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Préambule

Ce manuscrit rassemble mes contributions portant sur le développement de nouvelles méthodes
mathématiques et numériques pour l’analyse des écoulements biologiques, considérés comme des
phénomènes complexes multi-physiques et multi-échelles. La description des mécanismes sous-
jacents découle des principes de base de la mécanique des fluides et se traduit dans des systèmes
d’équations aux dérivées partielles ou d’équations différentielles. L’objectif global de ce travail est
l’étude de ces équations aux niveaux continu et discret et de leur couplage, ainsi que la mise en place
d’un environnement de calcul permettant l’implémentation fiable et efficace des différentes méthodes
numériques proposées pour approcher les solutions de ces problèmes. Les simulations numériques
ainsi développées prennent en compte des géométries réalistes et une validation détaillée est pro-
posée à travers des comparaisons avec des données expérimentales, en vue de leur application à des
questions biomédicales spécifiques.

L’approche in silico, consistant à combiner la modélisation basée sur des données et la modélisa-
tion fondée sur les lois de la physique, dans le même environnement de calcul, est devenue de
plus en plus populaire dans le domaine des sciences de la vie ces dernières années et a motivé le
développement de nouveaux concepts mathématiques et numériques. Malgré des avancées signi-
ficatives dans la modélisation in silico de la physiologie humaine, l’étude de la dynamique com-
plexe qui régit l’interaction entre différents fluides dans le corps humain suscite encore des ques-
tions extrêmement difficiles. La description des fluides biologiques fait intervenir une large gamme
d’échelles spatiales et temporelles, entre le niveau moléculaire et celui des réseaux de quelques mètres,
avec une durée qui peut aller d’une seconde pour le cycle cardiaque à plusieurs dizaines d’années
pour une vie. La dynamique de ces fluides est influencée par l’interaction avec les tissus environ-
nants, d’où la nécessité d’une approche multi-physique dans la modélisation. La représentation
géométrique est très complexe et peu de données réalistes sont disponibles. En outre, dans les
études expérimentales, de nombreux facteurs entrent en jeu et il est difficile d’isoler l’effet de chaque
contribution sur les caractéristiques de l’écoulement. Dans cette direction, l’analyse statistique of-
fre de nombreuses techniques pour aider à identifier des corrélations entre les données, mais la
compréhension des relations de cause à effet à travers ces méthodes reste limitée. Dans cette per-
spective, la modélisation mathématique et numérique, basée sur les principes fondamentaux de la
physique et adaptée à un cadre biologique, peut aider à identifier des relations de cause à effet dans
l’action conjuguée de multiples facteurs et ainsi améliorer notre compréhension de ces phénomènes
complexes ; bien évidemment, cette analyse est amenée à se développer en synergie avec d’autres
approches.

Afin de mieux comprendre certaines difficultés rencontrées dans cette étude, il nous parâıt im-
portant d’aborder à ce stade la question suivante : quelles sont les différences entre la modélisation
des fluides biologiques et celle des fluides “classiques” ? Comparés à des fluides “classiques”, ces
fluides remplissent des fonctions biologiques essentielles (par exemple le transport de nutriments et
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d’oxygène, l’interaction avec les cellules environnantes), qui doivent être prises en compte dans un
modèle mathématique. Contrairement aux fluides “inertes”, leurs propriétés changent au cours du
temps, comme conséquence de différents processus biologiques liés à l’âge, à la maladie, etc. De nom-
breux défis sont engendrés par leur étude in vivo, car la plupart du temps, les fluides biologiques sont
difficilement accessibles dans leur milieu naturel ; en outre, ils montrent souvent des propriétés et des
comportements différents lorsqu’ils sont examinés in vitro ou in vivo. Par conséquent, l’extension
des théories classiques de la mécanique des fluides et de l’approche mathématique correspondante
à l’étude des systèmes biologiques soulève de nombreuses questions et représente actuellement un
domaine de recherche très actif.

Tous ces aspects conduisent à : (i) de nombreuses difficultés liées à la dérivation d’un modèle
mathématique pertinent et bien posé à partir de la littérature biologique et clinique ; (ii) un be-
soin important de développer de nouvelles approches théoriques et méthodes numériques ; (iii)
une nécessité croissante de concevoir et de mettre en œuvre un environnement de calcul flexible et
efficace ; (iv) des efforts de recherche importants dédiés à la vérification, la validation et la prise
en compte des incertitudes. Ces aspects sont cruciaux pour garantir que le modèle et ses solutions
numériques sont significatifs du point de vue biomédical, permettant ainsi l’utilisation du cadre
résultant comme un laboratoire virtuel où des idées peuvent être testées et de nouvelles hypothèses
peuvent être formulées.

Dans ce contexte, les contributions décrites dans ce manuscrit se retrouvent à la croisée des
mathématiques, de la modélisation et de la médecine. Comme résumé ci-dessous et détaillé dans
les chapitres suivants, nous présenterons le développement de nouveaux modèles mathématiques
et méthodes numériques, illustrés par des applications biomédicales. À travers les publications
sélectionnées, chaque chapitre décrit les difficultés rencontrées et les résultats obtenus en réponse
à différentes questions théoriques et pratiques et se termine par une discussion générale et des
perspectives. Tous ces développements n’auraient pas été possibles sans une étroite collaboration
avec des collègues mathématiciens, physiciens, informaticiens, biologistes et médecins. Leurs noms
apparaissent dans la liste des références. Je mentionne en particulier dans cette introduction les
contributions de plusieurs doctorants que j’ai pu encadrer, de manière formelle ou informelle et qui
ont donné lieu à des publications communes.

Les chapitres sont structurés comme suit.

Dans le chapitre 1, nous nous intéressons aux modèles tridimensionnels, dans lesquels le mouvement
d’un biofluide dans une géométrie complexe et réaliste est régi par les équations de Navier-Stokes
sur un domaine faisant intervenir des conditions aux bords d’entrée et de sortie. Différents as-
pects ont été abordés : (i) la modélisation mathématique, à travers le développement du premier
modèle tridimensionnel du réseau cérébral veineux et l’évaluation de l’importance des différentes
hypothèses de modélisation par une approche de type analyse de sensibilité ; (ii) l’analyse théorique
et numérique d’une nouvelle méthode de discrétisation, basée sur des multiplicateurs de Lagrange,
qui a été développée afin de prendre en compte des conditions aux limites faisant intervenir la pres-
sion (méthode qui pourrait par ailleurs être intéressante dans le contexte plus général des réseaux
hydrauliques) ; (iii) des contributions en calcul scientifique, avec l’objectif de développer un envi-
ronnement de calcul haute performance, validé sur des cas-tests significatifs pour les applications
en vue ; (iv) des avancées interdisciplinaires visant à créer des données angiographiques virtuelles à
partir d’images médicales, dans le cadre du projet ANR VIVABRAIN. Une partie de ces résultats
ont été obtenus au cours de la thèse de doctorat de Ranine Tarabay (Université de Strasbourg),
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co-encadrée avec Christophe Prud’homme (Université de Strasbourg) et Nicolas Passat (Université
de Reims), soutenue en septembre 2016, ainsi que dans une collaboration avec Olivia Miraucourt
(Université de Reims), encadrée par Stéphanie Salmon (Université de Reims), Hugues Talbot (ES-
IEE Noisy Le Grand) et Nicolas Passat (Université de Reims), qui a soutenu sa thèse de doctorat
en novembre 2016.

Le chapitre 2 aborde la question des modèles mathématiques et numériques réduits et multi-échelles
pour les biofluides. Plus précisément, dans une première partie, nous avons développé plusieurs
modèles 0d dans le but de comprendre la dynamique complexe des biofluides qui interagissent
dans le système couplé œil-cerveau. L’avantage de ces nouveaux modèles de type réseau est qu’ils
fournissent une vue systémique, capable de capturer la dynamique globale de l’interaction entre le
sang, le liquide céphalo-rachidien, les humeurs oculaires et le fluide interstitiel, dans l’œil et dans
le cerveau, tout en conservant une complexité mathématique raisonnable et un faible coût de calcul.
Du point de vue clinique, les simulations ont montré des résultats intéressants dans le cadre de
deux applications : l’étude de l’impact de la microgravité sur la vision des astronautes pendant les
missions de longue durée dans l’espace et la comparaison de différentes stratégies thérapeutiques
dans la prise en charge du glaucome. Dans la deuxième partie du chapitre, nous proposons un nou-
vel algorithme pour la résolution numérique d’un système couplé d’équations aux dérivées partielles
et d’équations différentielles issu de la mécanique des fluides et motivé par des applications à la
modélisation multi-échelles du flux sanguin à travers le système cardio-vasculaire. À nouveau, il
convient de noter que le cadre conceptuel qui en résulte peut être pertinent dans le contexte plus
général des réseaux hydrauliques. Les contributions présentées dans ce chapitre ont bénéficié des
interactions au cours de la thèse de Lucia Carichino (IUPUI, soutenue en août 2016) et de celle de
Simone Cassani (IUPUI, soutenue en août 2016), encadrées par Giovanna Guidoboni (Université
du Missouri) et du travail accompli pendant la première année du doctorat de Lorenzo Sala (Uni-
versité de Strasbourg), que je co-encadre actuellement avec Christophe Prud’homme (Université de
Strasbourg) et Giovanna Guidoboni (Université du Missouri).

Dans le chapitre 3, la description de la dynamique des fluides donnée dans les chapitres précédents
est enrichie pour prendre en compte les effets combinés de l’écoulement et de différentes structures,
dans une perspective multi-physique. Une première contribution concerne la résolution numérique
d’un problème couplé fluide-structure, décrivant la dynamique du flux sanguin par les équations
de Navier-Stokes dans un domaine mobile, couplées avec les équations de l’élasticité linéaire qui
régissent la déformation de la paroi du vaisseau. Ce modèle multi-physique couplé est ensuite
utilisé pour simuler le flux sanguin dans l’aorte dans le but d’étudier le rôle de la géométrie de
l’arche aortique dans les stades post-opératoires d’une malformation congénitale. Ces résultats font
partie de la thèse de doctorat de Nicole Poussineau (UPMC, Paris 6), encadrée par Yvon Maday
(UPMC, Paris 6) et soutenue en décembre 2007. Un autre type d’interaction fluide-structure, à
savoir le cas d’une particule rigide évoluant passivement dans un fluide, est étudié dans la deuxième
partie. L’accent est mis sur la nécessité de prendre en compte les contacts comme ingrédient clé
de la simulation numérique directe des écoulements fluide-particules, notamment dans un régime
dense. Nous avons proposé un nouveau schéma de discrétisation en temps qui fonctionne de manière
robuste dans la situation difficile où la force de trâınée (aussi connue comme la force de lubrification
dans ce cas) tend vers l’infini très rapidement lorsque la particule s’approche du mur.

Mes recherches antérieures portaient sur l’étude de certaines questions qui apparaissent en
théorie mathématique de l’élasticité, en utilisant des méthodes d’analyse mathématique et de géomé-
trie différentielle. Au lieu de considérer la déformation du corps comme l’inconnue principale du
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problème, le problème est exprimé en termes des propriétés géométriques du corps élastique qui
subit la déformation. Dans cette direction, nous mentionnons ici les références [23] (et la version
abrégée [24]), [25] (et la version abrégée [22]), et [12]. Elles contiennent des résultats obtenus au
cours de ma thèse de doctorat et ne seront pas exposées dans la suite. Par souci d’exhaustivité,
nous citons également la référence [26], qui fournit une généralisation des résultats de [25] obtenue
après ma thèse de doctorat, et qui ne sera pas décrite dans ce manuscrit.



Introduction

This manuscript gathers my contributions focused on developing new mathematical and computa-
tional methods for analyzing biological flows as complex multiphysics and multiscale phenomena.
The description of the underlying mechanisms stems from the basic principles of fluid dynamics
and is translated into systems of partial or ordinary differential equations. The overall objective of
this work is the study of these equations at the continuous and discrete levels, their coupling and
the development of a reliable and efficient computational framework to implement various numerical
methods to approximate the solutions to these problems. The numerical simulations incorporate
realistic geometries, are thoroughly validated against experimental data and target specific biomed-
ical applications.

The in silico approach, namely combining data-driven and physics-driven modeling in a unifying
computational framework, has become increasingly popular in the domain of life sciences in the last
years and has motivated the development of new mathematical and numerical concepts. Despite
the significant advances in the in silico modeling of human physiology, understanding the complex
dynamics governing the interplay between different fluids in the human body is still an extremely
challenging field. Biological fluid description encompasses a wide range of spatial and temporal
scales, from the molecular level to networks of a few meters, between a one-second heartbeat and
a lifetime. The fluid dynamics is influenced by the interaction with surrounding tissues, that calls
for a multiphysics approach. The geometrical representation is very complex and the availability
of real data is scarce. Moreover, in experimental studies, multiple factors come into play and it
is difficult to single out each contribution on the flow characteristics. In this direction, statistical
analysis offers many techniques to help identify correlations among real data, even though limited
insights can be gained on the cause-effect relationships beyond the correlations. In this perspec-
tive, mathematical and computational modeling approaches, based on the fundamental principles of
physics and adapted to a biological framework, can help elucidate cause-effect relationships among
interplaying factors and increase our understanding of these complex phenomena, in synergy with
other approaches.

At this stage, an important point should be emphasized: what are the differences between mod-
eling biological fluids and classical fluids? Compared to classical fluids, they serve crucial biological
functions (e.g. transport of nutrients and oxygen, interaction with surrounding cells), that need
to be accounted for in a mathematical model. In contrast with “inert” fluids, their properties
change with age, disease, etc., as a consequence of biological processes. There are numerous chal-
lenges to study them in vivo, since most of the time biological fluids are difficult to access and
study in their natural environment; in addition, they often show different properties and behaviors
when examined in vitro or in vivo. Therefore, extending the classical fluid mechanics and mathe-
matical theory to biological systems is not straightforward and represents an active field of research.
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All these aspects result in (i) numerous challenging issues on how to set up a sound mathemati-
cal model, based on the biological and clinical literature; (ii) a compelling necessity to develop new
theoretical approaches and numerical methods; (iii) an increasing need to design and implement
flexible and efficient computational frameworks; (iv) important research efforts towards verification,
validation and treatment of uncertainty. These aspects are crucial to guarantee that the model and
its numerical solutions are meaningful from the biomedical viewpoint, thereby allowing the use of
the resulting computational framework as a virtual laboratory where ideas can be tested and new
hypotheses can be formulated.

In this context, the contributions described in this manuscript are a triple-point crossroads
between mathematics, modeling and medicine. As summarized below and detailed in the next
chapters, we will discuss the development of new mathematical models and numerical methods,
illustrated by specific biomedical applications. Through the selected publications, each chapter
presents the challenges and achievements on the theoretical issues and the practical aspects, and is
concluded by a general discussion and perspectives. All these developments would not have been
possible without a strong interaction with colleagues from mathematics, physics, computer science,
biology and medicine. Their names appear in the list of references. I will particularly mention in
this introduction the contributions of several PhD students who I had the opportunity to mentor,
formally or informally, and develop joint publications.

The chapters are structured as follows:

In Chapter 1, we focus on three-dimensional models, in which the motion of a biofluid in a com-
plex, realistic geometry is governed by the Navier-Stokes system in a domain with inlet and outlet
boundaries. Different aspects were addressed: (i) mathematical modeling issues, through the de-
velopment of the first three-dimensional model for the cerebral venous network and the assessment
of the importance of different modeling assumptions through a sensitivity analysis approach; (ii)
theoretical and numerical questions, concerning a new Lagrange multiplier-based numerical method
accounting for boundary conditions involving pressure (that could be of interest in the more general
context of hydraulic network-like systems); (iii) scientific computing contributions to the develop-
ment of a high performance computing framework, validated on significant benchmarks and (iv)
interdisciplinary investigations within the VIVABRAIN project, aiming at creating virtual angio-
graphic data starting from real medical images. Part of these results were obtained during the PhD
thesis of Ranine Tarabay (Univ. de Strasbourg), co-advised with Christophe Prud’homme (Univ.
de Strasbourg) and Nicolas Passat (Univ. de Reims), who defended in September 2016 and in a
collaboration involving Olivia Miraucourt, who defended her PhD thesis in November 2016 (Univ.
de Reims), mentored by Stéphanie Salmon (Univ. de Reims), Hugues Talbot (ESIEE Noisy Le
Grand) and Nicolas Passat (Univ. de Reims).

Chapter 2 deals with reduced and multiscale mathematical and computational models for biofluids.
More precisely, in a first part we developed several 0d models with the aim of understanding the
complex fluid dynamics in the coupled eye-cerebral system. The advantage of these new network-
based models is that they provide a systemic view, able to capture the overall dynamics of the
interwoven physiology of blood, cerebrospinal fluid, ocular humors and interstitial fluids in the eye
and in the brain, while maintaining a relatively accessible mathematical complexity and low com-
putational costs. From the clinical viewpoint, simulations showed interesting features when applied
to microgravity conditions and for therapeutical strategies in glaucoma management. In the second
part of the chapter, we describe a new algorithm for the numerical solution of coupled systems
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of partial and ordinary differential equations for fluid flows, motivated by applications to blood
flow modeling through the cardiovascular system from a multiscale perspective. Again, it should be
noted that the resulting conceptual framework may be meaningful and applicable to a more gen-
eral context of hydraulic networks. The contributions presented here benefit from the interactions
during the PhD thesis of Lucia Carichino (IUPUI, defended in August 2016) and Simone Cassani
(IUPUI, defended in August 2016), both mentored by Giovanna Guidoboni (Univ. of Missouri) and
from the work achieved through the first year of the PhD of Lorenzo Sala (Univ. de Strasbourg),
who I am currently co-advising with Christophe Prud’homme (Univ. de Strasbourg) and Giovanna
Guidoboni (Univ. of Missouri).

In Chapter 3, the fluid dynamics description from the previous chapters is enriched to take into
account the combined effects of flow and different structures, from a multiphysics perspective. A
first contribution concerns the numerical solution of a coupled fluid-structure interaction model,
based on a description of blood flow dynamics by the Navier-Stokes equations in a moving domain,
coupled with the linear elasticity equations describing the vessel wall deformation. This coupled
multiphysics model is subsequently utilized for simulating blood flow in the aorta with the aim of
investigating the role of geometry of the aortic arch in the post-operative stages of a congenital
malformation. These results are part of the PhD thesis of Nicole Poussineau (UPMC, Paris 6),
defended in December 2007 and mentored by Yvon Maday (UPMC, Paris 6). Another type of fluid-
structure interaction, namely the case of a rigid particle evolving passively in a fluid, is presented in
the second part. The emphasis is the issue on how to handle contacts, as key ingredient in the direct
numerical simulation of particulate flows, especially in the dense regime. We proposed a new time-
advancing scheme that works robustly in the challenging situation where the drag force (also known
as the lubrication force in this case) tends to infinity very rapidly as the particle approaches the wall.

My earlier research dealt with the study of some questions that arise in the theory of elasticity,
by using methods of mathematical analysis and differential geometry. Instead of considering the
body deformation as the main unknown of the problem, the problem is expressed in terms of the
geometrical properties of the elastic body under deformation. In this direction, we mention here
references [23] (and the abridged version [24]), [25] (and the abridged version [22]), and [12]. They
contain results obtained during my PhD thesis and will not be developed in the sequel. For the sake
of completeness, we also cite reference [26], providing a generalization of the results in [25] obtained
after my PhD thesis, but not described here.
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Chapter 1

Three-dimensional models, analysis
and efficient simulations for fluid
equations. Applications to
computational hemodynamics in the
cerebral network

The goal of this chapter is to discuss the main challenges in blood flow mathematical and compu-
tational modeling in realistic geometries and to present our contributions within this framework.
We focus here on the so-called macro-scale models, that are suitable when aiming for a three-
dimensional description of flow in large vessels, as derived in the case of large cerebral veins in
Section 1.1. The fluid dynamics is described by the Navier-Stokes equations, endowed with suit-
able initial and boundary conditions. In Section 1.2, we emphasize the particular importance of
boundary conditions and thoroughly analyze a novel formulation for the Stokes problem with non
standard boundary conditions involving the pressure. The impact of different modeling assumptions
on hemodynamic quantities of interest (velocity and wall shear stress) is investigated by means of
a systematic numerical exploration in Section 1.3. From the computational viewpoint, large scale
three-dimensional simulations are needed to account for the intrinsic 3d nature of these problems.
We therefore developed a reliable and efficient computational framework, that we validate against
experimental data, as described in Section 1.4. All these new contributions were integrated in an
interdisciplinary research project aiming at creating virtual angiographic data starting from real
medical images, and in the open-source software pipeline associated to this framework. Section 1.5
presents the challenges and achievements of this integration. Finally, further extensions and new
directions inspired by the previous works are reviewed in Section 1.6.

