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Pr Thierry Lang Université Paul Sabatier Examinateur
Pr Marc Lavielle INRIA Saclay Rapporteur
Pr Ivan Nourdin Université du Luxembourg Examinateur
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Vives. Le temps passe, les co-auteurs commencent à être nombreux, je ne les citerai donc pas tous mais
je les remercie très sincèrement.

Laurent Decreusefond a fait beaucoup pour moi durant ma thèse mais également à la période charnière
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Merci également à tous les membres de l’IMT. Ceux avec qui j’ai eu le plaisir de travailler, Fabien
Panloup, Aldéric Joulin, Monique Pontier, Cécile Chouquet... Ceux avec qui il est toujours plaisant de
discuter, Patrick Cattiaux, Laurent Miclo, Jean-Michel Loubès, Thierry Klein, Jean-Marc Azäıs, Jean-
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Introduction

My research activity divides into two really distinct areas: probability and mathematical statistics of
stochastic processes and applied statistics for Medicine and Biology. The manuscript naturally splits
into two parts corresponding to these scientific axes. Part A is thus devoted to theoretical problems
and Part B devoted to applied problems. I have enjoyed to share my time between those two aspects
of mathematics since the very beginning of my Ph.D. thesis. In this first introductory section, I briefly
present, in the chronological order, the different questions I have carried on during those last years∗. It
mixes the two aspects of my research but allows to highlight the links between the different activities.

At the very beginning, during my Phi, I have worked on a family of processes usually called Volterra
(or filtered) processes which are defined through another process called the underlying process {Xt : t ∈
[0, T ]} (a Brownian motion, a Poisson process or a Lévy process) and a deterministic kernel K by:{

XK
t =

∫ t

0

K(t, s) dXs : t ∈ [0, T ]

}
. (1)

Details and especially the different assumptions are listed in Section I.1 of Chapter 1. The main moti-
vation for introducing such a family of processes is that it generalizes fractional Brownian motion which
appears to be a particular case where X = B a Brownian motion, and K = K(H) a specific kernel defined
in Section I.3 of Chapter 1. In order to study models based on such processes, it is crucial to first define a
notion of integral with respect to it. That is done, first for fractional Brownian motion in [3, 19], second
for Volterra Brownian process in [15] and finally for filtered Poisson processes in my paper with Laurent
Decreusefond [18] which is summarized in Section II of Chapter 1. The link between Brownian Volterra
process and filtered Poisson process has been clarified by means of a weak convergence theorem estab-
lished by Laurent Decreusefond and myself in [17]. This result is obtained by the use of radonification
techniques and is presented in Chapter 2.

My Ph.D. has been done while I worked as teacher in the ”Technological University Institution” (IUT)
of Quimper in the Biological Engineering department. It is in this context that I have learnt to teach ap-
plied statistics for biology. Some of my colleagues were chemists or biologists and members of a laboratory
devoted to microbiology. A team of this laboratory worked on the so-called Predictive microbiology and
aimed to model the behaviour of micro-organisms in different culture media (mainly industrial). I have
begun to work in collaboration with this team. These investigations have led to publications [12, 13, 23]
and a short summary of these contributions are presented in Chapter 8 Section I.

In 2007, I have been recruited by the University of Toulouse III on an assistant professor’s position.
I continued, in collaboration with Laurent Decreusefond, to study stochastic gradient associated with
Poisson processes. This is the main ingredient in the construction of an anticipative integral with re-
spect to filtered Poisson processes. We have extended the field of ours investigations to configurations
space equipped with a Poisson measure on which two different gradients co-exist: the differential one
[2] and the discrete one [34]. Feyel and Üstünel established in [22] a link between stochastic gradient
and transportation inequalities. The question we carried on is what about this link in the configurations
space setting since there are two different gradients. That leads us to the paper [16] in collaboration with
Aldéric Joulin and described in Chapter 3.

During my Ph.D., Laurent Decreusefond and I have shown a Girsanov’s theorem for filtered Poisson
process and I was wondering how to apply this theorem to a relevant problem of estimation. Some discus-
sions with Monique Pontier on this topic lead us to the really more attractive problem of instantaneous

∗A more complete bibliography is given at the end of each chapter.
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INTRODUCTION

volatility estimation in models of the form

dXt = at dt+ σt dBt

where σ is a positive càdlàg semi-martingale. In collaboration with Fabien Panloup, we make use of an
approach by power variations. We construct an estimator of σt and show its properties. The results [4]
are presented in Section I of Chapter 4.

In collaboration with Bernard Bercu (University of Bordeaux) and Laure Coutin (IMT), we have inves-
tigated the sharp large deviations properties for functionals associated to fractional Ornstein-Uhlenbeck
process defined by

dXt = θ Xt dt+ dB
(H)
t .

The functional is essentially the Maximum Likelihood Estimator of θ. The proofs follows essentially the
same lines as in [10] but fractional Brownian motion induces huge technicalities. Despite its 36 pages,
the paper [6] gives the proofs for only one functional. In the same spirit, we have enriched the results of
[10] by including in [7] the unstable case (θ > 0). These results are compiled in Section II of Chapter 4.

Chapter 4 ends by a section devoted to the estimation problem for the parameters of an Ornstein-
Uhlenbeck process driven itself by another Ornstein-Uhlenbeck processes:{

dXt = θXt dt + dVt, for t ∈ [0, T ],

dVt = ρVt dt + dBt,

where θ < 0, ρ ≤ 0 and (Bt) is a standard Brownian motion. Studying such a model comes essentially
from the fact that it is the continuous-time version of the first-order stable autoregressive process driven
by a first-order autoregressive process recently investigated in [8]. The almost sure convergence as well
as the asymptotic normality of the maximum likelihood estimators for θ and ρ are established in [9].

Although highly motivated by this research about stochastic processes, I missed a field of application
of statistics. A discussion with Stéphanie Savy, specialized in clinical trials management allowed me to
find that field of research: Medical research and especially statistics methods for clinical trials. Indeed,
there were, at that date, no model for patients recruitment in clinical trials. The recruitment monitoring
was done by basic deterministic techniques while it is nothing but a queue. An application of queuing
models permitted to develop models and to estimate, not only punctually but also by means of confidence
intervals, the date of the end of a clinical trial. This is an information of major importance in clinical
trial monitoring. I co-supervise Guillaume Mijoule in the preparation of a Ph.D. thesis on this topic.
He started in September 2009 and has developed several models essentially based on empirical Bayesian
techniques. In [33] one has shown that such models are really relevant in applications and has investigated
sensitivity analysis in order to highlight the role of the parameters in the models. In [5] (in preparation)
the problem of drop-out (patients who are included but do not succeed in the inclusion’s tests) is plugged
in the models. Finally, an economic model is proposed in [32]. This model naturally yields to filtered Cox
processes which are an extension of filtered Poisson processes of Chapter 1. Those results are compiled
in Chapter 5.

In order to validate those models, I really need real-life datasets. I have contacted the INSERM
(French Institute for Medical Research) Unit 1027 of Epidemiology of Toulouse. I explained my problem,
they lent me some datasets and it was the very starting point of exiting and fruitful collaborations with
several teams of that INSERM Unit: team ”Cancer and chronic diseases: social inequalities in health,
access to primary and secondary care” managed by Thierry Lang and team ”Ageing and Alzheimer dis-
ease” managed by Sandrine Andrieu. Moreover, I received of an exemption from teaching during the
whole first semester of 2012 in order to develop those relationships with medical researchers.

Team 5 of INSERM Unit 1027 works on social inequalities in health. The causal mechanisms by which
exposures at different times of life to certain adverse social, environmental and psychosocial factors may
be associated with occurrence of a pathology is a central issue in social epidemiology. The approach used
by the team of Thierry Lang is called ”life-course” [28, 27]. It is a conceptual model merging methods of
human sciences and epidemiology. Under this approach, the susceptibility to a given disease is the result
of an inevitable interaction between biological and social phenomena. The health status of an individual
is the result of adaptation of the individual to his environment, this adaptation is dependent on the char-
acteristics of the individual (biological, psychological, social ), on the environment, themselves influenced

6



INTRODUCTION

by factors such as socio-economic status (of the country and / or individual). Using a life-course approach
therefore incorporates objective measures of health status, but also subjective ones on the onset of the
disease or the presence of adverse social circumstances. To deal with such studies, the ideal database is
a birth cohort. The team of Thierry Lang is working on the National Child Development Study cohort
(NCDS) which follows around 17,000 members since 1958 resulting in a large number of variables (about
23,000). Although extremely rich in informations, the analysis of such a dataset is faced with statistical
methodology issues [14]. In order to overpass these difficulties, two approaches have been investigated in
the setting of two Ph.D. theses I have co-supervised with Thierry Lang. The one of Dominique Dedieu
who has developed an analysis by means of Mixed Markov Hidden Models [20] synthesised in Section I
of Chapter 7. Unfortunately, for personal convenience he stopped its Ph.D. at the end of the first year.
The one of Benôıt Lepage who dealt with the so-called structural causal model introduced in Section II
of Chapter 7. These techniques were applied to mediation analysis in [30] and to evolution analysis in [29]

Team 1 of INSERM Unit 1027 deals with ageing and Alzheimer disease. Its manager, Sandrine
Andrieu, was in charge of GuidAge’s study (Section IV of Chapter 6 for details). That study led to a
non-significant effect of the tested drug on Alzheimer disease. The test used for evaluation is logrank’s
one since the measurement is time to events (dementia). A post-hoc study was made using the well known
Fleming-Harrington’s test which concluded to to a positive result. Two explanations are valuable: the
drug has effectively no efficiency or the methodology was not optimal. In virtue to what is observed in true
life, we made the assumption of an ill-posed methodology and began to deal with Fleming-Harrington’s
test. With Sandrine Andrieu, we have proposed to precise the methodology for dealing with prevention
trials in response to a France-Alzheimer call for tenders. Indeed GuidAge, as most of clinical trials on
Alzheimer’s disease is a prevention trial. In fact, there exists currently no effective treatment for this
pathology, making its prevention a priority. Prevention is feasible due to the long asymptomatic latent
period of the disease. To date, the rare published articles reporting the results of clinical trials having the
appearance of the event ”develop a dementia” as a criterion of judgement are negative [21, 31, 35, 36].
The treatment effect occurs late. Thus, the logrank test (which assumes that the hazard rates are
proportional) is not appropriated in this setting and weighted logrank tests as Fleming Harrington might
be more efficient. France Alzheimer gave us a grant which has funded Valérie Garès’s Ph.D.. Sandrine
Andrieu and I have supervised her Ph.D. thesis preparation. The aim is to improve the methodology for
dealing with survival data in prevention clinical trials. For this we have to keep in mind two important
points:

• The parameters of the tests have to be fixed in the research protocol.

• The necessary sample size has to be computed.

The test of interest (Fleming-Harrington) depends of a parameter. The very first question is how to
fix that parameter. For this, we make use of stochastic calculus for jump processes in order to reach
the distributions under null and alternative hypotheses. Then asymptotic relative efficiency allows to
compare the different tests leading to a generating data process in such a way that we are sure that
Fleming-Harrington’s test is optimal. Hence, it permits to study the performance of the test and overall
the sensitivity to the parameter [24]. Another test of interest has been studied essentially because its
parameter has a medical reality (time from which the treatment acts). This test is in fact a weighted
log-rank test and is compared in [25] to Fleming Harrington’s test. Finally, Fleming Harrington’s test
is a good test for late effect and logrank is a good test for constant effect. Nevertheless, in real life, the
trade off between late effect and constant effect is not easy to make when designing a clinical trial. We
construct and study in [26] a composite test which does not avoid those assumptions but assume that
the proportion of each assumption is known. All those results are summarized in Chapter 6.

Research on anticipative integration was still of actuality. Indeed, I had in mind to clarify the links
between the integrals we are able to construct not only with respect to Poisson process but also with
respect to Brownian motion and, by means of Lévy Itô decomposition, with respect to Lévy process
(with Brownian component). I wondered also how those integrals behave when the underlying process
is filtered by a deterministic kernel. I have recently solicited Josep Vives (University of Barcelona) for
working together on this topics, the paper [37] is not completely ended but the preliminary results are
presented in Section III of Chapter 1.

After this chronological description of my works, what about the structure of the manuscript ? It
splits in two parts.
The first part is devoted to the investigations on stochastic calculus and to statistics for stochastic
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INTRODUCTION

processes. It contains four chapters. The first one explains the construction of stochastic integrals with
respect to filtered processes. The second one shows briefly how a sequence of filtered Poisson processes
converges weakly to a Brownian Volterra process. The third chapter is devoted to the link between
Transportation Inequality and Malliavin Calculus in configurations space. Finally, this first part ends
by a fourth chapter devoted to properties of estimators: instantaneous volatility and drift parameter for
various Ornstein Uhlenbeck ’s type processes.
The second part presents various works on applied statistics for Biology and Medical research. It contains
four chapter. The first chapter presents models for patients recruitment in clinical trials. The second one
presents the research on survival data analysis for prevention clinical trials. The third one summarizes a
series of papers on epidemiology especially on mediation analysis. Finally the fourth chapter splits itself
in two section. The first section presents various results obtained in collaboration with biologists during
my stay in Quimper. Section II illustrates recent collaborative works [1, 11] in genetic of populations
with Antoine Blancher (Laboratory of Immunogenetics - University of Toulouse III).
The manuscript ends with a description of questions I like to carry out in future.
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[22] Denis Feyel and Ali S. Üstünel. Monge-Kantorovitch measure transportation and Monge-Ampère
equation on Wiener space. Probab. Theory Related Fields, 128(3):347–385, 2004.
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Chapter 1

Malliavin Calculus and Anticipative
Integral.∗

This first chapter is a summary of the results obtained on the construction of stochastic integral with
respect to filtered processes. Let us recall that this kind of process is constructed by means of a so-called
underlying process X and of a deterministic kernel K as:{

XK
t =

∫ t

0

K(t, s) dXs : t ∈ [0, T ]

}
,

I focus my attention to the special cases of filtered Poisson process during my Ph.D. and to filtered Lévy
process during the past years in collaboration with Josep Vives (University of Barcelona).

The chapter organizes as follow: a first section is devoted to some generalities on filtered Poisson
processes including the assumptions on the process X and the kernel K. A relevant way to construct an
integral with respect to XK is made in two steps. First one constructs an integral δ with respect to the
underlying process X. Second one constructs an operator K∗ closely linked to K in such a way that the
integral on XK is nothing but δ(K∗(u)). Unfortunately, even for predictable u, K∗(u) may be anticipative.
The integral δ has to be defined in an anticipative way. Section 2 summarizes this construction I have
published with Laurent Decreusefond [8]. Finally, the construction of integrals with respect to Lévy
processes is presented in a third section extracted from a paper in preparation in collaboration with
Josep Vives [16].

I Filtered Poisson Process

I.1 Definitions

Consider (E, E) a measurable space (for notational simplicity, E = R) and ν a positive σ-finite measure
on (E, E). Consider Ω the space of simple, locally bounded integer-valued measures on [0, T ] × E. One
defines the probability P as the unique measure on Ω such that ω the canonic measure is a Poisson random
measure whose intensity is ν. One defines the canonic filtration (Ft) by:

F0 = {∅, ω} and Ft = σ

{∫ s

0

∫
B

ω( ds, dz) , s ≤ t, B ∈ E
}
, t ∈]0, T ].

Finally, ones denotes P the predictable σ-algebra on Ω× [0, T ]× E.

Definition 1.1 The space (Ω,F , (Ft),P) is usually called the Poisson space.

∗ Publications related to this chapter:

[8] Laurent Decreusefond and Nicolas Savy. Anticipative calculus with respect to filtered Poisson processes. Annales
Institut Henri Poincaré Probabilités Statistiques, 42(3):343–372, 2006.

[16] Nicolas Savy and Josep Vivès. Anticipative integrals with respect to filtered Lévy processes and Lévy Itô decom-
position. Submitted to Journal of Theoretical Probability, 2014.
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CHAPTER 1. MALLIAVIN CALCULUS AND ANTICIPATIVE INTEGRALS

Consider the sequence {(Tn, Zn) : n ∈ N∗} associated with the marked point process (Tn denotes the
instant of the n-th jump and Zn its amplitude) this means

ω( ds, dz) =
∑
n∈N∗

ε(Tn,Zn)(s, z).

where εa denotes the Dirac measure concentrated in {a}.

Definition 1.2 The marked point process defined as:

Nt =

∫ t

0

∫
E

z ω( ds, dz) =
∑
n∈N∗

Zn I{Tn≤t},

is called the underlying process and given a kernel K : [0, T ]2 → R, the process

NK
t =

∫ t

0

K(t, s) dNs =

∫ t

0

∫
E

zK(t, s)ω( ds, dz) =
∑
n∈N∗

K(t, Tn)Zn I{Tn≤t}, (1.1)

is called the filtered process. The compensated underlying (resp. compensated filtered) process is:

Ñt =

∫ t

0

∫
E

z (ω − ν)( ds, dz)

(
resp. ÑK

t =

∫ t

0

∫
E

zK(t, s) (ω − ν)( ds, dz)

)
.

I.2 Assumptions on the kernel

A key assumption for the construction of a filtered process is the following one:

Hypothesis 1.1 K is triangular in the sense that K(t, s) = 0 for all s > t > 0.

Hypothesis 1.1 insures that XK is an adapted process. In the whole manuscript we assume this
assumption fulfilled.

First assumptions set.

Hypothesis 1.2 • The application (s, z)→ z K(t, s) belongs to L2(ν) for any t > 0.

• K does not explode on the diagonal in the sense that K(t, t) <∞ for all t ∈ [0, T ].

• For any t ≥ 0, the function

K(t, .) : [0, t[ −→ R is càdlàg.
s −→ K(t, s)

• For any s ≥ 0, the function

K(., s) : [s, T [ −→ R has bounded variations.
t −→ K(t, s)

Second assumptions set. For all f ∈ L1([0, T ]), the left and right fractional integrals of f are defined
as:

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1 dt, x ≥ 0,

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

f(t)(t− x)α−1 dt, x ≤ b,

where α > 0 and I0 = Id. For any α ≥ 0, any f ∈ Lp([0, T ]) and any g ∈ Lq([0, T ]) where p−1 + q−1 ≤ α,
we have: ∫ T

0

f(s)(Iα0+g)(s) ds =

∫ T

0

(IαT−f)(s)g(s) ds.
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I. FILTERED POISSON PROCESS

Definition 1.3 The Besov space Iα0+(Lp) not= Iα,p is usually equipped with the norm:

‖f‖Iα,p = ‖I−α0+ f‖Lp .

In particular Iα,2 is a separable Hilbert space.

Consider an Hilbert-Schmidt operator from L2 into L2 denoted by K.

Hypothesis 1.3 There exists α > 0 such that K is a continuous one-to-one linear application from L2

to Iα+1/2,2.

Since the embedding from Iα+1/2,2 into L2 is Hilbert-Schmidt, it guarantees that K is a Hilbert-Schmidt
map from L2 into itself. Thus there is a kernel, still denoted by K, such that the operator K takes the
form

(Kf)(t) =

∫ T

0

K(t, s)f(s) ds with

∫ T

0

∫ T

0

K2(t, s)dt ds < ∞.

I.3 Examples

• Considering the kernel K(H)(t, s) = LH(t, s)(t−s)H−1/2s−|H−1/2|, with LH a bi-continuous function
[5], ones deals with the classical fractional Brownian motion. In [7] it is shown that K(H) satisfies
assumptions 1.1 and 1.3 for any H ∈ (0, 1).

• Assumptions 1.1 and 1.3 are satisfied for the kernel defined for any H ∈ (0, 1) by:

K(t, s) =
1

Γ(H + 1/2)
(t− s)H−1/2 I[0,t)(s)

which corresponds to the so-called Lévy fractional Brownian motion since, in terms of function, it

coincides with I
H+1/2
0+ .

• For any α > 0, the kernel (s, t) → eα(t−s) allows us to consider Ornstein-Uhlenbeck processes.

I.4 Main properties

Property 1.1 (Properties of sample paths) • NK is not a marked point process.

• If K is continuous, NK has the same jumps times as N .

• If K is null on the diagonal, and if K is continuous, NK is continuous.

• Under Assumption 1.2, the process NK has finite variation on each compact set of R.

• Assumption 1.2 insure that NK is limited by the left. If moreover K is right continuous then NK

is a càdlàg process.

Property 1.2 (Moments and covariance functions.) For all (t, t′) ∈ [0, T ]2, we have:

E
[
ÑK
t

]
= 0,

Cov(ÑK
t ; ÑK

t′ ) =

∫ t∧t′

0

∫
E

z2K(t, s)K(t′, s) ν( ds, dz) =

∫ t∧t′

0

K(t, s)K(t′, s) λ̃( ds),

where λ̃ denotes the measure λ̃( ds) =
∫
E
z2 ν( ds, dz) defined on [0, T ].

If the map (s, t)→ K(t, s) is continuous then the filtered Poisson process{
ÑK
t =

∫ t

0

K(t, s) dÑs : t ≥ 0

}
is not a martingale. However, we have

Property 1.3 (Martingale’s property.) The process defined, for any r ∈ [0, T ] by:{
ÑK,r
t =

∫ t

0

K(r, s) dÑs : t ≥ 0

}
is a functional-valued martingale.
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CHAPTER 1. MALLIAVIN CALCULUS AND ANTICIPATIVE INTEGRALS

II Skohorod Integral with respect to filtered Poisson process

Although it is possible to define integral by usual means for marked point process, in order to define an
integral for filtered Poisson process, we have to focus on anticipative definition of integrals (see remark 1.2
page 20). In this section we browse the definition given in [8]. It is possible to deal with other approaches
(chaotic expansion, S-transform), some elements will be given in Section III.1.

II.1 Skohorod Integral with respect to the underlying process

Integral in the sense of Stieltjès. One can make use of the bounded variations property to defined
an integral in the sense of Stieltjès. For any function f measurable or locally bounded or non-negative,
one defines the process:(f ∗ ω)t

not
=

∫ t

0

∫
E

f(s, z) ω( ds, dz) =
∑
n≥1

f(Tn, Zn) I{Tn≤t} : t ∈ [0, T ]

 .

Moreover, the process N is bounded variation on each compact set thus for all measurable or locally
bounded or non-negative process X one can define the process:{

(X
(SL)
∗ N)t

not
=

∫ t

0

Xs dNs =
∑
n∈N∗

Zn XTn I{Tn≤t} : t ∈ [0, T ]

}
. (1.2)

Stochastic Integral. It is possible to exploit the martingale’s property to define a stochastic integral
with respect to marked point process.

Hypothesis 1.4 1. The filtration {Ft : t ∈ [0, T ]} satisfies the ”conditions habituelles de la théorie
générale des processus”.

2. The process N is adapted.

3. E [Nt] < ∞ for all t.

Property 1.4 Assume assumptions 1.4 fulfilled. The measure ν on [0, T ]×E (predictable compensator)
is such that:

• For any B ∈ B(E), the process {ν([0, t]×B) : t ∈ [0, T ]} is predictable.

• For any non-negative predictable process f ∈ L1(ν) the process:{
(f

(SI)
∗ (ω − ν))t

not
= (f ∗ ω)t − (f

(L)
∗ ν)t : t ∈ [0, T ]

}
is a (Ft)t∈[0,T ]-martingale (−

(L)
∗ ν stands for the Lebesgue integral with respect to the measure ν).

Theorem 1.1 For any predictable processes f ∈ L2(ν), we have, for any t ∈ [0, T ] and s ∈ [0, T ] :

E
[
(f

(SI)
∗ ω̃)t

]
= 0,

[f
(SI)
∗ ω̃ ; f

(SI)
∗ ω̃]t = (f2 ∗ µ)t,

< f
(SI)
∗ ω̃ ; f

(SI)
∗ ω̃ >t = (f2 (L)

∗ ν)t,

E
[
(f

(SI)
∗ ω̃)2

t

]
= E

[
(f2 (L)

∗ ν)t

]
,

where ω̃ = ω − ν denotes the compensated measure.

Property 1.5 The jump process N has for predictable compensator the process A:{
At =

∫ t

0

∫
E

z ν( ds, dz) , t ∈ [0, T ]

}
.

The compensated jump process is Ñ = N − A and a statement equivalent to Theorem 1.1 can be
written with Ñ , N and A.
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Integral in Skohorod sense. To define such an integral Assumption 1.4 page 16 has to be completed
by the following ones:

Hypothesis 1.5 The compensator ν writes ν(ds, dz) = λ(s)ds η(dz) where η is a measure of probability
(distributions of the Zk’s).

Hypothesis 1.6 There exists m > 0 such that, for any s ∈ [0, T ], λ(s) > m and
∫ T

0
λ(s) ds < +∞.

Definition 1.4 ([6]) A functional is said to be cylindric whenever it is of the form

F = f

(∫ T

0

∫
E

f1(s)g1(z)ω( ds, dz), . . . ,

∫ T

0

∫
E

fn(s)gn(z)ω( ds, dz)

)
,

where f is a bounded twice differentiable function with bounded derivatives. figi ∈ L2(ν) fi is continuously
differentiable with bounded derivatives for all i = 1, . . . , n. We denote by S the set of cylindric functionals.
For any functionals F ∈ S and any h ∈ L2(ν), the directional derivative DF (h) is defined as:

DF (h) = −
n∑
i=1

∂f

∂xi

(∫ T

0

∫
E

f1(s)g1(z)ω( ds, dz), . . . ,

∫ T

0

∫
E

fn(s)gn(z)ω( ds, dz)

)

.

∫ T

0

∫
E

f ′i(s)gi(z)

(
1

λ(s)

∫ s

0

h(r, z)λ(r) dr

)
ω( ds, dz).

Theorem 1.2 ([6, 8]) • S is dense in L2,

• For any F, G ∈ S, and any h ∈ L2(ν), FG ∈ S and DFG(h) = FDG(h) + GDF (h),

• For any F ∈ S, and any h ∈ L2(ν), E [DF (h)] = E
[
F . (h

(SI)
∗ (ω − ν))T

]
,

• For any F ∈ S, there exists ∇F ∈ L2([0, T ]× E × Ω, ν ⊗ dP) measurable with respect to the three
variables such that

DF (h) = < ∇F , h >L2(ν) ∀h ∈ L2(ν).

The results of Theorem 1.2 remains true for the stochastic gradient

∇ : S −→ L2([0, T ]× E × Ω, ν ⊗ dP)

F −→ ∇F

We show in [8] that the application F → ∇F is closable in L2(P). This allows us to extend the domain
of the operator ∇. In fact, one introduces on S the norm

∀F ∈ S, ||F ||22,1 = ||F ||22 + E
[
||∇F ||2L2(ν)

]
and introduces the space D2,1, closure of S with respect to the norm ||.||2,1. ∇ is thus defined on D2,1.
Theorem 1.2 remains true for (F,G) ∈ (D2,1)2.

Definition 1.5 Let ζ be a L2(ν)-valued random variable. It is in the domain of δ if and only if, there
exists c(ζ) a constant such that for any F ∈ S we have:

|E [DF (ζ)] | ≤ c(ζ) ||F ||2,

and δ(ζ) is defined as:
E [Fδ(ζ)] = E

[
< ∇G, h >L2(ν)

]
= E [DF (ζ)] .

Property 1.6 L2(ν) ⊂ Dom (δ) and for any h ∈ L2(ν) we have, δ(h) = (h
(SI)
∗ (ω − ν))T .

Consider the space S(L2(ν)) of cylindrical processes of the form:

ζ =
∑

Fivi Fi ∈ S, vi ∈ L2(ν),

and the derivative operator

Dζ(h) =
∑

DFi(h)⊗ vi Fi ∈ S, vi ∈ L2(ν).
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In order to extend the domain of δ to the closure of S(L2(ν)) with respect to a relevant norm, we have
to control the moment of order 2 of δ(h). In fact, being in the domain yield to

|E [DF (h)] | = |E
[
< ∇F, h >L2(ν)

]
| = |E [Fδ(h)] | ≤ ||δ(h)||2 ||F ||2.

In the Brownian setting, it is known that

E
[
δ(h)2

]
= E

[
||h||2L2(ν)

]
+ E [trace(∇h ◦ ∇h)] (1.3)

but it is no more true in the Poisson setting. Instead we have shown:

Theorem 1.3 ([8]) We have:

E
[
δ(ζ)2

]
= E

[
< ζ ; Γζ >L2(ν)

]
+ E [trace(∇ζ ◦ ∇ζ)] ,

where
Γ : S(Hν) → L2(Ω× [0, T ]× E, dP⊗ ν)

ζ →
∑∞
i=1 < ζ, εi >Hν Γ(εi)

with Γ(εi) = ∇(δ(εi)) and Hν the Hilbert space

Hν =

{
h ∈ L2(ν) :

∂h

∂s
∈ L2(ν)

}
,

equipped with the inner product:

< g , h >Hν = < g , h >L2(ν) + <
∂g

∂s
,
∂h

∂s
>L2(ν),

and {εi : i ∈ N∗} is a complete orthonormal basis on Hν .

The operator ∇ζ is Hilbert-Schmidt thus trace(∇ζ ◦ ∇ζ) exists and we have:

E [trace(∇ζ ◦ ∇ζ)] ≤ E
[
||∇ζ||2L2(ν)⊗L2(ν)

]
and we can consider for ζ ∈ S(Hν) the following norm:[

||ζ||Γ2,1
]2

=
1

2

(
E
[
||ζ||2L2(ν)

]
+ E

[
||Γζ||2L2(ν)

])
+ E

[
||∇ζ||2L2(ν)⊗L2(ν)

]
and consider D2,1(Hν) the closure of S(Hν) with respect to this norm.

Property 1.7 We have D2,1(Hν) ⊂ Dom (δ) and the results of Theorem 1.3 remains true for ζ a process
of D2,1(Hν).

By means of this integral for marked point measure, we are able to define an integral for marked Poisson
processes. In fact, given a process u (of time variable s) we denote ũ : (s, z)→ z.u(s) and if ũ ∈ Dom (δ),

we define δÑ (u) = δ(ũ). It is easy to check that

Proposition 1.1 L2(λ̃) ⊂ Dom
(
δÑ
)

and for any h ∈ L2(λ̃) we have δÑ (h) = (h
(SL)
∗ Ñ)T .

It is thus natural to define the derivative operator DÑF (u) = DF (ũ) for all F ∈ S and the associated
gradient is thus equal to:

∇ÑF =
1∫

E
z2η( dz)

∫
E

∇s,zF z η( dz).

We are then able to define for a random process the same concepts as those defined for a random measure

(the Hilbert space Hλ̃, the space of cylindrical functionals S(Hλ̃), the operator ΓÑ which allows us to

define the norm ||.||ΓÑ2,1 and finally the space DÑ2,1(Hλ̃) by closure with respect to the norm). This space

is included in the domain of δÑ and one shows that:

Theorem 1.4 ([8]) For all ζ ∈ DÑ2,1(Hλ̃) we have:

E
[
δÑ (ζ)2

]
= E

[
< ζ ; ΓÑζ >L2(λ̃)

]
+ E

[
trace(∇Ñζ ◦ ∇Ñζ)

]
.
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It is now possible to make bridges between these integrals.

Theorem 1.5 ([8]) The integrals δÑ ,
(SL)
∗ and

(SI)
∗ coincides for predictable processes.

Theorem 1.6 ([8]) • Let u ∈ D2,1(L2(ν)), then we have:

δ(u) = (u
(SI)
∗ (ω − ν))T −

∫ T

0

∫
E

∇s,zus,z ν( ds, dz)

• Let u ∈ DÑ2,1(L2(λ̃)), then we have:

δÑ (u) = (u
(SL)
∗ Ñ)T −

∫ T

0

∇Ñs us λ̃( ds)

Remark 1.1 In [8] reader can find development around covariant derivative and Weitzenböck formula.

The aim is now to define integrals with respect to filtered Poisson processes. This process is not a
martingale thus no stochastic integral can be defined. However, it remains the approach in the sense of
Stieltjès since the trajectories have bounded variations. Moreover, by means of the Skohorod integral for
the underlying process and of a linear operator, we can define an integral in the sense of Skohorod.

II.2 Fundamental theorem of the operator

Theorem 1.7 (Existence of the operator,[8]) There exists a linear and continuous map K∗ : L2(λ̃)→
L2(λ̃) such that, for any t ∈ [0, T ],

K∗( I[0,t]) = K(t, .), (1.4)

Moreover, denoting Î the closure of the vector space embedded by { I[0,t] : t ∈ [0, T ]} with respect to the
inner product:

< I[0,t]; I[0,s] >Î = < K(t, .);K(s, .) >L2(λ̃),

the application K∗ : Î → L2(λ̃) is an isometry.

Notation 1.1 ` denotes the Lebesgue measure.

Sketch of the proof.

• The operator K defined below is continuous and linear from L2(λ̃) to L2(`).

K : L2(λ̃)→ L2(`)

f →
∫ T

0

K(t, s)f(s)λ̃( ds)

• The operator ITT− defined below is continuous and linear from L2(λ̃) to L2(`):

ITT− : L2(λ̃)→ L2(`)

f →
∫ T

.

f(s) ds

• For any g ∈ L2(λ̃), the linear form:

θg : L2(λ̃)→ R

f →
∫ T

0

g(s)K(f)(s) ds

is continuous and thus there exists an operator K∗ continuous from L2(`) to L2(λ̃) such that:

θg = < K∗(g), f >L2(λ̃) .
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• Finally one defines the operator:

K∗ : L2(λ̃)→ L2(λ̃)

f → K∗ ◦
[
ITT−

]−1
(f)

which is continuous and we have, formally, for any f ∈ L2(λ̃):∫ T

0

K∗( εt)f(s)λ̃( ds) = K(f)(t) =

∫ T

0

K(t, s)f(s)λ̃( ds),

which shows that K∗( εt) = K(t, .). Moreover, we have ITT−( εt) = I[0,t]. One deduces that
K∗( I[0,t]) = K(t, .).

• The isometry is easily shown for I[0,t] ∈ I :

|| I[0,t]||Î = ||K(t, .)||L2(λ̃) = ||K∗(I[0,t])||L2(λ̃),

the result follows from a limit procedure, K∗ being continuous.

�

Remark 1.2 Even for predictable process u, the process K∗(u) is not necessary predictable.

It is the reason why we are forced to make use of anticipative integrals.

II.3 Skohorod’s Integral with respect to filtered Poisson process

Stieltjès-Lebesgue integrals with respect to pPf. In the sense of Stieltjès-Lebesgue there are two
ways for defining integrals. First, we exploit Property 1.1 of pPf trajectories:

Definition 1.6 For all locally bounded function f , one can define the following process:{
(f

(SL)
∗ NK)t : t ∈ [0, T ]

}
.

Second, we exploit the Lebesgue-Stieltjès integral defined by (1.2) for the underlying Poisson process and
the operator K∗:

Definition 1.7 For all function f such that K∗(f) is locally bounded, one can define the following process:{
(f ∗ NK)t = (K∗(f)

(SL)
∗ N)t : t ∈ [0, T ]

}
.

Theses integrals coincides.

Theorem 1.8 ([8]) For any f ∈ L2(λ̃) locally bounded, we have:

(f
(SL)
∗ NK)t = (f ∗ NK)t ∀t ∈ [0, T ].

And the isometry result holds:

Theorem 1.9 ([8]) For any f ∈ Î, g ∈ Î we have:

E
[
(f

(SL)
∗ ÑK) . (g

(SL)
∗ ÑK)

]
= < f, g >Î .
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Skohorod’s Integral with respect to pPf.

Definition 1.8 For any u such that K∗(u) ∈ Dom
(
δÑ
)

we define the integral with respect to ÑK by:

δÑ
K

(u) = δÑ (K∗(u)) = δ(z.K∗(u)).

Definition 1.9 For any F ∈ S, for any h ∈ L2(λ̃) we define the directional derivative by:

DÑKF (h) = DÑF (K∗(h)) = DF (z.K∗(h)),

and thus

DÑKF (h) = −
n∑
i=1

∂f

∂xi

(∫ T

0

∫
E

f1(s)g1(z)ω( ds, dz), . . . ,

∫ T

0

∫
E

fn(s)gn(z)ω( ds, dz)

)

.

∫ T

0

∫
E

f ′i(s)gi(z)

(
z

λ(s)

∫ s

0

K∗(h)(r)λ(r) dr

)
ω( ds, dz).

Property 1.8 For any F,G ∈ S and any h ∈ L2(λ̃) we have:

DÑK (FG)(h) = F.DÑKG(h) + G.DÑKF (h),

E
[
DÑKF (h)

]
= E

[
F.δÑ

K

F (h)
]
.

Property 1.9 There exists a L2(λ̃)-valued random variable ∇ÑK called gradient map associated to DÑK .
Moreover, we have:

∇Ñ
K

= K ◦ ∇Ñ .

It is easily seen that this gradient map satisfies integration by parts property and that it is the adjoint

operator of δÑ
K

. The space which intervenes here is:

HK =
{
ζ ∈ L2(λ̃) : K∗(ζ) ∈ Hλ̃

}
With notations now classical, one defines S(HK) and the operator ΓK by:

ΓK : S(HK) → L2(Ω× [0, T ]× E, dP⊗ ν)

ζ → K ◦ ΓÑ ◦ K∗(ζ)

It remains to extent S(HK) by means of an adequate norm:

||ζ||Γ
K

2,1 =
1

2

[
E
[
||ζ||L2(λ̃)

]
+ E

[
||ΓKζ||L2(λ̃)

]]
+ E

[
||∇Ñ (K∗ζ)||2L2(λ̃)⊗L2(λ̃)

]
Consider D2,1(HK) the closure of S(HK) in the sense of the norm. One can then show the following
property:

Theorem 1.10 ([8]) We have D2,1(HK) ⊂ Dom
(
δÑ

K
)

. Moreover for all ζ ∈ DK2,1(HK) we have:

E
[
δÑ

K

(ζ)2
]

= E
[
< ζ ; ΓKζ >L2(λ̃)

]
+ E

[
trace(∇Ñ (K∗ζ) ◦ ∇Ñ (K∗ζ))

]
.

It remains to relate both definitions of integrals.

Theorem 1.11 ([8]) Let u ∈ DK2,1(L2([0, T ]), then, if the different terms converge we have the following
equality:

δÑ
K

(u) = (u
(SL)
∗ ÑK)T −

∫ T

0

∇Ñ
K

s usλ̃( ds)

We now state some properties of the integral defined in the sense of Skohorod for filtered Poisson processes.

