
HAL Id: tel-01647139
https://theses.hal.science/tel-01647139

Submitted on 24 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to energy optimization for large-scale
buildings: an Integrated approach of diagnosis and

economic control with moving horizon
Tejaswinee Darure

To cite this version:
Tejaswinee Darure. Contribution to energy optimization for large-scale buildings: an Integrated ap-
proach of diagnosis and economic control with moving horizon. Automatic. Université de Lorraine,
2017. English. �NNT : 2017LORR0142�. �tel-01647139�

https://theses.hal.science/tel-01647139
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 

 
 
 
 

AVERTISSEMENT 
 
 

Ce document est le fruit d'un long travail approuvé par le jury de 
soutenance et mis à disposition de l'ensemble de la 
communauté universitaire élargie. 
 
Il est soumis à la propriété intellectuelle de l'auteur. Ceci 
implique une obligation de citation et de référencement lors de 
l’utilisation de ce document. 
 
D'autre part, toute contrefaçon, plagiat, reproduction  illicite 
encourt une poursuite pénale. 
 
Contact : ddoc-theses-contact@univ-lorraine.fr 
 
 
 
 
 

LIENS 
 
 
Code de la Propriété Intellectuelle. articles L 122. 4 
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 
http://www.cfcopies.com/V2/leg/leg_droi.php 
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm 
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Motivation

The energy crisis of the early seventies has been certainly one of the strong impetus
in the changes of the building industry towards more energy-efficient buildings without
sacrificing comfort. Furthermore, in the last several years the awareness of global warming
has been also an incentive to radically transform the world economy so that growth may
be still possible while halving the emission of greenhouse gas by 2050, including in energy
which accounts for about 70 % of emissions. As energy requirement and fuel consumption
of heating, ventilation and air-conditioning (HVAC) systems have a direct impact on the
cost of operating a building as well as an impact on the environment, building energy
performance has become an important issue in many countries, particularly in Europe
where the building sector accounts for approximately 40% utilization of overall primary
sources (more details on www.ec.europa.eu/energy).

Taking initiative towards energy efficiency for the HVAC building systems, multiple
projects are instigated under the FP7 framework by the European Union. Energy in
TIME is one of these projects focused on reducing the energy consumption in the op-
erational stage of existing non-residential buildings, resulting in energy savings of up to
20%. The aim of the project is to develop Smart Energy Simulation Based Control meth-
ods that are energy efficient without compromising the thermal comfort of the occupants
in the buildings. This project brings together a total of 13 partners from 8 different
European countries. The project is well organized and divided into nine workpackages.
Every workpackage consists of several modules assigned to the group of partners based on
their expertise in the respective fields. These workpackages are organized to incorporate
different frameworks as Energy Equipment, Control Systems (algorithm and equipment),
ICT (communications, sensor and data repositories) and OMM (Operations, Management
and Maintenance). The designed control tool is validated on the existing non-residential
buildings in the different Europe locations with different climates. These demonstration
sites consist of four buildings with different topologies including an airport, offices and
test labs, a commercial and office building, and a hotel. Finally, the building energy man-
agement systems are controlled automatically and remotely for the given demonstration
sites. This serves as proof of concept of the Energy IN TIME solution.

Furthermore, University of Lorraine (UL) mainly deals with the OMM framework
involving the tasks like Fault Diagnosis and Adaptive Control applied to HVAC building
systems. This thesis work is the part of Energy IN TIME project fulfilling the objectives
assigned to UL. The principle objectives delivered by the UL are as: i) Control and
Monitoring for the economic building operability within the user defined performance
requirements, ii) Maintenance by enabling the early detection of equipment malfunctions
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and defective system behavior followed by the appropriate corrective action to continue
the normal building operability, iii) Scalability of the proposed solution for different classes
of HVAC systems

This work is motivated to attain these objectives by proposing innovative solutions.
To address the energy efficient building control, we propose an economic model predictive
control formulation for the cost-effective operation without compromising the thermal
comfort of the occupants inside the buildings. We analyze the common fault events
occurring in these demo sites and suggest a fault detection, isolation and diagnosis method.
Furthermore, we present a method to adapt the faulty condition to maintain the normal
building operation while ensuring the energy efficiency. Finally, the concern about the
scalability of the solution to the large-scale buildings is answered by proposing the new
scheme of distributed control. Lastly, every stage of the proposed solutions are validated
on the simulation platforms and the simulation results are provided.
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Energy IN TIME Project

The research work carried out in this thesis is supported by the Energy IN TIME (EiT)
project funded by the European Union (EU) within the 7th Framework Program FP7-
NMP, Sub-program EeB.NMP.2013-4: Integrated control systems and methodologies to
monitor and improve building energy performance.

The aim of the project is to develop a Smart Energy Simulation Based Control
method which will reduce the energy consumption in the operational stage of existing
non-residential buildings, resulting in energy savings of up to 20%. The Table 1 gives the
general information.

Sr.No. Attribute Details
1 Project reference number 608981
2 Project acronym Energy IN TIME
3 Project full title Simulation-based control for Energy Efficiency

building operation and maintenance
4 Call Identifier1 FP7-NMP-ENV-EeB
5 Starting date 1 October 2013
6 Duration 48 Months

Table 1: Project Details

The detailed description regarding the project objectives, workplan and the motivation
for the research work is presented in the next sections.

Project Objectives
Buildings Operational stage represents 80% of building’s life-cycle cost of which 50% is
consequence of the energy use. Up to 90% of the buildings’ life cycle carbon emissions
occur during their operational phase, mainly as consequence of the HVAC, lighting and
appliances’ energy use. Therefore, energy and cost saving strategies addressing this build-
ing operation phase will have a major impact in the building life cycle cost.

Energy IN TIME project goes beyond existing building control techniques, developing
an integrated control & operation approach, that will combine state of the art model-
ing techniques with the development of an innovative simulation-based control technique
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with the overarching objective of automating the generation of optimal operational plans
tailored to the actual building and users requirements. This approach will allow reducing
system inefficiencies and contributing to improve building energy efficiency and comfort.

The target for Energy IN TIME solution will be existing non-residential buildings,
which present the building typologies that guarantees higher impact and room for im-
provement due to the variety and quantity of facilities and equipment covered and the
operational management model used in them. A control tool will be implemented in
the building energy management systems to be automatically and remotely operated.
The methodology for the enhancing solution implementation will be defined for existing
buildings and for its implementation in new buildings since its initial commissioning.

Work Packages and Planning
The Energy IN TIME consortium is made up of 13 partners from 8 different EU countries
listed below:

1. ACCIONA, Spain

2. ANA Aeroportos de Portugal, Portugal

3. CIRCE, Spain

4. Cork Institute for Technology, Ireland

5. Université de Lorraine Nancy, France

6. Centre Scientifique et Technique de Batiment, France

7. FUNIBER, NY, USA

8. Institutul de Cercetari Electrotehnice, Bucharest, Romania

9. Integrated Environmental Solutions, Glasgow ,United Kingdom

10. STAM SRL, Genoa, Italy

11. Universidad de Granada, Granada, Spain

12. United Technologies Research Center, Ireland

13. Caverion Helsinki, Finland

The project is well planned organizing all the objectives into the nine work packages
assigned for the different groups of the partners based on their respective expertise.
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Work Packages and Their Description
The work packages and their summary is as follows:

1. WP1- Requirements and System Architecture :
In this WP, target end-users and buildings requirements and needs will be analyzed
and identified. The system architecture and Energy IN TIME specifications will also
be defined. A data acquisition methodology and the guidelines for the composition
of a communication platform will be created.

2. WP2- Simulation Reference Model:
This Work Package is focused on the development of advanced simulation tools
for the analysis and characterization of buildings: identifying their systems, use,
occupancy as a prior phase in their management and optimized control. A forecast
tool to determine user behaviour evolution and occupancy schedules will also be
designed that will be used to design the system models.

3. WP3- Whole building Intelligent Control System
This Work Package aims to develop an intelligent control system for whole-building
energy optimization algorithms that have the capability to adjust set-points for
energy equipment to be adapted to occupancy and weather loads through their
predictions, minimizing energy consumption while maintaining indoor comfort con-
ditions. Furthermore, the control system will take into account the variations in
building operating conditions to provide corrective actions to counteract the effect
of component and system-level fault.

4. WP4- Diagnosis and Continuous Commissioning
This Work Package will develop procedures and algorithms for the detection and
diagnosis of faults at system and equipment level. A methodology for Continuous
Commissioning will be defined. The procedures for the establishment of a predictive
maintenance system will be developed.

5. WP5- Energy Decision Support Tool
The Energy IN TIME project will be a powerful tool for energy decision making be-
cause of the large amount of data gathered from different buildings, systems, devices,
facilities, etc. All this information will be integrated in an information repository
and a decision support tool designed through analysis and data exploitation.

6. WP6- System Integration and Pilot-Scale Validation
The objective of this Work Package will be the integration of the developments
obtained from the previous WPs to generate the Energy IN TIME solution, includ-
ing software tools and equipment. A system validation at laboratory scale will be
developed in this WP.

7. WP7- Demonstration
The objective of this WP is to implement the designed and developed systems in
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various different types of buildings located in regions with different climate condi-
tions. A period of two years has been estimated for solution implementation and
monitoring data processing and performance evaluation of the systems.

8. WP8- Dissemination & Exploitation
The aim of this WP is to ensure that the project meets its goal and overall objectives
of exploitation and dissemination activities. Dissemination activities include media,
conferences and publications. An Exploitation Plan will be developed to allow the
sustainability of the project beyond its life. The focus for the dissemination of the
results of the project will be European countries.

9. WP9- Coordination
The aim of this WP is to ensure an effective coordination allowing the project to
meet its goals and overall objectives

The overall Energy IN TIME architecture comprises the various modules where every
module is led by the group of different partners. Figure 1 shows the schematic modules
distribution that has 15 modules divided into different frameworks. The affinity among
the modules and its relationships are established in detail for the smooth execution of the
project.

Figure 1: EiT Project Architecture
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Demonstration Sites
Energy IN TIME will be validated at existing non-residential buildings in different Euro-
pean locations with different climates. The demonstration sites consist of four buildings
with different typologies and building uses, including an airport, offices and test labs,
a commercial and office building, and a hotel. The variety of scenarios will serve as a
“proof of concept” of the Energy IN TIME solution, in terms of validity and adaptability
to different typologies, climate conditions and users behavior. The stated demonstration
sites are as follows:

1. Airport – FARO (Portugal)

2. Offices and Test Labs – Bucharest (Romania)

3. Commercial and Office Building – Helsinki (Finland)

4. Hotel – Levi-Lapland (Finland)

Description of demonstration sites

We discuss each demonstration site giving the keynotes about the building type, its char-
acteristics and their HVAC configurations. Please not that for better understanding, we
classify the HVAC system into two units as primary and secondary. Primary unit contains
the unit operations like boilers, heat exchangers, heat pumps, cooling towers etc. Sec-
ondary units are mainly directly related to thermal comfort of occupants and they consist
of equipments like Variable Air Volume (VAV) boxes, Fan Coil Units (FCU), Constant
Air Volume (CAV) units etc. It is important to note that we focus on the energy efficient
operations of secondary units only and maintaining the occupants thermal comfort.

1. Airport, FARO Portugal
Faro Airport is located 7km away from Faro, the capital city of the Algarve, Por-
tugal. Though Faro accommodates around 30 buildings, the airport terminal is the
main building of Faro Airport, where both passengers departures and arrivals are
processed. Only this building area is accessible under the project purview.

(a) Building Description
The airport terminal has five different floors assigned to different purposes such
as check-in and boarding gets, warehouses, electrical distribution rooms, food
drinks supply, emergency operations and thermal plants etc.. Following are
the peripheral characteristics of the airport:

- Ground build area: 41.000m2; Built 1989 (2001 last refurbishment)
- Open spaces with big flows of people at certain times of the day (e.g. flight
arrivals or departures).

- The main energy source is electrical.
- High level operational plans must be implemented, aimed at maintaining
pre-defined environmental conditions (in terms of comfort, etc.).

8
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Figure 2: Faro Airport, Portugal

- Technical Management and Smart Metering System.
(b) HVAC Configuration

Faro Airport passenger terminal building is served by central HVAC systems.
There are two thermal plants responsible for climate control of the open spaces
and offices. These thermal plants includes ice bank, boilers, heat pumps like
primary HVAC units. These unit operations are precisely controlled in terms
of energy efficiency and control performance. Hence, we focus on the building
level secondary HVAC units. On specific applications such as server rooms,
and to make sure there is redundancy of climate control. Faro Airport has
independent systems like split and close control units. Since 1989, Building
Management System (BMS) software operates its centralized HVAC system.

Figure 3: SCADA screenshot of the different FCU units

For the validation of the solutions given under the project, only the open
spaces (check-in counters) of specific area is made accessible. Henceforth, we
focus on this area and its necessary thermal comfort control. This area is
primarily served by the fan coils units (FCUs) as shown in Figure 3. These
units provide hot or cold supply airflow to maintain thermal comfort in the
open spaces. To control the temperatures of this supply airflow, the heated or
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cooled water supply from the thermal plants is provided to these FCU terminal
equipment using hydraulic pumps. Thus, the temperatures in the open spaces
is maintained at the setpoints. Setpoint control and schedule of operation is
made via Building Management System (BMS) on the FCUs covering open
spaces.

2. Offices and Test Labs, Bucharest, Romania
The ICPE office Building in Romania accepted the Energy IN TIME challenge and
therefore devotes all the available efforts for the implementation of this project and
for achieving a useful tool for the end-user.

(a) Building Description
The entire ICPE area contains four buildings with four floors each. Although,
for the project assignments, only two buildings are made available as test bench.
This available building part comprise mainly offices with the characteristics are
as follows:

- Total built area: 17.384m2 Built: 1982
- Closed and distributed spaces with constant flows of people and scheduled
occupancy.

- Strong presence of solar energy (thermal and photovoltaic). District heat-
ing system is the base system for heating, covering

- Fixed-schedule operational plans for indoor conditions.
- PLC for Monitoring and Control.

Figure 4: Office Building, Bucharest, Romania

(b) HVAC Configuration
This ICPE building has a heating substation which provided hot/cold water
supply to the building-wide secondary HVAC units. This heating substation
consists of heat exchangers and distribution network. The source hot water
supply to this substation is through the district heating system. Then, the
temperature of this water is manipulated according to the requirements and
circulated to the building secondary units. FCUs a form the secondary unit
circuit to maintain the thermal comfort inside the buildings.
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3. Commercial building, Helsinki, Finland
Sanomatalo is the headquarters building for the largest newspaper group in Finland.
The building is located in Kluuvi, the commercial center of Helsinki. Thermal
comfort maybe not be trivial due to the extreme climate and the high interactions
due to the glass walls.

(a) Building Description
The majority of the area in the Sanamatalo commercial building mainly serves
as office spaces. The overall characteristics of the building are:

- Total built area: 38.190m2 Built: 1999
- Open spaces and distributed spaces with varied flows of people and sched-
uled occupancy on the first floor there is a public area with commercial
and restaurant usage.

- The main heating source is district heating (3.000kW). Chilled beam cool-
ing panel is used for the main cooling and double façade helps to reduce
over heating in summer.

- Zonally Fixed-schedule operational plans for indoor conditions.
- ABB and Schneider SCADA

Figure 5: Commertial building, Helsinki, Finland

(b) HVAC Configuration
The building is connected to the energy district heating network of Helsinki.
In the substation there are three heat exchangers. Rooms are heated mainly
by VAV and CAV units.

4. Hotel, Levi-Lapland, Finland
The building type is of a hotel with the capacity of 388 beds accessed by around
1000 users.

(a) Building Description
- Total built area: 42.500m2 Built: 2010

11



- Four main heating distribution centers with different usages: hotel (170
rooms), parking, 2 apartment buildings with seasonal and high variable
occupation.

- The main heating source is district heating (3.630 kWh). A radiant floor
installation with a heating power of 660 kW.

- Operational Plans distributed in four independent spaces areas.
- Building Automation System with external network based interfaces for
monitoring provided.

Figure 6: Hotel, Levi, Finland

(b) HVAC Configuration
The building is connected to the energy district heating network of Adven Oy.
There is possibility to control the temperature in each room ±2◦C with the
temperature regulator through the FCU units.

UL contribution
As mentioned before, the research work for this thesis is aligned with the UL contribution
to the project. UL mainly deals with the module 8, 10 and 11 titles as Fault adaptive
control, Fault Detection & Diagnostics and Predictive Maintenance respectively.

The main objectives under this modules are listed as:

- Maintain building operability within the user-specific performance requirements
which includes the thermal comfort of occupants under economic building oper-
ation.

- Enable efficient detection, localization and diagnostics of faults in the operation of
Building system

- Reconfigurable control layer to adapt the control system parameters and objective
despite of the presence of faults or performance deviation within its specified energy
and comfort performance requirements

12



- Scalability of proposed solution for different building environments

The main focus by UL is therefore to develop methods to address the above objectives.
These proposed approaches are then demonstrated on the simulator platform based on
the architectures of the HVAC systems provided by the demonstration sites in the project.

Thesis Relevance
This research work aims at meeting the project requirements through the following sub-
objectives:

- Receding Horizon Control to ensure the economic building operation

- Fault detection and diagnosis methodology for the common fault of damper stuck
in the VAV boxes

- Fault adaptive control based on the receding horizon control for faulty event of
damper stuck in the VAV boxes

- Distributed model predictive control methods to address the economic building op-
eration of large-scale buildings

To illustrate the developed novel solutions, a brief discussion on the simulation results
is provided. Please note that the benchmark building simulator developed in this work
is motivated by the common HVAC configurations provided on the demonstration sites.
These developed simulators have following properties as:

- The HVAC configurations are based on the Variable Air Volume (VAV) and the Fan
Coil Unit (FCU) systems.

- The real weather data for winter for Nancy, France is used to validate the simulation
results.

- The occupancy schedule is considered according to the type of building e.g. for the
office type building, we consider that the occupants are present from 8.00AM to
6.00PM with a lunch break of 2 hours starting from 12.00PM.

We have developed the mathematical models for these benchmark buildings that are
extensively used in validating all the novel approaches presented in this work.
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Chapter 1

Introduction

1.1 Literature review
In this section, we provide a brief overview of the important literature related to energy
optimization for HVAC building systems. We streamline the discussion as per the main
areas dealt in this thesis work as follows:

Economic MPC for HVAC

Even though the HVAC building systems are complex in nature, there are numerous efforts
to address issues related to energy optimization under the thermal comfort constraints of
the occupants. The available literature can be roughly classified depending on the three
elements as HVAC configurations, mathematical model and focused control attributes
as shown in the Figure 1.1. The HVAC units based on convection principle as VAVs,
CAVs, FCUs are most favored due to their simplicity in the installation, control, and en-
ergy efficient operations. [KPSC10] promotes the energy-efficient design of these HVAC
equipments. Nevertheless, our focus is concerned with the control aspects of the HVAC
systems, especially the advancements in the use of MPC. This is due to the inherent
advantages of MPC to consider the disturbances, the system constraints and its com-
mercial availability for implementation [AJS14b]. Needless to say that the mathematical
model and the definition of the cost function are essential requisites for the MPC. There
are several approaches found in the literature that investigate the ways of mathemati-
cal modeling of different HVAC units [AJS14a] e.g. based on RC networks [DBMM10],
[GB12] or the based on the thermodynamic behavior of a multizone building [TMAR05].
Work like [MQS14] develops an autoregressive exogenous models and interesting formu-
lation of the cost function is proposed to represent the total daily electricity expense,
which is a combination of energy and demand costs. Furthermore, some researchers link
the mathematical modeling problem with the controller design objectives as in [FOM08].
This shows a standard MPC with a quadratic cost function that minimizes the energy
and the results are shown on the building with conventional heat radiators.

Focusing on the formulation of economic MPC aspects, various ways are discovered
persistently by the researchers. These techniques are approximately organized according
to the mathematical formulation of cost functions, the evaluation of disturbances and

14



1.1. Literature review

Figure 1.1: Overview of available literature dealing with the energy efficient HVAC build-
ing operation using MPC

their effects, the uncertainty in the system dynamics and the nonlinearities or hybrid
nature of the systems. To mention few attempts, [Zav12] provides the MPC formulation
by considering the real-time prices and existing market designs. [DH14], [GBM15] con-
sider the occupancy profiles or the forecast of the weather and [HWX09], [Ma12] [Cig13]
prioritize the uncertainty issues in the system dynamics by defining a new paradigm of
the stochastic MPC and robust MPC strategies.

To summarize the attempts in the present literature, the energy optimization and
the maintenance of the thermal comfort can be handled on the hierarchical level or in a
single control layer with multiobjective MPC formulation. But unfortunately, the issue
of maintenance is rarely addressed in the context of economic control. The possibility
of accounting the maintenance-aware control alongside the energy efficient operation cer-
tainly possesses the strong potential for the better economic operation of HVAC systems.
This implies that the economic bundling operation can be further improved if mainte-
nance aspects regarding the HVAC units are also included in the control objectives. This
encourages the research to emphasize on the MPC formulation allowing to gather various
objectives under the single roof of MPC strategy such as minimizing energy consumption
with an additional maintenance awareness and controlling the thermal environment.

Fault diagnosis and fault adaptive strategies for HVAC systems

Inadequate control performances and malfunction of the sensors or actuators may result
in a poor quality of thermal comfort inside the building. Sometimes the effects can be
severe as e.g excessive energy consumption or the complete shutdown of the HVAC units
etc... if the faults are not diagnosed. In spite of the great developments in the field of fault
diagnosis in the past few decades, there is still lack of research in its application on the

15



1.1. Literature review

Figure 1.2: Centralized and distributed control scenarios (a) Control Level Decomposition
(b) Mathematical Model Level Decomposition

HVAC systems. There are few attempts to address fault diagnosis issue using data-based
principle component analysis techniques e.g.[DJ07]. [BLS+15] presents fault diagnosis
methods based on a graphical network approach using the physical understanding of
the system and the available data. For VAV damper stuck fault, a model-based faults
diagnosis scheme is presented in [Tal09] using multiple observer schemes with a control
redistribution technique

It is straightforward that to take some corrective actions after the fault occurrence,
some necessary information from fault diagnosis module should be provided to the con-
troller. There are not sufficient advancements in the literature on fault diagnosis and fault
adaptive techniques applied to HVAC building systems. However, we acknowledge the
efforts addressing the fault adaptive techniques for VAV type HVAC system in [BLS+15].
In this article, the data based graphical models are presented to detect the potential faults
and fault adaptive control is realized by update the model predictive control algorithm
constraints.

