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Abstract

Current and future microelectronics systems are more and more complex. In a aim to bridge the
gap between the cyber/digital world and the physical world in which we evolve we observe the
emergence of multi-disciplinary systems that interact more and more with their close surrounding
environment. The conception of such systems requires the knowledge of multiple scientific
disciplines (electrical, optical, thermal, mechanical, acoustic, chemical or biological) which tends to
define them as heterogeneous systems. Designers of the upcoming digital-centric More-than-Moore
systems are lacking a common design and simulation environment able to efficiently manage all the
multi-disciplinary aspects of its components of various nature, which closely interact with each other.

In this thesis we explore the possibilities of developing and deploying a unified SystemC-based
design environment for virtual prototyping of heterogeneous systems. In order to overcome the
challenges related to their specification and dimensioning this environment must be able to
simulate a complex heterogeneous system as a whole, for which each component is described and
solved using the most appropriate Model of Computation (MoC).

We propose a simulator prototype called SystemC Multi Disciplinary Virtual Prototyp-
ing (MDVP) which is implemented as an extension of SystemC. It follows a correct-by-construction
approach, relies on a hierarchical heterogeneity representation and interaction mechanisms with
master-slave semantics in order to model heterogeneous systems. Generic algorithms allow for the
elaboration, simulation and monitoring of such systems.

We also provide a methodology to incorporate new Models of Computation within the
SystemC MDVP environment. We follow this methodology to integrate a Smoothed Particle
Hydrodynamics (SPH) MoC that allows for the description of fluidic network. This MoC is then
used to model a prototype of a point-of-care blood analysis system.

Eventually, we realized a case study of a passive RFID reading system that requires several
interacting MoCs in order to be modeled. We compare the simulation results with measures
acquired on a real physical prototype of a passive RFID reading system.
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Résumé

Les systèmes électroniques d’aujourd’hui et de demain sont de plus en plus complexes. Dans le
but de rapprocher le monde numérique et le monde physique dans lequel nous évoluons, nous
observons l’émergence de systèmes multidisciplinaires qui interagissent de plus en plus avec leur
environnement proche. La conception de tels systèmes nécessite la connaissance de multiples
disciplines scientifiques (électronique, optique, thermique, mécanique, acoustique, chimie ou
biologie) ce qui tend à les définir comme étant des systèmes hétérogènes. Pour le développement
de ces systèmes à venir, il manque aux concepteurs un environnement de conception et de
simulation commun permettant de gérer efficacement la multidisciplinarité de ces composants de
natures variées qui interagissent fortement les uns avec les autres.

Dans cette thèse nous explorons la possibilité de développer et déployer un environnement de
conception unifié, basé sur SystemC, pour le prototypage virtuel de systèmes hétérogènes. Afin de
surpasser les contraintes liées à leur spécification et dimensionnement, cet environnement doit
pouvoir simuler un système hétérogène dans son ensemble, dans lequel chaque composant est
décrit et résolu en utilisant le Modèle de Calcul (MoC) le plus approprié.

Nous proposons un prototype de simulateur, appelé SystemC Multi Disciplinary Virtual
Prototyping (MDVP), qui est implémenté comme une extension de SystemC. Il suit une approche
correcte-par-construction, repose sur une représentation hiérarchique de l’hétérogénéité et sur un
mécanisme d’interaction basé sur des sémantiques maitre-esclave afin de modéliser les systèmes
hétérogènes. Des algorithmes génériques permettent l’élaboration, la simulation et le monitoring
de tels systèmes.

Nous proposons également une méthodologie afin d’incorporer de nouveaux Modèles de Calcul
au sein de l’environnement SystemC MDVP. Cette méthodologie est suivie dans le but d’ajouter
à SystemC MDVP le MoC Smoothed Particle Hydrodynamics (SPH) qui permet la description de
réseaux fluidique. Ce MoC est ensuite utilisé pour modéliser un prototype de dispositif permettant
l’analyse de sang sur un lieu d’intervention.

Nous avons finalement réalisé un cas d’étude portant sur un système RFID passif qui nécessite,
afin d’être modélisé, l’utilisation de plusieurs MoCs interagissant entre eux. Les résultats obtenus
en simulation sont comparés avec des mesures acquises sur un vrai prototype physique.
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Chapter 1. Introduction

1.1 Context

Nowadays, the design of new embedded systems relies on the sound assembly of different IPs,
each IP being developed separately and independently. The conception of each of these IPs may
involve different physical domains. Figure 1.1 represents an exploded view of an Apple Watch as
an example of the IP assembling performed in current available devices. The variety of physical
domains that may be involved is quite well-represented. Different kinds of sensors (force touch,
optical pulse) are integrated in the system as well as analogical or electronic components (battery,
wireless charging coil, antenna). Purely digital systems no longer exist.

Figure 1.1: Exploded view of an Apple Watch, source from [1].

If we take a closer look on the Apple Watch’s chip, we notice that even the chip itself is no
longer fully digital. The chip layout is illustrated in Figure 1.2; this figure highlights some of the
components embedded in the chip. In addition to the digital components (processor, memory) and
different controllers for the aforementioned sensors (which are also digital) we find non-digital
components such as the wireless charger or several Micro-Electro-Mechanical Systems (MEMS)
that act as accelerometer and gyroscope.

According to this example, design engineers who want to build tomorrow’s more-than-Moore
embedded systems must think, create and design differently than they do today. Electronic design
automation tooling must evolve with the upcoming needs and even go so far as to anticipate
them. Current and future microelectronics systems are increasingly complex and interact more
and more with their close surrounding environment. The conception of such systems requires
the knowledge of multiple scientific disciplines (electrical, optical, thermal, mechanical, acoustic,
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Figure 1.2: Apple Watch chip’s layout, adapted from [2, 3, 4].

chemical or biological).

The emergence of multi-disciplinary systems is the result of the desire to bridge the gap
between the cyber/digital world and the physical world in which we evolve. This approach leads
to the concept of Cyber-Physical Systems (CPS) [5] and Internet-of-Things (IoT) [6].

We are now witnessing the evolution of an ecosystem of billions of interconnected devices1 [7].
These systems communicate, interact with and hence impact their environment in a multitude
of ways. The use of sensors allows such devices to probe and interact with their immediate
environment thus collecting information, whilst the role of actuators is to apply constraints and
forces to the real world. Sensors and actuators act as the interface at the border of the physical
and the cyber world.

Figure 1.3 provides a generic representation of a System on Chip (SoC) and highlights several
interacting disciplines that may be involved in the design of an embedded system. One can see that
the SoC device embeds digital components (processor, memory, peripheral) as well as components
from other engineering disciplines such as RF transceiver and sensors (MEMS, optical, biological).
This figure illustrates how a system can interact with its environment.

New types of emerging applications requiring microelectronics that closely interact with
the surrounding environment in different physical domains (optical, mechanical, acoustical,
biological, etc.) are referred to as heterogeneous systems. They qualify as heterogeneous because

1Gartner, Inc. forecasts that 6.4 billion connected things will be in use worldwide in 2016, up 30 percent from
2015, and will reach 20.8 billion by 2020. In 2016, 5.5 million new things will get connected every day.
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Figure 1.3: System on Chip as a set of interacting disciplines.

they couple digital and physical elements. Moreover, they describe different semantics and
time abstraction. Since these systems represent non-homogeneous applications, various physical
modeling environments may be used to model and simulate them.

The design of these multi-disciplinary microelectronics-assisted systems is often an iterative
process in which the individual parts for each physical domain are developed independently
and then combined in the very last stage to realize the final product. Very often, design errors
such as functional incorrectness, wrong interfaces, or non-compliance with the initial product
specifications are identified too late in the design cycle. This leads to additional design spins and
delayed schedules as a result of a necessary reimplementation which hampers the whole market
introduction process. It is therefore important to allow the modeling and the simulation of such
systems as a whole to truly appreciate their complexity before their expensive fabrication.

Clearly, the main issue is that a global system representation including all involved physi-
cal/engineering domains is missing, especially in the early design stages. In such a context, it would
be highly beneficial to prove the correctness of the heterogeneous system architecture up-front and
to have an accurate view of the way heterogeneous entities interact as a whole. This requires a
modeling/design, simulation, and verification environment that can assist system designers to
dimension, partition, and thus to “architect” such heterogeneous systems appropriately. Such
a solution must be flexible and open in order to allow for the extension of the environment;
extending the framework should not involve complex interfacing mechanisms with the existing
infrastructure.

To meet these requirements, prior to constructing physical prototypes, virtual prototyping
at a high level of abstraction becomes inevitable, especially for such systems which feature
a tight coordination between the computational and physical elements. Virtual prototyping
provides numerous functionalities and benefits when it comes to the design and conception of
new systems. This mechanism consists in the creation of virtual models to describe a design,
allowing for the performance of software simulation of the device under development [8, 9]. Virtual
prototyping allows for architectural exploration with the possibility of studying several design
alternatives quickly and easily. Furthermore, it provides the designer with the possibility to carry
out performance analysis and early test design on the developed system, leading to the capacity
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to endure testing and validation procedures usually not achieved with a real physical prototype
platform due to the cost of such procedures.

Eventually, since virtual prototyping enables the simulation of heterogeneous systems in the
early stage of development, it can enable the development of the software associated with the
platform prior to the availability of a physical prototype.

This thesis is performed in the frame of the CATRENE European project - Heterogeneous
INCEPTION (H-Inception) [10]. The main goal of this project is to develop and deploy a unified
design environment for virtual prototyping of multi-domain microelectronics-assisted systems to
overcome the challenges related to their specification, dimensioning and verification. This project
aims to benefit the European industry in the production of their products with application in
several domains such as automotive, wireless, avionics and biomedical areas.

1.2 Thesis Organization

After presenting, in Chapter 1, the context in which this work is performed, the document is
organized as follows:

In Chapter 2, the challenges related to the simulation of heterogeneous systems are highlighted;
they represent the different problem statements that need to be addressed. They cover a wide
variety of issues ranging from the characterization of the simulation environment to the monitoring
of such systems. Requirements that need to be met in order to ensure a correct simulation are
introduced. The contributions brought together in the frame of this thesis, in order to address
these challenges, will then be presented.

In Chapter 3, the state-of-the-art related to the simulation of heterogeneous systems is
summarized. We present several approaches that address the challenges described in Chapter 2.
We describe different frameworks and design environments which allow for the simulation of
multi-physical systems. For each framework, the modeling and the behavior of the framework are
discussed.

In Chapter 4, we introduce our solution for the simulation of heterogeneous systems. Our work
leads to the conception of a new simulator prototype called SystemC MDVP. This chapter focuses
on the principles that are the foundations of our framework. We present the different abstraction
and representation defined within SystemC MDVP. We explain the hierarchical representation of
the system we chose and the underlying semantics, which lead to an environment permitting the
simulation of real software coupled with virtual hardware architecture and virtual physical models.

In Chapter 5, we present the implementation details underlying SystemC MDVP that support
the principles introduced in Chapter 4. SystemC MDVP is implemented as an extension of
SystemC which allows us to achieve the simulation of heterogeneous systems. This chapter presents
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the different data structures and generic algorithms developed within our framework.

Chapter 6 describes the mechanism defined within SystemC MDVP that allows for the
monitoring of multi-disciplinary systems. We present an approach wherein we provide a unified
access to the information through the whole system. Information related to digital or physical
components of the heterogeneous system are addressed the same way. This chapter presents the
principles and the implementation details underlying the monitoring mechanism of our framework.

In Chapter 7, we present a methodology to allow the addition of new MoCs within our virtual
prototyping environment. This methodology relies on the principles defined within SystemC MDVP
and described in Chapter 4. To support this methodology and our simulator, we present a new
MoC called SPH. This MoC allows the modeling and the simulation of fluidic elements through
the description of a fluidic network.

Chapter 8 presents two validation case studies to illustrate the possibilities offered by
SystemC MDVP and support the principles underlying our framework. First, we describe a case
study related to the MoC SPH where a fluidic network is described, simulated and then compared
with other solutions. Second, we depict a complete passive RFID reading system involving several
MoCs in order to realize its modeling. The RFID system is modeled, simulated and then compared
to a real physical prototype of the passive RFID reading system.

Finally, by way of a conclusion, in Chapter 9 we resume the work presented and introduce
perspectives on future work.
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Chapter 2. Problem Statement

2.1 Introduction

Current and future microelectronics systems are increasingly complex, and interact more and
more with their immediate environment. These emerging systems are intrinsically complex in
their development and require a lot of time and effort to achieve their conception.

Since the development of multi-disciplinary microelectronics assisted systems involves several
disciplines, the individual parts are usually conceived independently and assembled in the final
stage of the development process. In such a context, in order to truly appreciate the complexity of
multi-disciplinary systems before their expensive fabrication, it is important to allow the modeling
and the simulation of such systems as a whole.

With such an approach, we would benefit from an accurate view of a heterogeneous system
including the manner in which heterogeneous entities interact with one another. In addition to
this, a global system representation including all involved physical/engineering domains, especially
in the early design stages, would be beneficial to prove the correctness of the heterogeneous system
architecture up-front. In order to assist system designers in the design process of heterogeneous
systems, i.e. to help them to dimension, partition and thus to "architect" these systems, a
modeling/design, simulation and verification environment is needed.

The simulation of heterogeneous systems raises specific challenges that may be difficult to
address due to their very nature. These challenges are presented in Section 2.2. To address them,
Section 2.3 introduces the contributions presented in the framework of this thesis. Subsequently,
Section 2.4 concludes this chapter and provides an overview of the challenges faced and the
resulting contributions.

2.2 Heterogeneous Systems Virtual Prototyping Challenges

How does one simulate a heterogeneous system? The answer is not trivial. The heterogeneity
aspect can be difficult to address due to the gap between the different disciplines involved in the
design of heterogeneous systems (e.g. software engineering vs biological engineering).

We have identified several challenges which represent the different issues that may occur when
dealing with the simulation of heterogeneous systems and the requirements induced by these
issues.

2.2.1 Smooth Management of Heterogeneity

In the context of heterogeneous systems, one key aspect is to define what it is intended by the
term heterogeneous. Heterogeneity can be defined as the use of several simulation tools, or the use
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of different languages, semantics, disciplines, etc. In such a context, a clear definition of the term
heterogeneity and the composition of this heterogeneity are required.

These components (entity), which defined the heterogeneity, must be well-defined, not only from
the simulator viewpoint, but also from the user viewpoint. The simulator requires a well-known
distinction between components in order to correctly simulate each component within its associated
environment. The user should have access to well-defined components in order to correctly and
easily design the system he wants to simulate. Our approach relies on the definition of these
heterogeneous entities by means of interacting Models of Computation (MoCs). We must therefore
provide a well-defined interface for these MoCs to interact with the kernel, without neglecting the
user’s interface.

2.2.2 Sound Management of Interacting Entities

Once heterogeneity has been clearly defined, one of the key challenges lies in the interaction
between the entities that define this heterogeneity and their composition. They usually express
different semantics, with potentially different time abstraction. Incompatibility between physical
domains or design errors should be detected by the simulator. It is necessary to be able to identify
when two components are connected together when they should not be.

As such, we need a well-defined interaction mechanism between different heterogeneous entities.
It should express the constraints associated with each entity and, consequently, it should enable
and define their composition. Interaction is not limited to the composition of the heterogeneous
entities; it is also required to be able to express semantics information if needed. This information
is associated with the data handled within each entity (such as dimension or unit).

2.2.3 Flexible Virtual Prototyping Environment

Since multi-physical systems represent non-homogeneous applications, various physical modeling
environments may be used to model and simulate them. Multiple approaches exist to perform
simulation of heterogeneous systems, from a global simulation framework to the use of multiple
specific simulation tools dedicated to each discipline. This situation can be simply summarized as
the choice between a unified, unique simulation environment and a co-simulation environment.

Both approaches have their pros and cons, but we believe performing the simulation of
the whole system within the same simulation environment allows us to truly appreciate the
dependencies and all the interactions involved in the system. It is crucial that each discipline take
part in the design exploration phase of the system. Consequently we have to set up an environment
which enables the coupling of all the disciplines within the same simulation framework.

In the scope of heterogeneous systems simulation, we have to provide a highly flexible
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framework. Flexibility is understood, in this work, in the sense that the simulator must be able to
evolve and to simulate any heterogeneous system. Naturally, we want to perform the simulation of
a system which involves several heterogeneous entities, therefore we cannot afford to provide a
rigid, static simulator.

Heterogeneous entities which may take part in the conception of a multi-physical system are
numerous, ranging from biological to optical through mechanical, etc., without forgetting the
different semantics or time abstraction associated. It seems unlikely that we would be able to
define every existing heterogeneous entity and, furthermore, to define those which do not yet exist.
In consequence, heterogeneous simulation requires a way to easily integrate new heterogeneous
entities into the simulator, in a convenient manner.

2.2.4 Multi-Disciplinary Monitoring

In the context of systems simulation and, more specifically, in the case of heterogeneous systems,
the monitoring mechanism constitutes an important feature of the simulator. This mechanism
must adapt to, and fit, the different digital/physical parts involved in the design. With the term
monitoring, we refer to a mechanism which aims to observe and record information about the
signals of a system, independently of the outcome of this observation (tracing, profiling, etc.).

The information associated with a digital component (such as a micro-controller) is different
from that associated with an analog component (such as a thermal sensor). The relevant data
may vary from one domain to another and the way to express them may also differ. Thus, setting
up the monitoring mechanism of such systems represents a challenge in itself since it is dependent
on the domain modeled, and yet it must remain a generic mechanism in order to manage all the
different disciplines and ensure the flexibility of the simulator.

2.3 Contributions

The simulation of multi-disciplinary systems is not trivial. Bringing together different physi-
cal/engineering disciplines with different semantics is rather difficult. Designing a system that
integrates digital and analog parts becomes a complicated process, where heterogeneity represents
a key issue.

The objective of this thesis is to explore the possibilities of the simulation and the composition
of digital centric multi-disciplinary systems. The contributions brought in the framework of this
work are listed below.

• Creation of a reliable framework for the virtual prototyping of heterogeneous systems
(SystemC MDVP) based on interoperable Models of Computation (MoCs).

10
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Essentially, we can break down the design of a simulator into two aspects: composition and
synchronization. In this thesis, we address the challenges linked to the compositional aspects, some
of the synchronization aspects are addressed in another work [11]. We establish a compositional
analysis in order to provide a correct-by-construction approach. This analysis relies on validation
checks and the definition of interacting mechanisms between MoCs. Within our simulation
framework, all the mechanisms provided are generic to guarantee the flexibility of the simulator.

When dealing with heterogeneity, we have to identify the border between the different
disciplines involved in the system. We must perform compatibility checks between these interacting
disciplines and also provide a mechanism to express the specific semantics associated with a
discipline such as dimension and units. The compositional analysis that must be performed should
be carried out in the beginning of the life cycle of the simulator in order to ensure a sane structure
for the followings simulation steps. The development of the simulator is a joint work with the
PhD student in charge of the synchronization [11].

• Definition of a new Model of Computation: Smoothed Particle Hydrodynamics (SPH).

In order to support and verify the principles and mechanisms proposed within our framework
SystemC MDVP, we need a various set of several Models of Computation. In the framework of
the H-Inception project, the following MoCs were developed by persons involved in the project:
Timed Data Flow (TDF) [11], Electrical Network (EN) [12] and Ordinary Differential Equations
(ODE).

As part of this thesis, we have accomplished the development of a Model of Computation called
SPH, which allows for fluidic networks to be described. The SPH MoC enables the expression of a
physical discipline, with its unit and dimension. It elicits a good understanding of the complex
interactions between several disciplines. This MoC is included in a proof-of-concept application,
which aims to prototype a Lab-on-Chip through a point-of-care blood analysis system.

• Development of a generic multi-disciplinary monitoring mechanism.

A global and unified framework for the simulation of heterogeneous systems must provide
an efficient monitoring mechanism. In order to support the scalability of the framework, i.e.
to handle the upcoming disciplines, the monitoring capabilities must be generic. As such, its
development passes through the definition of an internal abstraction within the framework and a
generic interface to enable the expression of the discipline’s specificities.
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2.4 Conclusion

Keeping in mind the objective of performing the simulation of multi-disciplinary systems, specific
issues related to the very nature of these systems have been raised. The simulation of heterogeneous
systems must be based on a solid set of principals and must rely on a convenient and flexible
infrastructure It requires the provision of a clear definition of the entities involved in the simulation,
that is to say a clear definition within the simulation tool and also from the end-user perspective.
It must be supported by a strong and efficient interaction mechanism, allowing for a high level of
flexibility and, therefore, the capacity to enhance the simulator with new entities. Finally, an
efficient monitoring mechanism that fits the specificities of multi-disciplinary systems must be
provided. The difficulty, when you wish to perform the simulation of heterogeneous systems,
lies in the method of addressing these challenges together in order to meet the aforementioned
requirements.

After describing the contributions of this thesis in order to tackle the challenges raised by the
simulation of heterogeneous systems, different approaches to address these issues are discussed in
Chapter 3. The following chapters discuss the solutions provided in this thesis in more detail. We
introduce our simulation framework SystemC MDVP and the underlying mechanisms (Chapter 4
and Chapter 5), we clearly define the simulation environment and the notion of heterogeneity before
describing our interaction mechanism that fits the purpose of simulating heterogeneous systems,
without forgetting our multi-disciplinary monitoring mechanism (Chapter 6). We subsequently
demonstrate the flexibility of our solution with the integration of a new MoC (Chapter 7), followed
by a case study to illustrate the efficiency of our solution (Chapter 8)
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Chapter 3. Related Work

3.1 Introduction

This chapter presents a non-exhaustive state-of-the-art concerning the different approaches that
allow us to simulate multi-disciplinary systems. This state-of-the-art aims at highlighting the
different features required in order to design a virtual prototyping environment for heterogeneous
systems.

Section 3.2 introduces a kind of simulation called coupled simulation, where the purpose is to
describe different parts of the system to model using different tools and to simulate them in their
respective dedicated simulator. We especially detail the Functional Mock-up Interface (FMI)
standard which follows this approach.

Section 3.3 puts forward different simulation frameworks which aim at performing the simulation
of heterogeneous systems. Ptolemy II, considered as the pioneer in the field of heterogeneous
simulation, is a software environment based on a hierarchical heterogeneous approach. Metropolis
is based on meta-models and promotes a reusability approach in order to support the simulation of
embedded heterogeneous systems. Modhel’X relies on the association of sub-models described using
different modeling languages. Matlab, coupled with Simulink, constitutes a commercial solution
to perform multi-physical simulation. Modelica is an object-oriented language for hierarchical
physical modeling.

In Section 3.4 we explore existing SystemC-based frameworks which intended to extend its
capacities in order to perform analog simulation. We outlines two sets of frameworks, the first one
gathers the frameworks which modify the SystemC kernel to enhance the simulator with analog
capacities: HetSC and SystemC-A. The other set gathers those which do not alter the SystemC
kernel: SystemC-H and SystemC AMS.

In Section 3.5 we discuss different technologies that could have been used in order to achieve the
monitoring of multi-disciplinary systems such as Aspect-Oriented Programming and LLVM/Clang
approaches.

Thereafer, Section 3.6 provides an overview of the state-of-the-art presented and concludes
this chapter.

3.2 Coupled Simulation

The Coupled Simulation approach, also referred as co-simulation, consists in modeling and
simulating a system composed of different subsystems in a distributed manner; these different
subsystems form a coupled problem. The co-simulation intends to couple different tools in a
co-simulation environment. The idea is that each model which makes up the system is developed
with different tools and is simulated independently from the other models in its own simulator.
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This approach allows for the modeling at the subsystems level without addressing the issue of the
coupling of the different subsystems involved in the model. The Functional Mock-up Interface
(FMI) defines a standard that follows the co-simulation approach.

The Functional Mock-up Interface (FMI) [13, 14, 15] is a tool-independent standard for both
the model exchange and co-simulation of dynamic models [16]. The concept of dynamic models
exchange provides a modeling environment with the ability to generate an input/output block
to represent a dynamic model which can be used later within another modeling environment.
The FMI for co-simulation adopts a different approach where instead of transmitting a model to
another tool, each model is simulated using its own tool and data resulting from this simulation
can be transmitted to other tools.

The FMI for co-simulation consists of two distinct parts: a co-simulation interface and a
co-simulation description schema. The first one, the interface, is defined through a set of C

functions that allows for controlling the different tools. The data exchange of input and output
values can be controlled through this interface. The second one describes, as an XML file, the
information that characterizes a tool (input, output, solver capacities ...). Although these models
can communicate between them, the data exchange is restricted to discrete communication points.
Between these communication points each subsystem is solved independently.

The Functional Mock-up Interface does not rely on direct coupling in order to achieve its
co-simulation environment. FMI assumes the existence of a master located between each simulator
involved in the co-simulation environment. This master, which is not included in the FMI for
co-simulation standard [17], has the responsibility to synchronize, to control and to manage the
different tools involved in the simulation. As such, the master appears as an interface which
establishes the connections and the data exchange between tools. The FMI standard assumes that
the different tools, referred as slaves, only communicate with the master.

Although the master is not considered as part of the standard, there exists a prototype master
implementation realized in the framework of the MODELISAR European research project [18].
This implementation prototype master provides three simulation algorithms with fixed step size: a
data flow algorithm, a fixed point iteration algorithm and a simple implementation of Newton’s
method. This prototype is developed for commercial purposes.

This approach is interesting, but in term of efficiency using a single simulation engine remains
a more efficient approach [17]. Indeed, efficiency and simulation speed strongly depend on the
problem to be solved. While simulation of graphs without feedback can be simulated quite
efficiently using the non-iterative method, the presence of cycles and the incapacity to use iterative
method lead to low accuracy and low numerical stability. Furthermore, the master timestep
may have to be very small which increases the computational cost and, hence, may lead to a
global simulation speed quite low. In addition, the overhead induced by the synchronization
between tools is often too high. Consequently, this approach does not fit our objective and is not
considered in this work.
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3.3 Frameworks

3.3.1 Ptolemy II

One of the pioneering works in the field of heterogeneous systems simulation was done in
Ptolemy Classic [19] and its sequel, Ptolemy II [20, 21]. Ptolemy II is a proof of concept
simulator, which addresses the complex issue of modeling heterogeneity in a hierarchy of
connected entities. Ptolemy II introduces the notion of Hierarchical Heterogeneity. This approach
exhibits a heterogeneous composition where the interaction and communication between models
are represented while preserving the properties of each individual model. It allows for the
decomposition of a complex heterogeneous system as a tree of nested sub-models, each sub-model
representing a network of interacting components. Beneath the hierarchical representation, different
synchronization mechanisms between models may be used at different levels of abstraction. Each
sub-model, i.e. each level in the hierarchy, safeguards the intrinsic properties of each model; the
interconnection between the different sub-models gives the opportunity to evaluate the system as
a whole.

Ptolemy II relies mainly on an actor-oriented view to describe a heterogeneous system [22, 23].
Two kinds of actor are available:

• Atomic Actor : describes a basic behavior block of the system. It represents a leaf in the
hierarchical tree representing the system.

• Composite Actor : represents a netlist of sub-actors which can either be atomic or composite
actors; it is a sub-model representing a network of interacting components.

Each local sub-model is managed by a specific and well-defined Model of Computation (MoC)
which actually defines how computation and model solving are performed. MoCs are implemented
by means of Domains : Receivers, which encompass the communication semantics, and Directors,
which define the execution order of actors. Together, they define the environment of actors. Directors
are eventually responsible for the instantiation of domain-specific receivers. Ptolemy II includes
domains such as Discrete Event (DE), Continuous Time (CT), Synchronous Data Flow (SDF),
amongst others. A list of the available domains is defined in [24].

Director D1
Director D2

Composite Actor

Actor A1

Actor A2 Actor A3 Actor A4

Figure 3.1: Hierarchical Modeling in Ptolemy II (adapted from [20]).
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An illustration of a system designed with Ptolemy II semantics is shown in Figure 3.1. It
describes the use of atomic actors and composite actors, highlighting the hierarchical representation
of the system. The communication mechanisms through ports and channels are also represented;
the different domains interacting are subsequently shown as directors, and receivers are depicted.

Since the whole environment is defined by the domain, actors represent abstract functionalities
that are inherently reusable in many domains. The implications of this flexibility, however, can be
tricky or overwhelming for the end-user. In addition to building the netlist of components the
designer wishes to simulate, he also has to explicitly build the specific composite actors so as to
encapsulate the subsystems and he must choose and instantiate the correct directors with respect
to the created hierarchy and the simulated domains. Although actors that can be run under
different domains are a good idea in order to increase the reusability of models, it is also a source
of struggle. The user is forced to fully investigate the impact on the model behavior introduced by
a change of directors and receivers as they implement the semantics of a different MoC. As a
result of this, the models have to be completely revalidated. Another inconvenience is that the
model hierarchy has to reflect the hierarchy of homogeneous domains under control of individual
directors instead of following solely the natural decomposition of a system into its sub-systems.
Thus, simulator-specific artefacts become intermingled with actual system components. These
constraints raise two major issues. Firstly, it forces the user to fully apprehend the director’s
internals and the underlying simulator semantics. Secondly, the explicit definition of the hierarchy
produces an intermingling of system components and simulation-specific artefacts.

3.3.2 ModHel’X

ModHel’X [25] is a framework designed to model heterogeneous systems. It relies on the association
of sub-models, described using different modeling languages, to construct the whole model. Like
Ptolemy II, it relies on the concept of Models of Computation and a hierarchical heterogeneity
approach. To handle a new modeling language, an expert in this language must define the
associated MoC with respect to the ModHel’X semantics. This must be done in order for the
generic execution engine to perform a correct interpretation of the modeling language’s semantics.
The need for an expert to define a new Model of Computation is an obstacle to the development
of this framework. Consequently, only a few MoCs are available.

