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Introduction

At the heart of the scienti�c method lies the capability to evaluate the physical properties of
nature through a quantitative measurement. In this context, an observer performs a targeted
experiment that aims at isolating a physical phenomenon reduced to its core constituent.
The common trait of every experiment is that while some preliminary work may be required
by the observer, the process invariably ends with a measurement and an interpretation of
its outcome. Light has been a medium of choice to understand the inner workings of reality
much before the exact nature of light itself was su�ciently understood.

In particular, light has long been used to perform measurements sometimes leading to
astonishing conclusions. Around 240 BC, the solar system and the concept of light still be-
longed to vague philosophical discussions at the margins. It did not stop Eratosthenes to
estimate the Earth’s radius with a 15% error from a simple geometric measurement and the
sole assumption that Earth was a perfect sphere. In 1615, after having imaged the moons of
Jupiter, Galileo is found “vehemently suspect of heresy” and arrested for defending an he-
liocentric system. The question of the �nite speed of light remained in limbos after passing
from the Greeks to early Islamic philosophers and late-seventeenth century scientists. Still,
in 1675, Danish astronomer Ole Rømer used the eclipses of the Jupiter moon Io to come
up with a measurement allowing him to evaluate the �nite speed of light within 25% accu-
racy. It is worth stating that with the inherent limitations due to the technology available at
those times, both outcomes mostly su�ered from poorly measured or ill-de�ned distances
they used as references.

Around the same period as the discovery of Rømer, Isaac Newton used a geometrical
description of optics where light is composed of straight rays. The description of light as
a wave appeared in 1803 when Thomas Young observed an interference pattern formed
by light blocked by a narrow object. This representation is generalized in the middle of
the nineteenth century, when James Clerk Maxwell elaborated a set of four famous equa-
tions describing the behavior of electromagnetic radiation. Using this description, Albert A.
Michelson and Edward Morley failed to measure the motion of luminiferous aether in what
is often referred to as the “most successful failed experiment” as it has spurred the commu-
nity to elaborate alternative theories. Michelson soon realized that the extremely sensitive
interference-based measurement they used was well suited for astronomical measurements
[Michelson 94b] and to de�ne standards in space and time from the wavelength of the light
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INTRODUCTION

emitted by atomic transitions [Michelson 94a].
On the technical side, the nineteenth century is synonymous with the development of

photographic plates allowing for the �rst time to �x images produced by advanced optical
system. Those plates played a tremendous role in the development of experimental physics,
as they allowed to detect phenomena never seen so far such as single particles decaying
in cloud chambers [Anderson 33]. In 1909, Geo�rey I. Taylor used those plates in another
“failed” experiment where he recorded the interference pattern in the shadow of a needle
placed before a gas �ame [Taylor 09]. He expected the interference pattern to fade out
with extreme attenuation of the light as the quanta of energy would be reduced down to
a single one, supposedly unable to interfere with any other, or itself. The pattern did not
fade out, Taylor observed the interference of an extremely attenuated coherent state but
still lacked the theoretical framework to know it so he set an upper bound on the amount of
energy carried by a quantum of light. Physicists will wait seventy years to see an electron
interfere with itself [Merli 76] and ten years more until a photon �nally interferes with itself
[Grangier 86].

Since the beginning of the twentieth century, quantum mechanics has been a reliable
theoretical platform to model the behaviors of atoms, photons and their interactions. The
invention of the laser in 1960 by Theodore H. Maiman has allowed physicists to create spa-
tially and temporally coherent light and along with the progress made in material sciences,
to use light as a measurement tool but also as a probe of light-matter interaction and the
fundamentals of quantum mechanics, to manipulate atoms, etch materials and eventually
seed thousands of applications in every engineering �eld from optical telecommunications
to medical sciences.

Today, light is understood as a quantized electromagnetic radiation carrying one of
the four fundamental interactions known by modern physics. The core activity in quan-
tum optics consists in engineering the quantum states of light to create new breakthrough
applications [O’Brien 09]. Because of the laws of quantum mechanics, light is thought of
as a promising tool to distribute and process information better than the current classical
schemes. Still, the intrinsic nature of light gives it advantages and downsides to perform
di�erent tasks. Its ever-propagating character makes it ideal to convey information but ex-
tremely challenging to store. The feeble interaction of the quanta composing it with the
electromagnetic environment makes light robust to decoherence but equally hard to ma-
nipulate at will.

In this thesis, we aim at performing a genuinely selective and pure quantum operation
at the single-photon level on an assembly of many quantum harmonic oscillators. Our ap-
proach is made possible by the recent developments in ultrafast optics. We have chosen
ultrafast light as a platform to generate a spectrally multimode quantum state and ultrafast
pulse shaping as a tool to measure and manipulate it.

Multimode quantum states have been generated previously using linear optics to mix
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INTRODUCTION

together single-mode quantum states that were once spatially separated [Su 07, Yukawa 08].
This approach works and has led to great advances in the engineering of highly entangled
multipartite states. But mixing spatially separated quantum states via linear optics lacks
recon�gurability and the number of physical resources required (including PhD students)
scales linearly with respect to the number of parties desired. If any quantum state of light is
to be used to convey and process information in the form of quantum bits (qubits), or their
higher dimensional counterpart known as qudits, they would be required in hundreds if not
thousands just as in a traditional computer that uses billions of bits. It becomes necessary
to �nd a way to easily scale up the production of the desired quantum states. Another
successful approach has been developed based on continuous wave lasers and acousto-optic
modulators [Chen 14].

Among the many states with high potential are squeezed quantum states of light. State
of the arts generation of squeezed states includes di�erent optical wavelengths in the optical
spectrum [Baune 15] in the near infrared [Mehmet 10], at telecom wavelengths [Mehmet 11]
and an ever-increasing amount of squeezing [Vahlbruch 16]. They constitute an impor-
tant resource for high-precision measurements aiming at overcoming the standard quantum
limit in, for instance, gravitational wave detection [Aasi 13] but also in the �eld of quan-
tum information to perform various tasks such as teleportation, quantum cryptography, and
distribution of entanglement in quantum computation networks [Furusawa 11].

Nevertheless, advances in the �eld of quantum information has highlighted that quan-
tum states possessing Gaussian statistics, including squeezed states, are no su�cient re-
source to outperform classical resources and algorithms. Indeed, Gaussian statistics are
synonymous of positive probability distributions, such as the Wigner function, and can
e�ciently be simulated and sampled by classical means. Additional quantum states exhibit-
ing genuine quantum features such as non-classical statistics through the negativity of their
Wigner function are required. Single photons are probably the best candidates that meet the
requirements. While they remain di�cult to create deterministically with su�cient purity,
progress have been made toward that goal [Yoshikawa 13, Somaschi 15]. Still, performing
a single-photon subtraction on a squeezed state is also known to create strongly negative
Wigner functions [Nielsen 07].

Hence, the next step after the generation of any quantum state of light, and especially
squeezed states, is to manipulate them with a genuine quantum operation at the level of the
quantum such as single-photon subtraction or addition. Single-photon subtraction for in-
stance has been widely used until today to probe quantum mechanics rules [Parigi 07], gen-
erate entanglement between di�erent spatial or temporal modes [Ourjoumtsev 09, Takahashi 08],
distillate entanglement [Takahashi 09, Ourjoumtsev 07a], generate superpositions of Fock
states [Yukawa 13] and create hybrid entanglement [Morin 14b]. The problem of extend-
ing the technique previously used for single-photon subtraction is that it fails to address
selectively a multimode quantum states generated in a scalable fashion. A new technique is
required and this is what this thesis is about.
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INTRODUCTION

In the following chapters, we relate the study, design, construction and characterization
of a single-photon subtractor, also known as the Quantum Pulse Gate (QPG) [Eckstein 11],
meant to manipulate a spectrally multimode light �eld in a pure, selective and tunable fash-
ion. This device is based on sum-frequency generation, ultrafast pulse shaping and single-
photon detection and could eventually be performed an arbitrary number of times as pro-
posed in [Huang 13].

This thesis is organized as followed. In the �rst chapter, we introduce a limited number
of concepts of multimode quantum optics that we will use. In the second chapter, we de-
scribe a source of spectrally multimode squeezed vacuum that motivates the construction of
a mode-selective single-photon subtractor. In the third chapter, we explain how a spectrally
multimode quantum states can be analyzed with an homodyne detection enhanced by ultra-
fast pulse-shaping capabilities and we present the results of the analysis of our mutlimode
squeezed vacuum. In the fourth chapter, we develop a theoretical framework for multimode
single-photon subtraction and we apply it to spectrally multimode light. In the �fth chap-
ter, we present our implementation of the single-photon subtraction, mention the problem
related to mixing bright and low-power beams in the same optical setup and describe the
solutions we have found to isolate the heralding signal from noise. In the sixth chapter, we
present the results of a process tomography where we probe the single-photon subtractor
to reveal the subtraction mode and assess the purity of the process.
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Chapter 1

Not an Introduction to Multimode
Quantum Optics

[About me, miserably starting to write the present thesis in the darkness of the lab]
“Almost done man! Almost done! (evil laughter)”

– Syamsundar “Super Syam” De

Contents
1.1 Elements of quantum optics . . . . . . . . . . . . . . . . . . . . . . . 8
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1.1.2 Quantum states of interests . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2.1 Squeezed vacuum states . . . . . . . . . . . . . . . . . . 10
1.1.3 The density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3.1 Losses at a detection . . . . . . . . . . . . . . . . . . . . 12
1.1.3.2 Thermal states . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4 The Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Multimode generalization . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Optical modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1.1 Modal algebra . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1.2 The Schmidt decomposition . . . . . . . . . . . . . . . . 15
1.2.1.3 Estimating the number of modes . . . . . . . . . . . . . . 16

1.2.2 Multimode electric �eld . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Multimode quantum states . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3.1 Factorizable multimode states . . . . . . . . . . . . . . . 18
1.2.3.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Multimode density matrix . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.5 Multimode Wigner function . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Multimode Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . 19
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1.1. ELEMENTS OF QUANTUM OPTICS

1.3.2 The covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2.1 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 Multimode squeezed vacuum . . . . . . . . . . . . . . . . . . . . . 21
1.3.3.1 Bloch-Messiah decomposition . . . . . . . . . . . . . . . 21
1.3.3.2 Williamson decomposition . . . . . . . . . . . . . . . . . 22

This chapter does not pretend to be a rigorous and thorough introduction to multi-
mode quantum optics. The reader should consult [Grynberg 10, Walls 08, Vogel 06] for a
full understanding of quantum optics. We also recommend [Thiel 15], [Morin 14a], and
[Brecht 14a] as helpful PhD thesis giving good insights into multimode ultrafast optics,
quantum optics and frequency conversion processes respectively.
In this chapter, we simply introduce some concepts proven useful to the understanding of
the current work.

The �rst section de�nes di�erent concepts and tools of quantum optics along with their
notations. The second one will explain the nature of an optical mode and how optical pro-
cess can be multimode. We will also extend the concepts developed in the �rst section in
the multimode case.

1.1 Elements of quantum optics

1.1.1 The quantized electric �eld

Quantum optics describes the nature and the evolution of the electromagnetic radiation by
quantizing the accessible levels of energy. In particular, the electric �eld is used to model
the evolution of light and its interaction with various media. It is usually described in the
space time basis at position r and time t . Since the electric �eld is an observable in the sense
of quantum mechanics, it is described by an Hermitian operator Ê and represented as a sum
of a complex part Ê(+) (the analytic signal) and its Hermitian conjugate Ê

(−) :

Ê(r , t ) = Ê
(+)

(r , t ) + Ê
(−)

(r , t ) (1.1)

To obtain the expression of Ê(r , t ), we consider the energy of the �eld to be contained
in an arbitrary volume V and we focus on the �eld in a single mode u in this volume. We
calculate the expression of the HamiltonianH of the �eld as if the �eld was classical through
Maxwell’s equations. In this mode, the Hamiltonian of the �eld is the one of an harmonic
oscillator and satis�es the fundamental system of equations of the Hamiltonian mechanics
thus introducing a pair of conjugate canonical variables of the Hamiltonian X and P . The
quantization process turns the Hamiltonian into:

Ĥ = ~ω
(
â†â +

1
2

)
(1.2)
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CHAPTER 1. NOT AN INTRODUCTION TO MULTIMODE QUANTUM OPTICS

where â and â† are the annihilation and creation operator of the �eld and can be seen as the
quantized counterpart of the �eld complex amplitude and its conjugate. Those operators
always satisfy: [

â, â†
]
= 1 (1.3)

The quantization process also turns X and P into a pair of Hermitian operators X̂ and P̂ .
Those operators are the �eld quadrature operators. In what is known in quantum optics as
Continuous Variables (CV)[Lloyd 99, Furusawa 11], the information is encoded in the �uc-
tuations of the �eld quadrature operators. The �eld quadratures are usually measured with
an homodyne detection (see chapter 3). For vacuum, the �eld quadratures exhibit the same
amount of �uctuations, known as shot noise in the context of homodyne measurement. For
the experimental physicist in continuous variables, it constitutes a reference level for any
other measurement, especially for the phase-dependent �uctuations of a squeezed vacuum
state. For this reason, we denote σ0 the standard deviation of the quadrature operators X̂
and P̂ associated to the �uctuations of vacuum:

〈0|X̂ 2 |0〉 = 〈0|P̂2 |0〉 = σ 2
0 (1.4)

With those de�nitions in mind, the expressions of X̂ , P̂ and
[
X̂ , P̂

]
are:




X̂ = σ0
(
â + â†

)
P̂ = iσ0

(
â† − â

) and
[
X̂ , P̂

]
= 2iσ 2

0 (1.5)

Many conventions exist in the literature regarding the value of the variance of vacuum
σ 2
0 depending on the de�nitions of X̂ and P̂ . This plethora of conventions leads to potential

confusion when comparing even basic formulas. In the following sections and chapters, we
try to keep σ0 explicitly. If not, the reader should assume that for the sake of simplicity,
everything is de�ned with σ0 = 1.

Finally, a �eld constant E (1) is introduced to link the annihilation operator and the �eld.
The expression of the analytic signal Ê(+) decouples the temporal and spatial dependencies
to satisfy Maxwell’s equations:

Ê
(+)

(r , t ) = E (1)âu (r , t ) with E (1) =

√
~ω
2ϵ0V

(1.6)

where ϵ0 is the permittivity of vacuum and ~ is the reduced Planck constant. Expression 1.6
is the starting point of quantum optics. It is very common to choose u to be a plane wave
of wave vector k and frequency ω = c |k| with c the speed of light in vacuum so that:

u (r , t ) =
1
√
V
ei (kr−ωt ) (1.7)

9



1.1. ELEMENTS OF QUANTUM OPTICS

1.1.2 Quantum states of interests
In this work, we mainly focus on coherent states [Glauber 63] denoted |α〉, single-photon
states denoted |1〉 and squeezed vacuum states denoted |σ 〉.
Fock states denoted |n〉 are the quantized level of excitation of the electric �eld. While
particularly challenging to produce experimentally for arbitrary values of n, they form a
convenient normalized basis of quantum states for theoretical discussions. Among them,
the single-photon state is a single quantum of excitation of the electromagnetic �eld and is
obtained formally by applying the creation operator â† on vacuum: â† |0〉 = |1〉.

A coherent state is the superposition of Fock states being an eigenstate of the annihi-
lation operator: â |α〉 = α |α〉. It is obtained by application of the displacement operator
D̂ = exp[αâ† − α∗â] on vacuum:

|α〉 = D̂ |0〉 = eαâ
†

|0〉 = e |α |
2/2

∑
n≥0

αn
√
n!
|n〉 (1.8)

It is the quantum state whose properties are the closest to the classical description of light.
It is generally used to represent the quantum state of light produced by a laser. Interestingly,
the noise of the �eld quadratures for this state is equal to the ones of vacuum, i.e. σ 2

0 .

Figure 1.1: Phase space with the X̂ and P̂ quadratures with vacuum state (blue) and a coher-
ent state (red) of amplitude α and phase ϕ. The coherent state can be localized in the phase
space with its coordinate x and p along the X̂ and P̂ quadratures.

1.1.2.1 Squeezed vacuum states

As we will see in the next chapter, we will deal extensively with squeezed vacuum states
|ξ 〉 where |ξ = 0〉 is the vacuum state. A squeezed vacuum state is obtained by applying the
squeezing operator Ŝ (ξ ) to vacuum. It is de�ned as:

Ŝ (ξ ) = exp
[
ξ

(
â2 − â†2

)
/ 2

]
(1.9)

10



CHAPTER 1. NOT AN INTRODUCTION TO MULTIMODE QUANTUM OPTICS

where for the sake of simplicity ξ ∈ R. In the Heisenberg picture, the temporal evolution of
the annihilation operator â through squeezing obeys:

dâ
dt =

i

~
[
ĤS , â

]
= −ζ â where ĤS = i~

ζ

2
(
â2 − â†2

)
and ζ = ξ/tint (1.10)

where tint is an interaction time during which the evolution trough ĤS gives Ŝ (ξ ) as the
evolution operator. The quadratic Hamiltonian ĤS associated to the squeezing operator
leads to a unitary evolution of â. In that picture, a squeezed vacuum state |ξ 〉 = Ŝ (ξ ) |0〉
should be understood as a squeeze and a stretch of the phase space (presented on �gure 1.1)
under a unitary transformation. When applied to vacuum, the expression of Ŝ (ξ ) simpli�es
[Vogel 06]:

|ξ 〉 = Ŝ (ξ ) |0〉 = 1√
ch (ξ )

exp
(
−
th(ξ )
2 â†2

)
|0〉 = 1√

ch (ξ )

∑
n≥0

(
−
th(ξ )
2

)n √
(2n)!|2n〉
n! (1.11)

This quantum state is of particular interest as the �eld quadratures exhibit quantum �uctua-
tions below and above the shot noise. Indeed, using the properties of the squeezing operator
Ŝ (ξ ) and its action on the annihilation and creation operators â and â† (see e.g [Walls 08]),
we can compute the variance of X̂ and P̂ for a squeezed vacuum state:

VX = 〈ξ |X̂
2 |ξ 〉 = σ 2

0e
−2ξ (1.12)

VP = 〈ξ |P̂
2 |ξ 〉 = σ 2

0e
2ξ (1.13)

Depending on the value of ξ , one quadrature of the �eld undergoes a reduction of its noise
while the other one sees its noise increase according to the Heisenberg inequality:√

VXVP = σ
2
0 (1.14)

An experimental Physicist often evaluates a squeezed state with the value of its variance
below vacuum in decibels VdB :

VdB = 10 log10
(
VX

σ 2
0

)
(1.15)

The generation of those states has been �rst demonstrated in [Wu 86, Slusher 87] and the
maximum squeezing obtained has kept on growing to reach signi�cant levels [Vahlbruch 16]
as ambitious application are developed [Chua 14].

One last state of interest in quantum optics is the thermal state for which we need to
introduce the density matrix.

1.1.3 The density matrix
The density matrix ρ̂ is a key tool in describing quantum systems. The density matrix is used
to introduce the concept of a mixed state as a statistical ensemble of many pure quantum

11



1.1. ELEMENTS OF QUANTUM OPTICS

states. Some classical uncertainty about the quantum state is thus introduced. For a pure
state |ψ 〉, the density matrix is: |ψ 〉〈ψ |. Among its many properties (see [Morin 14a]), the
density matrix is positive semi-de�nite and Hermitian. The spectral theorem tells us that
the density matrix of a mixed state can be written as a sum of density matrices of pure states
|ψi〉:

ρ̂ =
∑
i

wi |ψi〉〈ψi | with Tr (ρ̂) = 1 (1.16)

The density matrix is useful to describe a quantum state onto a given basis of orthogonal
quantum states. In quantum optics, the community of Discrete Variables (DV) usually char-
acterizes quantum state of light through photon-counting. For this kind of measurement,
the density matrix expressed in the basis of Fock states is particularly appropriate. A key
quantity is the purity π of the density matrix de�ned as:

π = Tr
(
ρ̂2

)
=

∑
i

w2
i (1.17)

This number represents the amount of “mixture” of a mixed quantum state. The purity of
a pure state is equal to unity. It tends to zero for an extremely mixed state. As we will see
later, the concept of purity can be extended to any positive semide�nite Hermitian matrix.

1.1.3.1 Losses at a detection

Any experimental setup su�ers from losses a�ecting the quantum states of light. Those
losses are usually modeled by an additional beamspitter mixing the signal electric �eld with
vacuum and tracing out over the second output. The e�ect of losses on a quantum state at a
detection, for instance a perfectly mode-matched homodyne detection (see chapter 3) with
non-unit quantum e�ciency, can be modeled by a mixed state where vacuum is introduced.
The density matrix goes from |ψ 〉〈ψ | to:

ρ̂ = η |ψ 〉〈ψ | +
√
1 − η2 |0〉〈0| with 0 ≤ η ≤ 1 (1.18)

1.1.3.2 Thermal states

In quantum optics, extra noise above the �uctuations of vacuum can be represented as a
statistical mixture of Fock states weighted by the Boltzmann distribution. Those states are
the thermal states of Planck and their density matrix is:

ρ̂th =
1

1 + nth

∑
n≥0

nn
th

(1 + nth )n
|n〉〈n | (1.19)

where nth is the average photon number: nth = Tr (n̂ρ̂).

12



CHAPTER 1. NOT AN INTRODUCTION TO MULTIMODE QUANTUM OPTICS

1.1.4 The Wigner function
As explained in [Ourjoumtsev 07b], the density matrix can sometimes be cumbersome to
identify a quantum state qualitatively, especially when the electric �eld contains important
phase-dependent properties. To answer this problem, there exists a continuous family of
s-parametrized quasiprobability distributions for −1 ≤ s ≤ 1 [Cahill 69] (see e.g [Vogel 06,
Leonhardt 97]). Those distributions describe the quantum state in the phase space where
the x and p variables are coordinates along the X̂ and P̂ quadratures of the �eld. The most
widely used are the Glauber-Sudarshan P function (s = 1) [Glauber 63], the Wigner function
W (s = 0) [Wigner 32] and the Husimi Q function (s = −1) [Husimi 40]. Each of them have
di�erent advantages when it comes to identify di�erent quantum states. The most widely
used in quantum optics to characterize CV and hybrid (mixed CV and DV) quantum states
is the Wigner function. It can be obtained from the density matrix ρ̂ through:

W (x ,p) =
1

2πσ 2
0

∫
eiyp/σ

2
0 〈x − y |ρ̂ |x + y〉 dy (1.20)

As explained in [Morin 14a], this de�nition is handily extended to any Hermitian operator.
The Wigner function is useful to compute, for instance, the average value of a Hermitian
operator Ô as 〈Ô〉 =

∫
dx dpW (x ,p)O (x ,p) where O (x ,p) is the Wigner function of Ô .

The Wigner function of some standard quantum states can be computed with this de�-
nition, reminding that the wave function of the harmonic oscillator writes:

〈x |n〉 =
1√

2nn!σ0
√
2π

Hn

(
x
√
2σ0

)
exp

(
−x2

4σ 2
0

)
where X̂ |x〉 = x |x〉 (1.21)

where Hn is the n-th Hermite polynomial. The Wigner functions of the vacuum state |0〉
then is:

W|0〉(x ,p) = exp
(
−(x2 + p2)

2σ 2
0

) /
2πσ 2

0 (1.22)

The Wigner function of a pure squeezed vacuum state |ξ 〉 can be deduced from the one of
vacuum. The squeezing operator rescales the quadrature operators X̂ and P̂ with a factor eξ
and e−ξ respectively [Walls 08]. It thus writes:

W|ξ 〉(x ,p) = exp
(
−
x2

2Vx
−

p2

2Vp

) /
2πσ 2

0 with
√
VXVP = σ

2
0 (1.23)

In the scope of this thesis, we have a special interest in subtracting a single-photon from
any quantum state. It is possible to compute the Wigner function of a pure quantum state
|ψ 〉 whom a single-photon has been subtracted from has a function of the original Wigner
functionW|ψ 〉(x ,p) [Ourjoumtsev 07b, Morin 14a]:

Wâ |ψ 〉(x ,p) =
1
2

(
1 + x2 + p2

2σ 2
0
+ x∂x + p∂p +

σ 2
0
2

(
∂2x + ∂

2
p

))
W|ψ 〉(x ,p)

/
Tr

(
â |ψ 〉〈ψ |â†

)
(1.24)
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1.2. MULTIMODE GENERALIZATION

where the factor Tr
(
â |ψ 〉〈ψ |â†

)
guarantees the normalization of the Wigner function.

In the scope of this thesis, we give a particular interest to squeezed vacuum whose a sin-
gle photon has been subtracted from, namely â |σ 〉. For a pure single-photon subtracted
squeezed vacuum state, the Wigner function writes:

Wâ |ξ 〉(x ,p) =
W|ξ 〉(x ,p)

1
2 (VX +VP − 2)

*
,
1 −

σ 2
0
2

(
1
VX
+

1
VP

)
+ x2 *

,

1
2σ 2

0
−

1
VX
−

σ 2
0

2V 2
X

+
-
+ p2 *

,

1
2σ 2

0
−

1
VP
−

σ 2
0

2V 2
P

+
-

+
-

(1.25)
The Wigner function o�ers a certain readability of the states at play in a glance. The Wigner
functions of the states introduced here are presented on �gure 1.2. We may notice that
after evolution through the squeezing operator, the Wigner function of vacuum remains
Gaussian. After a single-photon subtraction is performed, a strong negativity appears in
the Wigner function.

Figure 1.2: Wigner functions in a disk of phase space de�ned by
√
x2 + p2 < 9. From left to

right: vacuum, squeezed vacuum with 5dB of squeezing, single-photon subtracted squeezed
vacuum with originally 5dB of squeezing.

1.2 Multimode generalization

During the quantization of the �eld mentioned in the previous section, we implicitly chose
to express the electric �eld Ê on the basis of plane waves. This choice forces to clarify the
concept of optical mode.

1.2.1 Optical modes

A mode of the electromagnetic �eld Ê is simply a normalized solution of Maxwell’s equa-
tions [Kolobov 99, Treps 05]. As Maxwell’s equations are classical, it should describe all
the classically physical aspects of the �eld such as: spatial shape, polarization, spectral and
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CHAPTER 1. NOT AN INTRODUCTION TO MULTIMODE QUANTUM OPTICS

temporal properties. A modeu (r , t ) can be mathematically expressed as a vector of a multi-
dimensional Hilbert space where all the aforementioned physical characteristics are con-
tained. The modal Hilbert space is given an inner product 〈., .〉. It allows to compute the
overlap 〈u,v〉 between two modes u (r , t ) andv (r , t ) as:

〈u,v〉 =

∫
V
dr u∗(r , t ) ·v (r , t ) (1.26)

where u∗(r , t ) is the dual (or Hermitian conjugate) of u (r , t ) and where the above integra-
tion is only made over space since time and space are coupled by Maxwell’s equations.
We have assumed the energy of the �eld to be bounded to a volume V so that there exist
a countable basis of modes {ui }. The number of modes may be in�nite while remaining
countable. The basis notation implies an intrinsic truncation which is reasonable consider-
ing that only a �nite number of modes may be populated. We often simply refer to modes
as vectors ui , belonging to a basis {ui } whose we drop the spatiotemporal dependence for
the sake of simplicity. This basis is normalized and its vectors are orthogonal to each other,
meaning:

|〈ui ,ui〉|
2 = 1 and 〈ui ,ui ′〉 = δi,i ′ (1.27)

It is alway possible to perform a basis change from {ui } to {vj } such that:

vj =
∑
i

〈ui ,vj〉ui (1.28)

1.2.1.1 Modal algebra

Optical modes can be thought of as vectors of a Hilbert space of modal functions. For this
reason, we introduce the notation u† as the Hermitian conjugate of mode u. They can be
thought respectively as a “row vector” foru† and a “column vector” foru. Just like traditional
vectors of any Hilbert space, the productu†v is of dimension 1 (i.e. is a number) and is equal
to 〈u,v〉 while the product uu† is a matrix.

This notation allows us to write, for example a modal matrix M in the basis of modes
{ui } as:

M =
∑
i,j

mi,j uiu
†

j (1.29)

This notation will be helpful to seriously tackle the optical modes of a multimode single-
photon subtraction in chapter 4.

1.2.1.2 The Schmidt decomposition

The Schmidt decomposition comes from the early works on integral equations [Schmidt 07]
and is the continuous counterpart of the more famous but discrete Singular-Value decom-
position [Townsend 14]. The Schmidt decomposition was made popular in quantum me-
chanics when it was applied to bipartite quantum states [Ekert 95, Averchenko 14]. In a
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1.2. MULTIMODE GENERALIZATION

nutshell, given a few mathematical conditions that we assume to be ful�lled here, it allows
to decompose a cmatrix A(x ,y) into a sum of two sets of orthogonal functions { fi } and {дi }
weighted by singular values {λi } such that:

A(x ,y) =
∑
i

λi fi (x )д
∗
i (y) (1.30)

and where one could de�ne a Schmidt number K as the average number of terms in the sum
such that:

K =

(∑
i
λ2i

)2
∑
i
λ4i

(1.31)

We will use the Schmidt decomposition extensively in chapters 4 and 5 where we will
apply it to obtain spectral modes.

1.2.1.3 Estimating the number of modes

We introduce an estimator of the multimode nature of the light �eld [Averchenko 16] in-
spired by the de�nition of the Schmidt number. If a basis of modes has an in�nite but
countable number of modes, they are not necessarily all excited. It can be useful, when con-
sidering a multimode light �eld, to assess the average number of modes populated by the
quantum state carried by this light �eld. We de�ne an e�cient number N of non-vacuum
modes, such that:

N =
(
∑

k nk )
2∑

k n
2
k

(1.32)

where nk is the average photon number in mode “k”. We notice that this de�nition is ap-
propriate when a multimode quantum state of light is composed of many states of simi-
lar nature, or comparable energies. It will not be appropriate to describe an hybrid multi-
mode quantum state composed for instance, of bright coherent states on one hand and low
photon-number states on the other hand. The de�nition (1.32) could be modi�ed to address
this problem by weighting the sum by the �uctuations in each mode rather than the mean
energy.