1.1 Mathematical modeling of blood flow in the cerebral venous
system

The circulatory system is a closed circuit through which blood flows and transports nutrients. Its
main components are the arteries (blood vessels that carry blood away from the heart), the capillary
bed (where the functional exchanges occur) and the veins (blood vessels that carry blood toward
the heart). In the cerebral compartment, the vasculature has a very complex three-dimensional

9
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structure and blood flow is high, in order to properly satisfy brain’s energy demands. Clinical data
report values of global cerebral blood flow around 700 ml/min, accounting for more than 15% of
total cardiac output [PF14], for only about 2% of the total body weight. Normal intracranial blood
volume is around 150 ml, two thirds of which is in the venous system. Overall, these figures highlight
the crucial role played by hemodynamical factors in the brain and the importance of understanding
their influence in physiological and pathological situations.

1.1.1 A new three-dimensional model for large cerebral veins

The model derivation and the mathematical/fluid-mechanics study of blood flow in large cerebral
arteries (e.g. carotid arteries, basilar trunk, and the circle of Willis) are the focus of multiple
investigations, as reviewed for instance in [FQV09] or very recently in [QMV17]. By contrast, the
behavior of the venous cerebral system is rarely explored. This compartment has its own features,
that are contributing to the difficulty of deriving an appropriate mathematical and computational
model, among which:

• complex three-dimensional structure, see Figure 1.1, often asymmetric, presenting a consid-
erably more variable pattern than the arterial system [Sch04];

• lack of parallelism between arterial and venous circulations, in contrast to the rest of the body
[Sch04];

• highly individual variations of the venous outflow [SE+09].

Therefore, this subject has received far less attention than the arterial network and only few
recent references are available in the literature to the best of our knowledge. A first strategy
consists in carrying out reduced order simulations, i.e. to consider either zero-dimensional (0d)
lumped-parameter models, exploiting the electric circuit analogy for the circulatory system, or
one-dimensional (1d) distributed parameter models, thereby dealing with large vascular networks:
[Gad+15] (lumped parameter model of the cerebral venous outflow), [HMH13] (1d flow model built
on an anatomical geometry of the cerebral venous system) and [MT14a; MT14b] (closed-loop 1d
model of the human circulation, with a special focus on the venous system). An alternative ap-
proach is to utilize three-dimensional (3d) models of a region of interest, in idealized or patient
specific geometries. Classically, due to prohibitive computational costs, modeling is limited to rel-
atively small samples of the vascular circuit, possibly coupled to 0d or 1d models. Except for
the contributions presented here, we are aware of only one recent work [Cai+15] proposing a 3d
description of blood flow in rigid jugular veins coupled with a 1d model for major intracranial veins.

Our contribution [11] is to rely on 3d blood flow modeling in more complete vascular networks,
in order to better describe blood flow patterns in complicated geometries. We proposed a complete
computational modeling approach from medical image processing to numerical resolution. The re-
alistic three-dimensional description of the geometry of the network, see Figure 1.1, was constructed
starting from 3d angiographic images obtained by magnetic resonance angiography (MRA). More
details on the different steps of the process can be found in [10], see also Section 1.5. We focus on in-
tracranial venous blood flow in supine position, that is, a drainage through the jugular veins, which
are nevertheless not included in the present model, as they are strongly deformable. In particular,
the model assumes that intracranial veins located between the skull and the brain are rigid.

Data used in the model are given in Table 1.1. However, since patient-specific blood flow
information are usually not collected from routine clinical examinations, only scarce literature data
are available for the velocity magnitude in cerebral veins, which adds new difficulties in deriving



1.1. A MATHEMATICAL MODEL FOR THE VENOUS NETWORK 11

Figure 1.1: 1: internal jugular veins, 2: vein of Galen, 3: straight sinus, 4: confluence of sinuses,
5: lateral sinus (transverse portion), 6: lateral sinus (sigmoid portion), 7: superior sagittal sinus, 8:
internal cerebral vein, 9: basilar vein, 10: superior cerebral veins, 11: superior anastomotic veins.

Parameter Value Unit Source

Mass density ρ 1055 [ kg
m3 ] [Thi08]

Dynamic viscosity µ 3.5 ·10−3 [Pa · s] [Thi08]

Cross-sectional velocity V ∗ (10− 11) · 10−2 [ms ] [HMH13]
(clinical studies, jugular vein) (8.5− 11.3) · 10−2 [ms ] [Ogo+11]

(30− 50) · 10−2 [ms ] [Sch04]
Cross-sectional velocity V ∗ 15 · 10−2 [ms ] [Sch04]

(clinical studies, superior sagittal sinus) (15.2± 3) · 10−2 [ms ] [Gid+96]

Reynolds number (approx. values) [11]
Internal jugular vein 90 − 232 −
Superior sagittal sinus 90 − 144 −

Stokes number (approx. values) [11]
Internal jugular vein 1.38 − 3.84 −
Superior sagittal sinus 1.10 − 1.75 −

Strouhal number (approx. values) [11]
Internal jugular vein 0.014 − 0.030 −
Superior sagittal sinus 0.013 − 0.021 −

Table 1.1: Values of the mechanical and dimensionless parameters in the model.
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an appropriate biomechanical model. We carefully performed a dimensional analysis of the model
and computed values for the Reynolds, Stokes, and Strouhal number, reported in Table 1.1. The
order of magnitude of the Reynolds number shows the importance of the convective forces, whereas
the values of the Stokes and Strouhal numbers are important to assess the flow unsteadiness. The
analysis shows that flow in the cerebral veins is governed by the Navier-Stokes equations for an
incompressible viscous fluid, in a quasi-steady regime:

ρ
∂u

∂t
− 2∇ · (µD(u)) + ρ(u ·∇)u+∇p = 0, in Ω× I (1.1)

∇ · u = 0, in Ω× I (1.2)

endowed with appropriate initial and boundary conditions, where: u and p are the velocity and
pressure of the fluid, D(u) = 1

2(∇u + ∇uT ) is the strain rate tensor, σ(u, p) = −pI + 2µD(u) is
the Cauchy stress tensor, ρ and µ are the density and dynamic viscosity of the fluid, respectively.

Concerning the initial status of the fluid velocity, it is well known that it has to be carefully
prescribed, since it should be divergence-free to be admissible. Unfortunately, in hemodynamic
computations, this quantity is usually unknown, hence chosen equal to zero everywhere or, as a
better guess, as the solution of a stationary Stokes problem. We developed a solution to this
problem in the preliminary work [18].

The issue of boundary conditions is of primary importance in simulating blood flow and a huge
literature has been dedicated to this topic in the last years, as reviewed for instance in [FI14;
QMV17]. In the context of the cerebral venous network, we proposed an extensive discussion on
this topic in [11], with the following partial conclusions:

• at the inflow, impose u = constant (small magnitude), since blood comes from the microcir-
culation, modeled by a quasi-steady/steady Stokes flow;

• at the wall, impose u = 0, since intracranial veins are constrained between a nearly incom-
pressible brain and the rigid skull;

• at the outflow, impose in a first approximation σ(u, p)n = 0 (the “do-nothing” classical
approach).

Perspectives. A lot of subsequent questions are triggered by these choices, as for instance: how
small (in terms of order of magnitude) should the inflow velocity be? How a rigid vessel model
(acceptable for intracranial veins) could be coupled with a deformable vessel model (that is more
appropriate for jugular veins)? At the outflow: between using the “do-nothing” approach and
coupling with a reduced model involving a lot of parameters that are unavailable, which choice is
better? We postpone the answers to some of these questions to Section 1.2 for a different theoretical
approach [1] and to Section 1.3 for a sensitivity analysis study on the influence of different modeling
assumptions [4]. We also discuss in Section 1.6 some questions left open and possible lines of
approach.

1.1.2 Numerical results and discussion

The numerical strategy we implemented to compute approximate solutions to the previously derived
model involves a time-scheme based on the characteristics method [Pir82] and a spatial discretization
of finite element type, with P2/P1 inf-sup stable finite elements [BF12]. The numerical solving
approach relies on the finite element library Freefem++ [Hec12]. More details about the parameters
and numerical choices can be found in [11].
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We display in Fig. 1.2 the simulated velocity field in the whole intracranial cerebral venous
network. We were able to identify a complicated three-dimensional flow behavior, with noticeable
recirculations in the confluence of the sinuses (bottom left panel). At the level of the superior
sagittal sinus, the flow is laminar (bottom right panel). An asymmetric behavior appears in a
recirculation zone in the entrance segment of the right transverse sinus. This could be explained,
at least partly, by the asymmetric architecture of the venous network.

Figure 1.2: Top: cerebral venous network, visualization of the flow patterns: instantaneous stream-
lines, colored with velocity magnitude. Bottom: zoom on the velocity field in the confluence of
sinuses (left panel) and in the superior sagittal sinus (right panel).

An important question is the validation of these results, that we investigated as follows: the
predicted values of the velocity magnitude in the superior sagittal sinus range from 12.5 · 10−2m/s
to 18 · 10−2m/s, consistently with clinical data, that is, 15 · 10−2m/s [Sch04] and 15.2± 3 · 10−2m/s
[Gid+96], from a set of 14 control subjects using MR velocimetry. Flow rates calculated at inlets and
outlets are identical (∼ 8ml/s for an entry velocity uin = 50mm/s, corresponding to a physiological
value [SE+09], hence guaranteeing mass conservation. Similar or slightly higher values, between
10ml/s and 14ml/s for the outflow were reported in the literature [MT14a; MT14b]. Comparisons
between the model predictions of flow rate values at selected cross-sections with MRI measurements
reported in the literature are presented in Fig. 1.3.

Although these comparisons show satisfactory results, it should be noted that the clinically
indicated patient measurements are not taken on the same geometry as the one used to perform our
simulations, but retrieved from reported data in the literature. Therefore, improving the validation
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Figure 1.3: Comparison between MRI measurements of flow rates (ml/s) (average and standard
deviation) found in literature and our model in different locations of the intracranial venous network.
SSS: Superior Sagittal Sinus, St. S: Straight Sinus, L. TS: Left Transverse Sinus, R. TS: Right
Transverse Sinus.

process, using either in vitro or in vivo data is still a challenge, that will be further explored in
Section 1.4.

1.2 A novel formulation of the Stokes system involving pressure
boundary conditions

The issue of boundary conditions when modeling blood flow in the circulatory system is of major
importance and matter of intense research. From the mathematical viewpoint, the well-posedness
of the Navier-Stokes problem with different types of boundary conditions is a well-known difficult
problem. For essential boundary conditions, existence of a weak solution is proved for any Reynolds
number, but some issues about uniqueness are still open in the three-dimensional case: weak solu-
tions exist on (0, T ) for all finite time T , but they are not necessarily unique, see e.g. [Ler33; Lio69;
Tem01]. Existence and uniqueness theory is less complete for Neumann boundary conditions, due in
particular to the difficulty of establishing a priori estimates; we refer to [HRT96; QV03; BGM10] for
results in this sense. All these difficulties are inherited at the numerical level and a lot of research
efforts were devoted to devise appropriate numerical solutions, as recently reviewed in [QVV16,
Section 3], see also [FI14].

When performing three-dimensional simulations for blood flow modeling, the domain is reduced
to a region of interest and therefore, its boundary is composed of two parts: a physical boundary
(corresponding to the vessel wall) and an artificial boundary (at the level where the vessel is trun-
cated). On one hand, at the vessel wall, the no-slip Dirichlet condition is natural for a viscous
fluid contained in a rigid domain, since the viscous effect constraints the fluid particles to adhere
to the wall. On the other hand, at the artificial boundaries, different formulations with boundary
conditions involving components of the velocity field, stresses or pressure are of interest. Indeed,
they should be able to take into account the rest of the closed circuit representing the circulatory
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system. Moreover, in order to achieve physiological simulations, they should derive from clinical
measurements. However, in this case they might give rise to so-called defective boundary conditions:
usually only average data are available to “feed” mathematical and computational models that re-
quire pointwise data instead, see [FV12] or [Por+12] for different strategies in the context of blood
flow modeling.

In the particular case of the cerebral venous network, one of the main mechanisms that drives
the flow and should be taken into account through appropriate boundary conditions is the pressure
drop. More generally, when modeling hydraulic network-like systems, for instance oil ducts, water
supply, microfluidic channels or biological flows, we are interested in the case when the velocity
field is imposed on one part of the boundary and pressure values are prescribed, together with the
condition of no tangential flow, on the remaining part. We present in this section a new method we
proposed in [1] to take into account these non-standard boundary conditions, both at the continuous
and the discrete levels, in a finite-element framework.

1.2.1 General framework and the Lagrange multiplier formulation

We consider the steady state of a viscous incompressible fluid at low Reynolds number, described
by the velocity and pressure fields u and p that satisfy the following Stokes equations:

−2µ∇ · (D(u)) +∇p = ρf , in Ω, (1.3)

∇ · u = 0, in Ω, (1.4)

u = 0, on Γ1, (1.5)

u× n = 0, on Γ2, and (1.6)

p = p0, on Γ2, (1.7)

where

∂Ω = Γ̄1 ∪ Γ̄2, with Γ1 ∩ Γ2 = ∅ and such that each connected component of Γ2 is flat,

represents a partition without overlap of the boundary of Ω and n indicates the outward normal to
∂Ω. The notations are similar to Section 1.1, the function f is a given external force, the function
p0 a given pressure, and d = 2, 3 is such that Ω ⊂ Rd.

A variational formulation taking into account this type of boundary conditions was first intro-
duced in the seminal works [Pir86; Bèg+87; CMP94]. A lot of subsequent literature was devoted
to this topic, see [1] for an in depth discussion about the method in the context of the existing
literature.

Remark 1.2.1. Previous works [Pir86; Bèg+87; CMP94; Con+95; BCRY15] classically take into
account non standard boundary conditions of type (1.5–1.7) by expressing the conservation of the
momentum in terms of the Laplacian of the velocity and then using as a key ingredient the rotational
formulation for the equation, based on:

−Δu = ∇× (∇× u)−∇(∇ · u).
Although at a continuous level the two formulations are equivalent, since

∇ · u = 0 ⇒ ∇ · (∇u+∇uT ) = Δu,

from a modeling standpoint it may be useful to work with the symmetric tensor. For instance, in
fluid-structure problems, formulation (1.3–1.7) gives directly the natural boundary condition for the
structure problem in terms of the force exerted by the fluid on its boundary. We thus focus hereafter
on the formulation in terms of the divergence of the symmetric gradient (1.3).
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We showed in [1] that the problem can be written as follows:

Problem 1.2.2. Find u ∈ V , p ∈ M , λ ∈ Λ such that for all v ∈ V , q ∈ M , η ∈ Λ

2µ

�

Ω
D(u) : D(v) dx−

�

Ω
p∇ · v dx− c(v,λ) = ρ

�

Ω
f · v dx−

�

Γ2

p0n · v ds (1.8)

�

Ω
q∇ · u dx = 0 (1.9)

c(u,η) = 0. (1.10)

The functional spaces are defined as V = {v ∈ [H1(Ω)]d : v = 0 on Γ1}, M = L2(Ω), and
Λ = [H−1/2(Γ2)]

d−1. The bilinear form c : V ×Λ → R is given by

c(u,λ) =

�

Γ2

u · i(λ) dx

where i : [H−1/2(Γ2)]
d−1 → T is an isomorphism and

T =
�
ζ ∈ [H−1/2(Γ2)]

d : ζ · n = 0
�
.

Details on how the bilinear form c is built in practice in two and three dimensions, by making
explicit the isomorphism between T and Λ can be found in [1]. We have the following theorem:

Theorem 1.2.3. Problem 1.2.2 admits a unique solution (u, p,λ) which verifies

�u�1,Ω + �p�0,Ω + �λ�−1/2,Γ2
� �f�V � + inf

v∈V

�
Γ2

p0n · v ds

�v�1,Ω
� �f�0,Ω + �p0�0,Γ2 .

Moreover, if u ∈ [C2(Ω)]d, p ∈ C1(Ω), then (u, p) is the solution of (1.3–1.7) and λ verifies

i(λ) = τ (u, p),

where τ (u, p) is the tangential component of the normal traction σ(u, p)n.

The proof is based on the interpretation of Problem 1.2.2 as a double saddle-point problem and on
establishing the two corresponding inf-sup conditions.

Remark 1.2.4. It is clear that the Lagrange multiplier formulation described in Problem 1.2.2 is
not straightforward to use in practice, since it introduces supplementary unknowns that increase
the complexity of the numerical solution. Nevertheless, this novel formulation allows for pressure
boundary conditions with L2 regularity on the boundary. This result was believed possible but was
not covered by the analysis in [BCRY15], as discussed by the authors in Sec. 6. Moreover, while the
previous treatment of the Laplacian expressed by a rotational formulation required more regularity on
the pressure and a velocity field with smooth curl and div components [CMP94; Gir90; BCRY15],
Theorem 1.2.3 proves the existence of a solution to the Stokes problem (1.3–1.7) in the same H1×L2

functional spaces as for standard boundary conditions.

Discretization of Problem 1.2.2. We introduce a compatible tessellation Th of the domain Ω in
tetrahedral or hexahedral elements [1]. On Th, we introduce piecewise polynomial spaces Vh ⊆ V ,
Qh ⊂ M , respectively approximating velocity and pressure, and we assume that such spaces satisfy
the standard inf-sup condition

inf
ph∈Q0

h

sup
uh∈Vh∩[H1

0 (Ω)]3

�
Ω ph∇ · uh dx

�uh�1,Ω�ph�0,Ω
� 1. (1.11)
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(where Q0
h =

�
qh ∈ Qh :

�
Ω qh = 0

�
), so that they provide a stable discretization of the Stokes

problem with standard Dirichlet boundary conditions. We now observe that Vh|Γ2 = [Wh]
3 where

Wh is itself a finite element space on the two-dimensional mesh T Γ2
h induced on Γ2 by the three-

dimensional tessellation Th. Remark (see the definition of the space V ) that the functions in Wh

satisfy homogeneous boundary conditions on ∂Γ2. We then let Λh = [Wh]
2. We consider the

following discrete problem:

Problem 1.2.5. Find uh ∈ Vh, ph ∈ Qh, λh ∈ Λh such that for all vh ∈ Vh, qh ∈ Qh, ηh ∈ Λh

2µ

�

Ω
D(uh) : D(vh) dx−

�

Ω
ph∇ · vh dx− c(vh,λh) = ρ

�

Ω
f · vh dx−

�

Γ2

p0n · vh ds,(1.12)

�

Ω
qh∇ · uh dx = 0, (1.13)

c(uh,ηh) = 0. (1.14)

The following theorem then holds:

Theorem 1.2.6. There exists h0 such that, if h ≤ h0, Problem 1.2.5 admits a unique solution
(uh, ph,λh) which verifies

�uh�1,Ω + �ph�0,Ω + �λh�−1/2,Γ2
� �f�0,Ω + �p0�0,Γ2 .

Moreover the following error estimate holds:

�u− uh�1,Ω + �p− ph�0,Ω � inf
vh∈V 0

h

�u− vh�1,Ω + inf
qh∈Qh

�q − qh�0,Ω,

where
V 0
h = {uh ∈ Vh : c(uh,λh) = 0, ∀λh ∈ Λh} .

