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Résumé

Introduction

Cette thèse s’intéresse à la mise en œuvre d’équipements sur plateformes hétérogènes.

Le contexte principal est celui de l’Ecoradio. A savoir l’étude et le développement

de systèmes de radiocommunications économes en énergie, qui de ce simple fait auront

une empreinte carbone beaucoup plus faible que les systèmes actuels. Plus précisément

nous nous intéressons au domaine de l’Ecoradio Intelligente au niveau électronique d’un

équipement. L’Ecoradio est rapidement présentée au chapitre 1-1. Nous (équipe SCEE)

avons montré depuis plusieurs années que la Radio Intelligente (RI) peut être un outil très

efficace pour réussir à atteindre une Ecoradio. La RI est résumée au chapitre 1-2. Dans

ce contexte de RI, les équipements sont considérés comme intelligents car ils obéissent

au cycle intelligent proposé pour la Radio Intelligente. Utiliser la RI sous contrainte de

consommation d’énergie pour atteindre une Ecoradio, est proposé au chapitre 1-3 et cela

aboutit au concept d’Ecoradio Intelligente Les équipements RI étudiés étant complexes et

adaptatifs (par principe de la RI) il est nécessaire de les gérer de manière automatique et

autonome : c’est précisément le but du gestionnaire développé par l’équipe SCEE depuis

une dizaine d’années. Ce gestionnaire, nommé HDCRAM pour Hierarchical and Distri-

buted Cognitive Radio Architecture Management est utilisé pour gérer les équipements

étudiés dans cette thèse. Celui-ci est présenté au chapitre 1-4.

Après avoir présenté dans ce premier chapitre le contexte et les outils de base qui

serviront à la mise en œvre des équipements étudiés, le second chapitre propose d’implanter

le gestionnaire HDCRAM sur des plates formes hétérogènes. En particulier, l’apport et

l’intérêt de la Reconfiguration Partielle (RP) de FPGA sera étudié dans ce contexte.

Dans le troisième chapitre, les métriques, plus particulièrement celles relatives à l’état de
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la plate-forme d’un point de vue électronique, nécessaires à une prise de décision sous

contrainte d’économe d’énergie sont étudiées. Elles sont identifiées, leur accessibilité est

précisée et leur utilisation dans notre contexte est présentée. Dans le quatrième chapitre

la mise en œuvre de l’ensemble des techniques étudiées lors de cette thèse est réalisée pour

un système de type émission/réception. Les scénarios, les métriques utilisées lors de ces

scénarios, les algorithmes de décision ainsi que le déploiement d’HDCRAM sont détaillés.

L’implantation temps réel sur plate-forme du système permet de conclure sur les gains

attendus et offre une possibilité de démonstration de l’ensemble. Celle-ci sera présentée

lors d’un Workshop ETSI en mars et lors de la soutenance.

1 Contexte et Position du problème

1.1 L’Eco Radio

Il y a quelques dizaines d’années, le développement durable (DD) n’était la préoccupation

que de quelques groupes écologistes. Maintenant, depuis l’assemblée générale des Na-

tions Unies de décembre 1987 et la résolution 42/187 [1], ce problème est devenu une

préoccupation de la société. La commission Bruntland a défini le DD comme étant un

développement qui : “meets the needs of the present without compromising the ability

of future generations to meet their own needs”. Depuis plusieurs conférences, organisées

sous l’égide des Nations Unies, ont confirmé l’importance du DD (de Rio de Janeiro-

1992 à Copenhague-2009 et tout récemment la COP 21 à Paris en décembre 2015). L’un

des problèmes le plus important que doit prendre en compte le DD est le changement

climatique et l’émission de CO2...

Même s’il est clair que les principaux contributeurs en émission de CO2 sont la pro-

duction d’électricité, le transport et l’industrie, les Technologies de l’Information et de

la Communication (TIC) y contribuent pour une part non négligeable. En effet, actuel-

lement, 3 % de l’énergie mondiale sont consommées par les TIC, ce qui est à l’origine

de 2 % des émissions de CO2 (ce qui est comparable à l’émission de CO2 de l’aviation

civile mondiale !), ces chiffres continuent de croitre régulièrement malgré les efforts mis en

œuvre par les différents acteurs du domaine.
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Réduire le niveau d’émission des ondes électromagnétiques est un autre aspect du DD

pour les radios communications. Cette réduction offrira une meilleure coexistence entre

tous les systèmes et réduira le niveau d’exposition des utilisateurs. Le premier papier

relatif à l’écoradio (sous l’angle de la réduction du niveau des ondes électromagnétiques),

grâce au concept de radio intelligente, a été présenté lors d’une assemblée générale de

l’URSI [2].

Mais, à cette époque, ce type de préoccupation n’était pas à la mode.

L’écoradio (1) est souvent limité à l’aspect efficacité énergétique, mais nous l’envisa-

geons, dans cette thèse, dans un sens plus large. Dans [3], les différentes implications du

DD dans le domaine des radiocommunications ont été décrites. Ces implications vont de

l’émission de CO2 (à cause de la consommation électrique) au recyclage des équipements et

des ondes transmises, en passant par la pollution électromagnétique (avec les conséquences

de l’exposition aux ondes des utilisateurs). Parmi l’énorme activité sur le sujet quelques

projets sont (ou ont été) particulièrement importants et productifs. Nous nous limiterons

donc à la présentation de ceux-ci. Plus de projets sont présentes en section 1.1.2 dans le

corps du document.

1.1.1 Au niveau international

1. GREENTOUCH

Il s’agit d’un projet très ambitieux piloté par Alcatel, dont l’objectif est de décrôıtre

d’un facteur 1000 la consommation énergétique du réseau [4]. Cette décroissance est ana-

lysée segment par segment avec des objectifs différents suivant les segments et cela malgré

l’augmentation des débits. Parmi les nombreux résultats de ce projet, des architectures,

des technologies, des composants, des algorithmes ont été proposés.

2. EARTH

Le projet EARTH pour Energy Aware Radio and NeTwork TecHnologies a été un

projet financé lors du programme FP7 de la Commission Européenne [5]. Ce projet a été

(1). Le concept anglais de Green Radio pourrait être traduit radio verte. Mais le terme technique Green

a récemment été étudié et la traduction éco a été adoptée au journal officiel, c’est pour cela que nous

utilisons la formulation écoradio.
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un des premiers à s’intéresser au problème de l’Ecoradio avec un objectif ambitieux de

réduire de 50% la consommation des systèmes de télécom mobiles. Ce projet a été à l’ori-

gine de nombreuses idées, définitions et de nombreux algorithmes aujourd’hui reconnus et

utilisés par de nombreux autres projets. Parmi d’autres citons les idées d’allumage/exc-

tinction des Stations de Base en fonction du nombre d’usagers, d’allumage/exctinction

de l’amplificateur de puissance en fonction des périodes sans transmission, d’algorithmes

pour augmenter ces périodes, les protocoles coopératifs, le cell breathing, etc...

3. C2POWER

Ce projet est intéressant, car il est exactement dans la lignée de ce que nous appelons

l’Ecoradio Intelligente (voir section suivante) [6]. Il se propose d’étudier comment l’intelli-

gence et les stratégies de coopération permettent de réduire globalement la consommation

énergétique. Les résultats de ce projet ont été considérés comme très positifs, ce qui nous

conforte dans cette thèse dont le contexte est justement l’Ecoradio Intelligente au niveau

électronique d’un équipement.

1.1.2 Au niveau Français

1. SOGREEN

Figure 1 – SOGREEN.

Suivant une approche multidisciplinaire, SOGREEN propose un système de gestion in-

telligente de l’énergie basé sur une intégration étroite entre réseau cellulaire et smart grid,

escomptant une amélioration considérable de l’efficacité éco-énergétique [7]. Comme cela
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est indiqué sur la Figure 1 le réseau de télécommunications cellulaire et le Réseau Elec-

trique Intelligent (REI) sont interconnectés, de manière à globalement optimiser l’énergie

consommée. Dans ce schéma, nous pouvons distinguer trois flux différents : celui corres-

pondant aux données du réseau de communications, celui correspondant au REI et enfin

celui correspondant aux communications spécifiques du REI. Dans ce projet sont menées

des études d’algorithme de prise de décision globale, au niveau de chaque sous réseau.

L’application du gestionnaire HDCRAM (voir section suivante) est aussi proposée dans

ce projet.

2. TEPN

TEPN est un projet du laboratoire d’excellence Breton CominLabs Le but de ce projet

est d’adapter la consommation du réseau à la charge réelle de celui-ci [8]. Parmi les sujets

étudiés, figurent la définition de métriques prenant en compte la globalité du problème,

l’étude de solutions permettant de diminuer la consommation des amplificateurs de puis-

sance au niveau des stations de base et l’étude d’algorithme de prise de décision sous

différentes contraintes et métriques, notamment en se focalisant sur les algorithmes d’ap-

prentissage qui apprennent le comportement du réseau afin de l’optimiser.

1.2 La Radio Intelligente

Après avoir, en 1995, proposé le nouveau concept de radio logicielle (RL) ou Soft-

Ware Radio en anglais [9] , Joe Mitola lors de son travail de thèse s’est intéressé à

l’utilisation du spectre. Il a constaté que celui-ci était très mal utilisé, en grande par-

tie sous-utilisé. Il en a déduit qu’une gestion locale, intelligente du spectre permettrait

d’augmenter considérablement son taux d’utilisation. Mitola a compris qu’il fallait mettre

de l’intelligence à la fois dans le réseau et dans les équipements pour être au plus près

des besoins et de la ressource donc au final pour augmenter l’efficacité spectrale : c’est la

raison pour laquelle il a proposé la RI (Cognitive Radio en anglais) [10, 11]. Il a montré

que celle-ci serait plus efficace si elle était associée à la technologie RL.

Suivant la description de la Figure 2, un système RI pourra adapter son comportement

(fonctionnement) à son environnement grâce à :
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Figure 2 – Le cycle intelligent de J.Mitola. [10]

- ses capacités d’analyse à travers ses capteurs. La notion de capteurs est, dans notre

vision, très large. Elle correspond à tout moyen de fournir de l’information au moteur

intelligent qui prendra les décisions. Cette information proviendra de capteurs physiques

réels, d’algorithmes de traitement du signal, d’échanges d’information avec les différents

nœuds d’un réseau, etc.

- son intelligence qui lui permet de prendre les décisions adéquates (basées sur de

l’apprentissage et/ou des bases de connaissance). La connaissance utilisée par la prise

de décision est, comme l’information fournie par les capteurs, une notion très large, cela

va des paramètres fournis par les capteurs aux considérations technico-économiques, en

passant par les règles réglementaires d’utilisation du spectre. Dans le contexte de cette

thèse, une contrainte particulière est associée à cette fonction de prise de décision. Il

s’agit de la contrainte DD, sous les déclinaisons contraintes de consommation minimale,

non pollution électromagnétique...

- ses capacités d’auto reconfiguration (offertes par la technologie support : la RL) pour

modifier son fonctionnement.

Un schéma simplifié représentant ce fonctionnement est donné sur la Figure 3.

Le mot capteur doit être pris au sens large. Il s’agit de tout moyen donnant de l’infor-

mation de toute nature pouvant être mise à profit dans le cycle intelligent pour optimiser

le lien radio afin d’améliorer le service rendu.
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Figure 3 – Cycle intelligent simplifié en trois étapes.

Ces différents moyens vont des capteurs au sens classique du terme (microphone, etc.)

aux capteurs appelés intelligents dans la littérature et fournissant une information qui

résulte d’un traitement évolué (par exemple la réponse impulsionnelle d’un canal).

Classiquement on peut faire la liste de ces capteurs en fonction de l’environnement

considéré comme dans le tableau 1 suivant.

Table 1 – Classification d’une liste (non exhaustive) de capteurs en fonction de l’envi-

ronnement. [12]

Capteurs Environnent

occupation spectrale, trous ou blancs dans le spectre Électromagnétique

rapport Signal à Bruit, réponse impulsionnelle du canal, etc...

nombre et positions des Hot Spot, et stations de base, des utilisateurs

Standards utilisables à proximité, Opérateurs et services à proximité Réseau

charge sur un lien radio, etc...

niveau de batterie, consommation énergétique

taux d’utilisation des circuits (FPGA), de la ressource de calcul Matériel

taux d’occupation de la mémoire

température du matériel

micro, caméra, appareil photo, identification de l’usager

Position spatiale, vitesse, heure, intérieur/extérieur Utilisateur

préférences, profil de l’utilisateur

détection, reconnaissance de visage, reconnaissance de voix, etc...

Le chapitre 3 de cette thèse discutera clairement des métriques (capteurs) relatifs au

matériel dans le tableau.
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1.2.1 La gestion du spectre

Contrairement à une idée reçue, le spectre est une ressource publique, seule son utili-

sation est privée. Ce qui fut le cas lors de la vente des licences UMTS.

Le spectre est une ressource naturelle finie. En effet une fréquence n’existe que parce

qu’elle peut être générée. De ce point de vue, il est nécessaire d’avoir une quantité d’énergie

suffisante pour générer la fréquence et la diffuser. Nous pouvons donc parler de ressource

finie puisqu’elle dépend elle-même de ressources énergétiques finies.

Cette ressource finie peut être utilisée indéfiniment (tant que la ressource énergétique

est disponible pour générer l’onde électromagnétique).

Les règles d’attribution actuelles des fréquences obéissent à un processus très com-

pliqué et long à mettre en œuvre. L’allocation des fréquences est aujourd’hui fixe et

attribuée sur la base de services suivant des règles internationales rigides, elles- mêmes

discutées tous les 5 ans (lors de la Conférence Mondiale Administrative) (2). Une telle

allocation aboutit à une situation dans laquelle il apparait clairement que l’ensemble du

spectre est alloué. Une première conclusion hâtive serait de dire qu’il n’y a plus de place

disponible dans ce spectre.

Or les études ont montré que le spectre pouvait être alloué mais non utilisé (cas des

bandes réservées aux militaires). Une analyse de l’occupation spectrale telle que celle

présentée dans la figure 4 pour la bande à 2.4 GHz et la figure 5 pour la bande TV

montre qu’à un instant précis (le 1er septembre 2004) et dans un lieu donné (à New-

York) le spectre est sous-utilisé (une utilisation de l’ordre de quelques %). Ce constat

a donné naissance à la notion de ”Hic et Nunc”, qui veut dire, qu’indépendamment de

l’attribution des fréquences, le spectre peut être disponible en un lieu et à un instant

donné. Par conséquent dans ce lieu et à l’instant considéré, si l’équipement est capable

de connaitre le spectre utilisé, il pourra établir une communication dans les bandes spec-

trales sous-utilisées. C’est ce qui est aussi appelé, dans la littérature, une communication

opportuniste.

Les techniques mises en œuvre pour identifier l’occupation spectrale sont grossièrement

de deux types comme décrit ci-après :

(2). WARC process (World Administrative Radio Conference)
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Figure 4 – Les mesures d’occupation de la bande 2.4 GHz. [13]

Figure 5 – Les mesures d’occupation de la bande TV. [13]

(a) underlay

(b) overlay

Figure 6 – Dynamic spectrum access modes.

La technique underlay

Comme son nom le laisse supposer cette technique consiste à insérer un nouveau signal
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dans le même spectre et en même temps que les signaux d’origine. La contrainte évidente

est que le signal additionnel ne perturbe en rien la qualité des signaux d’origine. C’est

une contrainte très forte et très peu de systèmes la remplissent.

Dans ce contexte Haykin [14] a défini la notion de température d’interférence.

La technique overlay

Lorsque l’on parle d’accès opportuniste au spectre, de détection de blancs du spectre, de

trous dans le spectre et d’insertion du signal d’un utilisateur secondaire, c’est généralement

par une technique ”overlay”. Cette technique nécessite 5 étapes successives.

– un filtrage

– une détection de présence ou d’absence d’un utilisateur primaire dans la bande

considérée.

– une qualification de la qualité de cette bande

– une prise de décision quant à l’utilisation par l’utilisateur secondaire, grâce aux

différentes informations : présence, qualité,...

– une insertion du signal dans le spectre (cette insertion doit se faire de manière très

précautionneuse, de façon à ne pas perturber les bandes adjacentes,...)Des modu-

lations avec des DSP présentant des affaiblissements importants dans les bandes

adjacentes seront préférées (cas par exemple de l’OFDM/OQAM)

Chacune des ces étapes a des contraintes très spécifiques et nécessite des algorithmes

de traitement du signal avancés.

1.2.2 Une vision plus globale

L’équipe SCEE (pour rappel, qui accueille cette thèse), a proposé un modèle en trois

couches pour expliciter sa vision de la RI. (voir figure 7)

– une couche de haut niveau, qui regroupe essentiellement la couche application, ainsi

que les interfaces de type homme-machine, appelée couche supérieure ;

– une couche intermédiaire dans laquelle on retrouve les couches Transport et Réseau,

– une couche de bas niveau dans laquelle on retrouve les couches MAC et physique,

appelée couche inférieure.



1 Contexte et Position du problème 11

Figure 7 – Une vision multicouches de la RI. [12]

L’ensemble de ces couches fonctionne sur une plate-forme RL (si possible idéale), mais

ce modèle fonctionne aussi avec une plate-forme radio logicielle restreinte. Ces plates-

formes radio logicielle reposent sur une architecture matérielle d’exécution, qui en toute

généralité est hétérogène. Cette plate-forme est idéalement abstraite à travers une couche

d’abstraction, qui offre une transparence en termes d’implantation de composants logiciels

de traitement du signal que l’on y exécute. Dans le modèle de la figure 7, nous avons dans

la colonne de gauche fait figurer certains capteurs. Dans la colonne de droite sont cités les

domaines de recherche relatifs à la couche en question avec lesquels la RI entretient des

liens très étroits. Bien entendu comme notre objectif est d’optimiser le fonctionnement de

ces trois couches de manière intelligente, la RI aura aussi un lien très fort avec le domaine

de l’optimisation intercouches. Ce que l’on trouve dans la littérature sous la dénomination

� radio opportuniste � est, suivant le modèle précédemment présenté, la restriction à la

sous-partie de la couche physique de la RI concernée par la gestion du spectre.

1.3 l’Ecoradio Intelligente

L’EcoRadio Intelligente (ERI) est une radio intelligente (RI ) qui prend en compte le

développement durable (en particulier l’efficacité énergétique) comme une contrainte ad-

ditionnelle dans le processus de décision du cycle intelligent. L’ERI consiste à : � décroitre

le niveau des ondes électromagnétiques en envoyant le signal adéquat dans la direction
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désirée, avec la puissance suffisante, quand cela est nécessaire, tout en conservant la même

qualité de service �. Il s’agit du concept d’� ondes utiles �. Pour cela, la RI grâce à ses cap-

teurs, qui permettent d’avoir une vision locale de l’environnement, permettra de répondre

efficacement à ce concept d’� ondes utiles �.

D’un point de vue théorique, le gain en efficacité spectrale, quelle que soit la manière

d’obtenir ce gain, pourrait être utilisé pour diminuer la puissance des ondes transmises.

Cependant, d’un point de vue pratique, l’ensemble des acteurs des télécommunications

préfère utiliser ce gain pour accroitre le débit transmis (donc le nombre d’utilisateurs) à

puissance constante plutôt que de diminuer la puissance à débit constant. Par conséquent,

notre approche pourrait sembler en contradiction avec les considérations économiques des

acteurs des télécommunications. Or, il n’en est rien, car d’une part diminuer la facture

énergétique est devenu une préoccupation majeure de ces différents acteurs et d’autre part

l’ERI consiste à : � décroitre le niveau des ondes électromagnétiques en envoyant le signal

adéquat dans la direction désirée, avec la puissance suffisante, quand cela est nécessaire,

tout en conservant la même qualité de service �. Il s’agit du concept d’�ondes utiles�

Pour cela, la RI grâce à ses capteurs, qui permettent d’avoir une vision locale de

l’environnement, permettra de répondre efficacement à ce concept d’� ondes utiles �.

Cela devrait éviter la pollution de certaines bandes, comme la bande de radioastronomie.

En effet, l’écoute passive dans cette bande est très perturbée par le niveau de plus en plus

élevé des ondes des signaux de radiocommunications.

Comme déjà expliqué précédemment, nous aimerions obtenir cet éco-comportement

dans un sens le plus large possible (diminution de la consommation d’énergie pour réduire

l’empreinte carbone, équilibre entre l’efficacité énergétique et l’efficacité spectrale, contrôle

de la pollution électromagnétique, impact sur les personnes, cycle de vie des équipements,

etc.). Nous avons déjà identifié qu’une intelligence répartie dans le réseau est une condition

nécessaire. Par conséquent nous proposons d’utiliser la Radio Intelligente comme une

technologie potentielle pour atteindre l’objectif. Cette solution pourrait être implémentée

soit côté terminal mobile ou côté station de base, partout dans le réseau radio hétérogène.
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1.4 HDCRAM

Cette section présente une architecture de gestion, initialement proposée pour gérer

un équipement de RI. Son acronyme est HDCRAM ce qui signifie en anglais Hierarchical

and Distributed Cognitive Radio Architecture Management. HDCRAM peut être ajouté

à tout système existant afin de transformer ce dernier en un système intelligent capable

de prendre et de gérer des décisions autonomes. Par exemple HDCRAM a été récemment

appliqué au Réseau Electrique Intelligent (REI) ou smart grid.

Figure 8 – A schematic example of HDCRAM architecture.

HDCRAM est présenté sur la Figure 8. Le cycle intelligent de la Figure 3 montre qu’un

équipement a trois activités principales, capture de l’information, prise de décision et re-

configuration du système. Dans HDCRAM, la reconfiguration et la gestion de l’intelligence

(capture des métriques et prise de décision) suivent deux chemins séparés. HDCRAM est

composé de 3 niveaux hiérarchiques ainsi qu’un niveau opérateur qui exécute l’ensemble

de la châıne de transmission.

Cette architecture comprend deux sous-gestionnaires :

Le gestionnaire de l’intelligence noté Cognitive Radio Management Units (CRMu) :

Un CRMu échange de l’information seulement d’un niveau inférieur à un niveau supérieur.

Cette entité possède l’intelligence et peut prendre des décisions. Dans ce cas, elle envoie

ses ordres liés à la décision au gestionnaire de reconfiguration de même niveau.
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Le gestionnaire de re-configuration noté Reconfiguration Management Units (ReMu) :

Un ReMu échange de l’information seulement d’un niveau supérieur à un niveau inférieur.

Comme indiqué précédemment, il existe aussi un échange d’information possible entre un

CRU et un CRMu de même niveau.

Les 3 niveaux se comportent de la façon suivante :

– Le niveau 1 est composé d’un seul couple CRM/L1 ReM et est le gestionnaire

général du système. C’est à ce niveau que se prennent les décisions globales qui ont

un impact sur l’ensemble du système.

– Le niveau 2 est composé d’un certain nombre de couples (L2 CRMu/L2 ReMu). Ils

fournissent au niveau L1 l’information utile pour qu’il puisse prendre une décision. Il

transmet l’information du niveau L3 sous une forme compressée, il s’agit d’abstraire

l’information. S’il possède toute l’information nécessaire, une décision peut être prise

à ce niveau.

– Le niveau 3 est composé d’un certain nombre de couples (L3 CRMu/L3 ReMu).

Chacun de ces couples est associé à un opérateur. L3 ReMu est l’entité qui est en

charge de la reconfiguration de son opérateur et L3 CRMu est en charge de traiter

l’information provenant de l’opérateur (une métrique par exemple) et il peut si

l’information dont il dispose est suffisante prendre une décision locale.

– Un opérateur est un composant (une fonction du système) qui est soit reconfigurable

soit une mesure de métrique (par exemple un filtre ou un SNR).

L’intelligence est distribuée dans les 3 niveaux hiérarchiques et à différents emplace-

ments à chaque niveau. De ce fait, il est possible de prendre des décisions à plusieurs

niveaux et ainsi de générer des cycles de décision plus ou moins rapides.

– Une décision locale , simple et rapide au niveau 3 (voir le petit cercle de la figure

9).

– Si la décision est plus complexe à prendre et met en jeu plusieurs opérateurs gérés

par le même niveau 2, alors elle est prise au niveau 2 (cycle intermédiaire sur la

figure 9).

– Enfin, si la décision implique de nombreux opérateurs qui ne sont pas tous gérés par

le même L2 alors la décision sera prise au niveau L1 (grand cycle sur la figure 9).

En résumé HDCRAM possède les caractéristiques suivantes :
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Figure 9 – Scale of the cognitive cycle : small (left), medium (middle), and large (right).

– Deux chemins totalement indépendants, un pour la remontée et la gestion de l’in-

telligence et un second pour redescendre les ordres de reconfiguration.

– HDCRAM est un modèle d’architecture indépendant des traitements réalisés dans

les bôıtes interconnectées.

– HDCRAM est un squelette d’une architecture de gestion.

– Pour un scénario donné le modèle HDCRAM est implémenté de manière spécifique.

– Il y a 3 niveaux de décision possible, ce qui correspond à 3 cycles intelligents de

taille différente dans l’architecture.

– HDCRAM peut être appliqué à n’importe quel système complexe.

– Les règles et les connections entre les boites permettent de déployer des scénarios

intelligents et de spécifier tous les éléments nécessaires, ainsi que leurs connections

pour implémenter ce scénario.

– Une implémentation spécifique de HDCRAM peut être émulée, simulée, de façon à

pouvoir prédire le fonctionnement d’un système pour un scénario donné.

– Une implémentation spécifique de HDCRAM peut intégrer n’importe quel algo-

rithme de prise de décision.

Pour réaliser des équipements de RI, il est nécessaire d’utiliser une plate-forme re-

configurable, qui soit capable de s’adapter à n’importe quel type de traitement et aux

différentes contraintes de ces traitements. Ces contraintes peuvent être la flexibilité, la

puissance de calcul... . Pour répondre à ces contraintes, une plate-forme hétérogène com-

portant des composants différents de type GPP, DSP, FPGA, chacun ayant une réponse

spécifique à une contrainte particulière, est la solution la plus adaptée.
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Figure 10 – A schematic example of HDCRAM architecture.

Lors d’une thèse précédente le déploiement de HDCRAM sur une cible logicielle de type

GPP a été abordé avec succès. Dans cette thèse, notre objectif est de déployer HDCRAM

sur une cible matérielle de type FPGA sur une plate-forme hétérogène, c’est précisément

l’objet du chapitre 2 suivant que d’étudier ce déploiement.

2 Implantation de HDCRAM sur plateformes hétérogènes

Comme nous l’avons indiqué précédemment HDCRAM a déjà, lors de travaux précédents,

été implémenté sur des ressources logicielles. Le but de ce chapitre est donc d’implémenter

HDCRAM sur des ressources matérielles, plus précisément sur des FPGA en tirant profit

de la Reconfiguration Partielle de FPGA.

2.1 Reconfiguration Partielle de FPGA

La Reconfiguration Partielle de FPGA permet de modifier dynamiquement des fonc-

tions dans certaines zones du FPGA, permettant à l’application de continuer à fonctionner

sur les autres zones, sans aucune interruption des données, du service. En d’autres termes

la RP apporte une souplesse équivalente à celle du logiciel dans le monde du matériel.
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Pour les circuits Virtex la RP est réalisée au travers du port ICAP, qui lit le bits-

tream partiel correspondant à la nouvelle fonction. Pour les circuits Zynq-7000, celle-ci

est réalisée soit au travers du port ICAP ou par l’intermédiaire du port PCAP.

2.2 Implémentation de HDCRAM sur plate-forme Virtex5

La carte Xilinx ML506 (voir l’annexe B qui décrit cette carte d’évaluation) est connectée

à un PC. Le niveau 1 de HDCRAM est implanté sr le PC, donc sur le FPGA sont im-

plantés les niveau 2 et 3 tel que cela est représenté sur la figure 11. L’ensemble des

connections entre les différents éléments utilise le protocole UDP, ce qui donne une très

grande souplesse car les éléments sont repérables par leurs adresses IP. Un UDP Core a

été spécifiquement développé pour les FPGA dans le cadre de cette thèse. Celui-ci est

complètement décrit en Annexe A.

Figure 11 – The block diagram of the management platform.

2.3 Implémentation de HDCRAM sur plate-forme Zynq 7000

La carte d’évaluation ZC702 est totalement décrite en Annexe C. Elle comprend un

dual core ARM CORTEX pour la partie Processing System (PS) et un FPGA Xilinx
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Artix-7 pour la partie Programable Logic (PL). La figure 12 présente l’implémentation de

HDCRAM sur cette plate-forme.

Figure 12 – The HDCRAM implementation on the ZC702 evaluation board.

Le niveau L1 est implanté sur le PC. Un niveau L2 est implanté sur la partie PS de

la carte. Un opérateur peut être implanté soit en logiciel soit en matériel, par conséquent

le niveau L3 associé sera soit sur PS soit sur PL.

Les bitstreams de configuration peuvent être mémorisés soit sur le PC soit sur la

mémoire de la carte.