1.2.2 Multimode electric �eld

One way to introduce multiple modes of the electric �eld is to decompose the analytic signal
on the basis of plane waves such that (1.6) becomes:

Ê
(+)

(r , t ) =

∫
dk E (1) (ω) ε (k)â(k,ω)ei (kr−ωt ) (1.33)
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where ε (k) is the polarization vector. This decomposition is not very convenient in our
cases. There exist a countable basis of modes {un} with annihilation operators {ân} with
which we extend the de�nition (1.6) to a multimode electric �eld to this basis such that:

Ê
(+)

(r , t ) =
∑
n

E (1)
n ânun (r , t ) (1.34)

In this thesis, light is mostly composed of linearly polarized quasi Gaussian laser beams and
we are interested into temporal/spectral properties. Hence we forget the polarization and
following the formalism developed in [Thiel 15] we choose our modes to be single paraxial
waves under the narrow spectrum approximation (i.e. ∆ω � ω0). This latter assumption
allows us to split the temporal mode into a temporal envelope un (t ) and a oscillatory term
e−ω0t at the carrier frequency ω0. We also assume the �eld constant in this mode to be equal
to the one of the carrier frequency E (1) (ω0). There is only one spatial mode д0 (a TEM00 in
the scope of this thesis) and a mode un is:

un (r , t ) = д0(r )un (t )e
i (k0r−ω0t ) (1.35)

The multimode electric �eld Ê(+)
(r , t ) can then be expressed as a sum of temporal envelopes:

Ê
(+)

(r , t ) = E (1)
0 д0(r )

∑
n

ânun (t )e
i (k0r−ω0t ) (1.36)

We will refer to the Fourier Transform of un (t ) as the spectral mode denoted ũn (Ω) and
de�ned relatively to the carrier frequency (Ω = ω − ω0):

ũn (Ω) =

∫ dt
√
2π

un (t )e
iΩt (1.37)

1.2.3 Multimode quantum states
A single mode quantum state of the electromagnetic �eld consists of a coherent superposi-
tion of quanta of excitation in a given mode of the electromagnetic �eld. With this de�nition
in mind, an optical mode should be seen as a classical container carrying the quantized ex-
citation of the electromagnetic �eld. In this thesis, we specify the basis of optical modes
in which a quantum state is represented by adding two subscripts: one to the state for the
mode number and one to the Dirac notation for the basis. A single-mode state |ψ 〉 contained
in an optical mode un belonging to a basis {un} will be written |ψn〉u .
According to the previous de�nitions, a single photon, de�ned as a single quantum of exci-
tation of the electromagnetic �eld, is always single-mode. Indeed, a supposedly multimode
single-photon state can be written in a basis of modes {un} whose associated annihilation
operators are {ân}. A simple basis change shows that the state is single-mode:∑

n

cn |1n〉u =
∑
n

cnâ
†
n |0〉 = b̂† |0〉 = |1〉 with b̂† =

∑
n

cnâ
†
n and

[
b̂, b̂†

]
= 1 (1.38)
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In the rest of this thesis, we try to systematically separate the concepts of modes and states
and avoid any abuse of language such as “squeezed mode”.

1.2.3.1 Factorizable multimode states

Factorizable multimode quantum states are a very particular and convenient case. It is pos-
sible to picture them as a collection of independent single-mode states although this de-
scription is not general. Still, for those multimode quantum states, there exists a modal
basis {un} where the single-mode quantum states contained in each mode are independent
from each other. We extend the previous notation to a multimode state |Ψ〉 composed of
many single-mode states |ψn〉 contained in optical modes un so that:

|Ψ〉 = |ψ1〉u ⊗ ... ⊗ |ψn〉u = |ψ1, ...,ψn〉u (1.39)

It is the case of multimode Gaussian states as we will discuss in section 1.3.

1.2.3.2 Entanglement

In the majority of cases, there is no simple way to write a multimode quantum state. One
can still express a pure multimode quantum state |Ψ〉 on the basis of Fock states embedded
in an arbitrary modal basis {uk } as:

|Ψ〉 =
∑

n1,...,nk ,...

Cn1,...,nk ,... |n1, ...,nk , ...〉u with
∑

n1,...,nk ,...

|Cn1,...,nk ,... |
2 = 1 (1.40)

The reason of such complexity is to be found in entanglement between the di�erent modes
that makes the state non-factorizable. Single photon subtraction for instance, can create
such entanglement between states that were once factorizable. We will discuss this feature
in chapter 4.

1.2.4 Multimode density matrix
The concept of density matrix can be extended to multimode states. Once again, the more
general de�nition we can give for a pure multimode state is built on expression (1.40):

ρ̂ = |Ψ〉〈Ψ| =
∑

n1,...,nk ,...

∑
n′1,...,n

′
k ,...

Cn1,...,nk ,...C
∗
n′1,...,n

′
k ,...
|n1, ...,nk , ...〉〈n

′
1, ...,n

′
k , ...|u (1.41)

where |Ψ〉 is explicitly written in expression (1.40). A mixed multimode state can be arbi-
trarily formed by a weighted sum of pure multimode density matrices.

Just like the single-mode version, it is possible to compute the purity of a multimode
density matrix. The trace must then be taken over the whole modal space using for instance
Fock states:

π = Tr
(
ρ̂2

)
=

∑
n1,...,nk ,...

〈n1, ...,nk , ...| ρ̂
2 |n1, ...,nk , ...〉u (1.42)
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For factorizable states, the expression of ρ̂ is much simpler. Given a mode basis {un},
for a pure factorizable multimode state |ψ1, ...,ψn〉u , the multimode density matrix ρ̂ is: ρ̂ =
|ψ1, ...,ψn〉〈ψ1, ...,ψn |u . The density matrix of any mixed multimode factorizable quantum
state can be written as a sum of the density matrices of pure factorizable multimode states:

ρ̂ =
∑
i

wi |ψi1, ...,ψin〉〈ψi1, ...,ψin |u (1.43)

1.2.5 Multimode Wigner function

It is possible to extend the de�nition of the single-mode Wigner function to a multimode
Wigner function with a multimode density matrix. The de�nition remains the same, but the
integral is extended over all modes:

W (x1,p1, · · · ,xN ,pN ) =
1(

2πσ 2
0
)N ∫

*
,

∏
n

dyneiynpn/σ
2
0 +

-

〈
x1 − y1, · · · ,xN − yN �� ρ̂ ��x1 − y1, · · · ,xN − yN

〉
(1.44)

where N is the number of modes. While straightforward, this expression can be cumber-
some to manipulate and di�cult to interpret. As long as the multimode state is factorizable
(i.e. ρ̂ = ⊗nρ̂n), the phase space variables of di�erent modes are separated and the multi-
mode Wigner function is simply the product of the single-mode Wigner functions:

W (x1,p1, · · · ,xN ,pN ) =
∏
i

Wi (xi ,pi ) (1.45)

Again, in the scope of this thesis, we are interested in subtracting a single photon from
multimode squeezed vacuum. In other word, creating entanglement between optical modes
whose states were formerly separated. The density matrix after subtraction is no longer
factorizable and the phase space variables of the Wigner function cannot be separated. The
exact expression of the multimode Wigner function depends on which optical mode the
subtraction is performed.

1.3 Multimode Gaussian states

Some quantum states of light belong to the family of Gaussian states. Those states possess
certain properties that facilitate their understanding as multimode states.

19



1.3. MULTIMODE GAUSSIAN STATES

1.3.1 Single-mode Gaussian state
A Gaussian state |ψ 〉 is a state whose Wigner function is Gaussian. Such a Wigner function
can be written in the form of expression (1.23) where we deliberately omit the mean �eld:

W|ψ 〉(x ,p) = exp
(
−
x2

2Vx
−

p2

2Vp

) /
2π

√
VxVp (1.46)

where Vx and Vp are the variances of the Wigner function along the X̂ and P̂ quadratures
and where we have put σ0 = 1. Here we have considered the state to be centered on the
origin of phase space. It is possible to displace this state with the displacement operator
D̂ while conserving all its properties but the average photon number that must re�ect its
average amplitude when the state is displaced.

The purity π and the average photon number of this state are:

π = 1/
√
VxVp (1.47)

〈ψ |n̂ |ψ 〉 =
1
4

(
Vx +Vp − 2

)
(1.48)

This state does not necessarily saturate the Heisenberg inequality and we have
√
VxVp ≥ σ

2
0 .

It can be understood as a noisy squeezed state, or a mixture of a squeezed state with a ther-
mal state. The Hudson-Piquet theorem guarantees that for a pure state, there is an equiv-
alence between the positivity of the Wigner function and the Gaussian nature of the state
and its Wigner function [Hudson 74]. As a consequence, if a pure state is non-Gaussian, it
must possesses negativity.

1.3.2 The covariance matrix
The covariance matrix Γ o�ers a convenient formalism to describe the correlations in the
�uctuations between di�erent parties of a multimode state [Ferraro 05]. We denote Q̂ =
(X̂1, ..., X̂n, P̂1, ..., P̂n ) the vector of quadratures operators of every mode. The covariance
matrix terms Γij are:

Γij =
1
2〈{Q̂iQ̂j }〉 − 〈Q̂i〉 − 〈Q̂j〉 (1.49)

This de�nition means that, by construction, a covariance matrix is always real positive
de�nite so that the spectral theorem applies. With the previous de�nition in mind, we can
write the multimode Wigner function of a multimode Gaussian states |Ψ〉 as:

W|Ψ〉(q) = exp
(
−
1
2

(
q − 〈Q̂〉

)t
Γ−1

(
q − 〈Q̂〉

)) /
(2π )2n

√
det (Γ) (1.50)

where q = (x1, ...,xn,p1...,pn ) is the vector of every mode coordinates in the phase space.
The covariance matrix can be seen as a four blocs matrix with the diagonal blocs being
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CHAPTER 1. NOT AN INTRODUCTION TO MULTIMODE QUANTUM OPTICS

ΓX and ΓP , namely the covariance matrices limited to the amplitude and phase quadrature
and the o�-diagonal blocs ΓXP being the covariance matrix of the correlations between
quadratures. When the correlations between the amplitude and the phase quadratures are
null, we only consider the diagonal blocs ΓX and ΓP of the covariance matrix as we will see
later in chapter 3.

1.3.2.1 Purity

It is possible to compute the purity of a multimode Gaussian state multimode state from its
covariance matrix as: π = det (Γ).

1.3.3 Multimode squeezed vacuum
In this work, one of the main quantum states of interest is multimode squeezed vacuum. Be
it pure or not, two handy mathematical decompositions come at our rescue to gain some
understanding on the properties of this multimode state.

1.3.3.1 Bloch-Messiah decomposition

The Bloch-Messiah reduction states that any general linear unitary Bogoliubov transforma-
tion on a �nite number of modes (also known as a symplectic matrix) can be decomposed
into a basis change, a set of single-mode linear Bogoliubov transformation independent
from each other, and �nally another basis change [Arvind 95]. The application of this re-
duction to a multimode optical setup described by linear and quadratic Hamiltonian (an
arbitrary network of beamsplitters and second-order parametric processes) is that the setup
can eventually be described by a multiport beamsplitter, followed by an assembly of indi-
vidual squeezing operators in parallel and another multiport beamsplitter [Braunstein 05].

This result has an important consequence for pure Gaussian states of null mean �eld:
one can always �nd a modal basis un where the initial multimode quantum state has been
generated by a set of independent squeezing operators acting on vacuum. A pure multimode
Gaussian state of zero mean �eld is consequently always a pure and factorizable multimode
squeezed state in the form of expression (1.39), up to a basis change.

A multimode squeezed vacuum state with squeezing values {σ1, ...,σn} is always ex-
pressed as: |σ1, ...,σn〉 and its multimode density matrix consists in a tensor product of the
single-mode matrices of di�erent modes, i.e.:

ρ̂ =
⊗
n

ρ̂n where ρ̂n = |σn〉〈σn |u (1.51)

For such a state, the covariance matrix in the basis {un} simply writes:

Γ = diag
(
σ 2
1 , ...,σ

2
n ,

1
σ 2
1
, ...,

1
σ 2
n

)
(1.52)
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1.3. MULTIMODE GAUSSIAN STATES

With this de�nition, the covariance matrix of vacuum or of a pure multimode coherent state
is the identity matrix 1.

1.3.3.2 Williamson decomposition

The Williamson decomposition can be thought of a way to extend the consequences of the
Bloch-Messiah reduction to multimode Gaussian states that are not required to be pure any-
more. It states that for every real symmetric positive-de�nite matrix V of even dimension,
there is a symplectic matrix S so that SVSᵀ = D2 where D2 is a diagonal matrix whose di-
agonal is repeated, i.e. D2 = diag(d1, ...,dN ,d1, ...,dN ) [Simon 98]. The symplectic matrix S
can be then decomposed by the Bloch-Messiah decomposition. Eventually, the matrix V is
decomposed as:

V = O1KOᵀ
2D2O2KOᵀ

1 (1.53)

where O1 and O2 are orthogonal matrices and K is diagonal.
This result applies to the covariance matrix Γ of any multimode Gaussian state [Weedbrook 12].

If this multimode Gaussian state has a zero mean �eld, the previous decomposition can be
interpreted as follows:

• the diagonal D2 is an initial assembly of thermal states;
• a basis change described by O2 is performed between the basis of the initial thermal

states and the basis of the diagonal matrix K;
• the matrix K symbolizes a set of pure parallel squeezing operations according to the

Bloch-Messiah decomposition;
• �nally, a last basis change described by O1 is performed to obtained Γ.

To sum up, the combination of the Williamson decomposition and the Bloch-Messiah
reduction guarantees that a non-pure multimode Gaussian state of null mean �eld always
results from the classical noise of an assembly of thermal states in some modes, a basis
change and a set of parallel squeezing operation, up to a last basis change. The multimode
state is not factorizable anymore, but one can retrieve the squeezing of each individual
squeezer and the initial classical noise independently.
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Chapter 2

A Source of Spectrally Multimode
Quantum States

[About the last month of thesis writing] “Yeah ... you’ll see. It’s just no fun.”
– Every physics PhD I know

Contents
2.1 A crash course of ultrafast optics . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Generation of ultrafast pulses . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Pulse modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2.1 Spectral Phase . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Our light source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Single-mode OPO in a ring cavity . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Input/output relations . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 OPO threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Predicting squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Measuring single-mode squeezing . . . . . . . . . . . . . . . . . . . . 30
2.4.1 A technical description of our OPO . . . . . . . . . . . . . . . . . . 30

2.4.1.1 Finesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1.2 Spatial mode . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1.3 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1.4 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Pump spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Single-mode squeezing measurement . . . . . . . . . . . . . . . . . 34

2.5 Lossless multimode OPO . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.1 Degenerate parametric down-conversion in a cavity . . . . . . . . 35
2.5.2 Parametric down-conversion in BiBO . . . . . . . . . . . . . . . . . 36
2.5.3 Hamiltonian of the conversion . . . . . . . . . . . . . . . . . . . . 36
2.5.4 Eigenmodes of the conversion . . . . . . . . . . . . . . . . . . . . . 37

23



2.1. A CRASH COURSE OF ULTRAFAST OPTICS

2.5.5 Toward a full model of SPOPO . . . . . . . . . . . . . . . . . . . . 38

In this chapter, we brie�y introduce ultrafast optics to model a source of spectrally mul-
timode squeezed vacuum. Our source consists of an optical cavity and a non-linear medium
pumped by a frequency comb. Such a setup is known to produce multimode squeezed vac-
uum in the spectral domain when pumped below threshold.

We start with a single-mode description of an Optical Parametric Oscillator (OPO), com-
posed of a non-linear crystal and a lossy ring cavity, operated below threshold. We then
describe our source of spectrally multimode squeezing and give theoretical predictions of
its output quantum state.

2.1 A crash course of ultrafast optics
A signi�cant addition to the physics of OPOs in our setup consists in the fact that our
oscillator is pumped with a frequency comb produced by an ultrafast laser compared to
the more common practice using Continuous Wave (CW) lasers [Vahlbruch 16]. Ultrafast
pulses o�er the advantage that the energy is focused in time, thus enhancing non-linear
interactions. For this reason, we introduce a few concepts and de�nitions of ultrafast optics.
For a detailed presentation, the reader should consult [Weiner 11b].

2.1.1 Generation of ultrafast pulses
We describe the classical electric �eld E as an in�nite train of periodic ultrafast pulses with
a repetition rate ωr and a temporal envelope u (t ). Within each pulse, the �eld oscillates
at the carrier frequency ω0. From one pulse to the next one, the �eld and envelope are
dephased by a Carrier-Envelope O�set (CEO) ωceo (see [Spence 91]). The pulse train E (t )
can be expressed as:

E (t ) = A
∞∑

n=−∞

u

(
t −

n

fr

)
e−iω0

(
t− 2πn

ωr

)
e−iωceo

2πn
ωr (2.1)

where A is the amplitude of the �eld and u (t ) is in fact the normalized temporal mode of
a single pulse. By taking the Fourier Transform of the previous expression, one gets the
spectral pro�le of the electric �eld Ẽ (Ω) of the pulse train:

Ẽ (Ω) = A ũ (Ω)
∞∑

n=−∞

δ (Ω + ω0 − nωr − ωceo ) (2.2)

where ũ is the Fourier Transform of u. An in�nite pulse train in the time domain is thus a
frequency comb in the spectral domain. The frequencies of the comb are ωn = nωr + ωceo

for n ∈ N. The frequency comb is modulated by the Fourier Transform of the pulse shape.
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CHAPTER 2. A SOURCE OF SPECTRALLY MULTIMODE QUANTUM STATES

In order to produce this train of ultrafast pulses, it is required to produce a large fre-
quency comb whose all spectral components are in phase. It can be achieved with a laser
possessing a large spectral gain pro�le as well as dispersion compensation in the optical res-
onator. A mode-locking mechanism is also required in order to initiate the pulsed regime.
It is commonly achieved since the early 1990 with solid-state Kerr lens mode-locking lasers
[Spence 91]. Those lasers use Titanium Sapphire (Ti:Sa) as a homogeneous gain medium
due to its large spectral gain pro�le spanning from the red edge of the visible spectrum
to more than 1.1µm [Rapoport 88]. Ultrafast pulses of light with duration down to a few
optical cycles can be generated with such lasers [Asaki 93, Sutter 99, Morgner 99]. For a
fundamental wavelength of λ0 = 800nm, an optical cycle is about 3fs.

2.1.2 Pulse modeling

In this manuscript, we will consider that our pulses are well modeled by Gaussian pro�les.
While this choice is not appropriate for all ultrafast pulses (see previous references), it is
still an excellent approximation given the spectrum of our laser source (see �gure 2.1. This
choice has some advantages as allowing analytical calculations and time/frequency sym-
metric de�nitions has a Gaussian is self Fourier-Transform. We will represent the Gaussian
temporal envelopes as a normalized mode of the electric �eld in the following form:

u (t ) = exp
(
−

t2

4∆t2

) / √
∆t2π (2.3)

where ∆t is the standard deviation of the intensity envelope. This de�nition is convenient
as, due to Fourier Transform, time and frequency de�nitions are the same. The spectral
envelope is:

ũ (Ω) =

∫ dt
√
2π

u (t )eiΩt = exp
(
−

Ω2

4∆ω2

) / √
∆ω2π with ∆ω = 1/2∆t (2.4)

where ∆ω is the standard deviation of the intensity envelope and Ω = ω − ω0.
An experimental physicist often characterizes optical pulses by the Full-Width-Half-

Maximum (FWHM) of the intensity spectrum in the wavelength domain. As long as the
narrow-spectrum approximation holds, the spectrum in this domain can be considered Gaus-
sian as well. It is easily measured with a spectrometer and the relation between the FWHM
and ∆ω is:

∆ω =
π c FWHM
λ20

√
2 ln(2)

where λ0 =
2πc
ω0

(2.5)

Another meaningful quantity is the pulse duration. We choose to refer to pulse duration
τ as the full-width-half-maximum of the temporal intensity pro�le. This de�nition makes
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2.2. OUR LIGHT SOURCE

sense as long as the pulse is Gaussian. It can be useful to relate this quantity to the FWHM
of the intensity pro�le in the wavelength domain:

τ =
λ20 2 ln (2)
π c FWHM (2.6)

2.1.2.1 Spectral Phase

With broad spectra comes the possibility that each optical frequency has, or acquires, its
own phase ϕ (ω) with respect to the others. In ultrafast optics, it is common to perform the
Taylor expansion of the spectral phase around the carrier frequency ω0 so that:

ϕ (ω) ≈ ϕ0 + ϕ
′Ω + ϕ′′

Ω2

2 + ϕ
(3)Ω

3

3! + ... with



ϕ0 = ϕ (ω0)

ϕ′ =
dϕ
dω (ω0)

...

(2.7)

The zero-order and �rst-order terms represents respectively a relative phase and a tem-
poral delay (see [Weiner 11b]) with respect to the original pulse.

The second-order term, called quadratic phase has the e�ect of increasing the duration
of a Gaussian pulse while conserving its shape. Assuming a Gaussian pulse with no spectral
phase of duration τ0, its duration τ after having acquired a quadratic phase ϕ′′ is:

τ = τ0

√
1 +

(
4 ln(2)ϕ′′

τ 20

)2
(2.8)

This formula shows that the shorter the initial pulse is, the greater the impact of the quadratic
phase will be. To give some insight to the reader, a Gaussian pulse of duration τ0 = 50fs will
see its duration increase to τ = 75fs with a ϕ′′ = 1000fs2 quadratic phase.

The third order term called cubic phase modi�es strongly the pulse shape creating ripples
in the pulse shape (see [Thiel 15] pulse spectrograms). Given our limited spectrum (shown
on �gure 2.1), we neglect any cubic phase and limit ourselves to quadratic phase.

2.2 Our light source
For all experiments described in this thesis, the light source we used is a MIRA® 900 from
COHERENT pumped by a VERDI V18® provided by the same company. We pump the Ti:Sa
oscillator with 13W of CW light at 532nm. When operated in ultrafast regime, the Ti:Sa
oscillator delivers approximately 2W of power with a repetition rate fr of 76MHz.

The output spectrum of our laser is presented on �gure 2.1. The spectrum is centered
at λ0 = 795nm. A Gaussian �t leads to a FWHM of approximately 11nm. Such a FWHM is
synonymous of a Fourier Transform limited pulse of duration approximately equal to 85fs.
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Figure 2.1: Output spectrum of our light source.

2.3 Single-mode OPO in a ring cavity
In order to predict the quantum state produced by a lossy below-threshold OPO, we use a
simple model where a coherent state CW pump undergoes a degenerate parametric down-
conversion process inside an optical cavity at resonance with the signal �eld. In the majority
of the literature about OPOs and their below-threshold counterpart, the optical resonator
is assumed to have low optical losses so that a �rst order development of the round trip
equation can be performed (see e.g [Morin 14a]). It is generally a good assumption for high
�nesse cavities. For optical cavities of lower �nesse, this assumption no longer holds so we
use the full cavity transfer function. We will compute the variance of the quadratures of the
output state by using the input/output relations of the ring cavity presented on �gure 2.2.

2.3.1 Input/output relations
The input/output relations for the annihilation operators of the �eld at play in �gure 2.2 are
dictated by the beamsplitter transformation in the Heisenberg picture as well as the evolu-
tion of annihilation operators through the squeezing operator Ŝ (ξ ). We get the following:




âa = tiâi + riâc

âL = tiâc − riâi

âo = toâb − roâb

âc = toâe + roâb

âb = ch (ξ ) âa − sh (ξ ) â†a

(2.9)
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2.3. SINGLE-MODE OPO IN A RING CAVITY

Figure 2.2: Ring cavity with an input coupler, an output coupler and non-linear gain medium
(χ (2)). The annihilation operators of the electric �eld at di�erent positions are represented.
The subscripts i , o, L and e stand for input, output, losses and extra. The subscripts a, b and
c just denote di�erent useful position for calculus in the resonator.

where we have assumed the cavity to be resonant with the signal so that we could discard
the phases due to propagation assuming they are multiples of 2π . We therefore lose gen-
erality and the capability to compute the squeezing in the sidebands of the resonance. The
parameter ξ is the gain of the squeezing operator and we consider it being a real number. It
ultimately depends of the non-linearity χ (2) , the pump amplitude |αp |, the medium length
lc as: ξ = ϵ0lc |αp |χ (2)/2

With the relations (2.9), we compute the value of the output �elds quadratures X̂o and
P̂o (note that the same is possible for X̂L and P̂L) as functions of the input �elds quadratures
X̂i , P̂i , X̂e and P̂e :




X̂o =
(
titoe

−ξ X̂i +
(
rie
−ξ − ro

)
X̂e

) / (
1 − riroe−ξ

)
P̂o =

(
titoe

ξ P̂i +
(
rie

ξ − ro
)
P̂e

) / (
1 − riroeξ

) (2.10)

Interestingly, the expressions for X̂o and P̂o (and so X̂L and P̂L) are symmetrical with respect
to ξ → −ξ .

Assuming the quantum states injected in both input are vacuum, we may compute the
variance of the output �eld quadratures relatively to σ 2

0 . One can show easily that given
vacuum inputs, the average of the output �eld quadratures are null. Both vacuum inputs
are not correlated so we get:




〈X̂ 2
o 〉/σ

2
0 =

(
t2i t

2
oe
−2ξ +

(
rie
−ξ − ro

)2) / (
1 − riroe−ξ

)2
〈P̂2

o 〉/σ
2
0 =

(
t2i t

2
oe

2ξ +
(
rie

ξ − ro
)2) / (

1 − riroeξ
)2 (2.11)

As expected, the equation for 〈X̂ 2
L〉 and 〈P̂2

L〉 are identical to the ones for 〈X̂ 2
o 〉 and 〈P̂2

o 〉 with
respect to a substitution of input and output couplers coe�cients.
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2.3.2 OPO threshold
The expressions obtained above lead us to introduce a gain threshold ξ th so that as:

ξ th = ln
(
1
riro

)
(2.12)

For ξ = ξ th , the expressions (2.11) diverge. Physically, the gain of the ampli�er in the
resonator equals losses and the threshold is reached. The OPO and like a laser, emitting
bright light. We restrict ourselves to the below-threshold regime where it is convenient
to reformulate expression (2.11) in terms of the ratio ε between the actual gain ξ and the
gain threshold ξth (i.e. ε = ξ/ξth). The full expressions of the �uctuations for every output
quadratures are:




〈X̂ 2
o 〉/σ

2
0 =

(
t2i t

2
o / (riro )

−2ε +
(

ri
(riro )

−ε − ro

)2) / (
1 − (riro )

1+ε )2
〈P̂2

o 〉/σ
2
0 =

(
t2i t

2
o / (riro )

2ε +
(

ri
(riro )

ε − ro
)2) / (

1 − (riro )
1−ε )2 (2.13)




〈X̂ 2
L〉/σ

2
0 =

((
ro

(riro )
−ε − ri

)2
+ t2i t

2
o / (riro )

−2ε
) / (

1 − (riro )
1+ε )2

〈P̂2
L〉/σ

2
0 =

((
ro

(riro )
ε − ri

)2
+ t2i t

2
o / (riro )

2ε
) / (

1 − (riro )
1−ε )2 (2.14)

Expressions (2.14) allow us to compute the values of the �eld quadratures variances for any
arbitrary ring cavity con�guration where vacuum is injected. Those expressions are valid
for frequencies below the optical cavity bandwidth.

2.3.3 Predicting squeezing
With equations (2.14), we can predict the maximum expected squeezing for any optical ring
cavity. We can tune the input/output couplers parameters in order to adapt to di�erent
situations. In particular, optical losses can be included in the value of ri by taking it strictly
smaller than the intrinsic re�ectivity of the coupler.

For example, �gure 2.3 shows the expected squeezing and antisqueezing for di�erent
values of ri and ro . We choose ro =

√
.7 to analyze a ring cavity whose output coupler has a

transmission To of 30%. This latter value being meaningful in our case as we will see later
in 2.4.1. The value of ri is varied in order to introduce some losses from the input coupler.
As expected, squeezing becomes �nite at threshold as soon as losses are introduced. The
maximum squeezing that can possibly be produced with 3% losses and an output coupler
with 70% of transmission is about −12dB.

This model is important because it allows to understand the e�ect of losses in a single-
mode OPO below threshold. As we will see later, our multimode OPO can be treated as an
assembly of single-mode OPOs. This former model shows that the maximum squeezing that
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Figure 2.3: Left: Theoretical value of squeezing with respect to ε for ri = 1 (dashed, along
with antisqueezing), √ri = .99 (blue) and √ri = .97 (red). Right: Purity of the output state.

could be expected in a single mode of our lossy multimode OPO is bound by the maximum
squeezing that can potentially be produced by a lossy single-mode OPO.

2.4 Measuring single-mode squeezing

2.4.1 A technical description of our OPO

In this section, we recall and update the technical description of the optical cavity used for
our multimode OPO. A complete description is given in [Medeiros de Araujo 12]. Minor
changes have been made since mostly consisting in replacing some mirrors.

In a nutshell, the optical resonator is a ring cavity designed for S-polarized light. Its
length is about 3.95m (L = c/fr ) so that every optical frequency of the frequency comb
produced by our light source (see �gure 2.1) is resonant. For stability reasons, the ring
cavity is folded several times in a complex fashion. A picture of the cavity can be seen in
appendix A.

2.4.1.1 Finesse

The input coupler has a re�ectivity of 99.85% and the output coupler has a re�ectivity of
70%. The losses measured in the cavity due to the crystal interfaces and the numerous
re�ections are approximately 3%. To compute the �nesse F of the cavity, we use a model
cavity similar to the one introduced on �gure 2.4 where the non-linear medium has been
removed and where the third mirror has some non-unit re�ectance rL. The transfer function
H of the cavity in terms of intensities for a monochromatic �eld at λ0 is:
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H =
Io
Ii
=

ToTi

(1 − rirorL)2
(
1 + 4rirorL

(1−rirorL )2
sin2 (ϕ/2)

) (2.15)

where ϕ is the phase on a round-trip in the cavity and T = 1 − r 2 is the transmission of a
given mirror. The �nesse F is de�ned as the Full Spectral Range (FSR) over the FWHM of
a transmission peak. The expression of the �nesse is:

F =
π

2 arcsin
(√

(1−rirorL )2
4rirorL

) (2.16)

The evolution of the �nesse with respect to losses for our cavity is shown on �gure 2.4.
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Figure 2.4: Left: Scheme of a lossy ring cavity. Right: Evolution of the �nesse with respect
to losses for our cavity parameters.

2.4.1.2 Spatial mode

The cavity is built from spherical mirrors and thus designed to be resonant for TEMnm

modes. It possesses four spherical mirrors disposed in a symmetric fashion around the BiBO
crystal. The radii of curvature of the spherical mirrors are R1 = 250mm and R2 = 6000mm.
For symmetry reasons, it is possible to reduce the spatial analysis to half the length of the
cavity, starting from the waistw0 in the crystal until the waistw1 encountered after a second
spherical mirror as pictured on �gure 2.5.

A ray transfer matrix analysis [Yariv 89] using the complex beam parameter of the
spatial mode in the cavity reveals that for the given parameter, the cavity is stable for
120mm 6 L1 6 140mm and 0 < L2 6 L/2 − L1. The mode and the waists, w0 in particular,
being much more sensitive to L1 than to L2. Still, the critical waistw0 remains approximately
equal to 50µm within a 5mm variation of L1.
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Figure 2.5: Left: Simpli�ed scheme of the ring cavity with waists, radii of curvatures and
important distances. Right: Equivalent optical scheme for ray transfer matrix analysis.

In its current con�guration, the lengths are set so that L1 = 125mm and L2 = 472mm.
For those values, we havew0 = 52µm andw1 = 601µm. With those parameters, if the mode
TEM00 is resonant, the Gouy phase of the other TEMnm is such that no other mode will be
resonant before n +m = 4 where the Gouy Phase is about 0.08 of 2π .

2.4.1.3 Dispersion

The main source of dispersion in the cavity is the 2mm thick BiBO crystal that accounts for
332fs2 as computed in appendix B. The length of the cavity adds some additional disper-
sion up to approximately 80fs2 assuming an average 20fs2 per meter in standard laboratory
conditions [Jian 12]. Three mirrors in the cavity have a negative dispersion of about −50fs2
each. The total dispersion in the cavity should not exceed 260fs2 per round trip.

For a Fourier-Transform limited pulse of duration τ0 = 85.0fs (like our laser source), the
pulse duration after one round trip is increased to τ0 = 85.4fs according to equation (2.8).
Thus, on such an optical bandwidth, the e�ect of dispersion is almost negligible. Neverthe-
less, for larger bandwidths, the e�ect of dispersion can rapidly limit the transmission of the
cavity and introduces extra frequency-dependent losses. It can be detrimental when trying
to produce loss-sensitive quantum states in optical modes of large bandwidth. Ultimately,
a dispersion of the order of 260fs2 will limit the optical bandwidth of the cavity. Even for
a low �nesse cavity like ours, it is not reasonable to expect to go beyond a few tenth of
nanometers of optical bandwidth without any dispersion compensation [Thiel 15].