3.3.3 Modelica

Modelica is an object-oriented language for hierarchical physical modeling [26]. It relies on several
features including non-causal modeling and multi-domain modeling capability [27]. There are
several commercial modeling and simulation environments for Modelica available, such as Dymola
(Dynamic Modeling Laboratory) [28] or Math-Modelica.

Modelica adopts an approach similar to Ptolemy II with actor-like semantics. However, the
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ports used to interconnect different bricks of a model are not specified as input or output, instead
the connections are expressed with equation constraints on variables. While this approach has
significant advantages in the definition of physical models, it appears to be harder to combine
with other entities [29].

The conception of hybrid system with Modelica can prove to be tricky. Indeed, the same
notions, depending on the environment they are declared in, can have different meanings. For
example, events in an equation environment are simultaneous and cannot be treated sequentially,
whereas in algorithm environment, simultaneous events could be lost [30].

3.3.4 Matlab

Matlab [31] is a commercial tool with its own programing language where the models and
algorithms are described using mathematical notation. Although it is primary intended for
numerical computing, additional optional toolboxes can be interfaced with Matlab in order to
enhance the possibilities offered by the Matlab environment. It is worth noting that the Matlab
language is an interpreted language which means that it is not compiled. This has an impact on
performance with regards to the simulation speed.

Simulink [32] is a commercial toolbox associated with Matlab. It is a graphical programming
environment for modeling, simulating and analyzing multi-domain dynamic systems. Simulink
relies on libraries which provide access to a set of components from different engineering domains.

Matlab, when associated with Simulink, represents a relatively well-adopted solution for
performing interactive design at system level. Designers can create, simulate and modify block
diagrams. They are widely used for capturing system requirements and developing signal-
processing algorithms [33]. Although they provide powerful possibilities for the description of
analog and mixed-signal systems at system level, they support neither the modeling of digital
hardware/software systems, nor the simulation of analog subsystems on the electrical circuit level
[34]. A support for different Models of Computation is missing and hence Simulink is restricted to
the evaluation of abstract models [35].

A study on languages and tools for hybrid system design [30] showed some drawbacks of
Matlab. This study states that the behavior of the system is sensitive to the inner workings of the
simulation engines, and, consequently, is liable to lead to erroneous results. An in-depth knowledge
of the internal of the tool is important in order to prevent such behaviors.

Despite being user-friendly and providing a great set of primitives through the toolbox
Simulink, Matlab’s simulation performances do not fit our purpose. We are looking for a fast
prototyping simulator and with Matlab, depending on the abstraction level within the model, the
simulation speed may significantly drop.
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3.3.5 Metropolis

Metropolis [36, 37] is a system design environment for heterogeneous embedded systems, which
favors reusability of components in the systems through the decoupling of orthogonal aspects [38].
The decoupling of orthogonal aspect addresses three main characteristics:

• Computation and Communication: it represents an important separation since the computa-
tion and the communication do not follow the same refinement process.

• Functionality and architecture: the separation is suggested since these two aspects are often
defined independently.

• Behavior and Performance indices: the separation between these two characteristics is
motivated by the fact that performance indices as constraints are often specified independently
from the behavior. And as results, they derive from a specific architectural mapping of a
behavior.

To this aim, the Metropolis framework mainly relies on an internal representation called
Metropolis Meta Model (MMM) that defines a set of abstract classes. This meta-model can be
described following three aspects:

• actions: they can be defined in terms of computation (process), communication (medium)
and coordination (scheduler or linear temporal logic).

• constraints : they rely on the definition of a quantity object associated with actions that can
represent time or power. Constraints can then be specified using the form of predicate logic.

• refinement : through inheritance principle, one can define and model a well-separated
computation and communication semantics. This mechanism allows for the definition of a
more detailed behavior of the system.

Although Metropolis provides efficient features such as the separation between computation and
communication, and its refinement mechanism, the process-based approach within this framework
leads to a non-hierarchical modeling approach. Indeed, all processes should be implemented
in the same hierarchical level to be interconnected with mediums. We believe a hierarchical
approach (as within Ptolemy II) is best suited for heterogeneous modeling. The expression of
the synchronization can be a little tricky since it is left up to the model designer. He should
express the time synchronization through the definition of constraints upon quantity handled by a
quantity manager. Moreover, the communication medium performs the data synchronization,
and hence it may be used as a converter channel. Finally, the meta-model does not provide a
predefined notion of time, which means that the definition of a global notion of time is left up to
the model designer at the language level through a quantity object.
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3.4 SystemC-based Frameworks

Besides Ptolemy, several solutions for the simulation of heterogeneous systems have been presented
over the course of the last decade. They mainly rely on SystemC [39], a discrete event simulation
kernel, which can be used to perform rapid system prototyping at several levels of abstraction.

Functional
Verification

Requirements

Architecture

Hardware
Software

Behavior

Test bench

RTL

Gates

Transistors SPICE

Verilog
(-AMS)

VHDL
(-AMS)

System
Verilog

Vera
e

Sugar
PSL

SystemC
(-AMS)

MATLAB
C/C++

VHDL
(-AMS)

Figure 3.2: Design languages and their main purpose, adapted from [33]

The levels of abstraction covered by SystemC are depicted in Figure 3.2. SystemC goes from
the Register Transfer Level (RTL) to the architecture level through several other levels (test bench,
functional verification, behavior and hardware/software). Furthermore, this figure illustrates the
levels of abstraction cover by other frameworks, notably Matlab.

SystemC [33] is a system design language that allows for the modeling and co-development of
hardware and software at a high level of abstraction. It is also a hardware description language
(HDL), thanks to its several levels of abstraction which allow it to precisely describe hardware
architectures. SystemC comes as a C++ class library and, hence, leverages the powerful and
efficient capacities of the C++ language.

The wide range of abstraction levels offered by SystemC allows a designer to describe a system
with several levels of accuracy. A designer can describe a subsystem at a lower level of abstraction
while the rest of the system remains at a high level of abstraction. For example, the system can
be described using the Transaction Level Modeling (TLM) [40] at a high abstraction level and a
subsystem can be described using a Cycle Accurate Bit Accurate (CABA) abstraction level. This
approach offers the designer a good understanding of the system he is modeling.
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The Discrete Event (DE) simulation kernel of SystemC relies on two main tasks - the
Elaboration and the Simulation phases. The SystemC kernel phases are described in Figure 3.3.

Construction of the module hierarchy

Callback: before_end_of_elaboration()

Callback: end_of_elaboration()

Callback: start_of_simulation()

Scheduler Execution

Initialization phase

Evaluation, update, delta notification and timed notification phases

Callback: end_of_simulation()

Destruction of the module hierarchy

sc_start()

sc_stop()

SystemC
Elaboration

SystemC
Simulation

Figure 3.3: SystemC Kernel Phases, adapted from [11].

The Elaboration phase aims to prepare the kernel and building efficient data structures for
the simulation. During this phase all the data structures required to support the simulation are
created. To this aim, the system modeled is explored.

The objective of the Simulation phase is to execute the model described. To do so, the kernel
relies on a scheduler that handles a list of processes to execute. The processes are divided into
different lists depending on their status. A process can be runnable, meaning it waits until
the scheduler triggers its execution, or a process can be queued in a pending list waiting on a
notification in order to be runnable.

The kernel catches all the notifications - events that control the execution of the processes.
When it receives a notification, the scheduler can move a process from the pending list to the
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runnable one if this process is sensitive to this notification. The scheduler repeats this scheme until
no more notifications are received, no more processes are runnable, or the simulation is stopped.

Figure 3.3 highlights some relevant callbacks provided by SystemC that are automatically
called on each primitive by the SystemC kernel. These callbacks can be overridden in order to
execute specific behaviors at different stages of the simulation. Hence, these callbacks constitute
entry points into the SystemC simulation kernel that do not alter the kernel itself.

• before_end_of_elaboration() is called before the kernel reaches the end of the elaboration
phase. During this callback, modifications to the system are still authorized. This callback
can be used to program actions to execute during the elaboration phase that may alter the
structure of the system modeled

• end_of_elaboration() is called when the kernel reaches the end of the elaboration phase.
At this moment, the data structures required by SystemC to support the simulation have
been created and, consequently, the system can no longer be modified. This callback can
be used to program actions, executed during the elaboration phase, that do not alter the
structure of the system modeled.

• start_of_simulation() is called in the beginning of the simulation. This callback can be
used in order to program actions to execute at the beginning of the simulation.

• end_of_simulation() is called at the end of the simulation. This callback can be used to
program actions to execute at the end of the simulation.

The solutions for the simulation of heterogeneous systems based on SystemC rely on two
different approaches. Firstly, we find the solutions which extend and modify the kernel SystemC.
Secondly, we find the solutions which extend the functionalities of SystemC without altering its
kernel. Solutions following both approaches are introduced in the following.

3.4.1 SystemC-A

SystemC-A [41, 42] is an extended version of SystemC which provides analog, mixed-signal
and mixed-domain modeling capabilities. SystemC A enables support for user-defined ordinary
differential and algebraic equations which enable the modeling of analog systems. It defines an
analog kernel, which provides both linear and nonlinear solvers to solve the analog systems. This
kernel is integrated within SystemC through a primitive module but there is a major drawback
with the solution proposed - it requires the modification of the SystemC kernel. To make the
integration of the analog kernel with the discrete event kernel possible, and to perform the
synchronization between them, the authors modified the SystemC kernel which limits portability
and standard compliance.

22



3.4. SystemC-based Frameworks

3.4.2 SystemC-H

SystemC-H [43, 44] is an extension of SystemC which enhances the discrete event kernel capacities
in order to support heterogeneity. Within this framework, the authors want to provide support
for several models of computation. The adopted approach is to provide a simulation kernel
dedicated to each MoC. The authors addressed the simulation of heterogeneous systems through
the definition of a heterogeneous simulation kernel, each part of the system being simulated by
the kernel which fits the MoC used to describe it. They designed a simulation kernel wherein
the MoC dedicated kernels are interoperable with the discrete event kernel and thus defined
an alternate SystemC kernel. As SystemC-A, they modified the internal structure of the kernel
SystemC which limits portability and standard compliance.

3.4.3 HetSC

HetSC [45, 46] is a framework which describes a heterogeneous specification methodology built
on top of SystemC kernel. One important thing to notice is that HetSC provides heterogeneous
support without modifying SystemC kernel. In the context of this framework, heterogeneity is
defined as the ability to specify a set of communicating subsystems described under different
Models of Computation (MoCs). This methodology supports untimed MoC and synchronous MoC.
We can specify Process Network, Kahn Process Network, Communicating Sequential Processes
and Synchronous Data Flow as untimed MoC and distinguish the Synchronous Reactive MoC as
synchronous Models of Computation. This framework enables new MoCs to be integrated as
long as they can cooperate and be abstracted by the Discrete Event (DE) SystemC simulation
kernel. We can say that HetSC is mainly a communication library and that it does not express
heterogeneity as we defined it. Within this framework, the Models of Computation (MoCs), which
express the heterogeneity, only describe abstracted DE models and cannot express the surrounding
physical environment. We should note, for example, that HetSC does not support continuous time.

3.4.4 SystemC AMS

SystemC AMS [47, 48, 49] is a specification methodology developed on top of SystemC by the
Accelera Systems Initiative organization1. SystemC AMS extensions [50] have been specifically
developed in order to improve the modeling capacities of SystemC by allowing the simulation of
analog behaviors coupled with digital-centric systems. SystemC AMS comes as a C++ library that
follows the same approach of SystemC. It relies on the same definition of objects to realize the
design of a system: modules, ports, interfaces and channels. SystemC AMS is defined following a
layered architecture approach [51] described in Figure 3.4.

1The development is carried out by the AMSWG: SystemC AMS Working Group
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Figure 3.4: SystemC AMS language Standard Architecture, adapted from [52].

SystemC AMS integrates three layers to the existing set of layers defined in the SystemC
environment [48]:

• The view layer : it defines the different descriptive methods provided to the designer in order
to write executable models.

• The solver layer : it contains the implementation of different solvers required in order to
model specific AMS behaviors.

• The synchronization layer : it defines a mechanism in order to organize the simulation of a
SystemC AMS model that may include several views.

SystemC AMS also supports the notion of MoCs and several abstraction of time: Discrete Time
(DT), Continuous Time (CT). Figure 3.4 shows the three MoCs defined within SystemC AMS:
Timed Data Flow (TDF), Linear Signal Flow (LSF) and Electrical Linear Network (ELN).

The TDF MoC allows discrete time modeling, and efficient simulation of signal processing
algorithms and communication systems at the functional and architectural level. A dynamic
approach to the TDF MoC is defined as Dynamic TDF (DTDF) [53]; it allows modifying some
of the simulation parameters during the simulation. One should note the strong implication of
the TDF MoC in the definition of SystemC AMS. Indeed, TDF is more than a simple Model of
Computation within SystemC AMS; Figure 3.4 highlights the fact that TDF constitutes the only
synchronization mechanism available within SystemC AMS. Although other MoCs are defined,
they all have to go through the TDF semantics in order to be executed.
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The LSF MoC supports the modeling of continuous time behavior through the definition
of predefined primitives (such as addition, multiplication, integration, etc.). LSF allows the
modeling of non-conservative systems, the connection of several primitives defines a system of
linear equations solved by a linear DAE solver. The ELN MoC enables the modeling of electrical
networks through the definition of predefined primitives (such as capacitors, resistors, etc.).
The connection of several primitives describes the continuous time relation between voltage and
current. However, ELN is restricted to the modeling of linear electrical systems.

These extensions were originally implemented in the Fraunhofer SystemC-AMS proof-of-
concept simulator [54]. They have been successfully applied in communication [55], automotive
[56] and consumer electronics use cases with good simulation performance and accuracy. The
commercial software COSIDE [57] is based on this proof-of-concept simulator.

For the moment, though, it is rather difficult for design teams to extend the current SystemC-
AMS simulator with other MoCs than those proposed [55]. The SystemC AMS 2.0 standard [50]
does not define an Application Programming Interface (API) for this purpose, nor does the
proof-of-concept simulator document its internal API. To our knowledge, only two attempts
have been published, the first adding an Non-Linear Network (NLN) [58] and the second, a
Bond Graph (BG) MoC [59], respectively, by authors with an in-deep knowledge of the SystemC-
AMS implementation. These MoCs rely on internal APIs to integrate themselves without modifying
SystemC AMS. An analysis of the SystemC-AMS source code shows that each MoC is required to
fully handle its elaboration once the SystemC port binding phase has been finished. SystemC-AMS
provides only a minimal support for this task by providing a list of all instantiated modules
belonging to a certain MoC. It provides one synchronization mechanism used by all the existing
MoCs and no API is provided to define new synchronization schemes between MoCs.

All in all, the modeling of heterogeneous systems can be considerably error prone from a
physical perspective, since designers from different disciplines use different measurement units and
scales. A major improvement towards heterogeneous simulation was made with the integration
of dimensional analysis into SystemC AMS [60] through the use of Boost::Units library [61].
It allows designers to enhance models with the notion of physical quantities, which avoids
compositional errors.

3.5 Multi Disciplinary Monitoring Mechanism

Monitoring is a mechanism which aims to observe and record information about a system. It may
be used, for example, to detect threshold crossing, to perform profiling evaluation on a system or
as a tracing mechanism. Tracing mechanisms are mainly used for debugging purposes, through the
log of information during the simulation.

Monitoring, threshold detection, profiling and tracing functionalities, represents an important
feature in a simulator framework. We think that these functionalities should be developed
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simultaneously. Performing the detection of threshold crossing, the profiling or the tracing involves
the same mechanisms, only the outcome is different. All of these capabilities require a mechanism
to probe the system in order to gather relevant, specific information.

In the following sub-sections we will introduce existing solutions that may fit the requirement
to provide an efficient monitoring mechanism.

3.5.1 Aspect-Oriented Programming (AOP)

Object-Oriented Programming (OOP) [62] allows us to break up a problem into a set of reusable
objects. Although these objects mainly describe a single functionality, they usually share common,
secondary behaviors with other objects. These common behaviors are usually scattered throughout
the whole system, as shown on Figure 3.5, breaking the encapsulation principle. You can see the
same behavior replicated in different components (objects).

Cross-cutting
Concerns

Figure 3.5: Classical Object Oriented Programing.

Think of the tracing of the functions called during the simulation. You would have to insert
print function within every function of your system (potentially the exact same code line)! These
common behaviors are identified as cross-cutting concerns. Cross-cutting concerns denote behavior
that cuts across the boundaries of assigned responsibility for a given modular element. They are
often shared, and common. They may describe process synchronization, location control, timing
constraints, persistence, failure recovery, tracing, monitoring, verification, etc.

Cross-cutting Concerns

Figure 3.6: Aspect Oriented Programing.

The Aspect-Oriented Programming (AOP) [63, 64, 65] concept was introduced in order to
address the issues linked to these cross-cutting concerns. AOP allows defining these common
behaviors in a single module, resulting in a better code structuring and increased reusability and
code maintenance. It prevents the intermingling of functional code with non-functional code.
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The AOP representation of the system is described in Figure 3.6. You can see that the common
behaviors previously scattered through the system are now concentrated within a single entity.

Aspect-Oriented Programming relies on a few concepts which, in order to understand how this
paradigm works, are described below.

• Advice: contains the additional code that you want to apply on your existing model in order
to describe a cross-cutting concern.

• Join Point : represents a point in the control flow of a program. It defines all the points in
execution where it is possible to interact. It may refer to a method, an attribute, a type
(class, union or struct), an object, etc.

• Pointcut : represents a set of Join Point at which a cross-cutting concern needs to be applied.

• Aspect : represents the combination of a Pointcut and an Advice.

• Weaving : realizes the insertion of different aspects into the existing software thanks to a
weaver. It can be done statically during the compilation or dynamically during the execution.

• Weaver : Source-to-Source tool, which produces a new source code, when given an original
source code and a set of Aspect codes.

Figure 3.7 illustrates the mechanism of the Aspect-Oriented Programming. The original source
code along with the different aspects are given to the weaver, which produces a new source code
including the aspects’ functionalities. Following that, this new source code is compiled normally
using a compile chain (e.g. g++ when coding in C++) to produce the executable file.

Source Aspect

Weaver

G++ Exe
Source
including
Aspect

Figure 3.7: Aspect Oriented Programing Mechanism.

Aspect-Oriented Programming is of great interest to us. Not only does it allow us to define
common behavior (tracing, monitoring) in a single module, providing a better code structuring
and improved reusability and code maintenance, but also it increases the modularity as the
additional code brought by the aspects can be easily added or removed within the system. The
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original source code remains unchanged and independent from the aspect code since it is not
aware of the aspect functionalities. Thus it may provide monitoring functionality to existing
models with no alteration of these models.

Unfortunately, the C++ implementation of the Aspect-Oriented Programming, AspectC++
[66, 67], does not support the object declared using template functionality of C++. This represents
a major drawback since models described with SystemC or SystemC MDVP may use them.

3.5.2 LLVM - Clang

For the purpose of achieving the same goal as witnessed with the AOP we can consider the
possibility of developing our own tool to perform source code transformation with a view to enhance
the original source code by adding monitoring functionality. LLVM [68, 69] and its frontend Clang
[70] represent a powerful tool with the potential to achieve this objective. Clang exhibits a rich
API which handles and manipulates the source code through the Abstract Syntax Tree (AST).
We can imagine a complete compilation-tool-chain base on Clang to perform the monitoring. We
need to automatically identify key points in the design flow where we can insert monitoring source
code, relying on specification provided by the end-user. Although Clang represents an interesting
and flexible solution that clearly fits our objectives in terms of monitoring, the development of
such a tool would require a considerable amount of time and, therefore, cannot be considered in
the frame of this thesis.

3.6 Conclusion

For the best of our knowledge, the SoC community still needs a complete design environment
that can handle both the digital, and the analog parts, at a higher level of abstraction. With the
exception of Ptolemy II, the existing solutions do not clearly express the semantics information
needed when it comes to heterogeneous simulation. We take full advantage of the previous work of
Ptolemy II, conserving their hierarchical heterogeneity approach, focus on Models of Computation
and associated semantics. Conversely, we want to avoid the intermingling of simulation artefacts
and models. Accordingly, our approach neither includes domain-polymorphic actors, nor explicit
directors or receivers.

The work of SystemC AMS has also inspired us to extend SystemC in a bid to perform analog
simulation. The principles and the TDF MoC developed within this framework are of significant
interest to us. That being said, we want to steer clear of the strong dependencies on TDF in the
existing SystemC AMS as well as providing the possibility of extending the current set of available
MoCs. SystemC MDVP can benefit from Boost.Units Library which authorizes the description of
quantity data types, the goal being to express physical data/values; compile time checking is
possible. However, we aspire to correct the verbose and unreadable error message provided by this
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library. A representation of the influence of other frameworks on SystemC MDVP is provided
in Figure 3.8. The ensuing chapters of this document are dedicated to the description of our
framework - SystemC MDVP.

Matlab / Simulink Ptolemy II

SystemC-H

SystemC-A

Modelica Metropolis
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- Drag and drop
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Figure 3.8: Influence of other Frameworks on SystemC MDVP.

The following of this document is dedicated to the description of our framework
SystemC MDVP.
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Chapter 4. SystemC MDVP: Principles

4.1 Introduction

Based on previous works in the field of heterogeneous systems, and with an aim to leverage
what has already been done, this chapter introduces the underlying principles of SystemC Multi
Disciplinary Virtual Prototyping (MDVP), a framework for the simulation of heterogeneous
systems.

We believe that digital hardware and software are at the heart of current and future
heterogeneous systems. Driven by the desire to enable architectural exploration, early software
development, and following a digital centric approach, our framework targets the simulation of
high abstraction system-level models, where extreme accuracy is not the most important feature.
Therefore, SystemC MDVP is designed as an extension of SystemC which permits to naturally
achieve heterogeneous digital centric simulation since SystemC already allows hardware and
software co-simulation.

Our objectives with SystemC MDVP are to provide a fast simulator to enable the architectural
exploration of heterogeneous systems in the early stages of the development process. We want to
allow the simulation of a heterogeneous system as a whole, including both the digital and analog
(physical) parts. With a correct-by-construction approach, one of our objectives is to perform the
validation of the global system architecture from a functional viewpoint.

Furthermore, one important point is to provide the opportunity to develop the embedded
software, associated with the system, in the early stages of the design process. Thanks to virtual
prototyping, we are able to develop the software associated with the platform prior to the
availability of a physical prototype and, consequently, validate it as soon as possible.

Throughout the course of this chapter, a running example will be used to illustrate the
principles of the simulator. This example is shown in Figure 4.1. One can see that the targeted
System on Chip embeds a digital component (micro-controller) as well as components from other
engineering domains (sensors) (Figure 4.1, 1 ). These sensors could represent a multitude of
engineering domains, such as MEMS, optical, biological, thermal, etc.

The example presented represents a 3-axis vibration sensor (Figure 4.1, 2 ). Each sensor
detects the vibration along a specific axis. The representation of this system will evolve over the
course of this chapter in order to illustrate the presented concepts of the simulator. This figure
shows our vision of embedded systems which positions the digital part at the center of the system
with other domains gravitating around it.

This chapter is organized as follows.

Section 4.2 gives an overview of several Models of Computation allowing us to define the
notion of heterogeneity within SystemC MDVP. Characteristics of these MoCs are depicted and
an abstract representation of a MoC is introduced.

32



4.2. Models of Computation
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System On Chip composed of a 

micro-controller and three sensors 2 3-axis vibration sensor

Figure 4.1: Running Example: System on Chip representing a 3-axis vibration sensor.

Section 4.3 describes the interaction mechanism that prevails in our framework. This mechanism
is defined by means of master-slave relationships between the MoCs. The semantics associated
with this approach are introduced and the resulting opportunities and constraints are discussed.

This interaction mechanism suggests a hierarchical approach to the heterogeneity that is
presented in Section 4.4. We describe what it represents and how the architecture of the simulator
is impacted by such an approach.

Following the reflection during the design of this framework, we identified the different kinds
of users of said framework; these users, as well as their role and position in the design process are
discussed in Section 4.5 We illustrate how this approach based on multiple user profiles impacted
and modeled the requirements to be met and the principles on which the simulator is built.

Finally, Section 4.6 provides an overview of the principles underlying the SystemC MDVP
framework and concludes this chapter.

4.2 Models of Computation

As stated in Chapter 2, a clear definition of heterogeneity must first be established in order to
properly perform the simulation of heterogeneous systems.

Within the SystemC MDVP framework, heterogeneity is defined as the association of different
Models of Computation (MoCs), where each MoC can represent a specific entity with its own
semantics. A MoC constitutes a heterogeneous entity.
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A MoC defines how the computation and the communication take place within an assembly of
interacting components; it covers the data flow as well as the control flow which allows the MoC
to give semantics to this infrastructure [20]. A MoC also defines all the information required to
carry out the modeling of a system using its own semantics. As such, in addition to defining
how the computation and the communication are handled, a MoC encapsulates the components
used to design and model a system (elementary primitive, communication channel and port).
Therefore, contrary to Ptolemy’s viewpoint, we associate each modeling primitive to a specific
MoC, giving it fixed semantics including the used abstraction of time (DE, DT or CT). Finally, a
MoC contains a solver which is in charge of the resolution of the physical system described by the
MoC using its own abstraction of time. A MoC must provide the functionalities required by the
designer to allow him to undertake the design of a system. The association of several MoCs allows
for the modeling of different physical entities that belong to separate disciplines.

To illustrate the notion of Model of Computation and support our approach, we now present
several examples of MoCs: Discrete Event (DE), Timed Data Flow (TDF), Bond Graph (BG)
and Electrical Network (EN). For each MoC we present its principles, its internal mechanisms, its
solving algorithm, and how the designer uses it.

4.2.1 Discrete Event (DE)

Discrete Event (DE) Model of Computation is based on a discrete representation of time, where a
model is described as a sequence of events occurring in time. Each event occurs at a specific time
and has the potential to modify the state of the modeled system. Between two events, the system
is stable and no changes in the system can occur, thus the system clock jumps from one discrete
timestamp to another following the event rate. For a designer, the use of a DE MoC simply
consists in describing the behavior associated with a model and defining when it should be run,
i.e. specifying the events which trigger its execution. Several approaches exist to describe a model
using the DE MoC, we can use a Cycle Accurate Bit Accurate (CABA) approach or a Transaction
Level Modeling (TLM) approach. While each approach has its advantages and disadvantages, for
the sake of simplicity, we will only take the CABA approach into consideration in the following
descriptions. Following this approach, the designer also has to handle the communication between
DE basic blocks. With this in mind, he uses input and output ports and signals to interconnect
the primitive modules all together.

A B C

DE Signal DE PortDE Module

Figure 4.2: Simple model described with DE MoC

Figure 4.2 illustrates an example of a model described with the DE MoC. This example is
composed of three modules (A, B and C), four ports and two signals. The behavior associated with
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these modules is specified by the designer. Module A writes data to its port, and then the data is
carried to Module B by means of a signal. The communication between B and C is achieved in a
similar manner.

Within the Discrete Event Model of Computation, the solver is rather a scheduler, its role
being to schedule the execution of the processes associated with each module (e.g. in the model
described in Figure 4.2: A, B then C). It handles the events and, based on the sensitivity list of
each process, chooses which process should be resumed for execution when an event occurs. If
no more processes can be run at a specific time and delta, the scheduler advances the time to
the next event and goes through the same process again until no more events are generated or
available, marking the end of the simulation.

4.2.2 Timed Data Flow (TDF)

Timed Data Flow (TDF) Model of Computation is based on the timeless SDF theory. It uses
a discrete time representation and introduces time-stamped sampled data. As with DE Model
of Computation, the designer describes the behavior associated with a TDF module and also
handles the communication between them through ports and signals.

A B CR:1
D:0

R:3
D:0

R:1
D:0

R:2
D:0

TDF Signal TDF PortTDF Module

R: Rate attribute of the port D: Delay attribute of the port

timestep: 6 ms

Figure 4.3: Simple model described with TDF MoC

Figure 4.3 illustrates an example of a model described with the TDF MoC. This example is
composed of three modules (A, B and C), four ports and two signals connected together as a
TDF cluster. Again, the behavior associated with these modules is specified by the designer.
Module A writes data to its port then the data is transported to the module B through a signal.
As before, the communication between B and C is achieved in a similar fashion.

Within the TDF MoC you have to set out specific attributes in order to correctly represent
the system. TDF requires that you define a timestep value which represents a time period; the
meaning can vary depending on the object to which this attribute is applied. Applied to a module
it represents the time period in which the processing() function associated to this module
should be executed. Applied to a port, it represents the time period in which the samples are read
or written by this port. One have to specify a rate attribute associated with a port. If applied to
an output port, the rate attribute defines the number of sample written by the port in question
and when applied to an input port, the number of sample read by this port. One also may specify
a delay attribute associated with a port (zero by default) which defines the initial number of
samples available in a port when the simulation starts.
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The Timed Data Flow Model of Computation’s solver is, like DE’s solver, rather a scheduler.
The scheduler of the TDF MoC is able to statically determine the execution order for each of its
model components, as well as how many times they need to be executed during each cluster period
based on the rate and delay attributes provided by the designer (e.g. in the model described in
Figure 4.3: AA, B, CCC).

4.2.3 Bond Graph (BG)

Bond Graph Model of Computation is used to describe an energy-based, physical, dynamic system
through a graphic representation. It is particularly well-suited to describe multi-domain systems
because it allows for the description of several energy domains (such as mechanical, hydraulic,
etc...). Each domain can be represented by two variables - the effort and the flow which, combined,
correspond to power. In contrast to DE or TDF, it does not allow for the customization of basic
blocks, you can only use pre-defined modules. Thus, for a designer, using BG MoC can be resumed
by the assembly of primitive blocks.