Once again, as in the continuous case, the proof of Theorem 1.2.6 reduces to prove two inf-sup
conditions.
A direct consequence of this result is that for the classical case of Taylor-Hood inf-sup stable finite
element spaces [BF12]:

Vh = {u ∈ [C0(Ω)]3 : ∀K ∈ Th u|K ∈ [Pk(K)]3}, (1.15)

Qh = {p ∈ C0(Ω) : ∀K ∈ Th p|K ∈ Pk−1(K)}. (1.16)

and for u ∈ [Hk+1(Ω)]3 and p ∈ Hk(Ω) we have

�u− uh�1,Ω + �p− ph�0,Ω � hk(�u�k+1,Ω + �p�k,Ω). (1.17)

We thus expect optimal convergence rates provided the solution has sufficient regularity.

Remark 1.2.7. We emphasize that there is no reason why the multiplier i(λ) = τ (u, p) should
vanish at the boundary of Γ2. Therefore, the proposed discretization cannot, in general, yield an
optimal approximation of the Lagrange multiplier. Nevertheless, since V0

h ⊂ V0, the approximation
properties for the Lagrange multiplier do not enter the error estimate in Theorem 1.2.6, and we get
an optimal error estimate for both velocity and pressure.

Remark 1.2.8. Throughout the study, we assumed that Γ2 was a flat surface (or, more precisely,
we assumed that n was constant on the connected components of Γ2). Let us consider two cases in
which this assumption is not satisfied.
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If a connected component of Γ2 is the union of two (or more) flat subregions sharing a vertex
(in 2d) or an edge (in 3d), we observe that, at the continuous level, if n1 and n2 are constant unit
normals to the two subregions with direction chosen in such a way that on the common vertex or edge
we have u = |u|n1 = |u|n2, if n1 �= n2 then u = 0, so that the solution vanishes at the interface
between the two subregions. At the discrete level one needs then to strongly force the velocity to
vanish on such interface. Once this is done, the analysis presented above remains valid.

If, on the other hand, Γ2 is a curved surface, the situation is more complex. At the continuous
level, we show that the natural boundary condition implicit in equation (1.8) is not (1.7), but rather

p+ 2µ|u|κ = p0, on Γ2, (1.18)

where κ is the mean curvature of Γ2. Nevertheless, Problem 1.2.2 is still well posed, and Theorem
1.2.3 still holds, provided equation (1.7) is replaced by equation (1.18). Things are more complex
when it comes to discretization Problem 1.2.2, since part of the arguments used in the proof of The-
orem 1.2.6 do not hold for curved boundaries. In addition, if the normal to the discrete boundary
has jumps (which would automatically happen when approximating a curved boundary with a finite
element mesh), similar arguments show that the whole method would then be non conforming. Re-
mark that we might also need to resort to a non conforming discretization if we drop the requirement
that the tessellation Th is compatible with the splitting of ∂Ω into Γ1 ∪ Γ2.

1.2.2 Numerical results and applications

The computational framework is developed in Feel++, Finite Element Embedded Library in C++
[Fee], see for more details Section 1.4. Regarding the specific implementation of the proposed
methodology, we would like to point out some non-standard aspects, namely the treatment of the
terms associated to the Lagrange multipliers. Feel++ provides a mechanism to extract submeshes
of faces and keep a relation between the extracted mesh and the parent mesh. The relation is nec-
essary to ensure an efficient treatment of the coupling terms between the velocity and the Lagrange
multipliers. The geometrical data, i.e the normals, are automatically deduced from the parent
mesh.

We evaluated the performances of the method proposed in Section 1.2.1 when solving two types
of problems: (i) study of the convergence properties of the method for different choices of finite
elements, (results not reported here, available in [1]); (ii) a 3d computational model of the cerebral
venous blood flow similar to the one described in Section 1.1, but incorporating pressure boundary
conditions (in a first approximation for low Reynolds numbers).

Figure 1.4 displays the pressure field (top left panel) and instantaneous streamlines, colored with
velocity magnitude (top right panel), illustrating the pressure drop effect and a complicated three-
dimensional flow behavior. The overall dynamics shares common features with the one we found
in Section 1.1, but a direct comparison would not be meaningful at this stage, since here only the
Stokes equations are solved. The order of magnitude of the maximum velocity is slightly higher than
values retrieved in the clinical literature, see for instance [Sch04], therefore more precise values need
to be included in further work. However, the development of a computational model able to capture,
to this level of accuracy, different features of the flow can be seen as a very promising approach
for analyzing, by means of numerical simulations, the dynamics of flow patterns in morphologically
complex vascular districts.

Remark 1.2.9. A zoom on some inlet, respectively outlet sections is presented in Figure 1.5,
demonstrating that the flow is normal to both inflow and outflow surfaces. We highlight the interest
of imposing the pressure value and the zero tangential component of the velocity in this context: the
current formulation allows to retrieve a Poiseuille-like behavior that is physically meaningful when
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Figure 1.4: Cerebral venous hemodynamics obtained by imposing a pressure drop between the inlet
and outlet sections, pressure field (left panel) and streamlines (right panel).

dealing with artificial boundary conditions, while keeping the viscous stress tensor in the expression
of the Stokes problem, useful from a modeling standpoint. In contrast, as noted in [LG81; HRT96],
using the symmetric gradient 1

2(∇u+∇uT ) and prescribing the normal stress at the outlet lead to
a non-physical representation of the flow: the velocity vectors “spread” like at the end of a pipe,
instead of mimicking the fact that the network continues after this artificial section. Alternatively,
the non symmetric tensor ∇u can be used to recover the Poiseuille exact solution in a cylinder, but
the physical meaning of such a boundary condition is not clear.

Figure 1.5: Zoom on velocity vectors at some inlet sections (left panel), respectively outlet sections
(right panel).

Perspectives. The current methodology should be further developed, in particular by (i) devising
an adapted discretization strategy for the case of a curved boundary, in order to overcome the
difficulties briefly discussed in Section 1.2.1; (ii) improving linear solvers scalability by means of well-
suited block-preconditioning strategies; (iii) extending the present analysis to the incompressible
Navier-Stokes equations [BCRY15] and to Generalized non-Newtonian models in the context of
blood flow modeling described in [FQV09, Chap. 6]. Furthermore, an exploration of the close
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Figure 1.6: Representation of the relative importance of various factors in models of the different
hemodynamic scales: ++ indicates primary importance; −− indicates secondary or negligible im-
portance; ?? indicates potential or unclear importance (taken from Creative Commons and [Ste12]).

connection between Lagrange multipliers technique and a classical method by Nitsche as suggested
in [Ste95; Ver11] provides a promising perspective of the present work.

1.3 Influence of different modeling assumptions

The complexity of the human circulatory tree and the underlying bio-mechanical phenomena call
for various simplifications in view of designing and implementing mathematical and computational
models. The relative importance of these assumptions is difficult to establish and quantify. There-
fore a lot of open questions still remain, see Figure 1.6 and extended discussion in [Ste12]. In
addition, as already emphasized in Section 1.1, the venous network is far less known and studied
in comparison to the arterial one. For arteries, recent contributions assessed the impact of viscos-
ity models and flow conditions in aneurysms [EVSM13] or of the assumption of laminar flow in
computational hemodynamics, taking cerebral aneurysms as an illustrative example [EM15].

In line with these studies, the goal of [4], summarized in this section, is to assess in a sound
mathematical and computational framework the effect of different modeling assumptions on cerebral
venous blood flow dynamics at a macroscopic scale.

1.3.1 Sensitivity analysis framework

Formulation of the problem. We consider, as a starting point, the Navier-Stokes system (1.1)-
(1.2) for large and medium-sized cerebral veins introduced in Section 1.1.1 with two extensions:

• a Generalized Newtonian constitutive law for blood flow, in addition to the Newtonian model
from Section 1.1.1;

• the coupling with a simplified 0d model at the outflow, as an alternative to the traction-free
boundary condition used in Section 1.1.1.

More precisely, the viscosity is considered either constant, when adopting a Newtonian consti-
tutive model, or as a function of the shear rate:

γ̇ =

�
2tr

�
D (u)2

�
, (1.19)
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when using a Generalized Newtonian model. In [4], we focused on the comparison between the
Newtonian model, and the Carreau and Carreau-Yasuda Generalized Newtonian constitutive models
for blood [FQV09, Chap. 6], that return the viscosity as a function of the shear rate by the following
equation:

µ(γ̇)− µ∞
µ0 − µ∞

= (1 + (λγ̇)a)
n−1
2 , (1.20)

where λ is a time constant, a and n are dimensionless parameters used to differentiate between the
two models, and µ0 and µ∞ are the viscosities at zero and infinite shear rate, respectively.

Regarding the boundary conditions: at the inflow, we impose a constant profile of small magni-
tude and at the vessel wall u = 0, since we considered it to be rigid. A more general setting is used
for the outflow: boundary conditions are prescribed either by using a traction-free condition as in
Section 1.1.1:

σ(u, p)n = 0 on Γout, (1.21)

or by introducing the coupling with a three-element Windkessel model [FQV09, Chap. 10], in order
to take into account the downstream vasculature. In the latter case, the condition reads:

σ(u, p)n = −Pln on Γout, (1.22)

where Pl (the proximal pressure) is obtained by solving





Cd,l
dπl
dt

+
πl
Rd,l

= Ql

Pl = Rp,lQl + πl,

(1.23)

for a given value of the flux on the outlet Ql =
�
Γout

u · n dx.

Discretization. We use a fully implicit time discretization using BDFη scheme, including for
the non-Newtonian models, with non-linear solving handled by a Newton method. The time-
discretization of Equations (1.1)–(1.2) in the Newtonian case is written as follows:

ρ

��η
k=0 αku

n+1−k

Δt
+ un+1 ·∇un+1

�
−∇ · (−pn+1I+ 2µD(un+1)) = 0,

∇ · (un+1) = 0,

(1.24)

where (αk)k=0,η are the BDFη coefficients for the time derivative of u and the subscript η refers
to the order of the scheme. We adopted the BDF1 (η = 1) and BDF2 (η = 2) schemes for
the time approximation. The spatial discretization is handled via a inf-sup stable finite element
(Taylor-Hood) P2/P1 [BF12]. Our numerical strategy is in line with [VSS14] as we performed high
resolution simulations and not normal resolution simulations: both the spatial and the temporal
discretization methods are second-order schemes and a small time step (Δt = 10−3s) was chosen,
in order to adequately resolve the complex flow features.

Sensitivity analysis framework The idea stems from [Evj11], where the author defines two
metrics, one for the velocity and one for the wall shear stress, in order to improve the visual
comparison between snapshots of solutions by assessing the differences between two solutions in a
more quantitative manner. Both metrics require to define a computed reference solution and then
the computation of the time evolution of the average on the entire mesh of some specific quantities,
which reflect point-wise differences between velocities and the wall shear stresses, respectively. This
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approach has in addition the advantage of assessing the time evolution of these differences, whereas
comparisons of snapshots are only showing spatial differences at some selected instants.

The first metric measures the difference between the computed solution (uC) and the computed
reference solution (uR). To this end, following [Evj11], we define the spatial metric for each time
step

SuR(uC) = 1− βe−a − γe−m, (1.25)

where

a =
1

π
cos−1

�
uR · uC

�uC��uC�

�
, 0 ≤ a ≤ 1, (1.26)

m =
�uR − uC�

�uR�
, 0 ≤ m and β = γ =

1

2
. (1.27)

The value a corresponds to the scaled angle between the two vectors and the value m to relative
difference in their order of magnitude. The spatial average is then computed by:

Du =
1

V

�

Ω
SuR(uC) dx, where V =

�

Ω
1 dx. (1.28)

The second metric measures the difference between the computed reference solution of the wall
shear stress τR and another numerical solution of the wall shear stress τC . Again, following [Evj11],
we define the spatial metric for each time step as

TτR(τC) = 1− e−t, t =

����
τR − τC

τR

���� (1.29)

and its spatial average

Dτ =
1

S

�

∂Ω
TτR(τC) dx, where S =

�

∂Ω
1 dx. (1.30)

Remark 1.3.1. In practice, very intensive parallel computation are required to obtain the metrics
(the studies used from 64 to 512 cores and ranged from 1 million to about 10 millions degrees of
freedom). In our case, they were almost as expensive as some of the actual numerical simulations
and therefore an efficient high performance computational framework was needed, see for more
details Section 1.4.

1.3.2 Numerical results and discussion

The sensitivity analysis study was carried out in the open-source library Feel++ [Fee]. First, we
carefully assessed the impact of the numerical strategy in use, see [4] and second, we investigated
the impact of several modeling assumptions in a controlled numerical environment.

We illustrate here the outcomes of our study in the specific case of the influence of the inlet
velocity magnitude imposed at each inflow. Detailed results for the other modeling assumptions
(outflow treatment and viscosity models) are reported in [4]. The simulations were performed for
several models (Newtonian 3d, non-Newtonian 3d and Newtonian 3d-0d). In each case, we take
the reference solution with an inlet velocity magnitude equal to 10−3 m

s . Then, we compute the
influence of each model by taking vin = 20−3 m

s and vin = 30−3 m
s , respectively.

The results are displayed in Figure 1.7, where a grid refinement study is reported, and in
Figure 1.8, where different models are compared. The mesh convergence tests were performed
on three meshes M0, M1 and M2 described in Table 1.2 and applied to the computed reference
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solution uR. Both metrics are persistently higher in comparison with the case of the outflow or
rheological model, with a significant non-linear increase in the case of the wall shear stress metric.
This should be compared to a Poiseuille approximation, frequently used in blood flow modeling,
that predicts a linear increase of the wall shear stress when the velocity increases linearly. In the
present case, where blood flow dynamics is complex and the geometry is also very complicated, this
approximation is no more valid. It can also be noted that Newtonian 3d and Newtonian 3d-0d
models present the same sensitivity for both velocity and wall shear stress metric; the same behavior
can be found when comparing the two non-Newtonian models. Moreover, we can see in these figures
that the non-Newtonian models have less influence compared to the Newtonian models on the same
quantities. This effect is more significant in wall shear stress metric, but it is also visible in the
velocity metric.

h Nelt Ndof

m0 0.03 322 013 1 640 236
m1 0.02 985 484 4 717 123
m2 0.015 2 008 757 9 171 904

Table 1.2: Mesh convergence tests; h: characteristic element size, Nelt: number of tetrahedra, Ndof :
number of degrees of freedom.
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Figure 1.7: Effects of inlet velocity magnitude vin. The reference solution for each level mesh is
computed using vin = 10−3 m

s . Continuous lines correspond to vin = 20−3 m
s and dashed lines to

vin = 30−3 m
s .

Conclusions and outlook. The results of the present study showed that for cerebral veins blood
flow modeling, the impact of setting the inlet boundary condition on the forces created by blood flow,
is likely greater than for other modeling assumptions. Therefore, they highlighted the importance of
deriving values for these conditions from clinically measured data at some probe locations, in order
to enhance the accuracy of the computed hemodynamical quantities of interest. These findings
are significant in the perspective of the integration of the computational modeling step in a full
pipeline, where the interaction at the stage of acquisition of data and also in the validation process
takes place, see Section 1.5. From the mathematical and numerical standpoint, only a deterministic
approach was used in the present sensitivity analysis study, but next steps should also include
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Figure 1.8: Effects of inlet velocity magnitude vin. The reference solution for each model is computed
by using vin = 10−3 m

s . Continuous lines correspond to vin = 20−3 m
s and dashed lines to vin =
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quantification of statistical variability in these data. In this direction, we proposed a first attempt
for a simplified 0d model in [21], see Section 2.2.1.

1.4 Large-scale blood flow simulations and validation

In this section we present our continuous efforts to develop a powerful and flexible computational
framework [6] for numerically solving problems arising in hemodynamics, such as [4; 1]. We also
discuss our contribution towards improving the reliability and reproducibility of computational
studies by performing a thorough validation of the fluid solver against experimental data [5].

1.4.1 Computational framework

The core of the framework is the Finite Element Embedded Library in C++ Feel++, that allows
to use a very wide range of Galerkin methods and advanced numerical techniques such as domain
decomposition (including mortar and three fields methods), fictitious domain or certified reduced
basis. The ingredients include a very expressive embedded language, seamless interpolation, mesh
adaption and seamless parallelization. Feel++ provides a mathematical kernel for solving partial
differential equation using arbitrary order Galerkin methods in 1d, 2d, 3d and on manifolds using
simplices and hypercubes meshes [Pru+12]:

• a polynomial library allowing for a wide range polynomial expansions including Hdiv and Hcurl

elements;

• a light interface to Boost.UBlas, Eigen3 and PETSc [Bal+16]/SLEPc as well as a scalable
in-house solution strategy;

• a language for Galerkin methods starting with fundamental concepts such as function spaces,
forms, operators, functionals and integrals;

• a framework that allows user codes to scale seamlessly from single core computation to thou-
sands of cores and enables hybrid computing.
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First steps towards large-scale three-dimensional blood flow simulations in realistic geometries
were achieved in [6], where we investigated several issues: (i) handling various boundary conditions
settings allowing for a flexible framework with respect to the type of input data (velocity, pressure,
flow rate . . .); (ii) handling of the discretization errors not only with respect to the physical fields
(velocity and pressure) but also with respect to the geometry; (iii) dealing with the associated large
computational cost, requiring high performance computing, through strong and weak scalability
studies.

On the basis of the problems studied in [4; 1], we added new capabilities in the algebraic solving
framework. To give an insight about the importance of the preconditioning strategy when solving
complex flow problems, we gather in Table 1.3 results allowing for a direct comparison between
three possible choices in term of preconditioners when computing the solution of a pressure-driven
Stokes flow in the cerebral venous network [1]. Strategy PGASM couples monolithically a Krylov
iterative solver with an additive Schwarz preconditioner, whereas Strategies PBlock

1 and PBlock
2

couple a Krylov iterative solver with a block preconditioning strategy, following [ESW14]. To apply
this framework, we remark that we deal with a double saddle point problem: we gather either
the velocity-pressure unknowns or the velocity-Lagrange multiplier unknowns to setup a two level
preconditioner.

Strategy PGASM Strategy PBlock
1 Strategy PBlock

2

m0 163[420] 20[174] 67[86]
m1 366[393] 45[267] 161[123]
m2 1080[429] 84[369] 271[143]
m3 4616[522] 293[660] 707[196]
m4 x 898[791] 1960[175]

Table 1.3: Time comparison for three preconditioning strategies (in seconds). In brackets, the
number of iteration used by solver.

Simulations were performed with 96 processors and the time is measured in seconds. The
comparison clearly shows the limits of Strategy PGASM and the gain in terms of computational
time when choosing Strategy PBlock

1 and Strategy PBlock
2 . Note that in the Strategy PBlock

1 , the
number of iterations grows strongly with respect to the problem size. Further refinements regarding
the different choices are required and will be subject of future research.

1.4.2 The FDA benchmark nozzle model

A challenging benchmark was proposed by the US Food and Drug Administration (FDA) in
[Har+11] in order to assess the stability, accuracy and robustness of computational methods in
different physiological regimes. The findings of 28 blinded investigations were reported in [Ste+13]
and, as critically analyzed in [Sot12], practically all CFD solvers failed to predict results that agreed
in a satisfactory manner with the experimental data. Several subsequent papers tackled this ques-
tion, by employing different numerical approaches, see [5] for a more detailed discussion.

The benchmark provides a comprehensive dataset of experimental measures using a well-defined
geometry corresponding to an idealized medical device (see Figure 1.9 for a schematic sketch of the
domain and [Har+11, Sec. 2.1] for more details). Five sets of data spanning laminar, transitional
and turbulent regimes are made available on-line and the device was designed to feature accelerating,
decelerating and recirculating flow (all of which occur in real medical devices). We investigated in
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Figure 1.9: FDA nozzle sketch and specifications (from [Har+11]).