21



CHAPTER 1. MALLIAVIN CALCULUS AND ANTICIPATIVE INTEGRALS

Theorem 1.12 (Chasles’s Relationship [8]) Let t ∈ [0, T ] fixed. Consider K∗t the adjoint operator of

K in L2
t (λ̃)

not
= L2([0, t], λ̃). For all u ∈ L2

t (λ̃), we have:

K∗t (u) = K∗T (u I[0,t]) I[0,t],

and consequently, we have:

δÑ (K∗t (u)) − δÑ (K∗s(u)) = δÑ (K∗(u I]s,t]))

Hypothesis 1.7 The operator Γ is continuous from L2(Ω× [0, T ], dP⊗ λ̃) to L2(Ω× [0, T ], dP⊗ λ̃).

Theorem 1.13 (Hölder’s continuity of the trajectories [8]) For any α ∈ [1/2, 1[, under assump-

tions 1.1, 1.3 and 1.7, considering u ∈ Dp,1(H) ∩Dom
(
δÑ

K
)

with αp > 1, the process

{δK(K∗t (u)) = δÑ
K

(u I[0,t]) : t ∈ [0, T ]},

admits a modification with (α− 1/p)-Hölder continuous trajectories. Moreover there is a constant c > 0
such that:

||δK(u)||L2(Ω;Hol(α−1/p)) ≤ c |||K∗T ||| . ||u||Dp,1

Theorem 1.14 (Itô’s formula for cylindrical functionals [8]) Let F a function C2
b and assume that

u ∈ S(L2(ν)) this means u = F.v with F ∈ S and v ∈ L2(ν). Let Zt = z+ (u
(SL)
∗ ÑK)t. Then u.F ′ ◦Z

is in Dom
(
δÑ

K
)

and we have, P-almost surely:

F (Zt) = F (z) + (u.F ′ ◦ Z
(SL)
∗ ÑK)t.

III Anticipative integral for filtered Lévy process

In this section, we consider a filtered processes defined by (1) page 5 with a deterministic kernel satisfying
Assumption 1.2 and for underlying process, a Lévy process {Lt, t ∈ [0, T ]}. We refer the reader to the
book of Sato [14] for a general theory of Lévy processes.

One of the main properties of Lévy processes is the Lévy-Itô decomposition:

Theorem 1.15 (Lévy-Itô decomposition) There exists a triplet (γ, σ2, η) with γ ∈ R, σ2 ∈ R+ and
η a measure on R called Lévy measure satisfying

∫
R z

2 dη(z) < ∞, and such that L can be represented
as,

Lt = γt+ σBt + Jt, (1.5)

with

• B a standard Brownian motion,

• for any t ∈ [0, T ],

Jt := lim
ε→0

∫ t

0

∫
|z|>ε

z dÑ(s, z),

where Ñ is the compensated jump measure associated to L:

dÑ(s, z) = dN(s, z)− ds dη(z),

and N is the jump measure associated to L:

N(E) = card {t : (t,∆Lt) ∈ E} for any E ∈ B(]0, T [×R0),

where R0 = R− {0}, ∆Lt = Lt − Lt−, and card {A} denotes the cardinal of the set A.

The limit in (1.5) is to be understood in a.s. uniform on every bounded interval’s sense.

Remark 1.3 In the case η = 0, process L is a Brownian motion with drift γt and volatility σ. In the
case σ = 0 we have a pure jump Lévy process. If, moreover, η is a finite measure we can write η = η(R)Q
with Q a probability distribution on R. In this case the process is a compound Poisson process. Moreover,
in virtue of Girsanov’s Theorem, we will assume, without lost of generality, that γ = 0.
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The aim of this section is, first, to highlight the links between the different anticipative integrals we
are able to defined with respect to Brownian motion, pure jump processes and Lévy processes and second,
to deal with what we will call the Lévy-Itô problem. Lévy-Itô decomposition (1.5) tells us that a Lévy
process can be decomposed in two components, a Brownian one and a pure jump one. Thus it is natural
to wonder if this decomposition is still true for the integrals considered. One says that the Lévy-Itô
problem is true if for any u in the suitable domain, we have, roughly speaking,

δL(u) = δB(u) + δJ(u).

In the Brownian setting, BK remains a Gaussian process, thus we can define a stochastic integral
that we denote δB,KC by the use of the chaos decomposition [1]. This construction is not possible for pure
jump and Lévy filtered processes because these processes are no more Lévy processes.

The S-transform allows us to define directly an integral for filtered processes. These integrals are
denoted by δB,KS for the Brownian case and δJ,KS for the pure jump one, and have been studied in [2] and

[3] respectively. For the Lévy case, we will introduce δL,KS .

Finally, the more versatile idea is to construct from K a linear operator denoted by K∗ and to define
a stochastic integral with respect to XK , that we will denote by δX,K

∗
, from the one with respect to X

denoted δX by:
δX,K

∗
(u) = δX(K∗(u))

As noticed in Remark 1.2 page 20, δX has to be defined in a anticipative way. So we have to browse
the definitions of anticipative integrals with respect to X. Three main constructions can be investigated.
First, we consider δXC defined by the use of chaos decomposition (for Brownian motion [12], for the
standard Poisson process [13] and for Lévy processes [15]). Second, we consider δXS defined by the use of
the S-transform (for Brownian motion [2], for pure jump Lévy processes [3] and for general Lévy processes
we have given the definition in [16]).

Remark 1.4 Notice that we have not investigated δXG the integral defined in Section II.3 as the adjoint of
a stochastic gradient. As far as we know, no version of δLG for a general Lévy process has been constructed.
However, a direct definition as a dual operator could be introduced from the gradient operator defined in
[11]. It is well known that in the Brownian case δBG = δBC , meanwhile, even in the more simple case
developed in [4] and [8], we have δJG(u) 6= δJC(u).

Theorem 1.16 (Lévy-Itô decomposition... continuation.) The processes B and J that appears in
the Lévy Itô Decomposition 1.5 are independent.

Is it still true for integrals ? One says that the Lévy-Itô problem is complete if moreover δB(u) and
δJ(u) are independent.

The results shown in [16] are briefly explained here and summarized in the Tables 1.1 and 1.2 below.
The questions we deal with are: Are the integrals defined in each column equal? And is, for each line,
the Lévy-Itô Problem (LIP) true and complete?

Defined by the use of X = L X = B X = J LIP true LIP complete

Chaos δLC δBC δJC Yes No
q q q

S-transform δLS δBS δJS Yes No

Table 1.1: Different integrals for the underlying processes.

III.1 Anticipative integral for Lévy process

Integrals based on the chaos decomposition. It is well known, since Itô [10], that Lévy processes
enjoy the so-called chaotic representation property in a slightly generalized form. Let us recall here the
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Defined by the use of X = L X = B X = J LIP true LIP complete

Intrinsic Chaos δB,KC - -
q

Intrinsic S-transform δL,KS δB,KS δJ,KS Yes No
q q q

K∗ and Chaos δL,K
∗

C δB,K
∗

C δJ,K
∗

C Yes No
q q q

K∗ and S-transform δL,K
∗

S δB,K
∗

S δJ,K
∗

S Yes No

Table 1.2: Different integrals for the filtered processes.

main ideas of this approach. For any Borel set E on [0, T ] × R we can define the sets E∗ = {t ∈ [0, T ] :
(t, 0) ∈ E} and E0 = E − (E ∩ ([0, T ]× {0})) and the measure

µ(E) := σ2

∫
E∗

dt+

∫
E0

z2 d(η ⊗ `)(z, t).

Then for any set E such that µ(E) <∞ we can introduce the independent random measure

M(E) := σ

∫
E∗

dBt + lim
m→∞

∫
Em

z dÑ(t, z),

where Em = {(t, z) ∈ E : 1
m < |z| < m} and where the limit is in the L2(Ω) sense. For short we can write

dM(t, z) = 11[0,T ]×{0}σ dBt ε0(z) + 11[0,T ]×R0
z dÑ(t, z),

with R0 = {z ∈ R, z 6= 0}.

For any collection of disjoint sets (Ei)i=1,...,n such that µ(Ei) <∞ for all i = 1, . . . , n, we define the
multiple stochastic integral IMn (11E1×···×En) of order n with respect to M by

IMn (11E1×···×En) = M(E1) · · ·M(En).

By linearity, we extend the definition to any elementary function f of the form

f(·) =

N∑
i1,...,in=1

ai1,...,in11Ai1×...×Ain (·),

where A1, . . . , AN are pairwise disjoint Borel subsets of [0, T ] × R and ai1,...,in = 0 if two of the indices
i1, . . . , in are equal. Then, the multiple integral In is extended to

L2
n := L2(([0, T ]× R)n;B(([0, T ]× R)n);µ⊗n)

due to the fact that the space of all elementary functions is dense in L2
n and the property

E
[
IMn ( IE1×···×En)IMm ( IF1×···×Fm)

]
= εn(m)n!

∫
([0,T ]×R)n

˜IE1×···×En ˜IF1×···×Fm dµ⊗n,

where f̃ is the symmetrization of the function f .

Remark 1.5 Notice that if E = [0, t]× R for t ≤ T , then

M([0, t]× R) = σBt + Jt = Lt.

Theorem 1.17 (Chaotic representation property for Lévy processes.) If F is a square–integrable
random variable, measurable with respect to the filtration generated by L, then F has the unique repre-
sentation

F =

∞∑
n=0

IMn (fn),

where IM0 (f0) = f0 = E(F ) and fn is a symmetric function in L2
n.
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Given this result we can introduce the so-called annihilation and creation operators. We follow here the
abstract point of view presented in [13].
On the one hand, we say that a square-integrable random variable F , given by (1.17), belongs to the
domain of the annihilation operator DM , denoted by DM2,1, if and only if

∞∑
n=1

nn!||fn||2L2
n
<∞.

In this case we define the random field DMF = {DM
x F : x ∈ [0, T ]× R} as

DM
x F =

∞∑
n=1

nIMn−1(fn(x, ·)).

It is well known that DM defines a linear and closed operator from L2(Ω,P) into L2(Ω× [0, T ]×R;P⊗µ),
with dense domain DM2,1. Similarly we can define the iterated derivative DM,n

x1,...,xn = DM
x1
· · ·DM

xn and its

domain Dn,2M .
On other hand we define the creation operator δMC . If u has the chaos decomposition

u(x) =

∞∑
n=0

IMn (un(x, ·)), x ∈ [0, T ]× R,

where un ∈ L2
n+1 is a symmetric function in the last n variables, then δMC (u) is defined as

δMC (u) =

∞∑
n=0

IMn+1(ũn),

provided u belongs to Dom
(
δMC
)
, that is,

∞∑
n=0

(n+ 1)!||ũn||2L2
n+1

<∞.

It is easy to see and very well known that there is a duality relation between operators DM and δMC in
the sense that if F ∈ DM2,1 and u ∈ Dom

(
δMC
)

we have

E
[∫

[0,T ]×R
u(x)DM

x F dµ(x)

]
= E[δMC (u)F ]. (1.6)

So, it can be deduced that δMC is also a linear and closed operator from L2(Ω × [0, T ] × R;P ⊗ µ) into
L2(Ω,P), with dense domain Dom

(
δMC
)
.

As particular cases we can consider the multiple stochastic integrals IWn and IJn defined as IM when
η = 0 and σ = 0 respectively. That is, we are denoting dW := σ dB ⊗ ε0 and dJ := z dÑ the random
independent measures on [0, T ]×R. Moreover we can consider the corresponding operators DW , DJ , δWC
and δJC .
On the one hand, in the particular case that η = 0, that is M = W , the duality relation becomes

E
[∫ T

0

u(t, 0)σ2DW
t,0F dt

]
= E[δWC (u)F ].

where

u(t, z) =

∞∑
n=0

IWn (un(t, z, ·)) =

∞∑
n=0

IσBn (un(t, z, t1, 0, t2, 0 . . . , tn, 0)),

and

δWC (u) =

∞∑
n=0

IWn+1(ũn) =

∞∑
n=0

IσBn+1(ũn(t, 0, t1, 0, . . . , tn, 0)),

where IσBn denotes the multiple stochastic integral defined analogously on [0, T ] with respect to the
independent random measure σ dB. Observe that in this case DW

t,0F = DσB
t F = 1

σD
B
t F.

On other hand, in the particular case σ = 0, we have

E
[∫ T

0

∫
R0

u(t, z)DJ
t,zFz

2 dη(z) dt

]
= E[δJC(u)F ].
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where

u(t, z) =

∞∑
n=0

IJn (un(t, z, ·)) =

∞∑
n=0

IJ0
n (un(t, z, ·) IR0

(·)),

and

δJ(u) =

∞∑
n=0

IJn+1(ũn) =

∞∑
n=0

IJ0
n+1(ũn(t, z, t1, z1, . . . , tn, zn) IR0(z)

n∏
i=1

IR0(zi)),

where IJ0
n denotes the multiple stochastic integral defined analogously on [0, T ]×R0 with respect to the

independent random measure dJ0 = z dÑ . Observe that in this case that DJ0
t,zF = IR0

DJ
t,zF.

The tools are now well defined and we can state the following result:

Theorem 1.18 ([16]) If u ∈ Dom
(
δMC
)
⊆ L2(Ω× [0, T ]× R), we have

δWC (u) = σδBC (u(t, 0)), and δJC(u) = δJ0

C (u(t, z) IR0
).

Moreover, the Lévy problem is solved and true, in fact

δMC (u) = δWC (u) + δJC(u).

Remark 1.6 In order to establish properly this result we have to introduce the canonical Lévy space.
This is quite long and technique and is not useful to understand the idea of this section. For details, see
[16] and references therein.

Integrals based on the S-transform. When X is a Brownian motion we refer to [2], when X is a
pure jumps process, we refer to [3] and when X = L is a Lévy process, we refer to [16]. Let us briefly
explain the construction of such an integral.

Definition 1.10 For Y ∈ L2(Ω,P), the S-transform associated to X of Y denoted by S(Y ) is an integral
transform defined for any φ ∈ Ξ ⊂ L2(R) by

S(Y )(φ) = EQφ [Y ] ,

where
dQφ = exp♦,X

(
IX1 (φ)

)
dP,

and exp♦,X
(
IX1 (φ)

)
denotes the Wick exponential of IX1 (φ) associated to X defined below.

Remark 1.7 The Wick exponential of IX1 (φ) coincides with the Doléans-Dade exponential of IX1 (φ).

Definition 1.11 (Wick exponential in the Brownian setting [2]) In the Brownian setting, we de-
note Ξ = S(R), the Schwartz space of smooth rapidly decreasing functions on R and,

exp♦,B
(
IB1 (φ)

)
= exp

(
IB1 (φ)−

||φ||2L2(R)

2

)
.

Definition 1.12 (Wick exponential in the pure jumps setting [3]) In the pure jumps setting, de-
note S(R2) the Schwartz space of smooth, rapidly decreasing functions on R2, and consider

Ξ =

{
φ ∈ S(R2) : ∀(t, z) ∈ R× R0, φ(t, z) > −1,

∂φ

∂z
(t, z)

∣∣∣∣
z=0

= 0

}
,

and

exp♦,J0

(
IJ0
1 (φ)

)
= exp

(∫ T

0

∫
R0

log(1 + φ(t, z)) dN(t, z)−
∫ T

0

∫
R0

φ(t, z) dµ(t, z)

)
.

Definition 1.13 (Wick exponential in the Lévy setting [16].) In the Lévy setting we consider:

Ξ =

{
φ ∈ S(R2) : ∀(t, z) ∈ R× R0, φ(t, z) > −1,

∂φ

∂z
(t, z)

∣∣∣∣
z=0

= 0

}
,

and
exp♦,M

(
IM1 (φ)

)
= exp♦,B

(
σIB1 (φ(·, 0)

)
exp♦,J0

(
IJ0
1 (φ) IR0

)
.
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Theorem 1.19 ([2, 3]) If S(Y1)(φ) = S(Y2)(φ) for all φ ∈ Ξ, then Y1 = Y2.

Theorem 1.19 makes the machinery relevant to define an integral by stating that a process is perfectly
described by its S-transform. By this way, the definition of an integral writes:

Definition 1.14 ([2, 3, 16]) Let Y be a random process. The so-called Hitsuda-Skorokhod integral of
Y with respect to the process X denoted δXS (Y ) exists in L2(Ω) if there is a random variable Φ ∈ L2(Ω)
such that

S(Φ)(φ) =

∫ T

0

S(Y (t))(φ)
∂

∂t
S(X(t))(φ) dt for all φ ∈ Ξ. (1.7)

Thus in the Brownian setting, it immediately yields to an integral denoted δBS , in a pure jump setting, it
yields to an integral denoted δJ0

S and in the Lévy setting to an integral denoted δMS .

Links between these two approaches.

Theorem 1.20 ([16])

• If u belongs to Dom
(
δBC
)
, then u ∈ Dom

(
δBS
)
, and δBC (u) = δBS (u).

• If u belongs to Dom
(
δJ0

C

)
, then u ∈ Dom

(
δJ0

S

)
, and δJ0

C (u) = δJ0

S (u).

• If u belongs to Dom
(
δMC
)
, then u ∈ Dom

(
δMS
)
, and δMC (u) = δMS (u).

Theorem 1.21 ([16]) The Lévy problem is solved and true. Indeed, for any u ∈ Dom
(
δMC
)
, we have:

δMS (u) = δσBS (u(t, 0)) + δJ0

S (u IR0
). (1.8)

The Complete Lévy-Itô problem.

Remark 1.8 It is easily seen that, whatever the setting (Brownian, pure jump and Lévy), the complete
Lévy-Itô problem is true if and only if u is deterministic.

III.2 Anticipative integral for filtered Lévy process

Intrinsic definitions for filtered Brownian motion. The filtered Brownian motion is an isonormal
Gaussian process. In fact, let E be the set of step functions on [0, T ]. We define the Hilbert space H as
the closure of E with respect to the inner product〈

I[0,s], I[0,t]
〉
H :=

∫ t∧s

0

K(s, u) K(t, u) du, ∀(s, t) ∈ [0, T [2.

We let BK be the map BK( I[0,t]) := BKt for every t ∈ [0, T ]. The map BK is a linear isometry from H
to the set {BK(φ), φ ∈ H}. This family of random variables is an isonormal Gaussian process and it is

possible to define an intrinsic integral by means of chaos decomposition denoted by δB,KC . We refer to
[12] for details.

We consider in what follows that X = B, J, L.

By the use of the S-transform.

Hypothesis 1.8 Suppose that the mapping t→ S
(
XK(t)

)
(φ) is differentiable for every φ ∈ Ξ.

Remark 1.9 [3, Lemma 5.1] gives assumptions on the kernel for which this assumption is fulfilled.

Definition 1.15 ([2, 3, 16]) Suppose H ⊂ R is a Borel set and Y : H × Ω → R is a measurable
stochastic process such that Y (t) is square-integrable for each t ∈ H. Y is said to have a Hitsuda-
Skorokhod integral with respect to XK if

• for any φ ∈ Ξ:

S (Y (·)) (φ)
∂

∂t
S
(
XK(·)

)
(φ) ∈ L1(H),

• there is a Φ ∈ L2(Ω) such that for any φ ∈ Ξ:

S (Φ) (φ) =

∫
H

S (Y (t)) (φ)
∂

∂t
S
(
XK(t)

)
(φ) dt. (1.9)

By Theorem 1.19, Φ is unique and will be denoted δX,KS (Y ).
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By the use of an operator. Consider now the approach of Section II.3. Here the situation is easier
since the measure is ν( ds, dz) = ds η( dz) and thus the linear operator for the pure jumps component
K∗ is defined from L2([0, T ]) to L2([0, T ]) and is exactly the same as the one for the Brownian component.
This allows us to construct an operator for the Lévy setting, still denoted K∗. It is now easy to define an
integral with respect the filtered process by means of an integral with respect to the underlying process:
for any u such that K∗(u) ∈ Dom

(
δXI
)
, I = C, S, X = B, J, L,

δX,K
∗

I (u) = δXI (K∗(u)).

Relationship between these integrals.

Theorem 1.22 ([12]) For u such that u ∈ Dom δB,KC ∩Dom δB,K
∗

C , δB,KC (u) = δB,K
∗

C (u).

Theorem 1.23 ([16]) For u such that K∗(u) ∈ Dom
(
δXC
)
, δX,K

∗

C (u) = δX,K
∗

S (u), X = B, J, L.

Theorem 1.24 ([16]) For u such that u ∈ Dom δX,K
∗

C ∩Dom δX,KS , δX,K
∗

S (u) = δX,KS (u), X = B, J, L.

Finally it is now easy to show the Lévy-Itô Problem for filtered processes.

Theorem 1.25

1. For any u ∈ Dom
(
δL,K

∗

C

)
, δL,K

∗

C (u) = δB,K
∗

C (u) + δJ,K
∗

C (u).

2. For any u ∈ Dom
(
δL,K

∗

S

)
, δL,K

∗

S (u) = δB,K
∗

S (u) + δJ,K
∗

S (u).

3. For any u ∈ Dom
(
δL,KS

)
, δL,KS (u) = δB,KS (u) + δJ,KS (u).

The filtered process and its underlying process has the same filtration this is shown in [9, Theorem
4.8] for Brownian motion and in [8, Theorem 17] for Poisson process and the proof can be easily extended
to Lévy process. Thus the Remark 1.8 extends to filtered processes.
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[10] Kiyosi Itô. Spectral type of the shift transformation of differential processes with stationary incre-
ments. Trans. Amer. Math. Soc., 81:253–263, 1956.

28



BIBLIOGRAPHY
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Chapter 2

A limit theorem for filtered Poisson
processes.∗

In this section, we relate both processes in heart of my works: Brownian Volterra processes and Filtered
Poisson processes. We show the weak convergence in a Hölder space, of a sequence of filtered Poisson
processes to a Brownian Volterra process when the intensity of the underlying Poisson process tends to
infinity.

In a first section, we introduce the ingredients, namely the notion of Hilbertian martingale and the so-
called technique of radonification. In a second section, we present the result of convergence of Hilbertian
martingales. Finally, we use a projective version of the last convergence result to answer to the question.

I Hilbertian martingale and Radonification

Definition 2.1 ([7]) Let (Ω,F , (Ft)t≥0,P) a filtered probability space. Let V a separable Hilbert space.
A V -valued process X is a F-Hilbertian martingale if and only if:

E [‖Xt‖V ] < ∞ for any t,

E [Xt | Fs] = Xs, P p.s. for any s ≥ t.

The analogue of the square bracket is here denoted lXm, and defined as the unique predictable process
with finite variation with values in the space of positive symmetric nuclear operators from V into V, such
that, for u, v ∈ V,

{< Xt, u >V< Xt, v >V − < lX mt u, v >V , t ≥ 0}

is a martingale. Since lXm, is also a Hilbert-Schmidt operator, we can consider its square root, denoted

by lXm1/2
t . It is a Hilbert-Schmidt operator because we are dealing with a non-negative definite operator

of trace class. We denote by L2(V ;V ), the space of Hilbert-Schmidt maps from V into V . A key result
for proving weak convergence of a sequence of Hilbertian martingales is the following one:

Proposition 2.1 ([10]) Let {Xn : n ∈ N∗} be a sequence of càdlàg V -valued processes. Then the
distributions of the processes {Xn, n ≥ 1} form a tight sequence of probabilities on D(R+, V ) - the
Skohorod space of càdlàg functions defined on R+ with values in V - if the following assumptions are
fulfilled:

1. For each rational q ∈ [0, 1], the family of random variables {Xn(q), n ≥ 1} is tight.

2. There exists p > 0 and a sequence of processes {An(δ) : n ∈ N∗, δ ∈]0, 1[} such that:

E [||Xn(t+ δ)−Xn(t)||pV | Ft] ≤ E [An(δ) | Ft] , and lim
δ→0

lim sup
n→∞

E [An(δ)] = 0.

∗ Publication related to this chapter:

[2] Laurent Decreusefond and Nicolas Savy. Filtered Brownian motions as weak limit of filtered Poisson processes.
Bernoulli, 11(2):283–292, 2005.
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On the one hand, beyond the trivial examples of V-valued Brownian motion or diffusions, it is rather
hard to determine whether a V -valued process is a V -valued martingale. On the other hand, it is very
easy to see if it is a cylindrical martingale, that is, if {< Xt, u >V , t ≥ 0} is a real-valued martingale for
any u ∈ V. The following ”radonification” result is thus of paramount interest:

Theorem 2.1 ([1, 9, 4]) Let E and F two Hilbert spaces and consider u : E → F a Hilbert-Schmidt
operator. Denote Mc([0, 1],R) the space of continuous real-valued martingales space equipped with the
norm

‖M‖2Mc([0,1],R) = E

[
sup
t∈[0,1]

|Ms|2
]
.

If L belongs to L(E∗;Mc([0, 1],R)), the space of continuous linear applications from the dual of E, denoted
E∗, to Mc([0, 1],R)), then u ◦ L is a continuous F -valued martingale.

II Radonification of martingales associated to filtered processes

Theorem 2.2 ([2]) Let M a continuous martingale such that < M >t= ct for any t ∈ [0, 1]. Let K
satisfying Assumption 1.3 page 15. Then, for all Φ ∈ (Iα+1/2,2)∗,{

ZMt (Φ) :=

∫ t

0

K∗Φ(s) dMs, t ∈ [0, 1]

}
in a continuous martingale. Moreover, for any ε ∈ (0, α], there is a Iα−ε,2-valued martingale denoted
XM such that, for any Φ ∈ (Iα−ε,2)∗ we have:

ZMt (Φ) =< Φ,XMt >(Iα−ε,2)∗,Iα−ε,2

Sketch of the proof. Fix ε ∈ (0, α]. Consider the linear application

L : (Iα+1/2,2)∗ −→ Mc([0, 1],R)
Φ −→

{
ZMt (Φ), t ∈ [0, 1]

}
.

One shows that L is in L((Iα+1/2,2)∗,Mc([0, 1],R)). Since the embedding from Iα+1/2,2 into Iβ+1/2,2 is
Hilbert-Schmidt for β < α− 1/2, the result is a consequence of Theorem 2.1. �

Remark 2.1 In the published version, [2] results are shown in the context of semi-martingales but for
the sake of simplicity, I prefer to restrain to the martingales setting.

The key point is the following result which establishes a link with our filtered processes.

Lemma 2.1 Consider α > 1
2 . For any t ∈ [0, 1], ZMt (εt) is well defined and writes:

ZMt (εt) = < εt, X
M
t >(Iα−ε,2)∗,Iα−ε,2 =

∫ t

0

K(t, s) dMs.

Sketch of the proof. The results comes from some arguments of stochastic calculus and noticing
that εt ∈ (Iα+1/2,2)∗. In fact, it is known ([3, 8]) that:

Iα+1/2,2 ⊂ Iα−ε,2 ⊂ Hol(α− ε− 1/2),

where Hol(ν) denotes the space of Hölder–continuous, null in zero functions equipped with the norm:

||f ||Hol(ν) = sup
t6=s

|f(t)− f(s)|
|t− s|ν

.

Thus
(Hol(α− ε− 1/2))∗ ⊂ (Iα−ε,2)∗ ⊂ (Iα+1/2,2)∗.

As α− ε− 1/2 > 0 for ε small enough, εt ∈ (Hol(α− ε− 1/2))∗ and thus εt ∈ (Iα+1/2,2)∗. �

Remark 2.2 On the one hand, for α ≤ 1/2, εt is no more in (Iα−ε,2)∗ and ZMt (εt) is meaningless. On
the other hand, we know that, for K(t, s) = (t − s)α−1/2 and for a Poisson process M , when α < 1/2,∫ .

0
K(., s) dMs is a process which jumps to infinity as soon as the Poisson process jumps. However,

ε−1
∫ t+ε
t−ε ZMt (s) ds is perfectly defined and can substitute

∫ t
0
K(t, s) dMs for ε small enough.
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III Convergence of Hilbertian martingales

Here (Ω,F ,Ft,P) is the space of Poisson defined by 1.1 page 13 which compensator is λ ds. For any
λ ∈ N∗, Nλ

s = ω([0, s]). One denotes Ñλ the process Nλ compensated. Finally Xλ, is defined as:

Xλ
t =

1√
λ

∫ t

0

K(t, s)( dNλ
s − λ ds).

Theorem 2.3 ([2]) Consider K satisfying Assumptions 1.1 and 1.3. Consider XN̂
λ

and XB the Iα−ε,2-

valued martingales defined by Theorem 2.2 from the martingales N̂λ and B. When λ tends to infinity,

the distribution of XN̂
λ

in D([0, 1], Iα−ε,2) converges to the distribution of XB .

Sketch of the proof.

• First, one shows that the sequence {XN̂λ : λ ≥ 1} is tight in D([0, 1], Iα−ε,2). It is an application
of Proposition 2.1 noticing that

< lXN̂
λ

mt u, v >=

∫ t

0

K∗(u)(s)K∗(v)(s) ds.

• Second, let {Xλk : k ≥ 1} a sub-sequence which converges to a limit say L. We have to show that
for any u ∈ (Iα−ε,2)∗, < u, L >=< u, XB > . For this, it is enough to apply stochastic integrals
convergence Theorem [5, 6] since in virtue of Lemma 2.1,

< u,Xλk >(Iα−ε,2)∗,Iα−ε,2=

∫ .

0

K∗u(s) dN̂λk
s .

• Finally, it is shown that all convergent sub-sequences have the same limit. Thus distributions of

XN̂
λ

in D([0, 1], Iα−ε,2) converge to the distributions of XB .

�

IV Back to the initial problem

Corollary 2.1 Under Assumption 1.3 with α > 1
2 and 1.1, we have:{

Xλ
t =

∫ t

0

K(t, s) dN̂λ
s : t ∈ [0, 1]

}
L(Hol(α−1/2−ε))−−−−−−−−−−−→

λ→∞

{
Xt =

∫ t

0

K(t, s) dBs : t ∈ [0, 1]

}
.

Sketch of the proof. The application

B : Iα−ε,2 −→ Hol(α− 1/2− ε)
f −→ (s 7→ f(s) =< εs , f >(Iα−ε,2)∗,Iα−ε,2),

is well defined (α > 1/2, Iα−ε,2 is a sub-space of continuous functions and its dual contains the Dirac
measures) and is continuous. Thus, for any F bounded and continuous from Hol(α−1/2− ε) to R, F ◦B
is a continuous from Iα−ε,2 to R. An application of Theorem 2.3 yield to:

E
[
F ◦B(XN̂

λ

)
]
−→
n→∞

E
[
F ◦B(XB)

]
,

and thus

E [F (Xn)] −→
n→∞

E [F (X)] .

�
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When α < 1/2, the function s 7→ f(s) =< εs , f >(Iα−ε,2)∗,Iα−ε,2 is no more defined for f ∈ Iα−ε,2.

Corollary 2.2 Under Assumptions 1.1 and 1.3 with 0 < α < 1
2 , considering η continuous from [0, 1] to

(Iα−ε,2)∗, we have:{
< ηt,X

n
t >(Iα−ε,2)∗,Iα−ε,2 : t ∈ [0, 1]

} L(C([0,1];R))−−−−−−−−→
λ→∞

{
< ηt,Xt >(Iα−ε,2)∗,Iα−ε,2 : t ∈ [0, 1]

}
Remark 2.3 We can choose η in such a way that:

< ηt, f >(Iα−ε,2)∗,Iα−ε,2= ε−1

∫ (t+ε)∧1

(t−ε)∨0

f(s) ds = ε−1(I1
0+f((t+ ε) ∧ 1)− I1

0+f((t− ε) ∨ 0)).

Since f ∈ Iα−ε,2, I1
0+f is in I1+α−ε sub-space of Hol(1/2 + α − ε). It is thus clear that η is continuous

from [0, 1] to I∗α−ε,2. The weak convergence result follows.
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Chapter 3

Transportation inequality on the
configurations space and Malliavin
Calculus∗

Let X be a Polish space and ρ a lower semi-continuous distance on X ×X, which does not necessarily
generate the topology on X. Given two probability measures µ and ν on X, the optimal transportation
problem associated to ρ consists in evaluating the distance

Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫
X

∫
X

ρ(x, y) dγ(x, y), (3.1)

where Σ(µ, ν) is the set of probability measures on X × X with first (respectively second) marginal µ
(respectively ν). The aim of this section is to deal with the following formula due to Feyel and Üstünel
[6, Theorem 3.2] which states that

T|.|H (L.µ, µ) ≤ E
[∣∣(I + L)−1∇L

∣∣
H

]
(3.2)

where L is the density of an absolutely continuous probability measure ν = L.µ with respect to the
Wiener measure µ and |.|H stands for the norm on the Cameron-Martin space. This result relate trans-
port inequalities (by means of Rubinstein’s distance T|.|H ) and stochastic analysis in Wiener space (by
means of gradient ∇ and operator L).

Here we focus on a different setting, the space of configurations on a σ-compact metric space. The
main difference between this space equipped with a Poisson measure and the Wiener space is that there
exists at least two way to define stochastic gradients and the definitions do not coincide. First of all,
we introduce the main ingredients to deal with formula (3.2) in the configurations space setting. The
points of interest are to define distances which are lower semi-continuous and to define couples Gradient /
Distance such that the so-called Rademacher’s property is true. Then we have the ingredients to establish
the counterpart of (3.2) in configurations space setting and to relate gradients and distances. Finally we
give some examples: distance between processes and isoperimetric tails.

I Ingredients

I.1 Transport inequalities

There exists at least one probability measure γ for which the infimum in (3.1) is attained [14, Theorem 4.1].
According to the celebrated Kantorovitch-Rubinstein duality theorem, [14, Theorem 5.10], this minimum
is equal to

Tρ(µ, ν) = sup
F∈ρ−Lip1

F∈L1(µ+ν)

∫
X

F d(µ− ν), (3.3)

∗ Publication related to this chapter:

[5] Laurent Decreusefond, Aldéric Joulin and Nicolas Savy. Upper bounds on Rubinstein distances on configuration
spaces and applications, Communication on Stochastic Analysis and Applications, 2010, 4, 377-399.
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where ρ − Lipm is the set of bounded Lipschitz continuous functions F from X to R with Lipschitz
constant m:

|F (x)− F (y)| ≤ mρ(x, y), x, y ∈ X.
In the context of optimal transportation, Tρ is considered as a Rubinstein distance since the cost function
is already a distance (see for instance the bibliographical notes in [14, end of Chapter 6]).

I.2 Configurations space

In [5], we have considered the situation where X = ΓΛ is the configuration space on a σ-compact metric
space Λ with Borel σ-algebra B(Λ), i.e.,

ΓΛ = {ω ⊂ Λ : ω ∩K is a finite set for every compact K ∈ B(Λ)}.

Here the σ-compactness means that Λ can be partitioned into the union of countably many compact
subspaces. We identify ω ∈ ΓΛ and the positive Radon measure

∑
x∈ω εx. ΓΛ is endowed with the vague

topology, i.e., the weakest topology such that for all f ∈ C0(Λ) (continuous with compact support on Λ),
the following maps

ω 7→
∫

Λ

f dω =
∑
x∈ω

f(x),

are continuous. When f is the indicator function of a subset B, we will use the shorter notation ω(B) for
the integral of IB with respect to ω. We denote by B(ΓΛ) the corresponding Borel σ-algebra. Let M(Λ) be
the space of positive and diffuse Radon measures on B(Λ) endowed with the corresponding Borel σ-field
and equipped with the topology of vague convergence. Given a measure σ ∈M(Λ), the probability space
under consideration in the remainder of this paper will be the Poisson space (ΓΛ,B(ΓΛ), µσ), where µσ
is the Poisson measure of intensity σ, i.e., the probability measure on ΓΛ fully characterized by

Eµσ
[
exp

(∫
Λ

f dω

)]
= exp

{∫
Λ

(ef − 1) dσ

}
,

for all f ∈ C0(Λ). Here Eµσ stands for the expectation under the measure µσ.
Actually, several distance concepts are available between elements of the configuration space ΓΛ, see for
instance [13] for a thorough discussion about this topic. We introduce only three of them which will be
useful in the sequel. Let ω and η be two configurations in ΓΛ.

Trivial distance The trivial distance is simply given by

ρ0(ω, η) = I{ω 6=η}.

Total variation distance The total variation distance is defined as

ρ1(ω, η) =
∑
x∈Λ

|ω({x})− η({x})|.

Wasserstein distance If Λ = Rk and κ is the Euclidean distance, the Wasserstein distance is given by

ρ2(ω, η) = inf
β∈Σ(ω,η)

√∫
Λ

∫
Λ

κ(x, y)2 dβ(x, y),

where Σ(ω, η) denotes the set of configurations β ∈ ΓΛ×Λ having marginals ω and η, see [4, 11].

In order to use the Kantorovich-Rubinstein duality Theorem, the main property is the following:

Proposition 3.1 ([5, 11]) For any i ∈ {0, 1, 2}, the distance ρi is lower semi-continuous on the product
space ΓΛ × ΓΛ equipped with the product topology.

Remark 3.1 As the total variation distance ρ1, the Wasserstein distance ρ2 also shares the property
that it might takes infinite values. Indeed, if the total masses of two configurations ω and η are finite but
differ, then there exists no coupling configuration β in Σ(ω, η), hence the distance should be infinite.

Remark 3.2 Let us mention that ours definitions of the distance ρi is very often infinite itself, as in
the Wiener space situation of [6]. These definitions do not coincide with some of the usual definitions
of (bounded) distances between point processes, see for instance [11, 3, 13] especially there are not lower
semi-continuous, the Kantorovich-Rubinstein duality Theorem is no longer satisfied.
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I.3 Malliavin derivatives and the Rademacher property

Hypothesis 3.1 Assume now that we have:

• A kernel Q on ΓΛ×Λ, i.e. Q(·, A) is measurable as a function on ΓΛ for any A ∈ B(Λ) and Q(ω, ·)
is a positive Radon measure on B(Λ) for any ω ∈ ΓΛ. We set dα(ω, x) = Q(ω, dx) dµσ(ω).

• A gradient/Malliavin derivative ∇, defined on the dense subset of L2(µσ): Dom∇ = {F ∈ L2(µσ) :
∇F ∈ L2(α)}.