3 Etude des métriques liées à la plate-forme dans un contexte

d’Ecoradio Intelligente

Dans ce chapitre, nous nous intéressons aux métriques permettant de caractériser

le fonctionnement d’un équipement et d’optimiser ce fonctionnement d’un point de vue

de l’efficacité énergétique. Les différentes métriques accessibles sur une plate-forme sont

identifiées, en particulier, celles liées à l’électronique de l’équipement. Chacune est discutée

pour savoir comment elle peut être obtenue, et comment elle peut être utilisée pour prendre

une décision. Ensuite, ces métriques sont discutées sous différents aspects : accessibilité,

statique/dynamique, facilité d’utilisation... Finalement, l’implémentation d’un filtre FIR

en série ou parallèle, est discuté sous ses aspects métriques.
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3.1 Les différentes métriques

Dans cette section, toutes les métriques identifiées et discutées l’ont été à partir de

la plate-forme Xilinx Virtex-5 ML506. Rappelons que cette plate-forme est totalement

décrite en Annexe B. Il est donc tout à fait possible que certaines métriques ne s’appliquent

pas facilement à d’autres plates-formes.

Parmi les métriques identifiées, nous avons la tension, le courant, la fréquence,... Nous

décrivons certaines plus en détail ci-après.

3.1.1 La température

La température est une métrique très utile. Elle peut-être obtenue par les outils Xi-

linx, tel System Monitor, mais sera, dans ce cas très difficile, voire impossible, à utiliser en

fonctionnement. Une autre façon de l’obtenir indirectement est d’utiliser un thermomètre

numérique basé sur un Ring Oscillator, dans ce cas il sera possible de l’utiliser en fonction-

nement. Nous savons qu’il existe une relation linéaire entre la fréquence de l’oscillateur

et la température de la zone. Ce thermomètre utilise très peu de ressources et peut être

placé à différents endroits du circuit. Son schéma est donné à la figure 13.

Figure 13 – The digital thermal sensor.

Dans d’autres travaux [15], nous avons montré qu’il existe une relation entre la température

et la consommation statique (voir figure 14), cette métrique peut donc servir à connaitre

la consommation statique et prendre les décisions adéquates. Elle peut aussi être utilisée

pour des décisions de sauvegarde comme diminuer la fréquence, la charge de travail, mettre

en œuvre le refroidissement pour éviter une surchauffe.
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Figure 14 – Leakage current variations with Temperature.

3.1.2 La ressource disponible, la surface et la position d’une fonction

Ces métriques sont connectées les unes aux autres. Elles peuvent être obtenues par le

même outil Xilinx PlanAhead. Lors de la phase de design un opérateur peut être dans une

certaine position, mais il peut être nécessaire de le modifier en cours de fonctionnement

grâce à la RP. Ce cas de figure se produira si plusieurs opérateurs occupent la même

position et sont instanciés à différents moments grâce à la RP.

3.1.3 Le taux d’activité

Le taux d’activité d’un opérateur est donné par l’équation (1) :

Activity rate =
en×N

c
× 100% (1)

Avec c : le durée de la mesure exprimée en nombre de cycles d’horloge.

en : le nombre de cycles d’horloge autorisant l’entrée des données pendant la durée de

la mesure.

N : une constante qui donne le nombre de cycles nécessaire pour le traitement d’une

donnée en entrée pour obtenir une donnée en sortie.

La Fig. 15 donne un exemple. Dans ce cas si N = 1, pendant c = 10 cycles, le taux

d’activité est = 20 % ; si N = 5, alors taux activité = 100 %. Bien sûr ceci est un exemple

très simple. c doit être choisi soigneusement, plus c sera grand plus le taux d’activité sera

précis.
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Figure 15 – A timing diagram example.

3.1.4 Implantation série/parallèle

De nombreux opérateurs peuvent être implantés soit en mode série soit en mode pa-

rallèle. Prenons l’exemple du calcul de c donné par l’équation (2).

c =

N−1∑
i=0

a[i] × b[i] (2)

Celle-ci peut-être implantée en mode parallèle (figure 16) ou en mode série (figure 17).

Cette métrique peut être définie lors de la phase de design ou modifiée dynamiquement

en fonction d’autres métriques (voir l’exemple suivant dans ce chapitre).

Figure 16 – Parallel method. Figure 17 – Serial method.

3.1.5 La consommation

Cette métrique est évidemment de la plus grande importance dans notre contexte

d’Ecoradio Intelligente. Elle peut être obtenue à partir de la connaissance de la tension
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et du courant. Elle peut l’être aussi, à partir des outils Xilinx Power Estimator (XPE) et

plus particulièrement Xilinx Power Analyzer (XPA), que nous utiliserons par la suite.

Suivant la valeur de cette métrique, l’organe de décision peut décider de modifier tel

ou tel paramètre pour diminuer cette consommation.

3.2 Discussion sur les différentes métriques

Certaines métriques sont fixes alors que d’autres peuvent évoluer dans le temps, elles

sont alors dynamiques. Certaines s’obtiennent facilement alors que d’autres sont beau-

coup plus difficiles à obtenir, c’est la notion d’accessibilité. Certaines sont reconfigurables,

d’autres non, alors que d’autres peuvent se modifier suite à une reconfiguration de cer-

taines. C’est le niveau de reconfigurabilité. Est aussi identifié le niveau d’impact de la

métrique sur la consommation énergétique.

Le tableau 2 ci-dessous résume cette discussion :

Table 2 – Consideration of the metrics.

Metrics Self-changeability Configurability Green impact At which Level Susceptibility

Voltage static medium strong System Low

Current dynamic unconfigurable strong system medium

Frequency static easy strong PE Low

Temperature dynamic unconfigurable strong system high

Area static medium medium PE & system Low

Position static medium weak PE Low

Resource static difficult strong PE & system Low

Activity rate dynamic unconfigurable medium PE medium

Serial / parallel static easy medium PE low

Power consumption dynamic unconfigurable strong PE & system medium

Performance

to power

consumption

ratio

dynamic unconfigurable strong PE medium

Working mode static easy strong system low

La fréquence de fonctionnement d’un opérateur ou PE peut être reconfigurée par l’in-

termédiaire d’un Digital Clock Manager (DCM), par conséquent, il s’agit d’une métrique

reconfigurable pour cette plate-forme. Le mode Série/Parallèle est similaire si l’on a la
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possibilité de commuter entre différentes options existantes notamment par RP. La sur-

face et la position sont reconfigurables notamment grâce à la RP. Mais la ressource ne

l’est pas car celle-ci est définie lors de la configuration de l’opérateur.

En ce qui concerne l’impact Eco, certaines métriques telles que la tension, le courant,

la fréquence, la température,la ressource, la consommation... ont un impact important et

certaines ont une influence directe sur la consommation. La position d’un opérateur n’a

pas d’impact alors que le mode série/parallèle a un impact complexe et indirect. C’est

précisément cette métrique que nous étudions en détail dans la section suivante.

3.3 Etude d’un cas particulier : implantation série ou parallèle d’un

filtre

Le filtrage est une fonction classique et nécessaire dans tout équipement de radio-

communications. Il peut s’agir de filtrer une bande de fréquence pour éviter de polluer

les bandes adjacentes, ou de filtrer une bande d’intérêt pour optimiser le convertisseur

analogique/numérique, ou de réaliser un filtre de Nyquist,...

Très classiquement, ces filtres sont réalisés à partir de filtre à Réponse impulsionnelle

finie (FIR). Un FIR comporte des retards et des coefficients (multiplieurs). Il peut être

implanté sous forme parallèle ou série chacune ayant ses avantages. La figure de la section

précédente présente ces deux possibilités. De manière évidente la forme parallèle sera plus

rapide mais consommera plus de ressources que le mode série. Nous pourrions donc en

déduire que la forme parallèle consommera plus, mais cela n’est pas si simple. Lors d’une

implémentation d’un filtre FIR à 32 coefficients avec 32 MAC (multiplieurs /accumula-

teurs) pour le mode parallèle et un seul MAC pour le mode série le tableau 3 confirme

que le mode parallèle consomme plus de ressource :

Table 3 – Resources used by the two implementation architectures.

Architecture #FF #LUTs #DSPs

Parallel 3051 1067 64

Serial 1192 542 2
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Pour étudier l’influence sur la consommation, nous avons implanté ce filtre sur le

FPGA, sans aucune autre fonction. La consommation est estimée en utilisant l’outil XPA.

Table 4 – Power consumption of the FIR filter.

Frequency

(MHz)

Power consumption (W)

parallel serial

Dynamic Quiescent Total Dynamic Quiescent Total

40 0.058 0.545 0.603 0.019 0.544 0.564

50 0.069 0.545 0.614 0.022 0.544 0.566

66.67 0.087 0.545 0.632 0.025 0.544 0.570

75 0.096 0.545 0.641 0.027 0.544 0.572

100 0.123 0.545 0.668 0.033 0.545 0.578

125 0.150 0.545 0.695 0.039 0.545 0.583

133.33 0.159 0.545 0.704 0.040 0.545 0.585

150 0.176 0.546 0.722 0.044 0.545 0.589

166.67 0.194 0.546 0.740 0.048 0.545 0.592

On peut constater que la consommation dynamique est plus faible pour le mode série

à fréquence identique. Mais comparer à fréquence identique n’est pas une comparaison

intéressante. En effet, la comparaison doit se faire à débit identique, ce qui nécessitera

d’augmenter la fréquence de fonctionnement du mode série et, comme nous le verrons,

inversera la conclusion sur la consommation. Notons aussi sur ce tableau, que la consom-

mation totale pour les 2 modes est très proche. Comme l’outil XPA ne donne qu’une

consommation totale du FPGA, il est très difficile de conclure sur la consommation sta-

tique du filtre suivant le mode d’implantation. En effet cette surface, quel que soit le

mode, est faible relativement à l’ensemble du FPGA. Elle aura donc peu d’influence sur

la consommation totale.

Nous nous focalisons maintenant sur la consommation dynamique. Nous implantons

dans cette étude les deux modes de manière à obtenir le même débit en sortie du filtre.

La figure 18 présente la consommation dans ce contexte.
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Figure 18 – The power consumption.

A cause de la différence importante en consommation entre les deux modèles les axes

concernant l’architecture parallèle sont ceux de gauche et bas alors que pour l’architecture

série ce sont ceux de droite et haut.

En mode parallèle la consommation crôıt presque linéairement et reste sous 1W, mais

en mode série, pour garder le même débit, la fréquence doit aller de 3.2 MHZ à 9600MHz.

En dessous de 3200MHz la consommation est sous 1,5 W mais crôıt très rapidement ensuite

jusqu’à croiser la courbe parallèle. Cela s’explique facilement par le fait que l’horloge est

l’élément qui consomme le plus à l’intérieur du FPGA, à partir d’une certaine fréquence

elle devient prépondérante.

Comme la Figure 18 a des axes différents, il est difficile de comparer les détails des 2

architectures. Les 2 figures (Figure 19 et Figure 20) suivantes font un zoom sur la région

0.1 MHz à 1MHz.

On constate que le mode parallèle consomme plus que le mode série mais que l’inverse

se produit pour une fréquence série supérieure à 25.6 MHz.

Une première conclusion (surprenante) de cette étude consiste à dire que sous une

certaine fréquence il est préférable d’utiliser le mode série, qui utilise moins de ressource

et consomme moins, et qu’au-delà il est préférable d’utiliser le mode parallèle. Cette

conclusion sera très utile pour prendre les bonnes décisions dans HDCRAM.
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Figure 19 – The dynamic power. Figure 20 – The total power.

3.3.1 Influence du nombre de coefficients

Nous souhaitons étudier dans cette section l’influence du nombre de coefficients sur

la consommation. Pour cela nous avons implanté des filtres de 32, 64, 128 coefficients. La

Fig. 21 donne la consommation, en fonction de la fréquence pour les 3 longueurs de filtre.

Comme attendu le filtre comprenant le plus grand nombre de coefficients consomme le

plus, lorsqu’ils travaillent à la même fréquence. A mesure que la fréquence augmente, la

consommation crôıt plus rapidement avec le filtre le plus long.

Figure 21 – Power consumption of the filter with three different numbers of taps when

the frequency increases.
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La Fig. 22 montre la consommation en fonction du nombre de coefficients. A 40MHz,

la consommation crôıt faiblement quand le nombre de coefficients augmente, mais quand

la fréquence passe à 300MHz, la consommation croit nettement plus vite.

Figure 22 – Dynamic power consumption according to the number of taps.

Ce qui veut dire que plus le filtre est long et plus le débit souhaité sera élevé plus la

consommation sera élevée. Ce résultat n’est pas surprenant.

3.3.2 Gestion de ces métriques par HDCRAM

Les métriques utilisées dans cette analyse sont :

– Série/parallèle

– Fréquence

– Consommation

– Ressource

Lorsque celles-ci ont été obtenues elles sont alors utilisées par les algorithmes de

décision de HDCRAM. La Fig. 23 donne un exemple d’utilisation de celles-ci. Les trois

opérateurs (générateur de fréquence DCM, filtre, calcul de la ressource) sont gérés par

leurs gestionnaires respectifs de niveau 3.

– Si le débit demandé est faible (< 0.8 MHz) alors le gestionnaire de niveau 3 va

prendre la décision de fonctionner en mode série.

– Si le débit demandé est élevé, alors il est possible de l’atteindre en augmentant la

fréquence de travail ou en augmentant le nombre de MACs. Le niveau L3 ne peut
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pas prendre de décision seul, l’information remonte donc au niveau L2 qui pourra

prendre une décision. Par exemple pour doubler le débit, si l’opérateur ressource

indique que celle-ci est suffisante, L2 peut décider de multiplier par 2 le nombre de

MAC sinon, il décidera d’augmenter la fréquence de fonctionnement. Cette décision

de L2 se répercutera sur les L3 de reconfiguration de DCM et du filtre.

Figure 23 – An example of level 2 HDCRAM management.

4 Implantation d’un système émission/réception OFDM

Afin de valider les différentes études des chapitres précédents, nous avons implanté sur

une plate-forme une transmission réelle qui intègre l’ensemble de nos propositions. Cette

transmission est basée sur une modulation de type OFDM largement utilisée aujourd’hui

dans de nombreux standards et qui a fait ses preuves, notamment pour lutter contre les

évanouissements sélectifs.

La figure 24 présente la gestion avec HDCRAM du système OFDM. Afin de démontrer

l’aspect distribué de HDCRAM et l’aspect plate-forme hétérogène de notre réalisation,

l’émetteur est implanté sur un PC (GPP) alors que le récepteur est implanté sur la plate-

forme Zynq. L’émetteur est considéré comme la station de base alors que le récepteur est

considéré comme le terminal. Le lien entre le PC et la plate-forme se fait par le protocole

UDP à travers Ethernet.

Plusieurs scénarios ont été étudiés, parmi ceux-ci trois sont présentés dans ce résumé.
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Figure 24 – The block diagram of a simplified OFDM system model.

Figure 25 – Implementation platform.

4.1 Implantation de la FFT par RP

Comme la FFT est la fonction la plus coûteuse en termes de calculs, elle peut avan-

tageusement être réalisée en matériel sur PL (voir Figure 26), même s’il est possible de

l’implanter en logiciel sur PS (voir Figure 27).

Dans un but d’optimisation de la surface et de la consommation, nous proposons d’im-

planter la FFT par reconfiguration partielle, ce qui nous permettra, au lieu d’implanter

une grosse FFT reconfigurable entre toutes les tailles nécessaires, de choisir et modifier

à la volée la FFT de bonne taille pour le scénario envisagé. Deux types d’implantation

sont considérées dans ce travail : une architecture de type pipe-line et une autre de type

Radix2 (voir Annexe D).
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Figure 26 – The hardware implementation of FFT.

Figure 27 – The software implementation of FFT.

La figure 28 présente l’implantation de la FFT Radix2 pour différentes tailles en uti-

lisant la RP.

Le tableau 5 suivant dresse une comparaison des ressources nécessaires pour les différents

cas envisagés. Ces résultats doivent être comparés avec ceux du tableau 6 correspondant

au cas d’une FFT reconfigurable entre toutes les tailles envisagées. On constate que la

ressource nécessaire est supérieure à celle de la FFT de plus grande taille : cela est du à

la logique de contrôle pour la reconfiguration entre toutes les tailles.

Les différents temps de transformation sont listés dans les tableaux 7. Il apparâıt que

ce temps est le plus faible avec l’architecture pipe-line hardware au prix d’une ressource

supérieure comparée à l’architecture Radix 2. Le temps supplémentaire lié à la RP doit

aussi être pris en compte il est donné tableau 8.
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Table 5 – Resources available and used by different FFT implementations in the recon-

figurable region.

Transform

length

Resource LUT Register SLICE DSP48E1 BRAM

Available 5184 10368 1359 32 48

128
pipelined 2806 3196 702 9 9

radix-2 1067 1316 268 3 11

256
pipelined 3175 3578 795 9 10

radix-2 1101 1361 276 3 11

512
pipelined 3589 4113 898 12 12

radix-2 1154 1392 289 3 11

1024
pipelined 3993 4507 999 12 14

radix-2 1153 1425 289 3 11

2048
pipelined 4455 5086 1114 15 19

radix-2 1194 1491 299 3 13

Table 6 – Resources used by traditional reconfigurable FFT implementation with pipe-

lined architecture.

LUT Register SLICE DSP48E1 BRAM

5741 6056 1435 15 19

Table 7 – The transform time of different FFT implementations.

Transform

length

Software

(µs )

Hardware (µs) Traditional reconfigurable

FFT (µs )pipelined radix-2

128 166 4.81 8.29 4.92

256 364 8.71 16.77 8.93

512 798 16.49 34.85 16.61

1024 1751 31.91 73.41 32.13

2048 3867 62.73 155.49 62.85
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(a) FFT128 (b) FFT256 (c) FFT512 (d) FFT1024 (e) FFT2048

Figure 28 – Implementation of FFT with single radix-2 architecture using partial recon-

figuration.

Table 8 – Full and partial configuration time of the FFT design.

Type Size (bytes) Time (µs)

Full 4 045 564 211 413

Partial 384 512 35 122

De même les tableaux 9 et 10 comparent la consommation des différentes architectures.

Table 9 – The power consumption of different FFT implementations of the DPR ap-

proach.

Transform

length

Power consumption (W)

pipelined radix-2

128 0.103 0.096

256 0.105 0.097

512 0.108 0.098

1024 0.113 0.099

2048 0.121 0.101
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Table 10 – The power consumption of software FFT and traditional reconfigurable FFT.

Software FFT Traditional reconfigurable FFT

Power consumption (W) 0.12 0.135

En conclusion, le meilleur compromis sur tous ces critères est l’implantation de la FFT

avec l’architecture pipe-line en utilisant la RP.

4.2 Différents scénarios d’Ecoradio Intelligente

4.2.1 Adaptation de la constellation

Dans ce scénario, la constellation est modifiée en fonction du SNR du signal reçu. Ce

scénario implique qu’il y ait une communication entre le terminal et à la station pour lui

demander de modifier la constellation émise.

Remarque : Ce scénario, dans une version figée a déjà été implanté au laboratoire

et une démonstration existe déjà. Cependant, dans cette nouvelle version le scénario est

complètement géré par HDCRAM, ce qui offre une très grande souplesse.

Figure 29 – Scenario 1.

L3 CRMu SNR

Le capteur SNR mesure le niveau de bruit et envoie cette information au niveau L2

CRMu supérieur.

L3 CRMu demapping

Informe le L2 de la modulation en cours.
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L2 CRMu receiver

En se basant sur la valeur de SNR remontée par le niveau L3, L2 CRMu receiver prend

une décision très simple pour adapter la modulation :

- Si 5dB < SNR <= 10dB, la QPSK sera choisie.

- Si SNR > 10dB, la 16QAM sera utilisée.

En fonction de la modulation en cours, L2 CRMu receiver informe ou non le niveau

L1 d’une reconfiguration de la modulation.

L1 CRM

Si L1 ReM reçoit une commande de son L1 CRM associé, alors il envoie l’ordre aux

L2 ReMu transmitter et L2 ReMu receiver concernés.

L2 ReMu transmitter

Si le L2 ReMu transmitter reçoit l’ordre du L1 ReM il execute l’action et envoie l’ordre

de reconfiguration au L3 ReMu mapping.

L3 ReMu mapping

Le L3 ReMu mapping gère la reconfiguration de son opérateur Mapping associé.

Le déroulement est complètement identique entre L2 ReMu receiver L3 ReMu demap-

ping côté récepteur et n’est pas rappelé ici.

4.2.2 Gestion de la FFT en fonction du niveau de batterie

Comme nous l’avons vu précédemment la FFT peut être réalisée en logiciel, matériel

architecture pipeline, matériel architecture radix2. C’est cette dernière possibilité qui sera

choisie si le niveau de batterie est faible.

4.2.3 Gestion de la taille de la FFT en fonction du standard à utiliser

Ce scénario montre comment il est possible de modifier la taille de la FFT en fonction,

par exemple, d’un changement de standard à démoduler. Il s’agit par exemple de modifier

la bande de 1.25MHz to 2.5MHz pour le LTE donc modifier la taille de FFT de 128 à 256.
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Figure 30 – Adaptation to QPSK when SNR < 10.

Figure 31 – Adaptation to 16QAM when SNR > 10.

Figure 32 – Scenario 3.
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Figure 33 – Scenario 4.

5 Conclusion et Perspectives

L’objectif de cette thèse était l’étude et l’implantation sur plate-forme hétérogène du

gestionnaire de RI HDCRAM, en se focalisant sur la ressource matérielle (notamment

FPGA) et en tirant profit de la RP de FPGA. Cela dans un contexte d’Ecoradio intel-

ligente, donc des équipements qui obéissent au cycle intelligent classique sous contrainte

d’économie d’énergie. Une partie du travail a consisté à identifier et étudier, les métriques

qui sont utiles dans un tel contexte. L’implantation de scénarios répondant à l’ensemble

de cette thèse a permis de valider ce qui a été proposé, et cela a finalement aboutit à

un démonstrateur qui sera démontré lors de diverses occasions et en particulier lors de la

soutenance.

Bien entendu, ce travail laisse ouvert un certain nombre de pistes, parmi lesquelles

l’étude d’algorithmes de prise de décision, plus performants que les machines d’états uti-

lisées dans les scénarios, serait très intéressante. Une autre évolution intéressante serait

d’interfacer HDCRAM avec des bibliothèques d’opérateurs en open-source, de manière à

pouvoir utiliser facilement et rapidement d’autres opérateurs.



Abstract

As the digital communication systems evolve from GSM and now toward 5G, the sup-

ported standards are also growing. The desired communication equipments are required

to support different standards in a single device at the same time. And more and more

wireless Internet services have been being provided resulting in the explosive growth in

data traffic, which increase the energy consumption of the communication devices thus

leads to significant impact on global CO2 emission. More and more researches have focu-

sed on the energy efficiency of wireless communication. Cognitive Radio (CR) has been

considered as an enabling technology for green radio communications due to its ability to

adapt its behavior to the changing environment. In order to efficiently manage the sensing

information and the reconfiguration of a cognitive equipment, it is essential, first of all,

to gather the necessary metrics so as to provide enough information about the operating

condition thus helping decision making. Then, on the basis of the metrics obtained, an

optimal decision can be made and is followed by a reconfiguration action, whose aim is to

minimize the power dissipation while not compromising on performance. Therefore, a ma-

nagement architecture is necessary to be added into the cognitive equipment acting as a

glue to realize the CR capabilities. We introduce a management architecture, namely Hie-

rarchical and Distributed Cognitive Radio Architecture Management (HDCRAM), which

has been proposed for CR management by our team. This work focuses on the imple-

mentation of HDCRAM on heterogeneous platforms. One of the objectives is to improve

the energy efficiency by the management of HDCRAM. And an example of a simplified

OFDM system is used to explain how HDCRAM works to efficiently manage the system

to adapt to the changing environment.





Introduction

Energy efficiency has attracted more and more attention due to the fact that the

information and communication technology (ICT) industry consumes 2% to 10% of the

world’s overall energy [16] and is becoming one of the major contributors to the world-wide

CO2 emission [17]. It has been predicted that the CO2 emissions of mobile communication

systems will increase by a factor of three between 2007 and 2020 [18]. Therefore, the ICT

industry is playing an increasingly important role in reducing greenhouse gas emissions,

and has a profitable opportunity to foster energy efficiency in other sectors, thus helping to

decrease the carbon footprint at the global level [19]. All sides, including users, operators,

governments, and academia etc., have driven the research on energy efficiency.

Cognitive Radio (CR) [10, 11, 14] has been considered as an enabling technology

for green radio communications due to its ability to adapt its behavior to the changing

environment [3, 20].

A cognitive equipment, which applies the cognitive cycle into an equipment, is able

to sense the surrounding environment, make decisions depending on the information it

has obtained, and then take actions to adapt its behavior to the changing environment

(including the updated constraints and requirements). In order to achieve this goal, it

needs to gather the necessary metrics so as to provide enough information pertaining

to its operating condition thus enabling decision making. Therefore, it is important to

select the proper and useful metrics in order to evaluate the system’s performance and

to reconfigure the system. In [21], the authors have reviewed the performance metrics at

the node, network, and application levels. We focus on the equipment level and introduce

some possible metrics on a FPGA platform and the ways to measure them. All kinds of

information about the environment of the cognitive equipment can be considered as me-
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trics. These metrics cover many aspects : performance, power consumption, temperature,

and resources, etc.

After obtaining the metrics, we introduce a management architecture, namely Hierar-

chical and Distributed Cognitive Radio Architecture Management (HDCRAM) [22, 23, 12]

into an equipment, which has been proposed for CR management by our team, to effi-

ciently manage the cognitive equipments.

In order to design cognitive equipments, flexible and efficiently reconfigurable hard-

ware platforms are necessary. Many hardware platforms can be used to design cognitive

equipments. Those include General Purpose Processors (GPPs), Digital Signal Proces-

sors (DSPs), Field Programmable Gate Arrays (FPGAs), Application Specific Integrated

Circuits (ASICs), etc.

GPP is the most flexible platform, but has poor performance. DSP is flexible like

GPP and has its advantage when dealing with signal processing applications, but its

performance is still not good enough. ASIC provides high performance but with less

flexibility.

FPGA becomes a favorable choice since it has some kind of flexibility and its perfor-

mance is close to that of ASIC. Besides, modern FPGA integrates embedded processors to

provide more flexibilities. Recently, some FPGA families have provided a Dynamic Partial

Reconfiguration (DPR) technique. DPR is the ability to dynamically reprogram a subset

of the logic within an operating FPGA. This is done thanks to the download of a partial

configuration file while the remaining logic continues to operate without interruption [24].

Benefiting from these features, FPGA is more suitable for developing cognitive equipment.

By taking advantage of the DPR, it is possible to dynamically change the functionality

of part of the FPGA , which makes the hardware software-like. This capability enables

different functionalities to be implemented in the same portion of the device. Therefore,

the same system can be implemented in small devices featuring less resource, meanwhile,

saving cost and reducing power consumption. This is especially useful for Software Defined

Radio (SDR) and CR. It is possible to implement multi-mode multi-band radios in the

same device.

HDCRAM can be implemented on heterogeneous platforms, different platforms are

connected by Ethernet and communicate using UDP protocol. By this approach, it is
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easy to add new platforms and remove old unused platforms, which makes the system

scalable.

We take the HDCRAM management of a simplified Orthogonal Frequency Division

Multiplexing (OFDM) [25] system as an example to offer the possibility to glue almost

all the aspects of the work introduced in this thesis. In this example, we introduce some

metrics and their corresponding cognitive cycles. Then, how HDCRAM manages these

sensed metrics, decision making, and the reconfiguration of the system to adapt to the

changing environment is explained.

The thesis is organized as follows.

Chapter 1 presents the trend and motivations toward green communications and some

relevant projects. Cognitive radio, as an enabling technique for green communications, is

introduced. We treat CR in a general vision in this thesis. In order to efficiently manage

the CR features, a management architecture, HDCRAM proposed by our team, is also

described.

Chapter 2 explains the implementations of HDCRAM first on Virtex 5 platform and

then on a more flexible Zynq-7000 platform. We first implemented HDCRAM on Xilinx

Virtex 5 platform, and developed a hardware UDP core to provide a high speed data trans-

mission. The software processing elements (PE) are implemented on a soft microprocessor

core Microblaze, and the hardware PEs are implemented in hardware. The management

units of the hardware PEs can be implemented in hardware or in software, or part of in

software executed on Microblaze and another part in hardware. Due to some limitations

of the Virtex 5 platform, we then implemented HDCRAM on a more flexible platform,

Xilinx Zynq-7000 platform, which integrates a dual-core ARM Cortex-A9 as PS and a

Xilinx’s 7 series FPGA Artix-7 as PL in a single device.