A B C
e1

f1

e2

f2

BG Module

e: effort f: flow

BG Signal

Figure 4.4: Simple model described with BG MoC

Figure 4.4 illustrates an example of a model described with the BG MoC. This example is
composed of three modules (A, B and C) and two signals. The behavior associated with these
modules is pre-defined. Module A expresses the data to transmit through the combination of a
value associated with the effort (e1) and another associated with the flow (f1). The communication
between B and C is achieved in the same way.

The whole point of using BG is to determine in what order the results should be propagated
from one primitive block to another (especially when there are loops of primitives).

4.2.4 Electrical Network (EN)

Electrical Network Model of Computation is used to describe linear and nonlinear electrical
systems based on a continuous representation of time. This MoC provides built-in basic blocks,
i.e. capacitor, resistor, diode, etc... As with the BG MoC, pre-defined modules must be used
as the customization of basic blocks is not supported. Thus, for the designer, the behavior of
the associated model is defined by the association of several primitive blocks. With regards to
communication, in the same manner as with the other Models of Computation, the designer must
manipulate the ports and signals required to connect the primitive modules. Ports are referred to
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as terminals and signals as nodes.

C

R1 R2 Li

EN node EN terminal

Figure 4.5: Simple electrical network described with EN MoC

Figure 4.5 illustrates an example of a model described with the EN MoC. This example is
composed of several built in modules (generator, capacitor, resistor and coil), terminals and nodes.

The Generalized Kirchhoff’s Laws (GKL) prevail when modeling electrical systems; they
consist of two laws regarding the current (Kirchhoff’s Current Law (KCL)) and the voltage
(Kirchhoff’s Voltage Law(KVL)). KCL states that for any node in the system, the sum of the
current flowing into a node is equal to the sum of the current flowing out of this node. KVL states
that the sum of the electrical potential differences around any closed network is zero.

The Electrical Network MoC’s solver resolves the system of nonlinear equations determined by
the global assembly of each primitive block to provide a continuous solution of the system. The
solver takes into account the Generalized Kirchhoff’s Laws which means that, contrary to the
aforementioned MoCs, each primitive block added in the model has an impact on, and may also
be impacted by, the electrical system modeled.

4.2.5 Abstract representation of a MoC

Through the presentation of these Models of Computation we are able to draw conclusion
concerning different aspects of the MoCs. The way to use a MoC can be simply reduced to
interconnect different entities; this approach prevails regardless of the MoC used.

As we have seen, Models of Computation can clearly be different; they may describe different
domains and express different ways to specify a behavior. We notice, however, that they share
some generic characteristics which our framework is based upon:
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• Time Representation : the abstraction of time used by the MoC (continuous
time (EN), discrete time (DE), sampled time (TDF), etc...).

• Primitive Behavior : the basic blocks which describe an elementary behavior,
or the way to associate a behavior with a basic block when allowed to do so.

• Channel Representation : the communication mechanism used to exchange
data between basic blocks.

• Composition : the way to compose a bigger model through ports and sub-model
instantiation.

• Solving Algorithm : the algorithm used to resolve the model (solver, scheduler,
etc...).

• Interaction : the way to communicate with another Model of Computation.

These six notions provide a functional abstraction of a Model of Computation and can be
applied to every MoC. The last point, Interaction, represents a key aspect of heterogeneous
systems; hence it is discussed in detail hereafter.

4.3 Interaction Mechanism

The presented MoC abstraction allows us to represent every MoC; however, we still need to define
an interaction mechanism between them. Indeed, when it comes to heterogeneous modeling, the
interaction between different MoCs becomes more challenging. The question remains, how do
different Models of Computation interact with each other?

Though aware of the restrictions which accompany such an approach, we stood by our assertion
that, in order to make the SystemC MDVP flexible and easily extendible, we should only consider
MoC interactions by means of simplified master-slave semantics. In this relationship, one MoC
commands and the other obeys. This approach offers a simple definition of the interaction between
MoCs, a master MoC imposes its viewpoint upon a slave MoC.

If we look at this from a high abstraction level, we can say that a master imposes its
environment upon a slave. First and foremost, though, we need to define what the environment
represents. The environment contains all the elements needed to guarantee the functional aspects
of a MoC; these elements prevail at all points in time and ensure the proper functioning of this
MoC. Each MoC can have its own abstraction of time so this must be present in the environment.
While these characteristics constitute generic environment components common to all MoCs,
there are also master-specific properties, behaviors and characterizations that could be imposed.
Additionally, you may come across some MoC-specific simulation context such as input stimuli,
floor time stamp, temporal horizon, etc. The characteristics of this environment are unified within
a MoC interface that will express the expectations and the requirements desired by a MoC. From
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a programming viewpoint, this means that a slave MoC has to implement the complete set of
properties/callbacks defined by a master MoC programming interface.

In a bid to perform a seamless interaction between different Models of Computation, the
SystemC MDVP framework requires that the slave MoC provide all the interaction mechanisms
needed to communicate with the master MoC, i.e. the slave must adapt itself to comply with its
master semantics. No matter how complex the sub-models’ hierarchy, it must appear as a single
model from the master viewpoint, as shown in Figure 4.6.

Master Signal Master Block

Slave Signal Slave Block
Slave ➥ Master Converter Port

MoC A
MoC B

Master

Slave

a

a

b

c

b

c

Figure 4.6: Interaction between two MoCs

Interfacing two MoCs also means translating signal values from one MoC to another. For the
sake of simplicity, the translation of data values implies the use of converter ports, which offer
compatibility bridges between MoCs. For the designer, the modeling process must appear as if one
part of the port is in one MoC and the second is in the other MoC. One side is communicating
with the Model of Computation it belongs to (the slave MoC since he is the one responsible
for providing interaction mechanisms). The other side is communicating with the master MoC,
with respect to its semantics, i.e., with regard to its communication interface. As illustrated
in Figure 4.6 the translation of data is handled exclusively by the slave MoC while the master
remains completely unaware of it. According to the slave viewpoint, a converter port operates as
a regular port - data addressed to it respect the slave semantics; from the master perspective,
a converter port appears as a regular port and is addressed with data that respect the master
semantics.

Since it is the responsibility of the slave to provide the interaction mechanisms, these must be
defined within the MoC. As such, the available interactions between MoCs are statically defined.
This means that a MoC provides interaction mechanisms for a set of MoCs, thus defining its own
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available interactions; a MoC will not be allowed to interact with a MoC for which no mechanisms
have been planned. We chose this approach because it allows a Model of Computation to remain
unconcerned about the existence of slave MoCs.

Master
A

Master
A

Master
A

Master
A

Master
A

Master
A

Slave
A

Slave
A

Master
Slave

B

Master
B

Slave
B

Slave
B

Slave
C

Slave
C

Slave
C

Slave
D

Master
Slave

B

a) MoC A is the direct
master of MoC B

b) MoC A is the direct
master of several MoCs: B, C and D

c) MoC B is the direct
master of MoC C while

being the slave of MoC A

d) MoC A cannot be the
direct master of itself

e) MoC C cannot be simultaneously the
slave of MoC A and MoC B

f) MoC A cannot be the
indirect master of itself

Figure 4.7: Authorized (a, b and c) and Forbidden (d, e and f) master-slave relationships

Although any given Model of Computation could provide available interactions for several
masters, SystemC MDVP allows a slave to interact with only one master within a set of inter-
connected modules. It also implies that, in a separated set of interconnected modules, a given
Model of Computation can interact with a master in one set and another master in a different
set. Figure 4.7 illustrates the authorized and forbidden master-slave interactions between MoCs
inside a set of interconnected modules within SystemC MDVP. One can see that a master could
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simultaneously interact with several slaves since it is not aware of their existence (Figure 4.7.b).
Being a master or a slave is not an exclusive state; a MoC can simultaneously be the master of
another MoC and the slave of a third MoC (as illustrated by the MoC B in Figure 4.7.c). We
see, in the above explanation, that a slave cannot simultaneously interact with several masters
(Figure 4.7.e). Furthermore, it is important to note that a Model of Computation cannot be its
own master or slave (Figure 4.7.d), regardless of the presence of intermediary MoCs (Figure 4.7.f).

While this approach may appear very restrictive (a MoC can be managed by only one master
MoC), it allows the right set of interfacing mechanisms to be implicitly chosen during the
elaboration of the system being modeled. That is in contrast to Ptolemy II’s position, where the
designer has to explicitly add the right interfacing mechanism himself (Directors). Another benefit
lies in the fact that, as opposed to Ptolemy II, our approach avoids the explicit description of
the simulation hierarchy concurrently with the model, cancelling error-prone intermingling of
simulation artefacts with the model description.
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Figure 4.8: System on Chip representing a 3-axis vibration sensor as an assembly of MoCs.

We have seen what a Model of Computation is and how it interacts with other MoCs, therefore
we may now provide another representation of Figure 4.1 which describes the running example
used throughout this chapter. Figure 4.8 details how a vibration sensor can be modeled using the
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EN, TDF and DE MoCs. The micro-controller’s description consists only of SystemC components;
however, since we are focusing on the heterogeneous aspect of the system, its description is
not provided here. Sensors X, Y and Z are constructed following the same model only the axis
detection differs from one sensor to another.

For ease of understanding, the different components involved in the design of the sensors
are detailed below. The application, shown in Figure 4.8, is actually composed of a vibration
source, SRC, (modeled as a generic harmonic sine wavelet generator with a TDF module), a
vibration sensor, SENSOR, which converts mechanical displacement into proportional voltage
(modeled by means of EN MoC) and the sensor frontend which outputs a digitized representation
of the vibration sensor output voltage. The sensor frontend contains a programmable amplifier,
PGA, an analog-to-digital converter, ADC, a component that computes digital average, AAVG,
(all three components modeled by means of TDF modules) and a gain controller unit, CTRL,
(modeled through a DE module) connected in closed loop to the programmable amplifier. Finally
the TDF2DE component simply converts the TDF value into a DE value.
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Figure 4.9: Running Example: Sensor description

The detail of the vibration sensor, SENSOR, is provided in Figure 4.9. The sensor can be
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represented by the association of a Damper Harmonic Oscillator (DHO) with a Displacement
to Voltage Converter (DVC). Usually a Damper Harmonic Oscillator represents a mechanical
system composed of a dashpot (a damper), a spring and a mass linked to a comb ( 1 ). When a
displacement occurs, the mass moves and the comb is displaced, resulting in the modification of
the distance that separates the electrodes from the comb. This modification of the distance allows
for the identification of displacements. In order to model this behavior with the EN MoC, we can
use an electrical equivalent model ( 2 ) represented by an RLC circuit. In this circuit, the coil
L represents the mass, the electrical elastance 1/C corresponds to the spring constant and the
resistance R matches the damping factor of the dashpot.

The information provided by the Damper Harmonic Oscillator is then used to generate a
voltage value corresponding to the displacement ( 3 ). The displacement information is used to
modify the value of the variable capacitors. Finally, the voltage signal is amplified before leaving
the sensor.

For the sake of clarity and simplicity, we will not use the detailed representation of the
sensor in the remainder of this document. Depending on the requirement, we will represent the
sensor through its more abstract representation (just the sensor box ) or with the intermediate
representation (composition of three boxes DHO, DVC and Amp).

We can see that the EN MoC provides converter ports for the TDF MoC. For this reason
EN is considered as a slave of, and is, therefore, controlled by the TDF MoC. Similarly, as the
TDF MoC provides converter ports for the DE MoC, it is looked upon as a slave of DE and is, in
consequence, controlled by it.

The master-slave semantics that we defined within SystemC MDVP as an interaction mecha-
nism between Models of Computation, is a strong and coercive concept in our approach to the
simulation of heterogeneous systems. Stating that a master MoC does not need to be aware of
the existence of potential slave MoCs (implying that a slave MoC has to comply with its master
interface) allows us to represent these relationships/interactions as an encapsulation process. The
slave MoC is encapsulated within its master, the slave sub-model is abstracted inside the master
model. This approach is especially well-suited to a hierarchical environment.

4.4 MDVP Hierarchical Approach

Since our master-slave semantics naturally fit with hierarchical behavior, it is only rational that
SystemC MDVP should rely on a hierarchical heterogeneity approach. This allows us to take full
advantage of the interaction mechanism between Models of Computation.

Starting with the flattened representation of the system (provided by SystemC), the framework
creates a hierarchical tree with respect to the design and the master-slave interactions. This
means that the framework constructs a hierarchical abstraction of the system wherein each

43



Chapter 4. SystemC MDVP: Principles

node represents a Model of Computation. Building SystemC MDVP upon SystemC should be
interpreted as SystemC being the master of the entire SystemC MDVP environment with respect
to our interaction semantics. From a framework point-of-view, we need to respect SystemC
semantics and SystemC has to be the root of the hierarchical tree. This hierarchical tree acts as
an efficient representation which allows us to easily identify the scope of a Model of Computation
and, therefore, to handle automatically the interactions between MoCs since the master-slave
semantics are respected at all points in the hierarchy.

The scope of a Model of Computation represents all the interconnected modules belonging to
the same MoC; it also includes the modules belonging to a slave MoC. This scope represents a
node in the hierarchical tree of the system and we refer to it as a cluster. To detect the scope-limits
associated with a Model of Computation, we identify special ports - the converter ports. As
previously mentioned these ports provide compatibility among MoCs and represent their borders.
Regarding the hierarchical tree, regular ports are inside a hierarchical node whereas converter
ports are at the border of a node in order to enable communication with the higher hierarchical
node.
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Figure 4.10: Running Example: Scope of EN, TDF and DE MoCs

Figure 4.10 highlights the scope of each MoC used in the running example of the vibration
sensor. We can easily identify the relationships between these three MoCs and visualize their
respective scopes. The figure also describes the encapsulation principle that follows on from the
master-slave interaction mechanism: EN is encapsulated within TDF, as is TDF within DE.

Figure 4.10 clearly illustrates the hierarchical organization of the MoCs; the sensor component
is modeled by means of the EN MoC which will behave like a TDF component. The TDF frontend
will, in turn, behave like a DE component. This transitive interfacing scheme prevails throughout
the whole system producing a clear-cut MoC hierarchy with master-slave relationships. The
fundamental purpose of the SystemC MDVP approach is to define all the principles, tools, and
API functions which allow a model sub-tree to behave as if it were a standard module of the MoC
it is encapsulated in.
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4.5 User Profiles

For efficiency, we believe that an environment design needs to be adapted to the user who exploits
it. To this aim, we profiled three different kinds of user with different competences, needs and
expectations. Indeed, each kind of users corresponds to a layer of the simulator, where the
mechanisms, the data structures and the principles should or should not be known by the user
depending on its objectives. The different profiles that we identified have specific objectives, and
hence, require access to different information.

The first profile identified is the Simulator Architect in charge of the definition of the simulator
kernel. Second, we identified the MoC Architect profile; he is he who defines new Models of
Computation. Lastly, we found the SoC Architect profile, which corresponds to the designer of a
heterogeneous system. This section details the aforementioned profiles.

4.5.1 Simulator Architect

The Simulator Architect represents the deepest layer of the SystemC MDVP framework. His
objective is to enable the modeling and the simulation of heterogeneous systems while remaining
generic. Therefore, he knows the implementation details and the internal mechanisms involved in
the core of the framework while staying unaware of any specific details concerning Models of
Computation. Indeed, if we want to guarantee the flexibility of our virtual prototyping environment,
it is imperative that the Simulator Architect remain completely oblivious to the MoC definition.
In effect, he is responsible for providing generic algorithms and mechanisms that will allow for
the virtual prototyping of heterogeneous systems, regardless of the MoCs used to describe these
systems.

SystemC

Interfacing Mechanism
with SystemC

Internal MDVP
mechanisms & structures

SystemC MDVP
interface for all MoCs

Figure 4.11: SystemC MDVP: Simulator Architect

Figure 4.11 describes the Simulator Architect vision of our framework, and expresses how
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SystemC MDVP is positioned in regards of SystemC. We see that the Simulator Architect is
familiar with the interface provided by SystemC, and hence, in order to run SystemC MDVP on
top of it, he defines a SystemC-compliant interface within SystemC MDVP.

On top of this interface, he defines all the internal mechanisms and data structures required to
support the modeling of heterogeneous systems through the use of multiple Models of Computation.

He is, obviously, the one who defines the interface that SystemC MDVP will put forward for
the other users. This interface corresponds to the definition of a MoC abstraction. This MoC
abstraction allows the MoCs to be plugged with our environment. It also ensures the proper
functioning of the internal mechanisms and data structures.

Even if his role seems limited through this figure, the Simulator Architect is the one who makes
the heterogeneous modeling possible. Indeed, the definition of an interface in order to be coupled
with SystemC and the definition of a common representation for all the MoCs allow for the
modeling of such systems. Therefore, he oversees the simulation of all the different components and
exploits the SystemC kernel making sure to take full advantage of what this kernel can provide.
The Simulator Architect should know nothing more than what is illustrated in Figure 4.11. Our
approach makes the internal details of the MoCs definition irrelevant from his perspective.

4.5.2 MoC Architect

The MoC Architect represents the intermediate layer of the SystemC MDVP environment. His
objective is to design and define new Models of Computation. To this aim, he doesn’t need to know
the internal mechanisms and details involved in the core framework. Similarly, he doesn’t have to
know the internal implementation details of other Models of Computation. However, he needs to
know how to integrate a new MoC within the SystemC MDVP environment. In addition, he also
has to know how to setup interaction mechanisms with other MoCs if he desires to communicate
with them. Finally, he obviously knows the implementation details and the internal mechanisms
involved within the new MoC he is designing.

Figure 4.12 describes the MoC Architect perception of our framework, and exhibits the
positioning of a new MoC within the SystemC MDVP framework. To illustrate the MoC Architect
vision, in the following we suppose that a MoC Architect wants to integrate a new Model of
Computation, the MoC C, within the SystemC MDVP environment where the MoCs A and B
are already defined.

We mentioned that the MoC Architect doesn’t have to know the internal details of the core
framework or those of other MoCs. Consequently, we see that all the existing MoCs evolving in
our framework, and SystemC MDVP itself, behave like black boxes to the MoC Architect except
for the MoC interface defined within each MoC and the interface provided by SystemC MDVP.
Therefore, these MoC interfaces and the SystemC MDVP interface represent the only resources he
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Figure 4.12: SystemC MDVP: MoC Architect

has at its disposal. As well as this collection of interfaces, he naturally has an intrinsic knowledge
of his MoC.

In order for the new MoC C to be taken into account within our virtual prototyping
environment the MoC Architect defines an interface that complies with the SystemC MDVP
interface (Figure 4.12, 1 ). In addition to defining the intrinsic mechanism involved within the
new MoC C, he also exposes a single MoC interface associated with the MoC C to allow other
MoCs to communicate with his MoC (Figure 4.12, 2 ).

Finally, the MoC Architect can setup the interaction with other MoCs he desires, with respect
to the master-slave semantics. Among the MoCs evolving in the SystemC MDVP environment he
chooses to make his new MoC C communicate with the MoC A. Therefore, he defines a MoC
A-compliant interface that will allow the communication between the MoCs C and A (Figure 4.12,
3 ).

Since the MoC Architect defines, for his new MoC C, the mechanism in order to communicate
with other MoCs he knows which MoCs can be master of his MoC. In contrary, since all other
MoCs appear as black boxes he cannot know which MoCs can be slave of his MoC. With this
approach, as with the Simulator Architect, we ensure that our virtual prototyping environment is
flexible by keeping dependencies between different entities to a strict minimum.
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4.5.3 SoC Architect

The SoC Architect constitutes the shallowest layer of the SystemC MDVP environment. His
objective is to design and model heterogeneous systems relying on the set of Models of Computation
evolving in our environment. He is the one confronted with the issue of heterogeneity since it
is he who builds and models new heterogeneous systems. For the SoC Architect, Models of
Computation represent sub-models he wants to nicely assemble in order to describe his complete
system. These sub-models need to be clearly defined and readily distinguishable so that he may
handle them with ease. Therefore, he knows all Models of Computation available to build his
system and all the interactions possible between them (i.e. all the master-slave relations). His
main task is to connect basic blocks in order to design a complete heterogeneous system. He
defines the behavior of the components assembled in his system and sets up the communication
interactions between these basic blocks. He does not have to know the internal specification of
the framework or specific details about the MoC, nor is he obliged to apprehend the internal
mechanisms involved in the interaction between MoCs. The SoC Architect’s perception and use of
our framework SystemC MDVP is depicted in Figure 4.13.

Figure 4.13 shows that the SoC Architect has at its disposal a set of Models of Computation
available within our environment (Figure 4.13, 1 ) and that he also disposes of the authorized
interaction between these MoCs (Figure 4.13, 2 ). Using both of these information, the SoC
Architect can describe its system; subject to the respect of our master-slave semantics, he couples
models from different MoCs belonging to our framework. He can also combine them with models
described using SystemC and coupled with an embedded software. Following this approach, the
SoC Architect defines an assembly of models from all the environment (Figure 4.13, 3 ). Finally,
this assembly of MoCs allows him to represent and model different physical disciplines which are
embedded in the system modeled (Figure 4.13, 4 ).

With this profile, we highlight the importance of a clear definition of the entities handled and
manipulated within a virtual prototyping environment dedicated to heterogeneous systems. We
also accord a specific importance to the interaction mechanism involved between these entities
which should not be managed by the SoC Architect. To further illustrate the flexibility of our
framework, it should be noted that the SoC Architect can carry out the design of a system,
based on the master-slave relationships defined within each MoC, without requiring additional
information.

4.6 Conclusion

This chapter introduced the principles underlying the SystemC MDVP framework. Starting from
the description of several Models of Computation, we extracted the relevant features which
constitute the essence of a MoC, i.e. the information required to represent a MoC, and thereupon
we provided a way to abstract any MoC. This abstraction, along with the definition of a MoC,
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constitutes our definition for what is intended with heterogeneity. The Model of Computation
represents the entity handled and manipulated by our framework.

In a second step, the notions of master-slave semantics that we defined, within SystemC MDVP,
as an interaction mechanism between Models of Computation, represents a strong concept in
our approach to the simulation of heterogeneous systems. These semantics allows for a seamless
interaction between different MoCs, thus guaranteeing the flexibility of our virtual prototyping
environment. Stating that a master MoC does not need to be aware of the existence of potential
slave MoCs implies that a slave MoC must comply with its master interface, i.e. fulfill all the
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requirements and meet all the expectations imposed by its master. This position makes it possible
for these relationships to be represented as an encapsulation process. Our approach specifies that
all the available interactions between MoCs are statically defined and that they are provided by a
slave MoC. The slave MoC is encapsulated within its master, the slave sub-model is abstracted
inside the master model. This approach is especially well-suited to a hierarchical environment and
hence explains our choice to follow a hierarchical heterogeneity approach, in order to take full
advantage of the interaction mechanism within SystemC MDVP.

When it comes to model parts that are located at the boundary of two MoCs, it is important to
note that the designer should not be faced with questions that are deeply linked to the simulation
infrastructure. Designers want to connect parts or third party models coming from different
sources and not address issues such as the choice of the appropriate director (as in Ptolemy II) or
the setting of an obscure simulation parameter. Our virtual prototyping framework allows the
user to focus only on the important and relevant things thanks to the identification of different
user profiles. Each of the three profiles identified, Simulator Architect, MoC Architect and SoC
Architect, has a different representation of the system and, hence, different requirements. We can
depict the abstraction of these users as concentric circles going from the center outwards. The
inner circle maps the scope of the Simulator Architect, the intermediate circle the scope of the
MoC Architect, and the outward circle, the scope of the SoC Architect. For example, the SoC
Architect is allowed to experiment without having to become involved with the details of Model of
Computation handling.

We bring out our vision of a digital-centric ecosystem, where the digital is at the heart of the
system with other engineering domains gravitating around it. These profiles allow us to better
cope with the expectations and requirements of a simulation framework for heterogeneous systems.
These profiles have been taken into account in the aforementioned principles; they also drive and
motivate the way the framework is implemented. The implementation that supports the principles
introduced in this chapter is detailed in the following chapter.

50



Chapter

5 SystemC MDVP: Implementation

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 SystemC MDVP Kernel Representation . . . . . . . . . . . . . . . . . 52

5.2.1 SystemC MDVP MoC Abstraction . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 SystemC MDVP core classes . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Elaboration Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Composability / Static Analysis Sub-phase . . . . . . . . . . . . . . . . 58

5.3.2 Clustering Sub-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.3 Solver Instantiation Sub-phase . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.4 Basic Behavior Block Elaboration Sub-phase . . . . . . . . . . . . . . . 70

5.3.5 Port and Channel Elaboration Sub-phase . . . . . . . . . . . . . . . . . 72

5.3.6 Elaboration conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Simulation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Simulation Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 Simulation Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

51



Chapter 5. SystemC MDVP: Implementation

5.1 Introduction

This chapter introduces the implementation details underlying SystemC MDVP that support the
principles introduced in Chapter 4. As a reminder, we want to provide a virtual prototyping
environment with a smooth management of heterogeneity, a sound management of the interaction
between entities and a multi-disciplinary monitoring mechanism all the while, remaining flexible.

In order to provide a high level of flexibility, the algorithms used within the SystemC MDVP
kernel must be independent from the Model of Computation definition. They also need to remain
generic during the different phases of the life cycle of the simulator. Throughout the course of this
chapter, the running example of a 3-axis vibration sensor introduced in the previous chapter
is used to illustrate these mechanisms which are implemented within our virtual prototyping
environment.

Keeping in mind these notions of independence and genericity, this chapter proposes an
overview of the implementation details underlying SystemC MDVP organized as follows.

In Section 5.2 we present the infrastructure of the SystemC MDVP framework. We detail how
a Model of Computation is represented within our simulator kernel and the resulting abstraction.
We also introduce the core classes that describe the behavior of the kernel and that allow for the
integration of SystemC MDVP on top of SystemC.

In Section 5.3 we detail the elaboration phase which constitutes the phase wherein the entire
environment for the simulation is set up. The generic algorithms which allow the framework to
operate independently of the MoC are introduced.

The next phase in the life cycle of the simulator, the simulation phase, is presented in
Section 5.4. We illustrate the simulation mechanisms involved within SystemC MDVP and how
the work performed during the elaboration phase is leveraged. Following this, we discuss the
opportunities provided by our approach in terms of simulation possibilities.

To conclude, Section 5.5 provides an overview of the implementation details underlying the
SystemC MDVP framework and brings this chapter to a close.

5.2 SystemC MDVP Kernel Representation

This section details the intrinsic elements of the SystemC MDVP framework. In Chapter 2, we
highlighted the importance of the representation of heterogeneity when dealing with the simulation
of heterogeneous systems. In light of this, we first present the underlying representation of a
Model of Computation within SystemC MDVP. We model our implementation on the abstract
representation of a MoC we previously defined (Chapter 4 Section 4.2). We then introduce the core
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classes of our simulator that allow for the integration with SystemC and the proper functioning of
our framework.

5.2.1 SystemC MDVP MoC Abstraction

The Simulator Architect requires an abstraction of a Model of Computation if he wants to provide
a generic kernel capable of handling both existing and forthcoming MoCs. To this aim, we defined
a set of base C++ classes that allow for the representation of a MoC. We defined these base classes
with respect to the functional abstraction of a Model of Computation we highlighted in this
work. In order to take advantage of the SystemC framework, we construct our representation of a
MoC on top of SystemC-specific components. This is achieved using the inheritance concept in
order to abstract our MoC representation from a SystemC viewpoint. Figure 5.1 displays the base
classes defined within SystemC MDVP to abstract a MoC and illustrates how they inherit from
SystemC. These classes are gathered within a single C++ namespace: scm_core. This namespace
contains all the classes that define the intrinsic of the SystemC MDVP framework.

SC MDVP

SC

sc_core::sc_object

scm_core::
scm_module

sc_core::sc_module sc_core::sc_interface sc_core::sc_port<IF>

scm_core::
scm_moc_if

scm_core::
scm_solver

scm_core::
scm_interface

scm_core::
scm_prim_channel

scm_core::
scm_port_base

scm_core::
scm_port<IF>

scm_core::
scm_moc_info

....
....

Channels representation Composition
PortsInterfaces and Signals

1 2 3

4 5
6

Modules, Solvers and MoC Interfaces
Behavior

Figure 5.1: SystemC MDVP base classes to abstract a MoC

We define a basic module which represents the primitive elements of a Model of Computation as
well as a basic port and a basic channel which address the issue of communication by demonstrating
the manner in which to connect different modules together. These classes represent the objects
belonging to a Model of Computation that the SoC Architect will manipulated. Concerning the
internal mechanism of a MoC, we simply need a base class to represent the solver and a class to
express its interface. There is no need for additional information on specific details regarding the
MoC’s purpose or implementation.

The following section describes the purpose of each class and how they abstract a MoC with
respect to the aforementioned functional abstraction.
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• Primitive behavior 1 .

Within SystemC MDVP, to represent a basic block (a module), we only need one class -
scm_module. This class allows us to abstract the basic blocks defined within each MoC. In this
class there is all the functions that the kernel SystemC MDVP requires in order to handle a
module. The functionalities provided within this class are not dependent on the MoC to which the
module belongs so they can be generalized in the base class within the kernel. For example, there
is a function to perform an automatic registration of a module when it is instantiated in a model
description. This class inherits from the SystemC sc_module class since it is the easiest way for
SystemC to handle our modules and, consequently, allow us to use SystemC functionalities on
them.

• Solving Algorithm 2 .

