. Another well known reference among macroeconomists is the IMF that
provides global estimates that are considered by experts in the field as benchmark
figures when aiming at monitoring the world economy. The time series of the annual
global growth, as provided by the IMF in the April 2014 World Economic Outlook
(WEO hereafter), is presented in Figure 2.4, from 1995 to 2013.

In this study, we will consider this IMF-WEO series as the definitive estimates2.4 . We
clearly see that the world economic growth has been strongly affected by the Great
Recession in 2009, reaching its lowest level since the start of the series. We also observe
a sharp increase in growth since the early 2000s, due to some emerging countries, like
China in particular. Since the bounce-back in 2010, it seems that the world economy
was rather sluggish, showing a marked deceleration.

2.3 For further details see OECD website.
2.4 The IMF WEO estimates and projections account for 90 percent of the world
purchasing-power-parity weights and are available in the IMF website.
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Figure 2.4: Annual global growth estimates (source: WEO-IMF, April 2014).

In fact, each time the IMF-WEO is published, the IMF releases estimates of annual
global growth for the past years but also for the current year (i.e. nowcasts) and the
two upcoming years (i.e. forecasts). The WEO is released two times per year (usually
in April and October) and two other WEO updates also come in January and July, but
with much less details. Thus, it turns out that four nowcasts of the world economic
growth rate for the current year are available.

Figure 2.5: WEO Global growth nowcasts and final estimates over the sluggish recovery
period, as provided in April 2014.

In Figure 2.5, we present the evolution of IMF-WEO nowcasts for global growth over
the period 2010-2013, as well as the definitive figures stemming from the April 2014
WEO release. It is noteworthy that there a clear bias at the beginning of each year,
then the nowcasts tend to slowly converge to the realized growth rate. However, this
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bias does not appear to be systematic. Indeed, it turns out that in 2010, the IMF
started by largely underestimating global growth: while the final growth is estimated
at 5.2%, the first nowcasts were slightly above 3% in the wake of the Great Recession
that affected simultaneaously all the countries. Then the first revision of the year that
came with the April 2010 WEO nowcast led to an upward shift by around one percent-
age point. In opposition, the IMF tended to overestimate growth in their nowcasts in
2011 and 2012. Those optimistic forecasts are partly related to the higher than ex-
pected fiscal multipliers, especially in the euro area in 2011 and 2012 as acknowledged
by Blanchard and Leigh (2013). In fact, fiscal consolidation programs implemented
in the main advanced countries strongly weighed on growth, at least much more than
expected by standard macroeconomic models. In addition, it is likely that some con-
fidence effects, often neglected in forecasting models, were at play during this specific
period of time, acting as a drag on growth, especially on investment.

The main issue with those IMF-WEO nowcasts is that they reflect an annual growth
rate and are released at a quarterly frequency, while obviously economists have at
disposal a large set of information on the world economy available on a higher fre-
quency. For example, for many countries, practitioners have access to a large volume
of data from opinion surveys of households and businessmen as well as various series
on prices (equity prices, housing prices, etc.) and real activity, such as the industrial
production index (IPI), household consumption, unemployment rate, etc. Some re-
cent papers have tackled this issue by considering various approaches. For example,
Golinelli and Parigi (2013) have developed several bridge models to forecast quarterly
world GDP growth rates based on monthly indicators for many countries. Rossiter
(2010) takes a similar approach but only considers PMI indicators to explain global
variables. Matheson (2011) estimates some dynamic factor models for a large panel of
countries and then aggregates forecasts in order to get estimates of the global growth.
Drechsel et al. (2014) also show that adding monthly leading global indicators (such
as OECD composite leading indicators) to the IMF-WEO forecasts, through bridge
equations, lead to accuracy improvements in some cases.

Against this background, when aiming at nowcasting global growth on a high fre-
quency basis, let’s say monthly, then one faces two major issues namely (i) a data-rich
environment and (ii) a discrepancy between annual GDP figures, on the one hand, and
monthly information, on the other hand. In recent years, those two issues have been
tackled by econometricians. First, a number of econometric methods have been pro-
posed in the literature enabling to deal with such data-rich environments. Among the
different methodologies, dynamic factor models have grown significantly in popularity
since the early 2000s and the seminal papers of Forni et al. (2000), Forni et al. (2003)
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and Stock and Watson (2002). These models can be used to summarise the information
contained in large datasets into a small number of factors common to those variables
and have proved very useful in macroeconomic analysis and forecasting in a data-
rich environment (see among others Giannone et al. (2008)). Second, when dealing
with variables sampled at various frequencies (e.g. annual GDP and monthly financial
information), the mixed data sampling (MIDAS hereafter) approach put forward by
Ghysels and his co-authors has led to many interesting results in macroeconomic ap-
plications (see Ghysels et al. (2007)). Especially in the forecasting framework, several
empirical papers have shown the ability of financial information to predict macroeco-
nomic fluctuations; we refer for example to Clements and Galvão (2008) or Ferrara
et al. (2014) for the US of Ferrara and Marsilli (2013) for the euro area (see Sec-
tion 2.1 or Appendix B). Combining dynamic factor models and a MIDAS approach
into a Factor-Augmented MIDAS (FA-MIDAS) model has been put forward by Mar-
cellino and Schumacher (2010) when dealing with the German economy. This latter
approach is convenient as the two main stylized facts, namely large databases and
mixed frequencies, can be accounted for by the FA-MIDAS model.

We implement the FA-MIDAS approach in order to nowcast the global GDP growth
rate on a monthly basis, starting from a large database of macroeconomic indicators
for several advanced and emerging countries. We compare our results with IMF-
WEO nowcasts during the recovery from the Great Recession and we empirically show
that our approach is able to better reflect global economic conditions, by reducing
mean squared-errors, at least at the beginning of each year, when fewer information
is available.

2.2.1 The econometric framework

The econometric methodology implemented in this study builds on the FA-MIDAS ap-
proach put forward by Marcellino and Schumacher (2010). In this approach, the infor-
mation contained in the large database of monthly macro-variables is summarized into
few underlying factors, supposed to represent the common evolution of all the series.
Then we assume that the annual world GDP growth rate can be explained by a MI-
DAS regression enabling to explain this low frequency variable by exogenous monthly
variables, without any aggregation procedure and within a parsimonious framework.

To exploit a large database including various variables for different countries of the
world economy, we implement first a factor analysis that reduces the dimension of the
problem. Thus, assume the 1×n time vector of monthly macroeconomic variables, Xτ ,
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can be represented as the sum of two mutually orthogonal unobservable components:
the common component χτ and the idiosyncratic component ξτ . For a given month τ ,
the static factor model is defined by

Xτ = Λfτ + ξτ , (2.4)

where Xτ = (xτ1 . . . xτn)′ has zero mean and covariance matrix Γ(0), Λ is the loading
matrix such that Λ = (λ1 . . . λn)′, the common components χτ = Λfτ are driven
by a small number r of factors fτ common to all the variables in the model such
that fτ = (fτ1 . . . fτr)

′, and ξτ = (ξτ1 . . . ξτn)′ is a vector of n idiosyncratic mutually
uncorrelated components, driven by variable-specific shocks.

Once the r common monthly factors from the original database have been extracted,
we relate them to the annual global growth yt sampled on a yearly frequency described
by the index t. Thus, we observem times the explanatory factor over the period [t−1, t]

which corresponds to [τ/m−1, τ/m] where m = 12. The standard multivariate MIDAS
regression for explaining a stationary low-frequency variable yt, augmented with a first
order autoregressive component, is given by:

yt = β0 +
r∑
i=1

βi mK(θi, L) f̂
(m)
i,t + λyt−1 + εt, (2.5)

where f (m)
i,t = fi,τ is one of the exogenous stationary common factor sampled at a

monthly frequency. The MIDAS function mK(θ, L) controls the polynomial weights
that allows the frequency mixing. Indeed, the MIDAS specification consists in smooth-
ing the K past values of f (m)

t on which the regression is based. As in Ghysels et al.
(2002), we implement the one parameter Beta lag polynomial such as

mK(θ, L) =
K∑
k=1

θk(1− k)θ−1∑K
l=1 θl(1− l)θ−1

L(k−1) (2.6)

where L is the lag operator applied on the high frequency variable x(m)
t such that

Lsx
(m)
t = xτ−s. In our setup we assume that the annual global growth is only influenced

by the information conveyed by the last K = 15 values of the monthly factor f (m)
t ; the

windows size K being exogenous. It can also be noticed that the parameter θ is part of
the estimation problem. Other parameterizations of the weight function can be used,
but we choose (2.6) since it constitutes a parsimonious and reasonable restriction for
which the weights are always positive.

Parameter estimation of this model described by equations (2.4) and (2.5) is carried
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in two steps. First, factors ft are estimated using the static principal component
analysis (see Stock and Watson, 2002). An eigenvalue decomposition of the estimated
covariance matrix Γ̂0 = T−1

∑T
t=1XtX

′
t provides the n × r eigenvector matrix Ŝ =

(Ŝ1 . . . Ŝr) containing the eigenvectors Ŝi corresponding to the r largest eigenvalues
for i = 1, . . . , r. The factor estimates are the first r principal components of Xt defined
as f̂t = Ŝ ′Xt. Then, the MIDAS equation is estimated using standard non-linear least
squares, assuming factors are known.

A tricky question arising within this kind of framework is related to the number of
factors r to include in the equation (2.5). Several statistical tests are available in the
econometric literature. In the forecasting framework, it turns out that some of them
lead to more accurate forecasts, as shown in Barhoumi et al. (2013). Alessi et al. (2010)
have suggested an information criterion based on Bai and Ng (2002) to determine the
number of factors r in the context of an static factor analysis. This criterion can be
written as:

ICT
p (r) = log V (r, f) + c.r.p(n, T ), (2.7)

where p(·) is a penalty function defined as: p(n, T ) = n+T
nT

log nT
n+T

, and V (·) is a
goodness-of-fit measurement based on sum of squared errors such as:

V (r, f) = (nT )−1

T∑
t=1

n∑
i=1

(
Xt − Λf̂t

)2

(2.8)

which depends on the estimates of the static factors and on the number r of those
factors. Following Alessi et al. (2010) and according to our modelling specifications,
we set the exogenous parameters c = 2 and rmax = 5. The estimated number of factors
r∗ is defined as the one that minimises the criterium (2.7), as follows:

r∗ = arg min
0≤r≤rmax

ICT
p (r). (2.9)

The selected number of factors are therefore empirically used in (2.10) for global growth
nowcasting purposes. The monthly nowcast of the annual global growth ŷt+1|t+1−h is
defined as the conditional expectation of yt at a given month of the current year. For
all forecasting horizon h < m, the nowcasting estimate is computed using the following
Factor-Augmented MIDAS equation:

ŷt+1|t+1−h(h) = β̂0(h) +
r∗∑
i=1

β̂i(h) mK(θ̂i(h), L) f̂
(m)
i,t+1−h + λ̂(h)yt (2.10)
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where h is the forecasting horizon expressed in terms of the high frequency ranging
from h = 0 months (corresponding to December) to h = 11 months (for January’s
forecasts). The equation (2.10) characterizes predictions of the current period involving
new intermediary data of the explanatory variables using an update of the factors
estimation f̂ (m)

i,t+h. Besides that, the MIDAS parameters also are re-estimated at each
horizon h via the non-linear least squares method. It is noteworthy that we allow
parameters to depend on the forecasting horizon h.

2.2.2 Empirical Results

Database

Our methodology is based on a large data set gathering economic indicators from 37
countries, both advanced and emergingas described below.

− Advanced economies: France, Germany, Italia, Spain, Netherlands, United King-
dom, United States, Japan, Canada, Sweden, Switzerland, Norway, Denmark.

− Emerging Asia: China, India, Indonesia, South Korea, Taiwan, Thailand, Hong
Kong, Malaysia, Singapore.

− Latin America: Brazil, Argentina, Mexico, Colombia.

− Europe: Poland, Czech Republic, Romania, Hungary, Latvia, Lituania, Bulgaria.

− Rest of the world: Russia, Turkey, South Africa, Saudi Arabia.

We can notice that the share of those countries is more than 80% of the world GDP as
computed by the IMF WEO. From those 37 economies, we choose monthly variables
suppose to convey useful information to assess short-term fluctuations of economic
activity. Thus for each country we select a set of real variables (industrial production,
household consumption, retail sales, new car registrations, etc.), financial variables
(exchange rate, stock market indexes, interest rates, etc.) and household confidence
index. The exhaustive list is the following:

− Real economic conditions: Housing, Car registrations, Retail sales, Employment,
Industrial production index, Unemployment rate, Producer price index, Con-
sumer price index.

− Financial Series: Exchange rate, Money supply M2, Main national stock market
index, 10 years government bond interest rate, 3 months interbank interest rate.

Chapter 2 − Macroeconomic forecasting with mixed-frequency data
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− Survey: Household confidence index.

− Overall indicators: Oil price (Brent, WTI and Dubai), Baltic dry index, Import
and export price (CPB), Energy price (HWWI), VIX index (CBOE).

Constraints are imposed on this choice, in the sense that we aim at having a similar
set for each country and that we want to start our analysis in the early nineties.
In addition, we augment this database using global indicators of trade, commodity
prices, financial uncertainty, ... Overall we get a sample of n = 392 monthly variables.
This database possesses the great advantage of being rapidly updated. All series are
monthly and are expressed in difference or log-difference; the financial ones are sampled
as the monthly average of daily quotes, and transformed in log-returns. The problem
of ragged-edge series and unbalanced database is solved here by using the last available
data as the contemporaneous one. This approach is referred to as the realignement
strategy in the empirical litterature (see, for example, Marcellino and Schumacher,
2010).

Nowcasting methodology

Using principal component analysis defined in equation (2.4), we extract one monthly
factor that describes variability of the whole dataset. The various implemented tests on
the number of factors to select led us to choose r = 1. The estimated factor is displayed
and compared to yearly global growth WEO estimates in Figure 2.6. It is noteworthy
that this first factor seems to follow quite closely global growth fluctuations, in spite
of some deviations during specific periods of time. The idea is now to formally relate
this estimated factor to the global growth through the MIDAS equation (2.5). The
targeted variable is the world GDP growth rate provided by the IMF in its April 2014
WEO and presented in Figure 2.4.

In a first step, we carry out an in-sample analysis over the period from January 1995
to December 2009. Knowing that financial data are available the last working day of
the month, we suppose that nowcasts for a given month are computed at the end of
each month, for 12 horizons ranging from h = 0 (nowcasts computed the last month
of the reference year) to h = 11 (nowcasts computed 11 months before the end of the
reference year). For each date t, the MIDAS regression optimally exploits the monthly
fluctuations of the last K = 15 data of the f (m)

t series using the weight polynomial,
given in equation (2.6). Estimated weights are presented in Figure 2.7. The shape of
the weights is in line with what we could expect according to the forecasting horizon.
Indeed for long horizons, the shape gives a non-null value to all the weights until
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Figure 2.6: Explanatory factor vs. WEO Global growth estimates.

K = 15. When the horizon shorten (e.g. for h = 6), the shape is more peaked and the
maximum value is reached for k = 2. Finally when h = 0, that is when the nowcast is
made in December of the current year, the mass is mainly concentrated in k = 0 and
the function rapidly decreases.

Figure 2.7: In-sample MIDAS weight functions with respect to the forecasting horizon h.

