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Titre: À la poursuite de l’individuation: description mathématique des systèmes physiques

Résumé: Ce travail se veut une analyse conceptuelle de certains développements récents dans
les fondements mathématiques de la Mécanique Classique et de la Mécanique Quantique qui
ont permis de formuler ces deux théories dans un même langage. Du point de vue algébrique,
l’ensemble des observables d’un système physique, soit-il classique ou quantique, est décrit par
une algèbre de Jordan-Lie. Du point de vue géométrique, l’espace des états de tout système est
décrit par un espace uniforme de Poisson avec transition de probabilité. Ces deux structures
mathématiques sont ici interprétées comme une manifestation du double rôle constitutif des
propriétés en physique : elles sont à la fois des quantités et des transformations. Il s’agit alors
de comprendre l’articulation précise entre ces deux rôles. Au cours de l’analyse, il apparaîtra
que la Mécanique Quantique peut être vue comme se distinguant de la Mécanique Classique
par une condition de compatibilité entres les quantités et les transformations.

D’autre part, cette thèse met en évidence l’existence d’une tension fondamentale entre
une certaine façon abstraite de concevoir les structures mathématiques, présente dans la pra-
tique de la physique mathématique, et la nécessité de spéciier des états ou des observables
particulières. Il devient alors important de comprendre comment, dans le formalisme, se con-
struit un schéma d’indexation. La “poursuite de l’individuation” est l’analyse de diférentes
techniques mathématiques vues comme tentatives de résolution ce problème. En particulier,
nous discuterons comment la théorie des groupes permet d’y apporter une solution partielle.

Mots clés: Fondements de la Mécanique; Mécanique Classique; Mécanique Quantique;
Quantiication; Géométrie symplectique; Structuralimse Mathématique.



Title: Chasing Individuation: Mathematical Description of Physical Systems

Asbtract: This work is a conceptual analysis of certain recent developments in the math-
ematical foundations of Classical and Quantum Mechanics which have allowed to formulate
both theories in a common language. From the algebraic point of view, the set of observables
of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From
the geometric point of view, the space of states of any system is described by a uniform
Poisson space with transition probability. Both these structures are here perceived as formal
translations of the fundamental twofold role of properties in Mechanics: they are at the same
time quantities and transformations. The question becomes then to understand the precise
articulation between these two roles. The analysis will show that Quantum Mechanics can
be thought as distinguishing itself from Classical Mechanics by a compatibility condition
between properties-as-quantities and properties-as-transformations.

Moreover, this dissertation shows the existence of a tension between a certain ‘abstract
way’ of conceiving mathematical structures, used in the practice of mathematical physics, and
the necessary capacity to specify particular states or observables. It then becomes important
to understand how, within the formalism, one can construct a labelling scheme. The “Chase
for Individuation” is the analysis of diferent mathematical techniques which attempt to
overcome this tension. In particular, we discuss how group theory furnishes a partial solution.

Key words: Foundations of Mechanics; Classical Mechanics; Quantum Mechanics; Quanti-
zation; Symplectic Geometry; Mathematical Structuralism.



“All great insights and discoveries are not only usually thought by several people

at the same time, they must also be re-thought in that unique efort to truly say the

same thing about the same thing.”

Martin Heidegger
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Introduction

Almost one hundred years after the birth of Quantum Mechanics, the relation in

which it stands to Classical Mechanics is still not completely well understood. The

problem can take several forms: for instance, one may start with the classical descrip-

tion of some given system and then attempt to generate the corresponding quantum

description; on the other hand, one may as well decide to start with the quantum

description of a system and then try to recover, through some controlled limiting pro-

cedure, a classical description. The former is called the problem of quantization; the

latter is the problem of the classical limit. But, on top of these questions, which inves-

tigate the possible transitions between both theories, it is also possible to be interested

in detecting the core ideas which distinguish the Quantum from the Classical. This last

question—which is the question of this dissertation—seems simpler to address; yet, it

is a subtle matter.

One cannot expect to have an acute understanding of the diferences between

Classical and Quantum Mechanics without a thorough analysis of the mathematics

underlying both theories. Klaas Landsman, whose many writings are an invaluable

reading for anyone interested in such questions, emphasizes the importance of mathe-

matical rigor to achieve conceptual clarity:

[...] the problem [of the relation between classical and quantum physics] is so

delicate that in this area sloppy mathematics is almost guaranteed to lead to

unreliable physics and conceptual confusion.1

1N. P. Landsman. “Between Classical and Quantum”. In: Philosophy of Physics (Handbook of
the Philosophy of Science) 2 volume set. Ed. by J. Butterield and J. Earman. Vol. 1. Amsterdam:

1



2 Introduction

This thesis belongs to the ield of Foundations of Physics, and, more speciically,

of Foundations of Mechanics. This is not to say that its goal is to ind the logical

structure and the irst principles upon which the whole theoretical ediice rests. Rather,

the characteristic task of the foundations I wish to practice is the clariication of the

conceptual content of a physical theory, and its means is the discussion of precise

technical results. In style, it is closer to the idea described by the mathematician

William Lawvere:

A foundation makes explicit the essential general features, ingredients, and op-

erations of a science, as well as its origins and general laws of development. The

purpose of making these explicit is to provide a guide to the learning, use, and

further development of the science. A ‘pure’ foundation that forgets this purpose

and pursues a speculative ‘foundation’ for its own sake is clearly a nonfounda-

tion.2

The object of true wonder that launches our investigation is the role symplectic ge-

ometry has come to play in the formulation of Mechanics. Although one may argue that

symplectic geometry has been present in Classical Mechanics since the seminal work of

Joseph-Louis Lagrange at the beginning of the 19th century3, it is undeniable that the

subject has had to wait another hundred and ifty years before acquiring the importance

it has today. For in the last ifty years, through the works of, irst, Vladimir Arnold,

Bertram Kostant and Jean-Marie Souriau, and, afterwards, Victor Guillemin, Jerrold

Marsden, Shlomo Sternberg and Alan Weinstein—to name just a few—, symplectic

geometry has become an indispensable ingredient in the contemporary understanding

of Mechanics. The situation is such that it allows Patrick Iglesias-Zemmour, one of the

leading specialists in the subject, to declare:

Symplectic geometry has become the framework per se of mechanics, up to the

North-Holland Publishing Co., 2007, pp. 417–554. url: http://arxiv.org/abs/quant-ph/0506082,
p. 418.

2F. W. Lawvere and R. Rosebrugh. Sets for Mathematics. Cambridge: Cambridge University
Press, 2003, p. 235.

3For a short study (in French) on the origins of symplectic geometry, see P. Iglesias-Zemmour.
Aperçu des origines de la géométrie symplectique. Actes du colloque “Histoire des géométries”, vol. 1.
2004.

http://arxiv.org/abs/quant-ph/0506082
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point one may claim today that these two theories are the same. Symplectic

geometry is not just the language of mechanics, it is its essence and its matter.4

Now, whenever a new tool acquires such an importance in a large ield, it should

be expected that not only does this tool constitute a leap forward in the solution

of technical problems, but, moreover, that it highlights ideas which were previously

unnoticed and that it brings about new ways of structuring the ield. This motto, which

is at the core of the “philosophical history” that Timmermans tries to develop in his

beautiful book Histoire philosophique de l’algèbre moderne – Les origines romantiques

de la pensée abstraite5, is also the main methodological premise of this work.

It is my opinion that the collective eforts undertaken to investigate the conceptual

lessons to be drawn from the ‘symplectic-geometrization’ of Mechanics have still to

match the tremendous impact this has had on the development of Mechanics itself. In

the course of the last century, there have been numerous attempts to capture ever more

precisely some of the fundamental features distinguishing the quantum world. Perhaps

the two most widely discussed traits are entanglement and the state reduction: the irst

deals with the description of composite systems and expresses the fact that a state of

a composite system may not always be decomposed into states of the various parts6;

the second regards the dynamics of physical systems and is meant to encapsulate the

fundamental inluence of the measurement process on the time evolution of a system.

But in most cases these analyses rely upon a careful examination of the mathematical

formulations of Quantum Mechanics. Seldom has it been the case that the novelties

4“La géométrie symplectique est devenue le cadre par excellence de la mécanique à tel point que
l’on peut dire aujourd’hui que ces théories se confondent. La géométrie n’est pas seulement le langage
de la mécanique, elle en est l’essence et la matière.” (Ibid., p. 2.)

5Timmermans’ exact formulation is: “Lorsqu’un nouvel outil prend ainsi autant d’importance dans
un large domaine [...], on s’attend à ce qu’il n’apporte pas seulement des recettes permettant de régler
des questions, mais qu’il détermine aussi des façons nouvelles de poser les problèmes, d’envisager le
monde.” (Whenever a new tool thus acquires such an importance in a large ield, it should be expected
that not only does this tool bring about new recipes enabling to solve questions, but, moreover, that
it also determines new ways of formulating problems, of looking at the world.) B. Timmermans.
Histoire philosophique de l’algèbre moderne – Les origines romantiques de la pensée abstraite. Paris:
Classiques Garnier, 2012, p. 10.

6More precisely, given physical systems R and S with space of states R and S, it is not the case,
in quantum mechanics, that the space of states R⊗S of the composite system R ⊔ S is the cartesian
product R× S. This means that, unlike in classical mechanics, a state of R ⊔ S cannot in general be
thought as a pair (r, s) with r ∈ R and s ∈ S.
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introduced by this theory into our conception of Mechanics have been examined under

the light of the aforementioned developments in the foundations of Classical Mechanics.

The present thesis is an attempt to push into that direction of research.

The broad goal is therefore to compare Classical and Quantum Mechanics by fo-

cusing as much as possible on the concepts highlighted by symplectic geometry. In

the midst of the dominant narrative that smugly exclaims over the ‘extraordinary’

diferences between Classical and Quantum Mechanics, symplectic geometry acts as

a powerful countercurrent. For indeed, if there is one lesson to take from this ge-

ometrization of Mechanics, it is the impressive merger of the two Mechanics. In the

setting ofered by symplectic manifolds, Poisson algebras, Hamiltonian vector ields

and all the surrounding machinery, one clearly realizes how much these two theories

actually share. By the same token, precisely because it ofers a common ground in

which to discuss both theories, symplectic geometry allows to pinpoint some of the

most fundamental diferences between the Classical and the Quantum.

One example of this coming closer together is the treatment of the equations

of motion. In Quantum Mechanics, these take the form of the famous Schrödinger

equation

iℏ
dΨ(t)

dt
= HΨ(t), (1)

where H is the hermitian operator representing the Hamiltonian and Ψ, the wavefunc-

tion, denotes a (normed) element of the Hilbert space. (1) is almost systematically

perceived as a breakaway from Classical Mechanics. However, through the work of

Werner Heisenberg, whose emphasis was on the time-evolution of observables rather

than states, and Paul Dirac, who emphasized the role of the Hamiltonian formulation

of Classical Mechanics, the equations of motion of Classical and Quantum Mechanics

were very early shown to be similar in their form. Indeed, Schrödinger’s equation could

equivalently be written as

iℏ
dF (t)

dt
= −[H,F (t)], (2)

where F is any hermitian operator and [·, ·] denotes the commutator, not without

reminding Hamilton’s classical equations for the time-evolution of an observable

df(t)

dt
= {h, f}, (3)
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where f is now any smooth real-valued function over the space of states of the classical

system and {·, ·} denotes the Poisson bracket. Despite this, it was only with the

increasing interest for the geometry underlying Classical Mechanics, and the remark

that both the space of states of a classical system and the (projective) Hilbert spaces

used in QuantumMechanics were examples of symplectic manifolds, that it was realized

equations (2) and (3) were not just similar but, in fact, two instances of exactly the

same equation:

ω(
d

dt
, ·) = dh, (4)

where ω is the symplectic 2-form7.

With the discovery that the time-evolution of any physical system, be it classical

or quantum, is governed by the same very simple geometrical equation, one barely

begins to scratch the surface of the situation. At the heart of the symplectic geo-

metric formulation of Mechanics lies the idea that physical properties are tied in an

essential way to state transformations. For some particular physical properties, this

idea has been for long included in the folklore of theoretical physics—for instance by

regarding angular momentum as the generator of spatial rotations. Nonetheless, that

a completely general property–transformation link may constitute a key feature in the

conceptual interpretation of both Classical and Quantum Mechanics has remain some-

how dormant. This is to be contrasted with the endless eforts to accommodate the

quantum theory, despite such no-go theorems as the famous Kochen-Specker, to the

prevalent conception of properties as quantities, which stresses their numerical char-

acter and so smoothly appears to it the classical formalism. Through the geometric

formulation, one clearly perceives the importance of these two aspects of physical prop-

erties, and understanding the articulation between properties-as-transformations and

properties-as-quantities in the Classical and the Quantum becomes a central issue of

our analysis.

This last point is of purely kinematical nature. In the contemporary usage, the

‘kinematical description’ of a physical system has come to signify a characterization of

7For the precise derivation of this, see N. P. Landsman. Mathematical Topics Between Classical
and Quantum Mechanics. New York: Springer, 1998, pp. 71–76, and in particular the comment
preceding equation (2.39). See also Chapter II of the present work.



6 Introduction

the algebra of observables and of the space of all possible states in which a system may

be found. In the light of equation (4), the complete mechanical picture involves, in

addition to the kinematical description, choosing a preferred observable (which is then

regarded as the Hamiltonian of the system) and writing explicitly the lows generated

by it on the space of states. In Quantum Mechanics, one also needs to postulate a

second dynamical process that covers the state reduction or wavefunction collapse8. In

this work, the choice is made to circumscribe our comparison of Classical and Quan-

tum Mechanics to the most basic kinematical level, thus ignoring all interpretational

problems related to Dynamics and, in particular, the measurement problem. From

Schrödinger’s cat9 to Bell’s “and/or” objection10, the measurement problem has been

the focus of much attention in the philosophy of physics—and rightly so: no satis-

factory understanding of Quantum Mechanics can avoid addressing this issue—but,

as a consequence, it has overshadowed the important conceptual diferences between

Classical and Quantum Kinematics. After all, one should not forget the major role of

purely kinematical considerations in Heisenberg’s breakthrough11.

Moreover, the concept of a ‘kinematical description of a physical system’ furnishes

us with a perspective from which to question the mathematical formalisms of Classi-

cal and Quantum Kinematics. Abstract symplectic manifolds and abstract projective

Hilbert spaces are, in a sense to be rendered precise later, homogeneous—it is impossi-

ble to diferentiate their points. This evidently clashes with the idea that one should be

8Roger Penrose calls these two diferent evolutions of Quantum Mechanics the U-quantum pro-
cedure (which is governed by the Schrödinger equation and is hence unitary) and the R-quantum
procedure (which is governed by the state reduction postulate and is hence non-unitary). See R.
Penrose. The Road to Reality: A Complete Guide to the Laws of the Universe. New York: Alfred A.
Knopf, 2005, Chapter 22.

9E. Schrödinger. “Die gegenwärtige Situation in der Quantenmechanik”. In: Naturwissenschaften
23.48 (1935), pp. 807–812 (English translation: E. Schrödinger. “The Present Situation in Quantum
Mechanics”. Trans. by J. D. Trimmer. In: Proceedings of the American Philosophical Society 124.5
(1980), pp. 323–338).

10J. S. Bell. “Against ‘measurement’”. In: 62 Years of Uncertainty: Erice, 5-14 August 1989.
Plenum Publishers, 1990. (Reprinted in: J. S. Bell. Speakable and Unspeakable in Quantum Mechanics.
2nd ed. Cambridge: Cambridge University Press, 2004, pp. 213–231).

11W. Heisenberg. “Über quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen”. In: Zeitschrift für Physik 33 (1925), pp. 879–893 (English translation: W. Heisen-
berg. “Quantum-theoretical Re-interpretation of Kinematic and Mechanical Relations”. In: Sources
of Quantum Mechanics. Ed. by B. Van der Waerden. New York: Dover Publications, Inc., 1967,
pp. 261–276).



Introduction 7

able to distinguish states of a physical system by means of physical properties. Thus,

when such homogeneous mathematical structures are taken as the starting points in

the kinematical descriptions, there must inevitably be a constitution of a labelling

scheme which allows to identify each particular state and each speciic property of the

physical system being described. The progressive constitution of this labelling scheme

within the mathematical frameworks of Classical and Quantum Kinematics is what I

have wished to call the Chase for Individuation which gives the title to this work.

Hence, two main themes pervade throughout the dissertation and determine its

structure:

1) Thinking the diference between Classical and Quantum Kinematics through the

looking glass of symplectic geometry and, in particular, through the double role

of physical properties;

2) Looking for the techniques, explicitly or implicitly at work in the mathematics of

Kinematics, which break the homogeneity of the initially given abstract structures

and help constituting a labelling scheme for states and properties.

Chapter I is a detailed discussion of the conceptual background in which the ‘Chase

for Individuation’ is to be understood. We will argue that, in practice, the mathemat-

ical objects involved in the kinematical description of a physical system are abstract

structures. For this, we will look at the example of how a uniied framework for Quan-

tum Mechanics was brought out from Göttingen’s Matrix Mechanics and Schrödinger’s

Wave Mechanics. Then, we will try to elucidate the notion of an ‘abstract mathematical

structure’, irst by addressing the question of what it means for a mathematical object

to be conceived ‘abstractly’—making heavy use, in particular, of Jean-Pierre Marquis’

account of the abstract method—, and then by discussing mathematical structuralism

as developed by Stewart Shapiro and James Ladyman among others. Only in this

setting will it become clear in which sense one can say that the elements of a sym-

plectic manifold or a projective Hilbert space are indiscernible. The second and third

sections of this irst chapter are therefore close in style and matter to the philosophy

of mathematics.

In Chapter II, the proper conceptual analysis of the mathematical structures used

in Classical and Quantum Kinematics begins. From then on, the style becomes closer
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to that of mathematical physics: although there is no question of proving theorems,

an efort is made to give the exact technical deinition of all the new elements that

are introduced. Again, the combination of mathematical analysis and conceptual syn-

thesis is crucial. In this chapter, we deal only with the kinematical arenas—that is,

with the homogeneous structures which are taken as a starting point in the kinematical

description of classical and quantum systems, and where no labelling scheme is still

present—and we investigate the articulation between the transformational and the

quantitative role of properties. This investigation is performed within three diferent

frameworks: irst, the standard kinematical formulation which uses symplectic mani-

folds for Classical Mechanics and Hilbert spaces for Quantum Mechanics; second, the

geometric formulation which emphasizes the notion of ‘state’ and develops Quantum

Mechanics in terms of Hermitian symmetric spaces; and third, the algebraic formu-

lation which emphasizes the notion of ‘property’ and develops the theory in terms of

Jordan-Lie-Banach algebras.

The irst two chapters are almost completely independent from each other. From

the perspective of the narrative ofered by the ‘Chase for Individuation’ (question 2

above), Chapter II is perhaps an unnecessarily lengthy preparation. However, with

regard to the conceptual comparison of Classical and Quantum Kinematics (question

1 above), it surely is the central part of the dissertation. On the other hand, the third

and inal chapter cannot be understood without the preceding two. Therein, we inally

investigate how Lie groups, and their ininitesimal versions Lie algebras, are used to

introduce a notion of diference within both kinematical arenas, breaking in this way

the homogeneity of the initial mathematical structures and providing a sketch of a

labelling scheme. This approach—which is in sharp contrast with the traditional view

on groups as implementing symmetries, and hence a notion of ‘sameness’—illuminates

in a new way the role of groups in the mathematics of Mechanics.

By the mathematical notions it deals with—symplectic manifolds, of course, but

also (strongly) Hamiltonian actions and the momentum map, C∗-algebras and Jordan-

Lie algebras, Hermitian symmetric spaces, Poisson spaces with a transition probability,

etc.—, the detailed mathematical level to which these notions are discussed and the

questions it asks, this work is an unconventional one for the philosophy of physics. But
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all these recent developments and all these new mathematical formulations show ‘basic’

Kinematics to be, in fact, a vast and complex territory which ought to be explored once

and again, thought and “re-thought in that unique efort to truly say the same thing

about the same thing”12. The promenade taken here is resolutely against the idea

of there being ‘technicalities’—supposedly small and harmless mathematical details,

important for the correct statement of a theorem or the smooth rolling out of a proof,

but insigniicant from a conceptual standpoint. In general, ‘technicalities’ are perceived

as such only because of the failure to ind the approach from which their true role and

meaning is exposed. Finally, it tries to carry as few preconceptions as possible, striving

to listen to what these formalisms are expressing instead of attempting to include them

in some prefabricated interpretational framework. In this, I am strongly inluenced by

the words Alexander Grothendieck once wrote:

One cannot ‘invent’ the structure of an object. The most we can do is to patiently

bring it to the light of day, with humility—in making it known, it is ‘discovered’.

If there is some sort of inventiveness in this work, and if it happens that we

ind ourselves the maker or indefatigable builder, we are in no sense ‘making’

or ’building’ these ‘structures’. They have not waited for us to ind them in

order to exist, exactly as they are! But it is in order to express, as faithfully

as possible, the things that we have been detecting or discovering, the reticent

structure which we are trying to grasp at, perhaps with a language no better

than babbling. Thereby are we constantly driven to ‘invent’ the language most

appropriate to express, with increasing reinement, the intimate structure of the

mathematical object, and to ‘construct’ with the help of this language, bit by bit,

those ‘theories’ which claim to give a fair account of what has been apprehended

and seen. There is a continual coming and going, uninterrupted, between the

apprehension of things, and the means of expressing them by a language in

constant state improvement [...].

12M. Heidegger. What is a Thing? Trans. by W. B. Barton and V. Deutsch. Indiana: Gateway
Editions, Ltd., 1967, p. 80.
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The sole thing that constitutes the true inventiveness and imagination of

the researcher is the quality of his attention as he listens to the voices of things.13

13“La structure d’une chose n’est nullement une chose que nous puissions “inventer”. Nous pouvons
seulement la mettre à jour patiemment, humblement en faire connaissance, la “découvrir”. S’il y a
inventivité dans ce travail, et s’il nous arrive de faire œuvre de forgeron ou d’infatigable bâtisseur, ce
n’est nullement pour “façonner”, ou pour “bâtir”, des “structures”. Celles-ci ne nous ont nullement
attendues pour être, et pour être exactement ce qu’elles sont ! Mais c’est pour exprimer, le plus
idèlement que nous le pouvons, ces choses que nous sommes en train de découvrir et de sonder, et cette
structure réticente à se livrer, que nous essayons à tâtons, et par un langage encore balbutiant peut-
être, à cerner. Ainsi sommes-nous amenés à constamment “inventer” le langage apte à exprimer
de plus en plus inement la structure intime de la chose mathématique, et à “construire” à l’aide de
ce langage, au fur et à mesure et de toutes pièces, les “théories” qui sont censées rendre compte de
ce qui a été appréhendé et vu. Il y a là un mouvement de va-et-vient continuel, ininterrompu, entre
l’appréhension des choses, et l’expression de ce qui est appréhendé, par un langage qui s’aine et
se re-crée au il du travail, [...].
Ce qui fait la qualité de l’inventivité et de l’imagination du chercheur, c’est la qualité de son

attention, à l’écoute de la voix des choses.”
(A. Grothendieck. Récoltes et semailles – Rélexions et témoignage sur un passé de mathématicien.

1985, 2.9. Forme et structure - ou la voie des choses. Bold typeface is Grothendieck’s. Partial
English translation by Roy Lisker, available at http://uberty.org/wp-content/uploads/2015/12/
RS-grothendeick1.pdf.)

http://uberty.org/wp-content/uploads/2015/12/RS-grothendeick1.pdf
http://uberty.org/wp-content/uploads/2015/12/RS-grothendeick1.pdf


Chapter I

Mathematical Description of

Physical Systems

In the practice of theoretical and mathematical physics, it has become customary

to consider general assignments which, to any given physical system S of a certain type

Tphys (e.g., non-relativistic systems with initely-many degrees of freedom), associate

a particular mathematical object D(S) of type Tmath. In general, the object D(S) is

intended to describe the physical system in some way and the map D : Tphys −→ Tmath

is accordingly called the mathematical description of a generic physical system (of the

type Tphys).

This is particularly salient in the foundations of quantization where the main

problem could roughly be stated as follows: given the classical description DC(S) of

a physical system S, can we construct its corresponding quantum description DQ(S)?
In the early stages of the quantum theory, this problem was addressed separately for

each particular system which was of interest at the time, and advances towards the

solution were the result of great heuristic physical insights. A paradigmatic example

of this situation is Bohr’s quantum model of the hydrogen atom of 19131. However,

1N. Bohr. “On the Constitution of Atoms and Molecules”. In: Philosophical Magazine 26.151
(1913), pp. 1–25. (Reprinted in: N. Bohr. Collected Works. Ed. by U. Hoyer. Vol. 2. Amsterdam:
Elsevier, 2008, pp. 161–185); N. Bohr. “On the Constitution of Atoms and Molecules (Part II)”. in:
Philosophical Magazine 26.153 (1913), pp. 476–502. (Reprinted in: N. Bohr. Collected Works. Ed. by
U. Hoyer. Vol. 2. Amsterdam: Elsevier, 2008, pp. 188–214).

11
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with the progressive development of the mathematical foundations of Classical and

QuantumMechanics, the situation changed and it became possible to attempt to regard

quantization as a systematic procedure which could be applied to any physical system

whose classical description was known. The important point here is that this all-

encompassing conception of quantization as a systematic procedure is not possible if

there is not, moreover, a deinition of general assignments DC and DQ which associate

to any physical system S of the type Tphys its classical and quantum descriptions

DC(S) and DQ(S). Schematically, the perspective on quantization evolved from the

conception of a single assignment

DC(S) DQ(S)QS

where the method of quantization QS strongly depended on the particular system S

being handled—and thus could hardly be called a method—, to the more complex

diagram

Tphys

TCMmath T
QM
math

DC DQ

Q

(I.1)

which covers at once the quantization of all the diferent physical systems S of the type

Tphys.

In this setting, the general mathematical problem of quantization is thus: given

the maps DC and DQ, to construct a map Q such that the diagram (I.1) commutes.

The choice of the mathematical objects constituting TCMmath and TQMmath may vary slightly

between diferent approaches to quantization. For example, in his great textbook on

geometric quantization, Nick Woodhouse writes:

The irst problem of quantization concerns the kinematic relationship between the

classical and quantum domains. At the quantum level, the states of a physical

system are represented by the rays in a Hilbert space H and the observables

by a collection O of symmetric operators on H, while in the limiting classical

description, the state space is a symplectic manifold (M,ω) and the observables

are the smooth functions on M . The kinematic problem is: given M and ω, is it
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possible to reconstruct H and O?2

According to this account, in geometric quantization TCMmath would then be the type

of symplectic manifolds, whereas TQMmath would be the type of pairs (H,O) of Hilbert

spaces with collections of symmetric operators. Another example is the so-called “strict

deformation quantization”: therein, the mathematical problem of quantization is casted

in the language of real Poisson algebras (which form TCMmath) and C∗-algebras (which

form T
QM
math)3. Of course, deformation quantization and geometric quantization are

closely related to each other since the smooth real-valued functions over a symplectic

manifold form a Poisson algebra, and bounded operators over a Hilbert space form a

C∗-algebra4.

Now, the idea of considering assignments D : Tphys −→ Tmath does not appear

solely in the discussion of quantization: it is explicitly or implicitly present in many

works on the foundations of Mechanics. In the present chapter, our primary interest will

lie on this notion of ‘mathematical description of a generic physical system’. Because

of this, let me list a few other places where this idea shows up:

a) In Eduard Prugovec̆ki’s textbook Quantum Mechanics in Hilbert Space:

[...] we associate a Hilbert space with any given system which we intend to

describe quantum mechanically. For instance [...], if the systems consists

of n particles, which are of diferent kinds, without spin and moving in

three dimensions, then [...] we associate with that system the Hilbert space

L2(R3n).

Let us assume now that we are dealing with a particular quantum mechanical

problem in which a certain system has been speciied (e.g., a hydrogren

atom) and with which a certain Hilbert space H is associated (e.g., L2(R6)).

It is then postulated that to each observable corresponds in the formalism

2N. Woodhouse. Geometric Quantization. 2nd. Oxford: Clarendon Press, 1991, p. 155.
3See for example M. A. Riefel. “Deformation Quantization and Operator Algebras”. In: Proceed-

ings of Symposia in Pure Mathematics 51 (1990), pp. 411–423.
4See Chapter II for the precise deinition of all these structures (symplectic manifolds, Poisson

algebras, C∗-algebras).
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a unique self-adjoint operator acting on H [...].5

b) In Abraham and Marsden’s Foundations of Mechanics:

A (simple) mechanical system with symmetry is a quadruple (M,K,V,G)

where:

i. M is a Riemannian manifold [...] called the coniguration space [...].

ii. K ∈ F(T ∗M) is the kinetic energy of the system [...].

iii. V ∈ F(M) is the potential energy.

iv. G is a connected Lie group acting on M [...].6

c) In Carlo Rovelli’s monograph Quantum Gravity:

A [classical] dynamical system is determined by a triple (Γ0, ω0, H0), where

Γ0 is a manifold, ω0 is a symplectic two-form and H0 is a function on Γ0.

[...]

A [classical] dynamical system is thus completely deined by a presymplectic

space (Σ, ω). [...]

A given quantum system is deined by a family (generally an algebra) of

operators Ai, including H0 [the Hamiltonian operator corresponding to the

energy], deined over an Hilbert space H0.7

And the examples could be multiplied ad ininitum...

The irst important question regarding this notion is to understand its purpose:

What information about the physical system S do we expect to capture through its

mathematical description D(S)? Put diferently, given the knowledge of D(S), how
much ambiguity do we expect to have about the system S being thus handled? This

question may be easily translated into a more precise one in the following fashion:

given a certain choice of a map D : Tphys −→ Tmath, deine the equivalence relation

“two systems S and S ′ of type Tphys are D–equivalent, denoted by S ∼
D
S ′, if and only

if D(S) and D(S ′) are equal”, and call Tphys
/
D the collection of all such equivalence

5E. Prugovec̆ki. Quantum Mechanics in Hilbert Space. 2nd ed. New York: Academic Press, 1981,
p. 258.

6R. Abraham and J. E. Marsden. Foundations of Mechanics. 2nd ed. Redwood City: Addison-
Wesley Publishing Company, 1978, p. 341.

7C. Rovelli. Quantum Gravity. Cambridge: Cambridge University Press, 2004, pp. 100, 101, 165.
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classes. The above question wishes to understand the diference between D–equivalence
and physical identity. In other words, it asks how faithful a picture of Tphys the quotient
Tphys

/
D is.

If taken literally, the language of some authors suggest quite an ambitious view

on the power of these mathematical descriptions. Thus, when Rovelli writes that a

dynamical system is “determined” or “completely deined” by the mathematical object

D(S), he seems to claim that the data of D(S) fully and unambiguously characterizes

the system S. According to this reading, if a physicist is given the mathematical

description of a given physical system and nothing else, he will nonetheless be able to

recognize which physical system is being described. Let me call this view the descriptive

perspective towards the mathematical description of a physical system. It is deined by

the wish of constructing a map D : Tphys −→ Tmath such that any diference between

two physical systems is relected in their respective mathematical descriptions. In other

words, it demands the following faithfulness requirement:

Faithfulness requirement (descriptive perspective): consider two

physical systems S and S ′ of type Tphys described by the mathematical

objects D(S) and D(S ′) of type Tmath. We must have:

D(S) =M D(S ′) if and only if S =P S
′.

Of course, this is tantamount to requiring the map D to be injective. But it seems

preferable to write the condition explicitly: the two diferent signs of equality, =M and

=P , are there to stress that we are in fact dealing with two diferent criteria of identity,

one for physical systems of the type Tphys and one for mathematical objects of the type

Tmath.

To be sure, the descriptive perspective may appear as a very naive answer to

the question of the relation between Tphys and Tphys
/
D . Rather, it is certainly more

natural to adopt some variant of a formalist perspective towards these mathematical

descriptions. The mathematical object D(S) is then perceived as a formal framework

in which it is possible to develop certain techniques, useful for the theoretical analysis

of physical systems. But the full description of the speciicities of a particular system is

never reached by the sole study of D(S): to unambiguously refer to one speciic system
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it is necessary to consider additional information, extraneous to the mathematical

formalism, that conveys to D(S) its complete physical meaning. There are then two

separate levels of meaning: a irst one, encoded in the Mathematics of Mechanics,

that captures the general features common to certain physical systems; and a second

one added on top, the so-called physical interpretation, invariably situated beyond the

grasp of mathematical formalization. This idea appears quite clearly in the writings

of many authors, and an explicit example is found in Franco Strocchi’s textbook on

Algebraic Quantum Mechanics. He writes:

In the mathematical literature, given a C∗-algebra A, any normalized positive

linear functional on it is by deinition a state; here we allow the possibility that

the set S of states with physical interpretation (briely called physical states) is

full but smaller than the set of all the normalized positive linear functionals on

A.8

There is in this quote a sharp contrast between what is declared by deinition in Mathe-

matics and what is to be interpreted in Physics. According to this formalist perspective,

the physical interpretation is not determined by the mathematical formalism. There-

fore, the same object D(S) may describe a wide range of diferent physical systems and

the quotient Tphys
/
D only provides a rough picture of Tphys.

Although one may suspect that it is simply not possible for the mathematical ob-

ject D(S) to capture everything about the physical system S, it certainly encapsulates

something about it. In other words, although one probably has Tphys
/
D ̸≃ Tphys, it

is certainly the case that Tphys
/
D ̸≃ ∗. Despite the soundness of the formalist per-

spective, it then becomes interesting to adopt the descriptive perspective as a working

hypothesis—as an ideal asymptotic situation one should try to approach. In this way,

by attempting to fully and unambiguously characterize a physical system through its

mathematical description, one is forced to study in detail the mechanisms through

which some physical information is encoded in the mathematics of Mechanics.

Given a certain type of physical systems Tphys, it cannot be the task of our work

8F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics. 2nd ed.
Singapore: World Scientiic, 2008, p. 24, my emphasis.



Chapter I. Mathematical Description of Physical Systems 17

to determine ‘the correct’ map D : Tphys −→ Tmath which succeeds in performing this

characterization—otherwise, it would be a research program in mathematical physics.

Rather, our main task in this chapter will be to clarify some general characteristics the

mathematical objects of type Tmath should have in order to be considered as a priori

‘acceptable’ candidates for describing physical systems.

In general, the object D(S) is intended to describe either the space of states of

the system S—sometimes also called the “phase space”—or its algebra of observables.

Now, an experimental physicist must be able to clearly identify the state in which a

physical system S is prepared. But if the mathematical object D(S) is to capture

all the physical information of the system, then one should expect this ability of the

experimentalist to be relected within D(S). In other words, one is confronted with

the following requirement:

Requirement of individuation: it must be possible, in practice, to in-

dividuate any speciic element of the mathematical object D(S) used to

described the physical system S.

As innocent-looking as the requirement of individuation may appear, it nonetheless

imposes some stringent conditions on the mathematical formalisms to be used for the

development of Classical and Quantum Mechanics. To see this, we need however to

clarify further the content of the two main requirements of the descriptive perspective.

The goal of the present chapter is to do so by addressing the following three questions:

♣ How does one conceive the mathematical entities involved in the kinematical

description of physical systems?

♥ Which is the criterion of identity =M used in practice for the mathematical

objects D(S)?

♠ What exactly does it mean to individuate an element within the mathematical

entity D(S)?
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I.1 A case study: the birth of Quantum Mechanics

(1925–1932)

The turning years, from 1925 to 1932, during which a uniied conceptual and

mathematical framework was built for the theory of Quantum Mechanics, appear as

a particularly well suited example to launch our investigations. With the advent of

both Göttingen’s matrix mechanics and Schrödinger’s wave mechanics, the quantum

theory passed, in only one year (June 1925 to June 1926), from lacking any systematic

scheme to having two seemingly diferent foundations. The sudden rise of two empiri-

cally equivalent theories which however seemed conceptually at odds from each other

baled the Physics community. The perplexity felt at the time is clearly expressed by

Schrödinger himself:

Considering the extraordinary diferences between the starting-points and the

concepts of Heisenberg’s quantum mechanics and of the theory which has been

designated “undulatory” or “physical” mechanics, it is very strange that these

two new theories agree with one another with regard to the known facts, where

they difer from the old quantum theory. [...] That is really very remarkable,

because starting-points, presentations, methods, and in fact the whole mathe-

matical apparatus seem fundamentally diferent.9

This exceptional situation10 inevitably brought to the forefront the question of the

relation between the mathematical characteristics of the theories being developed and

their physical content. It ofers a particularly well-suited context to perceive how

diferent physicists dealt with the questions we have posed.

In the following subsections, I wish to investigate what can be learned with re-

spect to these questions from the attempts of the founders of Quantum Mechanics in

9E. Schrödinger. “On The Relation Between The Quantum Mechanics of Heisenberg, Born, and
Jordan, and That of Schrödinger”. In: Collected Papers on Wave Mechanics. Trans. by J. Shearer
and W. Deans. London: Blackie & Son, 1928, pp. 45–61, p. 45.

10As Jammer puts it: “It is hard to ind in the history of physics two theories designed to cover the
same range of experience, which difer more radically than these two.” (M. Jammer. The Conceptual
Development of Quantum Mechanics. 2nd ed. Los Angeles: Tomash Publishers, 1989, p. 270)
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clarifying the relation between wave and matrix mechanics. I will therefore summar-

ily present the key points in these developments, from Heisenberg’s Umdeutung paper

until von Neumann’s introduction of abstract Hilbert spaces. The historical account

does not pretend to any originality, even if, I hope, its synthetic and relexive ap-

proach might be useful. It is based on some much more detailed works, which are now

standard. I think in particular of Jammer’s The Conceptual Development of Quantum

Mechanics, Darrigol’s From c-Numbers to q-Numbers: The Classical Analogy in the

History of Quantum Theory and Mehra and Rechenberg’s The Historical Development

of Quantum Theory. Volumes 1 – 6. Along the way, I will pay particular attention

to the places where emerges a relection on the physical content of the mathematical

apparatus used in Quantum Mechanics.

I.1.1 Matrix and Wave Mechanics

Prior to 1925, the quantum theory, although empirically very successful, lacked any

clarity from the conceptual and methodological point of view. In the introduction of the

book which represented the culmination in the establishing of quantum mechanics—von

Neumann’s Mathematische Grundlagen der Quantenmechanik—, the author recalled

the situation as follows:

In spite of the claim of quantum theory to universality, which had evidently been

vindicated, there was lacking the necessary formal and conceptual instrument;

there was a conglomeration of essentially diferent, independent, heterogeneous

and partially contradictory fragments.11

Along the same lines, Jammer describes the state of the art as “a lamentable hodge-

podge of hypotheses, principles, theorems, and computational recipes rather than a

logical consistent theory”12. However, during the second semester of that year, the sit-

uation widely changed with the development of what later came to be known as ‘matrix

11J. von Neumann. Mathematical Foundations of Quantum Mechanics. Trans. by R. T. Beyer.
Princeton: Princeton University Press, 1955, p. 4.

12Jammer, op. cit., p. 208.
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mechanics’13. This new quantum theory of Mechanics was essentially established by

four physicists: the three-man Göttingen group formed by Werner Heisenberg, Max

Born and Pascual Jordan, and the Cambridge student Paul Adrien Maurice Dirac.

I.1.1.a Matrix Mechanics

The seminal work that cleared the fog and set up the path was Heisenberg’s article

“Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen”,

received on July 29 1925, written while he was part of Max Born’s group at Göttingen14.

His main motivation is clearly stated in the introduction of his paper:

Instead it seems more reasonable to try to establish a theoretical quantum me-

chanics, analogous to classical mechanics, but in which only relations between

observable quantities occur.15

There are two important ideas here. On the one hand, there is the emphasis on

“observable quantities”. In particular, this meant refusing any attempt to describe the

trajectory in space-time of the electrons of an atom. Instead, the central phenomenom

upon which the theory had to be built was the emission of radiation16. Through

this move, frequencies and energy were conferred a preferred role amongst physical

13The term of ‘matrix mechanics’ does not appear in any of the irst papers on the theory. Mehra
and Rechenberg track back this expression to a review written in late 1926 by Edwin C. Kemble.
(See J. Mehra and H. Rechenberg. The Historical Development of Quantum Theory. Volume 3: The
Formulation of Matrix Mechanics and Its Modiications. New York: Springer-Verlag, 1982, footnote
74, pp. 61–62.)

14W. Heisenberg. “Über quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen”. In: Zeitschrift für Physik 33 (1925), pp. 879–893 (English translation: W. Heisen-
berg. “Quantum-theoretical Re-interpretation of Kinematic and Mechanical Relations”. In: Sources
of Quantum Mechanics. Ed. by B. Van der Waerden. New York: Dover Publications, Inc., 1967,
pp. 261–276).

15Ibid., p. 262.
16“[I]t is necessary to bear in mind that in quantum theory it has not been possible to associate the

electron with a point in space, considered as a function of time, by means of observable quantities.
However, even in quantum theory it is possible to ascribe to an electron the emission of radiation.”
(Ibid., p. 263.)
Jean Petitot—following Alain Connes—considers this change of “regional object”, from motion

to spectra, as the fundamental move which characterizes the transition from Classical to Quantum
Mechanics (see, for example, A. Connes. Noncommutative Geometry. Trans. by S. Berberian. London:
Academic Press, 1994, pp. 33–39 and J. Petitot. “Noncommutative Geometry and Transcendental
Physics”. In: Constituting Objectivity. Trascendental Perspectives on Modern Physics. Ed. by M.
Bitbol, P. Kerszberg, and J. Petitot. Springer, 2009, pp. 415–455).
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quantities, and this had two important consequences on the form matrix mechanics

was going to take. First, as we will shortly see, in the irst papers on the theory one

almost invariantly considered states with a deinite value of energy—i.e., stationary

states. Second, the theory of quantum mechanics was to be built by close analogy

with classical Fourier analysis, which allowed to represent any physical quantity—in

particular, position—in terms of frequencies and amplitudes.

On the other hand, Heisenberg insisted on the fact that quantum mechanics had

to be “analogous to classical mechanics”. The young german physicist was in fact

deeply inluenced by Bohr’s correspondence principle and wished to give a rigorous

formulation of it17. Therefore, he was aiming, as the title of the article underlines, at

a systematic method of re-interpreting or translating the classical laws which related

classical properties into similar laws relating quantum quantities18. In the road to this

systematic translation scheme, the irst fundamental problem became to translate into

quantum mechanics the square of a given physical quantity:

17On the paper he co-authored with Born and Jordan, Heisenberg would be more explicit about
the relation between his work and Bohr’s. In the introduction of this famous “three-man paper”, he
wrote:

If one reviews the fundamental diferences between classical and quantum theory, dif-
ferences which stem from the basic quantum theoretical postulates, then the formalism
proposed [...], if proved to be correct, would appear to represent a system of quantum
mechanics as close to that of classical theory as could reasonably be hoped. [...] This
similarity of the new theory with classical theory also precludes any question of a sep-
arate correspondence principle outside the new theory; rather, the latter can itself be
regarded as an exact formulation of Bohr’s correspondence considerations.
(M. Born, W. Heisenberg, and P. Jordan. “On Quantum Mechanics II”. in: Sources of
Quantum Mechanics. Ed. by B. Van der Waerden. New York: Dover Publications, Inc.,
1967, pp. 321–384, p. 322)

(Although the paper was conjointly written by the three man, the introduction was written by Heisen-
berg, as it is explained in Mehra and Rechenberg, op. cit., pp. 92–102.)

18This point was clearly understood by Dirac, who, only a few months after the publication of the
Heisenberg’s work, concisely captured its essence:

In a recent paper Heisenberg puts forward a new theory which suggests that it is not the
equations of classical mechanics that are in any way at fault, but that the mathematical
operations by which physical results are deduced from them require modiication. All
the information supplied by the classical theory can thus be made use of in the new
theory.
(P. A. M. Dirac. “The Fundamental Equations of Quantum Mechanics”. In: Proceedings
of the Royal Society of London A109 (1925), pp. 642–653. (Reprinted in: P. A. M.
Dirac. The Collected Works of P.A.M. Dirac: 1924–1948. Ed. by R. Dalitz. Cambridge:
Cambridge University Press, 1995, pp. 65–78), p. 642)
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This point has nothing to do with electrodynamics but rather — and this seems

to be particularly important — is of purely kinematical nature. We may pose the

question in its simplest form thus: If instead of a classical quantity x(t) we have

a quantum-theoretical quantity, what quantum-theoretical quantity will appear

in place of x2(t)?19

In other words, he asked about the product governing the algebra of quantum proper-

ties. As it is well-known, basing his considerations on the frequency conditions for the

emission of radiation and using the analogy with the decomposition of a product in

Fourier analysis, he concluded the quantum product needed to be non-commutative:

“Whereas in the classical theory x(t)y(t) is always equal to y(t)x(t), this is not nec-

essarily the case in the quantum theory”20. Having determined this new product, he

was able to solve the quantum anharmonic oscillator, by re-interpreting the classical

equations of motion ẍ + ω2
0x + λx2 = 0. This was the irst success of Göttingen’s

quantum mechanics.

Immediately after Heisenberg had inished writing his article, Max Born recog-

nized that the “law of multiplication of quantum-theoretical quantities [introduced by

Heisenberg] was none other than the well-known mathematical rule of matrix multipli-

cation”21. This realization launched a collaboration with Pascual Jordan, and in a few

months they properly rewrote the mathematical aspects of Heisenberg’s work in terms

of ininite matrices, in a paper received on September 27 192522. The major contribu-

tion of this work was, of course, the understanding that in this newly developed theory

of quantum mechanics physical quantities were to be represented by matrices:

19Heisenberg, loc. cit.
20Ibid., p. 266. Although the introduction of this noncommutative product constitutes probably

the most important breakthrough of the paper, Heisenberg was not satisied with it, as he later
acknowledged in a interview with Kuhn: ‘In my paper, the fact that XY was not equal to Y X was
very disagreeable to me. I felt this was the only point of diiculty in the whole scheme, otherwise I
would be perfectly happy.” (Cited in Mehra and Rechenberg, op. cit., p. 94)

21M. Born and P. Jordan. “On Quantum Mechanics”. In: Sources of Quantum Mechanics. Ed.
by B. Van der Waerden. New York: Dover Publications, Inc., 1967, pp. 277–306, p. 278, author’s
emphasis.

22M. Born and P. Jordan. “Zur Quantenmechanik”. In: Zeitschrift für Physik 34 (1925), pp. 858–
888 (English translation: M. Born and P. Jordan. “On Quantum Mechanics”. In: Sources of Quantum
Mechanics. Ed. by B. Van der Waerden. New York: Dover Publications, Inc., 1967, pp. 277–306).
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The ininite square array (with discrete or continuous indices) which ap-

pears at the start of the next section, termed matrix, is a representation of

a physical quantity which is given in classical theory as a function of time.

The mathematical method of treatment inherent in the new quantum me-

chanics is thereby characterized through the employment of matrix analysis

in place of the usual number analysis.23

More precisely, the matrix

q(t) =
(
q(nm)e2iπν(nm)t

)

which represented the dynamical quantity q(t) (e.g., the position) was considered to be

the quantum re-interpretation of the Fourier series expansion of the classical quantity

q(t):

q(t) =
+∞∑

n=−∞

qne
2iπnνt.

Although in principle the indices of the matrix coeicients could also be continuous,

in practice they conined themselves from the outset to systems whose motion was

periodic, a fact which restricted them to only considering discrete indices24.

On top of this major insight, they introduced for the irst time the canonical

commutation relations for a system with one degree of freedom

pq − qp =
h

2πi
1

(which they called at the time “stronger quantum conditions” since they were related to

the quantization of angular momentum required by Bohr), proposed the probabilistic

interpretation of the amplitude |q(nm)|2 and wrote Hamilton’s equations of motion in

23Ibid., p. 278.
24Indeed, for a non-periodic function, the Fourier series is replaced by a Fourier integral:

q(t) =

∫ +∞

−∞

q(α)e2iπανtdα.
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terms of the commutator with the Hamiltonian:




q̇ =
2πi

h
(Hq − qH)

ṗ =
2πi

h
(Hp− pH).

Independently of the work of Born and Jordan at Göttingen, Paul Dirac, who was

at the time a student at Cambridge, also managed to put Heisenberg’s Umdeutung

paper on a irmer mathematical ground in his article “The Fundamental Equations of

Quantum Mechanics”, received on November 7 192525. The whole paper is devoted

to the study of the mathematical operations which can be performed on the phys-

ical quantities in the new quantum theory: section 2, “Quantum algebra”, restates

Heisenberg’s law of multiplication for quantum variables; section 3, “Quantum dif-

ferentiation”, deals with “the most general quantum operation”26 satisfying Leibniz’s

rule (multiplication and diferentiation were the two main operations needed to ind

the quantum ‘re-interpretation’ of the classical laws); section 4, “The quantum condi-

tions”, introduces the quantum Poisson bracket which allows him to write the canonical

commutation relations for an arbitrary number of degrees of freedom




qrps − psqr = δrs
ih

2π

qrqs − qsqr = 0

prps − pspr = 0;

and section 5, “Properties of the quantum Poisson bracket expression”, introduces

Hamilton’s equations of motion. Hence, he essentially recovered (and slightly ex-

tended), in a beautifully concise style, all the basic results of Born and Jordan27.

And he did so without mention of the just-found matrix representation (which he was

unaware of). Instead, Dirac preferred to work at a purely symbolic level, disregarding

25P. A. M. Dirac. “The Fundamental Equations of Quantum Mechanics”. In: Proceedings of the
Royal Society of London A109 (1925), pp. 642–653. (Reprinted in: P. A. M. Dirac. The Collected
Works of P.A.M. Dirac: 1924–1948. Ed. by R. Dalitz. Cambridge: Cambridge University Press,
1995, pp. 65–78).

26Ibid., p. 311.
27Dirac’s paper is only ten pages long. Compare this with the thirty pages of Born and Jordan’s

irst paper!
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any particular representation of what he later decided to call the “q-numbers” and fo-

cusing on the algebraic relations they satisied. This methodology was clearly described

in his second paper on the subject:

This [matrix] representation was taken as deining a q-number in the previous

papers [of Heisenberg, Born and Jordan] on the new theory. It seems preferable

though to take the above algebraic laws and the general conditions (1) [the

canonical commutation relations] as deining the properties of q-numbers, and

to deduce from them that a q-number can be represented by c-numbers in this

manner when it has the necessary periodic properties.28

Finally, simultaneously with Dirac’s irst paper, Born, Jordan and Heisenberg

wrote yet another article that further developed the new quantum theory of mechan-

ics: “On Quantum Mechanics II”, received on November 16 192529. For a system with

an arbitrary number of (periodic) degrees of freedom, they proposed the same gener-

alized commutation relations found by Dirac. But the main novelty of this sixty pages

long ‘three man paper’ was their introduction of the concept of “canonical transfor-

mations” (leaving invariant the quantum commutation relations) in order to translate

the dynamical problem of integrating the equations of motions into the problem of

diagonalizing the energy matrix H(p, q)30. In this way, the theory of eigenvalues of

hermitian forms became of central importance to quantum mechanics.

At this point, essentially all the fundamental ingredients of what became to be

known as ‘matrix mechanics’ had been properly laid down. All the relevant information

of a quantum-theoretical dynamical system was to be completely described by the

form of the Hamiltonian and the set of observable quantities, which were represented

28P. A. M. Dirac. “Quantum Mechanics and a Preliminary Investigation of The Hydrogen Atom”.
In: Proceedings of the Royal Society of London A110 (1926), pp. 561–579. (Reprinted in: P. A. M.
Dirac. The Collected Works of P.A.M. Dirac: 1924–1948. Ed. by R. Dalitz. Cambridge: Cambridge
University Press, 1995, pp. 85–105), p. 563.

29M. Born, W. Heisenberg, and P. Jordan. “Zur Quantenmechanik II”. in: Zeitschrift für Physik
35 (1926), pp. 557–615 (English translation, M. Born, W. Heisenberg, and P. Jordan. “On Quantum
Mechanics II”. in: Sources of Quantum Mechanics. Ed. by B. Van der Waerden. New York: Dover
Publications, Inc., 1967, pp. 321–384)

30“Then, the dynamic problem, e.g., the determination of the pk, qk can be formulated as: A
transformation p0

k
, q0

k
→ pk, qk is to be found which leaves [the basic commutation relations] invariant

and at the same time reduces the energy to a diagonal matrix.” (Ibid., p. 349)
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by ininite dimensional matrices satisfying a certain number of algebraic relations.

Pauli’s application of this matrix scheme to solve the hydrogen atom was the irst

truly impressive success of the theory31.

Therefore, only six months after the publication of Heisenberg’s seminal paper, the

new theory of ‘matrix mechanics’ seemed to be expanding full steam ahead, especially

carried by the Göttingen group. But this swift development was to be echoed, during

the irst semester of 1926, by the equally sudden and expeditious construction of ‘wave

mechanics’.

I.1.1.b Wave Mechanics

Contrary to the situation of the quantum theory of ‘matrix mechanics’, which

progressively took its form thanks to the contribution of various physicists, ‘wave me-

chanics’ was single-handedly developed by Erwin Schrödinger, who at the time worked

in Zurich. He did so in a series of four papers written and published in only six months,

from end of December 1925 to end of June 1926:

– “Quantisierung als Eigenwertproblem (I)”, received on January 27 192632,

– “Quantisierung als Eigenwertproblem (II)”, received on February 23 192633,

– “Quantisierung als Eigenwertproblem (III)”, received on May 10 192634,

31W. Pauli. “Über das Wasserstofspektrum vom Standpunkt der neuen Quantenmechanik”. In:
Zeitschrift für Physik 36 (1926), pp. 336–363, received on January 17 1926 (English translation: W.
Pauli. “On The Hydrogen Spectrum From The Standpoint of The New Quantum Mechanics”. In:
Sources of Quantum Mechanics. Ed. by B. Van der Waerden. New York: Dover Publications, Inc.,
1967, pp. 387–415).

32E. Schrödinger. “Quantisierung als Eigenwertproblem (I)”. in: Annalen der Physik 79 (1926),
pp. 361–376 (English translation: E. Schrödinger. “Quantisation as a Problem of Proper Values. Part
I”. in: Collected Papers on Wave Mechanics. Trans. by J. Shearer and W. Deans. 2nd ed. London
and Glasgow: Blackie & Son, Ltd, 1928, pp. 1–12).

33E. Schrödinger. “Quantisierung als Eigenwertproblem (II)”. in: Annalen der Physik 79 (1926),
pp. 489–527 (English translation: E. Schrödinger. “Quantisation as a Problem of Proper Values. Part
II”. in: Collected Papers on Wave Mechanics. Trans. by J. Shearer and W. Deans. 2nd ed. London
and Glasgow: Blackie & Son, Ltd, 1928, pp. 13–40).

34E. Schrödinger. “Quantisierung als Eigenwertproblem (III)”. in: Annalen der Physik 80 (1926),
pp. 437–490 (English translation: E. Schrödinger. “Quantisation as a Problem of Proper Values. Part
III”. in: Collected Papers on Wave Mechanics. 2nd ed. London and Glasgow: Blackie & Son, Ltd,
1928, pp. 62–101).
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– “Quantisierung als Eigenwertproblem (IV)”, received on June 21 192635.

This four-parts paper has been qualiied by Jammer as “one of the most inluential

contributions ever made in the history of science”36. As Schrödinger explains, they

were not irst conceived as a whole and then written; rather, the writing process ac-

companied the author’s progressive understanding of the theory he was building37. As

a consequence, they do not constitute the best exposition for a reader who would be

approaching the subject for the irst time. Far more enlightening are the presentations

of the same material he wrote in English and French a few months later38.

As it had been the case with Heisenberg, Schrödinger wanted to ban the notion

of “trajectory” from the theory of Mechanics. But his reasons for this widely difered

from those of the German physicist. As we saw in the previous section, Heisenberg’s

dismissal of trajectories originated in the impossibility found at the time to observe the

position of the electrons in an orbit. Because of this, Heisenberg rejected any spatial

picture of atomic phenomena. Instead, Schrödinger’s main motivation was to get rid

of the picture of material points and build a theory of Mechanics entirely based upon

the notion of “wave”:

The theory which is reported in the following pages is based on the very interest-

ing and fundamental researches of L. de Broglie on what he called “phase-waves”

(“ondes de phase”) and thought to be associated with the motion of material

points, especially with the motion of an electron or proton. The point of view

35E. Schrödinger. “Quantisierung als Eigenwertproblem (IV)”. in: Annalen der Physik 81 (1926),
pp. 109–139 (English translation: E. Schrödinger. “Quantisation as a Problem of Proper Values. Part
IV”. in: Collected Papers on Wave Mechanics. Trans. by J. Shearer and W. Deans. 2nd ed. London
and Glasgow: Blackie & Son, Ltd, 1928, pp. 102–123).

36Jammer, op. cit., p. 266.
37“[T]he papers now combined in one volume were originally written one by one at diferent times.

The results of the later sections were largely unknown to the writer of the earlier ones.” (E. Schrödinger.
Collected Papers on Wave Mechanics. Trans. by J. Shearer and W. Deans. 2nd ed. London and
Glasgow: Blackie & Son, Ltd, 1928, p. v.)

38E. Schrödinger. “An Undulatory Theory of the Mechanics of Atoms and Molecules”. In: The
Physical Review 28 (1926), pp. 1049–1070. (Reprinted in: E. Schrödinger. Gesammelte Abhandlungen
/ Collected Papers. Volume 3. Vienna: Austrian Academy of Science, 1984, pp. 280–301), and
E. Schrödinger. “La mécanique des ondes”. In: Electrons et Photons: Rapports et Discussions du
Cinquième Conseil de Physique, tenu à Bruxelles du 24 au 29 Octobre 1927. Paris: Gauthiers-Villars,
1928, pp. 185–213. (Reprinted in: E. Schrödinger. Gesammelte Abhandlungen / Collected Papers.
Volume 3. Vienna: Austrian Academy of Science, 1984, pp. 302–323).
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taken here [...] is rather that material points consist of, or are nothing but,

wave-systems.39

The urge Schrödinger felt to build this “undulatory” or “wave” Mechanics was indeed

strongly inluenced by the recent work of the French Louis de Broglie, which allowed

to associate a wavelength to material particles. But there was also the work of William

Hamilton, who had constructed his analytical Mechanics by analogy with geometrical

optics. This exerted a decisive inluence on Schrödinger’s ideas. In fact, during the

process of irmly establishing his quantum theory, Schrödinger was driven by the funda-

mental idea that quantum mechanics should be to classical mechanics what undulatory

optics had been to geometrical optics:

[...] we know to-day, in fact, that our classical mechanics fails for very small

dimensions of the path and for very great curvatures. Perhaps this failure is in

strict analogy with the failure of geometrical optics, i.e., “the optics of ininitely

small wave lengths”, that becomes evident as soon as the obstacles or apertures

are no longer great compared with the real, inite, wave length. Perhaps our

classical mechanics is the complete analogy of geometrical optics and as such is

wrong and not in agreement with reality [...]. Then it becomes a question of

searching for an undulatory mechanics, and the most obvious way is the working

out of the Hamiltonian analogy on the lines of undulatory optics.40

39Idem, “An Undulatory Theory of the Mechanics of Atoms and Molecules”, p. 1049.
40Idem, “Quantisation as a Problem of Proper Values. Part II”, p. 18, author’s emphasis. Another

paradigmatic paragraph of Schrödinger’s thought is the following:
The true mechanical process is realised or represented in a itting way by the wave

process in q-space, and not by the motion of image points in this space. The study of the
image points, which is the object of classical mechanics, is only an approximate treatment,
and has, as such, just as much justiication as geometrical or “ray” optics has, compared
with the true optical process. A macroscopic mechanical process will be portrayed as
a wave signal [...], which can approximately enough be regarded as conined to a point
compared with the geometrical structure of the path. [...] This manner of treatment,
however, loses all meaning where the structure of the path is no longer very large compared
with the wave length or indeed is comparable with it. Then we must treat the matter
strictly on the wave theory, i.e. we must proceed from the wave equation [yet to be found]
and not from the fundamental equations of mechanics [...]. These latter equations are
just as useless for the elucidation of the micro-structure of the mechanical processes as
geometrical optics is for explaining the phenomena of difraction. (Ibid., p. 25.)
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From a mathematical point of view, Schrödinger’s program of going from material-

point Mechanics to undulatory Mechanics meant the passage from total diferential

equations whose only parameter is time—such as the equation of motion of a point-like

harmonic oscillator
(
d2

dt2
+ω2

)
q(t) = 0—to partial diferential equations where both time

and space coordinates are involved—such as the usual one-dimensional wave equation
(
∂2

∂t2
− 1

v2
∂2

∂x2

)
u(x, t) = 0.

The irst article is solely dedicated to treating the simpliied non-relativistic hydro-

gen atom, described by the Keplerian central potential V = − e2

r
. For this, he proposed

the partial diferential equation

∇2ψ(x) +K(E − V )ψ(x) = 0 (I.2)

and re-obtained Bohr’s energy levels for the stationary states En ∝ − e4

n2 (n = 1, 2, 3, . . .)

as the only possible negative values of the parameter E for which the equation admitted

a inite, continuous solution. In this way, Schrödinger claimed, the postulation of whole

numbers, which was the core of the old quantum theory, acquired a more natural

justiication:

The essential thing seems to me to be, that the postulation of “whole numbers”

no longer enters into the quantum rules mysteriously, but that we have traced

the matter a step further back, and found the “integralness” to have its origin in

the initeness and single-valuedness of a certain space function.41

Despite this success, the justiication for Equation I.2, which Schrödinger had es-

sentially guessed42 and later came to be known as the ‘time-independent Schrödinger

equation’, was not very convincing (to say the least)43. By extensively discussing the

already mentioned analogy between Mechanics and Optics, the second paper tried to

41Idem, “Quantisation as a Problem of Proper Values. Part I”, p. 9.
42For a detailed reconstruction of Schrödinger’s complex route of “educated guesses” towards his

wave equation, see J. Mehra and H. Rechenberg. The Historical Development of Quantum Theory.
Volume 5: Erwin Schrödinger and the Rise of Wave Mechanics. New York: Springer-Verlag, 1987,
Chapter III.

43In the irst paragraph of his second paper, Schrödinger himself described his previous derivation
of the time-independent equation as “unintelligible” and “incomprehensible”!
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establish it on irmer grounds, but the result was not much more transparent. Notwith-

standing this, he continued developing his theory and considered further applications

of his wave equation: in the second article, he managed to solve other simple mechan-

ical systems such as the harmonic oscillator and the rigid rotator, while in the third

he developed the time-independent perturbation theory which allowed him to compute

the Stark efect in the hydrogen atom. Finally, in the fourth article, Schrödinger dealt

with non-conservative systems, i.e. systems for which the external potential V varied

with time, and was lead to introduce the full Schrödinger equation:

∇2Ψ− 8π2

h2
VΨ∓ 4πi

h

∂Ψ

∂t
= 0 (I.3)

which yielded the previous time-independent equation (I.2) whenever the wave-function

was stationary: Ψ(x, t) = ψ(x)e2iπEt/h.

Therefore, by the end of the fourth paper, Schrödinger had written down mostly

all of quantum mechanics as it is known today. Table I.1 (page 31) summarizes the sit-

uation at that point, with the fundamental traits of the two diferent quantum theories

of Mechanics44.

I.1.2 Extracting the physics (1): Schrödinger’s mathematical

equivalence

The state of perplexity of the Physics community, after having witnessed in such

a short lapse of time the development of both Matrix and Wave Mechanics, could very

well be described by the following words, which Einstein supposedly addressed to a

crowded room of physicists in the University of Berlin:

Now listen! Up to now we had no exact quantum theory, and today we suddenly

have two of them. You will agree with me that these two theories exclude one

44This synthetic description of both theories is strongly inluenced by the one Van der Waerden
proposed in B. Van der Waerden. “From Matrix Mechanics and Wave Mechanics to Uniied Quantum
Mechanics”. In: The Physicist’s Conception of Nature. Ed. by J. Mehra. Dordrecht: D. Reidel
Publishing Company, 1987, pp. 276–293.
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Matrix Mechanics Wave Mechanics

Description of the mechanical system: by
its observable quantities, which are
represented by ininite square matrices.

Description of the mechanical system: by
its stationary states, which are de-
scribed by complex-valued functions
over q-space.

Dynamical problem: to ind matrices q

and p satisfying the algebraic relation

pq − qp =
ℏ

i
1

and for which the Hamiltonian matrix
H(p, q) is diagonal.

Dynamical problem: to ind the wave
functions ψ and the values E satisfying
the partial diferential equation

∇2ψ(q) +
2m

ℏ2
(E − V )ψ(q) = 0

Energy levels: eigenvalues of the matrix
H(p, q).

Energy levels: eigenvalues of the time-
independent Schrödinger equation.

Table I.1 – Fundamental ingredients of Matrix and Wave Mechanics.

another. Which theory is the correct one? Perhaps neither of them is correct!45

This surprise was the combination of two facts. On the one hand, Matrix and

Wave Mechanics were ‘extraordinarily diferent in their starting-points and concepts’

(Schrödinger), up to the point that they seemed to ‘exclude one another’ (Einstein).

On the other hand, however, the two theories had lead to the same predictions for

the energy levels of the systems they had considered—coincidence which was specially

spectacular for the harmonic oscillator since the predictions difered from those of

the old quantum theory. To be sure, the observation of their empirical equivalence

raised the question of whether or not the ‘extraordinary diferences’ were nothing but

a misleading impression. In other words, it raised the question of the identity of the

two theories. The importance of relecting on the notion of identity was immediately

recognized by Schrödinger, who was the irst to unveil the profound relation between

the two new quantum theories in the article “On The Relation Between The Quantum

45H. Kallmann. “Von der Anfängen der Quantentheorie—Eine persönliche Rückschau”. In:
Physikalische Blätter 22 (1966), pp. 489–500. Cited in: Mehra and Rechenberg, op. cit., p. 636.
Mehra and Rechenberg raise doubts on the faithfulness of Kallmann’s recollection of Einstein’s words,
but this need not worry us here.
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Mechanics of Heisenberg, Born, and Jordan, and That of Schrödinger”46.

But before reviewing this work, let us look more closely at the reasons Schrödinger

could have had for considering these two theories to be so radically diferent. In the

introduction of his paper, the Austrian physicist explains:

Above all, however, the departure from classical mechanics in the two theo-

ries seems to occur in diametrically opposed directions. In Heisenberg’s work

the classical continuous variables are replaced by systems of discrete numerical

quantities (matrices), which depend on a pair of integral indices, and are de-

ined by algebraic equations. The authors themselves describe the theory as a

“true theory of the discontinuum”. On the other hand, wave mechanics shows

just the reverse tendency; it is a step from classical point-mechanics towards a

continuum-theory. In place of a process described in terms of a inite number of

dependent variables occurring in a inite number of total diferential equations,

we have a continuous ield-like process in coniguration space, which is governed

by a single partial diferential equation [...].47

Hence, for him, the couple of opposite notions Continuum/Discrete characterized the

essential trait distinguishing Wave and Matrix Mechanics.

Undoubtedly, Schrödinger could not be wrong when claiming that, in the devel-

opment of undulatory mechanics, the pursue of continuity played a major role—after

all, he was the author! However, the idea that ‘discreteness’ went hand in hand with

Matrix Mechanics—idea which has been repeated ever so often (for example in Jam-

mer’s book, p. 270)—is less obvious. From the above-quoted passage, it would seem

that this association stemmed from the use of “integral indices” in Göttingen’s theory.

However, although in all practical examples considered by the end of 1925, the indices

labelling the matrix coeicients were discrete—and this surely conveyed an impression

of an essential discreteness in the theory—, this trait arose only because the systems

46E. Schrödinger. “Über das Verhältnis der Heisenberg-Born-Jordanschen Quantumemchanik zu
der meinen”. In: Annalen der Physik 79 (1926), pp. 734–756 (English translation: E. Schrödinger.
“On The Relation Between The Quantum Mechanics of Heisenberg, Born, and Jordan, and That of
Schrödinger”. In: Collected Papers on Wave Mechanics. Trans. by J. Shearer and W. Deans. London:
Blackie & Son, 1928, pp. 45–61).

47Ibid., pp. 45-46, author’s emphasis.
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considered were periodic and hence the coordinates’ domain of variation was bounded.

In principle, Born, Jordan and Heisenberg insisted, these coeicients could be also

continuous48. Even more, this cohabitation of the continuum and the discrete was

emphasized as a major feature of their theory:

[...] a particularly important trait in the new theory would seem to us to consist of

the way in which both continuous and line spectra arise in it on an equal footing,

i.e. as solutions of one and the same equation of motion and closely connected

with one another mathematically; obviously, in this theory, any distinction be-

tween ‘quantized’ and ‘unquantized’ motion ceases to be at all meaningful [...].49

Thus, this circumstantial use of integral indices could certainly not be what rendered

Matrix Mechanics a “true theory of the discontinuum”.

Now, among all the seminal papers on matrix mechanics, there was indeed one

sentence in which discreteness was designated as fundamental to the theory: the sen-

tence from Born and Jordan that Schrödinger paraphrases in the above passage—and

which is also used by Jammer. In their paper “On Quantum Mechanics”, they wrote:

The new mechanics presents itself as an essentially discontinuous theory [...].

But, as far as I can tell, the reasons which led the two authors to this conclusion have

never been discussed. These had in fact little to do with the use of discrete indices

to label the matrix coeicients. Indeed, by analyzing the properties of the equations

they had just established, Born and Jordan realized that their matrix representation of

physical quantities was ambiguous. For given any pair of matrices
(
q(t),p(t)

)
solution

to the equations of motion, the permutation of some chosen rows and columns—that

is, the permutation of the the order of two indices n0 and n1—allowed to generate a

diferent pair of matrices
(
q′(t),p′(t)

)
which would also solve the equations:

[...] one can see right away that the exact form of the matrix can never be deduced

48Thus, in the irst section of Heisenberg’s Umdeutung article, all formulas are given in two versions:
one in terms of discrete sums and one in terms of integrals. This only ceases to be the case when he
turns to the consideration of the anharmonic oscillator.

49Born, Heisenberg, and Jordan, op. cit., pp. 322–323. The three authors insisted in this point with
a similar quote found thirty pages later in the same article: “The simultaneous appearance of both
continuous and line spectra as solutions to the same equations of motion and the same commutation
relations seemed to us to represent a particularly signiicant feature of the new theory.” (Ibid., p. 358)
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from the fundamental equations, since if rows and columns be subjected to the

same permutation, the canonical equations and the quantum condition remain

invariant and thereby one obtains a new and apparently diferent solution. But all

such solutions naturally difer only in the notation, i.e., in the way the elements

are numbered.50

The two solutions
(
q(t),p(t)

)
and

(
q′(t),p′(t)

)
, although diferent in their exact nu-

merical form, described the same physical situation. The remark of this indeterminacy

in the form of the matrices had an important conceptual consequence for them: it

showed that the order in which were arranged the labels n0, n1, . . ., used to distinguish

the diferent frequencies ν(n0, n1) was completely arbitrary, and therefore physically

irrelevant. And it was this last fact which, in turn, was read as a manifestation of an

essential discontinuity of the quantum theory:

The classically calculated orbits merge into one another continuously; conse-

quently the quantum orbits selected at a later stage have a particular sequence

right from the outset. The new mechanics presents itself as an essentially discon-

tinuous theory in that herein there is no sequence of quantum states deined by

the physical process, but rather of quantum numbers which are indeed no more

than distinguishing indices which can be ordered and normalized according to

any practical standpoint whatsoever.51

Therefore, for Born and Jordan, the ‘essential discontinuity’ of matrix mechanics did

not lie in the fact that the quantum numbers were discrete, but rather in the fact there

was no preferred order in which to arrange these numbers52.

This may appear as strange a conclusion from the modern point of view. For the

50Born and Jordan, op. cit., p. 298.
51Ibid., pp. 300–301.
52The intuition behind their idea of relating continuity and order seems to be somewhat along

the following lines: given a discrete set of objects •, •, •, . . ., their labelling by natural numbers is
arbitrary: one may choose •= 1, •= 2, •= 3, . . ., but one can also perform the permutation • ←→
• which yields the labelling •= 1, •= 2, •= 3, . . . If, however, these objects are part of a larger
continuous set (e.g., a straight line), then the picture changes. Now, we have and their
labelling by given real numbers α < β < γ < . . . is no longer arbitrary: the number β must be used
to label • since there is no continuous transformation which, starting from , would yield
the picture . In other words, by introducing continuity into the picture, the notion of
‘being the object in the middle’ becomes meaningful.
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ambiguity in the matrix representation of a physical quantity observed by Born and

Jordan is now understood as the indication that physical quantities are better described

by operators rather than by matrices (the latter being a representation of the former in

a particular system of coordinates). But this was impossible for them to foresee, since

at the time they were not acquainted with this more abstract notion53. Hence, the

invariance of the fundamental equations of Göttingen’s Mechanics under permutation

of indices was completely unrelated with any sort of fundamental discontinuity.