[5] three flow regimes, corresponding to a Reynold number at the throat level ReThroat = 500, 2000
and 3500, by using a direct numerical simulation method for the Navier-Stokes equations. A detailed
report of the numerical method and parameters used for each test can be found in [5]. In particular
we implemented and compared low order as well as high order approximations including for the
geometry and we discussed some issues not previously reported in the literature.

The comparison with experimental data is made in terms of (i) wall pressure difference (nor-
malized to the mean throat velocity) versus axial distance; and (ii) axial component of the velocity
(normalized to the mean inlet velocity) along the centerline:

Δpnorm =
pz − pz=0

1
2ρfu

2
t

and unormz =
uz
ui

, where ut =
4Q

πD2
t

, ui =
4Q

πD2
i

, (1.31)

and Q is the volumetric flow rate. Furthermore, two validation metrics reported in [Ste+13] were
computed: a conservation of mass error metric EQ (on a percentage basis) and a general validation
metric Ez comparing average experimental velocity data with computed axial velocities.

We only provide here illustrative numerical results corresponding to ReThroat = 500; for all
the other cases, see [5]. Four mesh refinement levels, denoted M0–M3, from the coarsest to the
finest level, were constructed. Several polynomial order approximations were used and the notation
PN+1PNGkgeo specifies the discretization spaces for the velocity, pressure, and geometry, respec-
tively. Figure 1.10 shows the results for the normalized axial velocity and the normalized pressure
difference along the z axis, respectively. In each case, we can see very satisfactory agreement with
the experimental data.

We illustrate in Figure 1.11 the computation of metrics Ez and EQ for several mesh refinements
at ReThroat = 500. The metric Ez takes small values in each numerical experiment, identifying a
good agreement between computed and experimental data, and displays only small variations with
respect to mesh refinement. On the other hand, the metric EQ is more sensitive to this factor:
error does not exceed the ∼ 2%, except for the coarse mesh M0 where, in two locations, the error
increases up to ∼ 10%. Interestingly, we note that the P3P2G1 approximation does not improve
the results for the coarse mesh, but that a satisfactory error below 2% is retrieved when using a
P2P1G2 approximation.

Additional tests to complement the study of the impact of high order approximation are ongoing
and an extended version of [5] is planned to be submitted for publication.
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Figure 1.10: ReThroat = 500, experimental data vs. numerical results: normalized axial velocity
(left); normalized pressure difference along z (right).

Figure 1.11: ReThroat = 500: validation metrics Ez (left) and EQ (right).
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1.5 An open-source framework to generate virtual MRA images
from real MRA images

In the previous sections, we presented several contributions to develop a sound mathematical
and computational framework for hemodynamic simulations, with an emphasis on applications
to the cerebral venous network. This methodology was integrated in the interdisciplinary program
VIVABRAIN Virtual angiography simulation from 3D and 3D+t brain vascular models [Viv], that
aims at starting from real MR angiographic data to finally lead to the generation of virtual MR
angiographic data. We summarize hereafter the main steps and challenges of these developments.

As explained in Section 1.1, the realistic data we used as a starting point were acquired using dif-
ferent Magnetic Resonance Angiography (MRA) sequences. MRA is an image acquisition technique
particularly used, for instance, in the case of detection and diagnosis of vascular alterations (e.g.,
stenoses, aneurysms, thromboses), and patient follow-up after treatment (e.g., by stents, coils).
MRA is also an effective tool for clinical research devoted to the understanding of human macro
and mesovascular physiology, since it provides non-invasive/non-ionizing modalities (e.g., Phase
Contrast (PC) or Time-of-Flight (TOF) MRA), available in 2d, 3d, and even 3d+time.

Due to the nature of structures visualized in MRA, namely thin, elongated, curvy vessels, the
development of specific image analysis tools has been an active research area during the last decades
[Les+09]. However, contrary to other morphological structures (e.g., brain tissues and structures,
with BrainWeb [Coc+97]), there is no common framework to facilitate the development and vali-
dation of related image analysis methods. In particular, despite a few attempts (such as [Sch+09]),
that rely on datasets equipped with manual ground truth, there is no vascular analogue of Brain-
Web, i.e., a framework for generating efficiently virtual MRA images naturally equipped with a
ground-truth and/or associated to a real MRA. Stemming on this fact, we have been working, in
the context of the VIVABRAIN project with the final goal to tackle this issue, knowing that the
case of virtual MRA was not intensively considered, in particular via the efficient coupling of CFD
and MRI simulation.

The framework relies on a pipeline composed of five main steps, going from real MRA to virtual
MRA, see Figure 1.12:

(i) MRA acquisition;

(ii) segmentation of vascular volumes from such data and design of a vascular model, in particular
by explicitly modeling anatomical and physiological features;

(iii) construction of computational meshes of the vascular structures;

(iv) simulation of the flowing blood in the designed vascular model, leading to velocity and pressure
fields;

(v) generation of virtual MRA images based on the previously computed information.

Our contributions are inserted in step (iv), with natural ramifications in the pre- and post- pro-
cessing steps, namely building the computational meshes before the simulations and treating the
results afterwards. Besides the inherent challenges related to the mathematical and computational
approach, additional difficulties come into play. In particular, the complexity of the data to handle
at the interface between the steps and their representation is a crucial point: for instance, fluid
simulations are performed in an Eulerian framework, whereas MRA simulation in performed by



1.6. CONCLUSIONS AND OUTLOOK 29

Figure 1.12: VIVABRAIN pipeline.

numerically solving the Bloch equations with a Lagrangian-based approach.

These research efforts were first presented in [10], where the workflow from medical images to
numerical simulations was discussed. A significant step forward was achieved by junior researchers
of the VIVABRAIN project in [Anc+16]: a validation process of the entire VIVABRAIN pipeline
was performed on a physical phantom (a double bifurcation fluid circuit), on which morphological
and flow data were acquired within the project. The most up-to-date full methodological framework
is described in [13]. A software pipeline is associated to this framework [Ang] and open-data is a
complementary purpose of the software framework, itself developed in an open-source way. It will
hopefully constitutes a versatile tool for progressing in the understanding of vascular networks, espe-
cially in the brain, and the associated imaging technologies. Furthermore, it provides the foundation
of a reliable and efficient computational framework allowing for a computer-aided interpretation of
clinical data, as available in the Eye2brain project that will be discussed in the next sections.

1.6 Conclusions and outlook

Our contribution with respect to existing works on three-dimensional models for blood flow in re-
alistic geometries considered the importance of boundary conditions, with a focus on the cerebral
venous network. We developed the first three-dimensional sound mathematical and computational
model for the venous part of the cerebral vasculature, that complements previous works on the
arterial side and on reduced models for the same compartment. The framework incorporates a new
Lagrange multiplier-based numerical method to take into account boundary conditions involving
pressure, that we throughly analyzed in the case of the Stokes problem. We also made first steps
to take into account uncertainties in different modeling assumptions through a sensitivity analysis
approach, in a high performance computing framework that was validated on significant bench-
marks. Finally, all these contributions were integrated in a general software pipeline for generating
efficiently virtual MRA images naturally associated to a real MRA.
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In addition to the specific extensions discussed in each section, we present hereafter some overall
perspectives on the topic. Eventually, this mathematical and computational modeling framework
could contribute to elucidate the numerous open questions connecting brain venous hemodynamics
and neurological diseases, as recently reviewed in [Tor16].

Multiscale approach. By means of the new algorithm we developed in [3] (see Section 2.3), we
aim at building amultiscale model that couples the 3D intracranial description of the venous network
[11] with the reduced 0d model of the extra-cranial drainage pathways proposed in [Gad+15]. We
made a first step by coupling the three-dimensional domain with a very simple Windkessel model
in Section 1.3, that already gave promising results. However, in our current model, only two main
drainage veins in the supine position are included (corresponding to the jugular veins), due to the
limitations of the image acquisition process. The advantage of this new multiscale model is that
it would allow to add a more sophisticated description of the collateral pathways that were very
recently shown to play an important role as an alternative route for venous outflow according to the
subject position, that is, standing or sitting [Gis+04; SE+09]. From the mathematical viewpoint,
that would require extending our algorithm to the Navier-Stokes system, as explained in Section
2.3, and improving linear solvers efficacy by means of well-suited block-preconditioning strategies in
the spirit of [ESW14]. More generally, incorporating the possibility to describe by a reduced model
a part of the entire vascular tree would be meaningful to tackle the issue of parameter identification,
in line with recent works [Lom14; Cai+17], that use a 1d model of the arterial network and a the
reduced-order unscented Kalman filter on synthetic or experimental data. For a further discussion
on these issues see Section 2.4.

Multiphysics modeling. The proposed model for the cerebral venous system could be enhanced
by coupling the current three-dimensional fluid dynamics description of the flow with new models
at the inflow and the outflow. On one hand, at the inflow, blood comes from the microcirculation,
comprising a huge number of small vessels. An homogenization of this vascular bed based on the
Darcy law can be used in this case, but the coupling between either Navier-Stokes or a reduced
model and the Darcy problem requires non-standard interface conditions and treatment, see for an
extended discussion [DQ08]. This approach would pave the way for the construction of a model for
the whole cerebral circulation, allowing the coupling of the venous tree with the arterial network
and the capillary bed. On the other hand, as discussed in Section 1.1, a rigid wall model was
adopted everywhere in the network in a first approximation. However, at the outflow, the jugular
vessels are more compliant that the intracranial ones, therefore a coupled fluid-structure model
would be more appropriate to describe vessel-blood dynamics in this part of the network. This
would require the derivation of a new model coupling the 3d Navier-Stokes system (1.1)- (1.2) on
a first portion of the domain with another 3d compartment, where a fluid-structure system (see
Section 3.1.1) describes the flow. To the best of our knowledge, this problem is open: we would
first need to derive appropriate interface conditions to ensure the well-posedness of the problem and
subsequently find an appropriate numerical strategy to solve it without the prohibitive cost of an
overall fluid-structure resolution.

Mathematical and computational models for the cerebrospinal fluid (CSF). Several re-
cent reviews [Kur11; Lin+16; BHM16] pointed out the importance of the coupling between the
cerebrovascular blood flow dynamics and cerebrospinal fluid mechanics. In the framework of the
VIVABRAIN project [Viv], S. Garnotel’s thesis [Gar16] also explored different methods for the
numerical modeling of the intracranial pressure and comparison with real measurements by flow
MRI and intracranial pressure monitoring. Nevertheless, the understanding of the interplay be-
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tween blood pressure, intracranial pressure and CSF pressure (as measured by a lumbar puncture)
is still scarce. To have a better description of available reduced and distributed models for CSF
modeling, we are currently writing an invited book chapter entitled Mathematical modeling of the
cerebrospinal fluid flow, in collaboration with L. Sala (PhD student, Univ. de Strasbourg) and F.
Salerni (PhD student, Univ. of Parma), that reviews different contributions on this topic. The
chapter is included in the book Mathematical modeling of ocular fluid dynamics: From theory to
clinical applications (A. Harris and G. Guidoboni Eds., Springer) and gives a literature perspective
to the recent eye-cerebral model we developed in [8; 17], see also Section 2.1.
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Chapter 2

Reduced and multiscale mathematical
and computational models for
biofluids. Applications to the study of
the coupled eye-cerebral system

Biofluid models and simulations in patient specific geometries and under physiological conditions
at the macro-scale are usually based on a three-dimensional description of the flow by means of
a system of partial differential equations (PDEs). To simplify the numerical simulations and the
interpretation of the results, various modeling reduction techniques have been proposed, see for in-
stance [FQV09, Chap.10] and the references therein. They are able to capture the main physical
phenomena governing the system, at a lower computational cost than the full solution of a PDEs
problem.

One-dimensional models take advantage of the basically cylindrical morphology of biological con-
duits. They can be derived by resorting to different procedures, such as cross-sectional averaging
techniques or asymptotic analysis methods. The resulting mathematical description is based on 1d
hyperbolic PDEs, that can capture wave-propagation phenomena in the entire circulatory system
with a reasonable computational cost. This is not the approach we will follow in the sequel, since
we rather focused on an even more simplified, 0d description of the flow.

Reduced 0d models provide a circuit-based representation of the fluid dynamics in each compart-
ment, based on the analogy between electric and hydraulic networks, see Table 2.1. By writing
Kirchhoff laws for the nodes (conservation of current/flow rate) and for closed circuits (conserva-
tion of the voltage/pressure), the resulting mathematical model is a system of differential algebraic
equations, potentially nonlinear. These models, also called lumped parameter models, are used in
different ways depending on the specific modeling needs, as recently reviewed in [QVV16]. In a first
approach, many studies implemented them as boundary conditions for three-dimensional blood flow
simulations in regions of particular interest. Alternatively, 0d reduced models have been used to
provide systemic descriptions of closed circulatory systems, where three-dimensional regions might
be embedded. From this so-called geometric multiscale modeling perspective, the PDE–ODE cou-
pling leads to challenging theoretical and numerical issues, since appropriate interface conditions
enforcing the continuity of mass and the balance of forces need to be devised and should also be
preserved at the discrete level.
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Hydraulic network Electric network

Pressure Voltage
Flow rate Current
Volume Charge

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

Table 2.1: Analogy between electric and hydraulic networks, adapted from [FQV09, Chap.10].

In this research direction, the purpose of the chapter is two-fold: (i) first, we present in Sections 2.1
and 2.2 our contributions towards the elaboration of several reduced 0d models describing the
coupled dynamics of different biofluids in the eye-cerebral system; (ii) second, we describe in Sec-
tion 2.3 a new methodological strategy for the numerical solving of coupled systems of partial and
ordinary differential equations for fluid flows. The latter was motivated by applications to blood
flow modeling through the cardiovascular system from a multiscale perspective, even though the
resulting conceptual framework may be meaningful and applicable to a more general context of
hydraulic networks.

2.1 Design and development of a lumped model for the coupled
eye-cerebral system

In the previous chapter, progress made in understanding cerebral hemodynamics by means of math-
ematical and computational models highlighted an increasing need for clinical data to be used in
the calibration and validation process. To mitigate measurement problems in the brain, we are con-
sidering here an alternative approach: the eye is the only place in the human body where structural
and functional vascular features can be observed and measured easily and noninvasively down to
the capillary level. Many clinical studies have shown correlations between hemodynamic alterations
in the eye and pathological conditions in the brain [Her+13; Jin15]. This is not surprising, since the
two organs share anatomic, embryologic, and physiologic characteristics [Her+13], see Figure 2.1.
However, the mechanisms underlying these correlations are still elusive, likely due to the numerous
factors that influence the relationship between eye and brain and the intrinsic difficulty of isolat-
ing these factors in a clinical setting and measuring their individual contribution. These factors
include arterial blood pressure (BP), intraocular pressure (IOP), intracranial pressure (ICP) and
cerebrospinal fluid pressure (CSF-p).

The goal of this section is to propose a new mathematical model describing the coupled dynamics
of different biofluids in the brain and in the eye. To the best of our knowledge, an approach
describing at this level of details the interactions between all the compartments described below
was not available in the literature. Details on the design and development of the model are presented
in Section 2.1.1. In Section 2.1.2, the model is employed to investigate how microgravity conditions
affect ocular and cerebral fluid-dynamics. The presentation is based on [8; 17] and a full paper
in preparation. It also benefits from the progress we made in understanding the aqueous humor
dynamics through mathematical and computational models, as reviewed in Section 2.2.
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(a)$ (b)$ (c)$

Figure 2.1: Fluid dynamic connections between the eye and the brain: (a) The blood supply to
the eye is secured by the ophthalmic artery branching from the internal carotid artery [Eyeb]; (b)
The blood drains from the eye into the cavernous sinus, which also receives blood from superficial
cortical veins [Eyec]; (c) The cerebrospinal fluid (CSF) fills the subarachnoid space which surrounds
the brain and the optic nerve [Eyea].

2.1.1 Construction of the model

We illustrated in Figure 2.1 the complex interplay between several biofluids that are involved in
the fluid-dynamic connections between the eye and the brain. In a first modeling attempt, we
proposed a reduced 0d description of the eye-cerebral system, connected with a very simplified
model of the body, the electrical analogue of which is shown in Figure 2.2. The physiological
network is subdivided into a number of linked, interacting compartments, each of which contains
a single physical constituent, such as blood, cerebrospinal fluid, interstitial fluid and aqueous humor.

The interactions among the following components are incorporated (see Figure 2.2):

in the brain:

• blood (3 compartments: intracranial arteries (I), capillaries (C), intracranial venous sinuses
(S));

• cerebrospinal fluid (1 compartment: ventricular CSF (F));

• cerebral tissue and interstitial fluid (1 compartment: brain (B));

in each of the two eyes (see Figure 2.3):

• blood (5 compartments: retina (r), choroid (ch), central retinal artery (cra), central retinal
vein (crv), ciliary circulation (cl));

• aqueous humor (ah) (1 compartment: anterior and posterior chamber);

and finally

• cerebrospinal fluid (1 compartment: extra-ventricular (T) bridging intracranial and extracra-
nial regions, also including the subarachnoid space in the optic nerve posterior to the lamina
cribrosa).
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Figure 2.2: Network model of fluid flows in the brain and eyes. The nodes correspond to the
connection between the brain and eye models. The connection Intracranial Arteries-Ophthalmic
Artery represents arterial supply; the connection Venous Sinuses-Cavernous Sinus represents the
venous drainage; the grey and light blue arrows represent the pressures acting on both sides of the
lamina cribrosa.
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Figure 2.3: Network model for the eye vasculature (black portion) and aqueous humor production
and drainage (blue portion). The vasculature comprises circulation of blood in retinal, ciliary and
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To reflect the fluid dynamic connections between the eye and the brain, the models are coupled
through the following relations:

• the node corresponding to the ophthalmic artery (OA) pressure in the eye model (denoted
PEye,in in Figure 2.2) is connected to the intracranial arterial pressure in the brain model (PI)
through an effective vascular resistance (RI,OA);

• the node corresponding to the cavernous sinus pressure (PEye,out) and that corresponding to
the episcleral venous pressure (Pevp) in the eye are directly connected to the venous sinus
pressure in the brain model (PS);

• the lamina cribrosa is acted upon by the IOP from the ocular side (light blue arrow) and by
the CSF pressure in the subarachnoid space in the optic nerve, here assumed to be equal to
the extraventricular CSF pressure (grey arrow).

The flow is driven by the following mechanisms:

• the pressure drop between the central arteries (PA) and the central veins (PV );

• the active secretion of aqueous humor in the eye (Jsecr);

• the production of CSF in the brain (QCF ).

Remark 2.1.1. In this work we focus on steady simulations, neglecting, in particular, time varia-
tions occurring on the time scale of heart beat. We also neglect autoregulation mechanisms of small
vessels, since we wish to keep the model relatively simple in order to understand its basic behavior.

By writing the Kirchoff law of currents at the circuit nodes, we obtain a set of nonlinear algebraic
equations. The nonlinearity is a consequence of the fact that, in some compartments, resistances are
assumed to depend on the pressures. Following [Gui+14] and [Ped80], we model these deformable
tubes as Starling resistors, reflecting the physiological high collapsibility of these vessels when the
transmural pressure becomes negative. All constitutive laws are listed in Table 2.2, and two main
types of flows are included in the model: filtration and pressure-driven flows. See for more details
on the mathematical modeling approach Section 2.2.1. Precise values for model parameters, the full
set of notations and the validation procedure are available in the complete version of the paper.