In a second step, we implement a quasi-real-time experience over the post-crisis period
from January 2010 to December 2013. For each month, we estimate the global growth
of the current year and we compare it with the real-time estimates stemming from
the four IMF-WEO reports released per year. In practice, we do not re-estimate all
the parameters each month, but instead we use the parameters estimated using the
information until December of the previous year. Empirical results are presented in
Figure 2.8, as well as final estimates as released with the April 2014 IMF-WEO. As
expected, real-time estimates tend to convergence to the final figures, which is con-
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sistent with the fact that more information leads to more accurate estimates. Our
estimate evolves with the monthly flow of conjunctural information that we received
within the year, while the IMF-WEO estimates is more related to the release of quar-
terly national accounts. We note that in 2010, the IMF-WEO largely underevaluated
the bounce-back in world GDP growth, especially at the beginning of the year, while
our nowcast fluctuated around the final figure. We also note that since 2011, both
estimates were generally revised in the same direction.

Figure 2.8: WEO vs FAMIDAS nowcasts over the period 2010-2013

In addition to nowcasts, we also develop non-parametric bootstrapping technique a
la Efron (1979) in the MIDAS regression context to get confidence intervals around
nowcasts and hence a measure of the uncertainty. The methodology involves random
resampling, with replacement, of elements from the original data to generate a replicate
data vector of similar size2.5 . This kind of approach has been already used by Aastveit
et al. (2014) for density forecasts and by Clements and Galvão (2008) for significance
tests. The 90% confidence intervals are exhibited in Figure 2.9. Eyeballing the figure
suggests that the uncertainty was shifted downward since the year 2010 and seems to
remain broadly constant. But some periods of time present larger confidence intervals,
sometimes with an asymmetry pointing out that risks are tilted to the downside (or
to the upside).

In order to evaluate the accuracy of our approach, we compute the squared errors of the
nowcasts stemming from both the WEO and the FA-MIDAS model. Monthly averages
of squared errors over the period 2010-2013 are showed in Figure 2.10. Overall, the
FA-MIDAS model provides more accurate nowcasts over the year and are equivalent

2.5 Our bootstrapping methodology has been explicitly described and empirically as-
sessed in Section 1.3.2.
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Figure 2.9: FAMIDAS nowcasts with confidence interval (5%-95%) over the period 2010-
2013

to the WEO forecasts by the end of the year, from October to December. In fact,
we notice that the forecasting gain obtained by using the FA-MIDAS is particularly
important from 12 to 4 months ahead, that is from January to September. Indeed,
at the the beginning of the year, the information available to the WEO update of
January is rather scarce. Also, when economists are working on the preparation of
the April WEO, they do not have at hand the realized GDP for the first quarter of
the current year. Similarly, the release of the second quarter of GDP growth occurs
well after the July update. Consequently, it seems that our tool could consitute a nice
complement to the WEO estimates for economists interested in monitoring the world
economic growth.

Figure 2.10: Monthly averages of Mean Square Errors of WEO and FA-MIDAS nowcasts
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Conclusion

In this section, we put forward a new tool in order to nowcast the global economic
growth in real-time. We implement a Factor Augmented MIDAS approach enabling
to explain the annual global growth by a large database of monthly variables. The
targeted variable is the annual global growth estimated by the IMF in its World
Economic Outlook assessment. It turns out that our tool is able to efficiently track
on a high frequency the global growth. Especially nowcasts are much more accurate
at the beginning of the year when fewer information is available. This tool could
be fruitfully used by macroeconomists to monitor global economic developments, in
addition to the IMF-WEO estimates.

Nowcasting the world growth





Chapter 3

Bayesian inference
on MIDAS model

Treating the information regardless of the sampling frequency leads to obtaining em-
pirical gains in terms of forecasting accuracy and to capturing relevant unknown data
features. The MIDAS-based modeling approach we implement in Chapter 2 allowed
us, for instance, to point out the predictive power of financial volatility to anticipate
GDP growth during the specific period of the global economic recession. This chapter
aims at developing a Bayesian approach in the context of MIDAS regression problems
(Section 3.1) in order to provide a flexible framework to investigate some well-known
macroeconomic features. More specifically, we extend the MIDAS regression model by
allowing for stochastic volatility in the data (Section 3.2).
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3.1 Bayesian MIDAS model

As we have seen in Chapter 1, the nonlinear MIDAS estimator is consistent. That
means that the average value of the sample estimates converges to the unknown value
of the parameter as the sample size increases. However, a bootstrapping exercise
pointed out a difference in variance: the variance of the bootstrapped NLS estimator
remained higher than the theoretical asymptotic estimate, meaning that convergence
requires a very large sample size. Introducing a Bayesian procedure may allow us to
learn more about values and distributions of MIDAS parameters. Indeed, the Bayesian
approach has been applied successfully to a wide range of econometrics problems. The
works of Tsurumi, Park, Gao, Lahiri, and Zellner showed the good performance of
various Bayesian estimation procedures by contrast with that of leading non-Bayesian
estimation methods. The Bayesian approach is particularly able to deal with common
problems of nonlinear models due to either the flatness of the likelihood function or
the existence of local minima.

Rodriguez and Puggioni (2010) have recently exploited the Bayesian model selection
approach to estimate MIDAS parameters. They particularly investigated the problem
of collinearity of intraperiod observations by combining lag size specified-model (each
MIDAS model corresponds to a specific lag size K) with a Bayesian model selection
strategy. In their framework, the issue relative to the nonlinear weight function of the
MIDAS model is avoided. In fact they rather consider a linear distributed lag model
jointly with a factor analysis to deal with parameter proliferation. Recently Carriero
et al. (2012) and Marcellino et al. (2013) have also exploited Bayesian methods to
estimate mixed frequency model with stochastic volatility developed for forecasting
purposes. Their approach are most closely related to the U-MIDAS specification of
Foroni et al. (2013) described in Section 1.3.3.

In this section, we introduce the Bayesian MIDAS model by using a general framework
for model comparison. We suppose that each model corresponds to a particular choice
of variables. Seeking the most relevant model, Zellner (1971) proposed to compare
hypotheses using Bayesian analysis and the ratio of posterior probabilities associated
with each of the hypotheses tested. In this context, the Bayesian strategy we ad-
vocate has some theoretical and practical advantages for predicting purposes. First,
Bayesian techniques for model selection allow multiple comparisons and hence let us
explore full model space efficiently. Second, it is straightforwardly related to Bayesian
model averaging that provides the optimal forecasting procedure according to Palm
and Zellner (1992). That topic will be of interest of future empirical research. We
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discuss prior specifications and precisely investigate the estimation procedure using
a Markov Chain Monte Carlo method. We specially develop a generic and flexible
algorithm based on a combined use of the Metropolis Hastings and the Gibbs sampler
algorithms. We illustrate our approach by proposing a simulation exercise comparable
to that in Chapter 1, and empirically assess it in the second Section of the Chapter.

3.1.1 Bayesian setup

The Bayesian learning model is based on the Bayes theorem that relies on initial infor-
mation regarding possible values of the parameters summarized in a prior probability
density function and on the likelihood function that represents the current dataset
information. We combine those elements using the Bayes theorem in order to obtain a
posterior distribution for the parameters that contains both the prior and the sample
information. We use this strategy in the context of MIDAS models by setting a generic
model review framework.

Bayesian model selection

As we have seen in the previous two empirical examples in Chapter 2, the quality of
any forecasting methodology depends on the choice of the explanatory variables. Any
underlying technical specifications involving mixed frequency modeling should provide
a way to assess predictive content of the data set. Our Bayesian analysis relies on a
generic framework allowing model comparison3.1 . We consider a collection of models
M = {M1,M2, . . . ,MR}. Each of those models corresponds to a specific subset of
the n variables collection. Thus, we have R = 2n and M = {Mr, r ∈ {1, . . . , 2n}}.
We define ξ(r)

i as an dummy indicator of the presence of the ith β coefficient in the
subset β(r) of the modelMr:

ξ
(r)
i =

{
1 if βi ∈ β(r)

0 otherwise

The Bayesian approach to model selection requires computing the probability π(Mr|Y )

meaning that the modelMr is the correct model, given the data. For example, in the
case where we only have two models, π(M1|Y ) = 1 − π(M2|Y ). We compute those

3.1 We particularly focus on the issue of variable and model selection in the context
of mixed-frequency models in Chapter 4.
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probabilities using the Bayes formula:

π(Mr|Y ) =
F (Y |Mr)× π(Mr)

F (Y )
, (3.1)

where F (Y |Mr) is the marginal likelihood, π(Mr) is the prior of the modelMr and
F (Y ) is the full unconditional likelihood, a constant that normalizes the posterior
distribution and that can be ignored for convenience since it does not depend on the
model specification. Thus we write the posterior as:

π(Mr|y) ∝ F (Y |Mr)× π(Mr). (3.2)

Since we assume equal probabilities π(Mr) for all r meaning that we do not discrimi-
nate any model, the probabilities π(Mr) can be ignored in (3.2), and therefore we have:
π(Mr|y) ∝ F (y|Mr). Another approach would be to compute the posterior distri-
bution in (3.2) using Bernoulli distributions as prior probabilities π(M1), . . . , π(M2n)

on each model. That implies the use of an exogenous parameter η ∈ [0, 1] which set
independently π(ξi) = ηξi(1− η)1−ξi for i = 1, . . . n. Let denote Ξr the number of non
zero ξ(r), i.e. the number of variables involved in the modelMr. Hence, we have

π(Mr|η) = ηΞr(1− η)n−Ξr . (3.3)

While Bernoulli priors treat all variables equally, the parameter η controls the sparsity
in the model. The variable η can be involved in the Bayesian estimation using a
hyperprior π(η). We use the Beta distribution, η ∼ Be(ã, b̃), where ã

ã+b̃
is an a priori on

the proportion of selected variables in the subset. That strategy specifying Bernoulli
type priors is widely used in Bayesian model selection, we refer to the stochastic
search variable selection technique put forward by George and McCulloch (1993) and
developed within a MIDAS model for forecasting purposes in Chapter 4.

In the case of Bayesian Model Averaging, usually referred to as BMA, model un-
certainty is taken into account using a weighted averaging across all possible mod-
els according to their posterior probability. As a remark, we also note that ratios
of posterior probabilities rewritten as posterior odds, π(Ms1 |y)

π(Ms2 |y)
, summarized the evi-

dence in favor of one model through the Bayes factor π(y|Ms1 )

π(y|Ms2 )
(see for example Draper

(1995) for a review). Jeffreys (1961) proposed some guidelines for the interpretation of
such pairwise comparisons. However, it can be noticed that these Bayesian selection
approaches (BMA, Bayes factors, posterior odds ratios, etc.) require the marginal
likelihood F (Y |Mr). Since working with nonstandard distribution or with flat prior
relative to the likelihood, integrating marginal calculation in the Monte Carlo is gen-
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erally unstable and inaccurate. In this context, several methods have been developed
to estimate marginal likelihood (see Gelfand and Dey, 1994 or Chib, 1995). Those
techniques are of particular interest for forecasting purposes and will be examined in
further research.

The marginal likelihood can be interpreted as the expected value of the likelihood
function with respect to the prior distribution. Thus, let φ(r) be the parameters vector
of the model Mr, we integrate the marginal likelihood F (Y |Mr) with respect to its
parameter φ(r):

F (Y |Mr) =

∫
F (Y, φ(r)|Mr) dφ(r)

=

∫
F (Y |φ(r),Mr) π(φ(r)|Mr) dφ(r)

Thus, the marginal likelihood is given by:

F (Y |Mr) =
F (Y |Mr, φ(r)) π(φ(r)|Mr)

π(φ(r)|Y,Mr)
(3.4)

MIDAS specifications

In Chapter 1, we defined the standard MIDAS model and introduced the case of
multiple explanatory variables whose equation can be written in the matrix form
as Y = X(θ)β + ε, where the matrix X(θ) is denoted in (1.30) and the residuals
ε = (ε1, . . . , εT )′ are independent and assumed to be Gaussian: εt ∼ N (0, σ2). The
regression model depends on the parameters family φ = {β, θ, σ2}.

According to Bayes’ formula (3.1), the model selection relies on an estimate of the
posterior ordinate π(φ(r)|Y,Mr). Since we now focus on parameter estimates, the
posterior π(φ(r)|Y,Mr) is denoted π(β, θ, σ2|Y ) to simplify the notation. The param-
eter family {β, θ, σ2} obviously corresponds toMr specifications. Thus, the posterior
can be written as

π(β, θ, σ2|Y ) ∝ F (Y |β, θ, σ2)× π(β, θ, σ2). (3.5)

The marginal likelihood is required for model selection as prescribed in (3.4). We
ignore it for the time being. The likelihood function has already been described in
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(1.16) and can be written as follows:

F (Y |β, θ, σ2) ≡ F (Y |Mr, φ(r))

=
1

(2πσ2)T/2
exp

(
− 1

2σ2
(Y − X(θ)β)′ (Y − X(θ)β)

)
= N (Y −X(θ)β, σ2IT )

Assuming that the parameters β, θ, and σ2 are unknown, we define priors for each
of these parameters. Considering the MIDAS model as a standard linear regression
model that involves a nonlinear kernel which enables mixing frequencies, we use con-
jugate priors which provide a posterior distribution coming from the same family as
the prior for the linear parameters. In fact, we suppose that priors for the regression
parameters β are normally distributed and use Gamma prior for the MIDAS lag poly-
nomial coefficients both θ1 and θ2 as suggested by Ghysels (2012). More specifically,
regarding prior specifications for θ, we use the Jeffreys prior which is defined by:

π(θ) ∝
√

det I(θ). (3.6)

The Jeffreys prior is a non-informative prior distribution proportional to the square
root of the determinant of the Fisher information I(θ)

3.2 . That specification yields a
non tractable posterior distribution which requires the use of a Monte Carlo Markov
Chain (MCMC) method to be sampled. That is described in the following section.

3.1.2 Estimation using MCMC

The full set of conditional distributions is not available, a direct sampling of the poste-
rior distribution is therefore unachievable. In order to estimate the MIDAS model, we
implement a Gibbs sampler with respect to specific features of the mixed data sam-
pling framework. In fact, the algorithm relies on a few steps which successively draw
β and σ2 from the Normal-Inverse Gamma prior, and θ from a candidate generating
density using an independence chain Metropolis-Hastings (iMH) algorithm.

iMH within Gibbs sampler

Given initial values for all unknown parameters, the algorithm iteratively updates
their values by drawing from their conditional distribution and hence constructing a

3.2 While lnF (Y |β, θ, σ2) is twice differentiable with respect to θ.
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Markov chain with an invariant distribution. The algorithm is constructed as follows:

1. Initialize β, θ and σ2.

2. Sample β|θ, Y from N (β̂, B̂)

π(β|θ, y) ∝ exp

(
−1

2
(β − β̂)′B̂−1(β − β̂)

)
(3.7)

where B̂ =
(
B−1

0 + X(θ)′ X(θ)
σ2

)−1

, and b̂ = B̂
(
B−1

0 b0 + X(θ)′ y
σ2

)
.

3. Sample σ2 ∼ IG(sn, Sn)

where sn = s0 + T−1
2

, and Sn = 1
2
(Y − X(θ)β)′(Y − X(θ)β).

4. Sample θ|β, σ2, Y using independence chain Metropolis-Hasting step within the
Gibbs sampler.

The acceptance probability α̃ to change to the new value θnew drawn from the
candidate density, determines whether the chain moves from areas of low poste-
rior probability to high. It can be written as:

α̃ = min

[
π(θ = θ

new |y)

ι̃(θ = θnew)

ι̃(θ = θ
old

)

π(θ = θold |y)
, 1

]
.

To define the candidate generating density ι̃, we use an approximation based
on the asymptotic normality of the maximum likelihood estimator θ̂ML, and on
its asymptotic variance-covariance matrix var(θ̂ML) = I(θ)−1. We compute the
Fisher information matrix I(θ) = −E

(
∂2

∂θ∂θ′
log f(Y |β, θ, h)

)
, using numerical

differentiation procedures to obtain the approximate variance: ̂var(θ̂ML). Thus,

we set the candidate generating density as ι(θ) = fT (θ|θ̂ML,
̂var(θ̂ML)) since we

approximate the posterior by a multivariate normal distribution with mean θ̂ML

and covariance matrix ̂var(θ̂ML).