Besides the couple Continuum/Discrete, another notion which can help us un-

derstand the seemingly irreducible diferences between Wave and Matrix Mechanics

is that of visualizability in space-time. In the introduction to one of their papers, the

Göttingen group had written that the new quantum theory was “not directly amenable

to a geometrically visualizable interpretation, since the motion of electrons cannot be

described in terms of the familiar concepts of space and time”54, and had called their

theory a “symbolic quantum geometry” in contrast with the “visualizable classical ge-

ometry”55. On the contrary, Schrödinger was clearly striving for an intuitive spatial

picture of atomic processes:

[...] it has even been doubted whether what goes on in the atom could ever be de-

scribed within the scheme of space and time. From the philosophical standpoint,

I would consider a conclusive decision in this sense as equivalent to a complete

surrender. For we cannot really alter our manner of thinking in space and time,

and what we cannot comprehend within it we cannot understand at all. There

are such things—but I do not believe that atomic structure is one of them.56

53The idea that physical quantities were described by operators rather than matrices emerged from
the collaboration of Born with the mathematician Norbert Wiener at the beginning of 1926. However,
they considered operators acting on functions depending solely on time. As we will later explain, it
was Schrödinger who irst considered operators acting on functions of coniguration space. See M.
Born and N. Wiener. “A New Formulation of The Laws of Quantization of Periodic and Aperiodic
Phenomena”. In: Journal of Mathematics and Physics (MIT) (1925–1926), pp. 84–98. (Reprinted in:
N. Wiener. Norbert Wiener: Collected Works. Volume III. ed. by P. Masani. Cambridge: The MIT
Press, 1981, pp. 427–441).

54Born, Heisenberg, and Jordan, op. cit., p. 322.
55Ibid., p. 322.
56Schrödinger, “Quantisation as a Problem of Proper Values. Part II”, pp. 26-27.



36 Chapter I. Mathematical Description of Physical Systems

And this diference seemed to be at the origin of the mutual dislike Heisenberg and

Schrödinger felt towards each other’s theories57.

Now, Schrödinger’s claims on the visualizability of his theory strongly depended

on his tentative to attach a physical meaning to the wave-function Ψ he had intro-

duced, and which he expected to “represent the true mechanical process in a itting

way”58. However, this intended interpretation was made diicult by two mathematical

characteristics of the theory: irst, the wave-function was not a function of space but

rather a function of the coniguration space (“the q-space”)59. Hence, only when deal-

ing with one electron could one readily interpret the atomic process as a “vibration in

real three-dimensional space”60. Second, after the introduction of the time-dependent

Schrödinger equation (Equation I.3, page 30), complex numbers had become a seem-

ingly unavoidable and essential ingredient, somewhat against Schrödinger’s will61. To

some extent, these two problems—of the interpretation of the wave-function and of the

57Thus, Heisenberg, in a letter to Pauli, wrote: “The more I ponder about the physical part of
Schrödinger’s theory, the more horrible I ind it. [...] What Schrödinger writes on the visualizability
of his theory [...] I ind rubbish. The great achievement of Schrödinger’s theory is the calculation of
matrix elements”. (Cited in: Mehra and Rechenberg, op. cit., p. 821.)
On the other side, Schrödinger confessed in a letter to Wien: “I irmly hope, of course, that the

matrix method, after its valuable results have been absorbed by the eigenvalue theory, will disappear
again. [...] Because the mere thought makes me shudder, if I later had to present the matrix calculus
to a young student as describing the true nature of the atom.” (Cited in: ibid., p. 639.)

58Schrödinger, “Quantisierung als Eigenwertproblem (II)”, p. 25.
59“Ψ itself is in the general case a function of the generalized coordinates q1 · · · qn and the time,—

not a function of ordinary space and time as in ordinary wave-problems. This raises some diiculty in
attaching a physical meaning to the wave-function.” (Idem, “An Undulatory Theory of the Mechanics
of Atoms and Molecules”, p. 1066.)

60Idem, “Quantisation as a Problem of Proper Values. Part II”, p. 28.
61In the French translation of his collected papers on wave mechanics, Schrödinger added the fol-

lowing comment:

In his desire to consider at any cost the propagation phenomenon of the waves ψ as
something real in the classical sense of the word, the author had refused to acknowledge
that the whole development of the theory increasingly tended to highlight the essential
complex nature of the wave function.
(Dans son désir d’envisager à tout prix le phénomène de la propagation des ondes ψ
comme quelque chose de réel dans le sens classique du terme, l’auteur s’était refusé
de reconnaître franchement que tout le développement de la théorie mettait de plus en
plus clairement en évidence le caractère essentiellement complexe de la fonction d’onde.
E. Schrödinger. Mémoires sur la mécanique ondulatoire. Trans. by A. Proca. Paris:
Librairie Alcan, 1933, p. 166.)

His apprehension towards complex numbers is also apparent in the concluding paragraph of his fourth
and last part of the article ”Quantisation as a Problem of Proper Values”:
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role of complex numbers in Quantum Mechanics—are still discussed nowadays62.

Thus—we see—the impression of radical conceptual and physical diferences owed

much to the tendency of attaching a meaning to certain particularities of the mathe-

matical form of one theory or the other: the use of discrete indices, the invariance of

the equations under permutation of indices, the appearance of a function depending

on the space-time coordinates, etc. Yet, despite having observed this and having ex-

plained how “the whole mathematical apparatus [of Matrix and Wave Mechanics] seem

fundamentally diferent”, Schrödinger made the following claim:

From the formal mathematical standpoint, one might well speak of the identity

of the two theories.63

From what has been explained so far, this statement is surely surprising. One

would have perhaps expected an argument along these lines: i) the mathematical ap-

paratus of the two theories are diferent; ii) however, the noticed empirical equivalence

stiles a naive and direct reading of these mathematical apparatus; iii) therefore, al-

though mathematically diferent, the two theories must be physically identical. In fact,

in the article he did also introduce the notion of “physical identity” and discussed its

relation with the notion of “mathematical identity”:

To-day there are not a few physicists who, like Kirchhof and Mach, regard the

task of a physical theory as being merely a mathematical description (as eco-

nomical as possible) of the empirical connections between observable quantities

[...]. On this view, mathematical equivalence has almost the same meaning as

Meantime, there is no doubt a certain crudeness in the use of a complex wave function.
If it were unavoidable in principle, and not merely a facilitation of the calculation, this
would mean that there are in principle two wave functions, which must be used together
in order to obtain information on the state of the system. [...] Our inability to give
more accurate information about this is intimately connected with the fact that, in the
pair of equations (I.3), we have before us only the substitute—extraordinarily convenient
for the calculation, to be sure—for a real wave equation of probably the fourth order,
which, however, I have not succeeded in forming for the non-conservative case.” (Idem,
“Quantisation as a Problem of Proper Values. Part IV”, p. 123, author’s emphasis.)

62Cf. for example the modern debate between Ψ-epistemic models and Ψ-ontologists. For a review
of this, see M. S. Leifer. “Is the Quantum State Real? An Extended Review of ψ-ontology Theorems”.
In: Quanta 3 (2014), pp. 67–155.

63Schrödinger, “On The Relation Between The Quantum Mechanics of Heisenberg, Born, and Jor-
dan, and That of Schrödinger”, p. 46, author’s emphasis.
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physical equivalence. [...]

[However] the validity of the thesis that mathematical and physical equiv-

alence mean the same thing, must itself be qualiied. Let us think, for example,

of the two expressions for the electrostatic energy of a system of charged conduc-

tors, the space integral 1
2

∫
E2dτ and the sum 1

2ΣeiVi taken over the conductors.

The two expressions are completely equivalent [...]. Nevertheless we intentionally

prefer the irst [...].

We cannot yet say with certainty to which of the two new quantum theories

preference should be given, from this point of view. As natural advocate of one

of them, I will not be blamed if I frankly [...] bring forward the arguments in its

favour.64

Thus, it is clear from this passage that Schrödinger was considering the possibility

that, despite the empirical equivalence and mathematical identity of the two theories,

his Wave Mechanics was perhaps physically superior to Göttingen’s Quantum Mechan-

ics. Hence, the above outlined argument was surely not what Schrödinger was claiming.

What, then, did he mean by the “mathematical identity” of these two theories?

Here, the best is to look at the way in which he attempted to prove his claim. He

irst proceeded to show how his wave functions could be used to construct matrices

obeying the algebraic relations written by Heisenberg, Jordan and Born. This he

achieved by a two-step procedure that is now well-known:

1. From functions to operators: to the 2n quantities {q1, . . . , qn; p1, . . . , pn} (position
and canonically conjugate momentum co-ordinates), associate linear operators

acting on functions of the irst n variables as follows:

qk 7−→ qk ·
[
−

]
(multiplication by qk)

pk 7−→
ℏ

i

∂

∂qk

[
−

]
(diferentiation by qk).

This allows to associate a linear operator [F, ·] to any given (well-ordered) function

F (p, q) of ‘pq-space’.

64Ibid., pp. 58–59, author’s emphasis.
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2. From operators to matrices: given the choice of a complete orthogonal system of

functions of ‘q-space’ {u1(q), u2(q), . . .}, associate to the operator [F, ·] a matrix

whose coeicients are deined by:

F kl :=

∫
dquk(q)[F, ul(q)].

In this way, Heisenberg’s ‘mysterious’ commutation relations for the quantum rep-

resentatives {q1, . . . , qn;p1, . . . ,pn} revealed themselves to be nothing else but the

trivial identity in ordinary analysis for linear diferential operators: ∂
∂qk
qk − qk ∂

∂qk
= 1.

Moreover, the complete orthogonal system of functions which associated to the energy

function H(p, q) a diagonal matrix, as required by Göttingen’s quantum mechanics,

were precisely Schrödinger’s wave-functions ψE(q), solutions to his time-independent

equation (which was the only one he had introduced at the time of the writing of the

article).

In other terms, one could say that, by the above construction, Schrödinger showed

how any statement of Matrix Mechanics could be interpreted in the language of Wave

Mechanics. But he did not stop here, for he knew this relation between both theories

was insuicient to prove the identity:

[...] the equivalence actually exists, and it also exists conversely. Not only the

matrices can be constructed from the proper functions as shown above, but

also, conversely, the functions can be constructed from the numerically given

matrices. Thus the functions do not form, as it were, an arbitrary and special

“leshly clothing” for the bare matrix skeleton, provided to pander to the need for

intuitiveness. This really would establish the superiority of the matrices, from

the epistemological point of view.65

The last two sentences are enlightening. In his worry of being “as economical as

possible” and excluding any “arbitrary and special “leshly clothing””, Schrödinger

was precisely trying to avoid the mistake of conceding a key role to a feature of the

theory that could turn out to be completely irrelevant. And to protect himself from

this, he needed to show how any statement expressed in terms of waves functions could

65Ibid., p. 58, author’s emphasis
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be found to be expressible as well in terms of matrices (and, of course, vice versa).

It thus appears that, for Schrödinger, the task of proving the ‘mathematical identity’

consisted in inding a perfect translation, in building an dictionary between the two

theories. In other words, Matrix and Wave Mechanics were to be identical, “from

the formal mathematical standpoint”, because one could make explicit a bi-directional

correspondence between what could be expressed within one language and what could

be expressed within the other.

Contrary to his claims however, Schrödinger did not really manage to rigorously

prove this ‘backwards translation’66. It was only with the work of Dirac and Jordan

irst, and von Neumann afterwards, that the situation became completely understood67.

I.1.3 Extracting the physics (2): Dirac’s transformation theory

In December 1926, as he was visiting Niels Borh’s group at Copenhagen, Dirac in-

ished the writing of a much celebrated article that brought a completely new perspective

on the relation between Wave and Matrix Mechanics: “The Physical Interpretation of

66For a much more detailed analysis Schrödinger’s notion of ‘mathematical equivalence’ and the
reasons why Schrödinger’s work should not be considered as a rigorous proof of the equivalence, see
the excellent two-part article F. A. Muller. “The Equivalence Myth of Quantum Mechanics—Part I”.
in: Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern
Physics 28 (1997), pp. 35–61; F. A. Muller. “The Equivalence Myth of Quantum Mechanics—Part
II”. in: Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics 28 (1997), pp. 219–247.

67In the road towards the proof of the equivalence between the two quantum mechanics, I should
also mention the names of other physicists whose works represented an advance in the completion of
the proof, but which I will not comment here. These are:

– Wolfgang Pauli, in particular a letter from April 12th 1926 he wrote to Jordan in which he
sketched the proof of the equivalence. An English translation of the full letter can be found in
Van der Waerden, op. cit., pp. 278–282.

– Carl Eckart, in particular his article C. Eckart. “The Solution of the Problem of the Single
Oscillator by a Combination of Schrödinger’s Wave Mechanics and Lanczos’ Field Theory”. In:
Proceedings of the National Academy of Science 12 (1926), pp. 473–476.

– Fritz London, in particular his article F. London. “Über die Jacobischen Transformationen der
Quantenmechanik”. In: Zeitschrift für Physik 37 (1926), pp. 383–386.
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the Quantum Dynamics”68. As it was the case in Schrödinger’s approach to the equiv-

alence between his theory and Göttingen’s, the idea that indeed both theories were but

two diferent descriptions of the same situation was central to Dirac’s article. However,

in his own approach, the English physicist introduced a crucial conceptual shift that it

is important to highlight from the outset. As we have just seen, Schrödinger’s original

conception may be fairly well understood with the following claim: ‘Wave and Matrix

Mechanics are diferent descriptions of the same situation because these descriptions

are written in diferent languages’. On the contrary, as we are about to see, Dirac’s

conception is more accurately captured by saying: ‘Wave and Matrix Mechanics are

diferent descriptions of the same situation because these descriptions are performed

from diferent points of view’. Therefore, from Schrödinger’s article to Dirac’s article,

we pass from a ‘linguistic’ analogy to a ‘relativistic’ analogy.

Let me unpack, in more detail, what I mean by this last statement. The problem

of the relation between the two quantum theories, as tackled by Schrödinger, appears

to be quite similar to the problem of the relation between Lagrangian and Hamiltonian

Classical Mechanics. We are confronted with two, and only two, formulations of ap-

parently the same theory. Surely, in order to secure that they really correspond to the

same theory, it is important to ind a correspondence/dictionary connecting them. But

the main interest of the theoretical physicist lies in the languages, not in the dictionary:

most eforts will be spent in working within one ixed formulation and exploring all its

implications. Now, the problem of the relation between Wave and Matrix Mechanics, as

tackled by Dirac in 1927, should instead be compared with the problem of relating two

descriptions of the same motion by diferent frames of reference. The two descriptions

appear then to be just two possible choices among a multitude of other possible ones.

And it is precisely the realization of the existence of this multitude which produces the

conceptual shift introduced by Dirac: the two particular formulations of Schrödinger

and Göttingen become less worthy of study in themselves; rather—this was perhaps

the great methodological lesson of Einstein’s relativity theory—the primary object of

68P. A. M. Dirac. “The Physical Interpretation of the Quantum Dynamics”. In: Proceedings of
the Royal Society of London 113 (1927), pp. 621–641. (Reprinted in: P. A. M. Dirac. The Collected
Works of P.A.M. Dirac: 1924–1948. Ed. by R. Dalitz. Cambridge: Cambridge University Press, 1995,
pp. 207–229) (reprinted in: idem, The Collected Works of P.A.M. Dirac: 1924–1948, pp. 207–229).
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investigation becomes the transformations between the whole variety of points of view.

Presumably, it was in this spirit that Dirac famously wrote in the preface of his book

The Principles of Quantum Mechanics:

The growth of the use of transformation theory, as applied irst to relativity and

later to the quantum theory, is the essence of the new method in theoretical

physics. Further progress lies in the direction of making our equations invariant

under wider and still wider transformations.69

In this way, not only did Dirac manage to render more precise Schrödinger’s equivalence

between Wave and Matrix Mechanics, but he wildly extended it.

With this in mind, let us now turn to the precise content of Dirac’s article, in

which the transformation theory was presented for the irst time70. As we have recalled,

Dirac played a major role in the development of Göttingen’s Matrix Mechanics from its

very beginning. It is then not surprising that the starting point of his considerations

was the general dynamical problem as it had been formulated by Heisenberg and his

collaborators. In this setting, the key concept was that of a “scheme of matrices”—that

is, a particular set G of ininite square matrices, each of which represented a dynamical

variable. Dirac concisely summarized the problem as follows:

The solving of a problem in Heisenberg’s matrix mechanics consists in inding a

scheme of matrices to represent the dynamical variables, satisfying the following

conditions:

(i) The quantum conditions, qrpr − prqr = iℏ, etc.

(ii) The equations of motion, gH−Hg = iℏġ, or if g involves the time explicitly

gH −Hg + iℏ∂g
∂t

= iℏġ.

69P. A. M. Dirac. The Principles of Quantum Mechanics. 1st ed. Oxford: Clarendon Press, 1930,
p. v.

70In fact, the transformation theory was independently and simultaneously developed by Dirac in
Copenhagen and by Jordan in Göttingen. The latter presented his work in two articles: P. Jordan.
“Über eine neue Begründung der Quantenmechanik”. In: Zeitschrift für Physik 40 (1927), pp. 809–
838, and P. Jordan. “Über eine neue Begründung der Quantenmechanik II”. in: Zeitschrift für Physik
44 (1927), pp. 1–25. The only reason why I discuss solely Dirac’s article is because, to my knowledge,
there exists no English translation of Jordan’s. For a discussion of the transformation theory which
focuses on Jordan’s papers, see A. Duncan and M. Janssen. “From Canonical Transformations to
Transformation Theory, 1926–1927: The Road to Jordan’s Neue Bergündung”. In: Studies In History
and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics 40.4 (2009),
pp. 352–362.
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(iii) The matrix representing the Hamiltonian H must be a diagonal matrix.

(iv) The matrices representing real variables must be Hermitian.71

However, the solution was not thereby uniquely determined: given a scheme of

matrices G and any invertible matrix b, one could deine a new matrix scheme through

the transformation

G −→ G ′ := bGb−1 =
{
bgb−1

∣∣g ∈ G
}
. (I.4)

The result would also solve the Heisenberg problem if

(2) the coeicients of b did not depend explicitly on time,

(3) b commuted with H,

(4) b−1 was equal to the conjugate transposed of b72,

where the conditions (2)–(4) insured that G ′ met the requirements (ii)–(iv) respectively

(requirement (i) being met for any choice of matrix b).

As we have seen, the remark of this fundamental indeterminacy in the solution

of the general dynamical problem of the quantum theory had irst lead Born and

Jordan to claim that the theory was “essentially discontinuous” (cf. subsection I.1.2,

page 34), but it had also allowed them to introduce the general theory of canonical

transformations in the three-man paper. This work was of course known to Dirac from

the beginning—he had already discussed it in his paper on the hydrogen atom. At

the time, he had considered these transformations of “no great practical value”73. But

this was before the emergence of Schrödinger’s undulatory quantum theory and Bohr’s

statistical interpretation.

Now, Dirac returned with renewed energy to understanding the physical signif-

icance of these transformations of the scheme of matrices used to represent the dy-

namical variables. In his approach, the focus was set on the meaning of the indices

71Dirac, “The Physical Interpretation of the Quantum Dynamics”, p. 627. I have here changed
Dirac’s notation slightly: in the original paper, Dirac uses the letter h to refer to the reduced Planck
constant (which is hence sometimes also called the Dirac constant). I have here instead followed the
modern conventions, where h denotes the Planck constant and the reduced Planck constant is referred
to with the symbol ℏ := h

2π .
72In modern terms, this last condition means that b was required to be a unitary matrix.
73Idem, “Quantum Mechanics and a Preliminary Investigation of The Hydrogen Atom”, p. 565.
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which labelled the matrix coeicients. Associated to a given a matrix scheme, he said,

one should ind a set of n real dynamical variables (n being the number of degrees of

freedom of the system under consideration) which were represented by diagonal matri-

ces: the values of the diagonal elements could then be used as labels for the rows and

columns. In this way, a particular scheme of matrices appeared to be closely related to

a preferred choice of dynamical quantities, the indeterminacy in the scheme of matrices

being just a manifestation of a certain freedom in the choice of the preferred dynamical

quantities.

Let us explain this important idea more explicitly74. In the scheme of matrices G,
the physical quantity g is represented by the matrix g with coeicients gab. Here, the

labels a and b are n-tuples of real values: a = (a1, . . . , an) where ar ∈ Ir and each Ir is

the set of possible values of a certain quantity fr. As Dirac remarks, each Ir may be

a discrete and/or continuous set of real values. Therefore, in the scheme of matrices

G, the quantity fr is represented, by deinition of the matrix scheme G, through the

diagonal matrix fr whose coeicients are

(fr)ab = ar δ(a− b). (I.5)

In order for this latter and similar expressions to make sense even in the case of

continuously-varying indices, Dirac famously introduced the “Delta function” δ(x) de-

ined by the two properties75

δ(x) = 0 for x ̸= 0 and
∫

R

δ(x)dx = 1.

Similarly, in the matrix scheme G ′, the same physical quantity g is represented by the

matrix g′ with coeicients g′αβ, where now α, β ∈ I ′1 × . . . × I ′n and each I ′r refers to

74Despite the importance that Dirac attached to notation and his undisputed mastery in the in-
vention of new useful ones, I will in the following somehow depart from the original notation of his
paper, which I sometimes ind rather confusing for the modern reader. I am thinking in particular of
his choice of using unprimed symbols for the variables (g, ξ, . . .) and primed symbols for the values of
these variables (g′, ξ′, . . .).

75Although this is sometimes called “Dirac’s delta function” and its use certainly became widespread
through the work of Dirac, he was not the inventor of it. The function had already been thus deined
by Kirchhof in 1882 and was also used at least by Heaviside (see O. Darrigol. From c-Numbers
to q-Numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of
California Press, 1992, footnote 84, p. 339 and also Jammer, op. cit., p. 316).
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the set of possible values of a diferent physical quantity kr which is represented in the

scheme G ′ through a diagonal matrix k′r: (k′r)αβ = αr δ(α− β).

In this way, the transformation (I.4) is understood as a transformation from a

point of view which confers a preferred role to the quantities f1, . . . , fn to a point of

view which confers a preferred role to the quantities k1, . . . , kn. With all the labels

written down explicitly, (I.4) becomes, for a given quantity g:

g′αβ = bαa gab b
−1
bβ (I.6)

where I have used Einstein’s summation convention for repeated indices. In partic-

ular, we see that “the new parameters [α, β of the new matrix scheme G ′] are quite

unconnected” with the parameters a, b of the matrix scheme G, as Dirac insisted76.

There may even happen that there is “no one-one correspondence between the rows

and columns of the new matrices and those of the original matrices”77 (the spectra

of the quantities f1, . . . , fn may happen to be all discrete whereas the spectra of the

quantities k1, . . . , kn may happen to be all continuous).

Finally, Dirac noticed, since by deinition the coeicients bβa and b−1
aβ of the trans-

formation matrices satisfy the equations




b−1
aβ = bβa

bαa b
−1
aβ = δ(α− β)

b−1
bα bαa = δ(b− a),

one could consider them as a complete family of mutually orthogonal complex-valued

functions of the parameters α (with a ixed), or of the parameters a (with α ixed). As

we will see in a moment, this apparently trivial remark was quite important for Dirac’s

understanding of Wave Mechanics.

Which was then the relation between this theory of transformations, Heisenberg’s

Matrix Mechanics and Schrödinger’s Wave Mechanics? The answer was in fact quite

simple: the two quantum theories were simply two matrix schemes which difered only

76Dirac, “The Physical Interpretation of the Quantum Dynamics”, p. 628.
77Ibid., p. 628.
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in their choice of the preferred quantities f1, . . . , fn. Indeed, Göttingen’s quantum

theory had always been set in a matrix scheme G ′ in which the Hamiltonian or energy

function H was a preferred quantity—it was required to be represented by a diagonal

matrix (cf. condition (iii), page 43). The coeicients α, β labelled stationary states

and contained among the numbers αr the value of energy E. On the other hand,

Schrödinger’s Wave Mechanics was set in a matrix scheme G in which the conigura-

tion variables q1, . . . , qn were chosen as preferred quantities. The labels a, b were simply

the possible values q0 = (q01, . . . , q
0
n) of these quantities, which were represented by the

matrices (qr)q0q1 = q0r δ(q
0 − q1) (compare this with Equation I.5, page 44)78. More-

over, Schrödinger’s wave-functions ψE(q) were nothing but the complex coeicients bβa
of the transformation b which enabled to switch between these two particular matrix

schemes.

Hence, from the heights of Dirac’s general theory of “scheme of matrices” and

transformations between them, one recovered both Heisenberg’s and Schrödinger’s

quantum mechanics as two particular examples or points of view. This theory re-

lied on two crucial concepts. The irst was that of a set of preferred quantities, which

was somehow the analogue of a reference frame, thereby furnishing a certain point of

view from which to describe the quantum system. It allowed to deine a matrix scheme

by providing labels for the rows and columns. In modern terminology, this “set of pre-

ferred quantities” is called a “complete set of commuting observables” and corresponds

also to the better formalized notion of a “maximal abelian von Neumann subalgebra”79.

78For this last formula, Dirac’s original notation is more transparent, so let me rewrite it with
his notation. Consider the variables q1, . . . , qn, represented by the matrices q1, . . . , qn. Let q′ =
(q′1, . . . , q

′
n) be a certain n-tuple of possible values of the quantities q1, . . . , qn. Then (qr)q′q′′ denotes

the numerical coeicient of the matrix qr which is on the row labelled by the n-tuple of values q′ and
on the column labelled by q′′. In this matrix scheme, we therefore have

(qr)q′q′′ = q′rδ(q
′ − q′′).

This is exactly the statement that, in Schrödinger’s Wave Mechanics representation, the position
operator acts by multiplication. In more familiar notation involving operators, this would be written
as q̂0 = q0 δ(q − q0).

79A “complete set of commuting observables” or CSCO is a set of commuting self-adjoint operators
which admit a unique (up to phase factors) orthonormal basis of common eigenvectors. This is a
standard deinition which is found in any textbook on Quantum Mechanics (see for example C. Cohen-
Tannoudji, B. Diu, and F. Laloë. Mécanique quantique. Paris: Hermann, Collection Enseignement des
Sciences, 1973, p. 144). However, this deinition does not quite work for ininite-dimensional Hilbert
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The second notion was that of a transformation between matrix schemes, which was the

central object of the theory and contained all the physical information: Schrödinger’s

fundamental wave equation appeared to be an equation on the coeicients bβa of these

transformations80. The coeicients, in turn were interpreted as “transition amplitudes”.

Thus, the knowledge of bβa allowed to answer what Dirac considered to be “the only

question to which the physicist requires an answer”81: If a system is assumed to have

values β1, . . . , βn of the compatible quantities k1, . . . , kn, what is the probability that

a measurement of the compatible quantities f1, . . . , fn will yield the values a1, . . . , an?

Although it is very tempting, from the vantage modern perspective, to interpret

all Dirac’s machinery in terms of states (a transformation being a change in the basis of

states), it is important to insist on the fact that this notion—of “state”—was completely

absent in his 1927 article. Darrigol lucidly highlights this when discussing Dirac’s

Quantum Mechanics:

There is one feature of Dirac’s original transformation theory that is likely to

surprise the modern quantum physicist: the notion of state vector is completely

absent. [...] Perhaps modern-day interpreters of quantum mechanics should

nevertheless remember that there exists a formulation of quantum mechanics

spaces, where self-adjoint operators may not admit any eigenvector. The best strategy is then to recast
it in an algebraic form. For inite-dimensional Hilbert spaces, the existence of a CSCO is equivalent
to the existence of a maximal abelian von Neumann subalgebra of operators, and this latter notion is
still well-deined in the ininite-dimensional case (a ‘maximal abelian subalgebra’ U is an algebra such
that U = U ′, where U ′ denotes the commutant; a ‘von Neumann subalgebra’ U is an algebra such that
U = U ′′). For the precise deinitions and relations between these notions, see J.-M. Jauch. “Systems
of Observables in Quantum Mechanics”. In: Helvetica Physica Acta 33 (1960), pp. 711–726.

80 Indeed, Schrödinger’s equation arises from Equation I.6 (page 45) by taking g to be the Hamil-
tonian H. To see this, suppose you want to ind a matrix scheme G′ such that g is represented by a
diagonal matrix. In other words, you want g′αβ = αr δ(α − β) for some r ∈ {1, . . . , n}. In this case,
Equation I.6 becomes αr δ(α− β) = bαa gab b

−1
bβ , which is equivalently written as

gab b
−1
bα = αr b

−1
aα .

Now, with a simple change of notation: g → H, αr → E, a→ q, b−1 → ψ, one gets

H ψE(q) = E ψE(q)

which is Schrödinger’s time-independent equation. There is however one caveat to this “proof” which
will be commented on the next section (cf. page 49).

81Dirac, op. cit., p. 623.
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without state vectors, and with transition amplitudes (transformations) only.82

In the rapidly developing ield of quantum mechanics, it was the arrival of the

young Hungarian mathematician John von Neumann which brought again to the fore-

front the notion of state and completed the understanding of the relation between

Heisenberg’s and Schrödinger’s approaches.

I.1.4 Extracting the physics (3): von Neumann’s process of

abstraction

In 1926, around the same time during which Dirac, in Copenhagen, and Jordan,

in Göttingen, were inishing the development of the transformation theory, John von

Neumann came to Göttingen to be David Hilbert’s assistant at only twenty-two years

of age. By then, he had already shown outstanding mathematical skills and Hilbert

called him in order to contribute to his (Hilbert’s) new foundations of Mathematics

programme. However, as was often the case, Hilbert had decided to give a series of

lectures on the mathematical methods of Physics, and the topic of the 1926/1927 winter

semester was—as it could not have been otherwise—the quantum theory. In this way,

by helping in the preparation of these lectures, von Neumann found himself involved

with the most recent developments in the foundations of Quantum Mechanics83. In

May 1927, he presented his irst important work on the subject, a sixty-pages long

82Darrigol, op. cit., p. 344.
83For at least twenty ive years, Hilbert lectured every so often at Göttingen on the mathematics

of Physics and covered an impressively broad spectrum of topics: Mechanics, Special Relativity,
Kirchhof’s laws of radiation, Boltzmann’s kinetic theory of gases, General Relativity, etc. This is
all the more impressive if one thinks of it as being just a peripheral activity compared to Hilbert’s
involvement with the whole of Mathematics. For an interesting analysis of the inluence of Hilbert’s
lectures in the foundations of Physics, see U. Majer. “The Axiomatic Method and the Foundations of
Science: Historical Roots of Mathematical Physics in Göttingen (1900-1930)”. In: John von Neumann
and the Foundations of Quantum Physics. Ed. by M. Rédei and M. Stöltzner. Dordrecht: Kluwer
Academic Publishers, 2001, pp. 11–31.
For a more detailed historical account of von Neumann’s arrival in Göttingen and the importance of

the 1926/1927 winter lectures on the quantum theory, see J. Mehra and H. Rechenberg. The Historical
Development of Quantum Theory. Volume 6: The Completion of Quantum Mechanics. 1926–1941.
New York: Springer-Verlag, 2000, pp. 392–411.
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article entitled Mathematical Foundations of Quantum Mechanics84, which culminated

ive years later in his book with the same title, a masterpiece and invaluable reading

still today for anyone interested in the foundations of Quantum Mechanics85.

As he explains in the opening words of his book, von Neumann had mixed feelings

towards the work accomplished by Dirac. On the one hand, he considered the transfor-

mation theory to be “presumably the deinitive form” of the new quantum mechanics

and Dirac’s own book on the subject to be “a representation of quantum mechanics

which is scarcely to be surpassed in brevity and elegance”86. On the other hand, he

was dissatisied with the mathematical treatment of the theory, which, he said, “in no

way satisies the requirements of mathematical rigor—not even if these are reduced in

a natural and proper fashion to the extent common elsewhere in theoretical physics”87.

Therefore, when von Neumann approached the subject of quantum mechanics, his main

goal was to ind a clean mathematical reformulation of Dirac’s work. He wrote:

It should rather be pointed out that the quantum mechanical “transformation

theory” can be established in a manner which is just as clear and uniied, but

which is also without mathematical objections. It should be emphasized that the

correct structure need not consist in a mathematical reinement and explanation

of the Dirac method, but rather that it requires a procedure difering from the

very beginning, namely, the reliance on the Hilbert theory of operators.88 89

84J. von Neumann. “Mathematische Begründung der Quantenmechanik”. In: Nachr. Ges. Wiss.
Göttingen (1927), pp. 1–57.

85J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Heidelberg: Springer-Verlag,
1932 (English translation: J. von Neumann. Mathematical Foundations of Quantum Mechanics.
Trans. by R. T. Beyer. Princeton: Princeton University Press, 1955).

86Ibid., p. i and viii.
87Ibid., p. ix.
88Ibid., p. ix.
89 Although the mathematical reformulation of the transformation theory is certainly von Neu-

mann’s original motivation, this fails to do justice to everything he accomplished with his book. For
it is certainly much more than a simple rigorous “reformulation” of Dirac’s work! In this regard, I
prefer another characterization by von Neumann of the achievements of his book, found in a letter to
the president of Dover publications (which would later publish the English translation):

The subject-matter is partly physical-mathematical, partly, however, a very involved con-
ceptual critique of the logical foundations of various disciplines (theory of probability,
thermodynamics, classical mechanics, classical statistical mechanics, quantum mechan-
ics). This philosophical-epistemological discussion has to be continuously tied in and
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In the eyes of von Neumann, Dirac’s method was unacceptable for at least two

reasons. First, it clearly relied on the ability of inding, for any given quantity g, a

matrix scheme in which the chosen quantity would be represented by a diagonal matrix

g. But this was equivalent to supposing any self-adjoint operator to be diagonalizable,

which was a “mathematical iction”. Second, as we saw in the previous section, Dirac

insisted in regarding Schrödinger’s wave equation

HψE(q) = E ψE(q) (q ∈ Ω),

which is a diferential equation, as the analogue of the linear transformation equation

Hab(ψE)b = E (ψE)a (a, b = 1, 2, . . .)

(cf. page 47 and specially footnote 80). In this way, because he wished to regard dif-

ferential operators acting on Schrödinger’s wave functions as ininite matrices labelled

with a continuously varying index, Dirac’s uniication of Matrix and Wave Mechanics

was somewhat grounded in an analogy between the continuous coniguration space of

the physical system Ω and the discrete space Z = N∗. And this intended analogy was

the deep source of all the “violence to the formalism and to mathematics”90 inlicted

by the transformation theory.

Dirac had arrived at this analogy as a consequence of his focus on the labels and

their meaning. The crucial move of von Neumann, which allowed him to get round

all the mathematical diiculties of Dirac’s theory, was a shift of attention. Indeed,

he noticed that all the relevant information of both Wave and Matrix Mechanics was

not contained in the spaces Ω and Z but rather in the functions over these spaces.

At this level, the Fischer-Riesz theorem claimed FΩ := L2(Ω) and FZ := l2(Z) were

quite critically synchronised with the parallel mathematical-physical discussion. It is, by
the way, one of the essential justiications of the book, which gives it a content not covered
in other treatises, written by physicists or by mathematicians, on quantum mechanics.
(Letter to H. Cirker, October 3, 1949. In: J. von Neumann. John von Neumann: Selected
Letters. Ed. by M. Rédei. History of Mathematics. American Mathematical Society, 2005,
p. 92)

90Idem, Mathematical Foundations of Quantum Mechanics, p. 28.
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isomorphic91:

Z and Ω are very diferent, and to set up a direct relation between them must

lead to great mathematical diiculties. On the other hand, FZ and FΩ are

isomorphic [...]—and since they (and not Z and Ω themselves!) are the real

analytical substrata of the matrix and wave theories, this isomorphism means

that the two theories must always yield the same numerical results.92

Had von Neumann only wished to prove the equivalence of Matrix and Wave Me-

chanics, as Schrödinger wanted, this could have very well been his inal remark on the

subject. Once it had become clear that only the elements of FZ or FΩ were involved

in any calculation of Matrix or Wave Mechanics, the explicit construction of the iso-

morphism given by Fischer and Riesz was exactly the bi-directional correspondence

or dictionary that Schrödinger had been after. With this result, the equivalence be-

tween the two approaches to the quantum theory was irmly established. However, for

von Neumann, the Fischer-Riesz theorem was not the end point but rather the starting

point of his investigations. For indeed the Hungarian mathematician shared with Dirac

the idea of unifying Heisenberg’s and Schrödinger’s mechanics—that is, he wished to

ind an overhanging perspective from which both theories would appear as particular

cases of a more general framework. But, as he had already warned, von Neumann’s

method required “a procedure difering from the very beginning” from Dirac’s.

Let us see how he described it:

The following may be said regarding the method employed in this mode of treat-

ment: as a rule, calculations should be performed with the operators themselves

(which represent physical quantities) and not with the matrices, which after the

introduction of a (special and arbitrary) coordinate system in Hilbert space, re-

sult from them. This “coordinate free”, i.e. invariant method, with its geometric

language, possesses noticeable formal advantages.93

91Here, L2(Ω) is the space of complex-valued square integrable functions over Ω, and l2(Z) is the
space of square summable sequences (i.e., sequences (x1, x2, . . .) such that Σ|xi|2 is convergent). The
theorem was proven independently by Frigyes Riesz and Ernst Sigismund Fischer in 1907.

92Ibid., p. 31.
93Ibid., p. viii.
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In some regards, this may sound conceptually very similar to Dirac’s 1927 transfor-

mation theory. Recall the relativistic analogy used to grasp Dirac’s approach: the

diference between Matrix and Wave Mechanics could be conceived as similar to the

diference between two descriptions of the same motion from two diferent frames of

reference. Thus, for both Dirac and von Neumann, Göttingen’s and Schrödinger’s the-

ories arose from particular and arbitrary choices among many other possible ones. And

the choice being made was that of a frame of reference or coordinate system.

Yet, Dirac’s 1927 article and von Neumann’s 1932 book difer radically in how to

deal with this multiplicity of particular and arbitrary choices. Indeed, von Neumann’s

whole methodology consists in avoiding such choices: to elevate oneself and work in

a “coordinate free” fashion with the “operators themselves”—idea which is absent in

Dirac’s original conception94. This move towards a “coordinate free”, “invariant” or

“intrinsic” formulation of Mechanics I call the process of abstraction. It characterizes

the core of von Neumann’s approach and led him to introduce the fundamental notion

of an “abstract Hilbert space” in the following all-important passage which ended the

introductory chapter of his book:

Since the systems FZ and FΩ are isomorphic, and since the theories of quan-

tum mechanics constructed on them are mathematically equivalent, it is to be

expected that a uniied theory, independent of the accidents of the formal frame-

work selected at the time, and exhibiting only the really essential elements of

94In fact, if the relativistic analogy is taken seriously, one could even argue that, for the Dirac of
1927, it was impossible not to make a choice: it is indeed far from clear what it would mean to free
oneself from all frames of reference and describe the ‘motion itself’...
This reading seems further supported by a passage Dirac wrote in the preface of the irst edition of

his 1930 book:

The growth of the use of transformation theory, as applied irst to relativity and later
to the quantum theory, is the essence of the new method in theoretical physics. [...]
This state of afairs is very satisfactory from a philosophical point of view, as implying
an increasing recognition of the part played by the observer in himself introducing the
regularities that appear in his observations [...].
(Dirac, The Principles of Quantum Mechanics, p. v)

Under this light, von Neumann’s “coordinate free” method could appear as a step backwards in the
“recognition of the part played by the observer” since it avoids describing the physical system from
the point of view any particular frame of reference whatsoever.
Of course, Dirac’s attitude towards the multiplicity of choices is much more complex, and this claim

only applies to what stems from his article “The Physical Interpretation of the Quantum Dynamics”.
As a matter of fact, Di
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quantum mechanics, will then be achieved if we do this: Investigate the intrinsic

properties (common to FZ and FΩ) of these systems of functions, and choose

these properties as a starting point.

The system FZ is generally known as “Hilbert space”. Therefore, our irst

problem is to investigate the fundamental properties of Hilbert space, indepen-

dent of the special form of FZ or FΩ. The mathematical structure which is

described by these properties (which in any special case are equivalently repre-

sented by calculations within FZ or FΩ, but for general purposes are easier to

handle directly than by such calculations), is called “abstract Hilbert space”.

We wish then to describe the abstract Hilbert space, and then to prove

rigorously the following points:

1. That the abstract Hilbert space is characterized uniquely by the properties

speciied, i.e., that it admits of no essentially diferent realizations.

2. That its properties belong to FZ as well as FΩ. [...] When this is ac-

complished, we shall employ the mathematical equipment thus obtained to

shape the structure of quantum mechanics.95

As announced, in Chapter II: “Abstract Hilbert Space”, von Neumann went on to

extract the intrinsic properties to be used as a starting point in the deinition of this

new mathematical structure R. He proposed the ive well-known axioms:

A. R is a complex linear space.

B. An Hermitian inner product is deined in R.
C.(∞) There are arbitrarily many linear independent vectors.

D. R is complete.

E. R is separable.96

95Von Neumann, op. cit., pp. 32–33.
96These are the axioms for an ininite-dimensional Hilbert space. For a n-dimensional Hilbert space,

axiom C.(∞) is replaced by:
C.(n) There are exactly n linear independent vectors.

Axioms D. and E. then follow from the irst three. See, respectively, ibid., pp. 36, 38, 45, 46.
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∗ ∗ ∗ ∗ ∗

In our survey of the earlier developments in the foundations of Quantum Me-

chanics, we have inally arrived at an important methodological precept, which can be

summarized as follows:

Abstract methodological precept. In order to ind the physical infor-

mation contained in the mathematics of Mechanics and avoid the “accidents

of the formalism chosen at the time”, work directly with the relevant ab-

stract mathematical structures “themselves” and not with the systems that

represent it.

I have voluntarily phrased this advice in more general terms, so that it is not thought

to be conined solely to Quantum Mechanics and abstract Hilbert spaces, nor is it

associated only to von Neumann. Indeed, although I have motivated it in this partic-

ular context, the abstract methodological precept should be considered as much more

general, and owes as much to Dirac and Weyl as it does to von Neumann97.

With regard to our initial inquiry—namely, to clarify which mathematical objects

can be considered as acceptable candidates for characterizing physical systems—the

main lesson to take from these years of development of Quantum Mechanics is the

following: the mathematical objects involved in the descriptions of physical systems

need to be conceived abstractly. If a quantum-mechanical system is to be described by

a Hilbert space at all, then it ought to be described by an abstract Hilbert space. In

the same way, one needs abstract symplectic manifolds in Classical Mechanics.

97Taking aside his 1927 “The Physical Interpretation of the Quantum Dynamics”, Dirac indeed
emphasised in many other places the advantages of working at a purely symbolic level. Here is for
example a quote from his book in 1930:

One does not anywhere specify the exact nature of the symbols employed, nor is such a
speciication at all necessary. They are used all the time in an abstract way, the algebraic
axioms that they satisfy and the connections between equations involving them and
physical conditions being all that is required.
(Dirac, op. cit., p. 18)
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The awareness of this feature is perhaps not as clear in the Classical setting as

it is in the Quantum. As we have just seen, the particular way in which Quantum

Mechanics was developed forced it, from the outset, into higher levels of abstraction.

But in Classical Mechanics, one still tended to adopt, in the practice, a naive real-

istic reading of the mathematical formalism and to get attached to the ‘materiality’

of certain mathematical constructions—just recall Schrödinger’s appeal to the “visu-

alizability” of Classical Mechanics. For instance, when dealing with the Hamiltonian

description of a given classical system, one generally had the impression of working

with a particular, ‘concrete’ symplectic manifold and sticking to it. Therein, there

seemed to be no analogue of a ‘change of representation’ from a certain ‘Heisenberg

representation’ to a ‘Schrödinger representation’. Nonetheless, when one considers the

developments in the mathematical foundations of Classical Mechanics of the last sixty

years, it becomes clear this is an impression we must abandon: to describe the space of

states of a free massive non-relativistic particle, one can use the cotangent bundle T ∗R3

with its natural symplectic structure or decide to work in the space R3×R3 and impose

ω = dqi ∧ dpi as an ad hoc deinition. Of course, the two descriptions are ‘the same’,

but only insofar as the two symplectic spaces are isomorphic98. The sense of working

“up to isomorphism” is hence present in both Classical and Quantum Mechanics.

However, von Neumann’s call to work at the level of the abstract structures them-

selves, and not at the level of their particular representations or coordinatizations,

surely requires some important elucidations. What exactly does the adjective ‘ab-

stract’ stand for when we apply it to a mathematical object? What exactly is an

abstract Hilbert space R, and in which way does it difer from the Hilbert spaces FΩ

and FZ? In this regard, the above quoted passages from his book mention many dif-

ferent ideas which need to be clariied and which will be discussed at length in the

98A less trivial—but mathematically more sophisticated—example can be found in the classical
analogue of the theory of systems of imprimitivity developed by George Mackey. In this theory, the
classical phase space associated to a free massive (spin-zero) non-relativistic particle is the dual of
the action Lie algebroid R3 ⋉ R3, and one knows this theory to be equivalent to the usual point of
view because this space can be proven to be isomorphic to the cotangent bundle T ∗R3. For a more
detailed exposition of this description, see N. P. Landsman. “Between Classical and Quantum”. In:
Philosophy of Physics (Handbook of the Philosophy of Science) 2 volume set. Ed. by J. Butterield
and J. Earman. Vol. 1. Amsterdam: North-Holland Publishing Co., 2007, pp. 417–554. url: http:
//arxiv.org/abs/quant-ph/0506082, pp. 461–462.

http://arxiv.org/abs/quant-ph/0506082
http://arxiv.org/abs/quant-ph/0506082
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following sections. Let us list them:

1. Hierarchy of levels. There seems to be (at least) two diferent levels: the one of

abstract mathematical structures and the one of particular “systems”, which are

“realizations” of the abstract ones.

2. One-to-many relation. Given an abstract structure, there are many isomorphic

systems which realize it. Conversely, given many isomorphic systems, there is a

unique abstract structure of which they are realizations.

3. Uniqueness of kind. Both the abstract and the systems are of the same kind

(e.g., both the abstract R and the system FΩ are Hilbert spaces).

4. Commonality. The “intrinsic” properties of the “abstract” are “common” to the

diferent systems.

5. Schematic nature. The properties of the abstract Hilbert space are “independent

of the accidents” of the systems that realize it.

Moreover, the concept of “isomorphism” plays a fundamental role: it is the starting

point of von Neumann’s process of abstraction.

Undoubtedly, these features are not particular to the discussion of abstract Hilbert

spaces. The same ideas may be found in, e.g., Hermann Weyl’s writings on abstract

groups—to choose another example highly relevant for the mathematics of Mechanics.

He says:

A group Γ is a set of correspondences containing the identity E, the inverse S−1

of any S in Γ and the composite TS of any two correspondences S and T in Γ.

Considered as an abstract group scheme γ, our set Γ consists of elements s (of

irrelevant nature) for which a composition st is deined satisfying [the usual

group axioms]. The given transformation group Γ is a faithful realization of the

abstract group scheme γ.99

And also:

In the study of groups of transformations one does well to stress the mere struc-

ture of such a group. This is accomplished by attaching arbitrary labels to its

99H. Weyl. The Classical Groups - Their Invariants and Representations. 2nd ed. Princeton:
Princeton University Press, 1946. (First edition: 1939), p. 14. Italics are Weyl’s, bold typeface is
mine.
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elements and then expressing in terms of these labels for any two group elements

s, t what the result u = st of their composition is. If the group is inite one could

tabulate the composition of elements. The group scheme or abstract group

thus obtained is itself a structural entity, its structure represented by the

law or table of composition for its elements, st = u.100

Or, to choose a couple of more modern mathematicians, we can read Makkai claiming

that

[...] two groups that are isomorphic share all structural properties; they are

structurally indistinguishable.101

Mac Lane explaining that

All ininite cyclic groups are isomorphic, but this ininite group appears over and

over again — in number theory, in ornaments, in crystallography, and in physics.

Thus, the ‘existence’ of this group is really a many-splendored matter.102

and Lawvere emphasizing that

In the mathematical development of recent decades one sees clearly the rise of the

conviction that the relevant properties of mathematical objects are those which

can be stated in terms of their abstract structure rather than in terms of the

elements which the objects were thought to be made of.103

To sum up, it has emerged that physical systems are described by using some

sort of ‘abstract mathematical structures”. Yet, we are missing a precise account of

what abstract mathematical structures are. The task of such an account is to provide

an explanation of the above features 1 through 5. Of course, it is a priori possible

100H. Weyl. Symmetry. Princeton: Princeton University Press, 1952 (reprinted in 1989), p. 145.
Bold is mine.
101M. Makkai. “Towards a Categorical Foundation of Mathematics”. In: Logic Colloquium ’95

(Haifa). Vol. 11. Lecture Notes Logic. Berlin: Springer, 1998, pp. 153–190, p. 161.
102S. Mac Lane. “Structure in Mathematics”. In: Philosophia Mathematica 4.2 (1996), pp. 174–183,
p. 182 (Cited in: A. Rodin. “Categories Without Structures”. In: Philosophia Mathematica 19 (2011),
pp. 20–46, p. 22).
103F. W. Lawvere. “The Category of Categories as a Foundation for Mathematics”. In: Proceedings

of the Conference on Categorical Algebra. Springer. Berlin, 1966, pp. 1–20, p. 1 (cited in R. Krömer.
Tool and Object: A History and Philosophy of Category Theory. Vol. 32. Historical Studies. Berlin:
Springer Science & Business Media, 2007, p. 211).
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to have more than one account. Our goal is simply to ind one proposal that does

the job and that might fruitfully be used in the remaining parts of our analysis of

Mechanics. Methodologically, it is important to distinguish the work done by the

notions of “abstraction” and “structure”: which of the features can be explained by the

fact that an abstract mathematical structure is an abstract entity? Which necessitate

the fact that this entity is, in particular, a structure? Therefore, the strategy to follow

to address the conceptual clariication of von Neumann’s methodological precept is the

following:

i) Confer a meaning to “abstraction” and “mathematical structuralism”.

ii) Understand the key role played by isomorphisms in relation with these two con-

cepts.

iii) Explain, in this conceptual scheme, the remaining features (1 through 5).

This is certainly a large problem which goes well beyond the physical interpre-

tation of the mathematics of Mechanics. As so, we will not restrain ourselves from

treating it in as general terms as possible. But in doing so, we should not forget that,

ultimately, we are interested in the mathematical objects involved in the foundations

of Mechanics, and in the conceptual problems that arise in the practice of this ield.

Hence, although we will try to deal with abstraction and structuralism in full gener-

ality, we will nonetheless systematically ignore problems that are seemingly irrelevant

for the foundations of Mechanics (cf. Lawvere’s quote, section ). We will start by

irst considering abstraction, to understand which of the features 1. through 5. can or

cannot be accounted for (section I.2). We will then move to the study of mathematical

structuralism (section I.3).

I.2 Abstract mathematical entities

There is in the analytical tradition of philosophy a vivid debate on the status of

abstract objects. It usually discusses three clearly distinguished questions: one onto-

logical—what kind of objects are abstract objects?—, one epistemological—how do we

gain knowledge on these objects?—and one terminological—how should be precisely
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drawn the distinction between abstract and concrete objects? The debate, in its con-

temporary analytical setting, is often seen as originating from the 1947 article “Steps

Toward a Constructive Nominalism” by Nelson Goodman and Willard V.O. Quine104,

and the main reference on the subject is perhaps the work of Michael Dummett105.

Most famous are also Lewis’ four ways of attempting to explain the abstract/concrete

distinction: the Way of Example, which simply lists paradigmatic examples of concrete

objects, such as donkeys, and of abstract objects, such as numbers; the Way of Conla-

tion, which relates the abstract/concrete distinction to other metaphysical distinctions,

such as the particular/universal distinction; the Negative Way, which attempts to char-

acterize abstract objects by their lacking of some property, such as their lack of causal

interaction or of spatiotemporal location; and inally the Way of Abstraction, which

rests on having already an account of the process of abstraction106.

However, as it should be clear, our quest for an explanation of the adjective ‘ab-

stract’, as it appears in expressions such as ‘abstract Hilbert spaces’, ‘abstract groups’

or ‘abstract C∗-algebras’, has little to do with the general debate on abstract objects

that occupies many analytical philosophers. For indeed the adjective ‘abstract’ applied

to such mathematical structures is used here to introduce a distinction between entities

which are all abstract on any account of the abstract/concrete distinction. The Hilbert

space FZ := l2(N∗), although it is not an abstract Hilbert space in the sense of von

Neumann, would certainly not belong to the category of concrete objects in the sense

of Lewis or Dummett. Therefore, if we are to address the problem of the nature of

abstract mathematical entities, it is better to understand ‘abstract’ not as opposed to

‘concrete’, but rather to ‘particular’.

104N. Goodman and W. V. O. Quine. “Steps Toward a Constructive Nominalism”. In: Journal of
Symbolic Logic 12 (1947), pp. 105–122.
105In particular, M. Dummett. Frege: Philosophy of Mathematics. London: Duckworth, 1991. For
a nice introduction to Dummett’s ideas, see also G. Duke. Dummett on Abstract Objects. History of
Analytical Philosophy. Hampshire: Palgrave MacMillan, 2012
106See D. Lewis. On the Plurality of Worlds. New York: Basil Blackwell, 1986, pp. 81–86.
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I.2.1 Ontology: the abstract/particular as hierarchy of objects

In order to give an account of the abstract/particular distinction, one irst possible

strategy is to try to interpret the hierarchy of levels—abstract mathematical structures

on one side, particular systems on the other—as a hierarchy between two clearly dis-

tinguished kinds of mathematical objects. Von Neumann’s wish of “describing the

abstract Hilbert space” and its “intrinsic properties” certainly seems to point in the

direction of reifying the abstract entities. The goal is then to ind a precise deinition

of these abstract mathematical objects, such as H107.

To this end, a natural move is to attempt to use the so-called abstraction principles

of the neo-Fregean logicism programme108. In their general form, these principles are

written as

∀S, S ′ ∈ V1
(
△(S) = △(S ′)←→ S ∼ S ′

)
(I.7)

where S, S ′ are elements of a certain universe V1, ∼ is an equivalence relation deined

on V1 and △ is an operator applicable to elements of V1. It is precisely this operator

that introduces the hierarchy of levels: S, S ′ are the particular objects and △(S) is

intended to be a new abstract object found as a result of the abstraction principle

(I.7). Some paradigmatic examples of this abstraction principle which are often cited

are:

– the direction of a line, where V1 is the set of all lines contained in, say, the Eu-

clidean two-dimensional plane, △(−) is ‘the direction of’ and ∼ is the equivalence

107Now that we have widened the discussion and the focus is no longer only on von Neumann’s work,
I will change the notation referring to abstract Hilbert spaces: instead of von Neumann’s R, I will use
the nowadays more standard H.
108This programme—sometimes dubbed Neo-Fregeanism, Neo-Logicism or Abstractionism—is usu-
ally taken to initiate with Crispin Wright’s Frege’s Conception of Numbers as Objects in 1983, which
revived some of Frege’s central ideas in his attempt to provide a foundation for arithmetic. Since then,
the philosophical literature on the subject has abysmally grown. Attempting a survey of this would
certainly take us too far aield. For an introduction, I refer the reader to F. MacBride. “Speaking
with Shadows: A Study of Neo-logicism”. In: British Journal for the Philosophy of Science 54 (2003),
pp. 103–163 or to B. Hale and C. Wright. “Logicism in The Twenty-First Century”. In: The Oxford
Handbook of Philosophy of Mathematics and Logic. Ed. by S. Shapiro. New York: Oxford University
Press, 2005, pp. 166–202. A more in-depth approach is provided by the collection of articles R. T.
Cook, ed. The Arché Papers on the Mathematics of Abstraction. Dordrecht: Springer, 2007.
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relation of being parallel (this is Frege’s original example);

– the shape of a igure, where V1 is the set of all possible igures contained in, say,

the Euclidean two-dimensional plane, △(−) is ‘the shape of’ and ∼ is similarity

between igures (this is Weyl’s example)109;

– the cardinal number of a inite set, where V1 is a ixed universe of inite sets,

△(−) is ‘the cardinal number of’ and ∼ is the existence of a bijection between

two sets.

Already at this early stage of the discussion, some basic features of the process of

abstraction, as understood by the neo-Fregean logicists, are apparent. First, the partic-

ular systems S, S ′ are at least epistemologically prior to the abstract object △(S): one

starts by having a ixed domain of particulars on which there is deined an equivalence

relation, and only then one has access to the abstract. This appears to be in agreement

with—or at least does not blatantly contradict—von Neumann’s road towards abstract

Hilbert spaces which starts by studying the properties of two particular systems (FΩ

and FZ). Second, according to this account of abstraction, the fundamental ingredient

which underlies the process of abstraction is that of an equivalence relation. Without

the notion of ‘parallelism of lines’, one cannot even conceive the concept of ‘direction’.

Hence, under this view, the deinition of the equivalence relation is also prior to the

deinition of the abstract object. Third, in the process of abstraction, as conceived by

the neo-Fregeans, the essential trait of isomorphisms is that they induce the equiva-

lence relation “being isomorphic”. Following Andrei Rodin, we will call this conception

“isomorphism–qua–equivalence”110.

109H. Weyl. Philosophy of Mathematics and Natural Science. Trans. by O. Helmer. Princeton:
Princeton University Press, 1949, p. 9. Recall that two igures F and F ′ in the Euclidean plane E2

are similar if there exists an automorphism of E2 which transforms F into F ′.
110 In his article “Categories Without Structures”, Rodin distinguishes three diferent ways of thinking
about isomorphisms: isomorphism–qua–equivalence, in which one only retains that ‘being isomorphic’
is en equivalence relation; isomorphism–qua–correspondence, where an isomorphism between E1 and
E2 is thought as a one-to-one (and onto) correspondence between the elements of the two objects;
and isomorphism–qua–transformation, where one stresses the direction of the isomorphism (say, from
E1 to E2) and where the idea that E1 and E2 are composed of elements is not essential. Thus, “the
same isomorphism–qua–correspondence gives rise to two isomorphisms–qua–transformations” (Rodin,
op. cit., p. 25). In the next section, we will add to these three conceptions a fourth one: isomorphism–
qua–possible-identiication.
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But, as Angelelli rightly remarks in his discussion of Frege’s account of abstraction,

the sole principle (I.7) does not suice, for it does not give an explicit and unambiguous

deinition of what △(S) is111. One simple possibility is to read it as saying that, in

fact, △(S) is deined as the equivalence class of the system S. Symbolically:

△(S) := [S]eq. (I.8)

For the above paradigmatic examples, this reading works perfectly ine. There is indeed

no fundamental problem in deining the inite cardinal numbers to be equivalence classes

of inite sets112. Furthermore, this view is explicitly endorsed by some important

mathematicians. Let us see, for example, how Irving Segal explains the diference

between concrete and abstract C∗-algebras:

[...] we deine as a concrete C∗-algebra A, an algebra of bounded linear operators

on a real or complex Hilbert space [...]. Now two concrete C∗-algebras may be

algebraically isomorphic (in one-to-one correspondence in a fashion making sums,

products, and adjoints correspond) without there being any simple connection

whatsoever between the Hilbert spaces on which the respective operators act.

The relevant object here is an abstract C∗-algebra, which may be deined as

an equivalence class of C∗-algebras under algebraic isomorphism. The

set of all self-adjoint elements of an abstract C∗-algebra forms then a physical

111I. Angelelli. “Frege and Abstraction”. In: Philosophia Naturalis 21 (1984), pp. 453–471, pp. 463–
464.
112See for example S. Mac Lane. Mathematics, Form and Function. New York: Springer, 1986,
p. 59. Nevertheless, with that deinition, a inite cardinal number would not be a set but rather a
proper class. This implies that one cannot talk about the set of all inite cardinal numbers, since
in axiomatic set theory it is not allowed to form a set whose elements are proper classes. Bertrand
Russell did not consider this point to be a serious objection:

Thus a cardinal number is the class of all those classes that are similar to a given class.
This deinition leaves unchanged the truth-values of all propositions in which cardinal
numbers occur, and avoids the inference to a set of entities called ‘cardinal numbers’,
which were never needed except for the purpose of making arithmetic intelligible, and
are no longer needed for that purpose.
(B. Russell. “Logical Atomism”. In: Contemporary British Philosophers. Ed. by J.
Muirhead. London: Allen and Unwin, 1924, pp. 356–383. (Reprinted in: B. Russell.
Logic and Knowledge. Ed. by R. Marsh. London: Allen and Unwin, 1956, pp. 323–343),
p. 327.)

However, precisely in order to avoid this ‘objection’ and be able to consider the set of all inite cardinal
numbers, von Neumann proposed another deinition of them (as initial ordinals).
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system.113

This simple view has a certain evident appeal. It certainly establishes a two-level

hierarchy of well-deined objects and it illuminates the one-to-many relation: there

is one unique abstract object of which S is a realization because there is one unique

equivalence class to which S belongs, and diferent “realizations” of the abstract object

are just diferent ‘representatives’—that is, diferent members—of the equivalence class.

It therefore explains features 1 and 2 (page 56) and also seems to deal with feature

5—the particular nature of the members of the class is completely irrelevant to the

properties of the equivalence class.

But, despite all this, and despite Segal’s explicit deinition, there is an obvious

problem with deinition (I.8). This is best seen by taking an example: according to

(I.8), we should have

H := [L2(R)]eq.

Now, since, by deinition, L2(R) and l2(N∗) are among the elements of the equivalence

class, and since the combination L2(R)− l2(N∗) is meaningless, we see there is no sense

in writing arbitrary linear combinations of elements of H. Thus, this newly deined

abstract ‘Hilbert space’ clearly fails to be a complex Hilbert space and any talk about

linear operators deined on H reveals to be complete nonsense!114

In fact, in the attempt to explain notions such as ‘abstract groups’, ‘abstract

Hilbert spaces’ or ‘abstract C∗-algebras’, deinition (I.8) is such a blunder that one

cannot seriously consider that such ine a mathematician as Segal literally endorsed it.

On the contrary, one is pressed to ind a more sophisticated account that avoids the

113I. E. Segal. “Mathematical Problems of Relativistic Physics”. In: Proceedings of the Summer
Conference, Boulder, Colorado. Ed. by M. Kac. American Mathematical Society, 1960, pp. 8–9, the
italics are Segal’s, the bold type emphasis is mine.
114This critique is pointed out by John Burgess in his review of Stewart Shapiro’s book. He writes:

Sometimes they [abstract structures] are confused with isomorphism types, but this is a
mistake: An isomorphism type is no more a special kind of system than a direction is a
special kind of line.
(J. P. Burgess. “Review of Philosophy of Mathematics: Structure and Ontology by
Stewart Shapiro”. In: Notre Dame Journal of Formal Logic 40.2 (1999), pp. 283–291,
p. 287)
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deinition of the abstract object as the isomorphism class of its realizations and yet re-

mains somewhat faithful to this idea. Here, it is important to remark a main diference

between the three examples given above—direction, shape and cardinal number—and

the type of abstract objects we are after—groups, Hilbert spaces, C∗-algebras. It is

the following: whereas we think of an abstract group as composed of various abstract

elements, we do not think in the same way of one given cardinal number. To put it

succinctly, the diference is exactly that between the notion of an ‘abstract set with

three elements’ and the notion of the ‘cardinal number 3’. The abstraction principle

(I.7) and the deinition (I.8) allow to grasp the latter but not the former.

This last remark immediately suggests a new attempt to deine the abstract objects

by means of an abstraction principle. The main idea is simply to somewhat reverse the

procedure of deinition (I.8): instead of using an abstraction principle to directly deine

the abstract object as a whole—strategy which fails, as we just saw, since it does not

give a proper account of the abstract elements: the elements of H := [L2(R)]eq were not

the abstract vectors we were expecting—, use an abstraction principle to irst deine

each abstract element separately and then deine the abstract object as the set of all

the abstract elements. A lavor of this is clearly found in the work of the 19th century

German mathematician Heinrich Weber, one of the irst mathematicians to work on

abstract groups. He says:

We can ... combine all isomorphic groups into a single class of groups that is itself

a group whose elements are the generic concepts obtained by making one general

concept out of the corresponding elements of the individual isomorphic groups.

The individual isomorphic groups are then to be regarded as diferent represen-

tatives of the generic concept, and it makes no diference which representative is

used to study the properties of the group.115

115H. Weber. “Die allgemeinen Grundlagen der Galois’schen Gleichungstheorie”. In: Mathematische
Annalen 43 (1893), pp. 521–549, p. 524 (English translation cited in H. Wussing. The Genesis of
the Abstract Group Concept. Trans. by A. Shenitze. Cambridge, MA: Dover Publications, Inc., 1984,
p. 248, my emphasis).
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Now, a precise elaboration of this idea is found in the paper “Two Types of Ab-

straction for Structuralism” written by Linnebo and Pettigrew116. The proposal runs

as follows: for any two systems S, S ′ and any elements x ∈ S and x′ ∈ S ′, deine the

abstraction principle

△(x) = △(x′)←→ ∃f
(
f : S

∼−→ S ′ and f(x) = x′
)
. (I.9)

Here, △(x) denotes the abstract element of which x is a representative. In other words,

the abstract element is the equivalence class of elements of particular systems which

are connected by an isomorphism:

△(x) := [x]eq. (I.10)

With this deinition in hand, the abstract object △(S) is deined by

△(S) := {△(x) | x ∈ S}. (I.11)

As a side remark, one should notice that now the fact that an isomorphism is a bi-

jective function is essential. We have thus moved from the conception of isomorphism–

qua–equivalence of the previous deinition to the conception of isomorphism–qua–

correspondence (cf. footnote 110, page 61).

Under this second view, when Segal writes that ‘an abstract C∗-algebra is an

equivalence class of C∗-algebras under algebraic isomorphism’, he rather meant: ‘an

element of an abstract C∗-algebras is an equivalence class of elements of C∗-algebras

under algebraic isomorphism’. The particular example the two authors have in mind is

the abstract ield of real numbers R—in contradistinction with the various particular

realizations of this ield. The system S would be Dedekind’s model of the real numbers

in terms of cuts, and S ′ would be Cantor’s model in terms of equivalence classes of

Cauchy sequences. In this case, deinitions (I.10) and (I.11) lead to deining the abstract

116Ø. Linnebo and R. Pettigrew. “Two Types of Abstraction for Structuralism”. In: The Philosoph-
ical Quaterly 64.255 (2014), pp. 267–283, see in particular pp. 274–278 for the development of this
point.
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real number ield by

R := {[x]eq | x ∈ S}. (I.12)

This a perfectly satisfactory deinition which succeeds in explaining all the features of

the abstract/particular relation (page 56). In particular, it is indeed the case that the

abstract object R so deined is a ield isomorphic to the system S which realizes it.

However, as Linnebo and Pettigrew do not miss to notice, the success of this

second approach to the deinition of abstract mathematical objects is concomitant of

the example chosen. It works for the real number ield but fails in general. It even fails

spectacularly for other well-chosen examples. Consider for instance the notion of an

‘abstract n-dimensional vector space V ’—which one easily inds in the mathematical

literature—and attempt to deine it explicitly according to deinitions (I.10) and (I.11)

so that

V := {[x]eq | x ∈ Rn}. (I.13)

The problem here is that for any two non-zero vectors of Rn—call them x1 and x2—

there exists an isomorphism of vector spaces of Rn with itself—call it f—such that

f(x1) = x2. Hence, we see that the abstract n-dimensional ‘vector space’ V deined

by (I.13) consists of only two elements: the class [0]eq of the zero vectors and the class

[ ̸= 0]eq of non-vanishing vectors. Thus, V is certainly not an n-dimensional vector

space!

It therefore appears that, after all, this second, somewhat more sophisticated

approach to understanding abstract entities by means of abstraction principles faces

exactly the same problems as the naive approach of (I.8) (page 62), exception made of
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some very particular examples117. If the abstract/particular hierarchy is to be under-

stood as a hierarchy of mathematical objects, then the logicists abstraction principles

do not seem enough to grasp the situation. As Linnebo and Pettigrew conclude,

[...] this cannot be the sort of abstraction championed by Frege and developed

by the neo-Fregeans: for this sort of abstraction yields an unacceptable result for

many non-rigid structures.118

But then, in the face of such diiculties, it is natural to wonder whether one has

not taken the wrong road from the very beginning. To be successful, any ontological

account of the abstract/particular hierarchy needs to deine two types of mathematical

objects such that:

i) both the abstract and the particular are of the same kind,

ii) the abstract is deined in such a way to be clearly distinguished from the partic-

ular.

By adopting irst deinition (I.8) (page 62) and then deinition (I.11) (page 65), the

latter requirement was directly addressed, but the former was seen not to be met. In

fact, one clearly perceives the diiculty of satisfying both requirements, since they tend

to pull in opposite directions: the one wishes a unifying framework for the abstract

object and its realizations, while the other demands a distinguishing framework. The

striving for an ontological distinction may thus seem artiicial and unnecessarily restric-

tive. Perhaps, one should better abandon altogether this ontological interpretation of

the abstract/particular hierarchy, and rather explore a more natural epistemological

explanation. To this other possible strategy we now turn.

117It is easy to characterize precisely when this approach is going to be successful, as it was the
case with the real numbers. The key feature that distinguished the example of the real number
ield from the example of abstract vector spaces was the presence, in the latter case, of non-trivial
automorphisms. Mathematical objects which admit no non-trivial automorphisms, such as the real
number ield R or the rational number ield Q, are called rigid. For such objects, it will never be
the case that two elements of a certain particular realization belong to the same equivalence class (as
deined by equation (I.9)), and the abstract object (as deined by (I.11)) will then be isomorphic to
each of its realizations (see ibid., Proposition 5.1., p. 276).
118Ibid., p. 283.
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I.2.2 Epistemology: the abstract/particular as hierarchy of

information

As we have just explained, the ‘hierarchy of levels’ and the ‘uniqueness of kind’

(features 1 and 3, page 56) seem to pull in opposite directions if they are both in-

terpreted ontologically. This was recognized as the core diiculty of the ontological

approach to abstract entities. A natural move is then to circumvent the problem by

simply interpreting the abstract/particular distinction as a purely epistemological issue

and understanding the hierarchy of levels as a hierarchy of information.

An account along these lines is readily found in the writings of the mathematician

Saunders Mac Lane. In his book Mathematics, Form and Function, the author gives

a short account of his views on abstraction. After giving a very general idea of what

abstraction amounts to119, he proceeds to distinguish between three forms of abstrac-

tion, which he calls abstraction by deletion, abstraction by analogy and abstraction by

shift of attention. The three are certainly worth discussing by themselves. However, in

relation to our present investigation, the process of abstraction by deletion appears to

be the most relevant one: Mac Lane indeed regards ‘abstract groups’ as a paradigmatic

example of a mathematical concept attained through abstraction by deletion. Thus

we concentrate solely on this speciic form of abstraction, which is probably also the

simplest of them all. The author describes it as follows:

Abstraction by deletion is a straightforward process: One carefully omits part

of the data describing the mathematical concept in question to obtain the more

“abstract” concept. [...] For example, if one starts with the notion of a transfor-

mation, one may delete the elements being transformed but retain the associative,

identity and inverse laws for the composition of transformations. The result is

the notion of an “abstract” group.120

119He writes: “An “abstraction” is intended to pick out certain central aspects of the prior instances
and to free them from aspects extraneous to the purpose at hand. Thus abstraction is likely to lead
to the description and analysis of new and more austere or more “abstract” mathematical concepts.”
(Mac Lane, op. cit., p. 436)
120Ibid., p. 436. Here is a rough idea of the other two forms of abstraction. First, abstraction by
shift of attention occurs when, in the development of a certain mathematical theory, some concepts
which were irst ignored are realized to be the key ingredients. The example used by Mac Lane to
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As simple and “straightforward” as this process may be, it surely requires some

further clariications. But the main point should not be missed: from this point of

view, the process of abstraction (by deletion) is not conceived as a process allowing

to attain entities of a dubious ontological nature, but just as a methodological decision

to disregard a certain amount of data. All mathematical objects are on equal footing,

and an abstract object is nothing more than a particular object for which some data

is forgotten, left unspeciied121. In other words, any Hilbert space is some speciic

Hilbert space, and one talks about an “abstract” Hilbert space when there is not

enough available information to ascertain which speciic Hilbert space one is referring

to. Now, as Mac Lane explains, trying to recover the missing information—thus trying

to decide to which particular entity the abstract is referring to—is usually an important

mathematical problem:

This [abstraction by deletion] often leads to a reverse process, in which it is shown

that all (or some) of the abstract objects can have the deleted data restored,

perhaps in more than one way. Such a restoration is then called a “representation

theorem”.122

But one should not necessarily strive for this restoration: the lack of information

characteristic of the abstract entity should by no means be thought as a drawback.