As discussed above, the management architecture needs proper metrics to sense the

surroundings and efficiently reconfigure the system thus adapting to the working envi-

ronment. Chapter 3 mainly introduces some metrics on a FPGA platform that are useful

for the HDCRAM management architecture to efficiently manage the equipment, as well

as some measurement approaches of the metrics. We study the power consumption of

a FIR filter when it is implemented in parallel and serial modes and works in different
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frequencies as a use case. The results are useful for HDCRAM to make decisions, which

suggest that it is better to work in serial mode when the frequency is low, otherwise, the

parallel method is recommended. We also analyze the power consumption when the filter

is implemented with three different numbers of taps, which shows that there is a trade off

between the power consumption, the performance, and the resources.

In Chapter 4, we employ a simplified OFDM system model, and discuss a HDCRAM

management scenario of the OFDM transmitter and receiver. Because of several advan-

tages over the traditional reconfigurable FFT, dynamic partial reconfiguration technique

is used to reconfigure the hardware FFT. The implementation is based on Xilinx Zynq-

7000 platform described in Chapter 2. Some metrics introduced in Chapter 3 are used in

this example. The OFDM transmitter and receiver is managed by HDCRAM architec-

ture presented in Chapter 1. It shows that the HDCRAM can easily plan all scenarios

presented in this example.

Finally, Chapter 5 concludes this thesis and also discusses about the future research

directions.

Appendix A explains the hardware UDP core developed on Xilinx ML506 board used

in Chapter 2. Appendix B and Appendix C briefly introduce the Xilinx ML506 evalua-

tion board and ZC702 evaluation board utilized in Chapter 2, respectively. Appendix D

presents two implementation architectures of FFT exploited in Chapter 4.



Chapter 1

Background and motivation

1.1 Energy Efficiency

1.1.1 Motivation

Wireless communication plays an increasingly important role in modern world and in

people’s social lives. More and more people all over the world use mobile devices as the

most important tool to communicate with each other. It has been estimated by Interna-

tional Telecommunication Union (ITU) that there are more than 7 billion mobile cellular

subscriptions by end 2015. This is almost equal to 95.5% of the world population [26].

This brings new challenges to the wireless communication system. It requires the radio

system to be upgraded and updated easily to provide new Internet services and higher

speed with little cost. Recently, energy-efficient system design has received much attention

in Information and Communication Technology (ICT) sector. There are some reasons :

1. Nowadays, mobile phones are used not only to communicate with friends by voice

and message, people tend to create content, share interesting things in their lives, upload

and download content using social media and other Internet-based applications [27]. They

prefer to access the Internet by their mobile phone rather than by computer. The subscri-

bers of mobile Internet increase rapidly. Further more, in the information society, various

mobile Internet services emerge. The services have been shifted from mobile voice to

mobile Internet data transmission, resulting in the explosive mobile data traffic growth.

43
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2. The increasing mobile data traffic leads to the rise of energy costs and consequently

a significant growth of carbon emission. 3% of the world-wide energy is consumed by the

ICT infrastructure accounting for 2% of the global CO2 emissions, which is comparable

to the world-wide CO2 emissions by aviation or one quarter of the globalCO2 emissions

by cars, resulting in a global CO2 equivalent emission of 1.3% [28].

3. The continuously rising energy consumption of mobile communication results in

steadily increasing energy costs and the operating expenditure (OPEX). From an opera-

tor’s perspective, there is a strong economic driver to reduce the energy consumption thus

reducing the cost and keeping a desired service level.

4. Mobile phone users frequently use a wide variety of mobile Internet services, such

as music, video, game, and TV applications. They suffer “two days of battery life during

active use” and think that the battery life in their phones are pretty poor.

5. Governments are also seeking strategies to build a greener industry, both in the

perspective of a sustainable long-term development, and a shorter perspective of economic

growth [29].

These drivers also motivate the research on energy efficiency in academia, and some

international projects on energy efficiency involving academic, industry, and some inter-

national non-governmental research organizations have been started in recent years.

It is encouraging to see that a lot of efforts have been made from many perspectives to

address the challenges and provide possible ways to save energy. The enabling technologies

and challenges on energy-efficient wireless networks have been surveyed by [30, 31, 32,

33]. Moreover, [31, 32] have addressed that most promising solutions on energy-efficiency

are the hybrid techniques in multi-user and multi-cell cases. [33] has presented the joint

optimization of component, link and network levels that entails tangible fundamental

improvements in terms of energy efficiency when compared to the sole optimization of

some specific aspects or components. [34] has described novel approaches to reduce the

energy consumption of future base stations. [35] has proposed a framework for green radio

featuring four fundamental trade-offs. [36, 29] have surveyed the research efforts on energy

efficiency for fixed networks. [37] has provided an overview of a network-based model of

power consumption in the Internet infrastructure. [38] has analyzed energy consumption

in cloud computing. Cognitive Radio (CR) [10, 11, 14] has also been considered as an
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enabling technology for green radio communications due to its ability to adapt its behavior

to the changing environment [3]. However, it is still lack of efforts to investigate power

reduction via efficient management at the equipment level, which is one of the objectives

of this work.

1.1.2 Projects

We non-exhaustively list some projects below and simply classify them in 6 classes

depending their focuses. First we would like to introduce the projects dealing with the

energy efficiency of mobile radio networks, and then followed by the projects focus on

data center, wired network devices, optical networks, wireless mobile devices, and finally

the projects with a global vision.

Mobile Radio Networks

EARTH [5]

Energy Aware Radio and NeTwork TecHnologies (EARTH) was an European funded

Seventh Framework Programme (FP7) project, whose duration was from January 2010

until July 2012. The reader can find the details on the website of the project [5]. We now

summarize the important aspects connected to our work. This project was one of the first

to be interested in green radio with an ambitious goal to reduce the energy consumption

by a factor of 50 % of mobile telecommunications systems. This project had many original

ideas, definitions, and many algorithms now recognized and used by many other projects.

Among other ideas include the turning on/off base stations according to the number

of users, turning on/off the power amplifier based on the periods without transmission,

algorithms to increase these periods, cooperative protocols, cell breathing, etc ...

Mobile VCE Green Radio [39]

The reader can find the details on the website of the project [39]. We now summarize

the important aspects connected to our work. Mobile VCE Green Radio aims to reduce

the power consumption by 100-fold of the wireless communication networks while not

compromising the Quality of Service (QoS) as well as the cost of network deployment, by

optimizing the network architectures and developing new techniques.
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OPERA-Net 2 [40]

The Optimizing Power Efficiency in Mobile Radio Networks 2 (OPERA-Net 2) project,

duration from December 2011 until November 2014, aimed to improve the power efficiency

by optimizing the network access technique, and to improve the material efficiency and

reduce the environmental impact of mobile radio networks by designing low power cooling

systems and hybrid power systems. More details can be found on the website of the project

[40].

Data Center

Green Grid [41]

Green Grid aims to improve the energy efficiency of data centers by developing metrics.

These metrics can be used to measure the productivity of a data center. Based on the

metrics, smarter decisions can be made when deploying new data centers. The reader can

find the details on the website of the project [41].

FIT4Green [42]

FIT4Green, a 30-month EU project started in January 2010, aimed to reduce the

energy consumption of data centers by designing an energy-aware plug-in. Energy savings

were achieved by several ways : setting the unused servers to standby mode ; turning off

the unused servers ; dynamic migration of virtual machines, etc. More details can be found

on the website of the project [42].

Wired Network Devices

ECONET [43]

ECONET (low Energy COnsumption NETworks), duration from October 2010 to

September 2013, was an European Commission FP7 co-funded project, whose aim was to

reduce the energy consumption of wired network devices by 50% in the short to mid-term,

and by 80% in the long run. Energy savings were achieved by standby and performance

scaling when a part of a device is unused. The reader can find the details on the website

of the project [43].
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Optical Networks

CHRON [44]

The Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project aims

to improve the resource efficiency and energy efficiency of the optical networks by taking

advantage of cognitive radio technologies. CHRON has proposed a novel architecture to

integrate the control and management plane (CMP), the data plane, and the Cognitive

Decision System (CDS). More details can be found on the website of the project [44].

Wireless Mobile Devices

C2POWER [6]

Cognitive Radio and Cooperative Strategies for POWER saving in multi-standard

wireless devices (C2POWER), duration from January 2010 until December 2012, was a

project supported by European FP7. C2POWER aimed to reduce energy consumption

of wireless mobile devices, as its name implies, by using the cognitive radio technologies

and by the cooperation of wireless mobile devices. The reader can find the details on the

website of the project [6].

Global Vision

GreenTouch [4]

This is a very ambitious project led by Alcatel, which aims to decrease the energy

consumption of the network by a factor of 1000. This decrease is analyzed segment by

segment with different objectives according to the segments regardless of traffic growth.

Among the results of this project, architectures, technologies, components, algorithms

have been proposed for the mobile access networks, fixed access networks, and core net-

works. Two tools has been developed and are publicly available :

•GWATT [45] : A web-based, interactive application that provides a complete view of

the technologies of GreenTouch and the energy impact from an end to end viewpoint.

•Flexible Power Model [46] : An power model and software tool that provides power

consumption values for cellular base stations, configurations and scenarios.

More details can be found on the website of the project [4].
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TREND [47]

TREND (Towards Real Energy Efficient Network Design) is an European funded FP7

project, whose aim is to design energy-efficient networks, by integrating the European re-

search activities and using a holistic approach considering all segments in networking. The

Trend-meter tool, available on-line [48], has been developed to monitor and control the

power consumption of networking infrastructures. An on-line database of power consump-

tion values, Powerlib, was created to provide and collect power consumption values [49].

The reader can find the details on the website of the project [47].

SCEE team also involved in two projects : Smart pOwer Grid for Energy Efficient

small cell Networks (SOGREEN) project funded by French National Research Agency

(ANR), and Toward Energy Proportional Network TEPN project.

SOGREEN [7]

Following a multidisciplinary approach, SOGREEN offers intelligent management of

energy system based on the integration of wireless networks and smart grid, expecting a

considerable improvement in energy efficiency. As shown in Figure 1.1, wireless networks

and smart grid are interconnected, so as to optimize overall energy consumption. In this

scheme, we can distinguish three different types of flows : data flow of wireless communi-

cations networks, electrical flow, and energy control flow. In this project, decision-making

algorithms, both at global level and at each subnet level, are studied. HDCRAM (will be

introduced section 1.2) has been also proposed as the manager in this project.

TEPN [8]

The Cominlab TEPN (Toward Energy Proportional Network) project aims at adapting

the network energy consumption to the actual load of this network, which can be achieved

by taking decision-making algorithms (based on various constraints and metrics) into the

network, in particular learning algorithms that can learn behaviors of the network, in

order to adapt the energy consumption to the users’ needs.
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Figure 1.1 – SOGREEN.

1.1.3 Comparison of our work with the state of the art

Cognitive radio has been considered as an enabling technology for the green radio

communications due to its ability to adapt its behavior to the changing environment [3].

Therefore, in this thesis we take advantage of cognitive radio technologies. Among these

projects, only CHRON and C2POWER use CR as a tool to reach green radio. CHRON

project mainly focuses on the improvement of energy efficiency of the optical networks,

in this thesis, our work is at the electronic level of a hardware device. C2POWER aimed

at reducing energy consumption of wireless mobile devices, which is interesting because it

is exactly in line with what we call cognitive green radio. The results of this project were

considered very positive, which confirms our thesis that this is precisely the cognitive green

radio context at electronic level of an equipment. Even C2POWER is also dealing with

the energy reduction of hardware equipments, it did not implement the cognitive cycle

inside a device. In this thesis, we not only implement cognitive cycles inside hardware

devices, but also use a management architecture HDCRAM to efficiently manage the CR

features. Moreover, we also introduce and study some useful metrics on hardware device

that can be used in the cognitive cycle to make better decisions to efficiently manage the

equipment.
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1.2 Cognitive Radio

As more and more radio standards are being developed to provide various communi-

cation applications, a single radio device is required to support multi-mode multi-band

radios. Software radio (SR) [9, 50] has been considered as a solution to provide the flexi-

bility, which has been defined that all of its functionalities can be defined or configured by

software. Furthermore, in order to efficiently use the resources of the communication sys-

tem, the concept of cognitive radio (CR) has been first proposed by Mitola [10], and has

soon become a hot research topic. A CR system can adapt its behavior to the changing

environment to efficiently use the available resources based on the sensing information

from its internal states or its surroundings by dynamic reconfiguring its functionalities.

Figure 1.2 explains how a cognitive radio agent interacts with its environment. Such a

cognitive radio continually observes the environment, orients itself, creates plans, decides,

and then acts [11].

Figure 1.2 – The Cognitive cycle proposed by Mitola. [10]

1.2.1 Spectrum Utilization

The radio spectrum is considered as an exclusive property of a country. Therefore,

traditionally the use of radio spectrum is nationally regulated by a government agency.

And frequency bands are fixedly allocated for different radio services.

Some measurement reports have revealed that most radio frequency spectrum was

inefficiently utilized [51, 52, 53, 54]. Some bands are heavily used(e.g., those bands used
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by cellular base stations) while many other bands are not in use or are used only part of

the time [52]. Federal Communications Commission (FCC) has measured the spectrum

occupancy below 1 GHz in Atlanta, New Orleans, and San Diego. Figure 1.3 and 1.4 show

the percentage of idle frequencies for two nonadjacent 7 megahertz blocks of spectrum

below 1 GHz. The measurements show that some frequencies are heavily or partly used

in Figure 1.3, while the frequencies on another band are almost completely idle in Figure

1.4.

Figure 1.3 – Percentage of idle frequencies on a 7 megahertz band below 1 GHz. [51]

Figure 1.4 – Percentage of idle frequencies on another 7 megahertz band below 1 GHz.

[51]

In [54], authors have investigated the spectrum usage in two countries, Czech Republic

and France, in three regions : 1) northern suburb of Brno, Czech Republic ; 2) eastern

suburb of Paris (ESIEE Paris), France ; and 3) city of Paris, near “Place de la Nation”,

France. The regional spectrum utilization is summarized in Figure 1.5. The overall spec-

trum utilization in the band 400 MHz - 3 GHz in regions 1, 2 and 3 is 6.5%, 10.7% and

7.7% respectively [54].
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Figure 1.5 – Comparative summary on regional spectrum utilization. [54]

These measurements have demonstrated the underutilization of the spectrum. With

the increasing demand of wireless application, the insufficiency of spectrum is more and

more serious. However, on the other hand, the radio spectrum is considered scarce. There-

fore, there exists the opportunities to reuse the unoccupied spectrum by dynamic spectrum

access (DSA) [55]. This has become one of the most hot research domain on CR to in-

crease the efficient use of spectral resources. There are many research works on spectral

optimization [56]. That is why CR is often reduced to this vision of Spectrum-Sensing

Cognitive Radio, in which only the radio-frequency spectrum is considered [57] [58].

There are different modes of spectrum sharing : interweave, underlay, and overlay.

Figure 1.6 illustrates the underlay and overlay dynamic spectrum access.

The underlay mode allows for simultaneous transmission of PUs and SUs. SUs may

share the spectrum by transmitting at the same time as the PUs but at very low power

to ensure that the interference noise level at the PUs side does not exceed a predefined

limit even if the PUs are idle. the underlay mode is represented in Figure 1.6a.

The overlay mode, similarly to the underlay mode, also allows for co-existence of SUs

and Pus in the same band. SUs detect the white spaces / holes in the spectrum and then

insert their own transmissions on the white space / holes as shown in Figure 1.6b, making

sure not to interfere with other PUs. Therefore, SUs share the spectrum with PUs, but

the PUs have priority, and SUs can transmit without power limit.
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(a) underlay

(b) overlay

Figure 1.6 – Dynamic spectrum access modes.

1.2.2 General Vision

There is a more general vision that known as full Cognitive Radio (Mitola radio), in

which every possible parameter observable by a wireless node (or network) is considered

[10]. SCEE team has proposed a multi-layered model of CR, which is presented as [12] :

- A high-level layer, which contains the application layer and man/machine interfaces.

Some kinds of sensors are specific for this layer, such as sound, image, velocity, and position

etc. These sensors could be used in context aware communications [59].

- An intermediate layer, which contains transport layer and network layer.

- A low-level layer, which contains medium access control layer and physical layer.

A simplified version of Mitola’s cognitive cycle is shown in Figure 1.7, which is com-

posed of three essential parts : sensing, decision, and action.

- Sensing : senses and perceives any kinds of useful information of the environment

(surroundings or internal states etc.) ;

- Decision : makes decision based on the observed information with some kind of

intelligence (including learning, planning, decision making etc.) ;
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Figure 1.7 – The simplified cognitive cycle.

- Action : reconfigures the radio to adapt to the changing environment. It requires a

flexible platform, therefore, SR is an ideal tool of reconfiguration for the CR.

These three parts should work coordinately. It is a good idea to add a managament

architecture to glue them together and efficiently manage the CR features.

1.2.3 Sensing

Thanks to the five human sensors as shown in Figure 1.8, we can perceive the surroun-

ding environment. Each sense can have a vector of parameters, e.g., human vision could

have three parameters : resolution, wavelength, and range.

Similarly, in the CR domain, CR sensors are also needed to gather information about

the internal working state and outside environment, e.g., sensor to monitor the battery

level, sensor to detect the communication standard, etc. Figure 1.9 gives a multi-dimension

representation of CR sensors. Each sensor represents a dimension in the CR domain. Like

the human analogy each dimension has also a set of parameters [60]. By analogy with

the human sensors, Frequency Hopping (FH)/Direct Sequence (DS) sensor, used by the

Standard Recognition sensor, has 3 parameters : time, frequency and power.

Table 1.1 gives a non-exhaustive list of the sensors based on simplified three layers mo-

del introduced in the previous subsection. Rather than the classical sensors, the sensors in

the list are in a broad sense, taking into account all means that can give information of the

environment [60]. These sensors are then used to gather information of the environment,

so as to help understand the working situation and make appropriate decisions.
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smell

touch

sight

taste

hearing

Resolution

Wave length

range

Figure 1.8 – Human sensors. [60]

Figure 1.9 – Cognitive Radio sensors. [12]



56 Background and motivation

Table 1.1 – Classification of sensors based on simplified three layers model. [60]

Sensors Layers

User profile :

Price,,

Operator,

Personal choices, etc.

Sound, Application and

Video, man/machine interfaces

Speed,

Position,

Security,

etc.

Vertical handover

Inter/intra networks Transport, Network

Standards Load on a link,

etc.

Access mode,

Power,

Modulation,

Channel coding,

Carrier frequency,

Symbol frequency, Physical, link

Horizontal handover,

Channel estimation,

Antennas beams,

Consumption,

etc.

SCEE team has also done some research work on sensing, including : cyclostationarity-

based test for detection of vacant frequency bands [61], blind standard recognition sensor

[62], blind spectrum detection using compressed sensing [63], video sensor [64], energy

detection under sensing uncertainty with sensing errors [65].
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1.2.4 Decision Making

After getting the information of the environment through the sensors, the CR system

should make decisions based on the obtained information.

Decision making approaches have been classified depending on the degree of a priori

knowledge provided to the cognitive engine, which is depicted in Figure 1.10 [66]. The a

priori knowledge is defined as a set of assumptions made by the designer on the amount

of the available information to the decision making engine when it first deals with the

environment [66]. In Figure 1.10, on the left side, a priori knowledge is complete, the

expert approach is sufficient ; on the right side, the knowledge is totally unknown, the CR

system has to learn the knowledge from the environment.

Figure 1.10 – Suggested decision making techniques depending on the assumed a priori

knowledge. [66]

1.2.4.1 Expert approach

The expert approach requires a large amount of expert a priori knowledge provided

by researchers and engineers. Decision rules are inferred by intensive off-line simulations

and then applied on-line to adapt to the environment. These rules are supposed to satisfy

all the cases that the CR system will meet. The more a priori knowledge acquired, the

better the CR system can adapt itself to the environment. If the knowledge is represented

as a set of rules, the decision making process becomes very simple. Mitola has represented

the knowledge using radio knowledge representation language (RKRL) [11]. The expert

approach is sufficient when the situation is well designed, but when the situation evolves,

the system’s performance might be poor, new rules should be added.
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1.2.4.2 Exploration based decision making : Genetic Algorithms

According to the obtained environmental information, Genetic Algorithms (GA) have

been proposed in the decision making engine of CR to find the best parameters to meet

the users’ needs, which is an optimization problem [67, 68]. A priori knowledge about the

objective functions and the fitness functions is required.

Based on the evolutionary theory of Charles Darwin and genetics, Genetic Algorithms

(GA) mimic processes of natural selection and are used to solve optimization problems.

A common GA starts with a set of randomly generated solutions, which is called a po-

pulation. Solutions from one population are selected and used to form a new population

for next generation. Solutions are selected according to a fitness function. The higher the

fitness, the more chances to be reproduced. This repeats until a suitable condition (e.g.,

a certain number of generations have passed, or best solution has been found) is satisfied.

GAs are promising to solve CR problems due to their ability to adapt to the changing

environment. But GAs have also some limitations. The environment-related analytical

models are idealized and not practical. Sometimes GAs run for quite a long time and

therefore are not always feasible for real time cases.

1.2.4.3 Learning approaches : exploration and exploitation

In the case when obtaining little environmental information and models, the CR deci-

sion making engine has to implement the learning process. Some learning approaches have

been proposed : Artificial Neuronal Networks (ANN) [69, 70], Evolving connectionist sys-

tems (ECS) [71, 72], statistical learning [73], regression models, etc. All of these learning

approaches react with the environment and try to infer the decision making rules. These

learning approaches have been classified depending on the way they learn and exploit

their rules [74].

1) separate exploration and exploitation phases

ANN and statistical learning are in the class. They have a pure exploration phase in

which the CR decision making engine learns from the environment and infers decision

making rules. The exploration phase needs a large amount of data and computational

power in order to extract reliable knowledge. However if the first phase is well achieved

the second phase is usually very simple and does not require much time or energy
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2) combine exploration and exploitation phases

ECS based decision making engine can change its structure by learning new knowledge

without “forgetting” previously learned knowledge [71, 72]. When there is no a priori

knowledge is provided, the CR decision making engine has to try different configurations

to estimate the performance, which is belong to the Multi-Armed Bandit (MAB) problem.

One solution to this problem is to use Upper Confidence Bound (UCB) [75] algorithms.

The main advantage of UCB algorithms is that they offer a balance between exploration

and exploitation phases without interrupting the operation.

SCEE team has exploited Upper Confidence Bound (UCB) algorithms based on MAB

framework for dynamic configuration adaptation (DCA) [75], dynamic spectrum access

[76], and decision making under sensing uncertainty with sensing errors [77].

1.3 HDCRAM Architecture

1.3.1 Introduction

A radio equipment consists of a set of functional components that are connected

with each other, illustrated as processing elements (PEs) at the bottom of Fig. 1.11.

In traditional radio devices, These PEs are fixed functions that cannot be modified once

designed. However, with the evolution of the communication technologies, a radio device

is required to support different standards, thus these PEs should be reconfigurable. The

design of a PE supporting multiple functionalities normally involves not only software but

also hardware toward software / hardware co-design. These PEs can either be software or

hardware elements.

According to the cognitive cycle in Figure 1.7, a cognitive equipment should be at

least composed of three parts :

- sensors ;

- decision making means (learning) ;

- autonomous adaptation (reconfiguration).

Only if these three parts coordinate together, the cognitive equipment can efficiently

work. Therefore, a management architecture is necessary to be added into the cognitive

equipment acting as a skeleton to realize the CR capabilities.
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Our team has proposed a management architecture for Cognitive Radio in a previous

work. This architecture, named HDCRAM, is an abbreviation for Hierarchical and Dis-

tributed Cognitive Radio Architecture Management [22, 23, 12]. A diagram of HDCRAM

architecture featuring three levels is depicted in Fig. 1.11.

Figure 1.11 – A schematic example of HDCRAM architecture.

HDCRAM consists of two aspects : Cognitive Radio Management (CRM) and Recon-

figuration Management (ReM) [78]. The CRM part is responsible for gathering sensing

information and making decision based on the metrics obtained from PEs. The ReM part

is in charge of taking actions to reconfigure the system. Sensing information is submit-

ted to the upper level from the lower level. Once a CRM unit has made a decision, it

sends the reconfiguration parameters to its associated ReM unit at the same level. The

reconfiguration commands are sent from the upper level to the lower level.

HDCRAM has three hierarchic levels.

- level 1 : a central manager L1 CRM/L1 ReM, which is unique ;

- level 2 : intermediate manager L2 CRMu/L2 ReMu ;

- level 3 : local manager L3 CRMu/L3 ReMu of a PE.

At level 1, only one cognitive radio manager and one reconfiguration manager can

exist, because this is the top level. At level 2 and level 3, there are multiple couples of
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Cognitive Radio Management units (CRMu) and their associated Reconfiguration Mana-

gement units (ReMu).

The architecture featuring three levels is sufficient. The level 1 manages the exchange of

different standards ; the level 2 manages the reconfiguration of the middle scale functions ;

and the level 3 manages the PEs.

According to this hierarchical management, a cognitive cycle can be on three different

scales as shown in Figure 1.12 : 1) a local small cycle, in which the sensing, decision making,

and reconfiguration action are finished, only includes the PE and its associated level 3

management ; 2) a medium cycle that involves multiple PEs and a level 2 management,

the reconfiguration of a PE needs the cooperation with other PEs ; 3) or a large cycle that

concerns all the three levels of management. More detailed explanation of HDCRAM can

be found in [23] and [12].

Figure 1.12 – Scale of the cognitive cycle : small (left), medium (middle), and large

(right).

In order to efficiently manage the sensing information and the reconfiguration of a

cognitive equipment, including the HDCRAM management architecture is the necessary

price, which could turn a non-intelligent legacy system into a smart system. Any decision

making algorithms can be embedded in HDCRAM. However, it does not mean to add

the HDCRAM managing all PEs all at once but step by step depending on the real

needs to minimize the additional overhead. Depending on what kind of a PE is, the

level 3 management of the PE differs as illustrated in Figure 1.13. If the PE is neither

reconfigurable nor an sensor, there is no need to have a level 3 management. If the PE

is reconfigurable but without sensing information, only a L3 ReMu is necessary. If the

PE is an sensor but not reconfigurable, only a L3 CRMu is necessary. If the PE is both
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reconfigurable and has sensing information, therefore both L3 CRMu and its associated

L3 ReMu are needed.

Figure 1.13 – Level 3 management depending on the role of the PE.

Although in this thesis, HDCRAM is used for cognitive radio system, it can also be

applied to any other complex systems. HDCRAM has also been proposed to manage the

smart grid [79].

1.3.2 Heterogeneous Deployment

1.3.2.1 Hardware Platforms

In order to design cognitive equipments, flexible and efficiently reconfigurable hard-

ware platforms are necessary. Many hardware platforms can be used to design cognitive

equipments. Those include General Purpose Processors (GPPs), Digital Signal Processors

(DSPs), Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Cir-

cuits (ASICs), etc.

General Purpose Processors

GPPs are suited for generic applications and normally are not designed for any par-

ticular applications (real-time applications etc.). Programs are written in easily unders-

tandable high-level programming languages, such as C and C++. Although some modern

GPPs have parallel units, the instructions are still mainly executed in a sequential fashion.

GPPs are usually running a operating system (OS) thus have a level of abstraction of the

hardware. Hence GPPs are very flexible, but with the cost of low performance and high

energy consumption.
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Digital Signal Processors

DSPs, similar to GPPs, can be programmed with high-level languages, but the archi-

tecture of the DSP is specially designed with optimized arithmetic logic for the high speed

computations needs of digital signal processing. Therefore, DSPs provide good flexibility

with improved performance and low power consumption.

Field-Programmable Gate Arrays

FPGAs are semiconductor devices that are based around a matrix of configurable lo-

gic blocks (CLBs) connected via programmable interconnects. Different from GPPs and

DSPs, the development of FPGAs uses Hardware Description Languages (HDL), such as

Very-high-speed integrated circuit HDL (VHDL) and Verilog. One advantage of the FP-

GAs is the high degree of parallelism, which provides a high-level computational capacity.

Hence their performance is close to that of ASICs. Compared with ASICs, FPGAs are

reconfigurable thus have some kind of flexibility at the price of higher power consumption

than the ASICs. Traditional FPGAs cannot change the functionality during operation

once it has been configured. An FPGA has to stop running and reprogram the entire logic

even if a very small part of the logic needs to be updated. Recently, some FPGA families

have provided a Dynamic Partial Reconfiguration (DPR) [78, 80, 81] technique. DPR is

the ability to dynamically reprogram a subset of the logic within an operating FPGA.

This is done thanks to the download of a partial configuration file while the remaining

logic continues to operate without interruption [24].

Application Specific Integrated Circuit

An ASIC, as the name indicates, is an integrated circuit customized for a specific

application. In contrast to a general purpose circuit, an ASIC is highly optimized for a

particular use purpose, therefore has high performance and low power consumption, but

at the expense of no flexibility. ASICs are not reconfigurable, if new features are required,

the entire ASIC must be redesigned. Therefore, ASIC is not a very good choice in the CR

domain.