Definition 3.1 Given a distance ρ and a gradient ∇ on ΓΛ, we say that the couple (∇, ρ) has the
Rademacher property whenever

ρ− Lip1 ⊂ Dom∇ and |∇xF (ω)| ≤ 1, α-a.e. (3.4)

Discrete gradient on configuration space. Given a functional F ∈ L2(µσ), the discrete gradient of
F , denoted by ∇]F , is defined as

∇]xF (ω) = F (ω + εx)− F (ω), (ω, x) ∈ ΓΛ × Λ.

In particular, Dom∇] is the subspace of L2(µσ) random variables such that

Eµσ
[∫

Λ

|∇]xF |2∂σ(x)

]
< +∞.

We set Q](ω, dx) = dσ(x) so that α] = µσ ⊗ σ. According to [9, 12], the Chaotic Representation
Property holds on the configuration space. Thus we can define (see Section III.1) the notions of n-th
multiple stochastic integral of a real-valued square-integrable symmetric function fn ∈ L2(σ⊗n), the
chaotic expression of the gradient, of δ] the adjoint operator of ∇], of the self-adjoint number operator
L] = δ]∇] and finally of the associated Ornstein-Uhlenbeck semi-group (P ]t )t≥0.

Remark 3.3

• (P ]t )t≥0 is exponentially ergodic in L2(µσ) with respect to the Poisson measure µσ.

• Moreover, we have the commutation property between gradient and semi-group: if F ∈ Dom∇],

∇]xP
]
t F = e−tP ]t∇]xF, x ∈ Λ, t ≥ 0. (3.5)

Proposition 3.2 Assume that the intensity measure σ is finite on Λ. Then the couples (∇], ρ0) and
(∇], ρ1) satisfy the Rademacher property (3.4).

Differential gradient on configuration space. Let us introduce another stochastic gradient on the
configuration space ΓΛ which is a derivation, see [1, 11]. Given the Euclidean space Λ = Rk, let V (Λ) be
the space of C∞ vector fields on Λ and V0(Λ) ⊂ V (Λ), the subspace consisting of all vector fields with
compact support. For v ∈ V0(Λ), for any x ∈ Λ, the curve t 7→ Vvt (x) ∈ Λ is defined as the solution of
the following Cauchy problem {

∂
dtV

v
t (x) = v(Vvt (x)),

Vv0 (x) = x.
(3.6)

The associated flow (Vvt , t ∈ R) induces a curve (Vvt )∗ω = ω ◦ (Vvt )−1, t ∈ R, on ΓΛ: if ω =
∑
x∈ω εx then

(Vvt )∗ω =
∑
x∈ω εVvt (x). We are then in position to define a notion of differentiability on ΓΛ. We take

Qc(ω, dx) = dω(x) =
∑
y∈ω dεy(x) and dαc(ω, x) = dω(x) dµσ(ω). A measurable function F : ΓΛ → R

is said to be differentiable if for any v ∈ V0(Λ), the following limit exists:

lim
t→0

F (Vvt (ω))− F (ω)

t
.

We denote ∇cvF (ω) the preceding quantity. The domain of ∇c is then the set of integrable and dif-
ferentiable functions such that there exists a process (ω, x) 7→ ∇cxF (ω) which belongs to L2(αc) and
satisfies

∇cvF (ω) =

∫
Λ

∇cxF (ω)v(x) dω(x).

We denote by δc the adjoint operator of ∇c. Given the self-adjoint operator Lc = δc∇c, denote the
associated Ornstein-Uhlenbeck semi-group by (P ct )t≥0.
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Remark 3.4

• (P ct )t≥0 is ergodic in L2(µσ) with respect to the Poisson measure µσ [1].

• There is no known commutation relationship between the gradient ∇c and the semi-group P ct .

Proposition 3.3 ([5]) The couple (∇c, ρ2) satisfies the Rademacher property (3.4).

II Upper bounds on Rubinstein distances

Proposition 3.4 ([5]) Denote ρ a lower semi-continuous distance on the configuration space ΓΛ and
assume that Hypothesis 3.1 is fulfilled. Assume that the couple (∇, ρ) satisfies the Rademacher property
(3.4). Let L be the density of an absolutely continuous probability measure ν with respect to µσ. Then
provided the inequality makes sense, the following upper bound on the Rubinstein distance holds:

Tρ(µσ, ν) ≤
∫

ΓΛ

∫
Λ

∣∣∣∣∫ +∞

0

∇xPtL(ω) dt

∣∣∣∣ dα(ω, x). (3.7)

This first abstract upper bound on the Rubinstein distance is proved using a semi-group method, following
the approach emphasized in [7]. Note that the upper bound in the inequality (3.7) is interesting in its
own right, but seems to be somewhat difficult to compute in full generality. Hence we turn in the
sequel to more concrete situations, i.e., when the gradient of interest is the discrete gradient ∇] or the
differential one ∇c and is associated to the convenient distance ρi, i ∈ {0, 1, 2}, in the sense of the
Rademacher property (3.4). Once the abstract estimate (3.7) has been obtained, one notices that it
might be simplified whenever a commutation relation between gradient and semi-group holds. Such a
property is only verified in the case of the discrete gradient, so that we focus in this part on the couple
(∇], ρ1).

Theorem 3.1 ([5]) Let L be the density of an absolutely continuous probability measure ν with respect
to µσ, and assume that L ∈ Dom∇] and ∇]L ∈ L1(µσ ⊗ σ). Then we get the following estimate:

Tρ1(µσ, ν) ≤ Eµσ
[∫

Λ

|∇]xL| dσ(x)

]
, (3.8)

Tρ1
(µσ, ν) ≤ Eµσ

[∫
Λ

|(I + L])−1∇]xL| dσ(x)

]
. (3.9)

The same inequality also holds under the distance ρ0.

Remark 3.5

• (3.9) seems theoretically slightly better than (3.8) but often yields to intractable computations, except
when the chaos representation of L is given.

• (3.2) is the very analogue of (3.9) on Wiener space.

Proposition 3.4 for the couple (∇c, ρ2) is of theoretical interest, but not really tractable in practise, since
no commutation relation has been established yet between the differential gradient ∇c and the semi-
group P ct . It is possible to provide another estimate on Tρ2 through a different approach relying on a
time-change argument together with the Girsanov Theorem.

III Applications

III.1 Distance estimates between processes

The purpose of the present part is to apply our main results Theorems to provide distance estimates
between a Poisson process and several other more sophisticated processes, such as Cox or Gibbs processes.
See for instance the pioneer monograph [3] or also [2, 13] for similar results with respect to another
(bounded) distances on the configuration space ΓΛ.
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Proposition 3.5 (Distance between Poisson processes, [5]) Let µτ be a Poisson measure on ΓΛ

of intensity τ . We assume that τ admits a density p with respect to σ such that p− 1 ∈ L1(σ). Then we
have

Tρ1(µσ, µτ ) ≤
∫

Λ

|p(x)− 1| dσ(x).

Definition 3.2 A Cox process is a Poisson process with a random intensity. To construct a Cox process,
we need to enlarge our probability space. Given an arbitrary probability measure PM on M(Λ), we denote
by M the canonical random variable on (M(Λ),PM ), i.e. M given by M(m) = m has distribution PM .
On the space ΓΛ ×M(Λ), we consider the probability measures

dµ′M (ω,m) := dµm(ω) dPM (m) and dµ′σ(ω,m) := dµσ(ω) dPM (m).

Note that the second one is the distribution of the independent couple (N,M), where N is the canonical
random variable on ΓΛ with distribution µσ. The distribution µ′M on ΓΛ is said to be Cox whenever for
any function f ∈ C0(Λ),

Eµ′M

[
exp

(∫
Λ

f dω

) ∣∣∣∣M] = exp

{∫
Λ

(ef − 1) dM

}
.

In the definition of the distance between µ′M and µ′σ, we do not include any information on M , so that
the distance ρ1 remains the same and we have:

Tρ1
(µ′σ, µ

′
M ) = sup

F∈ρ1−Lip1

∫
M(Λ)

(∫
ΓΛ

F (ω) d(µσ − µm)(ω)

)
dPM (m).

Proposition 3.6 (Distance between a Cox and a Poisson process, [5]) Assume that µ′σ-a.s., the
measure M is absolutely continuous with respect to σ and that there exists a measurable version of dM/dσ
and such that dM/ dσ − 1 ∈ L1(µ′σ ⊗ σ). Then we have

Tρ1
(µ′σ, µ

′
M ) ≤ Eµ′σ

[∫
Λ

∣∣∣∣ dM

dσ
(x)− 1

∣∣∣∣ dσ(x)

]
.

Definition 3.3 Let Λ = Rk. The measure ν is a Gibbs measure on ΓΛ with respect to the reference
measure µσ, if the density of ν with respect to µσ is of the form L = e−V , where

V (ω) :=

∫
Λ

∫
Λ

φ(x− y) dω(x) dω(y) < +∞, µσ − a.s.,

and where the potential φ : Λ→ (0,+∞) is such that φ(x) = φ(−x) and∫
Λ

∫
Λ

φ(x− y) dσ(x) dσ(y) < +∞.

Proposition 3.7 (Distance between a Gibbs and a Poisson process, [5]) The Rubinstein distance
Tρ1

between the Poisson measure µσ and the Gibbs measure ν is bounded as follows:

Tρ1
(µσ, ν) ≤ 2

∫
Λ

∫
Λ

φ(x− y) dσ(x) dσ(y).

III.2 Tail and isoperimetric estimates

Tail estimates. Our main result Theorem 3.1 allows us to obtain a first tail estimate.

Proposition 3.8 ([5]) Let F ∈ ρ1 − Lip1 be centered and let λ > 0. Consider νλ the absolutely contin-
uous probability measure with density eλF /Zλ with respect to µσ where Zλ = Eµσ

[
eλF

]
. Thus we get the

deviation inequality available for any r ≥ 0:

µσ (F ≥ r) ≤ exp

{
r − (r + ‖∇]F‖1,∞) log

(
1 +

r

‖∇]F‖1,∞

)}
, (3.10)

where

‖∇]F‖1,∞ := µσ − esssup

∫
Λ

|∇]xF | dσ(x).
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Remark 3.6 Such a tail estimate is somewhat similar to that established for instance in [7, 15]. However,
in contrast to their results, we do not exhibit at the denominator the sharp variance term

‖∇]F‖22,∞ := µσ − esssup

∫
Λ

|∇]xF |2 dσ(x),

since our method relies on the L1-inequality (3.8).

By the use of Theorem 3.1 with ν the absolutely continuous probability measure with density with respect
to µσ:

L :=
1

µσ (ω(K) ≥ [σ(K) + r])
I{ω(K)≥[σ(K)+r]}, r > 0,

we are able to recover the multiplicative polynomial factor. The result is:

Proposition 3.9 ([5, 10]) Given any compact set K ⊂ Λ and any r > 0, we have the tail estimate:

µσ (ω(K) ≥ σ(K) + r) ≤ [σ(K) + r]

r

e[σ(K)+r]−σ(K)−[σ(K)+r] log( [σ(K)+r]
σ(K) )√

2π[σ(K) + r]
.

Proposition 3.10 ([5]) Given any fixed configuration η ∈ ΓΛ and provided the intensity measure σ is
finite. Then, for any r > 0, we have:

µσ (ρη ≥ Eµσ [ρη] + r) ≤
√

2π[σ(Λ)][σ(Λ)][σ(Λ)]e
1

12[σ(Λ)]

σ(Λ)σ(Λ)

e[σ(Λ)+r]−[σ(Λ)]−[σ(Λ)+r] log( [σ(Λ)+r]
[σ(Λ)+r]−r )√

2π[σ(Λ) + r]
,

where ρη denotes the total variation distance ρ1(·, η).

Hence one deduces that the tail behaviour of the total variation distance is comparable to the previous
ones, up to constant multiplicative factors depending on the total mass σ(Λ).

Isoperimetric inequality. The distance of interest is the trivial distance ρ0. In the sequel, we assume
that the intensity measure σ is finite, so that the domain Dom∇] contains the indicator functions IA,
A ∈ B(ΓΛ). Given a Borel set A ∈ B(ΓΛ), we define its surface measure as

µσ(∂A) := Eµσ
[∫

Λ

|∇]x IA| dσ(x)

]
.

Denote hµσ the classical isoperimetric constant:

hµσ = 2 inf
0<µσ(A)<1

µσ(∂A)

µσ(A)(1− µσ(A))
.

We have the following estimate, which is convenient for small total mass σ(Λ).

Proposition 3.11 ([5, 8]) Assume that the measure σ is finite. Then we have

1 ≤ hµσ ≤
σ(Λ)

1− e−σ(Λ)
. (3.11)

In particular, we have the asymptotic for small total mass:

lim
σ(Λ)→0

hµσ = 1.

Remark 3.7 Houdré and Privault established first the inequality hµσ ≥ 1 by using Poincaré inequality
in [8]. Our estimate in the right-hand-side of (3.11) is sharp for small values of σ(Λ), but is worse than
their estimate for large σ(Λ) since their upper bound is 8 + 8

√
σ(Λ).
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Chapter 4

Properties of Estimators for some
diffusion processes.∗

The research evoked in this chapter deals with statistics of processes especially questions of estimation of
parameters. The chapter organizes in three parts. The first part summarizes the article [3] on estimation
of instantaneous volatility. This is a question of paramount interest in finance. The technique used are
mainly martingale’s one. The second part presents two extension of the paper of Bercu and Rouault [11]
which deals with large deviations principles for the maximum likelihood estimator of the drift parameter
associated to Ornstein-Uhlenbeck processes directed by a Brownian motion B observed on a time interval
[0, T ]:

dXt = θXt dt+ dBt, (4.1)

with initial state X0 = 0 and drift parameter θ < 0. The first extension [7] consists in replacing in (4.1),
the Brownian motion by a fractional Brownian motion BH of Hurst parameter 0 < H < 1. The second
extension [8] consists in considering (4.1) with a non-negative drift parameter. Finally the Chapter ends
by a section devoted to Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes defined, over the
time interval [0, T ], by {

dXt = θXt dt + dVt

dVt = ρVt dt + dBt
(4.2)

where θ < 0, ρ ≤ 0 and (Bt) is a standard Brownian motion. Our motivation for studying (4.2) comes
from two observations. On the one hand, the increments of Ornstein-Uhlenbeck processes are not inde-
pendent which means that the weighted maximum likelihood estimation approach of [23] does not apply
directly to our situation. On the other hand, Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
are clearly related with stochastic volatility models in financial mathematics [34]. Furthermore, (4.2) is
the continuous-time version of the first-order stable autoregressive process driven by a first-order autore-
gressive process recently investigated in [9]. The investigations are devoted to the maximum likelihood
estimation for θ and ρ. We also introduce the continuous-time Durbin-Watson statistic which will allow
us to propose a serial correlation test for Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes.
The almost sure convergence as well as the asymptotic normality of our estimates are established. One
shall realize that there is a radically different behaviour of the estimator of ρ in the two situations where
ρ < 0 and ρ = 0.

∗ Publications related to this chapter:

[3] Alexander Alvarez, Fabien Panloup, Monique Pontier, and Nicolas Savy. Estimation of the instantaneous volatility.
Statistic inference for Stochastic processes, 15: 27–59, 2012.
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process. Theory of Probability and its Applications, 55(4): 575–610, 2011.
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process. Stochastic Processes and their Applications, 122(10): 3393–3424, 2012.
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Statistics and Probability Letters, 85:36-44, 2014.

43



CHAPTER 4. PROPERTIES OF ESTIMATORS FOR SOME DIFFUSION PROCESSES.

I Estimator of instantaneous volatility

In [3], we deal with (Xt)t≥0 defined on a filtered probability space (Ω,F , (Ft),P) by:

dXt = at dt+ σt dBt, t ≥ 0, (4.3)

where B is an (Ft)-adapted Wiener process which satisfies the usual conditions, a : R+ → R and σ are
some càdlàg (Ft)-adapted processes. Furthermore, σ is assumed to be a positive process.

In order to reach an estimator of the volatility it is an usual way to use a discretely observed process
and to deal with the power variation of order p. Consider T a positive number and assume that X is
observed at times i∆n for all i = 0, 1, . . . , [ T∆n

]. In the sequel, we will assume that ∆n −−−−−→
n→+∞

0. For

p > 0, we denote by B̂(p,∆n), the process of power variations of order p, i.e. the stochastic process
defined as

B̂(p,∆n)t :=

[t/∆n]∑
i=1

|∆n
i X|

p
, t ∈ [0, T ]

where ∆n
i X := Xi∆n −X(i−1)∆n

.

The sequence (B̂(p,∆n)t)n is classically known as an estimator of
∫ t

0
σps ds. The study of such esti-

mators of the integrated volatility and its use for the detection of jumps have been deeply studied in the
last years (see for instance [6, 36] for the continuous setting, [1, 24, 36] for the discontinuous setting).
We are going to recall some existing results about the convergence of this sequence but before, we want
to precise the assumptions on σ that will be necessary throughout the section.

Two assumptions are sufficient to establish the properties of this estimator. First an assumption
depending on parameter q ∈ [1, 2] which is related to the behaviour of the small jumps of (σt):

Hypothesis 4.1 (H1
q) σ is a positive càdlàg semi-martingale such that σt = |Yt| where (Yt) satisfies:

dYs = bs ds+ η1(s) dWs + η2(s) dW 2
s +

∫
R
y I{|y|≤1}(µ( ds, dy)− ν( ds, dy)) +

∫
R
y I{|y|>1}µ( ds, dy),

where b, η1, η2 are adapted càdlàg processes, µ denotes a random measure on R+ × R with predictable
compensator ν satisfying: ν(dt, dy) = dt Ft(dy) and (

∫
(1∧|y|q)Ft(dy))t≥0 is a locally bounded predictable

process.

Second, an assumption depending on parameter q ∈ [1, 2] too which is a little more constraining control
of the jump component:

Hypothesis 4.2 (H2
q) For every T > 0,

lim
ε→0

sup
t∈[0,T ]

∫
{|y|≤ε}

|y|qFt( dy) = 0 a.s.

Remark 4.1 Assumption (H1
q) implies that (σt) is quasi-left continuous and that the jump component

has locally-finite q-variation.

Now, we can recall two results (adapted to our context) about the asymptotic properties of (B̂(p,∆n)t)n.
On the same topic, we can also quote [5, 6].

Proposition 4.1 ([29, 24]) Assume (H2
2). Let p be a positive number and set mp := E [|U |p] where

U ∼ N (0, 1). Then, locally uniformly in t,

∆
1− p2
n B̂(p,∆n)t

P−−−−−→
n→+∞

mpA(p)t with A(p)t =

∫ t

0

σps ds.

Proposition 4.2 ([2]) Let p ≥ 2 and assume Assumption 1 of [2]. Then, the sequence of continuous
processes (Y (n, p))n∈N∗ defined for any n ∈ N∗ by

Y (n, p)t :=
1√
∆n

(
∆

1− p2
n B̂(p,∆n)t −mpA(p)t

)
, t ≥ 0,

converges stably to a random variable Y (p) on an extension (Ω̃, F̃ , (F̃t), P̃) of the original filtered space
(Ω,F , (Ft),P) such that, for any t ≥ 0, conditionally on F , Y (p)t is a centered Gaussian variable with
variance Ẽ[Y (p)2

t | F ] = (m2p −m2
p)A(2p)t.
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I. ESTIMATOR OF INSTANTANEOUS VOLATILITY

It is important to quote that the asymptotic normality is expressed in terms of stable convergence denoted
by L − s. This convergence is defined as:

Definition 4.1 We say that a sequence of random variables (Yn) converges stably to Y or Yn
L−s⇒ Y , if

there exists an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) and a random variable Y defined on (Ω̃, F̃ , P̃) such that for
every bounded measurable random variable H, for every bounded continuous function f , E [Hf(Yn)] →
Ẽ[Hf(Y )] when n→ +∞ where Ẽ denotes the expectation on the extension.

The following lemma is classical and is the reason why we introduce the stable convergence.

Lemma 4.1 Let (Xn) and (Yn) be some sequences of random variables defined on (Ω,F ,P) with values
in a Polish space E. Assume that (Xn) converges L − s to X and that (Yn) converges in probability to
Y . Then, the sequence of random variables (Zn = Xn + Yn) converges L − s to X + Y .

Unlike these works, the aim of [3] is to estimate rather the instantaneous volatility. Then, the natural
idea is to study estimators of σpt which are built as ”derivatives” of the power variations. More precisely,
the proposed estimator (Σ(p,∆n, hn)t) of the instantaneous volatility is a normalized relative increment
of cumulative volatility estimator, this relative increment being taken on a smaller and smaller interval.

Σ(p,∆n, hn)t :=
∆

1− p2
n

(
B̂(p,∆n)t+hn − B̂(p,∆n)t

)
mphn

, t ≤ T̄ with T̄ = T − h1.

Actually, this estimator is the mean of p-variations in a window of length hn where (hn) is assumed to
be a non-increasing sequence of positive numbers such that hn tends to 0.

Theorem 4.1 (With Brownian component. [3]) Let p = 2 or p ≥ 3 and let (Xt) be a stochastic
process solution to (4.3). Assume (H1

2) and (H2
2). Assume that ∆n = o(hn). Then,

(i) If hn/
√

∆n → 0, ∀t ∈ [0, T̄ ],√
hn
∆n

(Σ(p,∆n, hn)t − σpt )
L−s−−−−−→

n→+∞

√
ϕ1(p, t, σ) U, (4.4)

where, conditionally on F , U is a standard Gaussian random variable and ϕ1(p, t, σ) =
m2p−m2

p

m2
p

σ2p
t .

(ii) If
√

∆n/hn → β ∈ R+, ∀t ∈ [0, T̄ ],

1√
hn

(Σ(p,∆n, hn)t − σpt )
L−s−−−−−→

n→+∞

√
β2ϕ1(p, t, σ) + ϕ2(p, t) U,

where ϕ1(p, t, σ) and U are defined as before and, ϕ2(p, t) = p2

3 (σt)
2p−2‖η‖2(t)) with ‖η‖2(t) = η2

1(t) +
η2

2(t).

Remark 4.2 When the drift term a is null, the result is valid even if 2 < p < 3. Otherwise, the drift
contributes in a bias for the estimator that is not negligible in case 2 < p < 3.

Theorem 4.2 (Without Brownian component. [3]) Let p = 2 or p ≥ 3. and let (Xt) be a stochastic
process solution to (4.3). Assume (H1

q) and (H2
q) with q ∈ [1, 2] and suppose that η1 = η2 = 0. Assume

that ∆n = o(hn). Then,

(i) If q ∈ (1, 2], if lim supn→+∞ h
1/2+1/q
n /

√
∆n < +∞, ∀t ∈ [0, T̄ ],√

hn
∆n

(Σ(p,∆n, hn)t − σpt )
L−s−−−−−→

n→+∞

√
ϕ1(p, t, σ)U,

where ϕ1(p, t, σ) and U are defined as in Theorem 4.1.
(ii) Assume that q = 1. If limn→+∞ h3

n/∆n = 0, (4.2) holds. If limn→+∞ h3
n/∆n = β ∈ R∗+ and if

(
∫
{0<|y|≤1} yFt( dy))t≥0 is càglàd (left-continuous with right limits), then, ∀t ∈ [0, T̄ ],√

hn
∆n

(Σ(p,∆n, hn)t − σpt )
L−s−−−−−→

n→+∞

√
ϕ1(p, t, σ)U +

β

2
pσp−1

t

(
bt − lim

s↘t

∫
{0<|y|≤1}

yFs( dy)

)
. (4.5)

Remark 4.3 When there is no Brownian component in the volatility, i.e. η1 = η2 = 0 and when the
jump component has locally q-finite variation, we can alleviate the constraint on the sequence (hn).
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It must be stressed here that the convergence rate depends on the balance between the frequency of
observations and the length hn of the window. Hence, the following proposition justify the choice of a
”good pair” (hn,∆n).

Corollary 4.1 Let p = 2 or p ≥ 3 and assume ∆n = o(hn). Considering the window width hn, rn := hn
∆n

corresponds to the number of observations on the interval [t, t+ hn]. Suppose ∆n = 1
n and rn := nρ, 0 <

ρ < 1, then hn = nρ−1.

• If there is Brownian component, under Hypotheses (H1
2), (H2

2), Theorem 4.1 yields the following
convergence rates:

(i) ρ < 1
2 yields a convergence rate of order nρ/2,

(ii) ρ ≥ 1
2 yields a convergence rate of order n(1−ρ)/2.

• If there is no Brownian component, under Hypotheses (H1
q) and (H2

q) with 1 ≤ q ≤ 2, Theorem
4.2 yields the following convergence rates:

(i) if 1 < q ≤ 2, ρ ≤ 2
2+q , yields a convergence rate of order nρ/2,

(ii) if q = 1, ρ ≤ 2
3 ; the best convergence rate is of order n1/3, obtained for ρ = 2/3.

Remark 4.4 The main restriction of our model is that jumps only occur in the volatility but not in the
price. When jumps occur in the log-price X, it seems that we could extend some of the previous announced
results by exploiting the fact that convergence properties for the power variations to the cumulated volatility
still hold when p < 2. However, this extension generates some technicalities which are out of ours
objectives.

Sketch of the proof. First consider the following assumption:

Hypothesis 4.3 (SHq) Functions a,b, η1, η2, and
∫ .

0

∫
(|y|q ∧ 1)Fs( dy) ds are bounded and there exists

M > 0 such that Fs([−M,M ]c) = 0 a.s. ∀s ≥ 0.

By means of a classical localization procedure we show that it is enough to prove the main theorem under
assumption (SHq) :

Lemma 4.2 Assume that the conclusions of Theorem 4.1 and 4.2 hold for every (X,σ) satisfying (SHq)
and (H2

q) (with q ∈ [1, 2] depending on the statement). Then, the conclusions hold for every (X,σ)
satisfying (H1

q) and (H2
q) with q ∈ [1, 2].

Now, following [24], we first decompose Σ(p,∆n, hn)t − σpt as follows:

Σ(p,∆n, hn)t − σpt =
Z

(n,p)
t+hn

− Z(n,p)
t

mphn
+
( 1

rn

∑
Dnt

σpi∆n
− σpt

)
, (4.6)

where rn = hn/∆n, Dnt =
{
i ∈ N∗,

[
t

∆n

]
+ 1 ≤ i ≤

[
t+hn
∆n

]}
, and

Z
(n,p)
t := ∆

1− p2
n B̂(p,∆n)t −mp

[t/∆n]∑
i=1

∆nσ
p
i∆n

.

On the one hand, we split

Z
(n,p)
t+hn

− Z(n,p)
t

hn
= Λn1 (t) + Λn2 (t) + Λn3 (t).

On the other hand, we decompose the second part of (4.6).

1

rn

∑
i∈Dnt

σpi∆n
− σpt = Λn4 (t) + Λn5 (t),

where Λn2 and Λn4 are increments of Brownian martingales while Λn1 , Λn3 and Λn5 are remainder terms.

In order to deal with Λn2 and Λn4 we make use of the following lemma which is a corollary of a result
[19] on the stable-CLT for martingale increments adapted to our specific framework.
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Lemma 4.3 Let (Ω,F ,P) denote a probability space. For n ≥ 1, let ζn2 , ζ
n
3 , . . . , ζ

n
kn

denote some martin-

gale increments with respect to the sub-σ-fields of F : F̄n,1 ⊂ F̄n,2 ⊂ . . . ⊂ F̄n,kn . Set Sn =
∑kn
i=2 ζ

n
i and

G = ∩n≥1F̄n,1. Assume that n→ F̄n,kn is a non-increasing sequence of σ-fields such that ∩n≥1F̄n,kn = G.
Then, if the following conditions hold:

(i) There exists a G-measurable random variable η such that

kn∑
i=2

E
[
(ζni )2|F̄n,i−1

] P−−−−−→
n→+∞

η,

(ii) For every ε > 0,
kn∑
i=2

E
[
(ζni )2 I{|ζni |2≥ε}|F̄n,i−1

]
P−−−−−→

n→+∞
0,

then, (Sn) converges stably to S where S is defined on an extension (Ω̃, F̃ , P̃) and such that conditionally
on F , the distribution of S is a centered Gaussian law with variance η.

Proposition 4.3 Assume that ∆n = o(hn) and (SH2).
(i). Then,

ρn (Λn2 (t) + Λn4 (t))
L−s−−−−−→

n→+∞
f(t, p)U,

where U ∼ N (0, 1), U is independent of Ft and

(f2(t, p), ρn) =


(
ϕ1(p, t, σ),

√
rn
)

if hn = o(
√

∆n),(
β2ϕ1(p, t, σ) + ϕ2(p, t), 1√

hn

)
if
√

∆n

hn
→ β ∈ R∗+,(

1
3p

2(σt)
2p−2‖η‖2(t), 1√

hn

)
if
√

∆n

hn
→ 0.

(ii). In case of pure jump process, meaning we assume that η1 = η2 = 0, then, Λ4 = 0 and, for every
t ∈ [0, T ], √

hn
∆n

Λn2 (t)
L−s−−−−−→

n→+∞
f(t, p)U,

with f2(t, p) = ϕ1(p, t, σ).

Finally for the remainder terms, we show that:

Proposition 4.4

• Assume (SHq) and (H2
q) with q ∈]1, 2]. Then, for every t ∈ [0, T ]:

1

h
1/q
n

Λn5 (t)
P−−−−−→

n→+∞
0. (4.7)

Assume that the previous assumptions hold with q = 1 and that
(∫
{0<|y|≤1} yFt( dy)

)
t≥0

is càglàd,

then, for every t ∈ [0, T ]:

1

hn
Λn5 (t)

P−−−−−→
n→+∞

θ0
t

2
with θ0

t := pσp−1
t

(
bt − lim

s↘t

∫
{0<|y|≤1}

yFs( dy)

)
+
p(p− 1)

2
σp−2
t ‖η‖2(t).

• Assume (SH2). Then, for every t ∈ [0, T̄ ],√
hn
∆n

Λn1 (t)
L2

−−−−−→
n→+∞

0. (4.8)

• Assume (SH2). Then, if p = 2 or p ≥ 3, for every t ∈ [0, T̄ ],

max

(√
hn
∆n

,

√
1

hn

)
Λn3 (t)

L1

−−−−−→
n→+∞

0. (4.9)
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Focus for instance on statements (4.4) and (4.2), the other ones follow exactly the same lines. On the
one hand, using Proposition 4.4 together with the fact that, under the assumptions,

sup
n≥1

(
√
hn/∆n)h1/q

n < +∞

we deduce from (4.7), (4.8) and (4.9) that, for p ∈ {1/2} ∪ [3,+∞[√
hn
∆n

Λn5 (t)
P−−−−−→

n→+∞
0,

√
hn
∆n

Λn1 (t)
P−−−−−→

n→+∞
0,

√
hn
∆n

Λn3 (t)
P−−−−−→

n→+∞
0 since ∆

p−2
2 ∧

1
2

n = ∆
1
2
n if p ≥ 3.

On the other hand, under the assumptions of Theorems 4.1(i) and 4.2(i), one deduces from Proposition
4.3(i) and (ii) respectively that,√

hn
∆n

(Λn2 (t) + Λn4 (t))
L−s−−−−−→

n→+∞
f(t, p)U,

Therefore, (4.4) and (4.2) follow from Lemma 4.1 applied with Y = 0 and from the decomposition of the
error stated statement (4.6). �

Theorems 4.1 and 4.2 allow us to build a confidence region to estimate, for all t, parameter σt. The main

remark is that the length of the asymptotic confidence intervals of σt, is about r
− 1

2
n

√
m2p−m2

p

pmp
, and this

length order is unhappily increasing with p, so it could be not so good to use p > 2.

II Large deviation Principle for drift parameter

II.1 Maximum likelihood estimator of drift parameter

In the Brownian setting, the definition of the maximum likelihood estimator of the drift parameter can
be written:

θ̂T =

∫ T
0
Xt dXt∫ T

0
X2
t dt

. (4.10)

In fact, in this setting, these quantities are perfectly defined in the sense of Itô’s calculus. This is no more
true in the fractional Brownian motion setting where the numerator of (4.10) is a priori not well-defined.
To deal with fractional Brownian motion, we make use of the Gaussian martingale [31]:

Mt =

∫ t

0

w(t, s) dBHs , t > 0,

where w is a weighting function defined for any 0 < s < t, by w(t, s) = w−1
H s−H+1/2(t − s)−H+1/2 with

wH a positive normalization constant. Its quadratic variation is

<M>t= λ−1
H t2−2H .

The problem rewrites by means of

Yt =

∫ t

0

w(t, s) dXs = θ

∫ t

0

w(t, s)Xs ds+Mt. (4.11)

In [26] authors have shown that (4.11) can be rewritten

Yt = θ

∫ t

0

Qs d<M>s +Mt

where (Qt) satisfies, for any t > 0,

Qt =
lH
2

(
t2H−1Yt +

∫ t

0

s2H−1 dYs

)
.
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The score function (derivative of the log-likelihood from the observations on the interval [0, T ]), is given
by:

ΣT (θ) =

∫ T

0

Qt dYt − θ
∫ T

0

Q2
t d<M>t .

One deduces the expression of the maximum likelihood estimator of θ, solution of ΣT (θ) = 0 :

θ̂T =

∫ T
0
Qt dYt∫ T

0
Q2
t d<M>t

.

Remark 4.5 In the sequel, one supposes 1/2 < H < 1. It is not a restriction of the case 0 < H < 1 in
virtue of Jost’s formula [25] of transformation of process (BHt ) in (B1−H

t ):

BHt =

(
2H

Γ(2H)Γ(3− 2H)

)1/2 ∫ t

0

(t− s)2H−1 dB1−H
s .

Remark 4.6 In [11] and in [7] a study of the Large Deviation principle for the energy defined as:

ST =

∫ T

0

X2
t dt, in the Brownian setting,

ST =

∫ T

0

Q2
t d<M>t in the fractional Brownian setting

is also proposed. The results are stated in paragraph II.5.

II.2 Two questions, one tool

Definition 4.2 ([15]) We say that a family of real random variables (ZT ) satisfies a Large Deviation
Principle (LDP) with rate function I, if I is a lower semi-continuous function from R to [0,+∞] such
that, for any closed set F ⊂ R,

lim sup
T→∞

1

T
logP(ZT ∈ F ) ≤ − inf

x∈F
I(x),

while for any open set G ⊂ R,

− inf
x∈G

I(x) ≤ lim inf
T→∞

1

T
logP(ZT ∈ G).

Moreover, I is a good rate function if its level sets are compact subsets of R.

A classical tool for proving an LDP is the normalized cumulant generating function. In our setting, for
an LDP of ST and θ̂T we make use of

LT (a, b) =
1

T
logE[exp(ZT (a, b))]

where, for any (a, b) ∈ R,

ZT (a, b) = a

∫ T

0

Xt dXt + b

∫ T

0

X2
t dt, in Brownian setting,

ZT (a, b) = a

∫ T

0

Qt dYt + b

∫ T

0

Q2
t d<M>t, in fractional Brownian setting.

The random variable ZT (a, b) allows us an unified presentation of our results. In order to establish a

LDP for ST and θ̂T , it is enough to prove an LDP for ZT (0, a) and ZT (a,−ca), respectively. As a matter
of fact, we have for all a, c ≥ 0,

P(ST ≥ cT ) = P(ZT (0, a) ≥ acT ) and P(θ̂T ≥ c) = P(ZT (a,−ac) ≥ 0).

The following lemmas provide an asymptotic expansion for LT which enlightens the role of the limit L
of LT for the LDP, as well as the first order terms H and KT for the sharp LDP.
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Lemma 4.4 (Stable Brownian case [11]) Let ∆ be the effective domain of the limit L of LT

∆ =
{

(a, b) ∈ R2 / θ2 − 2b > 0 and
√
θ2 − 2b > a+ θ

}
Then, for any (a, b) in the interior of ∆, denote

ϕ(b) =
√
θ2 − 2b and τ(a, b) = ϕ(b)− (a+ θ),

we have the decomposition

LT (a, b) = L(a, b) +
1

T
H(a, b) +

1

T
RT (a, b),

where

L(a, b) = −1

2
(a+ θ + ϕ(b)), (4.12)

H(a, b) = −1

2
log

(
τ(a, b)

2ϕ(b)

)
, (4.13)

RT (a, b) = −1

2
log

(
1 +

2ϕ(b)− τ(a, b)

τ(a, b)
e−2Tϕ(b)

)
. (4.14)

Finally, the remainder RT (a, b) goes exponentially fast to 0:

RT (a, b) = O(e−2Tϕ(b)).

Lemma 4.5 (Stable fractional Brownian case [7, 26]) Let ∆H be the effective domain of the limit
L of LT

∆H =
{

(a, b) ∈ R2 / θ2 − 2b > 0 and
√
θ2 − 2b > max(a+ θ;−δH(a+ θ))

}
where δH = (1 − sin(πH))/(1 + sin(πH)). Then, for any (a, b) in the interior of ∆H , denote rT (b) =
rH(ϕ(b)T/2) exp(−Tϕ(b))− 1, we have the decomposition

LT (a, b) = L(a, b) +
1

T
H(a, b) +

1

T
KT (a, b) +

1

T
RT (a, b), (4.15)

where

KT (a, b) = −1

2
log

(
1 +

(2ϕ(b)− τ(a, b))

2ϕ(b)
rT (b)

)
,

with ϕ and τ defined by (4.4) and L(a, b) and H(a, b) defined by (4.12) and (4.13) respectively. Finally,
the remainder is

RT (a, b) = −1

2
log

(
1 +

(2ϕ(b)− τ(a, b))2

τ(a, b)(2ϕ(b) + rT (b)(2ϕ(b)− τ(a, b)))
e−2Tϕ(b)

)
,

with rH defined for all z ∈ C with | arg z| < π by

rH(z) =
πz

sin(πH)

(
IH(z)I1−H(z) + I−H(z)IH−1(z)

)
,

here, IH is the modified Bessel function of the first kind [28].

Sketch of the proof. By Girsanov’s theorem, LT (a, b) can be rewritten as

LT (a, b) =
1

T
logE

[
exp
(
a

∫ T

0

Qt dYt + bST

)]
,

=
1

T
logEϕ

[
exp
(

(a+ θ − ϕ)

∫ T

0

Qt dYt +
1

2
(2b− θ2 + ϕ2)ST

)]
,

for all ϕ ∈ R, where Eϕ stands for the expectation after the usual change of probability

dPϕ
dP

= exp
(

(ϕ− θ)
∫ T

0

Qt dYt −
1

2
(ϕ2 − θ2)ST

)
.
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If θ2 − 2b > 0, we can choose ϕ =
√
θ2 − 2b and τ = ϕ− (a+ θ) which leads to

LT (a, b) =
1

T
logEϕ

[
exp
(
−τ
∫ T

0

Qt dYt

)]
.