2.4.1.4 Bandwidth

The bandwidth BW of an optical cavity is the FWHM of a transmission peak. It can be
computed from the de�nition of the �nesse F as:

BW = FSR/F (2.17)

The �nesse of our cavity being approximately 16 and the FSR being 76MHz, the bandwidth
is expected to be about 4.75MHz. Re�ne those values
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The cavity was built to guarantee an optical bandwidth much greater than the bandwidth
of the source (see �gure 2.1). Given the typical re�ectivity data provided by high re�ectivity
mirror manufacturers, it is safe to assume that the optical bandwidth spans from 750nm to
850nm with minimal losses.

2.4.2 Pump spectrum

In order to bring energy to the squeezing process of our OPO, we generate a pump beam
by Second-Harmonic-Generation (SHG) of our laser source (whose spectrum is presented
on �gure 2.1) in BiBO [Ghotbi 04b]. We use a 0.5mm thick BiBO crystal phase-matched for
SHG around our fundamental wavelength of λ = 795nm. The details of the phase-matching
in BiBO for this process can be found in appendix B.

The fundamental wave interacts with itself due to the second-order non-linear polar-
ization of the medium. We assume that the fundamental wave is composed of a single-
mode coherent state and using the relationships between the �eld around frequencyω0, the
second-order non-linear polarization and the �eld around frequency 2ω0, we can compute
the expected spectral pro�le of the harmonic �eld ũp as:

ũp (ω) ∝

∫ +∞

0
dω′ ũs (ω′) ũs (ω − ω′) sinc (∆kL/2) (2.18)

Where ũs is the spectral pro�le of the fundamental wave. Figure 2.6 shows the spectral
pro�le ũp of the pump assuming ũs to be Gaussian with a FWHM of 11nm according to
�gure 2.1.
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Figure 2.6: Pump spectrum intensity pro�le ũp obtained from doubling the spectrum pre-
sented on �gure 2.1 in a 0.5mm crystal of BiBO (blue) and a Gaussian �t of it (dashed red).
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A Gaussian �t of the pump spectrum shown on �gure 2.6 gives a FWHM of 1.85nm. The
phase-matching function ΦSHG is thus too narrow to consider that the doubled spectrum is
simply a self convolution product of the spectral pro�le ũs . Indeed, if the phase-matching
function was broadband enough, the FWHM of ũp would be equal to the one of ũs divided
by 2
√
2, hence 3.89nm. This factor comes from the self convolution of a Gaussian. The

phase-matching function ΦSHG acts here as a spectral �lter.

2.4.3 Single-mode squeezing measurement
Despite the fact that an OPO pumped below threshold is inherently multimode, one may
always try to measure the quantum state at the output by mixing it with a Local Oscillator
(LO) in a homodyne detection scheme as presented in chapter 3. For this measurement, we
use our laser source presented on �gure 2.1 as a LO in a scheme shown on �gure 2.7.

The noise power in the homodyne detection signal is detected at a single sideband fre-
quency and acquired while the phase between the signal and the LO is swept. The measure-
ment is shown on �gure 2.7. It shows the signal alternating between below and above the
shot noise power. The average squeezing measured is −2.78dB relatively to shot noise, not
corrected from any losses. This result was obtained with diodes whose losses were at least
7% each due to poor quantum e�ciency. For information, the best squeezing obtained with
the aforementioned diodes was −3.5dB. Some higher squeezing of −5.5dB has been mea-
sured with diodes of near unity quantum e�ciency (see [Cai 15]) in the same con�guration.
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Figure 2.7: Left: Simpli�ed scheme of the experimental setup used to measure the squeezing
in the mode of the laser source. Right: Homodyne detection signal at a sideband frequency
of 1MHz. The laser source is used as LO.
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2.5 Lossless multimode OPO
A multimode description of the OPO has been �rst developed in [Jiang 12] and reformulated
in [Medeiros de Araujo 12]. A description of the temporal properties of the output multi-
mode quantum state can also be found in [Averchenko 11]. In order to provide a description
accounting for the multimode aspect of an OPO below threshold, we assume that the opti-
cal resonator is lossless. Actually, it is possible to write the squeezing spectrum of a lossy
cavity as long as losses are �at over the optical bandwidth. The optical resonator presented
on �gure 2.2 is modi�ed so that ro = 1 and the output �eld becomes âL.

2.5.1 Degenerate parametric down-conversion in a cavity
The Synchronously Pumped Optical Parametric Oscillator (SPOPO) is an OPO pumped by
a frequency comb. The pump comb is generated through the doubling of the laser source as
explained in section 2.4.2. The original �eld is a frequency comb of repetition rate ωr and
Carrier-Envelope-O�set (CEO) ωceo . The pump �eld is thus a frequency comb of repetition
rate ωr and Carrier-Envelope-O�set (CEO) 2ωceo within the spectral envelope presented on
�gure 2.6.

In our Type-I degenerate Parametric Down-Conversion (PDC), each individual frequency
ωp,i = i ωr + 2ωceo of the pump comb undergoes parametric down-conversion and creates
a pair of correlated photons at the optical frequencies of the signal allowed by the optical
cavity as illustrated on �gure 2.8. For a pump frequencyωp,i , the possible signal frequencies
are ωs,n = nωr +ωceo and ωs,m =mωr +ωceo withm + n = i so that the energy is conserved:
ωp,i = ωs,n + ωs,m.

Figure 2.8: Parametric down-conversion from a pump frequency comb into the optical fre-
quencies of the optical resonator.

One can show that the signal frequencies are all entangled with each other resulting in
highly multipartite entanglement [Patera 08]. The di�erent possible conversions are gov-
erned by the spectral pro�le ũp of the pump and by the phase-matching function ΦPDC
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introduced in appendix B.

2.5.2 Parametric down-conversion in BiBO

We use a 2mm thick BiBO crystal as a gain medium to achieve Type-I degenerate PDC in
our OPO. The details of the crystal orientation and phase-matching are also presented in
appendix B. The advantage of BiBO is that its high non-linear coe�cients allows to produce
measurable signi�cant squeezing without the need of a high �nesse cavity.

Assessing the phase-matching function ΦPDC (ωs ,ωi ) gives some insight about the corre-
lation (or anticorrelation) between the signal and idler photons,ωs andωi being the frequen-
cies of the signal and idler beam. Figure 2.9 shows the phase-matching functionΦPDC (ωs ,ωi )
for such a crystal where the angle θ of BiBO has been set so that the phase-matching ∆k is
null for λ0 = 795nm.

Figure 2.9 reveals a strong anticorrelation between the signal and idler frequencies as
expected from the conservation of energy. The actual range of possible phase-matching is
much wider than the optical bandwidth depicted on �gure 2.9 and is eventually limited by
the decreasing value of the e�ective nonlinear coe�cient of BiBO [Ghotbi 04a]. We will
assume a constant non-linear coe�cient χ (2) over our optical bandwidth.

2.5.3 Hamiltonian of the conversion

In order to write the Hamiltonian of the conversion process, we assume the pump beam
to be a coherent state. The other states at play having no mean �eld, we neglect the �uc-
tuations of the pump and keep only the mean �eld of the pump. We therefore replace its
frequency-dependent annihilation operator by its spectral pro�le ũp in the expression oh
the Hamiltonian. We also assume that the depletion of the pump is negligible which, in a
weak conversion process, is a very good approximation. We denote â†n and â†m the creation
operators at the signal frequencies ωs,n and ωs,m. The Hamiltonian of the PDC described
above is then:

ĤPDC ∝ i
∑
n,m

ũp (ωs,n + ωs,m )ΦPDC (ωs,n,ωs,m )â
†
nâ
†
m + h.c (2.19)

where h.c stands forHermitian conjugate. The coupling functionLnm = ũp (ωs,n+ωs,m )ΦPDC (ωs,n,ωs,m )
is known as the Joint-Spectral Distribution [Grice 01, Mosley 08] (JSD, otherwise called JSA
for Amplitude). It plays a central role in conversion processes and is generally a product of a
phase-matching function and the spectral pro�le of a driving �eld. It is possible to perform
a modal decomposition of this JSD [Eckstein 12, Medeiros de Araujo 12] through Mercer’s
theorem (in practice, an eigendecomposition) to assess the modal aspect of the process.
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Figure 2.9: Left: Phase-matching function ΦPDC for 2mm of BiBO. Center: Pump spectral
pro�le ũp as a function of λs and λi . The wavelength range is λ0 ± 100nm. Right: Joint
spectral Distribution as a product of ΦPDC and ũp . The wavelength range is λ0±110nm. The
black lines represent λs = 795nm and λi = 795nm.

2.5.4 Eigenmodes of the conversion
In the present case, the eigendecomposition of Lnm gives a set of eigenvalues {Λn} associated
with eigenmodes {vn} with their annihilation operators being {ŝn}. The Hamiltonian (2.19)
becomes:

ĤPDC ∝ i
∑
n

Λnŝ
†
n
2 + h.c (2.20)

The evolution operator ÛPDC associated to ĤPDC is then :

ÛPDC =
⊗
n

Ŝn (Λn ) with Ŝn (Λn ) = eκΛn
(
ŝ†n

2−ŝ2n
)

(2.21)

where κ is a constant that normalizes the distribution of {Λn}. It depends linearly on the
pump amplitude and the crystal length lc while the distribution of {Λn} also depends on lc .

Interestingly, the expression (2.21) shows that a parametric down-conversion process
pumped by a frequency comb is equivalent to a set of squeezers in parallel when the down-
converted modes are given by the optical resonator. The eigenmodes {vn (ω)} of the process
are called supermodes [Medeiros de Araujo 12].

We assume a Gaussian spectral pro�le in the frequency domain centered on λ0/2 =
397.5nm with a FWHM of 1.85nm according to section 2.4.2. The pump spectral pro�le,
the phase-matching function and the JSD are presented on �gure 2.9. The eigenvalues and
eigenmodes of the JSD are shown on �gure 2.10. First, we notice that the sign of the eigen-
values alternates between positive-valued and negative-valued, meaning that the operators
{Ŝn} squeeze alternatively the quadratures X̂n or P̂n of each mode vn. The �rst four eigen-
modes of the JSD are similar to a family of Hermite-Gaussian functions. A Gaussian �t of
the �rst eigenmode gives a FWHM of about 6.4nm.
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Figure 2.10: Left: Eigenvalues of the JSD Ln,m for 2mm of BiBO. Right: First four normalized
eigenmodes of the JSD Ln,m.

2.5.5 Toward a full model of SPOPO
In [Jiang 12] and [Medeiros de Araujo 12], a gap is bridged between the description of the
multimode parametric down-conversion presented above and the full interpretation of the
SPOPO as a multimode OPO in the spectral domain. To reach that conclusion, it is necessary
to assume that optical losses are frequency independent within the optical bandwidth of the
phase-matching function ΦPDC . This assumption leads to the spectral eigenmodes of the
PDC to be a also eigenmodes of the propagation in the optical resonator. Those eigenmodes
of the SPOPO as a whole are frequency combs possessing di�erent spectral envelopes and
we call them supermodes.

A symplectic description of the SPOPO shows that each of those supermodes interacts
independently with the pump beam to create squeezed states. Similarly to an OPO, the
squeezed states are hosted in the correlated sidebands of the comb teeth at frequencies
inferior to the bandwidth of the optical resonator. The squeezing spectrum is computed in
[Medeiros de Araujo 12]. Characterizing such a state is not straightforward are requires the
ability to engineer the LO spectrum [Pinel 12] in order to reveal the full multimode nature
of the SPOPO output as we will see in the next chapter.

Finally, the theory developed previously fails to account for frequency-dependent losses
in the resonator due to limited optical bandwidth and dispersion. We remain con�dent that
this enrichment of the theoretical description may be within reach by adding frequency
dependent losses and phase in equation (2.19).
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Chapter 3

Tunable Projective Measurements

[About the advantages and trade-o�s of blazed and holographic gratings]
“"Ain’t never been about that! Goldie don’t play with no blazed Newport grating!
Just use that real good product from Spectrogon!”

– Jonathan “Goldie” Roslund
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In this chapter, we explain that the well-known homodyne detection can be adapted to
measure and characterize the multimode quantum state predicted in chapter 2. We show
that di�erent projective measurements can be performed by adapting the local oscillator of
the homodyne detection. We introduce ultrafast pulse shaping as a way to manipulate the
spectral phase and amplitude of an ultrafast pulse. We discuss the pulse shaping technique
performed in the scope of this thesis and demonstrate how it was used to characterize the
multimode quantum state introduced in the previous chapter.

3.1 Homodyne Detection
In this section, we recall why the well-known homodyne detection is adapted to measure
and identify any single-mode quantum states of light [Grynberg 10]. We show that it can
be easily adapted to measure di�erent modes by tuning the mode of the local oscillator.

3.1.1 Single-mode homodyne detection

In a homodyne detection, a signal beam with an electric �eld Ê
(+)
s is mixed with a Local

Oscillator (LO) �eld Ê
(+)
lo of the same optical carrier frequency ω0 (otherwise, the detection

is called heterodyne) on a balanced beamsplitter (see �gure 3.1). Both outputs are detected
by independent photodiodes of equal characteristics and their photocurrents are subtracted.

According to the beamsplitter equations, the electric �eld Ê
(+)
1 and Ê

(+)
2 at the output

are:

Ê
(+)
1 =

1
√
2

(
Ê
(+)
s + Ê

(+)
lo

)
(3.1)

Ê
(+)
2 =

1
√
2

(
Ê
(+)
s − Ê

(+)
lo

)
(3.2)

For now, the input �elds are assumed to be single-mode and mode-matched, meaning that
they share the same spatial mode and temporal modeu (r , t ). We thus forget the other modes
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in their expression and simply write:

Ê
(+)
s (r , t ) = E (1)

0 âu (t ) (3.3)

Ê
(+)
lo (r , t ) = E (1)

0 l̂u (t ) (3.4)

Figure 3.1: Standard homodyne detection scheme.

3.1.1.1 Homodyne photocurrent

Each �eld Ê
(+)
1 and Ê

(+)
2 is detected by a photodiode producing a pair of photocurrents î1

and î2 respectively proportional to
∫

dr |Ê(+)
1 |

2 and
∫

dr |Ê(+)
2 |

2. Those photocurrents are
subtracted from each other and the di�erence îd is:

îd (t ) = î2(t ) − î1(t ) ∝

∫
dr

(
Ê
(+)
2 Ê

(−)
2 (r , t ) − Ê

(+)
1 Ê

(−)
1 (r , t )

)
(3.5)

∝ E (1)
0

2
[
âl̂† + â†l̂

]
(3.6)

where every spatial dependence has been integrated over the detectors area.
We can now calculate the expectation value of îd given that the di�erent quantum states

for the LO and the signal are a coherent state |α〉lo and an arbitrary state |ψ 〉s . Also, the de-
tection is limited by the bandwidth of electronics so that the electrical signal is average over
a time scale much longer than the typical time of the signal temporal mode. The expectation
value of îd is then:

〈îd〉 ∝ E (1)
0

2〈α |lo〈ψ |s
[
âs l̂
† + â†s l̂

]
|α〉lo |ψ 〉s (3.7)

∝ E (1)
0

2 |α |〈ψ |s
[
âse
−iφ + â†s e

iφ
]
|ψ 〉s (3.8)

whereφ = Arg(α ) is the phase of the LO with respect to the signal. We notice that the signal
retrieved is proportional to the amplitude |α | of the LO. We have only accounted here for
the temporal mode but the same principle is at play for polarization and transverse modes.
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3.1.1.2 Measuring the electric �eld quadratures

The expectation value of îd allows us to measure the expectation value of either the X̂ or
the P̂ quadrature of the signal as:

〈îd〉 ∝ E (1)
0

2 |α |〈ψ |
(
cos (φ) X̂s + sin (φ) P̂s

)
|ψ 〉s (3.9)

Through a similar calculation, we deduce the value of 〈î2
d
〉 = 〈

(
î1 − î2

)2
〉. For this, we assume

that the LO carries a coherent state whose average photon number is much higher photon
number than the signal �eld (i.e. |α |2 � 〈ψ |â†â |ψ 〉s ) so that only the term containing the
LO energy dominates:

〈î2d〉 ∝ E (1)
0

4 |α |2 〈ψ |
(
e−iφâ + eiφâ†

)2
|ψ 〉s (3.10)

∝ E (1)
0

4 |αlo |
2 〈ψ |

(
cos (φ) X̂ + sin (φ) P̂

)2
|ψ 〉s (3.11)

We can now compute the variance ∆2id of the photocurrent with expressions (3.9) and (3.11).
We also introduce a variable quadrature operator Q̂ (φ) dependent upon the relative phase
φ as Q̂ (φ) = cos (φ) X̂ + sin (φ) P̂ so that:

∆2id = 〈î
2
d〉 − 〈îd〉

2 ∝ E (1)
0

4 |αlo |
2
(
〈ψ |Q̂2 (φ) |ψ 〉s − 〈ψ |Q̂ (φ) |ψ 〉2s

)
= ∆2Q (φ) (3.12)

Expression (3.12) shows that as the assumption over the average photon number holds,
the variance ∆2id of the di�erence photocurrent gives a direct measurement of the variance
of any quadrature of the signal �eld depending on φ. For squeezed vacuum and other states
of interest, the mean amplitude of the signal �eld is null and the variance is directly the
�uctuations. The �uctuations of the LO have been neglected under the assumption of strong
mean �eld. In a sense, homodyne detection ampli�es the �uctuations of the signal �eld via
the LO.

If the signal �eld is reduced to vacuum, the measurement reveals a �at frequency noise
known as shot noise as long as the detection electronics are capable of subtracting the clas-
sical (technical) noise potentially contained in the LO. Measuring the shot noise is a direct
measurement of the quantum �uctuations of vacuum.

Hence, homodyne detection allows to measure the �eld quadratures, both in terms of
their average value and their �uctuations. For most of the quantum states of light of interest
today (see chapter 1), the average photon number is of the order of magnitude of unity and
the assumption previously mentioned holds for a LO of weak optical power (about 1mW or
less).

3.1.2 Homodyne detection as a projective measurement
An interesting feature of homodyne detection is the optical mode investigated is exactly the
one of the LO where there is a mean �eld. We change the expression of the signal and LO
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�elds to multimode �elds.

Ê
(+)
s (r , t ) = E (1)

0

∑
n

ânun (r , t ) (3.13)

Ê
(+)
lo (r , t ) = E (1)

0

∑
n

l̂nvn (r , t ) (3.14)

We also assume that only one mode v0(r , t ) of the LO hosts a coherent state |α〉 with a sig-
ni�cant mean �eld, the rest being vacuum. The signal contains a pure multimode state
|Ψ〉s . We introduce a new quadrature operator Q̂n for each mode {un} of the signal as:
Q̂n (φ) = cos (φ) X̂n + sin (φ) P̂n where X̂n and P̂n are the quadrature operator of the mode
un (r , t ). Starting back from equation (3.5), equations (3.9) and (3.11) become:

〈îd〉 ∝ E (1)
0

2 |α |〈Ψ| *
,

∑
n

|〈un,v0〉|Q̂n (φn )+
-
|Ψ〉s (3.15)

〈î2d〉 ∝ E (1)
0

4 |α |2〈Ψ| *
,

∑
n

|〈un,v0〉|Q̂n (φn )+
-

2

|Ψ〉s (3.16)

with φn = φ + Arg(〈un,v0〉) and the scalar product 〈un,v0〉 being de�ned in chapter 1.
Similarly to the single-mode case, the last two equations lead to the variance ∆2id of the
photocurrent to be proportional to the variance of the weighted sum of the Q̂n (φn ) operators.

The equations above show that by changing the temporal mode v0(r , t ) of the LO, one
can change the optical mode of the signal that is measured by the homodyne detection.
Homodyne detection is thus appropriate to measure multimode quantum state when paired
with a mode tuning device for the LO such as an ultrafast pulse-shaper that we describe
later in section 3.2. We have only accounted here for the temporal and spatial mode but the
same principle is at play for polarization.

3.1.2.1 Dynamical properties

Depending of the type of temporal mode of the signal that must be measured, the detection
electronics must be adapted. For instance, in a pulsed single-pass setup, it is necessary
to assess the quantum properties of a single pulse of light at a potentially fast repetition
rate. For this purpose, a fast and broadband homodyne detection electronics is required
[Cooper 13]. In the case of our SPOPO, the modes can be analysed at di�erent sideband
frequencies below the cavity bandwidth [Pinel 12]. It is then possible to measure the state
at a single analysis frequency (either by demodulating or using a spectrum analyzer) and
a resonant circuit at the analysis frequency can be used to improve the clearance of the
detection electronics.
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3.2 Ultrafast Pulse Shaping

Ultrafast pulse-shaping is a technique consisting in manipulating the temporal variation of
the amplitude and phase of an optical pulse. It was originally developed for optical commu-
nications [Heritage 85] with picosecond pulses and has then been applied to femtosecond
pulses [Weiner 88]. It has since found various applications everywhere ultrafast pulses are
used [Weiner 00, Weiner 11a]. For pulses of light shorter than a fraction of a picosecond,
it is not reasonable to try to shape a light pulse in the time domain directly [Wright 15].
Ultrafast pulse-shaping relies on the independent engineering of the optical frequencies
composing a pulse. In ultrafast optics, a pair of identical prisms (more often gratings) are
commonly employed for their dispersive properties to add or remove some quadratic phase
from an ultrafast pulse [Weiner 11b]. Those devices are called optical compressors or opti-
cal stretchers depending on the sign of the quadratic phase. In this thesis, we use a Spatial
Light Modulator (SLM) placed at the end of a folded 4f zero-dispersion optical compressor
based on near-Littrow gratings. An extensive tutorial detailing this technique can be found
in [Monmayrant 10].

Figure 3.2 details the optical setup used to achieve phase and amplitude shaping through
di�raction by the 2D phase mask of the SLM. At �rst, a re�ective grating di�racts a colli-
mated input beam using the −1 order of di�raction. The di�erent wavelengths and their
wave vectors k(λ) are di�racted in di�erent directions θout (λ) around θout (λ0) correspond-
ing to k(λ0) according to the grating law:

sin (θout (λ)) = − sin (θin ) +mλд (3.17)

where θin is the input angle on the grating, m = −1 is the order of di�raction and д is
the number of grooves per mm of the grating. The separation of optical frequency is only
angular at this point. Then, a cylindrical lens of focal f (preferably a mirror to avoid any
additional dispersion and for ease of alignment) images the grating so that the di�erent
wave vectors k(ω) are parallel. The 2D mask of a SLM is set in the focal plane where the
di�erent optical frequencies are mapped to space horizontally. If the SLM re�ects light like
in our setup, the beam returns on its initial path. A slight vertical tilt of the SLM surface
allows to pick up the output beam once the wave vectors have been recombined together
by the grating. A description of the step-by-step alignment of such a setup can be found in
[Weiner 00].

If the SLM transmits light, a symmetric optical setup must be built after the SLM to
combine the di�erent wave vectors k(ω) along a single direction. This solution su�ers from
the di�culty to easily tune the optical compressor to avoid the spatiotemporal distortion of
the ultrafast pulses as we will discuss later.
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Figure 3.2: Optical pulse-shaper in a near-Littrow 4f line. It consists of a grating with д
grooves per mm, a cylindrical mirror of focal f and a SLM whose mask size is L.

3.2.1 Di�raction-based amplitude shaping
With the previous con�guration, the di�erent wavelengths are mapped horizontally on the
SLM while the input beam vertical pro�le has not been transformed by the 4f line. At this
point, the spectral phase can be controlled by adjusting the voltage of an entire column of
pixel.

3.2.1.1 E�ect of a linear phase

It is possible to achieve amplitude shaping by di�racting the beam re�ected by the SLM.
Let us consider the vertical transverse pro�le of the collimated beam at the center: E(y) ∝
exp

(
−y2/w2

in

)
where win is the input beam waist. During the re�ection on the mask, it

acquires a linear spatial phase ϕ (y) = k0y where k0 has the dimension of a wave vector. In
the Fourier space, the vertical part of the beam is:

E(ky ) ∝
∫ ∞

−∞

dy
√
2π

E(y)ei (k0−ky )y ∝ e−(k0−ky )
2

(3.18)

The beam coming out of the pulse-shaper is propagating into an order of di�raction deter-
mined by the value of k0. The phase mask then behaves like a tilted mirror. By adjusting k0
for di�erent columns of pixels and selecting a given order of di�raction with a spatial �lter
in the Fourier plane (with an optical telescope and a pinhole for instance), it is possible to
achieve amplitude shaping.

3.2.1.2 E�ect of a blazed grating structure

It is shown in [Vaughan 05] that a phase mask consisting of a blazed grating structure allows
to conveniently shape both the spectral phase and amplitude. The phase ϕ (y) is wrapped
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(the SLM dynamics being limited to 2π ) to form a sawtooth grating of period d . For such
a grating, the direction of the �rst order of di�raction is only determined by the grating
period d (or the number of grooves д per mm). Indeed, the phase mask M (ω,y), where the
x dimension has been replaced by the optical frequencies ω, applied on the SLM is:

M (ω,y) = 2π *
,

1
2 +A(ω)

∞∑
n=−∞

fd

(
y −

dϕ (ω)

2π − nd

)
+
-

(3.19)

where A(ω) is the amplitude (0 ≤ A(ω) ≤ 1) of the grating for the frequency ω, fd is a
standard sawtooth function of period d (−1/2 ≤ fd (y) ≤ 1/2 for y ∈ [0,d]) and ϕ (ω) is the
desired phase for the frequency ω. The periodic sawtooth function fd and the phase mask
M are represented on �gure 3.3.

We can compute the �eld E(ky,ω) in the Fourier plane for a single optical frequency ω
assuming a plane wave at the input and an in�nite grating for simplicity. In the Fourier
plane, the �eld E(ky,ω) is:

E(ky,ω) ∝
∫ ∞

−∞

dy
√
2π

exp
(
−ikyy + iM (ω,y)

)
(3.20)

∝ exp (−iϕ (ω)) sinc
(
πA(ω) −

kyd

2

) +∞∑
n=−∞

δ
(
ky −

2πn
d

)
(3.21)

Expression (3.21) shows that the orders of di�raction only depends on the period of the
grating d . Also, as shown in [Vaughan 05], the amplitude A(ω) of the grating controls
the amplitude-shaping while the phase ϕ (ω) of the grating creates a relative phase for the
di�racted light at the optical frequency ω.

It is possible to model the e�ect of the �nite size of the phase mask. The sum of δ
functions in expression (3.21) is changed for a function of the mask size L = Nd , where N
is the number of grating structures. This function1 creates some potential overlap between
orders of di�raction for small values of N . It is also possible to assume that the input beam
transverse pro�le is Gaussian and that the mask size is �nite but the analytical calculation
becomes less meaningful. On top of the non-zero widths of the orders of di�raction due to
the �nite mask, the Gaussian transverse pro�le induces an additional width for each order
of di�raction. A numerical simulation is required to make sure that in the Fourier space (or
in the focal plane of the spatial �lter), the di�erent orders of di�raction do not overlap.

3.2.1.3 E�ciency of di�raction

The e�ciency of di�raction in �rst order depends on the capability of the SLM to create
the periodic sawtooth function. The phase-mask su�ers from many imperfections such as

1is exactly exp
(
−ikyd

(N−1)
2

)
sin

(
kydN /2

)
/ sin

(
kyd/2

)
, which tends to a sum of δ functions for N → ∞
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Figure 3.3: Left: the sawtooth structure printed on a single column of pixels. The dashed
red curve represent a grating structure of the same period with reduced amplitude A = 0.8
and a phase ϕ = π . Right: the 2D phase mask printed on the SLM for a grating structure
with only four phase wraps (white is 0, black is 2π ). The light is di�racted in the direction
of the negative y. We added a �at phase mask for |x | > d so that the light in those regions
is not di�racted. We also added a quadratic spectral phase for |x | < d .

pixel sampling and dependence of the pixels to their nearest neighbors. For those reasons,
it becomes quite challenging for a SLM to mimic a blazed grating structure when the period
becomes short.

The decay of the e�ciency of di�raction is shown on Figure 3.4. Notice that for up to
10 phase wraps printed on the SLM, the e�ciency of di�raction in the �rst order is almost
constant.

3.2.1.4 Advantages of di�raction-based pulse-shaping

As explained in [Vaughan 05], this technique is free of short time temporal pulse replicas
generally encountered in previous techniques used to shape both the amplitude and spectral
phase [Weiner 92, Wefers 95]. Another advantage of this di�raction-based technique is that
the spatial �lter only lets the �rst order of di�raction pass through. If no grating structure is
printed, no light will pass through the spatial �lter. It is thus a zero-background technique.

3.2.2 Pulse-shaper design

In this section, we explain how to choose the optical elements to build a di�raction-based
pulse-shaper with maximal resolution in a 4f con�guration. The optical setup must prefer-
ably be compact for stability and easy to build with in-stock optical parts.
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Figure 3.4: Evolution of the e�ciency of di�raction in the �rst order with the number of
phase wraps of the grating printed on the SLM. The e�ciencies are normalized to the e�-
ciency for 6 phase wraps.

3.2.2.1 Parameters and objectives

We assume that the SLM is chosen and we use the data of our P512-0785 BNS SLM whose
meaningful parameters are:

• the physical size of the phase mask: L = 7.65mm,
• the number of pixels: Np = 512,
• the characteristics of our laser source such as its carrier wavelength λ0 = 795nm and

its FWHM, here ∆λ = 11nm.

The free parameter that we need to determine are the number of grooves д of the grating,
the cylindrical mirror focal length f and the input beam diameter2 2win. Manufacturers
usually provide stock gratings with 100 ≤ д ≤ 2000mm−1 and cylindrical mirrors with
100 ≤ f ≤ 5000mm. A quick analysis can help determine the most convenient pair of
values for д and f . Commercially available values can then be chosen and tested with the
same equations and principles described below.

The optical setup will spread optical frequencies horizontally and focus them in the focal
plane while letting the beam unchanged vertically. The objectives and constraints are the
following:

2The beam diameter is de�ned as twice the beam waist and known as the intensity full width at 13.5%
(e−2).
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• spread the input spectrum on the phase mask to maximize spectral resolution without
clipping,

• �t the vertical pro�le of the beam within the phase mask to avoid losses and scattering
by the edges,

• maximize the optical resolution of the imaging system.
Additionally, the angles must be kept small to avoid spatial chirp as we will explain in section
3.2.3. For this reason, the grating is operated near Littrow con�guration.

3.2.2.2 Finding a grating/mirror pair

We need to determine �rst an approximate pair of values for f and д with which we will
check wether all objectives can be met within acceptable bounds. We can do that while
trying to achieve the �rst objective.

We can reformulate equation (3.17). First we need to compute the input and output
angles θin and θout . The grating is used in a near-Littrow con�guration. The Littrow angle
θLit for a blazed grating depends on the blazed design wavelength λd . We can approximate
by using the formula for an holographic grating with д grooves:

θLit (λ) = arcsin
(
λд

2

)
(3.22)

For the input and output angles, we can tolerate a ±5° deviation from Littrow. Equation
(3.17) becomes:

д∆λ = 2 cos (θout (λ0)) sin
(
∆θout
2

)
(3.23)

where ∆θout is the angular spread of the di�racted angles θout (λ) corresponding to the
FWHM ∆λ. The spatial spread ∆l at the mirror corresponding to this angular spread is:

∆l = f tan
(
2 arcsin

(
∆λд

2 cos (θout (λ0))

))
(3.24)

After the mirror, the di�erent wave vectors k(λ) are parallel and the spatial separation that
corresponds to ∆λ is ∆l . We can then compute the ratio ∆l/L.