Although, in the present literature, system level faults are paid more attention despite
the equipment level faults may result in serious consequences. Equipment level faults
need to be tackled at the local level instead of the hierarchical layer structure. In this
work, we consider a most common of damper stuck fault in the VAV type HVAC systems
to provide the fault diagnosis and fault adaptive strategy for the same.

MPC for large-scale HVAC systems

All the solutions discussed above assume a centralized control architecture. Their appli-
cation in the case of large-scale systems may face various challenges due to the various
factors like the size of the system, the internal couplings, the communication network
difficulties, etc. Generally, this is addressed by means of the decomposition of large-
scale systems into the subsystems and the coordination between controllers applied to
each subsystem (see Figure 1.2). Several architectures and decomposition methods are
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proposed in various articles in the literature to address the above issues. Siljack [Sil91]
has summarized various decomposition methods. He has introduced the overlapping and
non-overlapping decomposition methods based on the sharing of the variables between the
subsystems. Some widely used methods of partitioning large-scale systems into the sub-
systems are based on bipartite graph theory, ε decomposition and the inclusion principle
[Sca09a] [Lun92]. Other interesting approaches such as relative gain array matrix [Hag97]
and Grammians [KFM03] use input-output mapping. Sometimes, due to the structural
properties of large-scale systems, it is straightforward to derive subsystem models by a
system identification procedure, instead of partitioning the centralized large-scale model.

The coordination between the controllers of subsystems is closely related to the degree
of interaction between the subsystems [VR06]. If the interaction between subsystems is
negligible, each subsystem is controlled independently without any coordination between
subsystem controllers. This is named as decentralized model predictive control [Lun92].
If the interaction between the subsystems is strong, then the coordination between the
subsystem controllers improves overall performance of the system. These coordination
strategies may differ depending on the several ways of information exchange between
controllers mainly classified as noncooperative and cooperative type [RM12]. In noncoop-
erative architecture, the subsystem controller optimizes locally the MPC problem using
information of other subsystems and it reaches to Nash equilibrium. On the other hand, in
the cooperative architecture, the subsystem controller optimizes the global objective and
it achieves a Pareto optimal solution [VR06]. The coordination can be in a hierarchical
architecture [Sca09b], where master level optimization problem comprises the shared vari-
ables or constraints. The optimal solutions are sent to lower level i.e. the subsystem level
controllers as coordination parameters. In some articles, DMPC problem is viewed as the
partitioning of the Centralized Model Predictive (CMPC) Problem. This is motivated by
some decomposition methods of large-scale convex optimization problems e.g. Dantzig
Wolfe decomposition, Benders decomposition [MBDB10], primal and dual decomposition
techniques [MN13] [PAL14].

When dealing with the DMPC problem, the decomposition of large-scale systems
into subsystems and the coordination between the subsystem controllers are addressed
independently. In this work, we propose a novel approach of addressing the system de-
composition and controller coordination issues in two distinct stages. In first stage of
this proposed method, the optimality conditions of a large-scale optimization problem
are formulated and then decomposed to obtain the subsystems. Further, in second stage,
the idea of coordination among the controllers is presented using an optimality condition
decomposition approach [Con06]. We implement this distributed control scheme on a
given multizone building without compromising the main objectives of energy efficient
operations.

Distributed moving horizon estimation

In the final part of this thesis, we concentrate on the estimation techniques in the context
of large-scale buildings. This focus on the estimation is motivated due to some obvious
advantages like the fault detection and isolation techniques, the possibilities of replacing
the measurements with an estimation in case of faulty sensors and the minimization of
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the number of sensors to save the capital cost of the installation, etc.
The Kalman filter is still viewed as the best available strategy for state space estima-

tion. Despite the current developments in the Kalman filter estimation methodologies,
other state estimation techniques are also investigated by the researchers. We can find
different type of observer designs [JR99] and moving horizon estimations (MHE) [Jor04].
MHE is becoming popular as it is essentially formulated as an optimization problem that
facilitates the inclusion of some physical constraints. This optimization problem over hori-
zon N is solved in a receding horizon manner (similarly to MPC) allowing to estimate the
states minimizing the errors introduced by the disturbances and noises. To minimize the
uncertainty in the initial states, an extra term is introduced in the objective function. This
procedure to solve this problem is repeated at each time instant using a sliding window of
N values, hence it is termed as moving horizon estimation. The idea of MHE is extended
for nonlinear systems in [ZLB08] [ABBZ11]. Also, the extension for MHE considering
systems with bounded disturbances is presented in [JRH+16]. Nevertheless, the size of
the optimization problem in MHE for large-scale systems may increase exponentially as
the size of the system increases so the application of MHE for large-scale systems is an
emerging topic. Different schemes of partitioning centralized MHE problem for large-scale
systems are proposed in [FFTS12] while [FFTS09] suggests the implementation of MHE
for each sensor fulfilling convergence properties. [SM16] proposes a sensitivity based par-
tition technique with a detailed discussion on convergence and stability. However, much
work still has to be done in the regard of Distributed MHE (DMHE).

1.2 Contributions
This work highlights the important issue of economic building operation while maintaining
the healthy environments for occupants inside multizone buildings. As discussed earlier,
the main contributions of this work are the responses for the objectives assigned under
the Energy IN TIME project by providing novel and efficient solutions. These proposed
solutions involve energy efficient building performance on the centralized and distributed
architectures along with investigation on the fault diagnosis and fault adaptive control
methods. The contributions of this thesis work are ordered in the following steps:

- The demonstration sites provided in the project are of various characteristics such
as the type of building, the use of the building, the available HVAC configurations
and their functional details, etc. An analysis of demonstration sites shows that the
VAV and the FCU type HVAC systems are most favored due to their energy effi-
cient operations and the design flexibility. This further motivates the design of a
benchmark building based on these types of HVAC units. We derive the mathemat-
ical models for both types of HVAC systems using the thermodynamic relations.
These evaluated mathematical models are well-suited for the further validation of
proposed solutions.

- Economic building operation of HVAC building systems is the foremost requisite of
this work, which is achieved by enforcing the controller structure to minimize the
energy consumption and the maintenance cost. This is done by introducing a novel
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approach to MPC formulation which considers: i) the dynamics of most energy
consuming equipments in the HVAC system to attain the energy efficient approach,
ii) a regularization term to suppress the fluctuations in the setpoints provided to
the actuators that lowers the actuators fatigue minimizing the maintenance cost.
This is finally validated on the benchmark HVAC building system.

- Sometimes a malfunction of the actuators or the sensors may cause problems on
various levels e.g. loosing thermal comfort of the occupants, excessive energy con-
sumption and permanent damage of the HVAC equipment if these faults are not
detected early, etc. In this work, we propose an Unknown Input Observer based
fault diagnosis approach for some given common faults and that is supported by the
simulation results.

- Furthermore, the fault diagnosis information plays a key role in the design of fault
adaptive methodologies in order to take the corrective action in the faulty events
ensuring the thermal comfort of the occupants. Considering the importance of fault
adaptive methods, we propose an MPC-based fault adaptive control strategy, which
uses the information of the fault diagnosis module developed in the earlier section.

- Final contribution of this work resides in the innovative control approaches applied
to large-scale buildings to overcome the challenges of implementing the centralized
control architecture. The proposed methods allow us to decompose large-scale sys-
tems into subsystems and to design the distributed control architecture based on
the optimality condition decomposition method and sensitivity analysis techniques.
The proposed distributed MPC methods are validated on the benchmark building
systems.

- Along the lines of the economic building performance, we address the issue of esti-
mating the system outputs (zone temperatures) in the case of limited measurements.
This proposed method can be seen as a novel contribution in the area of moving
horizon estimation applied to the large-scale buildings. This method holds a great
potential for the fault detection and isolation assignments. We implement the pro-
posed distributed estimation technique on the given benchmark building and discuss
its effectiveness with some simulation results.

1.3 Outline

The remainder of the thesis is structured as follows:
From the analysis of the demonstration sites provided in the Energy IN TIME project,

we describe the most commonly used HVAC configurations and their mathematical models
in the Chapter 2. These HVAC configurations are essential and used as test benches to
validate the solutions developed in this thesis work.

A reminder of the thesis mainly covers the centralized and distributed control aspects.
Chapter 3 present the maintenance-aware economic control and the fault diagnosis and
fault adaptive control aspects based on a centralized control system architecture. We
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1.3. Outline

discuss the detailed formulation of the centralized model predictive control ensuring the
economic operation of the building that maintains the thermal comfort inside the zones.
To address the fault diagnosis issue, an approach using dedicated unknown input ob-
server bank is proposed and verified through the simulation results. Lastly, we present
a fault adaptive control strategy that accommodates the fault and maintains the normal
operations of the building HVAC system.

Scalability issue regarding the energy efficient control and the fault detection is ad-
dressed for larger systems by extending the proposed centralized control solutions. Chap-
ter 4 explores the techniques of distributed model predictive control for the specified
benchmark buildings. Two distinct distributed control methods based on optimality con-
dition decomposition and a sensitivity analysis are discussed in depth. Rigorous simula-
tion results provide the validation of the proposed distributed control approaches. The
final part presents a great development for moving horizon estimators. Also, its scope is
broadened to large-scale systems. The simulation results prove the applicability of the
proposed estimation method in the case where fewer measurements are available in the
large-scale building.

Finally, in Chapter 4 we present conclusions and future perspectives.
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Chapter 2

Building Frameworks and
Mathematical Modeling

The solutions developed under Energy IN TIME project are validated on the existing
commercial buildings. These buildings are of various topologies that include a hotel,
an airport, and offices with different locations throughout the Europe. These developed
solutions are deployed on these demonstration buildings to conduct a proof of concept and
in this thesis, we analyze the available demonstration sites and their HVAC configurations.
Further, based on these configurations, we design a benchmark building prototype and
the simulator for a realistic imitation. This simulator serves as a test bench to investigate
the proposed solutions offered in this thesis work to fulfill the project module objectives
assigned to UL.

The building thermal behavior changes according to the occupancy schedule, the type
of HVAC system and the coupling among the zones. From the detailed synthesis of the
demonstration sites, we summarize the characterization of the different building topolo-
gies with respect to the mentioned attributes. The Table 2.1 shows summary of the
demonstration sites.

In the existing HVAC systems, the VAV and FCU type configurations are more popular
due to their simplicity and energy efficient performances. Hence we design the benchmark
building prototypes based on these HVAC configurations. Further, the proposed solutions
under the project e.g. energy efficient control methods, fault diagnosis, and fault adaptive
techniques etc. are built to suit these benchmark prototypes. Nevertheless, adequate
flexibility in the proposed solutions is preserved so that it will apply to a broad range of
building types. Further, we present the VAV and FCU type HVAC configurations and
their mathematical models.

2.1 Thermal Zone Model
It is essential to understand the thermal behavior of the general air conditioning system
that uses the air circulation to maintain the thermal comfort of the occupants. This will
allow us to derive the mathematical model for the VAV and FCU type HVAC systems
respectively. Please note that the thermal comfort of occupants comprises various indi-
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2.1. Thermal Zone Model

Type of Building Occupancy Coupling among Type of HVAC
the zones systems

Office almost fixed negligible VAV or FCU type
Hotel variable negligible FCU type
Airport highly high coupling VAV/CAV type

check-in/waiting area variable (glass walls)

Table 2.1: Building types and their characteristics

cators as zone temperature, humidity and CO2 concentration inside the thermal zones.
However, in this work, we focus only on the zone temperature as a thermal comfort in-
dicator. The air conditioning schematic of the typical thermal zone is shown in Figure
2.1.

Figure 2.1: Schematic of air conditioning of a typical thermal zone

The thermal behavior of the space heating is well explained based on the first law of
thermodynamics. Let us consider n is the total number of zones in the building. For
each zone i, (i = 1, ..., n), we denote the temperature of the zone by Ti. The mass flow
rate of the supply air entering in the i-th zone is represented by ṁi and the supply air
temperature by Tsi. For the winter scenarios where the space heating is required, we write
the energy balance equation using first law of thermodynamics as the i-th zone:

ρVicp
dTi
dt

= ṁicp (Tsi − Ti)− Q̇h,loadi
(2.1)

with Vi the volume of zone i, ρ the air density and cp the air specific heat coefficient.
The rate of heat Q̇h,loadi

is the sensible heating load of zone i, that is, the net amount of
energy that needs to be added to the zone to maintain a specified zone condition. Clearly,
the sensible heating load is the sum of all heat losses and the internal heat gains. The
heat loss for a zone i is due to the heat transfer from zone i to adjacent zones j and to
the outside environment. Using thermal resistances, and denoting by qi all internal heat
gains due to the occupancy, electronic devices and solar gain to zone i, Toa the outside
air temperature, the sensible heating load for zone i is

Q̇h,loadi
= 1
Rexti

(Ti − Toa) +
n∑

j=1,j 6=i

1
Rij

(Ti − Tj)− qi (2.2)
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2.2. VAV type HVAC system

where Rij = Rji is the thermal resistance between zone i and zone j, and Rexti is the
thermal resistance between zone i and the exterior of the building. Now, substitute the
heating load into equation (2.1), we get

Ci
dTi
dt

= ṁicp (Tsi − Ti)−
1

Rexti

(Ti − Toa)−
n∑

j=1,j 6=i

1
Rij

(Ti − Tj) + qi (2.3)

where we set Ci = ρVicp as the thermal capacitance of zone i.
It is obvious that to maintain the space heating requirements, the user should ma-

nipulate the heat gain through the supply air balancing the sensible heat loads. This
implies that to control zone temperature Ti in the thermal comfort range, the user may
manipulate the supply air temperature Tsi or the supply air mass flow rate ṁi. This is
a key that differentiates the thermal behavior of the HVAC systems based on VAV and
FCU units respectively which will be clear in the following sections.

2.2 VAV type HVAC system
In large scale non-residential and commercial buildings, the HVAC system must meet the
varying needs of different spaces since different zones of the building may have different
heating and cooling needs. In that respect, VAV systems were developed to be more
energy-efficient and to meet the varying heating and cooling needs of different building
zones. All the VAVs receive the supply airflow from a central air handling unit (AHU).
Then, VAVs control the supply airflow into the zones by adjusting the damper position
to maintain the thermal comfort. Examples of equipments are shown in Figure 2.2. We
explain the working principle of a VAV type HVAC system with its mathematical model
based on the general thermal behavior given in previous section.

Figure 2.2: Example of a Damper and AHU unit

Working Principle

A VAV type HVAC system works as follows [HCHJS13]: each VAV terminal box in each
zone receives primary air from a central AHU at the same constant temperature, called the
supply air-temperature. The VAV terminal box has a primary-air damper which regulates
the volume of hot or cold primary air delivered to the box according to the needs of the
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2.2. VAV type HVAC system

Figure 2.3: VAV type HVAC system layout

spaces. Note that since each VAV box regulates its primary air volume independently,
the total volume of primary air delivered by the central AHU varies according to the
demands of the VAV boxes in the building. Therefore the central supply fan must vary
its output in order to meet the needs of all VAV units. The speed of the central supply
fan is consequently controlled to meet the changing demands of the building.

As shown in Figure 2.3, the AHU contains a mixer, a heating coil and a supply fan.
The mixer mixes the fresh air and the return air from all the zones. The heating coil is a
water to air heat exchanger, which controls the temperature of supply airflow by varying
hot water flow of constant temperature, supplied by a boiler. A VAV box at each zone
changes the supply airflow varying a damper position with a local PI type controller.
We derive a mathematical model of the thermal behavior of the zone and AHU, that is
effectively used in the control design.

Mathematical Modeling

It is clear that AHU is a central unit providing the supply air at a constant temperature
and the VAV units are present at every zone controlling the supply flow rate to maintain
the zone temperature in a required range. Let us refer to the general thermal behavior
of the building described in (2.3). The supply air temperature Tsi are kept constant and
supply air flow ṁi is manipulated to maintain zone temperature Ti where i = 1, 2 . . . , n.

Now, we write explicitly (2.3) for i = 1, ...n as follows,

C1
dT1
dt = −α11T1 + 1

R12
T2 + 1

R13
T3 + ...+ 1

R1n
Tn − cpT1ṁ1 + cpTsṁ1 + 1

Rext1
Toa + q1

C2
dT2
dt = −α22T2 + 1

R21
T1 + 1

R23
T3 + ...+ 1

R2n
Tn − cpT2ṁ2 + cpTsṁ2 + 1

Rext2
Toa + q2

...
...

...
Cn

dTn
dt = −αnnTn + 1

Rn1
T1 + 1

Rn2
T2 + ...+ 1

Rn,n−1
Tn−1 − cpTnṁn + cpTsṁn+

1
Rextn

Toa + qn
(2.4)
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with
αii = 1

Rexti

+
n∑

j=1,j 6=i

1
Rij

, i = 1, ..., n

Note that, the supply air temperature Tsi for i = 1, 2, . . . , n is denoted by a single
variable as Ts. The n first-order differential equations in (2.4) represents the the model
for the overall n-zones building.

The equation system in (2.4) in the matrix form reads as,
C1 0 · · · 0
0 C2 · · · 0
...

... . . . ...
0 · · · 0 Cn



Ṫ1
Ṫ2
...
Ṫn

 =


−α11

1
R12

· · · 1
R1n1

R21
−α22 · · · 1

R2n...
... . . . ...

1
Rn1

1
Rn2

· · · −αnn



T1
T2
...
Tn



+


(Ts − T1) cpṁ1
(Ts − T2) cpṁ2

...
(Ts − Tn) cpṁn

+


1

Rext11
Rext2...

1
Rextn

Toa +


q1
q2
...
qn



(2.5)

As the diagonal matrix in the left-hand side of (2.5) is not singular, the above equation
can be written in the state space form

ẋ = Avx+
(
u0
vIn − diag(x)

)T
Bvuv + Gw + q (2.6)

where (.)T denotes transposition,

Av =


C1 0 · · · 0
0 C2 · · · 0
... ... . . . ...
0 · · · 0 Cn


−1

−α11
1
R12

· · · 1
R1n1

R21
−α22 · · · 1

R2n... ... . . . ...
1
Rn1

1
Rn2

· · · −αnn



Bv = cp


C1 0 · · · 0
0 C2 · · · 0
... ... . . . ...
0 · · · 0 Cn


−1

G =


C1 0 · · · 0
0 C2 · · · 0
... ... . . . ...
0 · · · 0 Cn


−1

1
Rext11
Rext2...

1
Rextn



x =
[
T1 T2 · · · Tn

]T
uv =

[
ṁ1 ṁ2 · · · ṁn

]T
u0
v = Ts w = Toa

(2.7)

and In is the unity matrix of dimension n. The subscript v denotes the building system
dynamics related to a VAV type HVAC system. For constant supply air temperature,
which is typical to VAV based air-conditioning systems, the state equation is a bilinear
controlled system,

ẋ = A x+ diag(xv)B1uv + B2uv + Gw + q (2.8)
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2.2. VAV type HVAC system

where the expressions of matrices B1 and B2 are trivial. For our purpose, equation (2.8)
is linearized around an operating point (x(0), u(0)

v ) and discretized with a sampling period
ts to yield:

x(k + 1) = Avx(k) +Bvuv(k) +Gd(k)
y(k) = x(k) (2.9)

where Av, Bv and G are the resulting discrete-time system matrices of appropriate dimen-
sions. Vector d = [w, qT ]T is the disturbance which accounts for the outside temperature
Toa and internal gains q. y is the vector of system outputs implying all the zone temper-
ature measurements are available. Please note that we use the same variables to avoid
cumbersome notations that is, x, uv and d in equation (2.9) denote now small variations
around their operating point values.

Air Handling Unit

With reference to Figure 2.3, let Tr denote the temperature of the return air flow rate at
the input of the mixer. Then, assuming that there is no leakage of mass flow rate in the
duct, i.e.,

ṁa =
n∑
i=1

ṁi (2.10)

the energy balance in the return duct reads as:

ṁaTr = ṁ1T1 + ...+ ṁnTn (2.11)

This implies that the return temperature in the duct is completely determined by:

Tr =
∑n
i=1 ṁiTi
ṁa

(2.12)

Next, let Tm denote the temperature at the output of the mixer. The mixer mixes the
return air at temperature Tr with fresh outdoor air of flowrate ṁoa at temperature Toa.
Then, again, writing the energy conservation law for the mixer, we have:

ṁrTr + ṁoaToa = ṁaTm (2.13)

The conservation of mass at the inputs and output of the mixer implies ṁr + ṁoa = ṁa.
The return mass airflow rate ṁr is a fraction δ (0 ≤ δ ≤ 1) of the total mass airflow rate
, i.e., ṁr = δṁa, which implies that ṁoa = (1− δ)ṁa. Then, equation (2.13) reads as:

Tm = δTr + (1− δ)Toa = δ

∑n
i=1 ṁiTi
ṁa

+ (1− δ)Toa (2.14)

Note that Tm depends solely on all zone temperatures Ti and on the outside tempera-
ture Toa. Above relations are significant in the controller design assignments in coming
chapters.
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2.3. FCU type HVAC system

2.3 FCU type HVAC system
FCUs are widely used in various types of building topologies due to their simplicity. Most
favored traits of the FCUs units are ease of installation and operation, lower noise levels
and versatility in type of mounting (floor or ceiling) etc... Numerous forms of FCU units
are available in the market such as the example shown in Figure 2.4. A typical FCU unit
comprises components as a heating coil, supply fan, filters, mixer and noise attenuation
and their forms can vary depending on their internal arrangement inside the FCU unit.
We consider a blow type FCU unit where, as the name suggests, the supply fan is placed
before the heating coil (See Figure 2.5). To derive a mathematical model, it is necessary
to understand the working principle of the FCU system which is explained next.

Figure 2.4: FCU unit

Working Principle

Let us refer to the general building topology based on FCU system is shown in Figure
2.5. Each zone is equipped with a temperature sensor, a FCU to supply airflow and a
return air plenum. The return air plenum recirculates the fraction of the return air to the
FCU. The mixer combines the return air flow from the plenum with the outside air. The
supply fan maintains constant supply air flow through the heating coil. The heating coil
is a water-to-air heat exchanger which maintains the supply air at required temperature
by manipulating hot water flow from a boiler or heat pump. This temperature control
is achieved with embedded PID controllers. Thus, the supply air of constant flow is
circulated into the zone at a suitable temperature. Zone temperature is controlled by
modulating supply air temperature directly with the heating coil. Supply air flow is viewed
as the control signal for achieving the zone temperature. The supply air temperature
is controlled through the heating coil by controlling hot water flow, depending on the
temperature of space to which FCU serves.