By Itô’s formula, we also have ∫ T

0

Qt dYt =
1

2

(
lHYT

∫ T

0

t2H−1 dYt − T
)
.

Consequently, we obtain that

LT (a, b) =
τ

2
+

1

T
logEϕ

[
exp
(
−τ lH

2
YT

∫ T

0

t2H−1 dYt

)]
.

Under the new probability Pϕ, the pair (YT ,
∫ T

0
t2H−1 dYt) is Gaussian with mean zero and covariance

matrix ΓT (ϕ). If τ > 0, relation (5.12) of [26] gives an explicit expression of the expectation. The rest of
the proof are mainly computations on Gaussian distribution. These computations are possible only if

1 +
(2ϕ− τ)

2ϕ
rT > 0

leading to
√
θ2 − 2b > −δH(a+ θ). The underlined expressions leads to the expression of the domain. �

Remark 4.7. By use of the duplication formula for the gamma function [28], one can realize that if
H = 1/2, rH(z) = e2z + e−2z which immediately leads to rT (b) = e−2Tϕ(b). Consequently, in that
particular case, KT (a, b) as well as RT (a, b) go exponentially fast to zero and we find again Lemma 2.1
of [11] which is the keystone for all results of [11].

Lemma 4.6 (Unstable Brownian case [8]) Let ∆ be the effective domain of the limit L of LT

∆ =
{

(a, b) ∈ R2 / θ2 − 2b > 0 and
√
θ2 − 2b > a+ θ

}
Then, for any (a, b) in the interior of ∆, denote

ϕ(b) = −
√
θ2 − 2b and τ(a, b) = a+ θ − ϕ(b),

we have the decomposition (4.12) with

L(a, b) = −1

2
(a+ θ − ϕ(b)), (4.16)

H(a, b) = −1

2
log

(
2ϕ(b) + τ(a, b)

2ϕ(b)

)
, (4.17)

RT (a, b) = −1

2
log

(
1− ϕ(b)

2ϕ(b) + τ(a, b)
e2Tϕ(b)

)
.

Finally, the remainder RT (a, b) goes exponentially fast to 0:

RT (a, b) = O(e2Tϕ(b)).

Sketch of the proof. We have:

LT (a, b) =
1

T
logE

[
exp
(
a

∫ T

0

Xt dXt + b

∫ T

0

X2
t dt

)]
,

=
1

T
logEϕ

[
exp
(

(a+ θ − ϕ)

∫ T

0

Xt dXt +
1

2
(2b− θ2 + ϕ2)

∫ T

0

X2
t dt

)]
,

for all ϕ ∈ R, where Eϕ stands for the expectation after the change of measures

dPϕ
dP

= exp
(

(ϕ− θ)
∫ T

0

Xt dXt −
1

2
(ϕ2 − θ2)

∫ T

0

X2
t dt

)
.
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Choosing ϕ = ϕ(b) such that τ(a, b) = a+ θ − ϕ(b) < 0, we obtain that

LT (a, b) =
1

T
logEϕ

[
exp
(
τ(a, b)

∫ T

0

Xt dXt

)]
.

For this, consider (a, b) ∈ ∆ = {(a, b) ∈ R, θ2 − 2b > 0, a + θ <
√
θ2 − 2b} and choose ϕ = ϕ(b) with

ϕ2(b) = θ2 − 2b. Under the measure Pϕ, XT is a Gaussian random variable with zero mean and variance
σ2
T (b) given by

σ2
T (b) = −1− exp(2ϕ(b)T )

2ϕ(b)
.

Which converges by taking ϕ(b) = −
√
θ2 − 2b. �

II.3 Maximum likelihood estimator

Consistency and asymptotic normality

Proposition 4.5 (See [30] for Brownian case and [26, 32, 33] for fractional Brownian case.)
In the stable, unstable, and explosive cases of the Brownian setting and in the stable case of fractional
Brownian setting, we have:

θ̂T
a.s.−→
T→∞

θ

In the Brownian setting, the asymptotic normality is totally different in the three situations.

Proposition 4.6 • If θ < 0, the process (Xt) is positive recurrent and [30],

√
T (θ̂T − θ)

L−→
T→∞

N (0,−2θ).

• If θ = 0, the process (Xt) is null recurrent and [21],

T (θ̂T − θ)
L−→

T→∞

∫ 1

0
Bt dBt∫ 1

0
B2
t dt

=
B2

1 − 1

2
∫ 1

0
B2
t dt

• If θ > 0, the process (Xt) is transient and [20, 27],

exp(θT )(θ̂T − θ)
L−→

T→∞
2θ
(Y
Z

)
where Y,Z are two independent Gaussian N (0, 1) random variables which implies that the limiting
ratio Y/Z has a Cauchy distribution.

Proposition 4.7 ([7, 12]) In the stable case of the fractional Brownian setting, we also have the CLT

√
T
(
θ̂T − θ

)
L−→

T→∞
N
(

0,−2θ
)
.

Large deviations principle

Theorem 4.3 (See [22] for Brownian case and [7] for fractional Brownian case.). The maximum

likelihood estimator (θ̂T ) satisfies an LDP with good rate function

I(c) =


− (c− θ)2

4c
if c <

θ

3
,

2c− θ if c ≥ θ

3
.

Remark 4.8 One can observe that the rate function I is totally free of the parameter H. For the energy,
the situation is quite different (see Theorem 4.9).
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Sketch of the proof. In order to establish the large deviation properties of (θ̂T ), we shall make use
of the auxiliary random variable defined for all c ∈ R by

ZT (c) =

∫ T

0

Qt dYt − c
∫ T

0

Q2
t d<M>t,

where we recall that P(θ̂T ≥ c) = P(ZT (c) ≥ 0). Let

DH =
{
a ∈ R / θ2 + 2ac > 0 and

√
θ2 + 2ac > max(a+ θ;−δH(a+ θ))

}
.

After some straightforward calculations, it is not hard to see that

DH =


]aH1 , a

H
2 [ if c ≤ θ

2
,

]aH1 , a
c[ if c >

θ

2
,

where ac = 2(c− θ). In addition, for all a ∈ DH , let

L(a) = L(a,−ca) = −1

2

(
a+ θ +

√
θ2 + 2ac

)
.

The function L is not steep as the derivative of L is finite at the boundary of DH . In this setting,
I(c) = − infa∈DH L(a). Moreover, L

′
(a) = 0 if and only if a = ac with ac = (c2 − θ2)/(2c) and ac ∈ DH

whenever c < θ/3. Then, when c < θ/3, I(c) = −L(ac) and when c > θ/3, I(c) = −L(ac) because L is
decreasing. �

We shall now focus our attention on the explosive case θ > 0. It immediately follows from (4.1) that

XT = exp(θT )

∫ T

0

exp(−θt) dBt.

The Gaussian process (YT = exp(−θT )XT ) converges almost surely and in mean square to the Gaussian
non-degenerate random variable

Y =

∫ ∞
0

exp(−θt) dBt.

Hence, via Toeplitz’s lemma

1

exp(2θT )

∫ T

0

X2
t dt

a.s.−→
T→∞

Y 2

2θ
.

Consequently, one can expect for (θ̂T ) an LDP with speed exp(2θT ). However, (θ̂T ) is a sequence of self-

normalized random variables and we shall show that (θ̂T ) satisfies an LDP similar to that of Theorem
4.3 with speed T .

Theorem 4.4 ([8]). If θ > 0, then (θ̂T ) satisfies an LDP with speed T and good rate function

I(c) =



− (c− θ)2

4c
if c ≤ −θ,

θ if |c| < θ,

0 if c = θ,

2c− θ if c > θ.

(4.18)

Remark 4.9 The unstable case θ = 0 can be handled exactly as the explosive case θ > 0 since Lemma
4.6 is also true in the unstable situation. Consequently, we directly obtain the LDP and SLDP for (θ̂T )
in the unstable case by replacing θ by 0 in the previous results.
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Sharp large deviations results

By the use of Lemmas 4.4, 4.5 and 4.6 we are able to perform sharp large deviations principles inspired
by the well-known Bahadur-Rao Theorem [4] on the sample mean.

Remark 4.10 In papers [7, 8, 11] all the constraints are explicit. For enlighten the writing of the
manuscript, only the constants of interest are explicit.

Theorem 4.5 ([11]) Consider the Ornstein-Uhlenbeck process given by (4.1) where the drift parameter

θ < 0. The maximum likelihood estimator (θ̂T ) satisfies an SLDP.
a) For all c < θ, there exists a sequence (bc,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
− exp(−TI(c) +Hs(c))

acσc
√

2πT

[
1 +

p∑
k=1

bc,k
T k

+O
( 1

T p+1

)]

where

ac =
c2 − θ2

2c
and σ2

c = − 1

2c

while, for all θ < c < θ/3,

P(θ̂T ≥ c) =
exp(−TI(c) +Hs(c))

acσc
√

2πT

[
1 +

p∑
k=1

bc,k
T k

+O
( 1

T p+1

)]
.

b) For all c > θ/3 with c 6= 0, there exists a sequence (dc,k) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
exp(−TI(c) +Ks(c))

acσc
√

2πT

[
1 +

p∑
k=1

dc,k
T k

+O
( 1

T p+1

)]

where

ac = 2(c− θ) and σ2
c =

c2

2(2c− θ)3

c) For c = θ/3, there exists a sequence (ek) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
exp(−TI(c))

2πT 1/4

Γ(1/4)

a
3/4
θ σθ

[
1 +

2p∑
k=1

ek

(
√
T )k

+O
( 1

T p
√
T

)]

where

aθ = −4θ

3
and σ2

θ = − 3

2θ
.

d) Finally, for c = 0, for any p > 0 and for T large enough

P(θ̂T ≥ 0) = 2
exp(−TI(c))√

2πT
√
−2θ

[
1 +

p∑
k=1

(2k)!

22kθkT kk!
+O

( 1

T p+1

)]
.

Theorem 4.6 ([8]) Consider the Ornstein-Uhlenbeck process given by (4.1) where the drift parameter

θ > 0. The maximum likelihood estimator (θ̂T ) satisfies an SLDP.
a) For all c < −θ, there exists a sequence (bc,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
− exp(−TI(c) +He(a))

acσc
√

2πT

[
1 +

p∑
k=1

bc,k
T k

+O
( 1

T p+1

)]

where

ac =
c2 − θ2

2c
and σ2

c = − 1

2c

b) For all c > θ, there exists a sequence (dc,k) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
exp(−TI(c) +Ke(c))

acσc
√

2πT

[
1 +

p∑
k=1

dc,k
T k

+O
( 1

T p+1

)]
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where

ac = 2(c− θ) and σ2
c =

c2

2(2c− θ)3

c) For all |c| < θ with c 6= 0, there exists a sequence (ec,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
exp(−TI(c) + Je(c))

acσc
√

2πT

[
1 +

p∑
k=1

ec,k
T k

+O
( 1

T p+1

)]

where

ac =
θ

c+ θ
and σ2

c =
c2

2θ3

d) For c = −θ, there exists a sequence (fk) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
exp(−TI(c))

2πT 1/4

Γ(1/4)

a
3/4
θ σθ

[
1 +

2p∑
k=1

fk

(
√
T )k

+O
( 1

T p
√
T

)]

where

aθ =
√
θ and σ2

θ =
1

2θ
.

e) Finally, for c = 0, for any p > 0 and for T large enough

P(θ̂T ≤ 0) = 2
exp(−TI(c))

√
2θT√

2π

[
1 +

p∑
k=1

(−1)k(θTe−2θT )k

(2k + 1)k!
+O

(
(Te−2θT )p+1

)]
.

Theorem 4.7 ([8]) Consider the Ornstein-Uhlenbeck process given by (4.1) where the drift parameter

θ = 0. The maximum likelihood estimator (θ̂T ) satisfies an SLDP.
a) For all c < 0, there exists a sequence (bc,k) such that, for any p > 0 and T large enough

P(θ̂T ≤ c) =
−2 exp(−TI(c))

acσc
√

6πT

[
1 +

p∑
k=1

bc,k
T k

+O
( 1

T p+1

)]

where ac = c/2 and σ2
c = −1/(2c).

b) For all c > 0, there exists a sequence (dc,k) such that, for any p > 0 and T large enough

P(θ̂T ≥ c) =
2 exp(−TI(c))

acσc
√

6πT

[
1 +

p∑
k=1

dc,k
T k

+O
( 1

T p+1

)]

where ac = 2c and σ2
c = 1/(16c).

Theorem 4.8 ([7]) Consider the Ornstein-Uhlenbeck process given by (4.1) driven by a fractional Brow-

nian motion where the drift parameter θ < 0. The maximum likelihood estimator (θ̂T ) satisfies an SLDP.
a) For all θ < c < θ/3, there exists a sequence (bHc,k) such that, for any p > 0 and T large enough,

P(θ̂T ≥ c) =
exp(−TI(c) + Jf (c) +Kf

H(c))

σcac
√

2πT

[
1 +

p∑
k=1

bHc,k
T k

+O
( 1

T p+1

)]

while, for c < θ,

P(θ̂T ≤ c) = −
exp(−TI(c) + Jf (c) +Kf

H(c))

σcac
√

2πT

[
1 +

p∑
k=1

bHc,k
T k

+O
( 1

T p+1

)]

where

ac =
c2 − θ2

2c
and σ2

c = − 1

2c
.

b) For all c > θ/3 with c 6= 0, there exists a sequence (dHc,k) such that, for any p > 0 and T large enough,

P(θ̂T ≥ c) =
exp(−TI(c) + P f (c))

√
sin(πH)

σcac
√

2πT

[
1 +

p∑
k=1

dHc,k
T k

+O
( 1

T p+1

)]
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where

ac = 2(c− θ) and (σc)2 =
c2

2(2c− θ)3
.

c) For c = 0, for any p > 0 and for T large enough,

P(θ̂T ≥ 0) = 2
exp(−TI(c))

√
sin(πH)√

2πT
√
−2θ

[
1 +

p∑
k=1

dHk
T k

+O
( 1

T p+1

)]

d) For c = θ/3, there exists a sequence (dHk ) such that, for any p > 0 and T large enough

P(θ̂T ≥
θ

3
) =

exp(−TI(c)) Γ
(

1
4

)
4πT 1/4 a

3/4
θ σθ

√
sin(πH)

[
1 +

p∑
k=1

eHk
T k

+O
( 1

T p+1

)]

where aθ and σθ are given by

aθ = −4θ

3
and σ2

θ = − 3

2θ
.

II.4 Idea of the proofs of the SLDP

The proofs of those theorems follow the same lines. In order to give an idea of these lines, we will focus
on the explosive case in the Brownian setting of Theorem 4.6. The case c = 0 is really different of the
other ones and is treated by hand in [8]. In the sequel, we avoid this case and assume c 6= 0.

The key-point

As we have already seen when we dealt with Large Deviation Principle, I(c) = −L(ac) where ac, belongs
to the effective domain Dc. In order to reach a Sharp Large Deviation Principle, we have to distinguish
two situations: the ”easy” one (c < −θ) for which ac ∈ Dc and the ”hard” for which ac is on the border.
In this ”hard” case it is necessary to make use of a slight modification of the strategy of time varying
change of probability proposed by Bryc and Dembo [13]. For this the key point is the following Lemma:

Lemma 4.7 • In each ”hard case” there exists a unique family (aT ), which belongs to the interior
of Dc and converges to its border ac as T goes to infinity where ac = 2(c − θ) for all c > θ or 0
elsewhere.

• Moreover aT is solution of the implicit equation

L′(a) +
1

T
H′(a) = 0

where L(a) = L(a,−ac) and H(a) = H(a,−ac) are given by (4.16) and (4.17).

• Finally, one can find sequences (ak) (different for each case) such that, for any p > 0 and T large
enough,

aT =

p∑
k=0

ak
T k

+O
( 1

T p+1

)
, for all c > θ,

aT =

p∑
k=1

ak
T k

+O
( 1

T p+1

)
, for all |c| < θ and c 6= 0,

aT =

2p∑
k=1

ak

(
√
T )k

+O
( 1

T p
√
T

)
for all c = −θ.

Splitting of the problem

Let αT = ac if c < −θ and αT = aT otherwise. Consider the change of probability

dPT
dP

= exp
(
αTZT (c)− TLT (αT )

)
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and denote by ET the expectation associated with PT . We clearly have

P(θ̂T ≤ c) = P(ZT (c) ≤ 0) = E[ I{ZT (c)≤0}],

= ET
[
exp(−αTZT (c) + TLT (αT )) I{ZT (c)≤0}

]
,

= exp
(
TLT (αT )

)
ET
[
exp(−αTZT (c)) I{ZT (c)≤0}

]
.

Consequently, we can split P(θ̂T ≤ c) into two terms, P(θ̂T ≤ c) = ATBT with

AT = exp(TLT (αT )),

BT = ET [exp(−αTZT (c)) I{ZT (c)≤0}].

Expansion of AT

The proof of the expansion of AT is nothing but computations by means of Lemma 4.6 together with the
expansions of aT given by Lemma 4.7 and the definition (4.18) of I. The results are the following ones:

Lemma 4.8 There exists sequences (γk) (different from a line to another) such that, for any p > 0 and
T large enough,

• For all c < −θ,

AT = exp (−TI(c) +He(c))
(

1 +O
(
e2Tc

))
,

• For all c > θ

AT = exp (−TI(c) + P (c))
√
eT

[
1 +

p∑
k=1

γk
T k

+O
( 1

T p+1

)]
,

• For all |c| < θ and c 6= 0

AT = exp (−TI(c) + P (c))
√
eT

[
1 +

p∑
k=1

γk
T k

+O
( 1

T p+1

)]
,

• For c = −θ

AT = exp (−TI(c)) (eθT )1/4

[
1 +

2p∑
k=1

γk

(
√
T )k

+O
( 1

T p
√
T

)]
.

In the Brownian setting, the remainder RT (aT ) goes to zero exponentially fast and thus does not con-
tribute to the limit. This is no more true in the fractional Brownian setting. It is the reason why the
decomposition (4.15) is different.

Expansion of the BT

The proof of the expansion of BT is more technical. The results are the following ones:

Lemma 4.9 There exists a sequence (βk) (different in the different cases) such that, for any p > 0 and
T large enough,

• For all c < −θ,

BT =
β0√
T

[
1 +

p∑
k=1

βk
T k

+O
( 1

T p+1

)]
,

• For all c > θ and |c| < θ and c 6= 0

BT =

p∑
k=1

δk
T k

+O
( 1

T p+1

)
,

• For c = −θ

BT =

2p∑
k=1

δk

(
√
T )k

+O
( 1

T p
√
T

)
.
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Sketch of the proof. First, denote

βT =


σc
√
T if c < −θ,

√
T if c = −θ,
T if |c| < θ,

−T if c > θ.

One can observe that we always have αTβT < 0. Then whatever the case, we can rewrite

BT = ET
[
exp(−αTβTUT ) I{UT≤0}

]
where UT =

ZT (c)

βT
.

Denote by ΦT the characteristic function of UT under PT . It is easily seen that for all u ∈ R,

ΦT (u) = exp

(
TLT

(
αT +

iu

βT

)
− TLT (αT )

)
.

Computations lead us to the following Lemmas:

Lemma 4.10 For c < −θ, the distribution of UT under PT converges, as T goes to infinity, to an N (0, 1)
distribution. Moreover, for any p > 0, there exist integers q(p), r(p) and a sequence (ϕk,l) independent
of p, such that, for T large enough

ΦT (u) = exp
(
−u

2

2

)1 +
1√
T

2p∑
k=0

q(p)∑
l=k+1

ϕk,lu
l

(
√
T )k

+O
(max(1, |u|r(p))

T p+1

)
and the remainder O is uniform as soon as |u| ≤ sT 1/6 with s > 0.

Lemma 4.11 For c > θ, the distribution of UT under PT converges, as T goes to infinity, to the distri-
bution of γ(N2 − 1), where N is an N (0, 1) random variable and γ > 0. Moreover, for any p > 0, there
exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m) independent of p, such that, for T large enough

ΦT (u) =
exp(−iγu)√

1− 2iγu
exp

(
−σ

2
cu

2

2T

)1 +

p∑
k=1

q(p)∑
l=k+1

r(p)∑
m=0

ϕk,l,mu
l

T k(1− 2iγu)m
+O

(max(1, |u|s(p))
T p+1

)
the remainder O is uniform as soon as |u| ≤ sT 2/3 with s > 0.

Lemma 4.12 For |c| < θ with c 6= 0, the distribution of UT under PT converges, as T goes to infinity,
to the distribution of γ(N2 − 1), where N is an N (0, 1) random variable and γ > 0. Moreover, for any
p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m) independent of p, such that, for T large
enough

ΦT (u) =
exp(−iγu)√

1− 2iγu
exp

(
−σ

2
cu

2

2T

)1 +

p∑
k=1

q(p)∑
l=k+1

r(p)∑
m=0

ϕk,l,mu
l

T k(1− 2iγu)m
+O

(max(1, |u|s(p))
T p+1

)
the remainder O is uniform as soon as |u| ≤ sT 2/3 with s > 0.

Lemma 4.13 For c = −θ, the distribution of UT under PT converges, as T goes to infinity, to the
distribution of σθN +γθ(M

2−1), where N and M are two independent N (0, 1) random variables, σ2 > 0
and γθ > 0. Moreover, for any p > 0, there exist integers q(p), r(p), s(p) and a sequence (ϕk,l,m)
independent of p, such that, for T large enough

ΦT (u) =
exp (−iγθu)√

1− 2iγθu
exp

(
−σ

2
θu

2

2

)1 +
1√
T

2p∑
k=0

q(p)∑
l=k+1

r(p)∑
m=0

ϕk,l,mu
l

(
√
T )k(1− 2iγθu)m

+O
(max(1, |u|s(p))

T p+1

)
the remainder O is uniform as soon as |u| ≤ sT 1/6 with s > 0.
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The proof ends by an application of Parseval’s formula which allows us to rewrite BT

BT = − 1

2παTβT

∫ ∞
−∞

(
1 +

iu

αTβT

)−1

ΦT (u) du.

This step is possible if and only if for T large enough, ΦT belongs to L2(R). This is a very technical
and difficult (especially in the fractional setting) part of the proof. Finally we split BT into two terms,
BT = CT +DT where

CT = − 1

2παTβT

∫
|u|≤sT

(
1 +

iu

αTβT

)−1

ΦT (u) du, (4.19)

DT = − 1

2παTβT

∫
|u|>sT

(
1 +

iu

αTβT

)−1

ΦT (u) du.

where sT is chosen in such a way that there are positive constants C and 0 < ν < 1 satisfying

min

(
Ts2

T

β2
T

,
T
√
sT√
|βT |

)
≥ CT ν (4.20)

and there exist two positive constants d and D such that

|DT | ≤ d T exp(−DT ν). (4.21)

We choose sT large enough to satisfy (4.20) and small enough to enable us to intervene integral and
summation into (4.19). Fortunately this is possible whatever the case. In fact,

• In the case c < −θ, it works with sT = sT 1/6 with s > 0 and ν = 1/3.

• In the other cases, it works with sT = sT 2/3 with s > 0 and ν = 1/3.

The expansion of CT thus follows from that of ΦT and some tedious but standard calculations on the
N (0, 1) distribution if the case c < −θ or via a careful use of the contour integral lemma for the Gamma
function given in Lemma 7.3 of [11] for the other cases. Finally, (4.21) tells us that the expansion of BT
is nothing but that of CT which ends the proof. �

II.5 The energy

Results on the energy were investigated only in the stable case in the Brownian setting in [11] and in the
fractional Brownian setting in [7]. In order to stress the proof of the large deviation principle, we focus
on the fractional Brownian setting. For this, we shall make use of Lemma 4.5 with a = 0 and b = a. On
the one hand, let

DH =
{
a ∈ R / θ2 − 2a > 0 and

√
θ2 − 2a > −δHθ

}
.

It is not hard to see that DH =]−∞, aH [ where

aH =
θ2

2
(1− δ2

H).

Consequently, as |δH | < 1, one can observe that the origin always belongs to the interior of DH . On the
other hand, for all a ∈ DH ,

L(a) = L(0, a) = −1

2
(θ +

√
θ2 − 2a),

The main difficulty comparing to [11] is that the function L is not steep. Indeed, L′(aH) = −1/(2θδH).
Moreover, for all c > 0, L′(a) = c if and only if a = ac with ac = (4θ2c2 − 1)/(8c2). Hence, ac < aH
whenever 0 < c < −1/(2θδH). Denote by I the Fenchel-Legendre transform of the function L, the large
deviation properties of (ST /T ) states as follows.
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Theorem 4.9. The sequence (ST /T ) satisfies a LDP with good rate function

I(c) =



(2θc+ 1)2

8c
if 0 < c ≤ − 1

2θδH
,

cθ2

2
(1− δ2

H) +
θ

2
(1− δH) if c ≥ − 1

2θδH
,

+∞ otherwise.

Remark 4.11 In the particular case H = 1/2, then δH = 0 and the LDP for (ST /T ) is exactly the one
established by Bryc and Dembo [13] for general centered Gaussian processes.

Theorem 4.10 The sequence (ST /T ) satisfies a SLDP.
a) For all −1/(2θ) < c < −1/(2θδH), there exists a sequence (bHc,k) such that, for any p > 0 and T large
enough,

P(ST ≥ cT ) =
exp(−TI(c) + Jf (c) +Kf

H(c))

acσc
√

2πT

[
1 +

p∑
k=1

bHc,k
T k

+O
( 1

T p+1

)]
while, for 0 < c < −1/(2θ),

P(ST ≤ cT ) = −
exp(−TI(c) + Jf (c) +Kf

H(c))

acσc
√

2πT

[
1 +

p∑
k=1

bHc,k
T k

+O
( 1

T p+1

)]

where

ac =
4θ2c2 − 1

8c2
and σ2

c = 4c3.

b) For all c > −1/(2θδH), there exists a sequence (dHc,k) such that, for any p > 0 and T large enough

P(ST ≥ cT ) =
exp(−TI(c) + P fH(c))

aHσH
√

2πT

[
1 +

p∑
k=1

dHc,k
T k

+O
( 1

T p+1

)]

where

aH =
θ2(1− δ2

H)

2
and σ2

H = − 1

2θ3δ3
H

. (4.22)

c) For c = −1/(2θδH), there exists a sequence (dHk ) such that, for any p > 0 and T large enough

P(ST ≥ cT ) =
exp(−TI(c) +Kf

H)Γ(1/4)

2πaHσHT 1/4

[
1 +

2p∑
k=1

dHk
(
√
T )k

+O
( 1

T p
√
T

)]

where aH and σ2
H are given by (4.22).

Sketch of the proof. The proof follows the same lines as these for the maximum likelihood estimator
of θ. Let LT be the normalized cumulant generating function of ST . We can split P(ST ≥ cT ) into two
terms, P(ST ≥ cT ) = ATBT with,

• when ac = (4θ2c2 − 1)/(8c2), belongs to the domain DH , i.e. −1/(2θ) < c < −1/(2θδH),

AT = exp(T (LT (ac)− cac)), and BT = ET
[

exp(−ac(ST − cT )) I{ST≥cT}
]
,

where ET stands for the expectation after the usual change of probability

dPT
dP

= exp
(
acST − TLT (ac)

)
,

• when ac = (4θ2c2 − 1)/(8c2), is on the border of the domain DH ,

AT = exp (TLT (aT )− cTaT ) , and BT = ET
[
exp(−aT (ST − cT )) I{ST≥cT}

]
,
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where ET stands for the expectation after the usual change of probability

dPT
dP

= exp
(
aTST − TLT (aT )

)
,

and aT is a unique element which belongs to the interior of DH and converges to its border. After
some tedious but straightforward calculations, we show that there exists a sequence (ak) such that,
for any p > 0 and T large enough,

aT =

p∑
k=0

ak
T k

+O
( 1

T p+1

)
, or aT =

2p∑
k=0

ak

(
√
T )k

+O
( 1

T p
√
T

)
in the case of equality.

The proof now splits into two parts, the first one is devoted to the expansion of AT which is nothing but
computations while the second one gives the expansion of BT which can be rewritten as

BT = ET
[

exp(−acσc
√
TUT ) I{UT≥0}

]
, where UT =

ST − cT
σc
√
T

, for all −1/(2θ) < c < −1/(2θδH),

BT = ET
[

exp(−aTTUT ) I{UT≥0}

]
, where UT =

ST − cT
T

, for all c > −1/(2θδH),

BT = ET
[

exp(−aT
√
TUT ) I{UT≥0}

]
, where UT =

ST − cT√
T

, for c = −1/(2θδH).

Denoting ΦT the characteristic function of UT under PT , the hard question in the fractional setting is to
show that for T large enough, ΦT belongs to L2(R). In fact, in contrast with [11], it is impossible here
to make use of the Karhunen-Loève expansion of the process (Xt) and we have to make computations
by hand. The expansion of BT follows from that of ΦT , an application of Parseval’s formula, standard
calculus on the N (0, 1) distribution and a careful use of the contour integral Lemma for the Gamma
functions. �

III Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes

The maximum likelihood estimator of the parameter θ of the model (4.2) page 43 is given by

θ̂T =

∫ T
0
Xt dXt∫ T

0
X2
t dt

=
X2
T − T

2
∫ T

0
X2
t dt

. (4.23)

The estimation of the parameter ρ of the model (4.2) requires the evaluation of the residuals generated
by the estimation of θ at stage T . For all 0 ≤ t ≤ T , denote

V̂t = Xt − θ̂TΣt (4.24)

where

Σt =

∫ t

0

Xs ds.

By analogy with (4.23) and on the basis of the residuals (4.24), we estimate ρ by

ρ̂T =
V̂ 2
T − T

2
∫ T

0
V̂ 2
t dt

.

Therefore, we are in the position to define the continuous-time version of the discrete-time Durbin-Watson
statistic [9, 16, 17, 18],

D̂T =
2
∫ T

0
V̂ 2
t dt− V̂ 2

T + T∫ T
0
V̂ 2
t dt

,

which clearly means that D̂T = 2(1− ρ̂T ). We shall make use of D̂T to build a serial correlation statistical
test for the Ornstein-Uhlenbeck driven noise, that is to test whether or not ρ = 0 (not presented here).
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Theorem 4.11 ([10]) We have the almost sure convergences

θ̂T
a.s.−→
T→∞

θ∗, ρ̂T
a.s.−→
T→∞

ρ∗,

where

θ∗ = θ + ρ and ρ∗ =
θρ(θ + ρ)

(θ + ρ)2 + θρ
.

Sketch of the proof. The arguments are essentially strong law of large number for martingales,
the fact that most of the processes introduced are positive recurrent and computations by means of Itô’s
formula. �

Theorem 4.12 ([10]) If ρ < 0, we have the joint asymptotic normality

√
T

(
θ̂T − θ∗
ρ̂T − ρ∗

)
L−→

T→∞
N (0,Γ)

where the asymptotic covariance matrix

Γ =

(
σ2
θ `
` σ2

ρ

)
with

σ2
θ = −2θ∗, ` =

2ρ∗
(
(θ∗)2 − θρ

)
(θ∗)2 + θρ

and σ2
ρ = −

2ρ∗
(
(θ∗)6 + θρ

(
(θ∗)4 − θρ

(
2(θ∗)2 − θρ

)))
((θ∗)2 + θρ)

3 .

In particular, we have √
T
(
θ̂T − θ∗

)
L−→

T→∞
N (0, σ2

θ),

and √
T
(
ρ̂T − ρ∗

)
L−→

T→∞
N (0, σ2

ρ).

Sketch of the proof. The keypoint of the proof is an application of Central limit Theorem for
continuous-time vector martingales. �

Theorem 4.13 If ρ = 0, we have the convergence in distribution

T ρ̂T
L−→

T→∞
W

where the limiting distribution W is given by

W =

∫ 1

0
Bs dBs∫ 1

0
B 2
s ds

=
B2

1 − 1

2
∫ 1

0
B2
s ds

and (Bt) is a standard Brownian motion.

Sketch of the proof. The result comes from the self-similarity property of the Brownian motion
(Wt), Theorem 4.11, and the continuous mapping theorem. �

Remark 4.12 The asymptotic behaviour of ρ̂T when ρ < 0 and ρ = 0 is closely related to the results
previously established for the unstable discrete-time autoregressive process, see [14], [21], [35]. According
to Corollary 3.1.3 of [14], we can express

W =
T 2 − 1

2S
where T and S are given by the Karhunen-Loeve expansions

T =
√

2

∞∑
n=1

γnZn and S =

∞∑
n=1

γ 2
nZ

2
n

with γn = 2(−1)n/((2n − 1)π) and (Zn) is a sequence of independent random variables with N (0, 1)
distribution.

Remark 4.13 For all 0 ≤ t ≤ T , the residuals V̂t given by (4.24) depend on θ̂T . It would have been more
natural to make use of the estimator of θ at stage t instead of stage T , in order to produce a recursive
estimate. In this situation, Theorem 4.11 still holds but we have been unable to prove Theorem 4.12.
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Chapter 5

Models for patients’ recruitment in
clinical trials∗

This chapter is a summary of the results obtained during the Ph.D. thesis preparation of Guillaume
Mijoule. I have co-supervised this thesis with Prof. Laure Coutin (IMT). Guillaume Mijoule defended
his Ph.D. June 3rd, 2013 and the examination board was Prof. Stephen Senn (CMML - referee) - Prof.
Adeline Sansom (University of Paris V - referee) - Prof. Vladimir Anisimov (Quintiles - University of
Glasgow) - Prof. Antoine Chambaz (University of Paris X) - Prof. Laure Coutin and myself (University
of Toulouse III).

After a section devoted to general considerations on patient’ recruitment, a second section deals with
the models of paramount interest introduced by Anisimov [8] and by myself in [14]. The description of
these models, the estimation procedure and the predictive method are briefly described. A third section
explained how to integrate drop-out in these models [1]. Finally a fourth section presents the first step
for a clinical cost modelling [13].

I General considerations.

In order to get marketing authorization, a new product has to succeed in clinical trials. A clinical trial
is based on statistical considerations in order to show the product efficiency, taking into account the
variability of the environment. It is a well known fact that the power of this test is linked to the number
of patients we deal with. If an inadequate number of enrolled patients is used, then the study may fail to
reject the null hypothesis due to lack of power. So the number of patients to include is a fixed parameter
of the trial. There has been much effort in computing the sample size for clinical trials. Its computation
is now standard and mandatory in trial protocol (see Consort Group works [17]). On the other side
relatively little attention is focused on improving the predictions of the recruitment process. Indeed, till
now the most of techniques used by pharma companies are based on deterministic models and various ad
hoc techniques. Rojavin [16] says ”Patient recruitment and retention remains until now more of an art
rather than a science”.

The problem of predicting patients recruitment and evaluating the recruitment time in clinical trials
has been given much attention during the past years. Using a Poisson process to describe the recruitment
process is now an accepted approach [18, 19, 10, 11]. Meanwhile, a huge variability of the recruitment
process makes the question quite hard to investigate, thus, stochastic modelling has to be developed. Up
to now, the easier to handle and more relevant models are so-called Poisson-Gamma model introduced in
[8] and Poisson-Pareto model introduced in [14]. Those models assume that patients arrive at different

∗ Publications related to this chapter:

[1] Vladimir Anisimov, Guillaume Mijoule, and Nicolas Savy. Statistical modelling of recruitment in multicentre
clinical trials with patients’ drop-out. Statistics in Medicine, In progress, 2014.

[13] Guillaume Mijoule, Nathan Minois, Vladimir Anisimov and Nicolas Savy. Additive Model for Cost Modelling in
Clinical Trial, Proceedings of the 7th International Workshop on Simulation, Rimini, May 2013. Forthcoming.

[14] Guillaume Mijoule, Stéphanie Savy and Nicolas Savy. Models for patients’ recruitment in clinical trials and
sensitivity analysis. Statistics in Medicine, 31(16): 1655–1674, 2012.
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centres according to Poisson processes where the rates are Gamma-distributed or Pareto-distributed.

Keeping in mind these techniques, the models of patients’ recruitment can be widely enriched. It is
used as a basis for developing techniques for the analysis of the effects of unstratified and centre-stratified
randomization [5], predictive event modelling [6] and predicting randomization process [7]. Drop-out
modelling question is plugged in the Poisson-Gamma model in [1]. Indeed, patient drop-out is a critical
point of most medical studies. In the framework of clinical trial, the management of drop-out is really
a keystone point to deal with because first, it can yield to a lack of power in statistical analysis and
second, it can be informative, especially in cancer research where drop out are mainly due to harmful
side-effects and/or lack of efficacy of the treatment being studied. Finally a model for clinical trials’ cost
in introduced in [13].

I.1 Why model patients’ recruitment ?

The computation of the Necessary Sample Size (NSS for short), denoted by NR, is mandatory in every
clinical trial protocol. Thus, in the framework of a clinical trial or more generally in medical research,
an important question is how long it takes to recruit a given number of patients NR. Indeed, this is of
paramount interest for planning trials because of scientific concern, economic and ethical reasons.

• Ethical concern, because it is not satisfactory to continue a study in vain.

• Economical concern, a clinical trial is an expensive study in itself and, as the duration of the
trials is included in the duration of the exclusive right to exploit the drug (20 years) [20], a delay
generates an enormous loss of income (Fig 5.1). Moreover, an improvement of the planning and
monitoring of a trial reduces costs and save money.

End of right for
exclusive exploitation

Deposite
of the patent

Marketing
Authorization

Clinical Trials Commercialization of the drug

20 years

Figure 5.1: Exploitation period of a drug.

• Scientific concern, because new drugs are increasingly developed and approved by regulatory
agencies and when accrual rates are too low, there may be new informations available during the
enrolment period such as the results of other trials or a change in the understanding of the underlying
biology.

For these reasons, stopping or continuing a trial is thus a decision with huge consequences and it will be
useful to have some objective tools based on scientific criteria to take it.

I.2 How to model patients’ recruitment ?