Draw u ∼ U(0, 1). If u < α, retain the new candidate by setting θ = θ
new ,

otherwise θ = θ
old .

5. Repeat J times steps 2 to 4.

Repeating a certain number of times the steps 2, 3 and 4 yields the chain to converge
to a steady state. The algorithm generates a sample {β(j)

, θ
(j)
, σ2(j)}Jj=1 which is a

sample of the posterior distribution.
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The algorithm can be easily extended to the Bayesian model selection approach we
previously set by incorporating a model probability sample step and possible hyper-
parameters sample steps. Then the marginal likelihood can be calculated from the
sample of the posterior distribution using, for instance, the Chib and Greenberg (1995)
method. Recent works have proposed new algorithms automatically generating the
proposal of the Metropolis and running multiple chains in parallel. We especially refer
to the DEMC algorithm of ter Braak and Vrugt (2008) and to the DREAM algorithm
of Vrugt et al. (2009). Those can be adapted to the MIDAS estimation problem and
will be the subject of future research.

Monte Carlo simulations

We assess our Bayesian MIDAS approach via a simulation study and an empirical
application similar to those done in Section 1.3.2. For this purpose, we use a DGP
based on a univariate MIDAS regression model (1.25) where the dependent variable is
an AR(1) process, the weight function is the exponential Almon lag polynomial (1.26),
and the innovations are normally distributed. In Chapter 1, we compared the NLS
MIDAS estimates with the asymptotic estimator using 1000 simulated models. Here,
we focus on one DGP3.3 for which we compare both empirical parameters distributions
obtained using either the posterior distribution sample of the Bayesian estimation
approach described above, or the bootstrapping procedure of the nonlinear least square
estimate, with the asymptotical distribution of the NLS estimate given by Andreou
et al. (2010) and described in 1.3.2. Those are presented in Figure 3.1.

We observe that both Bayesian and bootstrapped distributions are basically equivalent
in terms of variance of the coefficient β1. Nevertheless, we notice that the variance
of the bootstrapping parameter estimates for θ1, θ2 and β0 are generally smaller than
the variance of their respective Bayesian estimates. The relative efficiency of the two
estimators improves as T and κ increase. We also note that the convergence of both
Bayesian and bootstrapping distributions towards the asymptotic estimator density
necessitates a sample of considerable size (T > 500). A similar behavior have already
been observed in the previous simulation exercise. We now implement this exercise in
an empirical assessment based on macroeconomic data.

3.3 Model specifications and parameters value are the same than those used in Sec-
tion 1.3.2.

Chapter 3 − Bayesian inference on MIDAS model



70

(a) κ = 1/3, T = 20 (b) κ = 1/12, T = 20 (c) κ = 1/22, T = 20

(d) κ = 1/3, T = 50 (e) κ = 1/12, T = 50 (f) κ = 1/22, T = 50

(g) κ = 1/3, T = 100 (h) κ = 1/12, T = 100 (i) κ = 1/22, T = 100

(j) κ = 1/3, T = 500 (k) κ = 1/12, T = 500 (l) κ = 1/22, T = 500

Figure 3.1: Bayesian, bootstrapping and asymptotical distributions of MIDAS estimates
across different sample sizes T and different aggregation horizons κ.
The histogram depicts the bootstrapping draws and the solid black line is its normal distribution fit.
The solid red line is the normal density fit of the Bayesian posterior distribution sample, the dashed
black line represents the asymptotical distribution of the NLS estimator.
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Empirical assessment

We evaluate the Bayesian estimation approach within a well-known macroeconomic
regression problem involving data sampled at various frequencies; that is explaining
the US quarterly GDP using the US monthly IPI. The model equation is given in
(1.28) and the design of this empirical exercise is described in Section 1.3.2. The
Bayesian MIDAS model is compared with both the (frequentist) standard approach,
whose parameters are bootstrapped, and the theoretical asymptotic distribution of the
NLS estimator. We use two different sample sizes T = 40 and T = 100 which corre-
spond, respectively, to the period from 1996:q1 to 2005:q5, and 1989:q1 to 2013:q4.
The results are displayed in Figures 3.2 and 3.3.

We notice that the Bayesian MIDAS model provides a very good fit of the GDP growth
rate (MSE are 0.16 and 0.19 for the small and the large sample, respectively) and
catches well downturns of the recent Great Recession period. Despite slight differences
in the parameters distributions (the contrast between the standard NLS approach and
the Bayesian estimation can be noticed in the left-hand side Figures 3.2a and 3.3a),
these in-sample results are comparable, and quite similar in terms of accuracy, to
those obtained in Chapter 1 with the standard NLS approach. We compute confidence
intervals of parameter β1 according to the three estimation methods we put forward;
those are summarized in Table 3.1.

β̂1 Bayesian CI Bootstrap CI Asymptotic CI
Sample size
T = 40 (1996:q1-2005:q4) 0.97 [0.72; 1.21] [0.65;1.34] [0.90;1.04]
T = 100 (1989:q1-2013:q4) 1.07 [0.91; 1.22] [0.91;1.27] [1.01;1.12]

Table 3.1: Slope coefficient estimates and its relative confidence interval (CI) at 95% for
two different sample sizes.

We note that the above results are consistent with those obtained in Chapter 1. As
we have seen in the simulation exercise, the Bayesian estimation corresponds to the
bootstrapping results: the median of the Bayesian posterior distribution of β1 is 0.96
while the NLS estimate is 0.97. Moreover, we see that the two confidence intervals are
almost similar. Those results are coherent with the statistical nature of the bootstrap-
ping method. In fact, as described by Hastie et al. (2009), "the bootstrap distribution
represents an (approximate) nonparametric, noninformative posterior distribution for
our parameter. But this bootstrap distribution is obtained painlessly – without having to
formally specify a prior and without having to sample from the posterior distribution".
Our exercise empirically illustrates this fact.
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(a) (b)

Figure 3.2: Regression results over the period 1996:q1-2005:q4 (T = 40), MSE=0.16.

(a) (b)

Figure 3.3: Regression results over the period 1989:q1-2013:q4 (T = 100), MSE=0.19.
On the left-hand side (3.2a and 3.3a), the dashed black line corresponds to the theoretical asymptotic
distribution, the histogram represents the bootstrapping draws and the solid black line is its normal
distribution fit while the solid red line is the normal density fit of the Bayesian posterior distribution
sample. On the right-hand side (3.2b and 3.3b), the dashed blue line is the observed values of GDPt

while the red fan chart depicts the Bayesian distribution of the fitted series ĜDP t.
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3.2 A mixed-frequency model with stochastic

volatility

This section is based on a work-in-progress with Laurent Ferrara and Massimiliano
Marcellino, entitled "A mixed-frequency model with stochastic volatility".

Since the onset of the Great Recession, financial variables have been largely recon-
sidered in econometric models, mainly to explain growth fluctuations. Due to the
inherent nature of the data involved in such empirical analyses – growth being mea-
sured using quarterly GDP growth rates while financial information being available
on a high-frequency basis – several mixed-frequencies econometric models have been
developed in the literature to account for this stylized fact. Some applications have
showed that an extended MIDAS approach using daily financial variables increases
the predictive accuracy of quarterly GDP growth in various industrialized countries
(see e.g. Andreou et al., 2013 or Ferrara et al., 20143.4). Some recent works also put
forward nonlinear extensions of the MIDAS framework to account for an asymmetric
macro-financial relationships along the business cycle (see e.g. Guérin and Marcellino,
2013)

Many recent research papers point out the interest of heteroscedatic models to ac-
count for the volatility of financial variables. For example, Clark (2011) has recently
showed that compared to models with constant variances, models that include stochas-
tic volatility improve real time density forecasts from a VAR approach. In the context
of mixed-frequency models, Carriero et al. (2012), using an unrestricted MIDAS model
Foroni and Marcellino (2013b), and Marcellino et al. (2013), using a dynamic factor
analysis, have also showed that the stochastic volatility specification is useful to obtain
reliable density forecasts and is comparable to other usual forecasting models in terms
of point forecasts.

In this section we put forward an extended MIDAS model that integrates stochas-
tic volatility (MIDAS-SV hereafter) enabling to account for financial volatility. The
model extends both Andreou et al. (2013), by allowing for stochastic volatility, and
Carriero et al. (2012), by allowing for a standard MIDAS specification. The proposed
framework is convenient since it limits parameter proliferation and allows modeling
even in the presence of high frequency mismatch between the dependent and the ex-
planatory variables. The Bayesian approach we developed simultaneously estimates

3.4 Section 2.1 is based on this research paper.
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all the parameters of this new MIDAS-SV model3.5 . We assess its performance in a
empirical exercise that evaluates the role of daily financial variables for nowcasting
quarterly US GDP growth.

3.2.1 The MIDAS-SV model

We base our analysis on the standard MIDAS regression model using the notation that
we defined in Chapters 1 and 2. We extend the standard MIDAS model by relaxing
the homoscedastic hypothesis. We put forward a MIDAS regression model augmented
with a stochastic volatility specification, that can be written as:

yt = β0 + β1mK(θ, L)xκt + vt, (MIDAS)

vt ∼ N (0, ht) (SV)

where ln ht = λ0 + λ1 ln ht−1 + ηt and ηt ∼ N (0, ψ2). (3.8)

The model given in those three previous equations is referred to as the MIDAS-SV
model. Against this background, the disturbance vt of the standard MIDAS regression
model follows a Gaussian distribution whose variance is time-varying. Especially, the
log-volatility, ln ht, is commonly assumed evolving as a random walk process that may
be viewed as a limiting case of an AR(1) process where λ0 = 0 and λ1 = 1 in equation
(3.8). This type of volatility specification has been popularized in macro-econometrics
by Cogley and Sargent (2005) and Primiceri (2005), see also Clark (2011). Recently
Carriero et al. (2012) and Marcellino et al. (2013) have used mixed frequency stochastic
volatility models for forecasting purposes.

Parameter estimation

In order to estimate the MIDAS-SV model, we adopt a Bayesian approach in which we
specify the prior density π(φ) for the vector of all unknown parameters φ = {β, θ, λ, ψ2}
where β = {β0, β1} and λ = {λ0, λ1}, the likelihood function F (Y |φ) and the posterior
distribution which, according to the Bayes formula, is given by:

π(φ|Y ) =
F (Y |φ)× π(φ)

F (Y )
.

3.5 Our formulation also allows the regression coefficients to be time-varying.

A mixed-frequency model with stochastic volatility
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Since we do not focus on model selection in our work, the marginal likelihood f(Y )

does not really play an important role. Thus, under specific priors for φ, we can write
the posterior distribution as:

π(φ|Y ) ∝ F (Y |φ)× π(φ)

We proceed using Markov Chain Monte Carlo techniques as suggested by Jacquier
et al. (1994) and Kim et al. (1998). We implement a multi-block Gibbs sampler such
as developed in Section 3.1.2 to obtain posterior estimates under the assumption of
conjugate priors for the regression parameters. In fact, we suppose that priors for the
regression parameters β are normally distributed and use Gamma prior for the MIDAS
lag polynomial coefficients both θ1 and θ2 as suggested by Ghysels (2012). Similarly
we choose priors for λ and ψ2 from the normal-inverse gamma family. We use a hybrid
algorithm by combining Metropolis Hastings steps with a Gibbs sampler (the same
procedure has been used by Clark, 2011 or Nakajima, 2011), and by adapting it to
both MIDAS and stochastic volatility prescriptions. This accept-reject step lies on
a candidate from a proposal density and iteratively draws the posterior of both θ in
the MIDAS coefficient block and ht in the stochastic volatilty block. The algorithm is
constructed as follows:

1. Initialize β, θ, h1, λ and ψ2.

2. Sample β|θ, ht, λ, y from N (β̂, B̂)

π(b|θ, ht, y) ∝ exp

(
−1

2
(β − β̂)′B̂−1(β − β̂)

)
(3.9)

where B̂ =
(
B−1

0 + X(θ)′ X(θ)
exp(h)

)−1

, and b̂ = B̂
(
B−1

0 b0 + X(θ)′ y
exp(h)

)
.

3. Sample λ|β, θ, ht, ψ2, yt.

We have assumed that ht|ψ2 ∼ N (λ0 + λ1ht−1, ψ
2). Then the conditional distri-

bution of ht can be written as, for all t :

π(ht, λ, ψ
2) = π(ht|λ, ψ2)× π(λ|ψ2)× π(ψ2) (3.10)

=
t−1∏
τ=2

π(htτ |λ, ψ2) (3.11)

where the prior density of {h1, λ, ψ
2} follows a normal inverse gamma distribu-

tion.
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4. Sample ψ2|β, θ, ht, Y from IG( s
2
, d

2
).

Since we have the draw of ht, we compute the residuals ηt and we draw samples
from the inverse Gamma distribution where the scale parameter is s = s0 +∑T−1

t=1 η
2
t and degrees of freedom are d = T + η0.

5. Sample θ using another independence chain Metropolis-Hasting algorithm as
described in Section 3.1.2.

6. Repeat J times steps 2 to 5.

3.2.2 An empirical example on US data

As an illustration of the MIDAS-SV model put forward in the previous section, we
focus on nowcasting US GDP growth rate, using two different model specifications. We
aim at describing the relationship between the US economic output growth financial
markets evolutions, as measured by daily log-returns of the S&P500. The model is
thus given by:

GDPQ
t+h = γ0 + γ1mKD=100(θ1, L)SPD

t + vt, (M1)

where h < 1 is the nowcasting horizon. We propose a second model which incorporates
both an autoregressive term and the PMI which is a very important sentiment reading
for the US economy on a monthly basis. This second model, denoted M2, involved the
same intraperiod forecasting horizon h and is given by:

GDPQ
t+h = β0 + β1mKD=100(θ1, L)SPD

t + β2mKM=7(θ2, L)PMIMt

+ β3GDP
Q
t + vt, (M2)

It is important to note that the error term vt follows equations (SV) and (3.8) in both
M1 and M2 models.

Empirical stochastic volatility

Bayesian parameter estimation over the whole sample 1964q4-2012q4 is carried out
using the methodology presented in the previous section. The estimated stochastic
volatility, ln(ĥt), of both models are presented in Figure 3.4.

A mixed-frequency model with stochastic volatility
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(a) M1 model (b) M2 model

Figure 3.4: Empirical stochastic volatility in both nowcasting MIDAS models
Red fan charts represent stochastic volatility distributions in both considered models. Conditional
variance of GDP measured using a GARCH(1,1) model is displayed with the solid blue line.

We clearly observe a downward shift in volatility regime starting from the mid-eighties,
well documented in the empirical macroeconomics literature and referred to as the
Great Moderation period (see e.g. Perez-Quiros and Timmermann, 2001). Since then
we observe some spikes of relative amplitude in the stochastic volatility that corre-
spond to US economic recessions, meaning that macroeconomic volatility increases
during those specific phases. It is noteworthy that the increase due to the recent
worldwide Great Recession in 2008-09 is of limited magnitude when compared with
previous observed levels of volatility, especially during the two world oil shocks in
1974-75 and 1981. Interestingly, we also observe that the uncertainty surrounding the
stochastic volatility estimates, ln(ĥt), has been also strongly reduced starting from
the beginning of the Great Moderation period. This uncertainty is measured by the
confidence interval using a standard 90% level, stemming from the estimation step, as
can be seen on Figure 3.4a. When comparing the median of both stochastic volatility
distributions, displayed by the solid black line, they are relatively similar in expansion
period since the Great Moderation period, and substantially differ during recessions3.6 .
In model M1, if we interpret this stochastic volatility measure on the residuals as the
macroeconomic conditional variance that cannot be explained by financial informa-
tion, this leads to conclude that, during the last Great Recession, a large fraction of
the macroeconomic variance was driven by financial volatility. This conclusion is also
supported by the fact that the stochastic volatility during the years 2011-12 went back
to pre-recession levels.