Figure 1.14 concludes the above-mentioned hardware platforms from the perspectives

of performance and flexibility.
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Figure 1.14 – Conclusion of several different hardware platforms from the perspectives

of performance and flexibility.

We do not try to compare which hardware platform is advantageous over others. Each

hardware platform has its own advantages and disadvantages. In fact, a heterogeneous ap-

proach to combine different hardware platforms is a better choice. Actually, some vendors

have already taken this approach. For example, Xilinx Zynq-7000 All Programmable SoC

(AP SoC) integrates a ARM and a FPGA in a single device, thus taking the advantage

of the flexibility of the GPP and the performance of the FPGA at the same time.

1.3.2.2 Deployment Example

There may be many different choices to deploy HDCRAM. In this section, we only take

one possible HDCRAM deployment method as an example, to introduce the deployment

of HDCRAM, as shown in Figure 1.15. It comprises a GPP, a DSP, a FPGA, and a

Zynq based device. A straightforward way is placing the level 1 manager on the GPP,

and multiple level 2 and level 3 management units on it. A level 2 management unit

and multiple level 3 management units are deployed on DSP, FPGA, as well as Zynq.

An embedded processing core Microblaze is employed on the FPGA with the level 2

management unit on it. A PE could either be hardware in logic or software on Microblaze.

Therefore, a level 3 management unit that is in charge of managing a PE could also be

hardware or software, or part of it is software executed on Microblaze and another part is
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hardware. The choice is dependent on the given scenarios, and predefined at the beginning

design stage of the system. On Zynq, similar to the PFGA, a level 2 management unit is

on processing system (PS), and a PE could also either be hardware on programmable logic

(PL) or software on PS. A level 3 management unit could also be hardware or software,

or part of it is software executed on PS and another part is hardware on PL.

Figure 1.15 – A schematic example of HDCRAM architecture.

1.3.3 Software Radio Engines

1.3.3.1 GNU Radio

GNU Radio [82] is a well known and widely used free software development toolkit

for the design of software defined radio. GNU Radio Companion provides a graphical user

interface (GUI) to make it easy to use in a drag-and-drop way. One shortcoming of GNU

Radio is that it needs to stop running and recompile the application even only a parameter

is reconfigured. It does not well support the hardware development.
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1.3.3.2 RFNoC

Thereforer, RFNoc [83] has been developed to support the FPGA development. RFNoc

can be integrated into GNU radio. The blocks of RFNoC can be used in the same way as

those in GNU Radio, but the data of these processing blocks are offloaded to FPGA. The

RFNoC has the same problem that sometimes it requires to pause the application when

reconfiguring a parameter.

1.3.3.3 IRIS

Iris [84] is a software architecture for development of cognitive radio systems. Iris has

defined three levels of reconfiguration : the reconfiguration of a parameter of a component ;

or structural reconfiguration, e.g., changing components ; and reconfiguration of the entire

application. Although it supports runtime reconfiguration but it is mainly at the software

level. It is using high level synthesis written in C++ and does not go deep into hardware.

All these three engines do not support the runtime dynamic partial reconfiguration of

the hardware. Our HDCRAM approach not only supports the reconfiguration of parame-

ters, adding and deleting components, and the reconfiguration of the entire application,

but also supports the runtime dynamic partial reconfiguration of FPGA. This is why we

implement the HDCRAM on hardware platforms, which will be introduced in the next

chapter. Table 1.2 summarizes these SDR engines.

1.4 Conclusion

With the explosive growth of data traffic in wireless communication, ICT industry is

facing more and more serious challenge of increasing energy consumption. Energy effi-

ciency has drawn increasing attention. In section 1.1, the motivations of the research on

energy efficiency have been discussed. And we introduce a non-exhaustive list of relevant

projects. Compared with all these projects, only a few of them use CR as a tool reach

green radio, and only our approach implement the cognitive cycle in hardware equipments.
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Table 1.2 – Software Radio Engines.

Engines
Development

language
FPGA support

Runtime

reconfiguration

Dynamic

partial

reconfiguration

GNU Radio
C++

& Python
Not supported Parameter Not Supported

GNU Radio

+ RFNoC

C++

& Python

& Verilog

Supported Parameter Not Supported

Iris C++ Supported

Parameter

& component

& application

Not Supported

HDCRAM
C++

& VHDL
Supported

Parameter

& component

& application

Supported

As an enabling technology for green radio communications, cognitive radio has been

introduced in section 1.2. CR is often reduced to the vision of spectrum-sensing cognitive

radio, in this thesis, we treat CR in a general vision that known as full cognitive radio.

In order to efficiently manage the CR features, a management architecture HDCRAM,

has been presented in section 1.3 to be integrated into CR equipment, to glue sensing,

decision, and action together to efficiently manage the CR features. HDCRAM supports

heterogeneous hardware platforms working together to take advantages of the merits of

different platforms. As described in section 1.3.3, HDCRAM is well adapted for runtime

dynamic reconfiguration of both software and hardware.





Chapter 2

HDCRAM on FPGA Platform

2.1 Introduction

As discussed in section 1.3, a management architecture is necessary to efficiently ma-

nage the CR features and functionalities. Taking into account the capability of dynamic

partial reconfiguration of FPGA equipments, in this chapter, we introduce the implemen-

tation of HDCRAM on two FPGA platforms.

2.2 Partial Reconfiguration on FPGA Platform

FPGA devices have provided the flexibility to do on-site device reprogramming, but

a drawback of traditional FPGA is that it has to stop running and reprogram the entire

logic even if a very small part of the logic needs to be updated. Recently, some FPGA

families have provided a Dynamic Partial Reconfiguration (DPR) [24] technique, which

extends the inherent flexibility of the traditional FPGA. DPR allows designers to change

the functionality of specific regions in an operating FPGA by dynamically downloading

a partial configuration bitstream while the remaining logic continues to operate without

interruption.

Our SCEE team has worked on DPR since the work of [78], and then developed a

more efficient DPR controller than Xilinx provided one and applied to a Network on Chip

(NoC) structure [80]. DPR has also been applied to a video application [81].

69
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A Partial Reconfiguration system on a Xilinx Virtex FPGA is mainly implemented by

using the Internal Configuration Access Port (ICAP). The ICAP reads a partial bitstream

from a nonvolatile memory or form a memory cache (e.g., Block RAM, SRAM), and then

reconfigures the specific portion of the FPGA. On Xilinx Zynq-7000 platform, DPR can

be implemented by ICAP, or through the processor configuration access port (PCAP). We

have learned the Partial Reconfiguration design Flow as well. A partially reconfigurable

FPGA design project is more complex than an average FPGA design project.

The logic in the FPGA design is divided into two different types, reconfigurable logic

and static logic. Reconfigurable logic is any logical element that is part of a reconfigurable

region. These logical elements are modified when a partial bitstream is loaded. Static logic

is any logical element that is not part of a reconfigurable region. These logical elements

are never partially reconfigured and always active when a partial bitstream is loaded [24].

As shown in Figure 2.1, the block portion labeled Reconfigurable Region represents

reconfigurable logic and the light gray area of the FPGA block represents static logic. The

function implemented in Reconfigurable Region is modified by downloading one of several

available partial BIN files, PR1.bin, PR2.bin, PRn.bin, etc.

Figure 2.1 – Reconfigurable logic and static logic.

There are many reasons why the DPR is advantageous over traditional full configura-

tion.

XFlexibility. The functionality of part of the FPGA can be updated at any time by

locally or remotely loading the partial bitstream that is needed on the fly, which makes

the hardware software-like.
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XReduce reconfiguration time. Because a partial bitstream is smaller than the full

bitstream, and the configuration time is proportional to the size of the bitstream, the

reconfiguration time of DPR is shorter. Especially when the partial bitstream is quite

small, compared with the reconfiguration of the entire device, DPR can significantly re-

duce the reconfiguration time, which is quite useful to applications requiring strict timing

constraints.

XImprove performance. Only a portion of the device is reconfigured, the static logic

remains functioning and is completely unaffected by the loading of a partial BIN file.

There is no need to stop running and reprogram the entire device, therefore, it does not

affect the performance of the rest of the device.

XHardware sharing. DPR can realize the hardware reuse, which enables different func-

tionalities to be implemented in the same portion of the device.

XSave space and resources. By taking advantage of the DPR, the same system can

be implemented in smaller devices featuring less resource thus reducing the size of the

FPGA.

2.3 HDCRAM Implementation

2.3.1 Virtex 5 Platform

The management architecture comprises one PC and one FPGA, as shown in Figure

2.3. The level 1 HDCRAM is unique and implemented on a PC. Therefore, on the FPGA

side, the highest level is level 2. The Xilinx ML506 board (the brief introduction can

be found in Appendix B) is connected to PC by an Ethernet cable. The communication

among different platforms of HDCRAM follows the User Datagram Protocol (UDP), which

makes the communication easier and flexible. By this method, different devices do not have

to be placed together very near to each other. They are connected with each other via

Ethernet only requiring their IP addresses. It makes the system scalable so that we can

add new devices easily, and need not change those devices that have already existed.

Various components are necessary, and all these components work together, enabling the

implementation of reconfiguration management on FPGA platform.
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The following explains how the different components work together that enables the

reconfiguration management functionality in Figure 2.2.

Figure 2.2 – An example of management functionality.

A. Hardware UDP Core

Based on the Embedded Hard Tri-Mode Ethernet MAC [85] provided by Xilinx, we

have developed a hardware UDP CORE, which works at 1Gbits/s and thus provides a

high speed transmission of data and partial bitstreams [86]. In addition to UDP protocol,

it also supports Address Resolution Protocol (ARP). The reason of including the ARP

protocol is that it allows FPGA to change its IP address thus to dynamically build up

communication with different devices. When receiving a packet, the UDP CORE extracts

the effective data from the incoming packet by trimming the headers, and then sends the

effective data to the corresponding component. On the contrary, when transmitting data,
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Figure 2.3 – The block diagram of the management platform.

the UDP CORE adds the headers in front of the data before sending a frame. The details

of the hardware UDP CORE can be found in Appendix A.

The interface of the UDP core is as below, which mainly has 3 parts : receive part,

transmit part, and the connection to Embedded Hard Tri-Mode Ethernet MAC.

UDP core inst : UDP core

port map (

−− UDP Layer s i g n a l s

−−rx

u d p r x s t a r t =>

r x u s r d a t a s t a r t , −−user data s t a r t

data rx out => data rx out ,

d a t a l e n r x => data l en rx ,

s r c p o r t r x => s r c p o r t r x ,

d s t p o r t r x => ds t po r t rx ,

s r c i p r x => s r c i p r x ,

−−tx
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t x s t a r t =>

t x s t a r t ,

data input bus => tx data bus ,

da ta l ength => data l en tx ,

s r c p o r t => ds t po r t rx ,

d s t p o r t => d e s t p o r t t x ,

d s t i p a d d r => ds t ip addr ,

tx data out r eady =>

t x u s r d a t a s t a r t , −−

s t a r t user data

−− system s i g n a l s

c lk emac =>

emac clk ,

re se t emac =>

emac reset ,

o u r i p a d d r e s s =>

l o c a l i p a d d r e s s ,

our mac address =>

l o ca l mac addre s s ,

−− Clock S i g n a l s − EMAC0

−− SGMII I n t e r f a c e − EMAC0

TXP 0 => TXP 0 ,

TXN 0 => TXN 0 ,

RXP 0 => RXP 0 ,

RXN 0 => RXN 0,

PHYAD 0 => PHYAD 0,

−− unused t r a n s c e i v e r

TXN 1 UNUSED => TXN 1 UNUSED,

TXP 1 UNUSED => TXP 1 UNUSED,

RXN 1 UNUSED => RXN 1 UNUSED,

RXP 1 UNUSED => RXP 1 UNUSED,
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−− SGMII RocketIO Reference Clock b u f f e r inputs

MGTCLK P => MGTCLK P,

MGTCLK N => MGTCLK N,

−− Asynchronous Reset

RESET => RESET,

PHY RESET => PHY RESET

) ;

B. Demultiplexer and Arbiter

There are several different types of data, which should be correctly sent to the cor-

responding components. Figure 2.4 shows the different data paths. Depending on the

destination port of the incoming UDP packet, we classify the incoming data into three

kinds : command, processing data, and partial bitstream. But the UDP core has only

one receiver, so a demultiplexer is necessary to switch the data path depending on the

incoming data type. If the incoming packet is a command, it should be sent to level 2

ReMU implemented in Microblaze ; if the incoming packet is processing data, it should be

transmitted to processing elements (PEs) ; if the incoming package is a partial bitstream,

it should be stored in SRAM. Likewise, an arbiter decides what kind of data should be

sent to transmitter when the FPGA sends data to PC.

Figure 2.4 – Demultiplexer and Arbiter.

C. Microblaze
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A level 2 management is implemented in Microblaze, which is a soft processor core

embedded in FPGA. The level 2 management controls the level 3 management units,

both software and hardware management units. Multiple software CRMUs and ReMUs

and software PEs can be created in Microblaze. They are software coded with C or C++

language, for instance a function in a class.

D. Hardware PE Controller

It is easy to implement such software management units and PEs. Generally, software

is flexible, but hardware has good performance. Therefore, we expect to have the hardware

PE that is as flexible as software and at the same time keeps its performance. With this

aim in mind, we have developed hardware PE controller (namely hardware level 3 CRMU

and ReMU), which is connected to Microblaze, as shown in Figure 2.5.

Figure 2.5 – Hardware PE controller.

The interface between PE controller and Microblaze has several signals such as ad-

dress, input, and output. In this way, we can have enough parameters only using these

signals. As shown in Table 2.1, address 0 corresponds to parameter 1 or state 1 ; address

4 corresponds to parameter 2 or state 2, and so on. Depending on the different values of

the address signal, we can easily change the parameters of the hardware PE or read the

states of the hardware PE. For example, when L2 ReMU sends a command to reconfigure

a parameter of the hardware PE, Microblaze first writes the address value corresponding

to this parameter into the address signal, then writes the new value of the parameter

into the input signal of the PE controller (L3 ReMU). And when L2 CRMU reads a state

value of the hardware PE, Microblaze first writes the address value corresponding to this

parameter into the address signal, then reads the state value of the hardware PE from

the output signal of the PE controller (L3 CRMU).
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Table 2.1 – Relations between address, parameter, and state.

Address Parameter State

0 P1 S1

4 P2 S1

8 P3 S3

... ... ...

4(x-1) Px Sx

There is one address signal, and in order to avoid conflict, only Microblaze can write

values into this address signal. The hardware PE controller is not allowed to write values

to the address signal, but it can read the value of the address signal. When the L2 CRMU

wants to read the metrics of the hardware PE, Microblaze writes the address value cor-

responding to the metric into the address signal. Then PE controller writes the value of

the metric (L3 CRMU) into the output signal, and waits Microblaze to read it.

The hardware PE supports Dynamic Partial Reconfiguration. When it needs only to

change the general parameters, it uses the method discussed above. When it needs to

change the overall functionality of the hardware PE, it is better to choose the Dynamic

Partial Reconfiguration approach. Besides, it is also possible to delete the hardware PE

by downloading its corresponding black partial bitstream. The DPR feature makes our

platform more flexible.

E. Bitstream Controller

When the incoming data is a partial bitstream, the Demultiplexer switches the data-

path to the Bitstream Controller. The Bitstream Controller reads the partial bitstream

from UDP CORE and writes it into SRAM. Meanwhile, the Bitstream Controller sends

the length of the incoming partial bitstream to Microblaze. Because Microblaze is more

flexible than hardware logic, we choose Microblaze to manage the base address and the

length of the partial bitstream. The base address of the first partial bitstream begins with

0, which is the beginning address of SRAM. In this way, we can calculate the base address

of the next partial bitstream if we know the length of the current partial bitstream. In

order to efficiently manage the partial bitstreams, Microblaze makes the base address and
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the length of a partial bitstream as a pair so that it can find the corresponding partial

bitstream correctly when performing a partial reconfiguration.

F. Icap Controller and ICAP

Internal Configuration Access Port (ICAP) [24] is responsible for reconfiguring the

specific portion of the FPGA. The Icap Controller is connected to Microblaze. All reconfi-

gurable PEs share the Icap Controller and ICAP. When a hardware PE needs to perform

a partial reconfiguration, Microblaze sends its corresponding base address and the length

of the partial bitstream to the Icap Controller, then, according to the base address and

the length, the Icap Controller reads the partial bitstream from the SRAM and sends it

to ICAP. Finally ICAP reconfigures the region of this hardware PE.

G. SRAM

Partial bitstreams are downloaded and stored in a 1MB SRAM so that it can reduce

the reconfiguration time, because we can reuse the partial bitstreams many times after

downloading and storing them in SRAM thus do not need to download them every time.

The functionality of SRAM is similar to a local software library.

2.3.1.1 Data transfer between UDP core and Microblaze

The IP address is connected to Microblaze by General Purpose Input/Output (GPIO),

so that we can change the IP address by software.

UDPrx :

When the data path is switched to Microblaze, the incoming data are cached into

a FIFO, and the connection between FIFO and Microblaze is via GPIO, the interface

is shown in the following codes. The data transmission is controlled by rd data start,

rd clk, rd en, and rd len. When a packet is sending to Microblaze, the signal rd data start

activates an interrupt of Microblaze, then the Microblaze controls signals mentioned above

to read the incoming data from the FIFO.

udprx command inst : udprx command

port map
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(

−−UDP core i n t e r f a c e

clk emac => emac clk ,

re se t emac => emac reset ,

u d p r x s t a r t => r x u s r d a t a s t a r t ,

da ta rx out => data rx out ,

d a t a l e n r x => data l en rx ,

d s t p o r t r x => ds t po r t rx ,

s r c i p r x => s r c i p r x ,

−−Microblaze i n t e r f a c e

r d s t a r t => rd data s tar t GPIO IO I p in ,

r d c l o c k => rd clk GPIO IO O pin ,

rd en => rd en GPIO IO O pin ,

rd data => rd data GPIO IO I pin ,

r d l e n => rd len GPIO IO I pin

) ;

UDPtx :

Although we can use the same way as receiving method (namely via GPIO and then

FIFO) to send data from Microblaze to UDP core, we would like to find a better way,

which makes it easier for Microblaze to write data and has a higher speed. Because the

data width in UDP core is 8 bits and the Microblaze is slower than the hardware, we

would like to write 32-bit data each time by Microblaze and split the 32-bit data into 4

bytes in the hardware to increase the speed. Therefore, the dual port block RAM (BRAM)

is a good choice.

Figure 2.6 explains how the BRAM connects to the Microblaze. The BRAM (bram block 0

in Figure 2.6) has 2 ports : PORTA and PORTB. PORTA is connected to the BRAM

controller, and the BRAM controller is connected to the Data-side Local Memory Bus
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(DLMB) of the Microblaze, so that the Microblaze can directly write the data into the

BRAM. PORTB is connected to the hardware logic by ”Make External” as shown in

Figure 2.7.

Figure 2.6 – Connection between Block RAM and Microblaze.

Figure 2.7 – Connection between Block RAM and hardware logic.

The interface between UDP core and Microblaze is shown in the following codes. The

Microblaze writes the 32-bit sending data into BRAM, and then the bram udptx block

reads the data from BRAM and converts the 32-bit data to 8-bit data then sends them

to the UDP core.

bram : bram udptx

port map
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(

Udp tx Data => tx data bus ,

c l k i n => emac clk ,

r s t => emac reset ,

udp va l id => t x u s r d a t a s t a r t ,

BRAM Rst B => bram block 0 BRAM Rst B ,

BRAM Clk B => bram block 0 BRAM Clk B ,

BRAM EN B => bram block 0 BRAM EN B ,

BRAM WEN B => bram block 0 BRAM WEN B ,

BRAM Addr B => bram block 0 BRAM Addr B ,

BRAM Din B => bram block 0 BRAM Din B ,

BRAM Dout B => bram block 0 BRAM Dout B

) ;

2.3.1.2 The Speed of Downloading FPGA Partial Bitstreams through UDP

As described above, the hardware UDP CORE works at 1Gbits/s, namely the data

rate is 125MBytes/s. But, we should find out the actual data rate by taking into account

the overhead when transmitting the bitstreams, because each UDP packet has a preamble

and several headers.

Ethernet data are encapsulated in frames. Figure 2.8 illustrates the format of a stan-

dard Ethernet frame [85]. Because we adopt UDP protocol, our partial bitstreams, as well

as IP headers and UDP headers, are inserted into the data field of the Ethernet frames.

The length of the data field can vary from 0 to 1500 bytes for a normal frame. The IP

header has a length of 20 bytes, while the length of UDP header is 8 bytes. Therefore,

in addition to the headers, the maximum length of the effective data is 1500 - 20 - 8 =

1472 bytes in a standard Ethernet frame, the maximum length of which is 1518 + 7 + 1

= 1526 bytes. The overhead of each standard Ethernet frame is 7 + 1 + 6 + 6 + 2 + 20

+ 8 + 4 = 54 bytes, no matter whether the frame is with the maximum length or not.

If a partial bitstream has a bigger size than 1472 bytes, it requires the reconfiguration
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manager to send multiple frames. As a matter of fact, normally the lengths of the partial

bitstreams are larger than 1472 bytes.

Figure 2.8 – Standard Ethernet Frame Format.

Therefore, in order to reduce the total overhead, each time, we should send the frame

with the maximum length as much as possible.

The ratio of the length of the partial bitstream to the bytes totally transmitted de-

termines the actual data rate. As presented in subsection II.B, the hardware UDP core

works at 125 MHz. Therefore, we can get the actual data rate (Bytes/s) from (2.1).

The numerator n is the length of the partial bitstream, and the denominator is the

bytes totally transmitted. The function rem (n, 1472) calculates the remainder of dividing

1472 into n.

We can calculate the limit data rate from (2.1), which is nearly 120.6Mbytes/s.

RUDP =
n⌊

n
1472

⌋
× 1526 + rem(n, 1472) + 54

× 125 × 106 (2.1)

In the following subsection, we would like to compare our method with the fastest

partial bitstreams downloading approach through Ethernet that we could find so far.

lwIP is an open source networking stack for embedded systems [87]. Xilinx Embedded

Development Kit (EDK) provides the Ethernet MAC IP xps ll temac to send and receive

packets. It supports lwIP to add networking capability to a Xilinx embedded system.

The approach proposed in [88] can download partial bistreams with a sustained rate of

80 Mbits/s over Ethernet 100 Mbit/s. The xps ll temac application on Virtex-5 provided

in [87] works at 125 MHz. The maximum throughput of Xilinx Virtex-5 xps ll temac in the

RAW mode is 100 Mbps, namely 12.5MB/s, without considering the overhead of headers.
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Figure 2.9 – The performance of hardware UDP core and Xilinx Virtex-5 xps ll temac.

Therefore, we would like to compare our method with the maximum throughput of

Xilinx Virtex-5 xps ll temac. Even though our method takes into account the overhead,

it is much faster than Xilinx Virtex-5 xps ll temac.

Figure 2.9 illustrates the comparison of our method with the maximum throughput

of Xilinx Ethernet MACs using lwIP. The length of the partial bitstream ranges from 1K

bytes to 50K bytes, with the step size of 1K bytes.

We can see that our method is about 10 times faster than the maximum throughput

of Xilinx Virtex-5 xps ll temac.

2.3.1.3 Discussion on the Reconfiguration time

We hope we can change the functionality of a SDR equipment immediately without

any delay, but normally it is impossible in reality.

In a way, the process of downloading a partial bitstream, itself, could be considered

as the overhead of a system. We denote t as the time consumed to download a partial

bitstream with the length of n bytes. We can calculate t more accurately by (2.2) using



84 HDCRAM on FPGA Platform

Figure 2.10 – The download time vs

length of partial bitstream.

Figure 2.11 – The partial reconfiguration

time vs length of partial bitstream.

the bytes totally transmitted instead of the length of the partial bitstream by taking into

account of the headers.

t =

⌊
n

1472

⌋
× 1526 + rem(n, 1472) + 54

125
µs (2.2)

Similarly, performing a process of partial reconfiguration takes time, therefore, the

time consumed by partial reconfiguration could also be considered as the overhead. As

discussed in Section III, the throughput of the partial reconfiguration is 400Mbytes/s,

therefore, we can calculate the time it requires to perform a partial reconfiguration.

Figure 2.10 and Figure 2.11 illustrate the download time and partial recofiguration

time respectively with the length of partial bitstream ranging from 1K bytes to 50K bytes.

Although we can download the partial bitstreams at a high speed, it still consumes

more time in contrast to partial reconfiguration. In order to reduce the overhead for a SDR

system when changing its functionality, it is a good choice to store the partial bitstreams

in a local memory. The memory should be close to the ICAP and can be accessed directly

by the Icap Controller. In this way, the reconfiguration time can be reduced by eliminating

the download time. For example, if the length of a partial bitstream is 30K bytes, the first

time it needs 254.8 + 76.8 = 331.6 µs to change the functionality, but after that it needs

only 76.8 µs to do the same thing, because we store the partial bitstream in the local

memory and can reuse it many times.
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A study of parallel / serial implementation of FIR filter has employed Virtex 5 plat-

form, which is detailed in section 3.4.

2.3.2 Zynq-7000 Platform

Although we have implemented HDCRAM on Xilinx Virtex 5 Platform, there are still

some limitations :

- software is standalone application without OS ;

- codes on Microblaze are hardware dependent ;

- hard to migrate ;

- high power consumption, etc.

Therefore, when we have the Xilinx Zynq-7000 platform, we decided to implement

HDCRAM on the new platform because of several benefits :

- software is running in Linux on ARM ;

- thus easy to upgrade ;

- portable ;

- low power consumption, etc.

2.3.2.1 HDCRAM implementation on ZC702 Evaluation Board

The ZC702 evaluation board (refer to Appendix C for this board) utilizes a Xilinx

Zynq-7000 All Programmable SoC (AP SoC), which integrates a dual-core ARM Cortex-

A9 as the processing system (PS) and a Xilinx’s 7 series FPGA Artix-7 as the program-

mable logic (PL) in a single device [89].

On Zynq, there are two ways for DPR to reconfigure the PL, i.e., either by the internal

configuration access port (ICAP) primitive on PL, or through the device configuration

(DevC) / processor configuration access port (PCAP) interface on PS [90]. ICAP can

only perform partial reconfiguration on PL, but PCAP supports both full and partial

reconfiguration of the PL from the PS, which provides more flexibilities. Furthermore,

the bitstreams are transferred to the PCAP interface by a Direct Memory Access (DMA)
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approach, which frees the processor to execute other tasks. Therefore, we utilize the PCAP

method.

Different functions can be designed to share the hardware PL by dynamic full and

partial reconfiguration in the field. The generated full and partial bitstreams can be stored

in a database. Each function has a full bitstream and several partial bitstreams depending

on the real needs. Figure 2.12 illustrates the storage organization of the BIN files database.

Figure 2.12 – The storage organization of the reconfiguration bitstreams.

As shown in Figure 2.13, the main form of connection between the PS and PL ele-

ments of Zynq is via AXI (Advanced eXtensible Interface) interfaces, which provide high

bandwidth, low latency links between both parts of the device.

We can create a hardware PE as a custom peripheral on PL, and communicate with

PS via AXI interface. This is done by ”Create and Import Peripheral Wizard” in XPS

(Xilinx Platform Studio).

We choose the AXI4-Stream interface, which is designed for the transmission of high-

speed streaming data. Connection is from master to slave only, so if bidirectional transfers

are required both peripherals must be of type master/slave.
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Figure 2.13 – A simplified architecture of the ZC702 evaluation board.

But we can not directly connect the AXI4 streaming interface to the AXI interconnect.

So we use an AXI DMA Engine to convert AXI4 Streaming to AXI interconnect, which

is then connected to an AXI HP (High Performance) interface. The AXI HP interfaces

provide PL bus masters with high bandwidth data paths to PS memories including the

DDR memory and OCM (On-Chip Memory). The interfaces are illustrated in Figure

2.14. The AXI MM2S (Memory-Mapped to Streaming) and AXI S2MM (Streaming to

Memory-Mapped) are memory-mapped AXI4 buses, which are connected to PS, while

the AXIS MM2S and AXIS S2MM are AXI4 streaming buses, which are connected to the

custom PE. Further information is available in [91].

Figure 2.14 – The interfaces between PE and PS.
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The HDCRAM manages the full and partial reconfiguration. Figure 2.15 illustrates

the HDCRAM implementation on the ZC702 evaluation board. The level 1 manager is

implemented on the host computer. On the ZC702 evaluation board, a level 2 management

unit is implemented on PS. A PE may either be hardware on PL or software on PS.

Therefore, a level 3 management unit that is in charge of managing a PE may also be

hardware or software, or part of it is software executed on PS and another part is hardware

on PL.

Figure 2.15 – The HDCRAM implementation on the ZC702 evaluation board.