History of the model

Few authors have considered the problem of patients’ recruitment. The reader can refer to [9] for a
systematic review of the existing models for recruitment. As far as we know, the pioneer work of Morgan
[15] where an estimation of the total study duration is proposed as a function of inclusion duration and
based on data from previous clinical trials. Let us cite Lee [12] for a model of the recruitment by Poisson
processes. Inspired by the queueing theory, this point of view has been widely developed. Poisson process
appears as a natural assumption in literature [19]. In [19] a model of a multicentric trial based on Poisson
process is introduced. Poisson processes depend on only one parameter, which is the rate of enrolment
in our case. In [11] Carter and co-authors have developed models based on Poisson Processes and have
noticed that the use of the historic mean is a too simple model and the necessity to take into consideration
the variability of the rate.

Anisimov and Fedorov [8] proposed to use a doubly stochastic Poisson process to take into considera-
tion the variation in recruitment rates between different centres. This model, called as a Poisson-gamma
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model, assumes that the patients arrive at different centres according to Poisson processes with the rates
viewed as independent gamma distributed random variables. In [8] the procedure of parameters esti-
mation at interim stage using empirical Bayesian technique have been suggested. The model has been
validated using data from a large number of real trials [4]. The Poisson-gamma model was developed fur-
ther for predicting recruitment process at initial and interim stages [2], to account for the situations when
the centres opening dates may not be known and assumed to be uniformly distributed in some intervals
[3, 14], some centres can be closed or open in the future [7], for sensitivity analysis to parameter errors [14].

A Poisson-gamma model is used in [1] as a starting point for the patient arrival process and develop
technique further assuming that each patient can be lost during a screening process following patient
arrival. In fact we do not know if an included patient will complete the study. In order to overpass this
problem, one uses to overvalue the NSS of 10 to 20% (arbitrary but classical value). This arbitrariness
obviously damages the care system performance for ethical and economic reasons. The aim of a modelling
of drop-out in patients’ recruitment is to substitute the arbitrariness of the drop out estimation by an
’on-going’ estimation. Then we would be able to quantify the drop-out and provide predictions of the
optimal number of patients accounting for sample size needed and costs of the trial. Suppose that
screening interval, which is the time that a patient has to stay initially in clinical centre to complete some
preliminary tests for inclusion-exclusion criteria and to be randomized into the study, is assumed to be a
fixed positive number R which is the same for all patients (Fig. 5.3 page 73). We assume that a patient
can be lost either at the start of the screening process with some probability or during the screening
interval at some random time. We consider a few models for drop-out.

The model.

Consider now a multicentric clinical trial which parameters are:

• NR the necessary sample size (number of patients we have to recruit) is fixed and related to the
statistical analysis,

• TR the expected time for the inclusion of these NR patients,

• C the number of centres,

We model the enrolment in centre c (c = 1, . . . , C) by a Cox process starting at uc denoted by {N c(t), t ≥
uc}. Assume that min{uc ; c = 1, . . . , C} = 0. The distribution of the rate λc will be denoted by L(θ, c)
and its density denoted by pθ,c. Finally, for any t ≥ 0,

NC(t) =

C∑
c=1

N c(t)

Remark 5.1 By considering time-dependent λ:

λ(t) = λ I{t≥uc}

One can deal with models which start at t = 0. For notational simplicity, one assumes, excepted when
specified, that uc ≡ 0.

The actual end time of the study is denoted by T and is the random variable (stopping time) defined as:

T =

{
inf
t≥0

: NC(t) = NR

}
.

I.3 What model patients’ recruitment for ?

θ known : Feasibility of the trial.

The model is completely defined and we are able to calculate the probability of finishing on time and the
expectation of the duration of the trial.
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Theorem 5.1 ([14]) For any θ, C ≥ 1, t ≥ 0 and N ≥ 0, we have

P
[
NC(t) ≥ N

]
= 1− Eλ1,··· ,λC

[
N−1∑
k=0

e−(λ1+···+λC)t [(λ1 + · · ·+ λC)t]k

k!

]

= 1−
N−1∑
k=0

tk

k!

∫
RC

(x1 + . . .+ xC)ke−t(x1+...+xC)
C∏
c=1

pθ,c(xc) dxc, (5.1)

E [Tn] = Eλ1,··· ,λC

[
N

λ1 + · · ·+ λC

]
= N

∫
RC

∏C
c=1 pθ,c(xc)

x1 + . . .+ xC
dx1 . . . dxC .

Remark 5.2 If all the uc are not null, such quantities can still be evaluated by means of a Monte Carlo
method.

Now, as already pointed out in [2, 8], we are able to consider some tools to monitor a clinical trial:

• We can investigate the feasibility of the trial which is given by

P
[
NC(TR) ≥ NR

]
.

• Given a fixed probability (say 80% for instance) we can calculate an estimation of the duration
of the trial up to this probability, that is the time:

T s.t. P
[
NC(T ) ≥ NR

]
= 0.80.

• Given a fixed probability (say 80% for instance) we can calculate an estimation of the number
of centres necessary for ending the trial on time up to this probability by:

C s.t. P
[
NC(TR) ≥ NR

]
≥ 0.80.

θ known : On going study.

Consider now an ongoing study at time t1. During the period [0, t1] N1 patients are assumed to be
included. We will denote by Ft1 the history (filtration) of the enrolment process until time t1. The key
point that makes this approach of paramount interest is that we can reach the probability of including
the N −N1 remaining patients before the deadline and to estimate the duration of the trial. In fact one
can apply Theorem 5.1, where the expectations are taken with respect to the forward distributions of the
λc’s, that is the predictive distributions based on using interim data.

Remark 5.3 Data used for this machinery are not linked to the response of the patient to the treatment
but to the inclusion in the trial data. Consequently, this technique does break the blindness.

Remark 5.4 We have two choices to evaluate the integral (5.1): calculate it explicitly when a closed
form of the integral is available or use Monte Carlo simulations.

Now, the same kind of tools as those introduced in the previous section can be used by replacing

P
[
NC(T ) ≥ NR

]
by P

[
NC(T ) ≥ NR | Ft1

]
.

We are also able to introduce corrective actions on the trial:

• We are able to estimate of the value of the recruitment rate to reach the deadline. When
the rate is constant or when the expected rate is easily linked to the parameters θ, we can calculate
an estimation of the rate necessary to reach the deadline, that is the value θ̃ such that:

P
[
NC(TR) ≥ NR | Ft1

]
= 0, 80.

This action is quite artificial because in practice it is quite hard to change the rate of recruitment.
Meanwhile it is a useful tool for taking a decision on the continuation of a clinical trial.
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• We are able to estimate of the number of centres to open in order to reach the deadline. The
overall rate of inclusion is a sum of the two random variables

Λ = ΛA + ΛB

where ΛA is the contribution of the already opened centres (their distributions are thus the forward
ones), and ΛB is the contribution of the new centres, the distribution does not depend of the history
Ft1 . Replace C by C + 1 increases the probability to end the trial on time, and this probability
tends to 1 as C grows to infinity. In order to calculate the smallest number C of centres to open, a
simple procedure consists in incrementing C until reaching the desired probability (here 0.80).

θ unknown : On going study.

In most cases, θ is unknown or given by the investigator (and often overestimated). The classic idea is to

replace the real parameter θ by an estimation θ̂ in each relationship. For this, we use the data collected
on [0, t1] to estimate θ. The error made on predictions (that is, on Pθ

[
NC(TR) ≥ N

]
) when replacing

the true parameters θ by the estimated parameters θ̂ is discussed in [14]).

II The Bayesian-Poisson models and their performance

In this section, we develop the three main models of interest. Given a interim recruitment analysis at t1,
we denote by:

• nc the number of patients recruited by centre c,

• τc = t1 − uc the duration of activity of this centre.

Given these informations, we derive the forward distribution for each model and, if the parameters are
unknown, we give their Maximum Likelihood Estimator. Finally we compare their performances on a
real data set. In [14] reader can find more deeper properties on the estimators, methods for comparing
the models and sensitivity analyses.

II.1 The Γ-Poisson model

For this model, the distribution of the rate is Gamma whose distribution is given by:

f(α,β)(λ) = λα−1 β
α e−β λ

Γ(α)
I{λ≥0} with Γ(α) =

∫ +∞

0

tα−1 e−t dt.

Proposition 5.1 ([8]) Assume θ is known, given {(nc, τc), 1 ≤ c ≤ C}, the forward distribution has for
density pt1θ,c(x) and is the density of a Γ(α+ nc, β + τc) distribution.

Proposition 5.2 ([8]) Assume θ is unknown, given {(nc, τc), 1 ≤ c ≤ C}, the maximum likelihood
estimation of (α, β) is obtained by the maximisation of:

lnL = Cα lnβ − C ln Γ(α) +

C∑
c=1

[ln Γ(α+ nc)− (α+ nc) ln(β + τc) + τc] .

II.2 The Pareto-Poisson model

For this model, the distribution of the rate is Pareto whose distribution is given by:

f(γ,δ)(λ) = γ
δγ

λγ+1
1{λ≥δ}.

Proposition 5.3 ([14]) Assume θ is known, given data {(nc, τc), 1 ≤ c ≤ C}, the forward distribution
has for density pt1θ,c and is

pt1θ,c(x) =
τnc−γc

Γinc(nc − γ, δτc)
e−xτcxnc−γ−1 I{x≥δ} where Γinc(y, x) =

∫ ∞
x

e−tty−1dt,

is usually called (upper) incomplete-Gamma function and exists in many mathematical software packages.
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Proposition 5.4 ([14]) Assume θ is unknown, given {(kc, τc), 1 ≤ c ≤ C}, the MLE of (γ, δ) is obtained
by the maximisation of:

lnL = Cγ ln δ + C ln γ +

C∑
c=1

[ln Γinc(nc − γ, δτc)− (nc − γ) ln τc + τc] .

II.3 The UΓ-Poisson model

In some particular studies we do not observe the opening time of the centre (uc is unknown). In case, we
can assume that the opening time is a random variable uniformly distributed in [s′c, sc].
Instead of observing uc, we often observe the time of first inclusion of each centre, ρc. In case, from we
use data from an ongoing study at time t1, and set s′c = t1 − ρc and sc = t1. If at t1 the first inclusion
has not occurred, we put s′c = 0. Any any case, s′c and sc do depend on t1.

Theorem 5.2 ([14]) Assume θ is known, given data {(nc, s′c, sc), 1 ≤ c ≤ C}, if we put

m =

C∑
c=1

α+ nc
sc − s′c

ln

(
β + sc
β + s′c

)
and v =

C∑
c=1

(α+ nc)
1

(β + s′c)(β + sc)
,

we can approximate the overall forward rate by a Gamma distribution by matching the first two moments

Λ
d
≈ Γ(A,B) with

A =
m2

v
and B =

m

v
,

and we have

E [TN ] ≈ N m

m2 − v
.

Proposition 5.5 ([14]) Assume θ is unknown, given {(nc, s′c, sc), 1 ≤ c ≤ C}, the MLE of (α, β) is
obtained by the maximisation of:

lnL = Cα lnβ + C ln Γ(α) +

C∑
c=1

[ln Γ(α+ nc)− ln(sc − s′c) + ln(J(α, β, nc, s
′
c, sc)] ,

by putting J(α, β, n, s′, s) =
∫ s+β
s′+β

t−n−α(t− β)ndt.

II.4 Comparison on real data

In the setting of the case studied, we plan to include 610 patients in 3 years. 77 centres are devoted to
this trial. In the protocol of this trial, we would plan an ongoing study at the end of the first year, at
1.5 years and at 2 years. The opening dates of the centres are not known, so we use can make use of
UΓ-Poisson model. Results are collected in Table 5.1.

The model Time t1 = 1 Time t1 = 1.5 Time t1 = 2
Γ-Poisson 3.31 2.63 2.44

[3.29, 3.33] [2.61, 2.65] [2.43, 2.45]
Π-Poisson 2.63 2.39 2.36

[2.61, 2.65] [2.37, 2.41] [2.35, 2.37]

UΓ-Poisson 2.60 2.34 2.36
[2.58, 2.62] [2.33, 2.35] [2.35, 2.36]

Table 5.1: Estimation of the trial duration: the expectation on the first line, the 95% confidence interval
on the second one.

Figure 5.2 represents the recruitments process. The dots represents the cumulative number of included
patients. The solid line represents the expectation of the recruitment and the doted lines are the 80%
confidence interval for that expectation. If you are over the solid line, all is right, if you are under the
line, you have to verify the behaviour of the trial by another ongoing study. This is an useful figure for
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Figure 5.2: Predicted Enrolment behaviour at time 1 (left) and at time 1.5 (right)).

trialists to monitor the clinical trial.

Finally, the study ended in 2.31 year. Compare with the results in Table 5.1, the model has predicted
the end of the trial with an error of 15 days, 10 months before the end.

III Integration of screening-failures

III.1 Models for recruitment with patients’ drop-out.

Two kinds of drop-out can be considered in the model:

• drop-out at the inclusion (drop-out (1) on Figure 5.3).

• drop-out at any time during the screening period (drop-out (2) on Figure 5.3). Since R is small
compared with the duration of the follow up, this part of the model can be neglected.

End of follow upInclusion Randomization

tc,j + τtc,j +R

tc,j + sc,j

tc,j

Screening period Follow up period

d
ro
p
ou
t
(1
)

d
ro
p
ou
t
(2
)

Figure 5.3: Step of patients inclusion in Clinical trials.

Consider a patient j arriving at centre c at time tc,j . In order to consider drop-out at time tc,j , it is
enough to consider a certain probability of drop-out 1− rc. We introduce two models:

Model 1. The variation in randomization probability between different centres is not taken into
account. For all 1 ≤ c ≤ C, rc = r where r is a fixed constant in [0, 1].

Model 2. The variation in randomization probability between different centres is described using a
beta distribution. The variables {rc ; 1 ≤ c ≤ C} are i.i.d.r.v. having a beta distribution
with parameters (ψ1, ψ2).

Otherwise, the patient drops the study at some time tc,j +sc,j during the screening interval if sc,j ≤ R. If
neither one of these events happen, the patient is successfully randomized at time tc,j +R and registered
to participate in the trial. Three models can be considered:
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Model 3. For all 1 ≤ c ≤ C, rc = r and the values {Zc,j(θ), j ≥ 1 ; 1 ≤ c ≤ C} are i.i.d.r.v.
having an exponential distribution with parameter θ (the same for all centres).

Model 4. For all 1 ≤ c ≤ C, rc = r and the values {Zc,j(θc), j ≥ 1 ; 1 ≤ c ≤ C} given θc
are i.i.d.r.v. having an exponential distribution with parameter θc, where the values
{θc ; 1 ≤ c ≤ C} are i.i.d.r.v. having a gamma distribution with parameters (α2, β2).

Model 5. The variables {rc ; 1 ≤ c ≤ C} are i.i.d.r.v. having a beta distribution with some
parameters (ψ1, ψ2). The values {Zc,j(θc), j ≥ 1 ; 1 ≤ c ≤ C} given θc are i.i.d.r.v.
having an exponential distribution with parameter θc, where the values {θc ; 1 ≤ c ≤ C}
are i.i.d.r.v. having a gamma distribution with parameters (α2, β2).

In order to formalize the problem, let us define the independent families of indicators {χc,j(rc), j ≥
1 ; 1 ≤ c ≤ C}, where for a given rc the variables {χc,j(rc), j ≥ 1} are conditionally independent and for
any 1 ≤ c ≤ C and any j ≥ 1,

P(χc,j(rc) = 0) = 1− P(χc,j(rc) = 1) = rc.

Now, for each centre c, at any time t ≥ 0, recall that N c(t) denotes the number of patients included at
time t, we define three processes:

• randomized patients:

N c,R(t) = card {j : uc ≤ tc,j ≤ t−R and χc,j(rc) = 0, Zc,j(θc) ≥ R} ,

• lost patients:

N c,L(t) = card {j : uc ≤ tc,j ≤ t and {χc,j(rc) = 1} ∪ {Zc,j(θc) ≤ min(R, t− tc,j)}} ,

• patients in screening process:

N c,S(t) = N c
t −N

c,R
t −N c,L

t .

Finally, denote NX =
∑C
c=1N

c,X for X := R,L, S. The trial stops as soon as the desired number of
randomized patients NR is reached, that is when NR(t) = NR.

As we see, model 5 is the most advanced model that accounts for the variation in the probability of
drop-out upon patient arrival and in the distribution of drop-out time during screening process across
clinical centres. For each model we consider the procedure of estimating unknown parameters and pre-
dicting in time the future process of randomized patients and the total recruitment time.

If the drop-out time were unknown, it would be impossible to distinguish between a patient lost upon
arrival or during screening process, and the distinction within the model would be irrelevant. Thus, for
models 3-5, we have, for each patient, to know the arrival and drop-out (or randomization) time.

III.2 Estimation

Let t1 be some interim time and assume for simplicity that τc ≥ R for any c = 1, . . . , C. Consider that
center c has recruited nc patients and that kc has been randomized. The recruitment process is assumed
to be Poisson-Gamma modelled with unknown parameters (α, β). Thus, for any c = 1, . . . , C, the random
variable N c(t1) follows a negative binomial distribution:

N c(t1) ∼ NegBin

(
α,

µτc
α+ µτc

)
.

where µ = E [λ] = α/β. Assume for simplicity that there is no screening delay.

Model 1.

Theorem 5.3 ([1]) Given data {(nc, kc, τc), 1 ≤ c ≤ C}, the log-likelihood function writes:

L1(α, µ, r) = L1,1(α, µ) + L1,2(r),
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with

L1,1(α, µ) =

C∑
c=1

ln Γ(nc + α)− C ln Γ(α) +N1(lnµ− lnα)−
C∑
c=1

(nc + α) ln(1 + µτc/α) +B, (5.2)

L1,2(r) =

C∑
c=1

[
kc ln r + (nc − kc) ln(1− r)

]
+B. (5.3)

where B is some generic constant independent of the parameters and N1 =
∑C
c=1 ni is the total number

of recruited patients up to time t1. The maximum likelihood estimator is given by

r̂ =
( C∑
c=1

nc

)−1 C∑
c=1

kc. (5.4)

Sketch of the proof. In centre c the number of randomized patients N c,R(t1) has a binomial
distribution with parameters (nc, rc):

N c,R(t1) | {N c(t1) = nc} ∼ Bin(nc, rc).

Then the log-likelihood function can be written in the form:

L1(α, µ, r) =

C∑
c=1

ln

[
NegBin

(
nc;α,

µτc
α+ µτc

)]
+

C∑
c=1

ln[Bin(kc;nc, r)].

The parameter r is separated from (α, µ) and L1(α, µ, r) can be re-written in the form: L1(α, µ, r) =
L1,1(α, µ) + L1,2(r), withL1,1(α, µ) given by (5.2) and L1,2(r) by (5.3). Taking derivative in r yields to
(5.4). �

Remark 5.5 Whatever the model, parameters (α, µ) can be estimated using log-likelihood function L1,1

given by (5.2) and a two-dimensional optimization procedure.

Remark 5.6 Note that if there is a screening delay, then such patients that entered screening process
but the results of their screening procedure are unknown yet should be excluded in the calculations of
probability of randomization, otherwise this probability will be underestimated. Therefore, instead of ni
we should count ñi, the number of patients with known screening results.

Model 2.

Theorem 5.4 ([1]) Given data {(nc, kc, τc), 1 ≤ c ≤ C}, the log-likelihood function writes:

L2(α, µ, ψ1, ψ2) = L2,1(α, µ) + L2,2(ψ1, ψ2),

where L2,1 = L1,1 given by (5.2), and

L2,2(ψ1, ψ2) =

C∑
c=1

lnB(kc + ψ1, nc − kc + ψ2)−M lnB(ψ1, ψ2) +B, (5.5)

where B(ψ1, ψ2) =
∫ 1

0
xψ1−1(1−x)ψ2−1dx is a beta function. Parameters (ψ1, ψ2) can be estimated using

log-likelihood function L2,2and a two-dimensional optimization procedure.

Sketch of the proof. In centre c the number of randomized patients N c,R(t1) has a Beta-binomial
distribution (nc, ψ1, ψ2):

N c,R(t1) | {N c(t1) = nc} ∼ Bin(nc,Beta(ψ1, ψ2)).

�
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Models 3, 4, 5.

For calculation of the likelihood function for models 3, 4, 5, we need to account more information. Assume
that at time t1, we observe patients arrival times {tc,j ≤ t1 ; j ≥ 1 , 1 ≤ c ≤ C} and the last time
{sc,j , j ≥ 1 ; 1 ≤ c ≤ C} they are in the screening process (i.e tc,j ≤ sc,j ≤ t1) . Let

Dc1 = {j ≥ 1, s.t. sc,j = tc,j},
Dc2 = {j ≥ 1, s.t. sc,j = (tc,j +R) ∧ t1},
Dc3 = {j ≥ 1, s.t. tc,j < sc,j < (tc,j +R) ∧ t1}.

and D1 =
⋃C
c=1Dc1, D2 =

⋃C
c=1Di2, D3 =

⋃C
c=1Di3 and for any 1 ≤ c ≤ C. Denote by:

• mc = card {Dc3} the number of patients lost in the middle of screening process in centre c,

• k̃c = card {Dc2} + card {Dc3} the number of patients that are not lost immediately upon arrival in
centre c,

• lc =
∑
j(sc,j − tc,j) the sum of screening durations in centre c.

Model 3.

Theorem 5.5 ([1]) Given data {(tc,j , sc,j , τc), j ≥ 1 ; 1 ≤ c ≤ C} the log-likelihood function writes:

L3(α, µ, r, θ) = L3,1(α, µ) +

C∑
c=1

[
(nc − k̃c) ln(1− r) + k̃c ln r +mc ln θ − θlc

]
,

where L3,1 = L1,1. The maximum likelihood estimators of r and θ are thus given by

r̂ =
( C∑
c=1

nc

)−1 C∑
c=1

k̃c and θ̂ =
( C∑
c=1

lc

)−1 C∑
c=1

mc, (5.6)

Sketch of the proof. Conditioning on parameters {(θc, rc) ; 1 ≤ c ≤ C}, we can write a general
expression for the likelihood

L [(tc,j); (sc,j)] = exp [L1,1(α, µ)]×
C∏
c=1

E [L2 (θc, rc; (tc,j), (sc,j))] , (5.7)

where L1,1 is given in (5.2), and the expectation in (5.7) is taken when θc and rc vary according to their
respective distributions defined by models 3-5 gives:

L2 (θc, rc; (tc,j), (sc,j)) =
∏
D1

(1− rc)
∏
D2

rc exp(−θc(sc,j − tc,j))×
∏
D3

rcθc exp (−θc(sc,j − tc,j)) ,

= (1− rc)nc−k̃crk̃cc θmcc exp (−θclc) .

Taking derivatives in r and θ we get the MLE (5.6). �

Model 4.

Theorem 5.6 ([1]) Given data {(tc,j , sc,j , τc), j ≥ 1 ; 1 ≤ c ≤ C} the log-likelihood function writes:

L4(α, µ, r, α2, β2) = L4,1(α, µ) +

C∑
c=1

[
(nc − k̃c) ln(1− r) + k̃c ln r

]
+ L4,2(α2, β2), (5.8)

where L4,1 = L1,1 and

L4,2(α2, β2) =

C∑
c=1

[
ln Γ(mc + α2)− ln Γ(α2) + α2 lnβ2 − (mc + α2) ln(β2 + lc)

]
. (5.9)

Thus

r̂ =
( C∑
c=1

nc

)−1 C∑
c=1

k̃c. (5.10)

and (α2, β2) can be estimated using log-likelihood function L4,2 and a two-dimensional optimization pro-
cedure.
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Sketch of the proof. The result comes from the posterior distributions of the rates of inclusion,
probabilities of instantaneous drop-out and rate of drop-out:

λ̂c = Ga(α̂+ nc, β̂ + τc),

r̂ =
( C∑
c=1

nc

)−1 C∑
c=1

k̃c, (5.11)

θ̂c = Ga(α̂2 +mc, β̂2 + lc), c = 1, . . . , C.

�

Model 5.

Theorem 5.7 ([1]) Given data {(tc,j , sc,j , τc), j ≥ 1 ; 1 ≤ c ≤ C} the log-likelihood function writes:

L5(α, µ, ψ1, ψ2, α2, β2) = L5,1(α, µ) + L5,2(α2, β2) + L5,3(ψ1, ψ2),

where L5,1 = L1,1 and L5,2 = L4,2 and

L5,3(ψ1, ψ2) =

C∑
c=1

[
lnB(k̃c + ψ1, nc − k̃c + ψ2)− lnB(ψ1, ψ2)

]
, (5.12)

Parameters (α, µ), (ψ1, ψ2) and (α2, β2) can be estimated using two-dimensional optimization procedures
for corresponding functions L(·).

Sketch of the proof. The result comes from the posterior distributions of the rates of inclusion,
probabilities of instantaneous drop-out and rate of drop-out:

λ̂c = Ga(α̂+ nc, β̂ + τc), (5.13)

r̂c = Beta(ψ̂1 + k̃c, ψ̂2 + nc − k̃c), (5.14)

θ̂c = Ga(α̂2 +mc, β̂2 + lc), c = 1, . . . , C. (5.15)

�

III.3 Prediction

predictive process.

In the sequel, Πa stand for a Poisson process with rate a. Given data {(nc, τc) ; 1 ≤ c ≤ C} at interim
time t1, let νc be the number of patients entered screening stage at centre c in the interval [t1 − R, t1]
and kc be the total number of randomized patients up to time t1.

For models 1 and 2, given νc, the number of patients in centre c that will be randomized in the interval
[t1, t1 + R] is a binomial random variable Bin(νc, r) and the times when these patients are randomized
are uniformly distributed in [t1, t1 + R]. The predicted number of randomized patients in [t1, t1 + R]
is Bin(νc, r̂), where r̂ is defined in (5.4). The number of patients randomized after time t1 + R can be
considered as thinning of the process N c with probability r.

Theorem 5.8 ([1]) For any t > t1 + R, the predicted process of the number of randomized patients in

centre c, {k̂c(t), t ≥ t1 +R}, is developing as

• Model 1.
k̂c(t) = kc + Bin(νc, r̂) + Πr̂ λ̂c

(t− t1 −R).

where r̂ is given by (5.4).

• Model 2.
k̂ci(t) = kc + Bin(νc, r̂c) + Πr̂c λ̂c

(t− t1 −R).

where r̂c is given by (5.5).
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For models 3 to 5, given νc the number of patients with unknown screening outcome in centre c,
νc = card {Ωc} with

Ωc = {j ≥ 1 : t1 −R < tc,j ≤ t1 and sc,j > t1 − tc,j} .

Given data at t1 and θc, the number of randomized patients between t1 and t1 +R in centre c is the sum
of νc independent Bernoulli r.v. with probabilities e−θc(R−t1+tc,j) denoted as Ber

(
e−θc(tc,j+R−t1)

)
.

Theorem 5.9 ([1]) For any t > t1 + R, the predicted process of the number of randomized patients in

centre c, {k̂c(t), t ≥ t1 +R}, is developing as

• Model 3.
k̂c(t) = kc + Πp̂ λ̂c

(t− t1 −R) +
∑
j∈Ωc

Ber
(
e−θ̂(tc,j+R−t1)

)
,

where the probability of non-drop-out is p̂ = r̂e−θ̂R and (r̂, θ̂) are given in (5.6).

• Model 4-5.

k̂c(t) = kc + Πp̂c λ̂c
(t− t1 −R) +

∑
j∈Ωc

Ber
(
e−θ̂c(tc,j+R−t1)

)
,

where p̂c = r̂c exp(−θ̂cR), and (r̂c, θ̂c) are given by (5.11).

Predictive bounds.

The main interest of this technique is to construct predictive bounds. Indeed, for C large enough (C > 20)

we can use these expressions of the predictive process to create (1 − δ)-predictive bounds for k̂(t) using
a normal approximation similar to [7]. For this, we make use of the expressions of

E
[
k̂(t) | data

]
and V

[
k̂(t) | data

]
.

IV An additive model for clinical trials’ cost modelling [13]

This section is devoted to the first step of a model for clinical trials’ cost. The aim is to calculate the
cost of the trial from predefined data and from the data collected at an interim time.

IV.1 Description of the model

We assume we can categorize the different costs of a clinical trial as follows :

• a fixed cost K1 for a screened patient,

• a fixed cost K2 for a randomized patient (on top of the screening cost),

• a time-depending cost g for a randomized patient satisfying technical assumptions,

• a fixed cost Fc for an opened centre c,

• a time-depending cost Gc for an opened centre c.

Recall that N c,R(t) (resp. N c(t)) is the number of randomized (resp. screened) patients at time t in c-th
centre. The model we investigate for the cost of centre c at time t is:

Cc(t) = K1N
c,R(t) +K2N

c(t) +
∑

0≤T cn≤t

g(t, T cn) + Fc +Gct, (5.16)

And the total cost at time t is:

C(t) =

C∑
i=1

Cc(t). (5.17)

Notice that ∑
0≤T cn≤t

g(t, T cn) =

∫ t

0

g(t, s)dN c,R(s),
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this process is a Filtered Poisson process as studied in Chapter 1. Isn’t it marvellous... The computation
of the expectation of (5.17) at time t is not a big deal but of no interest. The one of interest is to compute
the expectation of C(T ) where T is

T =

{
inf
t≥0

: N c,R(t) = NR

}
.

and is a stopping time in the natural filtration of N c,R. As seen in Chapter 1, the standard Itô calculus
is not applicable with F.P.P. and thus we cannot apply standard argument of stochastic calculus.

IV.2 Calculation of the mean cost

Non-Bayesian setting

First assume the recruitment rates (λc)1≤c≤C and probabilities of screening success (rc)1≤c≤C are known.
Then we have the expansion

N = NR +NL (5.18)

where NR is the aforementioned Poisson process of randomized patient, with rate Λ1 =
∑C
c=1 rcλc,

and NL is an independent Poisson process with rate Λ2 =
∑C
c=1(1− rc)λc, representing the number of

screening failures over time.

Theorem 5.10 ([13]) Let K ′1 = K1 +K2, and pτ (dt) := e−Λ1ttNR−1 I{t>0}dt be the pdf of T . Then

E [C(T )] = K ′1NR+K2NR
Λ2

Λ1
+

∫ +∞

0

g(t, t)pτ (dt)+(NR−1)

∫ +∞

0

∫ t

0

g(t, s) ds
pτ (dt)

t
+G

NR
Λ1

+F. (5.19)

Remark 5.7 All functions in (5.19) are positive and measurable, so the integrals are well defined.

Bayesian setting

Now, we assume the initial rates are distributed according to a Gamma distribution and the probabilities
of screening as a Beta distribution. At some interim time t1, assume c-th centre has screened nc patients
and randomized kc patients. Recall that, by Bayesian re-estimation, given nc and kc, the rate λc has
a Gamma distribution with parameters (α + nc, β + t1), and probability of screening rc has a Beta
distribution with parameters (ψ1 + kc, ψ2 + nc − kc). A consequence of Theorem 5.10 is the following
corollary.

Corollary 5.1 In the Bayesian setting, the mean cost is

E [C(T )] = K ′1NR +K2NRE
[

Λ2

Λ1

]
+

∫ +∞

0

g(t, t)E
[
e−Λ1t

]
tNR−1dt

+ (NR − 1)

∫ +∞

0

∫ t

0

g(t, s) ds E
[
e−Λ1t

]
tNR−2dt+GNRE

[
Λ−1

1

]
+ F.

IV.3 Closure of a centre

Assume a linear cost over time for each randomized patient. The function g is defined as g(t, s) =
K3(t − s) I{t≥s}, where K3 is some positive constant. Does the closure of j-th centre implies money
savings? Next corollary answers this question.

Corollary 5.2 The closure of j-th centre implies a variation of the cost of the trial ∆Cj which is

∆Cj = NRE
[

λj
Λ(Λ1 − rjλj)

(
K2(rjΛ2 − (1− rj)Λ1) +

1

2
K3(NR − 1)rj + rjG−Gj

Λ1

λj

)]
− Fj ,

where G =
∑C
c=1Gc.
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Chapter 6

Survival data analysis for prevention
Randomized Controlled Trials ∗

This chapter is a summary of the results obtained during the Ph.D. thesis of Valérie Garès who I have
supervised with Prof. Sandrine Andrieu (INSERM Unit 1027 - Toulouse) for epidemiological aspects.
Valérie Garès defended her Ph.D. April 15th, 2014 and the examination board was composed of Prof.
Aurélien Latouche (CNAM Paris - referee) - Prof. John O’Quigley (UPMC ParisVI - referee) - Prof.
Jean-Yves Dauxois (INSA de Toulouse) - Prof. Jean-François Dupuy (INSA de Rennes), Prof. Sandrine
Andrieu and myself (University of Toulouse III). It deals with weighted logrank tests which are constructed
by plugging a weight function (Wn(s), s ∈ R+), depending of the sample size n in the logrank statistic.
We focus on the application of these well known tests in the framework of a clinical trial where two
problems of paramount importance appears:

• the choice of a particular weight,

• the computation of the necessary sample size.

The choice of a weight is motivated by the kind of deviation to the null hypothesis (of equality of the
survival functions) that we are interested in detecting. The Fleming-Harrington weight (see [3]) is defined
as

W p,q
n (s) = [Ŝn(s)]p [1− Ŝn(s)]q (6.1)

where p ≥ 0, q ≥ 0 and Ŝn is the Kaplan-Meier estimator of the survival function S under the null
hypothesis. To detect late effect, one emphasizes what happen at the end of the follow-up period taking
p = 0 and q ≥ 0. In what follows, we shall refer the resulting weighted test to as the ”Fleming-Harrington
test”, and denote it by FH(q). We will focus on this test because it depends only of one parameter and
is implemented in most software. However how to choose this parameter has not been investigated yet.

In [4], we have studied in details Fleming-Harrington’s test. The performances in terms of empirical
power has been investigated by means of simulations studies. We focus our attention on the choice of the
parameter q which is not directly interpretable in terms of late effects. This question is of paramount
importance for clinical trials and is not easy. Hopefully, a sensitivity analysis of the role of q has shown
that Fleming-Harrington’s test is only few sensitive to the value of q. The choice of q close to 3 is thus a
good choice in most situations.

∗ Publications related to this chapter:

[4] Valérie Garès, Sandrine Andrieu, Jean-François Dupuy, and Nicolas Savy. Choosing the parameter of Fleming-
Harrington’s test in prevention randomized controlled trials. Submitted to Journal of the Royal Statistical Society:
Series C (Applied Statistics), 2014.

[5] Valérie Garès, Sandrine Andrieu, Jean-François Dupuy, and Nicolas Savy. Comparison of constant piecewise
weighted test and Fleming Harrington’s test - Application in clinical trials. In revision. Electronic Journal of
Statistics, 2013.

[6] Valérie Garès, Sandrine Andrieu, Jean-François Dupuy, and Nicolas Savy. An omnibus test for several hazard
alternatives in prevention randomized controlled clinical trials. In revision. Statistics in Medicine, 2013.
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In the family of weighted logrank’ tests, a second weight of interest is the constant piecewise weight
(CPW for short) defined as

W t∗(t) =

{
0 if t ≤ t∗,
1 if t > t∗,

(6.2)

for some t∗. The resulting weighted logrank statistic (subsequently referred to as the ”CPWL statistic”
and denoted by CPWL(t∗)) has been studied in [12]. One appealing feature of the weight (6.2) is that the
parameter t∗ is directly interpretable in terms of late effects. In practice, a reasonable value of t∗ should
therefore be based on the investigator’s a priori knowledge about the late effects. In [5] we have studied
this test and noticed that CPWL’s test suffers from being sensitive to the value of t∗. In view of this
result, the Fleming-Harrington weight (6.1) appears to be more appealing than the CPW (6.2). However,
in practice, it is easier to identify a reasonable range of values for t∗ than to choose q. By comparing
the Fleming-Harrington and CPWL tests (using arguments from the asymptotic efficiency theory and
some numerical comparisons), we are able to elucidate the relationship between q and t∗. From this, we
establish some rules for choosing q from a given t∗.

Finally both tests assumes that effects are late. It is a huge decision to take for whom design a clinical
trial. In order to overpass this difficulty, we propose in [6] a test which avoids this assumption by taking
the maximum between logrank and Fleming-Harrington statistics. We investigate the performances of
this test.

After a section devoted to generalities on weighted logrank tests, we focus our attention in a second
section to Fleming-Harrington’s test especially its performance and a comparison with CPWL’s test. A
third section introduced the maximum weighted logrank’s test. Finally an application to GuidAge’s study
is discussion.

I Weighted logrank tests

I.1 Notations and definitions

Let T be a non-negative random variable with cumulative distribution function F , survival function
S = 1−F , hazard function λ, and cumulative hazard function Λ(t) =

∫ t
0
λ(s)ds. T denotes the duration

from some time origin to the occurrence of some event of interest. In what follows, T is assumed to be
right-censored that is, we only observe the events that occur before a certain time C. Letting T i and Ci

be respectively the latent survival and censoring times for the i-th individual, the observations consist of
n independent couples (Xi, δi)i=1...n, where Xi = min(T i, Ci) and δi = I{T i≤Ci}. We assume that T i

and Ci are independent for every i = 1, . . . , n. Let G be the distribution function of the (Ci)i=1,...,n, τ
denote the total duration of the study, and τ ′ = inft≥0 {π(t) = 0}, where π(t) = (1 − F (t)) (1 − G(t)).
We assume that τ < τ ′. For every t ≥ 0, we also define the random variables

Nn(t) =

n∑
i=1

I{Xi≤t, δi=1} and Yn(t) =

n∑
i=1

I{Xi≥t}.

Nn(t) is the number of failures at t and Yn(t) is the number of at-risk subjects at time t−.
We consider a clinical trial with two arms, where nT patients receive a drug (or treatment) and

nP patients receive a placebo (with n = nP + nT ). In what follows, all the random variables and
related quantities (cumulative distribution function, survival function. . . ) for the treatment (respectively
placebo) group are upper-indexed by T (respectively P ). For example, we note Nn = NP

nP + NT
nT and

Yn = Y PnP + Y TnT .

I.2 Asymptotic distributions

Consider the following null and alternative hypotheses:{
H0 : FT = FP = Fθ0 ,

H1 : FT = FθT and FP = FθP .
(6.3)

To solve this testing problem, one focuses our attention on Weighted Logrank tests which are defined as

LRWn
(t) =

∫ t

0

Wn(s)

(
nP + nT
nPnT

)1/2 Y PnP (s)Y TnT (s)

Yn(s)

[
dNP

nP (s)

Y PnP (s)
−
dNT

nT (s)

Y TnT (s)

]
,
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where (Wn) is a sequence of adapted, bounded, non-negative and predictable weighting processes.