We are not aware of works in which a mathematical model describing the complex relationship
between different biofluids in the brain and in the eye in such a detailed manner has been proposed.
The lumped parameter circuit for the brain stems from [LS08], where a mathematical model was
employed for microgravity simulations. The eye model originates from [Gui+14] for the retinal
circulation and has been extended to account for the three ocular vascular beds (retina, choroid
and ciliary body) adapting work from [Kie+11]. Finally, ocular hemodynamics is coupled with
the aqueous humor dynamics, as modeled in [21] and extended in [14]. The advantage of this new
network-based model is that it provides a systemic view, able to capture the overall dynamics of
the interwoven physiology of blood, CSF, ocular humors and interstitial fluids in the eye and in
the brain, while maintaining a relatively accessible mathematical complexity and low computational
costs.
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Constitutive Relations

Brain

Cerebral Blood Flow QIC = (PI − PC)/(RI +RC)
QCS = (PC − PS)/(RC +RS)

Cerebrospinal and QCB = KCB [(PC − PB)− σCB(πC − πB)]
Interstitial Fluid Flow QBT = (PB − PT )/RBT

QFT = (PF − PT )/RFT

QTS = (PT − PS)/RTS

Eye

Blood Flow Qcl = (PEye,In − Pcl,c)/(Rcl,in +Rcl,a1 +Rcl,a2 +Rcl,c1)
Qcl,v = (Pcl,c − PEye,Out)/(Rcl,c2 +Rcl,v1 +Rcl,v2 +Rcl,out)
Qch = (PEye,In − PEye,Out)/(Rch,in +Rch +Rch,out)
Qr = (PEye,In − PEye,Out)/(Rcra,in +Rcra +Rr +Rcrv +Rcrv,out)
Rch = Rch,a1 +Rch,a2 +Rch,c1 +Rch,c2 +Rch,v1 +Rch,v2

Rcra = Rcra,1 +Rcra,2 +Rcra,3 +Rcra,4

Rr = Rr,a1 +Rr,a2 +Rr,c1 +Rr,c2 +Rr,v1 +Rr,v2

Rcrv = Rcrv,1 +Rcrv,2 +Rcrv,3 +Rcrv,4

Ri,v1 = Ri,v2 =

�
αi (1 + (Pi,v − IOP)/(kp,ikL,i))

−4 ifPi,v > IOP

αi (1− (Pi,v − IOP)/kp,i)
4/3 ifPi,v ≤ IOP

for i = cl, ch, r

αi = 8πµLi/A2
i for i = cl, ch, r

kp,i = Eih
3
iπ

3/2/(12(1− ν2
i )A3/2

i ) for i = cl, ch, r
kL,i = 12Ai/(πh

2
i ) for i = cl, ch, r

Rcra,n = αcra,n (1 +ΔPcra,n/(kp,cra,nkL,cra,n))
−4 for n = 1, 2, 3, 4

ΔPcra,1 = (Pcra,in + Pcra,1)/2− PLC

ΔPcra,2 = (Pcra,1 + Pcra,2)/2− PLC

ΔPcra,n = (Pcra,n−1 + Pcra,n)/2− IOP, n = 3, 4
αcra,n = 8πµLcra,n/A2

cra,n for n = 1, 2, 3, 4

kp,cra,n = Ecra,nh
3
cra,nπ

3/2/(12(1− ν2
cra,n)A3/2

cra,n) for n = 1, 2, 3, 4
kL,cra,n = 12Acra,n/(πh

2
cra,n) for n = 1, 2, 3, 4

Rcrv,n =

�
αcrv,n (1 +ΔPcrv,n/(kp,crv,nkL,crv,n))

−4 ifΔPcrv,n > 0

αcrv,n (1−ΔPcrv,n/kp,crv,n)
4/3 ifΔPcrv,n ≤ 0

for n = 1, 2, 3, 4

ΔPcrv,n = (Pcrv,n + Pcrv,n+1)/2− IOP, n = 1, 2
ΔPcrv,3 = (Pcrv,3 + Pcrv,4)/2− PLC

ΔPcrv,4 = (Pcrv,4 + Pcrv,out)/2− PLC

αcrv,n = 8πµLcrv,n/A2
crv,n for n = 1, 2, 3, 4

kp,crv,n = Ecrv,nh
3
crv,nπ

3/2/(12(1− ν2
crv,n)A3/2

crv,n) for n = 1, 2, 3, 4
kL,crv,n = 12Acrv,n/(πh

2
crv,n) for n = 1, 2, 3, 4

Aqueous Humor Flow Juf = Lin[(Pcl,c − IOP)− σpΔπp]
Juv = IOP/Ruv

Ruv = (k2 + IOP)/k1
Jtm = (IOP− Pevp)/Rtm

Rtm = R0(1 + κ(IOP− Pevp))

Body-Brain-Eye Coupling

QA = (PA − PI)/(RA +RI)
QSV = (PS − PV )/(RS +RV )
QTV = (PT − PV )/RTV

QOA = (PI − PEye,In)/RI,OA

PEye,Out = PS

Table 2.2: Summary of the model constitutive relations.
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2.1.2 Microgravity conditions modeling and numerical results

Understanding how microgravity conditions affect ocular and cerebral fluid-dynamics and the role
that the vascular components may play in the (potentially permanent) loss of visual acuity after
space flight is a challenging issue. This problem is called Visually Impairment and Intracranial
Pressure (VIIP) syndrome [NMM14]. As part of several clinical and research projects directed in
the International Space Station, NASA recently initiated an extended acquisition campain to ana-
lyze and identify astronaut-specific anatomical and physical factors that may contribute to increase
the risk of developing VIIP during long-duration space flights. Many factors are hypothesized to
contribute to VIIP, among which upper body fluid shift, alterations in intraocular pressure, in-
tracranial pressure, tissue biomechanics and blood flow. Due to the difficulty to single out each
of these factors using in-vivo studies, we proposed a complementary approach, based on the novel
mathematical model described in the previous section, to evaluate the interactions between fluid
flows and pressures in the brain and eyes and their mechanical implications in VIIP.

To our knowledge little work has been done concerning the mathematical modeling of VIIP.
The work [Nel+13] presented a lumped-parameter model to calculate mean ICP, IOP and blood
flows in the eye in zero gravity conditions. However, in the authors’ model, the eye is treated in a
simplified manner, as a distensible compartment inside of which a second distensible compartment
exists, representing the intraocular vasculature. The contribution [Ver+15] developed a lumped-
parameter model of fluid transport in the central nervous system aimed at simulating the influence
of microgravity on ICP. As a forthcoming step, the authors’ intention is to couple this model to
lumped parameter and finite element models of the eye.

We performed simulations using the model described in Section 2.1.1 in four conditions, consid-
ered to be relevant in VIIP [LS08], for different imposed blood/aqueous and blood/brain osmotic
pressure differences Δπ:

• LHDT (long term head down tilt, a ground-based experimental procedure that is used to
simulate the effects of microgravity on the cardiovascular system): we account for a small
gravitational effect, which increases the central venous and arterial pressures;

• M0 (microgravity with an intact blood/brain barrier): we set the gravitational contribution
and the central venous pressure equal to zero;

• M1, M2 (microgravity with a weakened blood/brain barrier): in addition to the previous case,
we also increase the permeability of the blood/brain barrier by a factor 1.75 in the case M1
and by a factor 2 in the case M2.

As an illustration, we present in Figure 2.4 the results of simulations for IOP, ICP and com-
pressive stress in the lamina in the four simulated cases; they show that a decrease in Δπ leads to:
(i) an approximately linear increase in ICP, more marked if the blood/brain barrier is weakened,
as in [LS08]; (ii) a nonlinear increase in IOP, due to the venous collapse as the transmural pressure
becomes negative. Simulated ocular blood flow Figure 2.5 shows that, as Δπ decreases: (i) ciliary
and choroidal blood flows decrease almost linearly, until vessel collapse occurs, and then do so much
more rapidly; (ii) choroidal circulation the flux in the retina initially grows owing to a purely per-
fusion control mainly enacted by the intraocular venous segments.

Conclusions and perspectives. From the clinical viewpoint, these results showed interesting
features. Specifically, when simulating microgravity conditions, the model predicted that: (i) the
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Figure 2.4: Simulated IOP, ICP and laminar compressive stress in the LHDT, M0, M1 and M2
conditions. Dotted lines indicate representative Δπ values in the four simulated cases, which differ
from the physiological value on earth of 25mmHg due to fluid shift. Dashed lines indicate Δπ values
for which veins collapse in retinal (black), choroidal (red) and ciliary (blue) circulations.
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venous segments play a fundamental role in controlling pressures and fluxes in the ocular circulation,
owing to the possibility of their collapse; (ii) IOP and ICP increase in microgravity conditions, but
their respective trends may be different; (iii) retinal circulation is less susceptible to microgravity-
induced alterations than that in choroid and ciliary. These findings aid VIIP understanding, in-
dicating that clinical assessment of ocular venous function may be considered as a determinant
factor, for which astronauts could be screened on earth and in-flight. We finally remark that the
ingredients embedded in the proposed model make it a very flexible tool to study interactions be-
tween the eyes and the rest of the body (particularly the brain). Thus, besides the application
to VIIP, we believe that the model could serve as a framework on which more can be built and
could be easily extended to study other pathological states, such as glaucoma (see also Section 2.2.1).

From the mathematical modeling standpoint, the outcome of this study is the first mathematical
description of the biophysical connection between the eye and the brain. The model was imple-
mented in the open-source modeling and simulation environment OpenModelica [Ope] and validated
against clinical data. Next steps include (i) a sensitivity analysis study to theoretically identify sys-
temic, ocular and cerebral parameters, in the spirit of our recent contributions [14; 21] and (ii) the
extension of the model to the time-dependent case. The major challenge of the latter is the strongly
nonlinear multiscale temporal nature of the problem, that in addition to the nonlinearities coming
from the constitutive laws will call for well suited numerical methods for highly stiff nonlinear ODE
systems.

2.2 A zoom on mathematical models for the aqueous humor

We present in this section our work on mathematical models for the aqueous humor dynamics and
their coupling with ocular hemodynamics, as part of the complex eye-cerebral model described in
Sec. 2.1. The aqueous humor is a transparent, gelatinous fluid similar to plasma located in the
anterior and posterior chambers of the eye. The balance between production and drainage of aque-
ous humor regulates the fluid pressure inside the eye, also known as intraocular pressure (IOP).
Elevated IOP is clinically referred to as ocular hypertension and it represents a major risk factor
for irreversible vision loss, as in glaucoma. However, the establishment of optimal IOP levels for
patients is still controversial, as recently reviewed in [Ver+16]: clinical studies report evidence of
disease progression despite a significantly reduced IOP level and optical nerve damage and vision
loss despite normal IOP level. Therefore, understanding what is the relative contribution of each
risk factor and/or different combination of risk factors is of major importance. Another meaningful
open question is related to what determines the efficacy of IOP-lowering medications. To date,
this is the only modifiable risk factor [Ver+16]. However, efficacy varies among individuals,e.g: the
lowering effect is more significant when IOP is higher and it changes depending on the time of day,
but the underlying mechanisms are not yet fully understood.

Motivated by these considerations, we present in Section 2.2.1 a mathematical model that de-
scribes the steady state value of IOP under uncertainty. We subsequently performed numerical
simulations based on this model to assess the outcome of IOP-lowering medication used in glau-
coma management. In Section 2.2.2 we further propose two increasingly complex models to couple
aqueous humor production and drainage with ocular blood circulation.
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2.2.1 Modeling the intraocular pressure under uncertainty

Only a few modeling works have studied aqueous humor flow and its relation to IOP-lowering med-
ications, e.g. [LMS07; Kie+11]. Importantly, none of them explicitly accounted for uncertainties
and variabilities in the model parameters. We proposed in [21] a simplified mathematical model
describing the balance between aqueous humor production and drainage; we then performed a sen-
sitivity analysis aimed at quantifying the influence of parameters’ variations on the IOP distribution
in various situations of clinical interest. Preliminary findings on this topic were published as peer-
reviewed conference abstracts in [7; 2].

Description of the model. The mathematical approach is based on the analogy between trans-
port of mass and flow of an electric current. We give hereafter the main steps in the derivation of
the model, as an illustrative simple example of our approach when constructing lumped-parameter
models for this type of biological problems and how different phenomena were incorporated. The
network-based view is schematized in Figure 2.3 (blue portion).

Aqueous humor is produced at the level of the ciliary body by a combination of a passive mech-
anism, the ultrafiltration, and an active mechanism, the ionic secretion, and is modulated by the
total inflow facility L [LMS07; Kie+11]. Here the term facility indicates hydraulic conductance,
namely a flow rate per units of pressure. The ultrafiltration from the ciliary circulation consists of
flow of transparent fluid across semipermeable membranes and is driven by blood/aqueous humor
differences in hydrostatic pressures (cBP−IOP ) and oncotic pressures Δπp: the latter is modulated
by a protein reflection coefficient σp. The notation cBP stands for the blood pressure in the capil-
laries of the ciliary body. The inflow, as a result of the active ionic secretion, is proportional to the
blood/aqueous humor osmotic pressure difference Δπs, via a reflection coefficient for low-molecular
components σs.

The drainage of aqueous humor from the eye is driven by passive mechanisms through two dif-
ferent pathways. The trabecular pathway, also known as conventional pathway, consists of aqueous
humor flow through the trabecular meshwork, into the Schlemms canal and the episcleral veins. As
proposed in [Bru75], the model consists of a flow through a nonlinear resistor positioned between
the anterior chamber (where pressure is equal to IOP) and the episcleral veins (where pressure is
equal to EVP), with outflow facility depending on R0 (resistance when IOP equals EVP) and Q, an
outflow obstruction coefficient. The uveoscleral pathway, also known as the non-conventional path-
way, consists of aqueous humor flow through the ciliary muscle and into the supraciliary space. This
contribution is modeled as the flow through a nonlinear resistor connected to the ground [Kie+11],
with an outflow facility depending nonlinearly on the pressure through the Michaelis-Menten type
relation [JG11]. The constant k1 is the maximum value attainable by the uveoscleral flow rate and
k2 is the Michaelis constant for the uveoscleral flow rate, namely the pressure value for which the
uveoscleral flow rate is half of k1.

Consequently, the steady state value of IOP, resulting from the balance between production and
drainage of aqueous humor can be written as:

L[(cBP−IOP )−σpΔπp−σsΔπs] =
1

R0[1 +Q(IOP − EV P )]
(IOP−EV P )+

k1
k2 + IOP

IOP. (2.1)

This is a scalar third-order polynomial equation in the sole unknown and can be explicitly com-
puted from the previous formula. Control state values for the parameters and more details on the
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derivation of the model can be found in [21].

To include potential sources of uncertainties as well as to identify and rank parameters hav-
ing the most important influence on IOP, we applied a global stochastic sensitivity analysis to the
model described above. We considered stochastic variations in cBP following a normal distribution,
and in L, Δπs, C0 = 1

R0
(trabecular outflow facility), k1 and EVP following a uniform distribu-

tion, both within physiological ranges. By using the probability distribution of IOP, we computed
variance-based sensitivity indexes, also known as Sobol indexes [Sob93] and the probability density
function [Sap06] which describes the relative frequency of a given IOP value. For each parameter,
its direct influence on is quantified in terms of first-order Sobol indexes, and the influence through
interactions with other parameters is identified by means of the total Sobol indexes. The values
of first-order and total indexes can be estimated via Monte Carlo simulations [Sob93] or via re-
duced order models using polynomial chaos expansion [Sud08]. The former method is very costly
from the computational viewpoint as it requires many evaluations to ensure convergence, whereas
the latter requires considerably less evaluations. Both methods have been compared and provide
similar results. We report in the sequel the results obtained using the polynomial chaos reduced
model. Computations were performed using Matlab/Octave and the open-source software platform
OpenTURNS [Bau+16].

Numerical results and discussion. The model was used to compute the distribution in four
different cases of clinical interest: (i) ocular normotensive healthy subjects (ONT); (ii) ocular hy-
pertensive subjects (OHT); (iii) ONT subjects treated with IOP-lowering medications (ONTm);
and (iv) OHT subjects treated with IOP-lowering medications (OHTm).

We only report here the results for the first category (healthy individuals), that also validate the
model by comparison with experimental results, see Figure 2.6. The probability density function
(left panel) fits a right-skewed Gaussian curve with a frequency peak of 25% at 15.13 mmHg and a
skewness of 0.2, which is in a very good agreement with the results from a population-based study
on approximately subjects 12.000 subjects [Car+84] (green curve in Figure 2.6, left panel). The
results for the Sobol indexes (Figure 2.6, right panel) suggest that IOP is strongly influenced by
cBP and and Δπs and mildly influenced by the levels of L, C0 and EV P . The influence of k1 on
IOP appears to be minimal.

The outcomes of the simulations in the other three cases are discussed in detail in [21]. To sum-
marize, the proposed model suggests that the outcomes of IOP-lowering treatments depend on the
initial IOP level of the patient and on its individual clinical condition. Our analysis also suggests
that IOP-lowering effects are more pronounced when aqueous humor production is affected rather
than aqueous humor drainage. The effects of lowering IOP are also more apparent when trabecular
outflow is increased instead of the uveoscleral outflow. Another interesting finding of our analysis is
that a patients blood pressure strongly influences the outcomes of IOP-lowering treatments, which
may explain why the effect of some drugs differ between day-time and night-time and/or amongst
individuals.

Conclusions and perspectives. Elevated IOP is a recognized risk factor for vision loss. Nu-
merous risk factors are suggested in the literature [Ver+16]: age, gender, ethnicity, genetic factors,
vascular dysregulation, diabetes, blood pressure etc. However, the establishment of optimal IOP
levels for patients is still controversial and what is the relative contribution of each risk factor and/or
different combination of risk factors is still not well understood. We proposed a mathematical model
to theoretically investigate the relationship between several uncertain parameters influencing the
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Figure 2.6: Probability density function of IOP (left panel) and Sobol indexes (right panel), re-
sulting from the sensitivity analysis performed on the mathematical model of equation (2.1) when
variations in ciliary capillary blood pressure cBP , total inflow facility L, blood/aqueous humor
osmotic pressure difference Δπs, trabecular outflow facility C0, uveoscleral outflow facility k1 and
episcleral venous pressure EV P are considered.

flow and evaluated their potential impact on the individual response to IOP-lowering medications.

A further investigation that incorporates a theoretical and numerical model coupling aqueous humor
production and drainage with ocular blood flow is presented in the next section. Changes in ocular
blood volume, mainly localized in the choroid, are also conjectured to affect the time variations of
IOP, but they were not considered in [21]. In this direction, we recently made a first attempt to
consistently combine the static and dynamic components contributing to the pressure distribution
inside the eye in [19], by incorporating in the model a nonstationary component, mainly due to
blood flow oscillations. A more in-depth analysis of the mathematical properties of the steady and
unsteady versions of the model is another interesting question, since it could bring new insights on
the qualitative behavior of the solutions.

2.2.2 Modeling the coupled dynamics of ocular blood flow and aqueous humor

As anticipated in the previous section, we present hereafter two increasingly complex mathematical
models (M1 and M2) describing the coupled dynamics of aqueous humor and ocular blood flow.
We performed a sensitivity analysis in both cases with the goal of investigating the influence of dif-
ferent factors on the intraocular pressure production and drainage. The presentation is based on [14].

Description of the model. As previously, we adopted here a reduced-modeling approach, stem-
ming from the analogy between electric and hydraulic networks. Model M1 couples a simplified ver-
sion of the model [21] (see Section 2.2.1 and [LMS07]) for aqueous humor production and drainage
with the models for the blood flow in the ciliary, choroidal and retinal circulations proposed in
[Kie+11] and [Gui+14].