There are different ways to store the reconfiguration bitstreams :

* All the reconfiguration bitstreams can be stored in the database on the host com-

puter. The full or partial bitstreams can be remotely downloaded through Ethernet

to change the functionality of the complete or pre-defined regions of PL on the fly

as needed.

* They can also be stored on the SD card on the ZC702 evaluation board if the level

2 management works standalone. It is also possible to dynamically download new

full and partial bitstreams through Ethernet to update the database.

* Some partial bitstreams are able to be read into the on-chip memory on PS if they

are frequently used.

2.3.2.2 Case study

A finite impulse response (FIR) filter is a commonly used processing element in digital

signal processing. It could be implemented either in software mapped onto the PS or in

hardware mapped onto PL. Therefore, we would like to investigate the benefit and cost of
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the FIR filter implementation on PS and PL respectively, and then the results will provide

helpful information for CRMu to make an appropriate decision.

Evaluation of performance and power consumption of FIR filter implementa-

tions

Take a 32-tap FIR filter as an example, which is implemented on PS and on PL respec-

tively. The operations are executed in serial on PS, but on PL, the FIR filter could be

implemented in serial or in parallel.

And the hardware serial and parallel implementations of the FIR filter reuse the PL

logic by taking advantage of the PR. After generating the full and partial bitstreams for

the PL following the PR design flow, we store them in the database on the host as shown

in Figure 2.16. A blank full bitstream is also generated to clear the PL to save power if

the PL part is not needed, which is stored in NOPL folder. Table 2.2 shows the resource

available in the reconfigurable region and used by the FIR filter. The serial implementation

consumes less resource, and it uses 2 DSP48E1s, which is 32 times less than the parallel

implementation. But the serial way consumes more memory than the parallel approach.

Figure 2.16 – The full and partial bitstreams of the design.

The timing overhead of full and partial reconfiguration should also be considered. Be-

cause downloading a bitstream remotely from the host computer consumes longer time

than that from the local memory, if we can benefit from remote reconfiguration, un-

doubtedly we can also benefit from local reconfiguration. The sizes of full and partial

bitstreams, and the time consumed of remote full and partial configuration are listed in

Table 2.3.
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Table 2.2 – Resources available and used by the FIR filter.

Resource Available Serial Parallel

LUT 10304 868 1096

FD LD 20608 1516 3108

SLICEL 1564 141 288

SLICEM 1012 91 187

DSP48E1 72 2 64

RAMBFIFO36E1 36 8 4

Table 2.3 – Full and partial configuration time.

Type Size (bytes) Time (µs)

Full 4 045 564 215 736

Partial 707 712 51 865

We have also measured the power consumption of both PS and PL. The most conve-

nient and simplest way to monitor the power consumption on ZC702 board is to use

Texas Instruments’ (TI) Fusion Digital Power Designer, which is a Graphical User In-

terface (GUI) used to monitor and display the real-time voltage and current of selected

power rails of the board [89, 92]. Table 2.4 lists the power consumption of PL for blank

design and the FIR filter.

Table 2.4 – Power consumption of PL.

Function NOPL Serial Parallel

Power(W) 0.06 0.095 0.101

In order to clearly and visibly observe the results, we have sent amount of data to the

implemented software and hardware FIR filter. Each time we sent 4096 32-bit integers and

then repeat 2000 times. When the hardware approach is chosen, the data are transferred

between PS and PL by DMA approach. Table 2.5 gives the total time consumed by

software and hardware implementations of the FIR filter.
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Table 2.5 – Execution time of the FIR filter.

Software

(µs )

Hardware (µs)

Serial Parallel

12 229 279 281 315 279 026

We can see that although the hardware approaches consume much less time than

the software way, the hardware parallel implementation is not as fast as expected more

than 32 times faster than the serial implementation, which is because the overhead of

data transmission between PS and PL. It takes some time when the data and commands

are transmitted from user space to Linux driver and then to the hardware. Therefore, if

only offloading the FIR filter from the PS onto the PL, it is better to choose the serial

implementation, which occupies less resource and consumes less power while not losing

much performance.

The reason why we repeat 2000 times is that we cannot catch the power changes by

TI Fusion Digital Power Designer when the execution time is too short. And even so,

sometimes we still cannot catch PR and hardware FIR filter operations. For the sake of

comparison and analysis, we put the operations of software FIR filter, PR, and hardware

FIR filter together in Figure 2.17. At time 41 :00, the software FIR filter are started

execution, at around 41 :25 PR is performed to reconfigure the PL, and at time 41 :36,

the hardware FIR filter operations are executed. The power risings at around 41 :25 and

at 41 :36 are because the data transmission from PS to PL. We can see that the power

increases from 0.33W to 0.44W during software FIR filter operations, which lasts about

12.23s. But the additional power increase of the hardware serial and parallel implemen-

tations is around 0.04W on PL, which is less than 0.11W on PS.

Management of FIR filter by HDCRAM

Based on the above results, it is possible to benefit both performance and power consump-

tion by offloading the FIR filter from the PS onto the PL. Another advantage is that it

frees the PS to execute other tasks.

Therefore, we choose to implement the level 3 management of the FIR filter on the PS.

The L2 CRMu makes the decision to implement the FIR filter on PS or on PL in serial
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Figure 2.17 – Power consumption of PS.

or in parallel based on the information obtained from other L3 CRMus. And then the

L2 ReMu sends the corresponding reconfiguration command to the L3 ReMu of the FIR

filter, who then maps the FIR filter onto PS by calling the software FIR filter function or

onto PL by dynamic full or partial reconfiguration.

Figure 2.18 – Management of FIR filter.

If the PL is occupied by other computation intensive PEs and has no more space for

the FIR filter, there is no choice and the L2 CRMu decides to implement the FIR filter

in software on PS, which consumes 0.11W more power and has a longer execution time.

Else if the preceding PE and the succeeding PE of the FIR filter is implemented on PS,

the L2 CRMu decides to implement the FIR filter on PL in serial mode, because it uses

less resource with additional 0.035W power consumption and the performance is close to



2.4 Conclusion 93

the parallel way (see Table 2.5) due to the overhead of data transmission between PS and

PL.

Else if the preceding PE or the succeeding PE of the FIR filter is implemented on

PL, the L2 CRMu decides to implement the FIR filter on PL in parallel mode, because

the speed is more than 32 times faster than the serial way and the data transmission is

in hardware, which does not slow down the data processing. This way consumes 0.041W

more power but has a higher performance.

2.4 Conclusion

In this chapter, we have briefly introduced partial reconfiguration, and mainly explai-

ned how the HDCRAM could be implemented on two FPGA platforms, Virtex 5 and

Zynq-7000, what kinds of components are developed and used, and how they work to-

gether to achieve the functionality of reconfiguration management. We have studied the

commonly used FIR filter and the benefit and cost when it is implemented on PS and PL

on Zynq-7000 platform. To process the same amount of data, the software FIR filter needs

about 12.23s and consumes 0.11W, the hardware parallel FIR filter needs about 281µs

and consumes around 0.041W, and the hardware serial FIR filter needs about 279µs and

consumes around 0.035W. The results show that we can win both performance and power

consumption by offloading the FIR filter from the PS onto the PL. But it also shows

that the hardware parallel implementation is not as faster as expected than the serial

implementation because of the overhead of data transmission between PS and PL. The

time consumption is not only the process time, but also includes the time for data upload

and offload. These information are then provided to the HDCRAM to make appropriate

decisions.





Chapter 3

Metrics on FPGA Platform

3.1 Introduction

In this chapter, we mainly introduce some metrics that are useful for the manage-

ment architecture to efficiently manage the equipment. In order to efficiently use these

metrics when some of them are employed in certain scenarios, we discuss these metrics in

many aspects, such as self-changeability, configurability, green impact, working level, and

susceptibility.

We study the FIR filter as a use case of some of the metrics. The FIR filter is imple-

mented in parallel and in serial respectively, and at the same time, changing the working

frequency of the filter. The results show that, although the serial mode uses fewer resources

and consumes less power at lower frequencies, in order to keep the same performance, it

consumes more power than the parallel mode when it works at frequencies higher than

25.6MHz.

We also estimate the relation between power consumption and the number of taps

of the FIR filter. There is a trade off between the power consumption, the performance,

and the resources. The system has to make a optimal choice depending on its working

environment.

95
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3.2 Useful Metrics on FPGA Platform

For a cognitive equipment, it should sense the surrounding environment and its ope-

rating states, and according to the information obtained, make decision and adapt itself

to the changing environment by reconfiguring part of or all functionality of the system.

As described in previous chapters, designers should carefully select proper and effective

metrics, because different scenarios require different kinds of metrics.

These metrics can be used as necessary operating information inside or outside the

device for decision making and system reconfiguration (e.g. change functionality).

In the following subsections, we introduce some metrics that can be useful for the

cognitive management architecture on a FPGA platform, as well as some measurement

approaches of the metrics.

In this chapter, we consider the Xilinx Virtex-5 ML506 board hereinafter as the refe-

rence FPGA platform. For other platforms, the methods described in this chapter can be

the references. Depending on the platforms, these methods may be used directly, or there

are similar methods or alternatives.

3.2.1 Voltage

Voltage is a basic parameter for a system. Normally, for a FPGA platform, there are

several power supply voltages for different resources.

For a Xilinx Virtex-5 ML506 board, VCCINT is the primary power supply for the

FPGA. It is the internal core supply voltage, which supplies all internal logic functions,

such as Configurable Logic Blocks (CLBs), block Random Access Memory (RAM), and

DSP blocks [93].

The auxiliary supply voltage VCCAUX powers the auxiliary logic, including the confi-

guration logic, some internal and I/O resources, clock management tiles (CMTs), some

dedicated configuration pins, and the Joint Test Action Group (JTAG) interface.

The VCCO powers the I/O resources, and has separate rails for each bank of I/O for

maximum flexibility. All of the VCCO connections to a specific I/O bank must be connected

to the same voltage.
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3.2.1.1 How to Get It

There are several ways to get the value of voltage, we provide here two available

methods :

Stored in a Status Register

When a system is developed on a platform, the voltage used by the system is well known.

If the voltage is considered as a metric, whose value is usually already known, it is then

possible to keep it in a status register.

The voltages of the current platform we used are fixed at certain values, so we cannot

change the voltage of a specific region of the FPGA. We hope to be able to have a

flexible platform in the future that supports programmable voltage, so that the voltage

of a part of the FPGA will be adjustable during operation. This kind of FPGAs will help

the development of SDR and CR, and make the implementation of SDR and CR more

practical.

Measured by System Monitor

The voltage can also be measured by System Monitor, which is a component provided by

Xilinx and located in the center of the die.

The System Monitor function is achieved mainly by a 10-bit, 200-kSPS (kilo samples

per second) Analog-to-Digital Converter (ADC), and on-chip voltage and temperature

sensors [94]. When they are working together, the System Monitor can provide the on-

chip power supply voltages and the die temperature. Furthermore, additional external

analog inputs, i.e., a dedicated analog-input pair (VP/VN), and 16 user-programmable

analog input pairs (VAUXP [15 :0], VAUXN [15 :0]), are also available to allow the users to

access to external signals.

To access the information measured by the System Monitor, there is not only a single

way, we have multiple choices.

Use the ChipScope Pro Tool :

The System Monitor offers a useful feature since the measurement information can be

accessed via the JTAG TAP at any time thanks to the ChipScope Pro tool, which gives

an easy access and a graphical display of the measurement data. The ChipScope Pro
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tool also provides the ability to record the measurement data along with the time stamp

information in a log file. Thus, further analysis can be done at a later date if needed.

Use an embedded processor :

A limitation of using the ChipScope Pro Tool to get the measurement data is that it

needs the help of an additional PC, which is not so flexible. If we want to measure these

metrics by the FPGA itself to avoid using a PC, there is an alternative way, which takes

advantage of the System Monitor IP. The Xilinx Embedded Development Kit (EDK)

provides the System Monitor IP, which can be connected to a Microblaze processor via

the Processor Local Bus (PLB), allowing the Microblaze processor to control the System

Monitor and access the measurement data.

The System Monitor contains on-chip power-supply sensors, which are used to sense

voltages in the range 0V to 3V with a resolution of approximately 3 mV. Once it has been

sampled and digitized by the ADC, the measurement information is stored in the data

registers.

We have implemented the measurement of VCCINT and VCCAUX using the System

Monitor, which is controlled by a Microblaze on a ML506 platform. The System Monitor

is connected to a Microblaze processor by the PLB so that the Microblaze can easily

access the data registers of the System Monitor. After reading the ADC codes from the

data registers, we can then calculate the voltages by (3.1).

Supply V oltage (V olts) =
ADCCode

1024
× 3V (3.1)

Figure 3.1 – The measured results of VCCINT and VCCAUX .
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Fig. 3.1 shows the screenshot of the measured results of VCCINT and VCCAUX from

Xilinx Software Development Kit (SDK).

3.2.1.2 How to Use It

It can be directly used as information to monitor the working state, making sure the

system is under proper state.

Because we take the aforementioned Xilinx Virtex-5 ML506 board as the reference

FPGA platform in this chapter, the voltage supplies are fixed and not reconfigurable.

For other platforms, if there are several voltage supplies, and the voltage can be swit-

ched among several levels during operation, it is possible to dynamically change the wor-

king voltage according to the power budget or performance requirement.

3.2.2 Temperature

Temperature is normally considered as a parameter of thermal constraint in a system.

Therefore, it can be a useful metric.

3.2.2.1 How to Get It

Measured by System Monitor

Similar to the measurement of voltage described in subsection 3.2.1.1, it can also be

measured by System Monitor. We can choose a visible way to access the System Monitor

through JTAG, and display the measured die temperature in the ChipScope Pro tool on

a PC. The ChipScope Pro tool provides a window, in which we can observe the variation

of the die temperature curve.

We can also measure the die temperature independently by an embedded processor at

runtime to avoid using an additional PC.

The System Monitor includes a temperature sensor, which is used to measure the die

temperature. The relationship between the sensor output voltage and the die temperature

is written in (3.2), which is proportional.

V oltage = 10 × kT

q
× ln(10) (3.2)

Where :
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k : Boltzman’s constant = 1.38 × 10−23.

T : Temperature ◦K (Kelvin).

q : Charge on an electron = 1.6 × 10−19C.

Then, once the sensor output voltage has been digitized into a 10-bit digital output

code (ADC code) by the ADC, we get a more simple function, which can be used to

measure the die temperature, and is expressed in (3.3). The on-chip temperature sensor

has a maximum-measurement error of ±4◦C.

Temperature(◦C) =
ADCcode× 503.975

1024
− 273.15 (3.3)

We have measured the die temperature in the same way as the measurement of VCCINT

and VCCAUX in subsection 3.2.1.1 on the same platform. To be simple and brief, the

Microblaze reads the ADC code from the temperature register of the System Monitor, and

calculates the temperature by using (3.3). The screenshot of the measured temperature

can be found in Fig. 3.1 in subsection 3.2.1.1.

Can be Indirectly Measured by Digital Thermal Sensor (Ring Oscillator)

From [95] we know that the temperature has a linear relationship with the frequency

of the ring oscillator. Therefore, a digital thermal sensor, which is mainly based on a

ring oscillator [96, 97, 98, 15], can be used to measure the temperature due to the linear

relationship. If we can obtain the frequency of the ring oscillator, we are able to measure

the temperature accordingly. Moreover, it uses few resources, and has the flexibility to

be placed in different locations. Thus, the digital thermal sensor is able to measure the

temperatures in different places.

In this subsection, we will explain how to use a digital thermal sensor to measure the

temperature.

The digital thermal sensor, as shown in Fig. 3.2, is mainly made up of three parts : a

ring oscillator, a 12-bit counter, and a 14-bit counter.

The ring oscillator is a feedback loop that should contain an odd number of inverters,

because a signal passing through an even number of inverters does not change and thus

does not produce an oscillation.

The frequency of the ring oscillator is defined by (3.4).
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Figure 3.2 – The digital thermal sensor.

f =
1

2Nτ
(3.4)

where N is the odd number of inverters, and τ the propagation delay of one inverter,

assuming that the delays of all the inverters in the loop are the same.

In a CMOS technology circuit, higher temperatures result in larger propagation delays,

thus in lower frequencies. Theoretically, we can find the relation between the frequency

of the ring oscillator and the temperature, by counting the amount of times the oscillator

fluctuates.

The 12-bit counter, which is clocked by the ring oscillator, is used to generate a Boolean

signal for the 14-bit counter. This Boolean signal equals ‘1’ if the value of the 12-bit counter

is equal to 212, otherwise it is ‘0’.

The 14-bit counter computes the number of rising edges of the reference clock bet-

ween two Boolean ‘1’ from the 12-bit counter. Using the counted number from the 14-bit

counter, we can calculate the frequency of the ring oscillator, and along with the tempe-

rature, we can get the relationship between the frequency of the ring oscillator and the

temperature as expressed in (3.5).

f = a× T + b (3.5)

where

f : the frequency of the ring oscillator in MHz.

T : the temperature in degree Celsius (◦C).
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a : the negative slope, which means that higher temperatures result in lower frequen-

cies.

b : a calibration constant, which can be easily calculated by a given initial temperature

and its corresponding frequency of the ring oscillator.

3.2.2.2 How to Use It

The temperature varies as the system activity changes. It can be used to monitor the

working condition of the system, providing the necessary information for decision making,

to ensure that the system operates properly and does not infringe the thermal constraint.

If the temperature increases and gets close to the maximum safe operating tempera-

ture, the system has to take actions (e.g., turn on the cooling fan, scale down the frequency

or voltage, decrease the workload), to cool down the equipment.

3.2.3 Current

Current is also a common parameter for a system. It has a great impact on the power

consumption.

3.2.3.1 How to Get It

Of course, we can measure the current by a multimeter or an oscilloscope with the help

of a shunt resistor. But we prefer to measure the current dynamically and independently

during operation rather than to measure it with additional instruments.

Measured by System Monitor

As described above, the System Monitor provides 16 user-selectable analog inputs, known

as auxiliary analog inputs (VAUXP [15 :0], VAUXN [15 :0]). Taking advantage of this avai-

lable tool, we can use a small shunt resistor to indirectly measure the current by measuring

the voltage drop VR over the shunt resistor, as shown in Fig. 3.3. A shunt resistor can

be placed in series between power supply and voltage input. Then we can measure the

voltage drop over the shunt resistor by the System Monitor at analog inputs VAUXP [0]

and VAUXN [0]. If the resistance of the shunt resistor is R, the current I can be calculated

by Ohm’s law from (3.6).
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Figure 3.3 – Measure the current by a shunt resistor.

I = VR /R (3.6)

The Leakage Current Can be Indirectly Measured by Digital Thermal Sensor

As the semiconductor technology scales down, leakage current increases. And the leakage

power dissipation is expected to exceed the dynamic power consumption in the sub-65nm

geometries [99, 100].

As explained in subsection 3.2.2.1, a digital thermal sensor can be used to measure the

temperature. From the experiment presented in [95] we know that it is a linear relationship

between the frequency of the ring oscillator and the temperature expressed as (3.5).

On the basis of the Xilinx white paper [101] and the experiment in [95], we can conclude

that the leakage current and the junction temperature have an approximately quadratic

relationship, as shown in Fig. 3.4. We can express it as (3.7).

ICCINT = a× T 2 + b× T + c (3.7)

where T is the junction temperature in degree Celsius (◦C), and ICCINT is the leakage

current in milliamp (mA).

According to the above analysis, we can get the relationship between the leakage

current and the frequency of the ring oscillator as shown in Fig. 3.5. In this way, we can

indirectly measure the leakage current by a Digital Thermal Sensor (a ring oscillator).
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Figure 3.4 – Leakage current variations with Temperature.

Figure 3.5 – The relationship between the leakage current and the frequency of the ring

oscillator.

However, there is a limitation by this method, that is, it can only measure the leakage

current but not the overall current. It is also a little complex and not so straightforward.

But at least, it provides a solution to get the leakage current.

3.2.3.2 How to Use It

The current varies as time goes on. It can be used to show the relation between

the workload and the power consumption of the system thus providing the necessary

information for decision making. The leakage current can be used as a parameter to

decide the implementation of a hardware PE with different area occupations.

3.2.4 Frequency

Frequency is also an important parameter and a useful metric. At the time of design,

normally we know the frequency of a PE. If the working frequency of a PE is configurable,

it can then be scaled up or scaled down during operation. Even though the frequency is

scalable, we know the PE works at one of the available frequencies at one time. Therefore,

we can store the frequency in a status register. When the frequency of the PE is changed
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during operation, the value stored in the status register is changed as well, so that we can

get the operating frequency at runtime.

Frequency can be a useful piece of information as regards decision making. It is also

possible to take an action to change the frequency at runtime when the frequency is

scalable.

3.2.5 Area, Position, and Resource

3.2.5.1 How to Get Them

We put these three metrics together, because they are related to each other. They can

be obtained by using the same tool, PlanAhead, which is a software provided by Xilinx.

At the time of design, a PE can be placed at a particular position. Once the design

is finished, we can get the position of the PE, the area occupied by the PE, and the

resources used by the PE from PlanAhead software. For example, in a project, we have

put a hardware PE on the upper left side of the FPGA. The hardware PE can be found

as the pink rectangle in Fig. 3.6, to which the red arrow is pointing. We can also get the

position of the PE, which is a rectangle from slice X8Y110 to slice X11Y114, as illustrated

in Fig. 3.7. Furthermore, we can easily compute the area the PE occupies, which should

comprise 20 slices (4 × 5).

Figure 3.6 – The plan of the FPGA in Device view.
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Figure 3.7 – The position information.

Table 3.1 gives the available resources inside the area, the resources the PE requires,

and the percentages of the resources the PE uses.

These three metrics can be stored in registers.

Table 3.1 – Resources available and required.

Site Type Available Required % Utility

LUT 80 57 72

FD LD 80 32 40

SLICEL 10 8 80

SLICEM 10 8 80

3.2.5.2 How to Use Them

These three metrics give the necessary information for decision making. When the

metrics of all PEs are available, we can effectively manage the system implementation.

It is possible to implement different PEs within the same part of the device by taking

advantage of dynamic partial reconfiguration technique. Different functionalities reuse the

same resources, which are time multiplexed, thus saving space and resources.

More interesting scenarios deal with the displacement of a PE from one place to

another. For instance, let’s consider that a part of the FPGA is damaged (due to heat,

radiation, etc.), in order to make the system continue to work properly, the functionality

of the damaged part should be moved to another place. The decision maker searches a

place that is both available and suitable, so as to meet the requirements in terms of area

and resources needed, according to the necessary information provided by other parts.
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The functionality of the damaged part is then moved to the new available position by

means of the dynamic partial reconfiguration.

3.2.6 Activity Rate

When a PE is running, sometimes we would like to know how often it acts, i.e., its

activity rate. Taking the clock signal as the reference, the activity rate can be defined as

in (3.8).

Activity rate =
en×N

c
× 100% (3.8)

Where :

c : the number of clock cycles.

en : the number of clock cycles the enable signal lasts during c clock cycles.

N : a constant that indicates, given an input, how many clock cycles are required to

generate an output.

Fig. 3.8 gives an example of a timing diagram. In this case, if N = 1, during c = 10

clock cycles, the activity rate = 20 % ; if N = 5, the activity rate = 100 %. Of course, this

is only an example for the sake of explanation, a value of c = 10 is too small, in practice,

c must be properly selected, the larger is it, the more accurate is the activity rate.

Figure 3.8 – A timing diagram example.

3.2.6.1 How to Get It

In order to calculate the activity rate, it needs two additional counters and a register.

One is used to count the number of clock cycles c, while the other computes en, and N is

stored in the register.
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3.2.6.2 How to Use It

This metric is used to evaluate the performance of a PE and provide this information

for decision making. The optimum activity rate is 100%, i.e., the clock resource is fully

used without any waste, the PE processes data every clock cycle. If the activity rate is

quite low, which means that the frequency is too high, it is then better to scale down the

frequency.

3.2.7 Serial / Parallel

Due to the high degree of computational similarities [102], some PEs, e.g. MAC

(multiply-accumulate) based PEs, can be implemented in serial for resource efficiency.

But sometimes high performance requires the PE to be implemented in parallel mode.

We take an N MAC operation for example, which is expressed in (3.9).

c =
N−1∑
i=0

a[i] × b[i] (3.9)

We can implement (3.9) in parallel, as shown in Fig. 3.9. N multipliers and N-1 adders

are needed to perform the operation. We assume that c can be calculated within τ clock

cycles.

Or (3.9) can be implemented in serial, as illustrated in Fig. 3.10. It needs only one

multiplier and one adder, but takes Nτ clock cycles to compute c.

This metric can be stored in a status register. At the time of design, the designer

decides the PE to work in parallel, or in serial, or interchangeably between these two

modes. This metric can work together with other metrics, to change the implementation

of a hardware PE to have a trade off between performance, power consumption, and

resource occupation.

3.2.8 Power Consumption

Power consumption is an important parameter we should consider when designing

a system. As discussed in chapter 1, one of our objectives, which is also a motivation,

is to reduce the power consumption. Therefore, the first thing is to measure the power

consumption. Because power P equals voltage V times current I, P = V × I, the me-
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Figure 3.9 – parallel method. Figure 3.10 – Serial method.

thods used to measure voltage and current introduced in the previous subsections are also

effective here to measure the power consumption.

3.2.8.1 How to Get It

There are several approaches to measure the power consumption, which will be intro-

duced in the following subsections.

Estimated by XPower Analyzer

Xilinx provides two useful tools, Xilinx Power Estimator (XPE) and Xilinx Power Analyzer

(XPA), to estimate and analyze the power consumption and the junction temperature of

Xilinx devices.

The XPower Estimator spreadsheet is normally used in the early stages of a design,

such as the pre-design and pre-implementation phases, with limited and incomplete in-

formation about the design [103]. After Place and Route, the complete real design data

are available in the database, based on which, the XPA tool can then be used for more

accurate power estimates and analysis [103]. It is the most accurate tool since it can read

from the implemented design database the exact logic and routing resources used[104].

And Xilinx suggests to use the XPE for the pre-design power estimation, and the XPA

for the post-implementation design power optimization.
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Therefore, between these two Xilinx Power Tools, here, we prefer to choose XPA as

the power consumption estimation tool.

Once the XPA has finished to run the power analysis, it provides the detailed power

consumption information via a comprehensive graphical user interface (GUI).

Different views are available to navigate the power consumption of the design, either

the Summary view, or the Details view : By Hierarchy, By Clock Domain, and By Resource

Type.

- The Summary view displays the On-Chip power, the Supply power and the Thermal

Properties.

- The By Resource Type view provides the power consumption for each type of re-

sources that is used in the design, and also gives more details about the power dissipation

at the resource level.

- The By Clock Domain view indicates the clock frequencies used by the design and

the power they consumed.

- The By Hierarchy view lists the design hierarchy and power dissipated in each com-

ponent.

With the helpful information provided by the XPA, we can have a detailed analysis

of power consumption, and find out the most power hungry parts or components in the

design, thereby offering efficient data-based reference for power optimization.

Measured by System Monitor

We have introduced the methods of measuring the voltage and current by means of the

System Monitor in the previous subsections. Since we can get the voltage and the cur-

rent at the same time with the same tool, it is natural that we can measure the power

consumption by multiplying the voltage by the current.

Indirectly Measured by Digital Thermal Sensor (Ring Oscillator)

As discussed in subsection 3.2.3.1, the digital thermal sensor can only measure the leakage

current. Therefore, in this way, only leakage power can be measured, moreover, it requires

another tool to measure the voltage.

For this reason, although it is a favorable approach to measure the temperature, it

may not be so good when it comes to measuring the power consumption.
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3.2.8.2 How to Use It

Power consumption is quite a useful piece of information for decision making, and

allows to consider the constraint of power budget. According to the power consumption,

the system can choose an optimal solution based on other available information (voltage,

frequency, activity rate, etc.), and take an action to reconfigure part of or the overall

system to keep higher performance and at the same time reduce power consumption.

3.2.9 Performance to Power Consumption Ratio (PTCR)

We always hope that the system has good performance while consuming less energy.

Therefore, we need such a metric that can provide a trade off between maximizing the

performance and minimizing the power consumption. This metric can be the performance

to power consumption ratio. We can reuse the metrics in the previous subsections, thus

it can be defined as the ratio of Activity Rate to the Power Consumption as expressed in

(3.10).

PTCR =
Activity Rate

Power Consumption
× 100% (3.10)

For a given PE, the larger the value of the metric is, the better the PE works.

3.2.10 Working Mode

If the platform supports several different kinds of working modes, such as the wake-up,

suspend, sleep, hibernation, and power down modes, the system can then switch from one

mode to another at run-time. This metric can be stored in a status register, the value of

which changes when the system switches between different working modes.

3.3 Discussion About the Metrics

These metrics can be considered under many angles so as to improve their use effi-

ciency.

Depending on whether it is fixed, or self-changing over time during operation, a metric

can be static or dynamic. If a metric is self-changing over time during operation, we can
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Table 3.2 – Consideration of the metrics.