3.6 The NBER reports three recession periods since 1985: in the early 1990’s, in the
early 2000’s, and the Great Recession from beginning-2008 to mid-2009
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Those empirical stochastic volatilities can be compared to the conditional variance
of GDP measured using a GARCH(1,1) model (represented by the solid blue line in
Figure 3.4) that roughly corresponds to the macroeconomic volatility. This narrower
uncertainty around this macroeconomic volatility partly reflects a stronger long-run
interaction between macroeconomic and financial areas. It is striking to note that dur-
ing the Great Recession period, in spite of a increase in the volatility, though limited,
the uncertainty around the volatility does not present any dramatic changes. These
results are consistent with comparable estimates reported, for example, in Carriero
et al. (2012).

Nowcasting

In order to assess the predictive power of the MIDAS-SV model, we provide GDP
growth nowcasts over the period from 1988q1 to 2012q4 that includes three recession
periods. Using a recursive window framework, nowcasts are updated daily using the
specifications of the model M2. The nowcasts are presented in Figure 3.5.

Figure 3.5: Nowcasts of the US GDP growth over the period from 1988q1 to 2012q4.
The red fan chart corresponds to the distribution of daily nowcasts. The solid blue line is the series
of realized values of the US GDP growth rate.

A mixed-frequency model with stochastic volatility
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The nowcasts are daily updated with respect to the last available data, that explains
the volatile nature of these forecasts. Nevertheless, the model roughly catches the
overall evolutions of the economic activity. To really assess the quality of the forecasts,
and given the shape of the stochastic volatility we described above, we separately
compute Mean Square Forecasting Errors for periods of expansion and recession. We
use the recession dates provided by the NBER for this purpose. The results are
presented in Figure 3.6.

Figure 3.6: RMSFE during expansions and recessions over the period from 1988q1 to
2012q4.
Fan charts represent the distribution of the intra-quarter MSFE over recessions at the top and ex-
pansions at the bottom. The horizontal axis corresponds to the forecasting horizon in working days.

There is a huge difference in terms of forecasting accuracy between the periods of
expansion and recession. While relative errors remain between 2 at the beginning of
the current quarter and 1.6 at the end in times of recession, MSFE are between 0.3
and 0.1 in period of expansion. This regression model seems not to be appropriate
to anticipate downturns. That suggests the use of regime switching or time-varying
parameters in the model specifications. The Bayesian framework we developed can eas-
ily be extended in order to incorporate these features in future research (that involves
some new hyper-parameter specifications and algorithm steps). We also notice that
both MSFE distributions do not uniformly decrease with the forecasting horizon. We
observe a slight improvement at the 2-month ahead forecasting horizon corresponding
to 44 working days due to the release of the GDPt−1.

This study develops further our work on financial volatility in Section 2.1 and provides
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new results on the relationship between the US real activity and the financial markets.
In particular, empirical results prove that the economic growth volatility is a stochastic
process that can be explained to a certain extent by financial variables. Furthermore,
the Bayesian MIDAS model we put forward is a general framework which has broad
applicability.

A mixed-frequency model with stochastic volatility





Chapter 4

Variable selection in predictive
mixed-frequency models

Short-term analysis aims at providing forecasts based on all the available information
and it usually requires the use of data sampled at different frequencies. The Great
Recession experienced by the main industrialized countries during the period 2008-
2009 in the wake of the American subprimes crisis has encouraged many forecasters
to reconsider their model specifications, especially regarding the interactions between
financial and macroeconomic variables. In this respect, Foroni and Marcellino (2013b)
and Banbura et al. (2012) have recently reviewed the existing mixed-frequency models
designed for handling immediate past data (usually referred to as ragged-edge data)
and nowcasting.

As we have seen in the previous chapters, the MIDAS method method allows us to ex-
plain a low frequency variable by using exogenous variables sampled at higher frequen-
cies without resorting to any aggregation procedure. That is particularly suitable in
macroeconomic forecasting and in capturing early signals of turning points using mul-
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tifrequency explanatory variables. The main empirical use of MIDAS is the prediction
quarterly GDP fluctuations using either monthly real economic data or daily financial
series; Andreou et al. (2013) and Ferrara et al. (2014) showed that this combination
of information significantly improves the prediction results. Furthermore, many works
prove that an appropriate selection of explanatory variables, regardless of their sam-
pling frequencies, has a major impact on the performance of this forecasting method.
Therefore, an important achievement would be to determine the more relevant in-
dicators from the huge volume of available data and thus improving the forecasting
accuracy; separating the wheat from the chaff. In macroeconomic forecasting, empir-
ical models are generally based on dimension reduction methods coming from either
variable or model selection. The difference between these two close schemes is mainly
methodological: variable selection aims at an a priori determination of the relevant
predictors, while model selection provides an algorithmic approach to combine models
which are typically univariate. The main goal of this chapter is introducing and com-
paring various variable selection methods within the mixed-frequency framework for
macroeconomic forecasting. We will show that the use of well targeted predictors sig-
nificantly improves the quality of forecasts. All schemes proposed have their grounds
on either variable or model selection to tackle the so-called curse of dimensionality
within a MIDAS forecasting framework.

A large family of widely used techniques in the literature for economic forecasting is
based on principal component analysis and factor models. We refer, among others, to
Forni et al. (2000) or Stock and Watson (2002). In the context of mixed-frequency
models, Marcellino and Schumacher (2010) have put forward a dynamic factor MI-
DAS model (FAMIDAS) as a way to tackle the lack of parsimony associated to the
profusion of covariates. FAMIDAS is a method to incorporate in a MIDAS framework
standard tools of factor analysis that usually produce very good results for short-term
forecasting (see Giannone et al., 2008 or Barhoumi et al., 2010) and hence represents a
competitive benchmark when we compare the performance of different models. As an
alternative to principal components analysis De Mol et al. (2008) have suggested the
use of Bayesian regressions or penalized regressions (especially LASSO method4.1 in-
troduced by Tibshirani, 1996) as a dimension reduction technique. Other approaches
for using mixed-frequency data are the bridge models introduced, for instance, by
Barhoumi et al. (2008) for forecasting purposes. In Bencivelli et al. (2012) bridge
based techniques are put together with Bayesian Model Averaging (BMA) to combine
predictions coming from various model settings. The literature shows that forecast

4.1 LASSO stands for Least Absolute Shrinkage and Selection Operator and is de-
scribed in detail in Section 4.1.1.
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combinations and, in particular, model averaging like BMA, yield good forecasting
results. Indeed, Palm and Zellner (1992) claim that "in some instances it is sensible
to use a simple average of individual forecasts". Rodriguez and Puggioni (2010) have
recently adapted Bayesian approaches to estimate MIDAS models for forecasting ex-
ercises. In their paper, BMA provides a way to estimate the weights applied on the
explanatory variables. Unfortunately, searching the best model using this approach
involves maximizing marginal likelihoods and hence requires in general the assessment
of the 2n different combinations of models which may prove to be numerically expen-
sive. Another technique available in the literature that extends the Bayesian selection
analysis to stochastic search relies on the mixture of priors on regressor coefficients
with spike and slab components. In this respect, we refer to Mitchell and Beauchamp
(1988) for Dirac point mass spikes or to George and McCulloch (1993) for absolutely
continuous spikes. These techniques have been widely exploited in econometrics; see,
for example, Korobilis (2013) for an empirical application to the prediction of economic
growth or Kaufmann and Schumacher (2012) for finding sparsity on factor models. The
recent paper by Scott and Varian (2013) also considers spike and slab regression for
variable selection in the nowcasting of economic time series.

In this chapter, we will focus on four different dimension reduction techniques that
we combine with the MIDAS regression structure. More specifically, we introduce two
new methods: (i) the LASSO augmented MIDAS model and (ii) the Bayesian MI-
DAS model with stochastic search variable selection. These novel strategies are then
compared with (iii) the Factor Augmented MIDAS model, and (iv) a forecasts combi-
nation technique of univariate MIDAS based predictions. In these four approaches, the
selection is carried out in-sample using a cross-validation procedure based on recent
forecasting performances. We empirically assess the different selection methods by
comparing point forecasts and prediction errors on the US GDP growth from 2000 to
2013. Our empirical results allow us to draw several important conclusions: first, we
show that adequate variable selection significantly improves forecasting performances
for all phases of the business cycle observed. Second, we observe that the two novel
techniques developed succeeded in identifying early signals of the Great Recession from
3 to 6 months in advance while two other models were unable to capture the down-
turn. Third, the set of chosen predictors determined by the proposed variable/model
selection procedure reflects the varying nature of the economic outlook.

The chapter is structured as follows: Section 4.1 describes the novel variable selection
techniques that we develop, namely the LASSO augmented MIDAS model and the
Bayesian MIDAS with stochastic search technique. In Section 4.2 we introduce the
predictive cross-validation selection strategy. In Section 4.3, we empirically show how
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the proposed selection methods of explanatory variables out of a universe of well-known
economic variables can significantly improve short-term forecasts of US GDP.

4.1 Variable selection within MIDAS framework

4.1.1 The LASSO augmented MIDAS model

LASSO (Least Absolute Shrinkage and Selection Operator) has been introduced by
Tibshirani (1996) as a covariate selection method in a linear regression setup. LASSO
operates by penalizing the optimization problem associated to the regression with a
term that involves the `1-norm of the coefficients. It belongs to the family of penalized
regression model which amounts to performing least squares with some additional
constraints on the coefficients, the `1-norm in the case of LASSO. Ng (2012) have
shown that LASSO tends to have a lower misspecification risk in forecasting models
when compared with usual information criteria. In the econometrics setup Bai and
Ng (2008) and Schumacher (2010) have proposed to forecast economic series by using
a combination of factor analysis with a LARS (see Efron et al., 2004) implementation
of LASSO.

To be more specific, the LASSO takes advantage of the sparsifying properties of the
`1-norm when solving the penalized optimization problem,

b̂ = arg min
b

∑
t

(
yt − b0 −

∑
i

bi xt,i

)2

+ λlasso

∑
i

|bi| (4.1)

= arg min
b
||Y −Xb||22 + λlasso ||b||1,

where yt is the dependent variable, xt is the vector of covariates, b is the vector con-
taining the regression parameters, and λlasso is the exogenous parameter which controls
the strength of the LASSO penalization. The LASSO method does indeed reduce the
dimension of the explanatory matrix X by driving non informative βi elements to
zero. Increasing λlasso ∈ R+ brings gradually elements of the β vector to zero, hence
selecting relevant explanatory variables. The choice of the exogenous parameter λlasso

that determines the number of covariates that are eliminated is essential and therefore
a key issue that we will address later on via cross-validation.

Ridge regression is another popular penalized optimization scheme which, as opposed
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to the `1 penalty of LASSO, is based on a `2-norm penalty. Figure 4.1 illustrates the
underlying principle of both techniques in the case of a multivariate regression model
with two variables: b1 and b2. The LASSO is on the left, and the ridge regression on
the right.

b̂LS

b̂lasso

b2

b1

b̂LS

b̂ridge

b2

b1

Figure 4.1: Penalized least squares estimate for the `1-norm (green) and the `2-norm (blue)

The ellipses around the least square estimator, b̂LS represent the level sets of the
squared error function ‖Y − Xb‖2

2 and the light colored areas correspond to balls of
the `1 and `2 norms. In view of expression (4.1), the solution of the optimization
problem that we are interested in takes place at the points in which both surfaces
are tangent. The geometry of the problems makes that in the b̂`1 case, the solution
is generically located at the vertices of the `1-balls and hence the LASSO penalized
solutions have entries equal to zero. The ridge based solutions are generally not located
at that kind of specific points and are hence not necessarily sparse.

We put forward an extension of the LASSO model to the nonlinear MIDAS regression
context by proposing the following optimization problem:

[ β̂, θ̂ ] = arg min
β, θ

∑
t

(
yt − β0 −

n∑
i=1

βi mKi
(θi)x

κi
t,i

)2

+ λ
∑
i

|βi| (4.2)

= arg min
β, θ

‖Y − X(θ) β‖2
2 + λ ‖β‖1,

where the matrix X(θ) contains the MIDAS specifications that we previously described
in (1.30),
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As we have seen in the linear case in Figure 4.1, the `1 penalization on the β parameters
implies a selection of the most relevant predictors. The number of covariates eliminated
can be chosen by tuning the value of the exogenous parameter λ which controls the size
of the constraint involved by the `1 penalty. A technical complication in solving (4.2)
via any gradient descent method arises due to the non-smooth nature of the `1 norm.
We overcome this difficulty using a local regularization technique due to Nesterov
(2005). We start by noting that the `1 norm can be expressed using the function g

defined as:

g(β) = ‖β‖1 = max
‖γ‖∞61

γ′β.

Then, we define the function gµ such that gµ−→g with respect to µ → 0 and µ > 0.
We have:

gµ(β) := max
‖γ‖∞61

γ′β −
µ

2
‖γ‖2

2,

The Nesterov regularization technique consists of replacing the norm g(β) = ‖β‖1 by
gµ(β) with µ small. The advantage of proceeding in this fashion is that the function
gµ is obviously smooth with a gradient ∇gµ(β) whose components are given by

∇igµ(β) =


sign(βi) if |βi| > µ,

1

µ
βi if |βi| < µ.

As opposed to other standard iterative variable selection techniques, the combination
of LASSO with the MIDAS regression presents the advantage of being a one-step
procedure. This feature affects directly the numerical effort involved in its implemen-
tation, where the most expensive step will be the determination of the penalization
strength λ. This parameter will be selected using what we call later on a predictive
cross-validation method.

4.1.2 Bayesian variable selection in MIDAS models

Another approach that we explore in order to define the relevant subset of variables
which should be included in the final regression model is a specific Bayesian variable
selection technique that relies on spike and slab priors (see George and McCulloch
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(1993)). This stochastic variable selection strategy is an a alternative to other usual
Bayesian constructions that involve the comparison of all 2n possible models , where
n is the number of explanatory covariates under consideration. The approach that we
propose yields a hierarchy on the covariates with respect to posterior distributions and
relative inclusion probabilities. Kaufmann and Schumacher (2012) have recently used
this technique to find relevant variables in sparse factor models.

The model selection relies on drawing the posterior ordinate using the Bayes formula.
Indeed, we assume that residuals of the MIDAS regression model follow a Gaussian
distribution N (0, σ2). Thus, the conditional likelihood function of the MIDAS model
under study has the following form:

f(Y |β, θ, σ) =
1

(2πσ)T/2
exp

[
1

2σ
(Y − X(θ)β)′(Y − X(θ)β)

]
, (4.3)

where (Y − X(θ)β) stands for the matrix expression of the MIDAS regression (see
equation (4.2)).

Bayesian approaches have been rarely used in the context of MIDAS regression model;
the main reference in this direction is Rodriguez and Puggioni (2010) where the au-
thors focus not on variable selection but on the number of temporal lags used in the
regression. In this context, they use an exponential Almon weight function combined
with linear methods that are reminiscent of the U-MIDAS scheme of Foroni et al.
(2013).