Assuming the distribution is Gaussian, ∆l is here the FWHM associated to ∆λ. To �t
the Gaussian over a length L, we use the 6σ rule where σ is the standard deviation of the
distribution. This rule states that about 99% of the energy will be within L for L = 6σ . In
terms of FWHM, it is equivalent to ∆l = L

√
2 log(2)/3 ≈ 0.39. Figure 3.5 shows the focal

length f as a function of д where we have assumed ∆l/L =
√
2 log(2)/3. Thanks to �gure

3.5, we can choose a pair of o�-the-shelf available values for f and д keeping in mind the
constraints of space on an optical table. Also, the shorter f , the more compact and stable
the pulse-shaper will be. For our pulse-shaper, we have chosen a blazed grating (contrary
to what the introduction quote might suggest) of д = 1200 grooves per mm−1 whose blazed
design wavelength is λd = 1µm and a cylindrical mirror of f = 190mm.
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Figure 3.5: Focal length f as a function of д, assuming the spatially spread spectrum �ts
within the SLM length L according to the 6σ rule.

3.2.2.3 Assessing optical performance

With the parameters determined in the previous paragraph, we check that the two other
objectives mentioned previously are met and the constraints are respected. We consider an
input collimated beam of waistwin with a single optical frequency ω0. The grating di�racts
the beam and the cylindrical mirror images it on the SLM thus forming a vertical line. We
compute the ratio between the waistw f of the focused beam at the focal plane3 and the size
of a pixel p = L/Np . This ratio is a direct estimate of the optical resolution of the setup.
According to the �gure 3.2, this ratio is:

w f /p =
λ0 f

πwinp
×

cos (θin )
cos (θout (λ0))

(3.25)

Ideally, this ratio would be equal to unity or slightly inferior to ensure that the focal spot is
contained in a pixel. The evolution of this ratio is shown on �gure 3.6.

For the values of f and д of our setup, the value of win required to have 2w f /p = 1 is
7.7mm.

Vertically, the beam is not transformed by the setup so its diameter is still 2win in the
focal plane. As the SLM is only re�ective within the size of its phase mask, the vertical
spatial pro�le of the beam must be contained within the phase mask to avoid any additional
losses and di�raction by the edges of the mask as stated in the second objective. The SLM
size L thus constitutes an upper bound for win.

3The half-width in terms of intensity half-width at 13.5% of the vertical line.
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Figure 3.6: Ratio of focal spot diameter ∅f and pixel size p versus input beam diameter ∅in.
Red lines: SLM size L (vertical), ratio for ∅in = L (horizontal).

The input diameter computed to achieve 2w f /p = 1 is well beyond L and is thus un-
realistic. For an input diameter of 7mm, we get 2w f /p = 1.98 which means that a single-
wavelength spot in the focal plane is more or less spread onto 2 pixels. It is the optical
resolution of the setup.

The spectral resolution can be estimated accounting that the setup was designed accord-
ing to the 6σ rule. Indeed, we have assumed that the spectrum of the input beam of FWHM
∆λ would be spread horizontally on the SLM so that L would be equal to 6σ of the spatial
distribution. The spectral resolution Rs can be estimated as:

Rs =
3∆λ

Np

√
2 ln 2

≈ 2.5∆λ
Np

(3.26)

For our setup, we have Rs = 0.054nm meaning that a single pixel represents about an eigh-
teenth of a nanometer. This spectral resolution is limited by the optical resolution if the
focal spot diameter is bigger than a pixel. It is the case of our setup where the actual spec-
tral resolution is 2w f Rs/p = 0.10nm.

3.2.3 Potential problems

In ultrafast optics, a number of speci�c problems can appear on top of the common ones
encountered in CW optics.
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3.2.3.1 Optical losses

First, the technique described above is not unitary when it comes to amplitude shaping. Am-
plitude shaping basically consists in introducing frequency-dependent losses. If the optical
beam to be shaped carries some loss-sensitive quantum states such as squeezed vacuum or
Fock states (with more than a single photon), amplitude shaping is probably not adapted.

Even for phase shaping only, the technique su�ers from the important optical losses
of the grating whose di�raction e�ciency is currently about 80% and can hardly be better
than 90%. The surface of the SLM is also lossy (about 2%) even if a suited dielectric mirror is
located behind the liquid crystal. When used in the di�raction-based phase and amplitude
shaping con�guration explained above, the di�raction e�ciency of the SLM is also a source
of losses as it rarely exceeds 90%. On top of those losses come additional ones when a
spatial �lter is required to separate the shaped light from the remaining original one. This
technique is thus appropriate in situations where roughly 50% losses can be tolerated.

3.2.3.2 Scattering by the mask

Even if the phase mask composed of liquid crystals is fairly transparent, the presence of
pixels along with the edges of the mask constitute a source of scattering. If the input light
transverse pro�le is a well collimated Gaussian, the output pro�le may contain light in some
Fourier components that were previously empty. When the pulse-shaper is paired with a
spatial �lter to achieve amplitude shaping, the �lter lets only the ±1 order of di�raction
pass. Some scattered light may still pass through the �lter even for a grating amplitude
A(ω) = 0. The technique is eventually not exactly zero-background and the weak scattered
light passing trough the �lter may become comparable to the signal for low values of A(ω).

3.2.3.3 Output beam geometry

The folded optical compressor composing the pulse-shaper separates a collimated beam
composed of many wave vectors k(ω) traveling in the same direction, �rst angularly, then
spatially. Those di�erent optical frequencies must be recombined in a collimated beam at
the output. If the distance between the cylindrical mirror and the SLM is not perfectly f ,
some geometric problems may appear in the output beam. The �rst problem is that the
output beam will not be collimated. This distance can be roughly adjusted with the laser
source operating CW until the output beam is su�ciently collimated.

Then, one must check that the di�erent wave vectors k(ω) are recombined in the same
direction. If not, the di�erent wave vectors associated to di�erent optical frequencies prop-
agate in di�erent direction. This phenomenon is known in ultrafast optics as angular chirp
and is commonly created by dispersive optical elements. It can be measured with a spec-
trometer placed after an optical telescope by moving a pinhole located near the Fourier
plane and monitoring any change of spectrum. Some angular chirp in the horizontal direc-
tion generally comes from a slight mismatch of the distance between the cylindrical mirror

52



CHAPTER 3. TUNABLE PROJECTIVE MEASUREMENTS

and the SLM. For angular chirp in the vertical direction, the grating should probably be
adjusted to make sure its lines are perfectly perpendicular to the plane of the input beam.

3.2.3.4 Temporal chirp

Once all geometrical problems are solved, temporal problems can still arise. Though, if the
distance l between the grating and the lens is not exactly equal to the focal length f , the
compressor creates a quadratic spectral phase ϕ′′ whose expression is:

ϕ′′ =
λ30д

2(l − f )

πc2 cos2 (θout (λ0))
(3.27)

where д and θout are de�ned above.
This temporal chirp can be measured with a self-referencing technique such as spectral

interferometry [Lepetit 95, Weiner 11b] or a Frequency-Resolved Optical Gating (FROG)
technique [Trebino 93, Trebino 02]. To check that no quadratic phase is added by the optical
compressor, one can adjust the distance between the grating and the cylindrical mirror in
the setup described on �gure 3.2.

3.2.4 Dual beam pulse-shaping

As we will see in chapter 5 and 6, we needed two independent shaped beams instead of
only one as in [Medeiros de Araujo 12] and [Cai 15]. A simple solution is to build a second
pulse-shaper. While being expensive, this solution is space-consuming, space being a critical
resource on an optical table. We explain in the following subsections how we achieved an
independent dual beam shaping.

3.2.4.1 Do not try this (it does not work)

The perfect solution to the aforementioned problem is to �nd a phase mask that could be
put onto the SLM and would turn a single light beam (the previous optical con�guration)
into two independent light beam at the output. Unfortunately, we will see that this trans-
formation is not unitary and should consequently su�er from losses. Indeed, if the �eld
pro�le Ẽ(ky ) in the Fourier space is a couple of equally spaced Gaussian, we can compute
the inverse Fourier Transform to retrieve the �eld E(y) at the SLM surface:

Ẽ(ky ) ∝
(
e−(ky−k0)

2/4∆k2 + e−(ky+k0)
2/4∆k2

)
(3.28)

E(y) ∝
∫ ∞

−∞

Ẽ(ky )eikyy (3.29)

∝ cos (2k0y) e−4y
2∆k2 (3.30)
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In the expression (3.30) above, the exponential is the Gaussian transverse pro�le of the
input beam. The cosine though can be interpreted as an amplitude and phase mask, its
negative sign being a π phase. As its absolute value is less than unity, losses are necessarily
required in order to turn one beam into two di�racted beams in ±1 orders at the output.

To obtain two independent, phase and amplitude shaped beams at the output, we tried
two di�erent types of phase masks. A �rst one, were the phase mask was composed of two
sawtooth gratings di�racting light respectively in the +1 and −1 orders. The two gratings
were printed by alternating one row of pixels out of two for each. The second attempt was
to print a triangular grating consisting of two sawtooth gratings back to back, each missing
one tooth out of two.

For each order of di�raction (±1), those two solutions can be seen as two standard saw-
tooth gratings modulated by an array of lossy slits. In the �rst case, the slits have the width
of a pixel and are spaced by the size of a pixel. In the second case, the slits have the widths
corresponding to the grating period d and are separated by d . The arrays of lossy slits in-
troduce higher orders of di�raction in each order leading to extra losses.

At the end of the day, none of those solutions proved reliable to achieve independent
di�raction-based pulse shaping simply in terms of di�racted power. We thus decided to
inject two identical beams in the pulse-shaper as described in the next section.

3.2.4.2 What works

After trying the aforementioned shaping techniques to turn one beam into two, we decided
to simply duplicate the input beam with a polarizing beamsplitter and a waveplate to adjust
the relative power. Those two identical beams were overlapped horizontally while being
spatially separated but close along the vertical direction. They were brought together and
made parallel before being injected in the pulse shaper. The upper beam uses only the upper
half of the SLM while the lower one uses only the lower half as depicted on �gure 3.7.

To achieve this, the input beam size was downsized by half, impacting the optical res-
olution of the pulse shaper. The new input beam diameter is ∅in = 3.5mm. The expected
optical resolution then drops by half as the ratio ∅f /p becomes 3.96. In the plane of the
SLM, the horizontal diameter of a single-wavelength focal spot is now spread on 4 pixels.
The spectral resolution Rs remains the same but is limited by the new optical resolution.

Those optical capabilities can be assessed experimentally. For the spectral resolution, a
standard sawtooth grating is printed and modulated horizontally by a regular array of slits.
The �rst order of di�raction is sent to a spectrometer and the position of the peaks allow
to check the spectral resolution Rs as shown on �gure 3.8. The measurement gives .056nm
per pixel, very close to what was predicted by equation (3.26).

To asses how limiting the optical resolution is, we print a standard sawtooth grating on
a single column of pixels and feed the di�racted light to a spectrometer as shown on �gure
3.8. A Gaussian �t of the peak gives a diameter of .24nm, meaning that it is the smallest
feature that can be reasonably shaped. This value coincide with the previous prediction of
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Figure 3.7: Phase mask of the SLM with a two-parts grating structure with only 4 wraps
(white is 0, black is 2π ) along with the two beams being spread on the SLM surface. The
lower part di�racts the lower beam in the direction of negative y (ky = −2π/d) and the
upper part di�racts the upper beam in the direction of positive y (ky = 2π/d).

equation (3.25) that the ∅f /p ratio should know be about 4.
Once the optical pulse shaper is built and potential problems are eliminated, it is neces-

sary to check its capacity to achieve both phase and amplitude shaping. Amplitude shaping
can be easily checked by sending the �rst order of di�raction to a spectrometer as demon-
strated on �gure 3.8. For phase shaping, a phase-retrieval measurement such as spectral in-
terferometry [Lepetit 95, Weiner 11b] is required. It is usually the �nal performance check
for an optical pulse-shaper.

3.3 Measuring multimode squeezed vacuum

As underlined above, homodyne detection is able to measure the �uctuations in the quadra-
tures of a signal �eld whose optical mode matches the one of the LO. By tuning the LO
temporal mode with a pulse shaper (see section 3.2), one may investigate a spectrally mul-
timode quantum state such as the one described in chapter 2. The measurement scheme is
similar to the one pictured on �gure 2.7 with an additional di�raction-based pulse shaper
in the lower arm.
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Figure 3.8: Left: Spectrum di�racted (blue) in �rst order by a sawtooth grating modulated
horizontally by losses to assess the spectral resolution. The peak detected for the compu-
tation are marked as red dots. Right: Spectrum di�racted (blue) in �rst order by a single
column of pixels and its Gaussian �t (red) to assess optical resolution.

3.3.1 Principle
As the expected multimode state to measure is Gaussian, it can be fully characterized by its
covariance matrix Γ in a basis of measurement modes {mi }. For each modemi , the �uctua-
tions of both quadratures 〈X̂ 2

i 〉 and 〈P̂2
i 〉 is measured. To measure the correlations between

di�erent modes, we measure the �uctuations 〈X̂ 2
ij〉 and 〈P̂2

ij〉 of a new set of quadratures
[Roslund 13, Medeiros de Araújo 14] belonging to a set of modes {mij } formed by the for-
mer basis and de�ned as:

mij =

√
Pimi +

√
Pjmj√

Pi + Pj
(3.31)

where Pi and Pj are the optical powers in modesmi andmj which are a priori not balanced
during the measurement. The quadrature operators X̂ij and P̂ij associated to the mode mij

being:

X̂ij =

√
PiX̂i +

√
PjX̂ j√

Pi + Pj
and P̂ij =

√
Pi P̂i +

√
PjP̂j√

Pi + Pj
(3.32)

The cross-correlations elements 〈X̂iX̂ j〉 and 〈P̂i P̂j〉 of the covariance matrices ΓX and ΓP
are reconstructed through:

〈X̂iX̂ j〉 =

[
〈X̂ 2

ij〉 −
Pi

Pi + Pj
〈X̂ 2

i 〉 −
Pj

Pi + Pj
〈X̂ 2

j 〉

]
Pi + Pj

2
√
PiPj

(3.33)

The last equation has the tremendous advantage that the covariance matrices are directly
normalized to shot noise as long as the classical noise of the LO is correctly suppressed by
the detection electronics. The same equation stands for the P̂ quadrature. The correlations
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between X̂i and P̂j can also be measured by forming a new set of modes {m′ij } similar to the
one introduced in expression (3.31) but with a pi phase on the second mode:

mij =

√
Pimi + i

√
Pjmj√

Pi + Pj
(3.34)

3.3.2 Measurement
To measure multimode squeezed vacuum, we �rst choose a modal basis to be investigated
with the homodyne detection. The covariance matrices obtained will give all information on
the modes in which the multimode squeezed vacuum is carried along with the full individual
squeezed state characteristics.

3.3.2.1 Basis of measurement

In order to measure the covariance matrix, one must choose a basis of modes {mi } in which
to perform the measurement. Given the theory developed in chapter 2, we choose a basis
of spectral modes sharing the same Gaussian spatial mode and the same linear polarization.
Given the laser source available (see 2.1), we choose to �atten the spectrum and cut it into
sixteen spectral bands with the optical pulse-shaper in order to produce the LO (see �gure
3.9). The spectrum is �attened to limit the power discrepancy between di�erent spectral
bands. The bands are separated by two columns of non-di�racting pixels to avoid spectral
overlap.

For this measurement, only a single beam was injected in the pulse-shaper hence maxi-
mizing the optical resolution.
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Figure 3.9: Spectral modes of LO used to measure the covariance matrix through homodyne
detection.
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3.3.2.2 Experimental techniques

The noise at the high-frequency output of the homodyne detection is measured with a spec-
trum analyzer at the detection frequency of 1MHz. The phase of the LO is swept by a piezo-
electric element at a frequency of 50mHz. At lower frequencies, some phase instabilities in
the whole experiment decrease the amount of squeezing measured. At higher frequencies,
the squeezing dip is swept too fast to be measured it correctly. For those reasons, 50mHz is
the sweeping frequency that allowed us to measure the best squeezing.

3.3.3 The covariance matrices

From the measurements obtained with the spectral basis shown on �gure 3.9 and equation
(3.33), we reconstruct the diagonal blocs ΓX and ΓP of the covariance matrix of the multi-
mode quantum state produced by the SPOPO below threshold. Those matrices exhibit some
noise on the diagonal along with correlations between di�erent parties on the o�-diagonal
terms. We also measured the correlations between the X̂ and P̂ quadratures of di�erent fre-
quency bands but the signal was too small to be distinguished from shot noise (i.e. the noise
of plain vacuum). As a consequence, the o�-diagonal bloc ΓXP of the covariance matrix (see
chapter 1) is considered to be null. Figure 3.10 shows both covariance matrices ΓX and ΓP
from which we subtracted the covariance matrix of vacuum, namely the identity matrix 1.

Figure 3.10: Covariance matrices ΓX (left) and ΓP (right) from which we have subtracted the
identity matrix 1 to eliminate the diagonal elements due to shot noise in a single band.

Both matrices clearly exhibit correlations whose magnitude is a signi�cant fraction of
shot noise between di�erent frequency bands. Both matrices being symmetric and real by
construction, we perform an eigendecomposition to compute eigenmodes and eigenvalues
in order to learn more about the multimode quantum state at play.
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3.3.4 Eigenvalues and eigenmodes

An eigendecomposition of the covariance matrices gives two sets of eigenvalues {νXn } and
{νPn } for ΓX and ΓP respectively. Those eigenvalues do not coincide exactly as shown on
�gure 3.11 and both eigendecomposition unfortunately give slightly di�erent sets of eigen-
modes {vXn } and {vPn }. Because the multimode state is not perfectly pure, the Williamson
decomposition (see chapter 1) states that the state can be seen as a squeezed thermal state
[Weedbrook 12]. The classical noise embedded in the state leads to the discrepancy between
the eigenmodes of ΓX and ΓP .

Figure 3.11: Left: Eigenvalues of ΓX and ΓP , in units of shot noise. Right: diagonal terms of
Γ′X and Γ′P in dB for each mode of the common basis {v′n}.

Nevertheless, those eigenvalues give the variances VXn and VPn on each quadratures of
the �eld in each mode with respect to shot noise σ 2

0 = 1. In the light of the theoretical
prediction of chapter 2, we can interpret �gure 3.11 as follows: the �rst eight eigenvalues
are the anti-squeezing measured in each mode while the last 8 correspond to squeezing. We
also expect from theory the squeezed vacuum states to be alternatively squeezed along each
quadrature which the �rst eight eigenvalues for both matrices seem to con�rm.

3.3.4.1 Finding a common basis

One way to overcome the discrepancy between the eigenmodes of ΓX and the ones of ΓP
is reported in [Roslund 13, Medeiros de Araújo 14]. The eigenmodes showing the strongest
anti-squeezing are usually the most stable when the measurement is repeated. We thus
choose the �rst eight modes of {vXn } and {vPn } to form a new modal basis {v′n} through a
Gram-Schmidt process leading to a basis change V matrix where the new modes {v′n} are
expressed in the basis of the measurement modes {mi }. We compute a pair of new covariance
matrices Γ′X and Γ′P by performing a basis change in order to represent them in the basis of
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modes {v′n}:
Γ′X = V ΓXV

−1 (3.35)
Γ′P = V ΓPV

−1 (3.36)
Both covariance matrices represented in the new modal basis {v′n} are almost diagonal,

up to residual o�-diagonal terms accounting for the small classical noise (see �gure 3.12).
Both matrices diagonal terms represent the amount of squeezing or anti-squeezing in each
mode of the new modal basis {v′n}. Those values are depicted on �gure 3.11 in dB.

Figure 3.12: Covariance matrices Γ′X (left) and Γ′P represented in the basis of the the modes
spectral modes {v′n}.

The modes {v′n} are presented on �gure 3.13. They resemble a family of Hermite-Gaussian
functions matching the theoretical predictions depicted in �gure 2.10. Still, there is a sen-
sible di�erence between the measured FWHM of the �rst mode (about 10nm) and the one
predicted in chapter 2 (about 6.4nm). A thorough investigation of the width of the modes
{v′n} should be performed by changing the key parameters such as the FWHM of the pump
spectrum, the crystal length in the SPOPO and comparing with the above-threshold output
of the SPOPO.

3.3.5 Going further in multipartite entanglement
The zoology of multipartite entangled states is rich. Among other states are cluster states
[Raussendorf 01] where N parties, or nodes, are entangled with each others according to
an arbitrary graph described by an adjacency matrix A as presented on �gure 3.14. The
entanglement between the di�erent nodes of a cluster is characterized by a set of nulli�er
{δ̂i } associated to each node i . In CV, those nulli�ers are de�ned as:

δ̂i = X̂i −
∑
j,i

Ai,jP̂j −−−−−→
Inf. Sqz

0 (3.37)

60



CHAPTER 3. TUNABLE PROJECTIVE MEASUREMENTS

Figure 3.13: First four spectral modes {v′n}.

meaning that the amplitude quadrature X̂i is entangled with a sum of phase quadrature P̂j
or the other modes. In the limit of in�nite squeezing, the nulli�er tends to zero, meaning
there is a perfect correlation between quadratures belonging to di�erent nodes.

A cluster state can be generated through a simple basis change given a multimode
squeezed state as input [Van Loock 07]. CV cluster states have been previously generated by
mixing single-mode squeezed states on beamsplitters in a �xed con�guration[Su 07, Su 13]
but also in a frequency comb [Pysher 11]. With the multimode resource presented in this
chapter, it is possible to reveal arbitrary Gaussian cluster states in the multimode structure.
Indeed, the basis change is simply performed by changing the basis of measurement used
for the LO [Cai 15, Cai 16] or using a multi-pixel detector where di�erent spectral bands are
detected simultaneously [Ferrini 13].

The interest for cluster states is fueled by their theoretical capability to perform Gaussian
quantum computation [Menicucci 06, Gu 09] using measurement-based quantum computa-
tion [Raussendorf 03]. Still, the measurement of Gaussian cluster states with our setup has
been extensively discussed in the previous references and does not constitute the core of this
work. In the next part, we focus on developing a single-photon subtraction scheme for the
multimode quantum states presented in the current chapter. This single-photon subtractor
is meant to be tunable so that a subtraction could be performed either on a frequency mode
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Figure 3.14: A four nodes cluster state graph and its adjacency matrix.

generated by our SPOPO or a node of an arbitrary cluster state.
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Chapter 4

A Theoretical Framework for
Multimode Single-Photon Subtraction

[About manipulating the temporal mode of a single photon]
“It’s quantum mechanics, it’s not magic!”

– Nicolas “Da Boss” Treps
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4.1. MODELING SINGLE-PHOTON SUBTRACTION

In this chapter, we develop a theoretical framework meant to describe the subtraction of
a single photon from a multimode quantum resource. This framework was �rst introduced
in [Averchenko 16]. It provides a way to model the single-photon subtraction process inde-
pendently of its physical nature and of the multimode basis concerned.

It can be used to describe the Quantum Pulse Gate (QPG) �rst introduced in [Eckstein 11]
and can be seen as a generalization of it.

4.1 Modeling single-photon subtraction
We �rst recall the results of the single-mode subtraction of a photon from a single-mode
light �eld for clarity before extending the process to the multimode situation.

4.1.1 Detecting a single photon
The subtraction of a single photon relies on the detection, either of the subtracted photon or
of another single photon created from the subtracted one. For this purpose, we use a single-
photon detector generally consisting of an avalanche photodiode operated above breakdown
voltage. Those detectors do not resolve the number of photon and should be modeled by
a Positive Operator of Measurement (POM) [Barnett 09] Π̂ = γ

(
1̂ − |0〉〈0|

)
where γ is the

quantum e�ciency of the detection. In the next sections, we assume that only a single-
photon is subtracted and detected. We intentionally reduce the detection operator Π̂ to
a mixture of lossy single-photon measurements on a set of detection modes {δm} whose
annihilation operators are denoted D̂m:

Π̂ =
∑
m

γm |1m〉〈1m |δ (4.1)

where: |1m〉δ = |0, ..., 0, 1
m
, 0, ...〉δ = D̂†m |0〉 (4.2)

and 0 ≤ γm ≤ 1 (4.3)

where the coe�cients {γm} are the detection e�ciencies associated with the detection modes
{δm}. The measurement being imperfect, the detection operator Π̂ should eventually be
written in terms of Kraus operators as:

Π̂ =
∑
m

κ̂†mκ̂m with κ̂m =
√
γm |1m〉〈1m |δ (4.4)

The evolution of the density matrix through the Kraus operators being:

ρ̂af ter =
∑
m

κ̂mρ̂κ̂
†
m (4.5)
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A more complete multimode model of photon-counting can be found in [Tualle-Brouri 09]
but the one developed here is su�cient to serve our purpose.

4.1.2 Single-mode case

We �rst consider a single-mode light �eld whose quantum state is described by its den-
sity matrix ρ̂. The subtraction process is performed by �rst splitting the light �eld. While
this splitting can be performed via di�erent physical mechanisms (optical beam-splitter
[Dakna 97], weak parametric up-conversion [Averchenko 14]), we model it via a simple
beamsplitter. The split signal is sent to a single-photon detection device. A detection events
conditions the quantum state of the output signal light �eld as pictured on �gure 4.1.

Figure 4.1: A trivial scheme of single-mode photon subtraction: an input light �eld carries
a quantum state ρ̂, hits a weak beamsplitter (of re�ectance r and transmittance t ) that splits
the light �eld into two, a detection event in the split arm heralds the subtraction of a single-
photon.

In order to calculate the evolution of the input quantum state, we consider an enlarged
system composed of the input signal �eld and an auxiliary optical bath composed of vac-
uum. The light is split from an optical modeα (r , t ) with annihilation operator Â to the bath
mode β (r , t ) with annihilation operator B̂. It is modeled via a beam-splitting unitary trans-
formation Û acting on the joint state represented by the separable density matrix: ρ̂⊗ |0〉〈0|.
The aforementioned unitary transformation reads:

Û = exp
[
iθ

(
B̂†Â + B̂Â†

)]
≈ 1̂ + iθ

(
B̂†Â + B̂Â†

)
(4.6)

where we have assumed the interaction to be weak (i.e. the coe�cient θ to be weak: θ =
2 arccos (2t ) � 1) so that a �rst order Taylor development could be performed.

On the split side, we assume the single-photon detector to be very multimode, i.e. the
e�ciencies γm are all equal: γm = γ ∀m. The quantum state of the output signal light is
conditioned on a single-photon detection event and its density matrix ρ̂− is computed by
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performing a partial trace over the mode of the split signal:

ρ̂− ∝ Trδ


∑
m

κ̂mÛ
(
ρ̂ ⊗ |0〉〈0|β

)
Û †κ̂†m


(4.7)

ρ̂− = γ θ 2 Âρ̂Â†/P (4.8)
with P = γ θ 2 Tr

(
Â†Âρ̂

)
(4.9)

The constant P is exactly Tr
(
Û (ρ̂ ⊗ |0〉〈0|) Û † Π̂

)
and corresponds to the expectation

value of the measurement operator. It is interpreted as the probability of success to subtract
and detect a single photon and consequently depends on the number of photons in the signal
light, the splitting e�ciency and the detection e�ciency.

4.1.3 General multimode case

We extend the previous description to a multimode subtraction process acting on an input
multimode light �eld carrying an arbitrary multimode quantum state ρ̂.
The input light �eld goes through a two-port multimode beamsplitter that couples two sets
of input modes: {αi (r , t )} with annihilation operators {Âi } and {βj (r , t )} with annihilation
operators {B̂j }. Their arbitrary coupling is de�ned by complex coe�cients {rij } so that the
multimode beamsplitter Hamiltonian writes:

Ĥ ∝
∑
i,j

rij
(
ÂiB̂

†

j + Â
†

i B̂j

)
(4.10)

This description is valid regardless of the physical nature of the modes. As the transforma-
tion is necessarily unitary, a Singular-Value Decomposition is performed to obtain two sets
of modes representing the input port and the vacuum port. For the sake of simplicity, we
will keep {αn (r , t )} and {βn (r , t )} for those modes and {Ân} and {B̂n} for their annihilation
operators. Those two sets now form two orthonormal basis of a space of mode functions
with its proper scalar product 〈., .〉. The SVD also gives a set of real non-negative singular
values {θn} representing the coupling between modes {αn} and {βn}.

The splitting of the input signal light is represented as depicted on �gure 4.2 via a mul-
timode beamsplitter transformation Û as follows:

Û = exp

i
∑
n

θn
(
ÂnB̂

†
n + Â

†
nB̂n

)
(4.11)

≈ 1̂ + i
∑
n

θn
(
ÂnB̂

†
n + Â

†
nB̂n

)
(4.12)
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Figure 4.2: Single-photon subtraction from a multimode light �eld in a quantum state ρ̂. The
subtraction is modeled by the following steps: (1) splitting of the signal light from modes
{αn} into the corresponding vacuum modes {βn} of the auxiliary port; (2) detection of a sin-
gle photon in one of the detection modes {δn}; (3) heralding conditional photon-subtracted
state ρ̂− of the multimode light, given by expression (4.14). The overall subtraction scheme
can be equivalently described in terms of the subtraction modes and corresponding subtrac-
tion e�ciencies {vj ,σj } using expression (4.18)

where we have assumed the coupling e�ciencies {θn} to be small (i.e. θn � 1∀n) to guar-
antee that only a single photon is exchanged and consequently use a �rst-order Taylor de-
velopment.