Mathematical Modeling

To derive a mathematical model for a FCU equipped building system with n zones, a
similar approach is extended as that VAV type HVAC system. In FCU systems, unlike
VAV systems, supply air flow rate is kept constant and supply air temperature is varied
to accommodate the thermal requirements of the zone. The supply air flows ṁi (i =
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2.3. FCU type HVAC system

Figure 2.5: FCU based HVAC system - four zones building

1, 2, . . . , n) are viewed as system parameters. The thermal energy balance equations from
(2.3) are written explicitly for n zones as,

C1
dT1
dt = −α11T1 + 1

R12
T2 + 1

R13
T3 + ...+ 1

R1n
Tn − cpT1ṁ+ cpTs1ṁ+ 1

Rext1
Toa + q1

C2
dT2
dt = −α22T2 + 1

R21
T1 + 1

R23
T3 + ...+ 1

R2n
Tn − cpT2ṁ+ cpTs2ṁ+ 1

Rext2
Toa + q2

...
...

...
Cn

dTn
dt = −αnnTn + 1

Rn1
T1 + 1

Rn2
T2 + ...+ 1

Rn,n−1
Tn−1 − cpTnṁ+ cpTsnṁ+

1
Rextn

Toa + qn
(2.15)

which, in matrix form, reads as,
C1 0 · · · 0
0 C2 · · · 0
...

... . . . ...
0 · · · 0 Cn



Ṫ1
Ṫ2
...
Ṫn

 =


−β11

1
R12

· · · 1
R1n1

R21
−β22 · · · 1

R2n...
... . . . ...

1
Rn1

1
Rn2

· · · −βnn



T1
T2
...
Tn



+


Ts1
Ts2
...
Tsn

 γ +


1

Rext11
Rext2...

1
Rextn

Toa +


q1
q2
...
qn


(2.16)

with
γ = cpṁ, βii = αii + γ, i = 1, ..., n

The above system (2.16) is written in state space form as follows,

ẋ = Afx+ Bfuf + Gw + q (2.17)
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where,

Af =


C1 0 · · · 0
0 C2 · · · 0
... ... . . . ...
0 · · · 0 Cn


−1

−β11
1
R12

· · · 1
R1n1

R21
−β22 · · · 1

R2n... ... . . . ...
1
Rn1

1
Rn2

· · · −βnn



Bf = γ


C1 0 · · · 0
0 C2 · · · 0
... ... . . . ...
0 · · · 0 Cn


−1

uf =
[
Ts1 Ts2 · · · Tsn

]T
w = Toa

(2.18)

The subscript f denotes the building system dynamics related to the FCU type HVAC
system. It is worth noting that the system (2.17) is linear in the original variables. This
linear system equations are discretized with the sampling period ts and represented in the
following discrete-time state space form,

x(k + 1) = Afx(k) +Bfuf (k) +Gd(k)
y(k) = x(k) (2.19)

where, Af , Bf and G are discretized zero-order-hold (ZOH) matrices from Af , Bf and
G .

2.4 Concluding Remarks
As seen from the discussion of the demonstration sites, the VAV and FCU type HVAC
configurations are popular due to their simplicity in operation and their energy efficient
performances. We have presented the mathematical models for the VAV and FCU types
of HVAC building systems. These mathematical models will be used to propose novel
approaches to centralized and distributed model predictive control. The energy consuming
components of these HVAC systems are mainly supply fan and the heating coil. Hence,
the control objectives in the next chapters will be designed around these components.
These derived models are generic enough to accommodate different types of buildings and
weather conditions.
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Chapter 3

Centralized control

3.1 Centralized Control - Fault Free Case

3.1.1 Introduction
Model Predictive Control (MPC) has been very popular in recent years and is very fa-
vored control technique in various fields e.g. chemicals, food processing, automotive, and
aerospace applications. There are great recent developments in the MPC techniques as
its basic framework provides simplicity in the understanding and is flexible according to
the nature of the application. At a given time instant, MPC generates the numerical se-
quence for future manipulated variables by predicting the system behavior. The ability to
handle the soft and hard system constraints and the robustness towards the disturbance
make MPC more beneficial. Nevertheless, in the literature, considerable progress can be
seen in the implementation of MPC for HVAC building systems. The recent publications
provide various aspects of MPC applied to HVAC building systems e.g. for the energy
efficient building operations, for the improvement in the reliability of HVAC equipments,
maintenance of thermal comfort inside the buildings etc.

As already discussed, sophisticated technological schemes concerning economic control
methodologies are now being developed for large scale buildings, based on various control
theories like predictive control, fuzzy control [Afr16] etc, which maintain thermal comfort
while minimizing the operational energy consumption. On the other hand, there has been
a noticeable progress in maintenance approaches of HVAC systems categorized as reactive,
preventive and predictive maintenance that facilitates efficient working of HVAC elements
[ash15]. In the available literature of a HVAC building control strategies relating to the
economic operation and maintenance are dealt at different control layers. The noticeable
works lack to address an economic HVAC building operation considering the awareness
about the equipment maintenance as an objective.

In this chapter, a MPC based strategy is proposed to achieve this cumulative objective
of minimizing the operational energy consumption as well as the maintenance cost. The
first part of the cumulative objective is quite straightforward. This is obtained through
formulating the cost function in the MPC by introducing the term related to the energy
consumption by the HVAC equipments.

The related part of cumulative objective as minimizing the maintenance cost of HVAC
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3.1. Centralized Control - Fault Free Case

equipments is achieved through ensuring the smooth functioning of equipment parts. Gen-
erally the setpoint trajectories are calculated by the controller and are implemented by
the actuators. If these setpoint trajectories contain significant fluctuations, they certainly
deteriorate the actuator performance leading increased wear and tear of the actuator
parts. This may cause equipment failure, a loss in the control of acceptable indoor envi-
ronment as well as an increase of the the system maintenance cost. Hence, we propose
a methodology to generate the smooth setpoint trajectories by reducing the fluctuations
while maintaining the economic operational interests. This proposed methodology is mo-
tivated from the one-norm regularization analysis extensively used in the statistics and in
the machine learning field. It was originally introduced as the least squares and has been
extended to the various statistical models. Moreover, it is also interpreted in other fields
of geometry and convex analysis [Boy09].

Brief details about the proposed formulation of MPC describing the cumulative objec-
tives are presented in the next sections. This approach is illustrated on a six-zone HVAC
building framework using the weather data from Nancy, France for the winter season.

3.1.2 Maintenance-aware Economic Model Predictive
Control

Various interpretations of the economic MPC are available as discussed in the literature
survey. In this work, we formulate the desired objectives considering the benchmark
HVAC systems provided in Chapter 1. The proposed MPC details are explained consid-
ering the VAV type HVAC building system. Note that, referring to the mechanism of
FCU type HVAC configuration given in Chapter 1, the cost function formulation can be
effortlessly extended for this type of HVAC system.

Mathematical Framework

There has been a great evolution in the formulation of MPC in the literature. We consider
the discrete-time state space model (2.9) which reads as:

x(k + 1) = Ax(k) +Bu(k) +Gd(k) (3.1)
y(k) = Cx(k)

where x(k) ∈ Rnx are the states representing the zone temperatures, u(k) ∈ Rnu are the
inputs of the system denoting the supply airflow, nx and nu are number of states and
number of inputs respectively. d(k) ∈ Rnd are the disturbances consisting the weather
temperature and heat flux due to occupants and k is the discrete time. A,B and G are
system dynamic matrices with appropriate dimensions.
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3.1. Centralized Control - Fault Free Case

Further, we present the optimization problem for the standard MPC as below,

minimize
Uk

J (Uk, x(k))
subject to
x (k + j + 1| k) = Ax (k + j| k) +Bu (k + j|k)

+Gd (k + j|k) j = 0, . . . , N − 1
xmin ≤ x (k + j| k) ≤ xmax j = 0, . . . , N − 1
umin ≤ u (k + j|k) ≤ umax j = 0, . . . , N − 1
x (k| k) = x(k)

(3.2)

where J is the functional representing the overall cost function, N is the prediction
horizon, Uk = {u(k|k), . . . , u(k + N − 1|k)} is the sequence of predicted control inputs
at time k. The bounds umin, umax on the input vector u, i.e. on the supply airflow rate
represent the damper limits in the VAV box. The bounds on states xmin, xmax represent
the soft bounds on the zone temperature to maintain a thermal comfort. Problem (3.2)
is solved repetitively at each time k using the receding horizon principle for the current
measured state x(k) along with the predicted state variables {x (k + j| k)}Nj=1. Assume
that the forecast for the disturbances {d(k|k), . . . , d(k + N − 1|k)} is available a prior.
then the corresponding optimal sequence U?

k = {u? (k) , ..., u? (k +N − 1)} is obtained
and the first element u? (k) of this sequence is applied to the system. The procedure is
repeated at time k + 1, based on the new measured state x (k + 1).

Please note that an extensive discussion about the mathematical model of bench-
mark HVAC building system is presented in Chapter 2, which enables us to derive a
discrete-time state space model and to formulate the constraints in the MPC problem.
Furthermore, the cost function J (Uk, x(k)) is the key element and so the novelty of the
proposed MPC formulation.

Formulation of Cost Function

Recalling from the previous discussion, the control objectives for the HVAC building op-
eration involve energy efficient performances without compromising the thermal comfort
and a reduction in the maintenance cost of actuators. We propose the formulation of the
cost function that (i) minimizes the economic operational cost, (ii) maintains the ther-
mal comfort in the zones and (iii) generates smoother control actions by eliminating the
fluctuations that improves the actuator life-time.

1. Energy efficient Operation
The energy efficient building operation is guaranteed by reducing the energy con-
sumed by the building components. In a VAV type HVAC building system, supply
fan and heating coil in the AHU are the main energy consuming components. Let us
represent the mathematical formulation of the energy consumed by these equipment
in order to formulate the cost function. Let Je be the total energy cost for a time
interval [t0, tf ]

Je = (Jh + Jfan) (3.3)
where Jh and Jfan are the energy associated to the heating coil and to the supply
fan in the AHU.
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(a) Energy consumed by the heating coil
The power or heat transfer rate (Q̇coil) in the AHU required at the heating coil
to deliver an airflow at temperature Ts is directly obtained from writing the
energy conservation law

Q̇coil = cp (Ts − Tm) ṁa = cp (Ts − Tm)
n∑
i=1

ṁi (3.4)

where Tm is the temperature of air at the output of the mixer and ṁi is the
supply airflow for i-th zone. cp is the air heat capacities. Then, the energy
consumption due to heating is simply given by

Jh = c1

∫ tf

t0
Q̇coil dt (3.5)

where c1 represents the related cost per kWh power consumption.
(b) Energy consumed by the supply fan

The VAV requires a certain total mass airflow depending on each local (zone)
heating load. This mass airflow is discharged by the power fan which is driven
by a variable speed drive. The power fan characteristics for a AHU is given by
a cubic law [HCHJS13], that is:

Ẇfan = α
( n∑
i=1

ṁi

)3
(3.6)

where α is a proportionality constant. With the above power characteristics,
the energy consumption for a supply fan is as follows,

Jfan = c2

∫ tf

t0
Ẇfandt (3.7)

where c2 corresponds to cost per kWh kWh energy consumption.

Thus, the total energy demand from the AHU can be summarized from (3.3), (3.5)
and (3.7). Recalling the system dynamics of VAV system from Chapter 2, the
supply airflow rates ṁi for i = 1, 2, . . . , n are represented as the system input vector
u. Considering a discrete-time setting, we discretize the integral Je with Euler
method using sampling time ts. The total energy cost on an interval [t0, tN ] of N
sampling intervals is given by,

Je ' `e =
N−1∑
k=0

`k (3.8)

where
`k =

∫ tk+1

tk

{
c1cp(Ts − Tm)

n∑
i=1

ṁi + c2α(
n∑
i=1

ṁi)3
}
dt (3.9)
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2. Thermal Comfort
With the above economic cost function, it is crucial to maintain the thermal comfort
for the occupants. In order to ensure the thermal comfort in the zones, the zone
temperatures should be controlled in the comfort range of [xmin, xmax].

xmin ≤ x(k) ≤ xmax (3.10)

These thermal bounds are enforced as the boundary constraints in the MPC formu-
lation.

3. Actuator fluctuations Reduction [DYH16c]
The above cost function (3.8) and the constraint (3.10) address the energy optimiza-
tion and thermal comfort aspects. In addition, we introduce a term which indirectly
addresses the maintenance cost.This is achieved by reducing the oscillations in the
setpoint trajectories calculated by the controller. Indeed, smooth setpoint trajecto-
ries reduce the fatigue in the actuators, lowering the system maintenance cost. This
term is a regularization term that is formulated as 1-norm (`1) over a total variation
(TV) of control signal shown below,

`re(Uk) = λ
N∑
j=1
‖u(k + j|k)− u(k + j − 1|k)‖1 (3.11)

where λ is a regularization parameter with λ > 0.
Here, we present a brief analysis of the above total variation (TV) term. The
origin of `1 regularization term can be found in the field of machine learning and
signal processing. This is achieved by adding 1-norm regularization term to the
existing objective function to be minimized. This results in penalizing non zero
elements in the solution. This has been used to develop several motivating examples
in data analysis, compressed sensing, audio processing and biomedical expanding
beyond the original signal recovery formulation [HT01]. The introduction of the
regularization in the control field is quite recent [Gal14].

`1 regularization and Sparsity Property
Let us consider the standard `1 regularized optimization problem given as below,

z∗ = argmin
z

f(z)︸ ︷︷ ︸
criterion

+ λ‖z‖1︸ ︷︷ ︸
penalty

(3.12)

where z ∈ R
n is the vector of optimization variables.

For better understanding of `1 regularization, we consider an illustrative example
where the criterion is f(z) = ‖z− zop‖2

Q, z = R2, Q = [1, 0.1; 1, 1] and zop = [2; 0.4].
As shown in Figure 3.1, the least squares criterion has elliptical contours, centered at
zop. Solutions z∗ were computed for increasing values of λ from 0 to∞ and solution
path is derived. This test is carried out for `1 and `2 regularization as shown in Figure
3.1a and 3.1b respectively. Let λ∗ be the value of λ, where in (`1) regularization
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Figure 3.1: Example with (a) 1-norm regularization (b) 2-norm regularization

one of the component of z∗ becomes zero. Apparently, for λ > λ∗, `2 regularization
results in nonzero values of the elements (z∗1 , z∗2) while `1 regularization computes
the solution where element z∗2 in the solution equal to zero. Above example shows
that `1 regularization yields the solution with some zero elements for λ > λ∗, this
characteristic is described as the sparsity of the solution.
The idea of `1 regularization has been extended in several ways among which an
useful extension is obtained by replacing ‖z‖1 with ‖Dz‖1 where D ∈ R(N−1)×Nn is
the bidiagonal matrix

D =



−1Tn −1Tn 0 . . . 0 0 0
0 −1Tn −1Tn . . . 0 0 0
... ... ... ... ... ... ...
0 0 0 . . . −1Tn −1Tn 0
0 0 0 . . . 0 −1Tn −1Tn


where 1Tn is the unity row vector of dimension n. This represents the variation in a
variable z as (‖(zk+j|k − zk+j−1|k)‖1) for j = 1, 2...N . This construction attenuates
the variation in variable z hence it is also termed as Total Variation regulariza-
tion [HT01]. Total variation reconstruction assigns less penalty to large variations
compared to small variations ensuring the smoothness of signal [Boy09].
In order to suppress the fluctuation in the control signal provided to the VAV box,
an additional term in the objective is considered as follows,

`re(Uk) = λ‖DUk‖1 = λ
N−1∑
i=0
‖u(k + i+ 1)− u(k + i)‖1 (3.13)

According to the previous argument, the total variation term in the above equation
allows some elements r if r = [u(k + j|k)− u(k + j − 1|k)] (j = 1, . . . , N) equal to
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zero herewith reducing variations in setpoint trajectories provided to the damper.
Moreover, the reduction of the fluctuations in the actuators boosts service time cycle
of the damper and expands overall life-span with minimizing maintenance cost of a
building.

Now, the total cost from (3.8) and (3.13) reads as

J (Uk, x(k)) = αe`
e(Uk) + αre`

re(Uk) (3.14)

where αe and αre are appropriate weights defined by the user. To implement the cen-
tralized MPC on a given HVAC building, we solve the optimization problem (3.2) with
the cost function defined in (3.14) subject to the system dynamics as equality constraints
with usual thermal comfort constraints and actuator limitations.

3.1.3 Simulation Results
We consider an illustrative building example as shown in Figure 3.2 with six zones. Every
zone is equipped with a temperature sensor, a VAV box to supply airflow from AHU.
We derive a mathematical model of the thermal behavior of the zones and AHU, that is
effectively used in control design. Finally, the proposed centralized MPC has been applied
to this simulated six-zones building benchmark.

Figure 3.2: Six-zones Building Layout

The simulator uses the numerical data and operating point values shown in Table 3.1
and 3.2.

Ci 4.5 kJ/s Rext 6 W/◦C
Rij 18 W/◦C cp 1.005 kJ/kg◦C
Tmin 22 ◦C Tmax 24 ◦C
ṁmin 0.192 m3/s ṁmax 0.42 m3/s

Table 3.1: Numerical values
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T 0
oa 5 ◦C T 0

s 28 ◦C
ṁ0
i 0.192 m3/s q0

i 0.65 kW
T 0
i 23 ◦C Np 24 h

Table 3.2: Operating Point

The state space matrices are given in (3.15) for the sampling time ts = 15min.

A =



0.5266 0.0664 0.0598 0.0073 0.0596 0.0035
0.0664 0.5266 0.0073 0.0598 0.0596 0.0035
0.0598 0.0073 0.5266 0.0664 0.0035 0.0596
0.0073 0.0598 0.0664 0.5266 0.0035 0.0596
0.1191 0.1191 0.0071 0.0071 0.4702 0.0005
0.0071 0.0071 0.1191 0.1191 0.0005 0.4702



B =



3.5458 0.1935 0.1809 0.0137 0.1805 0.0067
0.1935 3.5458 0.0137 0.1809 0.1805 0.0067
0.1809 0.0137 3.5458 0.1935 0.0067 0.1805
0.0137 0.1809 0.1935 3.5458 0.0067 0.1805
0.3611 0.3611 0.0134 0.0134 3.3715 0.0007
0.0134 0.0134 0.3611 0.3611 0.0007 3.3715



G =



0.9362 0.0511 0.0478 0.0036 0.0477 0.0018 0.0131
0.0511 0.9362 0.0036 0.0478 0.0477 0.0018 0.0131
0.0478 0.0036 0.9362 0.0511 0.0018 0.0477 0.0131
0.0036 0.0478 0.0511 0.9362 0.0018 0.0477 0.0131
0.0953 0.0953 0.0035 0.0035 0.8902 0.0002 0.0131
0.0035 0.0035 0.0953 0.0953 0.0002 0.8902 0.0131





(3.15)

The thermal comfort band is 23◦C ± 0.5. The supply airflow to each zone varies
between 0.0192kg/s and 0.41kg/s with a constant supply air-temperature fixed at 26◦C.
A test is performed during 5 days while two scenarios are simulated for comparative
analysis of economic MPC, with and without TV regularization. The internal heat gain
due to the occupants in each zone and the outside temperature variation during these 5
days are shown in Figure 3.3.

To avoid the possible conflict of infeasible solution in the available numerical solvers
(YALMIP in this case) due to the hard thermal comfort as constraints mentioned in
(3.10), we relax these constraints by a relaxation parameter ζ as shown below,

− ζ + xmin ≤ x(k + j) ≤ ζ + xmax (j = 0, . . . , N − 1) (3.16)

where 0 ≤ ζ ≤ 0.5 and it is considered as an additional optimization variable by adding
a penalty term `tck (ζ),

`tc(ζ) = ζ2 (3.17)
and the this relaxation parameter is treated as the additional optimization variable. This
term (3.17) is added in the cost function (3.14) and this gives the total cost as,

J (Uk, ζ) = αe`
e(Uk) + αtc`

tc(ζ) + αre`
re(Uk) (3.18)
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3.1. Centralized Control - Fault Free Case

Figure 3.3: Heat flux due to occupancy and outside temperature

where αtc is the weight defined by the user.
In first scenario, the classical economic MPC solves the problem considering the cost

function concerned with the energy consumption over a prediction horizon of 24 hours.
The optimal setpoint values for the supply airflows are computed to maintain the zone
temperatures in the comfort range. Figures 3.4 and 3.5 show the temperature responses
and the computed optimal setpoints for the supply airflows of the six zones from the AHU.
As it is clearly seen that the fluctuations in the airflow setpoints may affect the damper
life-span in the VAV box as it causes excessive movement resulting in the fatigue of the
equipment. Eventually, it may speed up the wear and tear of the damper mechanism with
louder noises and loss of effectiveness in the control and that influences the comfort of
occupants inside the zone. Likewise, this decreases the period of systematic maintenance
time cycle of the VAV box that increases the economic cost of the building operation.

Further, the second scenario is simulated that comprises the economic model predictive
control with the TV regularization term. The results are shown in Figures 3.6 and 3.7.
The airflow setpoint trajectories are smoothed by eliminating the small variations in
the setpoint trajectories of the supply airflows. It is clear that small fluctuations are
suppressed while large changes are preserved in the response, motivating stable functioning
of the damper to avoid above consequences. As a result, it improves the life expectancy
of the VAV components decreasing the service requirements and so the maintenance cost
in the long run. Also, this ensures the thermal comfort of occupants, shown in Figure 3.6
being the zone temperature in the comfort range of 23◦C±0.5 with no compromise in the
indoor environment. These simulation results show the efficiency of the proposed method
of the building economic operation with an improvement in the actuator performance.
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Figure 3.4: Zone temperatures with EMPC
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Figure 3.5: Input Supply airflow rates with EMPC

3.1.4 Concluding Remarks
This proposed MPC formulation is an effective strategy which accomplishes the objec-
tive of decreasing the overall building life-cycle cost, by minimizing operational energy
consumption while increasing the overall actuator life-span. This strategy is based on a
model predictive control scheme where the objective of minimizing the operational energy
consumption is incorporated in cost function while constraints are managed to define ther-
mal comfort of the zones. The key feature is to minimize the variation in the setpoints of
actuators generated by the model predictive controller by adding one-norm regularization
as a penalty term. Due to sparsity property of this regularization term, it assists the
actuator setpoint trajectories to retain the large variations and to eliminate the small
variations. This follows to decrease the wear and tear of dampers in VAV box increasing
the service time cycle, leading reduced maintenance cost in long run.