Metrics Self-changeability Configurability Green impact At which Level Susceptibility

Voltage static medium strong System Low

Current dynamic unconfigurable strong system medium

Frequency static easy strong PE Low

Temperature dynamic unconfigurable strong system high

Area static medium medium PE & system Low

Position static medium weak PE Low

Resource static difficult strong PE & system Low

Activity rate dynamic unconfigurable medium PE medium

Serial / parallel static easy medium PE low

Power consumption dynamic unconfigurable strong PE & system medium

Performance

to power

consumption

ratio

dynamic unconfigurable strong PE medium

Working mode static easy strong system low

consider it as a dynamic metric, otherwise, it is a static metric, i.e., the metrics can be

classified according to “self-changeability”.

Some metrics are configurable while others are not, and among the configurable me-

trics, some are easy to configure, some are difficult, and the others are in the intermediate

position. Some metrics, such as the Current, the Temperature, the Activity Rate, the

Power Consumption, and the Performance to Power Consumption Ratio, are not directly

configurable, but their values may change when some other metrics are reconfigured, e.g.,

scaling up the working voltage may increase the current thus the power consumption. The

frequency of a PE can be configured by using a Digital Clock Manager (DCM), therefore,

we think it is an easily configurable metric. Metrics Serial/Parallel and the Working Mode

have the similar approach that switching between several available options. We mark the

Voltage as being medium, because it is usually fixed, but if there exist several optional

supplies it is then configurable. The Area and the Position are configurable if taking ad-

vantage of the DPR technique. But the Resource is difficult to configure even if using

DPR, because the resource used by a PE is determined once it is designed.
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With respect to the green impact, some metrics, such as the Voltage, the Current, the

Frequency, the Temperature, the Resource, the Power Consumption, the Performance to

Power Consumption ratio, and the Working Mode, have a great impact on the ambient

environment, and some of them even have a direct influence on power dissipation and

thermal emission. The Area, the Activity Rate, and the Serial/Parallel affect the power

consumption but not so directly and obviously. The Position has a relatively weak effect

on the working state of the system.

It is necessary to know at which level we use these metrics. Considering the specificity

of the FPGA, we think that a metric should be at system level or at PE level. Usually,

the Voltage, the Current, the Temperature, and the Working Mode are at system le-

vel ; the Frequency, the Activity Rate, the Serial/Parallel, and the Performance to Power

Consumption Ratio are at PE level. The Area, the Resource, and the Power Consumption

can be the metrics of a PE, or the metrics of the overall FPGA.

We should also consider that if a metric is easy to be influenced by the working

state of the system and the ambient. The Temperature, it is highly susceptible to the

ambient temperature and heat emission of the system. The Current, the Activity Rate,

the Power Consumption, and the Performance to Power Consumption Ratio are affected

by the running state of the system. The Voltage, the Frequency, the Area, the Position,

the Resource, the Serial/Parallel, and the Working Mode are usually fixed values and the

environment has little effect on these metrics.

Table 3.2 summarizes the discussion.

3.4 Case Study

We have proposed an application to show the use cases of the metrics. A FIR filter was

employed as a hardware PE. We used a DCM to dynamically generate several different

frequencies at the CLKFX output, which provides the input clock to the FIR filter. In

this way, the working frequency of the FIR filter can be dynamically changed. A system

monitor was used to measure the temperature of the FPGA. And the Microblaze worked

as a controller to manage the DCM and the system monitor.
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The experimental results were not ideal, since changing the working frequency of the

FIR filter does not significantly influence the temperature of the system, which can be

concluded that the FIR filter occupies only a small part of the FPGA and is not the most

energy intensive component in the system.

Therefore, we focus on the PE level and implement only a FIR filter on the FPGA to

analyze the power consumption of the filter. Some metrics : Serial / Parallel, Frequency,

Power Consumption, and Resource, are involved in this study.

3.4.1 Parallel vs. Serial

For the sake of comparison and analysis, we choose two different implementation ar-

chitectures : parallel architecture with 32 MACs (Multiply-accumulate), and serial archi-

tecture with only one MAC.

Table 3.3 – Resources used by the two implementation architectures.

Architecture #FF #LUTs #DSPs

Parallel 3051 1067 64

Serial 1192 542 2

Table 3.3 gives the resources used by the two implementation architectures of the FIR

filter. It is as expected that the parallel architecture consumes more resources than the

serial one, which uses only two DSPs, while the parallel method consumes 32 times more,

i.e. 64 DSPs.

It is generally thought that the serial architecture takes fewer resources and consumes

less power than the parallel one. We have to try and see if this is true through the expe-

riments. In order to minimize the influences from other components and make the results

more accurate, we implement only a FIR filter on the FPGA with parallel architecture

and serial way respectively, and estimate the power consumption of each architecture by

using XPA.

The results are listed in Table 3.4, from which we can see that the serial architec-

ture does consume less power than the parallel one when they are working at the same

frequency. We have to point out that the quiescent power in Table 3.4 is the overall quies-
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Table 3.4 – Power consumption of the FIR filter.

Frequency

(MHz)

Power consumption (W)

parallel serial

Dynamic Quiescent Total Dynamic Quiescent Total

40 0.058 0.545 0.603 0.019 0.544 0.564

50 0.069 0.545 0.614 0.022 0.544 0.566

66.67 0.087 0.545 0.632 0.025 0.544 0.570

75 0.096 0.545 0.641 0.027 0.544 0.572

100 0.123 0.545 0.668 0.033 0.545 0.578

125 0.150 0.545 0.695 0.039 0.545 0.583

133.33 0.159 0.545 0.704 0.040 0.545 0.585

150 0.176 0.546 0.722 0.044 0.545 0.589

166.67 0.194 0.546 0.740 0.048 0.545 0.592

cent power of the FPGA. We also notice that the quiescent power between these two

architectures have only a slight difference and is roughly the same, and what is more,

it predominates the total power consumption, which is because the XPA provides only

the overall quiescent power of the whole FPGA but the filter occupies a little part of the

chip thus has little influence on the overall quiescent power. Therefore, we focus our main

attention on the dynamic power.

Now we know that, working at the same frequency, the parallel approach consumes

more power than the serial way, but the more interesting thing is to see what if these two

implementation architectures have the same throughput, i.e., they can finish the same

amount of computations during the same time duration.

We adjust the working frequency of the FIR filter in parallel architecture from 0.1MHz

to 300MHz, so its corresponding working frequency in serial mode should be 32 times faster

if they provide the same throughput, and we estimate the power consumption of both of

these two architectures to analyze the pros and cons of the two methods.

Because of the large differences of the power consumption between the parallel and

serial modes, in Fig. 3.11 we plot the parallel architecture using the bottom and left axes,

and the serial one with the top and right axes, respectively.
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Figure 3.11 – The power consumption.

Figure 3.12 – The dynamic power. Figure 3.13 – The total power.

In parallel mode, when the frequency going from 0.1MHz to 300MHz, the power

consumption of the FIR filter increases almost linearly and remains always under 1W.

But in serial architecture, in order to keep the same throughput, the frequency should

be changing from 3.2 MHZ to 9600MHz. When the frequency is less than 3200 MHz,

the power consumption is under 1.5 W, but when the frequency is becoming higher, the

curve becomes steeper and steeper, i.e., the power consumption increases more and more

significantly and is becoming much more than that of the parallel architecture. This can

be explained by the fact that the clock is a power consuming element inside the FPGA,
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while the FIR filter only takes a little part of the FPGA. In particular, when the frequency

goes higher, the clock dominates the total power consumption.

In both of the two architectures, the quiescent power, which is the gap between the

dynamic power and total power in Fig. 3.11, is almost a static value. The reason, as

discussed above, is that the quiescent power refers here to the overall quiescent power of

the whole FPGA, and the filter only occupies a little part of the chip thus has little effect

on the overall quiescent power.

Fig. 3.11 uses different vertical axes, we cannot see the details when these two archi-

tectures have comparable power consumption, therefore, we zoom into the region when

the frequency in parallel mode is ranging from 0.1 MHz to 1MHz. The dynamic power

and total power are illustrated in Fig. 3.12 and Fig. 3.13 respectively.

We can see that when the frequency is quite low, the parallel method consumes more

power than the serial one, as the frequency goes higher, the power is equivalent when

the frequency in parallel mode is 0.7 MHz to 0.8 MHz (22.4 MHz to 25.6 MHz for the

serial mode), and the power consumption in serial mode overtakes that of the parallel

method when the frequency is higher than 25.6 MHz (higher than 0.8 MHz in parallel

mode). Therefore, it is better to adopt the serial architecture when the working frequency

is low, since we can benefit from it with less resources as well as lower power consumption.

But when the frequency goes higher, the clock will consume more power than the FIR

filter itself, and in this case, the parallel architecture becomes the preferable choice. This

provides useful information for the management architecture to make a proper decision.

3.4.2 Power Consumption with Different Number of Taps

After analyzing the power consumption when the filter is implemented in parallel

and serial modes, we would like to estimate how the number of taps affects the power

consumption.

Therefore, we implement the FIR filter with 32 taps, 64 taps, and 128 taps, respectively.

And then we estimate the power consumption of the filter when the working frequency

varies from 40MHz to 300MHz. Fig. 3.14 gives the dynamic power consumption and the

total power consumption of the filter implemented with three different numbers of taps

when the frequency increases. As expected, the filter with larger number of taps consumes
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more power than the one with fewer taps when they work at the same frequency, and when

the working frequency grows higher and higher, the more taps the filter has, the more

rapidly the power consumption increases.

Fig. 3.15 shows the dynamic power consumption according to the number of taps.

When working at 40MHz, the power consumption increases slowly when the number of

taps grows from 32 to 128. But when the frequency is changing from 40 MHz to 300MHz,

the lines become steeper and steeper, which means that when the number of taps increases,

the higher frequency the filter works at, the faster the power consumption increases.

Figure 3.14 – Power consumption of the filter with three different numbers of taps when

the frequency increases.

Figure 3.15 – Dynamic power consumption according to the number of taps.
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Table 3.5 – The Relationship between Power Consumption, Performance and Resources.

Frequency 32 MACs 64 MACs 128 MACs

40 MHz 1 1.47 2.33

50 MHz 1.19 1.71 2.71

75 MHz 1.66 2.34 3.64

100 MHz 2.12 2.98 4.57

125 MHz 2.59 3.62 5.50

150 MHz 3.03 4.24 6.43

200 MHz 3.97 5.50 8.28

300 MHz 5.78 7.98 11.93

3.4.3 Evaluation of the Relationship between Power Consumption, Per-

formance and Resources

In order to make the results clearer, we take the dynamic power consumption of the

filter when it is working at 40MHz with 32MACs as a reference, and then normalize

the power consumption of the other cases to the reference power. The normalized power

consumption is listed in Table 3.5, from which we can see that the power consumption

varies quite differently, the maximum difference can reach 10.93 times. Increasing the num-

ber of MACs will consume more resources but at the same time improve the performance.

A more direct way to improve the performance is to scale up the working frequency. For

example, when it is working at 50MHz with 32MACs, if it is required to double the per-

formance, there are two choices : one is increasing the number of MACs to 64 resulting

in the use of more resources, which will consume about 44% more power ; while the other

way is to scale up the frequency to 100MHz, in which case the power consumption will

be about 78% more. Therefore, a trade off between the power consumption, the perfor-

mance, and the resources needs to be found. According to the scenarios, the decision

maker has to select an optimal choice according to the working state, available resources,

and the environment. In next subsection, two management cases about these metrics will

be discussed.
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3.4.4 Metrics Management by HDCRAM

Based on the analysis of the FIR filter in the above subsections, the metrics involved

in the above studies are Serial / Parallel, Frequency, Power Consumption, and Resource.

Once these metrics have been obtained, they can be managed and used by the HDCRAM

architecture. Fig. 3.16 gives a simple example of a use case of these metrics.

According to these metrics, we introduce three PEs, namely the DCM, the FIR filter,

and a resource calculator as shown in Fig. 3.16. The DCM generates different clock fre-

quencies for other PEs. The resource calculator computes the resources the system uses,

and it is better to be a software PE that resides in an embedded processor (e.g. Micro-

blaze). The metrics of these three PEs, managed by their corresponding level 3 managers,

are then submitted to L2 CRMU. Two management cases are discussed as below.

Figure 3.16 – An example of level 2 HDCRAM management.

3.4.4.1 Case 1

Depending on the results in the above subsections, the FIR filter consumes less power

and resources in serial mode when the throughput is lower than 0.8 MHz. Therefore, it is

better to work in serial when the throughput is lower than 0.8 MHz. The L3 CRMU of

the FIR always makes the decision to work in serial mode when the required throughput

of the FIR filter is lower than 0.8 MHz, without the help of other PEs.

3.4.4.2 Case 2

There are two ways to improve the performance of the FIR filter : increasing the

working frequency or increasing the number of MACs. The L3 CRMU of the FIR filter

can not finish the work itself, because it needs the collaboration with other PEs, i.e., the
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DCM and the resource calculator. Therefore, the right of decision making is submitted

to the L2 CRMU to decide how to reconfigure the PEs to improve the performance.

Depending on the metrics the L2 CRMU obtained from the L3 CRMUs of the three PEs,

the L2 CRMU makes the decision to select the best strategy and sends the corresponding

reconfiguration commands to the L2 ReMU.

For example, given the reference when the FIR filter is working at 50MHz with

32MACs, in order to double the performance, depending on the working situation, there

are two solutions :

- The L2 CRMU has the information of how many resources are occupied and how

many are still available. If the required resources are available, the L2 CRMU makes the

decision to increase the number of MACs to 64 and sends the reconfiguration command to

L2 ReMU. And finally the reconfiguration command comes to the L3 ReMU of the FIR

filter, who performs the reconfiguration action. This method will consume more resources

and about 44% more power.

- But if no more resource is available, the L2 CRMU has to decide to increase the

working frequency of the FIR filter to 100MHz, and sends the reconfiguration command

to the L2 ReMU and then to the L3 ReMU of the DCM, who reconfigures the DCM to

generate a 100MHz output clock frequency instead of a 50MHz one. This method will

consume about 78% more power but without additional resources consumption.

3.5 Conclusion

An efficient architecture is required to manage the cognitive equipment. The manage-

ment architecture needs proper metrics to sense the surroundings and efficiently reconfi-

gure the system thus adapting to the working environment. In this chapter, we take the

Xilinx Virtex-5 ML506 board as the reference FPGA platform, and introduce some useful

metrics that can be used by the HDCRAM architecture, as well as some measurement

approaches of the metrics. For other platforms, some methods described in this chapter

should be adjusted accordingly. As an example of the use case of the metrics, we study

the power consumption of a FIR filter when it is implemented in parallel and serial modes

and works in different frequencies. The results are useful for decision making, which sug-
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gest that it is better to work in serial mode when the frequency is low, otherwise, the

parallel method is recommended. We also analyze the power consumption when the filter

is implemented with three different numbers of taps, which shows that there is a trade off

between the power consumption, the performance, and the resources. The system is then

able to make a proper decision based on the information it has obtained.



Chapter 4

OFDM transmitter and receiver

example

4.1 Introduction

The Orthogonal Frequency Division Multiplexing (OFDM) technique is one of the

most important methods of digital modulation. OFDM can transmit large amounts of di-

gital data simultaneously at different frequencies by splitting a signal into several closely

spaced orthogonal narrow-band channels at different frequencies in the available band-

width. Moreover, one of the advantages of OFDM over Frequency Division Multiplexing

(FDM) is the efficient use of spectrum by spacing the channels much closer together allow.

This is achieved by choosing all the sub-carriers that are orthogonal to each other, thus

enabling the sub-carriers to be spaced very close.

Therefore, OFDM has been adopted for various standards in wireless communications,

such as Wireless Local Area Network (WLAN) [105], Digital Audio Broadcasting (DAB)

[106], Digital Video Broadcasting (DVB) [107], and Long-Term Evolution (LTE) [108].

In this chapter, we would like to introduce some management scenarios of an OFDM

system with software/hardware co-design.

123
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4.2 OFDM system model

A simplified OFDM system model has been employed in our studies as shown in Figure

4.1.

Figure 4.1 – The block diagram of a simplified OFDM system model.

It consists of three parts : a transmitter, a receiver, and an additive white Gaussian

noise (AWGN) channel. The transmitter has two blocks : Mapping and Inverse Fast Fourier

Transform (IFFT), and the receiver has also two corresponding blocks : Fast Fourier

Transform (FFT) and Demapping. These blocks are described as below.

The transmitter :

Mapping :

The input data are converted into groups of n bits depending on the digital modulation

techniques used (e.g., 2 bits -QPSK, 4 bits -16QAM), and then mapped on to required

modulation format (i.e., complex values (I+jQ) representing the mapped constellation

point that specify the amplitude or phase or both amplitude and phase of the sinusoid for

their associated subcarriers).

IFFT :

The complex symbols are then input to the IFFT, which provides an efficient and

simple way to superimpose the complex data points onto the required orthogonal sub-

carriers. The output samples from the IFFT make up a single OFDM symbol.

Channel :

An additive white Gaussian noise (AWGN) channel model is then applied to the

transmitted signal. The model is used to simulate the radio channel, which allows for the
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signal to noise ratio (SNR) to be controlled to change the channel condition. The SNR is

set by adding a known amount of AWGN to the transmitted signal.

The receiver :

FFT :

After the signal is transmitted across the radio channel, at the receiver, a FFT block

is used to process the received signal and transform it into the frequency domain which

is used to recover the original data bits.

Demapping :

The signal of each sub-carrier is then evaluated and demodulated back to the data

bits. The data bits are then combined back to the same word size as the original data.

4.3 Implementation Platform

The whole OFDM system can be implemented on a GPP. Or we can put some ele-

ments on an embedded system such as Zynq platform. In order to show the heterogeneous

and distributed management, we implement the transmitter on a PC and the receiver

on a Zynq platform, which is introduced in subsection 2.3.2. Figure 4.2 illustrates the

implementation platform consisting of a PC and a Zynq board. For the sake of clarity, we

treat the transmitter as the base station, and the receiver as the terminal. As described in

the previous chapters, the link between the PC and Zynq platform is through Ethernet,

and they communicate by using UDP protocol.

4.4 FFT implementation using partial reconfiguration

Since the FFT is one of the most computationally intensive elements of the OFDM

system, it is a good choice to offload the FFT in hardware on PL (Figure 4.3) to alleviate

the workload of the PS ; of course it can also be implemented in software on PS (Figure

4.4).

The FFT has been considered as a common operator for many classical telecommu-

nications operations [109, 110, 111]. In order to support multi communication standards,

the FFT size should be reconfigurable to adapt to the operating standard.
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Figure 4.2 – Implementation platform.

Figure 4.3 – The hardware implementation of FFT.

Traditional reconfigurable FFT has to implement the maximum transform length that

the FFT can support, even it is not frequently used. Hence, this method uses more re-

sources and consequently consumes more power.

Instead, we would like to implement the FFT by taking advantage of dynamic par-

tial reconfiguration. The FFT implementations with different transform lengths share the

resource in the same reconfigurable region. Each FFT implementation corresponds to a

transform length. Moreover, the approach using DPR not only supports the reconfigu-

ration of the transform length, but also the implementation architecture, e.g., pipelined
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Figure 4.4 – The software implementation of FFT.

architecture or single radix-2 architecture (the introduction of the pipelined architecture

and single radix-2 architecture can be found in Appendix D). Therefore, these options

offer a trade-off between resource utilization and transform time. Depending on the sce-

narios, the FFT can be easily reconfigured by choosing either performance or resource

efficiency.

These implementations of FFT with different architectures and transform lengths are

generated by using Xilinx FFT core [112]. The FFT is implemented in the reconfigurable

region on the upper right side of the FPGA on Zynq platform, which can be found as the

pink rectangle in Figure 4.5.

Figure 4.5 – Implementation of FFT using partial reconfiguration.
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4.4.1 Resource Utilization

Figure 4.6 and Figure 4.7 show the implemented FFT of different transform lengths

using partial reconfiguration with pipelined architecture and single radix-2 architecture

respectively.

(a) FFT128 (b) FFT256 (c) FFT512 (d) FFT1024 (e) FFT2048

Figure 4.6 – Implementation of FFT with pipelined architecture using partial reconfigu-

ration.

(a) FFT128 (b) FFT256 (c) FFT512 (d) FFT1024 (e) FFT2048

Figure 4.7 – Implementation of FFT with single radix-2 architecture using partial re-

configuration.
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As can be seen from these figures, it is apparent that the single radix-2 architecture

consumes less resource than the pipelined architecture. Table 4.1 lists the resource avai-

lable in the reconfigurable region and used by the FFT with different transform lengths

and implementation architectures.

Table 4.1 – Resources available and used by different FFT implementations in the re-

configurable region.

Transform

length

Resource LUT Register SLICE DSP48E1 BRAM

Available 5184 10368 1359 32 48

128
pipelined 2806 3196 702 9 9

radix-2 1067 1316 268 3 11

256
pipelined 3175 3578 795 9 10

radix-2 1101 1361 276 3 11

512
pipelined 3589 4113 898 12 12

radix-2 1154 1392 289 3 11

1024
pipelined 3993 4507 999 12 14

radix-2 1153 1425 289 3 11

2048
pipelined 4455 5086 1114 15 19

radix-2 1194 1491 299 3 13

In Table 4.1 we can see that resource use of the single radix-2 architecture of different

transform lengths has small difference while resource occupation of the pipelined archi-

tecture varies distinctly, which is because the single radix-2 architecture uses only one

radix-2 butterfly processing engine and the pipelined architecture pipelines several radix-

2 butterfly processing engines to offer the ability of continuous data processing. Therefore,

the pipelined architecture has a better performance and the single radix-2 architecture is

more resource efficient.

The resource used by the traditional reconfigurable FFT with the pipelined architec-

ture enabling reconfigurable transform length from 128 to 2048 is also listed in Table

4.2. It shows that the traditional reconfigurable FFT consumes more resource than the
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maximum transform length of the partial reconfiguration approach, which is because it

needs additional control logic.

Table 4.2 – Resources used by traditional reconfigurable FFT implementation with pi-

pelined architecture.

LUT Register SLICE DSP48E1 BRAM

5741 6056 1435 15 19

4.4.2 Transform time

Now we would like to see the performance of different FFT implementations. The

transform time is the time used by the FFT to compute a transform. The transform time

of different FFT implementations is listed in Table 4.3. The hardware implementations

have better performance, while the software implementations consume more time. And

the hardware pipelined architecture has the best performance with the price of more

resource occupation than the radix-2 architecture. The transform time of the traditional

reconfigurable FFT is longer than the pipelined architecture using DPR and shorter than

the radix-2 architecture using DPR, because it also employs the pipelined architecture.

Table 4.3 – The transform time of different FFT implementations.

Transform

length

Software

(µs )

Hardware (µs) Traditional reconfigurable

FFT (µs )pipelined radix-2

128 166 4.81 8.29 4.92

256 364 8.71 16.77 8.93

512 798 16.49 34.85 16.61

1024 1751 31.91 73.41 32.13

2048 3867 62.73 155.49 62.85

4.4.3 Reconfiguration time

The timing overhead of full and partial reconfiguration should also be considered.

The sizes and the time consumption of full and partial bitstreams of the FFT design
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are listed in Table 4.4. The reconfiguration time of the traditional reconfigurable FFT

is generally in several clock cycles, thus we consider it is negligible compared with the

partial reconfiguration time.

Table 4.4 – Full and partial configuration time of the FFT design.

Type Size (bytes) Time (µs)

Full 4 045 564 211 413

Partial 384 512 35 122

4.4.4 Power consumption

The power consumption of the FFT implementations of the DPR approach is listed

in Table 4.5. And the power consumption of software FFT and traditional reconfigurable

FFT is also included in Table 4.6. The DPR approach consumes less power than the tra-

ditional reconfigurable FFT. And within the DPR approach, the pipelined architecture

consumes more power than the radix-2 architecture. The software FFT consumes compa-

rable power to the 2048 point pipelined architecture of DPR approach, but considering

the transform time, the total energy consumption of the software FFT would be higher

than the DPR approach.

Table 4.5 – The power consumption of different FFT implementations of the DPR ap-

proach.

Transform

length

Power consumption (W)

pipelined radix-2

128 0.103 0.096

256 0.105 0.097

512 0.108 0.098

1024 0.113 0.099

2048 0.121 0.101

We have tried to measure the power consumption during the partial reconfiguration

process using TI Fusion Digital Power Designer [92], but because of the partial reconfigura-
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Table 4.6 – The power consumption of software FFT and traditional reconfigurable FFT.

Software FFT Traditional reconfigurable FFT

Power consumption (W) 0.12 0.135

tion time is too short, we cannot catch the power changes during partial reconfiguration.

Then instead, we tried to measure the power consumption of the full reconfiguration,

which is shown in Figure 4.8. Even so, sometimes we still cannot catch the power changes

and had to try several times. We take this measurement result as the reference of the

power consumption of the partial reconfiguration, which is around 0.07W.

Figure 4.8 – Power consumption of reconfiguration.

The benefits of DPR are three-fold : 1) each option uses less resource and consumes less

power than the traditional reconfigurable FFT ; 2) the implementation of these options can

be dynamically changed which provides further flexibility and possibly power reduction ;

and 3) a blank partial bitstream can be loaded to clear the reconfigurable region. Of course

this is achieved with the cost of additional reconfiguration time and power consumption.

Theoretically, the energy consumption includes the configuration energy and operating

energy as expressed in (4.1).

E = Pconfig × tconfig + Prun × trun (4.1)

Where :

E : energy consumption.

Pconfig : power consumption of configuration.

Prun : power consumption during operation.

tconfig : configuration time.
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trun : operating time.

The energy consumed by DPR approach can be expressed as (4.2) :

Epr = Pconfig × tconfig + Ppr run × trun (4.2)

We consider the configuration energy of traditional reconfigurable FFT is negligible.

Hence the energy consumption can be expressed as (4.3) :

Etradition = Ptradition run × trun (4.3)

To make sure the DPR approach consumes less energy, i.e., Epr < Etradition, the

operating time should be under the constraint condition in (4.4).

Pconfig × tconfig + Ppr run × trun <Ptradition run × trun

trun >
Pconfig × tconfig

Ptradition run − Ppr run

(4.4)

This results in tens of milliseconds. But the traditional approach is running all the

time. Moreover, the DPR approach can clear the reconfigurable region by loading a blank

partial bitstream, which could achieve further energy reduction.

In conclusion, the DPR approach is advantageous over the traditional reconfigurable

FFT in terms of resource utilization, performance (with the same architecture), power

consumption and flexibility, except for the reconfiguration time. Therefore, in this chap-

ter, we adopt the DPR approach to implement the FFT.

In the following subsections, we introduce some management scenarios using the sim-

plified OFDM system model described in section 4.2.

4.5 Scenario 1 : Modulation Adaptation

SCEE team has developed an application demonstrating the modification of modu-

lation scheme of the transmission channel according to the SNR level [113]. But this
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Figure 4.9 – Scenario 1.

application did not include the HDCRAM management. In this section, the scenario illus-

trates the HDCRAM management of modulation adaptation depending on the channel

conditions. When the radio channel condition is good, 16 quadrature amplitude modula-

tion (16QAM) is used to achieve high bit rates. On noisy channels, the OFDM system

adapts to provide reliable communications using quadrature phase shift keying (QPSK),

which is more robust. It involves three PEs, Mapping, SNR, and Demapping. The metric

SNR is used in this scenario.

L3 CRMu SNR

The PE SNR is a channel condition sensor. The metric SNR is managed by the

L3 CRMu SNR and then is sent to the upper level manager L2 CRMu receiver.

L3 CRMu demapping

The demodulation scheme of PE Demapping is managed by the L3 CRMu demapping,

and then is sent to the upper level manager L2 CRMu receiver.

L2 CRMu receiver

Based on the value of SNR received from L3 CRMu SNR, L2 CRMu receiver makes

decisions to adapt the modulation scheme to the noise levels, for example :

- If 5dB < SNR <=10dB, which is interpreted as the channel condition is poor, QPSK

is chosen to provide reliable communications and to improve robustness.

- If SNR > 10dB, which means the channel condition is good, 16QAM is employed to

increase throughput and to achieve high bit rates.
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Then, L2 CRMu receiver compares its decision with the current running demodulation

scheme received from L3 CRMu demapping, if they are the same, no reconfiguration is

needed, else if they are different, L2 CRMu receiver should not change the demodulation

scheme of the receiver itself, instead, it has to inform the transmitter through L1 CRM.

Therefore, it sends the required modulation scheme to L1 CRM. For example, if the SNR

obtained is 6dB, the modulation scheme should be QPSK, but the element Demapping

is running at 16QAM, then L2 CRMu receiver sends the required modulation scheme

QPSK to L1 CRM through Ethernet to reconfigure both transmitter and receiver to run

at QPSK.