In the Bayesian framework, model parameters are derived from the posterior density
which is, according to the Bayes formula, proportional to the likelihood times the
prior, as described in (3.5). We extend the Bayesian MIDAS framework we developed
in Chapter 3 to the variable selection purpose. We choose specific priors that will help
us in determining whether a variable should be included or not. Indeed, we work with
the spike and slab priors technique introduced by Mitchell and Beauchamp (1988)
that constraints regressor coefficients to be zero (coefficient drawn from the "spike"
prior) or not (drawn from the flat distribution: the "slab" prior). More specifically,
we adopt a generalization of this method due to George and McCulloch (1993) that is
usually referred to as Stochastic Search Variable Selection (SSVS) that takes as prior
the following mixture of two normal distributions:

βi|hi ∼ hiN (0, ϕ2) + (1− hi)N (0, c ϕ2), (4.4)

where c is a small positive number (c << 1), ϕ2 sufficiently large, and hi is the binary
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random variable defined by

hi =

{
1 with π(hi = 1) = ωi,

c with π(hi = c) = 1− ωi,
(4.5)

which allows the switching from a density concentrated around zero to another one
with larger variance. When hi = 1, βi exhibits flat distribution and we can therefore
consider that the covariate xκit,i that goes with it should be included in the model;
conversely, when hi = c, the density of the coefficient is concentrated around the zero
value. Figure 4.2 illustrates this mixture of normal distributions.

0

N (0, ϕ2)

N (0, c ϕ2)

Figure 4.2: Mixture of a slab (red) and a spike (blue) normal distributions

We infer that, when hi = c, the corresponding variable should not be taken into
account as a regressor. Consequently, formulas (4.4) and (4.5) can be interpreted
by saying that ωi is the prior probability that xκit,i should be kept as a explanatory
variable. This particular feature of the SSVS method has been often reviewed in
the literature. In particular, more complex choices of prior can be made: for example,
George and McCulloch (1997) defined an hierarchical prior for the inclusion probability
using a beta distribution and Yuan and Lin (2005) have preferred the definition of a
hierarchical Bayes formulation to show that it can be related to the LASSO estimator.
Other references are Ishwaran and Rao (2005) or Malsiner-Walli and Wagner (2011).

In addition to the prior for β specified in (4.4) we analogously need to specify the
prior for the residual variance σ. We choose for this purpose the inverse gamma
distribution. We subsequently proceed by implementing a Gibbs sampler to generate
a ergodic Markov chain in which all parameters (h, ω, β, θ, σ2) are embedded. In the
particular case of the MIDAS parameter θ, we use an Independence Chain Metropolis
Hastings algorithm (iMH) within the Gibbs sampler to draw the posterior conditional
distribution of θ. The candidate posterior distribution chosen in the iMH is a normal
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distribution whose mean and covariance matrix are approximated using the maximum
likelihood estimator θ̂ML. Details on the algorithm are provided in Appendix. The
algorithm converges relatively fast to a steady state of the Markov chain and the
distribution obtained is an approximation of the posterior distribution which informs
us about the selection that can be carried out in terms of the probabilities ωi.

Finally, we establish a probability threshold Ω ∈ [0, 1] via a predictive cross-validation
technique based on forecasting performance such that when 0 < ωi < Ω < 1 we
will consider that the relative predictor xκit,i should not be included in the model. We
emphasize that in the same vein as the LASSO approach, the stochastic search variable
selection yields a one-step estimation and selection procedure.

4.2 Predictive cross-validation

In this section, we propose a cross-validation method in order to determine model
specifications that possess the best predictive power. In this respect, we assume that
the selection is updated according to its predictive error. We investigate four families
of forecasting models that we implement using the proposal predictive cross-validation:
the LASSO augmented MIDAS, the Bayesian-MIDAS Stochastic Search, the FAMI-
DAS, and the forecast combination of univariate MIDAS regressions.

We start by defining the variable ξi that will be used as an indicator that determines
whether the ith variable must be taken into account or not in the model, that is,

ξi =

{
1, if xκii,t is selected to be present in the model,
0, otherwise.

We now rewrite the MIDAS model using the ξi variables and the direct multistep
forecasting framework at the horizon h:

ŷt+h|t = β̂0 +
n∑
i=1

ξi β̂i mKi
(θ̂i, L)xκit,i, (4.6)

where (β̂0, β̂1, . . . , β̂n, θ̂1, . . . , θ̂n) are parameter estimates usually obtained by either
non-linear least squares or maximum likelihood methods.

It can be noticed that the effective size of the explanatory subset is determined by
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the ξ variables that take a non-zero value and that will be chosen using either the
LASSO or the Bayesian SSVS based procedures adapted to the MIDAS context that
we presented in the previous section. In order to evaluate their performance we will
take as a benchmark the Factor Augmented MIDAS (FAMIDAS) model put forward
by Marcellino and Schumacher (2010). This approach is based on the combined use
of two techniques: first, pooling information from blocks of covariates that share the
same frequency into a certain number of factors, and second, tracking the dependent
variable with a MIDAS regression model by incorporating these factors as explanatory
variables.

Another benchmark that we also consider is forecast combination. Indeed, there is a
growing volume of literature that shows that combining forecasts provides particularly
competitive results in prediction tasks; we refer to the very complete survey of Tim-
mermann (2006). This technique has also been implemented in the MIDAS context
by Andreou et al. (2013) using a very rich financial data set.

It can also be noticed also that the direct multi-step forecasting strategy that we adopt
provides parameter estimates β(h) and θ(h) that depend on the prediction horizon h

which is given at the lowest frequency time units. The selection parameters λ(h)
t

for the LASSO approach and Ω
(h)
t for the Bayesian SSVS model are time dependent

because their choice is based on the use of a recursive window framework over the
whole out-of-sample period. Notice that since the selection variables ξi depend on λ(h)

t

or Ω
(h)
t they are hence also time dependent. Note also that the FAMIDAS model and

the forecast combination also involve time-varying specifications using the predictive
cross-validation. Model settings are described below:

(i) In the case of the LASSO, we have the following forecasting equation:

ŷt+h|t(λ
(h)
t ) = β̂

(h)
0 +

n∑
i=1

ξi(λ
(h)
t ) β̂

(h)
i mKi

(θ̂
(h)
i , L)xκit,i. (lasso-midas)

As opposed to Tibshirani (1996), our goal is not to recover an underlying sparsity
in the coefficients vector β but to use the penalty to reduce the covariates car-
dinality. The question that arises in this context is the selection of the optimal
strength of the `1 penalty that ensures a favorable forecasting performance. Our
cross-validation procedure follows those prescriptions: for a given value λ > 0,
we set its corresponding selection by estimating the equation (4.2), and we fore-
cast ŷt|t−h(λ) such as defined in the lasso-midas equation. Then, repeating
that for a range of λ, we determine λ?t as the one which minimizes the following
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forecasting residual at time t:

λ
?(h)
t = arg min

λ

t∑
t=t−d

δt−t
(
yt − ŷt|t−h(λ(h)

t )
)2

, (4.7)

where we set δ = 0.8 in order to be coherent with our wish to involve a decrease
on the MSFE weight with respect to the historical performance, which allows to
comparatively promote recent forecasting accuracies.

(ii) The Bayesian Stochastic Search variable selection combined with the MIDAS
forecasting model is given by:

ŷt+h|t(Ω
(h)
t ) = β̂

(h)
0 +

n∑
i=1

ξi(Ω
(h)
t ) β̂

(h)
i mKi

(θ̂
(h)
i , L)xκit,i. (bayesian-midas)

The posterior probability ωi as described in (4.4) and in (4.5) specifies the prob-
ability that βi has not been drawn from the spike prior, namely the probability
to include it in the model. The issue that arises in this case is to choose a thresh-
old Ω? ∈ [0, 1] below which variables are simply removed. Following exactly the
same procedure than in the LASSO case, we forecast ŷt|t−h(Ω) according to its
relative set of selected variables. Then, we set Ω?

t as the minimum argument of
the square error for the period t:

Ω
?(h)
t = arg min

Ω

t∑
t=t−d

δt−t
(
yt − ŷt|t−h(Ω(h)

t )
)2

.

(iii) The FAMIDAS model is based on a factor structure assumption for the explana-
tory variables matrix, that can be described as follows:

Xτ = ΛFτ + ητ ,

where τ is given in one of the higher frequencies (daily or monthly in our case).
The components of the factors vector are denoted as Fτ = (f1,τ , . . . , fr,τ ). This
approach consists of using the standard MIDAS technique with the r first esti-
mated principal factors that are employed as explanatory variables4.2 . The model

4.2 This strategy has been used in Section 2.2 for nowcasting the global output growth
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is given by

ŷt+h|t(r
(h)) = β̂

(h)
0 +

r(h)∑
i=1

β̂
(h)
i mKi

(θ̂
(h)
i , L) f̂κit,i (famidas)

Since factors are linearly uncorrelated, the size of the factor vector, r, can be
determined with a statistical hypothesis test, as proposed by Bai and Ng (2008).
In our study, we propose to define r? depending on the forecasting performances.
In that case, the parameter we focus on is the number of factors to include in
the final model.

r
?(h)
t = arg min

r

t∑
t=t−d

δt−t
(
yt − ŷt|t−h(r(h)

t )
)2

Note that factors can only represent a family of variables sampled at the same
frequency. Since we mix daily and monthly predictors, we define r = (rD, rM),
where rD = {0, 1} and rM = {0, 1, 2}.

(iv) Combining forecasts is often considered as a good alternative to model selection.
Formally, we compute n individual forecasts respectively based on the ith variable
of the entire set, as follows:

ŷt+h|t,i = β̂
(h)
0 + β̂

(h)
i mKi

(θ̂
(h)
i , L)xκit,i. (4.8)

The combination is then made using a weighted average of the individual fore-
casts (4.8), thus it can be written as follows:

ŷt+h|t(w
(h)
t ) =

n∑
i=1

w
(h)
t,i ŷt+h|t,i (combination)

The forecast relies on the vector of the time-varying combination weights w(h)
i,t

which can be estimated using several methods; Stock and Watson (2008) show
some of those techniques. In this paper, we determine using an equivalent pro-
cedure than others selection methods to fairly compare all models. This model
relies on the vector of w?i,t that weights the individual forecasts, see (4.8). Those
are given as follows:

w
?(h)
t,i =

µ−at,i∑n
j=1 µ

−a
t,j

where µt,i =
t∑

t=t−d

δt−t
(
yt − ŷt|t−h,i

)2
, and a = 2.
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In these four models, the predictive cross-validation is based on forecasting perfor-
mances over the d previous quarters. Notice that the value of d would have different
meanings, e.g. d = 1 tells that we only base the analysis on the last period whereas
d = 20 represents the selection that gave best results over the last 5 years. Further-
more, instead of the usual MSFE (Mean Squared Forecasting Error), we prefer focusing
on an discounted version of this criterion such as Andreou et al. (2013) used in their
paper. That metric promotes recent performances by weighting squared residuals ac-
cording to their historical records. Concerning the pseudo out-of-sample period, we
opt for an intermediate parametrization which corresponds to forecasting performances
over the last year, i.e. d = 4.

Using this cross-validation procedure on previous quarters preceding the forecasting
stage t+h within the recursive window framework that we describe above, the selection
is updated every period of the out-of-sample. This technique leads to an automated
model selection procedure that improves the selection of the leading indicators and
yields greater efficiency in their use.

4.3 An assessment based on macroeconomic

forecasting

4.3.1 Empirical exercise on US data

We assess the performance of the four models that we have presented above using a
forecasting exercise on US GDP data over the period 2000q1-2012q4 while the full
sample covers a longer period going from 1964q3 to 2012q4. In this forecasting exer-
cise, we focus on predicting the quarterly US Gross Domestic Product using a set of
24 variables which includes monthly real indicators and daily financial variables. More
specifically, the dataset incorporates a daily spread rate and three financial times se-
ries. Our set also includes seventeen monthly indicators related to the real US economy
and coming from "soft" and "hard" data (production index, housing statistics, unem-
ployment rate, opinion survey, etc.). An entire description of the dataset is available
in Table 4.1.

The Great Recession has shed light on the necessary re-assessment of the contribution
of financial markets to the economic cycles. There is a huge volume of work in the

An assessment based on macroeconomic forecasting
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Daily series
10y-3m Spread rate: 10y Treasury Rate - 3m Treasury Bill daily ∆
CRB CRB Spot index, commodities price index daily ∆ log
DJ Dow Jones industrial share price index daily ∆ log
SP500 S&P500 index daily ∆ log
CRBvolat CRB Spot index, commodities price index daily volatility (see 2.2)
DJvolat Dow Jones industrial share price index daily volatility (see 2.2)
SP500volat S&P500 index daily volatility (see 2.2)

Monthly series
AAA Moody Yield on Seasoned Corporate Bonds AAA monthly ∆ log
AMBSL St Louis Adjusted Monetary Base monthly ∆ log
BAA Moody Yield on Seasoned Corporate Bonds BAA monthly ∆ log
BusLoans Commercial and Industrial Loans at Commercial banks monthly ∆ log
CPI Consumer Price Index for all Urban Consumers: All items monthly ∆ log
Curr Currency component of M1 monthly ∆ log
DSPIC Real Disposable Personal Income monthly ∆ log
Housing New privately owned housing units started monthly ∆ log
IPI Industrial Production Index monthly ∆ log
Loans Loans and leases in bank credit, all commercial banks monthly ∆ log
M2 M2 money stock monthly ∆ log
Oil Spot oil price: WTI monthly ∆ log
PCE Personal Consumption Expenditures monthly ∆ log
PMI ISM manufacturing survey: PMI composite index monthly level
PPI Producer Price Index: all commodities monthly ∆ log
TotalSL Total consumer credit owned and securitized outstanding monthly ∆ log
Unemploy. Unemployment rate monthly ∆

Table 4.1: US data set from 1964:1 to 2012:4

literature that underlines the leading role of financial variables in the forecasting of
macroeconomic fluctuations. Recently, Chauvet et al. (2012) and Ferrara et al. (2014)
have even shown that daily volatility of financial time series series have a significant
forecasting power concerning US growth. We particularly focus on this topic in Sec-
tion 2.1. Using variable selection models within the predictive cross-validation that we
have put forward, we evaluate whether both returns and volatility of financial time se-
ries should be included in the model specifications to forecast US GDP growth. Given
that volatility is not directly observable, several methods have been developed in the
literature to estimate it. Following Ferrara et al. (2014), we use a GARCH model on
whitened and winsorized daily financial series, as described in Section 2.1.1 in the
equation 2.2 Estimated daily volatilities are considered as explanatory variables of the
US macroeconomic fluctuations.

Chapter 4 − Variable selection in predictive mixed-frequency models
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4.3.2 Forecasting results

From 2000 to 2013, the US economy experienced different phases of the business cycle.
In 2008, in the wake of the financial crisis, the United States entered a severe recession,
referred to as the Great Recession. The recovery since 2009 was weak and growth
remained uneven. Our approach allows to set the horizon at which leading indicators
have early information and can send warnings about turning point. In this respect,
we assess the MIDAS-based models presented in the previous sections, by splitting
our sample in three parts: Early 2000’s (from 2000q1 to 2007q2), Great Recession
(from 2007q3 to 2009q4), and Recovery (from 2010q1 to 2012q4). Table 4.2 reports
the Mean Squared Forecasting Errors (MSFE) in these three periods. Moreover, in
order to assess the predictive gain of selecting variables, we also report results from a
MIDAS model that makes use of the full set of variables. Point forecasts and model
inclusion for all horizons are exhibited in the Appendix D. Results of the forecast
comparison exercise for GDP growth are discussed below.