In order to represent a solver, we also need a single class scm_solver. As with the modules,
it allows us to define basic functionalities for all the SystemC MDVP solvers defined within
each MoC. This class inherits from the SystemC sc_object class which provides a set of basic
functionalities useful when handling our solvers such as the mechanism used to register a name
and associate it to on object. For example, it provides the mechanism to register a name and to
associate it to an object.

• Interaction 3 .

The master-slave semantics require that a slave comply with its master semantics and that it be
possible to encapsulate the slave within the master. That is to say, the slave must be seen as a single
model from the master view point. Accordingly, a slave must express the same functionalities as a
master module when encapsulated in the master MoC. Within the SystemC MDVP framework,
we established a new class called scm_moc_if, which defines the interface of a MoC. All of the
functionalities that a MoC expects to find in one of its own modules can be found in this class.

Given that a MoC handles all of its primitive modules through this interface, it is via the same
interface that a slave MoC is addressed. A MoC is driven to manipulate its primitive module as
well as, potentially, encapsulated slave. Thus, the scm_moc_if can represent either a primitive
module or an abstract representation of a slave MoC.

• Channel Representation 4 .

In order to represent a communication channel in SystemC MDVP, we followed the same
approach as with SystemC; we use two classes - an interface and a channel. scm_interface defines

54



5.2. SystemC MDVP Kernel Representation

a communication interface which consists of virtual functions implemented by a channel. This class
inherits from the SystemC sc_interface class with the aim of benefiting from the functionalities
provided by SystemC. However, some of the functionalities performed by sc_interface are
declared as private in the kernel SystemC and, thus, we cannot access them. This limitation
requires that we perform these tasks locally.

scm_prim_channel expresses the base functionalities of a channel and, to address the afore-
mentioned limitation, also defines the functionalities that need to be re-implemented. As an
example, although sc_interface performs the registration of ports associated with a channel,
we re-implemented this functionality within SystemC MDVP. scm_prim_channel inherits from
sc_object, which allows our channel to benefit from the basic functionalities of SystemC objects.
Communication channels in SystemC MDVP are the result of the inheritance of these two classes.

• Composition 5 .

The ports within SystemC MDVP are expressed with two base classes. scm_port<IF> defines
common base functionalities that mainly rely on SystemC, explaining why it inherits from the
SystemC sc_port<IF> class. It also requires the template parameter to allow for the specification
of the communication interface associated with a port.

scm_port_base also defines common base functionalities, though these ones do not rely on
SystemC. This class is the one used within SystemC MDVP kernel to abstract a port, therefore,
contrary to scm_port<IF>, it does not express a template parameter and mainly contains handling
functionalities. Handling functionalities include, for example, a set of functions that define getters
for the different attributes of a port such as its name, interface or, indeed, its position regarding
to the hierarchy of object instantiated in the model (e.g. the module it belongs to).

Finally, within SystemC MDVP, an additional class is introduced in order to centralize
common information about a MoC and access to this information with ease 6 . scm_moc_info
plays the role of this class. It stores common data associated with the MoC such as its name and
its list of available interactions, i.e. the list of potential masters with regards to the master-slave
semantics.

5.2.2 SystemC MDVP core classes

We have seen how SystemC MDVP represents a MoC without the need for MoC-specific implemen-
tation details; it remains to demonstrate how the internal framework architecture is constructed.
SystemC MDVP only relies on few classes in order to describe its behavior, all defined within the
scm_core namespace. We have one class to represent its kernel (scm_core::scm_simcontext)
and three more to handle specific internal mechanisms (scm_core::scm_cluster_node,
scm_core::scm_cluster_creator, scm_core::scm_moc_interface_creator). Figure 5.2 illus-
trates the core classes of SystemC MDVP, and the interaction with SystemC.
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Figure 5.2: SystemC MDVP intrinsic classes

We stated in the introduction of this chapter that our framework is an extension of SystemC;
we successfully extended SystemC using the same inheritance principle previously mentioned. We
define a Simulation Context object through the scm_core::scm_simcontext class 1 . This class
inherits from the sc_core::sc_module class of SystemC, allowing our framework to interact with
SystemC. This particular class represents the entry-point through which SystemC MDVP passes
into SystemC without altering the DE simulation kernel. In addition to handling all of the MoCs,
the simulation context contains the integral components of SystemC MDVP along with all of the
algorithms.

Extending the sc_core::sc_module class of SystemC gives us access to a set of useful callbacks
that allow our simulator to perform its own simulation procedures. Two especially helpful callbacks
are end_of_elaboration() which we use to encapsulate and perform the elaboration phase of
our framework, and start_of_simulation() which allows us to encapsulate and perform the
simulation phase of SystemC MDVP.

The classes scm_core::scm_cluster_node and scm_core::scm_cluster_creator allow for
the handling of the clustering process 2 . scm_core::scm_cluster_node describes the clus-
ter structure used to represent an homogeneous region within an heterogeneous system.
scm_core::scm_cluster_creator contains the generic algorithm that performs the cluster-
ing and, hence, constructs the hierarchical representation of the system modeled. The class
scm_core::scm_moc_interface_creator contains the algorithms required to perform the auto-
matic and generic instantiation of solvers within SystemC MDVP 3 .
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5.3 Elaboration Phase

The work performed in the kernel focusses on the elaboration process since, being responsible for
providing all the resources required to perform the simulation, it represents the crucial part of
the simulation Any given system model is built from primitive modules (describing an atomic
behavior) and instantiated modules, which are connected to each other and prepared for simulation
during the elaboration phase. SystemC MDVP framework is built on top of SystemC and, as
such, may benefit from the regular elaboration phase of the DE simulator kernel. To perform a
generic elaboration phase with multiple unknown Models of Computation, we identify specific
sub-phases which are detailed in the Figure 5.3. This figure resumes the Figure 3.3, described
in Chapter 3, and enriches it in order to illustrate how the SystemC MDVP elaboration phase
extends SystemC to handle heterogeneity while still refraining from altering its kernel. We use the
callback end_of_elaboration() from SystemC to trigger the execution of our own elaboration
mechanism.

Construction of the module hierarchy

Callback: before_end_of_elaboration()

Callback: end_of_elaboration()

Callback: start_of_simulation()

Scheduler Execution

Initialization phase

Evaluation, update, delta notification and timed notification phases
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Port-Channel Elaboration

SystemC
Elaboration

SystemC
Simulation

Figure 5.3: SystemC MDVP kernel elaboration phases.

Strictly speaking, sub-phase I is not performed during the elaboration, as it has already been
realized during the compilation, nonetheless, the composability check perfectly fits with the intent
of the elaboration phase. This is why we decided to show this step as part of the elaboration
process. Other sub-phases are realized during the end_of_elaboration() callback of SystemC,
which guarantees that the flattening of the system is complete (each primitive module has been
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identified and directly or indirectly linked to a MoC). Sub-phase II describes the clustering step,
where the system is being explored and analyzed, with relevant information extracted accordingly,
to perform the simulation. Sub-phase III exploits the results of the previous phase to set up
all of the solvers required to simulate the system. Eventually, during sub-phases IV and V the
elaboration of each component of the system modeled is realized. First of all, MoC interfaces
are elaborated; this includes modules and solvers since they are abstracted as MoC interfaces.
Thereupon, ports and channels are elaborated.

All sub-phases which constitute the elaboration phase are detailed in the following section.

5.3.1 Composability / Static Analysis Sub-phase

One important aspect within our framework is the development of a “correct-by-construction”
approach for the integration of MDVPs with the targeted, multi-domain, electronically-assisted
systems. When it comes to simulating microelectronics-assisted systems with different physical
domains, the question of composability and compatibility between these domains arises. Thus, to
address this question, consistency checking, together with dimensions and units checking, must be
performed at the interface between the domains but also inside the description of the modules
belonging to each domain. These checks are essential for validating the correctness of the physical
interfaces.

Today’s model compilers and simulators only perform rudimentary checks, for example on the
compatibility of the data types involved in an operation or in respect to the requested interface.
Although they are useful, these tests do not fully take into account data semantics (e.g. nature of
the data, dimension, units, etc.). Without such information, the interface will be defined using
primitive data types (e.g. double) which make the assembly of multi-domain systems error-prone.
Thus, with the objective being to perform the simulation of microelectronics-assisted systems with
different physical domains, the definition of unequivocal physical data types is needed.

In keeping with our ambition to apply a “correct-by-construction” approach, we aim to make
the measurement units, and other semantic meta-information, an intrinsic part of the model
implementation in SystemC MDVP. This point of view fits the behavior of physicists and engineers
who have a tendency, not to consider isolated values, but rather quantities, tightly linking the
value to its measurement unit. Proceeding in such a manner will enable automatic checking at
the model interfaces (right quantities assigned to parameters and ports bound to signal with
compatible quantities) and promote global consistency in terms of the behavioral description
(coherency of mathematical equations).

The composability of an heterogeneous model has to be checked as early as possible in the
simulation process so that later phases can rely on a sound structure (Figure 5.3, sub-phase I ).
The composability check consists in verifying the connection between different system components
so as to ensure a correct composition of this system from a dimensional analysis and, indeed, a
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semantic point of view. The user should be informed early on in the process about problems
concerning the mis-connection of ports with channels that do not respect the same semantics. An
example of this would be the fact that continuous-time signals representing physical quantities are
usually defined as values of type double which make them too generic and engender the incorrect
binding of physical quantities belonging to different domains, e.g., optical and electrical.

Other problems include: forwarding of parameter values to the wrong parameter (due to the
absence of named arguments in C++), and inhomogeneous model equations.

Most of these problems could be detected by the compiler through static type-checking if the
variables, ports and channel types were more precisely defined in the model sources. The solution
would be to express the data semantics associated with them. Unfortunately, these data structures
are often described using a primitive type of the language (a double value for example), which
does not allow the user to attach or to verify the semantics information carried by these structures.

Dimensional analysis and C++ share a long history. The idea itself was introduced by Barton
and Nackman in 1994. In this work, the key idea is to perform compile-time checking based
on template arguments which represent the base units. The last release of C++ [71], C++’11,
introduces user-defined literals and Bjarne Stroustrup gives an example of dimensional analysis
with user-defined literals.

The solution proposed to address the issue of integrating quantity and unit types (having now
established their necessity) as well as dimensional analysis into SystemC AMS [60] can be also
applied to our SystemC MDVP framework. This solution relies on the more recent open library
Boost.Units [61] which implements dimensional analysis. Boost::Units has been chosen for
this project since it already implements all the units from the international system of units and
overloads all standard mathematical functions defined in <cmath> (standard C++ mathematical
library).

Boost::Units comes as a C++ library based on C++’s flexible type system to implement quantity
and unit data types as template classes which support dimensional analysis at compile-time
through template meta-programming. The quantity type defined by Boost::Units perfectly fits
our needs. It associates a data type (e.g., double, int, etc.) with a unit (e.g., meter, volt, etc.).
This quantity type can be used in mathematical equations or in the definition of an interface of a
physical domain. The use of this quantity type can, therefore, prevent the interconnection of
ports and channels of different natures and ensure the coherency of model equations. The unique
quantity type (association of a data type with a unit) overloads only the legal arithmetic and
assignment operators. Thus, the compiler issues a “missing overload” error for illegal operations,
e.g., the sum of two quantities with different units or the assignment between incompatible
quantities.

The Boost::Units library provides a mature implementation of dimensional analysis. It makes
dimensional analysis possible for arbitrary systems of units at compile-time, as part of the static
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type-checking phase, without requiring modifications to the compiler or an additional tool. As the
unit is encoded into the quantity only as part of its type, and not as a member variable, modern
C++ compilers can optimize this information away after the type checking phase. Thus, no
runtime penalty is caused by doing arithmetic with quantities. Only the compile time is increased.

The main drawback to Boost::Units lies in the compiler error messages that result from
illegal operations involving quantity types. Compiler messages are barely understandable, even
unreadable, due to long template type names which are fully expanded by the compiler. While
Boost::Units takes full advantage of the template programming, providing flexibility and
efficiency when expressing meta-data, the downside is that all the template information is inherited
in the error’s message, thus missing the origin of the error.

Fortunately, in order to address this problem, a filtering application Bufilt has been developed
(as it is usually done with generic libraries using a lot of template classes) to parse, simplify and
format the error messages output [72]. Bufilt, for Boost::Units Filter, parses the error messages
output to identify relevant information concerning dimensional aspect and realize a substitution of
the template type names by more coherent messages which facilitate the identification, by the
end-user, of the incoherency in the simulated system.

The use of quantity type will have a positive impact on the code quality as the designer
can be much more precise when specifying the interfaces and computations in his model which
involve physical quantities. The compiler can check the coherency of the connected interfaces and
implemented equations. Bufilt increases error understanding meaning many problems can be
localized and fixed before the first execution of the model. This gives the designer more time to
test the important behavioral aspects of his model.

Using “Boost::Units” in one’s day-to-day work is a little tricky and tedious because of the
“hard” template objects which need to be manipulated. To solve this issue, and to clearly identify
exactly which physical quantities are being manipulated, our approach suggests the use of a
common definitions header file in which all the requested types are defined. The purpose of these
definitions is to provide the end-user with a higher level of abstraction for domain types. All of
the standard quantity types needed in a specific physical domain are, consequently, hidden behind
typedef, thus preventing the end-user from manipulating heavily template objects. Using this
mechanism, the underlying complexity of the template objects, which defined “Boost::Units”, is
conveniently hidden.

Listing 5.1, extracted from the common definitions file associated with the running example,
defines the quantity types needed to model the vibration sensor. From a composability viewpoint,
this example is interesting since there are different kinds of physical quantities being exchanged
between these 3 blocks (source, sensor, sensor front-end). The vibration sensor illustrates the
power and usefulness of the composability approach based on Boost Units and gives an insight
into the design methodology wherein it seems convenient to generate this complex example.
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1 //! Length data type.
2 typedef boost::units::quantity<boost::units::si::length> length_type;
3 //! Electrical potential data type.
4 typedef boost::units::quantity<boost::units::si::electric_potential>

electrical_potential_type;
5 //! Time quantity type.
6 typedef boost::units::quantity<boost::units::si::time> time_type;
7 //! Length/Time data type.
8 typedef boost::units::divide_typeof_helper<length_type, time_type>::type

length_per_time_type;
9 //! Electrical potential * Time/Length.

10 typedef boost::units::divide_typeof_helper<electrical_potential_type,
length_per_time_type>::type factor_type;

11 //! Frequency data type.
12 typedef boost::units::quantity<boost::units::si::frequency> frequency_type;
13

14 //! Scale unit for micrometer.
15 typedef boost::units::make_scaled_unit< boost::units::si::length,

boost::units::scale<10, boost::units::static_rational<-6> > >::type micrometer;
16 //! Micrometer data type.
17 typedef boost::units::quantity<micrometer> micrometer_type;

Listing 5.1: Definition of physical types

The quantity data types defined in the Listing 5.1 demonstrate how Boost::Units makes it
possible to express semantic information regarding the dimensions and units of data handled
within a model. We can use these definitions to give a physical meaning to our vibration sensor,
as illustrated in Figure 5.4. The system is dynamic (depends on time in seconds), operates at a
specific frequency (in Hertz) and involves mechanical displacement (in meters) of a seismic mass
at a specific velocity (in meters/second). The transducer translates this displacement into an
electrical potential (measured in Volts).
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no
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EN ➥ TDF Port DE Module
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Figure 5.4: Running Example: Improved with units measures

The collaborative definition of this file enforces the use of common grounds to characterize
ports, interfaces, physical quantities and scale factors. These quantities are used to define interfaces
of components, as well as inner behavior description, with physical equations.

61



Chapter 5. SystemC MDVP: Implementation

5.3.2 Clustering Sub-phase

The clustering algorithm represents the second sub-phase of the elaboration process (Figure 5.3,
sub-phase II ). Its purpose is to explore the whole system to collect information and generate
appropriate simulation data structures by creating a domain-based, hierarchical view of the
system. In practice, the clustering sub-phase aims to analyze the top-level system model and its
associated sub-models in order to identify a finite set of interacting, homogeneous regions in the
design, called clusters. Homogeneous regions represent part of the design described using only one
MoC. In consequence, a cluster is associated with a single MoC.

Furthermore, the clustering sub-phase aims to organize these cluster as a hierarchy and identify
which MoC is associated with each cluster. This hierarchical organization also enables us to
highlight the associated master MoC for each MoC. As a result, the dependencies between the
underlying MoCs are clearly established, based on the previously detailed master-slave semantics.

Performing the clustering sub-phase with respect to the master-slave semantics allows for the
creation of an acyclic graph, representing the cluster hierarchy as a tree of clusters, where each
slave cluster may only be encapsulated in one master cluster (only one immediate higher node in
the tree). Conversely, a cluster can encapsulate several sub-clusters (a node can have several
immediate lower nodes in the tree). The master-slave semantics dictate that, in a single branch of
the cluster tree, a MoC associated with a cluster cannot appear twice. As SystemC MDVP is
built upon the DE simulation kernel of SystemC, the root of this cluster tree is always a cluster
associated with the DE MoC.

CBA

List of Modules

List of Sub-clusters

List of Converter
Ports

List of Channels

MoC

Master MoC

Sub-cluster
X

Sub-cluster
Y

Solver

Figure 5.5: Representation of a Cluster

Figure 5.5 represents the structure of a cluster. A cluster stores information to identify the
Model of Computation it abstracts and also the MoC which is its master.

Clusters are built with respect to the connectivity of the system provided by the designer,
the idea being that components associated with the same MoC and connected together directly
or through slave components, are encapsulated into a single object. A cluster organizes these
components, storing modules and channels in dedicated lists. Regarding the ports, a cluster only
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registers ports at the border of its MoC, i.e. it only stores converter ports. Since a cluster can
also encapsulate clusters associated with other MoCs, provided all the master-slave semantics
are respected within the whole hierarchy, a cluster keeps a list of the sub-clusters that have
been encapsulated. Finally, a cluster also stores the solver that is in charge of computing of the
components contained in the cluster.

Encapsulated clusters, which represent the abstraction of a slave MoC, are seen as components
of the master MoC and, therefore, are encapsulated into the master’s cluster in the same way as
primitive modules. A cluster is complete when no more components (modules or sub-clusters) can
be added to it by connection or instantiation. This means that all the connected modules and
slave modules of the MoC associated with this cluster have been analyzed and organized so as
to represent the subtree of the current cluster. Clusters, and their organization as a hierarchy,
constitute the backbone of the SystemC MDVP framework.

The clustering mechanism is very similar to the Shift-Reduce process in LR grammars [73].
Since the module (respectively the sub-cluster) encountered during the exploration of the system
hierarchy belongs (respectively integrates itself) to the MoC in the process of abstraction, a shift
operation is performed. When the cluster is complete, a reduce operation is accomplished with the
aim of integrating the subtree as if it were a standard module of the higher hierarchical node.

To facilitate the generation of this tree, all SystemC MDVP modules derive from the afore-
mentioned generic C++ class scm_moc_if and a list of all the primitive modules instantiated
in the system is built. Based on the content of this list, a set of primitive clusters is created,
with each primitive module being encapsulated into its own cluster. This set of primitive clusters
represents the initial set of clusters to be analyzed (hereafter referred to as set_cl). Two further
structures are needed for port attributes, one indicating the “visited” status of a port and the other
defining its type (regular or converter). Algorithm 5.1 details the recursive clustering function.

The contains_cluster() algorithm (Algorithm 5.1, line 9) is used to break the recursion, as
it avoids re-processing clusters that have already been dealt with. If the analyzed cluster is eligible
for processing, it is removed from the set of clusters (Algorithm 5.1, line 12). Each port of the
cluster currently being processed is considered as a starting port to find the boundaries of the
cluster being built. Each processed port is considered visited to avoid endless loops (Algorithm 5.1,
lines 15-18). If the port being processed happens to be a converter port (Algorithm 5.1, line 19),
the master cluster to which the port belongs to is compared to the current master of the cluster
new_cl (Algorithm 5.1, line 21). A failing comparison means that the cluster new_cl has two
different master MoCs, thereby suggesting that a clustering error has occurred as the key-point
of the master-slave semantic rules is not being respected. Should such a situation arise, the
elaboration phase will be aborted and the user provided with relevant information concerning the
malformation of the design he is attempting to imulate, otherwise the valid converter port is
added to the cluster new_cl.

If the port is not a converter port, a depth-first traversal is performed, i.e., all the ports
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1 structure Cluster
2 String moc;
3 String master_moc;
4 List<Module> moc_ifs;
5 List<Cluster> cls;
6 Solver s;
7 end
8 Function process_cluster(set_cl, cl, new_cl)

Data: set_cl, Set of Cluster to be analyzed.
Data: cl, Cluster to be analyzed.
Data: new_cl, Cluster to be built.

9 if not set_cl.contains_cluster(cl) then
10 return;
11 else
12 set_cl.remove_cluster(cl);
13 end if
14 foreach port p in the port list of cl do
15 if is_visited(p) then
16 continue;
17 end if
18 set_visited(p);
19 if is_converter_port(p) then
20 master = get_master(p);
21 check_master(new_cl, master);
22 set_master(new_cl, master);
23 new_cl.add_port(p);
24 continue;
25 end if
26 foreach port p_p connected to p do
27 if is_visited(p_p) then
28 continue;
29 end if
30 set_visited(p_p);
31 next_cl = get_cluster_from_port(p_p);
32 if is_converter_port(p_p) then
33 sub_cl = create_cluster(next_cl);
34 set_cl.add_cluster(sub_cl);
35 reset_attributes(p_p);
36 else
37 process_cluster(next_cl, new_cl);
38 continue;
39 end if
40 end foreach
41 end foreach
42 new_cl.add_sub_cluster(cl);
43 end

Algorithm 5.1: Recursive clustering algorithm.

connected to p are analyzed in turn. It should be noted that the clustering algorithm does not
involve the communication channel. Since SystemC MDVP ports provide mechanisms allowing
the set of ports, connected to the same channel, to be accessed directly, they can be completely
bypassed in the algorithm.
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Figure 5.6: Running Example: Cluster Tree associated with the vibration sensor
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The process performed on each connected port is similar to the previous one (Algorithm 5.1,
lines 27-30). This time, the traversal is used to identify the boundaries (converter port) of
another slave MoC. For that purpose, a new empty, cluster is created and the process_cluster()
algorithm is applied to it. When the sub-cluster built is complete (Algorithm 5.1, line 33), it must
be added into set_cl (Algorithm 5.1, line 34) to be processed later. To be encapsulated correctly, it
must be considered as a component of the current MoC. The purpose of the reset_attributes()
function (Algorithm 5.1, line 35) is to reset the ports’ traversal attributes to false and re-trigger
the analysis of the converter port, which has to be considered, this time, as a regular port of the
master MoC. In the event that the port does not belong to a boundary, a recursive call is made to
analyze the cluster corresponding to this port. When the exploration of a cluster is complete, it is
added, as a sub-cluster, to the new cluster being created (Algorithm 5.1, line 42).

Applying the clustering algorithm to our running example, presented in Figure 4.8 as an
assembly of MoCs, generates the hierarchical tree of clusters seen in Figure 5.6. In the later
illustration, the representation of a cluster corresponds to the one provided in Figure 5.5. The
root of the tree represents the encapsulation into SystemC through the DE MoC. It is important
to note that the cluster at the root of the tree, referred to as Cluster Master, does not contain
primitive modules, ports or signals, nor does it define a master. It contains only sub-clusters
communicating with the DE MoC.

Cluster X represents the MoC TDF and has the DE MoC as a master. It encapsulates five
primitive modules (SRCX , PGAX , ADCX , AAV GX and TDF2DEX), four converter ports (kX ,
ampX , clkX and outX) and four signals (x_sigX , v_sigX , vamp_sigX and adc_sigX) associated
with the TDF MoC. Cluster X also contains one sub-cluster (Cluster ENX) associated with EN
MoC. From the Cluster X point-of-view, Cluster ENX appears as a TDF-compliant primitive
in accordance with the master-slave semantics.

Cluster ENX represents the MoC EN and has the TDF MoC as a master. It encapsulates
three primitive modules (DHOX , DV CX and AmpX), two converter ports (dX and vX) and
two nodes (disp_nodeX and volt_nodeX associated with the EN MoC. Cluster ENX does not
contain any sub-cluster; it represents a leaf in the hierarchical tree.

The branch of the hierarchy described with the Clusters X and ENX represent the model
of the Sensor X. The branches beginning with the Cluster Y and the Cluster Z respectively
represent the model associated with the Sensor Y and the Sensor Z.

This representation infers that each node respects the semantics of the immediate parent
node. Finally, this leads to a simulated system, ruled by SystemC semantics, which meets all the
requirements for digital-centric systems.
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5.3.3 Solver Instantiation Sub-phase

The solver instantiation represents the third sub-phase of the elaboration process. It takes
advantage of the cluster hierarchical tree built in the previous sub-phase, especially the information
about the MoC and the master MoC associated with each cluster.

The purpose of this sub-phase is to finalize the creation of internal data structures required to
support the simulation semantics, i.e., to instantiate the solvers at the borders of MoCs (Figure 5.3,
sub-phase III ).

The principle behind this sub-phase relies on the use of Creational Design Patterns, a set of
Design Patterns which aim to organize and specify the method used to construct object in a
system. In particular, we chose to use the Prototype Design Pattern [74]. This pattern defines
the way in which an object is created by means of prototypical instance and how to create new
objects by copying this prototype through a clone process. Applied to our framework, this means
that we have an instance of a solver and, when it comes to the instantiation of this solver, this
can be achieved simply by cloning the existing one.

This approach requires that all solvers that will be used to perform the simulation of the
system be known and already instantiated, which perfectly fits our approach. Indeed, within the
master-slave semantics, the available interactions between MoCs are statically defined and the
definition of the solvers is based on these available interactions.

In order to store the prototype of the available solvers, we define a dictionary containing all the
instances of solvers. This dictionary is implemented by means of a map structure which represents
the data by the association of a key and a value, usually represented as one <key, value>. A
specific value is accessed by providing a specific key. In our approach, a value represents an
instance of a specific solver. Since our solvers are defined depending on the master-slave semantics,
there is a specific solver for each existing pair of <slave, master>. The key to address our map
of solvers is, therefore, defined by the association of two pieces of information: the MoC and
the master MoC. This Prototype Design Pattern is provided through a factory which stores the
dictionary of prototypes and provides the functionalities required to manipulate this dictionary.
All that this approach relies on is the class scm_moc_info previously described. This class stores
information specific to a MoC and provide an easy access to them. As such, we can define a
small dictionary, dedicated to a MoC, within each scm_moc_info representing a MoC. The global
dictionary, handled by the factory, is built through the aggregation of these small dictionaries.

Table 5.1: Dictionary of solvers available for the clusters hierarchy shown in Figure 5.6.

<X, Y> Prototype to Clone
<TDF, DE> scm_tdf::scm_de_solver
<EN, TDF> scm_en::scm_tdf_solver

Table 5.1 represents the dictionary of solvers associated with the cluster hierarchy of the
running example of the vibration sensor shown in Figure 5.6. From this dictionary we retrieve the
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pairs MoC, master MoC brought out during the Clustering sub-phase. The triple represented
by (<MoC x, master MoC y>, solver xy) defines the solver xy which has to be instantiated
(cloned) in order to execute the MoC x within the context of the master MoC y. In our running
example, we find the triple (<TDF, DE>, scm_tdf::scm_de_solver) which defines the solver
that allows TDF to run under the DE MoC. Similarly, we also find the triple (<EN, TDF>,
scm_en::scm_tdf_solver) which defines the solver allowing EN to run under the control of the
TDF MoC.

1 Function instantiate_solver(cl)
Data: Cluster cl.
Result: Solver s instantiated for cl.

2 moc_ifs = cl.get_moc_ifs();
3 foreach sub_cl in the clusters list of cl do
4 m = instantiate_solver(sub_cl);
5 moc_ifs.add_moc_if(m);
6 end foreach
7 moc = cl.get_moc();
8 master_moc = cl.get_master_moc();
9 if master_moc == NULL then

10 return NULL;
11 end if
12 s = find_and_clone(moc,master_moc,moc_ifs);
13 cl.set_solver(s);
14 return s;
15 end

Algorithm 5.2: Recursive solver instantiation algorithm.

The Algorithm 5.2 shows the recursive, bottom-up function proposed to perform the automatic
instantiation of solvers. The list of modules associated with a cluster is stored in a list moc_ifs
(Algorithm 5.2, line 2). The function instantiate_solver() is recursively called on each sub-
cluster. The solver created for each sub-cluster is then added into the list moc_ifs (Algorithm 5.2,
line 5). Eventually, this list will contain all the modules and sub-solvers contained in a cluster.
Once we have gone through all the sub-clusters of a cluster (or when no sub-cluster exists), we
obtain the information concerning the MoC and the master MoC of the cluster (Algorithm 5.2,
lines 7-8). Thanks to this accumulated information, we possess the specific key to access the specific
solver associated with this cluster (Algorithm 5.2, line 12). The function find_and_clone() is
provided by the factory and searches the dictionary for the value associated with the key <moc,
master_moc> (provided as parameters). When the prototype solver is identified, it is cloned and
the new cloned solver is returned. find_and_clone() takes a third argument which represents
the list of objects that the solver will have to handle. Given that this list comprises modules and,
potentially, sub-solvers, it is abstracted through the scm_moc_if class. This information is duly
provided to the solver during its cloning process.

As illustrated on Figure 5.7, applying the Algorithm 5.2 to the cluster hierarchy of the running
example enriches each cluster structure by providing information about the solver in charge of the
computation. Moreover, this sub-phase also allows for a new abstraction of the model relying on
the solver point-of-view. On account of this, we can represent the running example from the
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Figure 5.7: Running Example: Branch of the cluster Tree with instantiated solver

solvers point of view as illustrated in Figure 5.8.