A single photon is to be detected in the split arm by a multimode detector introduced
in expression (4.1). The detection modes {δm} are a priori di�erent from the light splitting
modes {βn}. The output density matrix is conditioned on the detection of a single photon.
We compute it by performing a partial trace over the single photon output modal subspace:

ρ̂− = Trδ


∑
m

κ̂mÛ
(
ρ̂ ⊗ |0〉〈0|β

)
Û †κ̂†m


(4.13)

ρ̂− =
∑
n,n′

Snn′ Ân′ ρ̂Â
†
n

/
P (4.14)

with Snn′ =
∑
m

γm 〈δm, βn′〉θn′θ
∗
n〈βn,δm〉 (4.15)

and P =
∑
n,n′

Snn′ Tr
(
Ân′ ρ̂Â

†
n

)
(4.16)

where the normalization constant P is the total probability to subtract a single photon for
a given optical setup. The weak coupling assumption ensures that P � 1. Equation (4.14)
is an important expression. It describes the multimode subtraction of a single-photon from
an arbitrary multimode state.
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4.1.3.1 The Subtraction Matrix

While di�erent physical mechanisms can be applied to split light, expression (4.14) shows
that the subtraction of a single-photon is always characterized by a modal matrix S of co-
e�cients Snn′ that we refer to as the subtraction matrix. This matrix describes the whole
multimode aspect of the physical process. According to expression (4.15), S is guaranteed
to be positive-de�nite and hermitian. Hence, there exists a basis change that transforms
S into a diagonal matrix with orthonormal eigenmodes {vj } and nonnegative eigenvalues
{σj }. The subtraction matrix can then be written using the notations introduced in chapter
1 as:

S =
∑
n,n′

Snn′ αnα
†

n′ =
∑
j

σj vj v
†

j (4.17)

By substituting the diagonal decomposition of S into exp. (4.14), we get:

ρ̂− =
∑
j

σj ŝj ρ̂ŝ
†

j

/
P (4.18)

with ŝj =
∑
n

〈vj ,αn〉Ân (4.19)

Expression (4.18) is the most important result of this section. It proves that the overall
single-photon subtraction procedure involving multimode light splitting and detection can
be described in terms of orthogonal subtraction modes {vj } with their annihilation opera-
tors {ŝj } and e�ciencies {σj } as summarized on �gure 4.2. But expression (4.18) is not an
eigendecomposition of the density matrix ρ̂−. The e�ciencies σj are all smaller than unity
according to exp. (4.15) and are interpreted as subtraction probabilities per photon per sub-
traction mode. The total subtraction probability P reads:

P =
∑
j

σj Tr
(
ŝ†j ŝj ρ̂

)
(4.20)

4.1.3.2 Number of subtraction modes

The e�ective number of subtraction modes is fully determined by the set of e�ciencies {σj }
and quanti�ed by the Schmidt number (see chapter 1) of the process:

K =

(∑
j
σj

)2
∑
j
σ 2
j

(4.21)

In analogy with the density matrix with which the subtraction matrix shares the same math-
ematical properties, we can de�ne a process purity as Tr

(
S2

)
/Tr (S)2. Interestingly, the
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purity of the single-photon subtraction process is the exact inverse of the Schmidt number:
1/K . One should not confuse the three di�erent purities at play here: the one of the input
multimode state, the one of the process and �nally the one of the output multimode state.

4.1.4 Application to multimode squeezed vacuum
Some additional insight into the properties of the conditioned state ρ̂− of expression (4.18)
can be obtained by calculating the reduced density matrices of a given mode.

In the following, we apply the framework developed in the previous subsection to the
subtraction of a single photon from multimode squeezed vacuum. All the properties of any
photon-subtracted quantum state can be calculated with expression (4.14) and (4.18) as no
assumption was made regarding the nature of ρ̂. For the sake of simplicity, we now consider
that the input quantum state ρ̂ is pure and separable. There is a basis of modes {uk }, with
annihilation operators {âk }, in which the quantum state ρ̂ is factorized:

ρ̂ =
⊗
k

ρ̂k (4.22)

We consider that each single-mode state ρ̂k is pure and solely composed of a squeezed vac-
uum state |ξk〉k so that: ρ̂k = |ξk〉〈ξk |k .

The next results in the rest of this section assume only a null mean �eld for the mul-
timode state and consequently for each single mode state. Those results can easily be ex-
tended to other quantum states of interests sharing the same property such as Fock states,
cat states [Ourjoumtsev 07a] and their superpositions.

In order to ease the calculation, we introduce an expansion of the subtraction modes
over the modes of the input light �eld:

ŝj =
∑
k

cjkâk with cjk = 〈vj ,uk〉 (4.23)

Using expression (4.23), we write expression (4.18) in the basis of the input modes:

ρ̂− =
∑
j

σj
∑
k,k ′

cjkc
∗
jk ′ âk ρ̂â

†

k ′

/
P (4.24)

4.1.4.1 Multimode state purity

In general, the single-photon subtraction is multimode and the output state ρ̂− is mixed
according to equation (4.18). The multimode purity π of the output quantum state can be
expressed using the expansion (4.23):

π = Tr
(
ρ̂−2

)
=

∑
j,j ′

σjσj ′
������

∑
k

cjkc
∗
j ′knk

������

2 /
P2 (4.25)
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where the nk is the average photon number in mode “k”. Expression (4.25) provides a way to
calculate the purity when the subtraction modes and associated e�ciencies are known. An
alternative possibility to express π is to use expression (4.14) and, expansion of operators
{Ân} similar to (4.23) and a basis change like (1.28). The purity becomes:

π =
∑
k,k ′

nknk ′ |〈uk , Suk ′〉|2
/
P2 (4.26)

with 〈uk , Suk ′〉 =
∑
n,n′

Snn′〈uk ,αn〉〈αn′,uk ′〉 (4.27)

This expression is useful to compute the multimode purity from the input modes and the
subtraction matrix. In general, the multimode state purity depends both on the input quan-
tum state and on the applied subtraction procedure, described by S. We also calculate the
single-photon subtraction probability P with expressions (4.20) or (4.16):

P =
∑
j,k

σj |cjk |
2nk (4.28)

=
∑
k

nk〈uk , Suk〉 (4.29)

We distinguish two extreme cases. In the case of non-selective photon subtraction, the
subtraction matrix is proportional to identity: S ∝ 1̂ implying K � 1. As long as the modes
of the input multimode state are contained in the modes of S the expression of the output
multimode state purity is equal to the de�nition of 1/N :

πK�1 =
1
N

(4.30)

where N quanti�es the number of modes in the input state as introduced in chapter 1.
In the opposite case, when the subtraction is perfectly selective, i.e. there is only one

subtraction mode v with non-null e�ciency σ , and using either equations (4.25) or (4.26),
we have π = 1.

4.1.4.2 Matching the single-photon subtraction

According to our model of the single-photon subtraction, the subtraction procedure is single-
mode (K = 1) in the following cases:

• the beam-splitter operation is single-mode for the modev ;

• the single-photon detector detects only the photons in a single-mode δ , and the single
photon is subtracted from the modev ∝ ∑

n〈δ , βn〉θnαn.
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The only subtraction mode v is associated with an annihilation operator ŝ . The sum in
expression (4.18) has only a single term and the output multimode quantum state simply is:

ρ̂− = ŝ ρ̂ ŝ†
/

Tr
(
ŝ†ŝ ρ̂

)
(4.31)

Nevertheless, while the output multimode state is pure, the subtraction mode v does not
necessarily matches a mode of the input state basis {uk } (4.22). The following scenarios,
schematically shown in �gure 4.3, can be achieved:

• the subtraction mode is matched to one of the modes of the input signal lightuk (4.22)
so that :

ŝ = âk (4.32)

ρ̂− = ρ̂−k

⊗
k ′,k

ρ̂k ′ where ρ̂−k = âk ρ̂k â
†

k
/nk (4.33)

• the subtraction mode is not matched with any particular mode of the input signal
light. A single photon is subtracted from a coherent superposition of the input light
modes (4.22):

ŝ =
∑
k

ck âk with ck = 〈v,uk〉 (4.34)

ρ̂− ∝
∑
k,k ′

ckc
∗
k ′ âk ρ̂â

†

k ′
(4.35)

In the second scenario, a single-photon subtraction entangles the quantum states
embedded into the input light modes. This procedure is used to perform entangle-
ment distillation [Ourjoumtsev 07a, Takahashi 10, Kurochkin 14]. In the context of
this thesis, we intend to use it in order to generate a non-Gaussian gate on a con-
trollable optical mode such as the node of an optically implemented cluster state
[Yokoyama 13, Medeiros de Araújo 14].

4.1.4.3 A two-mode example

In this section, we consider the subtraction of a single photon from a two-mode only input
whose initial quantum state is separable:

|Ψ〉in = |ψ1〉1 |ψ2〉2 (4.36)

We illustrate the di�erence between the multimode and the single-mode operation of the
single-photon subtraction.

In the �rst case, there are two subtraction modes v1 and v2 with their subtraction ef-
�ciencies, σ1 and σ2, and their annihilation operators ŝ1 and ŝ2. We assume that ŝ1 = â1,
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Figure 4.3: Di�erence between a subtraction scheme matched to an input mode (left) and a
coherent subtraction scheme that is not matched to the input modes (right).

ŝ2 = â2 (i.e. c11 = c22 = 1) and σ1 = σ2 so that a single photon is subtracted with equal
probabilities from each input light mode. The purity of the output state, according to (4.25),
becomes:

π =
n21 + n

2
2

(n1 + n2)2
(4.37)

A near unit purity is then achieved only if one of the two modes totally overcomes the other
with a much higher photon number which is synonymous of having a single mode input in
terms of (1.32).

In the second case, there is only one subtraction modev with unit subtraction e�ciency
and its subtraction operator ŝ . We assume that ŝ = (â1+â2)/

√
2 (c1 = c2 = 1/

√
2). The single-

photon subtraction is pure and the photon is subtracted from a coherent superposition of
the two input modes. The purity of the output state is then necessarily equal to unity. The
output state is given by the following superposition of states:

|Ψ〉out ∝ â1 |ψ1〉1 |ψ2〉2 + |ψ1〉1â2 |ψ2〉2 (4.38)

In general, the output state can not be factorized in the original basis and the quantum
state is entangled. What is at stake here is the interplay between the input light modes and
the modes of the single-photon subtraction.

4.1.4.4 State in a single mode of light

After the properties of the multimode state as a whole, it is possible to focus on the quantum
state in a single-mode of the input �eld. In this section, we investigate the evolution of the
quantum state embedded in a single mode “k” of the multimode input state (4.22) through the
single-photon subtraction process. The conditional probability that the subtracted photon
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belongs to the mode “k” is given by the expression:

pk = nk〈uk , Suk〉/P (4.39)
= nk

∑
j

σj |cjk |
2/P (4.40)

The conditioned density matrix of the mode “k”, denoted as ρ̂− |k , is a statistical mixture of
two density matrices representing two possibilities. Either the photon was subtracted from
the mode “k” or not:

ρ̂− |k = pk ρ̂
−
k + (1 − pk ) ρ̂k (4.41)

This result can be also formally obtained by tracing out all the modes except mode “k” in the
output multimode state (4.18). The subtraction probability pk is equal to the de�nition of
the �delity [Jozsa 94] of the resulting single-mode state ρ̂− |k with the “ideal” single-photon
subtracted state ρ̂−

k
:

F
(
ρ̂− |k , ρ̂

−
k

)
= Tr

(
ρ̂− |k ρ̂

−
k

)
= pk (4.42)

The purity of the state (4.41) is calculated as:

πk = Tr
(
ρ̂− |2k

)
= p2k + (1 − pk )2 ≤ 1 (4.43)

There are then two reasons for the single-mode state ρ̂− |k to be mixed. Firstly, when the
single-photon subtraction itself is not pure and results in a non-pure multimode state ρ̂−.
Secondly, if the subtraction mode is not exactly matched to the mode “k” (i.e. |cjk |2 < 1 for
any j), the quantum state in mode “k” is entangled with the states in other modes. If taken
apart, the quantum state in mode “k” becomes mixed.

4.2 Photon subtraction fromspectrally/temporallymul-
timode light

The framework developed above is applicable for any type of modes of the electric �eld.
Herein, we focus on spectrally (or temporally) multimode light and we consider two sub-
traction methods. The �rst one uses a using a weak beamsplitter [Dakna 97, Wenger 04]
and is a linear optics device. The second one is based on sum-frequency generation and
depicted on �gure 4.4. An input �eld interacts with a strong control �eld in a non-linear
medium making this method a non-linear optics device. The sum-frequency generation
converts a signal photon into an up-converted �eld whose photons are used for heralding
[Averchenko 14]. The case of weak up-conversion will be extensively analyzed in chapter
5.
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Figure 4.4: Simple sum-frequency generation scheme used for weak up-conversion.

4.2.1 Linear and non-linear photon subtraction
Both the optically linear and non-linear methods of photon subtraction are probabilistic and
linear in the sense of quantum mechanics. We assume that the probability to extract more
than one photon from a signal �eld is negligibly small. This assumption is reasonable for
low re�ectivity beamsplitters (about 1%) and weak up-conversion. In general, the extraction
of a single photon from a signal �eld with annihilation operator â into an auxiliary �eld with
creation operator b̂† can be described in the frequency domain by the following evolution
operator:

Û ≈ 1 + i

"
dω dω′ R (ω,ω′) b̂†(ω) â(ω′) (4.44)

where R (ω,ω′) is the interaction kernel containing all the physics of the subtraction. It is
written in the frequency basis because it is the mode appropriate to describe the physical
nature of the subtraction. Once the physics is modeled with R, we can investigate the modal
properties. Expression (4.44) is the frequency domain version of expression (4.12).

4.2.1.1 Weak beamsplitter

In the case of a beamsplitter, the interaction kernel Rbs re�ects the fact that the photon
energy is preserved during the exchange:

Rbs (ω,ω
′) = r δ (ω − ω′) (4.45)

where r is the re�ectance of the beamsplitter, assumed to be independent of the optical
frequency and r � 1.

4.2.1.2 Weak up-conversion

The case of weak up-conversion is extensively developed in chapter 5. For now, we simplify
the process to reduce it to its fundamental working principles. In weak up-conversion,
the input �eld interacts with a control �eld of amplitude α (ω) in a non-linear medium
with phase-matching function Φ(ω,ω′). While the up-conversion can be performed in
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di�erent geometries and con�gurations (e.g. non-collinear [Averchenko 14] or collinear
[Eckstein 11]), we consider a model case described by the following interaction kernel:

Rup (ω,ω
′) = C α (ω − ω′) Φ(ω,ω′) (4.46)
= C

∑
n

rn ψn (ω) φ
∗
n (ω

′) (4.47)

where expression (4.47) is the Schmidt decomposition of the kernel of parametric interac-
tion [Law 00]. When expression (4.47) is injected in equation (4.44), it results in the fre-
quency domain version of equation (4.12). The decomposition (4.47) shows that the para-
metric up-conversion process operates as a beamsplitter but for broadband frequency modes
[Eckstein 11, Brecht 14b] of signal {φn} and up-converted �elds {ψn} with re�ection coe�-
cients {rn}. The constant C is proportional to the length of the non-linear medium and the
square root of the energy of the gate pulses in pulsed regime [Averchenko 14].

4.2.1.3 Spectral Filtering

Spectral �ltering of the extracted photon with transmission F (ω) (such that |F (ω) | ≤ 1) can
be implemented by substituting F (ω)b̂†(ω) to b̂†(ω) in expression (4.44). This substitution
is not unitary. Indeed, we only consider the situation where the output state is conditioned
upon a successful photon detection. For this reason, we do not need the former substitution
to be unitary and we do not account for the term describing the loss of an extracted photon
due to �ltering.

4.2.2 Time-resolved detection of a photon
Detecting the heralding photon is part of the subtraction scheme. When the multimode
nature is temporal or spectral, it becomes necessary to give a temporally or spectrally
multimode description of the photon detection through the POM Π̂ introduced in section
4.1.1. The modeling of frequency resolving photon detection has been considered before
[Rohde 06, Tualle-Brouri 09] and we focus here on the temporal aspect. While photon de-
tection can be performed with detectors resolving the photon-number or not (creating a
mixed state [Barnett 98]), we assume that the probability to measure more than one photon
is negligibly small as mentioned in the previous sections.

The detection of a single photon at time t can be modeled by the projection operator
Π̂(t )1

Π̂t = |1t 〉〈1t | (4.48)

with |1t 〉 = D̂†(t ) |0〉 =
(∫

D̂ (ω)e−iωt dω/
√
2π

)†
|0〉

1This detection operator is not physical because it has the dimension of the inverse of a time and should
be seen as a probability density. The physical operator is introduced two equations later.
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We consider a realistic photodetectors that exhibits a �nite temporal resolution, known
as timing jitter, due to the temporal randomness of the avalanche process. We account for
this timing jitter by averaging the previous projection operator with a detector response
function γ (t ) de�ning a temporal window upon a detection event and thus introducing a
multimode description of the detector. It is important to state that γ (t ) does not represent
a coherent response of the detector. The detection of a photon at time t is thus a statistical
mixture of instantaneous photodetections:

Π̂t =

∫
dτ γ (τ − t ) Π̂τ (4.49)

In the limiting case where the temporal uncertainty is in�nite (i.e. γ (t ) = 1), the photon
detection is fully mixed:

Π̂ =

∫
dt |1t 〉〈1t | =

∫
dω |1ω〉〈1ω | (4.50)

where we have introduced a monochromatic single-photon state: |1ω〉 = b̂†(ω) |0〉. Expres-
sion (4.50) means that the detected photon is also not resolved in the spectral domain. While
it may seem puzzling that a detection over an in�nite time does not resolve in�nitely the
optical frequency, one should remind that this property is limited to coherent detectors. A
single-photon detector does not have that kind of capability.

4.2.3 Single-photon subtraction kernel
We aggregate all elements developed above to analyze the multimode aspect of the single-
photon subtraction. The detection of a photon on the detector side (δ ) results in a condi-
tionally single-photon subtracted state of the signal output light. The state ρ̂− is calculated
as in (4.7):

ρ̂− ∝ Trδ
[
Û (ρ̂ ⊗ |0〉〈0|β )Û †Π̂t

]
(4.51)

ρ̂− ∝

∫
dω dω′ S (ω,ω′, t ) â(ω′)ρ̂â†(ω) (4.52)

where S (ω,ω′, t ) is the subtraction kernel, the frequency domain version of the subtrac-
tion matrix as expressed in (4.14). It incorporates all the elements introduced above and its
expression is:

S (ω,ω′, t ) =

∫
dω1 dω2R (ω2,ω

′)R∗(ω1,ω)F (ω2)F
∗(ω1)Γ(ω1 − ω2)e

i (ω1−ω2)t (4.53)

where Γ(ω) =
∫
γ (τ ) eiωτ dτ/

√
2π is the Fourier transform of the detector temporal response

function γ (t ).

78



CHAPTER 4. A THEORETICAL FRAMEWORK FOR MULTIMODE SINGLE-PHOTON SUBTRACTION

Expressions (4.52) and (4.53) show that the conditioned quantum state ρ̂− depends on an
arbitrary detection time t whose value introduces a phase term ei (ω1−ω2)t . In the rest of this
chapter, we simply choose t = 0 for convenience. The kernel S (ω,ω′) is Hermitian and the
subtraction modes {vj (ω)} and the corresponding subtraction e�ciencies {σj } can be found
through Mercer’s theorem (in practice, an eigendecomposition). This decomposition is:

S (ω,ω′) =
∑
j

σj vj (ω)v
∗
j (ω

′) (4.54)

where the modes {vj } are the frequency domain version of the subtraction modes of the
signal introduced in (4.17). We state for clarity that the subtraction modes {vj } are not the
modes {φn} of expression (4.47) even if the subtraction modes were obtained from those.

4.2.3.1 Beamsplitter with �ltering

We develop the kernel of subtraction S (ω,ω′) in the case where the subtraction is performed
with a simple beamsplitter and a spectral �lter. With the interaction Rbs of expression (4.45),
the subtraction kernel Sbs is:

Sbs (ω,ω
′) = r 2F ∗(ω)F (ω′)Γ(ω − ω′) (4.55)

where we have omitted the phase term ei (ω1−ω2)t of expression (4.53) by taking t = 0. It is
possible to use a Gaussian approximation to obtain an explicit expression of the eigenmodes
vj (ω) and e�ciencies σj . The spectral �lter is given a bandwidth ∆ω f and the detector
response function is taken to be γ (t ) = exp(−t2/τ 2

d
) with τd being the response time. In the

frequency domain, both expressions are:

F (ω) = exp(−ω2/2∆ω2
f ) (4.56)

Γ(ω) ∝ exp(−τ 2dω
2/4) (4.57)

The subtraction modes {vj (ω)} of Sbs are then Hermite-Gaussian functions:

vj (ω) ∝ Hj (τω) exp(−τ 2ω2/2) (4.58)

where Hj is the j-th Hermite polynomial and τ is the characteristic temporal width of the
subtraction modes:

τ = 4
√
1 + τ 2

d
∆ω2

f
/∆ω f (4.59)

The subtraction e�ciencies {σj } are:

σj = r
2 ε2j−1

(1 +
√
1 + ε2)2j−1

with ε = τd∆ω f (4.60)
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Given expression (4.60), it is easy to compute the Schmidt number K that characterizes
how multimode the process is. It is given by:

K =

(∑
j
σj

)2
∑
j
σ 2
j

=
√
1 + τ 2

d
∆ω2

f
(4.61)

We can distinguish two di�erent regimes for single-photon subtraction in expression
(4.61) depending on the interplay between the �lter and the photodetector parameters:

• a single-mode operation with a fast detector and a narrow �lter (τd∆ω f � 1). Then
K = 1 and the only subtraction mode is v (ω) is equal to the �lter function F (ω).

• a multimode operation with a slow detector and a broad �lter (τd∆ω f � 1). Then
K = τd∆ω f � 1 and the characteristic temporal width of the modes is τ =

√
τd/∆ω f

4.2.3.2 Alternative temporal approach

It is possible to reach similar conclusions using a time domain approach. Starting back from
the expression (4.44) and adding the �ltering introduced previously, the transformation Ûbs

can be written as:

Ûbs ∝ 1 + r

∫
dt b̂†(t )

(∫
dt ′ f (t ′ − t ) â(t ′)

)
with f (t ) =

∫
F (ω)e−iωt

dω
2π (4.62)

where f (t ) is the response function of the �lter in the temporal domain. An instant detection
of a photon at time t with operator Π̂t (see expression (4.48)) on the detector side turns the
evolution operator Ûbs into a subtraction operator ât expressed as a time average instant
subtraction:

ât ∝

∫
dt ′ f (t ′ − t )â(t ′) (4.63)

This last expression means that a single photon is subtracted from a time-frequency mode
de�ned by the �lter. The �nite temporal resolution of the detector introduced in (4.49) can
be accounted for and the conditioned signal state ρ̂− becomes mixed:

ρ̂− ∝

∫
dτ γ (τ − t ) âτ ρ̂ â†τ (4.64)

Interestingly, expression (4.64) shows that the subtraction modes de�ned for di�erent values
of τ overlap in the temporal basis. The reason is that the eigenmodes of the subtraction
process are spectral modes and can only be obtained via the eigendecomposition of the
spectral subtraction kernel S (ω,ω′) performed above.
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4.2.3.3 Weak parametric up-conversion

The time scale of the parametric up-conversion is de�ned by the duration of the gate pulses
and the inverse bandwidth of the phase-matching. For femtosecond pulses and bandwidths
typical of non-linear media used at our wavelengths (see appendix B), the time scale of
up-conversion is much shorter than the temporal resolution of a single-photon detector
(typically hundreds of picoseconds). For this reason, we treat the photodetector as a slow
one and replace the detector response function in the spectral domain Γ(ω1−ω2) by a Dirac
function δ (ω1 − ω2) in expression (4.53). The subtraction kernel Sup is then:

Sup (ω,ω
′) =

∫
dω1 R

∗
up (ω1,ω)Rup (ω1,ω

′) |F (ω1) |
2 (4.65)

In the continuity of subsection 4.2.1.2, we assume a model case interaction between the
signal and gate �elds in a non-linear medium. The interaction kernel Rup is the product of
the spectral pro�le of the gate �eld α (ω−ω′) and the phase-matching function Φ(ω′) where
ω′ is the optical frequency of the up-converted photon. The subtraction kernel Sup is:

Sup (ω,ω
′) ∝

∫
dω1 α (ω1 − ω

′)α∗(ω1 − ω)Φ
2(ω1) |F (ω1) |

2 (4.66)

As in the case of a simple beamsplitter, it is possible to get analytic results for this sub-
traction scheme through a Gaussian approximation of the phase-matching functionΦwith a
width ∆ωph [Grice 01], assuming the gate pulses are Gaussian and using the same Gaussian
�lter function as above:

F (ω) = exp(−ω2/2∆ω2
f ) (4.67)

α (ω) ∝ exp(−τ 2дω2/2) (4.68)
Φ(ω) ≈ exp(−ω2/2∆ω2

ph ) (4.69)

For a type-I degenerate up-conversion process, the phase-matching width can be approxi-
mated to the inverse of the di�erence of group velocities multiplied by crystal length. Under
those approximations, the subtraction modes {vj (ω)} are Hermite functions (4.58) with a du-
ration τ equal to:

τ = τд 4

√
1 − 1

1 + τ−2д (∆ω−2
ph
+ ∆ω−2

f
)

(4.70)

The subtraction e�ciencies are:

σj = σ
ε2j−1

(1 +
√
1 − ε2)2j−1

with



σ ∝ 2
√
π |C |2/τд

ε = 1/
√
1 + τ−2д (∆ω−2

ph
+ ∆ω−2

f
)

(4.71)
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where the C constant was introduced in equation (4.47). Similarly to the cases of the sim-
ple beamsplitter, it is possible to compute the Schmidt number of subtraction process. Its
expression is:

K =

√√
1 +

τ 2д

∆ω−2
ph
+ ∆ω−2

f

(4.72)

To conclude, expression (4.72) shows that a single-mode operation can be achieved when
the ratio between the pulse duration and the inverse of the phase-matching bandwidth is
close to zero. Also, a narrow �ltering of the up-converted photon can further reduce the
Schmidt number of the process. The only subtraction mode left should be identical to the
gate pulse pro�le in the Gaussian approximation of phase-matching.
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Chapter 5

Single-Photon Subtraction via
Parametric Up-Conversion

“So, when are you done with your exams?”
– My neighbor

Contents
5.1 Theory of sum-frequency . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Modes of the process . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.1.1 Schmidt decomposition . . . . . . . . . . . . . . . . . . . 88
5.1.1.2 Schmidt number . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Collinear SFG in BiBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 Phase-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1.1 Joint Spectral Distribution (JSD) . . . . . . . . . . . . . . 90
5.2.1.2 Schmidt decomposition . . . . . . . . . . . . . . . . . . . 90

5.2.2 Choosing the crystal length . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2.1 Impact on the Schmidt number . . . . . . . . . . . . . . 91
5.2.2.2 Impact on subtraction modes . . . . . . . . . . . . . . . . 92

5.2.3 Playing with the gate . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3.1 Changing the width . . . . . . . . . . . . . . . . . . . . . 92
5.2.3.2 Changing the shape . . . . . . . . . . . . . . . . . . . . . 94

5.3 Non-collinear SFG in BiBO . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 E�ect of focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1.1 Transverse terms . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1.2 Longitudinal terms . . . . . . . . . . . . . . . . . . . . . 96
5.3.1.3 Neglecting focusing terms . . . . . . . . . . . . . . . . . 97

5.3.2 E�ect of birefringence . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2.1 E�ect of the horizontal angle . . . . . . . . . . . . . . . . 98
5.3.2.2 E�ect of both horizontal and vertical angles . . . . . . . 98

83



5.1. THEORY OF SUM-FREQUENCY

5.3.3 The problem of gate SHG . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.3.1 SFG and SHG Phase-matching . . . . . . . . . . . . . . . 100
5.3.3.2 Horizontal only tuning . . . . . . . . . . . . . . . . . . . 101
5.3.3.3 Killing the noise . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.4 Eigenmodes of non-collinear subtraction . . . . . . . . . . . . . . . 103

In this chapter, we use the theory developed in [Averchenko 14] to model a single-
photon subtraction device based on Sum-Frequency Generation (SFG). This device is called
a Quantum Pulse Gate (QPG)[Eckstein 11] and is meant to manipulate the light �eld at the
single photon level. We explain the design chosen to implement this device and investigate
its modal properties.

5.1 Theory of sum-frequency

When a single-photon subtractor is based on Sum-Frequency Generation (SFG) in a non-
linear medium, it is called a Quantum Pulsed Gate (QPG). In an ideal representation of this
single-photon subtractor, a input quantum state is sent in order to undergo a controlled
single-photon subtraction, ideally with no extra losses. In the QPG, a signal beam is mixed
in a non-linear medium with a potentially strong gate beam used as a control. A converted
photon is created at the sum of the signal and gate frequencies, possibly �ltered and de-
tected by a Single-Photon Counting Module (SPCM). The quantum state carried by the sig-
nal beam has undergone a single-photon subtraction when a converted photon is detected.
This single-photon subtractor is thus probabilistic and relies on weak parametric interac-
tion. A single photon, at maximum, is to be converted.

In this picture, the single-photon subtractor is composed of various optical elements: a
gate beam, a non-linear medium where parametric interaction takes place and a SPCM. As
we will see, the modal properties of this single-photon subtractor arise from the interplay
of those various elements.

Our implementation of the QPG relies on a non-collinear optical con�guration detailed
on �gure 5.1. A signal beam and a gate beam overlap in a non-linear medium placed in the
focal plane of an optical telescope. At the input of the telescope, both beams are shifted
from the optical axis of the telescope while remaining parallel to it as shown on �gure 5.1.
The signal beam is shifted by 6.25mm in the horizontal plane. The gate beam is shifted by
6.25mm in the horizontal plane and 2.5mm in the vertical plane. Given a focal length of
210mm for the �rst lens of the telescope, the angles αh and αv on �gure 5.1 are respectively
1.70° and 0.68°. Those angles will be modi�ed by refraction in the crystal and we will account
for this e�ect later.

To model the subtraction of a single photon from the signal �eld, we express the electric
�eld Ê

(+)
(r , t ) on the basis of plane waves as in (1.33). We add the narrow-spectrum approx-

imation (E (1) ≈ E (1)
0 ). We also assume the distribution of wave vectors k to be narrow and
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Figure 5.1: SFG optical setup consisting in an optical telescope and a non-linear medium
at the Fourier plane. A single mode gate beam (solid red) and a multimode signal beam
(dashed red) mix in a type I non-collinear con�guration to create a converted beam (dashed
blue). The gate beam is dumped after interaction while the signal and the converted ones
can be analyzed. The x axis corresponds to the x axis of the ellipsoid of indices of BiBO (see
appendix B.

centered around kz (ω) = ωn(ω)/c where z denotes the propagation direction of the beam.
We have k ≈ kez + q where q contains the transverse components of k. Expression (1.33)
becomes similar to the ones of [Kolobov 99]:

Ê
(+)

(r , t ) = E (1)
0 â(r , t ) (5.1)

= E (1)
0

∫ dω dq
(2π )3/2

â(ω,q)eikzzei (qr−ωt ) with E (1)
0 =

√
~ω0
2nε0V

(5.2)

where n is the index of the material seen by the �eld. In the non-linear medium, the para-
metric interaction between the gate Êд, signal Ês and converted electric �elds Êc (whose we
drop space-time dependence) is governed by the Hamiltonian ĤI :

ĤI (t ) = ε0

∫
V
dV χ (2)Ê

(+)
д Ê

(+)
s Ê

(−)
c + h.c (5.3)
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where h.c stands for Hermitian conjugate, V is the volume of the non-linear medium and
χ (2) is the second order non-linear susceptibility of the non-linear medium for the sum-
frequency process.