Instead, it may appear as a welcomed methodological simpliication allowing to focus

on some chosen features of the theory—remain at a certain level of ‘unspeciication’

and study which knowledge can be gained without further assumptions. Consider for

example the following two theorems:

illustrate his point is the development of topology, where the notion of ‘open subsets’ slowly evolved
to become the central concept of the theory: one passed from sets embedded in Euclidean space to
abstract metric spaces and inally to abstract topological spaces. Second, abstraction by analogy arises
when a strong similarity is recognized between two diferent theories. Mac Lane here cites as example
the introduction of the notion of a modular lattice, which is the key ingredient to prove both the
Jordan-Hölder theorem for inite groups (two composition series of a inite group are of same length)
and the fact that two bases of a vector space have same cardinality.
121The idea that abstracting is not possible without forgetting—for one would constantly be immersed
in an ininite sea of details—is beautifully put in Jorge Luis Borges’ short story “Funes the Memorious”.
122Ibid., p. 436.
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Theorem I.1. Let H be an abstract Hilbert space and A any linear operator on H.
Then A is everywhere continuous if it is continuous at the point f = 0.123

Theorem I.2. Let x be a real number, then x2 + 1 admits a square root.124

According to the present view of abstraction by deletion, there is no conceptual

diference between these two theorems. In the same way that Theorem I.2 is clearly not

perceived as referring to some strange mathematical object ‘the abstract real number’

of which all particular real numbers would be realizations, Theorem I.1 should not be

interpreted as a claim about a strange mathematical structure called “the” abstract

Hilbert space, but simply as an assertion valid for any particular Hilbert space. And

precisely because of this—because abstraction is here seen as a linguistic shortcut

allowing to express claims which are valid for a variety of particulars—the speciicities

of the particular become irrelevant. If abstraction is the methodological decision of

‘omitting part of the data’ and remaining at the chosen level of unspeciication, then, by

deinition, abstract entities such as ‘abstract Hilbert spaces’ are schematic. Therefore,

features 1, 3, 4 and 5 are easily understood in this setting.

Now, by dissolving the abstract/particular as an ontological distinction, eliminat-

ing the idea of abstract Hilbert spaces as objects in their own right, and declaring that

‘any Hilbert space is a particular Hilbert space’, this point of view has come to rest

on the notion of ‘particular entities’. And a clariication of this notion is needed. This

point seems especially pressing since we are here dealing with the realm of Mathematics

and it is by no means clear what a particular (as opposed to abstract) mathematical

object might be. If we were here concerned by general abstraction, the notion of ‘par-

ticular objects’ would perhaps not be so suspicious. To take a common example in the

literature, the claim ‘The white queen is allowed to move in any direction of the chess

board’ can be thought as a claim about an abstract entity (the white queen)125. Here,

123I take this theorem from von Neumann, op. cit., p. 99.
124This example is taken from S. Awodey. “An Answer to Hellman’s Question: ‘Does Category
Theory Provide a Framework for Mathematical Structuralism?’” In: Philosophia Mathematica 12.1
(2004), pp. 54–64, p. 59.
125Analogies with the game of chess are widespread in the work of Stewart Shapiro, one of the main
defenders of mathematical structuralism.
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one can adopt exactly the same epistemological account of abstraction and understand

this as a claim valid for any white queen. ‘The white queen’ is not a platonic abstract

object and any white queen is some particular white queen, having a speciic shape,

made of some speciic material, etc. Whether it is a plastic queen or a wooden queen

is irrelevant to the claim, and the information is judiciously omitted. Presumably, the

concept of ‘particular objects’ does not seem to pose any trouble in this case because

there is an underlying ontology presupposed126. Similarly, it appears that the above

epistemological view on mathematical abstraction needs to presuppose an analogous

underlying ontology—one allowing to deine what it means to be a ‘particular mathe-

matical object’. One possible solution is to adopt the extensional view that dominated

Mathematics during the irst half of the 20th century and that still overwhelmingly

dominates the Philosophy of Mathematics. According to it, all mathematical objects

are sets, explicitly constructed from the null set, and to know all the information about

a particular object is to know exactly which are the elements that compose it127.

This being said, let us turn to the understanding, in this account, of the role of

isomorphisms and the one-to-many relation. What does it mean to say that “L2(R3)

and l2(N) are diferent realizations of H”? Remember, H and L2(R3) are of the same

nature—they are both particular Hilbert spaces and what distinguishes them is the

amount of information we have about them: we know more about L2(R3) than about

H. So, in the ongoing understanding of abstraction, it would make no sense to inter-

pret ‘realization’ as ‘embodiment’. Given H, L2(R3) and l2(N), consider the following

important question: is H equal to L2(R3)? As it should be clear, there is no way to

126In fact, even here one could argue that the notion of a ‘particular white queen’ is not so easily
dealt with. Consider for instance a game of chess on the internet between two players in diferent parts
of the world. To explain what kind of particular object is ‘the white queen’ to which both players
refer is certainly not an easy task...
127This extensional view has been recently criticized, both for mathematical and philosophical rea-
sons. For a nice description—geared to a philosophically-oriented audience—of some developments in
main stream contemporary mathematics pushing away from this view, see J.-P. Marquis. “Mathemat-
ical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics”. In: Synthese
190.12 (2013), pp. 2141–2164.
However, the criticisms against the set-theoretic ontology of Mathematics need not worry much the

defenders of the ‘abstraction by deletion’ account. Indeed, as long as one in not wary of the idea of
an underlying ontology in Mathematics, this epistemological account of abstraction is independent of
what this ontology might be.
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answer this in a deinite fashion. We simply are lacking enough information about H
to do so! Since all we know about H is that it is a Hilbert space, the best answer

which can be provided at this point is to say that, given the available information, it is

possible for H to be equal to L2(R3). But of course, it is also possible for H to be equal

to l2(N). And—it seems to me—it is precisely in this modal sense that the one-to-many

relation between the abstract and the particular entities should be interpreted in this

epistemological account of what is meant by ‘abstract groups’, ‘abstract Hilbert spaces’

or ‘abstract C∗-algebras’. Following Mac Lane, we could say that a realization of any

of those abstract mathematical entities is one of the many possible restorations of the

missing information.

Under this light, isomorphism appears as the technical tool that captures this

possibility of equality. But to understand this, it seems preferable at this point to

distinguish three diferent types of isomorphisms:

– Isomorphism between an abstract and a particular: in the ongoing conceptual

setting, this inter-level type of isomorphism is the most natural type to consider.

As we have just explained, the assertion H ≃ L2(R3) is interpreted as ‘it is

possible for H to be equal to L2(R3)’.

– Isomorphism between two particulars: obviously, this intra-level type of isomor-

phism cannot be interpreted in the same manner. We certainly have L2(R3) ̸=
l2(N) (the elements of the former are continuous functions whereas the elements

of the latter are ininite series), so there is no possibility of them being equal.

Nevertheless, the claim L2(R3) ≃ l2(N) remains of interest, since it is equivalent

to the claim: if H ≃ L2(R3) then H ≃ l2(N). Thus, an isomorphism between two

particulars may be regarded as the statement that they are two diferent possible

restorations of the unspeciied information of an abstract entity.

– Isomorphism between two abstract entities: in the neo-Fregean process of abstrac-

tion through equivalence, the loss of isomorphisms between abstract entities was

a major caveat. It is easy to see that this is no longer the case: the claimH1 ≃ H2

is readily interpreted in the same way as H1 ≃ l2(N). Again, isomorphic abstract

entities are entities which are possibly equal.
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This last point seems to be so important, that it is worthwhile to restate it some-

what diferently. In the conception of isomorphism–qua–correspondence, there is no

fundamental diference between the three types of isomorphisms just discussed. They

are all thought of as bijective functions allowing to translate statements about one en-

tity into analogous statements about another entity. Thus conceived, isomorphisms–

qua–correspondences give rise to an equivalence relation. However, one can adopt a dif-

ferent conception of isomorphisms—namely, isomorphism–qua–possible-identiication.

Now, two objects are isomorphic if they might be equal. As I see it, there are two

main diferences between the two conceptions. First, strictu sensu, isomorphisms–

qua–possible-identiications give rise to a relation that is not an equivalence relation,

for it fails to be transitive: H might be equal to L2(R3) and H might be equal to

l2(N), but L2(R3) cannot be equal to l2(N). This is explained by the fact that the

conception of isomorphism–qua–possible–identiication can only be adopted when ab-

stract, partly unspeciied entities are involved. Second, given two abstract entities H1

and H2, in the isomorphism–qua–correspondence point of view, it is perfectly alright

to claim ‘H1 ≃ H2 but H1 ̸= H2’. But this claim is contradictory if one adopts

the isomorphism–qua–possible-identiication point of view. Literally, this claim would

mean: ‘it is possible for H1 and H2 to be equal, but they are diferent’. This poses

the question of why one would adopt a point of view that restricts the sort of claims

allowed? Is it not as artiicial and unnecessarily restrictive as the attempt of conferring

a distinct ontological status to the abstract?

The answer is simple: the motivation stems from the practice of mathematics

and mathematical physics. Even though a question about the equality of H1 and H2

may have in principle a deinite answer (it may indeed be a matter of fact whether

H1 is equal to H2), this is not so in practice: as long as one remains at the level of

unspeciication characteristic of the abstract objects one is dealing with, there is simply

not enough information to ascertain the validity of such an equality claim! Therein,

isomorphism appears as the strongest possible claim about the equality of two abstract

entities. Since, when considering abstract entities of a certain type, equality claims

cannot be ascertained, one might forget equality altogether and use only isomorphisms.

The talk ‘up to isomorphism’, ubiquitous in the practice of contemporary mathematics,
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reveals itself a natural and fundamental feature of this epistemological account of the

process of abstraction.

The identity conditions of these abstract entities is a quite subtle matter. It

would be a mistake to understand the above replacement as a move pushing to conlate

the notions of isomorphism and identity. There are two main reasons why it would

be so. On the one hand, this would be missing the point of the modal conception

of isomorphism: it is isomorphism–qua–possible-identiication, not isomorphism–qua–

identiication. In the same way that two n-dimensional Hilbert spacesH1 andH2 might

be identical, they might also be diferent, so one should better keep them distinct.

And this is indeed akin to what mathematicians do128. On the other hand, there

may be a whole myriad of diferent isomorphisms between two isomorphic objects,

and it is important to retain this multiplicity, for it contains relevant information

about the mathematical situation being handled. If one does not properly distinguish

‘identiication’ from ‘identity’, one obfuscates the existence of this multiplicity. Given

two objects H1 and H2, it seems indeed rather diicult to understand how they can be

identical to each other in diferent ways (they are either identical or not), but it is much

easier to imagine several distinct manners in which they can be identiied with each

other. There can be many possible diferent processes of identiications that reveal the

same identity.

To understand this last distinction between identity and identiication, it is useful

to consider one single object H. If one reduces isomorphisms to just ‘possible equality’,

the notion of automorphism appears to be redundant—if not quite obscure. Since H is

certainly equal to itself, what would be the use of saying that, moreover, H is possibly

equal to itself? On the contrary, if one conceives a given isomorphism as an explicit

128Here is a subtle point that often creates confusion: isomorphic objects are not identiied but
canonically isomorphic objects are. One speaks of “the” terminal object of a category (if it exists)
because between any two such terminal objects there is a canonical isomorphism. Given a inite-
dimensional vector space V , it is isomorphic to the dual V ∗ and canonically isomorphic to V ∗∗.
Accordingly, one distinguishes the irst from the second but not from the third. This remark shows
that, in fact, isomorphism is not the ‘strongest possible claim about the equality of two abstract
entities’, as I have airmed above. It is canonical isomorphism. For a beautiful discussion of this point,
see B. Mazur. “When is One Thing Equal to Some Other Thing?” In: Proof and Other Dilemmas:
Mathematics and Philosophy. Ed. by B. Gold and R. A. Simons. Spectrum Series. Mathematical
Association of America, 2008, pp. 221–242.
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identiication, the situation changes: even though H is equal to itself, there is an

ambiguity in this claim, which is precisely captured by the existence of several diferent

possible self-identiications or automorphisms.

This is best illustrated by an explicit example. Take for H a set of two elements

and consider two copies of it129. If H is an abstract set, then, although we know the

two copies to be equal to each other, there are two possible identiications of them and

there is simply no possible way to determine which one is the correct:

(a) Picture of H ≃ H if isomorphism is

conceived as identity, for H an abstract

entity.

(b) Picture of H ≃ H if isomorphism

is conceived as identiication, for H an

abstract entity.

Fig. I.1 – Diference between identity and identiication for abstract entities.

This ambiguity inds its roots in the fact that, among the omitted data turning H into

an abstract entity, is the information allowing us to distinguish the two elements of

H. If this lacking information was somehow completely restored, so that H became a

particular set of two elements, there would no longer be a need to distinguish between

identity and identiication: indeed, in this case the elements could be distinguished and

one could determine the unique correct identiication of the two copies of H:

129For expository reasons, I have taken the simple example of a set with two elements to illustrate
my point. Isomorphisms are then bijective functions. But the argument does not depend on math-
ematical objects being sets (with possibly extra-structure). One might as well reason in terms of
transformations, as deined in category theory. However, this seemed an unnecessary complication at
this point.
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(a) Picture of H ≃ H if isomorphism is

conceived as identity, for H a particular

entity.

(b) Picture of H ≃ H if isomorphism is

conceived as identiication, for H a par-

ticular entity.

Fig. I.2 – Diference between identity and identiication for particular entities.

Thus, it is characteristic of the abstract to have a complex structure of self-identiications

which, in turn, is a manifestation of an essential ambiguity.

As a side remark, note that in this view of abstraction by deletion the notion of

isomorphism does not come irst in the process of abstraction. Rather, one starts by

choosing certain properties that are to be retained—i.e. abstracted—, and only then

the relevant notion of isomorphism follows. In other terms, one irst deines the abstract

entity H—for example, through an axiomatic presentation—and then isomorphism130.

This is the opposite of what the process of abstraction through equivalence suggested.

Let us sum up what has emerged during this discussion of the epistemological ac-

count of the abstract/particular distinction as a hierarchy of information. An abstract

entity is here understood as a particular entity for which only partial information is at

our disposal. Given this omission of information, there can be many particular enti-

ties that may be the abstract entity handled. Realizations are possible restorations of

the unknown. This explains the one-to-many relation, which is understood thus as a

modal relation, best described using isomorphisms-qua-possible-identiications. With

the information at our disposal, one can try to deduce some properties the abstract

entity must have. These properties are necessarily independent of the omitted data—

which explains the schematic nature of abstract entities. Finally, since any particular

130However, it would be a mistake to believe that the relevant notion of isomorphism follows im-
mediately once the choice of properties to be retained is ixed. The mathematicians’ struggle to ind
the good notion of homeomorphism in point-set topology is a nice historical example of this. See,
G. H. Moore. “The Evolution of the Concept of Homeomorphism”. In: Historia Mathematica (2007),
pp. 333–343.
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realization of the abstract entity is possibly equal to it, all known properties of the

abstract must also hold for the particular. It is in this sense that the ‘properties of

the abstract are common to all the diferent realizations’. So, we see, this account of

abstraction can explain on its own the importance of isomorphisms and all features 1.

through 5. which were all emphasized by both von Neumann and Weyl (page 56).

Nonetheless, this view of how to make sense of notions such as ‘abstract Hilbert

spaces’ is not free of problems. The move of dissolving the abstract/particular as an

ontological distinction, eliminating the idea of abstract Hilbert spaces as objects in

their own right, and declaring that ‘any Hilbert space is a particular Hilbert space’,

has two main drawbacks. First, the whole point of view has now come to rest on the

notion of ‘particular entities’. And a clariication of what exactly is meant by this

is still lacking. This point seems especially pressing since we are here dealing with

the realm of Mathematics and it is by no means clear what a particular (as opposed

to abstract) mathematical object might be. If we were here concerned by general

abstraction, the notion of ‘particular objects’ would perhaps not be so suspicious. To

take a common example in the literature, the claim ‘The white queen is allowed to

move in any direction of the chess board’ can be thought as a claim about an abstract

entity (the white queen)131. Now, one can adopt exactly the same epistemological

account of abstraction and understand this as a claim valid for any white queen. ‘The

white queen’ is not a platonic abstract object and any white queen is some particular

white queen, having a speciic shape, made of some speciic material, etc. Whether it

is a plastic queen or a wooden queen is irrelevant to the claim, and the information is

judiciously omitted. Presumably, the concept of ‘particular objects’ does not seem to

pose any trouble in this case because there is an underlying ontology presupposed132.

Similarly, it appears that the above epistemological view on mathematical abstraction

needs to presuppose an analogous underlying ontology—one allowing to deine what it

131Analogies with the game of chess are widespread in the work of Stewart Shapiro, one of the main
defenders of mathematical structuralism.
132In fact, even here one could argue that the notion of a ‘particular white queen’ is not so easily
dealt with. Consider for instance a game of chess on the internet between two players in diferent parts
of the world. To explain what kind of particular object is ‘the white queen’ to which both players
refer is certainly not an easy task...
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means to be a ‘particular mathematical object’. But this is a serious problem only if

one is wary of the idea of an underlying ontology in Mathematics. For if one is ready

to accept this possibility, all that has been said is in fact independent of what this

ontology might be133.

Second, by interpreting all statements about abstract entities as statements quan-

tiied over a class of particular entities—symbolically: ‘abstract’ = ‘any particular’—,

this epistemological approach emphasizes the notion of generalization rather than ab-

straction. In fact, the process of abstraction by deletion appears simply to be the

creation of a language useful for expressing general statements. In this new language,

all superluous details have indeed been deleted, but this is perceived as a useful way

of referring to many particulars at a single stroke, not as a way of conceiving a new

entity deprived from all these details. In short, abstraction is here considered to be

a mere form of generalization. Moreover, it is not diicult to ind, in the writings of

some 19th century and early 20th century mathematicians, passages which seemingly

support this claim. For example, we can read Stephan Banach explaining that:

The aim of the present work is to establish certain theorems valid in diferent

functional domains, which I specify in what follows. Nevertheless, in order not to

have to prove them for each particular domain, I have chosen to take a diferent

route [...]; I consider sets of elements about which I postulate certain proper-

ties; I deduce from them certain theorems, and I then prove for each particular

functional domain that the postulates adopted are true for it.134

133For instance, one might adopt the extensional view that dominated Mathematics during the irst
half of the 20th century and that still overwhelmingly dominates the Philosophy of Mathematics.
According to it, all mathematical objects are sets, explicitly constructed from the null set. To know
all the information about a particular object is then to know exactly which are the elements that
compose it. But this view has been recently criticized, both for mathematical and philosophical
reasons. For a nice description—geared to a philosophically-oriented audience—of some developments
in main stream contemporary mathematics pushing away from this view, see Marquis, op. cit.
134Quoted in J.-P. Marquis. “Mathematical Abstraction, Conceptual Variation and Identity”. In:

Logic, Methodology and Philosophy of Science, Proceedings of the 14th International Congress (Nancy).
Ed. by P. E. Bour et al. London: College Publications, 2014, pp. 299–322, p. 315.
This short passage may not do full justice to Banach’s conception of abstraction, but it does stress

how abstraction involves a form of generalization. Another example is found in the work of Maurice
Fréchet:

In modern times it has been recognized that it is possible to elaborate full mathematical
theories dealing with elements of which the nature is not speciied, that is, with abstract
elements. A collection of these abstract elements will be called an abstract set. [...]
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The trouble with this claim is that it is clearly orthogonal to von Neumann’s

intentions when he introduced abstract Hilbert spaces in the context of Quantum

Mechanics. As we saw in subsection I.1.3 and subsection I.1.4, Dirac and von Neumann

conceived working with a speciic realization of a Hilbert space to be tantamount to

working with a speciic choice of coordinates. Now, we may ask: What does it mean

then to work with an abstract Hilbert space? A defender of the eliminative account of

abstraction would answer: it means to work with an arbitrary choice of coordinates.

However, this was not von Neumann’s answer: for him, it meant to work in a coordinate-

free formulation of the theory135. In other words, the eliminativist conceives these

abstract mathematical entities as abstract particulars, whereas the physicist, following

von Neumann, wants to conceive them as universals.

These remarks suggest that, despite its evident merits, the purely epistemological

account of the abstract/particular distinction as a hierarchy of information fails to do

justice to what is achieved through the introduction of these abstract mathematical

structures, and that one should try to develop yet another alternative account.

I.2.3 Mixture: the abstract/particular as hierarchy of identi-

ties

In a series of recent papers, Jean-Pierre Marquis has developed a description of

the abstract method, as used in modern and contemporary mathematics, which aims

It is necessary to keep in mind that these notions are not of a metaphysical nature; that
when we speak of an abstract element we mean that the nature of the element is indiferent,
but we do not mean at all that this element is unreal. Our theory will apply to all elements;
in particular, applications of it may be made to the natural sciences.
(M. R. Fréchet. “Abstract Sets, Abstract Spaces and General Analysis”. In: Mathematics
Magazine 24.3 (1951), pp. 147–155, p. 147, author’s emphasis.)

135Here is a perhaps more modern and precise rephrasing of this last point. Given an n-dimensional
abstract Hilbert space Hn, the choice of an orthogonal basis Bn = {e1, . . . , en} induces a canonical
isomorphism ΦBn : Hn ∼−→ Rn. This hints to the idea of perceiving isomorphisms between abstract
Hilbert spaces and particular realizations as choices of a basis. In fact, it is perfectly alright to deine
a basis of Hn as such an isomorphism. Although technically more involved, the situation is essentially
the same for an ininite-dimensional separable Hilbert space H. There, one can always choose a
countable orthonormal basis B, and this choice will induce an isomorphism ΦB : H ∼−→ l2(N). In this
way, one has precisely the ‘equation’

particular Hilbert space = abstract Hilbert space + choice of a basis.
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to point at the inherent features of abstraction136. His detailed account presents the

abstract method as a process which is epistemological in nature but which nonetheless

culminates in the creation of new mathematical entities. It can therefore be perceived

as a mixture of the previous two approaches. In particular, Marquis emphasizes what I

take to be the main lesson of the isomorphism–qua–possible-identiication conception:

the importance—often understated if not unnoticed—of relecting on the criteria of

identity for abstract entities. But his merit is to do so without mention of any type

of modality and without such strong a reliance on the notion of ‘particulars’. In this

way, he is able to avoid the main drawback of the previous account: the reduction of

abstraction to a particular form of generalization. Therefore, the essence of Marquis’

point of view may be captured by the following three fundamental claims:

1. Abstraction is epistemological.

It is my profound belief that abstraction in mathematics is solely an episte-

mological issue and that the abstract character of mathematics is not an on-

tological property but rather derives from epistemological features of math-

ematical knowledge itself. I am not so much concerned with abstract objects

than with the process of abstraction and the abstract method. Some math-

ematical objects, or rather mathematical concepts, are abstracted. They do

not inherit a dubious ontological status for that reason.137

2. Abstraction is not generalization: the distinction lies in the creation of new enti-

ties in the process of abstraction.

One could [...] work in a purely formal fashion or consider that one is doing

algebra in the classical sense of that word, that is working on generalized

136J.-P. Marquis. “Mathematical Abstraction, Conceptual Variation and Identity”. In: Logic,
Methodology and Philosophy of Science, Proceedings of the 14th International Congress (Nancy).
Ed. by P. E. Bour et al. London: College Publications, 2014, pp. 299–322; J.-P. Marquis. “Stairway
to Heaven – The Abstract Method and Levels of Abstraction in Mathematics”. In: (forthcoming).
Besides these papers, which deal directly with the abstract method, at least two other articles

are relevant to the question of what ‘abstract’ means in the realm of mathematical entities. These
are: J.-P. Marquis. “Categorical Foundations of Mathematics – Or how to provide foundations for
abstract mathematics”. In: The Review of Symbolic Logic 6.1 (2013), pp. 51–75 and J.-P. Marquis.
“Categories, Sets and the Nature of Mathematical Entities”. In: The Age of Alternative Logics:
Assessing Philosophy of Logic and Mathematics Today. Ed. by J. van Benthem et al. Dordrecht:
Springer, 2006, pp. 181–192.
137Idem, “Mathematical Abstraction, Conceptual Variation and Identity”, p. 300, author’s emphasis.
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arithmetic operations. [...] The situation changes radically once it is clear

that it is possible to consider a new type of entities supporting these prop-

erties and relations. [...]

[F]rom an epistemological point of view, to focus on generality is to miss the

point of the conceptual diference between the two notions [of generalization

and abstraction].138

3. It is characteristic of abstract entities to have a complex identity structure.

[O]n any view of abstract mathematics, the notion of identity has a rich,

complex structure which is not prior to the abstract objects present.139

With this in mind, let us now review in some detail Marquis’ work. To describe

the process of abstraction, the author brings out three basic components that are to

constitute mathematical abstraction140:

– a domain of signiicant variation,

– a method of presentation and development,

– the extraction of a new criterion of identity.

The irst two components are fairly intuitive. For there to be abstraction, one has to

encounter several objects which appear somehow radically diferent—they constitute

the domain of signiicant variation. Yet, one recognizes some invariant properties in

the domain under consideration. It is “this interplay of variation and invariance [that]

opens the door to the possibility of abstracting”141. In the main example we have been

considering, these signiicantly diferent objects are L2(R3) (functions on a continuous

space) and l2(N) (ininite series) and, among the invariant properties is, for instance, the

existence of a Hermitian product. Once these invariant properties have been recognized,

138Idem, “Stairway to Heaven – The Abstract Method and Levels of Abstraction in Mathematics”,
pp. 7–8 and 13.
139Idem, “Categorical Foundations of Mathematics – Or how to provide foundations for abstract
mathematics”, p. 27.
140The number and the description of these components varies slightly from one work to another,
but the ideas remain the same. This is the terminology of “Stairway to Heaven – The Abstract Method
and Levels of Abstraction in Mathematics”, p. 3. See also “Mathematical Abstraction, Conceptual
Variation and Identity”, pp. 308–309.
141Idem, “Mathematical Abstraction, Conceptual Variation and Identity”, p. 309.
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“the epistemic attention has to shift from certain pregnant features of the objects under

study to the invariant elements involved”142. In other words, for a given element f ∈
L2(R3), one needs to ignore all questions about it being continuous or derivable—which

make sense because it is a function—and consider it solely as point on a Hilbert space.

Thus, one needs a method of presentation and development—a “systematic ignorance

of the speciic properties of the objects” leading to an “appropriate language” in which

to present and investigate in an autonomous fashion the invariant properties143. In von

Neumann’s work, this method of presentation corresponds to the axiomatic deinition

of a Hilbert space144.

Up to now, there is little novelty in this description of abstraction. Marquis’

“systematic ignorance” is essentially the same as Mac Lane’s “deletion”. Nonetheless,

this presentation shows already its usefulness, for it allows us to disentangle three

concepts that are often conlated: abstraction, the axiomatic method and formalism145.

As claimed by Marquis, the latter two should not be identiied with abstraction, nor

are they essential elements of the process:

[...] in order to see the invariant features [...], one has to forget or ignore essential

aspects of the objects and their properties involved. One has to ignore key

properties of functions, of series, of the complex numbers, etc. One of the

ways to succeed this operation is to concentrate on the formalism, the symbols

and the operations on these symbols.146

A formalist approach to mathematics facilitates the access to invariant properties.

Nonetheless, it is but one possible methodological decision enabling to perform one

basic step of abstraction. In the same manner, the axiomatic method can be used as

142Idem, “Stairway to Heaven – The Abstract Method and Levels of Abstraction in Mathematics”,
p. 7.
143Ibid., p. 3, my emphasis.
144Von Neumann, op. cit., pp. 35–45.
145For example, the abstract and axiomatic method are used as if interchangeable concepts by Mac
Lane himself in the following passage: “The abstract or postulational development of these systems
must then be supplemented by an investigation of their “structure”.” (S. Mac Lane. “Some Recent
Advances in Algebra”. In: American Mathematical Monthly 46 (1939), pp. 3–19, pp. 17–18, cited in:
Marquis, op. cit., p. 8.)
146Ibid., p. 5, italics are from the author, bold typeface is mine.
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an implementation of the method of presentation and development characteristic of

abstraction. Again, it is just one possible method among others:

[...] axioms and the axiomatic method did play a key role in the rise of the

abstract method. The axioms capture the invariant features of the theories under

investigation. Once these have been identiied, the axiomatic method allows for

the systematic and rigorous development of the consequences of these features.

One could use a diferent method of presentation of the invariant features. It

depends on the linguistic means available. For instance, nowadays, it would be

possible to use a graphical language to present a new theory by using what are

called sketches.147

Moreover, as the historical example of Euclidean geometry suices to illustrate, this is

not the only use axioms may have in Mathematics. There are other contexts in which

axioms may be perceived as evident, basic truths. In fact, it is a feature of abstraction

that, whenever axioms appear, their role is not to assert but to present—axioms as

deining conditions, not as evident assertions148.

But, Marquis insists over and over, the process of abstraction is uninished if one

stops here and ignores the third, fundamental component: the extraction of a crite-

rion of identity—this “blind spot in the mathematicians’ journey through the abstract

method”149. It is the central point which distinguishes his approach from the one

sketched in the previous section. He explains this as follows:

[...] it is not until the proper criterion of identity has been identiied and applied

systematically that the theory acquires an autonomy, both epistemological and

ontological. Notice also that it is the presence of a new criterion of identity that

allows to say that we are indeed in the presence of a new type of abstraction, for

as we have seen, the usage of the axiomatic method in itself does not entail the

need of a new criterion of identity. [...] The identiication of the proper criterion

of identity is of fundamental importance, since it allows to sift the properties of

147Ibid., p. 10, author’s emphasis.
148For an analysis of the diferent uses of axioms in the practice of Mathematics, see D. Schlimm.
“Axioms in Mathematical Practice”. In: Philosophia Mathematica 21 (2013), pp. 37–92.
149Marquis, op. cit., p. 11.
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the resulting theory from the properties of the previous theories. In other words,

it captures the process of abstraction itself.150

The fundamental thesis of Marquis’ account is then the following: to perceive the

new abstract entities as emerging, not from the deinition of a new object, but rather

from the deinition of a new criterion of identity. In this way, identity ceases to be

a universal and unrestricted notion, admitting one single form which applies to the

entire realm of Mathematics. Rather, the process of abstraction is better described

using a multi-sorted or typed logic, in which identity is contextual. For Marquis, “this

is precisely where certain aspects of abstract mathematics escape the standard analysis

or explication in terms of ZF-sets, or any other notion of sets based on extensional-

ity”151. In turn, type theory illuminates the complexity of identity: instead of describ-

ing identity of two objects as a property, the theory describes it as a structure152. The

multiplicity of possible identiications between two abstract objects, encountered in

the account of abstraction by deletion (Section I.2.2), is precisely the sort of structure

here mentioned. The realm of Mathematics is seen to be governed by a complex net

of diferent criteria of identity and the abstract/particular distinction appears as the

consequence of a hierarchy of identities. More precisely, the abstract/particular op-

position is dissolved and replaced by a ladder of levels of abstraction: a mathematical

entity is not either abstract or non-abstract, it is simply more or less abstract than

another entity.

This phenomenon of there being several diferent criteria of identity, associated

to diferent levels of abstraction, can very well be perceived in our main example with

Hilbert spaces. So far, the situation had been presented as having only two levels:

the one of ‘particular’ Hilbert spaces, such as L2(R) and l2(N), and the one of the

abstract Hilbert space H. Now, notice that in order to talk about the Hilbert space

L2(R) of (Lebesgue equivalence classes of) square-integrable functions over R, or about

150Ibid., p. 12.
151Idem, “Categorical Foundations of Mathematics – Or how to provide foundations for abstract
mathematics”, p. 58.
152For given a type T and objects X : T , Y : T , the proposition X =T Y is better captured as a type
IdT (X,Y ). In fact, a central idea of type theory is to view any proposition as a type. Some of the
main diferences between set and type theory will be discussed in more detail in Subsection I.3.3.a.
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the Hilbert space of square-summable functions over N, one needs to be able to talk

about the ield of real numbers R and about the natural number system N. But of

course, from a set-theoretical point of view, we know that R could equally well refer

to Dedekind’s model RD or to Cantor’s model RC , in the same way that N could refer

to von Neumann’s ordinals NN or to Zermelo’s numerals NZ . In other words, one can

only perceive L2(R) as being a well-deined speciic entity if one decides to regard the

diferent models of R as being equal. Therefore, the situation we have been dealing with

is more accurately described as having (at least) three diferent levels of abstraction

and three criteria of identity:

(i) First level of abstraction, governed by identity =T1 . We have four entities:

l2(NN) ̸=T1 l
2(NZ) ̸=T1 L

2(RD) ̸=T1 L
2(RC).

The identity =T1 may be based for example in the usual extensionality for sets.

Then, NN and NZ are diferent sets and l2(NN) and l2(NZ) are diferent Hilbert

spaces.

(ii) Second level of abstraction, governed by identity =T2 . We have two entities:

l2(N) =T2 l
2(NN) =T2 l

2(NZ) ̸=T2 L
2(RD) =T2 L

2(RC) =T2 L
2(R).

With this second criterion of identity, one can conceive the abstract natural num-

ber system N and the abstract ield of real numbers.

(iii) Third level of abstraction, governed by identity =T3 . We have one entity:

l2(N) =T3 l
2(NN) =T3 l

2(NZ) =T3 L
2(RD) =T3 L

2(RC) =T3 L
2(R) =T3 H.

With this third criterion of identity, there is only the one abstract Hilbert space.

This remark simply points to the fact that in any mathematical situation there is

always an implicit threshold level of abstraction below which one will not descend.

We still have to explain the precise manner in which the new criterion of identity

is extracted. As Marquis emphasizes, the main reason for deining this new identity is

to switch from a point of view where properties are invariant to a point of view where

properties are intrinsic. Given a domain of variation, and a collection of invariant

properties that are to be retained, this move is achieved by the following two-step
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procedure. First, for any property P0 that is to be retained, and any two objects X, Y

of the domain of variation, the new identity =T2 should be constructed so that

if P0(X) and X =T2 Y, then P0(Y ) (I.14)

Second, one reverses the approach and uses =T2 to deine what qualiies as an abstract

property P :

if P (X) and X =T2 Y, then P (Y ) (I.15)

The two steps (I.14) and (I.15) are not to be confused: in (I.14) the properties P0

are given and this allows us to deine the new identity, whereas in (I.15) =T2 is given

and this allows to deine the abstract properties P . Of course, the initially chosen

properties P0 become by construction abstract properties. It is precisely this move

that accomplishes the “shift of attention” mentioned by Marquis. Under the light of

the old criterion of identity, one could have X ̸=T1 Y but P0(X) and P0(Y ). P0 was

then invariant by the change from X to Y . But under the light of the new criterion of

identity, there is no such variation from X to Y since X =T2 Y : P0 shows now to be an

intrinsic property of the abstract entity emerged through the newly deined identity.

Through this account, it appears (again) that it is “impossible to think of the

abstraction process in terms of an equivalence relation”153. Indeed, the choice of an

identity criterion strongly depends on the properties one is wishing to abstract:

One has to have the properties that will be abstracted in order to deine the

criterion of identity between the abstract entities. In other words, the criterion

of identity can not be given a priori but is derived from the theory.154

One then needs to have an idea of the new abstract entity before considering the

deinition of the equivalence relation, unlike what is claimed by the neo-Fregean account

of abstraction.

Now, the reader should be struck by the fact that the deinition of the new ab-

stract identity =T2 coincides exactly with the deinition of isomorphisms. These are

153Idem, “Mathematical Abstraction, Conceptual Variation and Identity”, p. 312.
154Ibid., p. 312.
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constructed precisely in order to preserve certain properties, as stated in deinition

(I.14)—e.g., an isomorphism of inite-dimensional vector spaces is a morphism pre-

serving the linear structure and the dimension. In this way, one understands that

isomorphism is nothing but the identity governing the new level of abstraction. Here

is Marquis explaining this crucial point:

In fact, it might be wise to replace the term “isomorphism” by a more neutral

term that evokes a type of identity. Notice that one could stipulate that once the

proper criterion of identity has been discovered, then the meaningful properties

are precisely those that satisfy Leibniz’s principle. I would even dare suggest that

the latter is a key property of what it means to be abstract for mathematical

objects. [...]

For many mathematicians, being isomorphic is precisely what being abstract

amounts to. This means that X and Y are, from an abstract point of view,

essentially the same.155

Marquis is certainly not alone in claiming this. In fact, in “Towards a Categorical

Foundation of Mathematics”, the logician Michael Makkai has proposed to elevate

(I.15) to the rank of a principle, which he calls the “Principle of Isomorphism”156. He

considers it a crucial tenet of what Abstract Mathematics are. To wit:

[...] the Principle of Isomorphism itself appears to be a generally accepted idea in

Abstract Mathematics. [...] The basic character of the Principle of Isomorphism

is that of a constraint on the language of Abstract Mathematics; a welcome one,

since it provides for the separation of sense from nonsense. But the fact that

isomorphism is the real equality in Abstract Mathematics is also an

experience.157

155Idem, “Categorical Foundations of Mathematics – Or how to provide foundations for abstract
mathematics”, p. 58–59, my emphasis.
156The similarity between these two works is not surprising since Makkai’s attempts to develop a
foundations of Mathematics based on category theory has exerted a strong inluence on Marquis’
ideas, as the latter has acknowledged in many occasions (see, for instance, ibid., p. 72).
157Makkai, op. cit., p. 161, author’s italics, boldtype face is mine.
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In view of the central role it plays in the process of abstraction, I propose to name

it the “Principle of Abstraction”158:

Principle of Abstraction: all grammatically correct properties of

abstract objects are to be invariant under the relevant isomorphism

type.

Through Marquis’ account of the method of abstraction, we have reached a better

understanding of what it means to conceive some mathematical entities abstractly. By

the same token, we now know which criterion of identity to use for the mathematical

description D(S) of the physical system S. Therefore, out of the three initial ques-

tions (cf. page 17), it only remains to elucidate the content of the requirement of

individuation. For this, we need to turn to an analysis of mathematical structuralism.

I.3 Abstract mathematical structures

In none of the last two accounts of abstraction the word ‘structure’ has appeared.

Yet, they both manage to explain the essential features about abstract Hilbert spaces,

abstract symplectic manifolds, abstract groups, etc. which were highlighted when an-

alyzing von Neumann’s work. These were: the hierarchy of levels, the one-to-many

relation, the uniqueness of kind, the commonality of properties and the schematic na-

ture of these new abstract entities (cf. pages 56–56). This poses the question of why

158 Makkai’s precise formulation is “Principle of Isomorphism: all grammatically correct proper-
ties of objects of a ixed category are to be invariant under isomorphism” (ibid., p. 161, my emphasis).
A major caveat of my terminological decision—besides the confusion it may create with the neo-

Fregean abstraction principles—is that the expression “Principle of abstraction” has already been used
before in a quite diferent sense. In The Principles of Mathematics, Bertrand Russell introduces an
axiom with this precise name and deined as follows:

“Every transitive symmetrical relation, of which there is at least one instance, is analyz-
able into joint possession of a new relation to a new term, the new relation being such
that no term can have this relation to more than one term, but that its converse does
not have this property.” This principle amounts, in common language, to the assertion
that transitive symmetric relations arise from a common property. (p. 220)

For a discussion on Russell’s principle of abstraction, see I. Angelelli. “Adventures of Abstraction”.
In: Poznarı́ Studies in the Philosophy of the Sciences and the Humanities 82 (2004), pp. 11–35.
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the concept of ‘structure’ is present. Von Neumann talks of Hilbert spaces as “math-

ematical structures”; Weyl refers to an abstract group as “a structural entity”. Now,

if abstract Hilbert spaces and groups are best described as mathematical structures

and not simply as abstract mathematical entities, it is essential to understand which

features are intended to be captured by the concept of ‘structure’ that cannot be ac-

counted for by solely appealing to the concept of ‘abstraction’. In fact, it is my belief

that the whole philosophical discussion on mathematical structuralism often sufers

from not systematically distinguishing these two concepts.

A good example where this confusion is particularly evident is the role attributed

to isomorphisms. As we have seen in some detail in the previous section, from the above

description of the process of abstraction emerged the understanding that isomorphisms

are the pertinent identity criterion for abstract entities. Makkai wrote that “isomor-

phism is the real equality in Abstract Mathematics” and Marquis went almost as far as

claiming that “being isomorphic is precisely what being abstract amounts to”. But this

view appears to be quarrelsome, for it is not diicult to ind, in the philosophy of math-

ematics literature, statements pulling in another direction. For instance, Andrei Rodin

explains how “the idea that isomorphic objects can be treated as equal is, in [his] view,

crucial for structuralism”159. Moreover, Steve Awodey has recently proposed that the

statement ‘isomorphic objects are identical’—that is, essentially the same statement

we have wished to call “Principle of Abstraction”—should be called the Principle of

Structuralism160. Thus, Awodey would be inclined to say that “isomorphism is the real

equality in Structural Mathematics”...

Our immediate goal becomes thus to clarify what is to be meant by ‘mathematical

structuralism’ and to understand what the concept of ‘structure’ adds to the above

account of the process of abstraction.

159Rodin, op. cit., p. 23.
160S. Awodey. “Structuralism, Invariance, and Univalence”. In: Philosophia Mathematica 22.1
(2014), pp. 1–11, p. 2.
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I.3.1 Mathematical structuralism

In any view of mathematical structuralism, mathematical structures are a spe-

ciic kind of abstract mathematical entities. As such, the whole discussion of Section

I.2 immediately applies to the question of interpreting what mathematical structures

are. In the spirit of the epistemological approach to abstraction (subsection I.2.2),

some consider statements about mathematical structures to be implicit general state-

ments about all the systems which realize them. Following Charles Parsons, this view

which negates the existence of abstract mathematical structures is called eliminative

structuralism161. In contrast, in the spirit of the views on abstraction developed in

subsections I.2.1 and I.2.3, others insist on conceiving mathematical structures as en-

tities in their own right, independent from their realizations. This view is called ante

rem structuralism by Stewart Shapiro162 and sui generis structuralism by Geofrey

Hellman163.

Before discussing the diferences between these diferent approaches to mathe-

matical structuralism, we must however focus on what should be the irst task in any

discussion of the subject: to characterize the common core which allows to consider the

two versions as being two versions of structuralism—in other words, to locate the essen-

tial features that distinguish structuralism from the general abstract method described

in Section I.2.

161“A reading [...] that seems to me to accord reasonably well [... holds] that statements about natural
numbers are implicitly general, about any simply ininite system. [...] It clearly avoids singling out
any one simply ininite system as the natural numbers and expresses the general conception I have in
mind in speaking of the structuralist view. [...] Such a program I will call eliminative structuralism.”
(C. Parsons. “The Structuralist View of Mathematical Objects”. In: Synthese (1990), pp. 303–346, p.
307, author’s emphasis.)
162“Any usual array of philosophical views on universals can be adapted to structures. One can be a
Platonic ante rem realist, holding that each structure exists and has its properties independent of any
systems that have that structure. On this view, structures exist objectively, and are ontologically prior
to any systems that have them (or at least ontologically independent of such systems). Or one can
be an Aristotelian in re realist, holding that structures exist, but insisting that they are ontologically
posterior to the systems that instantiate them.” (S. Shapiro. “Mathematical Structuralism”. In:
Internet Encyclopedia of Philosophy. url: http://www.iep.utm.edu/m-struct/, pp. 2–3.)
163See for example G. Hellman. “Structuralism”. In: The Oxford Handbook of Philosophy of Mathe-

matics and Logic. Ed. by S. Shapiro. New York: Oxford University Press, 2005, pp. 536–562, p. 541
or G. Hellman. “Three Varieties of Mathematical Structuralism”. In: Philosophia Mathematica 9.3
(2001), pp. 184–211, p. 188.

http://www.iep.utm.edu/m-struct/
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I.3.1.a Characterizing structuralism

This task is not always carefully carried out and some philosophers tend to at-

tribute to mathematical structuralism virtues that belong to Abstract Mathematics in

general. A striking example of this is the work of Steve Awodey on what he calls “cat-

egorical structuralism”. Thus, in the very irst paragraphs of his article “An Answer to

Hellman’s Question: ‘Does Category Theory Provide a Framework for Mathematical

Structuralism?”’, the author describes categorical structuralism as follows:

As a irst, very rough, approximation, we may say that the point of view that we

are going to describe emphasizes form over content, descriptions over construc-

tions, speciication of assumptions over deductive foundations, characterization

of essential properties over constitution of objects having those properties.

[...] The ‘categorical-structural’ [view] we advocate is based instead on the

idea of specifying, for a given theorem or theory only the required or relevant

degree of information or structure, the essential features of a given situation, for

the purpose at hand, without assuming some ultimate knowledge, speciication,

or determination of the ‘objects’ involved.164

Now, as a irst description of what structuralism amounts to, this account should

be surprising. For, as the reader will immediately notice, this quote has little to do

with structuralism per se: the concept of structure does not seem to be doing any work

here. In fact, Awodey’s description applies admirably well to the abstract method in

general! However, this is but a “irst, very rough, approximation” and one can hope

that, later on, mathematical structuralism—which is “a certain, now typical, ‘abstract’

way of practicing mathematics”165—will be clearly distinguished from all other types

of abstraction. But, in my opinion, Awodey fails to do so. A major part of his paper

concentrates on showing that “mathematical theorems are schematic”, characteristic

which is “clearly essential to this approach”166. He certainly makes a good point here,

164Awodey, “An Answer to Hellman’s Question: ‘Does Category Theory Provide a Framework for
Mathematical Structuralism?”’, p. 55–56.
165Ibid., p. 54, my emphasis.
166Ibid., p. 62.
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but the worry is he still seems to be talking about abstraction, not about structuralism.

Consider for instance the following passage:

The proof of a theorem involves the structures mentioned, and perhaps many

others along the way, together with some general principles of reasoning like

those collected up in logic, set theory, category theory, etc. But it does not

involve the speciic nature of the structures, or their components, in an absolute

sense. That is, there is a certain degree of ‘analysis’ or speciicity required for

the proof, and beyond that, it does not matter what the structures are supposed

to be or to ‘consist of’—the elements of the group, the points of the space, are

simply undetermined.167

Again, one can replace ‘structures’ by ‘abstract entities’ and the description continues

to be correct. So, perhaps, Awodey uses ‘structure’ as just another name for ‘abstract

entities’.

To ind a deinition of the former notion, one has to go back to his irst article on

the subject, “Structure in Mathematics and Logic: A Categorical Perspective”. He has

the merit of clearly stating what is to be meant by ‘structure’:

The categorical notion of isomorphism may now serve as a deinition of ‘having

the same structure of a given kind’.168

The idea here is that a category deines a kind of structure, and the morphisms are by

deinition ‘structure-preserving maps’. Then, two objects of the category bear the same

structure if they are isomorphic. Hence, as Awodey himself explains in a much more

recent article, he is determining the concept of structure through a Fregean abstraction

principle of the form (I.7) (page 60):

∀A,B ∈ C0,
(
str(A) = str(B)←→ A ∼= B

)

167Ibid., p. 59, author’s emphasis.
168S. Awodey. “Structure in Mathematics and Logic: A Categorical Perspective”. In: Philosophia

Mathematica 4 (1996), pp. 209–237, p. 214.
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where C0 is the collection of objects of a given category C . In words: “The structure

of A is the same as the structure of B just in case A and B are isomorphic”169.

Now, as a terminological decision, there is nothing to be objected, as long as the

author takes good care to distinguish his use of the word from what ‘structure’ may

mean in other contexts. But Awodey’s whole defense of structuralism, as a philosoph-

ical position, is entirely based on the above deinition—and this is a problem. One

needs to justify in which way the concept of structure so deined manages to capture

the main intuitions behind mathematical structuralism, and not simply those behind

abstraction. Thus, we are back to the question: What is the core of mathematical

structuralism, which distinguishes it from other methods of abstraction?

Let us return once more to Awodey. In the concluding paragraph of “Structure in

Mathematics and Logic: A Categorical Perspective”, he writes:

The structural perspective on mathematics codiied by categorical methods might

be summarized in the slogan: The subject matter of pure mathematics is invari-

ant form, not a universe of mathematical objects consisting of logical atoms. [...]

The tension between mathematical form and substance can be recognized al-

ready in the dispute between Dedekind and Frege over the nature of the natural

numbers, the former determining them structurally, and the latter insisting that

they be logical objects.170

In my view, the key to clarifying the situation emerges here. Indeed, there are three

concepts at play: “(invariant) form”, “structure” and “logical atoms”. As we have seen,

the objects of abstract mathematics always come with a level of unspeciication—part

of their “substance” is omitted—and, in this sense, they are not constituted by logical

atoms. If one deines “form” as what is generally obtained by the abstraction principle,

∀A,B
(
form(A) = form(B)←→ A ∼= B

)

then, together with Awodey, we can safely say: ‘the subject of Abstract Mathematics is

form, not substance’. This is the deinition of Abstract Mathematics, not a statement

169Idem, “Structuralism, Invariance, and Univalence”, p. 3.
170Idem, “Structure in Mathematics and Logic: A Categorical Perspective”, p. 235.
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about them. The important point becomes then to understand the relation between

form and structure.

For Awodey and Rodin, these two words are synonyms171. This explains why much

of what they say its very well with the method of abstraction in general. However, by

this decision, the concept of ‘structure’ becomes unnecessary... It seems the situation

is better understood if one keeps the three concepts distinct and claims that structure

is a particular kind of form. In this way, mathematical structuralism appears indeed

to be a particular method of abstraction and one may say: “the subject of Abstract

Mathematics is form, not substance; the subject of Structural Mathematics is structure,

not any form”.

What kind of process of abstraction would structuralism be? To see this, let us

contrast the diferent ways in which some of the main philosophers endorsing mathe-

matical structuralism have attempted to introduce and motivate the subject172:

– Geofrey Hellman: “[C]ertain views called “structuralist” have become common-

place. Mathematics is seen as the investigation, by more or less rigorous deductive

means, of “abstract structures”, systems of objects fulilling certain structural re-

lations among themselves and in relation to other systems, without regard to the

particular nature of the objects themselves.”173

– Stewart Shapiro: “The theme of mathematical structuralism is that what matters

to a mathematical theory is not the internal nature of its objects, such as its

numbers, functions, sets, or points, but how those objects relate to each other.

In a sense, the thesis is that mathematical objects (if there are such objects)

simply have no intrinsic nature.”174

171Prior to the last paragraph of his paper, Awodey never uses the concept of ‘form’. Hence, it is not
clear how he understands this. But the quote seems to suggest he indeed considers them as synonyms.
For Rodin, the situation is far clearer, since he declares that “invariant [form] in the given context
is just another word for structure” (Rodin, op. cit., p. 29) and that “the desired ‘purely structural’
mathematics would deal only with the ‘invariant Form’ (ibid., p. 31).
172Again, for the moment we are just trying to pinpoint the main intuitions attached to structuralism.
Thus we are interested in how the subject is introduced, and not that much in the detailed attempts
to articulate it.
173Hellman, “Structuralism”, p. 536.
174Shapiro, op. cit., p. 1.
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– Charles Parsons: “By the ‘structuralist view’ of mathematical objects, I mean

the view that reference to mathematical objects is always in the context of some

background structure, and that the objects involved have no more to them than

can be expressed in terms of the basic relations of the structure.”175

– Michael Resnik: “The underlying philosophical idea here is that in mathematics

the primary subject-matter is not the individual mathematical objects but rather

the structures in which they are arranged. The objects of mathematics, that

is, the entities which our mathematical constants and quantiiers denote, are

themselves atoms, structureless points, or positions in structures. And as such

they have no identity or distinguishing features outside a structure.”176

Evidently, there are some recurrent themes in these quotes. The irst, most impor-

tant one, is the emphasis on relations. Above all, structuralism is the methodological

decision of never studying an entity in isolation but rather of considering a collection

of entities and focusing on the relations in which they stand. Then, one investigates

how much knowledge can be gained of these various entities through the sole considera-

tion of structural properties—i.e., those arising from the relations. Thus, structuralism

shows itself as one certain process of abstraction: one in which a decision is made to

retain only structural properties and to ignore the particular nature of the entities. By

this act of abstraction, the collection becomes an abstract structure.

As a method of study, structuralism appears to be interested in two types of

properties. On the one hand, it is wishes to investigate properties of the structure.

Hellman speaks of “investigating the abstract structures” and Resnik emphasizes that

the “primary subject-matter is the structures”. For example, one asks whether a given

group G admits inite linear representations, or whether a given ield K admits proper

algebraic extensions, and these are questions that could even be positively investigated

without ever considering the “things” that constitute the structure. Let us call this irst

type of properties ‘global properties’. On the other hand, even though the structuralist

is interested in the structure as an object of study, his interest also turns towards what

175Parsons, op. cit., p. 303.
176M. D. Resnik. Mathematics as a Science of Patterns. New York: Oxford University Press, 1997,
p. 201.
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lies within the structure. This is particularly clear in the terminology of Parsons and

Shapiro, where the notion of ‘mathematical object’ is not used to denote a structure but

rather a place within a structure. The natural number structure may be a structure;

yet, it is made of natural numbers, and one asks whether any even number can be

written as the sum of two primes, or whether 8 and 9 are the only consecutive numbers

which are pure powers of non-zero integers177. Hence, structuralism also wishes to

investigate properties of the ‘things’ constituting the structure. Let us call this second

type of properties ‘internal properties’. In my opinion, both the holistic point of view—

which takes the structure as main object of study—and the internal point of view—

which takes the ‘things’ inside a structure as main object of study—are constitutive

of structuralism: the whole is always thought as composed of elements and, in return,

the elements can only be understood if conceived as part of a whole.

The holistic approach is always emphasized: do not study objects in isolation;

study relations between objects. But the importance of the internal point of view is

sometimes understated if not completely ignored. For all four philosophers, a structure

is always a collection. For Hellman, it is “a system of objects fulilling certain structural

relations”178. For Shapiro, “a structure is the abstract form of a system, highlighting

the interrelationships among the objects, and ignoring any features of them that do

not afect how they relate to other objects in the system”179. For Parsons, “[w]hat is

meant by a structure is usually a domain of objects together with certain functions and

relations on the domain, satisfying certain given conditions”180. And Resnik takes “a

pattern to consist of one or more objects, which [Resnik] call[s] positions that stand in

various relationships”181. I thus join Feferman in saying that the notions of collection

177The irst problem is the famous Goldbach’s conjecture, which is still an open problem. The second
is the less known ‘problem of Catalan’, which was asked in 1842 and only solved recently by Preda
Mihăilescu (see Y. Bilu, Y. Bugeaud, and M. Mignotte. The Problem of Catalan. Springer, 2014).
178Hellman, loc. cit.
179S. Shapiro. Philosophy of Mathematics: Structure and Ontology. New York: Oxford University
Press, 1997, p. 74.
180Parsons, op. cit., p. 305.
181Resnik, op. cit., p. 203.
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and relation are the fundamental primitive notions on which structuralism rests182.

Hence, I take the core of mathematical structuralism to be the following:

Mathematical method of structuralism: to consider always col-

lections of things, among which some relations have been deined, and

to investigate which knowledge can be gained, about both the whole

collection and the individual things, by studying these relations and

the properties derived from them.

Collections, relations and the global/local two-fold level of study. These I take to be

the three essential components of structuralism as a method of study. They shape

what Structural Mathematics are, and I believe any version of structuralism, as a

philosophical position about Mathematics, should include them183.

182“The point is simply that when explaining the general notion of structure and of particular kinds
of structures such as groups, rings, categories, etc., we implicitly presume as understood the ideas of
operation and collection [...].” (S. Feferman. “Categorical Foundations and Foundations of Category
Theory”. In: Logic, Foundations of Mathematics, and Computability Theory (Proc. Fifth Internat.
Congr. Logic, Methodology and Philos. of Sci., Univ. Western Ontario). Philos. Sci. Dordrecht, The
Netherlands: University Western Ontario, 1977, pp. 149–169, p. 150, author’s emphasis.)
183 In the light of this, let me continue commenting Awodey’s work. In his answer to Hellman, he
explains:

[...] the essential diference between the position being sketched here and old-fashioned,
relational structuralism is the idea of a top-down description, which presupposes no
bottom-up hierarchy of things. For Russell, every relation had to be a relation on some
things which, even if they were themselves analyzable into relations, had to be among
some other things, ... , and either this process had to stop somewhere (atoms), or an
account had to be given of ininite analysis.

The diiculty arises in the preoccupation with relations as the fundamental notion
of ‘structure’; for a relation presupposes its relata, and of we go into the descent of
Russellean analysis. If we take instead the perfectly autonomous notion of a morphism
in a category, we can build structures out of them to our heart’s content, without ever
having to ask what might be in them.
(Awodey, “An Answer to Hellman’s Question: ‘Does Category Theory Provide a Frame-
work for Mathematical Structuralism?”’, p. 61, author’s emphasis, bold typeface is
mine.)

Awodey’s move of completely ignoring the elements of the structure, of ‘never asking what might be
in them’, appears to be completely at odds from what other philosophers consider to be the essence
of structuralism, and it is not at all clear in which sense one can still talk about structuralism if the
notion of collection—and together with it, the internal level of interest—is evacuated, ignored. For
instance, Resnik goes as far as claiming:

[P]ositing mathematical objects that are not themselves taken as positions in a pattern
is to give up a basic structuralist thesis. (Resnik, op. cit., p. 205, author’s emphasis.)
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For Resnik, the primordial interest for a structuralist is to be found in what lies within the structure.
And, if one is giving up collections, relations and any interest in the interior of the structure, what
is there left of structuralism? What diference is there left to distinguish the structural method from
the abstract method? I would say there is none and that Awodey’s position is not a structuralist one.
Let me be clear: I am not criticizing Awodey for giving up the concepts of collection and relation.

I am criticizing him for giving them up and, despite of it, claiming he holds a structuralist view
of Mathematics. Rodin reaches a similar conclusion by distinguishing structural abstraction from
categorical abstraction, which

[...] forgets the fact that [these abstract mathematical entities] have elements and con-
siders only how they map to (i.e., transform into) one another. (Rodin, op. cit., p.
35.)

In fact, if the aim is to embrace the whole of Mathematics, I agree with Awodey there are very good
reasons to depart from those concepts—that simply means there are very good reasons to abandon
structuralism as a possible foundation for all of Mathematics. Indeed, contemporary Mathematics
has furnished objects that cannot be properly understood if they are conceived as ‘sets plus extra
structure’. In more technical terms, these correspond to the so-called not-concretizable categories. A
famous example is given by homotopy types: the category hTop, with topological spaces as objects
and homotopy classes of functions as morphisms, was proven to be non-concretizable by Peter Freyd
in 1970 (cf. his article “Homotopy is Not Concrete”). Marquis, in his article “Mathematical Forms
and Forms of Mathematics: Leaving the Shores of Extensional Mathematics”, discusses many other
examples, such as ∞-categories and stacks.
As another witness that some parts of Mathematics are ‘leaving the shores of structuralism’, let me

close this digression with a quote of Yuri Manin:

[...] after Cantor and Bourbaki, no matter what we say, set theoretic mathematics resides
in our brains. [...] I cannot do otherwise. If I’m thinking of something completely new,
I say that it is a set with such-and-such a structure [...].
But fundamental psychological changes also occur. Nowadays these changes take the
form of complicated theories and theorems, through which it turns out that the place of
old forms and structures, for example, the natural numbers, is taken by some geometric,
right-brain objects.
Instead of sets, clouds of discrete elements, we envisage some sorts of vague spaces, which
can be very severely deformed, mapped one to another, and all the while the speciic
space is not important, but only the space up to deformation. If we really want to
return to discrete objects, we see continuous components, the pieces whose form or even
dimension does not matter. [...]
I am pretty strongly convinced that there is an ongoing reversal in the collective con-
sciousness of mathematicians: the right hemispherical and homotopical picture of the
world becomes the basic intuition, and if you want to get a discrete set, then you pass
to the set of connected components of a space deined only up to homotopy.
That is, the Cantor points become continuous components, or attractors, and so on—
almost from the start. Cantor’s problems of the ininite recede to the background: from
the very start, our images are so ininite that if you want to make something inite out
of them, you must divide them by another ininity.
(I. Gelfand. “We Do Not Choose Mathematics as Our Profession, It Chooses Us: In-
terview with Yuri Manin”. Trans. by M. Saul. In: Notices of the AMS 56.10 (2009),
pp. 1268–1274, p. 1274.)
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I.3.1.b Eliminative vs. ante rem structuralism

An advantage of having already discussed the abstract method is that, since we

now understand structuralism as a particular process of abstraction, the diferent ap-

proaches to structuralism may be seen as a consequence of the many views on abstrac-

tion.

• Eliminative structuralism

In particular, the main ideas of eliminative structuralism exactly correspond with

the above account of abstraction by deletion (subection I.2.2). According to this point

of view, abstraction is but a method of generalization: to abstract is to leave unspec-

iied. All mathematical entities are particular entities and an abstract entity is one

for which some of the data has been omitted. This—we concluded—necessitates the

choice of a background ontology, which determines what is to be meant by a particular

object.

When applied to the particular case of mathematical structures, abstraction by

deletion yields an account of eliminative structuralism which is very similar to the one

provided by Shapiro, who starts by distinguishing two diferent perspectives one can

adopt towards the ‘things’ constituting a structure—which he calls “places”:

There are, in efect, two diferent orientations involved in discussing structures

and their places [...]. Sometimes the places of a structure are discussed in the

context of one or more systems that exemplify the structure. Call this the places-

are-oices perspective. This oice orientation presupposes a background ontol-

ogy that supplies objects that ill the places of the structures. [...]

In contrast to this oice orientation, there are contexts in which the places of

a given structure are treated as objects in their own right, at least grammatically.

That is, sometimes items that denote places are bona ide singular terms. [...]

Call this the places-are-objects perspective. Here, the statements are about the

respective structure as such, independent of any exempliications it may have.184

184Shapiro, op. cit., pp. 82–83, author’s emphasis.
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and then adds:

For the eliminativist, the surface grammar of places-are-objects statements does

not relect their underlying logical form, since, from that perspective, there are

no structures and there are no places to which one can refer. [...] The eliminative

structuralist holds that places-are-objects statements are just ways of expressing

the relevant generalizations [...].185

Hence, “the eliminative structuralism program paraphrases places-are-objects state-

ments in terms of the places-are-oices perspective”186.

A customary choice for the background ontology is to take an ontology of sets.

We then get the following standard account of structures as structured sets:

(i) All the mathematical objects considered are speciic sets, explicitly constructed

from the null set.

(ii) Given an object E, an n-ary relation R is simply a subset of En. Functions

and n-ary operations are particular relations: a function f : E → E is a binary

relation that is one-to-one in the irst variable; an n-ary operation on E is a

function from En to E, thus it is a particular kind of (n+ 1)-ary relation.

(iii) A particular structure, or system, is a set E for which some relations R1,R2, . . .

have been deined.

(iv) Given two particular structures (E,R) and (E ′,R′), an isomorphism is a bijective

function ϕ : E → E ′ such that for any e1, e2, . . . elements of E, R(e1, e2, . . .) ⇔
R′(ϕ(e1), ϕ(e2), . . .).

(v) An abstract structure is a particular structure for which the explicit construction

has been omitted and only the relations have been retained.

To take an example, consider the following three structures:

– S1 ≡ (E1,R1), with E1 =
{
∅, {∅},

{
{∅}

}}
and R1 ⊂ E2

1 the binary relation

deined by R1 =
{(
∅, {∅}

)
,
(
{∅},

{
{∅}

})
,
(
∅,
{
{∅}

})}
,

185Idem, “Mathematical Structuralism”, p. 6.
186Idem, Philosophy of Mathematics: Structure and Ontology, p. 86.
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– S2 ≡ (E2,R2), with E2 =
{
∅, {∅},

{
∅, {∅}

}}
and R2 ⊂ E2

2 the binary relation

deined by R2 =
{(
∅, {∅}

)
,
(
{∅},

{
∅, {∅}

})
,
(
∅,
{
∅, {∅}

})}
,

– S ≡ (E,R) with E = {e0, e1, e2} and R =
{
(e0, e1), (e1, e2), (e0, e2)

}
.

All three structures are isomorphic (they can all be thought as describing an ordered

set of three numbers, with the relation R(x, y) being conceived as “y is greater than

x”). All of them are particular structures but only for S1 and S2 all the information

has been given. For S, the explicit construction of the elements is not speciied, and it

is because this knowledge is missing that S appears to be an abstract structure. The

distinction abstract/particular is not ontological but epistemological187.

As Shapiro explains, one of the main diferences between the places-are-oices

perspective and the places-are-objects perspective lies in the way a statement like ‘e2 is

the biggest place of S’ is perceived. In the former, the copula is denotes a predication:

the statement is expressing one property amongst many others e2 may have. In the

latter, the copula is denotes an identity: the statement deines e2. It is in this sense

that Shapiro says places are treated “grammatically” as objects188.

However, as it is to be presently seen, the eliminative account is in fact a very

mild version of mathematical structuralism, one which is not quite faithful to the main

initial motivations. As we said earlier, the structuralist needs to articulate a clear

conception of what the places of an abstract structure are. By the double move of

irst claiming there are only particular structures and then choosing a background

ontology upon which to base the construction of all these structures, the eliminativist

has addressed this issue directly. Indeed, the “things” constituting a given structure

are here speciic sets. But, through this, it is now possible to conceive the places by

themselves, independently of the structures they may be part of. Returning to the

above example, it is possible to study e2 in isolation: as a place of the structure S, e2

187This view is very similar to that described by Hellman under the name of Structuralism in Set
Theory (STS), although he does not emphasize the epistemological interpretation of it. See Hellman,
op. cit., pp. 538–541.
188“It is common to distinguish the “is” of identity from the “is” of predication. The sentence
“Cicero is Tully” does not have the same form as “Cicero is Roman”. When in the places-are-objects
perspective [...], we use the “is” of identity. We could just as well write “=” or “is identical to”.
In contrast, when we invoke the places-are-oices perspective [...], we use something like the “is” of
predication [...].” (Shapiro, op. cit., p. 83.)
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acquires some structural properties (e.g., it is the greatest “thing” of S), but it also has

other properties which are completely independent of it being part of S (e.g., it makes

sense to ask which is the cardinality of e2). Therefore, in this view, the structuralist

emphasis on relations is just a matter of interest. He cannot claim structural properties

are all there is to an object: the latter may have—and indeed has!—non-structural,

‘intrinsic’ properties, but the structuralist takes the decision to focus on relations and

not to care about the remainder properties—which he leaves unspeciied.

One may then wonder what knowledge of the individual places is gained through

the study of the structural properties. And the answer is worrisome. On the one hand,

any set whatsoever can be part of a particular structure which is isomorphic to S. The
statement “e2 is the greatest place of S” does not yield any information whatsoever

about e2, since e2 could be any set. On the other hand, the same e2 may be part of

ininitely many other structures—among which, for instance, a structure S ′ ≡ (E,R′)

with R′ =
{
(e2, e1), (e1, e0), (e2, e0)

}
, isomorphic to S, and where e2 is now the smallest

place. The structural properties an object may acquire as a place of a structure are

therefore completely extraneous to the object: they are accidental properties which

reveal nothing of its essence.

After this remark, it is hard to still retain the interpretation of the structural

statement “e2 is the greatest place of S” as a predication about e2. Rather, since

whatever e2 turns out to be is completely irrelevant, one would like to interpret it

now as a predication about the structure. In other words, to read the statement “e2
is the greatest place of S” as rather being “S has a greatest place, which we call e2”.

But in this way the copula is becomes again a copula of identity and we seem to

be back to the places-are-objects perspective. The background ontology appears now

to be “an arbitrary and special leshly clothing provided to pander to the need for

intuitiveness”189 which has nothing to do with the structure itself. There is then a

strong temptation of developing a framework in which to reify abstract structures and

set them free from the hypothetical and perhaps artiicial background ontology.

189Schrödinger, op. cit., p. 58 (cf. footnote 65, page 39).
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• The idea of an ante rem structure

To be sure, the eliminative move, tying all statements to an underlying ontology,

appears to be at opposite ends from the philosophical motivations behind the struc-

turalist approach. The fundamental problem of this move is that it allows to conceive

the places of the particular structures by themselves, in isolation from all other places.

The elements become ontologically prior to the structure, and this undermines much

of the holistic ideas the structuralist wanted to emphasize. For Parsons, “reference

to mathematical objects is always in the context of some background structure”190.

Shapiro is also very clear about this point:

For us [structuralists], a real number is a place in the real-number structure. It

makes no sense to “postulate one real number”, because each number is part of

a large structure. It would be like trying to imagine a shortstop independent of

an inield, or a piece that plays the role of the black queen’s bishop independent

of a chess game. [... I]t is nonsense to contemplate numbers independent of the

structure they are part of.191

It thus becomes clear that the main goal of any non-eliminative structuralist is to

articulate an account of the structural method of abstraction in which the structure is

(onto)logically prior to the entities it contains. Such a conception of ante rem structures

adopts a places-are-objects perspective: a structure is not a particular arrangement of

objects which have an internal composition and can be conceived independently of the

structure they are part of. Rather, as Resnik puts it, these objects within a structure

“are structureless points [... which] have no identity or distinguishing features outside a

structure”192. All their properties stem from the relations deining the given structure.

However, already at this irst conceptive level of an ante rem account of the struc-

tural method of abstraction, one can clearly perceive some serious diiculties such an

articulation will have to face. To eventually have a good conceptual hold of these

sought for sui generis structures, I believe it is important to have these prima facie

190Parsons, op. cit., p. 303.
191Shapiro, op. cit., p. 76.
192Resnik, op. cit., p. 201.
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problems in mind. So, for the moment, let us give a succinct account of what these

objections are, and expand on them later. We here closely follow the presentation of

Hellman193.

– Identity of structural indiscernibles. The idea that places of structures are to have

no identity or distinguishing features outside a structure suggests some sort of

Principle of Identity of Indiscernibles, where only relational properties are taken

into account. Thus, “any items bearing exactly the same intrastructural relations

to other items should be not many but one”194. But there are many familiar

mathematical situations where this seems to be false. The complex numbers i

and −i inside the structure C, or any two points of the Euclidean space are the

most famous examples. This can be seen as a proof that ante rem structures fail

to describe the objects they were designed for.

– Ontological priority of relations over relata. That structures are to be ontologi-

cally prior to the elements constituting it seems to necessitate that relations are

prior to relata. But “a relation presupposes its relata”195 and hence the “no-

tion of an ante rem structure seems to involve a vicious circularity”196. This

is thus a threat to the fundamental basic notion characteristic of Sui Generis

Structuralism.

– Multiple reductions. One of the main goals of ante rem structuralism is to make

sense of the discourse referring to, say, the ininite-dimensional separable Hilbert

space, in such a way that the explanation is consistent with the use of the deinite

article “the”. However, given an ante rem structure (S,R), it seems that, by

simply permuting the places of the structure and redeining the relations, one

can deine another structure (S ′,R′) that is just as valid a candidate for being

the structure.

Strong physico-mathematical and philosophical reasons tempted us towards the

193Hellman, op. cit., pp. 544–546.
194Ibid., p. 544.
195Awodey, op. cit., p. 61.
196Hellman, op. cit., p. 545.
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idea of an abstract structure as an independent entity. Yet, some conceptual diiculties

have immediately appeared. Any sound version of sui generis structures must give

clear answers to these three objections. Now, among the diferent points raised by

Hellman, the one which questions the notion of identity within an abstract structure

appears to be most relevant to our inquiries, for it is directly related to the requirement

of individuation (page 17). Indeed, in the mathematical description of classical and

quantum mechanical systems, points of an abstract symplectic manifold are used to

describe states of a classical system, rays of an abstract Hilbert space represent states

of a quantum system, elements of an abstract C∗-algebra refer to properties, etc. But

if these ‘things’ that constitute an abstract structure “have no intrinsic nature” and are

“structureless points with no identity or distinguishing features outside a structure”

(Resnik), how does one manage to identify the speciic ‘thing’ which describes this

particular state or that given property?

For our investigation, it is therefore essential that we turn towards relecting on

the interior of these mathematical structures and that we articulate a way of thinking

about the ‘things’ that constitute them.

I.3.2 Identity within an abstract mathematical structure

I.3.2.a The problem of the identity of indiscernibles

The problem of the identity of structural indiscernibles has raised an important

debate in the last decade. It is usually attributed to Jukka Keränen197 and John

Burgess198 who, in two independent papers, pointed to this fundamental objection

against non-eliminative structuralism. In the philosophy of physics literature, specially

when discussing the nature of space-time, this problem is sometimes called the “abysmal

embarrassment argument” in reference to the critique raised by Christian Wüthrich199.

197J. Keränen. “The Identity Problem for Realist Structuralism”. In: Philosophia Mathematica 9.3
(2001), pp. 308–330.
198Burgess, op. cit.
199C. Wüthrich. “Challenging the Spacetime Structuralist”. In: Philosophy of Science 76 (2010),
pp. 1039–1051.
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Keränen’s own exposition of the problem is extremely clear, so I will just describe the

basic steps of his argument.

First. The structuralist “must furnish an account of the identity for places”200.

This follows simply from the fact that “within a given theory, language, or framework,

there should be a deinite criteria for identity among its objects [... and t]here is no

reason for structuralism to be the single exception to this”201, as Shapiro acknowledges.

Such an account amounts to completing the following ‘identity schema’:

for any x, y places of S, (x = y ⇐⇒ ——)

Second. Keränen explains there are two ways of completing the identity schema:

“the account of identity will be either a general-property account or haecceity ac-

count”202. To understand the diference between both options, it is necessary to grasp

the concept of haecceity, or primitive thisness. This is nicely explained in the paper

“Primitive Thisness and Primitive Identity” of Robert Adams:

Intended to be a synonym or translation of the traditional term “haecceity”, [...] a

thisness is the property of being identical with a certain particular individual.203

Hence, some thing has a thisness as long as it is an individual. Intuitively, this means

that the thing has a property that allows one to point at it in a precise way—to say,

in a meaningful way, ‘this thing’. On the other hand,

a property is purely qualitative—a suchness—if and only if it could be expressed,

in a language suiciently rich, without the aid of such referential devices as

proper names, proper adjectives and verbs (such as ‘Leibnizian’ and ‘pegasizes’),

indexical expressions, and referential uses of deinite descriptions.204

Now, the thisness of an object may or may not be reducible to a set of qualitative

properties. When it is not the case, one talks about a ‘primitive thisness’. This is, I

200Keränen, op. cit., p. 314.
201Shapiro, op. cit., p. 92, cited in Keränen, loc. cit.
202Ibid., p. 313.
203R. M. Adams. “Primitive Thisness and Primitive Identity”. In: The Journal of Philosophy (1979),
pp. 5–26, p. 6.
204Ibid., p. 7.
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believe, the distinction Keränen has in mind: if one explains the identity of an object

by appealing to its primitive thisness, then one is using a haecceity account of identity;

if one explains the identity through the sole use of qualitative properties, then it is a

general-property account of identity. But for the non-eliminative structuralist, places

“have no more to them than can be expressed in terms of the basic relations of the

structure”205. Hence, “any haecceity account directly conlicts with the spirit and

motivations of realist structuralism”206 and we are left only with the second option.