3.2 Centralized Control - Faulty case

3.2.1 Fault Diagnosis Module [DYH16a]
Despite their great flexibility in space conditioning, HVAC building systems are prone
to failures due to their complexity and embedded electronics. Such possible failures or
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Figure 3.6: Zone temperatures with `1 regularized EMPC
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Figure 3.7: Input Supply airflow rates with `1 regularized EMPC
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3.2. Centralized Control - Faulty case

faults may impact adversely the energy consumption of the building as well as the comfort
in the zones if they are not detected, removed or corrected in time. Hence the Energy
IN TIME project considers it as one of the main objectives. According to the project
workpackage planning, UL is responsible to deliver the solution to detect and diagnose
the possible fault occurrences in the HVAC building system. So, in this work, we provide
a method of fault detection, isolation, and diagnosis considering the benchmark HVAC
building configurations as the platform.

Referring to the available literature, there has been some progress on the fault diag-
nosis (FD) aspects of HVAC systems. Basically, a fault diagnosis module which provides
information about the occurred faults, and a controller redesign system to adapt the con-
trol law to the faulty mode. Except for few advancements in the fault diagnosis for HVAC
building systems discussed in Literature review section, many works are still needed.

In this work, we address a common fault of damper stuck encountered in the VAV type
HVAC building system. Recalling the working principle of VAV box from Chapter 2, it
essentially controls the supply airflow entering into the zones by manipulating the damper
position. Due to the stiction phenomenon which is the combining effect of stick and
friction, the damper may slower the movements causing a permanent stick at particular
positions in extreme conditions. This may adversely affect the thermal comfort of the
occupants inside the affected zone. Also, it can cause the excessive energy consumption.
Hence we focus on the detection and diagnosis of the VAV damper stuck fault for the
provided benchmark HVAC building system.

Figure 3.8: Damper Stuck fault in VAV box

In nominal operation, the supply airflow setpoint is calculated by the controller to
maintain the zone temperature in the comfort range. The local PID controller in the VAV
box is responsible for the implementation of this setpoint (see Figure 3.8). In the faulty
case, the VAV box is no longer able to implement the controller generated setpoints. The
discrepancy between the setpoint values and the actual supply air flowrates is key to detect
the damper stuck and evaluate the stuck position. This is best achieved by the method
based on the mathematical model derived in Chapter 1 for the benchmark HVAC building
systems under consideration. The novelty lies in the design of the dedicated observer
scheme based on Unknown Input Observers (UIOs) and its formulation to diagnose the
damper stuck value. The overall schematic of the bank of observers is shown in Figure
3.9. The full FDD of VAV damper stuck is achieved in two sequential steps:

1. Fault detection and isolation (FDI) performed by a dedicated bank of Unknown
Input Residual Generators (UIRGs)

2. VAV damper stuck estimation triggered by the FDI stage
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3.2. Centralized Control - Faulty case

Figure 3.9: Fault Diagnosis module schematic based on the bank of UIOs

In the next sections, the thorough discussion about these two sequential steps and its
illustration for the six zones VAV type HVAC building system is provided.

1. FDI based on Unknown Input Observer Design

Consider u is the optimal values of supply airflow calculated by the controller and to
be implemented by the VAV box while uA is the actual supply airflow discharge, (see
Figure 3.10(a)). Referring to the Figure 3.10(b), a dedicated UIO is designed for given
thermal zone that generates the residual based on the controller setpoints u, disturbance
information and the actual zone temperature.

Let us recall the discrete time state space model for a VAV type HVAC building system
from the previous section,

x(k + 1) = Ax(k) +Bu(k) +Gd(k) (3.19)

where x(k) ∈ Rnx are the states representing the nx zone temperatures, u(k) ∈ Rnu are
the nu inputs of the system denoting the supply airflowS. d(k) ∈ Rnd is the disturbance
vector consisting of the weather temperature and the heat flux due to occupants and k is
the discrete time. Please note that the benchmark building under consideration satisfies
nx = nu = n, hence for the simplification, we will use n as the dimension. A,B and G
are system dynamic matrices with appropriate dimensions.

With the proposed scheme, simultaneous VAV damper stucks detection and isolation
is made possible. A key point for the design of the unknown input observer design for
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3.2. Centralized Control - Faulty case

Figure 3.10: (a)Block-diagram showing the faulty case scenario (b)Overview of the pro-
posed UIO based fault diagnosis scheme

this building system is that the outside temperature w = Toa and the occupancy q are
known disturbance signals provided respectively by an external temperature sensor and
the occupancy profile of the zones.Then, under damper stucks of the VAVs, the actual
input to the plant can be modeled as uA = u + f where signal f =

[
f1 f2 · · · fn

]T
is the vector of faults on the n VAV dampers. Under these faults, the discrete time state
space model from (3.19) of the building reads as

x (k + 1) = Ax (k) +Bu (k) +Bff (k) +Gd (k) (3.20)

with Bf = Bu

[
01×n
In

]
where 01×n is the (1× n)-dimensional zero matrix and In the n-

dimensional identity matrix. Thanks to the structure of the control input u, the nominal
free-fault model (3.19) can be written as

x (k + 1) = Ax (k) +Bυi
υi (k) +B(−i)u(−i)(k) (3.21)

for all i = 1, ..., n, where the vectors υi (k) and u(−i)(k) are defined by:

υi =
[
ui, dT

]T
u(−i) =

[
u1, ..., ui−1 ui+1,..., un

]T (3.22)

and the matrices Bυi
and B(−i)

u by:

Bυi
=
[
bi| b0| Bd

]
B(−i) =

[
b1| ... bi−1| bi+1| ... bn

] (3.23)

Now, viewing the vector u(−i) in model (3.21) as the unknown input to the i-th zone
dynamics, the structure of the i-th residual generator for detection of the i-th damper
stuck is therefore described by the dynamical system [JR99]

zi (k + 1) = Fizi (k) + TiBυi
υi (k) +Kiy (k)

ri (k) = (In −Hi) y(k)− zi(k) (3.24)
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3.2. Centralized Control - Faulty case

where matrices Fi, Ti, Ki, Hi are the parameters of the i-th generator to be determined.
The measured outputs being all the states (i.e., the zone temperatures) it follows that
the existence of these parameters for the building model is always ensured as the two
conditions below are satisfied

1. rank
(
InB

(−i)
)
=rank

(
B(−i)

)
2. (TiA, In) is detectable

In fact, it turns out that (TiA, In) has the stronger property of being observable. The
parameters of the UIRGs for all the actuators i = 1, . . . , n are computed through the
followings steps:

Algorithm 1 Computation of UIOs parameters
Input Data: A; B(−i)

u , i = 1, ..., n
Results : Fi, Ti, Ki, Hi

for i = 1 : n
Hi ←

(
B(−i)

) [(
B(−i)

)t (
B(−i)

)]−1 (
B(−i)

)t
Ti ← In −Hi

choose Ki,1 such that Fi = TiA−Ki,1 is a stable matrix
Ki ← Ki,1 + FiHi

end for

The decision logic under a fault-free damper or a damper stuck in the i-th VAV is then
simply given by ∣∣∣eTn,iri (k)

∣∣∣ < thi for fault-free mode∣∣∣eTn,iri (k)
∣∣∣ ≥ thi for faulty case

where thi is a threshold which, when exceeded, indicates the occurrence of a damper stuck
and en,i is the i-th unit vector (i = 1, ..., n) of the standard basis of the n-dimensional
Euclidian space.

2. Estimation of the damper stuck fault

The above UIRGs scheme performs detection and isolation of VAV damper faults, however
in order to achieve a complete diagnosis of a VAV damper stuck, an estimation of the stuck
is needed. Consider the i-th filter (3.24) where the i-th control variable ui is explicitly
exhibited:

zi (k + 1) = Fizi (k) + TiGd (k) + Tibiui (k) +Kiy (k)
ri (k) = (In −Hi) y(k)− zi(k) (3.25)

Next, instead of the control signal ui, consider the filter (3.24) with the actual i-th input
to the plant, i.e., the actual actuator output uA,i.

ζi (k + 1) = Fiζi (k) + TiGd (k) + TibiuA,i (k) +Kiy (k)
ρi (k) = (In −Hi) y(k)− ζi(k) (3.26)
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3.2. Centralized Control - Faulty case

Clearly, with the true actuator output uA,i, residual ρi (k) generated by filter (3.26) is
close to zero. Note that filters (3.25), (3.26) are completely equivalent in the fault-free
case, i.e., when uA,i = ui. Under a VAV damper stuck, the stuck position is no longer
known but all signals in the second equation of filter (3.26) are available since from the
nullity of the residual ρi (k), it follows that ζi (k) = (In −Hi) y(k).

The algebraic computation leads to the estimation ûA,i of the i-th VAV damper stuck

ûA,i (k) = (Tibi)+ × {ζi (k + 1)− Fiζi (k)− TiGd(k)Kiy(k)} (3.27)

where (Tibi)+ is the pseudo inverse given by (bTi T Ti Tibi)−1bTi T
T
i . Practically, the estima-

tion of the damper stuck is triggered at least one sampling period after the fault detection
stage. If k denotes the time at which the estimation (3.27) is computed, then the fault
occurred at or before time k − 1. At time k, the damper stuck being a constant signal,
we have uA,i (k) = uA,i (k − 1) = uA,i. Then the estimation value at time k by (3.27) is
equivalently given by

ûA,i (k) = (Tibi)+ × {
[
In −Hi |−Fi (In −Hi)−Ki

] [ y(k)
y(k − 1)

]
− TiGd(k − 1)} (3.28)

Further, a demonstration of suitably designed fault estimators is presented on the six
zones benchmark building system in the next section.

Simulation Results

We consider the benchmark building shown in Figure 3.2. As discussed earlier, in this
benchmark building, every zone is equipped with the temperature sensor and the VAV box
to maintain the thermal comfort. PID Controllers are tuned for the closed loop control
of the VAV dampers to adjust the airflow rates to accommodate for the disturbances and
occupants schedule. The zone temperatures are maintained at the setpoints of 23◦C±0.5
controlling the suppply airflow rates.

For demonstration purpose, damper stuck fault is considered in zone-1. Figure 3.11
explains this damper stuck scenario. At the beginning of the third day, in zone-1, dampers
in the VAV box is considered to be stuck allowing constant supply air flow rate of 0.33kg/s,
while dampers in the VAV boxes from another zones are considered in healthy condition.
As shown in Figure 3.12, zone temperature behavior is presented. Due to damper stuck,
temperature in the first zone changes abruptly and leaves the comfort zone, while in
temperature in another zones are maintained in the thermal comfort range. As per the
formulation, Unknown Input Observer receives the information about the current zone
temperature, disturbances and the control input calculated by the MPC controller (see
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3.2. Centralized Control - Faulty case
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Figure 3.11: Damper stuck scenario for 6 zones benchmark building

Figure 3.10b). The design matrices are given in 3.29 and 3.30.

F1 =



0.1393 −0.0325 −0.0275 −0.0058 −0.0272 −0.0028
−0.0915 −0.3894 −0.0089 −0.0599 −0.0612 −0.0036
−0.0858 −0.0090 0.1397 −0.0664 −0.0052 −0.0596
−0.0065 −0.0598 −0.0663 −0.0875 −0.0035 −0.0596
−0.1451 −0.1209 −0.0087 −0.0072 0.1273 −0.0006
−0.0067 −0.0071 −0.1191 −0.1191 −0.0005 0.3868



T1 =



0.9925 −0.0489 −0.0504 0.0015 −0.0504 0.0008
−0.0489 0.0024 0.0025 −0.0001 0.0025 −0.0000
−0.0504 0.0025 0.0026 −0.0001 0.0026 −0.0000
0.0015 −0.0001 −0.0001 0.0000 −0.0001 0.0000
−0.0504 0.0025 0.0026 −0.0001 0.0026 −0.0000
0.0008 −0.0000 −0.0000 0.0000 −0.0000 0.0000





(3.29)
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Figure 3.12: Temperature profiles for 6 zones benchmark building

H1 =



0.0075 0.0489 0.0504 −0.0015 0.0504 −0.0008
0.0489 0.9976 −0.0025 0.0001 −0.0025 0.0000
0.0504 −0.0025 0.9974 0.0001 −0.0026 0.0000
−0.0015 0.0001 0.0001 1.0000 0.0001 −0.0000
0.0504 −0.0025 −0.0026 0.0001 0.9974 0.0000
−0.0008 0.0000 0.0000 −0.0000 0.0000 1.0000



K1
1 =



0.3710 0.0664 0.0598 0.0073 0.1191 0.0071
0.0664 0.3877 0.0073 0.0598 0.1191 0.0071
0.0598 0.0073 −0.1414 0.0664 0.0071 0.1191
0.0073 0.0598 0.0664 0.0875 0.0071 0.1191
0.0596 0.0596 0.0035 0.0035 −0.1289 0.0005
0.0035 0.0035 0.0596 0.0596 0.0005 −0.3868





(3.30)

where K1 = K1
1 + F1H1. Note that, subscript 1 denoted the design matrices for the

UIO concerning the VAV box in the zone-1. The residuals calculated using (3.24) and
presented in the Figure 3.13.

Value of threshold th1 is 0.5 and the fault occurrence is detected if the residual crosses
the boundaries of the threshold. As indicated in Figure 3.13, residual leaves the band
of threshold and fault can be detected easily. Also it is seen, residual for another zones

48



3.2. Centralized Control - Faulty case

Days
0 1 2 3 4 5

re
si
d
u
a
l

-0.5

0

0.5

1
Residual for Zone 1

Days
0 1 2 3 4 5

re
si
d
u
a
l

-0.5

0

0.5

1
Residual for Zone 2

Days
0 1 2 3 4 5

re
si
d
u
a
l

-0.5

0

0.5

1
Residual for Zone 3

Days
0 1 2 3 4 5

re
si
d
u
a
l

-0.5

0

0.5

1
Residual for Zone 4

Days
0 1 2 3 4 5

re
si
d
u
a
l

-0.5

0

0.5

1
Residual for Zone 5

Days
0 1 2 3 4 5

re
si
d
u
a
l

-0.5

0

0.5

1
Residual for Zone 6

Figure 3.13: Residual estimation for 6 zones benchmark building

remain unaffected and stays within the threshold limit. This plays key role in isolating
the fault. This is an advantage of designing dedicated UIOs for every actuator, hence the
isolation of fault becomes simpler. This also enables the to detect the multiple faults at
a given time.

Moreover, in order to estimate the stuck value, the detection of damper stuck plays
a key role by the formulation in (3.28). Using this simple algebraic relation, the supply
flow rate in the affected zone is calculated. This is verified for the simulation example
where ûA,1 = 0.3209kg/s. This approach is very convenient as it effectively detects and
estimates the damper stuck fault without changing the actual configuration of the closed
loop system.

3.2.2 Fault Adaptive Control Module [DYH16a]
Early fault diagnosis and the adaptive action against the fault become necessary as they
certainly prevent excessive energy consumption. Sometimes the fault adaptive actions
avoid the immediate impact of the faults retaining the occupants functional under the
fault occurrence state. The immediate corrective action against the fault prolongs the
normal building operation providing extra time for the maintenance team to engage the
rearing and servicing tasks of the faulty equipments.
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3.2. Centralized Control - Faulty case

Figure 3.14: Structure of the fault adaptive control system

Fault adaptive strategies work in twofold as: an FDD system which provides informa-
tion about the occurred faults, and a controller redesign system to adapt the control law
to the faulty mode. We have described FDD module in depth in the previous section for
the fault under consideration of the VAV type HVAC building system. Nevertheless, we
emphasize the fault adaptive method in this section for considered damper stuck fault.

Furthermore, our objective is to go beyond the mere recovery of control performance
by considering explicitly the energy consumed by the overall building as a key performance
indicator to be minimized under comfort constraints during faulty modes. We focus on
the damper stuck fault in the VAV box for which we have investigated the diagnosis
method in detail in the previous chapter. In particular, we show that by cascading an
FDD module with a suitably designed model predictive controller, tightly connected to
the FDD module, fault adaptive control to VAV damper stuck can be achieved and makes
possible the reduction of energy consumption of the building at levels that are achievable
for the faulty conditions. The model predictive controller computes in real-time the
setpoint settings of the local controllers of the AHU and VAV boxes under new constraints
adapted to the indicated faulty mode to minimize an overall predicted energy consumption
cost-functional within the thermal comfort bounds. The fault-adaptive control scheme is
illustrated on the same six zones benchmark building.

As we know, in the healthy condition, controller varies the supply air flow rate in
order to maintain the zone temperature around setpoint. In case of damper stuck, it is
no longer possible for controller to change the supply air flow rate. Hence, a corrective
action is taken by varying supply air temperature. This is illustrated in the schematic
shown in the Figure 3.14. As FDD diagnoses fault in damper and the position at which it
is stuck, the controller reconfigures to calculate required supply air temperature setpoint
for providing constant supply air flow rate through VAV.

MPC based FAC

A model predictive control problem which aims at minimizing the energy consumption
in the nominal as well as in the faulty modes of the HVAC benchmark system is now
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3.2. Centralized Control - Faulty case

Nominal mode Faulty mode : i-th VAV damper stuck
C1 Tmini ≤ Ti ≤ Tmaxi Tmini ≤ Ti ≤ Tmaxi

C2 ṁmin
i ≤ ṁi ≤ ṁmax

i
1. for the i:thVAV : ṁi = ṁstuck

i

2. for all j 6= i : ṁmin
j ≤ ṁj ≤ ṁmax

j

C3 Ts = T
(0)
s T

(0)
s − εTη ≤ Ts ≤ T (0)

s + εTη

Table 3.3: MPC constraints Reconfiguration in the faulty conditions

formulated. As the fault-adaptive control is achieved through online modification of the
constraints on the decision variables under damper stuck failures occurrence, details are
presented of these constraints and the energy cost functional.

Under the nominal and faulty modes, the system states and control variables are
subject to constraints imposed by the control performance requirements and the VAVs
damper limits.

Table 3.3 summarizes the MPC configuration when damper stuck fault occurs. Con-
straints C1 relates to the comfort bounds, C2 to the VAV dampers limits and constraints C3
to the supply air temperature. Note that in the nominal mode, the supply air-temperature
Ts is constant as required for energy-efficiency of the HVAC system but under a faulty
mode, this variable is used as a redundant control variable which is allowed to vary within
an interval centered around its nominal value, T (0)

s − εTη ≤ Ts ≤ T (0)
s + εTη, where Tη is a

constant temperature and ε is a scalar variable which is the magnitude of the relaxation of
the constraint. The constraints C2 with regards to the i-th VAV under the faulty mode is
automatically set to the stuck value ṁstuck

i by the FDD algorithm. The above constraints
are easily translated in terms of the variation signals x, u of the linearized discrete-time
model (3.2). The constrained finite-time optimal control problem at time k is formulated
as

Minimize
Uk,ζ,ε

J (Uk, xk) + ρε2

subject to
x (k + j + 1| k) = Ax (k + j| k) +Bu (k + j)

+Gd (k + j) j = 0, . . . , N − 1
xmin ≤ x (k + j| k) ≤ xmax j = 0, . . . , N − 1
umin ≤ u (k + j|k) ≤ umax j = 0, . . . , N − 1
x (k| k) = x(k)

(3.31)

where Uk = {u (k|k) , ...u (k +N − 1|k)} is the set of predicted control inputs at time k
and d̂ (k + j| k) is the predicted disturbance at time k+j . The scalar ε, the magnitude of
the relaxation of the supply air-temperature constraint, is treated as an optimization vari-
able. Under the nominal mode, ρ is set to zero in (3.31) but whenever a fault is detected
and isolated the optimization problem is adapted to the faulty mode by modifying accord-
ingly the constraints in (3.31) with ρ 6= 0. Problem (3.31) is solved repetitively at each
time k for the current measurement xk and for the corresponding mode at that time as
indicated by the FDD algorithm along with the predicted state variables{x (k + j| k)}Nj=1

and the predicted disturbances
{
d̂ (k + j| k)

}N
j=1

. Then, the corresponding optimal se-
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quence U?
k = {u? (k) , ...u? (k +N − 1)} is obtained and the first element u? (k) of this

sequence is applied to the system. The procedure is repeated at time k+ 1, based on the
new state x (k + 1) and the new information provided by the FDD. It follows naturally
from this procedure a fault-adaptive control algorithm to able to cope with damper stuck
failures.

Simulation Results

The FAC algorithm has been applied for the six zones VAV type benchmark HVAC build-
ing system from the Figure 3.2. We refer to the previous sections for detailed description
of benchmark building, its mathematical model and the numerical data used.

We use the same internal gain profiles due to the occupants in a zone and weather
temperature profile over a period of 5 days are shown in Figure 3.3. As discussed earlier,
for nominal case, the thermal comfort band is 23.5◦C ± 0.5 and the supply airflow vary
between 0.0192kg/s and 0.41kg/s with a constant supply air temperature of 26◦C. MPC
solves the problem stated in equation (3.31) over a prediction horizon of 6 hours, where
optimal setpoint values for supply airflows are computed to maintain zone temperatures
in the comfort range. As shown in Figure 3.11, the damper in the VAV box of zone 1 is
considered to be stuck at the beginning of the third day and the fault diagnosis module
helps us to detect and to estimate the stuck value which is 0.33kg/s. This triggers the
constraints modification for the supply airflow in zone 1 and the supply air-temperature
from the AHU.

It is worth observing that the supply air-temperature is modified in a way such that
that the temperature in zone 1 is effectively maintained within the comfort band whereas
the supply airflow setpoints in other zones are automatically adjusted accordingly to this
new supply air-temperature without affecting the thermal comfort in the respective zones,
presented in the Figure 3.15, 3.16 and 3.17. This test shows that the fault-adaptive control
algorithm successfully compensates for VAV damper stuck failures with the benefits of
minimizing the energy consumption of the HVAC system under such failure modes.
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Figure 3.15: Zone temperatures after FAC implementation
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Figure 3.16: Input Supply airflow rates in the faulty case
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Figure 3.17: Supply air temperature after FAC implementation

3.2.3 Concluding Remarks
This work presents a potential approach to detect and diagnose a damper stucks in VAV
boxes in the HVAC building systems. The novelty in the proposed approach is the design
of the dedicated bank of unknown input residual generators for fault detection/isolation.
This detection step is followed by the suitably designed fault estimators that evaluates
the damper stuck value.