Hypothesis 6.1 As n→∞, nP /n→ 1/2 and nT /n→ 1/2.

Hypothesis 6.2 There exists a function w ∈ D (where D is the Skohorod space of càdlàg functions) such

that Wn(s)
a.s.−−→ w(s) as n→∞.

Theorem 6.1 Assume that Hypotheses 6.1 and 6.2 are fulfilled.
Then, under H0, LRWn

converges weakly to G0 a zero-mean Gaussian process with covariance function

σ2
θ0 : (t1, t2)→

∫ t1∧t2

0

w2(s)
πP (s−)πT (s−)

π(s−)
(1−∆Λθ0(s))dΛθ0(s).

And under H1, LRWn −
√
nµG1

(θT ,θP )
converges weakly to G1 a zero-mean Gaussian process with covariance

function σ2
(θT ,θP ) = σ2

θP + σ2
θT , where for j = T, P ,

σ2
θj : (t1, t2)→ 1

2

∫ t1∧t2

0

k2(s)

πj(s−)
(1−∆Λθj (s))dΛθj (s) and µG1

(θT ,θP )
: t→ 1

2

∫ t

0

k(s)(dΛθP (s)−dΛθT (s)).

with

k(s) = w(s)
πP (s−)πT (s−)

π(s−)
.

Sketch of the proof. The following result is well-known (see [7]) but can be shown in an elegant way
by the use of stochastic integrals convergence Theorem [9]. The key-point is the following result which
plugs the problem in a martingale environment.

Theorem 6.2 ([7]) For i = P, T the process M i
ni = N i

ni −A
i
ni is a martingale with predictable compen-

sator Aini defined by:

t→ Aini(t) =

∫ t

0

Y ini(s)dΛi(s).

In fact, it is easily seen that LRWn
can be written

LRWn
= LRMP

Wn
−LRMT

Wn
+ LRCPWn

−LRCTWn
, (6.4)

where for (i, j) ∈ {T, P}, i 6= j, and t ≥ 0,

LRMi
Wn

(t) =

∫ t

0

√
nj
n
Wn(s)

n

Yn(s)

Y jnj (s)

nj

dM i
ni(s)√
ni

, (6.5)

LRCiWn
(t) =

√
n

∫ t

0

Wn(s)
n

Yn(s)

Y ini(s)

ni

Y jnj (s)

nj

√
ninj
nn

dΛθi(s). (6.6)

The terms LRMi
Wn

express as a stochastic integral with respect to the martingale M̃ :

M̃ i
ni(s) =

M i
ni(s)√
ni

and LRMi
Wn

(t) =

∫ t

0

Hi
ni(s)dM̃

i
ni(s).

The following convergence results hold:

Lemma 6.1 • For i = T, P , martingales M̃ i
ni converge weakly to M a zero-mean Gaussian process

with covariance function given by (see [1]):

Cov(M(t1),M(t2)) =

∫ t1∧t2

0

(1−∆Λi(s))πi(s−)dΛi(s).

• For (i, j) ∈ {T, P}, i 6= j, we have:

Hi,j
n =

√
nj
n
Wn

n

Yn

Y jnj
nj

a.s.−−−−→
n→∞

1√
2

k

πi−
.

In remains to apply the convergence for stochastic integral Theorem:
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Theorem 6.3 ([9]) Let Mn a sequence of real-valued martingales and Hn a sequence of real-valued
càdlàg predictable processes such that:

• (Mn) satisfies the uniform tightness (UT) condition,

• (Hn,Mn)
L(D2)→ (H∞,M∞)

then ∫ t

0

Hn(s)dMn(s)
L(D)−−−→

∫ t

0

H∞(s)dM∞(s), (6.7)

Notice that the limit of Hi,j
n is deterministic thus the limit process is the stochastic integral of a deter-

ministic process with respect to a Gaussian martingale, it is thus a Gaussian process itself.

The terms LRCiWn
is 0 under assumption H0. Under H1, noticing that,

Yn
n

p.s.−−−−→
n→∞

π−,
Y ini
ni

p.s.−−−−→
n→∞

πi−, and
Y jnj
nj

p.s.−−−−→
n→∞

πj−,

we have:
1√
n

LRCiWn

a.s−−−−→
n→∞

1

2

∫ .

0

k(s)dΛθi(s).

which yields, after some algebra, to the value of µG1

(θT ,θP )
. �

I.3 Application to the computation of the NSS

Before launching a clinical trial, one needs to know how much resource is needed to ensure that the study
has enough power to detect the difference of interest. Assuming a type I censoring scheme, we provide a
sample size formula for testing the hypotheses (6.3) using a weighted logrank test.

Theorem 6.4 Fix the alternative hypotheses (this means the values of θP and θT ) and assume that
nT = nP = n

2 . The sample size needed to achieve a power 1− β with a type I error α, when testing the
hypotheses (6.3) using a weighted logrank test, is given by :

n = 2.
σ2

1

µ2
.(z1−α/2 + z1−β)2, (6.8)

where zγ denotes the quantile of order γ of a standard normal distribution and

µ =

∫ τ

0

w(s)
πP (s)πT (s)

π(s)
(dΛθP (s)− dΛθT (s)),

σ2
1 =

∫ τ

0

w2(s)

(
πP (s)(πT (s))2

(π(s))2
dΛθP (s) +

(πP (s))2πT (s)

(π(s))2
dΛθT (s)

)
.

I.4 Asymptotic Relative Efficiency

Theorem 6.1 insures that under H1, the asymptotic distribution of LRWn
(t) is degenerate (see [4] and

references therein). As a consequence, the weighted logrank tests are consistent and their respective
powers converge to 1 as n tends to infinity ([3, 7]). In this setting, an appropriate comparison procedure is
to investigate the behaviour of the tests under a sequence of alternatives converging to the null hypothesis
as n tends to infinity. A relevant choice of the alternatives (θPnP ) and (θTnT ) in (6.3) is

θPnP = θ0 + d

(
nT

nP (nP + nT )

)1/2

and θTnT = θ0 − d
(

nP
nT (nP + nT )

)1/2

(6.9)

where d ∈ R is a constant (see [3]) and for which, under assumptions developed below, we have a finite
constant µθ0 such that: √

nµG0

(θT ,θP )

a.s.−−−−→
n→∞

µθ0 .

This is the idea of Asymptotic Relative Efficiency (ARE) in the sense of Pitman (see [11] for a definition
and a detailed exposition).
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Hypothesis 6.3 The function θ → λθ is differentiable at θ0 and ∂λθ
∂θ

∣∣
θ=θ0 6= 0.

Theorem 6.5 ([7]) Assume that Assumption 6.3 holds and let

k(s) = w(s)
πP (s)πT (s)

π(s)
. (6.10)

Then
√
nµG0

(θT ,θP )

a.s.−−−−→
n→∞

µθ0 with µθ0 =

∫ .

0

c
k(s)

λθ0(s)

∂λθ
∂θ

(s)

∣∣∣∣
θ=θ0

dΛθ0(s).

Then one deduces the following result which expresses the Pitman’s ARE of two weighted logrank statistics
as the ratio of their respective asymptotic efficiencies (AE for short) and expresses the expression of the
limit weight function which makes the AE maximal. This results is of paramount interest for investigating
the performance of the test.

Theorem 6.6 ([7]) Let LRW 1
n

and LRW 2
n

be two weighted logrank statistics satisfying the Assumptions

6.1, 6.2, 6.3. Consider a sequence of alternatives of the form (6.3), with θPnP and θTnT defined by (6.9).
Then the Pitman ARE of LRW 1

n
with respect to LRW 2

n
is given by:

ARE(LRW 1
n
, LRW 2

n
) =

AE(LRW 1
n
)

AE(LRW 2
n
)

where AE(LRW j
n
) =

(∫ τ
0

kj(s)
λθ0 (s)

∂λθ
∂θ (s)

∣∣
θ=θ0 dΛθ0(s)

)2

∫ τ
0

(kj)2(s) π(s)
πP (s)πT (s)

dΛθ0(s)
.

(6.11)
Moreover, the weighted logrank statistic with maximal AE has a limit weight function w such that k in
(6.10) is given by:

k : s→ κ
1

λθ0(s)

∂λθ
∂θ

∣∣∣∣
θ=θ0

(s)

(
πP (s)πT (s)

π(s)

)
,

where κ is a constant.

II Fleming-Harrington’s test

Fleming-Harrington’s weight (6.1) with p = 0 and q ≥ 0 emphasizes the differences at the end of the
follow-up. It is thus a better tool than logrank’s test to detect late effect. However, it depends on a
parameter which has to be specified in the protocol. Here we evaluate the performance of this test: its
power and its sensitivity to the parameter q. These investigation can be performed by simulation studies.
This is possible thank to Theorem 6.7 below. In fact, it yields to a method for generating data optimal
for Fleming-Harrington’s test in the sense of ARE.

II.1 Optimality of Fleming Harrington’s test

In logrank testing, a useful strategy is to consider the particular pattern of ”shift assumptions up to a
change of time” for the alternative hypothesis (see [7]). This can be defined through the following family
of distribution functions:

Fθ(t) = Ψ(g(t) + θ), t ∈ R+, θ ∈ Θ, (6.12)

where g : [0,∞[→] − ∞, u+[ (with u+ ∈ R̄) is a differentiable non-decreasing function, and Ψ is a
continuous cumulative distribution function with positive density Ψ′ and an almost everywhere continuous
second derivative Ψ′′ (see [4, 5] for more details). Under a shift alternative and a relevant choice for g,
Theorem 6.6 allows to express the hazards of the treatment and placebo groups up to a shift ∆ = θP −θT :

Theorem 6.7 ([4]) Given a shift ∆, the Fleming-Harrington test with q > 0 has maximum AE to test{
H0 : λT = λP ,

H1 : λT = λP Γq(.,∆),
(6.13)

where for any t ∈ R+,

Γq(t,∆) =
Lq((Lq)−1(Lq(SP (t)) + ∆))

Lq(SP (t))
,
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and Lq :]0, 1[→ R− is a one-to-one map defined as the primitive of the function defined from ]0, 1[ to R−
by:

x→ 1

xLq(x)
with Lq(x) = −Binc(x− 1, q + 1, p),

and Binc is the incomplete beta function Binc(x, a, b) =
∫ x

0
sa−1(1− s)b−1ds.

Remark 6.1 The same reasoning can be made in the setting of early effect detection (p ≥ 0 and q = 0
in (6.1)). In this case, the function Lp (analogue of Lq) is explicit and the computations are easy. Here
the function is no more explicit and the computations are made by numerical integration techniques.

II.2 Performances of Fleming-Harrington’s test

The performances of the test have been investigated by means of empirical level and empirical power. We
simulate data according to a generating process under which the Fleming-Harrington test with parameter
qS is optimal (in the sequel, qS will stand for ”the q value used for simulating the data”) and one performs
different tests on this generated data set.

Data generating process (DGP1). Let qS > 0, c = SP (τ), a sample size n and a discrepancy rate r
defined as

r =
ST (τ)− SP (τ)

1− SP (τ)
, (6.14)

which in preventive clinical trials, is usually fixed by the investigator, the data generating process is:

• The data in the placebo group are simulated from an exponential distribution with parameter a > 0,
where a is fixed from the desired proportion of censored data:

a = − ln(SP (τ))

τ
. (6.15)

• The data in the treatment group are simulated from the hazard function

λT (t) = a
LqS ((LqS )−1(LqS (e−at) + ∆(qS)))

LqS (e−at)
(6.16)

with ∆(qS) given by

∆(qS) = θT − θP = LqS (r(1− SP (τ)) + SP (τ))− LqS (SP (τ)).

This data set is optimal for FH(qS) in virtue of Theorem 6.7.

We consider well-balanced placebo and treatment groups that is, nP = nT = n
2 . Such a sample generated

from this data generating process is denoted by S1(qS , n, r, c).

Simulation design. We simulate N = 2000 samples S1(qS , n, r, c) for each qS ∈ {0, 1, 2, 3, 4, 5}. The
logrank test and the Fleming-Harrington tests with q = qT with qT successively equal to 1, 2, 3, 4 are
applied to each of the N samples, and the empirical powers of all these tests are obtained (in what
follows, qT will stand for ”the q value used for testing the data”. In [4, 5] we investigate sensitivity
analysis of the test with respect to:

• the sample size considering several values for n (n = 100, 500, 1000, 2000),

• the censoring considering several values for c (c = 0.2, 0.5, 0.8),

• the discrepancy rate considering several values for r (r = 0.1, 0.2, 0.3).

Results. The Fleming-Harrington’s test appears to respect the nominal level. From the Table 6.1,
[4, 5] and their supplementary documents, the power of Fleming-Harrington’s test increases with n and
r, and decreases when the censoring increases. In each scenario, we note that the Fleming-Harrington
test has maximal power when qT is taken equal to qS . We also observe that the empirical power of
the Fleming-Harrington test only slightly varies when qT varies, which means that the sensitivity of the
Fleming-Harrington test to the value of qT is very small. Therefore, misspecifying qT will only have a
limited impact on the result of the test. This is a nice feature of the Fleming-Harrington test in view of
its application in clinical trials.
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qS Logrank qT = 1 qT = 2 qT = 3 qT = 4
0 0.640 0.534 0.420 0.349 0.294
1 0.620 0.743 0.713 0.670 0.632
2 0.609 0.845 0.877 0.871 0.853
3 0.593 0.873 0.912 0.914 0.914
4 0.587 0.887 0.940 0.957 0.961
5 0.588 0.910 0.962 0.974 0.980

Table 6.1: Empirical power of FH tests for various qT when the data are generated under the optimal
hypothesis for FH(qS) with c = 0.8, r = 0.2, n = 2000.

II.3 Comparison with the Constant Piecewise Weighted Logrank’s test

In the situation where late effect appears at a certain date t∗, epidemiologists have in mind to use two
logrank tests, one on the interval [0, t∗] and one on the interval ]t∗, τ ]. This can be formalized by the use
of a weighted logrank test with a constant piecewise weight function defined by (6.2). This statistic has
been studied in [12] in which we can found the analogue of Theorem 6.7. It is thus possible to generate
data under which the CPWL(t∗)’s test is optimal. In [5], we investigate this test in the very same way as
those of previous section. We notice that the CPWL’s has good performances in term of empirical level
and empirical power but is more sensitive to the value of t∗ than Fleming-Harrington’s test to the value
of q.

Comparison by means of simulations.

Data generating process (DGP2). Let t∗S , c = SP (τ), a sample size n and a discrepancy rate r (in
what follows, t∗S will stand for ”the value of t∗ used for simulating the data”). We simulate data according
to a generating process under which the CPWL(t∗S) test is optimal. For this, the data in the placebo
group are simulated from an exponential distribution with parameter a given by (6.15), and the data in
the treatment group are simulated from the hazard function

λT (t) = a(1−∆(t∗S)I{t>t∗S}) (6.17)

where ∆(t∗S) is given by

∆(t∗S) =
1

a
ln

(
ST (τ)

SP (τ)

)
1

τ − t∗S
.

We consider well-balanced placebo and treatment groups. A sample simulated from this data generating
process is denoted by S2(t∗S , n, r, c).

Simulation studies. To investigate the behaviour of the CPWL test (respectively Fleming-Harrington
test) when the data are simulated under optimal alternatives for Fleming-Harrington test (respectively
CPWL test). We consider two sets of scenarios for late differences:

• For each qS ∈ {0, 1, 2, 3, 4}, we simulate N = 2000 samples S1(qS , 2000, 0.2, 0.8). We apply to the
N samples the logrank test and the CPWL(τ.τ∗T ) with τ∗T = 0.2, 0.4, 0.6, 0.8.

• For each τS = 0, 0.2, 0.4, 0.6, we simulate N = 2000 samples S2(τ.τ∗S , 2000, 0.2, 0.8). We apply to
the N samples the logrank test and Fleming-Harrington tests with q = qT = 1, 2, 3, 4.

In each situation, we are thus able to calculate the empirical power. The Table 6.2 gives the empirical
power of the CPWL test for the various combinations of qS and t∗T (that is, for data generated under
optimal alternatives for Fleming-Harrington test).

Similarly, Table 6.3 gives the empirical power of Fleming-Harrington test when the data are generated
under optimal alternatives for the CPWL. We provide results for r = 0.2, c = 0.8 and n = 2000.

As expected, we observe from the Table 6.2 that as qS increases, the value of τ∗T which ensures the
largest power for a CPWL(τ.τ∗T ) test increases (a similar remark holds from the Table 6.3 when τ∗S
increases). We also note that the power of the Fleming-Harrington test is less sensitive to qT (for a
given τ∗S) than the power of CPWL(τ.τ∗) is to τ∗ for a given qS . This confirms our previous finding
that the Fleming-Harrington test is less sensitive to q than the CPWL test is to τ∗. In this sense, the
Fleming-Harrington test should be preferred in practice.
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qS Logrank τ∗T = 0.2 τ∗T = 0.4 τ∗T = 0.6 τ∗T = 0.8
0 0.644 0.543 0.420 0.294 0.167
1 0.650 0.715 0.719 0.624 0.425
2 0.605 0.723 0.790 0.773 0.630
3 0.578 0.707 0.831 0.873 0.783
4 0.601 0.715 0.856 0.918 0.882

Table 6.2: Empirical power of the CPWL(τ.τ∗T ) test when the data are generated under the optimal
hypothesis for FH(qS). c = 0.8, r = 0.2, n = 2000.

t∗S qT = 0 qT = 1 qT = 2 qT = 3 qT = 4
0 0.635 0.512 0.402 0.329 0.276

0.2 0.620 0.694 0.608 0.515 0.452
0.4 0.623 0.822 0.814 0.766 0.707
0.6 0.594 0.896 0.948 0.957 0.953

Table 6.3: Empirical power of FH(qT ) when the data are generated under the optimal hypothesis for
CPWL(τ.τ∗S). c = 0.8, r = 0.2, n = 2000.

Comparison by the use of the ARE

We have to be a bit more precise on the definition of ARE. If (LRW 1
n
) and (LRW 2

n
) are two sequences of

weighted logrank tests, ÃRE(LRW 1
n
, LRW 2

n
) will denote the ARE of LRW 1

n
with respect to LRW 2

n
under a

sequence of alternatives such that AE(LRW 2
n
) is maximal. The following commutativity property holds:

Theorem 6.8 ([5]) Assume that the Assumptions 6.1, 6.2 and 6.3 hold. Then

ÃRE(LRW 1
n
, LRW 2

n
) = ÃRE(LRW 2

n
, LRW 1

n
).

Suppose that T is exponentially distributed under H0 and that the right-censoring time C is of type
I. This means that under H0, π(t) = S(t) = exp(−at) and λ(t) = a, for t ∈ [0, τ [. Then, in virtue of
Theorem 6.8, for every q ∈ R+ and t∗ ∈ [0, τ [, the function:

f(q, t∗) = ÃRE(LRW q
n
, LRW t∗

n
) = ÃRE(LRW t∗

n
, LRW q

n
),

is well-defined and we have:

Theorem 6.9 Given t∗ ∈ [0, τ [, there exists a unique q(t∗) ∈ R+ such that

max
q∈R+

f(q, t∗) = f(q(t∗), t∗).

Given q ∈ R+, there exists a unique t∗(q) ∈ [0, τ [ such that

max
t∗∈[0,τ [

f(q, t∗) = f(q, t∗(q)).

Theorem 6.9 proves the existence and unicity of the maximum of the partial applications q → f(q, x)
and x→ f(q, x), but it tells nothing about the shape of the relations q → t∗(q) and t∗ → q(t∗).

Numerical methods can be used to obtain some informations about these relations. In [5], plots of the
graph of f are given and one observes that for every q (respectively t∗), there is a unique t∗ (respectively
q) such that the ARE is maximal. As an illustration, Table 6.4 provides the correspondence between t∗

and q when c = 0.8, n = 2000 and r = 0.2.

Choice of the value of q

For a given trial, our proposal is thus to:

1. choose t∗ based on a priori knowledge about the expected late effects,

88



III. AN ”OMNIBUS” TEST: MAXIMUM WEIGHTED LOGRANK STATISTIC

FH(q) q = 1 2 3 4
CPWL(τ.τ∗(q)) τ∗(q) = 0.3 0.5 0.6 0.7

CPWL(τ.τ∗) τ∗ = 0.2 0.4 0.6 0.8
FH(q) q(τ∗) = 0.5 1.2 2.4 5.9

Table 6.4: Correspondence between q and t∗ to give f(q, t∗) maximal.

2. identify and use the test FH(q) which is the closest from CPWL(t∗) in terms of asymptotic efficiency.

Remark 6.2 This procedure should be relevant only if the map t∗ → q(t∗) is not too sensitive to the
value of t∗. Graphically, this map is not a straight line, thus its sensitivity to a variation of t∗ depends
on t∗. But one can observe that the range of t∗ where t∗ → q(t∗) is sensitive is limited to a relatively
extreme domain, which ensures a good stability of the choice of q for most of the t∗ values.

Sample size calculations

In [5], we investigate a comparison of those two tests by means of the necessary sample size. We calculate
the sample size needed for testing the hypotheses (6.13) (respectively (6.17)) using Fleming-Harrington
test (respectively the CPWL test) by Theorem 6.4 applied to the specific weight. Various setting are
considered letting α = 0.05, β = 0.2, the censoring fraction: 0.2, 0.5, 0.8 and the rate value: 0.1, 0.2, 0.3.

For both tests, as expected, the sample size needed to achieve the prescribed power and level increases
as the censoring increases, and decreases when the rate r increases. Also, for Fleming-Harrington test,
the sample size decreases when q increases from 1 (the sample size is sometimes larger for q = 1 than
for q = 0). For the CPWL test, the sample size decreases when t∗ increases from 0. We observe that
the sample size needed for the Fleming-Harrington test is generally larger than for the CPWL test. The
difference stays moderate however in most of the cases.

We have shown that the choice of q value procedure does not result in an unreasonable increase of the
necessary sample size. The strategy proposed in the previous section therefore retains the nice features
of both tests (namely the interpretation of t∗ in terms of late effects and the robustness of FH(q) to the
value of q).

III An ”omnibus” test: maximum weighted Logrank statistic

The article [6] is devoted to the construction of a statistic for testing the hypothesis of equality of two
survival distributions. This statistic denoted MWL is designed to have good power against both the
late effects and proportional hazards alternatives. It is constructed as the maximum of the logrank and
Fleming-Harrington statistics.

In what follows, we investigate the asymptotic distribution of the proposed statistic and we assess its
performance via simulations studies. We also propose a sample size calculation procedure for this test.

III.1 MWL: definition and asymptotic distribution

We consider the testing problem{
H0 : FT = FP = F,

H1 : ∪mi=1 {FT = Ψqi(g + θT (i)) and FP = Ψqi(g + θP (i))},
(6.18)

where Ψq := Ψ0,q is defined by (6.12) and for a given late effect alternative of the type qi, the shift ∆(qi)
is given by ∆(qi) := θT (i) − θP (i). For every i = 1, . . . ,m, let pi be a known probability that reflects
the investigator’s degree of certainty that a late effect of type qi occurs, with

∑m
i=1 pi = 1 (note that if

qi = 0, the i-th alternative is proportional hazards). The maximum weighted logrank statistic is defined,
for ~q = (q1, . . . , qm) ∈ Nm where qi 6= qj for i 6= j and for any t ≥ 0 by

MWL~qn(t) = max
i=1,...,m

(∣∣∣∣FHqi
n (t)

σ̂qi(t)

∣∣∣∣) .
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To construct a decision rule, we need the asymptotic distribution of the process MWL~qn := {MWL~qn(t), t ≥
0} under H0.

Theorem 6.10 ([4]) Under H0, MWL~qn converges weakly to maxi=1,...,m(|G̃qi |) where (G̃q1 , . . . , G̃qm) is
a m-variate zero mean Gaussian process with covariance function defined for any i, j = 1, . . . ,m by

(Σ̃H0
i,j )2 : (t1, t2)→ E[G̃qi(t1)G̃qj (t2)] =

(ΣH0
i,j )2(t1 ∧ t2)

ΣH0
i,i (t1)ΣH0

j,j (t2)
,

with

(ΣH0
i,j )2 : t→

∫ t

0

wqi(s)wqj (s)
πP (s)πT (s)

π(s)
dΛθ0(s)

and wq(s) = (1− S(s))q.

Sketch of the proof. UnderH0, it is easily seen that (FHq1
n /σ̂q1 , . . . ,FHqm

n /σ̂qm)
L(Dm)−→ (G̃q1 , . . . , G̃qm)

where (G̃q1 , . . . , G̃qm) is as above. Moreover, the function (F1, . . . , Fm)→ maxi=1,...m (|Fi|) is continuous
from Dm to D. �

Under H1, we are not able to reach the asymptotic distribution of MWL~qn. However, we can establish
the following weak convergence result which is sufficient to derive a sample size computation algorithm
(see the section III.3 below). For k = T, P , let

Λθk : t→ − ln

(
m∑
i=1

pi(1−Ψqi(g(t) + θk(i)))

)
(6.19)

and for i = 1, . . . ,m, let

µqi :t→ 1

2

∫ t

0

kqi(s)(dΛθP (s)− dΛθT (s)) with kqi(s) = (1− S(s))qi
πP (s)πT (s)

π(s)

(ΣH1
i,j )2 :t→ 1

2

∫ t

0

wqi(s)wqj (s)

[
πP (s)

(
πT (s)

π(s)

)2

dΛθP (s) + πT (s)

(
πP (s)

π(s)

)2

dΛθT (s)

]
.

Theorem 6.11 ([4]) Under H1, the m-variate process

(FHq1
n /σ̂q1 , . . . ,FHqm

n /σ̂qm)−
√
n
(
µq1/ΣH1

1,1 , . . . , µ
qm/ΣH1

m,m

)
,

converges weakly to (G̃′q1 , . . . , G̃′qm) with (G̃′q1 , . . . , G̃′qm) a zero mean m-variate Gaussian process with
covariance function

(Σ̃H1
i,j )2 : (t1, t2)→ E[G̃′qi(t1)G̃′qj (t2)] =

(ΣH1
i,j )2(t1 ∧ t2)

ΣH1
i,i (t1)ΣH1

j,j (t2)
, i, j = 1, . . . ,m. (6.20)

Sketch of the proof. Under H1 similar arguments as those of Theorem 6.10 allow to prove that

(FHq1
n /σ̂q1 , . . . ,FHqm

n /σ̂qm)−
√
n
(
µq1/ΣH1

1,1 , . . . , µ
qm/ΣH1

m,m

) L(Dm)−→ (G̃′q1 , . . . , G̃′qm)

where (G̃′q1 , . . . , G̃′qm) is defined above. Moreover under H1, it follows from the Bayes formula that the
distribution of T in the group k (k = T, P ) is given by

PH1
{T < t} =

m∑
i=1

PH1
{T < t | Ωi} P{Ωi} =

m∑
i=1

piΨ
qi(g(t) + θk(i)),

where Ωi is the event ”a late effects of type qi occurs”. If follows that Λθk(t) is expressed as (6.19). �

Remark 6.3 It is important to notice that MWL~qn is not necessarily the optimal statistic for testing the
hypothesis (6.18).

As shown in Section II, Fleming-Harrington’s test is quite insensitive to the value of q provided q > 0.
Thus one can restrict to ~q = (0, q) and in what follows, we will consider the test MWL~qn(τ) with ~q = (0, q)
(for notational simplicity, we will denote this test by MWLq).
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III.2 A simulation study

In this section, we assess via simulations the properties of the test statistic MWLq. First, we evaluate
the level and power (against the alternatives of proportional hazards (case 1) and late effects (case 2)) of
MWLq. Then we investigate the sensitivity of MWLq to q.

Data Generating Process. The data generating process is the one described for Fleming Harrington’s
test page 86. It is important to notice that DGP1 is valuable for proportional hazards alternative q = 0
and for late effects alternative q > 0. In fact, for simulating the data in the treatment group, we consider,
for a proportional hazards alternative, the following hazard function in the treatment group

λT (t) = ae∆(0).

which is exactly (6.16) with qS = 0.

Performances of the test: Simulation Design. We consider several simulation scenarios obtained
by combining various censoring proportions (c = 0.2, 0.5, 0.8), discrepancy rates (r = 0.1, 0.2, 0.3) and
sample sizes (n = 100, 1000, 2000 with nP = nT = n/2). 2000 data sets are simulated for each combina-
tion of c, r and n. The logrank test FH0 (LR thereafter), Fleming-Harrington’s test for late effect FH3

and the proposed test MWL3 are applied to the resulting data (the nominal level is set to 0.05) and their
respective empirical powers over the 2000 data sets are obtained.

Performances of the test: Results. The proposed MWLq respects the nominal level. From Table 6.6,
we observe that the power of the tests LR,FH3 and MWL3 increases with n and r and decreases when
censoring proportion increases. We also verify that the logrank test (respectively Fleming-Harrington’s
test FH3) has maximum power in the case 1 (respectively case 2) but performs badly when late effects
(respectively proportional hazards) are present. In contrast, the proposed maximum weighted logrank
test MWL3 performs well in both cases. Its power is close to the maximum power whatever the true
alternative is. To see this, we calculate for each test the relative variation (RV) of its empirical power p
with respect to the maximum achieved power pmax. This is defined as

RV =
|p− pmax|
pmax

.

One clearly observes that the maximum weighted logrank test minimizes the relative variation in almost
every simulation scenario. Moreover, this relative variation is rather stable with respect to c, n and r,
which is not the case for Fleming-Harrington’s test (case 1) and the logrank test (case 2).

These findings suggest that the proposed maximum weighted logrank test is an appealing compro-
mise between the logrank and Fleming-Harrington tests when one wishes to test the equality of survival
distributions without assuming a priori whether the true alternative is proportional hazards or late effects.

Sensitivity to q of the test: Simulation Design. Using MWLq requires choosing q and one may
wonder whether the test is sensitive to this value. To elucidate this issue, we generate, by the use of
DGP1, 2000 data sets for each qS = 0, . . . , 8. Then for each qS , we obtain the empirical power of the
logrank test, of Fleming-Harrington’s tests FH1, . . . ,FH8, and of MWL1, . . . ,MWL8. This simulation
study is run for c = 0.8, n = 2000 and r = 0.2.

Sensitivity to q of the test: Results. The results of the sensitivity study are given in the table
6.5. We observe that using MWL3 ensures a good power whatever the true alternative is (including the
proportional hazards). Moreover, the test MWL3 is more stable (in terms of power) than FH3.
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qS LR FH1 FH2 FH3 FH4 FH5 FH6 FH7 FH8

0 0.629 0.526 0.416 0.334 5 0.289 0.256 0.229 0.211 0.192
1 0.625 0.756 0.744 0.702 0.655 0.611 0.580 0.545 0.513
2 0.609 0.839 0.864 0.863 0.850 0.835 0.812 0.781 0.754
3 0.623 0.869 0.919 0.925 0.922 0.910 0.901 0.890 0.87
4 0.626 0.891 0.943 0.959 0.961 0.963 0.961 0.960 0.953
5 0.608 0.911 0.963 0.976 0.978 0.982 0.980 0.979 0.976
6 0.597 0.916 0.964 0.982 0.987 0.989 0.991 0.991 0.990
7 0.562 0.910 0.962 0.978 0.986 0.987 0.987 0.986 0.986
8 0.564 0.909 0.970 0.988 0.993 0.995 0.996 0.996 0.996

qs MWL1 MWL2 MWL3 MWL4 MWL5 MWL6 MWL7 MWL8

0 0.620 0.606 0.589 0.584 0.582 0.579 0.571 0.571
1 0.729 0.731 0.720 0.692 0.679 0.671 0.657 0.650
2 0.797 0.828 0.826 0.816 0.801 0.784 0.773 0.758
3 0.833 0.881 0.897 0.896 0.888 0.880 0.875 0.859
4 0.864 0.923 0.936 0.946 0.945 0.943 0.940 0.934
5 0.880 0.947 0.959 0.967 0.968 0.970 0.967 0.968
6 0.887 0.950 0.971 0.978 0.983 0.984 0.983 0.983
7 0.874 0.946 0.967 0.974 0.977 0.978 0.979 0.978
8 0.881 0.954 0.977 0.985 0.989 0.988 0.989 0.990

Table 6.5: Sensitivity to q of FHq and MWLq. On each line, the data are generated using the
procedure described in the section III.2, by using the value qS (qS = 1, . . . , 8). The empirical power of
LR, FHq and MWLq (q = 1, . . . , 8) are obtained based on 2000 samples (n = 2000, c = 0.8 and r = 0.2).
The values in bold represent the maximum over the lines.
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III.3 Sample size calculation

Several sample size formulas have been proposed for weighted logrank tests (see for example [8, 10, 2]).
In [6], we derive a sample size formula for the test MWLq. This formula being implicit, we describe a
numerical algorithm for evaluating the necessary sample size. The proposed methodology is evaluated
in a numerical study. First, we obtain the necessary sample size for testing the hypothesis (6.18) with
MWLq under various settings defined by the censoring proportion c (c = 0.2, 0.5, 0.8), the discrepancy
rate r (r = 0.1, 0.2, 0.3) and the probability p1 (p1 = 0.2, 0.5, 0.8) (p1 reflects the investigator’s degree of
certainty that proportional hazards occur). Then, we compare the sample sizes required by the logrank,
Fleming-Harrington and maximum weighted logrank tests in a typical setting of a prevention trial that
is, we consider c = 0.8 and r = 0.2 with α = 0.05 and β = 0.2. p1 is taken equal to 0.5, reflecting the
fact that no preference is given to the proportional hazards or late effects alternative. We investigate the
sensitivity of the necessary sample size to the probability p1.

As may be expected, the necessary sample size for MWLq increases when the censoring proportion
increases and when the discrepancy rate r decreases (smaller late effects require more patients to be
detected). Note also that the necessary sample size for MWLq decreases when q increases (as for Fleming-
Harrington’s test). The necessary sample size also increases when p1 increases: as the suspicion of
proportional hazards increases, one needs more patients to decide whether proportional hazards or late
effects occur. Finally, the necessary sample size for MWLq is larger than for FHq but the difference stays
moderate.

IV Application: the GuidAge study

GuidAge is a randomized parallel-group double-blind trial registered to ClinicalTrials.gov under the
number NCT00276510. Its primary outcome is the conversion of elderly subjects to probable Alzheimer’s
disease. The setting of the trial is as follows:

• it includes french elderly subjects (≥ 70 years) who are free of dementia but have expressed a
spontaneous memory complaint to their general practitioner

• the patients are randomized to either a preventive daily 240 mg dose of a standardised ginkgo biloba
extract (EGb761) or a placebo

• the patients are followed during 5 years by their physician and in expert memory centres (712
physicians and 25 memory centres participate in the trial)

A former analysis of the trial was based on the logrank test. Assuming that under EGb761, the
conversion rate from memory complaint to Alzheimer’s disease is 25% less than under the placebo, the
Alzheimer’s disease-free rate after a 5-years long follow-up is equal to 89.63% under EGb761 and to
86.18% under the placebo. The total sample size (n = 2800) was calculated by letting α = 0.05, β = 0.2
and by taking account of the drop out rate over the 5 years of follow-up. The result of the logrank test
was negative, yielding the conclusion that there is no significant effect of the EGb 761.

However, EGb761 is a preventive treatment whose efficiency may require some preliminary exposure
before an effect occurs. In that case, we rather suggest to use the statistic MWL3 to test for a treatment
effect. We set p1 = 0.5 that is, we do not favor any of the proportional hazards or late effects alternatives
(note that under this setting, the necessary sample size is n = 2351 and taking care of the 5% drop-out
rate, it is n = 3001). The results of the analysis are given in the Table 6.7. The proposed MWL3 has
a p-value equal to 0.008 and from this, we conclude to a significant effect of the EGb761. Since the
logrank test is not significant, this effect should be a late effect (for conciseness, we also investigated
Fleming-Harrington’s tests FHq (q = 2, 3, 4) and the maximum weighted logrank tests MWLq with q = 2
and 4. All these tests appear to detect a late effect of the EGb761).

Logrank FH2 FH3 FH4 MWL2 MWL3 MWL4

Test statistic 1.027 2.562 2.814 2.882 2.562 2.814 2.882
p-value 0.304 0.010 0.004 0.003 0.018 0.008 0.006

Table 6.7: GuidAge study. Various statistics and their p-values (in bold: significant results at the level
5%).
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de martingale. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 328(11):1081–
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Chapter 7

Various elements for analysing
mediation and evolution in
Epidemiology∗

This chapter is a summary of the results obtained by Dominique Dedieu and Benôıt Lepage during their
Ph.D. theses I have supervised with Pr Thierry Lang (INSERM Unit 1027). Benôıt Lepage defended his
Ph.D. June 21th, 2013 and the examination board was composed of Prof. Roch Giorgi (University of
Marseille - referee) - Prof. Bruno Falissard (University of Paris XI - referee) - Prof. Daniel Commenges
(Bordeaux Institute for Public Health) - Prof. Paul Landais (University of Montpellier) - Prof. Thierry
Lang and myself (University of Toulouse III). Unfortunately, Dominique Dedieu stopped, for personal
reasons, his thesis at the end of the first year.

As explained in the Introduction, the main skill of Thierry Lang’s team is the so-called life-course
approach of epidemiology. To deal with this approach, birth cohorts are of paramount interest. The one
used for our investigations is the National Child Development Study cohort (NCDS) conducted in the
UK by the Centre for Longitudinal Studies [19] . This study initially included all live births between 3
and 9 March 1958 in England, Wales and Scotland (just over 17,000 births). Surveys were subsequently
conducted on the cohort members at ages 7, 11, 16, 23, 33, 42, 46 and 50 years resulting in a large number
of variables (about 23,000). In the introduction one points out that this methods generates statistical
methodology issues we aim to overpass.

• A large number of variables, not necessary of the same kind have to be considered. The model must
take that complexity into account as well as the longitudinal nature.

• The collection of declarative variables over several decades yields to measurement errors.

• Monitoring data on 50 years of life necessarily induce missing data.

• The model must be able to describe the articulation of causal factors that are linked over time
(mediation). That question of the evaluation of a causal effect by an observational study is the
subject of an extensive literature [17].