Third. At this point, the identity schema the non-eliminative stucturalist needs

to provide appears to be of the following form:

for any x, y places of S,
(
x = y ⇐⇒ (for any property P, P (x)⇔ P (y))

)
.

But, as Keränen explains, “we need to be careful about which properties we admit”207.

The question becomes then to determine precisely which qualitative properties the

non-eliminative structuralist is allowed to use. To this, Keränen answers: “the places

of the structure S must be individuated by properties that are invariant under the

automorphisms of S”208.

Given this three steps, one inally arrives at the identity problem:

We are now ready to state the identity problem. Given a structure S, the schema

says that two singular terms denoting places of S denote the same place precisely

205Parsons, loc. cit. Cf. also Shapiro’s slogan: “There is no more to the individual numbers “in
themselves” than the relations they bear to each other” (Shapiro, op. cit., p. 73).
206Keränen, op. cit., p. 314.
207Ibid., p. 316.
208Ibid., p. 318. In fact, this is not the way Keränen irst characterizes the grammatically correct
properties. He says:

We maintain that there are two crucial constraints [about which properties we admit]:
(1) No property the speciication of which essentially involves an individual constant
denoting an element in S may be admitted. [...]
(2) No property the speciication of which essentially involves an individual constant
denoting an element in S may be admitted. [...]
In sum, only the properties that can be speciied by formulae in one free variable and
without individual constants may be admitted. (Ibid., pp. 316–317)

(Here S is the abstract structure and S is any system exemplifying it.) The author then proves that
any such properties are necessarily invariant under automorphisms and that any invariant property
satisies the above two crucial constraints.
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when their referents have the same intra-structural relational properties that can

be speciied without using individual constants. [...] The problem is that it

does not at all square with the use of the identity predicate in mathematical

discourse. For example, since 1 and −1 in any system (Z,+) have the same

intra-systemic relational properties, the realist structuralist must view ‘1’ and

‘−1’ in the language of the structure (Z,+) as co-referential terms.209

The structuralist must conclude that 1 and −1 are equal. In the same way, he must

conclude that i and −i are not many but one, and that the Euclidean space contains

only one point, not ininitely many. These conclusions are clearly absurd—Wüthrich

would say: they are an abysmal embarrassment!

The reader may perhaps wonder how Keränen can be so conident about the fact

that 1 and −1 have the same relational properties within (Z,+). However, with the

notions of automorphism at our disposal, it is not hard to be convinced that this is

indeed so. For consider the general case of a structure S and two places x and y such

that there exists an automorphism ϕ : S → S relating them—i.e., ϕ(x) = y. Since any

qualitative property is invariant under automorphisms, we have, for any property P : if

P (x) then P (y). So, if the ante rem structuralist accepts the identity schema suggested

by Keränen, he must indeed conclude that any two places related by an automorphism

are equal. In other terms, Keränen’s Principle of Identity entails a structure should not

admit any automorphisms besides the trivial one. Thus, the identity problem arises for

any non-rigid structure210. In the case of the structure (Z,+), the transformation ϕ

deined by ϕ(z) = −z for any place z of Z is a non-trivial automorphism (this is the case

for any non-trivial abelian group). Notice that this identity problem applies precisely

to those mathematical structures involved in the Mathematics of Mechanics: groups,

Hilbert spaces and symplectic manifolds admit many non-trivial automorphisms! In

sum, if he accepts the three steps of Keränen’s argument, the structuralist should

indeed be embarrassed.

209Ibid., p. 317. Again, bold characters refer to the structure whereas plain characters refer to the
systems.
210A structure S is said to be rigid if it its group of automorphisms Aut(S) is trivial. R, seen as

topological ield, is an example of such a rigid structure.
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I.3.2.b First attempts at a solution

So much for the identity problem. Let us now look at how the ante rem structural-

ist may answer this objection. Certainly, all qualitative properties should be invariant

under automorphisms. I know of no structuralist that rejects this point, which has

been stressed many times: it can already be found in Rudolf Carnap

The structural properties are so to speak the invariants under isomorphic trans-

formation.211

in Hermann Weyl

A point relation is said to be objective if it is invariant with respect to every

automorphism.212

or, to take a recent example, it can also be found in F.A. Muller

[...] structuralism should be taken to include that all and only automorphic

subsets represent properties.213

From our perspective, since the structural method is a particular case of the ab-

stract method, this constraint of invariance under automorphism is simply the restate-

ment of the Principle of Abstraction (cf. page 88): the allowed, grammatically correct,

qualitative properties are those properties invariant under isomorphisms. Therefore, if

211R. Carnap. Untersuchungen zur allgemeinen Axiomatik. Darmstadt: Wissenschaftliche Buchge-
sellschaft, 2000, p. 74 (cited in G. Schiemer and J. Korbmacher. “What Are Structural Properties?”
Preprint available at http://www.jkorbmacher.com/, p. 8).
212This is taken from the passage where Weyl describes the problem of relativity. An extended
version of the quote would be

Our knowledge stands under the norm of objectivity. He who believes in Euclidean ge-
ometry will say that all points in space are objectively alike, and that so are all possible
directions. [...] Whereas the philosophical question of objectivity is not easy to answer in
a clear and deinite fashion, we know exactly what the adequate mathematical concepts
are for the formulation of this idea. [...] An automorphism is a one-to-one mapping [...]
which leaves the basic relations undisturbed. [...] A point relation is said to be objective
if it is invariant with respect to every automorphism. In this sense, the basic relations are
objective, and so is any relation deined in terms of them.
(Weyl, op. cit., pp. 71–73.)

Replace “objective” by “structural” and you get a modern version of structuralism!
213F. A. Muller. “How to Defeat Wüthrich’s Abysmal Embarrassment Argument against Space-Time
Structuralism”. In: Philosophy of Science 78.5 (2011), pp. 1046–1057, p. 1051.

http://www.jkorbmacher.com/
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the irst two steps of the above argument are granted, the problem cannot be avoided.

One irst strategy for the structuralist seems to be the rejection of the dichotomy

presented by Keränen: identity need not be grounded on primitive thisness or on

qualitative properties, understood as formulae in one free variable. For MacBride, this

dichotomy is “the most questionable feature of the argument”214. To overcome the

problem, the structuralist may try to furnish a third possible manner of completing

the identity schema. Now, since the whole point of structuralism is to put the emphasis

on relations between the places of a structure, the structuralist has a very natural place

where to start looking for a third alternative account of identity.

This is indeed the strategy followed by James Ladyman in his irst attempt to

overcome the identity problem. In his short article “Mathematical Structuralism and

The Identity of Indiscernibles”, the author reactivates Quine’s distinction between three

diferent levels of discernibility. Two objects are said to be:

– absolutely discernible if there exists a one-place predicate that is true of one object

but not of the other,

– relatively discernible if there exists a two-place relation that is true of them in

one order but not in the other,

– weakly discernible if there exists a two-place relation, irrelexive for the pair and

that is true of them215.

Keränen considers only formulae in one variable and is therefore building his identity

schema based on absolute discernibility. By “demanding only weak, and not strong or

214“The most questionable feature of [Keränen’s] argument is its most basic assumption, the thesis
that necessary and suicient conditions for the identity of objects can and should be states in ex-
clusively property-theoretic terms.” (F. MacBride. “Structuralism Reconsidered”. In: The Oxford
Handbook of Philosophy of Mathematics and Logic. Ed. by S. Shapiro. New York: Oxford University
Press, 2005, pp. 563–589, p. 582.)
215In Word and Object, Quine only introduced the distinction between absolute and relative discerni-
bility. The third term was introduced later, in “Grades of Discriminability”, but there he changed
“relative discernibility” into “moderate discernibility”. However, Ladyman seems to be following the
terminology adopted by Simon Saunders (S. Saunders. “Physics and Leibniz’s Principles”. In: Sym-
metries in Physics: Philosophical Relections. Ed. by K. Brading and E. Castellani. Cambridge
University Press, 2003, pp. 289–308).
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relative, discernibility of numerically distinct individuals”216, the ante rem structuralist

can expect to solve the identity problem. And this is indeed the case for all the

examples discussed above. Therein the wished-for relation that is irrelexive for the

problematic pairs can readily be found: for the structure (Z,+), one can choose the

relation R(x, y) ≡ ‘x is the additive inverse of y’ (−1 is the inverse of 1, but 1 is not

its own inverse); this same relation allows to distinguish i from −i in the complex

ield structure; and the Euclidean distance allows to distinguish any two points on the

space217.

The introduction of the symmetric/asymmetric and relexive/irrelexive distinc-

tions among relations may appear as a rather ad hoc move from the structuralist who

is trying to overcome the identity problem. One can attempt to avoid any appeal to

this distinction by adopting a strategy slightly diferent from Ladyman’s: to treat all

relations indistinctly and build the identity schema from all of them. Indeed, one can

propose the following:

Relational Principle of Identity. Given a structure S, for any x, y places of S, x is

identical to y if and only if, for any n-ary relation R deined on S and any z1, . . . , zn−1

places of S, we have:




(x, z1, . . . , zn−1) ∈ R ←→ (y, z1, . . . , zn−1) ∈ R

(z1, x, . . . , zn−1) ∈ R ←→ (z1, y, . . . , zn−1) ∈ R
...

(z1, . . . , zn−1, x) ∈ R ←→ (z1, . . . , zn−1, y) ∈ R

If no relation can perceive the diference between two places—in other terms, if two

places are relationally indiscernible—then, these places must not be many but one.

This certainly appears to be a faithful implementation of the structuralist intuition

that there is no more to the places than the relations they bear to each other. This

relational account of identity within a structure is the precise answer given by Muller

216J. Ladyman. “Mathematical Structuralism and The Identity of Indiscernibles”. In: Analysis 65.3
(2005), pp. 218–221, p. 220.
217Ibid., p. 220.
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in the context of spacetime structuralism218.

Again, with this choice of identity schema, Keränen’s objection no longer holds in

the general case. Given x and y places of S related by an automorphism ϕ, one can no

longer conclude x = y from the data y = ϕ(x). Indeed, grammatically correct relations

are certainly also invariant under automorphisms, but this now means

(x, z1, . . . , zn−1) ∈ R ↔ (ϕ(x) = y, ϕ(z1), . . . , ϕ(zn−1)) ∈ R

and not at all

(x, z1, . . . , zn−1) ∈ R ↔ (ϕ(x) = y, z1, . . . , zn−1) ∈ R

It is thus a priori possible to ind a relation R such that (x, z1, . . . , zn−1) ∈ R and yet

(y, z1, . . . , zn−1) /∈ R. If such a relation exists, one is forced to conclude x ̸= y, unless

one is willing to abandon the usual axiom of substitution of identicals (sometimes also

called Principle of Indiscernibility of Identicals).

Ladyman’s and Muller’s approaches have in common the fundamental idea of

building identity based on relations, not on properties. There are however some im-

portant diferences as well. The latter seems to be more general than the former: for all

cases where weak discernibility applies, Muller’s relational principle of identity will do

the work as well, but it is not obvious that the converse is also true. Despite this, there

is at least one reason why one could prefer to stick to the Ladyman-Quine strategy:

the introduction of the two distinctions among relations, which are absent in Muller’s

account, allows Ladyman to keep the question of the discernibility of two places a local

matter. Given the places x and y, one can consider them in isolation and answer the

question of their identity without having to ever consider the remainder places of the

structure. This is far from true with Muller’s notion of relational indiscernibles—which

does not coincide with neither relative nor weak indiscernibles. As it is easy to see, with

the Relational Principle of Identity, the identity of x and y involves all other places of

the structure. Thus, Muller’s identity scheme is explicitly holistic; it involves the whole

218Muller, op. cit., p. 1054. I have generalized slightly Muller’s account. The author only considers
the n = 1 and n = 2 cases (that is, predicates and binary relations).
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structure! But, from the structuralist perspective, this holism should not be seen as a

drawback. On the contrary, it could be perceived as a welcomed feature, since—as I

explained in I.3.1.a, page 97—the local/global two-fold level of study is characteristic

of the structural method. After all, Shapiro does state that “an ante-rem structure is

a whole consisting of, or constituted by, its places and relations”219.

Either way, by considering not only properties but also relations as a means to

discern between two places, the ante rem structuralist seems to have at his disposal

a satisfactory and general answer to the objection. The situation is however more

involved and the structuralist cannot escape the identity problem so lightly. One irst

way to see this is to notice the existence of mathematical objects which fail to meet

both the weak version of the Principle of Indiscernibles and the Relational Principle of

Identity! Button inds in graph theory two such examples220:

– G1: b←− a −→ c

– G2: ⟳ b←→ c ⟲

Therein, any relation that holds of (b, b) will be satisied as well by (b, c), (c, b), (c, c),

and there is hence no hope of inding an (irrelexive) relation distinguishing b from c.

Leitgeb, Ladyman and Shapiro discuss very similar examples221.

These examples seem to condemn the idea of accounting for the identity of places

within a structure solely in terms of intra-structure relations and with no appeal to

primitive identity. But one can still try to “save” some version of ante rem structuralism

from accepting primitive identity facts by rejecting that Button’s examples be named

structures. That some mathematical objects should not be considered structures is not

an option for many philosophers endorsing mathematical structuralism. This is because

they regard mathematical structuralism as an attempt to build a foundation for the

219Shapiro, “Mathematical Structuralism”, p. 2, my emphasis.
220T. Button. “Realistic Structuralism’s Identity Crisis: A Hybrid Solution”. In: Analysis 66 (2006),
pp. 216–222, p. 218.
221Button’s graph G2 is very similar to the unlabelled graph with two nodes and no edges considered
by Leitgeb and Ladyman (H. Leitgeb and J. Ladyman. “Criteria of Identity and Structuralist Ontol-
ogy”. In: Philosophia Mathematica 16.3 (2008), pp. 388–396). This, in turn, corresponds precisely to
the ‘inite cardinal patterns’ considered by Shapiro (Shapiro, Philosophy of Mathematics: Structure
and Ontology, p. 115).
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whole of Mathematics. However, as I have emphasized several times already, these

foundational aspirations are extraneous to our purpose. We are trying to learn how to

conceive abstract mathematical structures because some of them play a fundamental

role in the foundations of Mechanics, and the question of whether all mathematical

objects are structures is of no matter to us222. Therefore, one could attempt to deine

a structure as a collection of places and relations for which the Relational Principle of

Identity (or the Principle of Identity for weak Indiscernibles) holds. This move seems

to be alright as long as only artiicially constructed objects—like the graphs G1 and

G2—are denied the status of abstract structures223.

However, even these precautions do not suice. As Shapiro remarks, it is not clear

in which way some of the relations used to discern two places are diferent from a brute

non-identity relation. And this is a real worry for this strategy:

[...] if non-identity does count as an irrelexive relation for these metaphysical

purposes, then the distinguishing task is trivial, and unilluminating. The thesis is

just that distinct objects must be distinct. Notice that identity, or non-identity,

is presupposed in the very formulation of some of the requirements and the

examples.224

The problem is very well perceived if one considers vector spaces. Indeed, let V be an

222In fact, I believe the foundational aspiration of structuralism to be hopeless. To me, it has been
outdated by many of the objects pure mathematics has introduced in the last sixty years which do
not have an underlying set.
223Essentially, this is Button’s proposal. Structures satisfying the identity of weak indiscernibles,
which he calls “basic structures” are to be interpreted realistically; those structures which fail to meet
such an identity criterion, called “constructed structures” are treated eliminativistically (Button, op.
cit., p. 220). Nonetheless, this way out of the problem seems dubious. As noted by Ladyman,

“Graphs such as G′ [not satisfying weak discernibility] are not exceptional; all other
unlabelled graphs that contain at least two isolated nodes (for example, 11 out of the
156 possible unlabelled graphs with 6 nodes) include nodes that are not even weakly
discernible. Furthermore, an analogous point can be made about all unlabelled graphs
which include at least two distinct but isomorphic and unconnected components.”
(J. Ladyman. “Scientiic Structuralism: On The Identity and Diversity of Objects in a
Structure”. In: Aristotelian Society Supplementary Volume. Vol. 81. 1. Wiley Online
Library. 2007, pp. 23–43, p. 35.)

Thus, Button’s proposal seems to exclude all graph theory from an ante rem structural account.
224S. Shapiro. “Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i”. In:

Philosophia Mathematica 16.3 (2008), pp. 285–309, footnote 2, p. 288.
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abstract vector space and Ψ1,Ψ2 two distinct vectors. If one uses Ladyman’s identity

schema, what is the irrelexive relation distinguishing them? I claim it would have to

be something of the sort “−Ψ2 is not the additive inverse of Ψ1”. Of course, this can

also be stated as “the additive inverse of Ψ2 is not the additive inverse of Ψ1”, which

also means “Ψ2 is not Ψ1”. Symbolically, the argument is to conclude that Ψ1 ̸= Ψ2

because Ψ1 −Ψ2 ̸= 0225. It can hardly get less illuminating than that...

On the other hand, Muller’s Relational Principle of Identity runs into similar

diiculties. To discern the two vectors Ψ1 and Ψ2, it would be enough to ind any

(not necessary irrelexive) binary relation R for which there exists a third vector Ψ3

such that (Ψ1,Ψ3) ∈ R and (Ψ2,Ψ3) /∈ R226. Now, the existence of this sought-for

Ψ3 would have to be proven by a demonstrative act: it would have to be exhibited,

explicitly constructed. This third vector cannot not be proven to exist in principle,

for that would presuppose we already knew Ψ1 ̸= Ψ2. But it is hard to see how one

could efectively exhibit one particular element of an abstract structure, which, by its

unspeciied, freestanding nature cannot be laid ‘in front of our eyes’.

I.3.2.c The solution: primitive typed identity

All in all, it very well seems the ante rem structuralist cannot avoid committing

to some primitive identity facts. This conclusion is explicitly endorsed by Ladyman

and Leitgeb:

[...] the identity relation for positions in a structure is a relation that ought to

be viewed as an integral component of a structure in the same way as, for exam-

ple, the successor relation is an integral component of the structure of natural

numbers. [...]

225The situation is exactly the same for the important example of Hilbert spaces. Given an abstract
Hilbert space H and two elements Ψ1,Ψ2 of same norm, one would mimic the case of the Euclidean
space and use the metric relation to distinguish them: d(Ψ1,Ψ2) ̸= 0, and this seems alright. But
the notation is hiding the triviality of such a statement, since d(Ψ1,Ψ2) = ||Ψ1 − Ψ2|| and thus
d(Ψ1,Ψ2) ̸= 0⇐⇒ Ψ1 −Ψ2 ̸= 0.
226In his article, when discussing the identity of space-time points, Muller gives the following example:
consider the light cone relation R(x, r) ≡ “r lies inside the light-cone of x”. Then, if for every point r
we have both R(x, r) and R(y, r), we can conclude that x = y. (Muller, op. cit., p. 1056).
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The fact that [the graph] G2 consists of precisely two nodes is simply part

of what G2 is; it is ‘built into’ its graph-theoretic structure. Adapting the

structuralist slogan on natural numbers [...], we are still allowed to say that

‘There is no more to the individual nodes “in themselves” than the relations

they bear to each other’, the only addition that we have to make is that we have

to count identity and diference of nodes among the very relations that the nodes

in a graph bear to each other.227

This is also the position adopted by Shapiro, who “wholeheartedly rejects the identity

of indiscernibles”228. When discussing his ‘inite cardinal structures’—which are inite

abstract sets—he says:

The cardinal-four structure is the worst ofender of (IND) [absolute discernibility]

possible. Since there are no relations to preserve, every bijection of the domain is

an automorphism. Each of the four places is structurally indiscernible from the

others and yet, by deinition, there are four such places, and so not just one.229

It is question-begging to demand the structuralist to justify why a graph with two nodes

has two nodes and not three nor one. The cardinality of a structure is an information

given a priori, not an information one acquires a posteriori. A graph with two nodes

has two nodes by deinition.

It is easy to see this idea of a primitive cardinality is indeed faithful to the way

mathematicians work. As Leitgeb and Ladyman emphasize230, in graph theory one

never asks the question of how many nodes a given graph G has. Rather, the pertinent

question is to ind how many diferent graphs with a given number of nodes there are.

Moreover, almost any description of an abstract structure includes an axiom about

its cardinality. To give some examples, to uniquely characterize the ield of complex

numbers, one has to describe it as an algebraically closed ield of characteristic zero and

of cardinality the continuum. If this choice of cardinality is not made, then the structure

227Leitgeb and Ladyman, op. cit., pp. 390 and 392–393.
228Shapiro, op. cit., p. 292.
229Ibid., p. 287.
230Leitgeb and Ladyman, op. cit., p. 392.
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is not ixed231. Second, in his Mathematical Foundations of Quantum Mechanics, when

von Neumann deines Hilbert spaces, he includes an axiom about the cardinality of a

family of linearly independent vectors, besides the axioms of a vector space and of a

Hermitian inner product:

The properties A., B. [of linearity and Hermitian product] permit us, as we

see, to state a great deal about R [an abstract Hilbert space], yet they are not

suicient to enable us to distinguish the Rn from each other and from R∞. This

concept is clearly associated with the maximum number of linearly independent

vectors. If n = 0, 1, 2, . . . is such a maximum, then we may state for this n:

– [Axiom] C.(n) There are exactly n linearly independent vectors. [...]

If there exists no maximum number, then we have:

– [Axiom] C.(∞) There are arbitrarily many linearly independent vectors.

[...] We obtain a diferent space R, depending on which we decide upon.232

Von Neumann could not be more transparent: the structural relations retained in the

process of abstraction are not enough to force upon us the number of places of the

structure. This cardinality can only be ixed by a decision we make.

In the light of all this, we conclude: Identity within an abstract structure is primi-

tive: it cannot be grounded on structural properties nor relations. This the structuralist

can no longer deny. The worry is to understand whether this return of primitive iden-

tity within a structure reduces the structuralist identity schema to a haecceity account.

If, indeed, the identity of the places of a structure is to be grounded on a primitive

intrinsic self-identity, the whole ante rem perspective on abstract structures would

be undermined. For it then would make perfect sense to consider abstract places in

isolation—and this would be to abandon one of the main tenets of structuralism: places

are nothing in themselves. Recall Shapiro: “It makes no sense to postulate one real

231This follows from Steinitz’s theorem which proves that, for every characteristic p ⩾ 0 and uncount-
able cardinal κ, there is, up to isomorphism, exactly one algebraically closed ield of characteristic
p and cardinality κ (E. Steinitz. “Algebraische Theorie der Körper”. In: Journal für die reine und
angewandte Mathematik 137 (1910), pp. 167–309).
232Von Neumann, op. cit., p. 45, my emphasis.
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number”233. Fraser MacBride encapsulates well the danger the structuralist is facing:

[The places of a structure] cannot simply be bundles of structural relations; they

are a separate, irreducible category of existent. So the structuralist must admit

(at least) a two-category ontology of objects and relations. The failure of property

reductionism indicates that mathematical objects [here: places of a structure] are

also the bearers of properties and relations that take them outside their parent

structure [...].234

If the last sentence is true, then sui generis structuralists need to postulate some

background ontology of abstract objects from which structures will be constituted.

But this was precisely what ante rem structuralism was trying to avoid in the irst

place!

Luckily, the return to primitive identity within structures need not mean the

appeal to haecceity. Consider an abstract structure S and two places x, y. To ground

identity on haecceity means to claim:

1. that there exists a grammatically correct property Hx ≡ ‘being identical with x’,

2. that x is diferent from y because Hx(x) is true and Hx(y) is false.

This move certainly goes against structuralism but also conlicts with the Principle

of Abstraction, for the haecceity Hx is in general not invariant under automorphisms.

However, this is not what ante rem structuralists are committed to. Rather, their claim

is:

i) that there exists a basic binary relation on S ‘being identical with’ and denoted

=S (in other words, such that z1 =S z2 ⇐⇒ ‘z1 is identical with z2’),

ii) that x is diferent from y because x =S y is false.

At irst sight, this may appear to be a trivial restatement of the haecceity account,

but in fact it is not. The irst thing to notice is that now the conlict with the Principle

of Abstraction has evaporated: =S is manifestly invariant under any automorphism

and is hence a grammatically correct relation. But to stop at this remark would be to

miss the really crucial point. What makes the structural account of identity radically

233Shapiro, Philosophy of Mathematics: Structure and Ontology, p. 76, my emphasis.
234MacBride, op. cit., p. 584.
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diferent from a haecceity account is that this primitive identity =S is a relation that

only makes sense within the given structure. Whereas a haecceity account of identity

may suggest—to say the least—the existence of an independent entity named x, the

structuralist once more insists on the importance of remembering the context inside

which the identity claims are being made. Identity is primitive, but identity is also

contextual. Therefore, the ante rem structuralist escapes MacBride’s conclusion that

‘places can be taken outside of their structure’. Ladyman rightly insists on this point,

by distinguishing intrinsic and contextual individuality—distinction which he borrows

from Stachel235:

[...] primitive contextual individuality is diferent to primitive intrinsic indi-

viduality [...], for only the latter and not the former implies haecceitism. If

individuation is intrinsic, and not grounded in qualitative properties but is ei-

ther ungrounded or grounded in haecceities, then the identity of an individual

objects is determinate in other counterfactual situations [...]. On the other hand,

if individuality is contextual then there is in general no reason to regard talk of

the same object in another relational structure as intelligible.236

In sum, we have arrived to the following conclusion:

Identity within a structure: For an ante rem structuralist, identity

of places within an abstract structure is primitive. But it is not

absolute, unrestricted primitive identity; rather, it is primitive typed

identity.

I.3.3 Individuation within an abstract mathematical structure

The previous section considered the question of what grounds identity within an

abstract mathematical structure, and the conclusion was that, in fact, this internal

identity is in general ungrounded: given places s1, s2 of an abstract structure S, their

235J. Stachel. “Structural Realism and Contextual Individuality”. In: Hilary Putnam. Ed. by
Ben-Menahem. Cambridge: Cambridge University Press, 2005, pp. 203–219.
236Ladyman, op. cit., p. 37, my emphasis.
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diference is a primitive statement which is stipulated and needs not be justiied. Yet,

the existence of a primitive typed identity does not render superluous all discussion

about discernibility within an abstract structure. It still remains an important ques-

tion to understand precisely which are the available descriptive resources inside a given

abstract structure. For indeed our interest lies not so much in determining whether

two places ares diferent but, foremost, in determining whether a particular place (de-

scribing a speciic state or a given property of the system) can be objectively singled

out among all abstract places. In other words, we ask about the possibilities of indi-

viduation within a structure, or, in Hermann Weyl’s more elegant language, about the

possibility of a “conceptual ixation of points [...] that would enable one to reconstruct

any point when it has been lost”237.

To capture precisely what is at stake, we need to take a small detour and fully

pursue the consequences of what emerged in the last few pages.

I.3.3.a Abstract structures as structured types

The need for ante rem structuralists to appeal to a primitive typed identity points

to the crucial idea that type theory, and not set theory, is the natural home for con-

ceiving abstract structures. Once this has been hinted at, it may appear as a blunder

not having considered it from the start. For the tokens-to-type relation has the perfect

characteristics to capture exactly the places-to-structure relation that ante rem struc-

turalist advocates. To understand why this is so, it is important to recall the main

conceptual diferences between set theory and type theory.

As the Univalent Foundations Program explains in the introduction of its book,

“[o]ne problem in understanding type theory from a mathematical point of view, how-

ever, has always been that the basic concept of type is unlike that of set in ways that

have been hard to make precise”238. Nonetheless, some pages later they describe a irst

fundamental diference:

237Weyl, op. cit., p. 75.
238The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-

matics. Institute for Advanced Study: http://homotopytypetheory.org/book, 2013, p. 2, authors’
emphasis.

http://homotopytypetheory.org/book


Chapter I. Mathematical Description of Physical Systems 121

[...] if the type A is being treated more like a set than like a proposition [...], then

“a : A” may be regarded as analogous to the set-theoretic statement “a ∈ A”.
However, there is an essential diference in that “a : A” is a judgment whereas

“a ∈ A”” is a proposition. [...]

A good way to think about this is that in set theory, “membership” is

a relation which may or may not hold between two pre-existing objects “a”

and “A”, while in type theory we cannot talk about an element “a” in

isolation: every element by its very nature is an element of some type,

and that type is (generally speaking) uniquely determined. Thus, when we say

informally “let x be a natural number”, in set theory this is shorthand for “let

x be a thing and assume that x ∈ N”, whereas in type theory “let x : N” is an

atomic statement: we cannot introduce a variable without specifying its type.239

The relation between a token a and its type A is not a proposition because it is not a

statement susceptible of being proven. Rather, the statement a : A is a deinition that

allows to render explicit a context, and the set-theoretic statement ¬(a ∈ A) simply

cannot be transposed into type theory.

An immediate consequence of the diference between “a : A” in type theory and

“a ∈ A” in set theory is the diference in the treatment of identity. Since the types are

inseparable from the entities, identity statements must always be considered within

a given type. Given a : A and b : B, it makes no sense in general to consider the

proposition a = b. Equality statements can only make sense for tokens of the same

type: only for a, b : A, one can ask whether a =A b. Unlike in set theory, in type

theory the equality sign always comes with a subscript. This means that identity is

a dependent type: in addition to the invariant element =, one always has to add a

variable specifying the context in which equalities are being predicated.

In sum, as Makkai succinctly puts it:

“[In type theory] both equality and membership are denied the free reign they

enjoyed in the standard [set theoretical] foundation.”240

239Ibid., p. 18, authors’ italics, bold emphasis is mine.
240Makkai, op. cit., p. 156.
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Now, compare this quote with Shapiro’s:

In mathematics, at least, the notions of “object” and “identity” are unequivocal

but thoroughly relative. Objects are tied to the structures that contain them.241

It should strike how good a it this is. The type-theoretical insistence that tokens

should not be considered in isolation is a familiar one for any structuralist. But the

rules of type theory are much stronger than just this. It is not that one should not

talk about tokens in isolation (methodological decision granted by any structuralist);

it is that one cannot talk about the tokens without at the same time talking about

the types (ontological constraint adopted only by non-eliminative structuralists). The

token is not a pre-existent object, prior to the type; it is not the case that the type

A is deined extensionally, by the collection of its tokens. It is the other way around.

Here is again Makkai explaining it:

An entity belonging to a type cannot be discussed without reference to the type;

the type logically precedes the entity, and the type is inseparable from the en-

tity.242

As we have already seen, this (onto)logical priority of the structure is characteristic of

non-eliminative structuralists. Recall the insistence of Shapiro on this point:

Structures are prior to places in the same sense that any organization is prior to

the oices that constitute it. The natural number structure is prior to ‘6’, just

as ‘baseball defense’ is prior to ‘shortstop’ or ‘U.S. Government’ is prior to ‘Vice

President’.243

Therefore, by conceiving abstract structures as structured types, many objections

against sui generis structuralism vanish into thin air. Type theory provides the ante

rem structuralists with both a relation capturing the places-to-structure relation they

advocate, and a treatment of identity allowing them to solve the problem of identity

for structural indiscernibles. As indicated by Benacerraf, the structuralist way out to

241Shapiro, op. cit., p. 81.
242Makkai, loc. cit.
243Shapiro, op. cit., p. 9.
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the (in)famous “Julius Caesar problem”, posed by Frege, is another good example of

the usefulness of type theory:

To speak from Frege’s standpoint, there is a world of objects [...] in which the

identity relation had free reign. [...] Hence the complaint at one point of his

argument that, thus far, one could not tell whether Julius Caesar was a number.

I rather doubt that in order to explicate the use and meaning of numbers one

will have to decide whether Julius Caesar was (is?) or was not the number 43. [...]

I propose to deny that all identities are meaningful [...]. Identity statements make

sense only in contexts where there exist possible individuating conditions.244

As Shapiro stresses, “a good philosophy of mathematics need not answer questions like

“Is Julius Caesar = 2?” and “Is 1 ∈ 4?” Rather, a philosophy of mathematics should

show why these questions need no answers [...]”245. And this is precisely what the

appeal to type theory does: it simply dissolves such questions by considering them as

grammatically incorrect!

In the light of this, it is surprising that, despite the natural match between the

language of types and the main ideas of ante rem structuralists, the use of type theory in

the philosophical discussion of abstract structures still has a feeble existence. Therein,

model theory and set theory overwhelmingly dominate. In fact, it seems that when the

type-to-tokens relation is invoked, it is usually done in order to capture the structure-

to-systems relation and not the structure-to-places relation246. To my knowledge, only

Michael Makkai has tried to develop a systematic account of abstract structures using

type theory. He calls it the Structuralist Foundation of Abstract Mathematics (SFAM),

and the central notion allowing to describe abstract structures is that of “abstract set”:

In Abstract Mathematics, we ind the intuitive idea of abstract sets one whose

244P. Benacerraf. “What Numbers Could Not Be”. In: Philosophical Review 74 (1965), pp. 47–73,
p. 64. For that matter, one could also recall one of the main disputes between Benacerraf’s “two
militant logicists” Ernie and Johnny on whether 3 belonged to 17. Using von Neumann’s ordinals,
Ernie answers positively whereas Johnny, using Zermelo’s numerals, answers negatively. Therein, the
discussion was dominated by the set-theoretical conception of membership, and this allowed questions
about membership to be considered pertinent, well-posed questions.
245Shapiro, op. cit., p. 79.
246Examples of this are: Resnik, op. cit., p. 228; Shapiro, op. cit., p. 85; C. Chihara. A Structural

Account of Mathematics. Oxford: Oxford University Press, 2004, p. 170.
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elements are characterless, nevertheless distinct, points. An “abstract” structure

is one whose underlying set is an abstract set.247

But contrary to what the name seems to indicate, “abstract sets” are not sets in the

sense of ZFC set-theory and are better thought as types. The distinction between

these abstract sets and the “concrete” ZFC sets is crucial, and many objections to ante

rem structuralism originate in a failure to see this. It is thus important to focus our

attention for a while on this notion.

As Marquis points out, the idea of abstract sets can already be found in the

early work of Fréchet248 and is discussed at length in Lawvere’s 1976 article “Variable

Quantities and Variable Structures in Topoi”:

The traditional view that membership is primary leads to a mysterious absolute

distinction between x and {x}, to agonizing over whether or not the rational

numbers are literally contained in the real numbers, [...] to debates over whether

the members of the natural number 5 are 0, 1, 3, 4 or not, and all that is clearly

just getting started [...]. I believe the conclusion is that membership-as-primary

entails membership as global and absolute whereas in practice membership is local

and relative [...].

These considerations lead one to formulate the following “puriied” concept

of (constant) abstract set as the one actually used in naive set-theoretic practice

of modern mathematics: An abstract set X has elements each of which has no

internal structure whatsoever; X has no internal structure except for equality and

inequality of pairs of elements, and has no external properties save its cardinality

[...].249

Notice once again the importance of departing from the usual, absolute set-theoretical

notion of membership.

247Makkai, op. cit., p. 157.
248M. R. Fréchet. “Les ensembles abstraits et le calcul fonctionnel”. In: Rendiconti del Circolo

Matematico di Palermo (1884–1940) 30 (1910), pp. 1–26. See also the quote of footnote 134, page 79.
249F. W. Lawvere. “Variable Quantities and Variable Structures in Topoi”. In: Algebra, Topology

and Category Theory - A collection of Papers in Honor of Samuel Eilenberg. Ed. by A. Heller and
M. Tierney. London: Academic Press, 1976, pp. 101–131, pp. 118-119.
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These abstract sets are obtained by applying the method of abstraction, as de-

scribed by Marquis (subsection I.2.3). In this case, one irst has a domain of signiicant

variation which includes “concrete” sets of very diferent sorts—sets of points, sets of

transformations, sets of numbers, etc. Along with the cardinality of these sets, one

then decides to retain solely the relation of identity and omit all the remainder infor-

mation. The transformations that preserve this chosen information are the bijections.

And one inally arrives to abstract sets, as entities on their own, by declaring that

bijection is the relevant criterion of identity for sets: “what can be declared in the

given [new] language is that abstract sets can be isomorphic”250. Hence, one gets to

the notion of abstract sets by a process of structural abstraction. Clearly, for abstract

sets cardinality is given a priori and identity within a set is primitive.

Even though the notion of abstract set is certainly not Makkai’s invention, he is,

to my knowledge, the only one that captures their nature. The structural process of

abstraction applied to concrete ZFC sets, which culminates in the notion of ‘abstract

sets’, does not produce sets but rather produces types:

[An abstract] set a is a type, and a variable x may be declared to be of type a.

“x ∈ a” will not be a predicate subject to free manipulation with the connectives

and quantiiers as fullledged predicates will be; for instance, we will never write

¬(x ∈ a). The statement “x ∈ a” will have the role of deining contexts of

variables, in the style of P. Martin-Löf and Cartmell. Thus SFAM is a type

theory.251

Hence, following Makkai, we shall now say that an abstract structure is a type

equipped with some relations between its tokens. This in particular holds for an ab-

stract Hilbert space, which is a type H such that the usual Hilbert space axioms are

250Marquis, op. cit., p. 62.
251Makkai, op. cit., p. 156.
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met by its tokens252.

I.3.3.b Abstract sets vs. abstract collections

As we have just explained, abstract sets can be seen as the result of an abstraction

process that starts from ‘concrete’, ‘material’ sets (which include both sets of physical

objects and ZFC-sets) and then declares bijection to be the new criterion of identity.

Therefore, it would be most natural that, at some point of the discussion on abstract

sets, the reader may have had the impression that these abstract entities were nothing

more than the usual Frege-Russell numbers. Recall the two logicians’ deinition of

cardinal numbers: these are equivalence classes of sets under the bijection relation.

Moreover, were the reader familiar with Shapiro’s work, the notion of ‘inite cardinal

structure’ would have also come to mind and strengthened this impression: by their

deinition—Shapiro deines the n cardinal structure to be the structure common to all

collections of exactly n objects253—they look very much like our abstract sets, by their

name—inite cardinal structures—they suggest the link with cardinal numbers.

Nonetheless, the two notions—of ‘abstract set’ and ‘cardinal number’—should be

252I should mention a post from Michael Schulman in the n-category café blog where Makkai’s idea
that abstract structures are in fact structured types is also discussed. He says:

Now, the sets in a material set theory are admittedly closer to the natural-language
meaning of “set”: a set of three sheep can be distinguished from a set of three chairs,
and each of the sheep and chairs might also be an element of other sets. However, the
claim is that the sets in a structural set theory are closer to the way sets are used in
mathematics. These “structural sets” are also very similar to the types in a type the-
ory (regarded as the object-theory, as suggested in the previous post). In fact, Toby
[Bartels] has convinced me that it’s diicult to decide exactly where to draw the line
between type theory and structural set theory, although there are diferences in how the
words are most commonly used. It might be better, terminologically speaking, if
mathematicians had used a word such as “type” instead of “set” all along.
But by now the notion that (for instance) a group is a set equipped with
an identity and a multiplication is so irmly entrenched in most mathemati-
cians’ consciousnesses that I think there’s little point trying to change it.
Anyway, as I mentioned in the previous post, “set” and “type” and “class” are basi-
cally fungible words—especially when used structurally. (https://golem.ph.utexas.
edu/category/2009/12/syntax_semantics_and_structura_1.html, italics are Schul-
man’s, bold emphasis is mine.)

We here ind again the typical terminological problem: ‘material sets’ correspond to Makkai’s ‘concrete
sets’, whereas ‘structural sets’ are Makkai’s ‘abstract sets’.
253Shapiro, op. cit., p. 115.

https://golem.ph.utexas.edu/category/2009/12/syntax_semantics_and_structura_1.html
https://golem.ph.utexas.edu/category/2009/12/syntax_semantics_and_structura_1.html
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distinguished, for abstract sets furnish a perfect example of why the structural process

of abstraction produces entities which cannot be thought as equivalence classes.

As Lawvere insists, abstract sets are more complex than cardinal numbers:

[...] an abstract set is more reined (less abstract) than a cardinal number in

that it does have elements while a cardinal number does not. The latter feature

makes it possible for abstract sets to support the external relations known as

mappings, which constitute the second fundamental concept of naive set theory

(cardinal numbers would admit only the less reined external relations expressed

by one being less than another or not).254

A good way to understand Lawvere’s quote is to insist on the diference between an

abstract set and an abstract collection. On the one hand, an abstract set, says Lawvere,

“has no internal structure except for equality and inequality”. But it is the presence

of this identity relation that makes abstract sets structural. Abstract sets are abstract

structures—indeed, the simplest of all—and they are so because they are collections

equipped with an identity relation that holds within them. For that reason, abstract

sets are also sometimes called “structural sets”255. Makkai puts it nicely:

[An abstract] set is a relatively orderly part of the world in which an equality

predicate reigns. The elements of a set are individuated with respect to each

other. However, there is no global equality present for all things simultaneously.

An equality predicate is an equivalence relation on the given set. In fact, the set

is the underlying collection together with its equality predicate.256

On the other hand, one can decide to push the abstract method one step further by

deciding to omit the identity relation within abstract sets. The more abstract entities

thus obtained I call ‘abstract collections’. As I will now try to argue, abstract collections

behave very much like cardinal numbers.

254Lawvere, op. cit., p. 119, author’s emphasis.
255This seems to be the terminology adopted by the community involved in the nLab project (e.g.,
John Baez, Toby Bartels, Michael Schulman, Urs Schreiber). See for instance the entry Structural Set
Theory in nLab. http://ncatlab.org/nlab/show/structural+set+theory
256Makkai, loc. cit.

http://ncatlab.org/nlab/show/structural+set+theory
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Following Lawvere’s suggestion, this is best captured by relecting on the mor-

phisms between these entities. Consider for instance two abstract sets E,F of cardi-

nality n− 1 and n. To the question “How many diferent injective morphisms from E

to F are there?”, the mathematician will answer that there are n! many of them. The

subsequent reasoning is one possible way to arrive to this answer. Start by stating the

usual identity criterion for functions: given two morphisms f, g : E −→ F , we have

(f =Hom(E,F ) g)⇐⇒
(
if x =E y then f(x) =F g(y)

)

Notice that, since we are dealing with types, we need to specify the type in which each

identity relation is being stated. To explicitly construct one such injective morphism

g : E −→ F , choose irst a token of F that will not have a preimage—call it fn—and

then choose one particular bijection between E and the remainder tokens of F—call

them f1, . . . , fn−1. It is now clear why there are n! injective morphisms from E to F :

there are n ways of choosing the element fn and (n − 1)! diferent bijections between

two abstract sets of cardinality n−1. If one deines the relation on abstract sets “‘F is

bigger than E’ when there exists an injective morphism from E to F”, what the above

shows is that the ‘bigger than’ relation has a more complex structure for abstract sets

than for numbers: there is a plurality of ways in which the set F is bigger than the set

E, plurality that is clearly absent for numbers. In this sense, the external relation is

“less reined” for numbers, as Lawvere claims.

However, if a decision is taken to omit the relations =E and =F , this plurality

is immediately lost as well. Indeed, the determination of the multiplicity of difer-

ent morphisms rested on the identity criterion for functions, which crucially involved

the primitive identities within both E and F allowing to decide whether x =E y

and whether f(x) =F g(y). This phenomenom can also be perceived in the way the

monomorphism g was constructed, as “a function which reaches all elements of F ex-

cept this particular one”. But this is possible because, once an element or token of

the abstract set F has been chosen, the primitive (typed) identity that holds within

F allows to distinguish the given element from all others—in virtue of the irrelexive

non-identity relation, elements of an abstract set are indeed relationally discernible.
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Therefore, with the deletion of primitive identities, it is no longer possible to deter-

mine the diference between two functions. Even worse: it is not even possible to

deine the notion of a function! (For how does one check that it is one-to-one and not

one-to-many?)

The situation can also be pictured through the conception of morphisms as trans-

formations. When dealing with abstract sets, the primitive typed identities allow to

‘follow’ the transformation of each token. The arrow E
g−→ F is conceived as a collection

of local arrows —“this token of E gets transformed into that token of F”. On the con-

trary, by omitting primitive identities the tokens become strongly indistinguishable—

that is: they cease to be even weakly discernible. Then, when considering abstract

collections, the transformation can only be considered externally, as a whole. In this

way, whereas there are many transformations from the abstract set (E,=E) to the

abstract set (F,=F ), there is on the contrary only one unique way of transforming the

abstract collection E into the abstract collection F , namely: “add one element”. In

this sense, abstract collections and numbers look very much alike.

The distinction between abstract sets and abstract collections is summed up in

the following igure257:

257With this distinction in hand, we can now comment in some more detail on Shapiro’s “inite car-
dinal structures”. The essential trait of the n cardinal structure is that any concrete set of cardinality
n should be seen as a realization of it. Therefore, it is clear that the n cardinal structure and the
abstract set of cardinality n are intended to be the same abstract structure. However, I only partially
agree with Shapiro’s description of this structure. He says:

The inite cardinal structures have no relations and so are as simple as structures get.
(Shapiro, loc. cit.)

True: inite cardinal structures or abstract sets are the simplest of all structures, since any abstract
structure is an abstract set on which some further relations have been deined. Wrong: inite cardinal
structures or abstract sets do have one relation, namely primitive typed identity. Otherwise, they
would be abstract collections and would not be able to support functions on them.
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(a) Two abstract sets E and F with their

primitive identity relations =E and =F .

A transformation from E to F may be

depicted by an internal (local) diagram.

In red and blue are represented two dif-

ferent injective morphisms from E to F .

(b) The abstract collections, as a result

of the omission of the identity relations.

A transformation from E to F can only

be seen as an external (global) diagram

and there is now only one possible injec-

tive morphism from E to F .

Fig. I.3 – Diference between abstract sets and abstract collections.

I.3.3.c Four grades of discernibility

The discussion has hinted at the fact that abstract sets difer from abstract col-

lections inasmuch as it is possible to discern and name the tokens of the former but

not of the latter. In other terms, it has allowed to underline the triad:

elements of an

abstract set

distinct things labels

The idea of this triad is certainly not new. Already Cantor had stressed the

importance of distinguishability within a set:



Chapter I. Mathematical Description of Physical Systems 131

By a ‘set’ we mean any collection M into a whole of deinite, distinct objects m

(called ‘elements’ of M) of our perception or our thought.258

On the other hand, the intimate relation between abstracts sets and labeling was clearly

put forward by Lawvere:

The only possible use of abstract sets T is the possibility of indexing or para-

metrizing things by the elements of T in the hope of clarifying actual relations

between the things [...].259

In fact, although I had not emphasized it at the time, we had already encountered the

idea in Weyl’s description of how to obtain abstract groups:

This [the obtention of an abstract group] is accomplished by attaching arbitrary

labels to its elements and then expressing in terms of these labels for any two

group elements s, t what the result u = st of their composition is.260

Nonetheless, we still need a better conceptual grasp of the triad. In particular, we

need to further clarify the kind of discernibility which is present in abstract sets but

absent from abstract collections. So far, we have come across four diferent grades of

discriminability within structures:

i) the case of the real number 1, which can be distinguished from all other numbers

through the property: P (x) ≡ ‘for any y : R, xy = y’,

ii) the case of two points x and y of a homogeneous metric space (M,d), which can

be distinguished through the relation d(x, y) ̸= 0,

iii) the case of two elements of an abstract set (or of an abstract vector space), which

can be distinguished through a primitive typed identity,

iv) the case of two elements of an abstract collection, which cannot be distinguished

in any way.

258“Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiede-
nen Objekten m unserer Anschauung oder unseres Denkens (welche die ‘Elemente’ von M genannt
werden) zu einem Ganzen”. Both the original German quote and the English translation are cited in
Y. I. Manin. “Georg Cantor and His Heritage”. In: Tr. Mat. Inst. Steklova 246 (2004), pp. 208–216,
p. 214, my emphasis.
259Lawvere, op. cit., pp. 120–121.
260Weyl, Symmetry, p. 145, emphasis is mine.
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The Quine-Muller terminological distinction—absolute and relational discernibility—is

not powerful enough to describe the full situation, for it was constructed to capture

the distinction between the irst case and the second. We thus need more terminology:

Deinition I.1 (Individuals). A collection within which an identity predicate reigns

will be called a collection of individuals.261

This terminological decision serves a double purpose. On the one hand, it points

to the fact that tokens of abstract sets and, more generally, places of any abstract

mathematical structure are individuals. And this is so by deinition of what abstract

sets and abstract structures are. In other terms, it points to the fact that, from the

very start, abstract sets are not metaphysically neutral: they cannot serve to describe

any-thing, but only a “relatively orderly part of the world”262, namely: collections of

individuals. It automatically extends the conclusion of French and Krause on material

set theory:

[...] standard set theories involve a theory of identity which takes the elements

of a set [...] to be individuals of a kind.263

In fact, the realization of the metaphysical commitments of set theory was already

emphasized by the mathematician Yuri Manin264 and has been one motivation to

261The concept of “individuality” has received many diferent characterizations in the philosophical
literature. My terminological decision is strongly inluenced by the ideas developed by Steven French
and Décio Krause (particularly in their joint work Identity in Physics: A Historical, Philosophical,
and Formal Analysis). Therein, they develop a conception of “individuality in terms of self-identity”
(p. 15)—or, what amounts to the same, they

[...] defend the claim that the notion of non-individuality can be captured [...] by formal
systems in which self-identity is not always well deined, so that the relexive law of
identity, namely ∀x (x = x), is not valid in general. (pp. 13-14)

This is also similar to the notion of individuals presented by Lowe in his chapter “Individuation” of
the Oxford Handbook of Metaphysics. He says:

[...] for many kinds of entity, identity and countability are indeed inseparable—and
it is these entities that may properly be described as being ‘individuals’ or as having
‘individuality’. (p. 78)

262Makkai, loc. cit. See page 127.
263S. French and D. Krause. Identity in Physics: A Historical, Philosophical, and Formal Analysis.
Oxford: Oxford University Press, 2006, p. 240.
264Thus, he says: “The birth of quantum physics [...] made clear that Cantor’s famous deinition of
sets represented only a distilled classical mental view of the material world as consisting of pairwise
distinct things residing in space [...]. Once this view was shown to be only an approximation to the
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construct alternative theories265.

On the other hand—and here I follow French and Krause again—this choice of ter-

minology allows to conceptually separate “individuality” from “distinguishability”. It

thereby introduces new degrees of discernibility. Indeed, since non-equality is a gram-

matically correct irrelexive relation, individuals of a same structure are, by deinition,

relationally discernible. But there is little point in keeping this lax use of relational

discernibility. Rather, we will say that places of a structure are primitively discernible.

The interesting question is then to investigate whether this primitive discernibility can

be described without appealing to the primitive typed identity. That is to say, to

investigate whether the non-trivial relations of the structure are powerful enough to

account for the discernibility of places266.

Given an abstract collection C, the question on discernibility is thus : “Is this a

collection of discernible individuals?” The above mentioned four cases correspond to

the four possible answers:

incomparably more sophisticated quantum description, sets lost their direct roots in reality.” (Manin,
op. cit., p. 9.)
265Two examples of these are:

1. The theory of quasets, developped by Dalla Chiara and Toraldo di Francia, which “have a
cardinal but not an ordinal” and are not determined extensionally but intensionally (see e.g.
M. L. Dalla Chiara and G. Toraldo di Francia. “Individuals, Kinds and Names in Physics”. In:
Bridging the Gap: Philosophy, Mathematics, Physics. Dordrecht: Kluwer Academic Publishers,
1993, pp. 261–283).

2. The theory of quasi-sets, introduced irst by Newton da Costa and then also developed by Krause
and French: “It is important to realize that quasi-set theory may be said to be inspired by the
idea that the concept of identity might not be applicable to elementary particles, as Schrödinger
claimed. The limitation imposed on the concept of identity will ofer us the opportunity to
elaborate a mathematical theory in which we can talk of indistinguishable but not identical
objects, as we will see.” (French and Krause, op. cit., p. 241)

266A very similar point is made by Muller: “The aim is not, when we begin with a diferentiable
manifold of ininitely many distinct space-time points, to ind out whether there really is more than
one space-time point [...] but the aim is to ind out whether the distinctness of the points can be
grounded qualitatively, physically, and structurally, and that has not been assumed tacitly” (Muller,
op. cit., p. 1057, my emphasis). What Muller meant by the possibility of “grounding physically” the
distinctness of points of a diferentiable manifold remains obscure to me. But the point he is making
is essentially the same as mine.
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Deinition I.2 (Four Grades of Discernibility).

i) A collection of qualitatively (or absolutely) discernible individuals is a

collection such that

for any x, y : C, ∃P, P (x) and ¬P (y)

where P is invariant under automorphisms.

ii) A collection of comparatively discernible individuals is a collection such

that i) fails but one has

for any x, y : C, ∃R, ∃z : C, R(x, z) and ¬R(y, z)

where R is an invariant relation other than the primitive typed identity267.

iii) A collection of indiscernible individuals is a collection such that i) and ii) fail

but there is a primitive typed identity.

iv) A collection of non-individuals (thus strongly indiscernible things) is a collec-

tion for which i), ii) and iii) fail.

Of course, as French and Krause very well emphasize, the conceptual distinction

between individuality and discernibility is only useful in practice if there are legitimate

cases of indiscernible individuals—that is: if there are cases of (contextual) primitive

thisness268. But we have already seen that mathematics has plenty of those (abstract

sets, abstract vector spaces, etc.).

What precedes should dissolve what Lawvere calls the “strong contradiction” of

abstract sets: their points are completely distinct, because they are individuals, and

yet are indistinguishable, because no relation other than the primitive identity can

discern them269.

267For simplicity, I have here only considered binary relations. Following Muller’s approach, one can
extend this deinition in the obvious way so to include all n-ary relations.
268They say: “Our conceptual distinction between individuality and distinguishability can then only
be maintained in practice under [the] view that individuality is grounded on something else, ‘over and
above’ properties.” (French and Krause, op. cit., p. 16.)
269“Yes, the notion of an abstract set (Cantor’s Kardinalzahl) is a strong contradiction: its points
are completely distinct and yet indistinguishable.” (F. W. Lawvere. “Foundations and Applications:
Axiomatization and Education”. In: The Bulletin of Symbolic Logic 9.2 (2003), pp. 213–224, p. 215.)



Chapter I. Mathematical Description of Physical Systems 135

With these four grades of discernibility within a collection properly distinguished,

we can inally render precise the content of the requirement of individuation for physical

states and properties (page 17).

Deinition I.3 (Individuation). We say that an element x of an abstract structure

S can be individuated if, for all y : S such that y ̸=S x, x and y are qualitatively

discernible individuals.

By the above deinitions, it follows that two elements of an abstract structure

which are related by an automorphism cannot be qualitatively discerned from each

other. This simple remark is actually quite fruitful, for it furnishes a practical tool to

ind the ‘amount of individuation’ that can be achieved within a given mathematical

structure S. It now appears that this information can be easily read of from the action

of the group of automorphisms Aut(S) on S: the orbits O ∈ S/Aut(S) are the smallest

parts of the structure which can be individuated270.

I.4 Conclusion

Let me now briely summarize what has emerged in the course of this chapter and

put it in perspective with respect to the main goal of this thesis. To recall: the intention

is to provide a clear conception of what quantization means—and, in particular, to

grasp the “real diference between Classical and Quantum Mechanics”271 by plunging

as much as possible into the depths of the mathematical formalisms underlying both

theories. Now, as Darrigol reminds us, “any application of [quantization] starts with

formally deining a classical system, and the quantum theoretical level is then reached

by applying a precise mathematical procedure”272. It thus has seemed to me that any

attempt to understand quantization should deal irst with the concept of “mathematical

270 Given the left action of a group G on a set E, the orbit Ox of an element x ∈ E is the subset
Ox :=

{
y ∈ E

∣∣ ∃g ∈ G, y = g · x
}
.

271This expression is the title of a conference given on February 13th 2014 by Andreas Döring at the
Workshop “Philosophy of Mechanics: Mathematical Foundations” held in Paris.
272Darrigol, op. cit., p. xvi, my emphasis.
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description of a physical system”. Accordingly, the irst part of this work has been

devoted to a general relection on this notion.

Therein, the main driving question was: Which is the role theoretical physicists

expect to confer to these mathematical descriptions? Many diferent expectations are

of course possible (and indeed found amongst the scientiic community), but I have

chosen to focus on the more ambitious one, which I have dubbed the “descriptive

perspective”: it considers the goal of these mathematical descriptions to provide a

full and unambiguous intrinsic characterization of the physical systems being thus

described. Even though such an aspiration may appear as quite naive an utopia,

adopting it as a working hypothesis and seeking to push it to its limits can yield

interesting insights in theoretical physics—as I hope the remainder of this work will

show. As Gabriel Catren beautifully puts it: “It is necessary to be programmatically

ambitious in order to fail in a productive way”273.

The mathematical description of a generic physical system can be thought as a

map D : Tphys −→ Tmath from a certain class of physical systems (e.g., non-relativistic

systems with initely many degrees of freedom) towards a speciic class of mathematical

objects. Given a physical system S, the mathematical object D(S) is usually intended

to furnish a description of the geometry of the state space and/or of the algebra of

properties. To give a precise content to the expectation of an intrinsic characterization

portrayed in the descriptive perspective, I have formulated two requirements these

mathematical objects should meet: irst, the faithfulness requirement (page 15), which

demands that the mapD be injective, and thus concerns identity between mathematical

objects; second, the requirement of individuation (page 17), which demands that both

states and properties of the system be qualitative discernible individuals, and therefore

focuses on individuation within mathematical entities.

The next step is to understand the particular nature of the mathematical objects

customarily involved in the formalisms of both Classical and Quantum Mechanics.

For only once this nature has been properly grasped, will one clearly understand the

speciic conditions imposed by both requirements. After having taken a closer look

273G. Catren. “A Throw of the Quantum Dice Will Never Abolish the Copernican Revolution”. In:
Collapse: Philosophical Research and Development 5 (2009), pp. 453–500, p. 470.



Chapter I. Mathematical Description of Physical Systems 137

at the turning years during which the foundations of Quantum Mechanics were irst

developped, I have proposed that mathematical objects appearing at this fundamental

level of Mechanics should be conceived as abstract structures. Sections I.2 and I.3 were

dedicated to the clariication of what is meant by this. As it appears in the case of

von Neumann, one is pushed towards abstraction by the will of inding an intrinsic

description of physical systems. Abstract mathematics allow to answer the question:

Where, in the formalism, should we look for the relevant physical information? Indeed,

through its systematic use of isomorphisms as equalities—which constitutes the core of

abstraction—, it manages to precisely deine a level in which the physical information is

to be found. Mathematical objects become “schematic” and one no longer worries about

the “arbitrary and special ‘leshly clothing’” of the formalism274. On the other hand,

structural mathematics is the answer to the question: How, from the formalism, should

we recover the relevant physical information? It is so because, with the requirement of

individuation in mind, the look for discernible individuals becomes one of the main goals

of the analysis and structuralism proves to be extremely useful in this regard. First, I

have shown how it allows to distinguish four diferent grades of discernibility within a

collection—qualitatively discernible individuals, comparatively discernible individuals,

indiscernible individuals and non-individuals (page 134). Second, it furnishes practical

tools to extricate from within the abstract structure those individuals that can be

qualitatively individuated. This last point is accomplished by use of the pivotal group

of automorphisms: qualitative discernible individuals correspond exactly to the orbits

of the structure under the deining action of this group.

I have tried as much as possible to discuss the issues about Abstract and Structural

Mathematics in their natural general context. As a result of this, Sections I.2 and I.3

may have seemed to the reader too long a detour from the main subject of the thesis.

I hope nonetheless that they present an interest in their own right. Be that as it may,

with this conceptual background irmly understood, we are now ready to analyze, in

all the technical detail they deserve, both Classical and Quantum Kinematics. The

unfolding of this analysis will be the content of the remaining two chapters.

274Schrödinger, “On The Relation Between The Quantum Mechanics of Heisenberg, Born, and Jor-
dan, and That of Schrödinger”, p. 58.





Chapter II

The Classical and Quantum

Kinematical Arenas

In their standard formulation, the Classical and the Quantum are respectively

casted into the language of symplectic (or Poisson) manifolds and Hilbert spaces. Their

use is so widespread among theoretical physicists that one may be tempted to write

the following deinitions:

Classical System 1. A classical system is characterized by an abstract symplectic

manifold (S, ω).

Quantum System 1. A quantum system is characterized by an abstract Hilbert

space H.

The irst deinition is in fact readily found in many standard textbooks1, whereas

one can easily have the impression that the second is latent in many works on the

subject2. However, from the perspective that is ours, it is clear that both deinitions

1For example, see C. Rovelli. Quantum Gravity. Cambridge: Cambridge University Press, 2004,
p. 100, N. Woodhouse. Geometric Quantization. 2nd. Oxford: Clarendon Press, 1991, p. 155, or M.
Puta. Hamiltonian Mechanical Systems and Geometric Quantization. Dordrecht, The Netherlands:
Kluwer Academic Publishers, 1993, p. 28.

2Thus, Livine declares that “[i]n order to talk about the quantum theory [of gravity], we should
precisely deine the Hilbert space and our quantum states of space(-time) geometry”. (E. Livine. “Co-
variant Loop Quantum Gravity?” In: Approaches to Quantum Gravity. Ed. by D. Oriti. Cambridge:
Cambridge University Press, 2009, pp. 253–271, p. 262).
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are wrong: neither the simple data of a symplectic manifold nor that of a Hilbert space

can be enough to characterize a physical system. This may be seen in two ways:

– Failure to meet the faithfulness requirement. As we have already mentioned,

when von Neumann introduced the notion of a Hilbert space, he also proved

the categoricity of the axioms: up to isomorphism, there is only one separable

Hilbert spaces for a given dimension3. Thus, if there is more than one quantum

system—which is obviously the case—the faithfulness requirement fails. The

classical analogue of this is Darboux’s theorem4: any two symplectic manifolds

of same dimension are locally isomorphic. For a given dimension, we thus get

ininitely many non-isomorphic symplectic manifolds, but all diferences are only

of a global nature. Although strictly speaking this does not suice to prove the

failure of the faithfulness requirement in the classical case, it strongly suggests

there are not enough diferences between symplectic manifolds to account for the

actual variety of physical systems. The next point will conirm this impression.

– Failure to meet the requirement of individuation. Instead of looking at the identity

between various Hilbert spaces or symplectic manifolds, one can focus on the

descriptive power within these objects. The group of automorphisms of a Hilbert

space is the group U(H) of unitary transformations. Given any two unit vectors

ϕ and ψ, there exists a unitary transformation relating them. Said diferently,

the action of the group U(H) on the projective Hilbert space PH is transitive5.

Exactly the same result holds in Classical Kinematics: for a given connected

symplectic manifold S, any two points can be transformed into each other by a

symplectomorphism6.

3J. von Neumann. Mathematical Foundations of Quantum Mechanics. Trans. by R. T. Beyer.
Princeton: Princeton University Press, 1955, section II.2., pp. 46–59.

4Cf. R. Abraham and J. E. Marsden. Foundations of Mechanics. 2nd ed. Redwood City: Addison-
Wesley Publishing Company, 1978, p. 175.

5This is fairly obvious for inite dimensions. The proof that this result also holds for the ininite-
dimensional case can be found in R. Cirelli, M. Gatti, and A. Manià. “The Pure State Space of
Quantum Mechanics as Hermitian Symmetric Space”. In: Journal of Geometry and Physics 45.3
(2003), pp. 267–284. url: http://arxiv.org/abs/quant-ph/0202076.

6See W. M. Boothby. “Transitivity of the Automorphisms of Certain Geometric Structures”. In:
Transactions of the American Mathematical Society 137 (1969), pp. 93–100, Theorem A, p. 98 or
P. W. Michor and C. Vizman. “N–transitivity of Certain Difeomorphism Groups”. In: Acta Math.

http://arxiv.org/abs/quant-ph/0202076
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It thus appears that both (projective) Hilbert spaces and (connected) symplectic

manifolds are homogeneous structures: their points cannot be qualitatively discerned

and it is therefore impossible to make unambiguous reference to any such point with-

out appealing to primitive thisness. The upshot is that neither of these structures

are sophisticated enough to describe, on their own, all the physical information of a

mechanical system. This conclusion is of course not new and statements of the like are

scattered through the literature, particularly in the context of Quantum Mechanics7.

Confronted with this, one option would be to discard Hilbert spaces and symplec-

tic manifolds from the outset and start looking for completely diferent mathematical

structures that could do a better job. But this would be to miss the point of the above

criticism towards the standard formalisms of Mechanics. The goal is not to drive us

away from these frameworks, but rather to urge us to take a closer look at them. For

indeed the practice of theoretical physics never considers bare Hilbert spaces—that is,

abstract Hilbert spaces and nothing else. Nor does it consider bare symplectic mani-

folds. Explicitly or implicitly, these structures always come along with other additional

mathematical structures. For instance, when Ashtekar and Lewandowski explain that

when considering “a ‘free’ particle on the group manifold of a compact Lie group G [...],

the Hilbert space of quantum states can be taken to be the [Hilbert] space L2(G, dµH)

of square integrable functions on G with respect to the Haar measure”8, they have in

mind not only a Hilbert space but, in fact, a particular unitary representation of the

group G—namely, the so-called regular representation. Thus, they are describing the

quantum space of states by an abstract Hilbert space together with additional data—

here, the choice of a particular morphism of groups ρ : G −→ U(H). This extension,

from the sole data of the abstract H to the more sophisticated structure of a triple

Univ. Comenianae 63.2 (1994), pp. 221–225. url: http://arxiv.org/abs/dg- ga/9406005#,
Theorem (4), p. 221.

7For example, Landsman expresses this in quite the same vein: “all Hilbert spaces of a given
dimension are isomorphic, so that one cannot characterize a physical system by saying that ‘its Hilbert
space of (pure) states is L2(R3)’.” (N. P. Landsman. “Lecture Notes on C∗-algebras, Hilbert C∗-
modules, and Quantum Mechanics”. In: (1998). url: http://arxiv.org/abs/math-ph/9807030,
p. 6.)

8A. Ashtekar and J. Lewandowski. “Background Independent Quantum Gravity: A Status Report”.
In: Classical and Quantum Gravity 21.15 (2004). url: http://arxiv.org/abs/gr-qc/0404018,
pp. 25–26.

http://arxiv.org/abs/dg-ga/9406005#
http://arxiv.org/abs/math-ph/9807030
http://arxiv.org/abs/gr-qc/0404018
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(H, G, ρ), appears naturally in the quantum formalism precisely because of the failure

of Hilbert spaces to meet the requirement of individuation. And a similar phenomenon

occurs in the Classical realm.

The point here is to emphasize the existence of a fundamental tension between the

intended purpose of the mathematical descriptions of physical systems and the basic

formalism used in the theory. This translates into a crucial question:

How can we break homogeneity and introduce qualitative

discernibility into the mathematical structures underlying

the formalisms of Classical and Quantum Mechanics?

I claim this should be recognized as a driving force in the Foundations of Mechanics, in

the sense that many developments in the ield can be retrospectively read as attempts

to overcome this tension and answer the question. Surely, attempting to justify this

claim will be one major point underlying the remainder of this work.

From this emerges a conceptual scheme, or program of investigation, that I will

develop in the next two chapters and have wished to call The Chase for Individuation.

It is the following. First, Hilbert spaces and symplectic manifolds appear simply as the

starting point of the formalism: they represent, so to speak, the homogeneous recepta-

cle or the arena in which the kinematical description of physical systems takes place.

Notwithstanding their homogeneity and lack of discernibility, this 0-level involves many

sophisticated mathematical structures whose interplay reveals many conceptually in-

teresting features. The seeds of the mechanisms that will allow the introduction of

discernibility are already present, and this chapter is dedicated to a careful analysis of

this.

Once the structure of this 0-level will be properly understood, the next move, to

be studied in Chapter III, will be to start constructing candidates for a mathematical

description of a physical system by breaking the homogeneity of the kinematical arenas

studied in Chapter II. The general strategy, which involves the the introduction into

the picture of additional external structures, is explained in section III.1. Then, we

study in detail the particular case of one type of such structures: groups. At every

stage of the road towards individuation, the mathematical mechanisms introduced in
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Classical and Quantum Kinematics will be compared, thus shedding some light on the

procedure of quantization. At the end, we hopefully will have a better understanding

of the real diference between the Classical and the Quantum.

II.1 The double role of properties in standard Kine-

matics

The kinematical description of a physical system attempts to completely charac-

terize each possible state and to understand all the possible properties of the system.

The two fundamental notions are here “state” and “property”. Assuredly, an analyti-

cally inclined reader will immediately raise an eyebrow and ask with suspicion: What

exactly do these two words mean? And the question would be legitimate for both no-

tions often hide strong metaphysical commitments. For example, depending on one’s

favourite ontology of objects persisting in time, one will have a diferent conception

of “states”: an endurantist may perhaps be inclined to conceive “states” as instanta-

neous points in the evolution of the system, whereas, on the contrary, a perdurantist

may tend to consider “states” as extended processes in time—in which case they are

often called “histories”9. Moreover, a realist may regard “properties” as true qualities

possessed by the system, while an empiricist will insist on thinking them as the result

of an interaction with an observer—in which case calling them “observables” seems

more convenient. And so it continues, with a plethora of other diicult metaphysical

debates underlying the use and meaning of these two fundamental words.

It is therefore possible to feel that, before immersing ourselves in the conceptual

analysis of Kinematics, it is necessary to irst clarify the spectrum of all metaphysical

positions one may adopt towards the basic notions. This is not, however, the path I

shall follow. Indeed, my wish is to turn all attention to what can be learned from the

formalism itself : instead of approaching the mathematics of Kinematics through some

9Although the question of temporal parts goes back at least to the Greeks, the debate between
endurantism and perdurantism was introduced, in these terms, by David Lewis in On the Plurality
of Worlds (p. 202). A good general introduction to the subject is M. J. Loux. Metaphysics, a
Contemporary Introduction. 3rd. New York: Routledge, 2006, Chapter 8.
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irmly constructed looking glass, to carefully and patiently listen the “inner voice” of

these structures10. Hence, the notions of “state” and “property” should carry as light a

metaphysical baggage as possible, and to achieve this I will simply leave the two words

somewhat undeined.

Prima facie, the conceptual skeleton of Kinematics may therefore appear to be

captured by this simple duality diagram11:

states ? // properties.oo

And the irst obvious relation one can think of is the fact that “states take deinite

values of properties”: given a property f and a well-chosen state q, one can assign a

number to the pair (f, q). This number, denoted by f(q)—or by ⟨f, q⟩ if one wants

to stress the dual role of properties and states in the assignment of a number—allows

to partially characterize the speciicities of the state p. Under this light, the role of

properties is to introduce discernibility and separate states. Typical questions will then

concern:

i) the conditions under which such a pairing can be done (e.g.: Given a property f ,

can we assign a number to any state q? Given a state q, can we assign a number

to any property f?),

ii) the knowledge we can gain from this pairing (e.g.: Given a state q, can we ind

a set of properties {f1, . . . , fn} such that the numbers
{
⟨f1, q⟩, . . . , ⟨fn, q⟩

}
fully

characterize the state?).

There is however a second role played by properties in Kinematics. Besides their

relation to numbers, properties are also related to transformations. In my view, the

consciousness of this relation, progressively built during the 20th century, is one of

the major conceptual achievements of modern physics. One most commented instance

of this is of course Noether’s theorem, which relates the existence of symmetries to

10Cf. Grothendieck’s quote at the end of the Introduction (page 9).
11I here use the term “duality” in the rather loose sense of a “contrast between two notions”. The

link with the precise mathematical notion of duality will be commented later on.
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the existence of conserved quantities12. To realize the importance this theorem has

acquired, it suices to read what Robert Mills writes:

It seems to me quite possible that Noether’s theorem is the more fundamental

fact—that the physical theories that we devise to describe the universe about

us have the structure they do because of this fundamental relationship between

symmetries and conservation laws. If this is so, then Noether’s theorem becomes

a principle rather than a theorem.13

But the link between properties and transformations does not restrict to this symmetry-

conservation relationship. In fact, in modern expositions of Mechanics, transformations

are often used to deine properties. To attest, we learn in Towsend’s textbook on

Quantum Mechanics that

[...] the best way to deine the momentum operator is as the generator of trans-

lations, just as we deined the angular momentum operators as the generators

of rotations and the Hamiltonian, or energy operator, as the generator of time

translations.14

Properties play then a double role: as quantities, they allow to separate states and

as transformations, they allow to relate states. This fact is clearly known to physicists

and mathematicians15, but its conceptual signiicance has been largely ignored. One

12In fact, Noether proved two theorems and only one of them—the one dealing with global
symmetries—deals with conserved quantities. The second theorem, dealing with ininite-dimensional
groups—and hence with local gauge transformations—is much less known. A good concise review for
the precise content of both Noether’s theorem is K. Brading and H. R. Brown. “Noether’s Theorems
and Gauge Symmetries”. In: arXiv preprint (2000). url: http://arxiv.org/abs/hep-th/0009058.
A more exhaustive discussion of the subject is the excellent Y. Kosmann-Schwarzbach. Les Théorèmes
de Noether. Invariance et lois de conservation au XXème siècle. Palaiseau: Les éditions de l’école
polytechnique, 2004.