We see that, from the point-of-view of SystemC, all the models described with MoCs belonging
to SystemC MDVP appear as a classical SystemC component; the sensor X is only seen through
its solver associated with DE. Similarly, from the point-of-view of TDF, models described with
the EN MoC appear as a classical TDF component thanks to the EN solver associated with TDF.
We also note that the components belonging to SystemC are not seen by TDF. The same applies
to EN which only perceives its components.
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Figure 5.8: Running Example: solver abstraction of the vibration sensor

5.3.4 Basic Behavior Block Elaboration Sub-phase

The previous sub-phases in the elaboration process were dedicated to the exploration of the system,
with the aim of collecting information and automatically creating the structures required to perform
the simulation. The remaining phases are dedicated to the elaboration of individual components of
the model: modules and solver (Figure 5.3, phase IV ), ports and channels (Figure 5.3, phase V ).

The generic elaboration of modules and solvers relies on the cluster tree built during the Clus-
tering sub-phase and enriched in the previous sub-phase. The fact that the root of the hierarchical
tree represents, by definition, the DE MoC, indicates that all the clusters encapsulated in the root
node of the tree represent MoCs that are direct slaves of the DE MoC (SystemC). The DE MoC
interface is defined within the SystemC MDVP kernel through the class scm_de::scm_moc_if.
The master-slave semantics, and the structure previously presented, allow the elaboration of the
components to be performed in cascade from the root node of the tree. A bottom-up elaboration
is required to ensure that the subtree of a branch of the cluster hierarchy, a slave, is already
elaborated before the master begins its elaboration.

Figure 5.9 illustrates the minimal class implementation, in accordance with our approach,
based on the running example of the vibration sensor. We see that, in order to communicate
with another MoC (a master), a MoC must implement its interface; this mechanism allows the
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Funtion elaborate()
  foreach moc_if in L do
    moc_if -> initialize();
    moc_if -> set_attributes();
  end foreach
  elaborate_tdf_de_solver();
end

Funtion initialize()
  foreach moc_if in L do
    moc_if -> setup_equation();
  end foreach
  elaborate_en_tdf_solver();
end
Funtion set_attributes()
  // nothing
end

1 2

Figure 5.9: Running Example: Minimal class hierarchy to perform the elaboration of all the
primitive blocks.

slave MoC to be handled by the master. Undeniably, the TDF MoC seeks to communicate with
the DE MoC and, therefore, provides scm_tdf::scm_de_solver 1 which allows TDF to run
under DE. In the same manner, the EN MoC provides scm_en::scm_tdf_solver 2 in order to
communicate with the TDF MoC. These two classes correspond to the solvers available in the
system, previously introduced in Table 5.1.

1 Function elaborate_moc_interfaces(cluster_root)
Data: Cluster cluster_root.
Result: void.

2 foreach sub_cl in the clusters list of cluster_root do
3 cl_moc_if=cluster_root.get_moc_interface();
4 moc_if=static_cast<scm_de::scm_moc_if>(cl_moc_if);
5 moc_if .elaborate();
6 end foreach
7 end

Algorithm 5.3: Elaboration of MoC interfaces algorithm.

Algorithm 5.3 illustrates how this organization and representation of data is used to perform a
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generic elaboration. In order to elaborate and configure each module and solver for simulation, the
Algorithm 5.3 relies on the manipulation of the scm_moc_if class.

The master-slave semantics oblige each MoC slave of DE to provide a MoC interface that
complies with the DE MoC. This means that the immediate sub-clusters of the cluster root own a
MoC interface that inherits from scm_de::scm_moc_if, enabling their abstraction by the MoC
interface associated with DE (Algorithm 5.3, line 4). The elaborate() function (Algorithm 5.3,
line 5) can be called on each MoC interface belonging to these sub-clusters and the call to the
elaboration functions, specific to each MoC, is automatically performed in cascade thanks to the
implementation mechanism detailed in Figure 5.9.

One might observe that the elaboration implementation of the modules and solvers belonging
to a MoC is a specific, MoC-defined mechanism. scm_tdf::scm_de_solver will automatically
call the functions initialize() and set_attributes() when its function elaborate() is called.
Similarly, scm_en::scm_tdf_solver will automatically call the function setup_equation()

when its function initialize() is called. We also see that, for the EN MoC, the function
set_attributes() is not used though it still has to be defined in the MoC interface that complies
with TDF. This elaboration of modules and solvers is, in fact, a bottom-up elaboration: the
modules and sub-solvers handled by a solver are elaborated before the solver performs its own
elaboration.

5.3.5 Port and Channel Elaboration Sub-phase

As is the case for the generic elaboration of modules and solvers, the generic elaboration of
ports and channels relies on the cluster hierarchy defined during the Clustering sub-phase.
Algorithm 5.4 illustrates how the cluster tree is used to perform the generic elaboration of ports
and channels within SystemC MDVP. In order to elaborate and configure these components,
Algorithm 5.4 depends on the manipulation of the base classes defined with the purpose of
abstracting a MoC. The ports and channels are elaborated using the base classes associated to the
port (scm_port_base), the interface (scm_interface) and the channel (scm_prim_channel).

The elaborate_ports_and_channels() function is recursively called on every cluster in the
cluster hierarchy (Algorithm 5.4, line 3). For each cluster, the list of MoC interfaces which contain
modules and potentially sub-solvers (Algorithm 5.4, line 5) gives us access to the ports belonging
to these components (Algorithm 5.4, line 7). We then go through each port and, if it is not already
elaborated, we call its elaboration function (Algorithm 5.4, line 10) and set its elaborated status
to true (Algorithm 5.4, line 11).

The scope of a cluster ends at its converter ports so the channels associated with these ports
are left to be elaborated along with the nodes immediately above in the hierarchy. As such, for
ports other than converter ports, access to their associated channels can be gained through their
respective interfaces (Algorithm 5.4, line 13). Doing so is possible because each channel must
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1 Function elaborate_ports_and_channels(cl)
Data: Cluster cl.
Result: void.

2 foreach sub_cl in the clusters list of cl do
3 elaborate_ports_and_channels(sub_cl);
4 end foreach
5 list_moc_ifs = cl.get_moc_interfaces();
6 foreach moc_if in list_moc_ifs do
7 list_ports = moc_if .get_mocif_ports();
8 foreach port in list_ports do
9 if !port.is_elaborated() then

10 port.elaborate();
11 port.set_elaborated();
12 if !port.is_converter() then
13 if=port.get_scm_interface();
14 ch=dynamic_cast<scm_prim_channel>(if);
15 if !ch.is_elaborated() then
16 ch.elaborate();
17 ch.set_elaborated();
18 end if
19 end if
20 end if
21 end foreach
22 end foreach
23 end

Algorithm 5.4: Elaboration of ports and channels algorithm.

inherit from an interface and a prim_channel, allowing for the realization of a dynamic_cast from
an interface to a prim_channel (Algorithm 5.4, line 14). Ultimately, if the channel is not already
elaborated, we call its elaboration function (Algorithm 5.4, line 16) and set is elaborated status to
true (Algorithm 5.4, line 17).

This algorithm executes a deep-first traversal of the hierarchical tree of clusters. To that end,
the elaboration is performed cluster by cluster, beginning with clusters representing leaves in the
hierarchy and moving up the tree. Like the algorithm designed to elaborate modules and solvers,
the aforestated algorithm respects a bottom-up elaboration.

5.3.6 Elaboration conclusion

The SystemC MDVP elaboration process presented above is a completely generic mechanism which
allows us to abstract any Model of Computation. Our framework is, consequently, independent
from the MoCs definition. This solution honors our commitment to designing a flexible virtual
prototyping environment, the evolution of which is made entirely possible by its non-reliance on
MoCs.

Our elaboration process can be resumed in four steps, as illustrated in Algorithm 5.5. These
steps represent all of the sub-phases previously presented, with the exception of the composability
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check which is performed at compile-time.

1 Function elaboration()
2 hierarchy_root = clustering();
3 instantiate_moc_interfaces(hierarchy_root);
4 elaborate_moc_interfaces(hierarchy_root);
5 elaborate_ports_and_channels(hierarchy_root);
6 end

Algorithm 5.5: Generic Elaboration Algorithm.

The constituent sub-phases of the elaboration process are executed sequentially. At the end of
this process, all components involved in the model are instantiated, elaborated, and ready for the
simulation process.

5.4 Simulation Phase

Moving on to the simulation phase, all of the resources required to perform the generic simulation
are now available thanks to the work accomplished during the elaboration process. The system
modeled is, therefore, ready to be simulated. SystemC MDVP framework is built on top of
SystemC and, as such, can benefit from the regular simulation phase of the DE simulator
kernel. This means that SystemC is the master of the SystemC MDVP framework and that
our framework is obliged to respect SystemC semantics, hence, implying that SystemC governs
the whole simulation. As a result, the simulation phase is mostly provided, and supported, by
SystemC, meaning that our simulation phase mainly consists in setting up the infrastructure to
enable the simulation.

The mechanisms involved in the simulation phase are presented in Figure 5.10. This figure
resumes the Figure 3.3, described in Chapter 3, and enriches it in order to illustrate how the
SystemC MDVP simulation phase extends SystemC to handle heterogeneity while still refraining
from altering its kernel. We use the start_of_simulation() and the end_of_simulation()

callbacks from SystemC to trigger the execution of our own simulation mechanism.

The simulation phase adheres to the hierarchical view of the system provided by the generic
elaboration process. The SystemC MDVP simulation mechanism consists of two sub-phases, the
first being the hierarchical initialization of the system. The second follows with the settings of the
solvers communicating with DE so that they may be handled by SystemC.

5.4.1 Simulation Mechanism

We have already established that the elaboration phase provides a hierarchical view of the system
by means of a cluster tree. Modeled on this tree, the elaboration process also affords a solver
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Figure 5.10: SystemC MDVP kernel simulation phases.

hierarchy. The first sub-phase, as noted in the introduction preceding this section, involves the
initialisation of the system and is rather straightforward to achieve. This simply consists in
exploiting the cluster tree structure to perform the system initialisation in cascade, as explained
previously with reference to other elaborations, for instance, that of MoC interfaces.

Returning, again, to the items briefly described in the introduction of this section, it is worth
re-iterating the importance of the SystemC DE kernel of simulation which provides and supports
the simulation to a great extent. Every cluster encapsulated in the root of this tree communicates
with DE and so provides an interface compatible with the DE MoC. The solvers contained in these
clusters interact with SystemC by creating a dynamic process which allows a solver to integrate
itself into the scheduler of SystemC. This way, the execution control of this solver is handled by
the DE simulation kernel. In order to create this dynamic process, we use the functionalities
provided by sc_spawn from SystemC.

This approach allows us to create a SystemC thread which will be integrated into the scheduling
list of processes to execute within the SystemC kernel. This thread is in charge of the execution of
the components associated with its MoC while respecting the constraints imposed by SystemC.
This thread will trigger the execution of the potential sub-solvers associated with its slave MoCs.
In the context of our framework the simulation relies on a top-down prefix-order traversal of the
hierarchy tree.
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Figure 5.11: Running Example: simulation process.

Figure 5.11 illustrates the simulation process applied to the running example of the vibration
sensor. SystemC provides its components, including our TDF solvers (Solver X, Solver Y and
Solver Z), with a simulation context. The TDF solvers that are encapsulated at the root of the
hierarchical tree are addressed by the simulation kernel of SystemC in the same way as SystemC
modules. Based on this context, our solvers are able to perform a local simulation using their own
semantics, as illustrated with the Solver X in Figure 5.11.

Once it has been called by the SystemC kernel through its interface with DE, the Solver X

can trigger the execution of the components it is responsible for using the TDF MoC semantics
and interface. The Solver ENX , when triggered by the TDF solver through its interface with
TDF, can, in turn, trigger the resolution of the equation system, built from its primitives, for the
period of time specified by the temporal window offered by TDF.

In a more generic approach, SystemC triggers the execution of each branch of the hierarchical
tree representing the system modeled. With respect to the master simulation context, each node is
allowed to perform a local simulation using its associated solver. A node can generate a local
simulation context and gives its own context to its slave. Each node can manage its own time
scale, and advance at its own pace, with respect to the constraints imposed by its master. The
results produced by a node follow the reverse path; the local results of a node are converted and
integrated into its master node.
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5.4.2 Simulation Opportunities

Bearing in mind that we want to provide a generic virtual prototyping environment, the
aforementioned approach presents many opportunities regarding the simulation. A generic
approach allows for a more flexible simulation mechanism. Since our approach is independent from
the MoCs definition, and our simulation mechanism mainly relies on SystemC, the opportunities
offered by our framework do not rely on the kernel implementation. Though they are not directly
implemented within our kernel, these opportunities are made available by the infrastructure
provided by our framework. Our framework allows for the implementation of solvers which take
into account roll-back mechanisms or time scale executions. Our simulation process depends on
the transmission of a simulation context by a solver to all the components it handles. Among the
parameters, floor timestamps as well as horizon timestamps can be transmitted.

Taking this input information into consideration, a solver can perform local roll-back loops
in order to provide a convergent solution. The solver needs to store the current state of the
sub-system that it handles, prior to the commencement of the sub-system’s simulation, for the
time-slot provided by the higher hierarchical node. The solver must also be able to restore its
previous state. With these two functionalities, the solver can perform local roll-back loops. If the
solution diverges, it can start again and tune its internal parameters so as to reach convergence.
Such an approach is illustrated in Figure 5.12 where an activity diagram of an algorithm that
defines a roll back execution mechanism is described. Where activity diagrams are concerned, the
solid black circle (start) represents the entry point of the algorithm with the second circle (end)
indicating the exit point.

Store
States

Restore
States

Run
Parameter

Tuning

[converge]

[!converge]

start

end

Figure 5.12: Activity Diagram of a roll back algorithm.

Similarly, a solver can store this information in order to postpone its execution. Due to the
fact that the time scale between two hierarchical levels may differ, the time-slot provided to a
lower hierarchical node might not be long enough for the solver to be able to produce a reliable
solution. In such cases, a solver can accumulate several time-slots with the aim of realising a
longer execution and, hence, come up with a relevant solution. Figure 5.13 presents an activity
diagram describing an algorithm which defines a postponed execution mechanism, thus illustrating
the above approach.

Another approach may be considered when the time-slot available for a lower hierarchical
node is of a sufficient length to allow the associated solver to perform several executions. The
solver will only transmit the expected result to its higher node once its attributed time-slot has
been consumed. A demonstration of this approach can be found in Figure 5.14 which shows an
activity diagram of an algorithm used to define a mechanism where the execution is performed
multiple times until the point is reached where no more time is available.
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Figure 5.13: Activity Diagram of a postponed execution algorithm.
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Figure 5.14: Activity Diagram of a multiple execution algorithm.

We presently described some of the opportunities that our virtual prototyping environment
has to offer. Thanks to our generic, MoC-independent approach, one can implement a solving
algorithm which follows its own semantics.

5.5 Conclusion

In this chapter, we introduced the implementation details of SystemC MDVP, our virtual
prototyping environment, which supports the principles outlined in the previous chapter. We
explained how SystemC MDVP, developed on top of SystemC, interacts with, and benefits from,
this system-level modeling language; accordingly, we pointed out that the kernel phases of
SystemC MDVP strictly mimic those of SystemC. The set of basic classes and algorithms which
define the kernel, along with those required for sound functioning, were depicted in this chapter
and the generic algorithms, which allow the elaboration and simulation phases to be performed in
a completely generic way, were discussed.

As has been noted, we designed our framework with the objective being to meet the two
principal criteria hereto established: it must be generic and it must not be dependent upon the
Models of Computation definitions. We presently expanded on this point and also examined the
main classes which guarantee such an independence by implementing an abstract representation
of MoCs. This implementation relies on the functional abstraction of a MoC defined in Chapter 4.
We abstracted the notion of behavior associated with a MoC by means of separated classes: one
to represent the primitive blocks of a MoC (scm_core::scm_module), another representing the
solving mechanism of a MoC (scm_core::scm_solver) and a third class which represents the
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interface of a MoC (scm_core::scm_moc_if). The interface of a MoC is also used for the purpose
of independently abstracting and manipulating primitive blocks or solvers.

Two classes were defined in order for us to abstract the channel representation within a MoC,
the first designating a communication interface (scm_core::scm_interface, and the second,
a communication channel (scm_core::scm_prim_channel). The same method was applied for
the notion of composition: in this abstraction, a basic port (wherein generic information in
relation to ports is re-grouped) is represented by the class scm_core::scm_port_base with
scm_core::scm_port<IF> denoting the port itself. Converter ports, used at the border between
two MoCs, are also represented here. A final class, scm_core::scm_moc_info, is defined so that
generic information characterizing a MoC may be gathered and contained within a single object.

In addition to the classes defined to abstract a MoC, we introduced classes required
for the proper functioning of the kernel. A small number of complementary classes are in-
volved in handling parts of the kernel process. Two such classes are required to assure
the construction of the cluster tree (which constitutes the backbone of our framework) -
scm_core::scm_cluster_node and scm_core::scm_cluster_creator respectively, and another,
scm_core::scm_moc_interface_creator, to manage the automatic instantiation of solvers. Hav-
ing spoken of the aforementioned classes, we moved on to present the idea of a simulation context
through the class scm_core::scm_simcontext which presides over the entire simulation from
the SystemC MDVP viewpoint. It operates the MoCs via the aforementioned abstraction and
contains the generic algorithms that allow for the simulation of heterogeneous system.

The work carried out by the kernel focusses on the elaboration process. Responsible for
providing all the resources needed for it to be performed, it represents a crucial part of the
simulation. During this phase, the generic algorithms responsible for implementing the principles
underlying SystemC MDVP are defined. This process is articulated around five sub-phases which
aim to prepare the simulator for simulation.

The composability sub-phase is performed at compile-time. Its purpose is to prevent design
errors due to incorrect interfacing or incompatibility among the system components. This is
achieved through the explicit integration of quantity data types which make it possible to define
variables and interfaces enhanced with semantics information. These quantity types allow units
and dimensions associated with a component to be expressed. This approach is supported by
the use of the Boost::Units Library which defines all the units and dimensions indexed in the
international system of units. Moreover, it supports all the basic mathematical operations between
quantities. At compile-time, we can type-check the quantity and ensure that the interfacing of
components is effectuated correctly without any overhead on the simulation; only the compilation
time is impacted.

The aim of the clustering sub-phase is to explore the system thoroughly, collecting information
and generating an appropriate simulation data structure through the medium of a domain-based,
hierarchical view of the system created for this purpose. From the flat representation of the system
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provided by SystemC, the clustering sub-phase builds a tree wherein each node represents a
cluster, i.e. a homogeneous region in the design portraying a subset of the model which is described
using a single MoC. A cluster is, therefore, associated with one individual MoC. This approach
capitalises on the master-slave semantics, which define the interactions amongst MoCs, in order to
establish the hierarchical organization, demonstrated by the cluster tree, which highlights the
dependencies between the underlying MoCs. The root of this hierarchy, by construction, always
denotes SystemC and its associated DE MoC. This data structure embodies the essence of the
simulator; it constitutes the kernel’s internal representation of the system modeled.

The following sub-phase defines the generic, and automatic, instantiation of solvers. By
exploiting the cluster representation of the system, wherein, as we know, the emphasis rests on
the master-slave relations that link the MoCs, this sub-phase automatically ascertains which
particular solver should be instantiated at a given border. The remaining sub-phases of the
elaboration process are dedicated to the elaboration of each component of the system. Once again,
the cluster hierarchy is used to support these sub-phases. The elaboration of the components
follows a bottom-up approach, starting from the leaves of the cluster tree and progressing along
the branches.

To summarize, the elaboration process of SystemC MDVP is a completely generic mechanism,
uninfluenced by the MoCs’ definition. We can conclude, from this, that we have achieved our
objective of designing a virtual prototyping environment which is not only flexible, but also
capable of evolving since it is not reliant on MoCs.

Predominantly sustained by SystemC, the simulation phase of the SystemC MDVP kernel is
quite straightforward. Our framework is, of course, defined on top of SystemC following our own
master-slave semantics thus implying that SystemC is the master of our simulator, governing the
whole simulation as a consequence. The main idea is to create, associated with SystemC MDVP
solvers, SystemC threads that will be integrated within the SystemC kernel scheduler in order to
be executed. These threads are created solely for the solvers positioned at the root of the cluster
hierarchy, i.e. those communicating with DE. As is the case for prior phases, the cluster hierarchy
constitutes a fundamental element of this mechanism. Even after the threads have been created
and integrated into SystemC, the cluster tree continues to play a central role in the execution of
the simulation. The execution of a branch of the tree is performed in cascade, from the root of the
tree (the SystemC threads) to the leaves.

Echoing the defining characteristics of the elaboration phases (and its constituent sub-phases)
our simulation phase is generic and brings flexibility to our virtual prototyping environment. We
recently outlined the numerous simulation opportunities generated by our implementation of
the simulation mechanism. This implementation provides the means to define solvers which can
perform roll-back loop or, indeed, time scale execution, where the solver is able to postpone its
execution or execute itself several times in a row. All of this is possible thanks to our generic,
MoC-independent approach.
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6.1 Introduction

Several notions spring to mind when the subject of monitoring is evoked. There is, of course, the
tracing mechanism (primarily used for de-bugging purposes), which consists in the logging of
information during the simulation, not to mention the profiling mechanism which is responsible
for analyzing specific values within a system. An approach based on such mechanisms may be
adopted to carry out performance tests or detect threshold crossing.

We believe these functionalities should be developed simultaneously. Indeed, the same
mechanisms are involved in performing tracing, profiling and other, similar, processes, only the
outcome is different. All of the afore-stated functions require a mechanism to probe the simulated
system and collect pertinent information. In this thesis, therefore, we consider monitoring as a
mechanism which aims at observing and recording information about a system regardless of the
eventual outcome.

Let us now consider the matter of developing a monitoring mechanism for the SystemC MDVP
framework. Should the approach which consists in using the existing solution for the SystemC
models be adopted, it would lead to the development of a solution that employs different
mechanisms to access data in the system. In our opinion, however, an approach implicating a
unified access to the information necessary for the monitoring of the system would be more
appropriate. As such, our monitoring mechanism must be capable of handling SystemC MDVP
components as well as those of SystemC. The challenge lies in generating this ability to handle
both sets of components while still remaining generic and providing a convenient interface for the
end-user.

Section 6.2 introduces the monitoring principles that support a multi-disciplinary approach to
monitoring required within SystemC MDVP. We begin by providing an overview of the classes
and data structures required to perform the monitoring of heterogeneous systems. We then detail
the principles that allow us to perform the monitoring of SystemC components and continue with
those involved in the monitoring of components belonging to SystemC MDVP.

The monitoring mechanism is introduced in Section 6.3, as is the way in which it integrates
into the SystemC MDVP environment. Herein, we equally reveal the different steps that are added
to the simulation process previously described in Chapter 5 and present the generic algorithms
which perform the monitoring during the simulation of heterogeneous systems.

The present chapter concludes with Section 6.4 which comprises an overview of the monitoring
of multi-disciplinary systems.
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6.2 Principles

Its goal being to support the scalability and flexibility of our framework, the monitoring mechanism
must remain generic and independent from the MoCs (as well as the disciplines they represent). It
is, however, unlikely that it would be able to maintain its independence while simultaneously
collecting relevant, and specific, data. We must, therefore, adopt the same approach as we did for
the handling of the Models of Computation. We must define a generic abstraction within the
SystemC MDVP’s kernel and enable the specification of this abstraction within each MoC. The
set of classes that support this approach is illustrated in Figure 6.1.

SC MDVP

scm_core::
scm_monitor

scm_core::
scm_monitor_handler

scm_core::
scm_monitor_slot

scm_core::
sc_monitor_handler

SystemC MDVP Handling SystemC Handling

1

2 3

User Interface

scm_core::
sc_data

Figure 6.1: SystemC MDVP Monitor classes

The monitoring only requires a couple of classes to function properly. The class
scm_core::scm_monitor 1 represents the user interface and the object in charge of the moni-
toring mechanism within the simulator. It defines the interface that the user will manipulate
to specify the signal he wants to monitor. This is the only interaction that the user will have
with the monitoring mechanism. Within the kernel, this class performs the monitoring algorithm
that will trigger the probing of the system and aggregates the relevant and specific information
retrieved from the different specified sources.

Additionally, we have two classes to handle the SystemC MDVP components:
scm_core::scm_monitor_handler and scm_core::scm_monitor_slot 2 . These two classes
are in charge of probing the system to gather the relevant information, before formating
the collected data so that it respects the format expected by the scm_core::scm_monitor.
scm_core::scm_monitor_slot describes the object that handles the signals to be monitored.
For each MoC a specific monitor slot must be defined in order to handle the specificities related
to the MoC. Taking into account the representation of the system within SystemC MDVP,
this approach means that a dedicated monitor slot is created for each cluster in the hierarchy.
The SystemC MDVP monitor handler (scm_core::scm_monitor_handler) defines the object
manager that controls the monitoring of a whole branch of the cluster hierarchy. It stores all the
monitor slots associated with the clusters belonging to the branch it describes.

Similarly, they are two classes, scm_core::sc_monitor_handler and scm_core::sc_data

3 , to handle the SystemC components. The first class represents the object that manages all the
SystemC components which need to be monitored while the other is defined so as to handle the
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different data types supported by SystemC.

The presented abstraction of the monitoring within the SystemC MDVP kernel allows for the
representation of the monitoring data structures as a monitoring tree which modeled the hierarchy
of the clusters built during the clustering phase of the elaboration process.
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Figure 6.2: Running Example: Monitoring tree associated with the vibration sensor.

Figure 6.2 depicts the monitoring tree associated with the running example of the vibration
sensor. We see a monitor handler for each branch of the cluster tree describing this system (a
monitor handler for each sensor). Each monitor handler owns a monitor slot to handle the signals
associated with the sub-model described with the EN MoC, and another one to handle that of
the sub-model described with the TDF MoC. For the Sensor X, we have the Monitor Handler

X that manages the monitor slots Slot TDFX and Slot ENX which are in charge of the TDF
signals and the EN nodes respectively. The SystemC components are handled by the SystemC

handler. The root of the monitoring tree is the scm_monitor which controls and, indeed, triggers
the monitoring process from the SystemC MDVP kernel.

This approach allows the kernel to trigger the monitoring functionality within each MoC while
remaining independent from them. Moreover, the definition within each MoC of the specificities of
the data handled allows for the collection of relevant and specific information.

6.2.1 SystemC Monitoring

We believe that a unified access to the data throughout the whole simulated system constitutes
the best approach for a monitoring mechanism. In consequence, we are compelled to manipulate
SystemC communication components, i.e. SystemC’s channels, though this is not without its
difficulties since we do not want to alter the simulation kernel. In order to monitor SystemC
components, we have to fully understand the underlying mechanisms within the simulation kernel.
Fortunately, SystemC provides some mechanisms that can help us to achieve the monitoring of
these components.

When a writing on a SystemC signal occurs, the signal sends an event to notify the writing.
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This event is caught by the SystemC simulation kernel and the kernel will then notify a set of
listeners that have registered themselves to this signal. This mechanism gives us an opportunity to
monitor the modification that may occur on a SystemC signal without being intrusive or having
to modify the simulation kernel.

SystemC
Handler
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DE Module

DE Port

DE Signal

Write

Read

Data

SystemC
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1 2
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Figure 6.3: SystemC MDVP kernel handling of SystemC monitoring.

Figure 6.3 illustrates the mechanism that we developed in order to handle SystemC components.
This figure describes a simple SystemC system composed of two modules, two ports and a signal.
The behavior of this system is quite simple, module A writes data which is then read by module
B. We see that the module A writes data to its port (Figure 6.3, 1 ), then the port writes this
data to the signal signalab (Figure 6.3, 2 ). When this occurs, signalab triggers an event that is
caught by the kernel (Figure 6.3, 3 ), which then notifies the sc_monitor_handler (Figure 6.3,
4 ). Module B can read the data through its port 5 ; we do not interfere in this process.

We explained that the SystemC kernel notifies the set of listeners that have registered
themselves to a specific signal when a writing occurs. In our approach the sc_monitor_handler

represents a listener that wants to be notified when a writing occurs on a signal that needs to be
monitored. Prior to the simulation, the SystemC MDVP kernel, therefore, has to register the
sc_monitor_handler to each SystemC signal to be monitored in order for the SystemC monitor
handler to be notified during the simulation. This is automatically done when the designer of the
system specifies a SystemC signal to monitor.

As with the tracing mechanism implemented within SystemC, our monitoring mechanism does
not support all the SystemC components. We can monitor channel objects used to interconnect
SystemC modules though we are not able to handle the channels described using a sc_fifo.
Indeed, the SystemC reference manual [39] does not specify a mechanism which would allow us to
retrieve values stored in a sc_fifo without altering the FIFO. If we attempt to read the value
stored in a FIFO, this value will no longer be stored in the FIFO. Hence, in the example shown in
Figure 6.3, the module B will fail to receive the value written by the module A. We are, therefore,
only able to monitor channels described with sc_signal.
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6.2.2 SystemC MDVP Monitoring

Within SystemC MDVP, the monitoring mechanism relies on the principle of signal/slot or
event/delegate mechanism. 1 This pattern was introduced in Qt in order to handle communication
between objects. It is especially used in the implementation of Graphical User Interfaces (GUI).
This pattern represents a communication mechanism that allows for the decoupling of a sender
from several potential receivers. The principle is to make information from one part of the system
available to another without having to hard-wire these two resources.