The chapter organizes as follow. Section I is devoted to the approach followed by Dominique Dedieu
by means of Mixed Markov Hidden Models. MMHM allows to deal with mediation seen as the transition
from a state to another. Notice that these models tell nothing about causality. The ”Hidden” aspect
permit to consider error in declaration while the use of mixed model for transition include the error in

∗ Publications related to this chapter:

[7] Dominique Dedieu, Cyrille Delpierre, Sébastien Gadat, Benôıt Lepage, Thierry Lang, Nicolas Savy. Mixed Hidden
Markov Model for Heterogeneous Longitudinal Data with Missingness and Errors in the Outcome Variable. Journal
de la Société Française de Statistiques, 155(1), pp. 73-98, 2014.

[13] Benôıt Lepage, Dominique Dedieu, Sébastien Lamy, and Nicolas Savy, Thierry Lang. Using directed acyclic graphs
for change score analysis. Epidemiology, 2013. In revision.

[14] Benôıt Lepage, Dominique Dedieu, Nicolas Savy, Thierry Lang. Estimation of a controlled direct effect when an
effect of the exposure confounds the mediator-outcome relationship: a comparison of different methods. Statistic
Methods for Medical Research, 2013. Forthcoming.
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measurement. Section II focuses on the works of Benôıt Lepage and deals with the so-called structural
causal model, described by Pearl [18]. It is the combination of features of the potential outcome framework
of Rubin, of path analysis and of structural equation modelling. In the longitudinal context, marginal
structural models have been shown to be useful to describe and evaluate causal effects.

I Approach by Markov Models

I.1 Generalities

Langeheine in [11] stresses that latent classes models are a general solution to successfully cope with
measurement errors. In those works, a true latent (or hidden) quantity is distinguished from the mea-
sured (or declared) quantity. In a longitudinal framework, observations form a stochastic process and
these observations depend on a second hidden process. Hidden Markov Models (HMM) belong to such a
type of longitudinal models and has been intensively applied for analysing problems with measurement
errors. The real health condition is described through a continuous hidden Markov process, and HMM
allows to consider misclassification errors. Furthermore, HMM may help to deal with Missing Non At
Random (MNAR) data. The corresponding model, fitted to clinical trial data, includes two extended
Markovian processes for the outcome (which is partially hidden) and for the missingness indicator (which
is completely observed), respectively, the latter being related to the former.

The model introduced in [7], incorporates both data missingness and error measurement. Finally,
monitored cohort over the long term (frequently encountered in life-course epidemiology) may raise the
problem of time heterogeneity in the response process as well as in the health condition transition, or
even in the outcome definition. The outcome variable may concern present-day health conditions as well
as certain past health-related events, which is inconsistent with the usual Markov assumption. This is
the case in the NCDS 1958 cohort. It seems thus interesting to extend the usual Markov framework to
take past events into account.

In the multi-state model, which includes HMM, Commenges notices in [5] that the assumption of
homogeneous state transitions was very stringent, while in most cases the studied population is hetero-
geneous with regard to some relevant characteristics. He defines a model for state transitions involving
observed covariates. However Commenges also observes in [4] that there may remain an unexplained
heterogeneity following the adjustment for available covariates. This requires the introduction of random
effects into the transition models. In this context, [1] introduced MHMM (Mixed Hidden Markov Models)
which was applied to multiple sclerosis data.

I.2 The model

Each subject is described by a stochastic process (St)t≥0 which quantifies the health state of the subject.
Of course, (St)t≥0 is not directly observed and is only known through the subject’s declarations, which
is represented using another stochastic process (Yt)t≥0. The process (Yt)t≥0 is related to the real hidden
health state (St)t≥0. Fig. 7.1 gives an example of such a model applied to NCDS’ 58 cohort. The results
and the interpretations are presented in [7].

d = 1 d = 2 d = 3 d = 4 d = 5

Age (year) 23 33 42 47 51

Sn,1 S∗
n,2 Sn,3 Sn,4 Sn,5

Y ∗
n,1 Y ∗

n,2 Y ∗
n,3 Y ∗

n,4 Y ∗
n,5

Figure 7.1: Study of cancer with the NCDS 1958 cohort by means of MHMM. Y ∗n,d: response of the
subject n at date d and Sn,d or S∗n,d: true health state of the subject n on each time interval.
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Longitudinal structure

We consider the evolution of N independent subjects. We assume that the time 0 ≤ t ≤ T is discretely
sampled into a finite set of intervals ]td; td+1], with 1 ≤ d ≤ D such that t0 = 0 and tD+1 = T . The
intervals are assumed to be known at the beginning of the study. Hence, we denote by (Sn,d)1≤n≤N,1≤d≤D
(resp. (Yn,d)1≤n≤N,1≤d≤D) the real health state (resp. the observed declarations) of subject n 1 ≤ n ≤ N
at ”time” d. The real health state Sn,d is then described according to three possible states {0, 1, 2} which
code the situation of subject n at time d:

• if the disease is absent and the subject is alive in ]td; td+1], then Sn,d = 0,

• if the disease is present at any time of ]td; td+1], then Sn,d = 1,

• if the subject dies in ]td; td+1], Sn,d = 2.

The process (Yn,d)1≤n≤N,1≤d≤D is described according to four possible states {0, 1, 2, 3}. Each of these
states depends of course of the declaration of the subject n:

• Yn,d = 0 if no disease is signalled along ]td; td+1],

• Yn,d = 1 if the disease has been stated during ]td; td+1],

• Yn,d = 2 if no response is obtained in ]td; td+1],

• Yn,d = 3 if the subject dies during ]td; td+1].

For any subject n and any time d, the response Yn,d randomly depends on covariates. The observed
ones are denoted (Xn,d)1≤d≤D, 1≤n≤N and the unobserved ones (Wn)1≤n≤N since there are supposed
homogeneous (independent on d) for the sake of simplicity. It is then natural to assume the following
filtration properties

• Sn,d is independent of {Sn,d−k, 1 < k ≤ d− 1} conditionally to (Sn,d−1,Xn,d−1,Wn),

• Yn,k is independent of {Yn,d, d 6= k} conditionally to (Sn,k,Xn,k,Wn).

According to these several assumptions, we then obtain N Markov processes (Sn,d)d=1,...,D which form,
along with the (Yn,d)d=1,...,D processes, a MHMM. We will omit in the sequel the conditioning for covari-
ates Xn,1, . . . ,Xn,D for clarity purposes.

Real state transitions model

These transitions concern the evolution of the true health state (Sn,d)1≤n≤N,1≤d≤D and are embedded
in a Markov dynamic. Our model implies a time heterogeneity on stochastic behaviours for each of the
subject introduced through the use of some covariates Xn,d (observed) and Wn (unobserved). These
covariates directly influence the formal transition:

fd(s, q,Xn,d,Wn, θ
trans) = Pθtrans(Sn,d+1 = q |Sn,d = s,Xn,d,Wn). (7.1)

Covariates Xn,d and Wn are taken into account by the use of a General Linear Model (GLM). More
precisely, let us denote θtrans a the set of parameters θtrans = (θtrans,X, θtrans,0) which stands for the
influence of covariates X as well as the random effects that do not depend on the covariates. For each
admissible transition s 7→ q, θtrans,Xs,q is an unknown matrix which acts on the observed covariates Xn,d

at time d on subject n. Second, the set of parameters (θtrans,0s,q,d )s,q,d stands for the natural transition from
state s to state q at time d. At last, the covariates (Wn)1≤n≤N model the individual randomness from
one subject to another and each Wn is also a vector of R7. A linear predictor ηs,q,d is defined as

∀(s, q) ∈ {0, 1} × {0, 1, 2},∀d ≥ 0, ηs,q,d(Xn,d,Wn) = θtrans,0s,q,d + X′n,dθ
trans,X
s,q + (Wn)s,q , (7.2)

and the transitions probabilities are defined by a multinomial logit model with η:

∀(s, q) ∈ {0, 1} × {0, 1, 2},∀d ≥ 0, fd(s, q,Xn,d,Wn, θ
trans) =

exp(ηs,q,d(Xn,d,Wn))∑
i exp(ηs,i,d(Xi,d,Wi))

. (7.3)
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Response model

We describe here the probability to obtain response Yn,d = q from a real state Sn,d = s. The transition
probabilities mainly rely on an emission parameter θem. From any state of {0, 1}, four responses are
possible, each of them being related with an emission (or response) probability. Each emission has a
specific interpretation :

• Response Yn,d = 1 (disease) from a state Sn,d = 0 (no disease) is considered as an error.

• Response Yn,d = 0 from a state Sn,d = 1 has several interpretations :

i) Subject n may not be ill when the question was asked and became sick just after or while the
collecting of the data. If the question being asked concerns only the current health state, as it
could apply to long-term observational cohorts, the information is lost.

ii) The diagnostic has not been told to the subject.

iii) The subject may present a denial behaviour.

• Non-response Yn,d = 2 is only possible from Sn,d ∈ {0, 1}

• Of course, Yn,d = 3 if and only if Sn,d = 2.

The parameter θem quantify exactly the randomness in the response emission :

gd(s, y,θ
em) := P(Yn,d = y |Sn,d = s) = θems,y,d. (7.4)

Remark 7.1 It would also be possible to describe a more general emission process which may involve the
unobserved covariates Wn through a GLM following the same strategy already used for the definition of
the functions fd and ηs,q,d introduced above.

Initial state and unobserved covariates

We end the model statement by the description of the initial values of (Sn,1)1≤n≤N . In this view, we
assume without loss of generality that for any subject n, Sn,1 belongs to {0, 1} (initially dead subject
won’t be considered!). We then define θini as

θini,0 = P(Sn,1 = 0) θini,1 = P(Sn,1 = 1) = 1− θini,0.

Extension to retrospective data.

In some longitudinal studies, the subjects may be asked questions concerning both their present health
state and their past health state. In this section, one presents an adaptation to the MHMM described
in the previous section in order to analyse such data. We assume that at a certain (but not necessarily
any) date t the subjects are asked two questions : ”are you ill now ?” and ”have you ever been ill ?”.

Let fix n ∈ {1, . . . , N} a subject. We denote Y ∗n,d the random response variable in the date interval
d. We assume that Y ∗n,d may only stand for the first question, or only for the second question, or may
gather the response to both questions. In this latter case, we assume that the ”non-response” level stands
for both, and then we obtain six levels ((0,0), (0,1), (1,0), (1,1), the non-response levels (.,2) and (2,.)
corresponds, by assumption, to one level and level 3 (death)). (0, 0) tells us that the patient is not ill and
have not been ill. The Markov hypothesis does no longer stand as Y ∗n,d depends not only on the current
state Sn,d but on the complete state history (Sn,1, ..., Sn,d). Let us assume that Y ∗n,d is independent from
Y ∗n,k (k 6= d) conditionally to S∗n,d = (Sn,d, S

′
n,d−1), with S′n,d−1 adopting value 1 if there exists some

k < d with Sn,k = 1 (with in addition Sn,l 6= 2 for all l < d).

We prove in [7] that the processes (S∗n,d)d=1,...,D and (Y ∗n,d)d=1,...,D form a HMM. It is then possible to
consider (S∗n,d)d=1,...,D as a five-states Markov process taking values in {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)}.
Notice that, due to the definition of the state memory, some state transitions are deterministic. Indeed,
the transitions (0, 0)→ (·, 1) and (0, 1)→ (·, 0) are not possible.
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I.3 The estimation procedure

Performing estimations for such mixed effects models is challenging, particularly due to the impossibility
of computing the expected likelihood in a closed form expression, which generally implies expensive com-
putational methods. Different approaches to the problem of discrete-time MHMM parametric estimation
have been developed recently. In [1] author performs such estimations by the use of MCEM algorithm.
In [2] authors develop, on a general framework, a stochastic EM approach (SEM). Using a SEM algo-
rithm instead of performing, for example, a numerical integration. Delattre, in [8], makes use of SAEM
algorithm a variant of SEM algorithm developed in [9, 12]. The convergence of SAEM has been studied
by many different authors (see [12] and references therein) and is established under some assumptions
especially in the context of the exponential family. These assumptions are valid for the MHMM emission
model used by Delattre but no more in our multinomial logit setting. In the context of [7], we prefer
to perform a punctual SEM estimation by simply averaging on the stochastic estimations. Moreover,
Delattre proposes to simulate all ”individual” transition parameters (missing covariates and real health
states). Here the Metropolis-Hastings sampler may have a heavy cost as regards time computation (as
it is an iterative procedure which must be performed for each subject). We prefer to compute and exact
integration over the real health state (their number is limited in our model) and to use the simulation
step of the SEM for the missing covariates. Details on the estimation procedure are given in the core of
[7].

I.4 Results

In [7], we focus our attention on the MHMM described by Figure 7.1. We have made three kinds of
investigations on this model.

• We investigate the quality of our estimation procedure by means of simulation studies.

• We investigate the robustness of the model by means of simulation study on perturbed models.

• We applied the model on NCDS’ 58 dataset to put in light the mediated effect of an early social
class on cancer through a smoking behaviour.

The results on simulated datasets are acceptable both in terms of estimation quality and in terms of
model robustness. However, the method for estimating the effects of factors influencing the occurrence of
this endpoint are difficult to implement, especially when the number of subjects is important. Moreover,
despite the implementation of a stochastic algorithm, the computation time is very long and prevent full
exploitation of the data. To overpass this difficulty one considers sub-samples what could yield to an
underestimation of the variability of the estimates. The strategy used here could have been improved
but, unfortunately, Dominique Dedieu decided to stop these investigations.

II Approach by Causal Structural Equations

In the context of observational studies, various methods can be proposed to estimate causal effects.
The usual epidemiological methods such as analysis of a sub-sample of cases - paired control (”nested
case-control study”) may be used. But in a context of observation, for which exposure factors are not
randomized, the recent literature dealing with the assessment of causal effects up most often in the context
of the theory of ”potential outcomes”. Identifiability of the causal effect can be investigated by the use
of Directed Acyclic Graphs (DAG).

II.1 An utilization of DAG to identify a causal effect in evolution study

In clinical epidemiology, we sometimes need to estimate the effect of an exposure of interest E (for example
an anti-hypertensive treatment) on change from baseline of a time-dependent quantitative outcome (for
example blood pressure at time t, denoted BP(t)). The exposure E is observed at the beginning t1 of the
study (although it may have occurred before the beginning of the study), and a change score is defined
by the difference ∆ BP in blood pressure between the beginning t1 and the end t2 of the study:

∆ BP = BP(t2)− BP(t1).

Two methods of estimating the effect of E on change from baseline have been regularly discussed: comput-
ing a linear regression of ∆ BP adjusted for baseline value BP(t1) (sometimes called analysis of covariance)
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or unadjusted for baseline value (sometimes called ”simple analysis of change score”). For the individual
i (i = 1, . . . , I), the linear regression of ∆ BP on E adjusted for BP(t1) is:

∆ BPi = µ+ τBP1 BP(t1)i + τEEi + εi,

It is known that the regression coefficient τE can also be estimated using a linear regression of BP(t2) on
E adjusted for BP(t1):

BP(t2)i = µ+ (τBP1 + 1) BP(t1)i + τEEi + εi,

The linear regression of ∆ BP on E unadjusted for BP(t1) is:

∆ BPi = µ′ + τ ′EEi + ε′i,

The causal effect of E on ∆ BP is estimated by the regression coefficients τE or τ ′E according to the model
chosen.

In some situations, the models can lead to very different results. This paradox was pointed out by
Lord in the case of a non-randomized study exploring the effect of sex on weight change. In the literature,
several factors have been discussed to choose the best model, for instance:

• Design of the study. Randomized - non-randomized [23] - cut-off design [22].

• Regression to the mean [23, 10].

In [13] we propose to guide the choice of a statistical model (linear regression adjusted or unadjusted
for baseline outcome level) to estimate the causal effect of an exposure on change, using DAGs to represent
each possible combination of study designs, regression to the mean phenomena. We used graphical rules
and path analysis principles to interpret DAGs. As a complement, we illustrated each situation by
simulated data compatible with the causal structure of the DAG and we estimated the effect of the
exposure on change using both linear regressions.

For a sake of simplicity, we will deal with a binary exposure (E = 1 for exposure versus E = 0 for
non-exposure). We also focused on the situation with a complete and equal follow-up for every participant
(in the case of variable follow-up, one would have to discuss additional hypotheses about independence
of the length of follow-up with other variables in the system). Four situations has been considered (see
Figure 7.2 for the DAGs):

• Figure 1 represents four causal structures corresponding to randomized trials. The exposure E is
independent of the baseline blood pressure BP(t1) because of randomization.

• In Figure 2 the four initial causal structures have an additional baseline confounder (or a set of
confounders) C which influences the exposure as well as BP(t1) and BP(t2).

• In Figure 3, we add a causal influence from the observed blood pressure BP∗(t1) (defined below) to
the exposure E in the causal structures of Figure 1. For example, an anti-hypertensive treatment
may be more frequently given to patients with higher observed blood pressure at the beginning of
the study. Such a causal structure also corresponds to the ”cut-off design” mentioned by Senn.

• In Figure 4, the causal structures differ from the previous ones by an exposure which starts before
the beginning of the study and influences both BP(t1) and BP(t2) in exposed subjects, as in the
examples given for instance in [10].

And for each situation X = 1, 2, 3 or 4, we enrich the situation by

• the possibility that BP(t1) influences ∆ BP, for example through an intermediate mechanism (rep-
resented by the variable M in Figures XC and XD).

• adding the age at the beginning of the study (age(t1)) which can be used to model the natural
evolution of blood pressure with ageing in Figure XB and XD.

The variable R is a set of pre-existing individual characteristics which continuously influences blood pres-
sure.

We used the notation BP∗(t) and ∆ BP∗ for the observed blood pressure and change values. The
observed blood pressure is influenced by the unmeasured (latent) blood pressure BP(t1) and BP(t2)
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Figure 7.2: DAGs of the causal structures.

and intra-individual terms denoted UBP1
and UBP2

(which can include intra-individual variability and
measurement error). We assume that for j = 1, 2,

BP∗j (t)i = BPj(t)i + (UBPj )i

where UBPj are independent exogenous variables from a Gaussian distribution of mean 0 and variance σ2
U .

The analyses of these DAGs together with paths analyses allow to generate data in accordance with the
causal structure of the DAGs. In each scenario, 1050 samples of size 500 have been simulated according
to the causal structures represented in Figures 1 to 4. The values are calculable and the bias for each
method can be estimated. The results are ordered in Table 7.1.
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Figure 1 Figure 2
Sub- adjusted unadjusted adjusted unadjusted
figure for BP∗(t1) for BP∗(t1) for BP∗(t1) for BP∗(t1)
A unbiased unbiased biased unbiased

B unbiased unbiased biased unbiased

C unbiased unbiased biased biased

D unbiased unbiased biased biased

Figure 3 Figure 4
Sub- adjusted unadjusted adjusted unadjusted
figure for BP∗(t1) for BP∗(t1) for BP∗(t1) for BP∗(t1)
A unbiased biased biased unbiased

B unbiased biased biased unbiased

C unbiased biased biased unbiased

D unbiased biased biased unbiased

Table 7.1: Bias in the estimation of the effect of the exposure E on blood pressure change (∆ BP), using
linear regressions adjusted or unadjusted for BP(t1), in simulated datasets compatible with the causal
structures represented in Figures 1 to 4.

II.2 An utilization of causal structural models in analysis of mediation

Generalities on mediation analysis

Mediation analyses aim to assess the role of intermediate factors (or mediators, denoted by M) in the
causal relationship between an exposure X and an outcome Y (Figure 7.3).

X Y

M

βY
X

βM
X βY

M

Figure 7.3: DAG for the representation of a classical causal situation in mediation analysis.

Currently, different methods exist for a statistical analysis of those mediation paths.

• In the social, psychological or medical literature, most mediation analyses have been based on two
or three linear models: the total effect of the exposure is estimated as the effect of the exposure
X on the outcome Y , the direct effect is estimated by the residual association between X and Y
adjusted for the mediators and the indirect effect is the difference between total and direct effects.
The indirect effect may also be estimated by the product of the path coefficient of X on M and the
path coefficient of M on Y . It is easy to handle for models such as Figure 7.3.

• Structural Equations Models (SEM) have been proposed and used to analyse more complex the-
oretical models (several exposure factors, several mediators,...). SEM define a priori relationships
assumed to be causal between variables (observed or not) and allows to estimate three kinds of
effects:

– direct effects which measure the effect of a variable on the events which does not pass through
the identified mediation factors,

– the indirect effects which are represented by the set of paths mediated by at least one inter-
mediate variable between events and variable of interest.
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– total effect which is the sum of direct effect and the various indirect effects.

Structural equations Models are related with Directed Acyclic Graphs (DAG) by Pearl [15]. Thanks
to this theory, one can underscore a graphical criterion (”d-separation”) which allows to detect
fitting bias in structural schemes.

Remark 7.2 This approach identifies, in causal chain, points that explain the largest share of
variability and therefore where it is better to act in order to break the chains.

• In [25], analysis of mediation is considered from counter-factual models of causality. Those methods
spotlight several limits to SEM especially when one moves away from the assumptions of normality,
of linearity, or in the presence of qualitative variables or interaction between the initial exposure
and the mediating factor, or in some situations confusion. In contrast, the concept of ”controlled
direct effect” [16] defined in the framework of the theory of potential outcomes allows to describe
such situations. Several methods are proposed to estimate those controlled direct effects: ”Inverse
probability of Treatment Weighted” (IPTW) method [21, 24], ”g-computation” [20], ”sequential
g-estimation” [26], ”structural nested models” [21]...

Theory of potential outcomes allows to define mediated effects in a more general way than the one
of SEM [26]. Specific definitions of direct and indirect effects have been given in the literature on causal
inference. Based on the notions of counter-factual and using the potential outcome notation: Yx(u) is the
value Y would take in the statistical unit u under a given exposure X = x; Mx(u) the value of M under
the exposure X = x; and Yxm(u) the value of Y under the exposure X = x when M is controlled at the
level M = m. The controlled direct effect (CDE) is the effect of the exposure that would be observed if
the mediator was controlled at the value m in the whole population. The average CDE when M is fixed
at m is defined by:

CDEm = E [Yxm]− E [Yx∗m]

where X = x∗ is the reference value. In order to estimate a CDE without bias in an observational study,
some unmeasured confounding assumptions are necessary and estimation based on adjusting for the
mediator can be inappropriate. Graphical conditions for the identification of CDEs have been described
by Pearl [17].

Analysis of a biased case

When estimating the CDEm with a regression of X on Y adjusted for M , the bias comes from conditioning
on the collider M (X →M ← Z). In [14], we focus on the causal structure defined by the DAG in Figure
7.4 which is a standard situation in Epidemiology. In this situation, the estimation is known for being
biased. One explores the size of the bias when varying the effect of edges of the DAG in simulated data
sets as well as in a real data (IHPAF study) example and compares methods of estimations. We mainly
focused on the case of no unmeasured confounding, where functional relations between variables are linear
with no interactions or effect modifications.

To do this, several configurations of the causal structure has been explored by varying the intensity
of each arc of the paths between X to Y . The controlled direct effect of X on Y (for a fixed level of
the mediator M) has been estimated for each simulated sample by different methods. One compare five
methods of estimating the average CDEm.

• Simple adjusting for M .

• Marginal Structural Models estimated via IPTW [21]. That is used to estimate the marginal
expected value of the potential outcomes Yxm when we fix the exposure and the mediator to X = x
and M = m.

• Marginal Structural Models estimated via IPTW with truncated weights [3]. This
method has been suggested to decrease the standard error (SE) of the estimated causal effects
resulting from extreme weights in MSMs, especially when X and M are continuous. However,
weight truncation can also increase the bias of the estimation. In [3] weights were truncated at the
1st and the 99th percentiles of the weight distribution.

• Sequential g-estimation for structural mean models [26].

• g-computation with Monte Carlo simulation [6].
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Figure 7.4: DAG of the situation of interest.

We computed the 95% CI of the CDEs using a non-parametric bootstrap method, based on 3000
bootstrap samples. The five above-mentioned estimation methods were applied in every bootstrap sample
and the bounds of the 95% CI were calculated from the distribution of the CDE bootstrap estimates.

Results.

The results of this work illustrate that the sequential method or the g-computation show the best guar-
antees of performance in both case exposure variables and / or variables of mediation continuous and
binary. The structural equation models gives similar results but are less well suited to face qualitative
judgement criteria or to take into account possible interactions between exposure and mediators. Esti-
mated by inverse weighting, is of comparable quality to the g-computation in case of exposure variables
and binary mediation. In a situation with several mediating variables and several intermediate confusion
factors measured repeatedly during the follow-up, as is the case in our analysis on the relationship be-
tween adversity and future health status data from cohort 58, the computation method of g-computation
appears as the most suitable.
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in the outcome variable. Journal de la Société Française de Statistiques, 155(1):73–98, 2013.

[8] Maud Delattre. Inference in mixed hidden Markov models and applications to medical studies.
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Chapter 8

Various results in interaction with
Biology

This chapter briefly presents some papers in interaction with biology. The first section is a summary of
a series of three articles [8, 9, 12] written during my first position in Quimper. These articles are the
result of a collaborative works with the Laboratory of Applied Microbiology of Quimper and deal with
predictive microbiology. The main lines of that topic are described below. The second section presents in
a few words the results obtained in collaboration with Prof. Antoine Blancher, director of the Molecular
Immunology Laboratory of Toulouse. In the two papers [1, 4] we have written, statistics come support
the arguments of geneticists.

I Predictive microbiology∗

The aim of predictive microbiology is to describe the evolution of bacterial populations in food. The
extreme complexity of the behaviour of bacteria associated with worries of risk management make this
modelling difficult. It is usually done in two steps:

• Primary modelling: one describes the number of bacteria as a function of time N(t) = fθ(t) where
θ is a family of parameters.

• Secondary modelling: on expresses θ as a function of environmental parameters.

The constraints of predictive microbiology is to get simple models whose parameters have a biological
reality and which fit well to the observed data.

Various primary models can be apprehended. In [8, 9] we worked on heat treatment this means t is to
be understood as the heat treatment duration (not time). In [12] we worked on regrowth after thermal
treatment t is the time after this treatment.

I.1 Primary models

Primary model for bacteria growing

In [12], we study the impact of heating treatment on bacteria regrowth, focusing on the lag time. It is a
well-known fact that the curve (t, logNt) can be decomposed in three steps: an initial constant one, an
exponential one and a late constant one. The exponential period is characterised by the maximal growth

∗ Publications related to this paragraph:

[8] Louis Coroller, Ivan Leguerinel, Eric Mettler, Nicolas Savy, and Pierre Mafart. General model, based on two
mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Applied
Environmental Microbiology, 72(10):6493–6502, 2006.

[9] Olivier Couvert, Stéphane Gaillard, Nicolas Savy, Pierre Mafart, and Ivan Leguérinel. Survival curves of heated
bacterial spores: effect of environmental factors on Weibull parameters. International Journal of Food Microbiology,
101(1):73–81, 2005.

[12] Stéphane Gaillard, Ivan Leguérinel, Nicolas Savy, and Pierre Mafart. Quantifying the combined effects of the
heating time, the temperature and the recovery medium pH on the regrowth lag time of bacillus cereus spores after
a heat treatment. International Journal of Food Microbiology, 105(1):53–58, 2005.
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rate µmax, slope of the tangent of the curve at the inflection point. Lag time λ is usually defined as the
intercept of this tangent with the horizontal line passing through logN0. The main topic of this paper is
to deal with the secondary model, see the brief summary in section I.3

Primary model for heating treatment [9]

The first order kinetic model describing inactivation of micro-organisms is generally expresses by:

Nt = N0 exp(−kt), or logNt = logN0 −
t

D
, (8.1)

where N0 is the initial number of cells, Nt the number of surviving cells after a duration of heat treatment
t and k is the first order parameter. The second expression is preferred because the classical D-value
presents a simple biological significance: time that leads to a 10-fold reduction of surviving population
and is easily estimated from a simple linear regression. At least up to 2005, this concept governed canning
process calculation and was the one currently used in Food and Pharmaceutical Industry. However, in
many cases, the survival curves of heated bacteria does not present a log linear relation: a concave or
upward concavity of curves has frequently been observed [6]. So the bacterial heat resistance cannot
be evaluated from the classical D-value. Consequently, many authors proposed models. These models
show accuracy but are either over parametrized or have parameters without any physical or biological
significance. Moreover, the complexity of these models hinders their application in heat treatment pro-
cess calculations. Other authors who considered the survival curve as a cumulative form of temporal
distribution of lethality event distribution, presented a probabilistic approach (for instance [14]). The
Weibull frequency distribution model invoked to describe the time to failure in mechanical system was
applied to bacterial death time. Different forms of this model were presented in the literature; however,
the decimal logarithm form below, which is close to (8.1), seems more suitable to describe non-log linear
survival curves

logNt = logN0 −
(
t

δ

)p
. (8.2)

where δ is the first reduction time that leads to a 10-fold reduction of the surviving population and p the
shape parameter.

Primary model for heating treatment subjected to an acidic stress [8]

Cells of Listeria monocytogenes or Salmonella enterica serovar Typhimurium taken from six characteristic
stages of growth were subjected to an acidic stress (pH 3.3). As expected, the bacterial resistance increased
from the end of the exponential phase to the late stationary phase. Moreover, the shapes of the survival
curves gradually evolved as the physiological states of the cells changed. In [8] a new primary models,
based on two mixed Weibull distributions of cell resistance, is proposed to describe the survival curves
and the change in the pattern with the modifications of resistance of two assumed sub-populations:

Nt = N0

[
f 10

(
− t
δ1

)p1

+ (1− f) 10

(
− t
δ2

)p2
]
, (8.3)

where t is time, N0 is the initial bacterial concentration, f is the fraction of the original population in
the major group and the subscripts 1 and 2 indicate the two different sub-populations. Sub-population
1 is more sensitive to stress than sub-population 2 is (δ1 < δ2). This model was compared to Whiting’s
model [16] which was the model of reference.

The parameters of the proposed model (8.3) were stable and showed consistent evolution according to
the initial physiological state of the bacterial population. Compared to the Whiting’s model, the proposed
model allowed a better fit and more accurate estimation of the parameters. Finally, the parameters of
the simplified model had biological significance, which facilitated their interpretation.

I.2 Secondary models

For a long time, secondary modelling remained at stage mono-factorial, where only the heating temper-
ature was taken into account. The model is that of Bigelow [3]:

logD = logD∗ − T − T ∗

ZT
,
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where D∗ is the calculated D-value at temperature T ∗ and ZT is a distance of T from T ∗, which leads to
a 10-fold reduction D-value. By the use of factorial design, it is possible to put in light the environmental
factors which affect the heat resistance of bacteria, the pH of the heating medium and the pH of the
recovery medium (pHV) are shown to be of prominence. Couvert et al. [10] has developed an extended
Bigelow model to describe both effects of heating and recovery medium pH on the apparent bacterial
spore heat resistance.

logD = logD∗ − T − T ∗

ZT
−
∣∣∣∣pH − pH∗ZpH

∣∣∣∣−
∣∣∣∣∣pH ′ − pH

′∗

ZpH′

∣∣∣∣∣
2

,

where pH∗ and pH
′∗ are the reference heat treatment and recovery medium pH fixed to 7, ZpH is a

distance of pH from pH∗, which leads to a 10-fold reduction D-value. zpH quantifies the influence of

heat medium pH influence on bacterial heat resistance. ZpH′ is a distance of pH ′ from pH
′∗, which leads

to a 10-fold reduction in apparent D-value and characterizes the influence of the pH on the recovery of
the microorganism after a heat treatment. D∗ is the calculated D-value corresponding to pH∗ and pH

′∗

conditions.

Like the Bigelow model, Couvert’s model was suitable for the calculation of δ-values as well as for
those of D-values. However, the influence of heating temperature on the value of p is not clear and
variable according to several authors.

I.3 Parameters estimation and confidence intervals

Two techniques were applied to reach confidence intervals of the model parameters. First, the method
described in [13] based on works of Beale [2] and a second one by bootstrap.

Summary of the results of [9]

In [14] authors observed that the shape parameter (p) of Weibull model seams to be characteristic of the
bacterial seed. In [9] we compare a model where the shape parameter is estimated for each sample of the
factorial design and a model with a constant value of p for given microbial population. The bootstrap
procedure had to be adapted in order to take into account the difference in the sample size of each sample
path.

The strength shape of the projections and the high correlation coefficient indicate a structural cor-
relation between model parameters. Three Weibull model parameters were fitted to each inactivation
data set and correlation coefficients were determined from the evaluated confidence region, for the 18
environmental conditions studied presents the estimates of the structural correlation between parameters
for all kinetics. Thus, Weibull model parameters (logN0, δ, p) are dependent (Figure 8.1): an error on
δ will be balanced by an error on p in the same way. Finally, a single value of p estimated from the

Figure 8.1: Projection of the confident region on three orthogonal planes, from Bacillus pumilus A40
data (heating temperature: 95.8 ˚C, heating and recovery medium pH: 7).

whole set of kinetics eliminates the structural correlation between δ and p parameters as well as logN0
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and p parameters and decreases the structural correlation between logN0 and δ. The Weibull model
parameters become independent.

Couvert’s model including the dependence temperature and heating and recovery medium pH, was
fitted on the δ-values evaluated with the two calculation methods. Observed and calculated values were
compared and one showed a slightly higher accuracy of Couvert’s model when the δ-values were evaluated
with single p-value. The Weibull model is suitable for describing log linear, or not, heat survival curves.
However, a simplification of this model consisting in getting a single overall estimation of p-value per
strain, regardless of environmental conditions of heat treatment and recovery, seems to be enough for
bacterial food predictive modelling and canning process calculation.

Summary of the results of [12]

The purpose of this study was to quantify the lag time of re-growth of heated spores of Bacillus cereus
as a function of the conditions of the heat treatment: temperature, duration and pH of the recovery
medium. For a given heating temperature, curves plotting lag times versus time of heating show more or
less complex patterns. However, under a heating time corresponding to a decrease of 2 decimal logarithms
of the surviving populations of spores, a linear relationship between the lag time of growth and the time
of the previous heat treatment can be observed: λ = λ0 +mt, where t is the heating time. The slope m
of this linear relationship followed itself a Bigelow type linear relationship,

logm = logm∗ +
T − T ∗

ζT
+
pH − pHopt

ζpH
,

the slope of which yielded ζ-values very close to the observed conventional values. It was then concluded
that the slope of the regrowth lag time versus the heating time followed a linear relationship with the
sterilisation value reached in the course of the previous heat treatment. A sharp effect of the pH of the
medium which could be described by a simple secondary model was observed. As expected, the observed
intercept of the linear relationship between lag time and heating time (lag without previous heating) was
dependent on only the pH of the medium and not on the heating temperature.

II Population Genetics†

The Molecular Immunology Laboratory of Toulouse used to work on genetic markers (microsatellite of
variable inter-allelic length) localized in the region of the major histocompatibility complex (MHC). Ours
investigations are based on a sample of 750 macaques from Mauritius population [5]. One genotyped 750
Mauritian animals for 17 microsatellites markers spreads across the MCH. This allowed us to characterize
seven frequent MHC haplotypes (a haplotype corresponds to the combination of alleles present on a given
chromosome) and 25 percent of recombinant haplotypes (see therafter). The major advantage of the
Mauritian population is strong bottleneck that followed the founding of the macaque population by the
release in the wild of a low number of founders captured in Indonesia. Indeed the macaque Mauritian
population was founded about 400 years by the introduction of some animals from Indonesia (most likely
is Java but some authors also believe in Sumatra, and perhaps also Malaysia). By historical sources we
know that these animals were introduced by Dutch sailors. The founder animals quickly adapted to the
Mauritian environment and has the population quickly grew. According to historical sources we know
that about one century after the arrival of animals, their number was such that they were everywhere
on the island and they ravaged crops. Many settlers left the island for this reason. The population of
macaques stabilized due to limitation of food resources. Because of the small number of founders, it is
easy to understand why the number of frequent (and most probably founding) haplotypes is limited in
the nowadays population (we found only seven founding haplotypes). At each generation recombination
occurred between parental haplotypes, in theory at random, explaining that 25% of haplotypes are
recombinant in the nowadays population.

† Publications related to this paragraph:

[1] Alice Aarnink, Nicolas Savy, Nicolas Congy, Nicola Rosa, Edward Mee and Antoine Blancher. Demonstration
of the deleterious impact of foeto-maternal MHC compatibility on the success of pregnancy in a macaque model.
Immunogenetics, 66 pp. 105-113, 2014.

[4] Antoine Blancher, Alice Aarnink, Nicolas Savy, and Nagushi Takahata. Use of cumulative Poison probability dis-
tribution as an estimator of the recombination rate from population-genetic data: example of the Macaca fascicularis
MHC. Genes, Genomes, Genetics, 2:123–130, 2012.
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The first work [4] is an estimation of recombination rates from the frequencies of non-recombinant
haplotypes and single, dual, triple, ..., of order n recombinant haplotypes, obtained from a sample of
macaques from Mauritius. In the second work [1], we studied from the MHC genotypes of animals of a
British breeding macaques from Mauritius, the impact of the compatibility between the mother and her
offspring in the pregnancy outcomes.

II.1 Estimated recombination rates

In a population founded at a given time with a limited number of animals having founding haplotypes, at
each generation there is a decrease in the frequency of founding haplotypes due to recombination . This
decrease is of course directly related to the frequency of recombination. Theoretically, we can model the
haplotype frequencies with 0, 1, 2, 3, 4, . . . , n recombinations after X generations by a Poisson distribution.
In [4], we describe a method to estimate the rate of recombination per generation from the genotypes of
a large individual sample of an expanding population, for which the founding event is dated. The idea
is simply to fit a Poisson distribution to data by maximum likelihood. On the genetic point of view,
the paper develops the difficulties of describing the haplotype frequencies. The problems are multiple
and complex. First, the recombination of two identical haplotypes of a homozygous animal is mute.
The observed frequency has been corrected to actual frequency by estimating the average frequency of
homozygotes in the population of Mauritius. Second, a difficulty with the lack of markers whose density
does not describe all the recombination events (double recombination between two markers is obviously
mute). Finally, by dividing the intensity of the Poisson distribution by the number of generations (50-
100) from the date of the founding population, we deduced that the rate of recombination in the MHC
is approximately 0.004 to 0.008 in the Mauritian macaque population.

Usual methods for calculating the rate of recombination is based on the theory of coalescence [11].
Our estimate was compared with the results obtained by the first Bayesian algorithm (is even now one
of the best): the ”PHASE” software [15]. The results are quite comparable. The method proposed in [4]
presents an alternative to the usual method of coalescence within genetically isolated populations that
experienced a strong bottleneck and when the founding dates of the population is precisely known.