In model M2, the blood flow description is the same as in M1, whereas the aqueous humor dynamics
model includes more complex phenomena, following [Kie+11]: plasma filtration and biochemical
reactions are considered in the multi-layered region of the eye comprising the stroma and the
epithelial ciliary layer, leading to the posterior chamber. The model is schematized in Fig. 2.7.
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Enforcing the Kirchhoff Current Law at each node of the circuit, except where given data are
assumed and where connection to ground is applied, one obtains a nonlinear system of algebraic
equations in the unknown vector

P =
�
Cst, Caq, P

cil
c , Pst, Pant, Ppost, mbl, P

O2
c , PO2

v , PO2
ce , PO2

aq

�T
, (2.2)

where Cst and Caq are the protein concentrations in the stroma and in the aqueous humor, P cil
c is

the blood pressure in the ciliary body capillaries, Pst, Ppost and Pant are the aqueous humor pres-
sures in the stroma and in the posterior and anterior chambers, mbl basolateral ionic concentration,
and PO2

c , PO2
v , PO2

ce , PO2
aq are the partial pressures of oxygen in the ciliary body capillaries, veins,

epithelium and aqueous humor.
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Figure 2.7: Equivalent electrical circuit for aqueous humor production and drainage. Each node of
the circuit (black bullet) is connected to another node either through a conductance (denoted by the
symbol G) or through a current source (denoted by a rhombus or by a circle). The nodal quantities
indicated by P (capital letter) represent a pressure (in mmHg). The nodal quantities indicated by
C (capital letter) represent a concentration (in gml−1) while those indicated by m (small letter)
represent a molar concentration (in µmolml−1). The quantities surrounded by a box are assumed
to be given values defined by the user. The current sources I1 and I2 are fixed values while the other
current sources are controlled by the drop of the two nodal values across which they are located or
by the drop of the two nodal values to which they are connected by the dashed arrows. The vertical
shaded triangle symbol represents connection of the considered network branch to ground.

Thus, the overall models M1 or M2 consists in two main blocks, one for the aqueous humor flow
and one for blood flow, which are strongly coupled, since: (i) the blood pressure in capillaries and
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Figure 2.8: Sensitivity analysis as a function of percentage change in DAH . Stromal and anterior
chamber pressures are influenced by variations in aqueous humor drainage, while intraocular pres-
sure is influenced in a milder manner. Each pressure tends to a saturation value as drainage is
increased. A red square indicates the baseline value for each pressure.

veins contributes to regulate production and drainage of aqueous humor, and (ii) the aqueous hu-
mor pressure acts as an external pressure on the blood vessels thereby altering blood flow. For the
solution of the overall problem a block fixed point iteration is adopted until convergence.

Numerical results. Computations of the first order Sobol indexes [Sob93] based on M1 confirmed,
as in [21], that acting on the aqueous humor inflow seems more effective than changing aqueous
humor outflow. In addition, regarding hemodynamic aspects, simulations showed that pressure in
ciliary capillaries and retinal blood flow are strongly influenced by blood pressure and systemic
vascular resistance, which are systemic factors depending on the general condition of the individual.

We also performed a sensitivity analysis on model M2, but only in a deterministic framework.
Because of the increased complexity of the formulation, a self-consistent coupling with the blood
flow model was not addressed in a preliminary validation, and computations were performed by
assuming the dependent variables P cil

c , PO2
c and PO2

v in (2.2) to be given quantities. In particu-
lar, we focused our attention in the computation of Pst and Pant (Ppost is assumed to be equal to
Pant), and of the pressure Pvitreous in the vitreous which coincides with the intraocular pressure.
Simulations were run to evaluate the dependence of these three variables on the variation (i) of
the production of aqueous humor PAH and (ii) of the total aqueous humor drainage DAH . A com-
plete description of the parameters and results is available in [14]. As an illustration, we report
in Figure 2.8 the outcomes of the simulations in the case where the drainage of aqueous humor
DAH is varied. Results show that the intraocular pressure is less sensitive to parameter variation,
unlike stromal and anterior chamber pressures. In particular, we see that, as physically expected,
these latter pressures decrease appreciably as DAH becomes larger. However, results clearly re-
veal that a further increase of drainage has no positive effect on pressure decay. This is reflected
into a saturation of all the pressure curves to a limit value, as visible in the right panel of Figure 2.8.

Discussion and perspectives. The mathematical models M1 and M2, coupling aqueous humor
production and drainage with ocular blood flows, lead to a better understanding of the delicate,
yet important, relationship between different factors determining intraocular pressure. Further on,
this theoretical investigation helped in identifying patients-specific factors (as for instance systemic
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blood pressure) that influence the efficacy of different medications used in glaucoma management.
The complex multi-physical nature of this coupled dynamics called in a first approximation for sev-
eral simplifications: the model is steady and does not account for autoregulation mechanisms in
small vessels. In this direction, the aqueous humor block could incorporate a nonstationary com-
ponent as we recently proposed in [19]; as for the ocular blood flow contribution, time-dependent
models including autoregulation in the retina, with different levels of complexity, are developed in
[Gui+14; AGL16] and could be coupled with the first block. From the mathematical viewpoint,
taking into account the different nonlinearities due to autoregulation phenomena raises new inter-
esting questions both at the theoretical and computational level; another challenge comes from the
understanding of the unsteady component of the system and its asymptotic behavior.

A different development was triggered by recent discussions with A. Mauri and R. Sacco, that aims
at coupling the current model that describes aqueous humor dynamics at the ocular tissue scale
model (coarse level) to an epithelial cellular scale model (fine level). More precisely, the idea is
to keep the description of the drainage path and of the ultrafiltration process at a macroscopic
level and to expand the model of the ionic pump at the fine level in the spirit of the recent model
proposed by my colleagues and their collaborators in [Mau+16]. Such an approach would hopefully
provide insights in understanding the role of the sodium-potassium pump as an important player
in the aqueous humor production, not only at the cellular level, but also at a macroscopic scale. In
[Mau+16], the velocity-extended Poisson-Nernst-Planck equations describing ion electrodiffusion are
coupled to the Stokes equations to describe aqueous humor flow into the basolateral space adjacent to
the nonpigmented ephitelial cells. The coupling between this three-dimensional partial differential
equations system and the reduced 0D description of the rest of the circuit presents interesting
modeling (for boundary and interface conditions) and numerical (for the solving algorithm) issues.
In particular, the new numerical approach based on a splitting procedure that we detail in the next
section could provide a sound starting point in devising an appropriate algorithm for the problem.

2.3 A new algorithm for the numerical solving of coupled
distributed–0d problems

Many strategies have been adopted for the numerical solution of coupled PDE–ODE systems in
the context of blood flow modeling. In particular, monolithic and splitting (or partitioned) schemes
have been proposed, where the PDE and ODE systems are solved simultaneously or in separate
substeps, respectively. An extensive discussion about their advantages and limitations can be found
in [QVV16].

The contribution presented in this section focuses on splitting techniques and on the properties
of their modular structure. Among the many interesting contributions in this area, we mention here
those that are most closely related to our work. In [QRV01], the multiscale coupling between the
Navier-Stokes equations in a rigid domain and a lumped parameter model is considered. A split-
ting strategy based on subiterations between PDE and ODE solvers at each time step is proposed
and assessed in different meaningful configurations. This splitting formulation was then used as
an effective tool to prove the well-posedness of the coupled problem [QV03], in combination with
appropriate fixed point results. In [FIGM15], the authors compare the numerical stability of ex-
plicit and implicit coupling between the Stokes or Navier-Stokes equations and circuit-based models
containing resistances and capacitances. Unconditional stability was proved in the implicit case,
whereas conditional stability was proved in the explicit case. In [Mog+13], a time implicit approach
to couple general lumped parameter models with a finite-element based solution of a Navier-Stokes



2.3. NUMERICAL SOLVING OF COUPLED DISTRIBUTED–0D PROBLEMS 49

problem in a 3d domain is proposed. The algorithm combines the stability properties of monolithic
approaches with the modularity of splitting algorithms. The method is based on a Newton type
iterative scheme, where data are exchanged between the two domains at each Newton iteration of
the nonlinear Navier-Stokes solver to ensure convergence of both domains simultaneously.

To the best of our knowledge, the splitting schemes that have been proposed for coupled PDE–
ODE systems in the context of fluid flow modeling so far, require subiterations between substeps,
usually involving the values of pressure and flow rate at the multiscale interfaces, in order to achieve
convergence of the overall algorithm. Depending on the mathematical properties of the models in
each substep and of the coupling between them, the convergence of such subiterations might become
an issue, especially in the case of nonlinear problems.

We describe in this section a new method, presented in [3] and detailed in a full subsequent
paper, that aims at providing a novel splitting scheme for coupled PDE–ODE systems for fluid flow
that does not require subiterations between substeps in order to achieve stability for the overall
algorithm. The stability properties of the scheme follow from ensuring that the physical energy
balance is maintained at the discrete level via a suitable application of operator splitting techniques
to semi-discretize the problem in time [Glo03, Chap. II]. As a result, the proposed algorithm
allows us to: (i) solve in separate substeps potential nonlinearities within the systems of PDEs
and/or ODEs; (ii) maintain some flexibility in choosing the numerical method for the solution of
each subproblem; (iii) ensure unconditional stability without the need of subiterations between
substeps.

2.3.1 Description of the coupled Stokes–0d problem

Geometrical architecture of the coupled system. We start by describing the main blocks that
constitute the model under consideration. The geometrical setting of the coupled problem consists
of: (i) L regions of space denoted by Ωl ⊂ Rd, with l ∈ L = {1, . . . , L} and d = 2 or 3, where the
fluid flow is described by the Stokes equations; (ii) M lumped hydraulic circuits denoted by Υm,
with m ∈ M = {1, . . . ,M}, where the fluid flow is described by the hydraulic analog of the Kirchoff
laws of currents and voltages. We assume that the boundary of each domain Ωl, denoted by ∂Ωl,
is the union of three portions, namely

∂Ωl = Γl ∪ Σl ∪ Sl (2.3)

where different types of boundary and interface conditions are imposed. Specifically, Dirichlet
conditions are imposed on Γl, Neumann conditions are imposed on Σl and Stokes-circuit coupling
conditions are imposed on Sl, as described below. We assume that Dirichlet conditions are imposed
on a portion of the boundary of each domain Ωl, i.e. Γl �= ∅, and that each domain Ωl is connected
to (at least) one circuit, i.e. Sl �= ∅. In particular, each region Ωl may have jΩl

≥ 1 Stokes-circuit
connections, implying that each boundary portion Sl may be written as

Sl =
�

m∈Ml

Slm (2.4)

with l ∈ L. We remark that, for each l ∈ L, the set Ml ⊆ M identifies the circuits Υm that are
connected to Ωl. Similarly, each circuit Υm may have jΥm ≥ 1 Stokes-circuit connections and the
set Lm ⊆ L identifies the Stokes regions Ωl that are connected to Υm. We will also consider cases
where Neumann conditions are not imposed on the boundary of Ωl, i.e. Σl = ∅, as it happens
in Example 3 described below. It may also happen that the same Stokes region Ωl and the same



50 CHAPTER 2. REDUCED AND MULTISCALE MODELS

circuit Υm enjoy multiple connections. Thus, an additional subscript is introduced to distinguish
between the various connections, so that we can write:

Slm =

jΩl,Υm�

k=1

Slm,k, (2.5)

where jΩl,Υm is the total number of connections between Ωl and Υm. Note that with these notations,
we also have

jΩl
=

�

m∈Ml

jΩl,Υm and jΥm =
�

l∈Lm

jΩl,Υm . (2.6)

Stokes problems in Ωl. Let vl = vl(x, t) and pl = pl(x, t), for l ∈ L, denote the velocity vector
field and the pressure field, respectively, pertaining to the fluid in each domain Ωl × (0, T ), with
Ωl ⊂ Rd, d = 2, 3 and T > 0. Then, for l ∈ L, we can write the Stokes equations as:

∇ · vl = 0 in Ωl × (0, T ) (2.7)

ρ
∂vl
∂t

= −∇pl + µΔvl + ρfl in Ωl × (0, T ) (2.8)

where ρ and µ are positive given constants representing the fluid density and dynamic viscosity,
respectively, and fl are given body forces per unit of mass. The system is equipped with the initial
conditions:

vl(x, t) = vl,0(x) in Ωl (2.9)

and the boundary and interface conditions:

vl = 0 on Γl × (0, T ) (2.10)
�
− plI + µ∇vl

�
nl = −plnl on Σl × (0, T ) (2.11)

�
− plI + µ∇vl

�
nlm,k = glm,k on Slm,k × (0, T ) (2.12)

where I is the d× d identity tensor, nl is the outward unit normal vector to Σl, and pl = pl(t) are
given functions of time. For m ∈ Ml and k = 1, . . . , jΩl,Υm , the vector nlm,k denotes the outward
unit normal vector to Slm,k and the functions glm,k are defined via the coupling conditions (2.15).

Lumped hydraulic circuits in Υm. Let the dynamics in each lumped hydraulic circuit Υm, for
m ∈ M = {1, . . . ,M}, be described by the vector ym = [ym,1, ym,2, · · · , ym,dm ]

T of state variables
satisfying the following system of (possibly nonlinear) ODE system:

dym

dt
= A

m
(ym, t)ym + rm(ym, t) (2.13)

equipped with the initial conditions
ym(t = 0) = ym,0 (2.14)

where ym and rm are dm-dimensional vector-valued functions and A
m

is a dm × dm tensor. The
tensor A

m
embodies topology and physics of the connections among the circuit nodes and the

vector-valued function rm comprises two contributions: (i) sources and sinks within the circuit,
including generators of current and voltage; and (ii) connections with Stokes regions.
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Coupling conditions. A domain Ωl is connected to a lumped circuit Υm via the interfaces Slm,k,
with k = 1, . . . , jΩl,Υm as indicated in Figure 2.9, where we imposed the condition:

glm,k(x, t) = −Plm,k(t)nlm,k(x) for x ∈ Slm,k and t ∈ (0, T ), (2.15)

where Plm,k is the pressure at the node of the circuit sitting on Slm,k. Under some geometric
assumptions on the domain, this condition corresponds to imposing that the average pressure on
the interface Slm,k is equal to the nodal pressure, see [HRT96; FI14]. In addition, the continuity of
mass, and consequently flow rate, across Slm,k implies that

Qlm,k(t) =

�

Slm,k

vl(x, t) · nlm,k(x)dSlm,k for t ∈ (0, T ). (2.16)

For l ∈ Lm and k = 1, . . . , jΩl,Υm , each term Qlm,k contributes as source/sink for the circuit Υm;
thus, it is convenient to rewrite rm in (2.13) as

rm(ym, Qlm,k, Plm,k, t) = sm(ym, t) + bm(Qlm,k, Plm,k, t) (2.17)

where sm(ym, t) represents the contribution of sources and sinks within the circuit (generators of
current and voltage) and bm(Qlm,k, Plm,k, t) gathers all contributions from the jΥm Stokes-circuit
connections.

Remark 2.3.1. Inn order to clearly elucidate the main rationale behind the proposed splitting al-
gorithm, only resistive connections between Stokes regions and lumped circuits are considered in
[3]. Resistive connections are among the most commons in blood flow modeling, see for instance
[QV03]. In some applications, though, capacitive and inductive elements might be needed. Ca-
pacitive connections are used when the fluid pressure in Ωl influences the fluid flow in Υm and,
simultaneously, the fluid pressure in Υm influence the fluid flow in Ωl, without having actual fluid
flow between Ωl and Υm. Thus, some portions of the boundary of Ωl must be deformable, lead-
ing to a fluid-structure interaction problem that goes beyond the scope of this work and might be
considered as future research direction. Inductive connections are used when the regime of interest
is such that inertial effects become important. Since in the present work we are neglecting inertial
effects by adopting the Stokes equations in each Ωl, we also neglect inertial effects in the connections
between the Stokes regions and the lumped circuits. We remark that the particular elements allowed
in the connections might lead to different initial problems, as pointed out in [Mog+13]. We also
remark that resistive, inductive and capacitive elements may all be present in the lumped circuit Υm.

Ωl

Slm,k

Plm,k

Qlm,k

Υm

Figure 2.9: Schematic representation of the coupling between the Stokes region Ωl and the lumped
circuit Υm. Coupling conditions for the pressure Plm,k and the flow rate Qlm,k should be imposed
on the interface Slm,k.

Fully coupled problem. The fully coupled problem consists in finding vl, pl, Plm,k, Qlm,k and ym,
for l ∈ L, m ∈ L and k = 1, . . . , jΩl,Υm satisfying equations (2.7), (2.8) and (2.13), subject to the
coupling conditions (2.12), (2.15) and (2.16), the boundary conditions (2.10) and (2.11), and the
initial conditions (2.9) and (2.14).
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Remark 2.3.2. Due to the complex nonlinear structure of the fully coupled problem, to our knowl-
edge, existence of solutions has been proved only for some particular cases. For example, in [QV03],
the authors prove local in time existence of a solution, when the connections are made through bridg-
ing regions. In [BGM10], the existence of a strong solution for small data is demonstrated, in the
case of the coupling between the Navier-Stokes problem and a single resistor.

In [3] we showed that the full coupled Stokes-0d system satisfies an energy identity that embodies
the main mechanisms governing the physics of the system. More precisely, the analysis shows that,
in the case of lumped circuits having a structure contributing to the overall energy dissipation
and in the absence of external forcing terms, the energy of the full coupled problem will decay in
time. This is the fundamental physical and mathematical property that we aim at preserving at
the discrete level and that provides the main rationale for our splitting scheme described below.

2.3.2 First-order splitting algorithm for the time discretization of the coupled
problem and stability analysis

Our numerical strategy is based on the operator splitting technique, see e.g. [Glo03, Chap. II],
which leverages a semi-discretization in time to solve sequentially in separate substeps the PDE
systems associated with the Stokes regions and the ODE systems associated with the lumped hy-
draulic circuits. The most important feature of the scheme is that the substeps are designed so
that the energy at the semi-discrete level mirrors the behavior of the energy of the full coupled
system, thereby providing unconditional stability to the proposed splitting method. We present
next the main steps of the algorithm; for more details about its characteristics and the imple-
mentation, see [3]. We emphasize that the version of the method detailed below yields, at most,
a first-order accuracy in time, since it includes only two substeps; however, the scheme can be
generalized to attain second-order accuracy using symmetrization techniques [Glo03, Chap. VI] or
suitable time-extrapolations of quantities of particular interest, in the same spirit as [Fen13; FLV15].

First-order splitting algorithm. Let Δt denote a fixed time step, let tn = nΔt and let ϕn =
ϕ(t = tn) for any general expression ϕ. Let v0

l = vl,0 for all l ∈ L and y0
m = ym,0 for all m ∈ M.

Then, for any n ≥ 0 solve:

Step 1 For each l ∈ L, m ∈ M and k = 1, . . . , jΩl,Υm , given vn
l and yn

m, find vl and ym such that

∇ · vl = 0 in Ωl × (tn, tn+1) (2.18)

ρ
∂vl
∂t

= −∇pl + µΔvl + ρfl in Ωl × (tn, tn+1) (2.19)

dym

dt
= bm(Qlm,k, Plm,k, t) in (tn, tn+1) (2.20)

with the initial conditions

vl(x, t
n) = vn

l (x) in Ωl (2.21)

ym(tn) = yn
m (2.22)

and the boundary conditions

vl = 0 on Γl × (tn, tn+1) (2.23)
�
− plI + µ∇vl

�
nl = −plnl on Σl × (tn, tn+1) (2.24)

�
− plI + µ∇vl

�
nlm,k = −Plm,knl,m on Slm,k × (tn, tn+1) (2.25)
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with �

Slm,k

vl(x, t
n) · nlm,k(x, t

n) dSlm,k = Qlm,k(t) in (tn, tn+1) (2.26)

and then set

v
n+ 1

2
l = vl(x, t

n+1), pn+1
l = pl(x, t

n+1) and y
n+ 1

2
m = ym(tn+1). (2.27)

Step 2 For each l ∈ L, m ∈ M and k = 1, . . . , jΩl,Υm , given v
n+ 1

2
l and y

n+ 1
2

m , find vl and ym such
that

ρ
∂vl
∂t

= 0 in Ωl × (tn, tn+1) (2.28)

dym

dt
= A

m
(ym, t)ym + sm(ym, t) in (tn, tn+1) (2.29)

with the initial conditions

vl(x, t
n) = v

n+ 1
2

l (x) in Ωl (2.30)

ym(tn) = y
n+ 1

2
m (2.31)

and set

vn+1
l = vl(x, t

n+1) and yn+1
m = ym(tn+1). (2.32)

The stability properties of the algorithm are investigated in the next theorem. The analysis was
performed on a simplified problem that, however, still preserves the main difficulties associated with
the coupling of PDEs and ODEs considered in this work.