A signal is emitted when a specific event occurs and a slot represents a function that is called
in response of a specific signal. When a signal is emitted it makes specific predefined data available
to several slots, provided that each slot had registered itself with the signal.

Within SystemC MDVP, this approach perfectly fits the requirements in order to perform the
monitoring process. Applied to our framework, this can be understood as when a writing on a
channel occurs a signal is emitted. The signal can carry the information associated with the new
value written in the channel, and other information such as the timestamps when the writing
occurs. Logically, the slot function called when a signal is emitted is defined within a monitor slot.

TDF Module

TDF Port

TDF Signal

Write

Read

Data

Slot

A B
signalab

1 2

3

4

Figure 6.4: SystemC MDVP kernel monitoring principle.

A representation of the mechanism that we developed with the aim of monitoring
SystemC MDVP components can be found in Figure 6.4 which denotes a simple SystemC MDVP
system comprising two modules, two ports, and a signal from the TDF MoC. As with the example
to illustrate the handling of SystemC components, this system behaves in a straightforward
manner with module B reading the data written by module A. We note that, when module
A writes data to its port (Figure 6.4, 1 ) and then the port writes this data to the channel
channelab (Figure 6.4, 2 ), this channel emits a signal which notifies the slot with which it is
registered (Figure 6.4, 3 ). As before, the data is read by module B, through its port (Figure 6.4,

1In order to avoid the confusion between signals belonging to SystemC MDVP and signals described in the
signal/slot pattern, signals from SystemC MDVP will be referred as channels in this section
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4 ), without any intervention on our part.

Every time a value is written to a SystemC MDVP channel, it is sent through a signal to the
slot associated with the channel in question. The slot then formats the data received and stores it
until it is collected by the scm_monitor.

As previously mentioned, a monitor slot is created for each cluster of the hierarchy of clusters,
and hence the registration of a slot with a signal is automatically performed after this creation
process. A monitor slot, therefore, may be connected to several different signals in the event that
multiple channels belonging to the same cluster need to be monitored.

Developing the monitoring mechanism raises the question of how it could collect relevant specific
information while remaining a generic mechanism. We address this issue with the abstraction
previously introduced. This means that the monitor slot used to handle the channels of a MoC
must be MoC-dependent and specifically implemented for a MoC. The MoC Architect is in the
best position to select the relevant information which needs to be monitored. Indeed, he designed
the MoC and, as such, can easily identify what information should be taken into account when
the MoC is being monitored. This approach guarantees the flexibility of our virtual prototyping
environment even for monitoring purpose.

6.3 Monitoring Mechanism

The mechanisms involved in the monitoring process are presented in Figure 6.5. Based on
Figure 5.3 and Figure 5.10, this figure shows how the monitoring mechanism is integrated within
SystemC MDVP with a view to monitor heterogeneous entity without altering the SystemC
kernel. First, the monitoring mechanism is broken down into three sub-phases which are integrated
into the elaboration process of SystemC MDVP. These three sub-phases aim at setting up the
resources required to execute a generic monitoring mechanism. They consist in creating and
initializing a set of data structures. Second, a kernel routine, which is integrated into the scheduler
of the SystemC DE kernel simulation, performs the monitoring execution. Thereafter, through the
end_of_simulation() callback from SystemC the monitoring process can properly terminate its
on-going tasks.

This section details the different mechanisms presented in Figure 6.5.

Figure 6.5 details the monitoring mechanism incorporated within SystemC MDVP to promote
correct functioning. Our framework is designed in such a way that the end-user need not to
be involved with the inner-working (internal elements) of the simulator and it is of the utmost
importance that this approach be upheld with the monitoring process. As such, in order to remain
generic end keep the involvement of the end-user to an absolute minimum, we hereby introduce
several addition sub-phases to the elaboration process of SystemC MDVP. These sub-phases
allow us to automatically setup the monitoring infrastructure in a generic manner.
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SystemC
Elaboration

Construction of the module hierarchy

Callback: before_end_of_elaboration()

Callback: end_of_elaboration()

SystemC
Simulation

Callback: start_of_simulation()

Scheduler Execution

Initialization phase

Evaluation, update, delta notification and timed notification phases

Callback: end_of_simulation()

Destruction of the module hierarchy

sc_start()

sc_stop()

SystemC MDVP
Elaboration

Elaboration
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SystemC MDVP
Monitoring

Kernel Routine

Monitoring

Sub-phase I
Monitor Handler Instantiation

Sub-phase II
Monitor Slot Instantiation

Sub-phase III
Initialization

Terminate Monitoring

Figure 6.5: SystemC MDVP kernel monitoring phases.

6.3.1 Monitor Handler Instantiation

As previously stated, the monitor handlers represent managers which control the monitoring process
during the simulation. When dealing with SystemC MDVP components, they are associated with
a whole branch of the cluster hierarchy, and manage its monitoring. When dealing with SystemC
components, they handle them directly.

To create these handlers, we take advantage of the work carried out during the elaboration
phase. We use the cluster hierarchy built during the clustering sub-phases to support our creation
process. It is a straightforward implementation as detailed in Algorithm 6.1.

The principle is to iterate over the top sub-clusters in order to instantiate a monitor handler for
each branch of the cluster tree. We systematically examine all the sub-clusters encapsulated within
the root of the tree (Algorithm 6.1, line 2), and for each sub-cluster we retrieve its associated solver
(Algorithm 6.1, line 3). Then, we can instantiate a handler dedicated to the branch of the cluster
tree represented by a solver (Algorithm 6.1, line 4). In order to keep a record of the correspondence
between a solver and its dedicated monitor handler, we store this information through a map

object which associates a key (a solver) to a value (a monitor handler) (Algorithm 6.1, line 5). By
proceeding in this manner, we are able to retrieve a monitor handler associated with a solver
easily and conveniently.
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1 Function monitor_instantiation()
Data: Cluster cl_root.
Data: Map<solver, monitor_handler> solver_map.
Result: void.

2 foreach sub_cl in the clusters list of cl_root do
3 solver = sub_cl.get_moc_interface();
4 monitor_handler = new sca_core::sca_monitor_handler();
5 solver_map[solver] = monitor_handler;
6 end foreach
7 end

Algorithm 6.1: Generic Algorithm to Instantiate Monitor Handlers.

The instantiation of the SystemC monitor handler is also straightforward. Within
SystemC MDVP we do not track the SystemC components instantiated in the model description;
these SystemC components are not represented in the data structures of SystemC MDVP. There-
fore, the monitor handler dedicated to the handling of SystemC components need not conform to
any internal representation, hence, it is simply instantiated as a single entity that will handle all
the SystemC components.

6.3.2 Monitor Slot Instantiation

The instantiation of monitor slots is more complex than that of the monitor handlers. Though
they must remain generic in order to respect the principles of SystemC MDVP, they must also be
MoC-specific in order to retrieve relevant information. We follow the same approach that we
applied to the definition of the solvers, which are MoC-specific. We create a dictionary which
stores for a MoC its associated monitor slot.

To this aim, we use the class scm_moc_info defined earlier in this chapter to store the
information that we need. We use the design pattern Prototype to create the monitor slot. Thus,
we require a prototype to allow us to apply the clone process. The scm_moc_info class of each
MoC must contain an entry in a table which defines the associated monitor slot for this MoC.
This information is then gathered by the simulation context with a view to construct a table
representing all the monitor slots available in the simulated system (i.e. a monitor slot for each
MoC used in the design of the system).

We now have all the available monitor slots of the system and their prototype, though we
still need to perform the instantiation of the monitor slots for each cluster of the system. The
instantiation of the monitor slots is carried out in a generic way thanks to the recursive process
described in Algorithm 6.2.

Algorithm 6.2 describes the generic function create_monitor_slot() that creates the monitor
slots recursively, following a bottom-up process. It takes a monitor handler and a cluster as
parameters; the cluster is used to go through the hierarchy of clusters, and the monitor handler to
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1 Function create_monitor_slot(monitor, node)
Data: Monitor Handler monitor.
Data: Cluster node.
Data: Map<cluster, monitor slot> cluster_slot_map.
Result: Monitor Slot slot.

2 foreach sub_cl in the clusters list of node do
3 slot = create_monitor_slot(monitor, sub_node);
4 monitor.add_slot(slot);
5 end foreach
6 moc_name = node.get_moc() ;
7 prototype_slot = prototype_table.find_slot(moc_name);
8 if prototype_slot == NULL then
9 print("Error, cannot find a monitor slot associated with moc_name") ;

10 exit() ;
11 end if
12 slot = prototype_slot.clone();
13 cluster_slot_map[node] = slot ;
14 return slot;
15 end

Algorithm 6.2: Generic Recursive Algorithm to Create Monitor Slots.

register the monitor slot associated with it.

As a bottom-up process, we are undertaking a deep-first traversal of the hierarchy, which means
that the first thing to do is to iterate over the sub-cluster of the current cluster (Algorithm 6.2,
line 2). The function create_monitor_slot() is called on each sub-cluster and returns the
monitor slot associated with the sub-cluster (Algorithm 6.2, line 3). This monitor slot is then
added to the monitor handler provided as parameter of the function (Algorithm 6.2, line 4). The
first part of the Algorithm 6.2 describes the registering of monitor slots with their corresponding
monitor handlers.

The second part of this algorithm describes the creation of the monitor slots. First of all,
we access the name of the Model of Computation associated with the cluster under treatment
(Algorithm 6.2, line 6). With this name, we can try to access the table that contains the
associated prototype of monitor slots (Algorithm 6.2, line 7). This step of the algorithm may
fail (Algorithm 6.2, line 8). Failure can happen if the end-user requests our framework to
monitor a component associated with a MoC that does not support the monitoring mechanism of
SystemC MDVP. In this case, an error message is displayed to the end-user and the process is
terminated (Algorithm 6.2, line 10). In contrary, the retrieved prototype is cloned (Algorithm 6.2,
line 12) in order to create the monitor slot associated with the cluster node. Then, this information
is stored in a table for futur use (Algorithm 6.2, line 13). Eventually, the slot which has just been
created is returned (Algorithm 6.2, line 14).

The function create_monitor_slot() allows for the creation of monitor slots which describe
a single branch of the hierarchy of the cluster, and are hence, associated with a single monitor
handler. Therefore, the call to the function create_monitor_slot() is encapsulated within
another function which, collectively, constitutes the instantiation mechanism of monitor slots.
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This function is detailed in Algorithm 6.3.

1 Function instantiate_monitor_slot()
Data: Monitor Handler monitor.
Data: Cluster cl_root.
Data: Map<solver, monitor handler> solver_map.
Result: void.

2 foreach sub_cl in the clusters list of cl_root do
3 solver = sub_cl.get_moc_interface();
4 monitor_handler = solver_map[solver];
5 slot = create_monitor_slot(monitor_handler, sub_node);
6 monitor.add_slot(slot);
7 end foreach
8 end

Algorithm 6.3: Generic Algorithm to Instantiate Monitor Slots.

instantiate_monitor_slot() represents the generic function that triggers the instantiation
of the monitor slot for the whole hierarchy of clusters.

The principle is to iterate over the top sub-cluster in order to instantiate a monitor handler
for each branch of the cluster tree. We pass through all the sub-clusters encapsulated within the
root of the tree (Algorithm 6.3, line 2), and, for each cluster, we retrieve its associated solver
(Algorithm 6.3, line 3). Thereafter, we can retrieve the monitor handler dedicated to the branch
of the cluster tree represented by a solver (Algorithm 6.3, line 4).

With this information, we can trigger the creation of the monitor slots for the branch of the
hierarchy tree represented by sub_node and acquire the monitor slot associated with sub_node
(Algorithm 6.3, line 5). Finally, this monitor slot is integrated into the monitor handler of this
branch of the tree (Algorithm 6.3, line 6).

At this stage, we have created all the components needed to perform the monitoring, that is to
say the monitor handlers and the monitor slots. What remains to be done is to initialize them for
the simulation.

6.3.3 Initialization

Prior explaining how the monitoring system is initialized, we need to introduce how the end-user
interacts with the monitoring mechanism. In the beginning of this section we stated that the
end-user will interact with the monitoring process through the scm_monitor class and only with
this object. The end-user uses this object to specify the components he wants to be monitored
during the simulation. He can specify SystemC or SystemC MDVP components using the same
interface. This is illustrated in Listing 6.1, which represents a sample of the code behind the
running example of the vibration sensor.

1 #include <sc_mdvp.h>

91



Chapter 6. SystemC MDVP: Monitoring

2 [...]
3 int main(){
4 [...]
5

6 // Signals
7 scm_tdf::scm_signal<double> x_sig_x("x_sig_x");
8 scm_tdf::scm_signal<double> v_sig_x("v_sig_x");
9 scm_tdf::scm_signal<double> v_amp_sig_x("v_amp_sig_x");

10 scm_tdf::scm_signal<sc_dt::sc_int<NBitsADC> > adc_sig_x("adc_sig_x");
11

12 sc_core::sc_signal<sc_dt::sc_int<NBitsADC> > adc_out_sig_x("out_sig_x");
13 sc_core::sc_signal<int> k_out_sig_x("k_sig_x");
14 sc_core::sc_signal<sc_dt::sc_int<NBitsADC> > amp_sig_x("amp_sig_x");
15 sc_core::sc_signal<bool> clk_sig_x("clk_sig_x");
16

17 // Monitoring
18 scm_core::scm_monitor monitor;
19

20 monitor.monitor_signal(&x_sig_x);
21 monitor.monitor_signal(&v_sig_x);
22 monitor.monitor_signal(&v_amp_sig_x);
23 monitor.monitor_signal(&adc_sig_x);
24 monitor.monitor_signal(&k_out_sig_x);
25 monitor.monitor_signal(&amp_sig_x);
26

27 [...]
28 }

Listing 6.1: End-user monitoring specification

This monitor registers the components to be monitored in two separate lists, one for the
SystemC components and one for the SystemC MDVP components. Each list is used to initialize
the corresponding data structure within SystemC MDVP.

Algorithm 6.4 describes the initialization of the monitor slots. In order to monitor the system,
these slots must register themselves with the signals they have to monitor. This is the purpose of
this initialization phase, the main idea being to take each cluster, identify the channels that need
to be monitored and link it with the corresponding monitor slot.

Since we adopt a bottom-up initialization process, with a deep-first traversal of the cluster
hierarchy, and hence, we first iterate over all the sub-clusters (Algorithm 6.4, line 2) to recursively
call the initialization function (Algorithm 6.4, line 3). Thanks to the structure created during the
instantiation of the monitor slots, we are able to retrieve the monitor slot associated with each
cluster (Algorithm 6.4, line 5). Then, as all the channels used to interconnect a set of elements
belonging to a cluster are stored in the cluster, we can easily gain access to them (Algorithm 6.4,
line 6).

92



6.3. Monitoring Mechanism

1 Function initialize_monitor_slot(node)
Data: Monitor Handler monitor.
Data: Cluster node.
Data: Map<cluster, monitor slot> cluster_slot_map.
Data: List<Channel> channel_monitored.
Result: void.

2 foreach sub_cl in the clusters list of node do
3 initialize_monitor_slot(sub_node);
4 end foreach
5 slot = cluster_slot_map[node] ;
6 cl_channels = node->get_channels() ;
7 foreach channel in the channel list of cl_channels do
8 ch_to_monitor = channel_monitored.find_channel(channel);
9 if ch_to_monitor then

10 channel->connect_slot (slot);
11 end if
12 end foreach
13 end

Algorithm 6.4: Recursive Algorithm to Initialize the Monitor Slots.

We go through this list of channels (Algorithm 6.4, line 7) and, for each channel, we check if it
belongs to the list of channels to be monitored (Algorithm 6.4, line 8). If not, we directly move on
to the next channel. If it does belong to the list, we connect this signal with the corresponding
monitor slot (Algorithm 6.4, line 10).

connect_slot() represents the function that registers a slot with a signal following the
signal/slot pattern used to perform the monitoring for SystemC MDVP components. This function
is MoC-specific and can then perform the connection with the MoC-specific instance of the
monitor slot. This approach allows us to keep our framework generic, and independent from the
MoC definition, while enabling the monitoring process to access relevant and specific information.

The SystemC MDVP monitor handlers do not require an initialization process. They handle
the monitor slots that correspond to their branch of the cluster and have already been associated
with their monitor handler during their instantiation. Thus, no further initialization is needed.
As opposed to that of SystemC MDVP, the SystemC monitor handler requires an initialization
process. This monitor handler works as a SystemC process which is sensitive to all of the signals
that it has to monitor. As with the solver communicating with DE, we have to create a dynamic
process that will be registered in the SystemC kernel scheduler. This is achieved during the
initialization phase. The SystemC function that allows us to create process (sc_spawn()) also
allows us to specify a list of sensitivities which will determine when our process should be executed;
this is in perfect keeping with our approach. We can then create the process that performs the
monitoring of SystemC components sensitive to the entire signals that it has to monitor.

93



Chapter 6. SystemC MDVP: Monitoring

6.3.4 kernel Routine

The monitoring must be performed for the entire duration of the simulation; as such we need to
come up with a method which will allow the monitoring mechanism to be executed throughout the
simulation process. We do not want the monitoring to result in a huge overhead on the simulation
time, therefore we chose an approach where the monitoring process is performed sporadically.
To this aim, we encapsulated the monitoring mechanism within a kernel routine, defined as a
SystemC process.

With a sporadic execution, a burst treatment of the data is possible. Consequently, the kernel
routine should provide a mechanism to indicate when a set of data is available and, thus, the
monitoring process should be performed. Therefore, we define a kernel event that controls the
execution of the kernel routine. The kernel routine is sensitive to this event. When this kernel
event is triggered, the kernel routine may be executed. Figure 6.6 illustrates how the kernel routine
in charge of the monitoring operates within SystemC MDVP.

SystemC MDVP
Kernel Routine

Collect Information

Event
Handler

(idle)

Analyze Information

Solvers SystemC MDVP
Thread SystemC

Call
wait()

Solver C

Solver B

Solver A

Figure 6.6: SystemC MDVP monitoring kernel routine.

We previously explained how the solvers belonging to SystemC MDVP, which interact with
DE, integrate themselves with SystemC. This mechanism relies on the creation of dynamic
processes, threads, directly integrated into the scheduler of the SystemC kernel. In order for the
kernel to gain control of the execution, the threads must call a wait() function. This function
interrupts the thread execution in order for the SystemC kernel to execute its own code. Within
SystemC MDVP we provide our own wait() function so as to allow our own kernel to execute its
own code when a solver ends its execution cycle.

The wait() function acts as a wrapper for the SystemC wait() function. Prior to calling the
function provided by SystemC we trigger the kernel event in order to notify our kernel routine of
the fact that a solver has ended a simulation cycle and monitored data are, therefore, available.
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When the solvers A, B or C end a simulation cycle, they call the wait() function provided by
SystemC MDVP. This wait() function triggers the kernel event dedicated to the kernel routine,
then it calls the wait() function provided by SystemC.

Several solvers could execute their simulation cycle consecutively before the kernel routine
executes its process. Since SystemC does not track multiple triggering of events, we cannot know
if the kernel event was triggered several times, and, hence, if several solvers end their simulation
cycle. For this reason, in addition to triggering the kernel event to notify the end of a simulation
cycle, we also provide a registration mechanism which allows a solver to register itself when it
finishes a simulation cycle. This mechanism allows us to retrieve and identify all the solvers that
trigger the kernel event.

The kernel routine waits until a kernel event is triggered. When our routine is notified by
SystemC of the event being triggered, it can execute the monitoring process. This process consists
in two main tasks: the gathering of information and the analysis of this information. When these
two tasks have been completed, the kernel routine returns to its initial state, waiting for the
kernel event to be re-triggered. Figure 6.7 shows the kernel routine tasks applied to the running
example of the vibration sensor.
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Slot
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Slot
TDFZ

Slot
ENZ

Monitor

Request Data

Formatted Data

Figure 6.7: Running Example: Monitoring execution for the vibration sensor.

The execution of the kernel routine tasks relies on the monitor tree representation introduced
by Figure 6.2. The kernel routine identifies the solvers that have ended a simulation cycle since its
last execution. The routine then requests the information, stored during the simulation, from
each solvers’ associated monitor handler through the scm_monitor. This request is propagated
along the monitoring tree to the different monitor slots in charge of monitoring SystemC MDVP
components. Each monitor handler collects the information provided by the monitor slots under
its responsibility and sorts the data in accordance with the simulated time. The same applies
for SystemC components except that they are all directly handled by the SystemC handler. In
summation, the scm_monitor retrieves all the information from SystemC and SystemC MDVP
components.
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6.3.5 End of Simulation

In addition to the monitoring sub-phases added to the elaboration process, and the Kernel routine
added to the SystemC kernel scheduler, we are also obliged to add a phase during another callback
of SystemC. For the monitoring process to be performed properly, the monitoring routine must be
executed once after the simulation has ended. Fortunately, SystemC provides a mechanism for
this purpose - the end_of_simulation() callback. As illustrated in Figure 6.5, this callback is
performed after the call to sc_stop().

Despite the fact that the data are normally processed by the kernel routine that performs
the monitoring, a set of data, which was not handled by the monitoring mechanism, remains to
be monitored at the end of the simulation. We must, therefore, process these data manually.
Indeed, for this last set of data, we need to perform the work of the kernel routine during the
end_of_simulation() callback of SystemC.

6.4 Conclusion

The monitoring of multi-disciplinary systems represents a key aspect of virtual prototyping of
heterogeneous systems. In the context of the solution we propose, the primary challenge lies in
handling both digital (SystemC) and multi-disciplinary (SystemC MDVP) components. In this
chapter, we introduced our monitoring mechanism conceived with a view to achieve this goal.

We take advantage of everything SystemC has to offer in order to perform the monitoring of
SystemC components without altering the DE simulation kernel. This leads us to the design of a
mechanism involving a SystemC monitor handler in charge of all the SystemC components. We
used the notification mechanism available within SystemC to be alerted when a value change
occurs on a monitored signal. It gives us access to the value thus allowing us to probe SystemC
components easily.

To perform the monitoring of SystemC MDVP components we exploit the pattern of signal/slot,
commonly used in QT-based applications. This pattern allows us to decouple the sender from the
receiver and, hence, does not require that we hard-wire the probing mechanism with the modeled
system. MoC-specific monitor slots are created in order to handle MoC-specific values. These
monitor slots are abstracted within the kernel the same way MoCs are. As we have shown, this
approach allows us to remain completely generic within the kernel while being able to retrieve
specific, relevant information from the system. Monitor slots are handled through a monitor
handler. The infrastructure of these monitor objects relies on the cluster hierarchy built during
the elaboration phase. Eventually, the data structures and mechanisms presented are used within
a kernel routine, which is defined as a SystemC process that performs the monitoring of an entire
multi-disciplinary system.
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Our approach to accomplish the monitoring of multi-disciplinary systems respects the objectives
of SystemC MDVP; it does not alter the flexibility and genericity of our virtual prototyping
environment. Moreover, we are able to provide the end-user with a single, unique and common
interface to monitor components belonging to digital or analog domains.

Figure 6.8 illustrates the results that can be obtained by using the SystemC MDVP monitoring
mechanism. This figure denotes the simulation traces of the running example of the vibration
sensor for the Sensor X. It corresponds to the monitoring specification described in Listing 6.1.
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Figure 6.8: Running Example: Simulation Traces for the Sensor X of the vibration sensor
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Chapter 7. New MoC Integration Methodology

7.1 Introduction

One of the most important challenge we want to tackle is to provide a flexible virtual proto-
typing environment, which can increase the set of heterogeneous entities it can handle. Within
SystemC MDVP framework, heterogeneous entities are represented through Models of Com-
putation, thus the scalability relies on the possibility to add new MoCs within the simulator.
Our framework is designed to be independent from the MoC definition, which allows an easy
integration process of new Models of Computation. The design of new Models of Computation
is done by a MoC architect, as introduced in Chapter 4. He needs to follow a methodology to
perform the flawless integration of its new entity.

This chapter presents the methodology step-by-step that a MoC architect should follow in
order to enrich SystemC MDVP with a new MoC and is organized as follows.

First, in Section 7.2 we follow a general approach introducing the main steps constituting the
integration methodology. These steps are referenced as the Interfacing Step, the Implementation
Step and the Interaction Step. These steps allow for a smooth integration process.

Then, in Section 7.3 we provide an example of integration of a new MoC. We apply our
methodology in order to define a fluidic MoC: Smoothed Particle Hydrodynamics (SPH). The
integration of this MoC illustrates the easiness of enhancing our virtual prototyping environment
with new MoCs.

Finally, Section 7.4 concludes this chapter and provides an overview of the MoC integration
methodology within SystemC MDVP.

7.2 New MoC integration methodology

The methodology to design and integrate a new MoC within SystemC MDVP is articulated
around three main steps. The methodology defined by these three steps should be respected by a
MoC architect in order to easily and conveniently manage the design and the integration of his
new MoC within our framework. This approach only defines a pathway that we believe is the best
to enrich our framework with new MoC. The MoC integration process and the steps associated
with our methodology are described in Figure 7.1.

The first step is called the Interfacing Step. During this step the MoC Architect perform
the mandatory tasks required in order for his MoC to be handled by SystemC MDVP. Indeed,
SystemC MDVP relies on an abstraction of MoCs therefore he has to respect this abstraction
while defining his MoC.

The second step is called Implementation Step. During this step the MoC Architect performs
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Figure 7.1: MoC Integration Process

all the internal tasks of his MoC without interacting with SystemC MDVP. He implements the
internal structure of his MoC. He defines the basic blocks, the behavior, the communication
mechanisms, and the solver of his MoC.

The third step is called Interaction Step. During this step the MoC Architect performs the
tasks required in order for his MoC to interact with others MoCs within the SystemC MDVP
environment. He has to define the master-slave semantics that his MoC has to follow.

These steps define the integration methodology, and hence the process a MoC Architect
should go through in order to design and integrate a new Model of Computation within the
SystemC MDVP framework. In the following of this section we detail these different steps by
integrating a new MoC X.

7.2.1 Interfacing Step

The Interfacing step represents the phase when a new Model of Computation is plugged in within
SystemC MDVP. As previously mentioned, SystemC MDVP relies on an abstraction of MoCs to
handle the different MoCs provided with the framework. Thanks to this abstraction our framework
is able to automatically handle the MoCs and apply generic algorithm to them. In order to respect
this abstraction a pretty simple process based on inheritance concept has to be followed. It is
required that the MoC Architect extend the set of basic classes used to abstract a MoC by the
kernel (presented in Figure 5.1).

Figure 7.2 illustrates the inheritance pattern required to define the behavior interface of a new
MoC. First, the MoC Architect has to provide a class scm_mocX::scm_moc_info to encompass
all the generic information regarding his MoC ( 1 ). This class inherits from the kernel class
scm_core::scm_moc_info. Second, he has to provide a class scm_mocX::scm_moc_if to define
his MoC’s interface ( 2 ). This class inherits from the class scm_core::scm_moc_if.

Now based on the scm_mocX::scm_moc_if and the scm_mocX::scm_moc_info classes he can
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Figure 7.2: Inheritance pattern to define behavior of a new MoC.

define a basic elementary behavior. The MoC Architec has to define a class scm_mocX::scm_module
to represent an elementary behavior of his MoC ( 3 ). This class inherits from the kernel class
scm_core::scm_module in order to respect the abstraction. It also inherits from the class
scm_mocX::scm_moc_if since it has to respect the interface of its own MoC. The kernel of
simulation needs that this class also inherits from the class scm_mocX::scm_moc_info. This last
inheritance is required in order to automatically register the MoC within SystemC MDVP when
an elementary block is instantiated. The implementation details of the elementary behavior are
not required, one can define several basic blocks; we required at least one module.

Finally, he has to define a class scm_mocX::scm_solver to represent the solver of his MoC
( 4 ). This class inherits from the kernel class scm_core::scm_solver.

MoC X
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scm_interface
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Figure 7.3: Inheritance pattern to define communication channel of a new MoC.

The same process is applied to specify the signals defined within a new MoC and is illustrated
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in Figure 7.3.

First the MoC Architect has to provide a class scm_mocX::scm_prim_channel to repre-
sent the basic behavior of his channels ( 1 ). This class inherits from the kernel core class
scm_core::scm_prim_channel. Usually, the signals transport data where their type is represented
by a template parameter. One cannot manipulate such an object without knowing the value
of the template parameter. Thus, this basic class allows for the manipulation of the signals of
the new MoC by the SystemC MDVP kernel and by the MoC Architect without requiring the
specification of a template parameter. Hence, it maintains the flexibility of our virtual prototyping
environment.

Then, he has to provide a communication interface to define the way to access to a signal. The
purpose of these communication interfaces is to be used by a port in order to communicate with a
signal. This is achieved through the definition of the class scm_mocX::scm_interface ( 2 ). One
can define as many communication interfaces as he wants, we require at least one communication
interface. These interfaces must inherit from the kernel classes’ scm_core::scm_interface and
scm_core::scm_prim_channel.

Eventually, he defines the signals used as communication channel within his MoC. Thus, he
provides a class scm_mocX::scm_channel ( 3 ). This channel inherits from the above mentioned
communication interface. Like the communication interfaces, one can define as many channels as
he wants, we do not define restriction for the channels.

MoC X
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Figure 7.4: Inheritance pattern to define composition mechanism of a new MoC.

Once again, the same principles apply for the ports defined within a new MoC as illustrated
in Figure 7.4.

First the MoC Architect has to provide a class scm_mocX::scm_port_base to represent the basic
behavior of his ports ( 1 ). This class inherits from the kernel core class scm_core::scm_port_base.
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Usually, the ports, as the signals, handle data where their type is represented by a template
parameter. As aforementioned, one cannot directly manipulate such objects without knowing
the template parameter value. Thus, this basic class allows for the manipulation of the ports of
the new MoC by the SystemC MDVP kernel and by the MoC Architect without requiring the
specification of a template parameter. Hence, it maintains the flexibility of our virtual prototyping
environment.