An assessment based on macroeconomic forecasting
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2000q1-2012q4 2000q1-07q2 2007q3-09q4 2010q1-12q4
Full sample Early 2000’s Great Recession Recovery

h = 0 (Nowcasting)

lasso-midas 0,34 0,33 0,45 0,19
bayesian-midas 0,32 0,29 0,52 0,20
famidas 0,33 0,28 0,73 0,14
combination 0,38 0,33 0,62 0,12
midas 0,43 0,52 0,54 0,23

h = 3

lasso-midas 0,37 0,32 0,79 0,13
bayesian-midas 0,40 0,37 0,79 0,15
famidas 0,40 0,27 1,14 0,12
combination 0,42 0,33 0,94 0,20
midas 0,51 0,55 0,84 0,23

h = 6

lasso-midas 0,52 0,34 1,24 0,18
bayesian-midas 0,48 0,37 1,14 0,19
famidas 0,46 0,30 1,39 0,13
combination 0,42 0,30 0,99 0,27
midas 0,62 0,49 1,49 0,29

h = 9

lasso-midas 0,55 0,35 1,53 0,23
bayesian-midas 0,47 0,31 1,19 0,21
famidas 0,52 0,33 1,65 0,15
combination 0,42 0,32 1,07 0,16
midas 0,58 0,52 1,45 0,29

h = 12

lasso-midas 0,54 0,31 1,61 0,22
bayesian-midas 0,66 0,38 2,10 0,18
famidas 0,52 0,29 1,76 0,15
combination 0,44 0,30 1,12 0,25
midas 0,68 0,46 1,85 0,26

Table 4.2: MSFE (Mean Squared Forecasting Errors)
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Nowcasting

Figure 4.3: Point forecasts (top) and squared errors (bottom) for h = 0

For short horizons, the indicators chosen by both variable selection techniques, the lasso-
midas and the bayesian-midas, are primarily related to the real economic activ-
ity (production, labor market, housing, consumption). This stylized fact has been
observed in empirical papers pointing out the increasing role of hard indicators on
macroeconomic forecasts when we are close to the release date. In addition, at this
horizon, the financial volatility of the S&P500 was among the best predictors (always
included in both predictor set).

Best performances in nowcasting the Great Recession were provided by both variable
selection methods. Those indicate that financial instability, especially observed via
volatility variables and commodity price indices, triggered confusion and fear among
consumers and firms. Lower confidence and lower stock price leads to a net decrease
in consumption in that period and hence in GDP growth. These findings are in
agreement with the combination model showed that the IPI and the ISM PMI
survey are particularly important during this period.

An assessment based on macroeconomic forecasting
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The 3-month to 6-month ahead horizons

Figure 4.4: Point forecasts (top) and squared errors (bottom) for h = 3.

For the 6-month-ahead horizon, financial variables emerge as the most useful indica-
tors. Rate spreads and stock price volatility dominate the top ranks in model inclusion.
A key difference between pure nowcasting for 0-month-ahead and 3-month-ahead fore-
casts is that for the latter horizon, IPI variables are not very prominent. This result
is interesting for practitioners in the sense that using the industrial production index
for this horizon does not appear useful. We also note that the lasso-midas tends
to select variables that are not encompassed by other indicators. In fact, the LASSO
would prefer substitution in spite of complementarity that could be involved by the
bayesian-midas shrinkage and the forecast combination.

Regarding performances in predicting the Great Recession, these four models have
captured early warnings from 6 to 3 months ahead. By the end of 2007, serious short-
term risks were looming: uncertainty on financial markets (captured by stock prices
volatility), bank loan contraction, rising interest rates. We note that model inclusion
of those indicators in both variable selection and an increasing weight in the combi-
nation. From early 2010 to the end of 2011, while financial indices remain high, the
recovery was slower than expected, and it was referred to in the literature as Slug-
gish Recovery4.3 . Both famidas and combination models show this disconnection

4.3 We especially focus on this post-crisis period at the worldwide level in Section 2.2.
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by either not including anymore the daily factors or by reducing their weights in the
regression. Finally, by the end of 2011, in the wake of the sovereign debt crisis, some
financial indicators (spread rate, corporate bonds and stocks volatility) were again
chosen.

The 9-month to 12-month ahead horizons

For the 9-month ahead horizon, we note that financial volatility indicators already
played an important role in forecasting, especially over the Early 2000’s and the Re-
covery, as already noticed for the 6-month-ahead forecasts. In addition for this horizon
we get complementary information from money related variables such currency com-
ponent of M1, M2, and St Louis monetary base. We also find that the inflation rate
(CPI) is chosen by both variable selection and highlighted as one the main indicator in
the combination model for both 9-month and 12-month ahead horizons. Findings dur-
ing the Great Recession period should be interpreted with care since forecasting errors
are really high. Indeed, from 12 to 9 months ahead, it turns out that the four models
provided flat predictions, and hence did not yield informative contents to anticipate
the crisis.

Summary

According to our results about the forecast comparison exercise for GDP growth, four
main conclusions can be drawn. First, it can be noticed that over the whole sample,
our four MIDAS based models outperform the full MIDAS models and we also observe
that forecasting errors for all models decrease when the forecasting horizon tends to
zero. Second, results significantly differ depending on the period. More specifically,
early warnings of the "Great Recession" were clearly identify from 3 to 6 months
before it happened. In fact, most models that we have studied tend to perform best
with short horizons although in some cases the performance extends to three or four
quarters. Third, a few economic stylized facts have been summarized concerning the
set of predictors and the forecasting horizon. The set of chosen indicators includes
reasonable variables from an economic point of view and reflects both their intrinsic
leading features and the time varying nature of the economic outlook. Fourth, our
forecasting exercise on GDP growth proves that pooling indicators ability provides
very reliable models. Observed individually over their respective primary horizons,
some of indicators would already give very good results, grouping yields even better
performances and minimum forecast errors.

An assessment based on macroeconomic forecasting





Conclusion

In short-term forecasting, it is essential to take into account all available information
on the current state of the economic activity. Yet, the fact that various time series
are sampled at different frequencies prevents an efficient use of available data. In this
respect, the Mixed Data Sampling (MIDAS) model has proved to outperform existing
tools by combining data series of different frequencies. This thesis aims at investigat-
ing macro-financial linkages by assessing the leading role of major financial variables.
We propose different studies based on MIDAS models focusing on the prediction of the
economic growth during the last decade, and especially over the Great Recession pe-
riod. In particular, we put forward mixed-frequency models that integrate both daily
and monthly explanatory variables to forecast the quarterly GDP growth. We argue
that adding daily financial returns and volatilities increases the forecasting accuracy
in comparison with benchmark models that include hard data of the real economic
activity as an explanatory variable (see Chapter 2).

In the context of MIDAS regression problems we also developed a Bayesian framework
in order to provide a flexible approach to allow for stochastic volatility in the economic
growth data (see Chapter 3). The empirical results suggest extending the MIDAS
regression model to regime switching or time varying features. From the perspective
of prediction, these nonlinear specifications would be particularly useful to anticipate
turning points and foresee downturns. This Bayesian estimation procedure is based
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on a Metropolis-Hastings algorithm and constitutes a generic approach that may be
adapted to those various augmented MIDAS models. Predicting US recessions using
financial indicators already is of particular interest of a new research project for which
we develop a Probit MIDAS model.

In Chapter 4 we develop four tools to identify leading indicators of the US GDP growth,
regardless of their sampling frequency, using an automatic model selection procedure
based on recent best performances. More specifically, we introduce a LASSO aug-
mented MIDAS model and a Bayesian MIDAS Stochastic Search Variable Selection
that we compare with the Factor Augmented MIDAS model, and the combination
forecast technique of univariate MIDAS models. Those are specified using a predictive
cross-validation methodology relying on a recursive window and on a set of economic
series with respect to their forecasting ability. These dimension reduction methods
go beyond point forecast and highlight the leading role of some indicators in macroe-
conomics. Our findings particularly emphasize the role of daily financial information
in predicting GDP anew and showed that combining daily and monthly data signifi-
cantly increases the forecasting accuracy. The question we address focuses on variable
selection in predictive mixed-frequency models. Forecasting GDP is only one of many
examples where our methods can be applied. These approaches have broad applicabil-
ity and indeed can be of general interest in many other macroeconomic applications.
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Appendices

A Gradient of the exponential Almon function

Considering an exponential Almon lag weight function ϕ(k, θ1, θ2) = exp (θ1k + θ2k
2),

the gradient of the MIDAS function ∇mK(θ1, θ2, L) is composed of the two following
elements:

∂mK(θ1, θ2, L)

∂θ1

=
K−1∑
k=0

(
k exp

(
θ1k + θ2k

2
) (K−1∑

l=0

exp
(
θ1l + θ2l

2
))

− exp
(
θ1k + θ2k

2
) (K−1∑

l=0

l exp
(
θ1l + θ2l

2
)))

× 1(∑K−1
l=0 exp (θ1l + θ2l2)

)2 L
k
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∂mK(θ1, θ2, L)

∂θ2

=
K−1∑
k=0

(
k2 exp

(
θ1k + θ2k

2
) (K−1∑

l=0

exp
(
θ1l + θ2l

2
))

− exp
(
θ1k + θ2k

2
) (K−1∑

l=0

l2 exp
(
θ1l + θ2l

2
)))

× 1(∑K−1
l=0 exp (θ1l + θ2l2)

)2 L
k

It can be noticed that the gradient of the exponential Almon lag weight function exists
for all θ1 and θ2.

B Financial variables for forecasting growth in

the Euro Area during the Great Recession

This section is based on the paper entitled "Financial variables as leading indicators of
GDP growth: evidence from a MIDAS approach during the Great Recession", written
with Laurent Ferrara and published in Applied Economics Letters, vol. 20(3) (February
2013).

In the wake of the financial and banking crisis, most of all industrialized countries
have experienced a very severe economic recession during the years 2008 and 2009,
sometimes referred to as the Great Recession. This Great Recession has emphasized
the necessary re-assessment of financial markets in their ability to anticipate the busi-
ness cycle. Regarding the role of financial market variables, there is a huge literature
pointing out the leading property of those series to forecast macroeconomic fluctua-
tions (see a review in Stock and Watson (2003). For example, Kilian (2008) reviewed
the impact of energy prices shocks, especially oil prices, on macroeconomic fluctuations
and Hamilton (2003) put forward a non-linear Markov-Switching model to predict US
GDP growth rate through oil prices. The term spread has also been widely considered
in empirical approaches to assess in a quantitative manner future GDP growth, we
refer among others to Estrella et al. (2003) for the US and to Duarte et al. (2005) or
Bellégo and Ferrara (2012) for the euro area. When dealing with variables sampled
at various frequencies (quarterly GDP and monthly financial information), the MI-
DAS approach put forward by Ghysels and his co-authors has proved to be a useful
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tool. Especially in the forecasting framework, several empirical papers have shown
the ability of financial information to predict macroeconomic fluctuations; we refer for
example to Clements and Galvão (2008) for the US or Marcellino and Schumacher
(2010) for Germany. We assess the impact of financial returns as leading indicators
for GDP growth for the four main euro area countries (Germany, France, Italy and
Spain), as well as for the euro area as a whole. We carry out a forecasting analysis,
over the period ranging from 2007q1 to 2009q4, focused on three well-known financial
variables, namely oil prices, stock prices, and spread between long and short interest
rates, for several forecasting horizons. The MIDAS enables to use variables of various
frequencies in a single univariate model. Especially a MIDAS regression allows to
explain a low frequency variables by exogenous variables of higher frequency, without
any aggregation procedure and within a parsimonious framework; econometric details
has been provided in Chapter 1.

We use here univariate MIDAS regressions designed to accommodate direct multi-step
forecasting. To predict the quarterly GDP growth GDPQ

t , we base our regression
model on an monthly explanatory variable xMt and on a first order autoregressive
component. The forecasting equation is given by:

GDPQ
t+h|t = β̂

(h)
0 + β̂

(h)
1 mK(θ̂(h), L)xMt + λ̂(h) GDPQ

t (B.1)

where mK is the Weigth function and h is the quarterly forecasting horizon.We im-
plement forecasts for quarterly GDP growth rates for each of the main euro area
countries (Germany, France, Italy and Spain), as well as for the euro area as a whole,
starting from the same set of explanatory variables, namely oil prices, stock prices and
the spread between long and short-term interest rates. The financial time series are
detailed in Table 4.3.

Real output
GDP GDP growth in France, Germany, Italy, Spain, and euro area

(resp. INSEE, DeStatis, Istat, INE, Eurostat)
Quarterly growth rate

Financial series
Stocks CAC40, DAX, FTSEMIB, IBEX35, and DJ EuroStoxx50 indices

(Bloomberg)
Monthly ∆log

Oil Oil price quoted at New York Mercantile Exchange (Bloomberg) Monthly ∆log
Spread Term spread: 10 years Government bond - 3 months interbank

rate (Euribor 3m) (National Central Banks and ECB)
Monthly ∆

Benchmark
ESI Economic Sentiment Indicator in France, Germany, Italy, Spain,

and euro area (Eurostat)
Monthly ∆

Table 4.3: Description of variables

Financial variables for forecasting growth in the Euro Area during the Great Recession
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The output growth measure considered in this study is the quarterly growth rate of
chain-linked Gross Domestic Product as released by the national instituts of statistics
of the four countries, namely: INSEE (France), DeStatis (Germany), Istat (Italy), and
INE (Spain) and by Eurostat for the euro area at mid-July 2011. We carry out an
in-sample analysis over the period 1990q1-2006q4, then we implement a quasi-real-
time experience over the crisis period from 2007q1 to 2009q4. Knowing that financial
data are available the last working day of the month, we suppose that forecasts for a
given quarter are computed at the end of each month, for 12 horizons ranging from
h = 0 (nowcasts computed at the end of the last month of the reference quarter) to
h = 11/3 (forecasts computed 11 months before the end of the reference quarter).
For each date t, the MIDAS regression optimally exploits the monthly fluctuations
of the last K = 10 data of the xMt series using the Weigth function. For each of
the five economies (France, Germany, Italy, Spain, and euro area), we specify three
univariate MIDAS regressions based on the three financial variable returns. The direct
multi-step forecasting approach used in our work allows parameter estimation using
an OLS method and unconstrained Levenberg-Marquardt algorithm on Matlab, for
each horizon from h = 0 to h = 11/3 . In order to evaluate the accuracy of those
forecasts, we compare them with those stemming from a benchmark MIDAS model
based on the Economic Sentiment Index as leading indicator (noted ESI MIDAS), a
key opinion survey variable to predict output growth, see for example Mourougane
and Roma (2003) or Ferrara (2007). As a comparative measure, we present in table
4.4 the ratios of Root Mean Squared Forecasting Errors (RMSFEs) of GDP growth
between the Financial MIDAS models and the benchmark ESI MIDAS model for each
h horizon defined by:

r(h) =
RMSFE(h)

Financial MIDAS

RMSFE(h)
ESI MIDAS

For a given horizon h, when the ratio r(h) is lower than one, it means that the MIDAS
model based on a given financial variable outperforms the benchmark ESI MIDAS
model and the opposite prevails when the ratio is greater than one (see results in table
4.4).