Given an input state |Ψin〉, the output state |Ψout 〉 is obtained through the application of
the evolution operator on |Ψin〉:

|Ψout 〉 = exp
(
1
i~

∫
dt ĤI (t )

)
|Ψin〉 (5.4)

Assuming the interaction is weak, which is reasonable for parametric processes, a Taylor
development can be performed and the output state becomes:

|Ψout 〉 ≈ |Ψin〉 + |Ψ
−〉 where |Ψ−〉 =

1
i~

∫
dt ĤI (t ) |Ψin〉 (5.5)

=
ε0χ

(2)

i~

∫
V
dr dt Ê(+)

д Ê
(+)
s Ê

(−)
c |Ψin〉 (5.6)

In order to compute the photon-subtracted state |Ψ−〉, we express all �elds in their own
coordinate systems with subscripts д, s and c . Given the geometry introduced, each coordi-
nate can be explicitly written in terms of the general system of �gure 5.1. The output state
is then:

|Ψ−〉 =
ε0χ

(2)E (1)
д E (1)

s E (1)
c

i~ (2π )9/2

∫
dωд dωs dωc dqд dqs dqc

âд (ωд,qд)âs (ωs ,qs )â
†
c (ωc ,qc )

∫
V
dr dt exp (i ϕ (r , t )) |Ψin〉

(5.7)
with ϕ (r , t ) = kдzд + qдrд − ωдt + kszs + qsrs − ωst −

(
kczc + qcrc − ωct

) (5.8)
In order to compute the integral over the volume V and time of the function ϕ (r , t ), one
needs to express every beam-speci�c coordinate (i.e. zд, zs , zc , qд, qs and qc ) in terms of the
general coordinates (x , y and z) of �gure 5.1. The expressions are the following:

Gate:



xд = x cos(αh ) + z sin(αh )
yд = y cos(αv ) − sin(αv ) [cos(αh )z − sin(αh )x]
zд = y sin(αv ) + cos(αv ) [cos(αh )z − sin(αh )x]

(5.9)

Signal:



xs = x cos(αh ) − z sin(αh )
ys = y

zs = z cos(αh ) + x sin(αh )
(5.10)

Converted:



xs = x

ys = y cos(αv/2) + z sin(αv/2)
zs = z cos(αv/2) − y sin(αv/2)

(5.11)
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The integration of the function ϕ (r , t ) over time and space gives four di�erent factors. The
integration over transverse direction (x and y) and time are carried between −∞ and ∞. It
results in three factors whose values are null unless an equality is ful�lled for each. Those
equations link the di�erent geometrical parameters. They are:

On t: ωд + ωs − ωc = 0 (5.12)
On x: − cos(αv ) sin(αh )kд + qxд cos(αh ) + sin(αv ) sin(αh )q

y
д + sin(αh )ks

+ cos(αh )qxs − qxc = 0 (5.13)
On y: sin(αv )kд + qyд cos(αv ) + q

y
s − cos(αv/2)q

y
c + sin(αv/2)kc = 0 (5.14)

The integration over the main propagation direction z is carried between −l/2 and l/2 with l
being the crystal length. In the case of sum-frequency in a birefringent medium, at least one
of the beams experiences spatial walk-o�. It means that their Poynting vector is not collinear
to their propagation (see appendix B). This spatial walk-o� should result in additional terms
in the expression of the phase-matching function (see [Averchenko 14] for instance). In our
model, we choose to exclude the spatial walko� for simplicity and because the additional
complexity does not provide more insight. The integration over z leads to the well known
phase-matching function:∫ lc/2

−lc/2
dzei∆kz = lc

√
2π sinc (lc∆k/2) = lc

√
2πΦSFG (∆k ) (5.15)

with ∆k = kд cos(αv ) cos(αh ) + qxд sin(αh ) − cos(αh ) sin(αh )q
y
д + cos(αh )ks

− sin(αh )qxs − kc cos(αv/2) − q
y
c sin(αv/2) (5.16)

where the di�erent wave vectors ks , kc and kд depend respectively of ωs , ωc and, through
conservation of energy, ωc − ωs .

The phase-matching ∆k is the critical parameter for every parametric process and the
non-linear medium must be set so that ∆k = 0 around the fundamental wavelength. The
most important information contained in expression (5.16) is that the non-collinear geom-
etry introduces a coupling between longitudinal and transverse components of momenta
[Caspani 10, Averchenko 14]. It should actually be seen as a coupling between the trans-
verse components of momenta and optical frequencies as di�erent optical frequencies have
the opportunity to phase-match di�erently in the non-collinear con�guration. It is pos-
sible to take advantage of those coupling e�ects to diagnose ultrashort pulses [Sacks 01,
Trebino 02, Akturk 10].

In order to compute the output state |Ψout 〉 of expression (5.7), we do a certain number
of assumptions:

• The spatial modes of the signal and gate �elds are assumed to be TEM00 so that the
spatial distribution of the transverse components qд, qs and qc in the focal plane are
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simply Gaussian and described by the function д:

д(qx ) =

√
w
√
π
e−

w2qx2
2 (5.17)

where w is the optical waist in the focal plane. As a consequence, the signal and gate
�elds are single mode spatially and their annihilation operators âs and âд depend only
on optical frequencies ωs and ωд so that we can separate the frequency dependence
from the spatial one:

âs (ωs ,qs ) = âs (ωs )д(q
x
s )д(q

y
s ) and âд (ωд,qд) = âд (ωд)д(q

x
д )д(q

y
д ) (5.18)

• The gate �eld quantum state is a coherent state with spectral amplitude αд (ωд) and
is not subject to depletion. We assume that we can readily substitute the annihilation
operator âд (ωд) with the spectral classical amplitude αд (ωд). As a consequence, the
input state |Ψin〉 is no longer the same as we have taken out the gate quantum state.
For the sake of simplicity, we keep the same notation.

With those assumptions at hand, the photon-subtracted state |Ψ−〉 can be written as:

|Ψ−〉 =
ε0χ

(2)E (1)
д E (1)

s E (1)
c

i~ (2π )9/2

∫
dωc dωs

∫
dqc L(ωc ,qc ,ωs )âs (ωs )â

†
c (ωc ,qc ) |Ψin〉 (5.19)

with L(ωc ,qc ,ωs ) =

∫
dqд dqsαд (ωc − ωs )ΦSFG (∆k ) д(q

x
s )д(q

y
s )д(q

x
д )д(q

y
д ) (5.20)

As we will see in the next sections, the reduced transfer function L(ωc ,qc ,ωs ) of ex-
pression (5.19) is the key to the modal decomposition [Caspani 10] of the single-photon
subtraction.

5.1.1 Modes of the process
In order to obtain the eigenmodes of the single-photon subtraction, we perform a Schmidt
decomposition [Ekert 95] on the reduced transfer function L(ωc ,qc ,ωs ).

5.1.1.1 Schmidt decomposition

The Schmidt decomposition is formally a discrete decomposition of the reduced transfer
function:

L(ωc ,qc ,ωs ) =
∑
n

√
σnwn (ωc ,qc )v

∗
n (ωs ) (5.21)

where {σn} and {vn} are respectively the subtraction e�ciencies and the subtraction modes
obtained in chapter 4. The set of modes {wn} are the modes of the up-converted photon.
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There is no a priori reason to factorize the momentum dependence from the spectral one in
the modes {wn} [Caspani 10, Averchenko 14]. An alternative way to compute the modes {vn}
and {wn} is to apply Mercer’s theorem (in practice an eigendecomposition) to two auxiliary
Hermitian functions Gs (ωs ,ω

′
s ) and Gc (ωc ,ω

′
c ,qc ):

Gs (ωs ,ω
′
s ) =

∫
dωc dqc L∗(ωc ,qc ,ωs )L(ωc ,qc ,ω

′
s ) =

∑
n

σnvn (ωs )v
∗
n (ω

′
s ) (5.22)

Gc (ωc ,ω
′
c ,qc ) =

∫
dωsL

∗(ω′c ,qc ,ωs )L(ω
′
c ,qc ,ωs ) =

∑
n

σnwn (ωc ,qc )w
∗
n (ω

′
c ,qc ) (5.23)

It is worth noticing that the auxiliary Hermitian function Gs (ωs ,ω
′
s ) is the continuous ver-

sion of the subtraction matrix introduced in chapter 4.

5.1.1.2 Schmidt number

As introduced in chapter 1 and used in chapter 4, the multimode aspect of the process can
be quanti�ed through the computation of the Schmidt number K as:

K =

(∑
n
σn

)2
∑
n
σ 2
n

(5.24)

In the next sections, we will pay particular attention to the values of K and we will
try to design the SFG process so that K is as close to unity as possible, i.e. the process is
single-mode.

5.2 Collinear SFG in BiBO
From now on, we consider BiBO as the medium for SFG. In the collinear case, degenerate
SFG is formally equivalent to SHG. The collinear con�guration simpli�es greatly the model,
allows us to gain insight on the process and choose the appropriate crystal length assuming
the non-collinear con�guration will be only a small perturbation away from the collinear
conclusions.

In the rest of this section, we choose αh = αc = 0°.

5.2.1 Phase-matching
The phase matching ∆k of expression (5.16) along with equalities (5.13) and (5.14) are greatly
simpli�ed by the collinear assumption:

∆k (ωs ,ωc ) = kд (ωc − ωs ) + ks (ωs ) − kc (ωc ) and



qxд + q
x
s − q

x
c = 0

q
y
д + q

y
s − q

y
c = 0

(5.25)
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Expressions (5.25) show a very important aspect of the collinear con�guration: even with
broad spectrum ultrafast light, there is no space-time (or rather frequency-momentum) cou-
pling due to focusing.

5.2.1.1 Joint Spectral Distribution (JSD)

As explained in appendix B, Type I (e + e → o) phase-matching for λ = 795nm can be
achieved in BiBO with ϕ = 90° and θ = 150.81°. The reduced transfer function L introduced
in expression (5.19) can be factorized into a Gaussain spatial part and a frequency-dependent
part Lc (ωs ,ωc ). The expression of frequency-dependent part Lc (ωs ,ωc ) is simply:

Lc (ωs ,ωc ) = αд (ωc − ωs )ΦSFG (∆k ) (5.26)
This expression is exactly the de�nition of the JSD introduced in chapter 2.

The phase-matching function ΦSFG and the JSD Lc are represented on �gure 5.2 for a
crystal length lc = 2mm. We take as a gate pro�le αд, the unshaped spectrum provided
by our laser source whose intensity FWHM is 11nm (see �gure 2.1). The phase-matching
function and JSD show that for the chosen crystal length, the phase-matching function ΦSFG

is “horizontal” in the wavelength space and so is the JSD. This property comes from the fact
that the signal and gate group velocities in the medium are equal [Brecht 14a]. The same
principal can be used to engineer a “vertical” JSD [Mosley 08]. This shape of the JSD has
the following consequence: if a photon is created and detected at a given up-converted
frequency, there is no way to correlate it with a speci�c signal frequency. The main result
is that the conversion is then single-mode.

The spectrum of the converted photon is exactly centered at λ0/2 = 397.5nm.

5.2.1.2 Schmidt decomposition

In order to obtain the signal modes {vn} of the subtraction, we perform a Schmidt decompo-
sition of Lc . In practice, it is achieved by performing a Singular Value Decomposition (SVD).
The eigenvalues obtained are depicted on �gure 5.3 along with the subtraction e�ciencies
{σn} obtained by squaring the eigenvalues. The distribution of e�ciencies gives K ≈ 1.08
and a process purity (1/K ) of 92.5%. The process is then almost single-mode.

The converted mode {wn} can be investigated but we choose not focus on them. We are
only interested in the signal modes {vn} whose �rst three are shown on �gure 5.3. They
resemble a family of Hermite functions. The �rst one can be �tted with a Gaussian pro�le
and the �tting leads to an Intensity FWHM of 11nm. It matches exactly the gate spectral
pro�le.

5.2.2 Choosing the crystal length
As the single-photon subtraction process is based on SFG, it relies strongly on the crystal
length that impacts the bandwidth of the phase-matching function ΦSFG . A short crystal
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Figure 5.2: Left: Phase-matching function ΦSFG . Right: Joint spectral distribution Lc for a
Gaussian gate of 11nm intensity FWHM. The non-linear medium chosen is BiBO with a
length of lc = 2mm.

leads to broadband phase-matching while a long one leads to in�nitely narrowband phase-
matching.

5.2.2.1 Impact on the Schmidt number

The Schmidt number depends on the JSD Lc that directly depends on the crystal length lc .
For a single-mode interaction, we want a Schmidt number as close as possible to unity. We
compute the value ofK for di�erent crystal length and a �xed gate of 11nm intensity FWHM
(see �gure 5.4). We �nd the following di�erent regimes:

• a �rst regime of short crystals where the Schmidt number is high and drops as the
crystal length increase (lc < 1mm on �gure 5.4);

• an optimum where the Schmidt number is near unity (lc ≈ 6mm on �gure 5.4);

• a region where K increases while remaining small (K ≤ 1.2) as the crystal length
increases.

In the �rst regime, the phase-matching function ΦSFG is just not selective enough to decor-
relate the signal and converted frequencies hence leading to a high-valued K . In the last
regime, the phase-matching function becomes too narrowband and limits the bandwidth of
the optical frequencies that can be converted.
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Figure 5.3: Left: �rst eight eigenvalues of Lc obtained through SVD (blue) and �rst eight
subtraction e�ciencies {σn} (red). Right: amplitudes of the �rst three signal eigenmodes
obtained through SVD of Lc . The gate spectrum here has a bandwidth of 11nm in terms of
intensity FWHM.

5.2.2.2 Impact on subtraction modes

From �gure 5.4, it may seem that increasing the crystal length to higher values can be a
solution to maximize interaction while conserving a near unity Schmidt number. This is
misleading. Indeed, for long crystal lengths, the phase-matching function ΦSFG becomes
extremely narrowband and may ultimately limit the spectral mode that can be converted.

For instance, with lc = 20mm, the Schmidt number remains low (K = 1.10) but the
width of the �rst subtraction mode no longer matches the width of the gate spectrum (see
�gure 5.5). The intensity FWHM is now less than 10nm compared to the 11nm of the gate.
For an even longer crystal of lc = 100mm, the �rst subtraction mode looks like a �at top
function but clearly exhibits ripples which are the stigmata of the sinc function contained
in ΦSFG . The overall shape is clearly di�erent from a Gaussian potentially imposed by the
gate spectrum. The Schmidt number also increases to K = 1.88.

5.2.3 Playing with the gate

One of the main advantage of the QPG is the tunability of the process. In our setup, it
is implemented through the pulse-shaping of the gate beam in our ultrafast pulse-shaper
introduced in chapter 3.

5.2.3.1 Changing the width

It is possible to change the width of the gate beam to control the modes of the single-photon
subtraction. We present on �gure 5.6 the evolution of the Schmidt number with the width
of the gate beam in a crystal of length lc = 2mm. Similarly to �gure 5.4, for low values of
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Figure 5.4: Left: Schmidt number K as a function of lc for a Gaussian gate of 11nm intensity
FWHM. Right: Same than left, zoomed for small values of K

Figure 5.5: First subtraction mode amplitude (blue) and gate pulse spectral amplitude (red)
for a crystal length of 20mm (left) and 10mm (right).

the gate bandwidth (intensity FWHM), the phase-matching function is too broadband for
the gate pulse and the Schmidt number is high. As the gate width is increased, the Schmidt
number drops at a minimum value of approximately 1.04 for a Gate FWHM of approxi-
mately 24nm. Finally, the Schmidt number increases again while remaining near minimum
as the gate width keeps increasing. As explained in the previous section, the values of K for
broadband gate pulses are misleading as the subtraction modes start to exhibit the features
of a constraining phase-matching function.

Figure 5.6 shows that provided a adapted crystal length, it is possible to operate the
single-photon subtraction process over a varying bandwidth of gate pulses while conserving
a reasonably small Schmidt number.
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Figure 5.6: Evolution of the Schmidt number with respect to the gate bandwidth (intensity
FWHM) for a crystal length lc = 2mm

5.2.3.2 Changing the shape

Ultimately, it is not only important to be able to change the width of a Gaussian gate, but
given the ultrafast pulse-shaping capabilities (and the potential target modes depicted on
�gure 3.13), to be able to tune the subtraction mode into any spectral shape.

Figure 5.7 compares the gate mode and the �rst subtraction mode for two di�erent gate
pro�les: a second Hermite functionH1 and a superposition of the �rst two Hermite functions
H0 +H1 of the same family. The Schmidt number remains close to unity for both: K = 1.16
for H1, and K = 1.09 for H0 + H1.

Figure 5.7: First subtraction mode amplitude (blue) and gate pulse spectral amplitude (red)
for a crystal length lc = 2mm. The gate pro�les correspond to a second Hermite function
H1 whose corresponding H0 possesses an intensity FWHM of 11nm (left) and to a coherent
superposition of H0 and H1 (right).
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Figure 5.7 reveals some interesting features in the conversion induced by the conserva-
tion of energy. Two conditions are required and met in our case:

• the phase-matching is broadband enough to allow a perfect and undistorted conver-
sion of the gate mode (see previous section and �gure 5.5),

• the phase-matching is narrowband enough so that the bandwidth of the up-converted
photon is narrow compared to the gate one (see �gure 5.2).

With those conditions, the conservation of energy makes the subtraction mode exactly
symmetric to the gate mode with respect to the phase-matching center wavelength (here
λ0 = 795nm) as depicted on the right side of �gure 5.7. As a consequence, when the gate
mode is an odd function with respect to λ0, the subtraction mode will be identical but with
a π phase shift. This phase is irrelevant for a single-mode but we have kept it on the left
side of �gure 5.7 as it explains the right side of the �gure.

Let us develop this explanation with the example of �gure 5.7. The gate mode is H0 +
H1(Ωд). In the conditions set above, the conservation of energy can be approximated to:

ωд + ωs − ωc = Ωд + Ωs − Ωc ≈ Ωд + Ωs = 0 (5.27)

And in a single-mode operation of the parametric process, the signal mode should match
the gate mode but using the simpli�ed conservation of energy we get: H0 + H1(−Ωs ) =
H0 − H1(Ωs ) as H1 is an odd function with respect to λ0.

It is thus possible to use di�erent spectrally shaped pro�le for the gate beam in order to
control precisely the �rst subtraction mode while being conscious that the conservation of
energy create the “mirror” e�ect explained above.

5.3 Non-collinear SFG in BiBO

The main issue with collinear Type I interaction is that both signal and gate beam are in the
same spatial mode and have the same polarization. It is then impossible to combine them
without losses (which might be detrimental for the signal) and to separate them after their
interaction. Also, if the conversion is degenerate, the SHG of the gate beam and the SFG
between the gate and the signal are formally equivalent and take place in the same optical
mode. It is then impossible to isolate the SFG photons from the SHG ones and additionally,
in the case of weak signal, the SHG may be orders of magnitude stronger than the SFG. If
the conversion is non-degenerate with no spectral overlap between gate and signal light,
the collinear con�guration remains meaningful as beams can be separated by a wavelength-
selective optical element. If the conversion is degenerate, it can be tempting to use a type-II
up-conversion but it is not possible to achieve a good modal selectivity as explained in
appendix C.
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For this reason, we have introduced the angle αh and αv in the horizontal and vertical
planes of the optical table leading to a non-collinear con�guration. In the next sections,
we discuss how the non-collinear con�guration impacts the SFG, what problems we have
encountered and how we solved them.

5.3.1 E�ect of focusing

We start by reminding the expression (5.16) of the non-collinear phase-matching ∆k for
clarity:

∆k =kд cos(αv ) cos(αh ) + qxд sin(αh ) − q
y
д cos(αh ) sin(αh ) + ks cos(αh )

− qxs sin(αh ) − kc cos(αv/2) − q
y
c sin(αv/2)

This expression shows that the non-collinear con�guration of the optical telescope de-
picted on �gure 5.1 and the presence of focusing create a space-time coupling in the phase-
matching of the SFG [Valencia 07, Averchenko 14] (more precisely a frequency-momentum
coupling). We can compare the orders of magnitude of the terms containing the transverse
components of momenta (qxд , qyд , qxs and q

y
c ) and the ones containing the longitudinal com-

ponents of momenta (kд, ks and kc ) in expression (5.16). Also, the longitudinal components
are products of cosines of the angles αh and αv while the transverse components are sys-
tematically products of sines of the same angles. As the incident angles are small (about 1°),
it is reasonable to make the approximations cos(α ) ≈ 1 and sin(α ) ≈ α < .02.

5.3.1.1 Transverse terms

First, we investigate the transverse terms. The optical beams entering the telescope are both
collimated to 1.6mm of diameter. With a lens of focal length f = 210mm, the waistw in the
focal plane of the telescope is about 63µm. Using equation (5.17), we can compute a value
qtyp for which д(q)/д(0) = e−1. It leads to qtyp =

√
2/w ≈ 22mm−1.

5.3.1.2 Longitudinal terms

In comparison, the longitudinal terms depend on the FWHM of the spectrum of the light
carried by those beams. We approximate the spectral amplitude A(λ) of the spectrum
shown on �gure 2.1 by a Gaussian function similar to the one used in expression (2.4):
exp

(
− (λ − λ0)

2 /4σ 2
λ

)
. For a FWHM of the intensity pro�le of 11nm, the standard deviation

σλ is equal to approximately 4.7nm. Using the latest expression, one can compute a typical
value ktyp for which A(ktyp ) = e−1. It leads to ktyp − k0 = 4πnr (λ0)σλ/λ20 ≈ 170mm−1 where
k0 = 2πnr (λ0)/λ0.
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5.3.1.3 Neglecting focusing terms

Hence the ratio between the transverse terms and the longitudinal terms of expresion (5.16)
for the typical values qtyp and ktyp is less than 2.5 × 10−3. It is thus reasonnable, in this
“weak” focusing regime, to neglect the focusing terms and keep only the longitudinal terms
in expression (5.16).

5.3.2 E�ect of birefringence
BiBO being a bi-axial crystal, there is no reason that any beams in a non-collinear con-
�guration has the appropriate polarization to propagate in the crystal and experience the
same refractive index than in the collinear case. Using the ellipsoid of indices of BiBO (as
explained in appendix B), we can compute the new refractive index each beam experiences
and assess the discrepancy between their input polarizations and the directions where a
linear polarization is allowed to propagate in the crystal.

When they enter the crystal, both beams are deviated by refraction at the interface. The
angles α in

h
and α inv inside the crystal are:

α inh ≈ αh/nr (λ0) ≈ 0.93° (5.28)
α inv ≈ αv/nr (λ0) ≈ 0.37° (5.29)

where nr (λ0) is the refractive index of BiBO at our fundamental wavelength for linearly-
polarized light in the yz plane and is approximately equal to 1.82 for θ = 150.81°. We will
replace αh and αv with α in

h
and α in

h
in the rest of this chapter.

We compare the values of the trigonometric factors of expression (5.16) with the unity
terms of the expression of the collinear phase-matching function (5.25). We �nd the follow-
ing di�erences:

For kд: 1 − cos
(
α inv

)
cos

(
α inh

)
≈ 1.5 × 10−4 (5.30)

For ks : 1 − cos
(
α inh

)
≈ 1.3 × 10−4 (5.31)

For kc : 1 − cos
(
α inv /2

)
≈ 2.1 × 10−5 (5.32)

In the following subsections, we use the notations of appendix B for the ellipsoid of in-
dices E , the plane perpendicular to the wave vector Π and their intersection E. We compute
a new ellipse E for each case and compare it to Ecoll which is the ellipse in the collinear
case. If the direction of the main axes of E and Ecoll do not coincide, the linear polarizations
authorized to propagate in the crystal have changed. If the input polarization is not adapted
in consequence, it will be decomposed into two orthogonal linear components experiencing
di�erent refractive indices in the crystal and thus creating an elliptically polarized light at
the output (in the presence of walko�, those components will ultimately be spatially sepa-
rated). We assume that the amount of light being projected in the orthogonal component
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is lost and we estimate this loss from the angle θpol between the main axes of E and Ecoll as
sin2

(
θpol

)
. We also compute the di�erence ∆n between the refractive indices obtained from

Ecoll and the ones obtained from E.

5.3.2.1 E�ect of the horizontal angle

In presence of an horizontal angle α in
h
≈ 0.93° only (the vertical angle α inv is assumed to

be null in this subsection), the gate and signal beams are still contained in the xz plane of
�gure 5.1. The SFG beam direction and polarization is identical to the one of the collinear
con�guration and the gate SHG beam propagates with the gate beam. We summarize our
�ndings in the following table:

Beam Angle θpol Losses ∆n

Signal α in
h

0.69° 1.44 × 10−4 8.69 × 10−6
Gate −α in

h
−0.69° 1.44 × 10−4 8.69 × 10−6

SFG 0 0 0 0
Gate SHG −α in

h
−0.62° 1.17 × 10−4 1.28 × 10−4

The values of ∆n given in the table above are the maxima that can be obtained by changing
the crystal phase-matching angle θ .

Given the low values of θpol and the losses that each beam experience, we do not adapt
the polarization and neglect the losses. Nevertheless, the values of ∆n are not really negligi-
ble when compared to the values of the trigonometric functions shown in (5.32), especially
for the gate SHG. It would be quite an approximation to treat the conversion as if the change
in indices due to the non-collinear geometry did not exist. Let us add the vertical angle be-
fore we conclude.

5.3.2.2 E�ect of both horizontal and vertical angles

We now consider the con�guration where both angles α in
h

and α inv are non-null. The signal
beam is unchanged and the gate beam propagates with an additional vertical angle. The
SFG beam now propagates in the yz plane but deviates of the z axis by an angle −α inv /2 as
indicated on �gure 5.1. The gate SHG still propagates along the gate beam. The values of
θpol , the losses and ∆n are now: Interestingly, the introduction of the vertical angle has had
no e�ect on the propagation properties of the SFG beam. It is because introducing a vertical
angle is equivalent to a rotation of the ellipsoid of indices around the x axis, which is the
direction of polarization of the SFG beam. It is thus absolutely normal that those properties
remain unaltered.

Given the new value of ∆n for the gate beam especially, we can no longer neglect the
change of indices when compared to the values of the trigonometric functions (see (5.32)) of
expression (5.16). In the rest of this chapter, we will account for this change of index when
computing phase-matching.
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Beam Angles θpol Losses ∆n

Signal {α in
h
, 0} 0.69° 1.44 × 10−4 8.69 × 10−6

Gate {−α in
h
,−α inv } −0.62° 1.17 × 10−4 7.30 × 10−4

SFG {0,−α inv /2} 0 0 0
Gate SHG {−α in

h
,−α inv } −0.56° 9.73 × 10−5 1.50 × 10−4

Table 5.1: test

5.3.3 The problem of gate SHG
We �rst introduced only the horiontal angle α in

h
in order to create the non-collinear con�g-

uration where the SFG and the gate SHG beams are spatially separated. The photons in the
SFG beam must be detected by a SPCM to act as heralds of the single-photon subtraction.
The �rst step to take in order to enable the single-photon subtraction is to check that the
SPCM is indeed detecting photons from the SFG beam and not background noise. To test
that, we generated a bright SFG beam between a gate and a signal of comparable powers,
coupled this SFG beam into a six meters long SM-300 single-mode optical �ber. We blocked
the signal beam before the telescope and kept only the gate beam. We �nally connected the
single-mode �ber to a low-noise SPCM (dark counts < 10Hz). We counted the number of
events detected by the SPCM with the gate beam but in the absence of signal beam and we
refer to this count simply as noise count.

As a �rst test, the SPCM exhibited an important noise count consistently over 70kHz
(and much beyond) for only 2mW of gate power. In a nutshell, the gate SHG was scattered
by imperfections in the crystal and at the output interface as depicted in �gure 5.8. The
spatial mode of SFG captured by the �ber was polluted by this scattering and the single-
photon detector was “blinded” by this pollution. One should keep in mind that regarding
spatial �ltering, a single-mode �ber is the best device available.

The noise count exhibited important variations (from 70kHz to 1MHz) depending on
the position of the beams in the crystal. At �rst, lowering the noise resulted in manually
scanning the crystal position at random in order to �nd a “soft spot” minimizing the noise
count. In spite of our best e�orts, it was not su�cient. However, we realized that the non-
collinear geometry resulted in di�erent phase-matching for SFG and gate SHG with the
following consequences:

• if the crystal was set to optimize the phase-matching of the SFG, the phase-matching
of the gate SHG should be detuned, resulting in a shifted sepctrum for the SHG;

• as the gate SHG was detuned, the e�cieny of the SHG should be greatly decreased.

We decided to take advantage of this detuning e�ect to discriminate the photons coming
from the SFG and the gate SHG. Firstly, by separating their spectra for further spectral
�ltering and secondly by weakening the power of the gate SHG. In the following we discuss
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how both conversions are a�ected by the horizontal angle α in
h

and then by the combination
of α in

h
and α inv .

Figure 5.8: Optical setup of the SFG seen from top. The gate SHG propagates along the
gate. Its scattering is shown as a blue shaded area. The SFG beam is injected into a single-
mode optical �ber connected to a Single-Photon Counting Module (SPCM) for subtrction
heralding. The spectral �lters block the scattered gate SHG.

5.3.3.1 SFG and SHG Phase-matching

The phase matching of SFG ∆kSFG of expression (5.16) and gate SHG ∆kSHG are the follow-
ing:

∆kSFG (ωs ,ωc ) =
(
kд (ωc − ωs ) cos

(
α inv

)
+ ks (ωs )

)
cos

(
α inh

)
− kc (ωc ) cos

(
α inv /2

)
∆kSHG (ωд,ωc ) = kд (ωc − ωд) + kд (ωд) − kd (ωc ) (5.33)

where kd is the wave vector of the frequency-doubled light. The wave vectors kд, ks , kc
and kd depend on the phase-matching angle θ . This angle must be adapted for each values
of α in

h
and α inv in order to optimize the SFG process. Indeed, the cosines inherited from

the non-collinear geometry in expression 5.16 must be compensated for so that ∆kSFG =
0. Experimentally, it is achieved by performing SFG between a signal and a gate beam of
identical spectra (and comparable optical powers) while monitoring the spectrum of the
converted light. The phase-matching angle θ is adapted by tilting the crystal along the x
axis (see �gure 5.1) until the spectrum of the converted light is centered at λ0/2 = 397.5nm.

Figure 5.9 presents an explanation for our con�guration. The phase-matchingθ is adapted
in order to center the JSD of the SFG at λ0 for the signal wavelength and λ0/2 for the up-
converted wavelength. We treat the gate SHG as a detuned sum frequency between the
gate pulse and another virtual pulse that propagates along the gate beam. In this picture,
the phase-matching of this virtual sum frequency is detuned compared to the one of the
non-collinear SFG. In particular, on the right side of �gure 5.9, the JSD of the virtual sum
frequency is detuned by approximately 10nm for the signal and 2.5nm for the up-converted
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when compared to the JSD shown on the left side. It means that to perform e�cient collinear
sum frequency in the direction of the gate beam, a virtual pulse should be centered at
λ0 − 10nm = 785nm. As the gate SHG is in fact a sum frequency of the gate with itself,
it cannot be performed e�ciently due to the detuned phase-matching.

Figure 5.9: JSD of SFG (left) and gate SHG (right) for a crystal length lc = 2mm. The gate
pro�les correspond to the �rst Hermite function H0 whose bandwidth is 11nm (intensity
FWHM). The vertical axis has been zoomed �ve times with respect to the horizontal one.

To conclude, this detuning has two e�ects that we exploit: a great reduction of the
conversion e�ciency for the gate SHG and a shift of its spectrum.

5.3.3.2 Horizontal only tuning

At �rst, the horizontal separation between signal and gate beam was only 7mm and there
was no vertical angle. We tried to increase the horizontal separation up to 19.5mm. The
reduction of e�ciency conversion for the gate SHG was greatly reduced and so was the
noise count on the single-photon detector which dropped down to a few kilohertz for about
2mW of gate power. The situation was not fully satisfying for the following reasons:

• the noise count was still not low enough;

• the spectra of SFG and gate SHG still overlapped as shown on �gure 5.10;

• a large horizontal separation meant that the beams were far from the center of our
spherical lens thus inducing angular chirp in both beams [Weiner 11b].
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For those reasons, we decided to introduce the vertical separation by shifting the gate
beam in the upper direction with the idea that a vertical angle α inv would have a stronger
impact to detune the phase-matching of the gate SHG.
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Figure 5.10: Left: central wavelengths of gate SHG spectra (blue dots) with respect to the
horizontal separation between gate and signal beam. The crystal is consistently adapted so
that the spectrum of SFG is centered at λ0/2 = 397.5nm (red line). Right: spectra of SFG
(blue) and gate SHG (yellow) for a 18mm of horizontal separation. Both spectra have been
normalized to their respective maxima.