Now he has to define the basic class of all the ports of his MoC. This is done through the class
scm_mocX::scm_port<IF,T> ( 2 ) that inherits from the kernel class scm_core::scm_port<IF>.
It also inherits from the class scm_mocX::scm_port_base in order for the ports to be manipulated
by the kernel using the basic class defined.

Eventually, he defines the ports provided to the SoC architect (the end-user). They are
represented by the classes scm_mocX::scm_in and scm_mocX::scm_out ( 3 ). One can define as
many ports as he wants as long as they inherit from the class scm_mocX::scm_port<IF>. In
addition of this inheritance, they also have to implement a specific communication interface
(presented in Figure 7.3) in order to interact with the channels defined within the new MoC
(mocX_in_if and mocX_out_if as an example).

MoC X

scm_core::
scm_monitor_slot

scm_mocX::
scm_monitor_slot

SC MDVP

Figure 7.5: Inheritance pattern to define monitoring of a new MoC.

Following the same inheritance principle the MoC Architect can define the necessary class
required in order to perform the monitoring of channels associated with his MoC. This is shown
in Figure 7.5. He has to provide a single class scm_mocX::scm_monitor_slot that inherits from
scm_core::scm_monitor_slot to respect the monitoring abstraction required by the kernel
SystemC MDVP.

The classes presented during this integration step constitute the basic infrastructure of a new
MoC. Now one can go to the next step and specify the implementation details of a new MoC.
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7.2.2 Implementation Step

The Implementation step represents the phase when the internal details of the new Model of
Computation are specified. Since SystemC MDVP is designed in order to be independent from
the definition of MoCs, the MoC Architect is free to implement his MoC the way he wants.
SystemC MDVP only imposes that he implements the functions required by the abstraction of
MoCs it used.

He has to specify the behavior of his MoC, starting by the behavior associated with the basic
blocks of his MoC. It is up to him to provide a single object to represent the elementary behavior
of his MoC, leading to a basic block where the behavior may have to be defined by the SoC
architect. This is done, for example, in the TDF MoC implemented within SystemC AMS or
SystemC MDVP. The SoC architect has to specify and define himself the behavior associated
with each TDF module he exploits in his design.

Another approach is to provide to the SoC architect a set of predefined built-in modules, where
no characterization of the behavior is allowed. This is the case with the EN MoC for example.
With this MoC comes a set of primitive modules such as capacitor, resistor or voltage source. The
SoC architect is not allowed to specify the behavior associated with these primitives, he just
instantiates them in his design.

As with the module, the development of the signal MoC-specific implementation is not
restricted. The MoC architect can specify numerous communication interfaces, and signals if he
needs. In regards of the communication interfaces, he can specify an input interface to handle the
input from a port and an output interface to handle the output from a port. He can also adopt
another approach and choose to define a single inout interface for both input and output from a
port. In regards of communication channel, he can specify channels that behave like a pipe, a
buffer, a FIFO. It is completely up to the MoC architect, depending on the purpose of his MoC.

Once again, the same applies with the ports where the MoC architect is left free to define
all the ports he wants. However, logically he should provide ports for all the communication
interfaces he defined if he intends to communicate with them. He can define specific input and
output ports, or a single inout port for both input and output.

The implementation of the solving algorithm within the solver of the MoC is also completely
left up to the MoC architect. One understand that the implementation details are irrelevant from
the SystemC MDVP kernel viewpoint. Therefore, we provide the MoC architect with a good
flexibility in order to conceive its MoC.
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7.2.3 Interaction Step

The Interaction step represents the phase when the available interactions with the other MoCs,
i.e. the master-slave semantics, are specified. This step can be divided into two sub-processes:
the definition of interfaces to respect the master MoCs interface semantics, and the definition of
converter ports to exchange data with the master MoCs. We follow the approach presented earlier
that consists in inheritance principle in order to set up the interaction mechanism. In this section
we assume the definition of the TDF MoC that follows the previous steps and the new MoC X is
positioned as a slave of the TDF MoC.

SC MDVP

MoC X

scm_mocX::
scm_tdf_solver

scm_core::
scm_moc_if

scm_core::
scm_solver

scm_tdf::
scm_moc_if

scm_mocX::
scm_de_solver

scm_de::
scm_moc_if DE

TDF

1 2

Figure 7.6: Inheritance pattern to define an interface solver within a new MoC.

Figure 7.6 represents the inheritance pattern that needs to be fulfilled in order to define a
specific interface dedicated to each specific master MoC. In order to communicate with the TDF
MoC the MoC X has to provide an interface that respects the TDF semantics. These semantics
are defined within the MoC interface of TDF in the class scm_tdf::scm_moc_if. Therefore, a
class scm_mocX::scm_tdf_solver which inherits from the TDF MoC interface ( 1 ) is defined.
This approach guarantees that the master will be able to apprehend the slave MoC as one of
its own components since all the functionalities it expects to find are provided. This interface
dedicated to the master MoC represents a solver which respects the semantics of the master. As a
solver, it has to inherit from the basic class scm_core::scm_solver.

In order to communicate with the DE MoC the MoC Architect should follow the same
approach as for the communication with TDF. The notion of MoC interface is only defined within
SystemC MDVP, and hence, SystemC does not define a MoC interface for its DE MoC. This is
why the SystemC MDVP environment provides within its kernel a MoC interface for the MoC
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DE. Therefore, a class scm_mocX::scm_de_solver which inherits from the DE MoC interface
( 2 ) can be defined. Exactly like the definition of the interface for TDF, this interface dedicated
to DE represents a solver and, as such, has to inherit from the basic solver class.

More generally, a new slave MoC which desires to communicate with a master MoC must provide
a scm_slave::scm_master_moc_if class that inherits from the class scm_master::scm_moc_if
that defines the MoC interface of the master MoC . The MoC architect has to provide an interface
for each master MoC he wants to communicate with.

Within these interfaces, the synchronization between MoCs is accomplished. It is left up to the
MoC Architect to decide if each interface represents a specific solver, or if it represents an interface
to manipulate an internal solver (which can be defined during the implementation phase). He
can define a dedicated solver for each master MoC he wants to communicate with. While this
approach may be necessary when interacting with MoCs that require a specific synchronization
mechanism, we believe that an approach based on an internal solver represents a better solution
when possible. Indeed, such approach centralizes the solving algorithm and eases the maintenance
of the solver. It also allows for the decoupling of the synchronization from the resolution algorithm
which is less error-prone.
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Figure 7.7: Inheritance pattern to define converter ports within a new MoC.

The second sub-process consists in defining the converter ports dedicated to each master MoC
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the MoC Architect wants to communicate with and is illustrated in Figure 7.7. A converter port
represents a port located at the border between two MoCs. Each MoC situated at this border
should see the converter port as one of its regular port. Therefore, the converter port must express
functionalities and semantics from both MoCs.

To this aim, the MoC Architect has to provide a class scm_mocX::scm_tdf_port<IF> that
inherits from the class scm_mocX::scm_port_base ( 1 ). This guarantees that the functionalities
and semantics present in his regular MoC’s port are present in the converter port. In addition,
he also has to inherit from the class scm_tdf::scm_port<IF> ( 2 ). This guarantees that the
functionalities and semantics present in the regular master MoC’s ports are present in the slave
converter ports. The class scm_mocX::scm_tdf_port<IF> represents the basic class for all the
converter ports dedicated to the communication with the master MoC TDF.

From now on, the MoC Architect can apply the same approach as for the definition of
regular ports. The converter ports are represented by the classes scm_mocX::scm_tdf::scm_in
and scm_mocX::scm_tdf::scm_out ( 3 ). He can define as many converter ports dedicated
to the communication with TDF as he wants as long as they inherit from the class
scm_mocX::scm_tdf_port<IF>. In addition of this inheritance, like regular ports, they also
have to implement a specific communication interface in order to interact with communication
channels. Thus, in order to communicate with a master communication channel, a converter port
has to implement a master communication interface defined in the master MoC.

The methodology to follow in order to define converter ports dedicated to the communication
with DE is quite similar to the one described but the new MoC X does not have to inherit from
a port base class from the DE MoC. Indeed, the MoC Architect simply has to follow the same
process that for the definition of regular ports except that he has to respect a communication
interface belonging to SystemC. Therefore he defines two classes scm_mocX::scm_de::scm_in and
scm_mocX::scm_de::scm_out ( 4 ) that represent input and output converter ports to DE. They
respectively implement the interfaces scm_signal_in_if and scm_signal_inout_if provided by
SystemC.

This approach allows the master MoC to see a converter port as one of its regular port. This
way, the MoC X can exchange data seamlessly with a master MoC.

7.3 Application to SPH MoC

In order to support and verify the principles and mechanisms proposed within our framework,
SystemC MDVP, we need a set of several Models of Computation to extend the simulation
environment. Within this thesis, the development of a MoC that allows the description of
fluidic networks has been achieved using the Smoothed Particle Hydrodynamics (SPH) theory
[75, 76, 77, 78]. The choice to develop a fluidic MoC based on the SPH theory relies on the needs
of the European Project Heterogeneous Inception in which this thesis is performed.
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SPH is of substantial interest since it can simply take geometry, spatial derivatives and
convincing fluidic behaviors into account. Hence it can provide a methodology which allows a user
to compose and simulate a fluidic system without paying the price for a thorough finite elements
description.

7.3.1 Interfacing Step

In essence, the SPH Model of Computation which is integrated into SystemC MDVP essentially
mimics the primitive principles of the LSF (Linear Signal Flow) MoC from SystemC AMS. The
aim of this approach is to provide predefined fluidic components to the end-user.

Following the previously described methodology, we create all the classes required by the
SystemC MDVP framework. Since we want to provide to the SoC architect a set of predefined
primitives, we represent elementary behaviors through the definition of multiple classes. Figure 7.8
lists the current primitives available within the SPH MoC.
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Figure 7.8: SPH modeling primitives.

The definition of communication channels within the MoC SPH is not really relevant. Indeed,
our MoC does not use them in its intrinsic mechanism. Therefore, we only provide the basic
requirements to meet the framework expectations. Communication channel will only be used
by the SoC architect in order to link primitives altogether during the conception of the fluidic
network. The same approach is followed regarding the composition mechanism and the definition
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of SPH ports.

7.3.2 Implementation Step

In the SPH theory, the continuous fluid is replaced by a set of particles whose individual motion
is approximated and which, therefore, possess individual properties such as density, pressure,
velocity, etc. The particles move according to the governing conservation equations, i.e. a simplified
version of the Navier-Stokes equation, in which the convective acceleration term is not considered.

Ai(~ri) =
∑
j

Aj
mj

ρj
W (~ri − ~rj , h) (7.1)

The right hand side of Equation 7.1 represents the forces applied on a specific fluid particle.
These forces can be divided into two categories: Internal Forces (such as Pressure, Viscosity and
Surface Tension) and External Forces (Gravity, Magnetic Fields, etc.). All the forces involved in
the SPH algorithm are expressed as density forces. The solving algorithm at the very heart of SPH
aims at computing the forces applied on a particle i to find the acceleration and by integration
the position and velocity of this particle. Any SPH quantity (density, force) for a particle i can be
determined using Equation 7.2.

Ai(~ri) =
∑
j

Aj
mj

ρj
W (~ri − ~rj , h) (7.2)

In Equation 7.2 h represents the support radius (the distance of interaction of a particle
with others) and W represents the Smoothing Kernel, which is used to weight the approximated
implication of a particle j in the calculation of a quantity for particle i according to their Euclidean
distance. ~r represents the position of a particle. The support radius and the Smoothing Kernel are
illustrated in Figure 7.9.
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Figure 7.9: Smoothing Kernel and support radius in SPH.
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Applying Equation 7.2 to the density computation leads to Equation 7.3. The density of
particle i represents the density of the area covered by the smoothing length.

ρi(~ri) =
∑
j

mjW (~ri − ~rj , h) (7.3)

The generic Equation 7.2 is also used to compute forces, but it has to be slightly modified. For
instance, the modification needed to compute the pressure force while respecting the reciprocity
principle of Newton Law implies Equation 7.4.

~FPi(~ri) = −ρi
∑
j 6=i

mj(
Pi
ρi2

+
Pj
ρj2

)∇W (~ri − ~rj , h) (7.4)

To compute the pressure P, a modification of the perfect gas equation "Pi = k(ρi − ρ0)“ is
used, where ρ0 represents the rest density of the fluid described by the set of particles and ρi the
density computes at the position of the particle i. The integration of the rest density allows the
representation of repulsion and attraction processes. A low density leads to a negative pressure,
which induces on neighboring particles an attractive force. On the contrary, a high density causes
a positive pressure leading to a repulsive force.

Along with the viscosity force, we take into account the relative velocity between particle i
and its neighbors in Equation 7.5, where η represents the viscosity coefficient.

~FVi(~ri) =
∑
j 6=i

η
mj

ρj
(~vj − ~vi)∇2W (~ri − ~rj , h) (7.5)

The force associated to the surface tension needs to meet some requirements. This force acts
at the surface of the fluid and at the interface between two fluids, e.g. the interface between water
and air. Since this force makes sense only at the surface, only particles which limit this surface
should be affected. Several equations are used to achieve this purpose: Equation 7.6, Equation 7.7,
Equation 7.8 and Equation 7.9.

~Csi(~ri) =
∑
j 6=i

mj

ρj
W (~ri − ~rj , h) (7.6)

~ni = ∇Csi (7.7)

~Ki = −∇
2Csi
|~ni|

(7.8)
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~Fsi(~ri) = σ ~Ki ~ni = σ(∇2Csi)
~ni
|~ni|

(7.9)

Cs identifies the particles at the surface of the fluid. The gradient of this quantity for a particle
allows us to determine if it should be affected by the force. If the length of this gradient is greater
than some threshold (defined according to the fluid simulated) the particle should be affected by
the surface tension. The last force implied in the computation is the gravity, which is simply
defined as ~Fgi = ρi~gi.

With all the forces defined, we can compute the acceleration, in a straightforward way as
~ai =

∑ ~Fi
ρi
. Since we are using density forces, the division is performed on density and not mass.

From the solver viewpoint, SPH simulation is performed in four straightforward steps. The
first step does the computation of density (other quantities rely on the density value of each
particle). The second calculates the internal and external forces applied to each particle, and
the third uses Newton’s law to determine the acceleration. Finally, with an Euler, Leapfrog or
Verlet scheme [79], acceleration is integrated twice to give the new position of each particle. This
simulation loop is illustrated in Algorithm 7.1.

1 Function Simulation_loop()
2 Update_density_pressure();
3 Update_forces();
4 Update_acceleration();
5 Update_position_velocity();
6 end

Algorithm 7.1: SPH Simulation Loop.

To describe any micro-fluidic network appropriately, the SPH algorithm must also consider
the geometrical aspects. Every particle has to interact with the environment (pipe, tank, etc.),
and hence we need to take into account collisions of particles with these solid elements. Therefore,
we introduce an algorithm to detect when a particle is colliding with its container. In the current
implementation, we used an “a posteriori” detection mechanism, which means that the collision is
actually detected after it occurred. In the previously described Algorithm 7.1, after updating the
particle’s position, we check against the containers if a collision occurred and if so the particle is
moved and a correction on its velocity is applied according to the angle of the collision and the
restitution coefficient of the container.

To reduce the overall computational cost some optimization can be done. As all the quantities
related to a particle i depend on the quantities of the neighboring particles, a dynamically managed
grid can be used to contain sets of particles (all particles are stored into cells whose width is
twice the smoothing length). Thanks to this structure, the search for neighboring particles of a
particle i consists in looking only at the cells adjacent to the cell which contains the particle i
(maximum 9 cells in 2D and 27 cells in 3D). Second, referring to the third law of Newton, one
can directly take into account the implication of particle i to particle j when we evaluate the
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implication of particle j to particle i (reciprocity principle). This optimization is considered in the
Algorithm 7.1, a step before computing the density is added; it aims to distribute all the particles
inside the grid according to their specific positions.

To each geometric primitive matches a C++ constructor method that takes three sets of
parameters. The first set of parameters represents the geometric bounding box of the SPH
component (expressed as length, width and height). The second set of parameters defines the
amount of fluid that is already present in the geometric element when the simulation starts.
Finally, the last parameter allows for the specification of the orientation of a specific output
port of the primitive, opening the way to the building of any 3D topology of the fluidic network.
This solution greatly simplifies the connections of upstream and downstream elements and the
global design. Listing 7.1 shows a simple fluidic netlist composed of a tank, a pipe, two bent pipes
instances and a sink.

1 #include <sc_mdvp.h>
2 [...]
3 #include <sph.h>
4 int main(){
5 [...]
6 scm_sph::sph_tank t1(l=3000, w=3000, h=5000, hpipe=1000, Fluid(), OUT_EAST) ;
7 scm_sph::sph_pipe p1(l=10000, w=3000, h=1000, NULL) ;
8 scm_sph::sph_bentpipe bp1(l=2000, w=3000, h=1000, NULL, OUT_SOUTH) ;
9 scm_sph::sph_bentpipe bp2(l=2000, w=3000, h=1000, NULL, OUT_EAST) ;

10 scm_sph::sph_sink s1(l=3000, w=3000, h=5000, hpipe=1000, NULL) ;
11

12 scm_sph::sph_signal t1_p1;
13 scm_sph::sph_signal p1_bp1;
14 scm_sph::sph_signal bp1_bp2;
15 scm_sph::sph_signal bp2_s1;
16

17 t1.out(t1_p1);
18 p1.in(t1_p1);
19 p1.out(p1_bp1);
20 bp1.in(p1_bp1);
21 bp1.out(bp1_bp2);
22 bp2.in(bp1_bp2);
23 bp2.out(bp2_s1);
24 s1.in(bp2_s1)
25 [...]
26 }

Listing 7.1: Code snippet of SPH primitives composition

After the SPH netlist has been elaborated, the simulator elaboration phase converts the
individual geometric volumes associated to each SPH primitive into a global complex 3D volume
that will act as the SPH simulation envelope. All the SPH simulation process is performed in this
3D envelope.
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7.3.3 Interaction Step

Concerning the SPH MoC the interaction step is quite straightforward. We simply follow the
methodology in order to define a converter port to the TDF MoC as well as a MoC interface
compliant with the TDF MoC interface. Since the SPH MoC relies on pre-defined primitive
modules, we also define a primitive module which implements this port - the SPH-TDF transducer.

The SPH-TDF transducer can be used to detect the presence of specific particles in a given
volume, as illustrated in Figure 7.10. These particles are referenced, and a TDF-compatible scalar
value is generated according to the ratio of counted particles over the volume.

Sensor Area

TDF output

Figure 7.10: SPH – TDF transducer.

7.4 Conclusion

Multi-physical systems represent non homogeneous applications that involve several different
entities. In our approach to enable the virtual prototyping of multi-disciplinary systems we chose
to represent these different entities, involved in the systems’ conception, through the notion of
Model of Computation. Consequently, such virtual prototyping environment has to be flexible
in order to handle the possible MoCs. In this chapter we introduced the methodology a MoC
architect has to follow in order to enrich our framework with new Models of Computation. A
clear definition of a MoC by means of our MoC abstraction results in an easy, straightforward
integration process within our environment.

The integration methodology consists in three steps, leading to the definition and the integration
of a new MoC within SystemC MDVP. Based on inheritance mechanism, the first step called
Interfacing Step allows a MoC architect to define the basic of its MoC while respecting the
requirements of SystemC MDVP. Meeting the expectation of SystemC MDVP through the respect
of its MoC abstraction allows for the automatic handling of the new upcoming MoC by the
framework. This approach ensures the flexibility of our virtual prototyping environment.

The second step called Implementation Step allows a MoC architect to define the intrinsic of its
MoC. We illustrated that a simulation kernel that does not rely on the definition of MoCs allows
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a MoC architect to freely develop its MoC with as few constraints as possible. The definition of
elementary behavior, communication channel, composition mechanism and solving algorithm are
completely left up to the MoC architect without dependencies on SystemC MDVP(except for the
MoC abstraction). Again, this enhances the flexibility of our framework.

Eventually, the last step, called Interaction Step, allows a MoC architect to define the
interaction with other MoCs he considers. He defines the master-slave semantics that its MoC
will follow, i.e. all the authorized interactions. The definition of these interactions also relies on
inheritance mechanism and leverages the MoC abstraction defined by SystemC MDVP. This
approach allows for the automatic handling of interaction between MoCs, and hence contributes
to the flexibility of SystemC MDVP.

To support this methodology we presented a new Model of Computation - Smoothed Particle
Hydrodynamics (SPH). SPH allows for the description of fluidic network. The principle is to
replace a continuous fluid by a set of interacting particles. We followed the three steps in order
to integrate the SPH MoC within SystemC MDVP. The singularities of this MoC illustrate the
flexibility of our framework that we claimed. Indeed, this MoC does not make use of ports or
channels in its intrinsic mechanism and it represents a 3D oriented-systems based on predefined
primitives and yet the integration process within SystemC MDVP is straightforward. The complete
inheritance diagram of the MoC SPH is described in Figure 7.11.

The integration methodology that we presented tackles the challenge of providing a flexible
virtual prototyping environment. It easily allows for the increase of the set of heterogeneous
entities, and hence opens the way to the integration of MoCs associated with different physical
domains.
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8.1 Introduction

In the previous chapters we introduced our virtual prototyping environment SystemC MDVP: the
principles on which it relies and the implementation details that support these principles. This
chapter, in turn, introduces case studies which aim to illustrate the possibilities offered by our
framework. We present application examples supported by our virtual prototyping environment.

In Section 8.2, the first case study dedicated to the Model of Computation (MoC) Smoothed
Particle Hydrodynamics (SPH) is presented. It involves the conception of a fluidic network that
aims to represent the fluidic component of a point-of-care blood analysis system. The simulation
and the results are compared between several solutions.

In Section 8.3, a second case study is introduced. This case study describes a Radio Frequency
Identification (RFID) device - more precisely a passive RFID reading system. This case study
aims to illustrate the interactions between several MoCs within SystemC MDVP.

Eventually, Section 8.4 closes this chapter and brings an overview of the presented case studies.

8.2 Application Based on SPH

8.2.1 Case Study Description

One of the proof-of-concept multi-domain applications that are modeled in the European project
H-Inception is a prototype of a point-of-care blood analysis system which includes a micro-fluidic
subsystem. The analysis procedure is controlled by a micro-controller which activates pistons
and valves in order to move and mix the blood samples with several reagents that imply several
biochemical processes. The final biochemical reaction is electrically monitored with an AMS
device, digitally converted and sent back for characterization. In order to evaluate the proposed
modeling schemes, a real prototype is tested and its timing behavior is compared against several
approaches: Poiseuille Fluidic Networks (PFN) and Smoothed Particle Hydrodynamics (SPH).

The Hagen-Poiseuille law allows for the modeling of the behavior of a fluid within a container.
To do so, the system modeled has to meet few requirements: it must describe a steady laminar,
incompressible, Newtonian (constant viscosity) and quasi-unidirectional flow. The Hagen-Poiseuille
equation Equation 8.1 gives the pressure drop of such fluid through a container traversal.

Q =
∆p

Rh
(8.1)

This equation describes the volumetric flow rate Q (in microliter/second for instance) as a
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linear variation with the gradient of pressure ∆p (pressure drop). Rh represents the hydraulic
resistance, its definition varies depending on the shape of the container (rectangular, cylindrical,
etc.). It takes into account the length, the radius and the diameter of the container. It also relies
on the velocity and the viscosity of the fluid.

Equation 8.1 is a simple linear equation that fits quite well the purpose of modeling micro-fluidic
behavior. Indeed, if this equation if applied on system described with container’s diameter above a
threshold the fluid becomes turbulent and the pressure drop is no longer accurate.

Equation 8.1 represents the hydraulic equivalent of the Ohm’s law in electrical circuit with the
pressure acting as the voltage and the volumetric flow rates acting as the current. Therefore, the
behavior of a fluid described with the Hagen-Poiseuille law can be described using the Ohm’s
law using the same algebraic equations and solving methods that are used in electrical linear
networks (which apply the Kirchhoff equations). This is the approach followed in the PFN MoC.
It is implemented using the TDF and ELN MoCs from SystemC AMS.

Moreover, in addition of the PFN and SPH simulation results we also do a comparison with
results provided by a typical Finite Element Method (FEM) simulation framework. This work was
the subject of a journal paper [80] and the following of this section is mainly derived from this
paper.

The real prototype was designed to include five different ports which can be used as inlets or
outlets, and two micro-chambers. This configuration is frequently used for diagnostic applications,
using the first micro-chamber for sample concentration, mixing and purification. The second
chamber usually includes electrodes or micro-sensors to finally detect molecules of interest.

The micro-fluidic real prototype was made of COP by lamination techniques. First, two 188
mm thick sheets were first structured by a cutting-blade to obtain the desired configuration of
micro-channels and micro-chambers. Another two COP layers were then structured, one to be
used as bottom layer and the other with included holes at the port locations to be used as inlets
and outlets. Layers were aligned and bonded together using Pressure Sensitive Adhesives (PSA).

Chamber 1 Chamber 2

1 2 3 4 5 6

Figure 8.1: Micro-fluidic Network.

Figure 8.1 represents the fluidic network modeled in this case study. In order to perform
timing behavior analysis on the simulated model we choose six position of interest (represented by
1 , 2 , 3 , 4 , 5 and 6 ). The fluid is injected in the left entry point ( 1 ) and collected in the
right exit point ( 6 ). The time required by the fluid to reach each point of the model is registered,
and then compared between the different approaches under different physical conditions.

Next, different experiments and comparison results are broken down.
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8.2.2 Results

The results presented in this section represent comparison of the different approaches (PFN and
SPH) against the experimental results obtained from the real prototype. These comparisons are
performed under different physical conditions. First we experiment at a constant flow, second we
change the pressure and finally we modify the viscosity. The idea is to inject a fluid within the
system and to observe when the injected fluid completely replaced the fluid initially present in the
network. A final comparison is provided against a FEM model.
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Figure 8.2: SPH micro-fluidic chip.

Figure 8.2 shows the schematic representation of the fluidic network presented in Figure 8.1
using the predefined primitives from the SPH MoC.
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Figure 8.2 presents the SPH representation of the fluidic network of Figure 8.2, at various
simulation stages. A complementary tank has been connected to the entry point 1 in order to
realize the different experiences presented here. The system is initially filled with red particles,
then white particles are injected in the left entry point. We can observe the progression of the
white particles along the fluidic network until they completely replaced the red particles.

SPH is intrinsically very sensitive to simulation parameters. Therefore, a strong process of
tuning was carried out in order to match the simulation results with real experiments.

3D visualization is obtained by means of a classic C++ OpenGL rendering engine which represents
fluidic primitives either as parallelepiped-shape structures (Cartesian coordinates) or spheres and
cylinders (Spherical coordinates). The camera and look at 3D points can be modified by the
end-user to identify in the 3D fluidic network a region of interest and to be able to zoom on it.

8.2.2.1 Constant rate

In order to impose a constant liquid flow to the real prototype micro-fluidic network, we pushed
the plunger of the syringe placed at the inlet (Figure 8.1, 1 ) at a constant speed. The experiment
was carried with water at a flow rate of 0.014 ml/min. To visualize the progression of the fluid
within the fluidic network we inserted a mixture of Rhodamine B with water in the system which
is characterized by a specific blue color. First, the fluidic network was completely filled with water,
then the Rhodamine B was injected, and the advance of the characteristic blue color was optically
observed by a microscope.

The times at which the Rhodamine B reached the different fluidic ports are shown in Figure 8.3,
and they are compared with the results obtained by the simulation.
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Figure 8.3: Experimental, PFN and SPH results for constant flow.

The PFN simulation matches the experimental results with a lot of accuracy. In the SPH
simulation, maintaining a constant flow of particles with a constant pressure at the input of the
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fluidic network is hard to obtain in practice. Even, with a timing difference between SPH and the
experimental results, we can see a global behavior of the fluid within the SPH simulation that
follows the experimental fluid behavior. Nevertheless, the PFN and SPH results coincide in an
acceptable way.

8.2.2.2 Different pressures

We are interested in observing the behavior of a fluid when it is subject to different pressure. In
order to impose and modify the pressure within the real prototype we used an external pressure
source, represented by a tank. The difference in height between the tank level and the outlet
allows for the specification of a pressure at the input of the fluidic network. Two different heights
were used to check the simulation results, resulting on an experience with a pressure of 200Pa

and another one with a pressure of 400Pa.

As for the first experience at constant flow, we used a tank filled with a mix of Rhodamine B
and water to visualize the flow within the network. Once the micro-fluidic network was filled with
water, the tank filled with a mixture of water and Rhodamine B was connected, and the flow of
the colored liquid was observed by a microscope.

As a result, the elapsed times obtained to reach the different ports were experimentally
obtained. Results are shown in Figure 8.4 and Figure 8.5, and compared with simulation results.
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Figure 8.4: Experimental, PFN and SPH results
for pressure at 200 Pa.
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Figure 8.5: Experimental, PFN and SPH results
for pressure at 400 Pa.