Furthermore, we also present a novel fault-adaptive control method for the VAV
damper stuck fault. The adaptive control module receives the information from the pro-
posed fault diagnosis module. The key feature of this fault-adaptive method is to modify
the constraints online in the nominal MPC controller. Though, in the general MPC-based
fault-adaptive control, it is not a trivial problem to know how to change the problem for-
mulation under the occurrence of faults, the constraint modification performed here under
VAV damper stuck was made possible thanks to the designed fault estimation filters from
the fault diagnosis module. Finally, the simulation results are provided for the six zone
building benchmark building.
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Chapter 4

Distributed Control and Estimation

A building can be a complicated system depending on the building topology, its use and
the interconnections among the zones. Normally, a centralized controller for the whole
building system results in an optimal energy performance maintaining the thermal com-
fort requirements. To obtain the optimal performance, it is necessary for the centralized
controller to receive the building-wide sensor information and communicate the control
signals back to the actuators installed in the building-wide network. Specially, if the con-
troller is based on the MPC, the mathematical model with respect to the entire building
structure must be provided a priori. However, in the case of large scale buildings these
requirements to implement the centralized control may appear as a great challenge due to
communication network failures, difficulty in deriving the centralized mathematical model,
isolation during fault occurrences. Hence, in the recent years the theory of decentralized
control and distributed control for large-scale HVAC building systems have attracted con-
siderable attention of many researchers. The basic notion behind the decentralized and
distributed control is to manage the subsystem performance instead of considering the
overall system. In the decentralized control framework, the individual controllers main-
tain the respective subsystems performance neglecting the interaction information among
the subsystems. If these subsystems interactions are significant and largely contribute in
the overall building behavior then the decentralized control may result in suboptimal per-
formance. But unlike decentralized control, in the distributed control, the communication
between the subsystem controllers may ensure the optimal performance considering the
interactions between the subsystems. This distributed control framework offers various
advantages e.g. possibility of isolation of the subsystem in case of faulty events, mod-
ular maintenance scheme or plugging new subsystem in the existing distributed control
framework etc..

Due to the obvious advantages of the distributed control framework, the Energy IN
TIME project considers the importance of the scalability of the proposed energy efficient
solutions given under the centralized schemes. In this chapter, we propose methodologies
of distributed model predictive control (DMPC) for the benchmark HVAC building struc-
tures. A detailed discussion about the mathematical formulation of the proposed methods
with their validation on the simulator platforms are presented in the next sections.
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4.1. Optimality Conditions Decomposition based Distributed Model Predictive Control

4.1 Optimality Conditions Decomposition based Dis-
tributed Model Predictive Control

4.1.1 Introduction
We consider the CMPC problem for the targeted large scale system is available. This
CMPC comprises the knowledge of control objectives as cost function, system dynamics
as equality constraints and physical limitations on actuators as bounds on the variables.
We propose an approach of distributed model predictive control that addresses the system
decomposition and the coordination strategy between subsystem controller in two distinct
steps. In the first step of system decomposition into subsystems, we formulate the Karush-
Kuhn-Tucker (KKT) system of the CMPC. This KKT system is carefully analyzed and
modified in an efficient manner to obtain separable subsystems. The resulting separable
KKT subsystems allow to obtain the structure of the decomposed subproblems. The
degree of modification in the original KKT system will define the convergence of the
decomposed solution to the centralized solution. In second step, the coordination between
the subsystem controllers is proposed based on the Optimality Condition Decomposition
method. Finally, the proposed approach is illustrated using a benchmark HVAC building
case study.

4.1.2 Motivation
We consider a discrete-time state space model representation for the building system as,

x(k + 1) = Ax(k) +Bu(k) +Gd(k) (4.1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and d(k) ∈ Rnd are the states, inputs and disturbances of
the system (recall that there are as many input variables as state variables for the zones,
as nx = nu = n). Let the formulation of the optimization problem for model predictive
control for the above large scale system be,

minimize
Uk

J (Uk, x(k))
subject to
x (k + j + 1| k) = Ax (k + j| k) +Bu (k + j|k)

+Gd (k + j|k) j = 0, . . . , N − 1
xmin ≤ x (k + j| k) ≤ xmax j = 0, . . . , N − 1
umin ≤ u (k + j|k) ≤ umax j = 0, . . . , N − 1
x (k| k) = x(k)

(4.2)

recalling, Uk = {u(k|k), . . . ,u(k + N − 1|k)} is the predicted control input sequence
while x(k) is the current measured state, {d(k|k), . . . , d(k + N − 1|k)} is the forecast of
the disturbances and N is the prediction horizon. Although this centralized systemwide
MPC achieves the best attainable solution, it may suffer from some limitations. Computa-
tional burden and inadequate reliability are major drawbacks of centralized MPC [Rev13].
Hence, as mentioned in the introduction, these drawbacks motivate different schemes for
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distributed control architectures. The class of proposed distributed architectures assume
two distinct stages: i) decomposition of a large scale system into the subsystems ii) the
coordination scheme between subsystem controllers. We propose novel approaches to ad-
dress both the stages and obtain a innovative distributed model predictive control scheme.

The DMPC scheme proposed in this work is motivated by the decomposition technique
for large scale nonlinear programming introduced by Conejo [Con06]. The basic idea
behind this technique is based on the decomposition of optimality conditions of the original
CMPC problem. Let us rewrite problem (4.2) into an equivalent general mathematical
form to avoid cumbersome notations and simplify our systemwide CMPC presentation,

F : Minimize
z

f(z)
subject to

h(z) = 0
zmin ≤ z ≤ zmax

(4.3)

where z ∈ R2Nn is the vector of the optimization variables, f is the objective function
and the h = [h1, ..., hn]T are equality constraints representing the dynamics of the system.
To be more specific in translating (4.2) into (4.3), the optimization variables are defined
as:

z =



u(0|0)
x(1|0)
u(1|0)
x(2|0)

...
u(N − 1|0)
x(N |0)


(4.4)

for more concise notation, k = 0 is the present time and u(k+j|k) denotes the predicition
of the signal u for k + j at time k. The bounds on the control variables and states
translates as:

zmin = 1N ⊗
[
umin

xmin

]

zmax = 1N ⊗
[
umax

xmax

] (4.5)

The system dynamics is described by the equality constraint as:

h(z) = Az − B = 0 (4.6)
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A =


B −In 0 0 0 0
0 A B −In 0 0

. . .
0 0 0 0A B −In



B =


Ax(0|0)

0
...
0

+


G 0 0 0
0 G 0 0

. . .
0 0 0 G




d(0|0)
d(1|0)

...
d(N − 1|0)



(4.7)

where 1N is vector of dimension N whose all components are equal to 1, the symbol
⊗ represent the Kronecker product. The vector B is known considering the forecast of
disturbances is available. We assume the following for the problem (4.3):
Assumption 1 The cost function f(z) is convex and twice differentiable
Assumption 2 The constraints functions h(z) (h1, . . . , hn) are linear.

Now, we aim at deriving the distributed control problems from the given centralized
problem in (4.3). To achieve this objective, we identify the following challenges: i) Decom-
position of the vector z into p-subvectors as z̃i (i = 1, 2, .., p) ii) Defining the coordination
between subproblems based on the coupling information.

4.1.3 System decomposition
The Lagrange function for the problem (4.3) with Lagrange multipliers λ (λ1, ..., λn) reads
as,

L(z) = f(z) +
n∑
j=1

λjhj(z) (4.8)

The bounds on the variables will not affect the decomposition so we ignore the associated
inequalities. Thank to this Lagrangian, we define the KKT matrix by [Boy09],

KKT =
(
∇2
zL ∇zλL

∇T
zλL 0

)
(4.9)

where its block-matrices are described in the next subsection. The proposed system
decomposition method exploits the special structures in the KKT (Karush-Kuhn-Tucker)
matrix. Essentially, the KKT matrix system is transformed into block-diagonal structure.
These decomposed block structures help to identify the partition of the given vector z.
This KKT matrix can be computed by various methods, it essentially represents the
optimality conditions. Let us denote the KKT matrix as KKTcent for the centralized
optimization problem (4.3):

KKTcent = KKT =
(
∇2
zL ∇zλL

∇T
zλL 0

)
(4.10)
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Significance of KKT matrix in the decomposition

A closed look at the KKT matrix from equation (4.10) reveals crucial information about
the system structure. Due to the symmetric nature of the matrix, two distinct significant
blocks are identified as ∇2

zL and ∇zλL. Their significance is given below:

1. Hessian of the Lagrangian Block w.r.t. z (∇2
zL)

The upper triangular block from the KKT matrix (4.10) is the Hessian of Lagrange
function with respect to variable z, i.e. (∇2

zL). This block contains information
about the separability of the cost function with respect to the variable z. If ∇2

zL
is in block-diagonal form, then the cost function is separable. In that case, every
sub-block represents the structure of cost function for the decomposed subproblems.

2. Sensitivity matrix for the dynamics of the system (∇zλL)

The notation (∇zλL) denotes the hessian of L with respect to the vector
(
z
λ

)
. This

matrix represents the sensitivity of the system dynamics with respect to vector z
∇z1h1(z) . . . ∇z1hn(z)

... . . . ...
∇znh1(z) . . . ∇znhn(z)

 (4.11)

The off-diagonal coefficients in this matrix represent the degree of coupling between
the original components of vector z. This block holds the structural information
about the system dynamics and plays a key role in achieving the distributed struc-
ture. For building applications, this block is sparse that makes it convenient to
identify the group of variables that share strong interactions.

Formulating KKT matrix

The KKT matrix reveals the significant system structure which is exploited to derive the
distributed structure. The standard ways to formulate this KKT matrix are: i) using
developments in the primal dual interior point method or ii) gradient based approach
[Boy09]. Both procedures are explained briefly in the following.

1. Primal-Dual Approach
Let us reconsider a general optimization problem (4.3) and its Lagrange function
(4.8), where z and λ are primal and dual variables, respectively. We assume the
problem is strictly feasible, then the KKT optimality conditions are written as,

∇L(z∗, λ∗) = ∇f(z∗) + λ∗T∇h(z∗) = 0 (4.12)
h(z∗) = 0 (4.13)

The above set of KKT conditions can be solved for (2Nn) variables with to (2Nn)
nonlinear equations. Interior point method solves the equation (4.3) or KKT con-
ditions (4.12) and (4.13) by applying the iterative Newton’s method [Boy09]. This
procedure seeks the search direction for both primal and dual variables. Hence,
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it is termed as Primal-Dual Interior Point Method. Nevertheless, the hierarchical
procedure is described here to obtain KKT system as follows. Let us define the
residual for the given iteration as,

r(z, λ) =
(
rdual
rprim

)
=
(
∇f(z) + λT∇h(z)

h(z)

)
(4.14)

where rdual is dual residual, rprim is primal residual. Consider residual r(y) where
y = (z, λ) with search direction ∇r(y), then a Newton’s step ∆y = (∆z,∆λ) is
characterized by the linear equation

r(y + ∆y) = r(y) +∇r(y)∆y (4.15)

Now from (4.14) and (4.15) we obtain(
∇2f(z) + λT∇2h(z) ∇h(z)

∇h(z)T 0

)(
∆z
∆λ

)
= −

(
rdual
rprim

)
(4.16)

The values of primal and dual search directions depend on feasible initial values
of z and λ. Note that Newton’s method can be extended in the case where the
initial point is not feasible. Observe that the matrix in the left hand side of (4.16)
is actually the KKT matrix.

2. Gradient Descent based Approach
An alternative approach to obtain the KKT matrix is based on the evaluation of
gradient descent of Lagrange function (4.8). Let us reconsider the original problem
(4.3) and its Lagrange function (4.8). We rewrite the first order optimality condition
for Lagrange function at optimal point (y∗) at the given iteration of the gradient
descent approach using the same notation y = (z, λ),

∇L(y∗) = 0 (4.17)

If y−1 is an initial feasible value, a step of gradient descent in the direction ∇2L(y)
is

y − y−1 = ∆y = −(∇2L(y))−1∇L(y) (4.18)

Substituting y = (z, λ) and ∆y = (∆z,∆λ) into (4.18) leads to,
(
∇2
zL ∇zλL

∇T
zλL 0

)(
∆z
∆λ

)
= −

(
∇zL
∇λL

)
(4.19)

The expansion of the above equation system (4.19) with the original Lagrange func-
tion from equation (4.8) gives the same result as the KKT system from equation
(4.16). Therefore, the system given in (4.16) and (4.19) are equivalent.

Starting from the centralized KKT matrix (KKTcent) in (4.10), it is always possible to
transform it into the following equivalent form
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KKT cent ∼



KKT1 ∗ . . . ∗
∗ KKT2 . . . ∗
... ... ... ...
... ... ... ...
∗ ∗ . . . ∗
∗ ∗ . . . KKTp


(4.20)

where the symbol ∼ stands for equivalent. By the very transformation of KKTcent into
the form (4.20), it naturally appears, in the transformed matrix, p KKT block-matrices
on the diagonal. These KKT block matrices KKTi (i = 1, . . . , p) may be viewed as those
of some p subsystems (S1, S2, . . . , Sp) composing the overall system. The (*) in (4.20)
denotes sparse block matrices which bear the interaction between the subsystems. If
these sparse block matrices are identically zero matrices then the KKTcent reduces to the
following form

KKT dec =



KKT1 0 . . . 0
0 KKT2 . . .

...
... ... ... ...
... ... ... ...
... . . . KKTp−1 0
0 0 . . . KKTp


(4.21)

This KKT system (4.21) is regarded as a decentralized structure. Looking closely at
(4.20), this equivalent centralized form may be viewed also as a distributed structure in
which p subsystems are clearly exhibited with the interactions between these subsystems
through the *-blocks. For this reason, we denote this matrix in (4.20) as KKTdist. Now
we aim at deriving practically the KKTdist from KKT cent.

Transformation of KKTcent into KKTdist

It is worth to note that transforming the centralized KKT system into a distributed
KKT system achieves the goal of decomposing the problem (4.2) on the control level as
well as on the dynamics/constraints level. In the literature, various methods describe
the transformation of a symmetric matrix into block-diagonal matrix form. For exam-
ple, Dulmage-Mendelsohn [PF90] technique or Reachability matrix techniques [Sil91] are
efficient methods in bipartite graph theory. But due to the large size of KKT matrix
resulting from MPC problem (4.2), the complexity of bipartite graph methods increases
significantly. Moreover, for computational purposes, these methods replace non zeros ma-
trix coefficients by ones and transform the KKT matrix into an equivalent binary matrix.
This may undermine the coupling information between the variables in the KKT system.
The nested ε decomposition method could also be used [Sil91]. This method is based
on the graph theory and is very popular in the matrix decomposition literature. In this
method, matrix elements that are less than ε are replaced by zeros. Then, the modified
matrix is reordered to obtain a block diagonal form. Often, this procedure is carried out
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Figure 4.1: Reordering with Sparse Reverse Cuthill-McKee Algorithm

iteratively by augmenting ε for every iteration till the block diagonal form is achieved.
Though this method seems promising, it compromises the coupling information linking
system variables due to elimination of some matrix coefficients.

To avoid the loss of information, it is advised to reorder the original KKT matrix into
the block-diagonal structure. In this paper, we use the Sparse Reverse Cuthill-McKee
(CM) ordering algorithm [AL81]. This algorithm permutes the rows/columns of sparse
symmetric matrix to result in a narrow bandwidth band matrix. With this algorithm, it
is possible to extract overlapping block diagonal matrices from the KKT matrix. This
algorithm is illustrated with an example as shown in Figure 4.1, where M is the sparse
symmetric matrix and p is the permutation of rows/columns by sparse reverse Cuthill-
McKee method.

Algorithm 2 summarizes the approach of decomposition of the large-scale system into
subsystems.

Algorithm 2 System decomposition based on KKT matrix
Input Data: { h (h1, . . . , hn); z0 (z0

1 , . . . , z
0
2n);f(z) }

Result :z̃i (i = 1, . . . , p)

1. Formulate KKTcent matrix for F (z)

2. Transform KKTcent system into KKT dist using sparse reverse CM methods

3. Identify separable blocks from modified KKT dist matrix

4. Determine the sub-vectors z̃i (i = 1, . . . , p) based on the identified separable blocks

4.1.4 Optimality Condition Decomposition
With the provided system decomposition method, one can successfully partition a large-
scale system into p-subsystems. Now, raises the issue of synthesizing the controllers for the
identified p-subsystems and their coordination. The main idea and tool used to address
this issue is an optimization procedure suggested by Conejo. This approach is based
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on the so-called optimality condition decomposition which can be viewed as a modified
Lagrangian relaxation.

Thanks to the decomposition of z into p-subvectors z̃ = [z̃T1 , z̃T2 , . . . , z̃Tp ]T , the central-
ized problem (4.3) can be written explicitly

F : Minimize
z̃1,z̃2,...,z̃p

f(z̃1, z̃2, . . . , z̃p)
subject to

h(z̃1, z̃2, . . . , z̃p) = 0
z̃mini ≤ z̃i ≤ z̃maxi (i = 1, 2, . . . , p)

(4.22)

Since the constraints h(z̃1, z̃2, . . . , z̃p) = 0 is actually is the overall system dynamics, it
naturally decomposes into p constraints describing the dynamics of the p subsystems
Si (i = 1, 2, . . . , p) and how they interact with the other subsystems Sj (j 6= i) (j =
1, 2, . . . , p).

h(z̃1, z̃2, . . . , z̃p) = 0⇔


h1(z̃1, z̃2, . . . , z̃p) = 0
...
hp(z̃1, z̃2, . . . , z̃p) = 0

(4.23)

Now, problem (4.22) reads as

F : Minimize
z̃1,z̃2,...,z̃p

f(z̃1, z̃2, . . . , z̃p)
subject to

h1(z̃1, z̃2, . . . , z̃p) = 0
...
hp(z̃1, z̃2, . . . , z̃p) = 0
z̃mini ≤ z̃i ≤ z̃maxi (i = 1, 2, . . . , p)

(4.24)

These p constraints hi (i = 1, 2, . . . , p) are actually coupling constraints that if they
were removed, the resulting optimization problem would be easier to solve. The iterative
procedure proposed by Conejo towards solving problem (4.24) known as the Optimality
Condition Decomposition (OCD), is to enforce "some separable approximation" for both
f and hi (i = 1, 2, . . . , p) by fixing some of the variables in these functions to their last
computed values (indicated by overlining) to obtain the following p subproblems solved
in parallel:

Fi : Minimize
z̃i

{
f(¯̃z1, . . . , ¯̃zi−1, z̃i, ¯̃zi+1, . . . , ¯̃zp)

+
p∑
j=1
j 6=i

λ̄jhj(¯̃z1, . . . , ¯̃zi−1, z̃i, ¯̃zi+1, . . . , ¯̃zp)
}

(4.25)

subject to
hi(¯̃z1, . . . , ¯̃zi−1, z̃i, ¯̃zi+1, . . . , ¯̃zp) = 0
zmini ≤ z̃i ≤ zmaxi (i = 1, 2, . . . , p)
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In (4.25), λ̄j (j 6= i, j = 1, 2, . . . , p) denotes the dual variables (Lagrange multipliers)
associated to the constraint hj and fixed at its last computed value. Note that the
procedure looks like Lagrangian relaxation, but it has the computational advantage to
perform a single iteration for each subproblem before updating the variables (¯̃z1, . . . , ¯̃zp).
The benefits of this formulation rely in removing the coupling in the constraints from the
original large-scale problem. We present the detailed steps of the Algorithm 3.

Algorithm 3 Algorithm for Distributed control architecture based on Optimality Con-
dition Decomposition
Initial Data: f , zmax,zmax,ĥi, ¯̃zi, z̃i, (i = 1, . . . , p)
Result : z̃∗

1. Solve optimization problems given in (4.25) and obtain search directions ∆z̃i and
∆λi for the given iteration

2. Update ¯̃zi ← ¯̃zi+ ∆z̃i; λ̄i ← λ̄i+ ∆λi (i = 1, . . . , p)

3. These updated information is broadcasted on the network

4. Stop if variables do not change significantly in two consecutive iterations, otherwise
continue from Step 1

5. Implement final z̃∗ ← ¯̃zi on the system

In order to state the next result, let z∗ denotes the optimal solution of centralized
problem (4.2). For this optimal point, it should hold that:

H.1 The function f and the constraints h have second derivatives in an open set contain-
ing z∗.
H.2 The Jacobian of the constraints ∇h has full row rank at z∗
H.3 The matrix (4.21), KKTdec, is non-singular at the optimal point z∗
The convergence of the distributed control solution to the centralized optimal solution is
given by following proposition,

Proposition 1 Under the above assumptions (H.1, H.2 and H.3), if at the optimal
point at z∗ it holds that

ρ∗ = ρ(I − (KKTdec)−1KKTdist) < 1 (4.26)

then the procedure used in the Algorithm 3 converge locally to z∗ with linear rate at least
equal to ρ∗.

Proof 1 see Conejo [Con06]
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Illustrative Example

An example to illustrate the proposed approach for better understanding is introduced.
Let us consider the following optimization problem

Minimize
z1,z2

−(20z1 + 16z2 − 2z2
1 − z2

2)
subject to z2

1 + z2
2 = 12.5572

z1 + z2 = 5
(4.27)

The centralized solution of the problem is,

z∗ =
(
z∗1
z∗2

)
=
(

2.33
2.66

)
(4.28)

By comparing (4.28) with (4.3),

f(z) = −(20z1 + 16z2 − 2z2
1 − z2

2) (4.29)

h(z) =
(
z2

1 + z2
2 − 12.5572

z1 + z2 − 5

)
= 0 (4.30)

and by applying Algorithm (2), the KKT system partition is graphically represented in
the Figure 4.2.

Figure 4.2: Reordering and partitioning of KKT matrix for Illustrative Example

The following subproblems are formulated,

minimize
z1

−(20z1 + 16z̄2 − 2z2
1 − z̄2

2) + λ̄2(z1 + z̄2 − 5)
subject to z2

1 + z̄2
2 = 12.5572

(4.31)

minimize
z2

−(20z̄1 + 16z2 − 2z̄2
1 − z2

2) + λ̄1(z̄2
1 + z2

2 − 12.5572)
subject to z̄1 + z2 = 5

(4.32)

where z̄i, λ̄i (i = 1, 2) are initial feasible values. The subproblems (4.31) and (4.32) are
solved using available numerical solvers e.g. interior point method. The solution of the
subproblems is as follows,(

z∗1
λ∗1

)
=
(

2.33
10.66

) (
z∗2
λ∗2

)
=
(

2.66
1.7

)
(4.33)
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The second order derivative of the constraint h (h1, h2) is null matrix which leads to the
optimal solution of subproblems is identical as optimal solution of centralized problem.