5.3.3.3 Killing the noise

In spite of keeping a reasonable horizontal separation (about 12mm) between the signal and
the gate beams, the introduction of a vertical shift of the gate beam (about 3mm) kept the
noise count on the single-photon detector down to the same level achieved for the largest
horizontal only separation (a few kilohertz) for the same gate power. It meant that the slight
vertical angle compensated the smaller horizontal angle in reducing the e�ciency of the gate
SHG phase-matching. Increasing the vertical shift of the gate beam to 6mm decreased that
e�ciency further as depicted on the left side of �gure 5.11. More interestingly, the spectrum
of the gate SHG was shifted further in the direction of shorter wavelengths.

We then used a pair of optical �lters with a narrow spectral bandwidth (0.5nm FWHM)
and a decent peak transmission (over 90%) at 398nm. The �lters were tuned sequentially
with a bright SFG beam centered at λ0/2 = 397.5nm by maximizing the integrated signal
of a spectrometer located after the �lters. The SFG spectrum was narrowed from 0.6nm to
0.4nm.

We then sent the gate SHG beam through the �lters to assess the �ltering achieved on
the scattered light coming from this beam. The �rst �lter allowed us to reduce the power
transmitted almost by a factor 20. The second �lter o�ered an additional factor 7. The
overall power reduction on the spectrally shifted gate SHG beam was over 100. As shown
on �gure 5.11, there is still a little bit of the gate SHG spectrum leaking through the double
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�lter system. The power reduction was enough to allow us to drop the noise count of the
single-photon detector to less than 100Hz for approximately 1mW of gate beam power.

Figure 5.11: Left: spectra of the gate SFG (blue), gate SHG with 3mm of vertical separation
(yellow), 6mm of vertical separation (green) and the theoretical predictions for their central
wavelengths (dashed vertical lines). The theoretical predictions of their central wavelengths
are consistently too optimistic by approximately 25%. Blue and yellow spectra have been
normalized to their respective maxima while the green spectrum has been normalized to the
maximum of the yellow spectrum to highlight the reduction of the conversion e�ciency.
Right: gate SHG spectra with no �lter and reduced by a factor 20 for readability (blue), with
one spectral �lter (yellow), with two spectral �lters (green).

Finally, we mixed the gate beam with a signal beam of identical spectrum but whose
power had been attenuated by neutral densities down to a few photon per pulse. We could
observe a count of approximately 200kHz meaning that the signal to noise ratio reached a
satisfying value of about 2 × 103. The capability to suppress the noise count was a necessity
in order to perform any experiment of single-photon subtraction. Obtaining a signi�cant
signal from the up-conversion of a beam carrying an average photon per pulse close to unity
was the key capability to perform a modal tomography of the single-photon subtraction as
we will see in the next chapter.

5.3.4 Eigenmodes of non-collinear subtraction
Before describing the tomography of the single-photon subtraction, we brie�y discuss the
theoretical expectations. We eventually used a 2.5mm long crystal. The non-collinear geom-
etry reduces the e�ective interaction length to approximately 2.3mm. We build the JSD of
SFG similarly to section 5.2 with the addition of two �ltering Gaussian functions of FWHM
0.5nm in order to model the spectral �lters used for the up-converted photon before �ber
injection. The JSD is depicted on �gure 5.12.

We perform a Schmidt decomposition to obtain the subtraction e�ciencies {σn}, com-
pute the Schmidt number and obtain the eigenmodes of the up-conversion and consequently,
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of the single-photon subtraction. The Schmidt number is K = 1.004 meaning that the pro-
cess can hardly be more single-mode, thanks to the spectral �ltering of the up-converted
photon. The amplitude of the �rst three signal modes of the process are shown on �gure
5.12. The only mode that really matters is only the �rst one (due to the extremely low
Schmidt number) and it matches the gate mode exactly.
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Figure 5.12: Left: JSD of the non-collinear SFG with two spectral �lters for the up-converted
photon. Right: amplitudes of the �rst three signal eigenmodes.

We can now move on to describe the process tomography of the single-photon subtrac-
tor.
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Process Tomography
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Chapter 6

Tomography of the single-photon
subtractor

[About physics as a whole] “Everything is the cause of what happens after!”
– Valérian “Wunderval” Thiel
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In this chapter, we adopt a similar but di�erent approach than the one developed in
chapter 4. We show how the subtraction matrix (4.17) of the Quantum Pulse Gate (QPG), or
any single-photon subtraction process, can be retrieved by probing the device with weak co-
herent states and measuring conversion rates with a single-photon detector. This technique
allows us to retrieve the modal matrix of the process.

6.1 Quantum process tomography

Tomography is the mathematical reconstruction of a high dimension object from several
partial measurements. In quantum optics, tomography is usually performed on states, pro-
cesses and �nally detectors. In this section, we introduce the concept of Quantum Process
Tomography (QPT) and explain how it adapts to our particular case.

6.1.1 Tomography of a quantum black box

Quantum process tomography was �rst suggested to assess the properties of a quantum-
mechanical black box as an arbitrary open quantum system [Chuang 97]. A linear map (a
tensor) E would transform an input quantum state ρ̂ into E (ρ̂). A natural form to describe
the process is a sum of operators similar to expressions (4.14) and (4.18) introduced in chap-
ter 4 where ρ̂− is E (ρ̂).

Process tomographies were limited at �rst to processes acting on qubits of low dimen-
sionality. The standard way to characterize those processes was to produce a complete set
of quantum states, have each of them undergo the quantum process and measure the ouput
density matrix elements. In other words, perform a state tomography before, and after the
process. If the process had dimension N , a set of N 2 states should be prepared in order to
recover all the elements of the tensor through the measurement of the elements of each
output density matrices as:

ρ̂outi,j =
∑
n,m

E
n,m
i,j ρ̂n,m (6.1)

where En,mi,j are the elements of the tensor E.
While this method works when the black box acts on system of low dimensionality,

it becomes quite impractical when the dimension increases. To address this problem, it is
possible to perform process tomography with coherent states.
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6.1.1.1 Coherent states quantum process tomography

As the process tomography requires the synthesis of arbitrarily complex quantum states
to probe the quantum black box, it is extremely appealing to perform it with coherent
states only. This technique has been introduced and exploited for the �rst time recently
[Lobino 08]. An arbitrary quantum state can be written as a weighted continuous superpo-
sition of coherent states thanks to the Glauber-Sudarshan P function. It is then possible to
use coherent state for the measurement and still reconstruct the process tensor E using the
same tools.

A quantum state ρ̂ is written with its Glauber-Sudarshan Pρ̂ function as:

ρ̂ =

∫
dα2 Pρ̂ (α ) |α〉〈α | (6.2)

A single-mode density matrix can be written in the Fock basis as a decomposition over the
Fock states:

ρ̂ =
∑
n,m

ρn,m |n〉〈m | =
∑
n,m

ρn,m

∫
dα2 P|n〉〈m | (α ) |α〉〈α | (6.3)

and with this decomposition1, it is possible to express the density matrix E (ρ̂) transformed
by the quantum process E as:

E (ρ̂) =
∑
n,m

ρn,m

∫
dα2 P|n〉〈m | (α ) E ( |α〉〈α |) (6.4)

Then each element En,mi,j of the process tensor can be reconstructed as:

E
n,m
i,j =

∫
dα2 P|n〉〈m | (α ) Ei,j ( |α〉〈α |) (6.5)

where the values Ei,j ( |α〉〈α |) = 〈i |E ( |α〉〈α |) |j〉 can be retrieved, for instance from the
measurement of the output state �eld quadratures with an homodyne detection [Lobino 08].
With those measurement, it is possible to reconstruct the entire process E.

6.1.1.2 Working around the traditional characterization

As explained above, even in the context of coherent states quantum process tomography, the
process tomography is still a quantum state tomography. In our case, the situation becomes
di�erent because of the very nature of our process. We restrain our analysis by assuming

1Actually, the P function needs to be regularized using Klauder theorem, P̃ (the Fourier transform of the P
function) and an exponentially decaying regularizing function over an arbitrarily large volume of the space.
It is then possible to write the following equation. We treat the P function as regular here, see [Lobino 08] for
full details about this regularization
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that the input density matrix can be factorized on a basis of modes {uk } and express each
single-mode quantum state in terms of its coherent states decomposition using Glauber-
Sudarshan P function:

ρ̂ =
⊗
k

∫
dα2

k Pk (α ) |α〉〈α |k (6.6)

We now come back to the expression (4.14) of the evolution of the density matrix through
the multimode subtraction procedure introduced in chapter 4. We can calculate the output
density matrix by introducing a basis change between the modes of the input state and the
modes of the operators {Ân}:

ρ̂− ∝
∑
n,n′

Snn′ Ân′ ρ̂Â
†
n (6.7)

∝
∑
n,n′

Sn,n′
∑
k,k ′

νn′,kν
∗
n,k ′âk ρ̂â

†

k ′
where νn,k = 〈αn,uk〉 (6.8)

∝
∑
n,n′

Sn,n′
∑
k,k ′

νn′,kν
∗
n,k ′

⊗
i

∫
dα2

i Pi (α ) |α〉〈α |i (6.9)

Expression (6.9) is greatly simpli�ed if the input state consists of coherent states in each
modes {uk }. The Glauber-Sudarshan Pi (α ) become Dirac delta functions and expression
(6.9) simply gives:

ρ̂− ∝ *.
,

∑
n,n′

Sn,n′
∑
k,k ′

νn′,kν
∗
n,k ′αkα

∗
k ′

+/
-
ρ̂ (6.10)

Hence an input state constituted of coherent states is not transformed by a single-photon
subtraction. This result is absolutely normal as coherent states are eigenstates of the an-
nihilation operator. But for this reason, it does not make any sense in our case to try to
reconstruct the process tensor E through the state tomography of the output state ρ̂− as in
[Fedorov 15, Cooper 15].

Nevertheless, we can measure the success rate of the single-photon subtraction. Indeed,
the normalization constant P is exactly equal to the probability to subtract a photon and is
equal, in the case of an input consisting in coherent states, to:

P =
∑
n,n′

Sn,n′ Tr
(
Ân′ (⊗i |α〉〈α |i ) Â

†
n

)
(6.11)

=
∑
n,n′

Sn,n′
∑
k,k ′

νn′,kν
∗
n,k ′αkα

∗
k ′ (6.12)

The success rate of the process is thus expected to change depending on the amplitudes
{αi } of the input state. By measuring the success rate, we perform a tomography of our
single-photon subtractor.
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6.1.2 Checking the quantum process
Before performing a quantum process tomography, it is necessary to verify that the quantum
process at play is a single-photon subtraction and not a multi-photon subtraction. Our
subtraction process is equivalent to a simple beamsplitter mixing a single-mode signal �eld
with a vacuum bath as described on �gure 4.1 and we use the formalism of chapter 4 in the
following. The evolution operator Û is the one introduced in expression (4.6) although we
do not limit the Taylor development to the �rst order:

Û = 1̂ +
∑
n≥1

[
iθ

(
ÂB̂† + Â†B̂

)]n

n! (6.13)

The signal �eld is single-mode and we assume its annihilation operator to be Â. It carries a
coherent state |α〉 and the input state of the beamsplitter is ρ̂ = |α〉〈α | ⊗ |0〉〈0|. We assume
that the detection operator Π̂ of the single-photon detector is 1̂−|0〉〈0|, i.e. a photon detector
with unit e�ciency unable to resolve the photon number. We compute the evolution of the
density matrix through the evolution operator and the average number of counts c recorded
by the single-photon detector:

Û ρ̂Û † = ρ̂ +
∑
n≥1
|θ |2n |α |2n

|α〉〈α | ⊗ |n〉〈n |

n! + Cross Terms (6.14)

c = Tr
(
Π̂Û ρ̂Û †

)
=

∑
n≥1

(
|θ |2n |α |2n

n!

)
(6.15)

where the cross terms in expression (6.14) contain non-symmetric terms in terms of photon
numbers such as |n〉〈m | with n , m in the part of the density matrix about to be detected
by the single-photon detector.

Expression (6.15) is a well-known result: the photon arrival statistics of an attenuated
coherent state is still a coherent state. The potentially non-unit quantum e�ciency γ of the
single-photon detector can be accounted for and would only results in a modi�cation of the
constant θ into θγ .

As a consequence, we can interpret the evolution of the number of counts of the single-
photon detector. One can see that the term corresponding to the detection of n photons is
weighted by |α |2n. One way to verify that only a single-photon is subtracted from the input
light �eld is to assess the evolution of the number of counts when increasing the power
of the input coherent state. If the evolution remains linear, then only a single-photon is
subtracted.

We present an experimental veri�cation of the linearity of the evolution with respect to
the power of the signal beam on �gure 6.1. We �t the detection count c with a quadratic
function of the average photon number per pulse |α |2 in the signal beam according to:

c = c0

(
a0 + |α |

2 + a2
(
|α |2

)2)
(6.16)
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Figure 6.1: Detection count of our single-photon detector with respect to the average photon
number per pulse in the probe beam (blue dots) and a quadratic �t of the data (red). The
gate power is approximately 1mW, the gate mode is H0 with 6nm bandwidth.

The �t parameters obtained are detailed in the following table:

Parameter Fitting value Standard deviation Con�dence interval
c0 2372.16 22.95 [2325.99, 2418.32]
a0 0.716439 0.379329 [−0.0462534, 1.47913]
a2 −7.262 01 × 10−5 5.090 87 × 10−5

[
−1.749 79 × 10−4, 2.973 87 × 10−5

]

The con�dence interval of the a2 parameter proves that the the quadratic term of the evolu-
tion of the detection count with respect to the probe beam can be neglected. The subtraction
that we perform is then a single-photon only subtraction. For each process tomography that
we have performed, we have checked the linearity of this evolution to be sure that the quan-
tum process we were looking at did not include any multiphoton subtraction.

6.2 Probing the subtraction matrix

In this section, we investigate our single-photon subtractor as a multimode quantum process
mixing two input ports. The evolution operator is exactly the one of exp. (4.12), namely:

Û ≈ 1̂ + i
∑
n

θn
(
ÂnB̂

†
n + Â

†
nB̂n

)
(6.17)
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6.2.1 The probing basis

In order to perform a process tomography of our single-photon subtractor, we send a probe
beam as input. This probe beam carries a weak coherent state. The average number of
photon of this coherent state must be low enough to satisfy a low conversion rate compati-
ble with the �rst-order Taylor development of (4.12). The basis {uk } chosen for the probing
modes is composed of frequency bands called pixels obtained by chopping the original spec-
trum via ultrafast pulse-shaping (see chapter 3) as shown on �gure 6.2. In order to perform
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Figure 6.2: Spectra of the 25 pixel modes used to probe the subtraction matrix.

the tomography, we use the maximum optical power available in each band so that the
signal-to-noise ratio is maximized for each measurement.

We use the formalism developed in chapter 4. For simplicity, we choose the arbitrary
input basis {αn} used to describe the single-photon subtraction process to be the same than
our probing basis {uk } whose annihilation operators are {âk }. In what follows, we compute
the probability to detect a single photon with the single-photon detector, given a combina-
tion of non-vacuum input modes. For that purpose, we �rst express the evolution operator
in the basis the pixel modes of the probe:

Û ≈ 1̂ + i
∑
k

θk
(
âk B̂

†

k
+ â†

k
B̂k

)
(6.18)

We assume for simplicity that the single-photon measurement operator Π̂ of exp. (4.1) is
lossless (i.e γm = 1 ∀ m). We compute the quantum state ρ̂− at the output of the single-
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photon subtractor similarly to expression (4.14) and we obtain:

ρ̂− =
∑
k,k ′

Skk ′ âk ′ ρ̂â
†

k
/P (6.19)

with Skk ′ = θk ′θ
∗
k

∑
m

〈~δm, ~βk ′〉〈~βk , ~δm〉 (6.20)

6.2.2 Accessing the elements of the subtraction matrix
By computing the trace of the output state ρ̂−, we can now compute the probability to detect
a single-photon with the single-photon detector given the input multimode state. In order
to probe the subtraction matrix S in the {uk } basis, we populate only one or a pair of modes
with a coherent state as input via ultrafast pulse shaping.

6.2.2.1 Diagonal terms

For example, exciting only one mode “i” of the basis {uk } gives the probability Pi to convert
a photon from this given mode, hence the diagonal terms of the subtraction matrix in this
basis:

Pi = Tr *.
,

∑
k,k ′

Skk ′ âk ′ ρ̂iâ
†

k
+/
-

with ρ̂i = |αi〉〈αi |i (6.21)

= Sii |αi |
2 (6.22)

The diagonal terms {Sii } of the subtraction matrix are then easily deduced from those one
mode measurements.

6.2.2.2 O�-diagonal terms

In order to access the o�-diagonal terms of the subtraction matrix, we populate a two-modes
coherent state from the {uk } basis as probing inputs. We compute the probability to measure
a single photon with the single-photon detector:

Pi,i ′ = Tr
*.
,

∑
k,k ′

Sii ′ âk ′ (ρ̂i ⊗ ρ̂i ′ ) â
†

k
+/
-

(6.23)

= Sii |αi |
2 + Si ′i ′ |αi ′ |

2 + Sii ′αiα
∗
i ′ + Si ′iα

∗
i αi ′ (6.24)

The subtraction matrix being Hermitian by construction (see expression (4.15)), we have
Si ′i = S∗ii ′ . We access the real and imaginary parts of the o�-diagonal terms by setting the
phase between |αi〉 and |αi ′〉 respectively to 0 and π/2. We assume the amplitude αi and
αi ′ to be equal and we denote the probabilities to detect a single photon associated to those
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two modes P0
i,i ′ and P

π
2
i,i ′ for respectively a 0 and π/2 phase di�erence. We can then easily

compute the real and imaginary parts as:




P0
i,i ′ = Sii + Si ′i ′ + Sii ′ + S

∗
ii ′

P
π
2
i,i ′ = Sii + Si ′i ′ − iSii ′ + iS

∗
ii ′

(6.25)

⇒




< (Sii ′ ) =
(
P0
i,i ′ − Sii − Si ′i ′

)
/2

= (Sii ′ ) =

(
P

π
2
i,i ′ − Sii − Si ′i ′

)
/2

(6.26)

Once the elements of the subtraction matrix are known in the {uk } basis, it is possible to
diagonalize S in order to access its eigenvalues and eigenvectors. We can then deduce the
Schmidt number of the process (or the purity) as well as the optical modes that will undergo
a single-photon subtraction.

6.2.3 Experimental subtraction matrices
In order to perform a process tomography using the single-photon detector and the probing
modes pictured in �gure 6.2, we had to slightly change the phase mask printed on the SLM.
We initially used a grating structure made of �ve wrappings for each beam in the dual beam
shaping con�guration introduced in chapter 3. When the amplitude of the grating supposed
to di�ract the probe beam was null, a little bit of light was still di�racted into the �rst order
of di�raction and was passing through the spatial �lter. This leak led to unwanted detection
events by the single-photon detector. We got rid of those events by increasing the wrappings
up to seven on the lower part of the SLM used to shape the probe beam and changing the
spatial �lter accordingly.

Technically, we perform the measurement of each term of the subtraction matrix through
the following sequence:

• we �rst measure the number of counts detected by the single-photon detector for
each of the N individual pixel of the probing basis shown on �gure 6.2 utilizing the
maximum optical power available;

• we measure the count of the single-photon detector and the optical power of the probe
beam for a superposition of two pixels where we exploit as much optical power as we
can from the pair of pixels. For this, we set the grating structure on the SLM phase
mask to reach a maximum amplitude for one of the two pixels;

• we perform the same measurement again introducing a π/2 phase between each cou-
ple of pixel.

We take N extra measurements at the beginning of the sequence for calibration so at the
rate of one measurement per second, the measurement time of subtraction matrix is actually
N + N × N = 25 + 252 = 650 seconds. Also, we used enough optical densities to keep the

115



6.2. PROBING THE SUBTRACTION MATRIX

average photon number per pulse in each pixel between 5 and 42 ensuring the subtraction
of a single-photon at best as guaranteed by �gure 6.1. We present here the results of the
di�erent subtraction matrices obtained experimentally.

6.2.3.1 Tomography for di�erent gate modes

We have measured several subtraction matrices corresponding to the following gate spectral
pro�les:

• di�erent zero-order H0 Hermite functions modes with bandwidths between 2 to 10
nm (intensity FWHM);

• a family of Hermite functions Hn based on a 4nm H0 with n up to 6 (see �gure 6.3);
• various coherent superpositions of the previous family, sometimes including a π/2

phase, thus taking advantage of the spectral phase shaping capability of our pulse
shaper to introduce non-trivial spectral phase (other that π phase jump) in the sub-
traction modes.

Figure 6.3: Spectral intensity pro�les of the gate modes for the family of Hn Hermite func-
tions whose H0 has a bandwidth of 4nm.
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We present some experimental matrices in the following subsection.

6.2.3.2 Experimental matrices

Figure 6.4 shows the subtraction matrices reconstructed in the probing basis introduced in
�gure 6.2. For each of those di�erent matrices, the imaginary part should be null but we
still retrieve a few weak components due to noise and some experimental imperfections. All
the measured matrices prove the tunability of our single-photon subtractor and its capabil-
ity to address any arbitrary broadband frequency mode within a given optical bandwidth
and spectral complexity. The main limitations are, in descending order of importance, the
bandwidth of the phase-matching, the bandwidth of the gate available and the optical res-
olution of the pulse shaper. To demonstrate the capability to engineer the spectral phase of
a subtraction mode, we present on �gure 6.5 the subtraction matrix where the gate mode
was a coherent superposition of H1 and H2 with a π/2 phase. We also measured the sub-
traction matrices (not displayed here) for the following coherent superpositions: H0 + H1,
H0 + H2, H0 + iH2, H2 + H3, H3 + H4, H0 + H1, H0 + H1 + H2, H1 + H3 + H4, H1 + iH3 + H4,
H0 + H1 + H2 + H3 + H4 and �nally H0 + H1 + H2 + H3 + H4 + H5 + H6.

We do not directly compute the purity of the experimental subtraction matrices. In-
deed, those matrices su�er from experimental errors. Those errors come from the noise
of the single-photon detector and the imperfections of our measurement. The noise from
the detector in particular, becomes annoying when the signal to be measured is null, or
extremely weak. The noise being constant, the signal ratio for the small terms of the sub-
traction matrix becomes low, hence those small terms are most likely quite inaccurate. One
of the annoying manifestation of those experimental errors is to be found in the properties
of the experimental subtraction matrices.

For instance, for the subtraction matrix where the gate mode is a H0 function with 4nm
bandwidth, some of the eigenvalues obtained through eigendecomposition are negative as
depicted on �gure 6.6. Those negative eigenvalues mean that the experimental subtraction
matrices are not semi-de�nite positive, hence physical, which contradicts the theoretical
predictions of chapter 4 (see equation (4.15)). Those negative eigenvalues could lead to
a Schmidt number lower than unity, or a process purity greater than unity which is non
physical. Still, �gure 6.6 provides a very valuable information. We see that one eigenvalue
is clearly dominating meaning that one mode of subtraction dominates over all the others.
We will discuss the reconstruction of physical subtraction matrices later in this chapter and
focus now on the eigenmodes of those subtraction matrices.

6.2.3.3 Eigenmodes

We present on �gure 6.7 the �rst and dominating eigenmode of the matrices displayed in
the previous subsection. Those �rst eigenmodes show the expected features, namely:
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Figure 6.4: Real (left column) and imaginary (right column) parts of experimental subtrac-
tion matrices obtained for di�erent gate modes presented on �gure 6.3: H0 with a bandwidth
of 4nm (�rst row), H1 of the same family (second row) andH2 (last row). Matrices are shown
from their lower left corner.
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Figure 6.5: Real (left column) and imaginary (right column) parts of the experimental sub-
traction matrix obtained for a gate mode consisting in a coherent superposition of H0 and
H1 wih a π/2 phase. Matrices are shown from their lower left corner.

• a Gaussian pro�le of bandwidth (intensity FWHM) of about 4nm and a �at phase for
the H0 gate,

• a H1 pro�le with a π phase shift at the center for the H1 gate,
• a H2 pro�le with two π phase at the nodes for the H2 gate
• a super-Gaussian like amplitude pro�le wider than the H0 with a dip in the middle

and a linearly increasing phase π for the H0 + iH1 gate.

The phase of each of those subtraction modes only makes sense for the frequency bands
where there is actually some amplitude. In the frequency bands where there is no energy,
the phase is not de�ned and gets more noisy. It leads to random phase jumps from negative
values close to−π to positive values close to π as the phase has been wrapped between those
bounds. Also, the average value of the phase does not have a particular physical meaning
here as those modes are only de�ned up to an arbitrary relative phase.

Those �rst eigenmodes are proofs that our single-photon subtractor is capable of repro-
ducing the spectral mode imposed by the gate mode as explained in 5. In order to fully assess
the performance of our single-photon subtractor, we should compute the Schmidt number
K of the subtraction matrices (or the process purity 1/K ) as well as the �rst eigenvalues. For
this, we reconstruct physical matrices through Maximum-Likelihood.
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Figure 6.6: Eigenvalues of an experimental subtraction matrix whose gate mode is a H0 of
4nm bandwidth (intensity FWHM).

Figure 6.7: Amplitude (colored bars) and phase (solid black line) of the �rst eigenmode of
the experimental subtraction matrices displayed on �gures 6.4 and 6.5: H0 gate (upper left),
H1 gate (upper right), H2 gate (lower left) and H0 + iH1 gate (lower right).
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6.3 Maximum-Likelihood reconstruction
As explained in the previous section, the experimental subtraction matrices are not physical
(precisely not semi-de�nite positive), mostly because of the incorrect values of their small
terms. Those errors might be partly suppressed by further optimizing the experimental
setup to make sure that the supposedly null terms of the subtraction matrices are correctly
canceled when computed from the measurement data. Also, integrating the signal for each
measurement on a longer time may help but the overall acquisition time would be increased
proportionally, leading to time-consuming experiments.

Because of our guilty laziness, and the fact that we already spent signi�cant time opti-
mizing this measurement, we rather perform a Maximum-Likelihood reconstruction of the
subtraction matrix similarly to [Fedorov 15].

6.3.1 Principle of Maximum-Likelihood reconstruction
For a given experimental subtraction matrix S, we want to �nd a positive semi-de�nite
matrix SLik that maximizes the likelihood to obtain the measurement data associated to S.

6.3.1.1 Single-photon detection as a random process

The physical process that we try to assess is a parametric process. It is inherently proba-
bilistic. The up-converted photons are also subject to many optical losses, namely:

• losses at the interfaces of the second lens of the telescope (the coating is not adapted
to UV light) for about 40%,

• losses in the spectral �lter for about 40%,
• losses at the �ber injection the coupling being limited to 50% at best,
• losses at the detector whose quantum e�ciency is approximately 40%.

Hence approximately 95% of the up-converted photons are lost between the bulk BiBO crys-
tal and the detector avalanche process. On top of that, the detector has an inherent noise,
even if we worked hard toward minimizing it (see chapter 5). For all those reasons, we
assume that the count number of the detector eventually given by the detector follows a
binomial distribution of probability p. For a large number of counts the probability mass
function can be approximate to be Gaussian (according to the central limit theorem) and we
model the probability to get a count number c as:

P (c ) ∝ exp
[
−
(c − 〈c〉)2

2σ 2
c

]
(6.27)

where σ 2
c = 〈c〉(1−p)p is the variance of the probability mass function and 〈c〉 is the average

of the probability mass function of the detection count, i.e. the most likely value to be
measured [James 01].
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To reconstruct a subtraction matrix, we perform N 2 measurements leading to a set {ci } of
measurement values. Each measurement obeys to the probability law (6.27) with a di�erent
parameter 〈ci〉 for each. The likelihood L that a given set of values {〈ci〉} could produce the
N 2 measurements {ci } is the product of each individual measurement probabilities:

L =
∏
i

P (ci ) ∝
∏
i

exp
[
−
(ci − 〈ci〉)

2

2σ 2
ci

]
(6.28)

It is very common to treat maximum-likelihood problems by maximizing the log-likelihood
log (L) as this quantity is much simpler to compute. We choose the �tness function F of
our evolution strategy (see next subsection) to be proportional to the log-likelihood log (L):

F = −
∑
i

(ci − 〈ci〉)
2

〈ci〉
∝ log (L) (6.29)

According to expressions (6.22) and (6.26), the sets {ci } and {〈ci〉} can be computed from
the subtraction matrices S and SLik .

6.3.1.2 Search and optimization under constraints

The reconstructed subtraction matrix SLik must satisfy the following mathematical criterion:
be semi-de�nite positive with unity trace. To guarantee this, we actually look for a lower
triangular complex matrix T that is the Cholesky decomposition of the matrix SLik , i.e. SLik =
T†T [James 01]. The matrix SLik is then necessarily semi-de�nite positive. The optimization
must thus be performed on the N 2 values {tk } composing the matrix T. The �tness function
F is computed from T by computing SLik and then the set of associated measurement values
{〈ci〉} that are compared with the experimental counts {ci } through expression (6.29).

6.3.2 Optimizing with evolutionary strategies

Evolutionary Strategies (ES) is a general term grouping all search and optimization algo-
rithms inspired by organic evolution based on Darwinian theory [Back 96]. They are close
but conceptually di�erent from Genetic Algorithms (GA) [Chambers 98] in the sense that
GA optimize a set of discrete-valued (often binary) parameters while ES optimize continuous-
valued parameters. Those algorithms are particularly well suited to �nd a global solution in
a high dimensional complex landscape of peaks, ridges and valleys because of their stochas-
ticity. Those algorithms can be described by two parameters (µ, λ). They search and opti-
mize a problem of dimension N in the following way:

• at �rst, a set of µ individuals {~xk } (where the dimension of ~xk is N ) is generated at
random;
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• from this �rst set, a set of λ o�spring are generated through recombination of the of
the µ parents; each o�spring is also authorized to have some mutations;

• the performance of each o�spring is tested with a �tness function F ;
• among the λ o�spring, only the µ �rst that performs the best with respect to F are

kept, the others are discarded (survival of the �ttest);
• the set of µ selected o�spring becomes the next generation of individuals {~xk } and the

process iterates.

Di�erent variations exist depending on the ratio µ/λ and the importance given to recombi-
nation or mutations and we will detail ours in a following subsection.

Evolutionary algorithms allow to �nd a numerical solution to an optimization problem
of high dimensionality when a lack of analytic solution makes a �tness function the only
available measure of success. A thorough and detailed review of evolutionary algorithms
can be found in [Roslund 10] (in the context of quantum coherent control) and its references.

6.3.2.1 The failure of standard regression methods

In [James 01], an identical search and optimization problem is solved using the Mathematica
FindMinimum routine. In their case, the dimension of the target matrix is only 4×4 = 16. In
order to converge to a solution, this routine may use di�erent well-known regression meth-
ods such as the Gradient Descent or the Levenberg-Marquardt algorithm2. While this rou-
tine and its methods are well adapted for search and optimization problems of low dimen-
sionality, they are doomed to fail in our case by the curse of dimensionality3. For instance, we
tried to perform the aforementioned Maximum-Likelihood optimization procedure with to-
mography matrices whose dimensions was 16×16 = 256. The routine eventually converged
to some solution using a single-core i7-3770 CPU clocked at 3.4GHz after a random com-
putation time between twenty minutes and thirteen hours depending on the experimental
matrix to replicate. This is simply not practical. We did not even try with our 25× 25 = 625
matrices, knowing beforehand that there existed search-and-optimize algorithms capable of
dealing with our higher dimensionality.