Again, the PFN simulation is very accurate, matching with the experimental results both at
200Pa and at 400Pa. The SPH simulation is clearly less accurate and the difficulties highlighted
during the first experience are still present during these experiences. However, we can nevertheless
notice that the SPH simulation behaves qualitatively. The modification of pressure from 200Pa to
400Pa leads to increase the speed of the fluid within the network for both experimental and SPH.
The experimental fluid is approximatively 33% faster when the pressure is augmented, and the
SPH fluid is approximatively 40% faster. It keeps in the order of magnitude of experiments and it
keeps the global behavior following the experimental one.
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8.2.2.3 Different viscosities

We are now interested in observing the behavior of a fluid when it is subject to different viscosity.
We used methanol instead of water within the real prototype in order to perform an experience
with a different viscosity (590 Pa s). We used the same experiment condition from the previous
experience except that we do not want to vary the pressure this time. Consequently, the experience
was done in 400Pa only.

In order to visualize the fluid we used Rhodamine B in the previous experiences, this time we
switch to Erythrosin B. We change the coloring solution since the Erythrosin B dissolves much
better in methanol than Rhodamine B. Results can be observed in Figure 8.6, and compared with
the results obtained by simulation.
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Figure 8.6: Experimental, PFN and SPH results for Methanol at 400 Pa.

PFN results were very accurate although they were not as accurate as in previous experiences.
A maximum discrepancy of 9% was observed for methanol at the fifth micro fluidic observing
point. The SPH results still express the same difficulties to be extremely accurate, but once again
the global behavior of the fluid follows the behavior of the experimental fluid.

The SPH MoC is very sensitive to the simulation parameters and can be tricky to correctly
tune. The results obtained during these experiences can be explained by the difficulties to perfectly
tune all the parameters of the SPH MoC. The model itself can justify in part the results, the
particle model suffers from a small compression issue that can have an incidence on the results.
Finally, in SPH the environment is taken into account, and hence there are interactions with the
containers defining the fluidic network. The collision handling defined within the SPH MoC can
also explain in part the results obtained.
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8.2.2.4 Performance comparison with FEM

We have performed comparison between models simulated against experimental results obtained
on a real prototype in order to highlight the acceptable accuracy we are able to reach with a
virtual prototyping environment. We now, want to compare the performance of our tools against
an existing solution.

Therefore, we compare the performance between the approach that uses SystemC AMS (the
PFN), the approach that uses SystemC MDVP (SPH) and another approach that relies on FEM
implementation (ANSYS CFX [81]).

Table 8.1: Modeling and Simulation times.

Tool Modeling Time (s) Simulation Time (s)
ANCYS CFX 2700 1800

PFN 600 10
SPH 650 30

Table 8.1 contains the modeling and simulation times for each approach studied here. The
modeling time represents an estimation of the time required by a SoC Architect to design the
presented micro-fluidic network following each of the approach. The simulation time represents the
time the tools take to perform the simulation (once the system described, this is pure runtime).
The presented data are rounded since they only express an order of magnitude.

In regards of the modeling time, both approaches relying on SystemC AMS and
SystemC MDVP are clearly faster than the approach based on FEM (five times faster). The
difference between the SystemC AMS and SystemC MDVP approach is not relevant, and hence
are considered similar.

In regards of the simulation time, the difference between the FEM approach and those based on
SystemC AMS and SystemC MDVP is even bigger. The approach that relies on SystemC AMS
is one hundred and eighty times faster than the FEM approach, while the approach based
on SystemC MDVP is sixty times faster. Such a difference between the SystemC AMS and
SystemC MDVP approaches can be explain in part by the fact that the SPH simulation provides
a 3D rendering of the system during the whole simulation.

8.3 Application based on RFID

8.3.1 Case Study Description

We present a complete case study that aims to validate the modeling and simulation principles
developed previously. The interest of this case study lies in the fact that it involves three
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distinct Models of Computation: Discrete Event (DE), Timed Data Flow (TDF) and Electrical
Network (EN) and it is both simple and realistic. Moreover, a physical implementation, from
which real measures can be extracted, is available. This allows us to compare the monitored
simulation values with real values.

8.3.1.1 A Passive RFID reading system

In the RFID domain there exists several different technology to construct a RFID system. These
designs are usually classified as active or passive [82, 83]. A standard RFID reading system is
composed of two parts:

• A tag also named transponder, which carries a unique identification marker composed of 8
bytes.

• A tag reading interface, also named reader or transceiver.

An active RFID tag has an on-board battery and transmits its identification marker periodically,
its local power source allows it to operate at long distance from a RFID reader. A passive RFID
tag has no on-board battery and hence, relies on the reader to provide power supply. There also
exists an in-the-middle approach where the system is described as a battery-assisted passive RFID
tag.

In this case study we focus on a passive RFID reading system as described in Figure 8.7.
The transceiver temporarily supplies the tag with electric energy thanks to the radio energy it
transmits. Then, it serially reads the tag identification markers.

Transponder Transceiver

read

energy

Figure 8.7: A passive RFID system.

The transceiver and the transponder work together as a contactless, wireless and coupled
electromagnetic communication system. Both parts operate at a low frequency (125 KHz) and
contain an inductor (a coil). When the transceiver primary coil and the transponder secondary
coil are physically near (1 to 5 centimeters), they act as a transformer (except that there is no iron
core but thin air between coils). These coils are tightly tuned to maximize the global resonance
factor of the system.

The transceiver generates an oscillating electromagnetic field that momentarily provides energy
to the transponder, allowing the tag to power up and its digital subsystem to emit the serial
tag value. The great idea behind RFID is that the transponder uses the bitstream tag value
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to modulate the transformer characteristics requesting more or less power from the transceiver
according to the transmitted bit. In other terms, when the transponder needs to send a logic value
’0’, it modifies its power supply line to get more power from the transceiver. Consequently, on the
transceiver side a noticeable voltage drop is observed, it can then be used in an aim to distinguish
the logical values transmitted, and hence reconstruct the tag bitstream.

8.3.1.2 Detailed Principles

The real circuit, modeled in the case study, has been designed and sized by Francis Bras from
UPMC. It is used in many Electrical Engineering and Computer Sciences courses, especially with
problem-based curricula. A simple representation of the circuit is depicted in Figure 8.8.
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Figure 8.8: Simple representation of the RFID system modeled.

The key point of the presented RFID system lies in the transformer which is composed of the
coil LR (on the transceiver side) and the coil LT (on the transponder side). The distance between
the two coils physically modifies the mutual induction factor K(x). On the Figure 8.8 LR and CR
constitute a 125 KHz sine oscillator that is triggered by the digital transmission subsystem.

8.3.1.3 Modeling of the RFID system

We present in Figure 8.9 a detailed representation of the electrical circuit that constitutes the
transceiver. The system modeled in this case study follows this representation of the electrical
circuit; the parameters values of each electrical component are presented in Table 8.2.

Table 8.2: Parameters values associated with the circuit shown in Figure 8.9.

LR CR C1 C2 C3 RLR
R1 R2 R3 R4 R5

1.5mH 1.6nF 270pF 47pF 8nF 39Ω 15kΩ 230kΩ 47kΩ 1MΩ 1MΩ

Figure 8.10 depicts a detailed representation of the electrical circuit that constitutes the
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Figure 8.9: Detailed representation of the RFID transceiver modeled.

transponder and the parameter values of each electrical component are introduced in Table 8.3

Table 8.3: Parameters values associated with the circuit shown in Figure 8.10.

LT CT CP RC RP
0.5mH 1.5nF 1nF 100Ω 10kΩ

While we previously only detailed the electrical circuit modeled using the EN MoC, the RFID
system is modeled using three different MoCs. Figure 8.11 describes the model representation of
the whole passive RFID reading system, including details about the components modeled using
other MoCs. It includes the components modeled with the TDF and the DE MoCs. The details of
all the components involved in the model of the RFID system are given below.

The transceiver is designed with a transmission chain and a reception chain connected to
the primary coil LR. The transceiver’s transmission chain is composed of a generator, GEN,
(Figure 8.9 1 ) described with the EN MoC.

The transceiver’s reception circuit corresponds to an amplitude demodulator that aims to
retrieve the information transmitted by the transponder. The demodulation chain is composed of
an envelope detector (Figure 8.9 2 ), an envelope filter (Figure 8.9 3 ) and an envelope center
(Figure 8.9 4 ). The envelope detector, DETECT, aims to straighten the signal received, then
removing its negative component as well as the carrier that supported the information transmitted.
The envelope detector provides the envelope of the signal transmitted. Then this envelope goes
through the envelope filter, FILT, which consists of a low pass filter, and the envelope center,
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Figure 8.10: Detailed representation of the RFID transponder modeled.

CENT, which consists of a high pass filter. This is achieved in order to improve the signal received.
All the components presented in this reception chain are modeled thanks to the EN MoC.

In addition, there is a hysteresis comparator, HYST, modeled using the TDF MoC which
aims to identify the logical values associated with the signal received. A hysteresis comparator
represents a comparator with two thresholds - thH and thL. When the input value is higher
than the threshold thH the comparator output is high. When the input value is lower than the
threshold thL (lower than thH) the comparator output is low. When the input value is between
the two thresholds the output retains its current value. This approach means that in order to
change the output of the comparator the input value of the comparator must significantly change.
Consequently, this approach prevents undesired bit-flips and oscillations in the received bitstream
compared to a simple comparator.

Eventually, this circuit is controlled by a digital chain, CTRL, modeled by means of DE MoC;
it receives the values transmitted by the transponder after being through the reception chain.

In the transponder circuit we can highlight three major mechanisms connected to the secondary
coil LT : an emission chain, a clock detector and a power detector. The emission chain is modeled by
means of an analog-to-digital converter, EMITT , (TDF MoC) linked to an amplitude modulator,
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Figure 8.11: Model of the whole passive RFID reading system.

MOD, (Figure 8.10 1 ) modeled with the EN MoC.

In order to be supplied by the transceiver the transponder contains a power detector mechanism
composed of a power stage, POWS, (Figure 8.10 2 ), modeled with the EN MoC, and a hysteresis
comparator that acts as a power-up, POWU, modeled using the TDF MoC.

The clock detector mechanism is composed of a converter, CONV, (Figure 8.10 3 ) described
with the EN MoC and a hysteresis comparator, CLOCK, modeled with the TDF MoC.

Finally, there is a digital tag frame generator, TAG, modeled using the DE MoC. It uses the
clock (provided by the clock detector mechanism) and the energy (provided by the power detector
mechanism) in order to generate (through the emission mechanism) the tag identification marker
of the transponder.

8.3.2 Results

In order to test and verify our modeling of the passive RFID reading system in the SystemC MDVP
environment, we used as a reference a real physical prototype made by Francis Bras from UPMC.
This real physical prototype is shown in Figure 8.12. We present a front view of the RFID
transceiver system (Figure 8.12, a.) along with a full view of this transceiver (Figure 8.12, b.). We
observe the previously described primary coil connected to a few electronic components and test
points. The design of this transceiver corresponds to the detailed representation of the RFID
transceiver presented in Figure 8.9.
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We also present the transponder of the real physical prototype (Figure 8.12, c.). We observe
the secondary coil, previously described, connected to electronic components. The aforementioned
digital tag frame generator, is designed with an Arduino board which embeds an ATMEGA2560
processor.

a) Front view of the RFID
transceiver system

b) RFID transceiver system c) RFID transponder system

Figure 8.12: Existing physical RFID tag reader.

In order to verify the simulation results obtained using SystemC MDVP we collected infor-
mation on this physical prototype. We used a numerical oscillator to probe the RFID reading
system1. We probed six points in the RFID reading system; these six points are highlighted on
Figure 8.9 and Figure 8.10.

First, we probed the output of the tag generator to obtain the bitstream generated by the
transponder. Second, we probed the signal received on the transceiver side at various points in the
reception chain. We measured the modulated signal received (signal_mod), the envelope detected
(env), the envelope filtered (env_filter), the envelope centered (env_center) and eventually the
output of the comparator (comp_out).

Figure 8.13 presents the measures obtained at the six points of the system; only a section
of the tag transmitted is represented in order to keep the waveforms understandable. In the
first waveform we see the bitstream generated, followed by the modulated signal. We observe a
drop on the modulated signal when a logical ’1’ value is transmitted. We have in the following
waveforms the envelope detected, the envelope filtered and then the envelope centered. The
envelope represents the modulated signal where the carrier is removed, the envelope filtered and
centered depict a clearer representation of the transmitted information. Although the carrier is
still present in the detected envelope (strong oscillation on the high and low levels), we can start
to distinguish a pattern which represents the transmitted tag. Eventually, the last waveform

1We used a numerical oscillator Lecroix to probe the physical prototype.
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represents the output of the comparator, and therefore the information received by the transceiver.
We observe that this waveform maps the tag generated and represented in the first waveform.
We can conclude that the transceiver accurately received the exact bitstream generated by the
transponder.

Figure 8.14 presents a closer look on the measures obtained at the six points of the system.
This perspective shows the details of the data observed during a single milliseconds. It allows us to
apprehend the nature of the data and better observed the phenomenon involved in a RFID reading
system throughout the whole reception chain. We can easily observe the different variations that
occur along the different point in the system.

We then described the passive RFID reading system previously detailed within
SystemC MDVP. We followed the representation presented in Figure 8.9 and Figure 8.10 which
gives us the global representation illustrated in Figure 8.11. We monitored the same points as
with the real physical prototype using the monitoring mechanism provided by SystemC MDVP.
The monitoring mechanism is currently not supported within the EN MoC; we, therefore, inserted
TDF probes at key points in order to have access to the data of interest. TDF probes correspond
to converter modules that translate the information from the EN semantics to the TDF semantics.

The simulation results obtained are presented in Figure 8.15. The waveforms are presented in
the same order as with the measures on the physical prototype. We show in the first waveform the
bitstream generated, followed by the modulated signal. Then, comes the envelope detected, the
envelope filtered, and the envelope centered. Ultimately, we present the output of the comparator,
i.e. the information received by the transceiver. As with the measures presented above, we only
display a section of the tag transmitted.

In terms of behavior the virtual prototype is faithful to the behavior of the physical prototype.
We observe the same behavior when a logical ’1’ is transmitted, that is to say a drop on the
modulated signal. The envelope detected is pretty close to the reference measures. However, we
note that the signal is cleaner. In effect, within the virtual prototype we did not model potential
noises, which could occur with analog circuit, making the detection more efficient. We also should
mention an offset of 1.5 Volts, approximatively, in the simulation results compared to the reference
measures. This can be explained by the small differences in the model compared to the physical
system such as the use of a switch in the virtual model while a transistor is used in the physical
one, or the presence of an additional power source in the virtual prototype (which may introduce
a continuous components in the circuit).

The envelope filtered expresses the same characteristics as the envelope detected. It is faithful to
the behavior of the physical prototype, the signal is cleaner, and we also observe the aforementioned
1.5 Volts offset. In turn, the envelope centered is also faithful to the behavior of the physical
prototype. The continuous component previously observed is not present anymore and the signal
is align on zero as within the physical prototype. Finally, the output of the comparator, depicted
in the last waveform, matches the tag generated and presented in the first waveform.
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Figure 8.13: Measures on the physical prototype during the transmission of a tag marker.
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Figure 8.14: Closer look on the measures on the physical prototype during the transmission of a
tag marker.
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Figure 8.15: Simulation results for the transmission of a tag marker with the virtual RFID
prototype.
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Figure 8.16: Closer look on the simulation results for the transmission of a tag marker with the
virtual RFID prototype.

133



Chapter 8. Validation Case Studies

We can conclude that the simulation results match the experimental results measured on the
real physical RFID prototype in terms of behavior. In terms of timing analysis, we observe that
the time constant on the virtual and physical prototypes are the same. The time required to
transmit a tag marker is the same on both versions. As with the real physical prototype, a closer
look on the measures obtained during the simulation is provided in Figure 8.16.

The transaction time needed to transmit a tag identifier marker takes approximatively 35
milliseconds. In order to evaluate the performance of our virtual prototyping environment we
performed several simulations with different simulation parameters. We varied the timestep of the
simulation to observe the impact on the simulation. We chose several timesteps ranging from 1
microseconds to 100 microseconds. The impact of the variation of the timestep on the simulation
time is illustrated in Figure 8.17.
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Figure 8.17: Simulation time to emit a RFID tag depending of the simulation timestep.

In such a context, with the smallest timestep, it took us 6 minutes and 16 seconds to perform
35 milliseconds of simulation of the whole RFID system using SystemC MDVP. With such a
small timestep, we obtain quite accurate simulation results concerning the analog signals compared
with the real physical prototype; however, it heightens the simulation duration. If we choose a
bigger timestep, such as 100 microseconds, it took us only 6 seconds to perform 35 miliseconds of
simulation of the whole RFID system. With such a big timestep, the simulation results obtained
for the analog signals are not relevant while the digital values (generated tag and received tag)
remain correct.

We compared the analog data measured at different timesteps with the values obtained at the
smallest timestep. This analysis highlights that each sample, no matter the timestep, is close to
the corespondent sample obtained at 1 microseconds, i.e. the sample with the same timestamps,
with a similarity approaching 99%. Two conclusions can be drawn. Firstly, increasing the timestep
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only reduces the number of sample while keeping qualitative results. Secondly, the representation
of the analog signals becomes irrelevant since the waveforms do not express the analog behavior
anymore due to less sample.

We can conclude that these variations of timestep bring out the fact that SystemC MDVP
can fulfil the expectation of designers interested in the analog details as well as designers more
interested in the digital part.

If we take a look at the overhead induced by the monitoring, we observe that it is quite small.
Indeed, the monitoring increases the simulation by only 1.5%, as illustrated in Table 8.4. To
evaluate our monitoring mechanism we compared the overhead induced by the tracing mechanism
implemented within SystemC with our approach.

Table 8.4: Simulation time of the passive RFID reading system.

Simulation without monitoring 6m10.369s
Simulation with SystemC MDVP monitoring 6m16.569s
Simulation with SystemC monitoring 6m16.861s

We introduced DE probes at key points in order to have access to the relevant data. DE probes
represent converter modules that translate the information from the analog part to the digital
part. We observe no significant difference in the simulation time between both approaches. While
our monitoring mechanism impacts the simulation the same way the monitoring of SystemC does,
it has more to offer. With the same impact, we offer a single interface to perform the monitoring
of both analog and digital part, and it does not require the insertion of converter modules to
transform every signal in a DE one.

8.4 Conclusion

The purpose of this chapter was to illustrate the possibilities provided with our virtual prototyping
environment. First, we presented a case study describing a fluidic network. The conception of the
fluidic network was carried out by several approaches in a bid to stay as fair as possible. One
approach was based on SystemC AMS and a MoC called PFN that allows the description of a
fluidic network using an electrical equivalent circuit. The second approach was carried out on
SystemC MDVP and the SPH MoC. Both approaches were compared with experimental results
measured on a real prototype of the fluidic network.

The PFN modeling mechanism allows a simple description of the fluidic system. However, the
timing results obtained were very precise over several types of experiments. Moreover, simulation
approach demonstrated to be fast in terms of modeling and run time.

When it comes to the holistic modeling of a micro-fluidic system that takes into account the
exact geometry of the fluidic network, it appears that the SPH approach is fast enough to offer
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the end-user quite approximate results in a reasonable time, compatible with the key idea that
SystemC MDVP is mainly dedicated to the building of first order executable specifications that in
turn aim to develop the embedded software as soon as possible with a quite faithful representation
of all the hardware parts. As such, it is a good trade-off between the simpler (but quite accurate)
PFN scheme and FEM.

Furthermore, considering fluids as a set of particles, the SPH approach has a lot of potential
capabilities for the next steps in the emulation of a complex fluidic system. Processes like magnetic
trapping of polarized cells, fluidic mixing or counting specific particles could be managed quite
naturally.

Second, we introduced a complete case study to validate the modeling and simulation principles
carried out by our virtual prototyping environment SystemC MDVP. This case study consisted in
the modeling of a passive RFID reading system. A RFID system is composed of two subsystems -
a transponder (a tag) and a transceiver (a reader). A tag carries a unique identification marker
and, in a passive system, does not have a local power source. Therefore, the transceiver provides
energy to the tag and, then, serially read the bitstream transmitted by the tag.

We showed that our approach, which relies on a block components association, allows for an
easy and straightforward conception of a model. The instantiation of the different components is
quite easy and does not require to the SoC architect to deal with simulator’s parameter.

With this case study, we used three different Models of Computation: Electrical Network,
Timed Data Flow and Discrete Event. This model strongly exploits the interaction mechanism
that we defined within SystemC MDVP and demonstrates its efficiency.

The simulation results obtained during the simulation of the RFID prototype are really
satisfying. Indeed, these results remarkably match the real values obtained using the physical
prototype of this RFID system. The simulation is also fast while remaining accurate and under
the control of the designer. It is worth noting that the simulation can go significantly faster at a
price of losing the representation of the analog signals.

This case study demonstrates the efficiency of our solution SystemC MDVP, we integrate
several MoCs in order to model an heterogeneous platform. Further work will be done in order to
complete the transceiver of this passive RFID system. Eventually, the digital controller on the
transceiver side will be modeled by a DE micro-controller.
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9.1 Conclusion

Current and future microelectronics systems are increasingly and intrinsically complex, they
integrate more and more interaction with their surrounding environment. Hence, they become
multi-disciplinary microelectronics-assisted systems. In this thesis, we explored the requirements
to perform the simulation of such heterogeneous systems as a whole within a unified virtual
prototyping environment. We presented our solution SystemC MDVP which defines a new
simulator prototype on top of SystemC, allowing the simulation of heterogeneous systems within a
single environment in a monolithic way. The definition of SystemC MDVP was inspired by others
existing simulators such as Ptolemy II [20] and SystemC AMS [50].

During this thesis we identified and addressed these requirements as presented below.

Smooth Management of Heterogeneity

When dealing with heterogeneous systems the first thing that comes to mind is to define what is
intended by heterogeneity and how to smoothly manage it. Our approach relies on the interaction
between Models of Computation, these MoCs defining a heterogeneous entity within our framework.
In Chapter 4 we defined our vision of a MoC and we proposed an abstraction of the notion of
MoC. This abstraction expresses all the requirements that we believe a MoC should meet. In
every MoC we should retrieve several notions that characterize the MoC:

• Time Representation : the abstraction of time used by the MoC (continuous time (EN),
discrete time (DE), sampled time (TDF), etc...).

• Primitive Behavior : the basic blocks which describe an elementary behavior, or the way
to associate a behavior with a basic block when allowed to do so.

• Channel Representation : the communication mechanism used to exchange data between
basic blocks.

• Composition : the way to compose a bigger model through ports and sub-model instantia-
tion.

• Solving Algorithm : the algorithm used to resolve the model (solver, scheduler, etc...).

• Interaction : the way to communicate with another Model of Computation.

This abstraction allows for a clear definition of the entity involved in the model from the
simulator point-of-view and also from the end-user point-of-view. Indeed, this clear interface is
used by the simulator kernel to handle the different MoCs, as shown in Chapter 5. On the other
side, the explicit representation of primitive behavior, channel and port allows the end-user to
easily design a system as illustrated along the Chapter 4.
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Sound Management of Interacting Entities

We identify that one of the key challenges in the simulation of heterogeneous system lies in the
interaction between the different entities in the model. Our solution consists in representing these
interactions by means of master-slave semantics, as depicted in Chapter 4. This approach allows
for a seamless interaction between different MoCs subject to the respect of the semantics rules.
The main rules states that a master MoC does not need to be aware of the existence of potential
slave MoCs; hence, the slave MoC has to comply with its master interface. This means that all the
mechanisms to interact with a master MoC are only managed by the slave MoC. Consequently,
each MoC should express through a MoC interface all the requirements it expects in order for
other MoCs to setup a master-slave relationship with it. The main constraint imposed to a MoC
is that it cannot be simultaneously the slave of several distinct master MoCs.

Our solution allows for a sound management of interacting entities within our virtual
prototyping environment. We expressed a hierarchical organization of MoCs and hence, a clear
interaction pattern is defined. This approach allows us to free the end-user from the responsibility
of defining himself the interaction rules that would have prevailed in the model he is designing.
Indeed, our framework automatically handles the interaction between the MoCs, as presented in
Chapter 5.

Flexible Virtual Prototyping Environment

It seems natural that the simulation of heterogeneous systems implies some flexibility in the
simulator due to the very nature of the entities modeled. Indeed, heterogeneous entities that may
take part in the conception of a multi-physical system are numerous, ranging from biological to
optical through mechanical, etc. Our solution provides this flexibility since it is conceived following
a completely generic approach. Chapter 5 illustrated the implementation details, i.e. the generic
algorithms that guarantee the flexibility of SystemC MDVP. Defining a clear definition and an
abstraction for the MoCs allow us to implement the SystemC MDVP simulator in a completely
MoC-independent way. This approach ensures the flexibility of the framework since it does not
rely on any MoC-definition. This provides the opportunity to enrich the set of entities within the
framework without requiring any modification in the simulator.

We explained in Chapter 7 the methodology to follow in order to define and integrate new
Models of Computation within SystemC MDVP. Since the definition of MoCs relies on the
abstraction defined in the SystemC MDVP kernel, the integration within the framework is quite
straightforward and easy. The methodology is supported by the integration of a new MoC called
Smoothed Particle Hydrodynamics that aims to model fluidic elements.
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Multi disciplinary Monitoring

The monitoring of heterogeneous systems represents an important feature and also is a real
challenge. The main challenge lies in the fact that such mechanism should adapt to and fit
the different digital/physical parts involved in the design. In our solution, this translates in
the challenge to unify within a single entity the monitoring of SystemC parts (digital) with
SystemC MDVP parts (physical). We presented in Chapter 6 the principles and implementation
details that allow SystemC MDVP to perform multi-disciplinary monitoring while remaining
flexible and generic.

Our monitoring mechanism relies on generic algorithms while remaining able to gather relevant
and various data from different MoCs. To achieve this purpose, we developed a solution to address
the monitoring of SystemC components inspired by the tracing mechanism of SystemC itself.
This was a difficult task since we chose to stay compliant with the standard SystemC, therefore
we were not allowed to alter the SystemC simulation kernel. On the other side, we developed
a solution for the monitoring of SystemC MDVP components inspired by the communication
mechanism implemented in QT - the signal/slot pattern.

We successfully provide a single interface in order to monitor digital and physical parts within
SystemC MDVP. Thanks to this interface, monitoring set up from the end-user point-of-view is
straightforward. The generic approach that we manage to keep in the definition of the monitoring
mechanism ensures the flexibility of SystemC MDVP.

The solution to the simulation of heterogeneous systems that we proposed tackles all the
challenges identified in the beginning of this document. It relies on a clear definition of the entities
involved in the simulation, both from the simulator and the end-user point-of-views. We defined a
strong and efficient interaction mechanism, allowing a high level of flexibility. Our framework
expresses the capacity to be enhanced with new entities. Eventually, SystemC MDVP supports
an efficient monitoring mechanism that fits the specificities of multi-disciplinary systems. We
illustrated the efficiency of our framework through validation case studies in Chapter 8. We
modeled a passive RFID reading system using three different MoCs and compared the simulated
results with the physical ones. We demonstrated the simplicity of use of our solution, and the
satisfying performance exhibited by our framework. We met the expectation in terms of speed of
simulation while remaining quite accurate.

9.2 Perspective

The principles and mechanisms presented herein represent the basic of the requirement for truly
achieve simulation of heterogeneous systems. Areas for improvement are worth exploring.
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Smoothed Particle Hydrodynamics (SPH) Model of Computation (MoC)

The SPH MoC presented in this thesis represents the first version of a MoC with a great potential.
There is room for improvement with this MoC. First the inner mechanisms of the MoC are
still very sensitive to parameters and a more generic approach should be investigated in order
to express all the dependencies between the different parameters. This would lead to ease the
tuning of the MoC when modifying the nature of the fluid simulated. Second, the detection and
handling of collisions is not a trivial problem and the answer implemented within the MoC could
benefits from the use of a third parties library in charge of 3D rigid-body interactions for example.
Eventually, we can improve the model in order to take into account other forces that may be
applied to the fluid (such as magnetic forces for example).

Integration of new Models of Computation

In order to validate and support the principles and mechanisms presented in this thesis, new Models
of Computation are required. These new MoCs should express different time domains and represent
different physical domains to demonstrate the efficiency and genericity of SystemC MDVP.
Currently, an ODE MoC is under integration within SystemC MDVP and other MoCs are
considered, such as a Quantum MoC.

Improvement within SystemC MDVP

The development of a unified design environment for virtual prototyping of heterogeneous systems
requires a mechanism to express functional properties that must be fulfilled in order to validate
the system designed. In the context of heterogeneous systems, these properties may refer to a
subset of the system involving only one discipline or to a subset of the system involving several
disciplines up to the entire system. Thus, it is required to provide a mechanism that permits the
expression of properties that cross the disciplines. Within this thesis, we believe that we laid the
foundation that can lead to the multi-physical functional verification of heterogeneous systems
through simulation. Indeed, the hierarchical representation of the system and its abstraction
through the notion of cluster defines a well-suited structure for the partitioning of properties that
cross the disciplines. Moreover, this functional verification mechanism can also benefit highly
from the monitoring mechanism developed within SystemC MDVP; we already provide in our
framework a way to probe the system in order to gather relevant information. This information
may, eventually, be used as part of an assertion-based approach that will cover the models
described with SystemC MDVP and also SystemC.

Another area of improvement concerns the performance and especially the parallelization of
the execution. Indeed, we believe that the hierarchical representation that we defined within
SystemC MDVP can allow for a multi-threading simulation of the models designed. Moreover, the
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elaboration and simulation mechanisms presented herein are by essence, thanks to distributed and
in cascade algorithms, well-suited to support parallelism. Therefore, we believe that we designed a
path to a parallel multi-physical simulation environment.

SystemC MDVP is currently already used in the framework of another thesis [12] with an
application in the automotive area. Our framework begins to be a support for internship in our
laboratory. I am ambitious that SystemC MDVP could become a key actor in the conception flow
of future heterogeneous systems.
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