13R. Mills. “Gauge ields”. In: 100 Years of Gravity and Accelerated Frames: The Deepest Insights
on Einstein and Yang-Mills. Ed. by J.-P. Hsu and D. Fine. Vol. 9. Singapore: World Scientiic, 2005,
pp. 512–526, p. 513.

14J. S. Townsend. A Modern Approach to Quantum Mechanics. Sausalito: University Science
Books, 2000, p. 156.

15For example, Guillemin and Sternberg mention it explicitly: “[...] in classical mechanics as in
quantum mechanics there is a double role: a function is an observable and it also determines an
ininitesimal symmetry of the space of observables [...].” (V. Guillemin and S. Sternberg. Variations
on a Theme by Kepler. Vol. 42. American Mathematical Soc., 2006, p. 9.)
Also, this double role appears to be one major motivation underlying the book of Alfsen and Shultz

on operator algebras, as they explain in the preface: “[...] it is an important feature of quantum

http://arxiv.org/abs/hep-th/0009058
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notable exception is the work of Gabriel Catren, who has insisted in the importance of

the number-transformation double facet of properties:

The twofold role played by classical observables in mechanics—as functions that

can be evaluated on states and as generators of canonical transformations—is

considered here a fundamental feature that deserves further attention.16

His inluence on the conception of my work is substantial, and I here follow Catren

in considering the double role of properties a key feature that should be made a cor-

nerstone on which to center the conceptual analysis of Kinematics. To clearly dis-

tinguish both roles, I will often talk of “properties-as-quantities” and “properties-as-

transformations”.

In the light of this, the supposed state-property duality explodes and becomes the

fundamental conceptual triad of Kinematics:

properties-as-quantities

states

properties-as-transformations

separate

relate

?

Fig. II.1 – The fundamental conceptual triad of Kinematics.

The remainder of this chapter is a detailed analysis of this triad for the homoge-

neous arenas of the Classical and the Quantum. I start with their standard formula-

tions.

mechanics that the physical variables play a dual role, as observables and as generators of transfor-
mation groups. The observables are random variables with a speciied probability law in each state
of the quantum system, while the generators determine one-parameter groups of transformations of
observables (Heisenberg picture) or states (Schrödinger picture). [...] Both aspects can be adequately
dealt with in C∗-algebras.” (E. M. Alfsen and F. W. Shultz. State Spaces of Operator Algebras.
Boston: Birkhäuser, 2001, pp. vii-viii.)

16G. Catren. “On Classical and Quantum Objectivity”. In: Foundations of Physics 38.5 (2008),
pp. 470–487. url: http://philsci-archive.pitt.edu/4298/, p. 485.

http://philsci-archive.pitt.edu/4298/
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II.1.1 Standard Classical Kinematics

Classical Hamiltonian Mechanics is casted in the language of symplectic geome-

try. There are many excellent expositions of the subject. Some of the most standard

references, in which all the technical details of this section can be found, are:

– J.-M. Souriau. Structure des systèmes dynamiques. Paris: Dunod, 1970

– P. R. Chernof and J. E. Marsden. Properties of Ininite Dimensional Hamiltonian

Systems. Lecture Notes in Mathematics. Heidelberg: Springer-Verlag, 1974

– R. Abraham and J. E. Marsden. Foundations of Mechanics. 2nd ed. Redwood

City: Addison-Wesley Publishing Company, 1978

– V. I. Arnold. Mathematical Methods of Classical Mechanics. Trans. by K. Vogt-

mann and A. Weinstein. 2nd ed. Vol. 60. New York: Springer-Verlag, 1989

– M. Puta. Hamiltonian Mechanical Systems and Geometric Quantization. Dor-

drecht, The Netherlands: Kluwer Academic Publishers, 1993

– J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry. A

Basic Exposition of Classical Mechanical Systems. 2nd ed. New York: Springer,

1999

The space of states is described by a inite-dimensional symplectic manifold

(S, ω). This is a diferentiable manifold S equipped with one extra-structure: a 2-form

ω that is closed and non-degenerate. This means:

i) ω ∈ Ω2(S),

ii) dω = 0,

iii) ∀p ∈ S, ∀v ∈ TpS (v ̸= 0), ∃v′ ∈ TpS, ω(v, v′) ̸= 0.

The dimension d of a symplectic manifold is necessarily even: d = 2n. A state of the

system is described by a point of the state space.

The Lie group of global transformations is the group Aut(S) = Symp(n) of

symplectomorphisms17. It is the subgroup of difeomorphisms ϕ : S −→ S leaving

invariant the symplectic 2-form: ϕ∗ω = ω, where ϕ∗ω is the pull-back of the symplectic

17Sometimes, these transformations are also called canonical transformations.
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form18.

The Lie algebra of ininitesimal state transformations is the Lie algebra

associated to the group of global transformations. It is the Lie algebra Γ(TS)ω of

vector ields leaving invariant the symplectic 2-form: Γ(TS)ω = {v ∈ Γ(TS) |Lvω = 0}
where L denotes the Lie derivative19.

Finally, the algebra of properties is described by a Poisson algebra (UR,•, ⋆).

Deinition II.1. A Poisson algebra is a real (usually ininite-dimensional) vector

space equipped with two extra-structures: a Jordan product • and a Lie product ⋆ such

that

i) • is a bilinear symmetric product,

ii) • is associative,

iii) ⋆ is a bilinear anti-symmetric product,

iv) ⋆ satisies the Jacobi identity: f ⋆ (g ⋆ h) + g ⋆ (h ⋆ f) + h ⋆ (f ⋆ g) = 0,

v) ⋆ and • satisfy the Leibniz rule: f ⋆ (g•h) = (f ⋆ g)•h+ g•(f ⋆ h).

The Lie product of a Poisson algebra is very often called a Poisson bracket and denoted

by {·, ·}.

A property is described by an element of such an algebra. We see that it presents

a structure slightly more involved than what we have encountered so far. Let us make

a series of comments on this. First, axioms iii) and iv) turn (UR, ⋆) into a Lie algebra.

Second, the Jacobi identity can be read in at least three diferent ways: using the

anti-symmetry of the Lie product, one may write it as

f ⋆ (g ⋆ h)− (f ⋆ g) ⋆ h = −(f ⋆ h) ⋆ g

18A difeomorphism ϕ : S −→ S induces a transformation Φ : C∞(S,R) −→ C∞(S,R) deined by:

∀f ∈ C∞(S,R), (Φf)(p) = f(ϕ(p)).

This in turn allows to deine the push-forward ϕ∗ of vector ields and the pull-back ϕ∗ of n-forms by:

∀v ∈ Γ(TS), (ϕ∗v)[f ] := v[Φf ]

∀α ∈ Ωn(S), (ϕ∗α)(v1, . . . , vn) := α(ϕ∗v1, . . . , ϕ∗vn).

19For a given two-form α ∈ Ω2(S), the Lie derivative with respect to the vector ield v ∈ Γ(TS) is
given by the so-called “Cartan’s magic formula”: Lvα = (ιvd+ dιv)α, where ιvα := α(v, ·) ∈ Ω1(S).
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and it then expresses the non-associativity of the Lie product. But one may also write

it as

f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h+ g ⋆ (f ⋆ h)

and the Jacobi identity then captures the fact that, for any property f ∈ UR, the map

vf : UR −→UR
g 7−→vf (g) := f ⋆ g

is a derivation with respect to the Lie product. Third, the Leibniz rule is the only one

establishing a relation between the Jordan and Lie structures and it implies the map

vf is a also derivation with respect to the Jordan product. There is hence a map

v− : UR −→Der(UR)

f 7−→ vf

from the algebra of properties to the derivative operators on that algebra. This remark

furnishes us the third possible reading of the Jacobi identity. Indeed, it may be now

rewritten as

[vf , vg](h) = vf ◦ vg(h)− vg ◦ vf (h) = vf⋆g(h) (II.1)

which expresses the fact that the map v−, assigning operators to properties, is a mor-

phism of Lie algebras. If we denote by Der(UR)H the image of UR by the map v− (that

is, the Lie subalgebra of derivative operators arising from properties), and by Z(UR)
the center of (UR, ⋆), we then have the isomorphism of Lie algebras20

UR/Z(UR) ≃ Der(UR)H . (II.2)

This says that, up to an element of Z(UR), a classical property may as well be thought

as a derivative operator, as far as the Lie structure is concerned. If one takes into

account the commutative Jordan product, this is no longer true since the algebra

of derivative operators is just a Lie algebra and cannot be naturally equipped with

20This follows immediately from the fact Z(UR) is the kernel of the map v−.
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a Jordan product21. In any case, this shows that, already at the level of classical

mechanics, there is a close connection between physical properties and linear operators.

In fact, this remark may be seen as one of the fundamental points in the rationale of

geometric quantization22.

So far, I have discussed the Poisson algebra of classical properties without any

mention to the space of states in order to stress what can be learned from the sole

algebraic structure. Nonetheless, the back and forth between the geometrical picture

naturally attached to states and the algebraic picture naturally attached to properties

is a fundamental movement to properly understand the Kinematical arena. Of course,

classical properties are most commonly described as smooth real-valued functions over

the state space:

(UR,•, ⋆) ≃ (C∞(S,R), ·, {·, ·}).

The commutative and associative Jordan product • is nothing but the usual point-wise

multiplication ·, whereas the anti-commutative Lie product ⋆ is more commonly called

in this context the Poisson bracket and denoted by {·, ·}. Now, derivative operators of

an algebra of functions over a smooth manifold are nothing but vector ields:

Der(UR) ≃ Γ(TS)

and the derivative operator vf associated to the property f is usually called the Hamil-

tonian vector ield associated to f23.

Both the Poisson bracket and the Hamiltonian vector ield can alternatively be

deined in terms of the symplectic structure. Since ω is non-degenerate, for any p ∈ S

21Indeed, neither the composition nor the anti-commutator of derivative operators yield another
derivative operator. Thus, the purported analogue of Equation II.1

[vf , vg]+(h) = vf ◦ vg(h) + vg ◦ vf (h) = vf•g(h)

fails to be true.
22For a detailed analysis of this last point, see Catren, “On Classical and Quantum Objectivity”.
23More generally, the adjective “Hamiltonian” will almost systematically mean “arising from a

property” (e.g. a Hamiltonian curve, a Hamiltonian vector ield, a Hamiltonian g-action (cf. Deinition
III.2, page 247), etc.).
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it establishes an isomorphism

ωp(·, ·) : TpS ∼−−→ T ∗
pS

v 7−→ ωp(v, ·)

which allows to deine the Hamiltonian vector ield associated to the property f by

ω(vf , ·) := df.

Therefore, the Hamiltonian vector ield vf is sometimes also called the symplectic gra-

dient of f . Given this, the Poisson bracket of two functions f and g can be now deined

as

∀f, g ∈ C∞(S,R), {f, g} := ω(vg, vf ).

The fact that ω is a 2-form implies the anti-commutativity of the bracket, whereas

the closedness of the symplectic form forces the Jacobi identity.

Conversely, the data of a bracket {·, ·} turning (C∞(S,R), ·, {·, ·}) into a Poisson

algebra is (almost) enough to deine a symplectic structure on S. Indeed, given such a

bracket, one can deine a smooth antisymmetric tensor ield B ∈ Γ(∧2(S)), called the

Poisson tensor, by the equation {f, g} = B(df, dg). In virtue of the Jacobi identity,

it will automatically satisfy a condition analogue of dω = 024. Equipped with this

structure, (S,B) is a Poisson manifold25 but not necessarily a symplectic manifold. In

fact, a Poisson manifold is symplectic if and only if, locally, any possible transformation

of the space is generated by a property. In other words, when we choose the space

of states of a system to be symplectic, we are forcing any two states to be related

by a locally Hamiltonian curve26. This is precisely the feature that conveys to a

symplectic manifold its homogeneity and provokes the failure to meet the requirement

of individuation. Were the space of states a general Poisson manifold, there would be

ininitesimal state transformations not arising from properties and states impossible to

24This condition is: given any 3-form α ∈ Ω3(S), ιBdιBα = 0, where ιBα := α(B ∧ ·) ∈ Ω1(S).
(See N. P. Landsman. Mathematical Topics Between Classical and Quantum Mechanics. New York:
Springer, 1998, p. 66)

25See ibid., Deinition I.2.3.1, p. 66, and the comments following it.
26Cf. ibid., Proposition I.2.3.7, p.68.
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connect by a Hamiltonian curve. As we will see later, this is the classical analogue of

the quantum superselection rules.

The point of the last two paragraphs was to show that the Lie structure present

on the algebraic side of properties is the exact analogue of the symplectic structure

present on the geometric side of states. Either of them can be seen as induced by

the other. Now, let us discuss the relation with the fundamental conceptual triad of

Kinematics.

It is tempting to conclude that the existence of two structures on the algebra of

properties is a manifestation of the two roles of properties-as-quantities and properties-

as-transformations. This is enforced by the remark that the Jordan product is point-

wise multiplication and therefore relies on the fact that, when evaluated on a state,

the properties produce real numbers. Moreover, it can be shown that all Hamiltonian

vector ields preserve the symplectic structure and are thus ininitesimal state trans-

formations (in the speciic sense given above). The following picture emerges: classical

properties are deined by their numerical role, which yields the commutative algebra

(C∞(S,R), ·) of properties-as-quantities. To this is added a second structure, the Lie

product or Poisson bracket, which allows to introduce the second, transformational

role of properties. The map

v− : C∞(S,R) −→ Γ(TS)H

f 7−→ vf = {f, ·}

is presently seen as the technical device that captures the role of properties-as-transfor-

mations. The Lie algebra—a fortiori non-commutative algebra—of properties-as-trans-

formations is then the algebra of Hamiltonian vector ields (Γ(TS)H , [·, ·]). As as I

have explained in the short discussion following Equation II.2, this algebra is almost

the same as the algebra (C∞(S,R), {·, ·}): it becomes exactly the same if, instead of

considering the algebra of functions over the state space, one considers functions “up
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to a constant”27:

(Γ(TS)H , [·, ·]) ≃ (C∞(S,R)/{df = 0}, {·, ·}).

In any case, the role of properties-as-transformations is indeed completely governed by

the algebraic Lie structure or by the geometric symplectic structure. Under this light,

the existence of a symplectic two-form on the space of states is a necessary manifestation

of the fundamental transformational role of properties in Classical Kinematics.

All in all, the double-role of properties provides us with a rather satisfactory

conceptual understanding of the mathematical arena of Classical Kinematics. Let us

summarize the picture in a diagram:

Primary role of properties:

quantities

Commutative algebra

algebraic Jordan structure

?

f 7−→ vf
//

Secondary role of properties:

transformations

Non-commutative algebra

algebraic Lie structure

geometric symplectic structure

Fig. II.2 – The role of properties in the standard formulation of Classical Kinematics

From this perspective, it becomes transparent that one cannot capture the tran-

sition from the Classical to the Quantum by a loose statement such as: “quantization

is the transition from the commutative to the non-commutative”—statement unfortu-

nately far too common in the literature. A similar claim may perhaps be pertinent,

but it has to be rendered much more precise than this. Before turning to a description

of Quantum Kinematics in its standard formulation, let us make some inal remarks

on the state-quantity-transformation interplay in the Classical context:

27Indeed, the center of the Lie algebra (C∞(S,R), {·, ·}) is the set of locally constant functions, as
may easily be seen from the deinition of the Hamiltonian vector ields in terms of the symplectic
structure. If one considers only connected symplectic manifolds, then the center of the Lie algebra are
just the constant functions: Z(C∞(S,R) ≃ R.
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– States and values. Deine a valuation on a real algebra UR as a function λ :

UR −→ R for which the functional composition principle (FUNC) holds—that is:

if f, g ∈ UR are such that g = A(f) for some real-valued function A ∈ C∞(R)

then λ[g] = A[λ(f)]28. Any state p ∈ S obviously deines a valuation λp on the

algebra of properties C∞(S,R) by λp(f) = f(p). This means there is a consistent

way of assigning a well-deined value to any physical property for any classical

state. This is certainly a pedantic formulation of a trivial fact, but it becomes

pertinent when compared to the Kochen-Specker theorem in Quantum Mechanics

(cf. next section, page 164).

– Quantities and transformations. The condition of anti-symmetry of the Lie prod-

uct may as well be read as a condition of invariance. Because of the linearity of

the product, we have:

(
∀f, g ∈ C∞(S,R), {f, g} = −{g, f}

)
⇐⇒

(
∀f ∈ C∞(S,R), {f, f} = 0

)
.

The right hand side of the equivalence says that the function f is left invariant by

the ininitesimal transformation vf . Thus, the anti-symmetry of the product is

equivalent to demanding any property to be invariant under the transformations

it generates. In other words, deining on the space of states the equivalence

relation: p f∼ q if there exists a Hamiltonian curve generated by f relating p and

q, we have

p
f∼ q =⇒ f(p) = f(q).

28See for example C. Isham and J. Butterield. “Topos Perspective on the Kochen-Specker Theorem:
I. Quantum States as Generalized Valuations”. In: International Journal of Theoretical Physics 37
(1998), pp. 2669–2733. url: http://arxiv.org/abs/quant-ph/9803055, p. 2671. FUNC formalizes
the intuition that, if f is to have the value α, then e.g. f2 ought to have the value α2.

http://arxiv.org/abs/quant-ph/9803055
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We therefore arrive to the following compatibility condition of the two funda-

mental role of properties:

Kinematical compatibility of transformations with quantities: states

that are distinguished by a property-as-quantity cannot be related by the as-

sociated property-as-transformation.

The converse is however not true, as is immediate by considering constant func-

tions: states that are indistinguishable for a given property-as-quantity are not

necessarily related by the property-as-transformation.

– States and transformations. A state p is invariant under the transformations

generated by the property f only when p is a critical point of the function.29

II.1.2 Standard Quantum Kinematics

We now turn to the Quantum arena. In order to facilitate the comparison with the

Classical case, the goal is to analyze the standard formulation of Quantum Kinematics,

following as much as possible the analysis of the previous section. The standard for-

mulation of Quantum Kinematics is casted into the language of Hilbert spaces, and the

irst thing to do is to identify again the four fundamental structures: the space of states,

the Lie group of transformations, the Lie algebra of ininitesimal transformations and

the algebra of properties.

However, a small cautionary remark is necessary before we proceed. Indeed, be-

cause any Hilbert space H is at the same time a manifold and a vector space, there is

a natural isomorphism between the tangent bundle TH and H×H. It is the following:
given (ϕ, ψ) ∈ H ×H, deine Vϕ ∈ TψH by

∀f ∈ C∞(H,R), Vϕ[f ](ψ) =
d

ds
f(ψ + sϕ)

∣∣
s=0

. (II.3)

29Indeed, to say that the state p is invariant under the transformations generated by the property f
is equivalent to demanding the Hamiltonian vector ield vf to vanish at point p. Since, by deinition,
the symplectic two-form is non-degenerate and we have ω(vf , ·) = df , the condition vf

∣∣
p
= 0 is

equivalent to df
∣∣
p
= 0, which means p is a critical point of the function f .
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As a result of this, there is a constant ambiguity on the nature of the objects being

handled in this formalism. In particular, it is so for operators, which can be conceived

in at least two ways:

i) an operator is a map F : H −→ H that to an element ϕ associates a new element

F (ϕ). From this usual point of view, an operator is therefore a transformation of

the Hilbert space onto itself.

ii) an operator is a map F : H −→ TH that to an element ϕ associates the vector

VF (ϕ) ∈ TϕH (deined through Equation II.3). From this point of view, an opera-

tor appears now to be a vector ield on H. Accordingly, some vector ields on H
are oftentimes described as operators.

The subtle point one needs to be cautious about is that the two points of view are

not equivalent, for there are expressions which make sense from the former perspective

but not from the latter. For example, the composition of two operators is perfectly

well deined from the point of view of operators as transformations, but is impossible

to understand from the point of view of vector ields30. On the other hand, other

expressions, such as the commutator, make sense from both perspectives. With this in

mind, let us proceed.

The space of states is described by a (usually ininite-dimensional) Hilbert space

H. This a complex vector space equipped with one extra-structure: a hermitian inner

product deining a norm ∥ · ∥ such that (H, ∥ · ∥) is a complete metric space. States

of the system are described by rays of the space of states—that is, by one-dimensional

subspaces of H.

The (Lie) group of global transformations is the group Aut(H) = U(H) of

unitary transformations. It is the subgroup of linear operators A : H −→ H such that

A−1 = A∗31.

The Lie algebra of ininitesimal state transformations is the Lie algebra

30Diagrammatically, this is obvious. If F is an arrow H F−→ H, then F 2 is simply the arrow
H F //

F 2

77H F // H . But if F is an arrow H F−→ TH, then F 2 is a mystery...

31Strictly speaking, U(H) is only a Lie group when H is inite-dimensional. When this fails to be
the case, U(H) is not even a manifold because it is ininite-dimensional.



Chapter II. Classical and Quantum Kinematical Arenas 157

(BiR(H), [·, ·]) of (bounded) anti-hermitian operators32. This is precisely a point where

we take advantage of the ambiguity inherent to Hilbert spaces and describe vector ields

as linear operators. Then, the Lie product [·, ·] of the Lie algebra (BiR(H), [·, ·]) may

be thought of as the commutator of operators, or as arising in the usual way from the

composition law of the group U(H).

Finally, the algebra of properties is described by a non-associative Jordan-Lie

algebra (UR,•, ⋆).

Deinition II.2. A non-associative Jordan-Lie algebra is a real (usually ininite-

dimensional) vector space equipped with two extra-structures: a Jordan product • and

a Lie product ⋆ such that

i) • is a bilinear symmetric product,

ii) • is not associative: (F•G)•H − F•(G•H) = (F ⋆ H) ⋆ G (associator rule),

iii) ⋆ is a bilinear anti-symmetric product,

iv) ⋆ satisies the Jacobi identity: F ⋆ (G ⋆ H) +G ⋆ (H ⋆ F ) +H ⋆ (F ⋆ G) = 0,

v) F ⋆ (G•H) = (F ⋆ G)•H +G•(F ⋆ H)33.

A physical property is described by an element of such an algebra. Of course,

quantum properties are standardly described as bounded self-adjoint operators:

(UR,•, ⋆) ≃ (BR(H),
1

2
[·, ·]+,

i

2
[·, ·]).

32Again, for inite-dimensional Hilbert spaces, this is clear: any operator V ∈ BiR(H) deines a
one-parameter group of unitary operators through exponentiation: etV ∈ U(H), t ∈ R. In the ininite-
dimensional case, despite the fact that U(H) is not a Lie group, one is still allowed to claim that
the Lie algebra u(H) associated to the group U(H) consists of all anti-self-adjoint (not necessarily
bounded) operators. This is because of Stone’s theorem which shows there is a one-to-one correspon-
dence between anti-self-adjoint operators and continuous one-parameter unitary groups. For a precise
discussion of Stone’s theorem, see R. Abraham, J. E. Marsden, and T. S. Ratiu. Manifold, Tensor
Analysis, and Applications. 2nd ed. New York: Springer-Verlag, 1988, pp. 529–536.

33The name of this type of algebras comes from the fact that, given these axioms, (UR, ⋆) is a Lie
algebra and (UR,•) is a Jordan algebra. A real Jordan algebra (UR,•) is a commutative algebra such
that F•(G•F 2) = (F•G)•F 2 (Landsman, op. cit., Deinition I.1.1.1., p. 37). Thus, although in
general a Jordan algebra need not be associative, it must be power-associative. These algebras are of
course called after Pascual Jordan, who introduced them in 1933 when trying to abstract the algebraic
structure of quantum properties. An excellent introduction to the mathematical subject of Jordan
algebras is found in K. McCrimmon. A Taste of Jordan Algebras. New York: Springer-Verlag, 2004.
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The Jordan and Lie products are related to the composition of operators ◦, by means

of the anti-commutator and (i-times) the commutator respectively:

F ⋆ G :=
i

2
[F,G] =

i

2
(F ◦G−G ◦ F )

F•G :=
1

2
[F,G]+ =

1

2
(F ◦G+G ◦ F )34.

Comparison with the algebra of classical properties shows these two algebras are

strikingly similar. The only point where they difer is axiom ii): whereas the Jordan

product of classical kinematics is associative, the quantum one is not. However, some

suspicion may be raised against this comparison, for indeed the anti-commutator be-

tween two diferent self-adjoint operators barely ever shows up in Quantum Mechanics.

One may then wonder whether the quantum Jordan product has not been artiicially

introduced here in order to force the analogy with the Classical case. But this suspi-

cion fades away as soon as one realizes the intimate connection between the Jordan

product and the familiar—and certainly fundamental!—operation of taking squares35.

Indeed, with only the Lie product at our disposal, there would be no way of deining

the square F 2 of a given property F , since F ⋆ F = 0 (⋆ is anti-symmetric). With the

introduction of the Jordan product, one simply puts F 2 := F•F . Conversely, if one

supposes the square F 2 to be somehow a meaningful operation, then it is possible to

deine the Jordan product by

F•G =
1

4

(
(F +G)2 − (F −G)2

)
.

34The choice of representing properties by bounded self-adjoint operators is not without contro-
versies. In particular, this restriction excludes the usual position and momentum operators, but in
return, it greatly simpliies the mathematical treatment. For instance, if we remove the boundedness,
it is simply false that the set of all self-adjoint operators is closed under i

2 [·, ·].
Moreover, it is important to stress that the Lie product on bounded self-adjoint operators is not the

commutator: the multiplication by the complex number i in the deinition is a necessary one. This
is because the commutator of two self-adjoint operators yields an anti-self-adjoint operator. On the
other hand, the two factors 1

2 are only a convenient normalization in order to obtain the associator
rule as written in axiom ii), but other choices are possible. For instance, another normalization is
F ⋆ G := i

ℏ
[F,G], which forces κ = ℏ

2

4 (cf. the next deinition), but allows to write the canonical
commutation relations between position and momentum operators as P ⋆ X = 1.

35Recall, for example, the opening question of Heisenberg’s seminal paper of 1925: “If instead of
a classical quantity x(t) we have a quantum-theoretical quantity, what quantum-theoretical quantity
will appear in place of x2(t)?” (see section I.1.1.a, page 21).
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Therefore, if one is willing to consider squares of quantum properties, one is forced to

consider the quantum Jordan product36.

The comparison of the algebraic structure of classical and quantum properties mo-

tivates the deinition of a general (not necessarily non-associative) Jordan-Lie algebra,

which encapsulates both the classical and the quantum cases37:

Deinition II.3. A general Jordan-Lie algebra is a real (possibly ininite-dimensio-

nal) vector space equipped with a Jordan product • and a Lie product ⋆ such that

i) • is a bilinear symmetric product,

ii) ⋆ is a bilinear anti-symmetric product,

iii) ⋆ satisies the Jacobi identity: F ⋆ (G ⋆ H) +G ⋆ (H ⋆ F ) +H ⋆ (F ⋆ G) = 0,

iv) F ⋆ (G•H) = (F ⋆ G)•H +G•(F ⋆ H),

v) there exists κ ∈ R such that (F•G)•H−F•(G•H) = κ2(F ⋆H)⋆G (associator

rule).

Only the last axiom diferentiates classical and quantum properties. When κ = 0,

the Jordan product is associative and one gets the deinition of a Poisson algebra

describing classical properties (cf. Deinition II.1, page 148). When κ = 1, one gets

the previous deinition for the algebra of quantum properties with a non-associative

Jordan product. In fact, whenever κ ̸= 0, one may always rescale the Lie product as

to yield κ = 1. Therefore, the world of Jordan-Lie algebras is sharply divided into the

sole cases of κ = 0 (corresponding to Classical Mechanics) and κ = 1 (corresponding

to Quantum Mechanics). In this precise sense, one can say that the transition from

classical properties to quantum properties is the transition from associativity to non-

associativity—rather than from commutativity to non-commutativity—and that the

real diference between classical and quantum properties lies on the Jordan side.

36This point of view on the Jordan product is expressed in J. C. Baez. “Division Algebras and
Quantum Theory”. In: Foundations of Physics 42.7 (2012), pp. 819–855. url: http://arxiv.org/
abs/1101.5690, p. 8.

37Landsman, op. cit., Deinition I.1.1.2., pp. 37–38.

http://arxiv.org/abs/1101.5690
http://arxiv.org/abs/1101.5690
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That this is so need not be a surprise. With the previous experience of Classical

Kinematics in mind, one should expect the associations

Lie structure properties-as-transformations

Jordan structure properties-as-quantities

(II.4)

to be valid also in the quantum arena. And it seems reasonable to say that the most

important diferences between classical and quantum properties involve their behavior

as quantities.

One particular way of perceiving the diference of behavior between classical and

quantum properties-as-quantities is the following. Suppose we have at our disposal

some ‘numerical pairing’ ⟨·, ·⟩ which allows to assign a number ⟨f, σ⟩ to any given state

σ and property f , and consider the collection of numbers

N f
σ := {⟨f, σ⟩, ⟨f 2, σ⟩, ⟨f 3, σ, ⟩, . . .}

where each power fn is constructed using the Jordan product (e.g., f 3 := f•f•f). The

set N f
σ may be seen as encoding the numerical role of the property f with respect to the

state σ. Now, one can ask: Is there more information contained in the data of the whole

of N f
σ than in the data of the single number ⟨f, σ⟩? In Classical Mechanics, the answer

is negative: the numerical pairing ⟨f, σ⟩ is the evaluation of the real-valued function

f on the point σ and the Jordan product is point-wise multiplication. Therefore, by

deinition, one has ⟨fn, σ⟩ = (⟨f, σ⟩)n: the whole set of numbers N f
σ is known if one

knows the irst element ⟨f, σ⟩. In other words, the numerical role of classical properties

is single-layered: it may be reduced to the data of a single number (the value of the

property on the state). In Quantum Mechanics, on the other hand, the situation is

very diferent. Take for example the numerical pairing ⟨·, ·⟩ to be deined by:

∀F ∈ BR(H), ∀[ϕ] ∈ PH, ⟨F, [ϕ]⟩ := (ϕ, Fϕ)

(ϕ, ϕ)
(II.5)

where (·, ·) is the Hermitian product on H. According to the standard statistical

interpretation, the number ⟨F, [ϕ]⟩ does of course not represent the deinite value of

the property F on the state [ϕ], but rather the expected value. Therefore, in general
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⟨F 2, [ϕ]⟩ ̸= (⟨F, [ϕ]⟩)2, and the collection of numbers N F
[ϕ] is not determined by the data

of one single number: the numerical role of quantum properties is in fact a complex,

multi-layered structure38. Now, this existence of multiple layers in the numerical role

of quantum properties simply encodes the statistical nature of Quantum Mechanics.

Indeed, the standard deviation ∆F ([ϕ]) of the property F at the state [ϕ]—which

is a sensible numerical quantity only insofar as the theory is statistical: a classical

property has a deinite value on a state and there is nothing more to it—is exactly a

measure of the non-coincidence between the irst two numerical layers of the quantum

property-as-quantity:

∆F ([ϕ]) =
∣∣⟨F 2, [ϕ]⟩ −

(
⟨F, [ϕ]⟩

)2∣∣ 12 .

Hence, under the light of the familiar fact that Quantum Mechanics is statistical in

nature whereas Classical Mechanics is not, the statement that “the real diference

between the Classical and the Quantum lies on the quantitative side of properties”

appears as a very natural remark.

This provides some heuristic control over the plausibility that, indeed, the al-

gebraic Jordan structure is the one which encapsulates the diferences between the

two Kinematics. But the associations (II.4) remain to be checked in detail for the

Quantum case. That the Lie structure encapsulates again the role of properties-as-

transformations may easily be seen, for most of what has been said in the previous

section concerning the algebra of classical properties can automatically be transposed

in similar terms to the Quantum. In particular, the quantum analogue of the classical

map v− : C∞(S,R) −→ Γ(TS)H , used to capture the transformational role of classical

38At this point, one could perhaps speculate that this feature is highly dependent on our choice for
the numerical pairing ⟨·, ·⟩, and that a modiication of Equation II.5 could yield a set of numbers NF

[φ]

that behave exactly as the classical N f
σ . In this regard, the much discussed Kochen-Specker theorem

is a no-go. It establishes that, if dim(H) > 2, it is simply not possible to choose in the Quantum
Kinematical arena a numerical pairing such that ⟨Fn, [ϕ]⟩ = (⟨F, [ϕ]⟩)n. More precisely, it says that
no valuations on BR(H) exist (cf. page 154 for the deinition of a valuation). For a short discussion
on the Kochen-Specker theorem see for example R. Hermens. “Quantum Mechanics, From Realism
to Intuitionism”. MA thesis. Radboud University Nijmegen, 2010. url: http://arxiv.org/abs/
1002.1410, pp. 32-f.

http://arxiv.org/abs/1002.1410
http://arxiv.org/abs/1002.1410
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properties, is here deined as

V− : BR(H) −→BiR(H)

F 7−→ VF := iF. (II.6)

In other words, given a quantum property F , the associated ininitesimal state trans-

formation is simply the anti-hermitian operator obtained multiplying by i. In fact, this

relation—between the existence of a Lie structure on the algebra of properties and the

transformational role of properties in Kinematics—works even better than in Classi-

cal Kinematics, since the map V− is a canonical isomorphism of Lie algebras between

(BR(H), i[·, ·]) and (BiR(H), [·, ·]).39 This means: to consider quantum properties solely

in their role of properties-as-transformations—that is, to ignore their role of properties-

as-quantities—corresponds exactly to forgetting the algebraic Jordan structure. In other

words, the map from properties to properties-as-transformations may be written

V− : (BR(H),
1

2
[·, ·]+,

i

2
[·, ·]) −→ (BR(H),

i

2
[·, ·])

F 7−→ F.

En passant, this last point shows that, whereas in Classical Kinematics there

was an emphasis on properties-as-quantities and properties-as-transformations were

secondary—properties were irst deined as functions and only then one could associate

vector ields to them—, Quantum Kinematics, at least in its standard Hilbert space for-

mulation, presents the reverse situation: we clearly have properties-as-transformations

and the reading of properties-as-quantities is more involved. This sheds light on the

fact that quantum properties are easier to deine through their transformational role

(cf. the citation from Townsend on page 145). Thus, we have the diagram:

39One could make the choice of multiplying by −i instead of i, deining thus the vector ield VF ∈
Γ(TH) by VF

∣∣
φ
:= −iFϕ. With this new choice, the one-parameter group of unitary transformations

associated to the property F is the group of operators exp(−itF ), as usual. The (slight) default is
that the map V− becomes an anti-isomorphism of Lie algebras.
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Primary role of properties:

transformations

Non-commutative algebra

algebraic Lie structure

?

//

Secondary role of properties:

quantities

Commutative algebra

algebraic Jordan structure

?

Fig. II.3 – The role of properties in the standard formulation of Quantum Kinemat-
ics.

As a side remark, comparison of Figure II.3 and Figure II.2 (page 153) clearly

shows in which way the widespread image

“classical = commutative ; quantum = non-commutative”

arises from of a wrong analogy between the two Kinematics. Indeed, instead of com-

paring either the full algebras of properties (with both the Jordan and Lie structures),

or else the two non-commutative algebras of properties-as-transformations, the wrong

characterization of the Classical/Quantum transition compares the primary algebra of

classical properties with the primary algebra of quantum properties. It therefore com-

pares classical properties-as-quantities with quantum properties-as-transformations...40

40This mistake was there since the very beginning of Quantum Mechanics. In his seminal paper,
Heisenberg writes:

Whereas in classical theory x(t)y(t) is always equal to y(t)x(t), this is not necessarily
the case in quantum theory.
(W. Heisenberg. “Quantum-theoretical Re-interpretation of Kinematic and Mechanical
Relations”. In: Sources of Quantum Mechanics. Ed. by B. Van der Waerden. New York:
Dover Publications, Inc., 1967, pp. 261–276, p. 266)

In the same vein, one can ind in the second paper from Born, Heisenberg and Jordan:

We introduce the following basic quantum-mechanical relation: pq − qp = h
2πi1. [...]

One can see from [this equation] that in the limit h = 0 the new theory would converge
to classical theory, as is physically required.
(M. Born, W. Heisenberg, and P. Jordan. “On Quantum Mechanics II”. in: Sources of
Quantum Mechanics. Ed. by B. Van der Waerden. New York: Dover Publications, Inc.,
1967, pp. 321–384, p. 327)

It is clear that they were comparing the commutator in Quantum Mechanics with point-wise multi-
plication in Classical Mechanics (despite the fact that, by the time of the second quoted paper, Dirac
had already shown the quantum commutator should be compared to the classical Poisson bracket).
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Returning to the discussion of the double role of properties in the quantum arena,

it is interesting to note that two of the most notable distinguishing features of the

Quantum with respect to the Classical Kinematics—namely, the existence of a condi-

tion for states to have a deinite value of a property, and the existence of a compatibility

condition for properties—may be reformulated as invariance conditions:

1. Existence of a condition for states to have a deinite value of a property. As we

have already commented, not all states have a deinite value of a property. This

is the case if and only if the variance F̃ 2 − (F̃ )2 vanishes, which happens to be

so if and only if ϕ is an eigenvector of the self-adjoint operator: Fϕ = F̃ (ϕ)ϕ.

In other words, the operator F must leave the state [ϕ] invariant (since the rays

[F̃ (ϕ)ϕ] and [ϕ] are equal). In this way, we arrive at the following statement: a

physical state [ϕ] has a deinite value of the property F if and only if it is invariant

under the transformations generated by the property41.

2. Existence of a compatibility condition for properties. Two properties are said to

be compatible if they are simultaneously measurable. As von Neumann showed

in his book, properties are compatible if and only if their commutator vanishes42.

But, since i[F, ·] is the ininitesimal transformation associated to the property F ,

this is readily reformulated in terms of invariance: two quantum properties F and

G are compatible if and only if F is invariant under the transformations generated

by G (or viceversa).

The possibility of this reformulation hints to the idea that the Quantum is characterized

by a particular interplay between the transformational and numerical role of properties.

This idea will be become more and more precise as we advance in the analysis of the

two kinematical arenas. It is also at the origin of an attempt, developed by Gabriel

Catren, to construct a group-theoretical ontology of Mechanics43. For the moment, we

will content ourselves with leaving the idea latent in the background.

41A familiar example of this is given by the fact that states with a sharply deined value of energy
are called stationary states (since they can analogously be deined as states that do not evolve in time
(i.e., are invariant under time translations)).

42Von Neumann, op. cit., p. 228.
43See for instance Catren, op. cit. or G. Catren. “On the Relation Between Gauge and Phase

Symmetries”. In: Foundations of Physics 44 (2014), pp. 1317–1335.
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All of this having been said, the relation between the numerical role of quantum

properties and the Jordan structure remains nonetheless obscure. In this regard, the

present account of the Quantum arena is still frustrating. Moreover, we have here com-

pletely lost the interplay, which was felt so satisfactory in the Classical arena, between

the algebraic picture arising from properties and the geometric picture arising from

states. This motivates the attempt to change our perspective and describe Quantum

Kinematics with a more geometric language, somewhat leaving ashore the standard

Hilbert space formalism.

II.2 The Quantum seen from the Classical: the ge-

ometric formulation

The comparison of the standard formulations of both Kinematics has brought out a

striking structural similarity between the algebras of classical and quantum properties.

They both present two products—one commutative and one anti-commutative—whose

existence may be seen as a manifestation of the fundamental double role of the prop-

erties of a physical system. On the other hand, the classical and quantum descriptions

of the space of states seem at irst sight not to have any points in common. Ashtekar

and Schilling nicely explain the situation:

While the classical framework is geometric and non-linear, the quantum descrip-

tion is intrinsically algebraic and linear. Indeed, the emphasis on the underlying

linearity is so strong that none of the standard textbook postulates of quantum

mechanics can be stated without reference to the linear structure of H.44

One could then be inclined to think that, although the non-associativity of the Jordan

product has been spotted as the main diference between classical and quantum prop-

erties, the really crucial diference between Classical and Quantum Kinematics lies in

the nature of the space of states. For in the popular conception of Quantum Mechanics,

44A. Ashtekar and T. A. Schilling. “Geometrical Formulation of Quantum Mechanics”. In: On
Einstein’s Path: Essays in Honor of Engelbert Schücking. Ed. by A. Harvey. New York: Springer,
1997, pp. 23–65. url: http://arxiv.org/abs/gr-qc/9706069, p. 25, authors’ emphasis.

http://arxiv.org/abs/gr-qc/9706069
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the linearity of the space of states is concomitant of the superposition principle, which

in turn is often regarded as one—or perhaps the—fundamental feature of the theory,

as Dirac asserts:

For this purpose [of building up quantum mechanics] a new set of accurate laws

of nature is required. One of the most fundamental and the most drastic of these

is the Principle of Superposition.45

With this principle in hand, the knowledge of any two diferent states of the physical

system being considered allows one to construct a whole set of new states. In the

Hilbert space picture, given the states ϕ, ψ ∈ H, this new collection is simply the set of

all possible complex linear combinations φ = aϕ+ bψ, for a, b ∈ C. At best, physicists

had previously encountered superposition of waves and solutions to linear equations

of motion, but this superposition of states certainly was a irst, with no analogue in

Classical Mechanics. Here is again Dirac insisting on this point:

The nature of the relationships which the superposition principle requires to exist

between the states of any system is of a kind that cannot be explained in terms

of familiar physical concepts. One cannot in the classical sense picture a system

being partly in each of two states and see the equivalence of this to the system

being completely in some other state. There is an entirely new idea involved, to

which one must get accustomed and in terms of which one must proceed to build

up an exact mathematical theory. [...]

It is important to remember, however, that the superposition that occurs in

quantum mechanics is of an essentially diferent nature from any occurring in

the classical theory.46

From this perspective, the apparently radical diference between the geometric

space of classical states and the linear space of quantum states may be perceived as

the natural—and almost necessary—manifestation of this “drastic” new feature of the

Quantum. But in claiming so, one forgets a central point, which indicates this whole

45P. A. M. Dirac. The Principles of Quantum Mechanics. 4th ed. Oxford: Oxford University Press,
1958, p. 4, Dirac’s emphasis

46Ibid., pp. 12–14, Dirac’s emphasis.
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idea cannot be the end of the story: unlike in the classical arena, in the quantum arena

states are not described by points of the Hilbert space. Rather, states are described by

rays.

This sole remark suices to raise great deal of suspicion towards Hilbert spaces.

In a letter to Garrett Birkhof, von Neumann mentions it as one motivating reason to

seek a reformulation of the quantum theory in new terms:

I would like to make a confession which may seem immoral: I do not believe

absolutely in Hilbert spaces any more. [...] Because:

(1) The vectors ought to represent the physical states, but they do it redun-

dantly, up to a complex factor, only.47

Be that as it may, it is certainly a suicient remark to realize that quantum mechanics

is not as obviously linear as one initially may have thought: the “true” quantum space,

in which points do represent states, is the projective Hilbert space PH, a genuine

non-linear manifold.

The principle of superposition has certainly been a powerful idea, with a strong

inluence on the heuristics of the Quantum, and its link with the linearity of Hilbert

spaces has been in my opinion one of the main reasons for the widespread use of the

standard formalism. However, in the attempt to compare Classical and Quantum

Kinematics, due care should be taken to express both Kinematics in as similar terms

as possible. It becomes therefore natural to attempt a reformulation of quantum me-

chanics in a language resembling the classical one—that is, to forget Hilbert spaces

47Letter from von Neumann to G. Birkhof, J. von Neumann. John von Neumann: Selected Letters.
Ed. by M. Rédei. History of Mathematics. American Mathematical Society, 2005, p. 59, author’s
emphasis. In fact, this was not the unique—and not even the main—reason for von Neumann to be
dissatisied with Hilbert spaces, as is clear from the continuation of the letter:

(2) And besides the states are merely a derived notion, the primitive (phenomenologically
given) notion being the qualities, which correspond to the linear closed subspaces.

But if we wish to generalize the lattice of all linear closed subspaces from a Euclidean space
to ininitely many dimensions, then one does not obtain Hilbert space, but that coniguration
that Murray and I called “case II∞”.

For a careful discussion of von Neumann’s attitude towards Hilbert spaces, see M. Rédei. “Why John
von Neumann Did Not Like The Hilbert Space Formalism of Quantum Mechanics (and What He
Liked Instead)”. In: Studies In History and Philosophy of Science Part B: Studies In History and
Philosophy of Modern Physics 27.4 (1996), pp. 493–510.
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and to develop the quantum theory directly in terms of the geometry of PH. In partic-

ular, this means redeining the algebra of properties—since one needs to forget about

operators—and giving a new, geometrical account of the principle of superposition.

The task of this reformulation is sometimes referred to as the “geometric or de-

linearization program”. Its explicit goal is to reestablish the fruitful link, witnessed

in the Classical arena, between the geometry of the space of states and the algebraic

structures of properties. Kibble’s article “Geometrization of Quantum Mechanics”48

is often cited as the initiator of the program, although many ideas and results were

previously known, as one may see from the introduction of that article49. I regard the

works of Ashtekar and Schilling on one side, and Cirelli, Manià and their collaborators

on the other, as those having managed to pursue this road the furthest50. The for-

mer provides an excellent physical insight into what is gained from this reformulation,

while the latter furnishes the most elegant mathematical description of the geometrical

setting. Hughston and people surrounding him have also played an important role51.

They all clearly express the goals of their program:

The delinearization program, by itself, is not related in our opinion to attempts

to construct a non linear extension of QM with operators which act non linearly

on the Hilbert space H. The true aim of the delinearization program is to free

the mathematical foundations of QM from any reference to linear structure and

to linear operators. It appears very gratifying to be aware of how naturally

geometric concepts describe the more relevant aspects of ordinary QM, suggesting

that the geometric approach could be very useful also in solving open problems

48T. Kibble. “Geometrization of Quantum Mechanics”. In: Communications in Mathematical
Physics 65.2 (1979), pp. 189–201.

49There is for example Mielnik’s article “Geometry of Quantum States” which tries to describe
physical systems in terms of the geometry determined by the transition probability structure and
argues against “the old opinion that the only reasonable mathematical schemes to describe quantum
phenomena [are] those related to Hilbert spaces”.

50See in particular: T. A. Schilling. “Geometry of Quantum Mechanics”. PhD thesis. The Penn-
sylvania State University, 1996; Ashtekar and Schilling, op. cit.; Cirelli, Gatti, and Manià, op. cit.

51See D. C. Brody and L. P. Hughston. “Geometric Quantum Mechanics”. In: Journal of geometry
and physics 38.1 (2001), pp. 19–53. url: http://arxiv.org/abs/quant-ph/9906086, and references
therein.

http://arxiv.org/abs/quant-ph/9906086
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in Quantum Theories.52

In the same vein, Schilling writes in the introduction of his Ph.D. thesis:

The goal of this thesis is a formulation of the postulates of standard quantum

mechanics in a language which is intrinsic to the true space of states. The intent

is to lay a foundation by which one may study, for example, the classical limit

[...]. The desired formalism shall be valid for the generic quantum theory [...].

It should be emphasized that we are seeking a description of ordinary quantum

mechanics; we introduce no new input, but merely acknowledge mathematical

structures which are already inherent to the standard formalism. The diference

is one of semantics, but a potentially useful one.

The description presented here allows one to adopt a viewpoint in which

the Hilbert space is a iducial structure, not an essential ingredient.53

In regard to the questions that concern us in this chapter—namely, the link be-

tween: i) the two-fold role of properties, ii) the Jordan and Lie structures of the algebra

of quantum properties, iii) the geometric structures present on the space of states—the

hope is that the geometric reformulation of the quantum arena will provide us with

new insights54.

* * * * *

The main result from which the whole geometric program springs is the fact that

the projective space PH is a Hermitian symmetric space with automorphism group

G = U(H)55. This furnishes a completely new start to the description of the quantum

52Cirelli, Gatti, and Manià, op. cit., p. 268.
53Schilling, op. cit., p. 4, Schilling’s emphasis.
54It is important to clearly distinguish the ‘geometric or delinearization program’ from the program

of ‘geometric quantization’ which we won’t discuss here and is completely unrelated. The irst aims
at a reformulation of quantum mechanics which avoids Hilbert spaces. The second is geared towards
an explicit construction of the quantum description of a system for which the classical description is
given. But the resulting quantum description is still “intrinsically algebraic and linear”, since it is
based on Hilbert spaces. What is ‘geometric’ about geometric quantization is the means by which the
Hilbert space is constructed: roughly, one starts with the symplectic manifold describing the classical
system, considers a complex line bundle over it and deines the Hilbert space in terms of the sections of
this bundle. The program of geometric quantization was started by Jean-Marie Souriau and Bertram
Kostant. A standard reference is Woodhouse, op. cit.

55Cirelli, Gatti, and Manià, op. cit., section 2.
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kinematical arena, which strongly resembles the standard description of the classical

kinematical arena of subsection II.1.1. It is the following.

The quantum space of states is described by a (usually ininite-dimensional) Her-

mitian symmetric space (M,G, s, ω, J). This is a symmetric space (M,G, s)56 equipped

with two extra-structures: a symplectic 2-form ω and an integrable almost complex

structure J57 that is compatible with the symplectic structure: for any two vectors

v, w ∈ TxM , ω(Jv, Jw) = ω(v, w). A state of the system is described by a point of the

state space.

Given these geometrical structures, one can naturally deine a Riemannian metric

g on the quantum space of states by:

∀v, w ∈ TxM, g(v, w) := ω(v, Jw).

In fact, a Hermitian symmetric space is usually deined as a quintuple (M,G, s, g, J)

where g is a Riemannian metric and J is an invariant almost complex structure58.

The previous equation is then perceived as the deinition of the symplectic form. The

important fact for us is that the quantum space of states is both a symplectic manifold

and a Riemannian manifold, and has thus a very rich geometry whose meaning will be

explored in the following subsections.

The Lie group of global transformations is the group G of automorphisms of

the Hermitian symmetric space. By supposition, one takes G ≃ U(H), as would be the

case for a projective Hilbert space. These transformations are difeomorphisms that

are both symplectomorphisms and isometries.

56A symmetric G-space is a homogeneous space (M,G) together with an involutive difeomorphism
s :M →M which has an isolated ixed point. A homogeneous G-space is a manifold M on which: i)
G acts smoothly and transitively, and ii) for any x ∈ M , the isotropy group Gx is a Lie subgroup of
G. (See Note 7 of S. Kobayashi and K. Nomizu. Foundations of Diferential Geometry. Vol. 1. New
York: Wiley, 1963, pp. 300-f or, for the ininite-dimensional case Cirelli, Gatti, and Manià, op. cit.,
p. 3.)

57An almost complex structure is a smooth tensor ield J ∈ Γ(TM ⊗ T ∗M) such that for all x ∈
M,J2

x = −1.
58Associated to the Riemannian metric, there is a unique torsion-free metric compatible aine

connection ∇ (the so-called Levi-Civita connection). An almost complex structure J is said to be
invariant if ∇J = 0. See for example S. Kobayashi and K. Nomizu. Foundations of Diferential
Geometry. Vol. 2. New York: Wiley, 1969, p. 259, and also Cirelli, Gatti, and Manià, op. cit., p. 6.
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The Lie algebra of ininitesimal state transformations is the Lie algebra

associated to the group of global transformations. It is hence isomorphic to the algebra

(BiR(H), [·, ·]) of bounded anti-self-adjoint operators, but is here interpreted as the

algebra of smooth vector ields which preserve both the symplectic and Riemannian

structures.

Now, the irst important step in the route to a complete geometrical formulation

of the quantum kinematical arena is to provide a geometrical description of the non-

associative Jordan-Lie algebra of quantum properties. With the classical arena in mind,

the natural strategy is to consider the collection C∞(PH,R) of smooth functions over

the quantum space of states, and to deine two products • and ⋆, induced by some of the

geometrical structures of the quantum space of states, so that (BR(H), 12 [·, ·]+, i2 [·, ·]) is
isomorphic to (C∞(PH,R),•, ⋆) or to a subalgebra of it. Here, there are no surprises:

the anti-commutative Lie product will be deined by means of the anti-symmetric

bilinear form ω, whereas the commutative Jordan product will be deined by means of

the symmetric bilinear form g. But to see this, it is necessary to understand the link

between the geometry of the projective Hilbert space and the operations of the original

Hilbert space.

II.2.1 The quantum space of states as a classical space of states

Symplectic geometry is not characteristic of Classical Mechanics. As has been

hinted at and will now be explained in detail, it plays an equally important role in

the Quantum arena. Any space of states, be it classical or quantum, is a symplectic

manifold and the diference between both arenas is to be looked for elsewhere. In a

way, this was expected: section II.1 showed us that classical and quantum properties-

as-transformations behave in exactly the same way, and that the symplectic form could

be perceived as the geometrical manifestation of the transformational role of properties.

All the geometrical features of the projective Hilbert space can be understood in

purely group-theoretical terms, using the “well known” theory of Hermitian symmetric
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spaces as can be found in the book by Kobayashi and Nomizu59. This is the approach of

Cirelli and his collaborators. However, our aim for a new geometrical characterization

of quantum properties necessitates we approach the geometry of the “true” quantum

space of states in a somewhat indirect fashion, passing through the geometric structures

already present at the level of the Hilbert space H. In this, we follow the approach of

Ashtekar and Schilling.

As they explain, in order to clearly perceive the geometrical structures inherent

to Hilbert spaces, it is best to change perspectives and consider H from the point of

view of real numbers rather than complex numbers. First, one views H as real vector

space equipped with a complex structure J . This simply means that the multiplication

of a vector by a complex number is now considered as the result of two operations—

multiplication by real numbers and action of the linear operator J : for z ∈ C and

ϕ ∈ H, we have zϕ = Re(z)ϕ + Im(z)Jϕ. Second, one also decomposes the hermitian

product of two vectors into its real and imaginary parts, and uses once again the

canonical identiication TH ≃ H×H60 to deine the tensor Ω ∈ Γ(T ∗H⊗ T ∗H) by

Ω(Vϕ, Vψ) := 4Im(⟨ϕ, ψ⟩). (II.7)

The skew-symmetry of the hermitian product ⟨ϕ, ψ⟩ = ⟨ψ, ϕ⟩ entails the anti-sym-

metry of Ω, which is hence a 2-form. The fact that the hermitian product is positive-

deinite and non-degenerate implies Ω is both closed and non-degenerate. Thus, we

arrive at the following:

Result: By means of Equation II.7, a Hilbert space H may naturally be endowed with

a symplectic structure Ω.61

Note that, since by deinition unitary transformations preserve the hermitian prod-

uct, they automatically preserve the symplectic structure as well: U(H) ⊂ Symp(H).

59As John Baez once wrote on the n-category café blog: “‘well-known’, in the peculiar sense that
mathematicians use this term, meaning at least ten people think it’s old hat”. (Entry of November
25th 2010, https://golem.ph.utexas.edu/category/2010/11/stateobservable_duality_part_
1.html)

60Cf. the comment opening subsection II.1.2, page 155.
61Ashtekar and Schilling, op. cit., p. 6.

https://golem.ph.utexas.edu/category/2010/11/stateobservable_duality_part_1.html
https://golem.ph.utexas.edu/category/2010/11/stateobservable_duality_part_1.html
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The whole machinery of symplectic geometry can now be deployed in the context

of Hilbert spaces. In particular, to any smooth real-valued function on H, one can

associate a vector ield which preserves the symplectic structure (it is the symplectic

gradient, as deined on page 151) and the algebra C∞(H,R) becomes a Poisson algebra,

with Poisson bracket denoted {·, ·}H.

In relation to what has been already discussed about the Quantum Kinematical

arena, the immediate question is: does the symplectic geometry inherent to Hilbert

spaces furnish a new point of view from which to understand both the Lie structure

and the transformational role of quantum properties? The answer is of course positive,

and to see this it suices to consider again the map ∼ that, to a self-adjoint operator,

associates its (unnormalized) expectation value function:

∼: BR(H,R) −→ C∞(H,R)

F 7−→ F̃ where F̃ (ϕ) := ⟨ϕ, Fϕ⟩.

The irst thing to notice is that the symplectic gradient VF̃ of the function F̃ coincides

with the ininitesimal state transformation associated to the quantum property F (cf.

page 162). In other terms, we have:

VF̃ = VF = −iF. (II.8)

Moreover, the map ∼ is evidently injective (if the expectation value of an operator F

vanishes for all vectors in H, then F = 0), and is in fact a morphism of Lie algebras62:

{F̃ , K̃}H =
i

2
[̃F,K]. (II.9)

We therefore get the injection

(BR(H,R), i2 [·, ·]) (C∞(H,R), {·, ·}H)

Together, equations II.8 and II.9 show that, as far as the Lie structure of quantum

62See ibid., equation 2.6., p. 8, or Landsman, op. cit., equation I.2.38., p. 74. The diference of
factors and signs corresponds to diferent choices for the normalization of the symplectic structure
and the deinition of the Poisson bracket.
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properties-as-transformations is concerned, we might as well forget the commutator of

self-adjoint operators and reason in terms of the inherent symplectic structure of H
and the Poisson bracket of expectation-value functions.

This is certainly a very satisfactory point of view but it is not yet what we are

looking for. Recall: our goal is to characterize the algebra of quantum properties in

terms of the inherent geometry of the “true” quantum space of states PH. Moreover,

we cannot yet forget self-adjoint operators altogether since the deinition of quantum

properties-as-transformations still involves them...

With the role of symplectic geometry at the level of H well understood, it is now

easier to discuss the projective space PH. The idea is to consider the unit sphere

SH—i.e. the set of all unit vectors in H—and to use the pair of arrows

H SH PHi τ (II.10)

to induce a geometry on PH from the geometry of the Hilbert space. The left arrow

is simply the injection saying that SH is a submanifold of H. The right arrow is

the projection describing the unit sphere as a U(1)-iber bundle over the projective

Hilbert space. In other words, it describes PH as a quotient: PH ≃ SH/U(1). Then,

the symplectic form on the new quantum space of states is simply the unique non-

degenerate and closed 2-form ω ∈ Ω2(PH) such that τ ∗ω = i∗Ω (the pull-back of ω to

the unit sphere coincides with the restriction to SH of the symplectic form on H)63.

The induced Poisson bracket on C∞(PH,R) will be denoted by {·, ·}PH.

63Of course, one needs to be sure that such a 2-form does exist. There are several ways to see this is
indeed the case, but it necessitates a technical machinery that goes beyond was has been explained so
far. For completeness, I here shortly mention two closely related constructions involving the so-called
symplectic reduction.
First, from the point of view of Hamiltonian constrained systems, one considers H as the initial

phase space, equipped with the irst class constraint C(ϕ) := ⟨ϕ, ϕ⟩−1 = 0. The constrained surface is
then SH and the reduced phase space is PH. Since the initial phase space was symplectic, one knows
from the general theory of reduced phase spaces that the result is also symplectic. (See Schilling,
op. cit., pp. 28–31.)
Second, from the point of view of the Marsden-Weinstein reduction, one considers the natural action

of U(1) on H. This is a strongly Hamiltonian action and the momentum map µ : H −→ u(1)∗ ≃ R is
given by µ(ϕ) = ⟨ϕ, ϕ⟩. Then, PH ≃ µ−1(1)/U(1). (See Landsman, op. cit., p. 328)
For a third point of view, using the decomposition in symplectic leaves of any Poisson space, such

as H∗ := H \ {0}, see ibid., p. 74.
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The route towards a full geometrical description of quantum properties-as-transfor-

mations is continued by repeating the above procedure for Hilbert spaces. Indeed,

consider the following map associating a real-valued function on the space of states to

a self-adjoint operator:

̂ : BR(H) −→ C∞(PH,R) (II.11)

F 7−→ F̂ with F̂ (p) = ⟨ϕ, Fϕ⟩ and ϕ ∈ τ−1(p)64.

As was the case at the level of H, we apparently have now two diferent ways in which

to assign a smooth vector ield on PH to a self-adjoint operator F ∈ BR(H):

i) by means of the vector ield VF deined on H: deine vF ∈ Γ(TPH) by vF := τ∗VF

(the push-forward of VF is possible since it is tangent to SH),
ii) by means of the newly deined function F̂ : deine vF̂ ∈ Γ(TPH) as the symplectic

gradient of F̂ .

Happily, it just so happens that the two deinitions coincide:

vF = vF̂ . (II.12)

In other words, the symplectic low on PH generated by the function F̂ coincides with

the projection of the unitary low on H generated by the self-adjoint operator F 65.

Moreover,̂ is again a morphism of Lie algebras66:

{F̂ , K̂}PH =
i

2
[̂F,K] (II.13)

and we get the injection

(BR(H), i2 [·, ·]) (C∞(PH,R), {·, ·}PH). (II.14)

There is however no hope for this map to be an isomorphism, as may be seen by

considering inite-dimensional Hilbert spaces: in this case, BR(H) is inite-dimensional

whereas C∞(PH,R) is ininite-dimensional. The Lie algebra of self-adjoint operators is

64This deinition of F̂ (p) is clearly independent from the choice of the representative ϕ ∈ τ−1(p).
65Cf. Ashtekar and Schilling, op. cit., p. 12, or Landsman, op. cit., eq. I.2.45, p. 75.
66See Ashtekar and Schilling, op. cit., eq. 2.14, p. 12, or Landsman, op. cit., eq. I.2.42, p. 75.
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in fact a quite small subalgebra of the algebra of smooth functions!

We can now safely conclude: in the Quantum Kinematical arena, the algebra of

properties, with regard to its Lie structure, may be viewed as a subalgebra

of (C∞(PH,R), {·, ·}PH), the algebra of smooth real-valued functions over the

space of states equipped with the Poisson bracket. This algebraic Lie

structure—or equivalently, the geometric symplectic structure that induces

it—completely describes the role of quantum properties-as-transformations.

This should be felt as an impressive merger of the Quantum and Classical Kine-

matical arenas. For if one omits the underlined word “subalgebra”, this conclusion

applies equally well to the Classical! Or, to put it in another way, as long as one

chooses the right algebra of properties from the start, if one considers the quantum

space of states and pretends it is a classical space of states by focusing solely on its

inherent symplectic structure, one will get nonetheless the right quantum properties-

as-transformations. The remark of this led Kibble to claim, in his seminal article on

the geometry of Quantum Mechanics:

From this point of view, the essential diference between classical and quantum

mechanics lies not in the set of states (save for the ininite dimensionality) nor

in the dynamic evolution [i.e, nor in properties-as-transformations], but rather

in the choice of the class of observables, which is far more restricted in quantum

than in classical mechanics.67

This restriction in the choice of the class of properties may appear mysterious.

Any property is described by a real-valued function on the space of states, yet not

any function describes some quantum property. Why is it so? But to ask this is to

forget that, in the game of perceiving the Quantum through the looking glass of the

Classical, we have been ignoring a large part of the geometry inherent to the Quantum.

If we have not yet managed to provide an intrinsic characterization of the algebra of

quantum properties, it is precisely because we have so far only considered the symplectic

structure of the quantum space of states. However, as was quickly explained just before

the beginning of subsection II.2.1, there is at least one additional geometric structure:

67Kibble, op. cit., p. 190.
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a Riemannian metric g. If one takes it into account, the geometric deinition of a

kinematical property becomes possible and is beautiful in its simplicity:

Physical properties: a property of a physical system is a smooth real-valued

function on the space of states S to which an ininitesimal state transformation can

be naturally associated. That is, it is a function whose associated transformation

preserves all the available structures present in the kinematical space of states. The

set of these is denoted C∞(S,R)K.

This deinition is explicit in the work of Ashtekar and Schilling68. It applies

equally well to Classical and Quantum Kinematics. Ininitesimal state transformations

are vector ields preserving all the available kinematical structure. In the classical case,

this means only to preserve the symplectic structure, and any smooth function f may

thus do the job, as its symplectic gradient vf automatically veriies Lvfω = 0. But in

the quantum case, there is also the metric to preserve. Accordingly, only those functions

for which the symplectic gradient is as well a Killing vector will qualify as properties.

As the two authors prove, these functions exactly coincide with the functions F̂ that

are real expectation-value maps of self-adjoint operators F 69. It is important to notice

that this last point only applies to the projective Hilbert space. Were one to insist

on working at the level of H, this geometrical characterization of properties would

fail, for there are too many functions preserving both the symplectic and Riemannian

structures which do not arise as expectation-value maps of operators.

The general deinition of a physical property enlightens the importance of their

double role. For it is precisely this two-fold role, numerical and transformational, that

serves as a deinition of what a physical property is. The standard deinition of classical

properties only involved their numerical role—they were deined as functions on the

space of states—and did not apply to Quantum Kinematics. Conversely, the standard

68 Ashtekar and Schilling, op. cit., See Corollary 1, p. 14, and the comment following it.
69The proof of this result may also be found in Schilling, op. cit., Corollary 3.5, p. 41, or in

R. Cirelli, M. Gatti, and A. Manià. “On the Nonlinear Extension of Quantum Superposition and
Uncertainty Principles”. In: Journal of Geometry and Physics 29.1 (1999), pp. 64–86, Proposition
5.2., p. 76. This result is also mentioned in N. P. Landsman. “The Ininite Unitary Group, Howe
Dual Pairs, and the Quantization of Constrained Systems”. In: arXiv preprint (1994). url: https:
//arxiv.org/abs/hep-th/9411171, p. 15.

https://arxiv.org/abs/hep-th/9411171
https://arxiv.org/abs/hep-th/9411171
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deinition of quantum properties only involved their transformational role—they were

deined as operators acting on states—and did not apply to Classical Kinematics. A

posteriori, it is therefore most natural that the general deinition of a physical prop-

erty, be it classical or quantum, should explicitly mention properties-as-quantities and

properties-as-transformations.

From this perspective, Kibble’s enthusiastic claim appears to be partially wrong.

True: “the essential diference between classical and quantum mechanics lies [...] in the

choice of the class of observables”. But, against Kibble, this diference is also present in

the set of states: the quantum one is equipped with an additional geometric structure.

Thus, the “real” diference between the two kinematical arenas lies no more in the

algebraic structure of the properties than in the geometry of the states. Properties and

states are the two Janus faces of Kinematics and in both may one clearly perceive the

distinction70. We turn now to the investigation of this additional geometrical structure

of the Quantum.

II.2.2 The additional geometric structure of the Quantum

The conceptual analysis of section II.1 showed two important drawbacks of the

standard formulation of Quantum Kinematics were: the diiculty to relate the alge-

braic structures of properties to geometric features of states, and the obscure physical

meaning of the Jordan product. The geometric formulation of quantum mechanics

obviously tries to address the irst point and the hope is that by doing so, as a spin-of,

it will also clarify the second one. In relation to this, the realization of there being

two geometrical structures on the quantum side can only be felt as encouraging: there

were two algebraic structures (a Jordan and a Lie product) and two roles for properties

(numerical and transformational). Moreover, the essential diference between classical

and quantum properties was found to lie on the Jordan side of properties, and it now

seems to be found as well on the Riemannian side of states. Hence, it is hard not to

70Janus is the roman god of beginnings and ends and is almost systematically represented as a head
with two faces looking in opposite directions. I take this image from a conference given in Paris by
Klaas Landsman.



Chapter II. Classical and Quantum Kinematical Arenas 179

conjecture the following links:

properties-as-transformations Lie algebra symplectic geometry

properties-as-quantities Jordan algebra Riemannian geometry.

Now, recall the deinition of the symplectic structure at the level of the Hilbert

space H: it involved the imaginary part of the hermitian product (Equation II.7,

page 172). By analogy, one may use the real part to deine a second tensor G ∈
Γ(T ∗H⊗ T ∗H) by:

G(Vϕ, Vψ) := 4Re(⟨ϕ, ψ⟩). (II.15)

This time, the skew-symmetry, positive-deinitiveness and non-degeneracy of the hermi-

tian product respectively imply the symmetry, positive-deinitiveness and non-degenera-

cy of G. Thus, we have:

Result: By means of Equation II.15, a Hilbert space H may naturally be endowed

with a Riemannian metric G.71

Again, since by deinition unitary transformations preserve the hermitian product,

they automatically preserve the Riemannian structure as well: U(H) ⊂ Isom(H). At

the level of H, it therefore becomes transparent why the vector ield associated to a

self-adjoint operator is a Killing vector.

At this point, we may use again diagram II.10 (page 174) to induce a Riemannian

metric on the space of states. In the symplectic case, we regarded the isomorphism

SH/U(1) ≃ PH as the second stage of symplectic reduction and this suiced to insure

PH was also symplectic. Instead, we now adopt towards this isomorphism a diferent

perspective, called by Ashtekar and Schilling the “Killing reduction”72. It is the fol-

lowing: irst, the restriction i∗G of the metric G to the unit sphere is again a metric

and SH becomes then a Riemannian manifold in its own right. Second, one regards

the action of U(1) on H as the one-parameter group of transformations generated by

the vector ield VId ∈ Γ(TH) associated to the identity self-adjoint operator. By the

71Ashtekar and Schilling, op. cit., p. 6.
72See ibid., pp. 12–13, and also Schilling, op. cit., pp. 33–38.
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comment just above, we know that VId is a Killing vector for G. Moreover, this vector

ield is tangent to SH and is hence also a Killing vector for i∗G. In this way, the

isomorphism SH/U(1) ≃ PH describes the projective Hilbert space as the space of all

trajectories of the Killing vector ield VId. By a result of Geroch73, we know that the

resulting manifold is also Riemannian. We denote the Riemannian metric on PH by g.

Hence, the Riemannian and symplectic structures of the quantum space of states

PH may be seen as arising from the decomposition of the hermitian product of H into

its real and imaginary part. Combine to this the fact that, for self-adjoint operators,

the Jordan product • = 1
2
[·, ·]+ and Lie product ⋆ = i

2
[·, ·] may also be seen as arising

from the decomposition into real and imaginary parts of the usual composition of

operators74:

for A,B ∈ BR(H), A ◦B = A•B − iA ⋆ B

and you get a new strong hint that the algebraic Jordan structure of quantum properties

must be governed by the Riemannian geometry of the states.

This conjectured Riemann-Jordan link is inally proven by deining the following

commutative product on C∞(PH,R):

∀f, k ∈ C∞(PH,R), f • k := g(vf , vk) + f · k.

To the usual point-wise multiplication of functions f ·g, the metric adds a “Riemannian

bracket” (f, k) := g(vf , vk). Thus, in a loose sense, the presence of the Riemannian

structure allows to deform the usual commutative and associative algebra of functions

into a commutative but non-associative algebra.

Because of the similarity with the deinition of the Poisson bracket, this deinition

of the Riemannian bracket seems most natural. There is however a sense in which it is

misleading: it explicitly involves the symplectic gradient of the functions and it would

therefore seem that the new commutative product depends on both the metric and the

symplectic structure of the space of states. However, this is not true: as is shown by

73Appendix of R. Geroch. “A Method for Generating Solutions of Einstein’s Equations”. In: Journal
of Mathematical Physics 12.6 (1971), pp. 918–924, cited in Ashtekar and Schilling, op. cit., p. 12.

74In the same way that for a complex number z, Re(z) and Im(z) are both real while z is not, here
A•B and A ⋆ B are both self-adjoint even though A ◦B is not.
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Schilling, it depends only on the Riemannian metric75.

Now, as Ashtekar and Schilling show, the morphism ̂ : BR(H) −→ C∞(PH,R)
respects the Jordan product76:

F̂ • K̂ =
1

2
[̂F,K]+. (II.16)

This equation inishes the complete geometrical characterization of the quantum alge-

bra of properties, for both its Lie and Jordan structures, for we now have the following

isomorphism of non-associative Jordan-Lie algebras:

(
BR(H),

1

2
[·, ·]+,

i

2
[·, ·]

)
≃

(
C∞(PH,R)K, •, {·, ·}PH

)
. (II.17)

With this geometrical reformulation of the quantum kinematical arena, it is easier

to understand the sought-for link between the numerical role of properties and their

Jordan structure. This may also be now translated as the question of the link between

the properties-as-quantities and the geodesical structure of the space of states. As is

well known, one crucial characteristic of the Quantum is its probabilistical or statistical

dimension. This can be separated into two diferent yet related aspects:

i) The value of a property: given a property f and a state p, one cannot in general

assign a deinite value of the property to that state. Instead, one associates an

expected value f(p) and an indeterminacy ∆f(p).

ii) The probability of a value: given a property f and a possible value λ of that

property, to each state p one can assign a probability Pr(p, λ) of inding λ as

result of a measurement.

A very satisfactory insight of the present geometrical reformulation is that it allows

to understand these two aspects of quantum properties-as-quantities in terms of two

diferent yet related operations on the space of states enabled by the presence of the

Riemannian structure, namely:

75Schilling, op. cit., eq. 2.42, p. 24.
76Ashtekar and Schilling, op. cit., eq. 2.23, p. 15.
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1) The deinition of a length for tangent vectors:

for v ∈ TPH, ∥v∥2 := g(v, v).

2) The deinition of a distance between two states:

for p, q ∈ PH, dg(p, q) := inf
{∫

Γ

√
g(vΓ(t), vΓ(t))dt

∣∣ Γ ∈ Path(p, q)
}
.

where Path(p, q) is the set of parametrized paths between p and q. In the same

way, one can deine a distance between a state p and a subset of states Σ ⊂ PH,
which we denote by the same symbol dg(p,Σ)77.