L1 CRM

If L1 CRM receives the new demodulation scheme from L2 CRMu receiver, which

means the channel condition has been changed. Therefore, it is necessary to reconfigure

the modulation scheme of both the transmitter and the receiver to adapt to the channel

condition. So L1 CRM sends reconfiguration command to its associated L1 ReM.

L1 ReM

If the L1 ReM receives the command from L1 CRM, it then sends the command to

its target lower level managers, namely L2 ReMu transmitter and L2 ReMu receiver.

L2 ReMu transmitter

In this example, if the L2 ReMu transmitter receives the command from its upper level

manager L1 ReM, it then takes action to execute the command and sends reconfiguration

command to L3 ReMu mapping.

L3 ReMu mapping

L3 ReMu mapping manages the reconfiguration of its associated PE Mapping. If

L3 ReMu mapping receives command from its upper level manager L2 ReMu transmit-

ter, it then executes the command. In this example, L3 ReMu mapping reconfigures the
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modulation scheme of PE Mapping from 16QAM to QPSK.

L2 ReMu receiver

In this example, if the L2 ReMu receiver receives the command from its upper level

manager L1 ReM, it then takes action to execute the command and sends reconfiguration

command to L3 ReMu demapping.

L3 ReMu demapping

L3 ReMu demapping manages the reconfiguration of its associated PE Demapping.

If L3 ReMu mapping receives command from its upper level manager L2 ReMu receiver,

it then executes the command. In this example, L3 ReMu demapping reconfigures the

modulation scheme of PE Demapping from 16QAM to QPSK, in accordance with its

corresponding PE Mapping in the transmitter.

After the above processes managed by HDCRAM, both transmitter and receiver are

properly reconfigured, and finally the OFDM system self-adapts itself to the changing

channel condition.

This scenario can visually demonstrate the modulation adaptation when SNR changes

using constellation diagram, as shown in Figure 4.10 and Figure 4.11.

4.6 Scenario 2 : Management of FFT implementation type

depending on the hardware resource utilization

When the receiver is implemented on Zynq platform, the PE FFT could be implemen-

ted either in software on PS or in hardware on PL. Furthermore, by taking advantage of

dynamic partial reconfiguration, the hardware implementation of FFT can use different

architecture options, e.g., pipelined architecture or single radix-2 architecture, to offer a

trade-off between resource utilization and transform time. Therefore, the FFT has three

implementation options :

- Software

- Hardware Pipelined

- Hardware Radix-2
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Figure 4.10 – Adaptation to QPSK when SNR < 10.

Figure 4.11 – Adaptation to 16QAM when SNR > 10.

Figure 4.12 – Scenario 2.

The resource consumed by the hardware implementation of FFT can be calculated

at the time of design. This example shows the management of FFT implementation, de-
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pending on the hardware resource utilization, the implementation type of FFT can be

dynamically changed between software, hardware pipelined, and hardware radix-2. As

discussed in section 4.4, the DPR approach is advantageous. Hence, the hardware im-

plementation of the FFT takes advantage of DPR. The metrics involved are FFT type

(similar to the metric Serial / Parallel introduced in subsection 3.2.7) and Resource (in-

troduced in subsection 3.2.5). This example takes FFT size 256 as a reference.

L3 CRMu fft

Theoretically, the resource utilization of hardware FFT should be managed by the

L3 CRMu fft. But currently we calculate the resource utilization of hardware FFT at the

time of design instead of dynamic measurement. Therefore, only the metric FFT type

(software, hardware pipelined, hardware radix-2) is sent to the upper level manager

L2 CRMu receiver.

L2 CRMu receiver

L2 CRMu receiver manages the hardware utilization of all the hardware PEs. The avai-

lable resource (R left) equals 100% - total hardware utilization. It is preferred to implement

the FFT in hardware because of the high performance and lower power consumption.

Because we can get the resource utilization at the time of design, the metrics Resource

and FFT type are made one pair and stored in a table, except for the case when FFT type

= software, because no hardware resource is used.

If L2 CRMu receiver receives the metric FFT type from L3 CRMu fft, it updates the

value of R left based on the table, and then compares R left with the metric Resource in

the table and decides if it needs a reconfiguration operation :

- If FFT type = software, and R left > Resource (hardware pipelined), the FFT should

be implemented in hardware with pipelined architecture, L2 CRMu receiver sends recon-

figuration command to its associated L2 ReMu receiver with the parameter FFT type

(=hardware pipelined). This decision will save 0.015W.

- If FFT type = software and Resource (hardware radix-2) < R left < Resource

(hardware pipelined), L2 CRMu receiver sends reconfiguration command to its associated
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L2 ReMu receiver with the parameter FFT type (=hardware radix-2). This decision will

save 0.023W.

- If FFT type = software and R left < Resource (hardware radix-2), there is not

enough space in hardware, therefore it is not possible to implement the FFT in hardware.

- If FFT type = hardware pipelined or hardware radix-2, regardless of the value of

R left, no change is needed, since the FFT is already in hardware.

L2 ReMu receiver

If the L2 ReMu receiver receives the command from L2 CRMu receiver, it then sends

reconfiguration command to L3 ReMu fft.

L3 ReMu fft

L3 ReMu fft manages the reconfiguration of its associated PE FFT. If L3 ReMu fft

receives command from its upper level manager L2 ReMu receiver, it then executes the

command.

This management always tends to implement the FFT in hardware, not only because

the FFT block is computationally intensive, it is a good choice to offload the FFT in hard-

ware on PL to alleviate the workload of the PS, but also the hardware implementations

have better performance and lower power consumption.

Because the processes run in background, this scenario is not easy to show visually

as the modulation adaptation scenario, which can use constellation diagram as the de-

monstrator. This is what CR should normally do, to adapt to the changing environment,

without human intervention. The processes are not visual on the surface but in back-

ground. The situation is similar for the following scenarios.

4.7 Scenario 3 : Management of FFT implementation type

depending on the battery level

As described in the previous section, the FFT has three implementation options :

Software, Hardware Pipelined, and Hardware Radix-2. The power consumption of both

software FFT and hardware implementations of FFT can be measured at the time of
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Figure 4.13 – Scenario 3.

design. This example shows the management of FFT implementation depending on the

battery level. If the battery level is high, hardware pipelined architecture is used to achieve

higher performance. If the battery level is low, hardware radix-2 architecture is chosen to

save power.

The metrics involved are FFT type, Battery Level, and Power Consumption (intro-

duced in subsection 3.2.8). The hardware implementation of the FFT takes advantage of

DPR.

L3 CRMu fft

The power consumption of FFT is managed by the L3 CRMu fft. In this study, we

define :

- Power Consumption = high, if FFT type = software ;

- Power Consumption = medium, if FFT type = hardware pipelined ;

- Power Consumption = low, if FFT type = hardware radix-2.

The metric Power Consumption is then sent to the upper level manager L2 CRMu

receiver.

L3 CRMu battery

The PE Battery is a sensor monitoring the battery level. The metric Battery Level is

managed by the L3 CRMu battery. Its value could be defined as below :

- Battery Level = high, if the battery level >= 60% ;

- Battery Level = medium, if 30% <= the battery level < 60% ;

- Battery Level = low, if the battery level < 30% ;

The metric Battery Level is then sent to the upper level manager L2 CRMu receiver.
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L2 CRMu receiver

Based on the metric Battery Level received from L3 CRMu battery and metric Power

Consumption received from L3 CRMu fft, L2 CRMu receiver makes decisions according

to the battery levels :

- If Battery Level = high and FFT type != hardware pipelined, higher performance can

be achieved. L2 CRMu receiver sends reconfiguration command to its associated L2 ReMu

receiver with the parameter FFT type (=hardware pipelined).

- If Battery Level = low and FFT type != hardware radix-2, the FFT should be im-

plemented with low power consumption architecture. L2 CRMu receiver sends reconfi-

guration command to its associated L2 ReMu receiver with the parameter FFT type

(=hardware radix-2).

L2 ReMu receiver

If the L2 ReMu receiver receives the command from L2 CRMu receiver, it then sends

reconfiguration command to L3 ReMu fft.

L3 ReMu fft

L3 ReMu fft manages the reconfiguration of its associated PE FFT. If L3 ReMu fft

receives command from its upper level manager L2 ReMu receiver, it then executes the

command. If FFT type received from L2 ReMu receiver != current running FFT type,

L3 ReMu fft performs a partial reconfiguration operation to reconfigure the PE FFT.

4.8 Scenario 4 : Modify the FFT size according to the net-

work/user order

This example shows the adaptation to a network order or a user decision, e.g., a user

changes the standard from LTE to WIFI, or the network changes the channel bandwidth

of LTE. This should be managed by L1 CRM.

For the sake of clarity, here, we take the network changing the channel bandwidth

from 1.25MHz to 2.5MHz as an example. In this case, following the LTE standard, the

FFT size should be changed from 128 to 256. Therefore, HDCRAM manages the reconfi-
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Figure 4.14 – Scenario 4.

guration of both the transmitter and receiver. The reconfiguration of the hardware FFT

in the receiver is realized also by using dynamic partial reconfiguration technique.

L1 CRM

When the L1 CRM receives the network order and observes that the bandwidth has

been changed, in order to adapt to this change, it sends reconfiguration command with the

parameter FFT size (=256) to its associated L1 ReM to reconfigure both the transmitter

and the receiver to change the IFFT/FFT size from 128 to 256.

L1 ReM

If the L1 ReM receives the command from L1 CRM, it then sends the command to

its target lower level managers, namely L2 ReMu transmitter and L2 ReMu receiver.

L2 ReMu transmitter

In this example, if the L2 ReMu transmitter receives the command from its upper level

manager L1 ReM, it then takes action to execute the command and sends reconfiguration

command to L3 ReMu ifft.

L3 ReMu ifft

L3 ReMu ifft manages the reconfiguration of its associated PE IFFT. If L3 ReMu ifft

receives command from its upper level manager L2 ReMu transmitter, it then executes

the command.
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If IFFT size received from L2 ReMu transmitter != current running IFFT size, L3 ReMu

ifft reconfigures the PE FFT to run at new IFFT size.

L2 ReMu receiver

If the L2 ReMu receiver receives the command from its upper level manager L1 ReM,

it then sends reconfiguration command to L3 ReMu fft.

L3 ReMu fft

L3 ReMu fft manages the reconfiguration of its associated PE FFT. If L3 ReMu fft re-

ceives command from its upper level manager L2 ReMu receiver, it then executes the com-

mand. If FFT size received from L2 ReMu receiver != current running FFT size, L3 ReMu

fft performs a partial reconfiguration operation to reconfigure the PE FFT.

4.9 Scenario 5 : Merge them together

After the discussion of several scenarios, the involved metrics and their corresponding

cognitive cycles, we would like to merge them together to show how the HDCRAM can

easily manage all these scenarios.

Figure 4.15 – Scenario 5.

L3 CRMus :

L3 CRMu mapping

The modulation scheme of PE Mapping is managed by the L3 CRMu mapping, and

then is sent to the upper level manager L2 CRMu transmitter.
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Metric : Modulation Scheme.

L3 CRMu ifft

The size of IFFT is managed by the L3 CRMu ifft, and then is sent to the upper level

manager L2 CRMu transmitter. Metric : IFFT size.

L3 CRMu SNR

The PE SNR is a channel condition sensor. The metric SNR is managed by the

L3 CRMu SNR and then is sent to the upper level manager L2 CRMu receiver.

Metric : SNR.

L3 CRMu fft

When the receiver is implemented on Zynq platform, the PE FFT could be implemen-

ted either in software on PS or in hardware on PL. Therefore, in addition to FFT size, it

has some specific metrics.

Metrics :

- FFT size

- FFT type

- Power Consumption

- Resource. In this study, Resource and FFT type are made one pair, and it is managed

by L2 CRMu receiver as discussed in subsection 3.

The metrics are sent to the upper level manager L2 CRMu receiver.

L3 CRMu demapping

The demodulation scheme of PE Demapping is managed by the L3 CRMu demapping,

and then is sent to the upper level manager L2 CRMu receiver.

Metric : Demodulation Scheme.

L3 CRMu battery
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The PE Battery is a sensor monitoring the battery level. The metric Battery Level is

managed by the L3 CRMu battery, and is then sent to the upper level manager L2 CRMu

receiver.

Metric : Battery Level.

L2 CRMus :

L2 CRMu transmitter

L2 CRMu transmitter manages the metric Modulation Scheme received from L3 CRMu

mapping and metric IFFT size received from L3 CRMu ifft.

Metrics :

- Modulation Scheme (L3 CRMu mapping)

- IFFT size (L3 CRMu ifft)

L2 CRMu receiver

L2 CRMu receiver manages the metrics received from its lower level L3 CRMus :

- Demodulation Scheme (L3 CRMu demapping)

- SNR (L3 CRMu SNR)

- FFT size (L3 CRMu fft)

- FFT type (L3 CRMu fft)

- Power Consumption (L3 CRMu fft)

- Resource

- Battery Level (L3 CRMu battery)

Based on these metrics, the L2 CRMu receiver makes a decision as discussed in pre-

vious subsections, and takes the following actions.

Actions :

- Request L1 CRM to change the Modulation Scheme

- Send a reconfiguration command to L2 ReMu receiver to change FFT type

- Keep current status, no additional actions

The first action is based on the metric SNR received from L3 CRMu SNR to adapt

the modulation scheme to the noise levels. But L2 CRMu receiver does not have the right
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to change the modulation scheme of the transmitter, it has to hand over the right to

L1 CRM.

Many metrics can result in the second action, which is a little bit more complex. The

decisions are made as explained below.

- If FFT type = software, and R left > Resource (hardware pipelined), and Battery

Level = high, the FFT should be implemented in hardware with pipelined architecture

to achieve higher performance, L2 CRMu receiver sends reconfiguration command to its

associated L2 ReMu receiver with the parameter FFT type (=hardware pipelined).

- If FFT type = software and Resource (hardware radix-2) < R left < Resource (hard-

ware pipelined), regardless of the Battery Level, L2 CRMu receiver sends reconfiguration

command to its associated L2 ReMu receiver with the parameter FFT type (=hardware

radix-2). This is because there is not enough space to implement hardware pipelined

architecture and the hardware radix-2 architecture consumes less power.

- If FFT type = software and R left < Resource (hardware radix-2), there is not

enough space in hardware, therefore it is not possible to implement the FFT in hardware,

L2 CRMu receiver decides to keep current status.

- If FFT type = hardware pipelined and Battery Level = low, L2 CRMu receiver

sends reconfiguration command to its associated L2 ReMu receiver with the parameter

FFT type (=hardware radix-2), because the hardware radix-2 architecture consumes less

power.

- If FFT type = hardware pipelined and Battery Level = high, L2 CRMu receiver

decides to keep current status, because the hardware pipelined architecture provides higher

performance.

- If FFT type = hardware radix-2 and R left > Resource and Battery Level = high,

L2 CRMu receiver sends reconfiguration command to its associated L2 ReMu receiver

with the parameter FFT type (=hardware pipelined), because the hardware pipelined

architecture provides higher performance.

- If FFT type = hardware radix-2 and Battery Level = low, L2 CRMu receiver decides

to keep current status, because the hardware radix-2 architecture consumes less power.

For the sake of simplicity, this can be illustrated by a state machine in Figure 4.16.

Metrics submitted to L1 CRM :



4.9 Scenario 5 : Merge them together 147

Figure 4.16 – The state machine representation of the management of FFT implemen-

tation.

- Demodulation Scheme

- FFT size

L1 CRM

L1 CRM manages the metrics received from its lower level L2 CRMus and network/u-

ser order :

- Modulation Scheme (L2 CRMu transmitter)

- IFFT size (L2 CRMu transmitter)

- Demodulation Scheme (L2 CRMu receiver)

- FFT size (L2 CRMu receiver)

- network/user order

L1 CRM makes decisions based on the received metrics. For example, if L1 CRM re-

ceives the new demodulation scheme from L2 CRMu receiver, which means the channel

condition has been changed, it sends reconfiguration command to its associated L1 ReM

to reconfigure the modulation scheme of both the transmitter and the receiver. Or if

L1 CRM receives the command from network to change the channel bandwidth, it sends

reconfiguration command to its associated L1 ReM to reconfigure both the transmitter

and the receiver to change the IFFT/FFT size.

L1 ReM
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If the L1 ReM receives the command from L1 CRM, it then sends the command to

its target lower level managers, namely L2 ReMu transmitter and L2 ReMu receiver.

L2 ReMus :

L2 ReMu transmitter

If the L2 ReMu transmitter receives the command from its upper level manager

L1 ReM or from its associated L2 CRMu transmitter, it then takes action to execute

the command and sends reconfiguration command to the target L3 ReMu.

L2 ReMu receiver If the L2 ReMu receiver receives the command from its upper level

manager L1 ReM or from its associated L2 CRMu receiver, it then takes action to execute

the command and sends reconfiguration command to the target L3 ReMu.

L3 ReMus :

L3 ReMu mapping

L3 ReMu mapping manages the reconfiguration of its associated PE Mapping. If

L3 ReMu mapping receives command from its upper level manager L2 ReMu transmit-

ter, it then executes the command. If the modulation scheme received from L2 ReMu

transmitter != current running modulation scheme, L3 ReMu mapping reconfigures the

PE Mapping to run at new modulation scheme.

L3 ReMu ifft

L3 ReMu ifft manages the reconfiguration of its associated PE IFFT. If L3 ReMu ifft

receives command from its upper level manager L2 ReMu transmitter, it then executes the

command. If IFFT size received from L2 ReMu transmitter != current running IFFT size,

L3 ReMu ifft reconfigures the PE FFT to run at new IFFT size.

L3 ReMu fft

L3 ReMu fft manages the reconfiguration of its associated PE FFT. If L3 ReMu fft

receives command from its upper level manager L2 ReMu receiver, it then executes the

command. If FFT type received from L2 ReMu receiver != current running FFT type,
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L3 ReMu fft performs a partial reconfiguration operation to reconfigure the PE FFT. If

FFT size received from L2 ReMu receiver != current running FFT size, L3 ReMu fft re-

configures the PE FFT to run at new FFT size.

L3 ReMu demapping

L3 ReMu demapping manages the reconfiguration of its associated PE Demapping. If

L3 ReMu mapping receives command from its upper level manager L2 ReMu receiver, it

then executes the command. If the demodulation scheme received from L2 ReMu recei-

ver != current running demodulation scheme, L3 ReMu demapping reconfigures the PE

Demapping to run at new demodulation scheme.

From the above discussion, we can conclude that the HDCRAM is an open architecture

and is extensible. We can easily add new metrics and update the decision engine in the

CRMus. Also the decision making methods used in these examples are state machine like

methods, more complex decision making algorithms can also be easily included in the

CRMus.

We can also observe that the L2 CRMus can abstract the information from L3 CRMus,

and only submit necessary information to the L1 CRM. In this example, the L1 CRM only

manages the modulation scheme, FFT size, and network/user order, it does not care how

the PE FFT is implemented. The L1 CRM does not need to know if the PE FFT is

implemented in software, or in hardware. This feature is especially important when the

HDCRAM is implemented on different heterogeneous platforms.

4.10 Conclusion

OFDM is a popular digital modulation method that is being used for many various

standards in wireless communications. In this chapter, we employed a simplified OFDM

system model, and introduced a management scenario of the OFDM transmitter and

receiver. Especially, there are many choices to implement the PE FFT, which can be

implemented on a PC, or on a Zynq platform either in software on PS or in hardware

on PL. We can implement only the FFT on Zynq platform and all the rest on PC, in
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this case, only part of level 3 management of the FFT needs to be implemented on Zynq

platform to manage the reconfiguration of the FFT, and all other parts of the system

are implemented on PC. But in order to show the efficiency of the HDCRAM, in this

chapter, we chose to implement the receiver on Zynq platform, in this case, we have both

a software PE Demapping and a PE FFT that can be either in software or hardware,

therefore, a level 2 management is required to manage the 2 PEs. The transmitter and

the level 1 management are put on PC.

Whether it is suitable or not, the OFDM scenario proposed in this chapter offers the

possibility to glue almost all the aspects of the work introduced in this thesis.

In the OFDM scenario, we use some metrics described in chapter 3.

We take advantage of dynamic partial reconfiguration technique to reconfigure the

hardware PE FFT. The DPR approach can not only reconfigure the FFT size but also

the implementation architecture. As discussed in section 4.4, the DPR approach is ad-

vantageous over the traditional reconfigurable FFT in terms of resource utilization, per-

formance (with the same architecture), power consumption and flexibility, except for the

reconfiguration time. E.g., the DPR approach can win 0.014W (pipelined 2048 point

FFT) to 0.039W (radix-2 128 point FFT) compared with the traditional reconfigurable

FFT (pipelined 128 - 2048 point).

We employ the HDCRAM to manage all scenarios. The OFDM scenario is implemented

on heterogeneous platforms that including a PC and a Zynq platform which is introduced

in chapter 2. It shows that the HDCRAM can easily plan all scenarios presented in this

chapter. HDCRAM can efficiently scale the management depending on the scenarios.
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Conclusions and Future Work

In this chapter, we conclude the work presented in this thesis and discuss some direc-

tions for future work.

5.1 Conclusions

The emergence of mobile Internet services and the rapid growth in the number of

mobile subscribers result in the explosive growth of the mobile data traffic. As a result, the

energy costs and the energy consumption are continuously rising, consequently leading to

the increasing contribution to the carbon emission of the world. Therefore energy efficiency

has drawn more and more attention.

Due to the ability to adapt its behavior to the changing environment, CR has been

considered as an enabling technology for green radio communications. The cognitive cycle

can be simplified into three essential parts : sensing, decision, and action. In order to

efficiently manage these three parts, a management architecture, HDCRAM, has been

proposed to glue the three parts together.

There are many different choices to implement HDCRAM. We can implement HD-

CRAM on a GPP all in software programmed in C++. But as its name implies, it is

more interesting to implement HDCRAM on heterogeneous platforms. The communica-

tion between different platforms is through Ethernet using UDP protocol. This approach

is flexible and efficient. Different devices do not have to be placed together very near to
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each other. It makes the system scalable so that new devices can be added easily, and

there is no need to change those devices that have already existed.

Originally, we have implemented HDCRAM on a PC and a Xilinx ML506 board.

The level 1 management is unique and implemented on the PC side. Therefore, on the

FPGA side, the highest level is level 2. We take advantage of the PR technique to manage

the hardware PEs. Especially, we have developed a hardware UDP core, which works at

1Gbits/s, namely 125MBytes/s, to provide a high speed transmission of data and partial

bitstreams. The downloading speed of partial bitstreams can reach 125Mbytes/s without

considering the overhead, and nearly 120.6Mbytes/s taking into account the overhead of

the headers of the Ethernet frame. The reconfiguration management can achieve the maxi-

mum theoretical throughput (400Mbytes/s) of the ICAP during partial reconfiguration.

But there are still some limitations. The software on Microblaze is standalone appli-

cation without OS, and the codes are hardware dependent, thus hard to migrate. Besides,

the power consumption of ML506 board is high. Therefore, when we have the Xilinx

Zynq-7000 platform, which integrates a dual-core ARM Cortex-A9 as PS and a Xilinx’s 7

series FPGA Artix-7 as PL in a single device, we decided to implement HDCRAM on the

new platform. Because we can reuse most of the codes on PC. The codes are portable and

run in Linux on ARM. It is easy to upgrade. And the power consumption of Zynq-7000

platform is much lower than ML506 board. Furthermore, Zynq-7000 platform supports

both full and partial reconfiguration of the PL, which provides more flexibilities.

The dynamic partial reconfiguration technique is employed to reconfigure the hardware

PEs, which makes the hardware PE some kind of software-like.

In order to efficiently manage the sensing information and the reconfiguration of a

cognitive equipment, it is essential, first of all, to gather the necessary metrics of the

PEs so as to provide enough information about the operating condition thus helping

decision making. We have introduced some useful metrics on a FPGA platform. These

metrics, obtained in the first place by L3 CRMus from the PEs, are then submitted to the

upper level CRMus. Depending on the metrics, the CRMus learn about the environment

and working state of the system, make decisions, and send reconfiguration orders to the

associated ReMus, who execute the reconfiguration commands by means of a topdown
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approach. And finally the L3 ReMus reconfigure the corresponding PEs so as to adapt to

the environment.

Finally, we have shown a management scenario of a simplified OFDM system. Some

metrics introduced in chapter 3 have been used in this example. According to the metrics

obtained, how HDCRAM can efficiently manage the reconfiguration of the system to adapt

to the changing environment, including the objective to save power consumption, has

been explained. For example, in the scenario of HDCRAM management of automatic FFT

implementation adaptation according to the battery level, about 20mW can be saved when

the FFT implementation changes from pipelined 2048 to radix-2 2048. A demonstration

of the OFDM scenario has been presented in an ETSI (European Telecommunications

Standards Institute) workshop.

5.2 Future Work

There are still a lot of work to do. Some directions for further research are discussed

below.

On Virtex 5 platform, we have developed a hardware UDP core. The data path from

and to hardware PEs can be in hardware without passing through Microblaze, which

provides a high speed transmission of data. But on Zynq-7000 platform, the default setup

is that the Ethernet PHY is directly connected to the PS. The data are firstly transmitted

to PS and then to PL by DMA approach. In order to improve the performance of data

transmission when data are transmitted to or received from hardware PEs, we can develop

a similar hardware UDP core on PL. Then depending on the UDP port, the soft UDP

deals with the control signals and data to and from software PEs, and the hardware UDP

handles the data to and from the hardware PEs.

In addition to the HDCRAM management architecture, we have also developed some

PEs in the PE library, but in order to verify HDCRAM in more complex cognitive radio

systems, it is not enough. Great efforts are needed to develop and add new PEs to the

PE library. Therefore, it is better to find a way to reuse the existing open source libraries.

But how to include and interface those open source PEs to HDCRAM architecture is also

challenging.
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In the OFDM example, the decision making methods in the CRMus are state machine

like methods. As the decision part is consider to be the “heart” of a cognitive radio, more

complex algorithms, such as machine learning [74], should be included in the CRMus.

High level modeling methodology to represent the HDCRAM for the management

of complex systems and for those who do not want to involve in hardware details is

also a promising research direction, which can use the Model Driven Architecture (MDA)

[114, 115, 116]. The MDA approach can offer the ability to integrate tools to automatically

generate codes, e.g., C++, VHDL. VHDL automatic generation tools (such as [117])

should be taken into account.
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Appendix A

Hardware UDP Core

A.1 Introduction

User Datagram Protocol (UDP) [118] is a connectionless protocol used for transport

of data across an Internet Protocol (IP) [119] based network. UDP is an alternative to

the Transmission Control Protocol (TCP) [120], but it does not perform handshaking as

TCP does, or check for errors, or even to see if the transmitted data was received, so UDP

is referred to as an unreliable, connectionless protocol. However, because UDP skips the

handshaking and is focused on pure transmission, it has lower overhead and is faster than

TCP.

Several related designs that implement hardware UDP protocol have been developed.

N. Alachiotis et al. [121] have designed an UDP/IP core for direct PC-FPGA com-

munication. This design is only used for point-to-point communication. So, later, in their

another paper [122], they have presented an improved version, which allows setting up

a communication with any PC by sending three packets to the FPGA. But in these two

designs, a communication must be started by a PC. Moreover, they do not include the

ARP protocol. We expect both the FPGA and the PC can start a communication in

our design. If we want to change the IP address of the FPGA, the ARP protocol is also

necessary to set up a new communication.

A. Löfgren et al. point out that, when designing FPGA-based Ethernet connected

embedded systems, the priority and necessity of requirements such as cost, area, flexibility

etc. varies for each system [123]. Therefore, they present three different UDP/IP stack
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cores for various demands. They classify them as “Minimum”, “Medium” and “Advanced”

UDP/IP cores. The functionality of our design is at the level of “Advanced” as they

described, but we do not implement the protocols such as RARP, ICMP and TCP.

A. Dollas et al. [124] have developed a TCP/IP core that also supports protocols such

as ARP, ICMP and UDP. The TCP module works at 37.5 MHz, and the UDP module

works at 77 MHz. The speed is not fast enough for our design.

So, we must develop our own UDP core. The design will be very complex if we want

to control the Ethernet chip directly. If some modules are available and can be used as

part of the design, the task would be greatly simplified.

Fortunately, Xilinx provides an Embedded Hard Tri-Mode Ethernet MAC (TEMAC)

solution on the Virtex-5 device, which makes it easier to start developing Ethernet com-

munication.

A.2 Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC

Wrapper

We can generate the core by using the CORE Generator software. In this design, we

use the SGMII interface. The generated wrapper includes an example design that has

an address swap module as client logic. The example swaps the source and destination

address of the incoming MAC frame and transmits it back to the source.

Physical Interface :

GMII / MII

The Media Independent Interface (MII), defined in IEEE 802.3, clause 22 is a parallel

interface that connects a 10-Mb/s and/or 100-Mb/s capable MAC to the physical su-

blayers. The Gigabit Media Independent Interface (GMII), defined in IEEE 802.3, clause

35 is an extension of the MII used to connect a 1-Gb/s capable MAC to the physical

sublayers. MII can be considered a subset of GMII, and as a result, GMII/MII together

can carry Ethernet traffic at 10 Mb/s, 100 Mb/s, and 1 Gb/s.