Starting from the results presented in table 4.4 and figure 4.5, we can draw below some
conclusions that seem useful for practitioners. First, for all five economies, it turns
out that financial MIDAS models are able to improve the benchmark ESI MIDAS
model for at least one forecasting horizon, although the gain is not uniform through
various horizons. In general, the optimal forecast horizon lies between 3 and 5 months,
depending on the country: over 4 months for Italy, from 4 to 5 months for Germany
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Forecasting horizons h
0 1/3 2/3 1 4/3 5/3 2 7/3 8/3 3 10/3 11/3

France
Stocks 1,04 1,02 0,95 1,05 0,85 0,91 1,00 0,97 0,99 0,97 0,94 1,01
Oil 0,96 0,94 1,22 1,14 1,05 1,20 1,05 1,03 1,09 1,06 1,02 1,03
Spread 1,12 1,04 1,27 1,15 1,03 1,17 1,03 0,98 1,06 1,04 1,00 1,01

Germany
Stocks 1,23 1,23 1,09 1,11 0,97 1,06 1,02 1,01 1,01 0,97 0,98 1,01
Oil 1,21 1,19 1,18 1,24 0,99 0,97 1,01 1,03 1,05 1,01 0,98 1,03
Spread 1,17 1,20 1,20 1,23 1,13 1,06 1,02 1,00 1,02 1,00 1,00 1,03

Italy
Stocks 0,92 0,92 1,02 1,05 0,87 1,01 1,05 1,06 1,07 1,11 1,04 1,04
Oil 0,95 0,95 1,19 1,23 1,02 1,15 1,09 1,18 1,17 1,24 1,14 1,09
Spread 1,00 0,95 1,13 1,23 1,02 1,12 1,12 1,11 1,15 1,19 1,08 1,06

Spain
Stocks 1,33 1,46 0,96 1,00 0,94 1,11 1,13 1,14 1,18 1,21 1,21 1,33
Oil 1,44 1,41 0,87 0,93 0,87 1,17 1,25 1,26 1,21 1,23 1,23 1,36
Spread 1,38 1,36 0,94 1,14 1,04 1,24 1,25 1,22 1,26 1,28 1,29 1,45

Euro Area
Stocks 0,91 0,87 1,03 1,05 0,95 0,98 0,98 0,97 0,98 0,97 0,96 0,98
Oil 1,00 0,96 1,21 1,19 1,10 1,06 1,05 1,05 1,11 1,04 1,02 1,02
Spread 1,02 0,99 1,20 1,18 1,11 1,11 1,09 1,02 1,11 1,06 0,98 1,03

Table 4.4: Ratio r(h) of RMSFE for the five economies and the three financial variables

and France, and 2 to 4 months for Spain. This horizon is often encountered as the
optimal horizon for financial variables in the empirical literature that deals with the
linkages between financial and macroeconomic variables.

When comparing financial variables according to their forecasting power, it turns out
that stock prices generally seem to be the most informative variable in terms of pre-
dicting output growth, specially for France, Italy, and the Euro Area. In fact, this
Great Recession was initiated by a turmoil on financial markets, equity prices having
experienced large falls. Thus this does not seem surprising that stock prices possess
a predictive power over macroeconomic evolutions from 2007 to 2009. In opposition,
the term spread does not clearly improve forecasting results from the ESI, for all
five economic areas. It turns out that this variable is a reliable predictor of turning
points in the business cycles, as advocated in many papers (see for example Rudebusch
and Williams (2009)), but does not appear as precise predictor of quantitative GDP
growth. The same remark holds for oil prices. Indeed, in general, oil prices do not
help to improve forecasts by comparison with the ESI, except in the case of Spain for
which the oil price variable gives significant better results than the ones obtained from

Financial variables for forecasting growth in the Euro Area during the Great Recession
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(a) France (b) Germany

(c) Italy (d) Spain

(e) Euro Area

Figure 4.5: Evolution of RMSFE ratios r(h) with respect to h

ESI, for forecast horizons ranging from 2 to 4 months (ratios lower than 0.90). Note
also that oil prices present a ratio lower than one for Italy and France, for a very short
term horizon (the last two months).

Lastly, when comparing countries, it turns out that for France, stock prices provide
significantly better results in forecasting GDP than the ESI, for almost each forecast
horizon, which is a remarkable result. Also for the Euro Area as a whole, stock prices
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lead to an almost systematic gain by comparison with the ESI, except for the 2-month
and 3-month horizons. As regards other countries, it is striking to note that those
financial variables do not help to improve German GDP forecasts by comparison with
the ESI. This result is interesting for practitioners in charge of short-term forecasting
for Germany. This means that variables reflecting macroeconomic fundamentals, like
for example industrial production index, are likely much more important to get ac-
curate macroeconomic forecasts than financial market variables. For Spain, only oil
prices possess a leading pattern between 2 and 4 months. For Italy, we observe a gain
as regards stock prices for h = 0, 1 and also the ratio is lower than 0.90 for h = 4.

C Indepence Metropolis Hastings algorithm for

Stochastic Search Variable Selection

To estimate the SSVS-MIDAS model, we implement a Gibbs sampler with respect
to specific features due to the mixed data sampling framework4.4 . The algorithm re-
lies on a few steps which successively sampling h from the spike and slab prior, the
hyperparameter ω from a Beta distribution, β and σ from the usual Normal-Inverse
Gamma prior, and θ from a candidate generating density using an Independence chain
Metropolis-Hastings algorithm. Given initial values for all unknown parameters, the
algorithm iteratively updates their values by sampling from their conditional distribu-
tion and hence constructing a Markov chain with an invariant distribution.

The algorithm is constructed as follows:

1. Sample hi, ∀i = 1, . . . , n,
π(hi|βi, ωi) = (1− ω)π(βi; 0, cϕ2)I{hi=c} + ωπ(βi; 0, ϕ2)I{hi=1},

2. Sample ω from B(c0 + n1, d0 + n− n1),
where n1 =

∑
i I{hi=1}

3. Sample βi ∼ N (an, An)

where A−1
n = 1

σ
X(θ)′X(θ) +D−1, an = An

X(θ)Y
σ

, and D = diag(φ2hi)

4. Sample σ ∼ IG(sn, Sn)

where sn = s0 + T−1
2

, and Sn = 1
2
(Y − X(θ)β)′(Y − X(θ)β)

4.4 Comparable algorithms have already been developed in Chapter 3.

Indepence Metropolis Hastings algorithm for Stochastic Search Variable Selection
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5. Sampling θ using an independence chain Metropolis-Hasting algorithm.
The acceptance probability α to change to the new value θnew drawn from the
candidate density, determines whether the chain moves from areas of low pos-
terior probability to high. The acceptance ratio, has been already described in
Section 3.1.2.

Repeating 25000 times these 5 steps yields the chain to converge to a steady state.
The posterior distribution will allow us to determine the selection with respect to ω.
The MATLAB code is available on my website: www.seltenhut.com/clement.marsilli.

D Variable selection

The following figures indicate the variable selection as described by the variable ξ in
equation (4.6) with respect to t and according to either the lasso-midas model or
the bayesian-midas model. We also point out the number of factors involved in the
famidas model and the weights of individual predictions in the forecast combination
model.
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D.1 Results for h = 0

Bayesian-MIDAS (h = 0)

Figure 4.6: Variable selection from 2000q1 to 2012 q4 with the Bayesian-MIDAS model

LASSO-MIDAS (h = 0)

Figure 4.7: Variable selection from 2000q1 to 2012 q4 with the LASSO-MIDAS model

Variable selection
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FAMIDAS (h = 0)

Figure 4.8: Variable selection from 2000q1 to 2012 q4 with the FAMIDAS model

Forecast combinations (h = 0)

Figure 4.9: Weights for each variable of the combination from 2000q1 to 2012 q4
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D.2 Results for h = 3

Bayesian-MIDAS (h = 3)

Figure 4.10: Variable selection from 2000q1 to 2012 q4 with the Bayesian-MIDAS model

LASSO-MIDAS (h = 3)

Figure 4.11: Variable selection from 2000q1 to 2012 q4 with the LASSO-MIDAS model

Variable selection
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FAMIDAS (h = 3)

Figure 4.12: Variable selection from 2000q1 to 2012 q4 with the FAMIDAS model

Forecast Combinations (h = 3)

Figure 4.13: Weights for each variable of the combination from 2000q1 to 2012 q4
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D.3 Results for h = 6

Bayesian-MIDAS (h = 6)

Figure 4.14: Variable selection from 2000q1 to 2012 q4 with the Bayesian-MIDAS model

LASSO-MIDAS (h = 6)

Figure 4.15: Variable selection from 2000q1 to 2012 q4 with the LASSO-MIDAS model
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FAMIDAS (h = 6)

Figure 4.16: Variable selection from 2000q1 to 2012 q4 with the FAMIDAS model

Forecast combinations (h = 6)

Figure 4.17: Weights for each variable of the combination from 2000q1 to 2012 q4
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D.4 Results for h = 9

Bayesian-MIDAS (h = 9)

Figure 4.18: Variable selection from 2000q1 to 2012 q4 with the Bayesian-MIDAS model

LASSO-MIDAS (h = 9)

Figure 4.19: Variable selection from 2000q1 to 2012 q4 with the LASSO-MIDAS model
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FAMIDAS (h = 9)

Figure 4.20: Variable selection from 2000q1 to 2012 q4 with the FAMIDAS model

Forecast combinations (h = 9)

Figure 4.21: Weights for each variable of the combination from 2000q1 to 2012 q4
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D.5 Results for h = 12

Bayesian-MIDAS (h = 12)

Figure 4.22: Variable selection from 2000q1 to 2012 q4 with the Bayesian-MIDAS model

LASSO-MIDAS (h = 12)

Figure 4.23: Variable selection from 2000q1 to 2012 q4 with the LASSO-MIDAS model
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FAMIDAS (h = 12)

Figure 4.24: Variable selection from 2000q1 to 2012 q4 with the FAMIDAS model

Forecast combinations (h = 12)

Figure 4.25: Weights for each variable of the combination from 2000q1 to 2012 q4

Appendices



122

Variable selection





Bibliography

Aastveit, K. A., Claudia Foroni, C., and Ravazzolo, F. (2014). Density forecasts with
MIDAS models.

Abraham, B. (1982). Temporal Aggregation and Time Series. International Statistical
Review / Revue Internationale de Statistique, 50(3):285–291.

Ahn, E. S. and Lee, J. M. (2006). Volatility relationship between stock performance
and real output. Applied Financial Economics, 16(11):777–784.

Alessi, L., Barigozzi, M., and Capasso, M. (2010). Improved penalization for deter-
mining the number of factors in approximate factor models. Statistics & Probability
Letters, 80(23-24):1806–1813.

Almon, S. (1965). The distributed lag between capital appropriations and expendi-
tures. Econometrica, 33(1):178–196.

Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: Yes, standard
volatility models do provide accurate forecasts. International Economic Review,
39(4):885–905.

Andreou, E., Ghysels, E., and Kourtellos, A. (2010). Regression models with mixed
sampling frequencies. Journal of Econometrics, 158(2):246–261.

124



Andreou, E., Ghysels, E., and Kourtellos, A. (2013). Should macroeconomic forecasters
use daily financial data and how? Journal of Business and Economic Statistics,
31(2):240–251.

Angelini, E., Camba-Mendez, G., Giannone, D., Reichlin, L., and Rünstler, G.
(2011). Short-term forecasts of euro area GDP growth. The Econometrics Journal,
14(1):C25—-C44.

Bai, J. and Ng, S. (2002). Determining the Number of Factors in Approximate Factor
Models. Econometrica, 70(1):191–221.

Bai, J. and Ng, S. (2008). Forecasting economic time series using targeted predictors.
Journal of Econometrics, 146(2):304–317.

Banbura, M., Giannone, D., Modugno, M., and Reichlin, L. (2012). Now-Casting and
the Real-Time Data Flow.

Barhoumi, K., Benk, S., Cristadoro, R., Reijer, A. D., Jakaitiene, A., Jelonek, P.,
Rua, A., Rünstler, G., Ruth, K., Nieuwenhuyze, C. V., and Jakaitiene, A. (2008).
Short-term forecasting of GDP using large monthly datasets: a pseudo real-time
forecast evaluation exercise. Working paper, European Central Bank.

Barhoumi, K., Darné, O., and Ferrara, L. (2010). Are disaggregate data useful for
factor analysis in forecasting French GDP? Journal of Forecasting, 29(1-2):132–144.

Barhoumi, K., Darné, O., and Ferrara, L. (2013). Testing the Number of Factors: An
Empirical Assessment for a Forecasting Purpose. Oxford Bulletin of Economics and
Statistics, 75(1):64–79.

Barhoumi, K., Darné, O., Ferrara, L., and Pluyaud, B. (2012). Monthly GDP orecast-
ing using bridge models: Application for the French economy. Bulletin of Economic
Research, forthcomin.

Bellégo, C. and Ferrara, L. (2012). Macro-financial linkages and business cycles: A
factor-augmented probit approach. Economic Modelling, 29(5):1793–1797.

Bencivelli, L., Marcellino, M., and Moretti, G. (2012). Selecting predictors by using
Bayesian model averaging in bridge models.

Blanchard, O. J. and Leigh, D. (2013). Growth Forecast Errors and Fiscal Multipliers.
IMF Working Papers.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Jour-
nal of Econometrics, 31(3):307–327.

125



Carnero, M. A., Peña, D., and Ruiz, E. (2012). Estimating GARCH volatility in the
presence of outliers. Economics Letters, 114(1):86–90.

Carriero, A., Clark, T. E., and Marcellino, M. (2012). Real-time nowcasting with a
Bayesian mixed frequency model with stochastic volatility.

Charles, A. and Darné, O. (2005). Outliers and GARCH models in financial data.
Economics Letters, 86(3):347–352.

Chauvet, M., Senyuz, Z., and Yoldas, E. (2012). What does financial volatility tell us
about macroeconomic fluctuations? Working paper, Federal Reserve Board.

Chevillon, G. (2007). Direct multi-step estimation and forecasting. Journal of Eco-
nomic Surveys, 21(4):746–785.

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American
Statistical Association, 90(432):1313–1321.

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm.
The American Statistician, 49(4):327–335.

Claessens, S., Kose, M. A., and Terrones, M. E. (2012). How do business and financial
cycles interact? Journal of International Economics, 87(1):178–190.

Clark, T. E. (2011). Real-Time Density Forecasts From Bayesian Vector Autore-
gressions With Stochastic Volatility. Journal of Business & Economic Statistics,
29(3):327–341.

Clements, M. P. and Galvão, A. B. (2008). Macroeconomic forecasting with mixed-
frequency data. Journal of Business and Economic Statistics, 26(4):546–554.

Clements, M. P. and Galvão, A. B. (2009). Forecasting US output growth using Lead-
ing Indicators: An appraisal using MIDAS models. Journal of Applied Econometrics,
24(7):1187– 1206.

Cogley, T. and Sargent, T. J. (2005). Drift and Volatilities: Monetary Policies and
Outcomes in the Post WWII U.S. Review of Economic Dynamics, 8(2):262–302.

Colacito, R., Engle, R. F., and Ghysels, E. (2011). A component model for dynamic
correlations. Journal of Econometrics, 164(1):45–59.

Creti, A., Joëts, M., and Mignon, V. (2012). On the links between stock and com-
modity markets’ volatility.

126



De Mol, C., Giannone, D., and Reichlin, L. (2008). Forecasting using a large number
of predictors: Is Bayesian shrinkage a valid alternative to principal components?
Journal of Econometrics, 146(2):318–328.

Dhrymes, P. J. (1971). Distributed lags: problems of estimation and formulation.
Holden-Day, 1st editio edition.

Diron, M. (2008). Short-term forecasts of euro area real GDP growth: an assessment of
real-time performance based on vintage data. Journal of Forecasting, 27(5):371–390.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the
Royal Statistical Society, 57(1):44–97.

Drechsel, K., Giesen, S., and Lindner, A. (2014). Outperforming IMF Forecasts by the
Use of Leading Indicators. IWH Discussion Papers 4, Halle Institute for Economic
Research.

Duarte, A., Venetis, I. A., and Paya, I. (2005). Predicting real growth and the proba-
bility of recession in the Euro area using the yield spread. International Journal of
Forecasting, 21(2):261–277.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of
Statistics, 7(1):1–26.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.
Annals of Statistics, 32(2):407–499.

Eisner, R. (1960). A Distributed Lag Investment Function. Econometrica, 28(1):1–29.

Engle, R. F. (1982). Autoregressive Conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica, 50(4):pp. 987–1007.

Engle, R. F., Ghysels, E., and Sohn, B. (2006). On the Economic Sources of Stock
Market Volatility.

Estrella, A., Rodrigues, A. P., and Schich, S. (2003). How Stable is the Predictive
Power of the Yield Curve? Evidence from Germany and the United States. Review
of Economics and Statistics, 85(3):629–644.

Ferrara, L. and Marsilli, C. (2013). Financial variables as leading indicators of GDP
growth: Evidence from a MIDAS approach during the Great Recession. Applied
Economics Letters, 20(3):233–237.