4.1.5 Simulation Results
In this section, we demonstrate the proposed approach on the complex building system
of 6-zones as shown in the Figure 3.2. Each zone is equipped with a temperature sensor,
a Fan Coil Unit (FCU) to supply airflow and a return air plenum. The return air plenum
recirculates the fraction of the return air to the FCU. The extensive details about working
principles of FCU unit are explained in Chapter 2. FCU controls the supply airflow
into the zones to maintain the zone temperatures at the setpoint. The supply airflow
temperatures are manipulated in the heating coil that is air-to-water heat exchanger (see
Figure 2.5). A supply fan in the FCU units maintain the constant supply airflow into the
zones. The heating coil is the energy consuming equipment in the FCU unit. We focus
to formulate the optimization problem in the MPC to minimize the energy consumed
by heating coil while maintaining the thermal comfort in the zones. The heat exchange
between the zones can be described as the coupling between the subsystems.

We initially define the CMPC problem, followed by the derivation of its KKT matrix.
Then, with appropriate matrix transformation we modify this KKT matrix into block
diagonal form. Finally, we extract the groups of variables from the modified KKT matrix
to formulate the DMPC problems. The efficiency of this approach is validated with the
implementation results of the extracted DMPC problems and its comparison with the
centralized control performance.

CMPC Formulation

Mathematical model and cost function formulation are the requisites to implement the
model predictive control. In this section we recall the centralized model predictive control
problem described in detail in Chapter 2 referring to the mathematical model details
presented in Chapter 1.

1. Mathematical Model
The system dynamics for the above benchmark building is based on the thermal
balance equation of the zones. It is very straightforward to represent a discrete-
time state space model for the six zones FCU type HVAC building system from
the thorough analysis given in Section 2.3. The A, B and G matrices of the model
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(2.19) of this benchmark building are:

A =



0.5266 0.0664 0.0598 0.0073 0.0596 0.0035
0.0664 0.5266 0.0073 0.0598 0.0596 0.0035
0.0598 0.0073 0.5266 0.0664 0.0035 0.0596
0.0073 0.0598 0.0664 0.5266 0.0035 0.0596
0.1191 0.1191 0.0071 0.0071 0.4702 0.0005
0.0071 0.0071 0.1191 0.1191 0.0005 0.4702



B =



3.5458 0.1935 0.1809 0.0137 0.1805 0.0067
0.1935 3.5458 0.0137 0.1809 0.1805 0.0067
0.1809 0.0137 3.5458 0.1935 0.0067 0.1805
0.0137 0.1809 0.1935 3.5458 0.0067 0.1805
0.3611 0.3611 0.0134 0.0134 3.3715 0.0007
0.0134 0.0134 0.3611 0.3611 0.0007 3.3715



G =



0.2638 0.9362 0.0511 0.0478 0.0036 0.0477 0.0018 0.0131
0.2638 0.0511 0.9362 0.0036 0.0478 0.0477 0.0018 0.0131
0.2638 0.0478 0.0036 0.9362 0.0511 0.0018 0.0477 0.0131
0.2638 0.0036 0.0478 0.0511 0.9362 0.0018 0.0477 0.0131
0.2638 0.0953 0.0953 0.0035 0.0035 0.8902 0.0002 0.0131
0.2638 0.0035 0.0035 0.0953 0.0953 0.0002 0.8902 0.0131



(4.34)

2. Formulation of the optimization problem
The control objectives is to minimize the consumed energy by the building with
the constraints of keeping thermal comfort in the zones. Thanks to the particular
control structure of the FCU units, the energy minimizing cost Je (3.9) has stage
costs given by

lk(u(k)) = α1Tnu(k) (k = 0, 1, . . . , N − 1) (4.35)
where α is a constant and 1Tn is the row vector of dimension n whose components
are all equal to 1. The control sequence

u0 =


u(0|0)
u(1|0)

...
u(N − 1|0)

 (4.36)

can be expressed as u0 = Ez using the padding matrix

E =


I 0 0 . . . 0 0
0 0 I . . . 0 0

. . .
0 0 . . . 0 I 0

 (4.37)

so that the cost function reads simply as

Je = f(z) = cT z (4.38)
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where cT = 1Tn(N−1)E and 1Tn(N−1) = [1Tn , 1Tn , . . . , 1Tn ]︸ ︷︷ ︸
N−1

.

F : Minimize
z

f(z)
subject to

h(z) = Az − B = 0
zmin ≤ z ≤ zmax

(4.39)

where the matrix A and vector B are given by (4.7). From this formulation, the KKT
matrix is given by,

KKT =
(
H AT

A 0

)
(4.40)

where H is the hessian matrix of f(z) which is here the zero matrix of appropriate
dimension. With regards to the coupling dynamics of the system, it is sufficient to look
at this KKT matrix for an horizon N = 2 i.e.

KKT =



H 0 BT 0
−ITn AT

0 H 0 BT

0 −ITn
B −In 0 0 0 0
0 A B − In 0 0 0


(4.41)

Implementation of DMPC based on optimality Conditions Decomposition

We can write vector z explicitly as:

z =


u(0|0)
x(1|0)
u(1|0)
x(2|0)

 (4.42)

where,

u(0|0) =



u1(0|0)
u2(0|0)
u3(0|0)
u4(0|0)
u5(0|0)
u6(0|0)


u(1|0) =



u1(1|0)
u2(1|0)
u3(1|0)
u4(1|0)
u5(1|0)
u6(1|0)



x(1|0) =



x1(1|0)
x2(1|0)
x3(1|0)
x4(1|0)
x5(1|0)
u6(1|0)


x(2|0) =



x1(2|0)
x2(2|0)
x3(2|0)
x4(2|0)
x5(2|0)
x6(2|0)



(4.43)
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Now, we transform the KKT matrix from (4.41) using Sparse Reverse Cuthill- McKee
(CM) ordering algorithm giving two separable blocks. These blocks provides the following
partitions as:

z̃1 =



u1(0|0)
x1(1|0)
u2(0|0)
x2(1|0)
u5(0|0)
x5(1|0)
u1(1|0)
x1(2|0)
u2(1|0)
x2(2|0)
u5(1|0)
x5(2|0)



z̃2 =



u3(0|0)
x3(1|0)
u4(0|0)
x4(1|0)
u6(0|0)
x6(1|0)
u3(1|0)
x3(2|0)
u4(1|0)
x4(2|0)
u6(1|0)
x6(2|0)



(4.44)

To implement the distributed model predictive controllers for these two identified
subsystems, the prediction horizon is N=24 hours. We have implemented the algorithm
of distributed control structure given in Algorithm 3. The simulation results for the zone
temperatures and supply airflow temperatures are shown in Figure 4.3 and 4.4 respectively.

Figure 4.3 shows the temperature in the three zones over five working days period. The
zone temperatures and the control inputs for zone 1, 2 and 5 are similar to that of zone
3, 4 and 6 respectively. Hence, to avoid repetition, we have shown the zone temperatures
and supply air temperatures for zone 1, 2 and 5. Thermal comfort is maintained between
23◦C±0.5 while occupants are present in the building. The corresponding control actions
are presented in Figure 4.4 showing the supply airflow temperature setpoint trajectories
that are implemented by the heating coils in the FCUs.
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Figure 4.3: Zone temperature responses for 3 zones

Comparative analysis

We compare the performance of the proposed DMPC algorithm with the decentralized
and centralized approaches. The CMPC problem for proposed benchmark building can
be implemented by solving the centralized problem (4.2). It can be clearly seen that, in
CMPC, if the number of zones increases, the problem complexity and computational load
increases exponentially. On the other hand, decentralized model predictive control can
be applied by considering no communication between subsystem controllers. Also, the
couplings between subsystems are ignored. This obviously deteriorates the performance
with respect to DMPC and CMPC and results comparatively consuming more energy.
The solution for centralized architecture and the proposed distributed architecture are
very close as stated in proposition 1. Energy consumed by the system over 5 days is
compared in Figure 4.5 and at the end of the fifth working day, total energy consumption
is states in Table 4.1.
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Figure 4.4: Supply Air Temperatures for 3 zones

4.1.6 Concluding Remarks
In this section, a new approach of DMPC is proposed that realized in two steps. In first
step, we decompose the system into subsystems by partitioning the KKT matrix obtained
from the CMPC problem. In second step, the design of subsystem controllers and their
coordination strategy are established using the Optimality Conditions Decomposition
introduced by Conejo. Finally, this proposed control architecture is applied to the six-
zones benchmark building. The comparison between the proposed strategy, decentralized
control and centralized control is analyzed.
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Figure 4.5: Energy Consumption Comparison

Strategy Centralized Decentralized Distributed
Energy Consumed 181.7959 kW 190.8579 kW 181.7527 kW

Table 4.1: Comparitive analysis- Energy Consumption

4.2 Sensitivity Based Distributed Model Predictive
Control

4.2.1 Introduction
In the previous section, we have proposed an approach to the distributed model predictive
control methodology assuming the centralized MPC problem is available. To formulate the
centralized MPC problem, overall system dynamics and systemwide cost function are the
necessary requisites. In the literature, the possible presented distributed control methods
requires the overall system dynamics a priori. In this section, we propose: i) a method to
decompose the building system into subsystems based on the sensitivity analysis and ii)
a coordination strategy between the subsystem controllers considering the sensitivities of
the other subsystem controllers and the coupling information.
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For the illustration purpose, we consider a benchmark HVAC building system with
variable-air-volume (VAV) systems. We consider every zone is provided with a VAV box in
which a damper manipulates the airflow of supply air with the constant temperature into
the zones to maintain the thermal comfort. This supply air with constant temperature is
provided by an Air Handling Unit (AHU). We propose the DMPC approach to achieve the
same performance as centralized control architecture without compromising the thermal
comfort of the occupants.

4.2.2 System Decomposition
Here, we address the issue of a system decomposition into subsystems that principally
relies on the system dynamic behavior. Consider a building with n number of zones
where every zone has its VAV box to provide the thermal comfort for the occupants (see
Chapter 2 Section 2.2 for more details of the VAV type HVAC system). For each zone
i, (i = 1, ..., n), we denote the temperature of the zone by Ti, the mass flow rate at the
output of the i-th VAV box by ṁi and the supply air temperature by Ts. Then, the first
law of thermodynamics applied to each zone is (as presented in (2.3))

Ci
dTi
dt

= ṁicp (Ts − Ti)−
1

Rexti

(Ti − Toa)−
n∑

j=1,j 6=i

1
Rij

(Ti − Tj) + qi (4.45)

where Ci is the thermal capacitance of zone i, Rij = Rji is the thermal resistance between
zone i and zone j and Rexti is the thermal resistance between zone i and the exterior of
the building. Toa is the outside temperature and qi is the heat flux due to occupancy and
electronic devices. The system dynamics (4.45) is linearized around the operating point
(x0, u0) and discretized with a sampling period ts. This results in:

si(xi, xj, ui) = ẋi = aixi +
n∑

j=1,j 6=i
aijxj + biui + giw + qi (4.46)

where state xi is the zone temperature Ti, input ui is the supply air flowrates ṁi and w
is the outside temperature.

We propose an approach based on the global sensitivity of the system motivated by
Sobieski [SS88]. He suggested to obtain the system sensitivity equations to evaluate the
internal couplings and system behavior related to variable changes. This approach has
been used for distributing the computing task of mathematical model design into various
engineering disciplines in the 90s, especially for the aircraft wing design problems. Here,
we extend this notion in decomposing the large-scale system into the subsystems.

Sensitivity Matrix

It is worth to note that the thermal balance equation for i-th zone as shown in (4.45)
represents the change in the zone temperature with respect to the inputs i.e. supply
flow rates (ui) (i = 1, . . . , n) and temperatures of the neighboring zones xj (j 6= i, j =
1, . . . , n). For example, the coefficients aij in (4.46) represents the sensitivity of the i-th
zone temperature with respect to j-th zone temperature. The values of the coefficients
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bi represents the sensitivity of i-th temperature zone with respect to the i-th input (ui).
Note that inputs from the neighboring zones (uj) will affect the the i-th zone temperature
through j-th zone temperature (xj). This will be accounted in the coefficient aij. We
write the sensitivity equations (4.46) for all n zones and represent them in matrix form
as follows,

Sgs =



∂s1
∂x1

∂s2
∂x1

. . . ∂sn−1
∂x1

∂sn

∂x1... ... . . . ... ...
∂s1
∂xn

∂s2
∂xn

. . . ∂sn−1
∂xn

∂sn

∂xn
∂s1
∂u1

∂s2
∂u1

. . . ∂un−1
∂u1

∂sn

∂u1... ... . . . ... ...
∂s1
∂un

∂s2
∂un

. . . ∂sn−1
∂un

∂sn

∂un


(4.47)

where the i-th column represents si (i = 1, . . . , n) denoting the thermal balance for i-th
zone. The rows represent the variables with respect to which the sensitivity is calculated.
This sensitivity matrix contains the information about the system couplings with the
states and the inputs. The following section explains the methodology to exploit this
information in the system decomposition. The off-diagonal coefficients in this block matrix
represent the degree of the sensitivity of the state variables x (x1, . . . , xn) with respect to
other state variables and inputs u (u1, . . . , un). The basic idea behind the decomposition
is to partition the matrix (4.47) into p separable blocks. Every block will represent the
group of zones representing the corresponding subsystem. The methodology of the matrix
partition ensuring the minimal loss of information is explained in detail next.

Partitioning based on sensitivity

Note that, the sensitivity matrix obtained in (4.47) is a large-scale sparse matrix. There
are various methods proposed in the literature to transform a sparse matrix into the
block diagonal form [GL96] [PF90]. In this work, we use the nested ε decomposition
method [Sil91]. This method is based on the graph theory and is very popular in the
matrix decomposition literature. In this method, matrix coefficients that are less than ε
are replaced by zeros. Then, the modified matrix is reordered to obtain a block diagonal
form. Often, this procedure is carried out iteratively by augmenting ε such that (εk < εk+1)
where k represents the iteration till the block diagonal form is achieved.

Let S εk
gs be the matrix after eliminating matrix elements less than εk at k-th interval.

This matrix S εk
gs is permuted to obtain a diagonal form S

εk
gs using existing algorithms as

e.g. reverse Cuthill-McKee algorithms [GL96]. To ensure minimal loss of the information
in the modified sensitivity matrix S

εk
gs the following condition should be verified [GL96],

%(I − (S gs)−1S
εk
gs) < 1 (4.48)

where S gs is the sensitivity matrix Sgs after applying the same permutation applied to
the S

εk
gs. % denote spectral radius of the matrix. The condition (4.48) should be verified

for each iteration. The detailed procedure of the decomposition of sensitivity matrix into
block diagonal form is stated in the Algorithm 4.
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Algorithm 4 Decomposition of global sensitivity matrix
Input Data: Sgs,εk
Result : p-subsystems

1. Replace Sgs(ij) by zero if Sgs(ij) < εk where i, j denote the number of row and
column respectively. We obtain S εk

gs .

2. Permute S εk
gs system using sparse reverse CM methods into the matrix S

εk
gs.

3. Verify the condition %(I − (S gs)−1S
εk
gs) < 1 is satisfied.

4. Identify separable blocks from S
εk
gs. If still is not trivial then augment εk to εk+1

and repeat step 1.

5. Otherwise determine the subsystems based on identified separable blocks from S εk
gs

matrix

4.2.3 Sensitivity based cooperation in DMPC
Using sensitivity analysis, we decompose the system into p-subsystems. Next, we will in-
vestigate the issue of coordination between the controllers for corresponding subsystems.
To address this issue, we introduce a sensitivity-based coordination mechanism [SM11].
This is achieved by adding the linear approximation of the objectives of the other subsys-
tems into the objective of the local controller. We represent the problem (4.2) in simplified
general mathematical form as mentioned in (4.3) recalling the definitions of variables from
(4.6).

J : minimize
z

f(z)
subject to

h(z) = Az − B = 0 (4.49)
zmin ≤ z ≤ zmax

From the subsystems derived using from the Algorithm 4, we have the p-subvectors
from the vector z as z̃1, . . . , z̃p.

Let us assume the cost function is separable with respect to the obtained partition as
given below:

f(z) = f(z̃1, z̃2, . . . , z̃p) = f1(z̃1) + f2(z̃1) + . . .+ fp(z̃p) (4.50)
The equivalent representation for the constraints is:

h(z̃1, z̃2, . . . , z̃p) = 0 ⇔


h1(z̃1, z̃2, . . . , z̃p) = 0
...
hp(z̃1, z̃2, . . . , z̃p) = 0

(4.51)

Using (4.50) and (4.51), we can represent the optimization problem in (4.49),

75



4.2. Sensitivity Based Distributed Model Predictive Control

J : minimize
z̃1,...,z̃p

p∑
i=1

fi(z̃i)

subject to 
h1(z̃1, z̃2, . . . , z̃p) = 0
...
hp(z̃1, z̃2, . . . , z̃p) = 0

(4.52)

zmin ≤ z ≤ zmax

The Lagrangian function for the above optimization problem is written as,

L = f(z) + λTh(z) (4.53)

=
p∑
i=1

fi(z̃i) + λT1 h1(z̃1, z̃2, . . . , z̃p) + . . .+ λTp hp(z̃1, z̃2, . . . , z̃p) (4.54)

From the obtained partition of vector z, we group the Lagrangian functions as:

L = {f1(z̃1) + λT1 h1(z̃1, z̃2, . . . , z̃p)}+ . . .+
[
f1(z̃1) + λTp hp(z̃1, z̃2, . . . , z̃p)

]
= ∑p

i=1 fi(z̃i) + λTi hi(z̃1, z̃2, . . . , z̃p)
(4.55)

If Li = fi(z̃i) + λTi hi(z̃1, z̃2, . . . , z̃p) for i = 1, . . . , p then (4.55) becomes:

L =
p∑
i=1

Li (4.56)

Let L̃i be defined as,

L̃i = Li +
p∑
j=1
i6=j

∂Lj
∂z̃i

(z̃i − ¯̃zi) (4.57)

This function may be viewed as the perturbation of the Lagrangian term of the i-th
subsystem Li(z̃i, λi) by the linear approximation of the Lagrangian terms of the other
subsystems. Then the first order optimality condition applied to L̃i with respect to
decision variables z̃i is,

∂L̃i
∂z̃i

= ∂Li
∂z̃i

+
p∑
j=1
i6=j

∂Lj
∂z̃i

= 0 (4.58)

We aggregate the optimality conditions for i = 1, . . . , p,
p∑
i=1

∂L̃i
∂z̃i

=
p∑
i=1

{
∂Li
∂z̃i

+
p∑
j=1
i6=j

∂Lj
∂z̃i

}
= 0 (4.59)
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Looking closely at (4.59), it appears that the optimality condition for (4.56) is equiv-
alent to that of (4.59). Writing L̃i explicitly as,

L̃i = f(z̃i) + λTi hi(z̃1, z̃2, . . . , z̃p) +
p∑
j=1
i6=j

{
∂f

∂z̃i
+

p∑
j=1
j 6=i

λ̄Tj
∂hj
∂z̃i

}
(z̃i − ¯̃zi) (4.60)

This suggests the formulation of corresponding optimization problem of the i-th subsystem
as:

Ji : Minimize
z̃i

f(z̃i) +
{
∂f

∂z̃i
+

p∑
j=1
j 6=i

λ̄Tj
∂hj
∂z̃i

}
(z̃i − ¯̃zi)

subject to
hi(¯̃z1, . . . , ¯̃zi−1, z̃i, ¯̃zi+1, ¯̃zp) = 0
zmini ≤ z̃i ≤ zmaxi (4.61)

recall, ¯̃zi (i = 1, . . . , p) are values from the previous iteration. Following algorithm sum-
marizes the proposed method:

Algorithm 5 Sensitivity based Distributed Model Predictive Algorithm
Initial Data: f , zmax,zmax,hi, ¯̃zi, z̃i, (i = 1, . . . , p)
Result : z̃∗

1. Solve optimization problems given in (4.61) and obtain search directions ∆z̃i and
∆λi for the given iteration

2. Update ¯̃zi ← ¯̃zi+ ∆z̃i and λ̄i ← λ̄i+ ∆λi, (i = 1, . . . , p)

3. These updated information is broadcasted on the network

4. Stop if variables do not change significantly in two consecutive iterations, otherwise
continue from Step 1

5. Implement final ¯̃zi on the system

In a case where f(z) is a non-separable cost function, to apply above algorithm, it
may be possible to represent f(z) as follows,

f(z) = f̄1(z̃1) + . . .+ f̄p(z̃p) + f(z̃1, z̃2, . . . , z̃p) (4.62)

where f̄i(z̃i) represents the explicit terms in f(z) that are only function of z̃i while
f(z̃1, z̃2, . . . , z̃p) represent the coupling terms in f(z). Let us write the first order ap-
proximation for this coupling term for the feasible values z̄ = (¯̃z1, ¯̃z2, . . . , ¯̃zp) as:

f(z̃1, z̃2, . . . , z̃p) = f(¯̃z1, ¯̃z2, . . . , ¯̃zp) +
∂f

∂z̃1

∣∣∣∣
z̄
(z̃1 − ¯̃z1) + . . .+

∂f

∂z̃p

∣∣∣∣
z̄
(z̃p − ¯̃zp) (4.63)
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Then,

f(z) ' f(¯̃z1, ¯̃z2, . . . , ¯̃zp)+f̄1(z̃1) +
∂f

∂z̃1

∣∣∣∣
z̄
(z̃1 − ¯̃z1)︸ ︷︷ ︸

f1(z̃1)

+ . . . . . .+f̄p(z̃p) +
∂f

∂z̃p

∣∣∣∣
z̄
(z̃p − ¯̃zp)︸ ︷︷ ︸

fp(z̃p)

(4.64)

Note that the terms f(¯̃z1, ¯̃z2, . . . , ¯̃zp) is a constant and will not affect the optimal solution.
Thus, f(z) can be approximated into separable functions as f1(z̃1), . . . , fp(z̃p).