Theorem 2.3.3. Consider the coupled Stokes–0d problem described in Section 2.3.1 and assume
that (i) the circuit properties are such that, for all m ∈ M, the tensor A

m
is constant and B

m
is positive definite, where B

m
gathers all the contributions from resistive, capacitive and inductive

elements in the lumped circuits; (ii) the are no forcing terms, namely FΩ(t) = FΥ(t) = 0 for all
t ≥ 0, where FΩ represents the forcing on the system due to body forces and external pressures acting
on the Stokes regions and FΥ the forcing on the system due to generators of current and voltage
within the lumped circuits, respectively; (iii) the Stokes-circuit connections are of the type described
in Section 2.3.1. Under these assumptions, the algorithm given by Steps 1 and 2 is unconditionally
stable.

The key ingredient in the proof is the following: the uncoditional stability of the algorithm is a direct
consequence of treating the contributions from the jΥm Stokes-circuit connections, represented by
bm(Ql,m, Pl,m, t), implicitly in Step1 in Eq. (2.20) (for instance, by means of an implicit Euler scheme
for the time-discretization). The coupling conditions are not disrupted, and we let the two substeps
communicate via the initial conditions. As a consequence, the proposed splitting technique does not
introduce uncontrolled artificial terms in the energy, thus ensuring the stability of the algorithm.

2.3.3 Numerical results and discussion

We evaluated the performances of the first order splitting method proposed in Section 2.3.2 on three
illustrative examples that differ by: (i) number of Stokes regions and lumped circuits; (ii) number
of connections between Stokes regions and lumped circuits; and (iii) type of elements within the
lumped circuits. The equivalent electric circuits are represented in Figures 2.10, 2.11 and 2.12,
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respectively. We derived explicit solutions for the full coupled problem in each example, against
which our (as well as other) numerical methods can be tested and we assessed the convergence
properties of the method for different choices of time step, showing that the expected first-order
convergence in time is actually achieved. The spatial discretization of the Stokes problem is handled
via a standard finite-element approach, the temporal discretization of the Stokes and 0d problems is
handled via an implicit Euler method and the computational framework relies on the finite element
library Freefem [Hec12].

p1
Ω1

Σ1

Γ1

Γ1

S11,1

P11,1

Q11,1

R11

y11

C11

Υ1

R12(y1, t)

y12

C12(y1, t)
R13

�p1

Figure 2.10: Example 1. The two-dimensional Stokes region Ω1 is connected to the lumped circuit
Υ1 via a resistive element with resistance R11.
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Figure 2.11: Example 2. The two-dimensional Stokes regions Ω1 and Ω2 are connected to the
lumped circuit Υ1 via resistive elements with resistance R11 and R14, respectively.
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Figure 2.12: Example 3. The two-dimensional Stokes region Ω1 is connected to the lumped circuit
Υ1 via two resistive elements with resistance R11,1 and R11,2, respectively.
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We present the results obtained on Example 1; for Examples 2 and 3, we refer to [3]. They
correspond to the case of nonlinear variable resistance R12 and capacitance C12, but we also tested
the method in the case of constant R12 and C12 against the exact solution and obtained similar
performances as in the nonlinear case. Figure 2.13 displays a comparison between the exact solution
and different numerical approximations of physical quantities of interest, namely pressure P11,1 and
flow rate Q11,1 at the Stokes-circuit interface S11,1 (upper panel) and pressure y11 and volume
y12 in the 0d circuit (lower panel). We remark that the nonlinearities in R12 and C12 have been
treated explicitly, which means that R12 and C12 are evaluated at the previous time step. A good
agreement is obtained for P11,1, y11 and y12 for Δt = 0.01, and the error decreases as Δt is reduced.
The numerical approximation of Q11,1 captures the periodicity of the solution even for Δt = 0.01,
but the peaks are lower than those exhibited by the exact solution. As Δt is the reduced, the
computed Q11,1 approaches the exact peaks of the interface flow rate, thereby capturing the full
dynamics of the problem. Figure 2.13 also shows that the numerical solution is not affected by
spurious oscillations or instabilities, even for the largest time step. These findings confirm that the
choice of the time step affects the accuracy of the computed solution but not the stability of the
numerical scheme, as proved in Theorem 2.3.3.
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Figure 2.13: Example 1. Comparison between the exact solution and the corresponding numerical
approximation for interface quantities (top) and 0d unknowns (bottom), for three time steps Δt =
0.01, 0.005, 0.001, over one period once the periodicity is reached.

Recall that the time-discretization scheme is based on a first order operator splitting technique,
which is known to be first-order accurate in time. We performed a standard time refinement study
that confirmed this property, as shown in Figure 2.14.
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(b) Example 2
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(c) Example 3

Figure 2.14: Plot of the energy norm errors, in logarithmic scale as a function of the global time
step Δt = 0.01, 0.005, 0.001 for the three examples considered.

Perspectives. The energy-based operator splitting approach developed in [3] is based on a very
simple version of this technique, which is first-order accurate. It has the advantages of an easy imple-
mentation, good stability and robustness properties, and low computational cost. This framework
could serve as a basis for the extension to high order methods, as briefly discussed in Section 2.3.2.
The proposed algorithm allows us to associate to each block of the problem a specific operator and
to solve it in separate substeps, by means of a well-suited numerical method. This feature can be
further exploited in more complex situations: (i) coupling between Navier-Stokes equations and a
lumped parameter model, in the Newtonian or non-Newtonian case; (ii) coupling between a model
describing flow in a compliant tube and a 0d appropriate model; (iii) more generally, coupling
between different PDEs in the various Ωl, (for instance to accommodate Stokes and Darcy) and
reduced models.

2.4 Conclusions and outlook

In this chapter, our strategy has been to tackle the complexity of the bio-fluid dynamics in the
coupled eye-cerebral system by means of a two-stage approach. First, we developed network-based
models that allow to understand the main dynamics of the system thanks to their simplified math-
ematical structure and to compute average values of the unknowns at relatively low computational
costs. They are also particularly well suited for sensitivity analysis studies to input data, that we
successfully used to discriminate the contribution of different factors on flow quantities. In addition,
these robust mathematical models have the advantage that can be dynamically complexified and
implemented as our understanding evolves. Second, we envisioned a multiscale approach, where re-
gions of interest that require the use of a detailed model are coupled to a reduced 0d description of
the rest of the network, thus leading to a coupled PDE–ODE system. We proposed a novel technique
based on operator splitting for the time discretization of such coupled distributed–reduced prob-
lems, that allows to solve separately and sequentially each model, without the need of sub-iterations.

We selected in the sequel some possible further developments:

Towards a multi-domain and multiphysics model of the eye. To the best of our knowledge,
the mathematical and computational modeling of the eye is still at its early stages, see for instance
[Ale17] and the references therein. In the framework of the thesis of Lorenzo Sala, co-advised with
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Chirstophe Prud’homme (Univ. de Strasbourg) and Giovanna Guidoboni (Univ. of Missouri), we
made the first steps in constructing such a full model, in which ocular biomechanics, fluid dynamics
and hemodynamics are coupled. Currently, the system combines: (i) a circuit-based model for blood
flow in the retinal vasculature, central retinal artery and central retinal vein, as in Sections 2.1 and
2.2.2; (ii) a three-dimensional porous media model for the perfusion of the lamina cribrosa and
(iii) a three-dimensional isotropic elastic model for the biomechanics in the lamina cribrosa, retina,
choroid, sclera and cornea. From a numerical viewpoint, the problem requires solving a poroelastic
model for the coupling between biomechanics and hemodynamics in the lamina cribrosa, which calls
for (i) high accuracy in the approximation for both primal variables (i.e. displacement and pres-
sure) and dual variables (i.e. stress and perfusion velocity), and (ii) integral boundary conditions
to account for the coupling between zero- and three-dimensional model components. To numer-
ically solve the coupled system, we used a hybridizable discontinuous Galerkin method [CGL09],
implemented in Feel++. Furthermore, to handle the multiscale nature of this problem, the complex
coupling has been achieved using an integral boundary condition and a time-splitting energy-based
scheme in the spirit of the method developed in Section 2.3. A collaborative effort in this sense
was presented and published as peer-reviewed conference abstracts [15; 16] and a full paper is in
preparation. Future developments will include the coupling with mathematical and computational
models for the cerebro-spinal fluid circulation (see also the discussion in Section 1.6), an extended
blood circulation for the whole body and a three-dimensional description of the fluid dynamics of
the vitreous and aqueous humor.

Mathematical modeling and simulations for the brain and eye-cerebral system: a mul-
tiscale approach. As already discussed in Section 1.6, it would be interesting to extend our
contributions on the 3d models for cerebral blood flow to a multiscale framework. Eventually, the
3D description of the flow would be integrated in a model of the entire circulatory system. The
advantage of such a closed-loop model are that the artificial boundaries are not present anymore
and moreover, it could include feedback and control mechanisms. Similarly, the complexity of the
coupled eye-cerebral system calls for a multiscale modeling approach. Network-based models, as the
one presented in Section 2.1, allow to capture the main dynamics and averaged behavior, whereas
detailed 3d models allow to interface with clinical data that are 3D in nature, e.g. MRA maps or
Optical Coherence Tomography (OCT) images. The mathematical complexities of such a multiscale
approach, as briefly discussed in Section 2.3, include in particular the extension to 3d geometries
and to the case of the Navier-Stokes equations. Also, such an approach requires the development of
flexible, versatile and scalable computational framework, in which the multi-components/multiscale/
multiphysics mathematical models can be solved numerically. Moreover, the use of adaptive and
robust methods to combine computations with experimental data and measurements is necessary.
These new research directions are at the core of the project thesis of Philippe Ricka, co-advised
with Christophe Prud’homme (Univ. de Strasbourg) and Giovanna Guidoboni (Univ. of Missouri),
starting from September 2017.
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Chapter 3

Numerical strategies for coupled
fluid-structure problems. Applications
to multiphysics computational models
in biology and medicine

Three-dimensional macro-scale fluid models can describe blood flow dynamics in large vessels (ar-
teries or veins), by means of the Navier-Stokes system, as presented in Chapter 1. Alternatively,
in Chapter 2 we used 0d reduced models, based on systems of ODEs describing blood flow with
electric analogy, possibly coupled with a 3d description of the flow, in a geometric multiscale ap-
proach. The representation of these problems can be enriched to take into account the combined
effects of flow and different structures, from a multiphysics perspective. In this direction, two types
of fluid-structure interaction phenomena can be considered:

• internal flows, when the external fluid boundary has an elastic part or is entirely composed
of an elastic structure, e.g. a model for blood flow in arteries with deformable walls;

• internal structures, when rigid or deformable bodies float or actively move in a fluid flow
placed in a container, e.g. a mixture of plasma and red blood cells, as a model for blood at a
very small scale.

In this chapter, we gather two contributions, corresponding each to one of these situations. In Sec-
tion 3.1, a coupled fluid-structure interaction model from the first category is presented, based on
a description of blood flow dynamics by the Navier-Stokes equations in a moving domain, coupled
with the linear elasticity equations describing the vessel wall deformation. This coupled multiphysics
model is subsequently utilized for simulating blood flow in the aorta, in view of a specific biomedical
application. The case of an internal structure, namely a rigid particle evolving passively in a fluid,
is presented in Section 3.2, with an emphasis on the issue of how to handle contact with the wall of
a rigid container.

3.1 Computational modeling of blood flow in the aorta

On the basis of [20], we aim at providing in this section an example of how combining two comple-
mentary studies:

59
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• a 3d MRI angiography of the aorta in 30 patients after coarctation repair and

• a 3d fluid-structure computational model characterizing the fluid dynamics in the aorta (flow,
pressure, and wall shear stress)

can shed some light on the causes of a pathological situation and thus provide interesting insights
to the medical community.

3.1.1 Mathematical model and numerical approach

Formulation of the problem. The mathematical model that we consider for blood flow in
the aorta is a three-dimensional strongly coupled fluid-structure problem. In the sequel, the super-
scripts f and s are introduced to identify quantities referring to the fluid and structure problems,
respectively. Blood is modeled as a homogeneous, incompressible fluid, with “standard” Newto-
nian behavior, occupying the moving domain Ωf (t); the dynamics is described by the Navier-Stokes
equations in an Arbitrary Lagrangian Eulerian (ALE) formulation, see Equations (3.1-3.3) hereafter.
The vessel wall is described as an elastic solid, occupying a domain denoted Ωs(t); the displacement
is described in a Lagrangian framework by the linear elasticity equations (3.4-3.6). At the fluid-
solid interface Γw(t), i.e. the common boundary between Ωf (t) and Ωs(t), the coupling conditions
(3.7-3.9) are imposed. The boundaries Γin and Γout correspond to the artificial inlet and outlet
sections, respectively (at the levels where the vessels are truncated). For the geometrical setting
and the notations, see also Figure 3.1.

Figure 3.1: Geometrical setting and notations for the coupled fluid-structure problem.

We summarize here the equations for the coupled fluid-structure problem:

Fluid:

ρf
� ∂uf

∂t|x0

+ (uf −w) ·∇uf
�
− 2µ∇ ·D(uf ) +∇p = 0, in Ωf (t), (3.1)

∇ · uf = 0, in Ωf (t), (3.2)

σ(uf , p)n = gin−out, on Γin−out. (3.3)

Solid:

ρs
∂2ds

∂t2
−∇0 · (F (ds)S(ds)) = 0, in Ωs

0, (3.4)

ds = 0, on ΓD
0 , (3.5)



3.1. COMPUTATIONAL MODELING OF BLOOD FLOW IN THE AORTA 61

F (ds)S(ds)ns
0 = 0 on ΓN

0 . (3.6)

Coupling conditions:

geometry: df = Ext(ds|Γw
0 ), in Ωf

0 , Ωf (t) = (Id+ df )(Ωf
0), (3.7)

velocity: uf = w, on Γw(t), (3.8)

stress: F (ds)S(ds)n0 = J(df )σ(uf , p)F (df )−Tn0, on Γw
0 . (3.9)

where the unknowns are: the fluid domain displacement df , the fluid velocity uf and pressure p
and the structure displacement ds. For the complete set of notations and more details about the
ALE formulation and ALE derivative ∂uf

∂t|x0
, see [FQV09, Chap. 3].

Besides the challenges of three-dimensional realistic simulations for blood flow already discussed
in Chapter 1, additional difficulties need to be accounted when dealing with mathematical and com-
putational fluid-structure models per se. As a consequence, a natural question should be considered:
is this level of complexity necessary for the problem at stake? In the aorta, the radius may vary in
a range of 5 to 10 % between diastole and systole, therefore a realistic model needs to incorporate
wall deformation. Moreover, for the clinical application in view, vessel compliance is known to be
a key factor for providing more realistic values for the wall shear stress, compared with simulations
assuming rigid wall behavior [Fig+06; LTF10]. For all these reasons, we adopted a fully coupled
fluid-structure model in the sequel.

From the mathematical viewpoint, the analysis of coupled models for fluid-structure interaction
raises numerous difficulties because of the nonlinear behavior of the system, which is due not only
to the possibly nonlinear equations for each sub-problem, but also to the nonlinearities introduced
by the coupling. More information can be found in [FQV09, Chap. 8] or [BGN14, Chap. 1 and
Chap. 2]. The numerical treatment of the problem of course inherits these difficulties and a lot of
research work has been devoted to propose efficient algorithms to solve it, as reviewed for instance
in [FQV09, Chap. 9], [BGN14, Chap. 1 and Chap. 2] or very recently in [QMV17].

Discretization. A standard finite-element based method was used for the space discretization. As
for the time-advancing scheme, let us briefly discuss the approach used in [20]. Let Δt be a given
time step, at time tn = nΔt, we solve:

(Fluid) Geometry sub-problem:
Find the displacement df,n+1 and an approximation of the fluid domain Ωf (tn+1).

Solution: provide ds,n+1 on the interface, then take a harmonic extension.

Fluid sub-problem :
Find (un+1, pn+1) the fluid velocity and the fluid pressure.

Solution: implicit Euler scheme.

Solid sub-problem :
Find (ds,n+1,us,n+1) the displacement of the structure and the structure velocity.

Solution: mid-point scheme.

Schematically, these steps can be represented as follows:
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Geometry + fluid sub-problem: ALE fluid solver

ds,n+1 �→
�
df,n+1,un+1, pn+1

�
.

Solid sub-problem: solid solver

�
df,n+1,un+1, pn+1

�
�→ ds,n+1.

As a consequence, for each time step, a fixed-point problem needs be solved. At the time when
simulations in [20] were performed, after a thorough investigation of different numerical methods,
we chose to solve the nonlinear coupled problem with an implicit algorithm, via Newton’s method
[FQV09, Chap. 9]. The Jacobian was fully computed [FM05]. The advantage of such an approach
lies in its stability properties (in contrast to explicit schemes, which were proved unstable due to
the added mass effect [CGN05]), but it leads to an overall high computational cost. Since then, the
design of numerical schemes for the fluid-structure problem evolved tremendously: a deep discussion
on the topic is beyond the scope of this chapter; we refer to the above-cited reviews and the references
therein.

3.1.2 Numerical results and clinical applications

The starting point that motivated [20] was a question of D. Bonnet and P. Ou (Hôpital Necker)
who were interested in a deeper understanding of the underlying bio-mechanical factors involved in
the post-operative stages of the coarctation of the aorta. This condition is a congenital defect which
consists in a narrowing of the vessel (incidence : 1/100.000 birth), that requires surgical removal
of the narrowed segment in the first months of life. The main cause of death for adult patients
having undergone a successful repair in infancy is hypertension [Cla+83; Sim+88], but the causes
of this condition are still unclear and matter of debate. In a series of previous studies [Ou+04;
Ou+06; Ou+07], our clinical collaborators investigated the role of geometry of the aortic arch in
resting hypertension through blood pressure measurements at rest and MRI of the aortic arch and
left ventricle. Three categories of aortic arch shape were defined: gothic, crenel and normal and
the gothic geometry was associated with resting hypertension, as illustrated in Figure 3.2. The
limitation in these studies was that despite obvious correlation between the two phenomena, the
existence of a causality relationship between abnormalities of aortic arch architecture and high blood
pressure at rest could not be established.

From the computational modeling standpoint, several studies [LaD+11a; LaD+11b; Men+] pro-
posed coupled computational and imaging techniques to increase the understanding of coarctation-
induced abnormal hemodynamics and vascular biomechanics. However, to the best of our knowledge,
at the time of the publication of [20]), only one publication [Oli+11] explored the use of a com-
putational fluid dynamics model in patients with an abnormal aortic arch shape after coarctation
repair, but without taking into account the interaction with the vessel wall.

We successfully performed numerical simulations of the fluid-structure model presented in Sec-
tion 3.1.1 in the framework of the open-source finite element library LifeV [Lif], using computational
meshes of idealized geometries that we generated in the open-source code Modulef [Mod]. The out-
come of our numerical results showed abnormal patterns of flow and pressure in the gothic aortic
arch compared to the normal Romanesque arch, as illustrated in Figures 3.3 and 3.4, demonstrating
that geometrical changes in the aortic arch shape lead to an alteration of the local fluid dynamics
in the ascending aorta. In addition, wall shear stress was significantly greater in the gothic arch
compared to the “normal” one, affecting, in particular, the anterior and posterior segments of the
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Figure 3.2: Aortic arch geometry and associated hypertension (HT), from [Ou+06].

ascending aorta and inferior and superior segments of the horizontal aorta (compared with the left
and right segments), as displayed in Figure 3.5.

Figure 3.3: Flow rate evolution in time in the ascending aorta (red line) and descending aorta (green
line); normal arch (left panel), gothic arch (right panel). Note the reverse flow in the gothic arch
in late systole.