127



Ferrara, L., Marsilli, C., and Ortega, J.-P. (2014). Forecasting growth during the
Great Recession: is financial volatility the missing ingredient? Economic Modelling,
36:44–50.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The Generalized Dynamic-
Factor Model: Identification And Estimation. The Review of Economics and Statis-
tics, 82(4):540–554.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2003). Do financial variables
help forecasting inflation and real activity in the euro area? Journal of Monetary
Economics, 50(6):1243–1255.

Foroni, C. (2012). Econometric Models for Mixed-Frequency Data. PhD thesis, Euro-
pean University Institute.

Foroni, C., Ghysels, E., and Marcellino, M. (2014). Mixed-frequency vector autore-
gressive models. Advances in Econometrics.

Foroni, C. and Marcellino, M. (2013a). A comparison of mixed frequency approaches
for nowcasting Euro area macroeconomic aggregates. International Journal of Fore-
casting, (2010):1–15.

Foroni, C. and Marcellino, M. (2013b). A survey of Econometrics methods for mixed
frequency data. Working Paper 02, European University Institute.

Foroni, C., Marcellino, M., and Schumacher, C. (2013). U-MIDAS: MIDAS regressions
with unrestricted lag polynomials. Journal of the Royal Statistical Society - Series
A, forthcomin.

French, K. R., Schwert, G. W., and Stambaugh, R. F. (1987). Expected stock returns
and volatility. Journal of Financial Economics, 19:3–29.

Galvão, A. B. (2013). Changes in predictive ability with mixed frequency data. Inter-
national Journal of Forecasting, 29(3):395–410.

Gelfand, A. E. and Dey, D. K. (1994). Bayesian Model Choice: Asymptotics and
Exact Calculations. Journal of the Royal Statistical Society, 56(3):501–514.

George, E. I. and McCulloch, R. E. (1993). Variable Selection Via Gibbs Sampling.
Journal of the American Statistical Association, 88(423):881–889.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection.
Statistica Sinica, 7:339–373.

128



Ghysels, E. (2012). Mixed Frequency Vector Autoregressive Models.

Ghysels, E., Santa-clara, P., and Valkanov, R. (2002). The MIDAS Touch: Mixed
Data Sampling Regression Models.

Ghysels, E., Santa-clara, P., and Valkanov, R. (2004). The MIDAS touch : Mixed
data sampling regression models. Technical Report 919, mimeo.

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2005). There is a risk-return trade-off
after all. Journal of Financial Economics, 76(3):509–548.

Ghysels, E., Sinko, A., and Valkanov, R. (2007). MIDAS regressions: Further results
and new directions. Econometric Reviews, 26(1):53–90.

Giannone, D., Reichlin, L., and Small, D. (2008). Nowcasting: The real-time informa-
tional content of macroeconomic data. Journal of Monetary Economics, 55(4):665–
676.

Golinelli, R. and Parigi, G. (2013). Tracking world trade and GDP in real time. Temi
di discussione (Economic working papers) 920, Bank of Italy, Economic Research
and International Relations Area.

Götz, T. B. and Hecq, A. (2014). Nowcasting causality in mixed frequency vector
autoregressive models. Economics Letters, 122(1):74–78.

Grigoryeva, L. and Ortega, J.-P. (2012). Finite Sample Forecasting with Estimated
Temporally Aggregated Linear Processes. SSRN Electronic Journal, pages 1–41.

Guérin, P. and Marcellino, M. (2013). Markov-Switching MIDAS Models. Journal of
Business & Economic Statistics, 31(1):45–56.

Hamilton, J. D. (1994). Time series analysis. Princeton University Press.

Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics, 113(2):363–
398.

Hamilton, J. D. and Lin, G. (1996). Stock market volatility and the business cycle.
Journal of Applied Econometrics, 11(5):573–593.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, Second EditionÂă(Google eBook).
Springer.

Ishwaran, H. and Rao, J. S. (2005). Spike and slab variable selection: Frequentist and
Bayesian strategies. The Annals of Statistics, 33(2):730–773.

129



Jacquier, E., Polson, N. G., and Rossi, P. E. (1994). Bayesian Analysis of Stochastic
Volatility Models. Journal of Business & Economic Statistics, 12(4):371–389.

Jeffreys, H. (1961). Theory of Probability. Oxford: Clarendon Press, 3rd editio edition.

Jennrich, R. I. (1969). Asymptotic Properties of Non-Linear Least Squares Estimators.
The Annals of Mathematical Statistics, 40(2):633–643.

Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., and Lee, T.-C. (1985). The
Theory and Practice of Econometrics (Wiley Series in Probability and Statistics).
Wiley.

Kaufmann, S. and Schumacher, C. (2012). Finding relevant variables in sparse
Bayesian factor models: Economic applications and simulation results. Technical
Report 29, Deutsche Bundesbank Discussion Paper.

Kilian, L. (2008). The economic effects of energy price shocks. Journal of Economic
Literature, 46(4):871–909.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic Volatility: Likelihood Inference
and Comparison with ARCH Models. Review of Economic Studies, 65(3):361–393.

Korobilis, D. (2013). Hierarchical shrinkage priors for dynamic regressions with many
predictors. International Journal of Forecasting, 29(1):43–59.

Koyck, L. (1954). Distributed Lags and Investment Analysis. Amsterdam: North-
Holland Publishing Compagny.

Kvedaras, V. and Zemlys, V. (2012). Testing the functional constraints on parameters
in regressions with variables of different frequency. Economics Letters, 116(2):250–
254.

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer.

Malsiner-Walli, G. and Wagner, H. (2011). Comparing Spike and Slab Priors for
Bayesian Variable Selection. Austrian Journal of Statistics, 40(4):241–264.

Marcellino, M. (1999). Some Consequences of Temporal Aggregation in Empirical
Analysis. Journal of Business & Economic Statistics, 17(1):129–136.

Marcellino, M., Porqueddu, M., and Venditti, F. (2013). Short-term GDP forecasting
with a mixed frequency dynamic factor model with stochastic volatility. Technical
report, Banca d’Italia.

130



Marcellino, M. and Schumacher, C. (2010). Factor MIDAS for nowcasting and forecast-
ing with ragged-edge data: A model comparison for German GDP. Oxford Bulletin
of Economics and Statistics, 72(4):518–550.

Marcellino, M., Stock, J. H., and Watson, M. W. (2006). A comparison of direct and
iterated multistep AR methods for forecasting macroeconomic time series. Journal
of Econometrics, 135(1-2):499–526.

Mariano, R. S. and Murasawa, Y. (2003). A new coincident index of business cycles
based on monthly and quarterly series. Journal of Applied Econometrics, 18(4):427–
443.

Matheson, T. (2011). New Indicators for Tracking Growth in Real Time. IMF Working
Papers 11/43, International Monetary Fund.

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian Variable Selection in Linear
Regression. Journal of the American Statistical Association, 83(404):1023–1032.

Nakajima, J. (2011). Time-Varying Parameter VAR Model with Stochastic Volatility
: An Overview of Methodology. Monetary and Economic Studies, 29:107–142.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Math. Program.,
103(1, Ser. A):127–152.

Ng, S. (2012). Variable Selection in Predictive Regressions.

Ng, S. and Wright, J. H. (2013). Facts and Challenges from the Great Recession
for Forecasting and Macroeconomic Modeling. Journal of Economic Literature,
51(4):1120–1154.

Palm, F. C. and Zellner, A. (1992). To combine or not to combine? issues of combining
forecasts. Journal of Forecasting, 11(8):687–701.

Perez-Quiros, G. and Timmermann, A. (2001). Business cycle asymmetries in stock
returns: Evidence from higher order moments and conditional densities. Journal of
Econometrics, 103(1-2):259–306.

Primiceri, G. E. (2005). Time Varying Structural Vector Autoregressions and Mone-
tary Policy. Review of Economic Studies, 72(3):821–852.

Rodriguez, A. and Puggioni, G. (2010). Mixed frequency models: Bayesian approaches
to estimation and prediction. International Journal of Forecasting, 26(2):293–311.

131



Rossiter, J. (2010). Nowcasting the Global Economy. Discussion Paper 12, Bank of
Canada.

Rudebusch, G. D. and Williams, J. C. (2009). Forecasting Recessions: The Puzzle
of the Enduring Power of the Yield Curve. Journal of Business and Economic
Statistics, 27(4):492–503.

Schmidt, P. and Sickles, R. (1975). On the efficiency of the Almon lag technique.
International Economic Review, 16(3):792–795.

Schmidt, P. and Waud, R. (1973). The Almon lag technique and the monetary versus
fiscal policy debate. Journal of American Stastistical Association, 68(1):11–19.

Schumacher, C. (2010). Factor forecasting using international targeted predictors: The
case of German GDP. Economics Letters, 107(2):95–98.

Scott, S. L. and Varian, H. R. (2013). Bayesian variable selection for nowcasting
economic time series. Technical Report 19567, NBER Working Papers.

Sestieri, G. (2014). Comments on "A comparison of mixed frequency approaches for
nowcasting euro area macroeconomic aggregates". International Journal of Fore-
casting, forthcomin.

Shiller, R. J. (1973). A Distributed Lag Estimator Derived from Smoothness Priors.
Econometrica, 41(4):775–788.

Simpson, P. W., Osborn, D. R., and Sensier, M. (2001). Forecasting UK industrial
production over the business cycle. Journal of Forecasting, 20(6):405–424.

Sims, C. A. (1974). Distributed Lags. In Intriligator, M. D. and Kendrick, D. A.,
editors, Frontiers of Quantative Economics II. Amsterdam: North-Holland.

Solow, R. M. . (1960). On a Family of Lag Distributions. Econometrica, 28(2):393–406.

Stock, J. H. and Watson, M. W. (2002). Forecasting Using Principal Components
From a Large Number of Predictors. Journal of the American Statistical Association,
97:1167–1179.

Stock, J. H. and Watson, M. W. (2003). Forecasting output and inflation: The role of
asset prices. Journal of Economic Literature, 41(3):788–829.

Stock, J. H. and Watson, M. W. (2008). Phillips Curve Inflation Forecasts. Technical
Report 14322, NBER Working Papers.

132



ter Braak, C. J. F. and Vrugt, J. a. (2008). Differential Evolution Markov Chain with
snooker updater andÂăfewer chains. Statistics and Computing, 18(4):435–446.

Teräsvirta, T. (1980). The polynomial distributed lag revisited. Empirical Economics,
5:69–81.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society, 58(1):267–288.

Timmermann, A. (2006). Forecast combinations. In Elliott, G., Granger, C. W., and
Timmermann, A., editors, Handbook of Economic Forecasting, chapter 4. Elsevier.

Vrugt, J. A., ter Braak, C., Diks, C., Robinson, B. A., Hyman, J. M., and Higdon, D.
(2009). Accelerating Markov Chain Monte Carlo Simulation by Differential Evolu-
tion with Self-Adaptive Randomized Subspace Sampling. International Journal of
Nonlinear Sciences and Numerical Simulation, 10:273 – 290.

Yuan, M. and Lin, Y. (2005). Efficient Empirical Bayes Variable Selection and
Estimation in Linear Models. Journal of the American Statistical Association,
100(472):1215–1225.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. Wiley.

133



Index

Almon polynomial, 16, 28
Asymptotic distribution (NLS estimator),

27

Bayesian estimation, 110
Bayesian Model Averaging, 65
Bayesian model selection, 64
Bootstrapping, 29, 58, 69
Bridge model, 20

Distributed lag model, 15

Financial volatility, 38, 43, 99
Forecast combination, 93
Forecasting

Direct multistep, 20, 42, 91
Iterated multistep, 21
MIDAS equation, 42, 91

GARCH model, 41
GDP

Definition, 5, 10

Growth rate, 42
Global growth, 49
Great Moderation, 76, 77
Great Recession, 38, 48, 49, 77, 99

LASSO, 85

Macroeconomic indicators, 4, 9, 42, 55, 94
Marginal likelihood, 66
MCMC

Bayesian simulations, 69
DGP, 28

Metropolis Hastings within Gibbs sampler,
67, 110

MIDAS
Bayesian estimation, 67
Factor-Augmented MIDAS, 52, 92
Likelihood, 26, 67
Measuring volatility, 34
Multiple explanatory variables, 33, 40,

76

134



Regression model, 23
Simulations, 28, 69
Unrestricted MIDAS, 34

Nesterov regularization, 87
Nowcasting, 5, 10, 54, 57, 76, 98

Predictive cross-validation, 90

Ragged edge, 20
Ridge regression, 85, 86

Sluggish recovery, 99
Spike and Slab priors, 88
Stochastic Search Variable Selection, 88,

110
Stochastic volatility, 74, 76

Temporal aggregation, 18

Variable selection, 83

Weight function, 23, 28

135





Résumé
La prévision macroéconomique à court terme est un exercice aussi complexe qu’essentiel pour la définition
de la politique économique et monétaire. Les crises financières récentes ainsi que les récessions qu’ont
endurées et qu’endurent aujourd’hui encore, en ce début d’année 2014, nombre de pays parmi les plus
riches, témoignent de la difficulté d’anticiper les fluctuations économiques, même à des horizons proches.
Les recherches effectuées dans le cadre de la thèse de doctorat qui est présentée dans ce manuscrit se sont
attachées à étudier, analyser et développer des modélisations pour la prévision de croissance économique.
L’ensemble d’informations à partir duquel construire une méthodologie prédictive est vaste mais également
hétérogène. Celle-ci doit en effet concilier le mélange des fréquences d’échantillonnage des données et la
parcimonie nécessaire à son estimation. Nous évoquons à cet effet dans un premier chapitre les éléments
économétriques fondamentaux de la modélisation multi-fréquentielle. Le deuxième chapitre illustre l’apport
prédictif macroéconomique que constitue l’utilisation de la volatilité des variables financières en période
de retournement conjoncturel. Le troisième chapitre s’étend ensuite sur l’inférence bayésienne et nous
présentons par ce biais un travail empirique issu de l’adjonction d’une volatilité stochastique à notre modèle.
Enfin, le quatrième chapitre propose une étude des techniques de sélection de variables à fréquence multiple
dans l’optique d’améliorer la capacité prédictive de nos modélisations. Diverses méthodologies sont à cet
égard développées, leurs aptitudes empiriques sont comparées, et certains faits stylisés sont esquissés.

Mots-clés
Économétrie, série temporelles, modèle de prévisions, macroéconomie internationale, modélisation multi-
fréquentielle, MIDAS.

Abstract
Economic downturn and recession that many countries experienced in the wake of the global financial crisis
demonstrate how important but difficult it is to forecast macroeconomic fluctuations, especially within a
short time horizon. The doctoral dissertation studies, analyses and develops models for economic growth
forecasting. The set of information coming from economic activity is vast and disparate. In fact, time series
coming from real and financial economy do not have the same characteristics, both in terms of sampling
frequency and predictive power. Therefore short-term forecasting models should both allow the use of mixed-
frequency data and parsimony. The first chapter is dedicated to time series econometrics within a mixed-
frequency framework. The second chapter contains two empirical works that sheds light on macro-financial
linkages by assessing the leading role of the daily financial volatility in macroeconomic prediction during the
Great Recession. The third chapter extends mixed-frequency model into a Bayesian framework and presents
an empirical study using a stochastic volatility augmented mixed data sampling model. The fourth chapter
focuses on variable selection techniques in mixed-frequency models for short-term forecasting. We address
the selection issue by developing mixed-frequency-based dimension reduction techniques in a cross-validation
procedure that allows automatic in-sample selection based on recent forecasting performances. Our model
succeeds in constructing an objective variable selection with broad applicability.

Keywords
Econometrics, time series, forecasting, international macroeconomics, mixed-frequency models, MIDAS.
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