4.2.4 Simulation Results
We describe a benchmark school building as shown in Figure 4.6 used to demonstrate the
proposed sensitivity based DMPC approach. The building has two floors with 16 zones
having a total area 648m2. The cross sectional layout for the benchmark building is shown

Figure 4.6: Typical School Building

in Figure 4.7. This benchmark building is served by the VAV based HVAC system, shown

Figure 4.7: Building Distribution: two floors with 4 classrooms each

in Figure 2.3. Each zone has a VAV terminal, temperature sensor and a return air plenum.
VAV terminal provides supply air flow to each zone in order to maintain the thermal com-
fort which is recirculated to the AHU. Please refer to the Chapter 2 where the VAV type
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of HVAC system are explained briefly. Thermal balance equations (4.46) are evaluated
for every zone in the benchmark building. The numerical data used in simulating the
case study school building is obtained from the Table 3.1. We assume that the number
of subsystems or partitions p = 2 is decided by the user. The sensitivity matrix (4.47) is
calculated and partitioned to obtain the subsystems as groups of zones. From the building
layout presented in Figure 4.7, we obtain two groups p = 2 as {1, 2, 3, 4} and {5, 6, 7, 8}.
It is worth to note that, the decomposition obtained by this method is identical to the de-
composition based in the physical properties (such as partitioning based on building floor
or architecture, etc). So, the sensitivity based system decomposition can be viewed as a
mathematical explanation of the manner of partitioning the building system dynamics.
Applying Algorithm for sensitivity based DMPC controller is simulated considering the
obtained subsystems. The occupants are present in the building from 8.00AM to 6.00PM,
the corresponding heat flux due to occupants is shown in Figure 4.8. Also, the winter
weather profile is plotted over the period of five working days. To represent the per-
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Figure 4.8: Heat Flux due to occupants and weather temperature

formance of the implemented architecture, the temperature response and corresponding
supply airflow for all the are shown in Figure 4.9 and Figure 4.10, respectively. Note that
the thermal range and actuators limits can be different for each zone and it is convenient
to define in the proposed distributed architecture. The performance of the sensitivity
based DMPC is equivalent to the CMPC framework. This is clear from the temperature
and supply airflow behavior of the respective control architectures. We also compare the
control performances with decentralized MPC architecture [Sil91]. In decentralized MPC,
local subsystem controller operates independent of the other subsystems i.e. without any
coordination or data exchange between the controllers. Also, the dynamics of the local
subsystems in decentralized control architecture completely ignores the coupling with the
other subsystems.
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Figure 4.9: Temperatures response for all the zones

To support the argument, we also compare the energy consumed by the benchmark
HVAC building over the five working days in the Figure 4.11. As, in the building system,
the coupling between the zones are effective and if ignored, it results in consuming more
energy and poor control performance.
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Figure 4.10: Supply Airflow rates for all the zones
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4.2.5 Concluding Remarks
In this section, we propose an approach that addresses two stages of DMPC for the VAV
based HVAC building system as i) the decomposition of the building system into sub-
systems and ii) the coordination between obtained subsystem controllers. The proposed
method of system decomposition uses the sensitivity matrix derived from the system dy-
namics. This sensitivity matrix contains the coupling information between the variables.
Based on this information, we have partitioned the sensitivity matrix into separable blocks
that represent the corresponding subsystems. Moreover, the second stage of defining the
coordination between the subsystems controllers is based on the notion of sensitivity of
other subsystem controllers with respect to the local controller. This is achieved by adding
a linear approximation of the objectives of other subsystems to the objective of the local
controller. The decomposition and coordination strategies are demonstrated on the VAV
type HVAC building system.

4.3 Distributed Estimation

4.3.1 Introduction
Under the Energy in TIME project, the overall building life cycle cost is minimized with
the energy efficient operation by means of economic control and fault adaptive approaches
as discussed in earlier chapters. We have demonstrated the energy efficient control method
coupled with early fault diagnosis and adaptive control to achieve the cost-effective build-
ing operation. In large-scale systems, the complexity of fault diagnosis increases exponen-
tially [FFTS09]. The number of required instrumentation and communication network
grows with the size of the system. A great amount of attention is needed to address these
issues in case of large scale HVAC building systems. In recent years, Moving Horizon
Estimation (MHE) has been an important research topic in optimal state estimation of
dynamical systems. MHE aims at estimating the states and outputs of the system with
the knowledge of the system dynamics and the past available data. There are many vari-
ations and developments in this technique presented in the literature. In this section, we
tackle MHE problem for the large-scale building applications. We propose a novel method
for distributed MHE that decomposes the centralized MHE problem into the several local
MHE problems. A coordination strategy between these local MHE problems is proposed
which is based on the coupling information in the system dynamics. This method es-
sentially relies on the partitioning of the optimality conditions of the centralized MHE
problem. We demonstrate this proposed method on the six-zones benchmark building.

4.3.2 Moving Horizon Estimation Formulation
Consider the following discrete-time state space system,

x(k + 1) = Ax(k) +Bu(k) +Gd(k) + ω(k) (4.65)
y(k) = Cx(k) + η(k)
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where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are states, inputs and outputs, respectively. The
disturbances d ∈ Rnd are known. Sensor noise is denoted by η ∈ Rny while ω represents
the uncertainty in the system dynamics. A,B, C and G are the system matrices with the
appropriate dimensions and k is discrete time instant.

The detailed MHE formulation for the above generalized state space system is pre-
sented in the following according to [RRL01]. The general form of the optimization
problem for MHE reads as follows,

minimize
X

J(X,Um, Y m)
subject to

x̂(j + 1) = Ax̂(j) +Bum(j) +Gdm(j)
j = 2, . . . , N

ym(j) = Cx̂(j)
j = 1, . . . , N

ω(1) = xm(1)− x̂(1)

(4.66)

where the uncertainty ω and the sensor noise η are considered bounded The past control
actions and output measurements over the horizon N is denoted by Um and Y m. The
estimated state sequence is denoted by X.

Um =


um(1)
um(2)

...
um(N)

 Y m =


ym(1)
ym(2)

...
ym(N)

 X =


x̂(1)
x̂(2)
...

x̂(N)

 (4.67)

where subscript m corresponds to the available data. The initial state value xm(1) is
approximately known while dm(j) (j = 1, . . . , N) denotes the available disturbance mea-
surements. The solution of optimization problem (4.66) is the sequence X from which we
consider only the last element x̂(N) discarding other elements in the solution sequence.

Formulation of cost function

The cost function is multiobjective and aims i) to minimize the residual between measured
and estimated outputs ii) to minimize the uncertainty in the system dynamics and in the
measurements and iii) to minimize the uncertainty in the initial condition x(1). The
formulation for each objective is as follows,

i) Error associated to measurement noise
Considering the past measurements (Y m ) over horizon N are available then, mini-
mizing the error between measured and estimated output over horizon N at discrete
time k,

`η =
N∑
j=1
‖ym(j)− Cx̂(j)‖2

P (4.68)

where ‖x‖2
P denotes xTPx and P is a positive definite matrix. The cost (4.68) can

be represented as,

`η = ‖P1X − (−Y m)‖2
PN

(4.69)
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where P1 and PN are give as follows:

P1 =



−C 0 0 0 0
0 −C 0 0 0

. . .
0 0 0 −C 0
0 0 0 0 −C

 PN =



P 0 0 0 0
0 P 0 0 0

. . .
0 0 0 P 0
0 0 0 0 P

 (4.70)

ii) Error associated to input disturbances
As mentioned in (4.65), disturbance ω are unknown but bounded. To minimize the
error associated to input disturbances the following objective is considered:

`ω =
N∑
j=1

{
‖x̂(j + 1)− Ax̂(j)−Bum(j)−Gd(j)‖2

Q

}
(4.71)

where the weight matrix Q associated to the disturbance uncertainty level. To
represent the above cost function in quadratic form as:

`ω = ‖Q1X −Q2‖2
QN

(4.72)

where Q1, Q2 and QN are give as follows:

Q1 =



−A In 0 0 0 0
0 −A In 0 0 0

. . .
0 0 0 −A In 0
0 0 0 0 −A In

 QN =



Q 0 0 0 0
0 Q 0 0 0

. . .
0 0 0 Q 0
0 0 0 0 Q



Q2 =



B 0 0 0 0
0 B 0 0 0

. . .
0 0 0 B 0
0 0 0 0 B

U
m +



G 0 0 0 0
0 G 0 0 0

. . .
0 0 0 G 0
0 0 0 0 G

D
m (4.73)

where In is the identity matrix of dimension n. Note Dm can be defined with the
same notion as in (4.67) Dm = [dT (1), . . . , dT (N)]T .

iii) Error associated to the unknown initial condition
To penalize the error in the initial condition,

`icx = ‖x(1)− x̂(1)‖2
R (4.74)

Transform (4.74) into the explicit form:

`icx = ‖R1X − R2‖2
RN

(4.75)
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R1 =


−In 0 0

0 0 0
... ... ...
0 0 0

 R2 =


−In

0
...
0

xm(1) (4.76)

RN =


R 0 0
0 0 0
... ... ...
0 0 0


Collecting all previous objectives, the cumulative cost function J from (4.68), (4.71)
and (4.74) can be written as,

J = `η + `ω + `icx

= ‖P1X − P2‖2
PN

+ ‖Q1X −Q2‖2
QN

+ ‖R1X − R2‖2
RN

(4.77)

Now we write the optimization problem (4.66) associated to MHE for the system (4.65)
with the cost function (4.77) as,

Φ : minimize
X

J(X)
subject to

g(X) = AX − B = 0
(4.78)

where,

A =
(
Q1
P1

)
B =

(
Q2
−Y m

)
(4.79)

The optimization problem (4.78) is a quadratic programming problem that can be effi-
ciently solved with available numerical solvers. But in case of large scale systems, the size
of the centralized MHE increases exponentially with increasing number of variables. To
deal with the curse of dimentionality, we propose a decompsoition of the centralized MHE
into different small sized MHE problems. A coordination strategy is introduced between
the decomposed MHE problems so that the distributed MHE solution is comparable with
the centralized MHE solution.

4.3.3 Distributed Moving Horizon Estimation
As in the distributed model predictive control proposed in Section 4.1, the distributed
estimation is carried out in two distinct stages as: i) System decomposition based on the
KKT matrix decomposition ii) Coordination between subsystem estimators. As described
earlier, the system decomposition into subsystems is achieved by partitioning the KKT
matrix of centralized MHE problem into p blocks. These blocks represent the correspond-
ing subsystems. To coordinate the estimators of these subsystems we use the algorithm
[Con06] based on Optimality Condition Decomposition.
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1. System Decomposition
The Lagrange function for the problem (4.78) with Lagrange multipliers λ (λ1, ..., λn)
can be written as,

L (X) = J(X) + λTg(X) (4.80)
The bounds on the variables will not affect the decomposition so we will ignore the
associated inequalities. The KKT matrix for the problem reads as [Boy09],

KKTMHE =
(
∇2
zL ∇zλL

∇T
zλL 0

)
(4.81)

With regard to system decomposition, it is sufficient to consider N=2, and the KKT
matrix becomes,

KKTMHE =

 H QT
1 PT1

Q1 0 0
P1 0 0

 =


H1 −AT CT

H2 ITn 0
−A In 0 0
C 0 0 0

 (4.82)

It is worth noting that, the cost function is separable and the interactions are
present in the constraints. Using the Algorithm 2, we decompose this KKT ma-
trix (4.82) into p block diagonal blocks. (For more details please refer to Section
4.1.3). These diagonal-blocks represent the partition of vector X into p-subvectors
as X1, X2, . . . , Xp.

2. Distributed Estimation scheme using Optimality Condition Decomposition
We obtain the distributed estimator structure from the available centralized moving
horizon estimation problem (4.78) based on the Optimality Condition Decompo-
sition method. Thanks to the system decomposition, The cost function and the
constraints can be written as:

J(X) = J(X1, X2, . . . , Xp) (4.83)

g(X) = g(X1, X2, . . . , Xp) = 0 ⇔


g1(X1, X2, . . . , Xp) = 0
...
gp(X1, X2, . . . , Xp) = 0

(4.84)

Let us write the decomposed i-th estimation as:

Φi : minimize
Xi

{
J(X̄1, . . . , X̄i−1, Xi, X̄i+1, . . . , X̄p)

+
p∑
j=1
j 6=i

λ̄Tj gj(X̄1, . . . , X̄i−1, Xi, X̄i+1, . . . , X̄p)
}

subject to
gi(X̄1, . . . , X̄i−1, Xi, X̄i+1, . . . , X̄p) = 0 (4.85)

where (X̄1, . . . , X̄k+1, . . . , X̄p) and λ̄j (j = 1, ..., p; j 6= k) represents feasible initial
values.
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The above distributed estimation problems can be solved using Algorithm 3. In this
algorithm, values for (X̄1, . . . , X̄k+1, . . . , X̄p) and λ̄j (j = 1, ..., p; j 6= k) are taken as last
iterates.

4.3.4 Simulation Results
The proposed approach is illustrated on a Fan Coil Unit (FCU) based heating, ventilation
and air conditioning (HVAC) system for a benchmark building shown in Figure 3.2. FCU
maintains the thermal comfort in the given area i.e. in a thermal zone. Essentially,
FCUs vary the supply air temperature entering in the zones based on the feedback from
temperature sensors installed in the zones. In this case study, we demonstrate that the
estimation of the temperatures are possible in a case where some of the temperature
measurements are not available. For simulation purpose, we consider the temperature
measurement for zone 2 and zone 5 are not available. The motivation of the DMHE
implementation is to estimate the unmeasured temperature values with the provided
system dynamics (2.19). The measurement data is available for the remaining temperature
sensors. The formulation of CMHE for the 6 zones building can be easily written in the
form of (4.66) for N = 24 hours. Applying Algorithm 2 to the problem (4.66), we
evaluate KKT matrix. Partitioning the KKT matrix, we obtain the subproblems with
the following two groups (p = 2) of zones as {1, 2, 5} and {3, 4, 6}. The MHE problems
are implemented for both the subsystems and the simulation results for the achieved
decomposition is given in next section. The type of occupancy considered corresponds to
an office building where the working time is from 08:00 to 18:00. The study is carried out
during the winter season at Nancy in France. The plots of heat flux due to occupancy
and weather temperature over five workings days are shown in Figure 3.3.

Firstly, we simulate the open loop responses for the all states and outputs for the overall
system under the defined input values. This establishes the base for the comparison of
the available states estimation techniques. Figure 4.12 and 4.13 represents the estimation
plots for the states and the outputs over a period of five working days. A comparative
analysis with the Kalman filter state estimation is presented alongside the available actual
data. Figure 4.12 shows the graphs for state estimation by the proposed method and
centralized MHE. This verifies the claim discussed in the convergence section 4.1.3 that
the distributed solution and centralized solutions are essentially equivalent. Finally, in
Figure 4.13, the output measurements for four zones are shown with all the available state
estimation techniques.
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Figure 4.12: State estimation for all the zones
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Figure 4.13: Output estimation for measured temperatures

4.3.5 Concluding Remarks
In this section we presented a method for DMHE for linear systems. We formulated the
CMHE by delineating the associated centralized cost function. With this formulation
of CMHE, the optimality conditions are written in order to formulate the KKT matrix.
This KKT matrix is partitioned into separable blocks where these blocks provide the
description of the subsystems. The distributed scheme of estimation is implemented using
the optimization procedure suggested by Conejo. To illustrate the proposed method,
simulation results are presented for the six-zones HVAC building system considering the
weather data for Nancy France.
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Chapter 5

Conclusions and Future Perspectives

This thesis work was performed within the Energy IN TIME project that is focused
to reduce the energy consumption in the operational stage of existing non-residential
buildings. Four questions were raised and addressed in this work: i) the issue of dynamic
modeling of building with different types of air conditioning terminal units ii) the issue of
centralized thermal comfort control of the buildings iii) concerns related to fault diagnosis
and adaptive control to the equipment failures and iv) the issue of distributed control of
large-scale buildings. This chapter describes the main original contributions in solving
the above raised issues and it gives suggestions for future work, mainly oriented towards
the improvements which might be required for real-buildings implementations.

Firstly, we have established a benchmark building prototype based on the common
VAV or FCU type HVAC units to maintain the thermal comfort inside the building.
Mathematical models for the given building frameworks based on the thermodynamic
behavior of the zones have been devised. The key feature of these models is that they
are generic enough to accommodate different building thermal dynamics. They are well
suited to test the control solutions provided in this work. For the simulation purposes,
we assume that the forecast of the weather and the occupancy profile are available a
priori. The winter weather data for the location Nancy, France is used for the simulation
purposes. The typical office type occupancy profile is used where occupants are considered
to be working from 8 AM to 6 PM with the two hours lunch break starting from 12 PM.

Next, we have addressed the issue of the economic operation of the buildings by
proposing a novel approach to model predictive control. In the literature, usually, model
predictive control for buildings considers standard quadratic objectives providing thermal
comfort to the occupants. No much work has been reported on minimization of energy
consumed by HVAC equipments. In this work, we have tackled the energy minimization
problem through an economic perspective under the constraints of thermal comfort of
the occupants. An innovative formulation of the overall control problem has been stated
with an additional objective related to the awareness of the control strategy to the HVAC
equipment maintenance. To the best of our knowledge, this formulation is new. This
objective is achieved by adding the `1 regularization term that eliminates the fluctuations
in the setpoint trajectories provided to the actuators. This reduces the wear and tear of
HVAC equipments and improves their overall life span. The proposed centralized model
predictive control strategy has been validated on the six zones benchmark building system.
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An important issue in the building operation is the occurrences of faults that may affect
the economic performance of the building operation by consuming excessive energy and
by compromising thermal comfort. One class of such faults is the actuator failures within
HVAC terminal units. In this work, we dealt with the common fault in VAV boxes that is
the damper stuck due to friction and stiction. If this damper stuck fault is not diagnosed
and corrective actions are not taken on time, then such faults may impact severely the
energy consumed and the thermal comfort in the building. We have proposed a fault
detection and isolation module based on a dedicated unknown input observers bank.
Moreover, to estimate the damper stuck value we have devised a new methodology for such
estimation. To take corrective actions, a novel fault adaptive control approach based on
model predictive control reconfiguration is designed. This fault adaptive module receives
the fault diagnosis information and the controller achieves the fault tolerance through the
constraint adaptation without compromising the thermal comfort of the occupants. The
efficiency of the proposed fault diagnosis and adaptive control modules is shown with the
simulation results on the six zones benchmark building.

The scalability of the proposed solutions under centralized control is addressed through
the design of distributed architecture. A novel approach to distributed model predictive
control is proposed based on the Optimality Condition Decomposition methodology. This
approach of distributed model predictive control is realized in two steps: i) decomposition
of the system into subsystems ii)the design of subsystem controllers and their coordina-
tion. A deep insight into the structure of KKT matrix allows us to decompose the system
into subsystems. The decomposed blocks of this KKT system represent the subproblems
in the distributed control architecture. To implement the MPC for the subsystems and
establish their coordination, we used the Optimality Condition Decomposition algorithm
introduced by Conejo. This approach is based on the modified Lagrangian relaxation that
ensures the distributed solution is equivalent to the centralized solution. Under some con-
ditions, simulation results on a FCU type HVAC building system show the potential of this
distributed control scheme at approximating closely the centralized control performance.

A second approach to distributed model predictive control based on the sensitivity
analysis is presented. As in the first DMPC proposed approach, the sensitivity-based
distributed model predictive control proceeds in two steps: i)system decomposition into
subsystems and ii) design and coordination of subsystem controllers and coordination
between the controllers. The decomposition stage uses the sensitivity information from
the system dynamics. This sensitivity information presented in the matrix form is then
partitioned into several blocks where each block denotes the structure of the corresponding
subsystems. In the second stage, the controllers for the subsystems are designed based on
the sensitivity with respect to other controllers. Simulations on the benchmark building
systems based on VAV type of HVAC systems are given to illustrate the performance of
this scheme.

Finally, an estimation technique aiming at addressing the fault detection and isolation
issues for the distributed frameworks is proposed. This distributed estimation scheme
relies on moving horizon techniques and uses the optimality condition decomposition tool
already used in distributed model predictive control. The centralized moving horizon
estimation problem formulates a KKT matrix. We use the same KKT system decom-
position technique to identify the subsystems. Once subsystems are identified, the dis-
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tributed estimation is realized by using Optimality Condition Decomposition Algorithm.
To demonstrate this estimation approach, we have considered the case in which few mea-
surements are available in the benchmark building system and shown that all the outputs
are estimated using the proposed approach.

Despite the proposed solutions to the economic building operations in this work, there
are still several issues which need to be addressed. The simulation validation has been
limited to the terminal units with certain HVAC configurations, the proposed solutions
can be applied to the central equipments as well as other types of HVAC configurations. In
the case of VAV type terminal units, we have used the linearized models for the synthesis
of control problems. An interesting approach can be considering the bilinearity in the
VAV type terminal units. In this work, we assume the knowledge of weather forecast and
occupancy schedule is available. It may be interesting to consider the unavailability of
the forecast and occupancy schedule as future research topics.

The novel approach proposed for distributed model predictive control performs the
decomposition of the large-scale system into subsystems. It also designs the subsystem
controllers and their coordination. However, the issues related to the stability and con-
trollability properties still need to be addressed. This distributed model predictive control
approach has been extended to the distributed moving horizon estimation. Nevertheless,
an interesting future topic would be to adapt the distributed moving horizon estimation
techniques in the field of fault detection and isolation.
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Abstract

1. Motivation :
Since the last two decades, there has been a growing awareness about the climate
change and global warming that has instigated several Directorate initiatives from
various administrations. These initiatives mainly deal with controlling greenhouse
gas emissions, use of non-conventional energy resources and optimization of energy
consumption in the existing systems. The European Union has proposed numerous
projects under FP7 framework to achieve the energy savings up to 20% by the year
2020. Especially, stated by the Energy Efficiency Directive, buildings are majorly
responsible for 40% of energy resources in Europe and 36% of CO2 emission. Hence
a class of projects in the FP7 framework promotes the use of smart technology in
the buildings and the streamline existing rules. Energy IN TIME is one of the
projects focused on developing a Smart Energy Simulation Based Control method
which will reduce the energy consumption in the operational stage of existing non-
residential buildings. Essentially, this thesis proposes several novel solutions to fulfill
the project objectives assigned to the University of Lorraine.