SGMII

The Serial-GMII (SGMII) is an alternative interface to the GMII/MII that converts the

parallel interface of the GMII into a serial format. It radically reduces the I/O count and
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is, therefore, often favored by PCB designers. This configuration is achieved by connecting

the Ethernet MAC to a RocketIO serial transceiver. SGMII can carry Ethernet traffic at

10 Mb/s, 100 Mb/s, and 1 Gb/s.

Figure A.1 illustrates the major functional blocks of the Ethernet MAC example de-

sign.

Figure A.1 – An example of management functionality.

Data is transferred on the LocalLink interface from source to destination, with the flow

governed by the four active low control signals sof n, eof n, src rdy n, and dst rdy n. The

flow of data is controlled by the src rdy n and dst rdy n signals. The individual packet

boundaries are marked by the sof n and eof n signals. Only when these signals are asserted

simultaneously is data transferred from source to destination.

Figure A.2 shows the transfer of an 8-byte frame.

The Address Swap module represents the back-end client logic user application. What

we should do next is to replace this module with our own design. Since we are going to

implement UDP protocol on the Virtex-5 device to communicate with a PC, we should

replace this Address Swap module with an UDP core, which will be connected directly to

the local link FIFOs of the Ethernet MAC wrapper. Figure A.3 shows how the UDP core

is connected to the Ethernet MAC wrapper.

The Tri-Mode Ethernet MAC wrapper makes it easier for users to develop with the

Ethernet communication by giving the user simplified inputs and outputs interfaces.
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Figure A.2 – An example of management functionality.

Figure A.3 – An example of management functionality.

A.3 UDP module

The format of an UDP packet is shown in Figure A.4. It consists of header and user

data. The header is made up of three parts : Ethernet header, IP header and UDP header.

The UDP module is composed of two parts : UDP Receiver and UDP Transmitter.

Each module mainly uses a finite state machine (FSM).

A.3.1 UDP Receiver

UDP Receiver is connected directly to the Local Link receive FIFO of the Ethernet

MAC Wrapper.
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Figure A.4 – An example of management functionality.

When an active-low signal sof n arrives, a new packet is coming, the counter begins

to calculate the number of received bytes, and at the same time, the Receiver starts to

read the data (including the header) from the Local Link receive FIFO, and a FSM is

activated to decode each field of the packet’s header. Some filters are used to check the

header of the packet, in order to make sure that the user data will be received are what

we indeed want.

When the FSM goes to Ethernet header state, if the type field in the Ethernet header

is not 0x0800, which means the packet being received is not an IP packet, then it will be

ignored, and the FSM jumps back to idle state waiting for next packet. Otherwise the

source MAC address is stored in a register and transmitted to user logic, and the FSM

goes to next state, IP header state.

In this state, three filters are applied, if the packet is not an IPv4 packet (the version

field of the IP header is not the value of 4), or is not an UDP packet (the protocol field

is not the value of 0x11), or the destination IP address does not equal the one set on the

FPGA device, it will be discarded. If the IP header is what we are expecting, the source
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IP address will be stored in a register and passed up to user logic, and then the FSM

shifts to UDP header state.

In the UDP header state, the source port, the destination port and the data length

will be stored in three different registers and delivered up to user logic. Since the length

field of UDP header includes the length of the UDP header, we should subtract the UDP

header length to obtain the correct data length.

The following state is read data state, a signal is asserted to inform the user logic

that it’s time to receive data, and the incoming user data are transferred to user logic for

further processing. When the signal eof n goes low, this indicates the end of the packet,

then the FSM shifts to idle state waiting for next packet.

Now, a complete packet has been received ; some useful signals, source MAC address,

source IP address, source port, destination port and data length, are passed up to user

logic ; and the user data are transferred to user logic as well. Of course, in the receive

process, we can add other filters we want depending on the actual needs, such as port

number filter, etc.

A.3.2 UDP Transmitter

UDP Transmitter is connected directly to the Local Link transmit FIFO of the Ether-

net MAC Wrapper.

Three active-low signals, sof n, eof n, and src rdy n must be created appropriately at

the right time to control the transmission.

When the Transmitter detects an active-high pulse tx start, the FSM goes to Ethernet

header state, and the Ethernet header is being sent. At the very beginning of this state,

the signal sof n should be set to low for only one cycle, and the signal src rdy n should

be set to low. The destination MAC address field is loaded from the Receiver (the source

MAC address received), or can also be read from user logic. The source MAC address

field is a constant signal set on the FPGA device. The type field is 0x0800, since this is

an IP packet.

The next state is IP header state, the fist byte being sent is the version and internet

header length (the number of 32-bit words in the header) field. The value of this field is

0x45, because the packet is IPv4 and the header length is 20 bytes. The total length field
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has the value of user data length (reads from user logic) + 20 (IP header length) + 8

(UDP header length). The time to live field is set to 0x80, which is the default value. The

protocol field is 0x11, because the packet follows UDP protocol. The source IP address

field is a constant signal set on the FPGA device. The destination IP address field is

loaded from the Receiver (the source IP address received), or can also be read from user

logic. Since we know the values of all fields of the IP header, the value of header checksum

field can be calculated before the time to send the header checksum. Other fields in the

IP header are all set to 0.

The following state is UDP header state. The source port field and the destination

port field read from the user logic. The length field has the value of user data length (reads

from user logic) + 8 (UDP header length). The checksum field is set to 0. At the time

of the last byte of the UDP header, a signal is asserted to inform the user logic that it’s

time to send user data and prepare the right data that are going to be sent.

Then the FSM shifts to send data state, reads data from user logic and sends these

data to Ethernet MAC Wrapper byte by byte. At the time of the last byte of user data,

the signal eof n should be set to low for only one cycle.

The final state is finish transmit state, the signal src rdy n is set to high. Then the

FSM goes to idle state waiting for another transmission.

A.3.3 UDP module test

In order to examine if this UDP module works properly, a test work has been done.

On the PC side, two VLC processes were employed. One was used to send video streams

that follow UDP protocol while the other was used to receive video from a certain port.

On the FPGA side, an application was created and used to just receive packets from PC

and send the incoming data back to PC at a certain port. Wireshark was used to capture

packets sent and received on the PC side.

But what we captured in Wireshark were only ARP packets sent by PC. We typed “arp

-a” in the command shell, and did not find any information about FPGA. The problem

was that there was not a record of FPGA in the ARP table. So PC sent ARP packets

asking “who has 192.168.10.5(IP address of FPGA)”. We had to add a record manually
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by typing “arp -s 192.168.10.5 00-0A-35-01-93-01”. After doing this, we finally received

the video, and it worked well.

Up to this point, it seemed that the work should be finished. If it is only used for

point-to-point communication and without changing IP address, it is sufficient to build

up an UDP communication. But if we want to change the IP address of FPGA, this will

not be flexible. Actually, in some cases, the IP address needs to be configurable in our

design. So an ARP module has to be added into the UDP core.

A.4 ARP module

Address Resolution Protocol (ARP) is responsible for resolution of IP addresses into

physical addresses. Essentially, ARP is a table with a list of the IP addresses and their

corresponding physical addresses. The Address Resolution Protocol uses a simple message

format that contains one address resolution request or response. The format of an ARP

packet is shown in Figure A.5. It consists of Ethernet header and ARP header.

Figure A.5 – The format of an ARP packet.

Since we decide to add ARP module into the UDP core, some modification should be

done accordingly in the UDP Transmitter module. When we send an UDP packet, we must

read the lookup table in the ARP module first. If there exists the record of corresponding

MAC address of the destination IP address, we need only read this information and add it
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into the UDP Transmitter module, then start an UDP transmission. Otherwise, it needs to

send an ARP request packet and wait for the response from the remote machine, and then

the ARP module stores the information in the lookup table and tells the UDP Transmitter

module to read this information. Two FSMs are used in the ARP module, one is receive

FSM, and the other one is transmit FSM.

A.4.1 ARP Receiver

When the signal sof n goes low, the receive FSM is activated to decode each field of

the packet. When the receive FSM goes to Ethernet header state, if the type field in the

Ethernet header is 0x0806, which means the packet being received is an ARP packet, and

then the receive FSM shifts to next state, read type state.

The read type state, examines if it is a packet for Ethernet (the hardware type field

is 0x0001) and IPv4 (the protocol type field is 0x0800).

The next state, read length state, checks hardware length (0x06) and protocol length

(0x04).

The following state is operation type state, reads the operation field of the ARP packet

to learn it is a request (0x0001) or a reply (0x0002).

Then the receive FSM goes to read sender state, the sender hardware address and the

sender protocol address are stored.

The next state is read target state, if the target protocol address field does not equal

the IP address set on the FPGA device, the receive FSM jumps to idle state, otherwise,

the receive FSM shifts to process state.

In the process state, the sender hardware address and the sender protocol address are

added to the ARP lookup table. If this ARP packet received is a request message, then

the transmit FSM is activated to send a reply packet to the sender.

A.4.2 ARP Transmitter

There are two situations that can trigger the transmit FSM to start an ARP trans-

mission.

* If FPGA received a request ARP packet, it needs to send a reply packet to the

sender, which was mentioned above in subsection ARP Receiver.
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* When the UDP Transmitter module reads the lookup table in the ARP module,

and if it does not have the record of corresponding MAC address of the destination

IP address, then it needs to send an ARP request packet.

When an ARP transmission starts, the transmit FSM goes to Ethernet header state.

The destination MAC address field is 0xFFFFFFFFFFFF, which is a broadcast. The

source MAC address field is a constant signal set on the FPGA device. The type field is

0x0806, since this is an ARP packet.

The next state is send type state, the hardware type field is 0x0001(Ethernet) and the

protocol type field is 0x0800(IPv4).

Then the transmit FSM shifts to send length state, the hardware length field is 0x06

and protocol length field is 0x04.

The following state is send operation state. The operation field is 0x0001(request), if

this transmission is triggered by UDP Transmitter module, or 0x0002(reply) if triggered

by receive FSM.

Then the transmit FSM goes to send sender state, the sender hardware address field

and the sender protocol address field both are constant signals set on the FPGA device,

or can read from the user logic. The final state is send target state, if this is a request

packet, the target hardware address field is all zeros, because this is just what we want to

know, and the target protocol address reads from the UDP Transmitter module. If this

is a reply packet, the target hardware address field and the target protocol address field

read from the ARP lookup table.

A.5 Architecture

Because there is only one Ethernet MAC interface, it can not send an UDP packet

and an ARP packet at the same time ; only one of them at a time can be transmitted.

So a multiplexer is employed to handle this issue, and it is set to send UDP packet by

default, because most of the packets are UDP packets, an ARP packet is only needed at

the beginning of a transmission to establish a communication between the FPGA and the

PC. Finally, the architecture of our UDP core is shown in Figure A.6.
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Figure A.6 – The architecture of the UDP core.

A.6 Test and validation

In order to examine if this UDP core works properly, we should set up a test platform

first. An application, which is mainly a FIFO, is developed and used to just receive UDP

packets from PC and then send the incoming data back to PC at a certain destination port.

We call it Video stream. A soft core Microblaze is created as the management unit. In our

design, we need to distinguish a control message from a process message depending on the

destination port number of the received packet. If the port number is 1200, we consider

the packet as a control message, and the received data must be sent to Microblaze. In the

Microblaze, these control data are decoded, and corresponding processing must be done.

If it is a change IP address command or a change port number command, the Microblaze

sends configure signal and new IP address or new port number to the configure module.

This module then sends new values received to the UDP core to replace the old ones.

The schematic diagram of the test platform is shown in Figure A.7. On the PC side,

two VLC processes are executed. One is used to send video streams that follow UDP

protocol while the other is used to receive video streams from a certain port. We use
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Wireshark to capture all the packets sent and received on the PC side. We can compare

the packets sent with the packets received to see if the data are the same. UDP Test Tool

is used to send control packets at port 1200.

Figure A.7 – The schematic diagram of the test platform.

We can see the packets captured by Wireshark in Figure A.8, the fist two packets are

ARP packets, they establish a communication between the PC and the FPGA. And then

every packet sent by VLC is followed by a packet received from the FPGA, they are a

pair. We can compare the data of every pair of packets, and we can find that they are the

same. This verifies that the data transmission is correct and reliable.

Considering the Ethernet MAC wrapper works at 125 MHz and the UDP core has

the same clock, it can send or receive one byte per cycle, and then we can estimate the

maximum throughput : 125 Mbytes/s.

We can also see the video streams received from FPGA in figure A.9, the VLC sender

is on the left side and the VLC receiver is on the right side. The results show that the

UDP core works well. The data are transmitted reliably.

Next, we test if the UDP core is configurable. We define the control message format

as shown in following tables.

Table A.1 – Set to default command.

00 00 00
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Figure A.8 – The packets captured in Wireshark.

Figure A.9 – The video streams sent and received.

Table A.2 – Change destination port number command.

01 Port number byte1 Port number byte0
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Table A.3 – Change IP address command.

02 IP address byte3 IP address byte2 IP address byte1 IP address byte0

Table A.4 – Change data length command.

03 length byte1 length byte0

The default values of UDP core are shown as follows : Destination port number : 1234 ;

IP address : 192.168.10.5 ; Data length : data length of received packet.

We send change destination port number command “01 04 d3” at port 1200 by

using UDP Test Tool. This command changes the destination port number from 1234

to 1235(0x04d3). After this change, the VLC receiver cannot receive the packets, and the

video frame stops. Then we change the receive port of the VLC receiver to 1235, and

the video works again. This proves that we have changed the destination port number

successfully.

Then, we send change IP address command “02 C0 A8 0A 08”. The IP address changes

from 192.168.10.5 to 192.168.10.8(0x C0 A8 0A 08). After doing this change, the FPGA

cannot receive the packets from the VLC sender and the VLC receiver cannot receive

the packets as well, because VLC sender sends video streams to 192.168.10.5. We change

the destination IP address of the VLC sender to 192.168.10.8, and then the VLC receiver

receives the video again. This proves that we have changed the IP address successfully.

Similarly, we test change data length command and set to default command respecti-

vely, both work properly. These tests show that the UDP core is configurable.

A.7 Conclusion

A hardware UDP core has been developed on Xilinx ML506 board in order to be able

to communicate with PC following UDP protocol. ARP protocol is also implemented to

make it flexible to build up a new communication. This design is connected directly to

the local link FIFOs of the Ethernet MAC wrapper, and is configurable by using a Micro-

blaze processor. In this design, control messages are distinguished from process messages

depending on the destination port number of the received packet. Control messages must
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be sent to Microblaze following the HDCRAM architecture. According to the test results,

our design works well and meets the requirement.

In this design, the values of UDP core can be configured not only by Microblaze, but

also by PC by sending command packets at port 1200. It can also work even without

Microblaze by using default values. So, it is very flexible.
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ML506 Evaluation Platform

The ML505, ML506, and ML507 platforms use the same printed-circuit board (PCB)

[125]. The ML506 evaluation platform enables designers to investigate and experiment

with features of Virtex-5 FPGAs. This appendix describes the features of the ML506

Evaluation Platform. For the detailed information and user guide for the Virtex-5 ar-

chitecture, please refer to [126]. The picture of the ML506 evaluation board is shown in

Figure B.1.

Features

- Xilinx Virtex-5 FPGA XC5VSX50T-1FFG1136

- Two Xilinx XCF32P Platform Flash PROMs (32 Mb each) for storing large device

configurations

- Xilinx System ACE. CompactFlash configuration controller with Type I Compact-

Flash connector

- Xilinx XC95144XL CPLD for glue logic

- 64-bit wide, 256-MB DDR2 small outline DIMM (SODIMM), compatible with EDK

supported IP and software drivers

- Clocking

* Programmable system clock generator chip

* One open 3.3V clock oscillator socket

* External clocking via SMAs (two differential pairs)

- General purpose DIP switches (8), LEDs (8), pushbuttons, and rotary encoder
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Figure B.1 – ML506 evaluation board. [127]

- Expansion header with 32 single-ended I/O, 16 LVDS-capable differential pairs, 14

spare I/Os shared with buttons and LEDs, power, JTAG chain expansion capability, and

IIC bus expansion

- Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, microphone-in

jacks, SPDIF digital audio jacks, and piezo audio transducer

- RS-232 serial port, DB9 and header for second serial port

- 16-character x 2-line LCD display

- One 8-Kb IIC EEPROM and other IIC capable devices

- PS/2 mouse and keyboard connectors

- Video input/output

* Video input (VGA)

* Video output DVI connector (VGA supported with included adapter)

- ZBT synchronous SRAM, 9 Mb on 32-bit data bus with four parity bits

- Intel P30 StrataFlash linear flash chip (32 MB)

- Serial Peripheral Interface (SPI) flash (2 MB)
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- 10/100/1000 tri-speed Ethernet PHY transceiver and RJ-45 with support for MII,

GMII, RGMII, and SGMII Ethernet PHY interfaces

- USB interface chip with host and peripheral ports

- Rechargeable lithium battery to hold FPGA encryption keys

- JTAG configuration port for use with Parallel Cable III, Parallel Cable IV, or Plat-

form USB download cable

- Onboard power supplies for all necessary voltages

- Temperature and voltage monitoring chip with fan controller

- 5V @ 6A AC adapter

- Power indicator LED

- MII, GMII, RGMII, and SGMII Ethernet PHY Interfaces

- GTP/GTX : SFP (1000Base-X)

- GTP/GTX : SMA (RX and TX Differential Pairs)

- GTP/GTX : SGMII

- GTP/GTX : PCI Express (PCIe) edge connector (x1 Endpoint)

- GTP/GTX : SATA (dual host connections) with loopback cable GTP/GTX : Clock

synthesis ICs

- Mictor trace port

- BDM debug port

- Soft touch port

- System monitor
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ZC702 Evaluation Board

The ZC702 evaluation board for the XC7Z020 All Programmable SoC (AP SoC) pro-

vides a hardware environment for developing and evaluating designs targeting the Zynq-

7000 XC7Z020-1CLG484C AP SoC. The ZC702 board provides features common to many

embedded processing systems, including DDR3 component memory, a tri-mode Ethernet

PHY, general purpose I/O, and two UART interfaces. Other features can be supported

using VITA-57 FPGA mezzanine cards (FMC) attached to either of two low pin count

(LPC) FMC connectors.

The ZC702 board key features are listed in here and indicated in Figure C.1. For more

detailed information about the ZC702 board, please refer to [89].

Key Features [129] :

Zynq-7000 XC7Z020 CLG484 -1

- ROHS compliant ZC702 kit including the XC7Z020-CLG484-1 AP SoC Power 12V

wall adapter or ATX voltage and current measurement capability of supplies

Configuration

- Onboard configuration circuitry

- 16MB Quad SPI Flash

- SDIO Card Interface (boot)

- PC4 and 20 pin JTAG ports

Memory

- DDR3 Component Memory 1GB
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Figure C.1 – Features on the ZC702 board. [128]

- Support 32 data width

- 16MB Quad SPI Flash

- IIC - 1 KB EEPROM

Communication & Networking

- Gigabit Ethernet GMII, RGMII and SGMII

- USB OTG 1 (PS) - Host USB

- IIC Bus Headers/HUB (PS)

- 1 CAN with Wake on CAN (PS)

- USB UART (PS)

Video/ Display

- HDMI Video OUT

- 8X LEDs
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Expansion Connectors

- FMC #1-LPC connector (0 GTX Transceiver, 68 single-ended or 34 differential user

defined signals)

- FMC #2-LPC connector (0 GTX Transceiver, 68 single-ended or 34 differential user

defined signals)

- IIC HUB/Expander

- Dual Pmod (8 I/O Shared with LED’s)

- Single Pmod (4 I/O Shared with PJTAG)

Clocking

- 200MHz Fixed PL Oscillator (Differential LVDS)

- 156.25MHz (default) I2C Programmable Oscillator (Differential LVDS)

- 33.33MHz Fixed PS System Oscillator (Single-Ended CMOS)

Control & I/O

- 3 User Push Buttons

- 2 User Switches

- 8 User LEDs

Power

- 12V wall adapter or ATX

- Voltage and Current measurement capability of supplies

Analog

- XADC header

C.1 Zynq-7000 AP SoC architecture

The Xilinx Zynq-7000 All Programmable SoC (AP SoC) architecture integrates a

feature-rich dual-core ARM Cortex-A9 based processing system (PS) and Xilinx 7-series

FPGA fabric as the programmable logic (PL) in a single device. The PS and PL can

be used independently or together. A system can be implemented by mapping custom

software on PS and custom logic on PL respectively.

The block diagram of the Zynq-7000 AP SoC architecture is shown in Figure C.2.
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Figure C.2 – Overview of the Zynq-7000 AP SoC architecture.

The PS includes a dual-core ARM Cortex-A9 processor, on-chip memory, external

memory interfaces, and a rich set of I/O peripherals. The PS and PL can be tightly or

loosely coupled using multiple interfaces. This enables the designer to effectively integrate

user-created hardware accelerators and other functions in the PL logic that are accessible

to the processors and can also access memory resources in the PS. The custom applications

designed on PL can take advantage of partial reconfiguration technique, which allows the

reuse of the PL by reconfiguring a portion of the PL.

The use of an embedded Linux can reduce the development time and cost. Applications

in Linux are easy to migrate to new processing platforms.

Xilinx Zynq-Linux is an open source OS freely available from Xilinx. It is based on the

3.0 Linux kernel from kernel.org and includes a number of additions from Xilinx, such as

a BSP and specific device drivers. Figure C.3 illustrates the Linux System architecture.

C.2 Boot Stages

You can boot or configure Zynq-7000 All Programmable SoC devices in secure mode

using static memories only (JTAG disabled) or in non-secure mode using either JTAG or

static memories.
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Figure C.3 – A High-level GNU/Linux system architecture.

Zynq Linux boot process is depicted in Figure C.4.

Figure C.4 – Zynq Linux boot process.

C.2.1 Stage-0 Boot (BootROM)

An internal BootROM stores the stage-0 boot code, which configures one of the

ARMÂ R© processors and the necessary peripherals to start fetching the First Stage Boot-

loader (FSBL) boot code from one of the boot devices. The programmable logic (PL) is

not configured by the BootROM. The BootROM is not writable.

The FSBL boot code is typically stored in one of the flash memories, or can be down-

loaded through JTAG. BootROM code copies the FSBL boot code from the chosen flash
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memory to On-Chip Memory (OCM). The size of the FSBL loaded into OCM is limited

to 192 kilobyte. The full 256 kilobyte is available after the FSBL begins executing.

C.2.2 Stage-1 (First-Stage Bootloader)

The FSBL is loaded into the OCM by the boot ROM after the initial boot period.

The FSBL is responsible for a number of initialisation functions which include initialising

the CPU with the PS configuration data, programming the PL using a bitstream, loa-

ding thesecond-stage bootloader or initial user applications into memory, and beginning

execution of the second-stage bootloader/initial user application code.

C.2.3 Stage-2 (Second-Stage Bootloader)

If using Linux, the SSBL is U-Boot and it is responsible for loading the compressed

Linux kernel image, the system device tree and the ramdisk image into memory. Once

these images are loaded into memory, U-Boot will initialise the execution of the Linux

kernel.
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FFT implementation architectures

In chapter 4, the hardware implementation of FFT uses Xilinx FFT IP core [112],

which implements the Cooley-Tukey [130] FFT algorithm, a computationally efficient

method for calculating the Discrete Fourier Transform (DFT).

The FFT core uses the Radix-4 and Radix-2 decompositions for computing the DFT.

When using Radix-4 decomposition, the N-point FFT consists of log4(N) stages, with each

stage containing N/4 Radix-4 butterflies. An N-point FFT using Radix-2 decomposition

has log2(N) stages, with each stage containing N/2 Radix-2 butterflies.

The FFT core provide four architecture options : Pipelined Streaming I/O, Radix-4

Burst I/O, Radix-2 Burst I/O, and Radix-2 Lite, and support point sizes from 8 to 65536.

We would like to introduce here two of them used in chapter 4. For the detailed

introduction and user guide of the Xilinx FFT IP core, please refer to [112].

D.1 Pipelined Streaming I/O

The block diagram of the pipelined architecture is shown in Figure D.1.

The Pipelined Streaming I/O architecture employs several Radix-2 butterfly proces-

sing engines to offer continuous data processing. Each processing engine has its own me-

mory banks to store the input and intermediate data (Figure D.1). The core has the ability

to simultaneously perform transform calculations on the current frame of data, load input

data for the next frame of data, and unload the results of the previous frame of data.

You can continuously stream in data and, after the calculation latency, can continuously
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Figure D.1 – Pipelined architecture. [112]

unload the results. If preferred, this design can also calculate one frame by itself or frames

with gaps in between.

This architecture covers point sizes from 8 to 65536. You have the flexibility to select

the number of stages to use block RAM for data and phase factor storage. The remaining

stages use distributed memory.

D.2 Radix-2 Burst I/O

The block diagram of the Radix-2 architecture is shown in Figure D.2.

The Radix-2 Burst I/O solution uses one Radix-2 butterfly processing engine. After a

frame of data is loaded, the input data stream must halt until the transform calculation

is completed.

The Burst I/O architectures do not allow frame overlapping to the same degree as

the Pipelined Streaming I/O architecture. It loads and processes data separately, using

an iterative approach. It is smaller in size than the pipelined solution, but has a longer

transform time.

When the FFT is started, the data is loaded. After a full frame has been loaded,

the core computes the transform. When the computation has finished, the data can be

unloaded, but cannot be loaded or unloaded during the calculation process.
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Figure D.2 – Radix-2 architecture. [112]

This solution supports point sizes from 8 to 65536. Both the data memories and phase

factor memories can be in either block RAM or distributed RAM (the latter for point

sizes less than or equal to 1024).
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As the digital communication systems evolve from GSM and now toward 5G, the sup-
ported standards are also growing. The desired communication equipments are required
to support different standards in a single device at the same time. And more and more
wireless Internet services have been being provided resulting in the explosive growth in
data traffic, which increase the energy consumption of the communication devices thus
leads to significant impact on global CO2 emission. More and more researches have focu-
sed on the energy efficiency of wireless communication. Cognitive Radio (CR) has been
considered as an enabling technology for green radio communications due to its ability to
adapt its behavior to the changing environment. In order to efficiently manage the sensing
information and the reconfiguration of a cognitive equipment, it is essential, first of all,
to gather the necessary metrics so as to provide enough information about the operating
condition thus helping decision making. Then, on the basis of the metrics obtained, an
optimal decision can be made and is followed by a reconfiguration action, whose aim is to
minimize the power dissipation while not compromising on performance. Therefore, a ma-
nagement architecture is necessary to be added into the cognitive equipment acting as a
glue to realize the CR capabilities. We introduce a management architecture, namely Hie-
rarchical and Distributed Cognitive Radio Architecture Management (HDCRAM), which
has been proposed for CR management by our team. This work focuses on the imple-
mentation of HDCRAM on heterogeneous platforms. One of the objectives is to improve
the energy efficiency by the management of HDCRAM. And an example of a simplified
OFDM system is used to explain how HDCRAM works to efficiently manage the system
to adapt to the changing environment.

Keywords: Software Radio, Cognitive Radio, Green Radio, HDCRAM, FPGA, Partial
Reconfiguration.

Pour supporter l’évolution constante des standards de communication numérique, du
GSM vers la 5G, les équipements de communication doivent continuellement s’adapter.
Face à l’utilisation croissante de l’internet, on assiste à une explosion du trafic de données,
ce qui augmente la consommation d’énergie des appareils de communication sans fil et
conduit donc à un impact significatif sur les émissions mondiales de CO2. De plus en plus
de recherches se sont concentrées sur l’efficacité énergétique de la communication sans fil.
La Radio Intelligente, ou Cognitive Radio (CR), est considérée comme une technologie
pertinente pour les communications radio vertes en raison de sa capacité à adapter son
comportement à son environnement. Sur la base de métriques fournissant suffisamment
d’informations sur l’état de fonctionnement du système, une décision optimale peut être
effectuée en vue d’une action de reconfiguration, dans le but de réduire au minimum la
dissipation d’énergie tout en ne compromettant pas les performances. Par conséquent, tout
équipement intelligent doit disposer d’une architecture de gestion de la reconfiguration.
Nous avons retenu l’architecture HDCRAM (Hierarchical and Distributed Cognitive Radio
Architecture Management), développée dans notre équipe, et nous l’avons déployée sur des
plates-formes hétérogènes. L’un des objectifs est d’améliorer l’efficacité énergétique par la
mise en œuvre de l’architecture HDCRAM. Nous l’avons appliquée à un système OFDM
simplifié pour illustrer comment HDCRAM permet de gérer efficacement le système et
son adaptation à un environnement évolutif.

Mots-clés: Radio Logicielle, Radio Intelligente, Eco-Radio, HDCRAM, FPGA, Recon-
figuration Partielle.
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