6.3.2.2 Our evolutionary algorithm

The exact (µ, λ) evolutionary strategy we use is a Covariance Matrix Adaptation Evolu-
tionary Strategy (CMAES) where we choose µ = 1, i.e. no recombination and only one
parent individual. This algorithm is a derandomized evolution strategy where it is su�-
cient to take λ ∝ log(dim) where dim = N 2 is the dimension of the problem (in practice,
λ = 4+ b3 log(dim)c where bxc is �oor of x ). The algorithm uses a covariance matrix C that

2Check FindMinimum in the Mathematica documentation for a full list of the available methods
3see Curse of dimensionality on Wikipedia
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de�nes which directions of the multidimensional landscape should be preferably explored
through mutations. The o�spring are generated only by mutations of the parent individual
and the rejection rate of the o�spring is 50%. A new parent is formed as a combination of the
o�spring weighted by their respective performance and the covariance matrix is updated
through Principal Component Analysis (PCA) according to the performance of each o�-
spring (see Appendix A of [Roslund 10] for a detailed explanation). We choose the number
of generations (iterations) that the algorithm must complete before stopping and we monitor
its convergence with the evolution of the �tness function F as presented on �gure 6.8.
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Figure 6.8: Left: Evolution of the �tness function on 1000 generations during the reconstruc-
tion of the matrix whose gate mode is a 4nm H0 Hermite function (see �gure 6.4). Right:
Same than left but zoomed on [−1,−0.4] after 200 generations.

In our speci�c situation, the search landscape of the Maximum-Likelihood reconstruc-
tion seems quite smooth as the �tness function systematically converges directly to the de-
sired solution as shown on �gure 6.8. Nevertheless, proving that there are no local maxima
requires an analytic demonstration of the concavity (or convexity) of the search landscape.
It is usually done using the Hessian matrix [Roslund 10]. If we were directly optimizing
the set of values {〈ci〉}, the expression of F would su�ce to demonstrate the convexity of
the landscape. But our algorithm optimize F through the values {tj } of the complex lower
triangular matrix T. Still, the values {〈ci〉} can ultimately be expressed as quadratic forms of
the {tj } up to a normalization constant equal to ∑

j t
2
j . We think it constitutes a good reason

to assume the absence of local maxima in our search landscape.

6.3.3 Reconstruction in the pixel basis

The subtraction matrices in the pixel basis reconstructed by Maximum-Likelihood can even-
tualy be characterized in terms of their Schmidt numberK (or process purity 1/K ) and mode
selectivity σ0.
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6.3.3.1 Reconstructed matrices

We present on �gure 6.9 the reconstructed subtraction matrices corresponding to the ones
shown on �gure 6.4 along with the one corresponding to a gate mode H0 + H1. We also
present on �gure 6.10 the reconstructed subtraction matrix corresponding to �gure 6.5. We
do not show the imaginary part when it is measured and null within experimental uncer-
tainties.

Figure 6.9: Real parts of the subtraction matrices reconstructed with the data presented on
�gure 6.4 along with a reconstruction for a H0 + H1 gate mode (lower right). Matrices are
shown from their lower left corner.

For information, the reconstruction of those matrices with our Maximum-Likelihood
algorithm uses λ = 55 o�spring that must be evaluated at each iteration (generation in the
vocabulary of evolutionary strategies) with the �tness function F introduced in equation
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Figure 6.10: Real part (left) and imaginary part (right) of the subtraction matrices recon-
structed with the data presented on �gure 6.5. Matrices are shown from their lower left
corner.

(6.29). Such an evaluation can be parallelized to shorten the computation. We usually per-
formed up to 5000 iterations in about an hour with seven single-core i7-3770 CPUs clocked
at 3.4GHz working in parallel.

6.3.3.2 Eigenmodes and eigenvalues

We present on �gure 6.11 the �rst and dominating eigenmode of each reconstructed matrix
presented on �gures 6.9 (except for theH0+H1 gate mode) and 6.10. They are the Maximum-
Likelihood counterpart of the subtraction modes obtained from experimental data and �rst
presented on �gure 6.7. All subtraction modes exhibit the same desired features they pre-
viously displayed when computed directly from experimental data. All previous remarks
about their phase also holds here.

We present on �gure 6.12 the eigenvalues of the reconstructed subtraction matrix whose
gate mode is H0. Those eigenvalues are the Maximum-Likelihood counterpart of the ones
presented on �gure 6.6. They are all positive, thanks to the Maximum-Likelihood under
constraints and the reconstructed subtraction matrix is semi-de�nite positive. We do not
show the eigenvalues of the other reconstructed subtraction matrices here since they all
have a strongly dominating eigenvalue leading to a very empty distribution. As the matrices
obtained through Maximum-Likelihood reconstruction are physical according to expression
(4.15), it now makes sense to compute their Schmidt number (or process purity).
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Figure 6.11: Amplitude (colored bars) and phase (solid black line) of the �rst eigenmode of
the Maximum-Likelihood reconstructed subtraction matrices displayed on �gures 6.9 and
6.10: H0 gate (upper left), H1 gate (upper right), H2 gate (lower left) and H0+ iH1 gate (lower
right).

Figure 6.12: Eigenvalues of the reconstructed subtraction matrix whose gate mode is a H0
of 4nm bandwidth (intensity FWHM).
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6.3.3.3 Schmidt number and mode selectivity

We summarize the results for every Maximum-Likelihood reconstructed matrix in the fol-
lowing tables. The Schmidt number K along with the process purity (1/K ) are given. The
mode selectivity σ0 is the value of the �rst and dominating eigenvalue of the subtraction
matrix. It is equal to the probability to subtract a photon from the �rst subtraction mode.
All Hermite functions Hn of the gate mode belong to the 4nm family unless their bandwidth
is given explicitly.

Gate Mode K Purity σ0

H0 2nm 1.27 0.79 0.88
H0 3nm 1.36 0.74 0.85
H0 4nm 1.16 0.86 0.92
H0 5nm 1.40 0.71 0.85
H0 6nm 1.38 0.72 0.84
H0 7nm 1.14 0.88 0.94
H0 8nm 1.57 0.64 0.79
H0 9nm 1.23 0.81 0.90
H0 10nm 1.26 0.79 0.89

Gate Mode K Purity σ0

H0 1.16 0.86 0.92
H1 1.19 0.84 0.91
H2 1.23 0.81 0.89
H3 1.31 0.76 0.87
H4 1.39 0.72 0.84
H5 1.51 0.66 0.79
H6 1.69 0.59 0.75

Gate Mode K Purity σ0

H0 + H1 1.16 0.86 0.92
H0 + iH1 1.36 0.74 0.85
H0 + H2 1.04 0.96 0.98
H0 + iH2 1.40 0.71 0.84
H2 + H3 1.29 0.78 0.87
H3 + H4 1.40 0.71 0.84

H0 + H1 + H2 1.08 0.93 0.96
H1 + H3 + H4 1.23 0.81 0.90
H1 + iH3 + H4 1.28 0.78 0.86

H0 + H1 + H2 + H3 + H4 1.17 0.85 0.92
H0 + H1 + H2 + H3 + H4 + H5 + H6 1.16 0.86 0.93

The tables presented above demonstrate that our single-photon subtractor is fairly single-
mode apart from a few cases where the Schmidt number rises above 1.50. Our measure-
ment is not exempt from errors such as noise in the detector, variation of power (even if
we renormalize each measurement), phase instabilities across the whole optical table and
poor signal-to-noise ratio for frequency bands where only little optical power is available.
A direct consequence of this poor signal-to-noise ratio can be found in the wings of the
subtraction modes in �gures 6.7 and 6.11. A pedestal appears at both edges of the di�erent
spectra. The origin of this pedestal is to be found in the subtraction matrices themselves
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and can be clearly identi�ed on the reconstructed ones on �gures 6.9 and 6.10 as they are
exempt from random noise but still display systematic errors. For instance, on �gure 6.10,
a feeble but still noticeable signal can be seen on the edges of the real and imaginary parts
while the matrix terms are expected to be null.

As showed by equation (6.26), the o�-diagonal terms of the subtraction matrices are
obtained by subtracting the two individual pixel measurements results from the two pixels
measurement. In the individual pixel measurement, we try to utilize all the optical power
available for each pixel. In the two pixels measurement, we also try to utilize as much optical
power as possible for the two pixels while conserving the power ratio measured during the
individual measurements. Additionally, an edge and a center pixel may lead to very di�erent
conversion rate. Those aspects make it di�cult to perfectly cancel the o�-diagonal values
of the subtraction matrices and may lead to the aforementionned systematic errors.

6.4 Tomography in a natural basis

The previous section demonstrated that our single-photon subtractor was su�ciently single-
mode and that the mode of subtraction that we measured matched desired target. The pre-
vious tomography was using a basis of modes that did not favor any spectral mode within
its interval (see 6.2). Now that we have identi�ed the subtraction modes for each gate mode,
we can reproduce this tomography in a more appropriate basis, namely, the basis of the
subtraction modes themselves.

6.4.1 The measurement basis

Our new probing basis {uk } is a family ofHn Hermite functions whoseH0 has a bandwidth of
4nm (intensity FWHM) as presented on picture 6.13. Those modes are, on purpose, identical
to the modes we used for the gate during the process tomography in the pixel basis (see
�gure 6.3.

The dimension of the measurement is reduced from N ×N = 252 = 625 pixels previously
to N × N = 72 = 49. There is thus only 49 measurements instead of 625 previously to be
taken in order to reconstruct the subtraction matrices in this new basis. The acquisition
time is conveniently reduced in proportion.

Also, to perform the tomography, we still had to make sure that the photon number per
pulse was low and constant in each mode {uk }. For this purpose, we added an extra optical
density on the probe beam on top of the ones that were already used for the pixel modes
tomography. This extra optical density kept the average photon number per pulse below 10
for each Hermite function mode used in this tomography.
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Figure 6.13: Intensity spectral pro�les of the probe modes used for the tomography in a
more adapted basis..

6.4.2 Raw measurement data

We performed subtraction matrix tomography for the same gate modes than the ones men-
tionned in subsection 6.2.3.1, except for the H0 Hermite functions with varying bandwidths.
The tomography was performed using the theory developed in subsection 6.2.2 in order to
retrieve the o�-diagonal terms in the new basis. We present on �gure 6.14 the experimental
subtraction matrices obtained with a tomography performed in the basis of Hermite func-
tions. Our single-photon subtractor is capable of adressing each gate mode in a single-mode
fashion as well as arbitrary complex superpositions of the gate modes. In the continuity of
our previous measurements, we also performed the tomography of some superpositions
involving a π/2 phase as presented on �gure 6.15. The imaginary parts of the di�erent
matrices indicate the presence of the π/2 phase factors between the di�erent components.

6.4.3 Maximum-Likelihood reconstruction

Just as the subtraction matrices in the pixel basis, the subtraction matrices in the Hermite
functions basis almost always exhibit at least one negative eigenvalue. Even if this negative
eigenvalue is extremely weak, the subtraction matrix remains unphysical. Hence similarly
to the tomography in the pixel basis, we performed a Maximum-Likelihood reconstruction
using our evolutionary strategy. In the basis of Hermite functions, the algorithm required
ony λ = 4+ b3 log(N ×N )c = 18 o�spring at each generation (N=7 here). The evalutation of
the �tness function at each generation is parallelized over six CPUs to shorten the compu-
tation time. For the tomography in the basis of Hermite functions, 1000 generations were
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more than enough to converge and stabilize the algorithm (actually 500 generations would
su�ce). The thousand generations took 130 seconds to our six single-core i7-3770 CPUs to
complete.

We do not present the reconstructed matrices here as they remain fairly similar to the ex-
perimental matrices while eliminating the random noise. Systematic errors still remain. In
particular, the unbalancing between the di�erent components of a superposition remained.
This unbalance can be seen on the diagonal of some experimental subtraction matrices
on �gures 6.14 and 6.15. Nevertheless, with reconstructed matrices, we can compute the
Schmidt number of the process and quantify its purity along with its modal selectivity em-
phasized by the �rst eigenvalue σ0 of the subtraction matrices.

Gate Mode K Purity σ0

H0 1.03 0.97 0.98
H1 1.11 0.90 0.95
H2 1.17 0.85 0.92
H3 1.25 0.80 0.89
H4 1.35 0.74 0.85
H5 1.33 0.75 0.85
H6 1.26 0.79 0.88

Gate Mode K Purity σ0

H0 + H1 1.09 0.92 0.96
H0 + iH1 1.20 0.83 0.91
H0 + H2 1.16 0.86 0.92
H0 + iH2 1.15 0.87 0.93
H2 + H3 1.20 0.83 0.91
H3 + H4 1.30 0.77 0.87

H0 + H1 + H2 1.10 0.91 0.95
H1 + H3 + H4 1.30 0.77 0.87
H1 + iH3 + H4 1.22 0.82 0.90

H0 + H1 + H2 + H3 + H4 1.09 0.92 0.96
H0 + H1 + H2 + H3 + H4 + H5 + H6 1.04 0.96 0.98

Those tables show that performing the process tomography in an appropriate basis of
measurement leads to much faster results whose purities are generally enhanced. While
the analysis in the pixel basis may seem to o�er a higher resolution due to its higher num-
ber of modes, it comes with unwanted experimental errors decreasing the quality of the
subtraction process parameters estimate. It is nevertheless necessary to perform it in order
to reveal the eigenmodes of the process as pixels constitute a fairly unbiased basis. The
tomography based on Hermite functions probe modes is more adapted to the modes to be
probed. The purity obtained with those probing modes is thus more meaningful with re-
spect to the device. The two tomographies using those two di�erent basis of analysis are
thus complementary and provide di�erent information about our single-photon subtractor.
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6.4. TOMOGRAPHY IN A NATURAL BASIS

Figure 6.14: Real parts of subtraction matrices in the Hermite functions basis. Gate modes
from left to right and top to bottom: H0, H1, H2, H3, H4, H5, H6, H3 + H4 and H0 + H1 + H2.
The last row gate modes are not indicated on the �gure for readability and are respectively,
from left to right: H1+H3+H4, H0+H1+H2+H3+H4, and H0+H1+H2+H3+H4+H5+H6.
Imaginary parts are expected to be null and are not displayed here as they only contain
noise.
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Figure 6.15: Real (upper row) and imaginary (lower row) parts of subtraction matrices in
the Hermite functions basis. Gate modes from left to right: H0+ iH1, H0+ iH2, H1+ iH3+H4.
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Conclusion & outlooks

During the course of this thesis, we have designed and built a single-photon subtractor for
spectrally multimode quantum states. The construction of this device was motivated by
the development of spectrally multimode squeezed vacuum presented in chapter 3. Those
states contain many single-mode squeezed vacuum states embedded in broadband orthog-
onal spectral modes. Engineering this multimode squeezed state through single-photon
subtraction requires a mode-selective device capable of preserving the state purity.

We have �rst developed a theoretical framework to better understand the subtraction of
a single photon on a multimode quantum resource with the concept of the modal subtraction
matrix. This framework has helped us identify the conditions for a single-mode subtraction
as well as the e�ect of the interplay between the input state modes and the subtraction
modes. This framework was then applied to the context of spectrally multimode light where
we have discussed the di�erence between the legacy subtraction scheme based on a weak
beamsplitter and a new scheme based on weak up-conversion.

We have then fully modeled the subtraction process based on sum-frequency gener-
ation between a signal beam and a gate beam used as a control. We have introduced a
non-collinear con�guration aimed at enabling a degenerate conversion process. This con-
�guration also allows to cancel e�ciently the detection noise of the single-photon detector
used as an heralding device in the subtraction process. We have presented the conditions
required to achieve a single-mode operation of the subtractor, the optimal design, as well as
the tuning capabilities through ultrafast pulse shaping of the gate beam.

We have characterized the device at the single-photon level guaranteeing the subtraction
of a single-photon only. We have measured the subtraction matrices and revealed its domi-
nating eigenmode for many di�erent gate modes in two di�erent basis of analysis. Finally,
we have performed a Maximum-Likelihood reconstruction of the experimental subtraction
matrices through an evolutionary strategy aimed at retrieving the physical subtraction ma-
trices. Our results outline that the device we have built is tunable, thanks to the capabilities
o�ered by ultrafast pulse-shaping, and mode selective up to a certain modal complexity.

Nevertheless, a single-photon subtraction on a genuinely quantum state has not been
demonstrated here. The process could end up being impractical if the subtraction device
induces important optical losses or modal distortions. Those modal distortions could be:
an important change of the spatial mode or speci�c ultrafast problems like an irremedia-
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ble spectral phase or a detrimental angular chirp. This could be further compensated but it
could require additional and potentially lossy optical elements. Though we think that our
device is capable of achieving near unity process purity for the following reasons. Firstly,
the optical losses are limited to re�ections on the four telescope lenses interfaces and the
two crystal ones, all of whom can be coated to minimize optical losses. Secondly, while
misaligned lenses introduce angular chirp, the device can be built so that the ultrafast prob-
lems for the signal beam are limited to the dispersive, birefringent nature of the non-linear
medium. Thirdly, a spectral phase of the gate or a later local oscillator can be adapted with
the ultrafast pulse shaper.

One could state that the single-photon subtraction process tomography we have per-
formed is nothing else than a modal analysis of the sum-frequency generation and could
thus be performed with bright beams and a classical detector instead of a single-photon
counter. This claim is true as the modal nature of the process has no reason to change
upon the nature or average photon number of the quantum states at play. Classical tomo-
graphies often o�er a better signal-to-noise ratio and thus allow to resolve the space-time
dependence of the process more precisely [Rozema 15]. Nevertheless, a classical tomogra-
phy performed with bright beams would lead to multiphoton conversion and thus cannot
qualify as a single-photon subtractor. The only way to guarantee that only a single-photon
is converted is the demonstration of the linearity of the conversion that we provided in
chapter 6.

The original project of this PhD work was a quantum state tomography [Ansari 16] of
the single-photon subtracted multimode squeezed vacuum. Indeed, the natural step after
having characterized our device is to feed it with the multimode squeezed vacuum demon-
strated in chapter 3 and perform a quantum state tomography triggered on a subtraction
event. This experiment necessitates an appropriate broadband homodyne detection elec-
tronics and a fast oscilloscope to recover the target mode of the single-photon subtracted
state [Morin 13]. The di�erent subsystems have been demonstrated separately in this work
and the additional techniques required are common in the community. Considering that at
�rst, no additional phase locking of sequential operation are necessary, we are con�dent
that this experiment can be achieved rapidly.

We also look forward to new promising improvements and projects. The �rst one is the
spectral broadening of the beam used to generate our gate, local oscillator or probe beams.
A modest broadening could be achieved using an engineered photonic crystal �ber where
a coherent four-wave mixing process could easily double the available spectrum [Jiang 16].
This broadening would allow us to perform homodyne detection in spectral regions that
were once out of reach and to overcome one of the main limitations of the covariance matrix
measurement detailed in chapter 3.

The second project is centered on the generation of the multimode squeezed vacuum.
It consists in implementing an ultrafast pulse shaper on the pump beam of the SPOPO.
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The objective is to engineer the spectral phase and amplitude of the pump beam in order to
optimize either the squeezing or change the eigenmodes of the parametric down-conversion
process. While the interest of increasing the amount of squeezing is straightforward, it is
not clear yet what kind of multipartite entanglement can be created through pump pulse
shaping. An appealing possibility would be to create on-demand cluster states in an easily
accessible spectral basis such as orthogonal frequency bands. A theoretical study of the
feasibility of such a multimode state engineering is currently under progress.

To conclude, our single-photon subtractor constitutes a building block for multimode
quantum state engineering. It is capable of producing multimode non-Gaussian states when
paired with a source of multimode spectrally squeezed states. The resulting quantum state
would possess multipartite entanglement and the genuine feature of quantumness through
the negativity of its Wigner function. Such a state exhibits some interesting entanglement
properties and provides a promising platform for quantum information related proof of
concept experiments.
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Appendix A

The SPOPO cavity

The cavity is composed of thirteen broadband high re�ectivity mirrors and the beam un-
dergoes �fteen re�ections on a round trip. The pump beam is not resonant.

Figure A.1: Picture of the optical cavity of the SPOPO with the pump beam path (blue), the
intra-cavity �eld path (dashed red), the crystal (green star) and the output coupler (yellow
star).
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Appendix B

Non-linear optics in BiBO

This appendix aims at providing the key ideas to do non-linear optics around the funda-
mental wavelength of λ0 = 795nm in BiBO. For all the non-linear processes described in
this thesis, we use an engineered crystal of monoclinic Bismuth Borate BiB3O6 commonly
know as BiBO. The growth and characterization of this non-linear crystal dates back to
the late 90s. It is thus younger than its older counterparts such as LBO and BBO. It of-
fers higher non-linear coe�cients for our wavelengths [Hellwig 98], along with a narrower
phase-matching and transmission from UV to micrometric wavelengths [Hellwig 00]. A
complete analysis of its optical properties can be found in [Ghotbi 04a]. We use BiBO in this
work for Second-Harmonic Generation (SHG) [Ghotbi 04b], Parametric-Down-Conversion
(PDC) [Ghotbi 06] and Sum-Frequency-Generation (SFG).

B.1 Principles of anisotropic optics

BiBO is a biaxial crystal whose refractive indices can be found in [Umemura 07] with the
convention nx < ny < nz . The Sellmeier equation and coe�cients for BiBO can be seen on
�gure B.1 and are:

n =

√
A +

B

λ2 −C
− Dλ2

Index A B C D
nx 3.07403 0.03231 0.03163 0.013376
ny 3.16940 0.03717 0.03483 0.01827
nz 3.6545 0.05112 0.03713 0.02261

We remind a simple result of anisotropic optics that provides a way to understand how
the refractive index changes with respect to the propagation direction in a birefringent
medium [Zernike 73]. We consider a plane wave of wave vector k propagating in the bire-
fringent medium. We denote Π the plane perpendicular to k containing the origin of the
ellipsoid of indices E . The intersection of Π with E is an ellipse E: E = E ∩ Π. This ellipse
E has two main axes with values n1 and n2. The directions of those axes are the only ones
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Figure B.1: nx (blue), ny (yellow), nz (green) of BiBO. The values from 300nm to 474nm were
extrapolated with the Sellmeier’s coe�cients.

where linearly polarized light can propagate while seeing refractive indices n1 and n2. This
linearly polarized light may still undergo some walko� ρ as it propagates. The walko� is
de�ned as the angle between the direction of propagation k and the direction of energy
determined by the Poynting vector Π that always remains normal to the surface of E .

For historical reasons, the phase-matching angles θ and ϕ that describe the rotation
of the ellipsoid of indices with respect to its axes is described with geographical spherical
coordinates. The coordinate system is then left-handed, ϕ is the azimuthal angle (from the
xz plane to the yz plane) and θ is the elevation (from y to z) as shown on �gure (this �gure
is missing). A refractive index n(λ,ϕ,θ ) in this system of coordinates is determined by the
ellipsoid of indices through:

n−1(λ,ϕ,θ ) =

√
cos2(θ ) cos2(ϕ)

n2x (λ)
+
cos2(θ ) sin2(ϕ)

n2y (λ)
+
sin2(θ )
n2z (λ)

(B.1)

B.2 Non-linear optics in BiBO
According to [Ghotbi 04a], BiBO can phase-match Type I (e +e → o) processes with ϕ = 90°
and θ varying depending on the fundamental wavelength. It means that the fundamental
waves propagates in the yz plane and the x axis is one of the main axes of the ellipse E.
The two possible linear polarization are thus either on the x axis or perpendicular to it. In
the Type I (e + e → o) con�guration, the fundamental light is polarized in the yz plane and
the harmonic is polarized along x . The phase-matching index ne for the fundamental light
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can be found by a rotation of the ellipsoid of indices along the x axis by taking ϕ = 90° in
expression (B.1):

ne (λ,θ )
−1 =

√
cos2(θ )
n2y (λ)

+
sin2(θ )
n2z (λ)

−1

(B.2)

It is then easy to model all the parametric processes described in this thesis, namely SHG,
PDC and SFG through the de�nition of phase-matching ∆k as a combination of the di�erent
wave vectors involved. The phase-matching function Φ obtained after integration on the
crystal length lc in the direction of propagation will always be:

Φ(∆k ) = sinc (∆k lc/2) (B.3)

B.2.1 SHG in BiBO
In the case of SHG, two photons around the fundamental wavelength coming from the same
beam “merge” to give birth to an harmonic photon. The optical con�guration is inherently
colinear and the phase-matching condition ∆k = 0 is given by:

∆k (ω f ,ωh ) = 2k f (ω f ) − kh (ωh ) (B.4)

where f stands for fundamental and h stands for harmonic. The wave vectors k f and kh are:

k f (ω f ) = ω f n f (ω f )/c and kh (ωh ) = ωhnh (ωh )/c (B.5)

In BiBO, the harmonic refractive index is nh = nx . The refractive index of the fundamental
wave is n f = ne . The angle θ is found through the phase matching condition for ω f = ω0
and ωh = 2ω0 so that ne (ω0,θ ) = nx (2ω0). Given that initial spectrum presented on �gure
2.1 is centered at λ = 795nm the phase-matching condition leads to θ = 150.81°.

B.2.2 PDC in BiBO
In PDC, a pump photon at the harmonic frequency is “split” into two photons at the fun-
damental wave frequency. In this thesis, the only PDC we are interested in takes place in
a colinear degenerate con�guration (see chapter 2). Hence the phase-matching condition
∆k = 0 is similar to (B.4). We introduce a di�erence between both fundamental waves as
signal s and idler i:

∆k (ωs ,ωi ,ωp ) = ks (ωs ) + ki (ωi ) − kp (ωp ) (B.6)
where kp and ωp are the wave vector and optical frequency of the pump. The wave vectors
ks , ki and kp are:

ks (ωs ) = ωsns (ωs )/c and ki (ωi ) = ωini (ωi )/c and kp (ωp ) = ωpnp (ωp )/c (B.7)

where np = nx and ns = ni = ne . The latter refractive index is found with the exact same
condition than in SHG and leads to the same value of θ .
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Figure B.2: nx (blue), ne (yellow) of BiBO. The horizontal solid black line indicate the index
value where the phase-matching condition is ful�lled. The values from 300nm to 474nm
were extrapolated with the Sellmeier’s coe�cients.

B.2.3 SFG in BiBO
In SFG, similarly to SHG, two photons around the fundamental wavelength coming from
two di�erent beams “merge” to give birth to an harmonic photon. This process can be non-
colinear as detailed in chapter 5. The colinear phase-matching condition ∆k = 0 is similar
to (B.6) although we change the name of the photon at the harmonic frequency to converted.
The critical phase-matching angle θ is found in the same manner. The exact value of this
angle will change in a non-colinear con�guration as some sine and cosine of the incident
angles may appear.

B.3 Dispersion in BiBO
Like most materials, BiBO is dispersive. In ultrafast optics, the dispersion of a given mate-
rial around a fundamental wavelength is often given in fs2 assuming a Taylor development
where terms above second-order are neglected. The dispersion ϕ′′BiBO through lc = 1mm of
BiBO can be computed from the Sellmeier’s equations (see �gure B.1) as:

ϕ′′BiBO =
d2 (klc )
dω2 =

lcλ
3
0

2πc2
d2n
dλ2 (B.8)

For λ0 = 795nm and n = ne , the dispersion ϕ′′BiBO is equal to 166fs2.
For λ0 = 397.5nm and n = no , the dispersion ϕ′′BiBO is equal to 480fs2.
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Appendix C

The fantasy of type II parametric
interaction for QPG

As explained in chapter 5, it may be tempting to implement QPG by performing single-
photon subtraction via weak parametric up-conversion in a non-linear medium set up for
type II interaction. Let us consider an analytic treatment of collinear Sum-Frequency Gen-
eration (SFG).

We start from the photon-subtracted state |Ψ−〉 of expression (5.19).

|Ψ−〉 ∝

∫
dωc dωs αд (ωc − ωs ) ΦSFG (∆k ) âs (ωs ) â

†
c (ωc ) |Ψin〉 (C.1)

We approximate the phase-matching function Φ by a Gaussian function and we assume the
parametric process to be phase-matched so that we keep only the �rst order of a Taylor
development of the momenta:

αд (ωc − ωs ) = exp
[
−∆t2 (Ωc − Ωs )

2]
with ∆t2 =

λ402 ln (2)
4π 2c2FWHM2 (C.2)

ΦSFG (∆k ) = exp
[
−
γl2c
4

(
Ωs

(
k′s − k

′
д

)
+ Ωc

(
k′д − k

′
c

))2]
(C.3)

with k′ =
∂k

∂ω
(ω0) = 1/vgroup (C.4)

where γ = 0.193, and we have introduced k′s , k′д and k′c which are the inverse of the group
velocities of each beam. We analyze the product αдΦSFG trying to obtain a single-mode
operation by factorizing the expression so that Ωc and Ωs are not correlated.

C.1 Type I SFG
In Type I SFG, the single-mode interaction for SFG is achieved as we have k′s − k′д = 0. We
just have to assume the pulse to be su�ciently short (or the crystal to be su�ciently long)

147



C.2. TYPE II SFG

so that ∆t2 (Ωc − Ωs ) � γl2c Ωc

(
k′д − k

′
c

)2
/4 and the product αдΦSFG becomes factorized:

αдΦSFG (Ωs ,Ωc ) = e−∆t
2Ω2

se−γl
2
cΩ

2
c (k ′д−k ′c )/4 (C.5)

The signal temporal mode is then only governed by the gate bandwidth and the up-converted
temporal mode only depends on the mismatch of group velocities between the gate and the
up-converted beam. The conversion process is then single-mode.

C.2 Type II SFG
In a Type II process, we no longer have k′s − k′д = 0. We take the example of BBO (bar-
ium borate BaB2O4) where it is possible to perform Type II SFG around our fundamental
wavelength λ0 = 795nm. Among the signal and gate beam, one must be ordinary and the
other one extraordinary. We choose signal as extraordinary and the group velocities are
respectively vsgroup = 184nm.fs-1, vдgroup = 178nm.fs-1 and vcgroup = 175nm.fs-1. We assume a
crystal length of 1mm, a gate pulse bandwidth of 6nm and we evaluate the values of each
term in the exponential of the αдΦSFG product:

∆t2 = 4.4 × 103 fs2 γl2c
4

(
k′s − k

′
д

)2
= 1.9 × 103 fs2 (C.6)

γl2c
4

(
k′д − k

′
c

)2
= 3.1 × 102 fs2 γl2c

2
(
k′д − k

′
c

)2
= 1.5 × 103 fs2 (C.7)

Given the values of each term, none of them can be neglected even by increasing the crys-
tal length or shortening the gate pulses. Switching the gate and signal beams would not
help neither as the numerical values at play would not change enough to achieve a situa-
tion where the key terms can be dominating. As a consequence, it should be impossible to
achieve single-mode a conversion process and therefore a single-mode single-photon sub-
traction.

The issue with Type II can be intuited directly from the phase-matching of the process
as presented on �gure C.1. On can directly see that it will not be possible to decorrelate the
signal and up-converted frequencies contrary to �gure 5.2 for instance.
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Figure C.1: Left: Phase-matching of a Type II SFG with signal as the extraordinary beam.
Right: same than left but with gate as the extraordinary beam.
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