The two results which render manifest the relation between i), ii) and 1), 2) are the

following. For a quantum property f ∈ C∞(PH,R)K, a state p ∈ PH, λ a possible

value of the property and Σλ ⊂ PH the set of all states having λ as deinite value of

the property f , we have78

(∆f)2(p) = ∥vf
∣∣
p
∥2 = g(vf

∣∣
p
, vf

∣∣
p
) = f•f(p)−

(
f(p)

)2
, (II.18)

Pr(p, λ) = cos2(dg(p,Σλ)). (II.19)

The last equation explains in which way the probabilistic features of the quantum

kinematical arena are completely governed by the geodesical structure of the quantum

space of states. It is useful to rewrite it in terms of two vectors ϕ and ψ of the initial

Hilbert space. It then says that, for the respective two points [ψ], [ϕ] ∈ PH, we have

dg([ψ], [ϕ]) = arccos(|⟨ψ, ϕ⟩|).

From this, it is clear that there exists a maximum distance between any two states,

called the diameter of PH. Two states separated by such a maximal distance are called

antipodal. As is transparent from the equation, antipodality at the level of PH is the

geometrical translation of orthogonality at the level of H79. The further two states are

77To do this, simply take dg(p,Σ) := inf
{
dg(p, q)

∣∣q ∈ Σ
}
.

78See ibid., eq. 2.26, p.15, and eq. 2.34, p. 20, or also Cirelli, Gatti, and Manià, “The Pure State
Space of Quantum Mechanics as Hermitian Symmetric Space”, p. 12 and p.8.

79See ibid., p. 8.
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from each other, the less probable is a transition between them. In other words, the

quantum transition probability is nothing else than a measure of the separation between

states!

On the other hand, Equation II.18 is conceptually very rich and well deserves a

few comments. First, it shows that the quantum indeterminacy of a property may be

equally well characterized in terms of the Riemannian structure or in terms of the Jor-

dan structure. Second, since (∆f)2 = ⟨f 2⟩ − ⟨f⟩2, the expression of the indeterminacy

in terms of the Jordan product implies that ⟨f 2⟩ = f•f . Speciically, if the property

f is represented by the function f , then the property f2 is represented by the function

f•f and not by the function f 2 = f ·f as one could have naively thought. This clearly

establishes—if there were still doubts—that the Jordan product deined through the

Riemannian structure is the true commutative product of quantum properties.

Third, and most important for us, this same equation sheds a new light on the

relation between the two roles of properties in Quantum Mechanics, for it expresses

the beautiful and satisfactory fact that the indeterminacy of a physical property-as-

quantity is precisely a measure of how much a state is changed by the property-as-

transformation. In particular, we recover as a special case the invariance ↔ deinite-

valuedness relation already noticed with the standard Hilbert space formulation (cf.

page 164): states with deinite values of the property f correspond to those being

invariant under the transformations generated by f . Also, as noted by Ashtekar and

Schilling, we rederive the geometric interpretation of the uncertainty in energy found

by Anandan and Aharonov in 1990:

[...] the uncertainty in energy ∆E for an arbitrary quantum system [...] is

the magnitude of the velocity of the system in the projective Hilbert space. It

follows that the evolution of the system in PH completely determines ∆E; no

other information from H is needed to determine ∆E.80

From a conceptual perspective, this is, in my opinion, one of the most important

results of the whole geometric reformulation of the quantum kinematical arena. It

80J. Anandan and Y. Aharonov. “Geometry of Quantum Evolution”. In: Physical review letters
65.14 (1990), pp. 1697–1700, p. 1699
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brings to the fore the existence of an interplay, characteristic of the quantum, between

properties-as-quantities and properties-as-transformations:

Quantum interplay of quantities and transformations. Properties-as-

quantities provide a quantitative description of how the respective properties-as-

transformations afect each state of the system.

We had earlier seen how the transformational role of properties was consistent

with its numerical role: properties-as-transformations only related states that were not

separated (distinguished) by the property-as-quantity (cf. page 155). This compatibil-

ity was valid for both Classical and Quantum Kinematics. But now we see that, in the

Quantum, a second compatibility condition is required, one which establishes a recip-

rocal interdependence of the two roles: the transformation respects the quantity and,

in return, the quantity describes the transformation. This trait—which had already

been hinted at in the discussion of the standard Hilbert space formulation of Quan-

tum Mechanics (cf. page 164)—is completely absent in the classical realm: classical

properties-as-quantities are independent of properties-as-transformations; the former

do not seem to encode any information whatsoever about the latter, and it is because

of this that classical uncertainties are unheard of.

In the same spirit, it is possible to provide a geometrical interpretation of Heisen-

berg’s famous indeterminacy principle. To recall, instead of considering the indetermi-

nacy of one single property f , Heisenberg’s principle considers a pair of them. In the

usual Hilbert space formulation, it is written: for F,K ∈ BR(H) and ϕ ∈ H,

∆ϕF∆ϕK ⩾
∣∣⟨ i
2
[F,K]⟩ϕ

∣∣.

That is, the product of the indeterminacies in F and K must be bigger than the mean

value of the property i
2
[F,K]. Now, using Equations II.13 (page 175), II.19 (page 182)

and the deinition of the Poisson bracket in terms of the symplectic form (page 150),

this inequality can be rewritten as

∥vF̂∥ ∥vK̂∥ ⩾ |ω(vF̂ , vK̂)|.

As noted by Cirelli, Gatti and Manià, this simply expresses the uniform continuity
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of the symplectic form with respect to the topology induced on the tangent space by

the Riemannian metric81. This constitutes yet another blow to the popular view that

swiftly opposes the Quantum to the continuum: Heisenberg indeterminacy principle,

often perceived as one of the most striking features characteristic of the Quantum,

appears as a statement of continuity of the geometrical structures on the quantum

space of states82!

Table II.1 below summarizes the conceptual understanding of the kinematical are-

nas as for now. Following Schilling, it could be tempting to say that, from the geomet-

rical point of view, the “fundamental distinction between the classical and quantum

formalisms is the presence, in quantum mechanics, of a Riemannian metric. While the

symplectic structure serves exactly the same role as that of classical mechanics, the

metric describes those features of quantum mechanics which do not have classical ana-

logues.”83 This is the view found in the vast majority of works on the geometrization

of quantum mechanics: the quantum would have one additional geometric structure,

81Cirelli, Gatti, and Manià, op. cit., p. 12.
82Of course, the view which systematically associates Quantum Mechanics with some sort of funda-

mental discretization of physical phenomena has been incessantly criticized from the very beginning
of the theory. For example, in the seminal “three-man paper” “Zur Quantenmechanik II” from 1925,
one can read the following:

[...] a particularly important trait in the new theory [of Quantum Mechanics] would
seem to us to consist on the way in which both continuous and line spectra arise in it on
equal footing, i.e., as solutions of one and the same equation of motion [...]; obviously, in
this theory, any distinction between ‘quantized’ and ‘unquantized’ motion ceases to be at
all meaningful, since the theory contains no mention of a quantization condition [...].
(Born, Heisenberg, and Jordan, op. cit., pp. 322–323, my emphasis.)

In the same vein, only a few weeks after this paper, the physicist Cornelius Lanczos wrote:

This much, however, we do believe that we are allowed to conclude [...]: that the modi-
ications, which we must apply to our classical views in order to reach an understanding
of the quantum problems, must lie in a totally diferent direction than could be char-
acterized simply by the contrast between continuum and discontinuum; and that the
solution of the quantum mystery should have hardly anything to do with a quantum-like
re-interpretation of geometry or ininitesimal calculus.
(C. Lanczos. “Über eine feldmäßige Darstellung der neuen Quantenmechanik”. In:
Zeitschrift für Physik 35 (1926), pp. 812–830, cited in J. Mehra and H. Rechenberg.
The Historical Development of Quantum Theory. Volume 3: The Formulation of Matrix
Mechanics and Its Modiications. New York: Springer-Verlag, 1982, p. 216)

Despite this, the association Quantum–Discrete still seems to have a strong heuristic inluence,
specially in the research of quantum gravity.

83Schilling, op. cit., p. 48.
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Classical Kinematics Quantum Kinematics

States

points p of a symplectic
manifold
(M,ω)

points p of a symmetric
Hermitian manifold

(M,ω, g, J)

Properties

C∞(M,R)K
Smooth real-valued functions
whose transformations preserve

the geometric structures

C∞(M,R)K
Smooth real-valued functions
whose transformations preserve

the geometric structures

Geometric
structures of

states

One geometric structure:

♠ a symplectic 2-form ω

Two geometric structures:

♠ a symplectic 2-form ω

♥ a Riemannian metric g

Algebraic
structures of

properties

Two algebraic structures:

♠ Anti-commutative Lie product
{f, k} = ω(Vf , Vk)

(induced by symplectic)

♥ Jordan product
Commutative and associative

f•k = f · k

Two algebraic structures:

♠ Anti-commutative Lie product
{f, k} = ω(Vf , Vk)

(induced by symplectic)

♥Jordan product
Commutative but non-associative

f•k = f · k + g(Vf , Vk)
(induced by Riemannian)

Roles of
properties

Two roles of properties:

♠ Properties-as-transformations
captured by Lie product

♥ properties-as-quantities
captured by Jordan product

∆f = 0
independent of transformations

Two roles of properties:

♠ Properties-as-transformations
captured by Lie product

♥ properties-as-quantities
captured by Jordan product

∆f = g(vf , vf )
dependent on transformations

Table II.1 – Comparison of the two kinematical arenas in their geometric formula-
tion.

with no analogue in the classical, and, in a loose sense, to quantize would mean to add

a Riemannian metric to the space of states.
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Nonetheless, this does not seem to be the impression conveyed by the comparative

table. By the end of section II.1, we had felt the description of the quantum kinematical

arena was not quite right. The harmonious balance between the geometric structures,

the algebraic structures and the double role of properties displayed in standard classical

kinematics was not found in standard quantum kinematics. But at present the situation

seems to have surprisingly reversed: the quantum description shines, and the praised

beauty of the classical has somewhat faded away. For something seems to be missing

in the description of classical kinematics—more precisely, one geometrical structure on

the space of states that would induce the associative Jordan product. In fact, one gets

the impression that this structure is the “Riemannian metric” g = 0. Indeed, setting

g to vanish in the quantum formulas yields the classical ones. Of course, g = 0 is not

an actual metric, so it cannot be that simple. But this does suggest there may be yet

another way of formulating the two kinematical arenas. A way in which they both

exhibit the same two kinds of geometrical structures, but it just so happens that one

of these structures is trivial—and hence unnoticed—in Classical Kinematics.

The search for this lost structure of the Classical constitutes my main motivation to

explore the C∗-algebraic formulation of Mechanics. This will be investigated in the next

section. However, before we turn to this, let me close the discussion of the geometric

formalism by one small subsection. It lies somewhat aside the main discussion of the

conceptual triad of Kinematics and may be skipped by the reader.

II.2.3 The geometrical formulation of the superposition prin-

ciple

As I commented at the beginning of section II.2, the idea of “superposition” has

been perceived, since the early stages of the theory, as one of the hallmarks of quantum

mechanics. Moreover, this “most fundamental and most dramatic law of nature” has

been almost systematically associated to the mathematical idea of “linearity”, up to

the point physicists often refer to the “quantum principle of linear superposition”. This

is most explicitly stated in Dirac’s Principles of Quantum Mechanics:

The superposition process is a kind of additive process and implies that states



188 Chapter II. Classical and Quantum Kinematical Arenas

can in some way be added to give new states. The states must therefore be

connected with mathematical quantities of a kind which can be added together

to give other quantities of the same kind. The most obvious of such quantities

are vectors.84

But this association is also manifest in much more recent literature on the foundations

of Quantum Mechanics. For example, in their attempt to present a modiication of

standard Quantum Mechanics that would solve the measurement problem—which is

now known as the GRW model—Ghirardi, Rimini and Weber declare:

Despite the success of quantum mechanics in accounting with striking accuracy

for a vast variety of physical phenomena, this theory presents crucial conceptual

diiculties, about which a lively scientiic debate is still going on. Almost all

the diiculties can be traced back to the problem of accounting for the behavior

of macroscopic objects and for their interactions with microscopic ones, and are

strictly related to the occurrence (allowed by the theory) of linear superpositions of

macroscopically distinguishable states of a macroscopic system (a typical example

being the macroscopically diferent pointer positions of a measuring apparatus).

This very fact, i.e., that the linearity of quantum theory unavoidably leads one to

consider such superpositions, constitutes a basic diiculty for all trials of deriving

a uniied description of the physical reality from microscopic to macroscopic

phenomena.85

Yet, after discovering the geometrical reformulation of quantum mechanics, we

know that the association of superposition and linearity is not inherent to Quantum

Mechanics but rather emerges from a particular formulation of it. We know the de-

linearization program must provide a description of the principle of superposition that

does not appeal to linearity in any way. But the precise translation of this principle

into geometrical ideas remains yet to be seen. A discussion of this important point is

surprisingly lacking in the exposition of Ashtekar and Schilling, but the details can be

found in the article by Cirelli, Gatti, and Manià (section 3) or in the article of Brody

84P. A. M. Dirac. The Principles of Quantum Mechanics. 4th ed. Oxford: Oxford University Press,
1958, p. 15.

85G. C. Ghirardi, A. Rimini, and T. Weber. “Uniied Dynamics for Microscopic and Macroscopic
Systems”. In: Physical Review D 34.2 (1986), pp. 470–491, p. 470, emphasis is mine.
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and Hughston (section 4). There is also a nice short article by Alejandro Corichi

dedicated solely to this issue86.

In its core, the Quantum Superposition Principle is a claim about the ability to

generate new possible states from the knowledge of just a few: given the knowledge of

states p1 and p2, one can deduce the existence of an ininite set Sp1,p2 of other states

which are equally accessible to the system87. In the standard Hilbert space formalism,

superposition is described by C-linearity: for two diferent states ψ1, ψ2 ∈ H, any

superposition of them can be written as ϕ = aψ1+ bψ2, with a, b ∈ C. If one only cares

about the set of all superpositions of two states, one may then argue that the principle

of superposition is captured by the canonical association of a two-dimensional complex

vector space to any pair of states. In other words, it is captured by the existence of a

map

V : H×H −→ Hom(C2,H)

where the linear map Vψ1,ψ2
: C2 → H is an injection if ψ1 and ψ2 are independent

vectors.

This slight reformulation of the linear superposition paves the way to its geo-

metrical translation. Indeed, one only needs to replace the Hilbert space by the real

quantum space of states PH, and the linear space C2 by its projective analogue, the

complex projective line PC2. In this way, the quantum superposition principle is now

86A. Corichi. “Quantum Superposition Principle and Geometry”. In: General Relativity and Grav-
itation 38.4 (2006), pp. 677–687. url: http://arxiv.org/abs/quant-ph/0407242.

87In his article, Corichi argues there are two diferent ideas usually associated to the notion of
“superposition”, and that due care should be taken to distinguish them. On the one hand, there is the
particular relation between states that allows one to construct new states from old ones. On the other
hand, there is the important idea of quantum interferences, manifest for example in the treatment
of the double-slit experiment. Therein, one separately considers the experimental setups with only
one slit: irst, only slit S1 exists and this produces the probability amplitude ψ1, then only slit S2

exists and produces the probability amplitude ψ2. The probability amplitude resulting from the actual
double slit experiment is then found by adding ψ1 and ψ2. Therefore, one studies a given experimental
arrangement by decomposing it into basic blocks, and then superposing the efects of each of these
blocks. Corichi calls the irst idea the principle of superposition of states, and corresponds to the
notion of “generation of states” we have just mentioned in the main text. It is a kinematical relation
valid for any quantum-mechanical system. The second idea he calls the principle of decomposition,
and is more related to particular experimental setups than to the consideration of general physical
systems.

http://arxiv.org/abs/quant-ph/0407242
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translated into the existence of a map

S : PH× PH −→ Hom(PC2,PH)

where, for p1 ̸= p2, the map Sp1,p2 is now a monomorphism in the category of Hermitian

symmetric spaces (or, equivalently, in the category of Kähler manifolds). Since the

complex projective line is in fact (isomorphic to) the Riemannian sphere—and thus,

as real manifolds, one has PC2 ≃ S2—the geometrical reformulation of the quantum

superposition of states becomes quite simple:

Geometrical reformulation of the superposition principle: given a

quantum system with space of states M and two states p1, p2 ∈ M , there

exists a canonical two-sphere Sp1,p2 ≃ S2 ⊂M containing them.

This two-sphere can be thought as the non-linear span generated by the two states.

As noted by Cirelli, Gatti, and Manià, Sp1,p2 can equivalently be characterized as the

smallest totally geodesic submanifold of the space of states containing p1 and p288.

One may however worry that this geometrical reformulation only deals with the

set of all superpositions as a whole, but does not allow to describe single superpositions

in the way it can be achieved in the Hilbert space formalism. But this is not so. For,

given two states p1 and p2, the task of characterizing the diferent states which arise

as superposition of these two is simply the task of deining, for the two-sphere Sp1,p2 ,

a coordinate system in which the points p1 and p2 play a preferred role. And there

is no obstruction for this to be done. For example, if one recalls that the complex

projective line PC2 is equivalently deined as the manifold obtained by adding a point

at ininity to the complex plane, one sees that any point of Sp1,p2 may be characterized

by a number z ∈ C ∪ {∞} such that, moreover, z(p1) = 0 and z(p2) =∞89.

88Cirelli, Gatti, and Manià, op. cit., p. 9. A totally geodesic submanifold of M is a submanifold
S ⊂M for which all geodesics inM through any point p ∈ S lie in S (for small values of the parameter
of the geodesics). This purely metric characterization of the set of superpositions of two states is also
found in V. Cantoni. “Superposition of Physical States: a Metric Viewpoint”. In: Helvetica Physica
Acta 58 (1985), pp. 956–968, p. 961.

89To deal with single superpositions, Cirelli, Gatti, and Manià adopt a diferent strategy, based on a
close examination of the geodesic structure of PH. Instead, I have here followed the simpler approach
of Corichi.
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Now, whereas the association of the set Sp1,p2 of all superpositions for a given pair

of states p1 and p2 was canonical, the ‘coordinatization’

z : Sp1,p2 −→ C ∪ {∞}

p 7−→ z(p)

on the contrary, is not: it depends on arbitrary choices. Of course, the same is true in

the language of Hilbert spaces, and it is interesting to recall how this characterization of

single superpositions with numbers z ∈ C∪{∞} is achieved in this latter setting. Given

two independent vectors ψ1, ψ2 ∈ H, there is a canonically associated two-dimensional

complex vector space Vψ1,ψ2
and there is a unique way in which to write each of its

elements in terms of ψ1, ψ2:

∀ϕ ∈ Vψ1,ψ2
, ∃!(a, b) ∈ C2, ϕ = aψ1 + bψ2.

To describe the states found by superposition—that is, the relevant rays of the Hilbert

space—one needs to arbitrarily choose one representative vector for each ray. This is

achieved by an arbitrary choice of normalization (e.g., ϕ = 1√
|a|2+|b|2

(aψ1 + bψ2)) and

of an overall phase factor (e.g,. a ∈ R). Only after this do we ind that any state [ϕ]

which arises as a superposition of the states [ψ1] and [ψ2] is uniquely written as

ϕ(z) =
1√

1 + |z|2
(ψ1 + zψ2), where z := b

a
∈ C ∪ {∞}

Therefore, in this unnecessarily twisted fashion, we reach the same ‘coordinatization’

of the space of all superpositions as we had arrived at straightforwardly through the

geometric formulation. In particular, we see that ϕ(0) = ψ1 and ϕ(∞) = ψ2.

We have then a complete description of all the features of the Quantum Superposi-

tion Principle which entirely avoids any mention to C-linearity and Hilbert spaces. To

conclude this discussion on the geometric superposition principle, it should be noted

that the two-sphere property of the quantum space of states may be perceived as one

of its fundamental geometric features. Indeed, as it will be seen when discussing al-

gebraic mechanics, it turns out that the two-sphere property is one of the very few
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axioms needed to characterize the pure state space of a C∗-algebra90. In this way,

the principle of superposition becomes indeed one of the most basic laws of Quantum

Mechanics.

II.3 The Classical seen from the Quantum: the al-

gebraic formulation

As became evident by the end of section II.1, the standard perspective on Kine-

matics fails to provide a satisfactory articulation of the Classical and the Quantum.

And—it was felt—the main reason for this failure was the clumsy description of quan-

tum states in the Hilbert space formalism. From the standard point of view of Classical

Hamiltonian Mechanics—which, in order to describe a physical system, speciies irst

a space of states, and only then considers the algebra of functions—this was a con-

sequence of not considering from the start the right quantum space of states. The

natural strategy was hence to reformulate the Quantum directly from the projective

Hilbert space PH. As we have seen in section II.2, this geometric program achieves its

aims exceedingly well.

Nevertheless, from the point of view of Quantum Mechanics, this geometric strat-

egy is certainly not the most natural one. For the strength of the Hilbert space formalism

lies in its description of the algebra of quantum properties. Indeed, in the same way

that given a diferentiable manifold the set of all smooth real valued functions is a

very natural real algebra to consider, given a Hilbert space it is also quite natural

to study the algebra of self-adjoint operators. Thus, in the standard quantum for-

malism, the description of the algebra of properties is straightforward. This is to be

contrasted with the situation in the geometrical formulation: one should not forget

that it took almost twenty years to ind the geometrical characterization of quantum

properties—from Kibble’s articles to the theorems of Schilling. With this remark taken

to its full-blown consequences, the problematic description of quantum states of the

90See Landsman, Mathematical Topics Between Classical and Quantum Mechanics, pp. 105–107,
and also the end of section II.3 of this thesis (page 229).
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Hilbert space formalism is perceived under a very diferent light. The deep roots of the

problem appear not to lie in the fact we had started the kinematical description with

the wrong space of states, but rather: in the fact we had insisted on starting with a

space of states instead of starting with an algebra of properties.

Accordingly, the main strategy of the algebraic approach to Mechanics is to re-

verse the order in which a physical system is described: specify irst an abstract algebra

of properties, and only then construct a space of states. It explores another possible

dynamic of the State/Property couple, complementary to the one examined by the ge-

ometric program. This will furnish a reformulation of the Quantum arena from within,

but it will accentuate the apparent “incommensurability” of the Classical/Quantum

couple. To overcome it, the classical arena will also need to be rethought.

Historically, this algebraic strategy was the irst serious attempt to reformulate

Quantum Mechanics after von Neumann’s introduction of Hilbert spaces. Already in

1934, only two years after the publication of his book, von Neumann himself started

investigating this route in a joint paper with Jordan and Wigner91. The geometric

formulation came only much later: it had to wait for the revival, in the second half of

the twentieth century, of the interest for the foundations of Classical Mechanics and

the progressive understanding of the importance of symplectic geometry in this setting.

Thus, the algebraic approach overwhelmingly dominated the landscape of research in

quantum foundations. It developed mainly into two diferent branches which may both

be seen as originating from works published by von Neumann in 1936:

– Quantum Logic. It was launched by the joint paper of von Neumann and Garrett

Birkhof “The Logic of Quantum Mechanics”92 and continued to be developed in

the 1960’s, principally by Josef-Maria Jauch and his student Constantin Piron in

Geneva, so that this approach is sometimes referred to as the “Geneva approach

91P. Jordan, J. von Neumann, and E. P. Wigner. “On an Algebraic Generalization of the Quantum
Mechanical Formalism”. In: Annals of Mathematics 35 (1934), pp. 29–64. (Reprinted in: J. von
Neumann. Collected Works. Ed. by A. H. Taub. Oxford: Pergamon Press, 1961, Vol. II, pp.
409–444).

92J. von Neumann and G. Birkhof. “The Logic of Quantum Mechanics”. In: Annals of Mathematics
37.4 (1936), pp. 823–843. (Reprinted in: J. von Neumann. Collected Works. Ed. by A. H. Taub.
Oxford: Pergamon Press, 1961, Vol. IV, pp. 105–125).
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to quantum mechanics”93.

– C∗-algebras. It started with von Neumann’s paper “On an Algebraic Generaliza-

tion of The Quantum Mechanical Formalism (Part I)”94. A decisive contribution

was that of Irving Segal’s 1947 article “Postulates for General Quantum Mechan-

ics”95, which made heavy use of the mathematical formalism developped by the

Russian school of Israel Gelfand (to be explained in the following section). Later,

the approach was taken on by Rudolf Haag and Daniel Kastler and applied to

Quantum Field Theory96.

A nice collection of some of the most important papers in the development of both

approaches can be found in Hooker’s The Logico-Algebraic Approach to Quantum Me-

chanics. Volume I: Historical Evolution97. Here, I will concentrate only on the C∗-

algebraic approach because it connects beautifully with the geometrical approach.

Philosophically, the algebraic strategy has oftentimes been motivated by a certain

underlying operational view of Physics. According to this view, the fundamental con-

cepts, upon which the physical theories are to be based, must result from a detailed

analysis of the experimental procedures as they take place in an actual laboratory. In

other terms, a framework is operational if “all aspects are introduced with speciic ref-

erence to events to be experienced”98. And since physical systems are only accessible

93C. Piron. “Axiomatique quantique”. In: Helvetica Physica Acta 37 (1964), pp. 439–468.
J.-M. Jauch. Foundations of Quantum Mechanics. Reading: Addison-Wesley, 1968.
J.-M. Jauch and C. Piron. “What is Quantum Logic?” In: Quanta, Essays in Theoretical Physics,

dedicated to Gregor Wentzel. Ed. by P. Freund, C. Goebel, and Y. Nambu. Chicago: University of
Chicago Press, 1970, pp. 166–181.

94J. von Neumann. “On an Algebraic Generalization of The Quantum Mechanical Formalism (Part
I)”. in: Receuil Mathématique 1.4 (1936), pp. 415–484. (Reprinted in: J. von Neumann. Collected
Works. Ed. by A. H. Taub. Oxford: Pergamon Press, 1961, Vol. III, pp. 492–559).

95I. E. Segal. “Postulates for General Quantum Mechanics”. In: Annals of Mathematics 48.4 (1947),
pp. 930–948.

96R. Haag and D. Kastler. “An Algebraic Approach to Quantum Field Theory”. In: Journal of
Mathematical Physics 5.7 (1964), pp. 848–861.
R. Haag. Local Quantum Physics – Fields, Particles, Algebras. 2nd ed. Heidelberg: Springer-Verlag,

1996.
97C. Hooker. The Logico-Algebraic Approach to Quantum Mechanics. Volume I: Historical Evolu-

tion. Dordrecht, The Netherlands: Reidel Publishing Company, 1975.
98D. Aerts and S. Aerts. “Towards a General Operational and Realistic Framework for Quantum

Mechanics and Relativity Theory”. In: Quo Vadis Quantum Mechanics? Ed. by A. C. Elitzur, S.
Dolev, and N. Kolenda. Berlin: Springer, 2005, pp. 153–207, p. 153.
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through a series of measurements, they should be deined by the set of measurable

properties—or, to adopt just once the operationalist language, by the set of observ-

ables. A lavor of this was certainly present in the main motivation advanced by von

Neumann to develop Quantum Mechanics in terms of algebras:

[...] the states are merely a derived notion, the primitive (phenomenologically

given) notion being the qualities [...].99

But most importantly, operationalism was explicitly endorsed by the other main con-

tributors to the C∗-algebraic approach. Irving Segal opened his seminal article on al-

gebraic quantum mechanics by claiming that his theory was “strictly operational”100,

and later wrote an article specially dedicated to defending this position101. In a similar

spirit, Haag and Kastler decided to “base their discussion on the notions of “opera-

tions””102 and all of their writings are full of operational arguments to motivate their

choices and deinitions103. More recently, in Strocchi’s excellent introductory textbook

to the C∗-algebraic approach to Quantum Mechanics, one inds that

[...] it is not justiied to extrapolate to the microscopic level the prejudices derived

from our experience with the macroscopic world. The only guide [for establish-

ing the mathematical description of quantum systems] must be the recourse to

operational considerations [...].104

Beyond the question “Is it possible to start the description of a physical system by

99Letter from von Neumann to G. Birkhof, J. von Neumann, John von Neumann: Selected Letters,
p. 59, author’s emphasis
100Segal, op. cit., p. 930.
101I. E. Segal. “The Mathematical Meaning of Operationalism in Quantum Mechanics”. In: The

Axiomatic Method. With Special Reference to Geometry and Physics. Proceedings of an International
Symposium held at UC Berkeley, Dec. 26 1957-Jan. 4, 1958. Ed. by L. Henkin, P. Suppes, and A.
Tarski. Amsterdam: North-Holland Publishing Co., 1959, pp. 341–352.
102Haag and Kastler, op. cit., p. 850.
103To give one example, in their joint article, they wrote: “We may say therefore that we have a
complete theory if we are able in principle to compute such probabilities for every state and every
operation when the state and the operation are deined in terms of laboratory procedures.” (Ibid., p.
850, my emphasis.)
104F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics. 2nd ed.
Singapore: World Scientiic, 2008, p. 42.
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its algebra of properties?”, the mathematical physicist with such philosophical motiva-

tions will attempt to answer the more ambitious question “Is it necessary to start the

description of a physical system by its algebra of properties?”. This rather extremist

view has been called “Algebraic Imperialism” by Arageorgis105 and has received serious

criticisms106, up to the point that Haag acknowledged that the “speciic mathemati-

cal structure of Quantum Mechanics [...] is not so easily derivable from operational

principles”107. But, as Laura Ruetsche rightly remarks, one need not adhere to any op-

erationalist view whatsoever to become interested in the algebraic approach108. Rather,

it becomes interesting to look carefully at the details of the mathematical structures

involved to see whether they point in a particular direction of this debate. Under this

light, the back-and-forth between states and properties acquires a new philosophical

relevance.

In my opinion, the two most important clichés emerging from the C∗-algebra

formulation of Mechanics are the following:

⋄ Quantum = Non-commutative. C∗-algebras cover both classical and quantum

systems. The irst are described by commutative C∗-algebras, the second by

non-commutative ones. Quantization is thus the passage from commutativity to

non-commutativity.

⋄ Quantum = Operational. A classical system may equivalently be described by

105A. Arageorgis. “Fields, Particles, and Curvature: Foundations and Philosophical Aspects of
Quantum Field Theory in Curved Space-Time”. PhD thesis. University of Pittsburgh, 1995.
106See for example L. Ruetsche. Interpreting Quantum Theories. The Art of the Possible. Oxford:
Oxford University Press, 2011, Section 6.4., pp. 132–143, and also S. J. Summers. “On the Stone – von
Neumann Uniqueness Theorem and Its Ramiications”. In: John von Neumann and the Foundations
of Quantum Physics. Ed. by M. Rédei and M. Stöltzner. Dordrecht: Kluwer Academic Publishers,
2001, pp. 135–152.
107Haag, op. cit., p. 7. See however Aerts and Aerts, op. cit. for a recent attempt of building a
(generalized) quantum theory from an operationalist stance.
108She writes: “The adamantly operationalist original axiomatizers establish the association between
regions and their local algebras by the interpretive maneuver of identifying elements of U(O) with
observables measurable by means of actions conined to the region O. But the association between
local observables U(O) and regions O needn’t be mediated by the notion of measurement or ideologies
totemizing that notion. [...] The operationalism of the original axioomatizers is one interpretative
option.” (Ruetsche, op. cit., pp. 104–105, author’s emphasis.)
Although Ruetsche’s comment is originally intended for Algebraic Quantum Field Theory, it equally

well applies to the algebraic formulation of non-relativistic Quantum Mechanics.
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its states or its properties. In the Quantum, this equivalence fails and a system

must be deined by the algebraic structure of its properties/observables. This

shows that, at the fundamental level, one must adopt an operational description

of physical systems.

These are both widespread claims. They swamp all the literature discussing Quantum

Mechanics—be it research articles on foundations or popular accounts of the theory.

Again, a nice example of this can be found in Strocchi’s book. He says:

In this perspective, since a physical system is described in terms of measurements

of its observables, one may take the point of view that a classical system is

deined by its physical properties, i.e. by the algebraic structure of the set of

its measurable quantities, which generate an abstract abelian C∗-algebra A with

identity.109

And also:

The deep philosophical conclusion [...] is that for the mathematical description of

atomic systems one needs an algebra of observables which is non-abelian. Clearly,

as always in the great discoveries, this is not a mathematical theorem and a

great intuition and ingenuity was involved in Heisenberg foundations of Quantum

Mechanics. To give up the abelian character of the algebra of observables may

look as a very bold step, but it should be stressed that the commutativity of

observables is a property of our mathematical description of classical macroscopic

systems [...].110

In the following subsections, I will present the main points of the algebraic ap-

proach and discuss its relevance for the conceptual analysis of Kinematics we have here

undertaken. In the course of it, we will see there are many doubts—to say the least—

concerning the validity of the two mainstream claims. All of the technical material

is standard and there exist many excellent expositions of it. I will mainly follow the

irst chapter of Landsman’s enlightening Mathematical Topics Between Classical and

Quantum Mechanics. Other important references are (from the most introductory to

109Strocchi, op. cit., p. 15, Strocchi’s emphasis.
110Ibid., pp. 41–42.
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the most advanced):

– F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechan-

ics. 2nd ed. Singapore: World Scientiic, 2008,

– J. Dixmier. Les C∗-algèbres et leurs représentations. 2nd ed. Paris: Gauthiers-

Villars, 1969,

– J. M. G. Fell and R. S. Doran. Representations of *-Algebras, Locally Compact

Groups, and Banach *-Algebraic Bundles. Vol. 1. San Diego: Academic press,

1988,

– E. M. Alfsen and F. W. Shultz. State Spaces of Operator Algebras. Boston:

Birkhäuser, 2001,

– M. Takesaki. Theory of Operator Algebras Vol. I. New York: Springer, 2003.

II.3.1 The grand algebraic analogy

Considering the description of classical and quantum properties of the irst two

sections, it may be surprising to hear that the “commutativity/non-commutativity”

picture is still under consideration. As we have repeated many times, both classical

and quantum properties fall under the general concept of Jordan-Lie algebras. Thus,

any algebra of physical properties may be seen as composed of a commutative Jordan

algebra of properties-as-quantities and a non-commutative Lie algebra of properties-

as-transformations . In this setting, the distinction between classical and quantum lies

in the associativity/non-associativity of the Jordan product. It would therefore seem

that the commutativity/non-commutativity picture is but an antiquated miss-analogy

one should better forget.

The story is however more involved than this simple account, based solely on the

perspective of Jordan-Lie algebras. For other important types of algebras appear in

both kinematical arenas. This can be seen as a consequence of a movement in striking

analogy with the one that had launched the geometric program. Recall: the geometric

structures of the quantum arena had emerged after a change in the point of view

towards the space of states: switch from complex numbers to real numbers. As we will

see, the powerful C∗-algebraic structures will emerge from the exact complementary
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movement—change the perspective on the algebra of properties: extend from real

numbers to complex numbers.

Jordan-Lie algebras are algebras deined over the ield of real numbers. We now

introduce two new diferent types of algebras deined over the ield of complex numbers.

Deinition II.4. A *-algebra is a complex associative algebra with an involution.

That is, it is a complex algebra (U , ◦) together with a real-linear map ∗ : U → U such

that, for all A,B,C ∈ U and λ ∈ C, we have

i) (A ◦B) ◦ C = A ◦ (B ◦ C),
ii) A∗∗ = A,

iii) (A ◦B)∗ = B∗ ◦ A∗,

iv) (λA)∗ = λA∗.

Deinition II.5. A C∗-algebra (U , ◦, ∗, ∥ · ∥) is a *-algebra together with a norm

such that

i) (U , ∥ · ∥) is a complex Banach space,

ii) for all A,B ∈ U , ∥A ◦B∥ ⩽ ∥A∥∥B∥,
iii) for all A ∈ U , ∥A∗A∥ = ∥A∥2.

A *-algebra or a C∗-algebra is said to be commutative if the associative product ◦
is commutative: ∀A,B ∈ U , A ◦B = B ◦ A.

The canonical example from quantum mechanics which motivates these deinitions

is the algebra (B(H), ◦, †, ∥ · ∥) of bounded linear operators on a Hilbert space H,
with the usual composition of operators as the associative product, and the action of

taking adjoints as involution111. Of course, this is a non-commutative C∗-algebra. The

canonical example of a commutative *-algebra is the algebra C(M,C) of continuous

complex-valued functions over a topological space M , with complex conjugation as

111The fact of considering only bounded operators is crucial for two reasons. First, it is necessary
to insure that the map † : A 7→ A† is an involution and thus that B(H) is a *-algebra. Indeed, the
identity A†† = A is in general not true for unbounded operators of an ininite-dimensional Hilbert
space. Second, the boundedness condition is also necessary to deine the norm that turns it into a
C∗-algebra. Recall the deinition of the norm for a bounded operator A ∈ B(H) (see Landsman,
op. cit., p. 39):

∥A∥ := sup
{
∥Aψ∥

∣∣ψ ∈ SH
}
.
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involution and the usual point-wise multiplication as the associative product112.

In fact, the famous Gelfand-Naimark theorem shows that any C∗-algebra falls into

one of these two fundamental examples. First, given any C∗-algebra U , there exists a

Hilbert space H such that U is isomorphic to a norm-closed *-subalgebra of B(H)113.

Second, given a commutative C∗-algebra U , there exists a locally compact topological

space X such that U ≃ C0(X,C)114. Thus, in the context of C∗-algebras, and only in

this context, the following associations can be made:

commutative algebra←→ functions over a topological space (II.20a)

non-commutative algebra←→ operators over a Hilbert space. (II.20b)

This means that any commutative C∗-algebra can be thought as an algebra of

functions over some topological space, whereas any non-commutative C∗-algebra can

be thought as an algebra of bounded operators on some Hilbert space.

Now, as we saw in section II.1, the standard description of Kinematics suggests

we should also make the associations

classical properties←→ functions over a diferentiable manifold (II.21a)

quantum properties←→ operators over a Hilbert space (II.21b)

which, combined with II.20a and II.20b, seems to lead to the common-place picture

classical physical systems = commutative C∗-algebra (II.22a)

quantum physical systems = non-commutative C∗-algebra. (II.22b)

Nevertheless, this train of thought, swiftly leading to such a conclusion, should be

regarded with suspicion. There are two main reasons for this: on the one hand, as the

112To turn this into a commutative C∗-algebra, one needs either to require the topological space
M to be compact, or else to restrict attention to the algebra C0(M,C) of continuous complex-valued
functions that vanish at ininity. Recall the deinition of the norm of a continuous function f on a
compact space M :

∥f∥ := sup
{
|f(p)|

∣∣p ∈M
}
.

113See ibid., Theorem I.1.1.8., p. 40, or Strocchi, op. cit., Theorem 2.3.1., p. 47.
114Landsman, op. cit., Theorem I.1.2.3, p. 42.
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geometric reformulation of Mechanics has clearly shown, quantum properties may also

be described by functions over a diferentiable manifold. Thus, it is not at all clear in

which way the Function/Operator couple can be used to distinguish the Classical from

the Quantum. On the other hand—and this has been perhaps the most important

point throughout—the truly relevant object in the description of physical properties is

their abstract mathematical structure. That is, our attention should focus more on the

collection of algebraic operations attached to the set of properties than in the particular

nature of the elements of this set. Classical properties may be described by the set

C∞(M,R), but it is a completely diferent thing whether one considers this set equipped

with point-wise multiplication or with the Poisson bracket. Quantum properties may

be described by the set BR(H), but it is a completely diferent situation whether one

considers this set equipped with the commutator or with the anti-commutator.

Therefore, to have a proper understanding of the (in)validity of “equations” (II.22a)

and (II.22b), one needs to understand the precise mathematical relation between these

newly deined complex algebras (*-algebras and C∗-algebras) and the real algebras we

had already encountered (Jordan, Jordan-Lie and Poisson algebras). The example

of bounded operators, which form a non-commutative C∗-algebra, and bounded self-

adjoint operators, which form a non-associative Jordan-Lie algebra, indicates these two

types of algebras should indeed be closely related.

With C∗-algebras it is the irst time we explicitly consider the existence of a norm

on the algebra of physical properties. Thus, it is best to start by also introducing a

norm on their real counterparts.

Deinition II.6. A Jordan-Lie-Banach algebra (or JLB-algebra for short)115 is a

real Jordan-Lie algebra (UR,•, ⋆) equipped with a norm ∥ · ∥ such that

i) (UR, ∥ · ∥) is a Banach space,

ii) for all A,B ∈ UR, we have ∥A•B∥ ⩽ ∥A∥∥B∥ and ∥A∥2 ⩽ ∥A2 +B2∥.

Analogously, one gets the concept of a Jordan-Banach algebra (or JB-algebra for

short) by norming a real Jordan algebra (UR,•)116.

115Ibid., Deinition I.1.14., p. 38.
116For the deinition of a Jordan algebra, see footnote 33 (page 157).
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Now, given the natural deinition of morphisms between JLB-algebras and between

C∗-algebras117, the relation between all these algebras is captured in the following two

facts:

Theorem II.1. There is an equivalence between the category JLB of Jordan-Lie-

Banach algebras and the category CStar of C∗-algebras. Moreover, this restricts to

an equivalence between the full subcategories aJLB of associative JLB-algebras and

cCStar of commutative C∗-algebras.118

Theorem II.2. The category aJLB is equivalent to the category aJB of associative

Jordan-Banach algebras119.

Let us comment on these results. Theorem II.1 states that, although JLB-algebras

and C∗-algebras are seemingly diferent types of algebras, they are in fact the same:

one can switch from one point of view to the other without any loss of information. It

is useful to see how this back-and-forth can be performed:

1. From C*-algebras to JLB-algebras: given a C∗-algebra (U , ◦, ∗, ∥ ·∥), consider the
set UR of all self-adjoint elements in U . Then, equipped with the two operations

A•B :=
1

2
(A ◦B +B ◦ A) and A ⋆ B :=

i

2
(A ◦B − B ◦ A),

(UR,•, ⋆, ∥ · ∥) is a real JLB-algebra.

2. From JLB-algebras to C∗-algebras: conversely, given a JLB-algebra (UR,•, ⋆, ∥·∥),
consider its complexiication (UR)C. For any A,B ∈ UR, equip (UR)C with the

117A morphism of JLB-algebras is a continuous linear map ϕ : UR −→ BR respecting both the Jordan
and Lie structures: for all A,B ∈ UR, ϕ(A•B) = ϕ(A)•ϕ(B) and ϕ(A ⋆ B) = ϕ(A) ⋆ ϕ(B) (cf ibid.,
Deinition I.1.1.3., p. 38). On the other hand, a morphism of C∗-algebras is a linear map ϕ : U −→ B
respecting both the associative product and the involution: for all A,B ∈ U , ϕ(A ◦B) = ϕ(A) ◦ ϕ(B)
and ϕ(A∗) = ϕ(A)∗ (cf ibid., Deinition I.1.1.7., p. 40).
Note that, for C∗-algebras, one does not need to require the morphisms to be continuous, as this

is automatically satisied (cf. J. Dixmier. Les C∗-algèbres et leurs représentations. 2nd ed. Paris:
Gauthiers-Villars, 1969, p. 7).
118The main content of the theorem can be found in Landsman, op. cit., Theorem I.1.1.9., p. 40, but
the result is not stated in terms of categories. The proof of the equivalence of categories is sketched
in Nlab: http://ncatlab.org/nlab/show/Jordan-Lie-Banach+algebra.
119Ibid., p. 38.

http://ncatlab.org/nlab/show/Jordan-Lie-Banach+algebra
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operations

A ◦B := A•B − iA ⋆ B and (A+ iB)∗ := A− iB

and with the norm ∥C∥2 = ∥C ◦C∗∥, for any C ∈ (UR)C. Then,
(
(UR)C, ◦, ∗, ∥ ·∥

)

is a C∗-algebra120.

Thus, the movement from complex algebras to real algebras is performed by restricting

to the real subset and splitting the product ◦ into its real and imaginary parts. The

converse movement is achieved by extending the real algebra and unifying the two

algebraic structures into one single product. These two constructions are compatible

in the sense that
(
(UR)C

)
R
≃ UR and (UR)C ≃ U . Thus, any JLB-algebra may be seen

as the real part of a C∗-algebra121.

Moreover, Theorem II.1 shows that associativity at the level of JLB-algebras is

equivalent to commutativity at the level of C∗-algebras. In the presence of this equiva-

lence, one could be tempted to see the conirmation of the validity, in the context of C∗-

algebras, of the commutativity/non-commutativity picture of the Classical/Quantum

couple. Classical properties are described by associative Jordan-Lie algebras (i.e. by

Poisson algebras); quantum properties are described by non-associative Jordan-Lie al-

gebras. Thus—it would seem—by the above theorem, this is equivalent to equations

II.22a and II.22b (page 200).

Yet, one must be careful to distinguish Jordan-Lie algebras from Jordan-Lie-

Banach algebras. For the introduction of a norm is not an innocent move. Theorem

II.1 reduces the question of the relation between C∗-algebras and Jordan-Lie algebras

to the investigation of which Jordan-Lie algebras can be turned into JLB-algebras.

120Here, the associative product is irst deined for elements of UR and then extended by C-linearity
to any element of U . One may alternatively deine it by the quite obscure formula

(A+ iB) ◦ (C + iD) := (A•C +B ⋆ C +A ⋆ D −B•D) + i(B•C +A•D +B ⋆ D −A ⋆ C)

whose only merit is to deine the product ◦ directly on the whole complex algebra. See for example
http://ncatlab.org/nlab/show/Jordan-Lie-Banach+algebra.
121En passant, this inally explains the notation we have adopted from the beginning for abstract
Jordan-Lie algebras.

http://ncatlab.org/nlab/show/Jordan-Lie-Banach+algebra
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Theorem II.2 partially answers this later question. It states that a JLB-algebra is as-

sociative if and only if its Lie structure vanishes. In other words, non-trivial Poisson

algebras (e.g. the algebra of smooth functions over a symplectic manifold) cannot in

general be normed and therefore do not fall under the theory of JLB-algebras. By the

same token, it appears that the theory of C∗-algebras is unable to capture precisely

those algebraic structures which describe classical properties! Quite to the opposite

of what could have been initially thought, the combination of the above two theorems

deinitively invalidates the idea that quantization is the transition from commutativity

to non-commutativity. For to equate classical systems with commutative C∗-algebras

would amount to boldly ignoring the symplectic structure of Classical Kinematics...

Despite the failure of C∗-algebras to encompass all of Classical and Quantum

Kinematics, there is no doubt of the fruitfulness of this algebraic approach to Quan-

tum Mechanics. While the machinery of C∗-algebras may be unable to perceive the

Poisson structure of Classical Kinematics, it nonetheless may be used to have new

insights on the meaning of the algebraic Jordan structure, as will be seen in the next

section. Moreover, this algebraic approach has already provided another interesting

characterization of the distinction between classical and quantum properties. Before,

the world of Jordan-Lie algebras was sharply divided into two groups, depending on

the value of κ in the associator rule (F•G)•H−F•(G•H) = κ(F ⋆H)⋆G122. Either

κ = 0 and you were in the Classical arena dealing with Poisson algebras; or κ = 1

and you were in the Quantum arena dealing with non-associative Jordan-Lie algebras.

But the conceptual meaning of this change, from associativity to non-associativity, was

not transparent. Now, with the introduction of *-algebras, we see that non-associative

Jordan-Lie algebras precisely correspond to those Jordan-Lie algebras arising as the

real part of complex *-algebras. Thus, instead of using the associator rule as a means

to classify Jordan-Lie algebras, we use the relation with the category Star of *-algebras.

Either the Jordan-Lie algebra stems from a *-algebra, in which case you are dealing

with an algebra of quantum properties; or the Jordan-Lie algebra cannot be com-

plexiied into a *-algebra, in which case you are dealing with an algebra of classical

122Cf Deinition II.3 (page 159) and the paragraph following it.
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properties123.

This new characterization of the distinction between quantum and classical prop-

erties serves well our purpose of understanding the two-fold role of physical properties

in Mechanics. For it shows that, in the quantum arena, when passing from real num-

bers to complex numbers, the Jordan and Lie structures appear as two faces of one

single structure. This uniication of the two algebraic structures is impossible in the

classical case and thus characterizes the Quantum.

Quantum uniication of Jordan and Lie. The Jordan and Lie structures deined

on the set of quantum properties may always be seen as originating from one single

structure: they are the real and imaginary part of the associative product of a

C∗-algebra.

Since the Jordan and Lie structures respectively govern the numerical and transfor-

mational roles of physical properties, this is the algebraic reformulation of the quantum

interplay of quantities and transformations (cf. page 184).

The relation between the diferent types of algebras used to describe classical and

quantum properties is summarized in Figure II.4 below.

II.3.2 States and representations of algebras

Recall: in the algebraic formulation of Kinematics, the starting point of the math-

ematical description of a physical system should be an abstract algebra, which is in-

tended to describe the properties of the system. The point of the last section was to

clarify the precise algebras that must be considered for this purpose in both kinemat-

ical arenas: in the classical case, one should start from a real Poisson algebra; in the

123One may wonder what is found by complexifying the real algebra of classical properties. Given a
Poisson algebra (UR, ·, {·, ·}), one can analogously consider its complexiication (UR)C and deine the
operations: A ◦ B := A · B − i{A,B} and (A + iB)∗ := A − iB, where A,B ∈ UR. The problem is
that the product ◦ is no longer associative:

(
(UR)C, ◦, ∗) is a non-associative complex algebra with

involution. This is a mathematical structure of a much less studied type than *-algebras. Moreover, if
one considers a non-associative algebra with involution (U , ◦, ∗), its real part will in general fail to be
a Poisson algebra. Thus, the equivalence between the complex and real points of view on the algebra
of physical properties is lost in the classical arena.
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functions over the space of states and the numerical pairing was rather denoted as f(ρ)

(read: ‘f of ρ’). In the algebraic approach, this is simply turned around: the property

is the primitive concept and states are deined by the collection of the pairings ⟨f, ρ⟩
for all diferent properties. Accordingly, the numerical pairing will now be denoted by

ρ(f) (read: ‘ρ of f ’).

Deinition II.7. Given an abstract unital124 C∗-algebra U , a state ρ is a normalized

positive linear functional over U125. This means:

i) it is a linear map ρ : U −→ C,

ii) for all A ∈ U+
R , ρ(A) ⩾ 0, where U+

R := {B∗B
∣∣B ∈ U} (positivity),

iii) ρ(I) = 1 (normalization).

The deinition may equivalently be stated in terms of JLB algebras126. The set of

states is denoted by S(U).

One can immediately remark that, so deined, the space of states is not a linear

space—fact we had already insisted upon in the geometric formulation. Indeed, as

linear functionals, one can consider complex linear combinations of the two given states

ρ and σ. But, because of the positivity and normalization conditions, the resulting

functional aρ + bσ will in general fail to be a state, unless a, b ∈ R+ and a + b = 1.

Whenever these two conditions are met, then the combination aρ+bσ of the two states

is again a state. In other words, the space of states fails to be a complex linear space

but is, instead, a convex set. This important fact motivates the following deinition:

Deinition II.8. A pure state is a state lying on the boundary of S(U)—that is, it

is a state that cannot be written as a weighted sum of two diferent states. The space

of pure states is denoted by P(U). By deinition, we have P(U) = ∂S(U). A state that

is not pure is called a mixed state.

124The unit I of a C∗-algebra, if it exists, is the neutral element of the associative product: for all
A ∈ U , A ◦ I = I ◦ A = A. Any non-unital C∗-algebra can be turned into a unital C∗-algebra in a
canonical fashion (in categorical terms, this means that the forgetful functor from the category CStar 1
of unital C∗-algebras to the category CStar has a (left) adjoint). The same holds for JLB-algebras,
where the unit is the neutral element of the Jordan product. Thus the restriction to unital algebras
is of no consequence and will be often tacitly assumed. (Cf. ibid., Proposition I.2.1., p. 41.)
125Alfsen and Shultz, op. cit., p. 50.
126In which case one regards a state as a linear map ρ : UR −→ R and U+

R
:= {A2

∣∣A ∈ UR}.
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As usual, it is insightful to consider the two main examples of C∗-algebras. First,

if one takes U = B0(H) (the non-commutative C∗-algebra of compact operators), then

S(U) is the set of all density matrices and the pure state space is P(U) = PH127: given

an element [ψ] ∈ PH, the corresponding state ρψ is deined by

for all A ∈ B0(H), ρψ(A) :=
⟨ψ,Aψ⟩
⟨ψ, ψ⟩

which obviously does not depend on the choice of the representative ψ ∈ H of [ψ] ∈ PH.
Second, if one takes U = C0(X,C) (the commutative C∗-algebra of compact functions),

then S(U) is the set of all probability measures on X, and the pure state space is

P(U) ≃ X128. Thus, the algebraic deinition of pure states exactly corresponds to the

usual “states” we have been handling in this chapter, whereas mixed states correspond

to the notion of state of classical or quantum statistical physics.

Another crucial notion in this algebraic formulation of Kinematics is that of a

representation.

Deinition II.9. A representation of a C∗-algebra U (on a Hilbert space H) is a

morphism of C∗-algebras π : U −→ B(H). Analogously, a representation of a JLB-

algebra UR is a morphism of JLB-algebras π : UR −→ BR(H).

Of course, a representation of a C∗-algebra induces a representation of the associ-

ated JLB-algebra of self-adjoint elements. A representation is non-degenerate if 0 is

the only vector belonging to the kernel of all the representatives:

(for all A ∈ U , π(A)ψ = 0) =⇒ ψ = 0.

A representation on H is cyclic if there exists a vector ψ ∈ H such that π(U)ψ is

dense in H129. In other words, ψ is a cyclic vector for the representation π if the

smallest closed subspace containing ψ which is invariant under all π(U) is the whole

Hilbert space H. A closely related notion is that of an irreducible representation:

127Landsman, op. cit., Corollary I.1.1.6., p. 57 and Proposition I.2.1.2., p. 61.
128Ibid., p. 55 and Proposition I.2.1.4., p. 61.
129A subspace K is said to be dense in H if, for every ψ ∈ H, there exists a sequence of elements of
K which converges to ψ in the norm of H.
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this is a representation π for which there are no closed subspaces of H invariant under

all π(U) (other than the trivial ones: the whole space H and the 0 vector). Hence,

a representation is irreducible if—and, in fact, only if—any non-zero vector in H is

cyclic130. Finally, two representations π1 and π2 are equivalent (denoted π1 ∼ π2)

if there exists an isomorphism U : B(H1) → B(H2) such that the following diagram

commutes:

U

π1

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

π2

��✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼

B(H1) U

∼ // B(H2).

From the abstract point of view that is ours, two equivalent representations are con-

sidered to be equal131.

In fact, the notions of “states” and “representations of the algebra of properties”

are closely related. Indeed, we have the two following ‘movements’:

♠ Representations allow to deine states. Given a C∗-algebra U and a representation

π of it on a Hilbert space H, any non-zero vector in H allows to deine a state

ρψ by

for all A ∈ U , ρψ(A) :=
⟨ψ, π(A)ψ⟩
⟨ψ, ψ⟩ .

States of U arising in this way are called vector states. For non-degenerate

representations, it is clear that two vector states are equal if and only if the

vectors deining them are collinear.

♥ States allow to deine representations. The fact that the information contained

in a representation of a C∗-algebra is enough to build some states should not

surprise. Much less evident is the converse statement. This is known as the GNS

construction (Gelfand-Naimark-Segal) and is certainly a fundamental result in

130Ibid., Proposition I.2.2.2, p. 63). For representations of JLB-algebras, it is this last property
which deines the notion of irreducibility (N. P. Landsman. “Classical and Quantum Representation
Theory”. In: arXiv preprint (1994). url: http://arxiv.org/abs/hep-th/9411172, Deinition 6, p.
23).
131In other words, in the category Rep(U) of all representations of the algebra U , equivalence is the
pertinent notion of isomorphism.

http://arxiv.org/abs/hep-th/9411172
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the theory of C∗-algebras. Given a state ρ, there exists a triple (Hρ, πρ, ψρ) such

that πρ : U → B(Hρ) is a cyclic representation of U and ψρ is a normalized cyclic

vector such that, for all A ∈ U , ρ(A) = ⟨ψρ, πρ(A)ψρ⟩132.

Through the GNS construction, the algebraic problem of studying representations

and the geometric problem of studying states become entangled. Much of the strength

and conceptual importance of the GNS construction comes from the unveiling of this

entaglement. This can be very well perceived by investigating the back-and-forth be-

tween states and representations established by the two complementary movements ♠
and ♥:

1. First, does any state arise from some representation of the algebra of properties

U through ♠? Answer: Yes. This is clear from the GNS construction, since for

any ρ ∈ S(U) we have ρ(A) = ⟨ψρ, πρ(A)ψρ⟩ for all A ∈ U . In other words, all

states are vector states.

2. Conversely, does any representation arise from a state through ♥? Answer: No,

since GNS representations are necessarily cyclic whereas a general representation

of U need not be so. However, any non-degenerate representation is a direct

sum of cyclic representations133. Therefore, the problem of classifying all non-

degenerate representations may be reduced to the problem of classifying all cyclic

representations: they constitute, so to speak, the basic building blocks. The

132Roughly, the construction is as follows. First, one considers the set Nρ := {A ∈ U
∣∣ρ(A∗A) =

0} = {B ∈ U+
R

∣∣ρ(B) = 0}. This may be thought as the subset of positive properties which are
invisible to the state ρ, in the sense that, for any physical property C and any “invisible” property
B, the two numbers ρ(C + B) and ρ(C) are equal. Thus, from the point of view of the state ρ it
makes better sense to consider physical properties only “up to invisible properties”. This is done by
deining the quotient U/Nρ. The Hilbert space is then the closure of this quotient Hρ := U/Nρ. The
representation is deined simply by projecting left multiplication to the quotient: for A,B ∈ U , we
have πρ(A)[p(B)] := p(A ◦ B), where p : U ↠ Nρ is the projection. Finally, the cyclic vector ψρ is
deined as the projection of the unit of the C∗-algebra : ψρ := p(I). For a detailed description of
the GNS construction, see Alfsen and Shultz, op. cit., pp. 51–53. The original construction (which
is casted in terms of normed *-rings and does not mention yet the notion of “state”) is found in
I. Gelfand and M. Naimark. “On the Imbedding of Normed Rings Into the Ring of Operators in
Hilbert Space”. In: Matematicheskii Sbornik 12 (1943), pp. 197–213, pp. 204-f. The construction as
it is now known, in terms of C∗-algebras and states, was irst described in I. E. Segal. “Irreducible
Representations of Operator Algebras”. In: Bulletin of the American Mathematical Society 61 (1947),
pp. 69–105, pp. 77–78.
133Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Proposition I.1.5.2,
p. 53.
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appropriate question is thus:

2bis. Does any cyclic representation arise from a state through ♥? Answer: Yes.

Given a cyclic representation π(U) on H and a cyclic vector ψ ∈ H, the GNS-

representation associated to the vector state ρψ is equivalent to π(U)134.

In the light of this, the algebraic classiication problem can be solved by studying

the geometry of the space of states. More precisely, if one denotes by Cycl (U) the set

of all equivalence classes of cyclic representations (the description of which is the main

goal of the algebraic problem just mentioned), and one deines on the space of states

the equivalence relation

(ρ ∼ σ)⇐⇒ (πρ is equivalent to πσ)

then, by the points 1 and 2bis above, we have

Cycl (U) ≃ S(U)/ ∼ . (II.23)

The problem is now to understand which states are equivalent. In particular,

one may wonder what happens if one applies twice the GNS construction. Consider

the following sequence (cf. diagram below): i) start with a state ρ; ii) construct the

associated GNS representation (Hρ, πρ, ψρ); iii) consider a vector ψ ̸= ψρ ∈ Hρ and

the associated vector state ρψ; iv) apply again the GNS construction to deine the

representation (Hρψ , πρψ , ψρψ).

States ρ ρψ

Representations (Hρ, πρ) (Hρψ , πρψ)

?

GNS GNS
vector

state

?

As we have already commented, in general the states ρ and ρψ will difer: only by

choosing ψ collinear to ψρ, will the two states be equal. Moreover, it is clear that if

ψ ∈ Hρ is not itself a cyclic vector for πρ, the representations πρψ and πρ cannot be

134Ibid., Proposition I.1.5.5, p. 54.
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equivalent135. But one may still hope for the two states to be equivalent whenever ψ

is a cyclic vector for πρ. This would be a nice feature, furnishing some kind of stability

of the GNS construction: given a representation and a vector, one would like the GNS

construction to produce the same initial representation. And this is indeed the case136:

ρ ∼ ρψ ⇐⇒ (ψ is cyclic for πρ).

Of particular interest are then those representations for which any vector of the

carrier Hilbert space is cyclic. These are the only representations not containing the

seeds of any other representation. They are completely stable in the sense that, from

any such representation π, the GNS construction will inevitably lead back to the start-

ing point. Symbolically, this may be written as

π stable ⇐⇒ ♥ ◦ ♠(π) ∼ π.

It turns out this stability property characterizes both irreducible representations and

pure states137. Thus, we have the following triangle of equivalent notions:

irreducible

representations

representations arising

from pure states

representations stable under

the GNS construction

This triangle allows one to understand much of the geometry of the pure state

space. First, it provides a connection between geometry and algebra analogous to

Equation II.23, but at the level of pure states this time:

Û := Irrep(U) ≃ P(U)/ ∼ . (II.24)

135Indeed, there are two ways to perceive ρψ: as a vector state deined by ψ or, after the second
GNS construction, as a vector state deined by ψρψ . In other words, supposing both vectors to be unit
vectors, we have, for all A ∈ U , ⟨ψ, πρ(A)ψ⟩ = ⟨ψρψ , πρψ (A)ψρψ ⟩. If π and πρ are equivalent, since
ψρψ is cyclic, then ψ must also be.
136Ibid., Proposition I.1.5.5., p. 54.
137Ibid., Proposition I.2.2.2, p. 63 and Theorem I.2.2.3, p. 64.
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The equivalence classes of pure states are labelled by irreducible representations of

the algebra of properties. Moreover, an irreducible representation πα : U −→ B(Hα)

allows to deine many diferent equivalent states. In fact, given a state ρ, any other

state equivalent to it will arise as a vector state of the Hilbert space Hρ constructed by

the GNS construction. Thus, there is a bijection between the set of states equivalent

to ρ and PHρ. This yields the following result138:

Theorem II.3. Given an abstract C∗-algebra U , its space of pure states is described

as the disjoint union

P(U) =
⊔

α∈Û

PHα.

Through this theorem, the algebraic formulation of Quantum Kinematics succeeds

in making contact with the geometrical approach. It shows the extent to which the

use of C∗-algebras as starting point in the deinition of physical systems is a gener-

alization of the previous two formulations. For only when Û = {∗} will one recover

the description of the quantum space of states as a projective Hilbert space (or as a

Hermitian symmetric space). In particular, it is so when U = B(H) (the unique irre-

ducible representation being then the deining one) or when U is the Weyl C∗-algebra

AW (the uniqueness of the irreducible representation being proven by the Stone-von

Neumann theorem)139. As Landsman points out, these are the most common exam-

ples of non-relativistic quantum systems and, because of this, one may have the im-

pression that the C∗-algebraic formalism truly constitutes a generalization only when

considering ininite-dimensional systems—that is, quantum ields. But, as we will see

in the next chapter, this is far from true, as there are many important examples of

C∗-algebras admitting inequivalent irreducible representations which are pertinent in

the non-relativistic context140.

138Ibid., Theorem I.2.5.4, pp. 72–73.
139The precise deinition of the Weyl C∗-algebra may be found in Strocchi, op. cit., pp. 60–61. More
generally, whenever U is a simple C∗-algebra (in the sense it admits no non-trivial ideals), the dual
space Û will be reduced to one single point.
140See N. P. Landsman. “Quantization and Superselection Sectors I. Transformation Group C∗-
algebras”. In: Rev. Math. Phys 2 (1990), pp. 45–72.
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It is therefore important to truly consider the quantum space of pure states in its

wholeness, instead of considering separately each “leaf” PHα as had been done so far.

This means to rethink in this slightly more general setting the results of the geometric

approach (section II.2). In particular, we must investigate whether it is still possible

to reconstruct the algebra of properties from the space of states.

II.3.3 Reconstructing the algebra of properties from the pure

state space

At the risk of becoming repetitive, let me recall once again the conceptual issues

at stake in this task of studying the oscillations between states and properties. There

is irst the obvious question of the logical relation between these two fundamental

notions of Kinematics: are properties/observables logically prior to states? By deini-

tion of what operationalism is, any such approach to Physics seems forced to answer

positively to this question: the entire description of a physical system must be based

upon experimental facts—and hence the notion of ‘state’ must be constructed from the

measurable quantities (cf. page 195). Now, the algebraic formulation has succeeded in

showing that the algebraic structure of properties can indeed be the starting point of

the descriptions of quantum systems. This is certainly an encouraging result for oper-

ationalism. But, needless to say, there is a big step between possibility and necessity,

between what can be and what must be. The success of the algebraic approach only

shows operationalism is a technically viable philosophical position. If one is seeking

for mathematical reasons of preferring it over other philosophical perspectives, then

one should attempt to prove that “states” cannot be perceived as the primitive notion.

This means attempting to prove that one cannot reconstruct the C∗-algebra of proper-

ties from the geometry of the space of pure states. If this reconstruction turns out to

be possible in the general case—as it was for UR = BR(H)—then it would appear that

the mathematical formalism of Mechanics is neutral regarding the logical hierarchy

between states and properties.

Second, there is the question of articulating the numerical and transformational

roles of properties. A recurrent point in the analysis of the diferent formalisms in
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which to cast the kinematical arenas has been the quantum compatibility between

both roles. This was irst hinted at in the standard Hilbert space formalism (page 164)

and progressively became more precise with the geometric formulation (page 184) and

the C∗-algebras (page 205). Thus, it remains to see how—if at all—this important

trait manifests itself at the level of the quantum space of pure states.

As I have already mentioned, in the setting of C∗-algebras, the cornerstone result

around which one must relect in order to understand the precise interplay between the

algebraic and geometric aspects is the following:

Theorem II.4 (Commutative Gelfand-Naimark). For any commutative C∗-algebra U ,
there is a canonical isomorphism between U and C0(P(U),C), given by the Gelfand
transform:

̂ : U −→ C0(P(U),C)

A 7−→ Â where Â(ρ) := ρ(A).

The space of pure states P(U) is a locally compact Hausdorf space. Moreover, it is

compact if and only if U is unital141.

Thus, commutative C∗-algebras may efectively be reconstructed from states. This

is a very well-known and much commented result from 1943142. Now, even better, the

equivalence between the algebraic and spatial points of view can be stated in the most

precise mathematical manner if one restricts attention to unital C∗-algebras and uses

the language of category theory:

Theorem II.5. The categories cCStar 1 of unital commutative C∗-algebras and Cpt

of compact Hausdorf spaces are dual to each other. That is, cCStar 1 and Cpt op are

equivalent.143

141Idem, Mathematical Topics Between Classical and Quantum Mechanics, Deinition I.2.1.6 and
Theorem I.2.1.7, p. 62.
142Gelfand and Naimark, op. cit.
143The equivalence is given by the functors P : cCStar 1 −→ Cptop (which associates to a C∗-algebra
U its pure state space P(U)) and C : Cpt −→ cCStar op1 (which associates to a space X the algebra of
complex valued continuous functions C(X)). The Gelfand transform is then̂= C ◦P and the theorem
says this functor is naturally isomorphic to the identity functor 1cCstar1 . For the equivalence stated
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This is sometimes called the Gelfand duality (or Gelfand-Naimark duality)144. It

is a very suggestive theorem since it shows that many properties of compact spaces

(in fact, any construction or theorem expressed in the language of categories) can

be immediately reformulated in terms of unital commutative C∗-algebras (and vice-

versa)145 . This is certainly one of the main reasons of the mathematical interest for

this type of algebras and it explains why the general study of C∗-algebras is often

called “non-commutative topology”. Moreover, this theorem is oftentimes regarded as

the result that truly launched the whole algebraic approach146.

Notwithstanding this, our primary interest lies, of course, in non-commutative

C∗-algebras (recall Figure II.4, page 206) and we must thus study the possibility of

reconstructing the algebra also in this case. Here, it is important to stress the existence

of many diferent spaces from which one could expect this reconstruction to be possible.

in terms of these two functors, see for example J. M. Gracia-Bondı́a, J. C. Várilly, and H. Figueroa.
Elements of Noncommutative Geometry. Boston: Birkhäuser, 2011, pp. 9-10.
144As a side remark—and for completeness—let us note that this duality does not hold if one considers
non-unital commutative C∗-algebras (or locally compact Hausdorf spaces): the category cCstar is
not equivalent to LocCptop. Indeed, the commutative Gelfand-Naimark theorem asserts that the
functor C0 : LocCpt −→ cCStar op (which associates to a space X the algebra of complex valued
continuous functions C(X) vanishing at ininity) is essentially surjective. However, this functor fails
to be full. Despite this, the procedure of unitalization of a commutative C∗-algebra (which may be
seen as a functor (·)+ : cCStar −→ cCStar 1) does admit an analogue on the topological side: it is
the Alexandrof one-point compactiication of locally compact Hausdorf spaces (which may be seen
as a functor (·)+ : LocCpt −→ Cpt). If one denotes by X+ the resulting compactiied space, one has
C0(X)+ ≃ C(X+). For details, see I. Dell’Ambrosio. “Categories of C∗-algebras”. Lecture Notes.
url: http://math.univ-lille1.fr/~dellambr/exercise_C_algebras.pdf.
145For a nice dictionary between topological concepts and their algebraic translation, see N. E.
Wegge-Olsen. K-theory and C∗-algebras: a Friendly Approach. New York: Oxford University Press,
1993, p. 24.
146Here is Strocchi commenting on it: “From the point of view of general philosophy, the picture
emerging from the Gelfand theory of abelian C∗-algebras has far reaching consequences and it leads
to a rather drastic change of perspective. In the standard description of a physical system the geom-
etry comes irst: one irst speciies the coordinate space, (more generally a manifold or a Hausdorf
topological space), which yields the geometrical description of the system, and then one considers the
abelian algebra of continuous functions on that space. By the Gelfand theory the relation can be
completely reversed: one may start from the abstract C∗-algebra, which in the physical applications
may be the abstract characterization of the observables, in the sense it encodes the relations between
the physical quantities of the system, and then one reconstructs the Hausdorf space such that the
given C∗-algebra can be seen as the C∗-algebra of continuous functions on it. In this perspective, one
may say that the algebra comes irst, the geometry comes later. The total equivalence between the
two points of view indicates a purely algebraic approach to geometry [...].” (Strocchi, op. cit., p. 15,
author’s emphasis.)

http://math.univ-lille1.fr/~dellambr/exercise_C_algebras.pdf


Chapter II. Classical and Quantum Kinematical Arenas 217

Indeed, given a C∗-algebra U , one can consider147:

– the space of pure states P(U),

– the space Û of equivalence classes of irreducible representations,

– the space Ω(U) = HomCStar (U ,C) of all non-zero C∗-morphisms from U to C,

– the spaceM(U) of maximal ideals of U ,

– the space Prim(U) of primitive ideals of U148.

These are all a priori diferent yet related spaces. For example, elements of Ω(U) are
particular instances of elements of Û (they are one-dimensional irreducible representa-

tions), and are also particular elements of P(U) (they are pure states which are also

multiplicative). Thus, we have Û ←֓ Ω(U) →֒ P(U) but it is clear that, in the general

case, these injections are not bijections.

However, it just so happens that in the commutative case this plethora of diferent

spaces is invisible, for all these notions of space coincide:

if U ∈ ob(cCstar ), then P(U) ≃ Û ≃ Ω(U) ≃M(U) ≃ Prim(U)149.

The space is then called the (Gelfand) spectrum of the commutative C∗-algebra and

is denoted Spec(U)150. The points of the spectrum are sometimes called the characters

147Here, I just give the deinition of these spaces as sets. The complete deinition should also mention
the particular topology deined on each of these sets, but to do so would imply an excessively technical
digression for the purpose at hand.
148An ideal is said to be primitive if it is the kernel of an irreducible representation of U . See for
example Alfsen and Shultz, op. cit., Deinition 5.20., p. 208.
149The bijection between Û and Ω(U) is proven by Schur’s lemma (Landsman, op. cit., Proposition
I.2.2.2., p. 63). Since all irreducible representations are one dimensional, then for α ∈ Û , PHα is
reduced to a point and it becomes clear from Theorem II.3 (page 213) that P(U) ≃ Û . Finally, the
proof of the bijection between Ω(U) andM(U) is found in M. Takesaki. Theory of Operator Algebras
Vol. I. New York: Springer, 2003, Proposition 3.8, p. 15.
150The terminological choice is of course not innocent, as this new notion of spectrum generalizes the
usual notion of spectrum of a linear operator. Recall: for a linear operator A, its spectrum is the set
Sp(A) =

{
z ∈ C

∣∣(A − zI) is not invertible
}
. This deinition works for any element of a unital (non-

commutative) C∗-algebra U . The result which establishes the link between both notions of spectrum
is the following: given A ∈ U , consider the commutative C∗-algebra generated by A and I, denoted
C∗(A). Then, Spec(C∗(A)) ≃ Sp(A) (Landsman, op. cit., Theorem I.1.2.4.2.).
For a more extensive investigation on the notion of spectrum (in particular, on the link with the

physicists’ use of the word “spectrum” for light and atoms), see the interesting article (in french) P.
Cartier. “Notion de spectre”. In: Première école d’été : Histoire conceptuelle des mathématiques -
Dualité Algèbre-Géométrie. Maison des Sciences de l’Homme. Universidade de Brasilia, 2008, pp. 232–
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of U . The commutative Gelfand-Naimark theorem shows there is the same information

in the commutative algebra U or in its spectrum Spec(U).