2. Benchmark Building Framework :
The developed solutions under this project should be validated on the demonstra-
tion sites from various European locations provided under the Energy IN TIME
project. We design a general benchmark building framework to emulate the be-
havior of demonstration sites. This benchmark building framework serves as a test
bench for the validation of proposed solutions given in this thesis work. From the
detailed synthesis of the demonstration sites, we summarize the characterization of
the different building topologies with respect to the mentioned attributes. In the
existing Heating Ventilation and Air conditioning (HVAC) systems, the Variable
Air Volume (VAV) and Fan Coil Unit (FCU) type configurations are more popu-
lar due to their simplicity and energy efficient performances. Hence we design the
benchmark building prototypes based on these HVAC configurations. Based on the
design of benchmark building layout, we present an economic control formulation
using model predictive control minimizing the energy consumption. Further, we
present the mathematical model based on the building thermal behavior according
to the occupancy schedule, the type of HVAC system and the coupling among the
zones. Using existing data from Demonstrations sites, we formulate linear state-
space models for the given HVAC systems. These models are then used for the
control and fault diagnosis exercises.
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The proposed solutions under the project e.g. energy efficient control methods,
fault diagnosis, and fault adaptive techniques etc. are built to suit these benchmark
prototypes. Nevertheless, adequate flexibility in the proposed solutions is preserved
so that it will apply to a broad range of building types. Further, we present the
VAV and FCU type HVAC configurations and their mathematical models. These
mathematical models will be used to propose novel approaches to centralized and
distributed model predictive control. The energy consuming components of these
HVAC systems are mainly supply fan and the heating coil. Hence, the control
objectives in the next chapters will be designed around these components. These
derived models are generic enough to accommodate different types of buildings and
weather conditions.

3. Centralized Control :
A novel maintenance-aware model predictive control (MPC) method is proposed in
this work. In this proposed control scheme, the MPC is designed considering mul-
tiple objectives as minimization of consumption of energy, maintenance of thermal
comfort and reducing the maintenance cost of HVAC equipments. The first part of
the cumulative objective is quite straightforward. This is obtained through formu-
lating the cost function in the MPC by introducing the term related to the energy
consumption by the HVAC equipments. The related part of cumulative objective as
minimizing the maintenance cost of HVAC equipments is achieved through ensuring
the smooth functioning of equipment parts. Generally the setpoint trajectories are
calculated by the controller and are implemented by the actuators. If these setpoint
trajectories contain significant fluctuations, they certainly deteriorate the actuator
performance leading increased wear and tear of the actuator parts. This may cause
equipment failure, a loss in the control of acceptable indoor environment as well as
an increase of the the system maintenance cost. Hence, we propose a methodology
to generate the smooth setpoint trajectories by reducing the fluctuation while main-
taining the economic operational interests. This proposed methodology is motivated
from the one-norm regularization analysis extensively used in the statistics and in
the machine learning field. It was originally introduced as the least squares and
has been extended to the various statistical models. Moreover, it is also interpreted
in other fields of geometry and convex analysis. Brief details about the proposed
formulation of MPC describing the cumulative objectives are presented in the next
sections. This approach is illustrated on a six-zone HVAC building framework using
the weather data from Nancy, France for the winter season.
Furthermore, as in buildings, fault occurrences may result in deteriorating the energy
efficiency as well as the thermal comfort for the occupants inside the buildings. To
address this issue, we design a fault diagnosis and fault adaptive control techniques
based on the model predictive control and demonstrate the simulation results on the
benchmark building. To achieve this, we present a potential approach to detect and
diagnose a damper stucks in VAV boxes in the HVAC building systems. The novelty
in the proposed approach is the design of the dedicated bank of unknown input
residual generators for fault detection/isolation. This detection step is followed
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by the suitably designed fault estimators that evaluates the damper stuck value.
Furthermore, we also present a novel fault-adaptive control method for the VAV
damper stuck fault. The adaptive control module receives the information from the
proposed fault diagnosis module. The key feature of this fault-adaptive method is
to modify the constraints online in the nominal MPC controller. Though, in the
general MPC-based fault-adaptive control, it is not a trivial problem to know how
to change the problem formulation under the occurrence of faults, the constraint
modification performed here under VAV damper stuck was made possible thanks to
the designed fault estimation filters from the fault diagnosis module. Finally, the
simulation results are provided for the six zone building benchmark building.

4. Distributed Control and Estimation :
In the case of large scale buildings these requirements to implement the centralized
control may appear as a great challenge due to communication network failures,
difficulty in deriving the centralized mathematical model, isolation during fault oc-
currences. Hence, in the recent years the theory of decentralized control and dis-
tributed control for large-scale HVAC building systems have attracted considerable
attention of many researchers. The basic notion behind the decentralized and dis-
tributed control is to manage the subsystem performance instead of considering the
overall system. In the decentralized control framework, the individual controllers
maintain the respective subsystems performance neglecting the interaction infor-
mation among the subsystems. If these subsystems interactions are significant and
largely contribute in the overall building behavior then the decentralized control
may result in suboptimal performance. But unlike decentralized control, in the dis-
tributed control, the communication between the subsystem controllers may ensure
the optimal performance considering the interactions between the subsystems. This
distributed control framework offers various advantages e.g. possibility of isolation
of the subsystem in case of faulty events, modular maintenance scheme or plugging
new subsystem in the existing distributed control framework etc.. Due to the obvi-
ous advantages of the distributed control framework, the Energy IN TIME project
considers the importance of the scalability of the proposed energy efficient solutions
given under the centralized schemes. In this chapter, we propose methodologies of
distributed model predictive control (DMPC) for the benchmark HVAC building
structures.

(a) Optimality Condition Based Distributed Model Predictive Control :
A detailed discussion about the mathematical formulation of the proposed
methods with their validation on the simulator platforms. a new approach of
DMPC is proposed that realized in two steps. In first step, we decompose
the system into subsystems by partitioning the Karush–Kuhn–Tucker (KKT)
matrix obtained from the CMPC problem. This KKT matrix contains very
significant information about the system and the cost function. We arrange
this KKT matrix into block-diagonal form where blocks at the diagonal rep-
resent the subsystems and the non-diagonal elements provide the interaction
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information between these subsystems. This transformation of KKT matrix
into block-diagonal form is performed using Cuthil-McKee algorithm. We have
shown the system decomposition exercise based on KKT matrix transformation
applied to a six-zone VAV based building layout. In second step, the design
of subsystem controllers and their coordination strategy are established using
the Optimality Conditions Decomposition introduced by Conejo. We discuss
the convergence properties of the proposed distributed control scheme i.e. the
equivalence between the centralized solution and distributed solution. Finally,
this proposed control architecture is applied to the six-zones benchmark build-
ing. The comparison between the proposed strategy, decentralized control and
centralized control is analyzed.

(b) Optimality Condition Based Distributed Moving Horizon Estimation :
The proposed distributed scheme is successfully extended to the field of state
estimation based on moving horizon method. We present this method for Dis-
tributed Moving Horizon Estimation (DMHE) for linear systems. Firstly, we
formulated the Centralized Moving Horizon Estimation (CMHE) problem by
delineating the associated centralized cost function. Please note, this cost func-
tion is multiobjective as it minimizes the error in estimation, uncertainty in the
initial state value and the output noise. Inspired from the optimality condition
decomposition based distributed control, we write the the optimality conditions
are written in order to formulate the KKT matrix from the given formulation
of CMHE. This KKT matrix is partitioned into separable blocks where these
blocks provide the description of the subsystems. The distributed scheme of
estimation is implemented using the optimization procedure using Optimality
Condition Decomposition. The obtained solutions are breaodcasted to the net-
work and are used as initial values for solving next optimization problems, like
the distributed control scheme. To illustrate the proposed method, simulation
results are presented for the six-zones HVAC building system considering the
weather data for Nancy France. In this example we demonstrate that the tem-
peratures for the zones where sensors not available can be estimated using this
proposed scheme. This notion of distributed estimation has great potential for
the extension in the field of fault detection and diagnosis.

(c) Sensitivity based Distributed Model Predictive Control :
Moreover, we also propose another approach of distributed control based on
sensitivity analysis. This method is also addressed in two stages of DMPC for
the VAV based HVAC building system as i) the decomposition of the building
system into subsystems and ii) the design and coordination between obtained
subsystem controllers. The proposed method of system decomposition uses the
sensitivity matrix derived from the system dynamics. This sensitivity matrix
contains the coupling information between the variables. Based on this infor-
mation, we have partitioned the sensitivity matrix into separable blocks that
represent the corresponding subsystems. Moreover, the second stage of defin-
ing the coordination between the subsystems controllers is based on the notion
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of sensitivity of other subsystem controllers with respect to the local controller.
This is achieved by adding a linear approximation of the objectives of other
subsystems to the objective of the local controller. The convergence of this
proposed method is stated to demonstrate the equivalence of the distributed
solution to the centralized solution. Finally, the decomposition and coordina-
tion strategies are demonstrated on the VAV type HVAC building system.

Keywords: Model Predictive Control, HVAC systems, Fault diagnosis and tolerant con-
trol, Distributed Control.
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Resumé

1. Motivation:
Depuis les deux dernières décennies, il y a eu une prise de conscience croissante sur
le changement climatique et le réchauffement de la planète qui a suscité plusieurs
initiatives de la Direction de diverses administrations. Ces initiatives concernent
principalement la mâıtrise des émissions de gaz à effet de serre, l’utilisation de
ressources énergétiques non conventionnelles et l’optimisation de la consomma-
tion d’énergie dans les systèmes existants. L’Union européenne a proposé de
nombreux projets dans le cadre du 7e PC pour réaliser les économies d’énergie
jusqu’à 20% d’ici 2020. En particulier, conformément à la directive sur l’efficacité
énergétique, les bâtiments sont principalement responsables de 40% des ressources
énergétiques en Europe. 36% d’émission de CO2. Ainsi, une catégorie de projets
dans le cadre du 7e PC encourage l’utilisation de technologies intelligentes dans
les bâtiments et rationalise les règles existantes. Energy IN TIME est l’un des
projets axés sur le développement d’une méthode de contrôle basée sur la simula-
tion intelligente de l’énergie qui permettra de réduire la consommation d’énergie
au stade opérationnel des bâtiments non résidentiels existants. Essentiellement,
cette thèse propose plusieurs solutions originales pour atteindre les objectifs du
projet assignés à l’Université de Lorraine.

2. Benchmark Building Framework:
Les solutions développées dans le cadre de ce projet devraient être validées sur
les sites de démonstration de différents sites européens fournis dans le cadre du
projet Energy IN TIME. Nous concevons un cadre de construction de bench-
mark général pour émuler le comportement des sites de démonstration. Ce cadre
de construction de benchmarks sert de banc d’essai pour la validation des so-
lutions proposées dans ce travail de thèse. A partir de la synthèse détaillée des
sites de démonstration, nous résumons la caractérisation des différentes topologies
de construction par rapport aux attributs mentionnés. Dans les systèmes exis-
tants de ventilation et de climatisation (CVC), les configurations de type volume
d’air variable (VAV) et ventilo-convecteur (FCU) sont plus populaires en rai-
son de leur simplicité et de leurs performances écoénergétiques. Par conséquent,
nous concevons les prototypes de bâtiment de référence basés sur ces config-
urations de CVC. Sur la base de la conception de la disposition du bâtiment
de référence, nous présentons une formulation de contrôle économique en util-
isant un modèle de contrôle prédictif minimisant la consommation d’énergie. De
plus, nous présentons le modèle mathématique basé sur le comportement ther-
mique du bâtiment en fonction du programme d’occupation, du type de système
HVAC et du couplage entre les zones. En utilisant les données existantes des
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sites de démonstration, nous formulons des modèles d’espace-état linéaires pour
les systèmes CVC donnés. Ces modèles sont ensuite utilisés pour les exercices de
contrôle et de diagnostic des pannes.

Les solutions proposées dans le cadre du projet, par ex. des méthodes de contrôle
éconergétiques, un diagnostic des pannes et des techniques d’adaptation aux
fautes, etc. sont construits pour convenir à ces prototypes de référence. Néanmoins,
une flexibilité adéquate dans les solutions proposées est préservée afin qu’elle
s’applique à un large éventail de types de bâtiments. En outre, nous présentons
les configurations HVAC de type VAV et FCU et leurs modèles mathématiques.
Ces modèles mathématiques seront utilisés pour proposer de nouvelles approches
de contrôle prédictif centralisé et distribué. Les composants énergivores de ces
systèmes HVAC sont principalement le ventilateur d’alimentation et le serpentin
de chauffage. Par conséquent, les objectifs de contrôle dans les prochains chapitres
seront conçus autour de ces composants. Ces modèles dérivés sont suffisam-
ment génériques pour s’adapter à différents types de bâtiments et aux conditions
météorologiques.

3. Contrôle centralisé:
Une nouvelle méthode de contrôle prédictif basée sur la maintenance (MPC)
est proposée dans ce travail. Dans ce schéma de contrôle proposé, le MPC est
conçu avec de multiples objectifs à l’esprit, tels que la réduction de la consom-
mation d’énergie, le maintien du confort thermique et la réduction des coûts
de maintenance pour les équipements CVC. La première partie de l’objectif
cumulatif est assez simple. Ceci est réalisé en formulant la fonction de coût
dans le MPC en introduisant le terme lié à la consommation d’énergie par les
équipements HVAC. La partie connexe de l’objectif cumulatif tel que la min-
imisation du coût d’entretien de l’équipement CVC est obtenue en assurant le
bon fonctionnement des pièces d’équipement. Généralement, les chemins de con-
signe sont calculés par le contrôleur et sont mis en œuvre par les actionneurs.
Si ces chemins de consigne contiennent de grandes fluctuations, ils détériorent
certainement les performances de l’actionneur, entrâınant une usure accrue des
parties de l’actionneur. Cela peut entrâıner une défaillance de l’équipement, une
perte de contrôle de l’environnement intérieur et une augmentation des coûts de
maintenance du système. Par conséquent, nous proposons une méthodologie pour
générer les trajectoires de consigne en réduisant la fluctuation tout en maintenant
les intérêts économiques opérationnels. Cette méthodologie proposée est motivée
par l’analyse de régularisation à une norme largement utilisée dans les statistiques
et dans le domaine de l’apprentissage automatique. Il a été présenté à l’origine
comme les moindres carrés et a été étendu à différents modèles statistiques. En
outre, il est également interprété dans d’autres domaines de la géométrie et de
l’analyse convexe. De brefs détails sur la formulation de MOC proposée décrivant
les objectifs cumulatifs sont présentés dans les sections suivantes. Cette approche
est illustrée sur un cadre de construction de CVC à six zones utilisant des données
météorologiques de Nancy, en France, pour la saison d’hiver.

De plus, comme dans les bâtiments, les pannes peuvent entrâıner une dégradation
de l’efficacité énergétique et du confort thermique des occupants à l’intérieur des
bâtiments. Pour résoudre ce problème, nous concevons un diagnostic de défaut
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et des techniques de contrôle adaptatif des défaillances basées sur le contrôle
prédictif du modèle et démontrons les résultats de la simulation sur le bâtiment
de référence. Pour ce faire, nous présentons une approche potentielle pour détecter
et diagnostiquer un verrou d’amortisseur dans VAV bôıtes dans les systèmes de
construction HVAC. La nouveauté dans l’approche proposée est la conception à
partir de la banque dédiée des générateurs résiduels d’entrée inconnue pour la
détection / l’isolement des défauts. Cette étape de détection est suivie par des
estimateurs de défauts conçus de manière appropriée la valeur de l’amortisseur de
l’amortisseur. En outre, nous introduisons également une nouvelle méthode adap-
tative de contrôle de défaut pour la défaillance de l’amortisseur VAV. Le module
de contrôle adaptatif reçoit les informations du module de diagnostic de panne
proposé. La principale caractéristique de cette méthode de défaillance adaptative
est de modifier les contraintes en ligne dans le contrôleur MPC nominal. Bien
que, dans le contrôle général adaptatif basé sur MPC, ce n’est pas un problème
trivial de savoir comment changer la formulation du problème sous l’occurrence
de fautes, la modification de contrainte effectuée ici sous l’amortisseur VAV a
été rendue possible. estimation du module de diagnostic de panne. Enfin, des
résultats de simulation sont fournis pour le bâtiment de référence du bâtiment à
six zones.

4. Contrôle distribué et estimation:
Enfin, une attention particulière est portée au problème de l’estimation dans le
cadre de mesures limitées dans les grands bâtiments. Les techniques d’estimation
avancées suggérées sont basées sur les méthodologies de l’horizon mobile et sont
démontrées sur les systèmes de construction de référence. Dans le cas de bâtiments
à grande échelle, ces exigences pour mettre en œuvre le contrôle centralisé peu-
vent apparâıtre comme un grand défi en raison des défaillances du réseau de
communication, de la difficulté à dériver le modèle mathématique centralisé, de
l’isolement pendant les défaillances. Ainsi, au cours des dernières années, la
théorie du contrôle décentralisé et du contrôle distribué pour les systèmes de con-
struction de CVC à grande échelle a attiré l’attention de nombreux chercheurs.
La notion de base du contrôle décentralisé et distribué est de gérer les perfor-
mances du sous-système au lieu de considérer le système global. Dans le cadre de
contrôle décentralisé, les contrôleurs individuels maintiennent les performances
des sous-systèmes respectifs en négligeant les informations d’interaction entre les
sous-systèmes. Si ces interactions de sous-systèmes sont significatives et con-
tribuent largement au comportement global du bâtiment, le contrôle décentralisé
peut entrâıner des performances sous-optimales. Mais contrairement au contrôle
décentralisé, dans le contrôle distribué, la communication entre les contrôleurs de
sous-système peut assurer la performance optimale compte tenu des interactions
entre les sous-systèmes. Ce cadre de contrôle distribué offre divers avantages, par
ex. possibilité d’isolation du sous-système en cas d’événements fautifs, schéma
de maintenance modulaire ou branchement d’un nouveau sous-système dans le
cadre de contrôle distribué existant etc. En raison des avantages évidents du
cadre de contrôle distribué, le projet Energy IN TIME considère l’importance de
l’évolutivité des solutions d’efficacité énergétique proposées dans les schémas cen-
tralisés. Dans ce chapitre, nous proposons des méthodologies du contrôle prédictif
de modèle distribué (DMPC) pour les structures de bâtiments HVAC de référence.
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(a) Condition d’optimisation basée sur le model prédictif du mode distribué:
Une discussion détaillée sur la formulation mathématique des méthodes pro-
posées avec leur validation sur les plateformes de simulateurs. une nouvelle
approche de DMPC est proposée qui s’est réalisée en deux étapes. Dans
un premier temps, nous décomposons le système en sous-systèmes en par-
titionnant la matrice de Karush-Kuhn-Tucker (KKT) obtenue à partir du
problème CMPC. Cette matrice KKT contient des informations très impor-
tantes sur le système et la fonction de coût. Nous plaçons cette matrice
KKT en forme de bloc-diagonale où les blocs de la diagonale représentent
les sous-systèmes et les éléments non-diagonaux fournissent les informations
d’interaction entre ces sous-systèmes. Cette transformation de la matrice
KKT en forme de bloc-diagonale est réalisée en utilisant l’algorithme de
Cuthil-McKee. Nous avons montré l’exercice de décomposition du système
basé sur la transformation de la matrice KKT appliquée à une disposition de
bâtiment basée sur VAV à six zones. En deuxième étape, la conception des
contrôleurs de sous-systèmes et leur la stratégie de coordination est établie
en utilisant la décomposition des conditions optimales présenté par Conejo.
Nous discutons les propriétés de convergence du schéma de contrôle distribué
proposé, c’est-à-dire l’équivalence entre la solution centralisée et la solution
distribuée. Enfin, cette architecture de contrôle proposée est appliquée au
bâtiment de référence à six zones. La comparaison entre la stratégie pro-
posée, décentralisée le contrôle et le contrôle centralisé sont analysés.

(b) Optimisation de l’espacement mobile basé sur les conditions d’optimalité:
Le schéma distribué proposé est étendu avec succès au domaine de l’estimation
d’état basé sur la méthode de l’horizon mobile. Nous présentons cette
méthode pour l’estimation de l’horizon mobile distribué (DMHE) pour les
systèmes linéaires. Premièrement, nous avons formulé l’estimation de l’horizon
mobile centralisé (CMHE) en délimitant la fonction de coût centralisée as-
sociée. Veuillez noter que cette fonction de coût est multiobjective car elle
minimise l’erreur d’estimation, l’incertitude dans la valeur d’état initial et
le bruit de sortie. Inspiré du contrôle distribué basé sur la décomposition de
conditions d’optimalité, nous écrivons les conditions d’optimalité sont écrites
afin de formuler la matrice KKT à partir de la formulation donnée de CMHE.
Cette matrice KKT est partitionnée en blocs séparables où ces blocs four-
nissent le description des sous-systèmes. Le schéma d’estimation distribué
est mis en œuvre en utilisant la procédure d’optimisation utilisant Optimal-
ity Condition Decomposition. Les solutions obtenues sont breaodcasted sur
le réseau et sont utilisées comme valeurs initiales pour résoudre les problèmes
d’optimisation suivants, comme le schéma de contrôle distribué. Pour illus-
trer la méthode proposée, les résultats de la simulation sont présentés pour
le système de construction de CVAC à six zones en considérant Données
cartographiques sur Nancy France Dans cet exemple, nous démontrons que
les températures pour les zones où les capteurs non disponibles peuvent être
estimés en utilisant ce schéma proposé. Cette notion d’estimation distribuée
présente un fort potentiel d’extension dans le domaine de la détection et du
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diagnostic des fautes.

(c) Sensibilité basée sur le model prédictif du mode distribué:
De plus, nous proposons également une autre approche du contrôle distribué
basée sur l’analyse de sensibilité. Cette méthode est également abordée
en deux étapes du DMPC pour le système de bâtiment HVAC basé sur
VAV: i) la décomposition du système de construction en sous-systèmes et
ii) la conception et la coordination entre les contrôleurs de sous-systèmes
obtenus. La méthode de décomposition du système proposée utilise la ma-
trice de sensibilité dérivée de la dynamique du système. Cette matrice de
sensibilité contient les informations de couplage entre les variables. Sur la
base de ces informations, nous avons partitionné la matrice de sensibilité en
blocs séparables qui représentent les sous-systèmes correspondants. De plus,
la deuxième étape de la définition la coordination entre les sous-systèmes
contrôleurs est basée sur la notion de sensibilité de d’autres contrôleurs de
sous-système par rapport au contrôleur local. Ceci est réalisé en ajoutant
une approximation linéaire des objectifs d’autres sous-systèmes par rapport
à l’objectif de manette. La convergence de cette méthode proposée est in-
diquée pour démontrer l’équivalence de la solution distribuée à la solution
centralisée. Enfin, les stratégies de décomposition et de coordination sont
démontrées sur le VAV système de construction de type HVAC.

Mots-clés: Modèle de contrôle prédictif, systèmes HVAC, diagnostic de pannes et
contrôle tolérant, Contrôle Distribué
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