Finally, a model of recombination in an population equivalent to that of Mauritius has been simulated
by Kiril Kryukov, a informatician of the laboratory of Professor Saitou (National Institute of genetics,
Mishima, Japan), in order to deduce the recombination rate which would be consistent with the observed
results (proportion of recombinant haplotypes we observed in the sample of 750 animals). The results
are the same as ours.

II.2 Impact of compatibility between the mother and her offspring in preg-
nancy outcomes

In [1], we studied the frequency of pairs mother/child compatible for the MHC and the pairs mother /
child MHC semi-compatible (the child can not be totally incompatible with his mother having inherited
the latter half of MHC alleles). The problem then boils down to a comparison between observed and
theoretical numbers (the probability of generating offspring compatible with the mother is 0.5 for breeding
pairs informative in the sense that we have defined in this article). View the modest sample size, we
opted for a direct comparison with a binomial or multinomial distribution by using the results in [7]. The
observed repartition was clearly outside the interval of confidence of 99 %, and therefore most probably
resulted from a selection of the semi-compatible foetuses during pregnancy. We concluded that MHC
fully compatible cynomolgus macaque foetuses have a selective survival disadvantage in comparison with
foetuses inheriting a paternal MHC haplotype differing from maternal haplotypes.
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Chapter 9

Conclusions and Perspectives

In the same vein of what I have presented in this manuscript, the questions I would like to deal with in
future are on both fundamental probability and applied statistics for biology and medical research. In
contrast with the works I expected to do in theoretical probabilities, applied statistics for medical research
or for biology are collaborative works. That is important because it allows to construct interdisciplinary
projects. In what follows, the questions I am interested in are described and the main lines of projects
in which I am invested are written.

I On stochastic calculus

As pointed out in Chapter 1, fractional Brownian motion or more generally filtered Brownian motion are
processes that do not satisfy the two nice properties of the stochastic calculus: martingale property and
strong Markov property. This raises two questions of interest but pretty hard to handle.

• First, what are the stopping times T satisfying

E
[
BKT
]

= 0 ? (9.1)

The set of such stopping times is not empty. The deterministic times satisfy (9.1). Further, it is
not the set of all bounded stopping times since it is a characterisation of martingales.

• Second, a nice property of Brownian motion is the existence of a local time process denoted L
1
2 . A

theorem of interest is the following one:

Theorem 9.1 ([10]) Let m a measure of Radon on (R,B(R)) and E denotes its support. For
y ∈ E and ω ∈ Ω fixed, we define:

Ay,ω(t) =
1

2

∫
E

L
1
2 (t, x− y)(ω)m(dx) for any t > 0,

Ay,ω(0) = 0.

Consider, for any t ≥ 0, the stopping times τt = inf{s ≥ 0 : As > t} and the process Yt = Bτt + y.

1. If E is an interval then (Y, (Fτt)t≥0,Py, y ∈ E) is a strong Markov process continuous on E
and such that Y0 = y.

2. If E is a countable set compounded of isolated points then (Y, (Fτt)t≥0,Py, y ∈ E) is a birth
and death process.

In the fractional Brownian setting there are two different definitions of local time. One is by means
of Gaussian property [2] and the other one by means of Tanaka’s formula [3]. But, private of the
strong Markov property, we are unable to prove an analogue of Theorem 9.1 and to describe the
behaviour of a fractional Brownian motion in local time scale.

These questions have been stated in my thesis without any results. I let down this question during
last years. In 2009, I have met Yimin Xiao (Michigan State University) and discussed on the first point.
He suggested me to begin by stating the problem for Lévy fractional Brownian motion whose increments
are stationary. We plan to work together on this question but time ran out. It is still an exiting work for
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future.

Concerning stochastic integration with respect to Lévy processes described in Section III of Chapter
1, I have pointed out that the things go pretty well because we deal with Lévy process whose pure jumps
component has for compensator ν( ds, dz) = ds η( dz). The operators K∗,B and K∗,J associated to
the Brownian and pure jumps components are exactly the same. It is in fact possible to extend those
results to processes defined as the sum of a Brownian motion and a pure jumps process with compensator
ν( ds, dz) = λ(s) ds η( dz) exactly like in Section II of Chapter 1. The operator K∗,B and K∗,J are not
the same but the machinery still goes on considering the operator which for any f ∈ H associate the
function:

K∗,L(f)(s, z) = K∗,B(f)(s) I{z=0} + zK∗,J(f)(s) I{z 6=0}, (s, z) ∈ [0, T ]× R.

II On survival data analysis

STAFAV’s project http://www.math.u-psud.fr/~stafav/ aims to develop statistics in Sub-Saharan
Francophone Africa. It implements doctorates of statistics in joint supervision between French university
and Sub-Saharan University. Fabrice Billy Webe follows that program and is preparing in Toulouse
a Ph.D. in applied statistics for epidemiology of HIV. INSERM Unit 1027, has precisely a question of
interest in that topics. Cohort NADIS (New Aids Data Information System) deals with adult sero-positive
patients initiated an HAART (Highly Active Antiretroviral Therapy) between January 2000 and June
2008. Cohort NADIS aims to analyse the incidence of stopping the HAART and its prognostic factors.
At first glance it is a question of survival data analysis since the outcome is a time to events but in
this case, there are four events of interest (intolerance, treatment failure, therapeutic simplification and
finally ”other causes”). Modelling competing risks data with covariables is a well-known question which
has been investigated by at least two ways:

• an approach favouring the cause-specific risk function proposed by Cox [4],

• an approach favouring the cumulative incidence of the event of interest proposed by Fine & Gray
[5].

That leads epidemiologists to a dilemma as to the choice of one method over the other.

Fabrice Billy Webe has just started in November 2013 a Ph.D. I supervised with Jean-Yves Dauxois
(INSA Toulouse). The aim is to clarify the interpretation of these tools and to precise in what situation
it is more convenient to use the first one rather than the second one. For this, a very first question to
investigate or at least to clarify is how to generate data in competing risk framework which do not favour
a method rather than another.

III On patients’ recruitment modelling

First, the models proposed in Chapter 5 are obviously of interest for pharma companies and for institu-
tional trials. Its practical use has to be popularised. It is one of the major objective of future works on
this topics. Second, these models can be widely improved in order to cover a wider panorama of trials
especially by including cohort construction whose specificity is the large duration of the follow up period.
Third, these models can be used to compare clinical trials recruitment. These questions are embedded in
a project called SMPR (Stochastic Modelling of Patients’ Recruitment). I am the principal investigator
of this project which involves statisticians - epidemiologists - specialists of clinical trials designing and
clinicians. This project benefits of a grant from IRESP (Public Health Research Institute) for the period
2013-2015. This grant allows us to fund the Ph.D. of Nathan Minois (sept. 2013 - Sept. 2016) that I
supervise with the help of Sandrine Andrieu for epidemiological and methodological aspects.

III.1 Recruitment models for survival data

In the setting of survival data analysis one usually uses the expected number of events to reach the
necessary sample size. In this framework it is thus more interesting to deal with the number of events
rather then the number of patients to be recruited. By the use of a Poisson-gamma model for recruitment
and exponential models for survival data, we are able to reach this quantity. Anisimov [1] has already
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IV. ON CLINICAL TRIALS SIMULATION

Figure 9.1: The recruitment stop at day 365. The expected number of events is the central curve and
the others are the 90%-confidence intervals. We aim to reach 337 events, the expected duration is thus
1304 days and the 90%-confidence interval (1072,1705).

used this machinery in an oncology setting and the model provided very good predictions.

Our aim is to develop this model in order to give a better comprehension of the drop-out process. For
this purpose, the recruited patients will be plugged in a continuous time Markov chain where the states
correspond to different stages of disease progression of the patient during the trial (On risk, Drop-out,
Recurrence, Death). The model will allow to provide an estimation of the number of different events in
time at the end of the trial and to predict the time needed to observe a given number of events after
a fixed duration of recruitment (in the spirit of Figure 9.1). Estimation is to be understood from data
collected at an interim time.

III.2 Secondary recruitment models

The second objective is to develop tests in order to explain the accrual rate in a specific study or to
compare the accrual rates between different studies enrolling the same type of population or between
different centres of a same trial. In fact, it is possible to fit a regression model on the parameters
directing the recruitment process introducing covariates (for instance size of the city where the centre is
based, prevalence of the disease on study). The rate of the underlying Poisson process (or its expectation
for a Cox process) can be expressed using a linear (for instance) regression model:

λ = λ0 + γtX + ε (9.2)

where X is the vector of covariates, γ is the associated vector of coefficients and ε is a random resid-
ual value assumed to be normally distributed. This model allows to set comparison tests. That aspect
is of interest in public health because it allows putting in light factors that influence the dynamics of
recruitment. The very first application we have in mind is to compare the type of centre (”CHU” vs
”CHG”) and in each centre, the number of ongoing trials, the number of active investigators, and their
participation in others trials simultaneously for the same conditions or not. Theses tests will be used to
compare IFM 2005-02 and IFM 2009-02 clinical trial.

IV On Clinical Trials Simulation

The design of a clinical trials is an hard step of medical research. Indeed, the huge variability of phe-
nomenon such as side-effect, safety, tolerability, effectiveness, recruitment... makes difficult the decision
process. Approximatively 90% of drugs failed during clinical development. This is a major problem for
scientific, ethical and economical reasons. Once we see the efficiency of patients’ recruitment models, it
is natural to go further with simulations and to model the whole clinical trial (including dose/responds,
drop-out, side-effect and so on). Good Practices for Clinical Trials Simulation have been discussed in
Holford et al [7]. They shed light on three main principles quoted below:
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• Clarity: The report of the simulation should be understandable in terms of scope and conclusions
by intended users such as those responsible for committing resources to a clinical trial.

• Completeness: The assumptions, methods and critical results should be described in sufficient
detail to be reproduced by an independent team.

• Parsimony: The complexity of the models and simulation procedures should be no more than nec-
essary to meet the objectives of the simulation project. Program codes sufficient to generate models,
simulate trials and perform replication and simulation project level analyses should be retained but
there is no need to store simulated trial and analysis results which can be reproduced from these
codes.

The evolution of those techniques are recounted in two ”state of the art” papers: one in 2000 [8]
and one in 2010 [9]. By means of these papers, one notices that, except in huge pharma companies, the
use of such techniques was, to date, not so popular. However, under the pulse of regulatory agencies,
tools for CTS are developed. ”CTS is a centrepiece of the critical path initiative and part of the future
of drug development”, (FDA, 2007). In July 2013, regulatory agencies in the U.S. and Europe have en-
dorsed a quantitative simulation tool that allows researchers to model clinical trials in mild to moderate
Alzheimer’s disease.

In order to start those investigations in a good way, essentially with a precise idea of what has been
done and how, the Cancéropole (Institution devoted to research on cancer) supports a workshop in
Toulouse in April 2015 on this topic. I am in charge of its organisation. Moreover, in the framework of a
medico-economic project with Toulouse’s Hospital, we aim to use simulation techniques to estimate the
necessary sample size of a clinical trials we are designing.

V On mediation analysis

By means of the project IBISS (Biological Incorporation of Social Health Inequalities), granted by the
National Research Agency (ANR), some funds are devoted to continue the investigations on mediation
analysis. I am the investigator of this research work-package of IBISS’s project which aims

• first, to develop a measure of the mediated effects,

• second, to propose a methodology on how to manage missing data in databases.

V.1 Measure of mediated effects

As seen in Chapter 7, in Structural Equation Models, the better way to measure the mediated effect
is to calculate the product of the effect along the mediation path. As this approach does not define
the mediation in an intrinsic way, we try to define a new measurement of the mediation by means of a
coefficient widely inspired of the determination coefficient (R2) for the linear models. The objective is
to find a decomposition of the variance explained by a variable as the sum of the direct part and of the
mediated one.

V.2 Missing data

This question is of paramount interest in epidemiology and the whole INSERM unit 1027 wonders how to
deal with such data. On the pulse of Benôıt Lepage and me, a research group (compound of statisticians
and epidemiologists) has been created in November 2013. The aim is, first to clarify the ideas on the
use of implementation techniques for missing data, second to browse the methods that not necessitate
implementation and third, to lead research on topics of interest, especially missing data in longitudinal
setting and missing non at random data.

The arrival of Chloé Dimeglio, on a post-doctoral position on biostatistics at INSERM Unit 1027, will
certainly boost these works.
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VI On Prediction in Social Health

In January 2014, the Project IMPACTISS ”Social and economic determinants of health: feasibility and
political as well as social acceptability of health impact assessment and benefits for primary prevention”
has been proposed in response to the call for tenders INCA - IRESP (National Cancer Institute - Public
Health Research Institute). I am in charge of a work-package.

This project deals with the Health Impact Assessment (HIA). According to its most common defini-
tion, the HIA is a set of procedures, methods and tools to assess the potential positive and negative effects
of a project, program or policy on health. Further, it gives information on the social distribution of these
effects. The objective is to make recommendations to policy-makers, in order to maximize the positive
impacts and reduce negative effects. There are two questions of paramount interest we aim to investigate
in that project: first, how to measure the impact of a health policy and second, what is the effect of an
action on social determinants of health. Both questions are particularly difficult to deal with. Moreover,
not so much attention has been given on those problems. An idea is to use mathematical modelling [6].
The literature offers various examples of HIA tools especially in the field of Health-Environment. We
focus our attention on DYNAMO-HIA (Dynamic Modelling for Health Impact Assessment) software. It
is based on Markov modelling and used partial micro-simulation to calculate disease and mortality from
historical data. Our goal is, first, to improve that software or at least to let it work in our social epi-
demiology’s setting. Second, one makes use of g-computation (see Section II.2 of Chapter 7) to simulate
scenarios which will be compared to those of DYNAMO-HIA. Finally we aim to validate those results on
real life dataset.

In case this project is accepted, the grant allows us to recruit a Ph.D. I will supervise with Thierry
Lang.
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– Research Master’s degree in Clinical Epidemiology: Survival data analysis

– Research Master’s degree in Applied Mathematics: Stochastic calculus

– 3rd year Bachelor’s degree: Inferential statistics and linear models

University ”Bretagne Occidentale”

• 1999 - 2006: IUT Biological Engineering - Quimper

– 1st year Bachelor’s degree: Statistics for biologists

– 1st year Bachelor’s degree: Informatics

– 1st year Bachelor’s degree: Mathematics

– 2nd year Bachelor’s degree: Industrial statistics

– 3rd year Bachelor’s degree: Design of experiments

• 2000 - 2006: FITI2A (Engineering School)

– 3rd year Bachelor’s degree: Statistics

Guest lecturer

• January 2007: Havana University (Cuba)

– Research Master’s degree: Stochastic Calculus and Application to Finance.

• June 2012: Havana University (Cuba)

– Research Master’s degree: Methodology for Therapeutic Trials.

Research Activities

Articles in Probability

Submitted for publication

[P8] J. Vives, N. Savy, Anticipative Integrals with respect to a filtered Lévy Process and Lévy-Itô de-
composition, 2014. Submitted to Journal of Theoretical Probability.

Published

[P7] B. Bercu, F. Pröıa, N. Savy, On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes,
Statistics and Probability Letters, 85 pp. 36-44, 2014.

[P6] B. Bercu, L. Coutin, N. Savy, Sharp large deviation for the non-stationary Ornstein-Uhlenbeck
process, Stochastic Processes and their Applications, 122(10) pp. 3393-3424, 2012.

[P5] A. Alvarez, F. Panloup, M. Pontier, N. Savy, Estimation of the instantaneous volatility and de-
tection of volatility jumps, Statistical Inference for Stochastic Processes, 15 pp. 27-59, 2012.

[P4] L. Decreusefond, A. Joulin, N. Savy, Rubinstein distances on configuration spaces, Communica-
tions on Stochastic Analysis, 4(3) pp. 377–399, 2010.
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[P3] B. Bercu, L. Coutin, N. Savy, Sharp large deviations for the fractional Ornstein-Uhlenbeck process,
Theory of Probability and its Applications, 55(4) pp. 575-610, 2011.

[P2] L. Decreusefond, N. Savy, Anticipative calculus with respect to filtered Poisson processes, Annales
de l’Institut Henri Poincaré - Probabilités et Statistiques, 42(3) pp. 343–372, 2006.

[P1] L. Decreusefond, N. Savy, Filtered Brownian motion as weak limit of Filtered Poisson processes,
Bernoulli, 11(2) pp. 283-292, 2005.

Articles in Statistics

In preparation, submitted for publication or in revision

[S8] V. Anisimov, G. Mijoule, N. Savy, Statistical modelling of recruitment in multicentre clinical trials
with patients’ drop-out, 2013. In preparation for Statistics in medicine.

[S7] V. Garès, S. Andrieu, J.F. Dupuy, N. Savy, Comparison of constant piecewise weighted test and
Fleming Harrington’s test - Application in clinical trials, Electronic Journal of Statistics, 2013. In
revision.

[S6] V. Garès, S. Andrieu, J.F. Dupuy, N. Savy, An omnibus test for several hazard alternatives in
prevention randomized controlled clinical trials, Statistics in medicine, 2013. In revision.

[S5] V. Garès, S. Andrieu, J.F. Dupuy, N. Savy, Choosing the parameter of Fleming-Harrington’s test
in prevention randomized controlled trials, Journal of the Royal Statistical Society: Series C , 2014.
Submitted.

[S4] B. Lepage, S. Lamy, D. Dedieu, N. Savy, T. Lang, Estimating the Causal Effect of an Exposure
on Change from Baseline Using Directed Acyclic Graphs and Path Analysis, Epidemiology, 2012.
In revision.

Published or forthcoming

[S3] D. Dedieu, C. Delpierre, S. Gadat, B. Lepage, T. Lang, N. Savy Discrete Time Mixed Hidden
Markov Models with State Memory for Longitudinal Data - Application to the epidemiology of
cancer in the NCDS 1958 study, ”Journal de la SFDS”, 155(1) pp. 73-98, 2014.

[S2] B. Lepage, D. Dedieu, N. Savy, T. Lang, Estimation of a controlled direct effect when an effect
of the exposure confounds the mediator-outcome relationship: a comparison of different methods,
Statistical Methods for Medical Research, 2012. Forthcoming.

[S1] G. Mijoule, S. Savy, N. Savy, A methodological approach for a dynamical patients recruitment in
clinical trials, Statistics in Medicine, 31(16) pp. 1655-1674, 2012.

Articles in Statistics for Medical or Biological research

Published or forthcoming

[MB5] A. Aarnink, E. Mee, N. Savy, N. Caugy, N. Rose, A. Blancher, Demonstration of the deleteri-
ous impact of foeto-maternal MHC compatibility on the success of pregnancy in a macaque model,
Immunogenetics, 66(2) pp.105-113, 2014.

[MB4] A. Blancher, A. Aarnink, N. Savy, N. Takahata, Use of cumulative Poisson probability distribution
as an estimator of the recombination rate from population-genetic data: example of the Macaca
fascicularis MHC, Genes, Genomes, Genetics, 2 pp. 123-130, 2012.

[MB3] L. Coroller, I. Leguérinel, E. Mettler, N. Savy, P. Mafart, General Model, Based on Two Mixed
Weibull Distributions of Bacterial Resistance, for Describing Various Shapes of Inactivation Curves,
Applied and Environmental Microbiology, 72(10) pp. 6493-6502, 2006.

[MB2] S. Gaillard, I. Leguérinel, N. Savy, P. Mafart, Quantifying the combinated effects of the heating
time, the temperature and the recovery medium pH on the regrowth lag time of Bacillus Cereus
spores after a heat treatment, International Journal of Food Microbiology, 105(1) pp. 53-58, 2005.
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[MB1] O. Couvert, S. Gaillard, N. Savy, I. Leguérinel, P. Mafart, Survival curves of heated bacterial spores:
effect of environmental factors on Weibull parameters, International Journal of Food Microbiology,
101(1) pp. 73-81, 2005.

Books chapters

[BC1] V. Anisimov, G. Mijoule, N. Savy, Additive model for cost modelling in clinical trial, Proceedings
of ”7th International Workshop on Simulation”, Rimini, 2013. Forthcoming.

Conference proceedings

Published Conference proceedings

[PP5] N. Savy, Stochastic modelling of recruitment in clinical trials, Proceedings of ”2nd International
Conference on Biometrics and Biostatistics”, Chicago, 2013, published in J. Biomet. Biostat., 4(4)
pp. 36, 2013.

[PP4] B. Lepage, S. Lamy, N. Savy, T. Lang, Utilisation des graphes acycliques dirigés pour le choix d’un
modèle d’analyse du changement, Proceedings of ”3e Colloque thématique de l’Adelf”, Toulouse,
2012, published in Revue d’épidémiologie et de Santé Publique, 61(S2) pp. S108, 2013.

[PP3] B. Lepage, D. Dedieu, V. Ehlinger, M. Kelly-Irving, N. Savy, T. Lang, Analyse de la médiation
par g-computation : application dans la cohorte britannique NCDS 58, Proceedings of ”5e Congrès
International d’Épidémiologie Adelf-Epiter”, Bruxelles, 2012, published in Revue d’épidémiologie
et de Santé Publique, 60(S2) pp. S71, 2012.

[PP2] B. Lepage, D. Dedieu, N. Savy, T. Lang, Comparaison de quatre méthodes d’estimation d’un effet
direct et exploration de l’importance des biais potentiels : étude par simulation, Proceedings of
”EPI-CLIN”, Marseilles, 2011, published in Revue d’épidémiologie et de Santé Publique, 59(S1)
pp. S17, 2011.

[PP1] N . Savy, G. Mijoule, S. Savy, Approche méthodologique du recrutement de patients, Proceedings
of the ”6e Journées du Cancérople GSO”, published in Bulletin du Cancer, 97(4) pp. S80, 2010.

Unpublished Conference proceedings

[UP7] V. Garès, J.F. Dupuy, N. Savy, Un nouveau test pour l’analyse de données de prévention en
recherche clinique, Proceedings of ”45e Journées de Statistique”, Toulouse, 2013.

[UP6] F. Pröıa, N. Savy, B. Bercu Le processus de Ornstein-Uhlenbeck engendré par le processus de
Ornstein-Uhlenbeck, Proceedings of ”45e Journées de Statistique”, Toulouse, 2013.

[UP5] V. Garès, S. Andrieu, J.F. Dupuy, N. Savy, On the use of Fleming and Harrington’s test to detect
late effects in clinical trials, Proceedings of ”Statistical Models and Methods for Reliability and
Survival Analysis and Their Validation”, Bordeaux, 2012.

[UP4] G. Mijoule, N. Savy, Modélisation du recrutement de patients lors d’un essai clinique, Proceedings
of ”44e Journées de Statistique”, Bruxelles, 2012.

[UP3] N. Savy, B. Bercu, L. Coutin, Grandes Déviations Précises pour des processus de Ornstein Uh-
lenbeck, Proceedings of ”44e Journées de Statistique”, Bruxelles, 2012.

[UP2] V. Garès, J.F. Dupuy, N. Savy, Utilisation du test de Fleming et Harrington pour la détection
d’effets tardifs en recherche clinique, Proceedings of ”44e Journées de Statistique”, Bruxelles, 2012.

[UP1] O. Couvert, N. Savy, P. Mafart, Monte Carlo Simulation of F-value distribution, Proceedings of
”Predictive Modelling in Foods”, Quimper, 2003.
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Posters

[Po4] N. Savy, S. Savy, S. Andrieu, Les essais cliniques simulés. Des avancés récentes ?, ”EpiClin
2014”, Bordeaux, 2014.

[Po3] G. Mijoule, S. Savy, N. Savy, Modélisation de la phase d’enrlement lors d’essais cliniques, ”6e
Journées du Cancérople GSO”, Toulouse, 2010.

[Po2] L. Decreusefond, J. Ledoux, N. Savy, Simulation Monte Carlo de l’application de transport optimal,
”Journées STAR”, Rennes, 2005.

[Po1] O. Couvert, N. Savy, P. Mafart, Monte Carlo Simulation of F-value distribution, 4th International
Conference “Predictive Modelling in Foods”, Quimper, 2003.

Books

[B1] N. Savy, Probabilités et Statistiques : pour modéliser et décider, Ellipses Editions, 2006.

Oral Presentations

June 10, 2013 Stochastic modelling of recruitment in clinical trials, ”2nd International Conference
on Biometrics and Biostatistics”, Chicago (USA).

May 22, 2013 Additive model for cost modelling in clinical trial, ”7th International Workshop on
Simulation”, Rimini (Italie).

June 22, 2012 Models for patients’ recruitment in clinical trials, Seminar of Havana’s University,
Havana (Cuba).

June 21, 2012 On the use of Fleming-Harrington’s test to detect late effects in Clinical Trials,
Seminar of Havana’s University, Havana (Cuba).

May 24, 2012 Grandes déviations précises pour des processus de Ornstein Uhlenbeck, ”44e
Journées de Statistique”, Bruxelles (Belgium).

April 24, 2012 On the use of Fleming-Harrington’s test to detect late effects in Clinical Trials,
Seminar of Queen Mary University, London (UK).

June 10, 2011 Sharp Large Deviation for some Ornstein Uhlenbeck processes, Seminar SPAAF,
Lyon.

May 26, 2011 Sharp Large Deviation for some Ornstein Uhlenbeck processes, Seminar of
Barcelona University, Barcelona (Spain).

Sept. 28, 2010 Modélisation de la phase d’enrlement lors d’essais cliniques, ”Journée Biostatis-
tiques et Statistiques Médicales”, Toulouse.

Sept. 01, 2010 Principe de Grandes Déviations précises pour des processus de Ornstein Uhlenbeck
fractionnaires, ”Journées M.A.S ”, Bordeaux.

Sept. 04, 2009 Utilisation des techniques de files d’attente en recherche clinique, Seminar of Epi-
demiology, Toulouse.

May 13, 2009 A propos de la méthodologie statistique, ”Journée du groupe Méthodologie du
Cancérpole GSO”, Toulouse.

Nov. 22, 2006 Théorème de convergence d’une suite de processus de Poisson filtrés vers son ho-
mologue Brownien, Seminar of Statistics, Toulouse.

Nov. 18, 2004 Théorème de convergence d’une suite de processus de Poisson filtrés vers son ho-
mologue Brownien, Seminar of probabilities, Brest.

Sept. 07, 2004 Intégrale anticipative pour des processus de Poisson marqués et extension aux pro-
cessus de Poisson-Volterra, ”Journées M.A.S.”, Nancy.

June 03, 2004 Quelques résultats sur les processus de Poisson-Volterra, ”Journées d’Analyse
Stochastique”, Paris.

June 17, 2002 Intégrale stochastique pour des processus de Poisson filtrés, Seminar of probabilities,
Rennes.

May 2, 2002 Intégrale stochastique pour des processus de Poisson filtrés, ”Congrès des Jeunes
Probabilistes”, Aussois (France).

Jan. 10, 2000 Comportement asymptotique de la capacité de stockage d’une file à entrée Browni-
enne fractionnaire, Seminar of probabilities, Rennes.
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Organization of conferences

• Member of the Scientific committee for the workshop ”Dynamic predictions for repeated mark-
ers and repeated events: models and validation in cancer””, Bordeaux, October 10 and 11, 2013.

• President of the Organization committee for the workshop ”Analyse de données longitudinales
de cancer, Modèles de Markov cachés”, Toulouse Mathematics Institute, Toulouse, October 18 and
19, 2012.

• Member of the Organization committee for the international conference ”Random differential
equations and Gaussian fields”, Château de Mons, Caussens (32), June 15 to 19, 2009.

• Member of the Organization committee for the international workshop ”Selfdecomposability
and Fractional Processes”, Toulouse Mathematics Institute, Toulouse, November 20 and 21, 2008.

• Member of the Organization committee for the workshop ”Journée en l’honneur de Monique
Pontier”, Toulouse Mathematics Institute, Toulouse, June 11, 2008.

• Member of the Organization committee for the ”International Conference on Probabilities
and Statistics”, Toulouse Mathematics Institute, Toulouse, June 14 and 15, 2007.

Ph-D Supervisions

Defended Ph-D theses

• Guillaume Mijoule

”Modélisation du processus d’inclusion de patients dans un essai clinique multicentrique”.

– Co-Advisor: Pr Laure Coutin (IMT)

– Started in September 2009, examined June 3rd, 2013

– Current position: temporary assistant professor at University Paris X.

• Benoit Lepage

”Prise en compte des hypothèses de causalité dans l’analyse d’une évolution et l’analyse de la
médiation”.

– Co-Advisor: Pr Thierry Lang (INSERM Unit 1027)

– Started in January 2010, examined June 21, 2013

– Current position: assistant professor at University Toulouse 3.

• Valérie Garès

”Améliorer la performance des analyses de survie dans le cadre des essais de prévention et
application la maladie d’Alzheimer”.

– Co-Advisor: Pr Sandrine Andrieu (INSERM Unit 1027)

– Started in September 2010, examined April 15th, 2014

Ph-D theses in progress

• Nathan Minois

”Modèles de Markov Cachés appliqués à l’étude des maladies chroniques”.

– Co-Advisor: Pr Sandrine Andrieu (INSERM Unit 1027)

– Started in October 2013.

• Fabrice Billy Webe

”Risques compétitifs”.

– Co-Advisor: Pr Jean-Yves Dauxois (IMT)

– Started in November 2013.
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Ph-D theses steering committees member

Defended Ph-D theses

• Stéphane Gaillard

”Modélisation de la thermorésistance, de la viabilité et du comportement à la recroissance de
Bacillus cereus, en fonction de la température, du pH et de l’activité aqueuse”.

– Advisor: Pr Pierre Mafart (University of ”Bretagne Occidentale”)

– Started in October 1999, examined December 19th, 2003 (member of the examination board).

• Olivier Couvert

”Prise en compte de l’influence du pH dans l’optimisation des traitements thermiques”.

– Advisor: Pr Pierre Mafart (University of ”Bretagne Occidentale”)

– Started in October 1998, examined April 21th, 2002

– Current position: assistant professor at University of ”Bretagne Occidentale”.

Ph-D thesis in progress

• Caroline Delarue

”Analyse statistique de l’exposition aux psychotropes pendant la grossesse et survenue de mal-
formations congénitales et/ou de pathologies infantile”.

– Advisors: Pr Claire Damase (INSERM Unit 1027) and Cécile Chouquet (IMT)

– Started in September 2012.

Masters supervision

• Guillaume Mijoule

– ”Le processus de Poisson Markov-modulé”,

– Research Master’s degree in Applied Mathematics - March to June 2009

• Valerie Garès

– ”Approche processus stochastiques de la survie”,

– Research Master’s degree in Applied Mathematics - March to June 2010.

• Anne-Claire Brunet

– ”Utilisation de techniques de classification pour l’amélioration du budget du CHU de Toulouse”,

– Professional Master’s degree in Statistics and Economy - April to September 2011.

• Isabelle Bouissière

– ”Utilisation de techniques GLM en Hématologie”,

– Professional Master’s degree ”IMAT” - April to September 2012.

• Nathan Minois

– ”Modélisation de la phase d’inclusion de patients lors d’essais cliniques”,

– Professional Master’s degree ”IMAT” - April to September 2013.

Industrial Partnerships

ADRIA Advisor on implementation of ”AFNOR” normes for validation of ”rapid” methods
in microbiology.

AGRAUXINE Advisor on implementation of experimental designs to optimize culture media.

SAUPIQUET Application of Monte-Carlo technique to reduce sterilisation schedules in the frame-
work of Olivier Couvert’s PhD thesis.

DANONE Modelling of bacteria growth and destruction in the framework of Stéphane Gail-
lard’s PhD thesis.
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Administrative Activities

Research

• From 2009 to 2013, elected member of mathematics scientific commission at University Toulouse 3.

• Since 2009, member of recruitment commission for applied mathematics assistant professors at
University of Toulouse 3.

• In 2008, elected member of recruitment commission for applied and fundamental mathematics
assistant professors at Toulouse 3A’s IUT.

• Referee for the journals Computational Statistics and Data Analysis, Applied Mathe-
matical Modelling, ESAIM: Probability and Statistics, Journal of Statistical Plan-
ning and Inference, Journal of Cancer Therapy, Stochastics, Statistical Inference
for Stochastic Processes, Applied Mathematical Modelling, International Journal
of Probability and Statistics, Scientific Research and Essays.

• Research groups

– 2010 –: ”Stats et Santé”: Executive committee member.

– 2010 –: ”Mathématiques et Entreprises”: member.

– 1999 – 2002: Member of INTAS’s project 99016 (Universities of Barcelona, Berlin, Helsinki,
Moscou, Kiev, Donets and Rennes).

• Projects and grants

– 2013 – 2016: Project ”Incorporation Biologique et Inégalités Sociales de Santé” granted by
(work-package leader)

– 2013 – 2016: Project ”Improved predictability of sub-chronic GMO toxicity by identification
of early biomarkers of toxicity” granted by French Ministry of Ecology

– 2013 – 2015: Project ”Statistic Methods for Patients Recruitment and Clinical Trials Design”
(Principal Investigator) granted by IRESP (Public Health Research Institute)

– 2011 – 2013: Project ”Essais de prévention dans la démence de type Alzheimer : Améliorer
la performance des outils statistiques” (Principal Investigator) granted by France-Alzheimer

– 2010 – 2012: Project ”Méthodes d’analyses appliqués à l’épidémiologie biographique ; explo-
ration des chemins de causalité entre environnement social, habitudes alimentaires et cancer”
(work-package leader) granted by National Cancer Institute - Public Health Research Institute

– 2004 – 2006: Project ”TRansport OptiMal et Applications aux Techniques de l’Information
et de la Communication” granted by CNRS (National Center for Scientific Research)

Teaching

• Since 2012, GEA department commission elected member.

• Since 2010, joint-coordinator for Research Master’s ”Clinical Epidemiology” at University
of Toulouse 3. Responsible for Biostatistics and Clinical trials teaching units.

• From June 2002 to Juin 2005, Teaching Director for Department ”Biological Engineering” of Quim-
per’s IUT.
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Summary

My research activity is mainly devoted to Stochastic processes and to Applied Statistics for Biology
and Medical Research. That manuscript naturally splits in two parts.
The first part evokes my investigations in the field of probability and statistics of stochastic processes. It
contains four chapters. The first one gives the main lines of the construction of stochastic integrals with
respect to filtered processes (filtered Poisson processes and filtered Lévy processes). Those integrals are
anticipative and defined by means of Malliavin Calculus. In the second chapter we show briefly how a
sequence of filtered Poisson processes converges weakly to a Brownian Volterra process. The proof of that
result makes use of radonification techniques. The third chapter clarifies the link between Transportation
Inequality and Malliavin Calculus in the space of configurations. This first part ends by a fourth chapter
devoted to statistics of processes. Two problems are considered: first the construction and the proofs
of mains properties (essentially convergence and asymptotic normality) of an estimator of instantaneous
volatility in a diffusion process, second, the proofs of Large and Sharp large deviations principles for
functionals associated to various Ornstein Uhlenbeck’s type processes.
The second part presents works on applied statistics for Biology and Medical research. It contains four
chapters. The first chapter presents empirical Bayesian models which aim to capture the behaviour of the
dynamic of patients’ recruitment in clinical trials. Those models are of paramount interest to estimate the
end of a clinical trial from on-going data. The second chapter presents research on survival data analysis
for prevention clinical trials. It contains mainly the study of the so-called Fleming-Harrington’s test and
its comparison with another weighted logrank’s test of interest. Finally a composite test is introduced
and studied. The third chapter summarizes a series of papers on epidemiology especially on mediation
analysis. Two aspects are evoked, by means of Mixed Hidden Markov Models and by means of causality
analysis tools. Finally a fourth chapter allows me to include various results obtained in collaboration
with biologists during my stay in Quimper on the topic of Predictive Microbiology and recently in genetic
of populations.
Manuscript ends with a description of questions I would like to carry out in future.

Résumé

Mon activité de recherche est principalement consacrée aux processus stochastiques et aux statistiques
appliquées à la Biologie et à la Recherche Médicale. Ce manuscrit se divise naturellement en deux parties.
La première partie évoque mes recherches dans le domaine des probabilités et statistiques des processus
stochastiques. Il contient quatre chapitres. Le premier donne les grandes lignes de la construction
d’intégrales stochastiques par rapport à des processus filtrés (processus de Poisson filtrés et processus de
Lévy filtrés). Ces intégrales sont anticipatives et sont définies au moyen du calcul de Malliavin. Dans le
deuxième chapitre, nous montrons brièvement comment une suite de processus de Poisson filtrés converge
faiblement vers un processus de Volterra brownien. La preuve de ce résultat utilise des techniques de
radonification. Le troisième chapitre vise à clarifier le lien entre les inégalités de transport et le calcul
de Malliavin sur l’espace des configurations. Cette première partie se termine par un quatrième chapitre
consacré à la statistique des processus. Deux problèmes sont considérés : d’abord la construction et
les preuves des principales propriétés (essentiellement la convergence forte et la normalité asymptotique)
d’un estimateur de la volatilité instantanée dans un processus de diffusion, d’autre part, les preuves de
principes de grandes déviation et de grandes déviations précises pour des fonctionnelles associées à divers
processus de type Ornstein-Uhlenbeck.
La deuxième partie présente divers travaux de statistiques appliquées à la biologie et de la recherche
médicale. Elle contient quatre chapitres. Le premier chapitre présente des modèles Bayésiens empiriques
qui visent à capter le comportement de la dynamique du recrutement des patients dans les essais cliniques.
Ces modèles sont d’un intérêt primordial pour estimer la fin d’un essai clinique à partir des données en
cours. Le deuxième chapitre présente les recherches menées sur l’analyse de données de survie pour les
essais cliniques de prévention. Il contient principalement l’étude du test de Fleming - Harrington et sa
comparaison avec un autre test de logrank pondéré intéressant. Enfin un test composite est introduit et
étudié. Le troisième chapitre résume une série d’articles de statistiques appliquées à l’épidémiologie en
particulier sur l’analyse de la médiation. Deux aspects sont abordés, par le biais de modèles de Markov
cachés mixtes et au moyen d’outils d’analyse de causalité. Enfin, un quatrième chapitre me permet
d’inclure divers résultats obtenus en collaboration avec des biologistes pendant mon séjour à Quimper
sur le thème de la microbiologie prévisionnelle et récemment en génétique des populations.
Le manuscrit se termine par une description de questions que j’aimerais traiter à l’avenir.
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