These new findings on the wall shear stress, an important force that plays a significant role
on vascular modifications such as aortic dilatation [Fry+08; Bie+11], but which cannot be directly
measured by imaging techniques, were considered of high interest by our colleagues medical doctors.
Therefore, they conducted a second complementary 3D-MRI angiography study, that confirmed sim-
ilar findings, by showing in vivo that the gothic arch is associated with dilatation that is eccentric
rather than concentric. Eventually, the results of our two complementary studies were published in
a medical journal [20] and had a direct impact in routine clinical practice: a recommendation for
patients with a gothic arch to be seen every 1 to 2 years if increased intimamedia thickening and/or
eccentric dilatation of the aorta are present and every 2 years in the absence of such abnormalities;
in comparison, patients with a normally smooth Romanesque arch could be evaluated less frequently
(every 2 to 3 years).
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Figure 3.4: Pressure wave propagation. Top: snapshots corresponding to the moment when the
pressure wave reaches the descending aorta, time ≈ 0.016 sec. in the normal and gothic arch. Colors
denote pressure values, from smallest (blue) to largest (yellow). Cross-section 1, pressure magnitude
plotted against time at 4 points located at the anterior, posterior, and left and right wall in a cross
section of the ascending aorta. Cross-section 2, pressure magnitude plotted against time at 4 points
located at the superior, inferior, and left and right wall in a cross section of the horizontal aorta
(left panels: Romanesque arch; right panels: gothic arch).

Discussion and outlook. In this computational modeling work, we selected two idealized shapes
for the aorta, rather than studying a variety of shapes and angulations. Both geometry and bound-
ary data were not patient-specific, and were not taking full advantage of the MRI complementary
study conducted by the clinicians. In addition, a model derived from patient-specific data would
have included the anastomotic site, which will usually be less compliant than the normal aorta and,
thus, could, itself, contribute to the abnormal flow dynamics. Notwithstanding these limitations,
at the time of [20], this 3D fluid-structure interaction model represented a significant step forward
in understanding the complex behavior of blood flow in the aorta, with meaningful clinical impli-
cations. Building upon the new theoretical and computational tools developed in the framework of
AngioTK [Ang], as presented in Chap. 1, the geometric description, the biomechanical model and
the numerical approach could be improved.

From a different perspective, understanding that arch morphology plays an important role in the
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Figure 3.5: Wall shear stress (WSS) mapping and magnitude. Top: WSS distribution at an instant
corresponding to the passage of the pressure wave (time ≈ 0.007 second). Colors denote WSS
values, from smallest (blue) to largest (red). Cross-section 1, magnitude of the WSS plotted against
time at 4 points located at the anterior, posterior, and left and right wall in a cross section of the
ascending aorta. Cross section 2, magnitude of the WSS plotted against time at 4 points located at
the superior, inferior, and left and right wall in a cross section of the horizontal aorta (left panels:
Romanesque arch; right panels: gothic arch).

alteration of the local fluid dynamics lead us to the question of a possible interpretation of the prob-
lem in terms of shape optimization. Several works reviewed in [Mar14] have already demonstrated
the potential of coupling a shape optimization approach to cardiovascular blood flow simulations
with the aim of improving surgical design. In current discussions with Y. Privat (Univ. Paris 6) and
his PhD student F. Omnès, we are exploring the possibility of numerically searching the optimal
shape of the aorta by minimizing the dissipated viscous energy of the fluid, based on a theoretical
and computational framework recently developed in [Dap+17]. This research direction will hope-
fully benefit from the advances of the research project Analysis and simulation of optimal shapes –
application to life sciences, supported by the Paris City Hall (PI: Yannick Privat, dec. 2016–dec.
2020), in which I’m involved as an associated collaborator.
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3.2 Discretization in time in simulations of particulate flows

Models and simulations of the coupled dynamics of rigid or deformable bodies evolving in a sur-
rounding fluid are of interest in several biological applications, as for instance understanding the
microcirculation of blood [Rah+10] or swimming bacteria [DMM11]. Among different approaches
proposed in the literature, we focus in Section 3.2.1 on a microscopic model, describing the dynamics
of rigid particles in a Stokes flow. Our methodological contribution [9] tackles the issue of handling
contacts (either between two particles or between a particle and a wall), which is a key ingredient
in the direct numerical simulation of particulate flows, especially in the dense regime.

3.2.1 Dense fluid-particle flows and difficulties arising in their simulations

One of the challenges for fluid/particle flow simulations is to provide an accurate resolution of the
so-called lubrication regime, when the distance between two particles immersed in the fluid or be-
tween a particle and the wall becomes very small. The presence of extremely high gradients of the
velocity in the narrow gap between the particle and the wall (or between the two particles) results
in very strong drag forces (which can be referred to as lubrication forces in this case) and thus
requires special attention in order to construct efficient and accurate discretization methods.

We consider in the sequel the case of one rigid particle immersed in a viscous, incompressible
fluid with a particular emphasis on situations when the particle approaches a plane. Despite its
apparent simplicity, this situation encompasses the main difficulties of the lubrication regime and
motivated the work in [9]. The fluid (with the particle inside) fills a fixed domain Ω⊂Rd with
d = 2 or 3, and the region occupied by the particle Bt ⊂ Ω varies with time t, see Figure 3.6.
Assuming that the inertial effects are negligible in the fluid and the no-slip conditions are valid on
the boundaries of Ω and Bt, the fluid motion is governed by the Stokes equations:

Figure 3.6: Geometrical setting and notations.





−νΔu+∇p = ρfg, in Ω \ Bt

∇ · u = 0, in Ω \ Bt

u = 0, on ∂Ω

u = V + ω × r on ∂Bt

(3.10)

where u and p are the velocity and the pressure in the fluid, ν and ρf are the viscosity and the
density of the fluid, g is the external force, V = V(t) and ω = ω(t) are the translational and
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angular velocities of the rigid body Bt, r = x − G is the vector pointing from the center of mass
of the particle G to a point x on its boundary. The more realistic Navier-Stokes equations may be
accommodated into the framework (3.10) by including the convective term u ·∇u into g.

The fluid exerts a net force F and a torque T on the particle given by

F = F(Bt,V,ω) =

�

∂Bt

(2νD(u)− pI)ndσ, (3.11)

T = T(Bt,V,ω) =

�

∂Bt

r× (2νD(u)− pI)ndσ,

where D(u) stands for the symmetric gradient of u and n is the unit normal vector on ∂Bt directed
towards the fluid domain. Using these notations we write out the equations of motion of the particle
as follows �

mdV
dt = F(Bt,V,ω) +mg,

It dωdt + ω × Itω = T(Bt,V,ω),
(3.12)

where m is the mass of the particle and It is its inertia tensor, expressed in the fixed Cartesian
frame and thus dependent on time. Equations (3.12) are coupled with the equations describing the
propagation of the particle: �

Ġ = V,

ṙi = ω × ri, i = 1, . . . , d.
(3.13)

The force F is a sum of the Archimedes force due to gravity and of the drag force which is purely
hydrodynamic, i.e. obtained from (3.10) by setting g = 0. The particularity of the drag is that
it tends very rapidly to infinity when the particle approaches the wall, thus preventing collisions
between them. Indeed, it has been proved in [Hil07] (2D case), [HT09] (3D case) that a smooth
rigid body embedded in a viscous fluid cannot touch the wall in finite time. For an overview of
existence and uniqueness results for the coupled fluid-structure interaction problem described by
Equations (3.10–3.13), including the (near-)contact regime, see [Hil14].

In the regime of very small distance between the particle and the wall, the lubrication force
is very difficult to take into account in a numerical simulation [Lef09]. The corrections specific to
the lubrication regime were proposed in the context of the boundary integral methods [QPTF00;
Mam06], in that of the Stokesian Dynamics [BB88; SB01], and in that of the force-coupling method
[DM03]. Short-range repulsion forces mimicking the lubrication ones were also used in [Glo+99]
in the context of fictitious domain finite element methods. However, the influence of these (not
necessarily realistic) forces on the accuracy of a simulation is not well understood. Another simple
idea is just to stop the particle when it tries to penetrate the wall during a numerical simulation,
but it is then not necessarily clear which criterion should be chosen to decide if the particle should
eventually bounce off the wall and when it should it happen. These questions have a partial answer
in the articles [Mau07; Lef09] on the gluey particle model. It is shown there that the particle
trajectory satisfies an integro-differential equation in the limit of vanishing viscosity, which is easy
to discretize in time using moderate time steps and which predicts the moment of an eventual
rebound from the wall. We pursued a similar idea in our approach described in the next section,
but our aim is to construct an approximated trajectory of the particle in the lubrication regime
that would be accurate enough for any given value of the viscosity, not necessarily small.

3.2.2 A model ordinary differential equation with lubrication forces

Formulation of the problem and construction of an approximated solution. To describe
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our strategy, we consider the following simplified setting: Ω ⊂ R2 is the half-plane {(x, y), y > 0}
and the particle is a disk of radius R. Let moreover g(t) = g(t)e2 and assume the particle is
at rest at the initial time. The x-component of the particle velocity and its angular velocity will
then vanish at all time. The position of the particle is fully determined by its distance q from the
bottom, as in Figure 3.6. The net force F is the sum of the drag, which is a function of q and V,
linear in V, and of the Archimedes force:

F = −n(q)V +mag(t)e2, with ma = m− ρf |Bt|,

where n(q) is the drag coefficient computed by the Stokes equations (3.10). Denoting the y-
component of the velocity by v, we are thus led to the following differential equations

�
mv̇ = −n(q)v +mag,

q̇ = v.
(3.14)

In [9] we provide the following derivation of the asymptotic expansion for the lubrication force acting
on a disk immersed in a Newtonian fluid and approaching the wall:

Theorem 3.2.1. The viscous drag force satisfies F = −n(q)V where

n(q) = 3
√
2πν

�
R

q

� 3
2

[1 + ε(q)] ,

with ε(q) → 0 when q → 0.

The proof of Theorem 3.2.1 is divided into three steps. First, we use the variational formulation
for the solution (u, p) to (3.10) to compute the associated drag coefficient n(q) in the expression for
viscous drag F = −n(q)V. Second, we deduce from the variational formulation the lower and upper
bounds for n(q). We conclude the proof by computing an asymptotic expansion of the bounds of
this range.

Remark 3.2.2. The equivalent result in the three-dimensional setting is well-known but to the
best of our knowledge it was new in two dimensions. The proof method also extends to the three-
dimensional setting with small changes and can be adapted to other boundary conditions.

After eliminating v from the system (3.14) and going to non-dimensional variables, we obtain
the following equation for q(t):

q̈ = −n(q)q̇ + g, (3.15)

where n(q) = ε/q
3
2 in the two-dimensional case, n(q) = ε/q in the three-dimensional case, respec-

tively and ε depends on the characteristic values of g, of the fluid and the solid. We remind that
equations of the type (3.15) are at the basis of the gluey particle model of [Mau07; Lef09], that
consists in considering the limit ε → 0, which is physically the limit of vanishing viscosity. Note
however that in practice ε computed from the non-dimensionalization procedure is not necessarily
small.

In the lubrication regime of q → 0, the drag coefficient n(q) tends to infinity, which can create
difficulties when computing numerical solutions of (3.15). In order to overcome this problem,
one should either use a very small time step when discretizing the equation, but this can become
computationally expensive, or propose a strategy to prevent q from becoming too small. The
approach we proposed in [9], inspired by the latter idea, consists in introducing a threshold value
qs for the distance q, below which, instead of solving (3.15), we introduce an alternative model and
construct a sufficiently accurate “approximate” solution q̄ instead of the “true” solution q. The
construction of the approximated trajectory is the following:
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• we first assume that q̄(t) is the same as q(t) until the latter hits qs for the first time at t = t1;

• next, the trajectory q̄(t) is frozen until the time t = t̄2, which is the first instant after t1 when
v̄(t) = 0, where

v̄(t) = q̇(t1) +

� t

t1

g(s)ds. (3.16)

• afterwards, the trajectory resumes again as a solution to (3.15) starting from qs with zero
velocity:

q̄(t) =





q(t), for 0 < t < t1
qs, for t1 ≤ t < t̄2
solution to (3.15) with q(t̄2) = qs, q̇(t̄2) = 0, for t ≥ t̄2

(3.17)

In the in the special case when g(t) is given by

g(t) =

�
g−(t) < 0, for t ≤ t0,

g+ > 0, for t > t0,
(3.18)

with some positive constants t0, g+ and a negative function g−(t), with the above notations, we
prove the following result:

Proposition 3.2.1. If g(t) is given by (3.18), then

0 ≤ t2 − t̄2 ≤
1

n(qs)
,

sup
t∈[0,t̄2]

|q(t)− q̄(t)| ≤ qs, (3.19)

|q̇(t̄2)− ˙̄q(t̄2)| = q̇(t̄2) ≤
g+

n(qs)
.

Remark 3.2.3. Proposition 3.2.1 should be interpreted as an estimate of the approximation error
and also as a guideline on how to choose the threshold value qs, depending on g and the time step in
such a way that the quantity g+

n(qs)
has the same order of magnitude as the precision in the numerical

scheme. Since n(q) → 0 when q → 0, the smaller the threshold, the smaller the error. However,
taking qs too small may deteriorate the accuracy of the solution (indeed, the original goal of the
introduction of qs was to avoid the extremely small values of q). On the other hand, taking qs too
large may unnecessarily perturb the solution in the regions where a straightforward discretization
could give more precise results.

Numerical strategy and results. We analyzed the performances of three different algorithms
to solve (3.15). Algorithm 1 consists in a straightforward Euler discretization in time of (3.15),
but it does not always work in the near-contact regime, since it does not necessarily provide a
positive approximation qk. To tackle this issue, we propose in Algorithm 2 the construction of the
approximated trajectory q̄, with an a priori chosen threshold value qs > 0, Finally, we combine in
Algorithm 3 an adaptative strategy for the choice of the time step with the threshold approximation
given by Algorithm 2.

As an illustration, we show in Fig. 3.7 a comparison between Algorithm 1, unable to produce a
physically acceptable solution even with very small Δt = 0.0001 and Algorithm 2, which provides
satisfactory results, in a two-dimensional setting for ε = 10−3. In order to better observe the quasi-
contact region and the effect of introducing the threshold in Algorithm 2, we zoom on small distances
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by passing to a log-scale in Figure 3.8 (left panel). The results are compared with computations
using Algorithm 3 with adapted stepsize and taking a number of values for Δtmin (right panel). We
give in particular the results with Δtmin = 0, so that Algorithm 3 is reduced to a standard time
marching scheme with automatically adapted step sizes. In practice, we noticed that step sizes Δt
of the order 10−4 were actually sufficient to satisfy our error tolerance criterion almost everywhere
apart from a very small range of time around 1, where Algorithm 3 chooses Δt of the order 10−8.
Setting Δtmin to 10−3 or 10−4 avoids such small time steps and gives fairly good results.
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Figure 3.7: Solution to the ODE (3.15) with n(q) = ε/q3/2, ε = 10−3. Left: the exact solution and
solutions obtained by Algorithm 1 with Δt ranging from 0.1 to 0.0001. Right: solutions obtained
by Algorithm 2 with Δt in the same range. The results obtained with Δt ≤ 0.01 on the right are
visually indistinguishable from the exact solution.
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Figure 3.8: Solution to the ODE (3.15) with n(q) = ε/q3/2, ε = 10−3 (log scale). Left: solution ob-
tained by Algorithm 2, choosing qs so that n(qs) = 1/(20Δt). Right: results obtained by Algorithm
3 with tol = 10−5 and different values of Δtmin specified in the legend.

Towards more complex configurations. Although developments in [9] are only for the model
equation (3.15), we have in mind a possible incorporation of our time marching schemes into a full
simulation of flow with solid particles. The coefficient n(q) will be then given by a solution to the
Stokes system at each time step where q represents the surface-wall distance in the case of a particle
approaching to the wall or the inter-particle distance in the case of two approaching particles. The
“external” force g(t) in (3.15) will then include the components of the physical external forces, like
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gravitational force, in the direction connecting the closest points on the surfaces of nearly touching
particles, plus other corrections. Most importantly, these include the part of hydrodynamic drag
due to the convective terms in the Navier-Stokes system, if the convective terms in the fluid motion
equation are not neglected. The time marching scheme should thus work robustly for any right
hand side g(t), in particular for a function changing the sign. Indeed, a possible scenario even in
the simplest test case of a particle falling under its weight on a horizontal wall (so that g(t) is
negative in the beginning) could be that the convective terms in Navier-Stokes equations become
so important at some point in time that they prevail over the gravitation force and g(t) becomes
positive, which may lead to the rebound of the particle. The next step could take into account the
case of deformable bodies evolving in a fluid flow.

Another perspective of the present approach is to include more complex solid movements. In
this direction, it would be interesting to carry out simulations in the following configurations: (i)
kissing phase in the ”Drafting-Kissing-Tumbling” [FJL87]: the fall of a homogeneous disk under the
action of the gravity force in a cavity which contains a hole in form of a disk; (ii) the sedimentation
of a particle which is almost in contact with a vertical wall [Cox74]. In both cases the problem
would be solved in the lubrication approximation.

3.3 Conclusions and outlook

We summarized in this chapter two contributions where biomedical questions were treated from the
mathematical and computational viewpoint as coupled fluid-structure interaction problems. Based
on a careful description of the bio-mechanical phenomena into play, we addressed these questions
by means of efficient numerical methods, either selected within the state-of-the-art context or newly
developed for the specific problem in view. In the previous chapters, we focused on the fluid mechan-
ical aspects of the problems, governed by the Navier-Stokes equations or by reduced fluid models,
possibly coupled in a geometrical multiscale framework. Here the complexity and the challenges
came from the multiphysics approach, in which the fluid equations are coupled with a system of
equations describing the dynamics of a rigid or deformable solid.

Chronologically, these were the first works I developed in mathematical biology and numerous
perspectives are now possible due to recent developments in the field. Besides the extensions al-
ready mentioned at the end of each section, a last comment, taking as a starting point the examples
treated in this chapter. On one hand, the two problems share a similar mathematical structure
and therefore a unified language was utilized to solve them, with new analytical and numerical
methods. On the other hand, the first one involves a complex three-dimensional, highly nonlinear
fluid-structure model, with the goal of answering a medical question, whereas the second one is a toy
model that brings a methodological answer to a simplified, yet meaningful biological problem. The
two of them are illustrative and somehow dual aspects in the interplay between what we know and
what we want to solve, both in mathematics and in biology or medicine, with infinite possibilities
of cross-fertilization of ideas. In this spirit, the conclusion of the chapter, and more generally of the
manuscript, is the following call for new challenges and opportunities:

Mathematics is biology’s next microscope, only better;
biology is mathematics’ next physics, only better.

Joel Cohen (Rockefeller and Columbia Universities, NY, 2004).
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que pose l’Hydrodynamique.” In: Journal de Mathématiques Pures et Appliquées 12
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This manuscript gathers my contributions focused on developing new mathematical and 
computational methods for analyzing biological flows as complex multiphysics and 
multiscale phenomena. The description of the underlying mechanisms stems from the 
basic principles of fluid dynamics and is translated into systems of partial or ordinary 
differential equations. The overall objective of this work is the study of these equations at 
the continuous and discrete levels, their coupling and the development of a reliable and 
efficient computational framework to implement various numerical methods to 
approximate the solutions to these problems. The numerical simulations incorporate 
realistic geometries, are thoroughly validated against experimental data and target 
specific biomedical applications. The first chapter focuses on three-dimensional models, 
in which the motion of a biofluid in a complex, realistic geometry is governed by the 
incompressible Navier-Stokes equations in a domain with inlet and outlet boundaries, the 
main application in view being the study of the cerebral venous network. The purpose of 
Chapter 2 is two-fold: (i) first, we present contributions towards the elaboration of several 
reduced 0d models describing the coupled dynamics of different biofluids in the eye-
cerebral system; (ii) second, we describe a new splitting strategy for the numerical solving 
of coupled systems of partial and ordinary differential equations for fluid flows. In Chapter 
3, the fluid dynamics description from the previous chapters is enriched to take into 
account the combined effects of flow and different structures, from a multiphysics
perspective. The resulting framework is subsequently utilized for simulating blood flow in 
the aorta, in view of a specific biomedical application and for the numerical simulation of 
particulate flows, with an emphasis on the issue of how to handle contacts.
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