When turning to the non-commutative case, the spatial degeneracy splits and the

question arises of which space to choose in order to extend the Gelfand duality151. In

the context of our investigations, it seems we must choose the space of pure states as

hypothetical starting point, but it is important to keep in mind that this is not the

only mathematically sound possibility152. This is the route followed by Landsman: he

presented an explicit reconstruction of the algebra of properties from the space of pure

states in his article “Poisson Spaces With a Transition Probability”153.

The steps of Landsman’s construction are best understood when compared to the

work of Schilling and Ashtekar. As already noted, most of the tasks of the geometric

program may be seen as particular instances of the general problems arising in the C∗-

algebraic approach. Indeed, with the Gelfand theory at hand, we can now recognize

that the key map considered by Ashtekar and Schilling, which allowed to transform self-

adjoint operators into real-valued functions over the projective space (Equation II.11,

page 175), is nothing but the Gelfand transform for the JLB-algebra UR = BR(H) (in
which case P(UR) = PH). In their case, the map was found to be injective (Equa-

tion II.14, page 175) and this fact showed there was indeed hope of reconstructing the

242. url: http://semioweb.msh-paris.fr/f2ds/docs/dualite_2008/dualite_doc_final_2008.
pdf.
151There is also the terminological question of whether one should keep using the word “spectrum”
for non-commutative C∗-algebras. The most common decisions seem to be either: i) to reserve the
notion of “spectrum” only for commutative C∗-algebras (e.g. Dixmier, Landsman, Takesaki); ii) to
deine the spectrum of a general C∗-algebra as Spec(U) := Û equipped with the so-called Jacobson
topology (e.g., Alfsen and Shultz, p. 210 and also Fell and Doran, p. 556).
152For example, Akemann has shown how to reconstruct the C∗-algebra from the space of maximal
ideals (C. Akemann. “A Gelfand Representation Theory for C*-algebras”. In: Paciic Journal of
Mathematics 39.1 (1971), pp. 1–11).
153N. P. Landsman. “Poisson Spaces With a Transition Probability”. In: Review of Mathematical

Physics 9.1 (1997), pp. 29–57. url: http://arxiv.org/abs/quant-ph/9603005. His reconstruction
may also be found in the third section (“From Pure States to Observables”) of the irst chapter of his
book Mathematical Topics Between Classical and Quantum Mechanics. As he explains, many ideas
are motivated by the work of Alfsen, Hanche-Olsen and Shultz, who characterized those compact
convex sets arising as space of states of a C∗-algebra (E. M. Alfsen, H. Hanche-Olsen, and F. W.
Shultz. “State Spaces of C∗-algebras”. In: Acta Mathematica 144 (1980), pp. 267–305 and F. W.
Shultz. “Pure States as Dual Objects for C∗-algebras”. In: Communications in Mathematical Physics
82 (1982), pp. 497–509).

http://semioweb.msh-paris.fr/f2ds/docs/dualite_2008/dualite_doc_final_2008.pdf
http://semioweb.msh-paris.fr/f2ds/docs/dualite_2008/dualite_doc_final_2008.pdf
http://arxiv.org/abs/quant-ph/9603005
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algebra of properties as functions over the space of states. In fact, the result is more

general154:

Proposition II.6. Let UR be any JLB-algebra and denote by ÛR its image through

the Gelfand transform ̂ : UR −→ C(P(UR),R) (deined as before by Â(ρ) := ρ(A) for

A ∈ UR and ρ ∈ P(UR)). Then, as partially ordered Banach spaces, we have

UR ≃ ÛR ⊂ C(P(UR),R).

In other words, whenever the Gelfand transform is considered as deined only on

the real algebra UR, it will always be an injection. As Landsman stresses, the theorem

fails if the Gelfand transform is extended to the whole C∗-algebra. From this point of

view, it is thus better to work in the category of real JLB-algebras, the extension to

their complex counterparts being useful only for commutative C∗-algebras.

Therefore, we know that, even in the general situation, the algebra of physical ob-

servables lies somewhere inside the set of all real-valued functions over the space of pure

states. The task remains then to characterize the JLB-algebra ÛR inside C(P(UR),R).
The general solution provided by Landsman will mimic in every aspect the deini-

tion of physical properties found by Ashtekar and Schilling for the particular case of

UR = BR(H): in order to characterize ÛR inside C(P(UR),R), we will need to irst bring

out the structures naturally present in any pure state space. ÛR will then appear to be

the subset of functions respecting those additional structures155.

Since the space of pure states P(U) can always be described as a disjoint union

of projective Hilbert spaces, the relevant mathematical structures need to be some-

how generalizations of the symplectic and Riemannian structures present in each leaf

PHα
156. In his article, Landsman proposes the following two structures:

154Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Theorem I.2.1.7.,
p. 62.
155Let me be clear: I am not claiming that these results of Landsman’s work were inluenced by the
work of Schilling. My claim is simply that, given the particular order of exposition I have chosen for
this chapter, we can conceptually relate both works and use Schilling’s to help us understand the core
of Landsman’s reconstruction.
156A disjoint union of symplectic manifolds is not necessarily a symplectic manifold: it may not even
be a manifold!
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Deinition II.10. A Poisson space157 is a Hausdorf topological space P together

with a collection Sα of symplectic manifolds, as well as continuous injections ια : Sα →֒
P , such that

P =
⊔

α

ια(Sα).

Deinition II.11. A symmetric transition probability space158 is a set P equipped

with a function Pr : P × P −→ [0, 1] such that for all ρ, σ ∈ P

i) Pr(ρ, σ) = 1 ⇐⇒ ρ = σ,

ii) Pr(ρ, σ) = Pr(σ, ρ) (i.e. Pr is symmetric).

The function Pr is called a transition probability159.

The notion of a Poisson space coined by Landsman should not come as a surprise.

First, it is clear that pure state spaces are indeed Poisson spaces: the notion is almost

hand made in order to cover them. Moreover, it sounds reasonable to say they are a

generalization of the notion of a symplectic manifold. In fact, the deinition is strongly

motivated by the important result that any Poisson manifold can be written as a

disjoint union of symplectic manifolds160.

Less transparent is the fact that the transition probability structure is the correct

generalization in the present context of the Riemannian structure found on the pro-

jective Hilbert spaces. Recall the two main functions of the Riemannian metric g on

PH: irst, it allowed to deine a distance dg(p, q) between two states p and q; second,

it enabled to construct the Jordan product between two properties. In turn, dg(p, q)

157Ibid., Deinition I.2.6.2, p. 76. This notion was introduced for the irst time by Landsman in
“Poisson Spaces With a Transition Probability”, p. 38. His deinition also includes a linear subspace
UR(P) ⊂ C∞L (P,R) which separates points and is closed under the Poisson bracket: {f, g}(ια(q)) =
{ι∗αf, ι∗αg}α(q), where q ∈ Sα. I nonetheless ind the inclusion of this subspace slightly unnatural at
this point. This subspace UR(P) will only become important when deining the key notion of a Poisson
space with transition probability (cf. Deinition II.12 and footnote 164, page 222).
158Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Deinition I.2.7.1,
pp. 80–81.
159This concept was introduced for the irst time in 1937 by von Neumann in a series of lectures
delivered at Pennsylvania State College. The manuscript was only published in 1981, after von
Neumann’s death (J. von Neumann. Continuous Geometries with a Transition Probability. Vol. 252.
American Mathematical Society, 1981).
160This is the so-called “symplectic decomposition of a Poisson manifold” (see Landsman, op. cit.,
Theorem I.2.4.7, p. 71). For the deinition of a Poisson manifold, see page 151.
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was used to deine the crucial transition probability function Pr(p, q) := cos2(dg(p, q)).

In the present context, however, this deinition does not suice, for it only allows to

compute the transition probabilities between equivalent states—that is, between pure

states belonging to the same leaf PHα. From the point of view of Riemannian ge-

ometry, the question of the transition probability between inequivalent states appears

to be non-sensical, and it is so because the distance between two points belonging to

diferent leaves of the pure state space cannot be deined. Yet, there are strong indi-

cations these transition probabilities should be deined. Indeed, there is the following

alternative characterization of inequivalent pure states due to Hepp:

Two pure states ρ and σ of a C∗-algebra U are inequivalent if and only if, for

each representation π(U) on a Hilbert space H containing unit vectors ψ and φ

such that ρψ = ρ and ρφ = σ, one has ⟨ψ, π(A)φ⟩ = 0 for all A ∈ U .161

In the light of this, one should extend the deinition of the transition probabilities as

follows:

Pr(ρ, σ) =




cos2(dgα(ρ, σ)) if ρ, σ ∈ PHα

0 if ρ ≁ σ.

(II.25)

In this way, the pure state space of a C∗-algebra is equipped with a transition prob-

ability and becomes a symmetric transition probability space. In fact, as Landsman

explains, Mielnik has shown that the boundary ∂K of any compact convex set K (such

as P(U) = ∂S(U)) may naturally be equipped with a transition probability, and it can

be proven that Mielnik’s transition probability coincides with the one just deined162.

This shows that the function Pr is indeed an intrinsic object attached to the pure

state space. Therefore, as long as states are concerned, one could attempt to ignore

the Riemannian structure and place the transition probability structure as the central

concept. The problem of course is to know whether the Jordan product can also be

deined solely in terms of the transition probability stucture.

161K. Hepp. “Quantum Theory of Measurement and Macroscopic Observables”. In: Helvetica Physica
Acta 45 (1972), pp. 237–248, Lemma 1, p. 240 (cited in N. P. Landsman. “Between Classical and
Quantum”. In: Philosophy of Physics (Handbook of the Philosophy of Science) 2 volume set. Ed. by
J. Butterield and J. Earman. Vol. 1. Amsterdam: North-Holland Publishing Co., 2007, pp. 417–554.
url: http://arxiv.org/abs/quant-ph/0506082, p. 502).
162For the details, see idem, “Poisson Spaces With a Transition Probability”, pp. 33-f.

http://arxiv.org/abs/quant-ph/0506082
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Now, recall Ashtekar and Schilling’s geometric characterization of the algebra of

properties (page 177). Associated to the symplectic structure ω was the set of functions

C∞(S,R)ω preserving it. Similarly, to the Riemannian metric g one associated the set

C∞(S,R)g. Then, the algebra of properties was simply found to be

C∞(S,R)K := C∞(S,R)ω ∩ C∞(S,R)g.

This idea may be immediately transposed to the general situation. One considers the

function space CProb(P ,R) intrinsically related to a transition probability space and

the function space C∞Pois(P ,R) intrinsically associated to a Poisson space163. Then, for

a space that is both a Poisson space and a transition probability space, one deines:

UR(P) = C∞Pois(P ,R) ∩ CProb(P) (II.26)

At this point, it is not clear what the structure of this algebra of functions is.

It nonetheless allows to deine the key concept and state the two main theorems of

Landsman’s construction:

Deinition II.12. A Poisson space with a transition probability164 is a set that

is both a transition probability space and a Poisson space and for which:

i) UR(P) separates points,
ii) UR(P) is closed under the Poisson bracket,

iii) the Hamiltonian low deined by each element of UR(P) preserves the transition

probabilities (unitarity condition).

163These function spaces are deined as follows. C∞Pois(P,R) is the set of all f ∈ C(P,R) such
that their restrictions to any Sα is smooth: ι∗αf ∈ C∞(Sα,R). (Idem, Mathematical Topics Between
Classical and Quantum Mechanics, Deinition I.2.6.2.3, p. 76.)
On the other hand, the deinition of CProb(P) is more involved. One considers irst the functions

Prρ : P → R such that Prρ(σ) := Pr(ρ, σ), and deines C00Prob(P) as the real vector space generated
by these functions. Then CProb(P) :=

(
C00Prob(P)

)∗∗. The reason why this is the function space
intrinsically associated to a transition probability space is not clear to me. This is however explicitly
stated by Landsman on repeated occasions. (Ibid., Deinition I.3.1.1, p. 84.)
164Since my notion of Poisson space difers from Landsman’s, this deinition is diferent from the one
found in Landsman’s book (Deinition I.3.1.4, p. 86). However, my notion of Poisson space with a
transition probability should coincide with Landsman’s.
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Theorem II.7. The pure state space of a C∗-algebra is a Poisson space with transition

probability165.

Theorem II.8. Let U be a C∗-algebra, UR be the JLB-algebra of self-adjoint elements

and P(U) be the space of pure states of U . Then, we have the isomorphism of JLB-

algebras166

UR
(
P(U)

)
≃ UR.

Theorem II.7 recognizes the kind of spaces under which fall the pure state spaces

of a C∗-algebra. Theorem II.8 is two-fold. First, it implicitly says that the algebra

UR(P) intrinsically associated to a Poisson space with a transition probability may be

endowed with a Jordan product • and a norm in such a way that UR(P) becomes

a JLB-algebra. It turns out that this Jordan product is deined solely in terms of

the transition probability, as was needed167. Moreover, the unitarity condition is a

compatibility condition recognizing the fact that the two fundamental structures of

the pure state spaces are not independent from each other. This is the analogue, at

the level of states, of the Leibniz rule—which relates, at the level of properties, the

otherwise independent Jordan and Lie structures168.

Second, in the same way that the Gelfand-Naimark theorem shows that any JLB-

algebra may be realized as a certain subalgebra of bounded self-adjoint operators on a

Hilbert space H, this theorem shows that any JLB-algebra may equally well be realized

as a certain subalgebra of real-valued functions over some topological space. Thus, the

association of non-commutativity to operators (II.20b, page 200) is by no means a nec-

essary one. More importantly, it appears that any C∗-algebra, be it commutative or

not, can be recovered from its space of pure states. This establishes, for the quantum

kinematical arena, the complete equivalence between the point of view of states and

165Ibid., Theorem I.3.1.5, p. 86.
166Ibid., Theorem I.3.2.1 (combined with equations (3.2) and (3.6)), pp. 85–88.
167The explicit construction is found in ibid., Section I.3.3., pp. 88–90. It uses the fact that any
element F ∈ UR(P) can be uniquely written as a linear combination of functions of the type Prρ
(spectral resolution). In turn, this allows to deine the square of a property F 2 and subsequently the
Jordan product by the formula F•G = 1

4

(
(F +G)2 − (F −G)2

)
.

168Ibid., Section I.3.4., pp. 90–92. See also the deinition of a Poisson algebra and the comment
following it (page 148).
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the point of view of properties. This is summarized in the following diagram169 (Fig-

ure II.5), which replaces and generalizes the one emerging from the geometric program

of Ashtekar, Schilling, Cirelli, etc (page 178).

space
of states

Poisson
structure

Transition probability
structure

algebra
of properties

Lie
structure

Jordan
structure

role
of properties

transformational
role

numerical
role

related by
unitarity

related by
Leibniz rule

Fig. II.5 – The interplay between the geometry of states
and the algebra of properties in Quantum Kinematics.

II.3.4 New look into the Classical and characterization of the

Quantum

As the last three subsections show, through the C∗-algebraic approach we reach a

transparent understanding of the conceptual structure of Quantum Kinematics. The

main three highlights were:

1. The realization that the quantum compatibility between the numerical and trans-

formational role of properties could be characterized by the possibility of unifying

the two real algebraic structures of properties into a single complex one (subsec-

tion II.3.1).

2. The unveiling of the close relation between states of a physical system and rep-

resentations of the algebra of properties (subsection II.3.2).

169See also ibid., Table 1, p. 8.
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3. The proof of the complete equivalence between the deinition of physical systems

based upon properties or based upon states, and the establishment of a precise

dictionary between the geometric and algebraic structures (subsection II.3.3).

However, since Poisson algebras escape from the theory of C∗-algebras, we have

focused on the discussion of Quantum Kinematics, somehow losing grasp on Classical

Kinematics and forgetting the task of comparing the two arenas. Recall the drawback

of C∗-algebras in regard to the Classical: the only Poisson algebras arising as the real

part of a C∗-algebra are those whose Poisson bracket trivially vanishes (cf. Figure II.4,

page 206). Hence, from their point of view, the Lie structure of classical properties

is invisible. This phenomenon can also be understood geometrically. If one considers

a commutative C∗-algebra U , all its irreducible representations are necessarily one-

dimensional. The decomposition

P(U) =
⊔

α∈Û

PHα

of the pure state space into a disjoint union of symplectic manifolds still holds, but be-

comes now a trivial decomposition: each projective Hilbert space is reduced to a point

and the decomposition simply says that the space of pure states is the disjoint union

of its points, considered as symplectic 0-dimensional manifolds. Thus, what remains

unexplained from the point of view of C∗-algebras is the fact that, beyond the sym-

plectic structure of each leaf PHα, in Classical Mechanics there is also a “transversal”

symplectic structure tying together the diferent leaves.

Yet, C∗-algebras do perceive the Jordan product of Classical Mechanics and the

insights from Landsman’s construction may be used in order to adopt a new look at

the geometric origin of this structure. Recall: in the geometrical formulation of Clas-

sical Kinematics, it had appeared that the presence of a Jordan product for classical

properties—which in this case is simply point-wise multiplication—was not mirrored

by the existence of some particular structure on the classical space of states (cf. Ta-

ble II.1, page 186). This lack of a structure on the classical space of states which would

be the analogue of the Riemannian metric found on the quantum space was one of

the main drawbacks of the whole geometric approach to Kinematics (as presented in

section II.2). But we now know that the quantum Jordan product may equally be
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thought as stemming from a transition probability. It is then natural to attempt to

see the classical Jordan product as arising from this same structure.

In the case of a commutative C∗-algebra, Equation II.25 (page 221) reduces to:

Pr(ρ, σ) = δρ,σ =




1 if ρ = σ

0 if ρ ̸= σ

(II.27)

and indeed the Jordan product deined by this transition probability coincides with

point-wise multiplication170. This is a completely trivial structure, adding no further

information to a topological space171. Because of this, it had been (rightly) disregarded

in Classical Kinematics. Nonetheless, the presence of this trivial transition probability

in the classical kinematical arena becomes interesting when compared to the Quantum.

One realizes that, although C∗-algebras are unable to cover both quantum and classical

systems, the type of spaces emerging from this approach—that is, Poisson spaces with

a transition probability—do encompass classical and quantum spaces of states: both

pure state spaces of non-commutative C∗-algebras and symplectic manifolds equipped

with the trivial transition probability (II.27) satisfy the axioms of Deinition II.12

(page 222).

Therefore, it becomes natural to compare the two kinematical arenas in the com-

mon geometric language of Poisson spaces with a transition probability. As it will

turn out, this language manages to capture with unmatched clarity the conceptual

diference between Classical and Quantum Kinematics. The key lies in comparing the

way in which the two geometrical structures interact with each other. In the quantum

case, the unitarity condition imposes a very strong constraint to the Poisson structure:

given the space PHα and the transition probabilities (II.25, page 221), the requirement

of unitarity uniquely determines the symplectic structure172. In turn, in the classical

170Cf. the comment following Proposition 3 in idem, “Poisson Spaces With a Transition Probability”,
p. 44.
171In the sense that any topological space may be seen as a transition probability space equipped
with the trivial transition probability.
172Idem, Mathematical Topics Between Classical and Quantum Mechanics, Theorem I.3.8.2, p. 103.
Therein, the Poisson bracket is determined up to a multiplicative constant. However, if one further im-
poses that the associator rule of the Jordan-Lie algebra be given by (f•g)•h−f•(g•h) = {{f, h}, g}
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case, the exact opposite happens: since the transition probabilities are trivial, any sym-

plectic structure whatsoever will automatically be unitary. Thus, although unitarity is

present in both kinematical arenas, the efect of this compatibility condition is radically

diferent in the two situations. Whereas in the Quantum unitarity closely ties together

the two fundamental geometric structures of the space of states, in the Classical unitar-

ity imposes no restriction and the Poisson structure remains completely independent

from the transition probability structure. Either the two geometric structures go hand

in hand, or they do not discuss with each other173.

This last point can be rendered more precise if one considers the following two

equivalence relations on the space of states:

– Equivalence deined by the Poisson structure: two states ρ and σ are said to be

transformationally equivalent if they can be connected by a piecewise smooth

Hamiltonian curve. We denote this equivalence by ρ ∼
T
σ and the equivalence

classes under this relation are called the symplectic leaves of the space of states174.

– Equivalence deined by the transition probability structure: two states ρ and σ

are said to be numerically equivalent if they belong to the same sector175. We

denote this equivalence by ρ ∼
N
σ and the equivalence classes under this relation

are by deinition the sectors of the space of states.

These two diferent equivalence relations may be seen as two diferent notions

of connectedness of the space of states. ‘Transformational equivalence’ is connect-

edness from the point of view of properties-as-transformations: two states ρ and σ

(instead of (f•g)•h− f•(g•h) = κ{{f, h}, g} as Landsman does), then the determination becomes
unique.
173As Landsman points out, this feature of the Quantum could have been already noticed in sec-
tion II.2. Indeed, given the natural symplectic form on PH, the Riemannian metric g is completely
ixed (up to a constant) by the demand that it be invariant under the Hamiltonian lows generated
by the functions F̃ ∈ C∞(PH,R). (Idem, “Poisson Spaces With a Transition Probability”, p. 47)
174The terminological decision of calling this equivalence relation “transformational” is mine. For
the rest, cf. idem, Mathematical Topics Between Classical and Quantum Mechanics, deinition I.2.4.3.,
p. 70.
175Given a transition probability space (P,Pr), two subsets S1 and S2 are said to be orthogonal if,
for any ρ ∈ S1 and any σ ∈ S2, Pr(ρ, σ) = 0. A subset S ⊂ P is said to be a component if S and P \S
are orthogonal. Finally, a sector is a component which does not have any non-trivial components (cf.
ibid., Deinition I.2.7.2., p. 80).
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are transformationally inequivalent (ρ ≁
T
σ) if and only if it is impossible to con-

nect them by a physical transformation—that is, if and only if it is impossible to

ind gf ∈ Aut(P) generated by a physical property f such that gf (ρ) = σ. In other

words, a symplectic leave is by deinition a transformationally connected component

of the space of states. In the same way, ‘numerical equivalence’ is connectedness from

the point of view of transitions: two states are numerically inequivalent (ρ ≁
N
σ) if

and only if it is impossible to ind a collection of intermediate states χ1, . . . , χn such

that the chain of transitions or ‘transitional path’ ρ → χ1 → . . . → χn → σ has a

non-vanishing probability—that is, if and only if for any choice χ1, . . . , χn ∈ P , one
has Pr(ρ, χ1)Pr(χ1, χ2) . . .Pr(χn−1, χn)Pr(χn, σ) = 0. Thus, a sector is a transitionally

connected component of the space of states.

Therefore, each of the two geometric structures of the space of states produces a

certain ‘image’ of this space. In Classical Kinematics, where one considers as space of

states Pcl a symplectic manifold with transition probabilities Pr(σ, ρ) = δσ,ρ, the two

images are at odds from each other: from the point of view of the Poisson structure,

the space of states is completely connected (any two states are transformationally

equivalent), whereas from the point of view of the transition probability structure

the space of states is completely disconnected (no two diferent states are numerically

equivalent). In other words, we have

∗ = (Pcl/ ∼
T
) ̸= (Pcl/ ∼

N
) = Pcl.

On the other hand, in Quantum Kinematics the hand-in-hand of the two geometric

structures is captured in the fact the two images coincide. That is, we have the following

result176:

Quantum compatibility of Poisson and transition probability structures.

On the quantum space of states Pqu, the notions of transformational equivalence

and numerical equivalence coincide: ρ ∼
T
σ ⇐⇒ ρ ∼

N
σ. In other words,

(Pqu/ ∼
T
) = (Pqu/ ∼

N
)

176That this holds for the pure state space of any C∗-algebra should be clear from Theorem II.3
(page 213).
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In the light of the whole analysis we have undertaken in this chapter, the existence

of such a quantum compatibility condition should not come as a surprise. After all, this

statement, expressed in the intrinsic language of the space of states as Poisson space

with a transition probability, is the analogue of the quantum uniication of the Jordan

and Lie structure (page 205), or of the quantum interplay between the numerical and

transformational roles of properties (page 184).

The surprising fact, that was perhaps diicult to foresee in the previous formula-

tions, is that this compatibility between properties-as-transformations and properties-

as-quantities constitutes precisely the core of the diference between Classical Mechan-

ics and Quantum Mechanics. Indeed, given a Poisson space with a transition proba-

bility P , Landsman has provided the following axiomatic characterization of when a

space is a quantum space of states177:

Theorem II.9 (Characterization of the quantum space of states). A uniform Poisson

space with a transition probability P is the pure state space of a inite-dimensional

C∗-algebra if:

QM 1) The sectors and the symplectic leaves of P coincide,

QM 2) P has the two-sphere property.178

Axiom QM 2) encodes the quantum superposition principle (cf. subsection II.2.3,

page 192); axiom QM 1) encodes the quantum compatibility between properties-as-

quantities and properties-as-transformations. These two may be seen as the real fun-

damental diferences between the Classical and the Quantum. The former has been

stressed since the birth of Quantum Mechanics (cf. Dirac’s quote on page 166). The

latter seems to have been the blind spot on the conceptual analysis of Quantum Kine-

matics.

177Ibid., Theorem I.3.9.2., p. 105 and Corollary I.3.9.3., p. 106.
178Two more technical axioms are necessary in the case of ininite-dimensional C∗-algebras.
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II.4 Conclusion

The key remark that launched our analysis of the Classical and the Quantum

Kinematical arenas was the realization of the two-fold role of physical properties with

respect to states. To distinguish them, I introduced the terminology of properties-as-

quantities and properties-as-transformations. From that moment on, the conceptual

discussion of Kinematics became subject to the requirement of building articulations

for three couples of fundamental concepts: Classical/Quantum, State/Property and

Quantity/Transformation179. Out of the three, the irst pair is the most slippery one

and the main goal concerning it has been simply to get a hold on it: to ind all-

embracing languages in which it is possible to cast both theories and formulate their

distinction. In other words, regarding the Classical/Quantum couple, we have just

been searching for perspectives from which to take a static picture with the two poles

clearly distinguished. Thus, at this stage of the investigation, we have not yet been

concerned with the possible transitions between these poles—“quantization” and, in

the opposite direction, “classicalisation” (as Brody and Hughston propose to name

it180). On the contrary, regarding the other two couples, the point of interest has

lied in their dynamics. For the State/Property couple, it has been the movement of

oscillation—Is it possible to freely transit from states to properties, and from proper-

ties to states, or is there some kind of priority of one pole over the other?—and, as we

179Here, the word “articulation” is meant in the precise sense found in the work of the French
philosopher Gilles Châtelet. He says:

Articulation does not claim to reconcile two contrasts A and −A; it gets round
their confrontation. [...T]o articulate is always to allow oneself a new envelopment, to
discover a material that is more ductile than that of the sides. An articulation does not
link together two contents or two separate segments which preexisted it; it grasps the
very emergence of these sides from an indiference point.

In its fork, the articulation carries the product and productivity. It always partic-
ipates in the liberation of a dimension. [...] It is indeed the articulation that makes it
possible to situate oneself beyond all opposition, and therefore to overcome all opposi-
tion. For it is a matter neither of saving the old dualisms (subject/object, form/content,
etc) nor of letting one self be submerged in the confusion of some ‘primordial soup’. A
suitable articulation no doubt allows a positive integration of all the forces imprisoned
by contrasts, but it is always accompanied by the birth of a singularity.
(G. Châtelet. Figuring Space: Philosophy, Mathematics and Physics. Trans. by R. Shore
and M. Zagha. Dordrecht, The Netherlands: Springer Science & Business Media, 2000,
p. 94)

180Brody and Hughston, op. cit., p. 2.
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and Quantum Kinematics. The geometrical level of states mirrors the algebraic level in

every respect: herein, the two-fold role manifests itself by the presence of two geometric

structures—a probability structure and a Poisson structure (which respectively stem

from the Jordan and Lie product and from which the Jordan and Lie product can be

deined)—and the common geometric language is that of uniform Poisson spaces with

a transition probability. One often restricts attention to the simpler case where the

Poisson space has only one symplectic leaf. Then, the Poisson structure is equivalent to

a symplectic 2-form and the non-trivial transition probability structure of the Quantum

may be perceived as arising from a Riemannian metric (the transition probability is

the distance between two points). In this way, one recovers the geometric formulation

of Classical and Quantum Kinematics in terms of symplectic manifolds and Hermitian

symmetric spaces.

With the use of either Jordan-Lie algebras or Poisson spaces with a transition

probability, one may sharply characterize the diference between the two Kinematics.

At the algebraic level, the diference lies in the associativity/non-associativity of the

Jordan product, whereas at the geometric level it lies in the triviality/non-triviality

of the probability structure. In other words, from the restricted point of view of the

symplectic/Lie structure, the Classical and the Quantum are indistinguishable. At the

conceptual level, this means that the real diference between Classical and Quantum

lies in the numerical role of properties.

The numerical role of a property f vis-à-vis a given state σ is captured by the

string of numbers

N f
σ = {f(σ), f 2(σ), f 3(σ), . . .}

found by repeated use of the Jordan product. In Classical Mechanics, the Jordan

product is point-wise multiplication so, by deinition, we have fn(σ) :=
(
f(σ)

)n. Thus,
we see that the Jordan product of classical properties-as-quantities is precisely deined

in such a way that there is no more information in the data of the whole N f
σ than in

the irst term of the string. Accordingly, one may reduce the numerical role of classical

properties to the datum of the sole number f(σ). This is to be contrasted with the

situation in Quantum Kinematics. Therein, the non-associativity of the Jordan product

(or equivalently the non-triviality of the transition probability structure) entails that
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there is no general relation between the numbers of N f
σ and one cannot reduce the

information contained in N f
σ to the data of some of the numbers in the string. In

this sense, the complete description of a quantum property-as-quantity is achieved by

a complex, multi-layered structure, whereas a classical property-as-quantity is single-

layered. But the existence of multiple numerical layers in the numerical role of quantum

properties simply encodes the statistical nature of Quantum Mechanics. Therefore, the

statement that “the real diference between the Classical and the Quantum lies on the

numerical side of properties” appears as a very natural remark.

We still need to describe the articulation between the two roles of properties.

There is a irst compatibility condition which holds in the two kinematical arenas.

At the geometrical level, this is captured by unitarity: the Hamiltonian low of any

physical property preserves the transition probabilities. At the algebraic level, the

kinematical compatibility becomes the Leibniz rule: properties-as-transformations act

as derivations on properties-as-quantities. At the conceptual level, this simply means

that the transformational role of properties respects their numerical role. On top of

this, Quantum Kinematics exhibits a second compatibility condition which ensures the

complete consistency between the two roles of physical properties. Algebraically, this

is seen in the uniication of the two real structures into a single complex one (which

in turn allows to reformulate Quantum Kinematics in terms of C∗-algebras instead of

non-associative JL-algebras); geometrically, it is expressed in the coincidence of the

natural foliations of the pure state space produced by the two geometric structures.

Conceptually, this highlights the fact that, in Quantum Kinematics, the Quantity must

describe the Transformation (e.g. the indeterminacy of the property-as-quantity∆f(σ)

describes the change of the state by the property-as-transformation).

This may be turned around: given the two-fold role of properties in Kinematics,

the demand that the two roles be consistent with each other may be seen as the deining

trait of the Quantum. This Quantum compatibility condition forces the numerical

role to be multi-layered, the Jordan product to be non-associative and the transition

probability to be non-trivial.

Figure II.7 below attempts to summarize the situation we have reached.





Chapter III

Constructing the Mathematical

Description of a Physical System

The preceding chapter was devoted to the study, from several perspectives, of the

fundamental mathematical structures underlying the formalisms of Classical and Quan-

tum Kinematics. But these abstract mathematical structures—symplectic manifolds,

Poisson algebras, Hilbert spaces, C∗-algebras, etc.—furnish only the general theoretical

tools used to describe the Kinematics of any given physical system. They constitute, so

to speak, the bare canvas supporting the paintings of Classical and Quantum systems.

Just as the artist, who irst needs to carefully study the raw material he has decided

to work with, and to become familiar with the constraints and possibilities it ofers, so

we had to get acquainted with these homogeneous Kinematical arenas. Accordingly,

our aim in Chapter II was to understand at this very broad level the subtle interplay

between the two major concepts of Kinematics: states and properties. Now, the time

has come to embark in the actual process of constructing the mathematical description

of a physical system. This means starting our “chase for individuation” and consider-

ing diferent techniques used in mathematical physics to break the homogeneity of the

Classical and Quantum Kinematical arenas in order to introduce discernibility into the

picture.

235
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III.1 The general strategy for introducing discerni-

bility

So far, the problem has been presented from the perspective of states: given a

connected symplectic manifold S (respectively, a projective Hilbert space PH), the

action Aut(S) ⟳ S (resp. Aut(PH) ⟳ PH) is transitive. This entails that, considered

as elements of abstract mathematical structures, the points of the state space are

qualitatively indiscernible individuals. But, if we endorse the descriptive perspective

on the mathematical description of a physical system (Chapter I, page 15), we expect

all the physical information to be encoded in the mathematical structure itself. In

particular, we expect the diferent states of the system to be individuated without the

need for an arbitrary coordinate frame. Therefore, the consideration of bare symplectic

manifolds or projective Hilbert spaces does not suice, and we need to look for ways of

enriching these initial structures, thus endowing them with enough descriptive power

to individuate each point of the state space. Now—it is important to remark this—the

problem could have been equally well analyzed from the point of view of properties:

if the set of all properties of a physical system is to be described by a mathematical

structure UR, and if one expects to be able to talk about the representative f ∈ UR of

the physical property f, then there must be an intrinsic structural way of individuating

f among the various elements of UR.

Of course, the problem of individuating states and the problem of individuating

properties are just two sides of the same problem. If one prefers to develop the theory

from the point of view of states, the starting point is the abstract space of states P
and the set of properties is then conceived as a particular set of functions on this

space: UR ≃ C∞(P ,R)K. Two states x and y are qualitatively indiscernible (denoted

by x ∼ y) if they are related by an automorphism of P , and one may use this to deine

indiscernible properties by the following requirement:

f ∼ g ⇐⇒ ∀x ∈ P , ∃ϕ ∈ Aut(P) such that g(x) = f(ϕ(x)). (III.1)

Conversely, if one prefers to develop the theory from the point of view of properties,
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the starting point is the abstract algebra of properties UR and states are conceived

as a particular kind of linear functionals on this algebra. In this case, two properties

f and g are qualitatively indiscernible (denoted by f ≈ g) if they are related by an

automorphism of UR, and indiscernible states are deined by the analogue of (III.1):

x ≈ y ⇐⇒ ∀f ∈ UR, ∃Φ ∈ Aut(UR) such that y(f) = x(Φ(g)). (III.2)

These two approaches to discernibility coincide, in the sense that x ∼ y ⇔ x ≈ y

and f ∼ g ⇔ f ≈ g. Indeed, any automorphism of the space of states P induces an

automorphism of the algebra of properties UR, and vice-versa1.

(III.1) and (III.2) show that the ability to individuate all states is equivalent

to the ability to individuate all properties: if it is possible to individuate any state,

(III.1) becomes f ∼ g ⇔ f = g. However, one must be careful with the fact that the

introduction of some degree of individuation within the abstract structure of properties

does not necessarily entail an introduction of some degree of individuation within the

space of states. In other words, the homogeneity of the space of states does not

imply the homogeneity of the algebra of properties. Indeed, there exist qualitatively

discernible properties even when any two states are qualitatively indiscernible (to see

this, it suices to consider two properties f, g ∈ UR whose spectra do not coincide)2.

1More precisely, on the classical side one has a canonical isomorphism between Aut(S) and
Aut(C∞(S,R)): given any morphism of Poisson algebras Lalg : C∞(S1,R) → C∞(S2,R), there ex-
ists a unique morphism of symplectic manifolds Lgeo : S2 → S1 such that Lalg = L∗

geo (see N. P.
Landsman. Mathematical Topics Between Classical and Quantum Mechanics. New York: Springer,
1998, corollary I.2.6.5, p. 77).
On the quantum side, one has Aut(BR(H)) ⊂ Aut(PH). The diference between automorphisms

of the quantum space of states and automorphisms of the quantum algebra of properties lies in the
possibility of considering anti-unitary operators on H (which are anti-linear and hence do not belong
to the C∗-algebra of bounded linear operators). Put diferently, Aut(PH) is canonically isomorphic
to the group of automorphisms and anti-automorphisms of BR(H). Indeed, as we will see later in
greater detail, Wigner proved that any automorphism of PH is induced by a unitary or anti-unitary
operator on H. On the other hand, Kaplansky proved in 1952 that, for von Neumann algebras which
are type I factors (as is the case of B(H)), all *-automorphisms are inner: for any α ∈ Aut(B(H)),
there exists a unitary operator U such that α(A) = UAU∗, for any A ∈ B(H). In other words,
Aut(B(H)) ≃ U(H)/U(1) (I. Kaplansky. “Algebras of Type I”. in: Annals of Mathematics 56.3
(1952), pp. 460–472, Theorem 3, p. 470).

2According to equation (III.1), two properties f and g are qualitatively indiscernible if there exists
an automorphism ϕ of the space of states such that f is the pull-back of g by ϕ. But the pull-back
of a function has the same spectrum as the initial function. Hence, properties whose spectra do not
coincide are necessarily discernible.
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This need to go beyond the Kinematical arena studied in Chapter II in order to

describe a physical system can therefore be perceived from both the geometric and

algebraic perspectives. And indeed, one inds in the literature of both ields statements

where the problem is touched upon. A clear example of this is Brody and Hughston’s

article “Geometric Quantum Mechanics”, where the two authors write:

The speciication of a physical system implies further geometrical structure on

the state space [than the data of a projective Hilbert space]. Indeed, the point

of view we suggest is that all the relevant physical details of a quantum system

can be represented by additional projective geometrical features.3

At the other side of the spectrum, there is for instance the abstract algebraic work of

Irving Segal:

The set of all self-adjoint elements of an abstract C∗-algebra forms then a physical

system [...].

The complete description of a physical system involves however not only the

statement of the mathematical character of the algebra of bounded observables,

but also a labelling of the observables, a kind of physical-mathematical dictionary.

This is clearly visible e.g. in the fact that in elementary quantum mechanics it is

assumed that the bounded observables consist of all bounded hermitian operators

on a countably-dimensional Hilbert space, irrespective of the number of degrees

of freedom of the system.

Now there is evidently no mathematical labelling scheme that will be appli-

cable to a perfectly general C∗-algebra of observables. However, the physically

relevant C∗-algebras all involve implicitly or explicitly a labelling scheme whose

mathematical structure is of essential importance in the theory. [...] The treat-

ment of these labelling matters involves additional elements of mathematical

structure [...].4.

3D. C. Brody and L. P. Hughston. “Geometric Quantum Mechanics”. In: Journal of geometry and
physics 38.1 (2001), pp. 19–53. url: http://arxiv.org/abs/quant-ph/9906086, p. 25, authors’
emphasis. Their insistence on representing “all the relevant physical details” can also be seen as a
perfect illustration of what I have called the ‘descriptive perspective’.

4I. E. Segal. “Mathematical Problems of Relativistic Physics”. In: Proceedings of the Summer
Conference, Boulder, Colorado. Ed. by M. Kac. American Mathematical Society, 1960, pp. 8–9, my
emphasis.

http://arxiv.org/abs/quant-ph/9906086
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The latter passage seems particularly enlightening to understand our goal. The

construction of the physical-mathematical dictionary, the making explicit of the “la-

belling scheme” which allows to identify the physical properties and/or states is pre-

cisely what we are after. But the important point stressed here by Segal is that the

labelling of properties/states cannot be just the subjective and ethereal move of ixing,

once and for all, a choice of names for the elements of the mathematical structures.

Rather, if the labelling is to have some deinite, unambiguous meaning, then it must

inescapably be governed by some additional mathematical structures yet to be consid-

ered5.

Let me shortly comment a simple and concrete situation to illustrate the point:

the mathematical description of a non-relativistic quantum particle in one-dimensional

space. We consider two operators J and K on a Hilbert space H of which we know

only that they obey the algebraic relation

i[J,K] = I,

and which we of course intend to represent position and linear momentum. Then, the

question is: which operator should we pick to represent linear momentum and which

should we pick to represent position? Finding an answer would amount to inding a

5The idea that the meaning of a labelling scheme must be printed in the formalism itself is also
highlighted in Michael Dickson’s review of the philosophical problems arising in non-relativistic Quan-
tum Mechanics. Therein, he devotes one section to discuss “the issue of how the formalism of quantum
theory gets empirical content” and poses the following question:

[...] we have been allowing observables such as Su to ‘represent’ spin in the u-direction,
but what precisely is this relationship of ‘representation’? How may the connection
between formalism and physical fact be made, or understood? [...]
It is crucial to understand that the issue here is not about how to engineer a spin-
measuring device, for example. Rather, it is about what it means to ‘have’ spin-
up in the u-direction (for example) and how this meaning is captured in the
formalism.
[...] What, in other words, is the relationship between the elements of the mathematical
formalism that we have described and physical matters of fact? And inally, why do we
pick one map (POVM) rather than another to represent some given physical
quantity?
(M. Dickson. “Non-relativistic Quantum Mechanics”. In: Philosophy of Physics (Hand-
book of the Philosophy of Science) 2 volume set. Ed. by J. Butterield and J. Earman.
Vol. 1. Amsterdam: North-Holland Publishing Co., 2007, pp. 275–415. url: http:
//philsci-archive.pitt.edu/3321/, pp. 327-328. The italics are from the author,
the bold type is mine.)

http://philsci-archive.pitt.edu/3321/
http://philsci-archive.pitt.edu/3321/
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labelling scheme. Now, since position Q and momentum P should verify

i[P,Q] = I

a plausible choice would be P = J (meaning: “the physical property ‘momentum’ is

represented by the operator J”) and Q = K. But, with the information at our dis-

posal, this choice is completely arbitrary: one could equally well decide at this stage

that P = −K and Q = J , or that P = J + K and Q = K, etc. This is the type of

situation to be avoided if one adheres—as Segal, Brody and Hughston seem to do in

the above quotes—to the descriptive perspective on mathematical deinitions of phys-

ical systems. The existence of several diferent choices on the physical interpretation

of the abstract mathematical elements is felt as the indication that the description is

still incomplete: the deinition of position and momentum must involve further mathe-

matical structures than the sole commutation relation, and the goal becomes to reveal

what these structures are.

All attempts to elucidate the labelling scheme at work in Classical and Quantum

Kinematics follow the same strategy: roughly, one introduces into the kinematical

arena new abstract mathematical structures which clothe the bare initial kinematical

structures, and thus partially break the homogeneity. To be more precise, we need to

irst distinguish between three sorts of structures:

– First, there are what I call the fundamental kinematical structures. These are

the abstract mathematical structures that constitute the starting point in the

description of the Classical and Quantum kinematical arenas. For example, from

the algebraic perspective of properties, these could be an abstract Poisson al-

gebra for Classical Kinematics and an abstract non-commutative C∗-algebra for

Quantum Kinematics.

– Moreover, there are what I call internal structures. These are structures explicitly

built from—and therefore, by deinition, intrinsically related to—the fundamental

kinematical structures. In the previous chapter, we encountered many of those:

given an abstract symplectic manifold (S, ω), it is for instance possible to con-

struct the Poisson algebra
(
C∞(S,R), ·, {·, ·}

)
, the group Aut(S), the Lie algebra

Γ(TS)H of Hamiltonian vector ields, etc.
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– Finally, there are what I call external! structures. Contrary to the previous

case, these are abstract structures with a priori no relation to the fundamental

kinematical structures.

Now, because of the diference in the type of relation they bear to the kinematical

arena, internal and external structures will have quite diferent roles in the mathemat-

ics of Kinematics. The consideration of structures of the irst sort allows to gain insight

about the constitution of the kinematical arena6. The whole previous chapter can be

seen as an example of this, but a simpler example is the fact that the group of automor-

phisms captures the degree of discernibility within an abstract structure. Therefore,

the typical questions arising in this context will involve the amount of information

about the initial structure encoded in a second structure. The question may take the

form of a reconstruction problem—e.g., is it possible to recover the symplectic mani-

fold (S, ω) from the Poisson algebra
(
C∞(S,R), ·, {·, ·}

)
?—or, when the reconstruction

is impossible, of a loss of information problem—e.g., which information of the symplec-

tic manifold is invisible when considering its group of automorphisms? Crucial for our

purposes is the remark that internal structures are unable to break the homogeneity

of the kinematical arena, since they do not introduce any new information into the

picture. At best, they allow to capture an intrinsic trait of the fundamental structure

which could have been spotted by other means (for example, the degree of discernibil-

ity within (S, ω) could have been studied using the Poisson algebra of functions and

deinition (III.2, page 237), instead of using the action of the group of automorphisms).

Therefore, the addition of further elements of mathematical structure will neces-

sarily involve the consideration of external structures. Since these have a priori no

relation to the fundamental kinematical structures, the additional information will lie

precisely in the speciication of a relation between an internal structure and an external

one. If we denote by K the fundamental kinematical structure (a symplectic manifold,

6This should resonate with the words of Weyl: “[...] what has indeed become a guiding principle
in modern mathematics is this lesson: Whenever you have to do with a structure-endowed entity Σ
try to determine its group of automorphisms, the group of those element-wise transformations which
leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution
of Σ in this way” (H. Weyl. Symmetry. Princeton: Princeton University Press, 1952 (reprinted in
1989), p. 144, author’s emphasis).



242 Chapter III. Constructing the Mathematical Description of a Physical System

a Jordan-Lie algebra, etc.) and by E a certain external structure, the new abstract

data that we wish to use to describe a physical system will then be a triple (K, E , ρ)
where ρ establishes a relation between K and E .

At this point, it just remains to clarify this key notion of relation. This is most

naturally achieved by recasting the whole discussion in the language of category theory.

The general strategy appears then to be as follows:

i) Start with two categories Ext and Kin . An object E of Ext is an external abstract

structure, and an object K of Kin is the fundamental kinematical structure. For

example, Kin would be the category PoissMan of Poisson manifolds or the cate-

gory JL of Jordan-Lie algebras, and Ext could be Grp (the category of groups).

ii) Internal structures correspond to the images of the objects of Kin by various func-

tors F : Kin −→ D. Precisely, it would be the functoriality of the assignment

F that would convey a deinite meaning to the notion of an “intrinsic construc-

tion”. In this way, the problems about the possible reconstructions or losses of

information would translate into questions about whether the functor F admits

an adjoint or, better, whether it establishes an equivalence of categories.

iii) The choice of a relation between a fundamental kinematical structure K and an

external structure E is now given by the choice of two functors F1 : Kin −→ D

and F2 : Ext −→ D and a morphism ρ : F2(E) −→ F1(K). Accordingly, ρ is

more often called a representation of E in K.7.

It thus appears that, in our chase for individuation, the central problem will be to

study the possible transits between internal and external structures. In particular, this

general representational strategy for adding new elements of mathematical structure

into the kinematical arena raises three main questions:

7Despite its elegance, this categorical account of the general strategy strategy has one major caveat.
The problem is that there are many constructions that one would clearly would like to qualify as
‘intrinsic’ but nonetheless fail to be functorial. The most compelling example is the assignment which
associates to a given structure its group of automorphisms: in general, a morphism X −→ Y in a
certain category C does not induce a morphism of groups between AutC (X) and AutC (Y ). Suicient
conditions on the category C for the automorphism assignment to be a (contravariant) functor are
found in M. Linckelmann. “Alperin’s weight conjecture in terms of equivariant Bredon cohomology”.
In: Mathematische Zeitschrift 250.3 (2005), pp. 495–513, Proposition 2.2.
Notwithstanding this, I will keep its main idea: that the key objects are morphisms, in a certain

category D, between objects built out of an abstract external structure and objects built out of the
fundamental kinematical structure.
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a) Choice of the type of external structures. Which type of external structures are

relevant to the mathematical description of a physical system?

b) The representation problem. For a ixed type of external structures, there will

be in general many diferent ways of representing them in the kinematical arena:

there will be diferent natural candidates for the category C and diferent pos-

sible choices for the object C (K) within this category. How do these diferent

representations compare and is there a privileged choice?

c) The individuation problem. For a ixed representation of an external structure,

has the homogeneity of the kinematical arena been completely broken? In other

terms, does a given triple (K, E , ρ) satisfy the requirement of individuation?

In what follows we shall consider in turn the representation and individuation

problems for one particular type of structures which have played a crucial role in the

foundations of Mechanics: groups.

III.2 Introducing discernibility through groups (1):

the representation problem

It comes as no surprise that the irst type of external structures we will consider are

(Lie) groups, and their ininitesimal version Lie algebras. Their paramount importance

in the development of Classical and Quantum Mechanics is beyond doubt and a striking

evidence of this is the fact that the irst book ever written on the foundations of

Quantum Mechanics was Weyl’s Quantenmechanik und Gruppentheorie of 1928. Since

then, the crucial role of groups in both Classical and Quantum Mechanics has been

underlined almost systematically. Thus, I feel there is no need to justify my choice of

studying group-theoretical techniques in Kinematics.

However, before we plunge into a detailed analysis of the formalism related to

groups, I should make a preliminary comment, for there is an important point in which

my motivation for such a study greatly difers from the traditional point of view on

the role of groups in Physics. A simple and clear account of this usual conception

of groups may be found—again—in Dickson’s excellent review of the philosophical
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problems arising in Quantum Mechanics. He writes:

There is a traditional account of one way that groups have been related to em-

pirical content. Take any group G, and consider its action on a set S. If two

elements of S are connected by an element of G, then call them “equivalent”.

One can readily verify that G thus partitions S into equivalence classes, and

we can say, then, that G is a group of symmetries on S, in the sense that the

elements of S connected by an element of G are in some important sense ‘the

same’.8

Thus, because of their relation to symmetries, groups are most often perceived

as a means to introduce a certain notion of sameness into the space of states of a

physical system. From the general lines of our discourse, it should be clear that this

is not the way external groups should be considered here. In our case, the necessity

of considering groups stems from the requirement of breaking the homogeneity of the

kinematical arena. The present situation is therefore the exact opposite of the one

described by Dickson: given the abstract data of e.g. a symplectic manifold S, all its

elements are a priori ‘the same’ and we are interested in inding “some important sense

in which they would be ‘diferent’”. And we are hoping groups will indeed furnish such

a sense. Thus, we are here trying to perceive groups as a means to introduce a certain

notion of diference—in other words, as a means to deine labels of properties and to

introduce discernibility among states9.

Luckily, despite this important conceptual diference between the present approach

and the usual one, all group-theoretical techniques remain useful. Indeed, whether one

is interested in implementing the notion of symmetry in Mechanics (as were Weyl

and Wigner) or trying to break the homogeneity of the kinematical arena by means

of groups (as we are), the technical question it leads to remains the same: given an

abstract group G, what does it mean to introduce it or represent it in the homogeneous

arena?

There is, in mathematics, a general notion of group representation:

8Dickson, op. cit., p. 328.
9Again, it is important to insist on the fact that the groups we are here considering in order to

introduce discernibility are external groups, rather than internal (cf. page 241).
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Deinition III.1. Given an abstract group G and an object C of a certain category

C , a representation of G on C is a morphism of groups L : G −→ AutC (C).10

In this sense, we see that a representation of an abstract group on C is almost the

same as the choice of a privileged subgroup among all automorphisms of the abstract

object. Here, this subgroup is simply the set L(G) ⊂ AutC (C) of representatives of

elements of G11.

Whenever it happens that both G and AutC (C) are Lie groups, a representation

of G on C allows to deine also a representation on C of the ininitesimal version of the

group, the Lie algebra g. This is achieved through the functor Lie from the category

of Lie groups to the category of Lie algebras. The induced representation of g on C is

simply the morphism Lie(L) : g −→ Lie(AutC (C)). More generally, a representation

of g on C is a morphism of Lie algebras

ρ : g −→ Lie(AutC (C)).

Those g-representations that are of the form ρ = Lie(L) for some G-representation L

are called integrable.

With these notions at hand, it would thus seem that the technical manner in which

groups and Lie algebras are introduced into Kinematics is transparent. However, as

we will now see, the situation is in fact more involved.

III.2.1 In Classical Kinematics

We irst specialize the above discussion to the context of Classical Kinematics.

Therein, the starting point can be taken to be either a symplectic manifold (S, ω)

(geometric point of view, emphasis on states) or its Poisson algebra of real-valued

10See, for example, S. Lang. Algebra. 3rd ed. New York: Springer GTM, 2002, p. 54.
11The remark that any group may be seen as a category (with only one object and only invertible

arrows) provides a categorical reformulation of the general notion of group representation. Given an
abstract group G, a representation of it is simply any functor from G. Accordingly, one sometimes
inds that a general functor F : C → D is called a representation of the category C in the catgeory D.
However, this functorial point of view on representations seems to me less natural when working with
representations of other algebraic structures which cannot so easily be viewed as special categories
(such as Lie algebras, Poisson algebras or C∗-algebras).
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functions
(
C∞(S,R), ·, {·, ·}

)
(algebraic point of view, emphasis on properties). As we

saw in the last chapter, one may choose any of the two points of view, since they are

equivalent. For simplicity, we will often adopt the geometric point of view.

In this case, AutC (C) becomes Symp(S), the group of all symplectomorphisms of

the space of states S12, and the general notion of group representation yields what is

usually called a symplectic or Poisson G-action on S13—that is, a morphism of

groups

G Aut(S)14.
L

The ininitesimal analogue of these group actions is immediate. A Poisson g-action on

S is a Lie algebra morphism

g Γ(TS)ω
ρ

where Γ(TS)ω is the Lie algebra of vector ields preserving the symplectic structure15.

12Hereafter, I will take a morphism of symplectic manifolds ϕ : S S′ to be a morphism of

diferentiable manifolds such that the pull-back ϕ∗ : C∞(S′,R) C∞(S′,R) is a morphism of
Poisson algebras. This choice is by no means undisputed: Alan Weinstein has been suggesting for
some time that the correct “symplectic category” to consider for Classical Mechanics should rather be
deined in such a way to include Lagrangian correspondences as morphisms. For the detailed reasons
pushing him to do so, see A. Weinstein. “Symplectic Categories”. In: Proceedings of Geometry
Summer School, Lisbon. 2009. url: https://arxiv.org/pdf/0911.4133v1.pdf.

13One can also sometimes ind the term “canonical action” (for example in J. E. Marsden and T. S.
Ratiu. Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems.
2nd ed. New York: Springer, 1999), which is related to the use of “canonical” in the expression
“canonical commutation relations”. “Canonical” having such a diferent meaning in mathematics (as
in “canonically isomorphic”), I will try to avoid the use of the word in its irst sense.

14From the algebraic point of view, one would have rather considered a morphism Lalg : G −→
Aut

(
C∞(S,R)

)
. But since Aut(S) and Aut

(
C∞(S,R)

)
are canonically isomorphic the algebraic and

geometric notions of classical G-representation coincide. I will refrain from systematically presenting
the two points of view, as this would considerably weigh down the reading, and will only perform this
oscillation when there is an insight to gain in doing so.

15There are some technical subtleties I am omitting here, which are related to the ambiguity of
the expression “the Lie algebra of vector ields”. If one considers the Lie algebra of vector ields
Γ(TS) with the usual commutator, a left G-action induces a map ρ : g → (Γ(TS), [·, ·]) which is in
fact a anti-morphism of Lie algebras. In other words, when integrable, a morphism of Lie algebras
ρ : g→ (Γ(TS), [·, ·]) integrates to a right G-action (which is a group anti-morphism R : G→ Aut(S)).
Of course, it suices to consider the Lie algebra (Γ(TS),−[·, ·]) in order to make the statement in the
main text rigorously true: a left G-action induces a morphism of Lie algebras ρ : g→ (Γ(TS),−[·, ·]).
Because one wants to perceive ρ as (Lie)(L), one sometimes says that “the Lie algebra of the group of
difeomorphisms is the Lie algebra of vector ields with minus the commutator”, but this is again not
rigorous since neither Diff(S) nor Symp(S) are Lie groups. (See for example D. Alekseevsky and
P. W. Michor. “Diferential Geometry of g-manifolds”. In: Diferential Geometry and its Applications
5.4 (1995), pp. 371–403. url: http://arxiv.org/abs/math/9309214.)

https://arxiv.org/pdf/0911.4133v1.pdf
http://arxiv.org/abs/math/9309214
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Now, it would be wrong to think that Poisson actions are necessarily the central

notion by means of which Lie groups and Lie algebras are introduced into Classical

Kinematics. In practice, groups are introduced through a more speciic type of actions,

namely (strongly) Hamiltonian actions. These are usually deined as follows16.

Deinition III.2. A Poisson G-action on a symplectic manifold (S, ω), with associated

Poisson g-action ρ : g → Γ(TS)ω, is said to be Hamiltonian if, for any X ∈ g, the

1-form ω(ρ(X), ·) is exact.17

The condition that ω(ρ(X), ·) be exact implies the possibility of constructing a

linear map called the co-momentum map, deined by

Ĵ : g −→ C∞(S,R)

X 7−→ Ĵ(X) where dĴ(X) := ω(ρ(X), ·).

From this, one can construct a second map, called the momentum map, deined by:

J : S −→ g∗

x 7−→ J(x) where J(x)[X] := Ĵ(X)(x).

Deinition III.3. A Hamiltonian G-action L : G → Aut(S) is said to be strongly

Hamiltonian if the momentum map is Co-equivariant—that is, if, for every g ∈ G,

the following diagram commutes:

S g∗

S g∗

J

L(g) Co(g)

J

16Again, all the deinitions and technical details that follow are standard and may be found in
several textbooks. In my opinion, the best place to learn about group actions in Classical Mechanics
is Marsden and Ratiu’s Introduction to Mechanics and Symmetry. A Basic Exposition of Classical
Mechanical Systems. They spend several chapters discussing Hamiltonian actions and provide an
extensive list of examples. For a conceptual understanding of the general situation, the few pages
of Landsman’s Mathematical Topics Between Classical and Quantum Mechanics on the subject are
particularly enlightening (pp. 178-191). Finally, Iglesias-Zemmour’s Symétries et moment was also
an important reading for my understanding of this topic.

17P. Iglesias-Zemmour. Symétries et moment. Paris: Hermann, Éditeurs des Sciences et des Arts,
2000, pp. 101–102. Note that, for any Poisson G-action, the 1-form ω(ρ(X), ·) is necessarily closed.
Indeed, since by deinition ρ(X) preserves the symplectic structure, we have Lρ(X)ω = 0 = ιρ(X)dω+
d(ω(ρ(X), ·)) = d(ω(ρ(X), ·)).
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where Co : G→ Aut(g∗) denotes the co-adjoint action18.

Deinition III.4. A Hamiltonian g-action is said to be strongly Hamiltonian19 if

the co-momentum map Ĵ is a morphism of Lie algebras—that is, if, for every X, Y ∈ g,

we have

Ĵ([X, Y ]) = {Ĵ(X), Ĵ(Y )}S.

In this latter case, one sometimes says that the momentum map is ‘ininitesimally

equivariant’. This is because the Co-equivariance of the momentum map implies its

ininitesimal equivariance (in other words, if L : G→ Aut(S) is strongly Hamiltonian,

then so is the associated g-action dL). The converse is true only if G is connected20.

In its modern form, the momentum map was independently introduced around

1965 by the American mathematician Bertram Kostant and the French Jean-Marie

Souriau, although, with the wisdom of hindsight, a version of it can already be found

in the work of Sophus Lie (1890)21. This concept has become a notion of the uttermost

importance for the foundations of Classical Kinematics. Marsden and Ratiu describe

18 The co-adjoint action of G on g∗ is usually deined in terms of the adjoint action of G on g by:
∀θ ∈ g∗, ∀X ∈ g, (Co(g)θ)(X) := θ(Ad(g−1)X). In turn, the adjoint action is deined by: if X ∈ g is
the tangent vector at the identity to the parametrized curve γ, then Ad(g)X is deined as the tangent
vector at the identity to the parametrized curve gγg−1. In other terms,

Ad(g)X :=
d

dt
(gγg−1)(t)

∣∣
t=0

where dγ(t)
dt

∣∣
t=0

= X and γ(0) = e.

See Landsman, op. cit., p. 184.
19A remark on terminology, for there are slight variations from one reference to another with re-

spect to the various notions I have just introduced. First, there is the harmless variation between
‘momentum’ and ‘moment’ map (or mapping). This is explained from the fact that the terminology
was introduced in French by Jean-Marie Souriau in his article “Quantiication géométrique. Applica-
tions”. Therein, he used the word “moment” because it generalized the notion of angular momentum
(in French: “moment angulaire”). Despite this, the irst usages of this notion in English kept the
French word (e.g. Marsden and Weinstein’s “Reduction of Symplectic Manifolds With Symmetry” in
1974, and also the English translation of Souriau’s book). Nowadays, most people use “momentum”
but notable exceptions are Guillemin and Sternberg (who use “moment”, perhaps because it also
generalizes the notion of moment of inertia (in French: “moment d’inertie”)) and Woit (who uses
“momentum map” to refer to what I have called co-momentum).
One needs to be a little bit more careful with the notion of “Hamiltonian action”. I am here using

the terminology of Landsman, which also agrees with that of Iglesias-Zemmour. However, in many
textbooks (e.g., Abraham and Marsden, Marsden and Ratiu, Puta), ‘Hamiltonian actions’ refer to
what I call ‘strongly Hamiltonian actions’...

20Marsden and Ratiu, op. cit., Theorem 12.3.2, p. 402.
21For more extensive references of the original papers dealing with the momentum map, see ibid.,

pp. 369–370.
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it as a “rich concept that is ubiquitous in the modern developments of geometric me-

chanics” and that “has led to surprising insights into many areas of mechanics and

geometry”22. Even stronger, Souriau turns the existence of a momentum map into one

of the four fundamental principles of non-relativistic symplectic mechanics23.

III.2.1.a Importance of (strongly) Hamiltonian actions

The question for us is: Why? Why do Hamiltonian actions and the momentum

mapping play such an important role in the foundations of Classical Mechanics? Why

should we consider classical state spaces endowed with an action of G and a momentum

map, instead of simply considering general Poisson actions?

An often cited motivation for introducing the momentum map is its relation to

Noether’s theorem. Given a Hamiltonian action G ⟳ S with momentum map J ,

and a property h ∈ C∞(S,R) which is G-invariant, then any property of the form

Ĵ(X) ∈ C∞(S,R) (for X ∈ g) is constant along the low of the Hamiltonian vector ield

vh
24. This result is the geometric reformulation of Noether’s irst theorem. Indeed,

if one thinks of h as the Hamiltonian of the system, the above statement is saying

that whenever G is a symmetry group of the Hamiltonian, the functions Ĵ(X) are

conserved quantities. The co-momentum map appears thus as a very powerful tool to

build conserved quantities for a system with symmetries.

But this clearly cannot be the whole story. The relation to Noether’s theorem

only succeeds in explaining why Hamiltonian actions are something valuable in the

light of a particular quest, but not why they appear as a vault upon which rests the

general theory. In other words, it only allows to understand why they are convenient,

22Ibid., p. 365.
23J.-M. Souriau. Structure of Dynamical Systems. A Symplectic View of Physics. Trans. by C.

Cushman-de Vries. Boston: Birkhäuser, 1997, p. 155. The other three principles are: i) that the space
of motions be a connected symplectic manifold; ii) that the space of motions of a composite system
of independently evolving parts be the symplectic direct product of the spaces of motions of each
part; iii) that for an isolated system, the space of motions be endowed with a Poisson action of the
Galileo group. Recall that, for Souriau, the fundamental symplectic manifold appearing in Classical
Mechanics should not be viewed as the space of instantaneous states but rather as the space of states
extended in time (that is, the space of motions).

24See Landsman, op. cit., Proposition I.1.2.2.
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but not why they are fundamental25. Contrary to the utilitarian approach in which the

concept becomes meaningful a posteriori, through the usefulness of its applications, we

are looking for a perspective presenting Hamiltonian and strongly Hamiltonian actions

as something natural to consider in the irst place—that is, a perspective from which

one could almost anticipate the concept before its introduction26.

A resolute attempt to answer the question in these terms is found in Gabriel

Catren’s article “On the Relation Between Gauge and Phase Symmetries”. Therein, it

is argued that the existence of a momentum map in the classical space of states should

be perceived as a footprint left by Quantum Mechanics inside Classical Mechanics27. It

nonetheless seems to me that one should at least try to understand the central impor-

tance of Hamiltonian actions without any mention of the Quantum, thus attempting

to consider the momentum map as an entirely classical notion.

A step in the sought-for direction is to take seriously the representation problem

alluded to at the end of the introduction to this chapter. Indeed, Deinition III.1

(page 245) recognizes the fact that, from any mathematical structure whatsoever, it

25Moreover, there are many other reasons why the momentum map is useful. As Marsden and Ratiu
say, “this concept is more than a mathematical reformulation of a concept that simply describes the
well-known Noether theorem” (Marsden and Ratiu, loc. cit.). Important examples of other applica-
tions are the construction of new symplectic manifolds out of Hamiltonian actions by means of the
so-called ‘Marsden-Weinstein reduction’ (Landsman, op. cit., section IV.1.5.) and the classiication
of transitive symplectic actions by Kostant’s coadjoint orbit covering theorem (Marsden and Ratiu,
op. cit., Theorem 14.4.5., p. 465).

26The naturalness of mathematical concepts is here an essential point, and a philosophical clariica-
tion of this idea would certainly constitute a valuable work which is largely overdue in the philosophy
of mathematics. Very few authors seem to tackle this question. David Corield spends a small section
of his book Towards a Philosophy of Real Mathematics trying to elucidate this issue (“The Conceptual
and the Natural”, pp. 223-230). More recently, Luca San Mauro and Giorgio Venturi have published
an article solely dedicated to the notion of naturalness (L. San Mauro and G. Venturi. “Naturalness
in Mathematics”. In: From Logic to Practice. Ed. by G. Lolli, M. Panza, and G. Venturi. Springer,
2015, pp. 277–313), but further work remains to be done. Let me just briely comment that I do
not regard ‘naturalness” as an intrinsic property of a concept, but rather as a property of the place a
concept occupies within an expository discourse. The general idea would be that the naturalness of a
concept is intimately linked to the notion of continuity (of the process of developing a theory) or of
inevitability (of the introduction of the concept). Thus, a concept would appear as unnatural when its
introduction into the exposition constitutes a moment of rupture which could not have been foreseen.

27Indeed, Catren’s approach emphasizes the idea that g∗ “encodes the unitary representation theory
of [the group] G” (p. 1321). This is inspired by Kirillov’s orbit method, which establishes for certain
Lie groups (e.g., abelian, nilpotent) a correspondence between the Co-adjoint orbits g∗/G and the
unitary irreducible representations of the group. Hence, the presence of a momentum map in Classical
Mechanics can only be fully understood from the vantage viewpoint of Quantum Mechanics and its
Hilbert space formulation.



Chapter III. Constructing the Mathematical Description of a Physical System 251

is possible to deine at least one group: the automorphism group. But besides this

general representational strategy, there exist other equally sound possibilities which

are attached to the particularities of Classical Kinematics. These alternatives stem

from two sources: the ability to deine several diferent Lie algebras from a symplectic

manifold, and the ability to construct both a Poisson space and a Poisson algebra from

a given Lie group.

Let us review these various notions of representation on the classical arena. First,

given a symplectic manifold (S, ω), there are at least three diferent Lie algebras one

can construct:

i) Γ(TS)ω (vector ields preserving the symplectic structure),

ii) Γ(TS)H (Hamiltonian vector ields),

iii)
(
C∞(S,R), {·, ·}

)
(smooth real-valued functions where one forgets point-wise mul-

tiplication and keeps only the Poisson bracket).

These are related by the following diagram of Lie algebras:

R C∞(S,R) Γ(TS)H Γ(TS)ω
v− ι (III.3)

where the irst two arrows form a short exact sequence (the image of one arrow is the

kernel of the next one) and capture the fact that Γ(TS)H ≃ C∞(S,R)/R (properties-

as-transformations are properties ‘up to a constant’). The existence of this triple

of internal Lie algebras furnishes three possible ways of representing Lie algebras in

the Classical arena—just consider morphisms from g to any of Γ(TS)ω, Γ(TS)H or

C∞(S,R). In fact, these three notions of representation exactly coincide with the three

diferent notions of g-actions on S we have already discussed:

– a Poisson g-action is a morphism of Lie algebras g Γ(TS)ω,
ρ

– a Hamiltonian g-action is a morphism of Lie algebras g Γ(TS)H
28,

ρH

28Indeed, the requirement that the 1-form ω(ρH(X), ·) be exact (cf. Deinition III.2, page 247)
means there exists f ∈ C∞(S,R) such that ω(ρH(X), ·) = df . In other terms, ρH(X) is a Hamiltonian
vector ield.
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– a strongly Hamiltonian g-action is a morphism of Lie algebras g C∞(S,R)29.
Ĵ

Second, given a Lie algebra g, it is possible to show that its topological dual g∗

is a Poisson manifold (or, equivalently, that C∞(g∗,R) is a Poisson algebra). This

important result is summarized in the following

Theorem III.1. Consider the injection g C∞(g∗,R)ι provided by the canonical

identiication of g with g∗∗. Then, there exists a unique Poisson structure on g∗ such

that the above map is an injection of Lie algebras: {X̃, Ỹ }g∗ := [̃X, Y ], where X, Y ∈ g

and X̃ := ι(X).30

This then seems to furnish two additional strategies for representing the Lie algebra

g in the classical arena: one can either consider representations of C∞(g∗,R) on S

(that is, morphisms of Poisson algebras C∞(g∗,R) C∞(S,R))J∗

or realizations

of g∗ on S (that is, morphisms of Poisson manifolds S g∗)31.
J Nonetheless, we

have the following equivalence32:

Poisson realization

of g∗ on S

Poisson representation

of C∞(g∗,R) on S

strongly Hamiltonian

g-action on S

29More precisely, this last arrow is the unique ininitesimally equivariant co-momentum map associ-
ated to the strongly Hamiltonian action. The latter is the morphism ρ induced by the co-momentum
map through the diagram

g C∞(S,R) Γ(TS)H Γ(TS)ω.
Ĵ

ρ

v− ι

30Cf Landsman, op. cit., p. 179, Deinition III.1.1.1. and the comment following it. Most
usually, the Poisson structure on g∗ is deined explicitly by: {f, g}g∗(θ) = θ([df |θ, dg|θ]), where
f, g ∈ C∞(g∗,R), θ ∈ g∗ and where one uses the identiications T ∗

θ g
∗ ≃ g∗∗ ≃ g.

31See ibid., Deinition I.2.6.1., p. 76, and also N. P. Landsman. “Lie Groupoids and Lie Algebroids
in Physics and Noncommutative Geometry”. In: Journal of Geometry and Physics 56.1 (2006), pp. 24–
54. url: http://arxiv.org/abs/math-ph/0506024, p. 41.

32By ‘equivalence’, I mean here the existence of a canonical bijection between these three sets of
arrows. For the upper equivalence, see idem, Mathematical Topics Between Classical and Quantum
Mechanics, Corollary I.2.6.5, p. 77. For the lower right equivalence, see ibid., Theorem III. 1.1.7., p.
181, or Marsden and Ratiu, op. cit., pp. 403–405 and in particular Remark 1, p. 405.

http://arxiv.org/abs/math-ph/0506024
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The irst of these equivalences we already knew: a Poisson realization S
J−→ g∗

induces a Poisson representation by taking the pullback J∗, and every Poisson repre-

sentation is the pullback of some Poisson realization. The second equivalence stems

from two facts. First, the co-momentum map Ĵ is a morphism of Lie algebras if and

only if the momentum map J is a morphism of Poisson manifolds33. Moreover—and

this is the crucial point—a Poisson representation C∞(g∗,R)
J∗

−→ C∞(S,R) induces a

Poisson g-action through the diagram (where all arrows are morphisms of Lie algebras)

g C∞(g∗,R) C∞(S,R) Γ(TS)H Γ(TS)ω.
ι

ρ

J∗ v− ι

In other words, as soon as one is given a Poisson realization S
J−→ g∗ and considers

its pull-back C∞(g∗,R)
J∗

−→ C∞(S,R), one can generate a diagram deining a strongly

Hamiltonian g-action: ininitesimally equivariant momentum maps are just a particular

instance of the more general concept of Poisson realizations, and the co-momentum map

is simply the map Ĵ := J∗ ◦ ι.

Hence, strongly Hamiltonian g-actions are precisely those g-actions which are

induced by a Poisson representation/realization. Through this change of emphasis—

from the notion of action to the notion of Poisson representation—the problem of

studying all possible strongly Hamiltonian actions of g is no longer understood as a

problem focusing on a restricted class of g-actions; rather, it is the problem of studying

all the possible representations of the Poisson algebra C∞(g∗,R).

All in all, the classical representation problem (for Lie groups and Lie algebras)

boils down to the comparison of the three diferent types of g-actions. The situation is

summarized in Figure III.1 below.

The irst point highlighted by this igure is how little groups are actually involved in

these constructions. Both the notions of Poisson representation and Poisson realization

only appeal to the ininitesimal information of the group, and the same holds for the

notions of Hamiltonian and strongly Hamiltonian action. Because of this, it is better

33Landsman, op. cit., Proposition III.1.1.2, p. 179, or Marsden and Ratiu, op. cit., Theorem 12.4.1,
p. 403.
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Category External
structure

Internal
structure

PoissAlg C∞(g∗,R) C
∞(S,R)

PoissMan g∗ S

C∞(S,R)

LieAlg g Γ(TS)H

Γ(TS)ω

Grp G Symp(S)

representation

Poisson representation

Poisson realization

v−

Poisson g-action

Hamiltonian g-action

strongly Hamiltonian g-action

ι

Poisson G-action

Fig. III.1 – The Classical representation problem for Lie groups and Lie algebras
(or how to introduce them into Classical Kinematics).

On the top right and bottom left of the ‘diagram’ are the initial external and internal struc-
tures. Squiggle arrows represent intrinsic constructions of new structures (some of which,
but not all, being functorial), while all other arrows represent morphisms in the appropriate
category. The coloured arrows represent the various a priori diferent transits between the

external and the internal structures.

to leave groups and the question of integrability of g-actions somewhat aside and focus

mainly on the three central lines of the diagram.

So far, this more systematic exploration of the several possible transits between

the external and the internal has allowed us to understand why both Hamiltonian and

strongly Hamiltonian actions appear as natural objects to consider in our attempt to

construct the mathematical characterization of a classical system using Lie groups and

Lie algebras. Presently, they are perceived as a representational strategy that stands

on the same footing as Poisson actions. But this is not enough. If we wish to provide a

rationale for Souriau’s fourth axiom of non-relativistic symplectic mechanics, we need

to explain why we should not consider general Poisson actions. In other terms, we
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need to explain why we should consider (strongly) Hamiltonian actions as the preferred

representational strategy.

Here, the conceptual framework developed in the preceding chapter ofers us a clear

answer. As we have just seen, the introduction of an abstract external Lie algebra into

the Classical arena will, in all representational strategies, lead to a distinguished set

of ininitesimal state transformations (it is the image of g by the action ρ). However,

if these distinguished transformations are to be useful in the deinition of the proper-

ties of the classical system being described, if they are to provide a labelling scheme

for physical properties, then it is essential that the chosen representational strategy

relects the fundamental conceptual triad which constitutes the core of Kinematics

(Figure II.1, page 146). In other words, it is essential to be able to interpret the

represented transformations as transformations generated by properties. This means

g should be represented, not by general transformations, but rather by properties-as-

transformations. And this point is precisely what distinguishes Hamiltonian actions

from general Poisson actions.

III.2.1.b Hamiltonian vs. strongly Hamiltonian actions

Both Hamiltonian and strongly Hamiltonian actions respect the transformational

role of properties, as they both allow to associate to each element of the external

Lie algebra g a property-as-transformation. Despite this, there also seems to be a

clear advantage of the latter type of actions: they represent the external ininitesimal

transformations directly as properties. In this way, strongly Hamiltonian actions appear

as those g-actions which respect both the transformational and numerical role of physical

properties. In the light of this, it would seem that one should also discard the use of

Hamiltonian actions and restrict attention solely to strongly Hamiltonian actions.

However, as we will now see, the diference between Hamiltonian and strongly

Hamiltonian actions is in fact not that important. To have a better grasp of this

diference, it is useful to compare the diagrams deining these two types of actions.
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Recall: strongly Hamiltonian actions are deined by the diagram

g C∞(S,R) Γ(TS)H Γ(TS)ω
Ĵ

ρH

v− ι (III.4)

where all arrows are morphisms of Lie algebras, while Hamiltonian actions are deined

by the diagram

g C∞(S,R) Γ(TS)H Γ(TS)ω
Ĵ

ρH

v− ι (III.5)

where now the co-momentum map Ĵ is only a morphism of vector spaces (equivalently,

the momentum map J : S → g∗ is only a morphism of diferentiable manifolds, instead

of being a Poisson realization; or the pull-back J∗ : C∞(g∗,R) → C∞(S,R) is only a

morphism of commutative algebras instead of being a Poisson representation) and the

remaining arrows are morphisms of Lie algebras.

Diagrams (III.4) and (III.5) may look very similar. Nonetheless, they present

an essential conceptual diference, which lies in the possible oscillations between the

morphisms Ĵ and ρH . For strongly Hamiltonian actions, one can either: start from

the data Ĵ and deduce the data ρH (one deines it as ρH := v− ◦ Ĵ), or start from

the g-action and deduce the map Ĵ (the equivariant co-momentum map is uniquely

deined for a strongly Hamiltonian action). This freedom of circulation breaks down

for Hamiltonian actions: given a smooth map S J−→ g∗, the induced map v− ◦ Ĵ is no

longer guaranteed to be a morphism of Lie algebras. Moreover, given a Hamiltonian

action, one cannot associate to it one single smooth map S
J−→ g∗ but rather a class

of such maps (the momentum map is not uniquely deined). In other words, whereas

strongly Hamiltonian actions of g on S and Poisson realizations of g∗ on S are equivalent

(one can freely circulate between the two), the notion of Hamiltonian action is prior to

the non-equivariant momentum map (one must start from the data g
ρH−→ Γ(TS)H).
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Having said this, let us describe the obstructions for a Hamiltonian g-action to be

strongly Hamiltonian34. We have the following:

Theorem III.2. The second cohomology group of g with values in R governs the

obstruction to have strongly Hamiltonian actions. In other terms, any Hamiltonian

g-action is strongly Hamiltonian if and only if H2(g,R) = 0.35

Once the locus of the obstruction is properly pointed out, the immediate question

becomes to investigate strategies to bypass such an obstruction. In this case, there are

34In order not to be drowned by the technical details in what is about to come, I have decided to
develop part of the formalism in the footnotes. The general picture should be understandable without
the reading of these. A precise exposition is found in Landsman, op. cit., Section I.1.1, pp. 178–183.

35Given a diagram of the form (III.5), the default of ρH to be strongly Hamiltonian is closely related
to the default of some associated co-momentum map Ĵ to be a morphism of Lie algebras, which in
turn is captured by the map

Γ : g× g −→ R

(X,Y ) 7−→ Γ(X,Y ) := Ĵ([X,Y ])− {Ĵ(X), Ĵ(Y )}S .

(Strictly speaking, the deinition shows Γ(X,Y ) to be an element of C∞(S,R). Nonetheless, the fact
that both ρ and v− are morphisms of Lie algebras enforces the basic identity v

Ĵ([X,Y ]) = v{Ĵ(X),Ĵ(Y )}S
,

which in turn implies, if S is connected, that, in fact, Γ(X,Y ) is just a real number.)
Because of the anti-symmetry and Jacobi identity of both the Lie product [·, ·] on g and the Poisson

bracket {·, ·} on S, the bilinear map Γ satisies two similar properties:
i) Γ(X,Y ) = −Γ(Y,X),
ii) Γ(X, [Y, Z]) = Γ([X,Y ], Z) + Γ(Y, [X,Z]).

A bilinear function on g × g satisfying these two properties is called a 2-cocycle on g with values
in R. The set of all such 2-cocycles, denoted by Z2(g,R), captures therefore the obstruction to the
(ininitesimal) equivariance of the co-momentum map Ĵ .
However, because the (co-)momentum map is not uniquely determined by the Hamiltonian action

(each Ĵ(X) is deined only up to a constant), the obstruction of a given (co-)momentum map to
be equivariant is not quite the same as the obstruction of the g-action to be strongly Hamiltonian.
Indeed, if one considers Ĵ2 := Ĵ − α, where α ∈ g∗, we have:

Ĵ2([X,Y ])− {Ĵ2(X), Ĵ2(Y )}S = Ĵ([X,Y ])− {Ĵ(X), Ĵ(Y )}S − α([X,Y ])

= Γ(X,Y )− α([X,Y ]).

A 2-cocycle for which there exists α ∈ g∗ such that Γ(X,Y ) = α([X,Y ]) is said to be trivial and their
set is denoted by B2(g,R). The last equation shows that, whenever Γ is trivial, one can efectively
overcome the obstruction and ind an equivariant momentum map by a simple redeinition (whence
the adjective “trivial”).
To build an object which does not depend on the arbitrary choice of a momentum map—and is

therefore intrinsically related to the Hamiltonian action under consideration—one should identify
2-cocycles whose diference is trivial but not necessarily zero. Thus, one considers the quotient

H2(g,R) := Z2(g,R)/B2(g,R)

called the second cohomology group of g.
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two possible strategies, each of them shedding a new light onto the notion of ‘Hamil-

tonian actions’. They both have in common the fundamental idea of transforming the

negativity of the obstruction into a positive fact: instead of considering an obstruction

as a default to meet some “nice” conditions (negativity), one views them as enabling

the possibility of constructing new structures (positivity):

1. Absorb the obstruction by modifying the Poisson algebra C∞(g∗,R). Instead of

considering the dual of the momentum map as an arrow

(
C∞(g∗,R), {·, ·}g∗

) (
C∞(S,R), {·, ·}S

)
J∗

which fails to preserve the Poisson structures, one can deine a new Poisson

structure on g∗ so that the arrow J∗ appears as a morphism of Poisson algebras

(
C∞(g∗,R), {·, ·}Γg∗

) (
C∞(S,R), {·, ·}S

)36.
J∗

From this perspective, we have the equivalence of notions37

Hamiltonian g-action
with cocycle Γ

Poisson representation
of the algebra C∞Γ (g∗,R)

2. Absorb the obstruction by modifying the initial Lie algebra g. Instead of viewing

the second cohomology group H2(g,R) as the locus of obstructions to strongly

Hamiltonian g-actions, one views it as the classiier of central extensions of g.

Given a Hamiltonian g-action with cocycle Γ, this allows to construct a new Lie

36This is achieved in the following way. Deine the modiied Poisson structure on g∗ by:

{X̃, Ỹ }Γ
g∗ := {X̃, Ỹ }g∗ − Γ(X,Y )

for any X,Y ∈ g. In this way, the equation

J∗
(
{X̃, Ỹ }g∗

)
− {J∗(X̃), J∗(Ỹ )}S = Γ(X,Y )

may be rewritten as
J∗

(
{X̃, Ỹ }Γ

g∗

)
− {J∗(X̃), J∗(Ỹ )}S = 0.

This shows that the dual of the momentum map is indeed a representation on S of the Poisson algebra
C∞Γ (g∗,R).

37Ibid., Theorem III.1.1.7, p. 181.



Chapter III. Constructing the Mathematical Description of a Physical System 259

algebra gΓ which has a strongly Hamiltonian action on S38. From this perspec-

tive, we have the equivalence of notions39

Hamiltonian g-action

with cocycle Γ

strongly Hamiltonian gΓ-action

in which the center acts trivially

The irst move shows Hamiltonian actions to fall under the theory of Poisson rep-

resentations/realizations, as it was the case for strongly Hamiltonian actions. Through

the second move, we see that, lurking behind a Hamiltonian action of some Lie algebra,

there is always a strongly Hamiltonian action of another closely related Lie algebra. In

this way, the problem of studying all Hamiltonian actions of some ixed Lie algebra may

be restated as the problem of studying strongly Hamiltonian actions of a certain range

of Lie algebras (the central extensions of g). The result is summarized in Figure III.2.

38 A central extension gΓ of g is a short exact sequence 0 → R → gΓ → g → 0 such that, in
addition, for any T ∈ R and X ∈ g, [X,T ]gΓ

= 0. This implies gΓ = g⊕ R as vector spaces and also
the existence of Γ : g× g→ R such that

[X,Y ]gΓ
= [X,Y ]g + Γ(X,Y )T.

Again, from the anti-symmetry and Jacobi identity for [·, ·]gΓ
, it follows that Γ is a 2-cocycle. En

passant, notice that, as a Lie algebra, C∞(S,R) is a central extension of the Lie algebra of Hamiltonian
vector ields Γ(TS)H .
Two central extensions gΓ and gΛ are said to be equivalent if there exists an isomorphism of Lie

algebras gΓ ←→ gΛ such that the following diagram commutes
gΓ

0 R g 0

gΛ

This is the case if and only if the 2-cocycles Γ and Λ belong to the same cohomology class. There is
thus a bijection between the cohomology group H2(g,R) and the set of equivalence classes of central
extensions of g. (For an excellent exposition of this, see G. M. Tuynman and W. Wiegerinck. “Central
Extensions and Physics”. In: Journal of Geometry and Physics 4.2 (1987), pp. 207–258.)
Now, the construction of a strongly Hamiltonian action of a central extension of g from a Hamilto-

nian action g
ρH−−→ Γ(TS)H , may be captured in the following commutative diagram:

Γ(TS)H C∞(S,R) R

g gΓ R

Given the Hamiltonian g-action (in green), one constructs the central extension and its strongly
Hamiltonian action (in red) by pull-back.

39Landsman, op. cit., Proposition III.1.1.9, p. 182.
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Hamiltonian
g-actions g C∞(g∗,R) Γ(TS)H

Poisson reps C∞Γ (g∗,R)

strongly
Hamiltonian
gΓ-actions

gΓ C∞(g∗Γ,R) C∞(S,R)

ι

ρH

ι J∗, Γ

J∗

ι J̃∗

Fig. III.2 – Bypassing the obstruction of Hamiltonian actions.
All diagrams are commutative and dashed arrows are the only ones which are not
morphisms of Lie algebras. The bypassing of the obstruction can be visualized by the
shifting of Γ as we move downwards throughout the diagram: from being a subscript
characterizing the failure of an arrow to be a Lie algebra morphism (top line), it
becomes a subscript characterizing a modiication of the Poisson algebra (middle
line), and inally a subscript of a modiication of the initial Lie algebra (bottom

line).40

40Let us pause for a moment, and adopt a more distant point of view on the local phenomenon
we are discussing in order to connect it with more general discussions on the methodologies of con-
temporary mathematics. In his book Synthetic Philosophy of Contemporary Mathematics, Fernando
Zalamea tries to pinpoint some of the “minimal characteristics” of contemporary mathematics which
any philosophical approach of the subject should try to capture. Among them, there is the require-
ment of “presenting a full and faithful vision of mathematical practice, particularly sensitive to a
pendular weaving between transferences and obstructions, and between smoothings and
residues”. He writes:

[...] mathematical practice turns out to be much closer to a vision that genuinely and
persistently seeks to detect, between minimal contexts of adequation, both transferences
and obstructions alike. The notions of obstruction and residue are fundamental here,
since the incessant survey of obstructions, and the reconstruction of entire maps of
mathematics on the basis of certain residues attached to those obstructions, is part and
parcel of both mathematical inventiveness and its subsequent demonstrative regulation.
Now, the obstructions and residues acquire meaning only locally, with respect to certain
contexts of adequation [...].
(F. Zalamea. Synthetic Philosophy of Contemporary Mathematics. Trans. by Z. L.
Fraser. Urbanomic/Sequence Press, 2012, pp. 127–128, author’s empasis)

This passage its particularly well with our present situation: we study transferences (from external
structures to internal structures) and ind obstructions to them. The residue attached to the obstruc-
tion is here the 2-cocycle. By including them in new contexts of adequation (central extensions of
Lie algebras), the residues are reinterpreted and allow to invent new structures which smooth out the
initial obstructions.
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* * * * *

Given an external Lie algebra g, there are three ways of introducing it into the

Classical Kinematical arena, which stem from the possibility of constructing three

diferent Lie algebras out of the homogeneous symplectic manifold (S, ω). First, one can

construct the Lie algebra Γ(TS)ω of vector ields preserving the symplectic structure,

and then consider morphisms g→ Γ(TS)ω. This yields the notion of Poisson g-actions.

But these fail to take into account that physical transformations are generated by

properties. Second, one can construct the Lie algebra Γ(TS)H of Hamiltonian vector

ields, and then consider morphisms g→ Γ(TS)H , called Hamiltonian g-actions. These

now take into account the transformational role of properties but ignore their numerical

role. Finally, one can use C∞(S,R) seen as a Lie algebra to consider morphisms g →
C∞(S,R). These deine strongly Hamiltonian g-actions and they take into account

the fundamental double role of physical properties. This is best seen from the fact

they involve the full Jordan-Lie structure of the algebra of properties, as strongly

Hamiltonian actions are equivalent to Poisson representations of C∞(g∗,R). Therefore,

from the systematic consideration of all the several diferent ways of representing Lie

algebras into the classical arena and the requirement of respecting the two-fold role of

properties in Kinematics, we arrive at the following conclusion:

As far as Lie groups and Lie algebras are concerned, strongly Hamil-

tonian actions should be the central objects through which to build

the description of a classical system.

In fact, this will also include Hamiltonian actions since if g is the central extension

of some other Lie algebra h, then, by studying all possible strongly Hamiltonian g-

actions one is automatically studying, among other things, all possible Hamiltonian

h-actions. In other words, morally, Hamiltonian actions may be considered as induced

actions of particular subalgebras of the initial external Lie algebra, the action of which

is strongly Hamiltonian.
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Therefore, the essential distinction, as Souriau insisted, is that between Poisson

and Hamiltonian actions41.

III.2.2 In Quantum Kinematics

Let us now turn to the Quantum. Applied to the standard Hilbert space formalism,

the general deinition of group representation (cf. Deinition III.1, page 245) yields the

notion of unitary representations. These are morphisms of groups

G U(H)U

where U(H) is the group of all unitary operators on H42.

41As a side remark, I should mention the mathematical treatment of the obstruction of a Poisson
action to be Hamiltonian. This allows to perceive how (un)restrictive this condition actually is. The
main result is the following:

Theorem III.3. The irst cohomology group of g with values in the irst de Rham cohomology group
of S governs the obstruction to have Hamiltonian actions. In other words, any Poisson action is
automatically Hamiltonian if and only if H1(g,R)⊗H1

dR(S,R) = 0.

That de Rham cohomology captures part of the obstruction for Hamiltonian actions is not sur-
prising: the diference between Poisson and Hamiltonian g-actions is that, while the irst represent
g as symplectic vector ields, the second represents it as Hamiltonian vector ields. In turn, if ξ is
a symplectic vector ield, we have dω(ξ, ·) = 0 (it is a closed 1-form), whereas if ξ is a Hamiltonian
vector ield, we have ω(ξ, ·) = df (it is an exact 1-form).
In particular, the theorem shows that there exist no Poisson actions which are not Hamiltonian

whenever H1
dR(S,R) = 0 (this is the case of projective Hilbert spaces) or [g, g] = g (this is the case of

the Poincaré group).
For the details, see Iglesias-Zemmour, op. cit., p. 103 or Marsden and Ratiu, op. cit., pp. 370–371.
42It is tempting to write U(H) = AutHilb(H)—that is, to view unitary operators on H as automor-

phisms of H in the category of Hilbert spaces where morphisms H1 → H2 are isometries. However,
this is not the category of Hilbert spaces usually considered. Instead, one chooses as morphisms con-
tinuous linear maps, and in this case the group of automorphisms of H is not U(H). For an excellent
exposition of the reasons leading to such a choice for the category Hilb, see J. C. Baez. “Quantum
Quandaries: a Category-Theoretic Perspective”. In: The Structural Foundations of Quantum Grav-
ity. Ed. by S. French, D. Rickles, and J. Saatsi. New York: Oxford University Press, 2006. url:
http://arxiv.org/abs/quant-ph/0404040. Notwithstanding this, I will sometimes write Aut(H)
for the group of unitaries in order to stress the similarities with Classical Kinematics.

http://arxiv.org/abs/quant-ph/0404040
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Associated to a unitary G-representation is its ininitesimal version, called a quan-

tum g-representation. This is a morphism of Lie algebras43

ρ : g −→
(
BiR(H),

1

2
[·, ·]

)
.

Now, from the perspective of Hilbert spaces, one could naively think that unitary

G-representations G U(H)U are the quantum analogue of Poisson G-actions

G Aut(S).L However, we know from the preceding chapter that Hilbert spaces

should not be viewed as one of the main mathematical structures of the quantum

kinematical arena. Instead, the starting point should be either the projective Hilbert

space PH (geometric point of view, emphasis on states) or the JLB-algebra BR(H)
(algebraic point of view, emphasis on properties)44. Therefore, the natural sort of

morphisms to consider in the Quantum, which are analoguous to Poisson G-actions,

are in fact ray representations:

G Aut(PH),L

where Aut(PH) is the group of continuous maps of PH into itself which preserve both

the symplectic and Riemannian structures (cf. section II.2)45.

Given this, an obvious question arises: If ray representations are the quantum

analogue of Poisson actions in Classical Kinematics, which are the quantum analogues

of Hamiltonian and strongly Hamiltonian actions?

43A word of caution however. The relation between G-representations and g-representations in the
quantum case is quite delicate. There is irst the problem that, whenH is ininite-dimensional, U(H) is
not a Lie group (it is not a manifold). We have already mentioned this problem in chapter II and how
to deal with it using Stone’s theorem (cf. footnote 32, page 157). Morever, a unitary G-representation
is usually not smooth over all of H, fact which renders more diicult to deine an associated g-action.
This is nonetheless possible in a dense subset of H called the essential G-smooth part of H. See, for
example, Marsden and Ratiu, op. cit., pp. 322–323.

44In the irst point of view, one then views BR(H) as the algebra of functions C∞(PH,R)K. In the
second point of view, one views PH as the space of pure states P(BR(H)).

45This of course was stressed from the very beginning by Weyl and Wigner. Cf., for example, this
well-known passage of Weyl: “In quantum theory the representations take place in system space [in
our terminology: space of states of the system]; but this is to be considered as a ray rather than a
vector space, for a pure state is represented by a ray rather than a vector” (H. Weyl. The Theory of
Groups & Quantum Mechanics. Trans. by H. Robertson. New York: Dover Publications, Inc., 1931,
pp. 180–181).
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III.2.2.a The quantum analogue of (strongly) Hamiltonian actions

To answer this, it helps to start by establishing the quantum representation prob-

lem, analogue of Figure III.1. Recall: the classical representation problem had stemmed

from the existence of the following diagram of internal Lie algebras (cf. III.3, page 251):

R C∞(S,R) Γ(TS)H Γ(TS)ω.
v− ι

It turns out that, in the Quantum, a similar diagram of internal groups exists:

U(1) U(H) AutU(PH) Aut(PH).p ι (III.6)

Let us explain this diagram. First, a unitary operator U ∈ U(H) induces a ray trans-

formation U ∈ Aut(PH) by U[φ] := [Uφ], where φ ∈ H and [φ] ∈ PH. The set of all ray
transformations which are induced by unitary operators on H is denoted AutU(PH).
Now, two unitary operators difering only by a complex number will deine the same

ray transformation. Hence, elements of AutU(PH) are in fact what Bargmann calls

“unitary operator rays”46—that is, elements of the quotient group U(H)/U(1). In

other words, we have the isomorphism AutU(PH) ≃ U(H)/U(1). The left hand side

of the diagram is then fairly obvious: it states that U(1) is a subgroup of U(H) and,
since it is a normal subgroup, the quotient U(H)/U(1) is itself a group.

Second—this is the more diicult part—we need to understand whether or not any

particular ray transformation may be seen as stemming from some unitary operator on

H. In other words, we ask whether the injection U(H)/U(1) Aut(PH) is also a

surjection. This question was settled in 1931 by Wigner in his book Group Theory and

Its Applications to the Quantum Mechanics of Atomic Spectra47. The proof of Wigner’s

theorem is also found in S. Weinberg. The Quantum Theory of Fields. Vol. 1. New

York: Cambridge University Press, 1996, pp. 91–96.

46V. Bargmann. “On Unitary Ray Representations of Continuous Groups”. In: Annals of Mathe-
matics 59.1 (1954), pp. 1–46.

47For a clean and simple mathematical exposition of this, I nonetheless refer the reader to
Bargmann’s article “On Unitary Ray Representations of Continuous Groups”.
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Theorem (Wigner). Consider the group Ũ(H) of all unitary and anti-unitary oper-

ators on H. Then, one has the isomorphism of groups:

Aut(PH) ≃ Ũ(H)/U(1)48.

In other words, to get all possible automorphisms of the quantum space of states,

one needs to consider both unitary and anti-unitary operators. This may come as

a surprise, for anti-unitary operators are scarcely ever used in non-relativistic Quan-

tum Mechanics: the only relevant anti-unitary operator seems to be the time reversal

operator49 50.

In any case, following exactly the same procedure used in Classical Kinematics,

diagram (III.6) leads to the consideration of three possible strategies for representing

external groups in the Quantum arena.

Deinition III.5. For a given abstract group G,

– a ray representation is a morphism of groups G Aut(PH),L

– a projective ray representation is a morphism of groups G AutU(PH),U

– a unitary representation is a morphism of groups G U(H).U

48U is an anti-unitary operator on H if U is anti-linear—that is, for φ,ψ ∈ H and a, b ∈ C, one has
U(aφ+ bψ) = aUφ+ bUψ—and preserves the hermitian product (⟨Uφ,Uψ⟩ = ⟨φ,ψ⟩).
Wigner’s theorem is usually stated as: given a one-to-one transformation of the projective Hilbert

space onto itself which preserves the transition probabilities, there exists a unique (up to a factor of
modulus 1) unitary or anti-unitary operator on H which extends this ray transformation.

49It is quite easy to be convinced of the fact that the time reversal operator Θ must be anti-unitary.
Indeed, if x and p are the position and linear momentum operators, one should have ΘxΘ† = x and
ΘpΘ† = −p. Applying this to the commutation relations [x,p] = i leads to

ΘiΘ† = Θ[x,p]Θ† = −[x,p] = −i.

Hence Θ must be anti-linear.
50The dissymmetry between unitary and anti-unitary operators in Quantum Mechanics seems to

originate in the following fact: the square of a unitary or anti-unitary operator is a unitary operator.
Because of this, all elements of a Lie group G which are connected to the identity are necessarily
represented by unitary operators. To prove this, one uses the followings two facts (cf. ibid., p. 2):

1. There exists a neighborhood N of the identity such that: i) every group element in N is the
square of some element, and ii) every group element connected to the identity can be written
as a inite product of elements in N .

2. The square of a unitary or anti-unitary ray operator is a unitary ray operator.
Therefore, for connected Lie groups, one can safely ignore anti-unitary operators.
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Comparison of diagrams (III.3) and (III.6) suggests quite a diferent analogy from

the naive one proposed by focusing on the Hilbert space formalism: the morphisms of

groups G AutU(PH)U and G U(H)U should be thought as the quantum

analogue of the morphisms of Lie algebras g Γ(TS)H
ρH and g C∞(S,R)Ĵ

respectively. Put diferently, this approach hints at the following analogy:

Classical Kinematics Quantum Kinematics

Hamiltonian g-actions projective ray G-representations

strongly Hamiltonian g-actions unitary G-representations

co-momentum map
g C∞(S,R)

Ĵ

unitary map
G U(H)

U

Table III.1 – The quantum analogue of (strongly) Hamiltonian actions

Now, since strongly Hamiltonian g-actions may equivalently be seen as represen-

tations of a classical algebra of properties constructed out of g (cf. page 252), one

may wonder if it is also possible to perceive unitary G-representations as being in-

duced by representations of a certain quantum algebra of properties constructed out

of G. The answer is positive, for besides the usual Hilbert space approach to unitary

representations, there exist two other diferent yet equivalent points of view:

– from the perspective of C∗-algebras: to any group G, one can associate a C∗-

algebra, called the group C∗-algebra and denoted by C∗(G)51. Then, a unitary

51It is deined as follows. For f, g ∈ C∞(G,C), respectively deine the convolution and involution
products by

f ∗ g(x) :=
∫

G

dyf(xy−1)g(y) ; f∗(x) := f(x−1).

This turns C∞(G,C) into a *-algebra. Then, deine C∗(G) as the norm closure of this convolution
algebra in the norm ∥f∥ := supπ ∥π(f)∥, where π : C∞(G,C) → B(H) is a bounded non-degenerate
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representation of G on H is equivalent to a non-degenerate representation of

C∗(G) on H—that is, to a morphism of C∗-algebras

C∗(G) B(H).π

In particular, irreducible unitary representations of G correspond to irreducible

representations of the group C∗-algebra52.

– from the perspective of JLB-algebras: this is a trivial reformulation of the previous

point of view. One deines the Jordan-Lie-Banach algebra JL(G) := C∗(G)R and

uses the fact that any morphism of C∗-algebras restricts to a morphism of JLB-

algebras of the self-adjoint parts (and viceversa). Thus, a unitary (irreducible)

representation of G is equivalent to an (irreducible) representation of JL(G) on

H—that is, to a morphism of JLB-algebras53:

JL(G) BR(H).π

Hence, we see that, indeed, unitary G-representations arise from taking into ac-

count the double role of quantum properties. The quantum representation problem,

analogue of Figure III.1, may then be depicted by the diagram below (Figure III.3).

In the spirit of the comment made immediately after Figure III.1, an important

point should be remarked here: the proposed analogy foreshadows a surprising merger

between the physical process of quantization—from the Classical to the Quantum—and

the mathematical process of integration—from the Local to the Global. Whereas the

Poisson algebra C∞(g∗,R) associated to a Lie group G depends only on the ininites-

imal information g, the group JLB-algebra JL(G) does encode global information:

morphism of associative *-algebras. The group C∗-algebra is commutative if and only if the group is
abelian. (Landsman, op. cit., Deinition III.1.7.4, p. 204.)

52See ibid., Corollary III.1.7.5, p. 204. In this way, the unitary dual Ĝ of any group may be
described as the set of symplectic leaves of the pure state space of C∗(G): Ĝ = P(C∗(G))/ ∼. In
particular, if G is abelian, Ĝ = P(C∗(G)), or, what amounts to the same, C∗(G) = C0(Ĝ,C).

53This is a point I continue to stress: all mentions of C∗-algebras in Quantum Mechanics can
systematically be replaced by an analogous statement in terms of real JLB-algebras. By the same
token, one can develop the whole of Quantum Mechanics without using complex numbers. This
is a point Landsman repeats many times (for example, in “Classical and Quantum Representation
Theory”, pp. 2 and 17).
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Category External
structure

Internal
structure

Aut(PH)

Grp G AutU (PH)

U(H)

PH
≃ P(BR(H))

JLB JL(G)
C∞(PH,R)K
≃ BR(H)

CStar C∗(G) B(H)

representation

ray G-representation

projective ray G-representation

unitary G-representation

ι

p

JL-representation

C∗-representation

Fig. III.3 – The Quantum representation problem for Lie groups.
On the top left and bottom right of the ‘diagram’ are the initial external and internal structures.
Squiggle arrows represent intrinsic constructions of new structures (some of which, but not all, being
functorial), while all other arrows represent morphisms in the appropriate category. The coloured
arrows represent the various a priori diferent transits between the external and the internal structures.

two non-isomorphic groups with same Lie algebra will have non-isomorphic group al-

gebras. In fact, as we will progressively unveil during the remainder of the chapter,

this seems to capture a deep diference between Classical and Quantum Kinematics:

the former is attached to ininitesimal transformations, while the latter is attached to

global transformations.

III.2.2.b Pursuing the analogy: unitary vs. projective representations

A irst strategy for exploring this analogy is to analyze the quantum concepts

through the looking glass of symplectic geometry. Recall that, from the geometric

point of view, the quantum space of states may be perceived as a classical space of

states with extra structure (section II.2). In particular, the quantum space of states
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is a symplectic manifold and it is always enlightening, for the comparison of both

Kinematics, to treat it as if it were a classical space of states.

Consider then a unitary representation G U(H).U It induces a ray repre-

sentation through the following diagram of groups

G U(H) AutU(PH) Aut(PH).U

U

p ι

In order to distinguish the map U from the map U, let us call the latter a unitary
ray representation. Since Aut(PH) →֒ Symp(PH), U is a Poisson G-action. The

question, of course, is which kind of Poisson action it is, and the answer is the expected

one: it is a strongly Hamiltonian G-action!

The idea of the proof is quite simple: given the unitary representation U , the

associated ininitesimal version is a map dU : g −→ BR(H). But we also have

BR(H) ≃ C∞(PH,R)K (cf. Equation II.17). Therefore, a unitary representation al-

lows to generate the diagram of Lie algebras

g BR(H) ≃ C∞(PH,R)K ⊂ C∞(PH,R) Γ(TPH)HdU

ρH

v−

which corresponds exactly to the deinition of a strongly Hamiltonian g-action on PH
(cf. page 251). This shows that, when perceived from the perspective of symplec-

tic geometry, unitary representations are strongly Hamiltonian actions. Moreover, it

clariies the relation between the co-momentum map in Classical Kinematics and the

unitary representation in Quantum Kinematics. Indeed, the co-momentum map of the

unitary ray representation U is simply the derivative of the unitary map: Ĵ = dU54.

In this way, this symplectic approach allows to relate, in a very transparent fash-

ion, the central group-theoretical notion of Classical Kinematics (strongly Hamiltonian

actions) to unitary representations in Quantum Kinematics. In fact, we have the fol-

lowing characterization of unitary ray representations among all strongly Hamiltonian

54Because of the technical diiculties alluded to in footnote 15 (page 246), this does not constitute a
rigorous proof. A careful derivation is found in Marsden and Ratiu, op. cit., pp. 376–377 and 394–395.
In the same vein, it is possible to prove that projective ray representations yield Hamiltonian actions.
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actions on PH:

Proposition III.4. A strongly Hamiltonian g-action on PH stems from a unitary ray

G-representation if and only if

i) it acts by ininitesimal isometries (Killing vectors),

ii) it is integrable.

Condition i) appeals to the non-trivial structure distinguishing the Quantum arena

from the Classical one. Condition ii) suggests a new diference between the Classical

and the Quantum, which was not perceived at the level of the homogeneous arenas.

This notwithstanding, a clearer manifestation that Table III.1 is indeed the correct

analogy is to study more closely the diference between unitary G-representations and

projective ray representations, while comparing it with the relation between strongly

Hamiltonian and Hamiltonian g-actions explored in the previous section. As we will

now see, the analysis is strikingly similar to that conducted in subsection III.2.1.b.

Recall: a unitary representation G U(H)U induces a ray representation

through the following diagram of groups

G U(H) AutU(PH) Aut(PH).U

U

p ι (III.7)

This should be compared with diagram (III.4, page 256) deining strongly Hamilto-

nian actions: the morphism of groups U inducing the unitary ray representation U is

the quantum analogue of the classical ininitesimally equivariant co-momentum map

inducing the strongly Hamiltonian action ρH .

On the other hand, given a projective ray representation U of a Lie group, it is

always possible to construct a map U : G −→ U(H) by picking a representative for

each unitary operator ray U(g). However, in general U will fail to be a morphism of

groups (and hence a unitary G-representation). Indeed, the relation U(g)U(h) = U(gh)

implies only U(g)U(h) = m(g, h)U(gh), where m(g, h) ∈ U(1). A map U verifying this

condition is called a projective representation of G on H. Projective ray representations
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are thus deined by the existence of the following diagram:

G U(H) AutU(H) Aut(PH).U

U

p ι (III.8)

This is the quantum analogue of diagram (III.5, page 256) deining Hamiltonian actions,

and all the comments below it equally apply here.

Indeed, there are two key diferences between diagrams (III.7) and (III.8). The

irst obvious one—already mentioned—is that U fails to be a morphism of Lie groups

for general projective ray representations (in the same way that the co-momentum

map fails to be a morphism of Lie algebras for general Hamiltonian actions). The

second diference lies in the possible transits between the morphisms U and U. For

unitary ray representations, one can either: start from the data U and deduce the

data U (one deines it as U := p ◦ U), or start from the unitary ray representation

and deduce the morphism U (the unitary representation on H is uniquely deined for

a unitary ray representation). This freedom of circulation breaks down for projective

ray representations: given a map G
U−→ U(H), the induced map p ◦ U is no longer

guaranteed to be a morphism of Lie groups. Moreover, given a ray representation, one

cannot associate to it one single map G U−→ U(H) but rather a class of such maps (the

representative U(g) of U(g) is not uniquely deined). In other words, whereas unitary

ray representations of G on PH and unitary representations of G on H are equivalent

(one can freely circulate between the two), the notion of ray representation is prior to

the “non-equivariant” map U (one must start from the data G U−→ Aut(PH))55.

With this at hand, we can now describe the obstruction for projective ray repre-

sentations to be unitary56:

Theorem III.5. The second cohomology group of G with values in U(1) governs the

obstruction to have unitary ray representations. In other terms, any projective ray

representation is unitary if and only if H2(G,U(1)) = 0.57

55Notice how these last ten lines are, literally, a copy-paste of the paragraph following diagram
(III.5) on page 256.

56Again, I will develop part of the formalism in the footnotes in order to stress the general lines of
the investigation. All the mathematical details may be found in Landsman, op. cit., pp. 187–197.
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This is to be compared with Theorem III.2 (page 257). As in the classical case,

there are two possible strategies for bypassing this obstruction, each of them enforcing

the analogy between unitary (respectively projective) ray representations on the Quan-

tum side and strongly Hamiltonian (respectively Hamiltonian) actions on the Classical

side:

1. Absorb the obstruction by modifying the group C∗-algebra C∗(G). From the alge-

braic point of view, a projective representation of G on H is seen as arising from

a map

C∗(G) B(H)π

which fails to be a morphism of C∗-algebras. Instead, one can modify the convo-

lution and involution products and deine a new C∗-algebra in such a way that

57See ibid., Proposition III.1.5.2., p. 197. Given a diagram of the form (III.8), the failure of U to
be a morphism of Lie groups is measured by the function

m : G×G −→ U(1)

(g, h) 7−→ m(g, h) := U(g)U(h)U(gh)−1

Because of the associativity of composition and the existence of an identity element in both G and
U(H)/U(1), the function m satisies the properties

i) m(g, h)m(gh, k) = m(g, hk)m(h, k) for all g, h, k ∈ G,
ii) m(e, g) = m(g, e) = 1 for all g ∈ G.

A function m : G × G −→ U(1) satisfying these two properties is called a multiplier. The set of all
multipliers is denoted by Z2(G,U(1)).
But the map U is not uniquely determined by the projective ray representation (each U(g) is deined

up to an element of U(1)), and thus Z2(G,U(1)) still does not capture the obstruction to have unitary
ray representations. Indeed, consider a diferent choice: U ′(g) = b(g)U(g) with b(g) ∈ U(1). Then,
we have

m′(g, h) = U ′(g)U ′(h)U ′(gh)−1 =
b(g)b(h)

b(gh)
m(g, h)

Two multipliers satisfying this equation are said to be equivalent. A multiplierm for which there exists
b : G −→ U(1) such that m(g, h) = b(gh)

b(g)b(h) is said to be trivial and their set is denoted B2(G,U(1)).
The last equation shows that, whenever m is trivial, one can redeine the map U associated to the ray
representation U in such a way that U is a unitary representation.
Therefore, the object intrinsically associated to a given projective representation is an equivalence

class of multipliers—that is, an element of

H2(G,U(1)) := Z2(G,U(1))/B2(G,U(1)).

This is called the second cohomology group of G with values in U(1).
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the map π appears as a morphism of C∗-algebras58

C∗(G,m) B(H).π

From this perspective, we have the equivalence of notions59

projective ray
G-representation
with multiplier m

C∗-algebra
representation of

C∗(G,m)

JLB-algebra
representation of

JL(G,m)

2. Absorb the obstruction by modifying the initial Lie group G. One reinterprets the

locus of the obstruction—that is, the second cohomology group H2(G,U(1))—as

the classiier of central extensions of G by U(1). Given a projective represen-

tation of G on H, this allows to construct a new Lie group Gm which has a

unitary representation on H60. From this perspective, we have the equivalence

58For the twisted group C∗-algebra C∗(G,m), the convolution and involution products are deined
as follows (see ibid., p. 202):

f ∗ g(x) :=
∫

G

dym(xy−1, y)f(xy−1)g(y),

f∗(x) :=m(x, x−1)f(x−1).

For two equivalent multipliers m and m′, the associated twisted group C∗-algebras are isomorphic.
59Ibid., Corollary III.1.7.5, p. 204.
60A central extension Gm of G by U(1) is a short exact sequence e → U(1) → Gm → G → e such

that, in addition, U(1) is contained in the center of Gm. This implies Gm is a U(1)-principal bundle
over G.
Two central extensions Gm and Gn are said to be equivalent if there exists an isomorphism of Lie

groups Gm ←→ Gn such that the following diagram commutes

Gm

e U(1) G e

Gn

It can be shown that there is a one-to-one correspondence between equivalence classes of U(1)-central
extensions of G and the set H2(G,U(1)) of equivalence classes of multipliers on G (see Tuynman and
Wiegerinck, op. cit., proposition 3.4, p. 6).
Now, the construction of a unitary representation of a central extension of G from a projective ray

representation G U−→ AutU (PH), may be captured in the following commutative diagram:

AutU (PH) U(H) U(1)

G Gm U(1)
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of notions61

projective ray representation
of G with multiplier m

unitary Gm-representation in
which the center acts trivially

Both strategies show that projective ray representations fall under the represen-

tation theory of JLB-algebras. Moreover, through the second move, the study of all

projective ray representations of a certain group G can be transformed into the prob-

lem of studying all unitary ray representations of G and its U(1)-central extensions, in

exact analogy with the translation of the question of studying all Hamiltonian g-actions

into the question of studying all strongly Hamiltonian actions of g and its R-central

extensions.

* * * * *

We have then arrived at the following two proposals:

Classical System 2. A classical system is characterized by a strongly Hamiltonian g-

action—that is, by the data of a triple Sg := (S, g, Ĵ), where S is an abstract symplectic

manifold, g is an abstract Lie algebra and Ĵ : g −→ C∞(S,R) is a morphism of Lie

algebras called the (ininitesimally equivariant) co-momentum map.

Quantum System 2. A quantum system is characterized by a unitary (ray) G-

representation—that is, by the data of a triple HG := (H, G, U), where H is an ab-

stract Hilbert space, G is an abstract (Lie) group and U : G −→ U(H) is a morphism

of groups.

As it was the case for the irst naive deinitions proposed (cf. p. 139), we now

need to assess whether these more sophisticated versions may or may not be regarded

as acceptable candidates for the mathematical description of a physical system. In

particular, we need to understand whether or not these new abstract structures meet

the requirement of individuation (page 17).

Given the projective ray representation (in green), one constructs the central extension and its strongly
Hamiltonian action (in red) by pull-back. (Compare this discussion with footnote 38, page 259.)

61Landsman, op. cit., Proposition III.1.5.1.
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III.3 Introducing discernibility through groups (2):

the individuation problem

As we concluded at the end of the irst chapter, to investigate the amount of

individuation within an abstract structure S one should study the action of the auto-

morphism group Aut(S) ⟳ S (cf. page 135). Therefore, our irst task is to determine

the group of automorphisms for the structures HG and Sg. This turns out to be a

delicate matter, as we will presently see.

III.3.1 Identity and the group of automorphisms

III.3.1.a The quantum case

Let us start by discussing the situation in Quantum Kinematics. Perhaps, the

naive expectation would be the following: by passing from a bare abstract Hilbert

space H to a unitary G-representation HG, we reduce the group of automorphisms

from U(H) to U(G). Put diferently, one could imagine that endowing an abstract

Hilbert space H with a morphism G U(H)U is a way of selecting, among all

available automorphisms (U(H)), those that are to be considered ‘physically meaning-

ful’ (U(G)). Since the problem with the quantum kinematical arena was, essentially,

that the group of automorphisms was too big—Aut(H) ⟳ PH is a transitive action—,

this reduction from U(H) to U(G) should then represent a step forward in dealing with

the problematic homogeneity of the space of states62.

A minute of relexion shows however that the identity Aut(HG) = U(G) cannot

be true in general. To see this, simply consider the trivial representation, for which

U(G) = Id. This should be tantamount to not introducing the group at all, and

thus should have no impact on the homogeneity of the quantum space of states. Yet,

according to the above identity, by endowing an abstract Hilbert space with such a G-

representation, we would mysteriously pass from a completely homogeneous structure

62This was at least my initial expectation, as is manifest in my article “The Mathematical Description
of a Generic Physical System”, p. 346. And it certainly was quite a naive thought...
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where no elements can be individuated to a rigid structure where all elements can be

individuated: indeed, if Aut(HG) = U(G) were true, we would have Aut(HG) = Id for

the trivial representation.

This only shows that we must proceed with due care in the determination of

the group of automorphisms of the structure HG, which, in turn, should follow from

relecting on the appropriate notion of morphism for this kind of structures. What is

then the good deinition of the “category of unitary representations”? The following

deinition is often found in the literature:

Deinition III.6. The category URep(G) of G-unitary representations has G-

unitary representations (H, G, U) as objects and G-equivariant linear maps as mor-

phisms. In other words, a morphism (H, G, U) (H′, G, U ′)
ϕ is given by a linear

map H H′ϕ such that, for all g ∈ G, the following diagram commutes:

H H′

H H′

ϕ

U(g) U ′(g)

ϕ

Such a map is usually called an intertwiner between the unitary representations U and

U ′63.

Given this deinition, we see that an isomorphism of unitary G-representations

corresponds to the usual notion of equivalence. Therefore, conceived as an object of

the category URep(G), the group of automorphisms of the structure HG—sometimes

called the group of “symmetries of the unitary representation”64—is

AutURep(G)(HG) = {G-equivariant unitary operators of H}. (III.9)

63For this deinition (in the case of linear representations) see for example C. Procesi. Lie Groups:
An Approach through Invariants and Representations. New York: Springer, 2007, p. 12.
That this is a natural category to consider is further supported if one recalls that groups may

themselves be seen as categories (with only one object and all arrows being isomorphisms). Indeed,
from this perspective a unitary G-representation is a functor from G to Hilb and the obvious choice
for the category URep(G) should then be the category of functors Hilb

G where morphisms are natural
transformations between functors. But the deinition of an intertwiner is precisely that of a natural
transformation between the functors U and U ′ and hence both deinitions for the category URep(G)
coincide.

64Ibid., p. 3.
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This may be rephrased by remarking that an automorphism of the structure HG is

simply a unitary operator on H which commutes with any U(g). Thus, we can also

write:
AutURep(G)(HG) = centralizer of U(G) in U(H)65.

Let us explore some consequences of this result to evaluate its soundness. First, we

see that if G U(H)U is the trivial representation, then AutURep(G)(HG) = U(H)
and the homogeneity of the quantum space of states has not been broken whatsoever,

as it should be. Second, if U is an irreducible representation, the automorphism group

gets severely reduced: by Schur’s lemma we have AutURep(G)(HG) = U(1), which in turn

projects into the trivial group when passing to the projective space PH66. Therefore,

if Deinition III.6 is correct, by considering irreducible unitary G-representations on H
instead of considering bare Hilbert spaces, we manage to pass from a transitive action

Aut(H) ⟳ PH to a trivial action Aut(HG) ⟳ PH. In this case, all states of the physical

system described by the structure HG are stable under the action of the automorphism

group and reveal themselves to be qualitatively discernible individuals, as we so wish.

There is a certain evident appeal in the fact that irreducible representations appear

as precisely those quantum structures satisfying the requirement of individuation. The

idea that quantum systems should be described by these particular structures cannot

but resonate with “Wigner’s deinition” of quantum elementary particles as irreducible

unitary representations of the Poincaré group67. Unfortunately, there is—yet again—a

65Given a group G and a subset S ⊂ G, the centralizer of S in G is deined as ZG(S) :=
{
g ∈

G
∣∣∀s ∈ S, gs = sg

}
. The centralizer is necessarily a group.

66Schur’s Lemma: Let G be a Lie group and consider an intertwiner ϕ between two irreducible
unitary representations U and U ′. Then either ϕ = 0 or ϕ is an equivalence.
From this one concludes that any non-vanishing intertwiner of an irreducible representation with

itself must be proportional to the identity map. The proof of both results may be found in any book
on group representation theory. See for example A. W. Knapp. Lie Groups Beyond an Introduction.
2nd ed. Boston: Birkhäuser, 2002, p. 240.

67Although Wigner did not explicitly deine elementary particles in this way, it is attributed to him.
This is discussed in some detail by Yuval Ne’eman and Shlomo Sternberg. They write:

Ever since the fundamental paper of Wigner on the irreducible representations of the
Poincaré group, it has been a (perhaps implicit) deinition in physics that an elementary
particle “is” an irreducible representation of the group, G, of “symmetries of nature”.
(Y. Ne’eman and S. Sternberg. “Internal Supersymmetry and Superconnections”. In:
Symplectic Geometry and Mathematical Physics: Actes du colloque en l’honneur de Jean-
Marie Souriau. Ed. by P. Donato et al. Boston: Birkhäuser, 1991, pp. 326–354, p. 327.)
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serious problem with this idea.

Indeed, were it to be true, we would have at our disposal two drastically diferent

manners in which to conceive an abstract projective Hilbert space PHn. If, on the

one hand, one decides to consider an n-dimensional Hilbert space as an object of the

category Hilb, then PHn would appear as a homogeneous structure: the automorphism

group U(Hn) ≃ U(n) acts transitively on PHn. On the other hand, one could use the

fact that U(Hn) is represented on Hn (the representation being the tautological triple

(Hn, U(Hn), Id)) in order to perceive Hn as an object of the category URep(U(Hn)).

In this case, since the representation is obviously irreducible, its automorphism group

AutURep(U(Hn))(Hn) is simply U(1) and now Hn would show to be a rigid structure

whose automorphism group acts trivially on PHn. It would therefore appear that the

characteristics of the projective Hilbert space depend crucially on the choice of the

category to which it belongs. And this would be an embarrassing situation: if the

homogeneity of PH is not an intrinsic feature of the structure but depends on the

arbitrary choice of a point of view—should we see U(H) ⟳ H as the action of the

automorphism group on the structure deining the group, or rather as the irreducible

representation of the group U(H) on H?—then, the fundamental problem leading our

whole investigation—namely, the chase for individuation in the mathematical struc-

tures of Quantum Kinematics—suddenly disappears into thin air...

It seems that the only way out of this problem is to question the validity of

Equation III.9 and therefore of Deinition III.6. To see what has gone wrong and

why URep(G) is not the correct category to consider for our inquiries, let us ask

the following question: when should we consider two abstract unitary representations

U,U ′ : G −→ U(H) to be equal? The usual ‘material’ set theoretical criterion of

identity would be:

U ′ = U ⇐⇒ ∀g ∈ G,U ′(g) = U(g)

⇐⇒
G U(H)

G U(H)

U

U ′

commutes.
(III.10)

But we know from section I.2 that this is not the correct answer when dealing with
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abstract Hilbert spaces. In this case, we need to take into account that the appropriate

notion of identity is isomorphism—this is the deinition of an abstract structure68.

Thus, we get the more sophisticated answer:

U ′ ≡ U ⇐⇒ ∃ϕ ∈ U(H) such that ∀g ∈ G,U ′(g) = ϕU(g)ϕ−1

⇐⇒ ∃Φ ∈ Inn(U(H)) such that
G U(H)

G U(H)

U

Φ∼

U ′

commutes69.
(III.11)

This of course is the notion of equivalence of unitary G-representations, which was also

the notion of isomorphism in the category URep(G). In this way, we see that this

latter category is intimately related to the choice of (III.11) as the proper criterion of

identity for unitary G-representations.

However, when dealing with an abstract unitary G-representation onH, we should
take into account not only the fact that the Hilbert space is abstract but also that the

group G is itself an abstract structure. And, as comparison of the diagrams (III.10)

and (III.11) clearly shows, neither of the two proposed criteria of identity includes this.

Indeed, in order to incorporate the abstract nature of the Hilbert space H, we passed

from the criterion of identity (III.10) to the criterion (III.11) by replacing the equality

U(H) = U(H) by the isomorphism U(H) ≃ U(H). Now, the same must be done with

the equality G = G. Therefore, it appears that the correct answer to the question

“When are two unitary representations U,U ′ : G −→ U(H) equal?” is then:

68Recall in particular Makkai’s claim that “isomorphism is the real equality in Abstract Mathemat-
ics” (see page 88).

69 Given a group G, any element g0 of the group gives rise to an automorphism ϕg0 ∈ Aut(G)
through conjugation

(
∀g ∈ G, ϕg0(g) := g0g(g0)

−1
)
. Any such automorphism is called an inner

automorphism of the group. The set of all inner automorphisms forms a subgroup of Aut(G) denoted
by Inn(G). Given ϕ ∈ U(H), I will denote by Φ ∈ Inn(UH)) the associated inner automorphism of
U(H).
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Criterion of identity for unitary representations. Given two unitary represen-

tations U and U ′ of an abstract group G on an abstract Hilbert space H, we have

U ′ ≃ U ⇐⇒ ∃(ϕ, α) ∈ U(H)× Aut(G) such that ∀g ∈ G,U ′(α(g)) = ϕU(g)ϕ−1

⇐⇒ ∃(Φ, α) ∈ Inn(U(H))× Aut(G) such that
G U(H)

G U(H)

U

∼α Φ∼

U ′

commutes.70

(III.12)
Only in this way do we take into account the fact that both the Hilbert space H

and the external group G used to describe a quantum system are abstract structures71.

70Since this is not the usual criterion of identity used by mathematicians when working with group
representations, let me give an explicit example of two unitary representations which are not equivalent
but nonetheless should be, in my view, considered as essentially the same. Consider the following:
– G is the abelian abstract group {1, a, b, b−1} with the multiplication rules:

a2 = 1, b2 = (b−1)2 = a,

– U : G −→ U(1) is the one-dimensional unitary representation deined by

U(1) = Id, U(a) = −Id, U(b) = iId and U(b−1) = −i Id,

– α is the only possible non-trivial automorphism of G, namely that which exchanges b with b−1

while leaving 1 and a ixed.
Then, the new unitary representation U ′ = U ◦ α is simply the complex conjugate of U , which
is not equivalent to U . (Indeed, suppose there exists a linear map ϕ : C −→ C such that
∀g ∈ G, U(α(g)) = ϕU(g)ϕ−1. Then, in particular, we would have, ∀z ∈ C, −iz = U ′(b)z =
ϕ
(
U(b)ϕ−1(z)

)
= ϕ

(
iϕ−1(z)

)
= iz, which is impossible.)

Therefore, from the standard point of view of representation theory, U and U ′ will be considered as
diferent representations. Yet, from an abstract structuralist point of view, the elements b and b−1 are
indiscernible. The group G is isomorphic to the group of complex numbers {1,−1, i,−i} with the usual
multiplication, and the representations U and U ′ difer only in our arbitrary choice to equate b with i
or −i. They should then be considered as two diferent descriptions/presentations/coordinatizations
of the same situation.
I thank Christine Cachot for inding this example.
71It is enlightening to recast this discussion on the identity of unitary representations in the cate-

gorical language described in footnote 63 (page 276). From this perspective, the question is when to
consider the two functors U and U ′ equal. The irst criterion of identity corresponds to considering
that two functors F1, F2 : C −→ D are equal whenever they coincide on objects and arrows:

F1 = F2 ⇐⇒ ∀C,C ′ ∈ Ob(C ), F1(C) = F2(C) and F1

(
HomC (C,C

′)
)
= F2

(
HomC (C,C

′)
)
.

But in category theory there is no sense of talking about equality of objects: the strongest claim one
can make about the identity on objects should be isomorphism. Therefore, in the above criterion
F1(C) = F2(C) should be replaced by F1(C) ≃ F2(C), and one should then demand the existence
of a natural bijection between the sets F1

(
HomC (C,C

′)
)
and F2

(
HomC (C,C

′)
)
. In other words,

one considers two functors to be equal whenever there exists a natural isomorphism between them.
Contrary to the naive criterion of identity, which considers the collection of functors DC to form a set,
this second criterion recognizes the fact that DC is a category.
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This motivates to look for a new category of unitary representations in which the

notion of isomorphism coincides with the criterion of identity (III.12). This is achieved

by rather considering a category where the group G is not ixed:

Deinition III.7. The category URep of unitary representations has unitary repre-

sentations (H, G, U) as objects. A morphism (H, G, U) (H′, G′, U ′)
(ϕ,α) is given

by a linear map H H′ϕ together with a morphism of groups G G′α such

that, for all g ∈ G, the following diagram commutes72:

H H′

H H′

ϕ

U(g) U ′(α(g))

ϕ

With this new deinition, the group of automorphisms of the structure HG changes

into:

AutURep(HG) =
{
(ϕ, α) ∈ U(H)× Aut(G)

∣∣∣
G U(H)

G U(H)

U

∼α Φ∼

U

commutes
}
. (III.13)

Let us again explore this result and compare it with the previous proposal (Equa-

tion III.9, page 276). First, if the unitary G-representation is the trivial one, then

AutURep(HG) ≃ U(H) × Aut(G). This is the expected result: considering the trivial

representation (H, G, U) should be equivalent to considering the pair of independent

However, this second criterion of identity corresponds to the criterion of Equation III.11, which we
have also rejected. Now, the problem is most clearly perceived. In a given category, contrary to what
happens with identity on objects, identity on morphisms (between two given objects) is primitive: it
is a matter of fact whether two arrows f, g : C −→ C ′ are or not equal. Put diferently, in category
theory, the collection HomC (C,C

′) is described as a set. Therefore, by describing G as a category—
and thus describing the elements as arrows of the category—we lose the automorphisms of the group
and forget the idea that elements of the group might be indiscernible...

72In fact, this deinition is a particular case of the so-called Grothendieck construction (I thank Zhen
Lin for pointing this to me). Given a functor F : C −→ Cat , the Grothendieck construction deines
the category Γ(F ), where objects are pairs (A, x) ∈ Ob(C )×Ob(F (A)) and morphisms f : (A, x) −→
(A′, x′) are pairs (f0, f1) where f0 ∈ HomC (A,A

′) and f1 ∈ HomF (A′)(F (f0)x, x
′).

The category URep is the Grothendieck construction for the functor F : Grpop −→ Cat which
associates to a group G the category URep(G).
In the case where the functor F lands in sets (considered as discrete categories), the category Γ(F )

is called the category of points of the functor F and is denoted by
∫
F . This special case is discussed

in S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos
Theory. New York: Springer-Verlag, 1992, pp. 41–44. For the general deinition, see the Wikipedia
entry “Grothendieck construction”.

https://en.wikipedia.org/wiki/Grothendieck_construction
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structures (H, G). Therefore, the group AutURep(HG) should be the product of the

two automorphism groups. In particular, we see again that, by considering the trivial

representation, one does not break the homogeneity of the space of states.

Second—and this is the crucial diference between (III.9) and (III.13)—there is

now, for any unitary G-representation HG, a canonical morphism of groups

πQ : G AutURep(HG). (III.14)

Indeed, the canonical map is simply the product πQ := U×Inn, where G U(H)U

is the unitary map and G Aut(G)Inn is the map of inner automorphisms (cf.

footnote 69, page 279)73. In other words, in this new category, elements of the group

G invariably give rise to (non-trivial) automorphisms of the structure HG. Hence, the

existence of this canonical map may be perceived as a sophisticated version of the initial

naive expectation that the elements of the group G should be the automorphisms of

the structure HG (cf. page 275).

In this way, we see that even for an irreducible representation the group of au-

tomorphisms of HG will in general act non trivially on PH. In particular, we recover

the fact that for an abstract Hilbert space, even when seen as equipped with the ir-

reducible representation of U(H), its group of automorphisms acts transitively on PH
(since U(H) ⊂ AutURep(HU(H))).

III.3.1.b The classical case

Having dealt with the group of automorphisms of HG in quite some detail, it is

now a simpler task to transpose the discussion over to the Classical arena. As we have

learned, the problem is better dealt with if one addresses irst the related issues of

determining: i) a criterion of identity for abstract strongly Hamiltonian g-actions, and

ii) the correct category sHam of strongly Hamiltonian actions associated to the chosen

criterion of identity.

73More explicitly, given an element g0 ∈ G, we have πQ(g0) :=
(
U(g0), ϕg0

)
∈ U(H)× Aut(G) and

the condition U
(
α(g)

)
= ϕU(g)ϕ−1 (Equation III.13) becomes the trivial equation U

(
g0g(g0)

−1
)
=

U(g0)U(g)U(g0)
−1.
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Following the case with unitary G-representations, there are again three possible

levels of identity one may consider. Two strongly Hamiltonian actions Sg := (S, g, Ĵ)

and S ′
g′ := (S ′, g′, Ĵ ′) are said to be:

i) identical (denoted Sg = S ′
g′) if




S = S ′

g = g′

∀X ∈ g, Ĵ(X) = Ĵ ′(X),

(III.15)

ii) equivalent (denoted Sg ≡ S ′
g′) if





S ≃ S ′

g = g′

∃ϕ ∈ Iso(S, S ′) such that
S

g∗

S ′

∼ϕ

J

J ′

commutes74,

(III.16)

iii) isomorphic (denoted Sg ≃ S ′
g′) if





S ≃ S ′

g ≃ g′

∃(ϕ, α) ∈ Iso(S, S ′)× Iso(g, g′) such that
S g∗

S ′ (g′)∗

J

∼ϕ

J ′

∼ α∗ commutes75.

(III.17)

74Instead of using the momentum maps, this third condition may also be written in terms of the
co-momentum maps Ĵ and Ĵ ′ as

∃ϕ ∈ Iso(S, S′) such that
C∞(S,R)

g

C∞(S′,R)

Ĵ

Ĵ ′

∼ φ
∗ commutes.

75Similarly, in terms of the co-momentum map, this third condition becomes:

∃(ϕ, α) ∈ Iso(S, S′)× Iso(g, g′) such that
g C∞(S,R)

g′ C∞(S′,R)

Ĵ

∼α

Ĵ ′

∼ φ
∗ commutes.
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These criteria are the three analogues of (III.10), (III.11) and (III.12) of the pre-

vious section. As noted, the irst corresponds to the material set-theoretical identity

based on extensionality. Only the third one is a sensible criterion of identity for ab-

stract strongly Hamiltonian actions, where both the symplectic manifold S and the Lie

algebra g are conceived abstractly. The associated category of strongly Hamiltonian

actions is deined as follows:

Deinition III.8. The category sHam of strongly Hamiltonian Lie algebra actions has

strongly Hamiltonian actions (S, g, Ĵ) as objects. A morphism (S, g, Ĵ) (S ′, g′, Ĵ ′)
(ϕ,α)

is given by a morphism of symplectic manifolds S S ′ϕ (i.e., such that the pull-

back C∞(S ′,R) C∞(S,R)
ϕ∗ is a morphism of Poisson algebras) together with a

morphism of Lie algebras g g′
α such that the following diagram commutes

S g∗

S ′ (g′)∗

J

ϕ

J ′

α∗

Finally, given this deinition or the criterion of identity (III.17), the group of

automorphisms of the structure Sg shows to be

AutsHam(Sg) =
{
(ϕ, α) ∈ Aut(S)× Aut(g)

∣∣∣
S g∗

S g∗

J

∼ϕ

J

∼ α∗ commutes
}
. (III.18)

Again, one can readily see that, if the strongly Hamiltonian g-action g Γ(TS)ω
ρ

integrates into a group action G Aut(S),L then the group elements give rise to

automorphisms of the abstract structure Sg. In other words, as it was the case for

abstract unitary representations, there exists, for any strongly Hamiltonian G-action,

a canonical morphism of groups

πC : G Aut(Sg). (III.19)

It is given by πC := L×Ad where G Aut(S)Ad is the adjoint action (cf. footnote

18, page 248): with this choice, the commutativity of the diagram in (III.18) for each
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πC(g) amounts precisely to the deinition of a strongly Hamiltonian G-action76.

III.3.2 The group-theoretical labelling scheme

The complete solution to the individuation problem (see page 243) for the abstract

structures Sg and HG may be seen as involving the two following aspects:

i) From the perspective of states, to understand which are the smallest subsets of

the space of states one can possibly expect to individuate. As we have already

discussed, this means to determine the orbits of the actions AutURep(HG) ⟳ PH
and AutsHam(Sg) ⟳ S.

ii) From the perspective of properties, to understand how does one construct speciic

structural properties which allow to efectively deine a labelling scheme that

distinguishes states.

Because of the existence of the two canonical morphisms G AutURep(HG)
πQ

(III.14, page 282) and G AutsHam(Sg)
πC (III.19, page 284), these two aspects

are related to the study of invariants of the group G.

III.3.2.a Quantum properties as labels of irreducible representations

In this respect, the most standard problem in linear representation theory is the

breaking of a unitary representation into its irreducible components. Recall: a unitary

representation U : G −→ U(H) is called reducible if it is possible to ind invariant linear

subspaces
(
Vi
)
i∈I

such that the total Hilbert space may be written as a direct sum of

these : H =
⊕
i∈I

Vi. Moreover, it is called completely reducible if the invariant subspaces

Vi are the smallest possible (i.e., they contain no non-trivial invariant subspaces). Said

diferently, a unitary G-representation U is completely reducible whenever it is possible

76 If α = Ad(g) for some element g ∈ G, then α∗ = Co(g−1) and the commutative diagram in
(III.18) writes

S g∗

S g∗

J

L(g) Co(g)

J

which is the Co-equivariance condition of the momentum map (Deinition III.3, page 247).
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to write it as a direct sum of irreducible representations: U =
⊕
i∈Ĝ

Ui. For compact Lie

groups, any unitary representation is completely reducible77, but in general this is not

the case.

The problem of breaking a unitary group representation into its irreducible compo-

nents undisputedly plays a crucial role in the description of quantum systems. Because

of the clear similarity of this problem with that of breaking the space of states into

the orbits of AutURep(HG)—the irst seeks to write H as a direct sum of the smallest

possible invariant linear subspaces, while the second seeks to write PH as a union of the

smallest possible invariant subspaces—, one could be led to think that by inding the

decomposition of a unitary representation one solves problem i) above. However, the

similarity is misleading and the two problems are better kept apart: given a unitary rep-

resentation G U(H)U and the associated induced action G Aut(PH),U

the irreducibility of the former does not entail the transitivity of the latter78.

In fact, the role of irreducible representations is better understood when ap-

proached in relation to properties rather than states. Since the decomposition U =
⊕
i∈Ĝ

Ui is invariant under the equivalence relation, belonging to a particular irreducible

component of the abstract structure HG = (H, G, U) is a structural property which can

be used to distinguish some states of the system. Thus, in the group-theoretical ap-

proach to the kinematical description of quantum systems, the mathematical problem

of inding a parametrization of the unitary dual Ĝ becomes the main road for building

a labelling scheme. In this way, it appears as quite natural a phenomenon for quantum

numbers to be “indices characterizing representations of groups” as was pointed out

by Hermann Weyl79.

77See for instance Knapp, loc. cit.
78This is easily seen by dimensional considerations: given a Hilbert space of dimension d, the

projective space PH, as a real manifold, has dimension 2(d − 1). Now, while most Lie groups admit
irreducible unitary representations of any inite dimension, transitive actions must be at most of the
dimension of the Lie group. In other words, if 2d > dimG + 1, then it is impossible for the action
G ⟳ PH to be transitive. The converse statement is however true: if the action G Aut(PH)U

is transitive, then the irreducible representation from which it stems is irreducible.
79Weyl, op. cit., p. xxi.
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For our investigation, the important point is to understand the amount of discerni-

bility introduced into the quantum space of states through this group-representational

labelling scheme. In general, it is clear that, by simply indexing the various irreducible

representations of the abstract group G, one does not succeed in individuating most

states. There are two main reasons for this to be so. First, there is the dimensionality

of a given unitary irreducible representation: by singling out an irreducible compo-

nent Vi of the structure HG, one designates a submanifold of the quantum space of

states which is (2dimVi − 2)–dimensional. Hence, unless Vi is one-dimensional, one

does not individuate in this way a point of the quantum space of states. An impor-

tant exception to this drawback is the case of abelian groups, for which any irreducible

unitary representation is necessarily one-dimensional. Abelian groups play hence an

important role in the labelling of states. But even in this latter case there is a second

source of indistinguishability: the eventual multiplicity of an irreducible component.

In the decomposition U =
⊕
i∈Ĝ

Ui, nothing prevents the same irreducible representa-

tion from appearing twice (or more), and, in order to clearly show this possibility, the

decomposition is better written as

U =
⊕

i∈Ĝ

miUi, where mi ∈ N. (III.20)

In such cases where mi /∈ {0, 1}, there is no sense in which one can talk about the

linear subspace Vi ⊂ H that supports the irreducible representation Ui.

These issues are well perceived when looking at the paradigmatic example of the

group-representational labelling scheme in Quantum Mechanics—namely, the treat-

ment of spin states in relation to the abstract group SU(2). As it turns out, there

is exactly one unique irreducible representation of this group for any given dimension

d ∈ N∗80. Hence, the unitary dual ŜU(2) is parametrized by a single variable with

discrete integer values, which in physics is taken to be s := d−1
2
. Only for the case

s = 0 is this number enough to designate a state, since the representation is then

one-dimensional. For the remaining cases, more work needs to be done to individuate

a state. In the spirit of the representational labelling scheme, one considers a maximal

80Cf. M. R. Sepanski. Compact Lie Groups. New York: Springer, 2007, Theorem 3.32 p. 68.
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torus of SU(2)—that is, a connected abelian subgroup TX ⊂ SU(2) that has the prop-

erty of not being a subgroup of any other abelian subgroup of SU(2)—and decomposes

each irreducible representation of the whole group into irreducible representations of

the subgroup (which are also called ‘weights’). More speciically, one here takes

TX ≃ U(1), so that T̂X ≃ Z. In this way, a second quantum number is constructed

and the initial abstract unitary SU(2)-representation may be described as

U =
⊕

s∈ŜU(2)

⊕

m∈Û(1)

msUs,m. (III.21)

Us,m is no other than the usual spin state |s,m⟩: it denotes the unique one-dimensional

irreducible representation of U(1) labelled by m which is found inside the unique (2s+

1)-dimensional irreducible representation of SU(2).

Because the above involves the arbitrary choice of a subgroup of G, it could be felt

that this last construction does not comply with the abstract structuralist methodology

followed so far. And the objection would be valid if the deinition of the quantum

number m relied on the ability to distinguish the speciic maximal torus TX from all

others. Indeed, whenever the group G is conceived abstractly, any two maximal tori

TX and TY are structurally indiscernible: it is always possible to ind an automorphism

αg ∈ Inn(G) such that αg(TX) = TY
81. But the decomposition (III.21) is in fact

independent of the choice of the subgroup TX : all maximal tori of a compact Lie group

are isomorphic and the same weights will appear for any maximal torus82. Hence, the

deinition of this second quantum property does not involve any speciicity of some

particular maximal torus and can be considered a structural property of the abstract

structure HG.

In the best possible scenario, where all multiplicities appearing in (III.21) are

either 0 or 1, we therefore see how the labelling scheme succeeds in individuating

a ‘basis’ of states—that is, in constructing a complete set of commuting observables.

This is certainly the best situation which can be hoped for in the group-representational

81Ibid., Corollary 5.10.b), p. 101.
82T. Bröcker and T. tom Dieck. Representations of Compact Lie Groups. 1st ed. New York:

Springer, 1985, p. 184.
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approach to the kinematical description of a quantum system. However, it does not

automatically mean that the requirement of individuation is satisied. Even in this

case, even when it is possible to individuate a family of states from which one can

generate the whole quantum space of states, there remain qualitatively indiscernible

states. That this is so may be counter-intuitive from the point of view of Hilbert

spaces: given a basis B of H, any element ϕ ∈ H can be written in a unique way

as a linear combination of elements of B. This implies that, if a basis of vectors can

be individuated, then all elements of the Hilbert space can be as well. But—let us

not forget—a state is described by a ray, not by an element of the Hilbert space, and

the group-representational labelling scheme only achieves at best the individuation of

a ray. In this case, the amount of discernibility that is introduced into the quantum

space of states is therefore more diicult to grasp.

The simplest example of this phenomenon is the spin-1
2
quantum system, described

by the fundamental representation of SU(2) whose weight decomposition is

U 1

2

= U 1

2
, 1
2

⊕ U 1

2
,− 1

2

.

The choice of a maximal torus TX—or, equivalently, of a component of the spin SX—

allows to individuate two states: |1
2
, 1
2
⟩ (‘spin up’) and |1

2
,−1

2
⟩ (‘spin down’), and any

other state results from a superposition of these two. Geometrically, the quantum

space of states P may be depicted as a sphere with two antipodal points pinned (Fig-

ure III.4)83. In this picture, it becomes clear that not all states have been individuated:

given the two poles, the intrinsic metric structure of the space of states only allows

to distinguish the diferent ‘parallels’ of the sphere but any two states lying in the

same ‘parallel’ are qualitatively indiscernible84. To further increase the amount of dis-

cernibility and inally individuate all states, it would be necessary to consider several

83Recall that, as real manifolds, one has PC2 ≃ S2. Moreover, states that are orthogonal in the
Hilbert space formulation are antipodal in the geometric formulation.

84For α ∈ [0, π2 ], the parallel Pα is deined as the subset of states lying at distance α from the state
| 12 , 12 ⟩ (or, equivalently, at distance π

2 − α from the state | 12 ,− 1
2 ⟩):

Pα :=
{
p ∈ P

∣∣ dg(p, |
1

2
,1
2
⟩) = α

}
=

{
p ∈ P

∣∣ dg(p, |
1

2
,− 1

2
⟩) = π

2
− α

}
.

Pα can also be deined in more familiar form in terms of the probabilities of the measurement outcome
for the property SX as the subset of states such that Pr(SX = ℏ

2 ) = 1− Pr(SX = −ℏ

2 ) = cos2(α).
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