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minute que l’on raconte aux jeunes doctorants pour leur faire peur.

Je remercie tous les membres, de passage ou non, de l’équipe Caramel-Caramba
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mis d’améliorer et de concrétiser certaines parties des algorithmes présentés dans

le chapitre 6. Je remercie Jérémie, pour avoir décrypté les di�érentes décisions de
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stagiaire de troisième qui a participé à CADO-NFS et Luc, qui fut mon professeur
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remercie notamment les rédacteurs des comptes-rendus avec qui j’ai travaillé.
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Introduction

The computation of discrete logarithms is supposed to be a hard problem in
general. Exploiting this hardness and the mathematical structure of well chosen
groups, Diffie and Hellman [55], with the help of Merkle [95], explained in 1976
how two parties can agree on a secret number using an insecure channel, without
the possibility for a third party to recover easily this number. This paved the way
to a new type of cryptography, called asymmetric or public-key cryptography.

Before that date, cryptography was symmetric or secret key: the key to
encrypt is the one to decrypt. It should therefore be only known by the parties
that exchange messages.

From the beginnings of cryptography to the end of World War II, cryptana-
lysts were more or less able to break all the deployed cryptosystems in the wild.
The scytale of the ancient Greeks, the Caesar cipher, the Vigenère cipher, the
code of Mary Stuart (whose deciphering lead to her death) and the Enigma ma-
chine, all these systems were broken, even if the information about the break of
the Enigma cipher was not right away public. One main primitive survived, the
one of Vernam, now called one-time pad, which is essentially a Vigenère cipher
with the length of the key larger than the length of the message and a random
key. Evaluating the security of the cryptosystems proposed by cryptographers
is the main goal of the cryptanalysis.

Since the second half of the century, new cryptosystems have undergone a
public standardization process, so that the community can study their security.
But even if a symmetric system is secure, the difficulty to exchange securely
a key between the parties remains. The growth of electronic communications
and the need of cryptography for different entities (states, companies, citizens,
...) all around the world worsen this problem of key management when only
symmetric cryptography is available. In 1976, the Diffie–Hellman mechanism to
agree on a secret between two parties, which becomes the key of a symmetric
cryptosystem, solved this problem.

Moreover, asymmetric cryptography is not only a way to exchange keys,
and becomes an integral part of cryptography with the raise of RSA [155] and
ElGamal [59], the first public-key encryption schemes. In these cryptosystems,
a key is divided into two parts: a private one, owned by only one party, and
a public one, known by possibly anybody. The security relies either on the
integer factorization (for RSA) or on the discrete logarithm problem in the
multiplicative subgroup of a finite field (for ElGamal).

One way to evaluate the security is to try to solve efficiently the underlying
hard mathematical problems. There always exits an algorithm that solves the
problem by trying all the possible solutions. Such an exhaustive approach is
also called a brute-force search. For a secure symmetric system, like the AES

1



2 Introduction

cipher, this is currently the best algorithm. In a first approximation, it means
that if the key used by AES is n-bit long, an attacker must try on average 2n−1

choices to recover the key: such a cryptosystem have a security level of n bits. A
security level of 128 bits is considered to be long term [7, Annexe B.1]. To reach
the same level of security, RSA and ElGamal must have keys of size 3,072 bits,
due to algorithms that have better complexities than the brute-force algorithm.

However, the security of a cryptosystem is not dependent only on the hard-
ness of the underlying mathematical problem. For example, the school book
Diffie–Hellman protocol on an unauthenticated channel is not robust against a
man-in-the-middle attack. Besides, the security can be downgraded due to legal
limitations, as the export of cryptography from the United States that limited
the sizes of keys: this limitation has been used to run the Logjam attack on
the Diffie–Hellman key exchange [6]. Other types of attacks are listed in Fig-
ure 1. In this thesis, we focus on mathematical attacks on the discrete logarithm
problem, see Figure 2.
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Figure 1 – Stack of abstraction layers in cryptography with possible attacks.

The number field sieve algorithm
To compute discrete logarithms in finite fields of large sizes, the best known
approach uses the number field sieve (NFS) algorithm. NFS was first used
in the factorization context at the end of the 80s [127]. The complexity of this
algorithm is subexponential, which is expressed thanks to the L function defined
as LN (α, c) = exp((c+ o(1))(logN)α(log logN)1−α) [147, 126]. More precisely,
the complexities of the variants of NFS reach α = 1/3 and c ≤ (128/9)1/3.

The use of NFS in the context of discrete logarithms defined on prime fields
is due to Gordon [77]. However, it was not the first L(1/3) algorithm on finite
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Figure 2 – Some links between hard mathematical problems and primitives.

fields: in 1984, Coppersmith proposed an algorithm to compute discrete loga-
rithms on finite fields of characteristic 2, F2n [49]. The reader interested in the
history of these algorithms is invited to read the survey of Joux, Odlyzko and
Pierrot [107], and the one of Guillevic and Morain [89].

We distinguish three types of finite fields Fpn , depending on the characteristic
p or the extension n:

• small p (typically, p = 2 and p = 3): in these fields, since 2014, there
exists a quasi-polynomial algorithm [21, 80].

• large p (typically n = 1): in these fields, the discrete logarithm variant of
the runs in about Lpn(1/3, (64/9)1/3).

• medium p (typically n = 6): in these fields, the situation evolved during
the last three years.

In this thesis, we focus on the last case. The first NFS variant in this field
was introduced in 2006 by Joux, Lercier, Smart and Vercauteren [106] with a
running time in Lpn(1/3, (128/9)1/3). Since 2014, there were a lot of improve-
ments to NFS. The most noticeable one is the extended tower number field sieve
(exTNFS) algorithm [114], which runs in the general case in Lpn(1/3, (64/9)1/3),
when n is composite, and when n is prime in Lpn(1/3, (96/9)1/3) [20, 143].

All the best known algorithms to compute discrete logarithms in finite fields
are index calculus algorithms [123]. This family can be split into three main
steps, once a nice representation of the field is chosen: relation collection, linear
algebra and individual logarithm computation. Since the use of the quadratic
sieve by Pomerance [148], we know that the relation collection can be efficiently
performed using sieving algorithms, similar to the one of Eratosthenes to enu-
merate prime integers. With the NFS variants, the cost of the individual loga-
rithm computation is negligible compared to the one of the relation collection
and the linear algebra steps. The costs of these two phases depend on a large
number of parameters. It is therefore usual to try to find the best trade-off
between the two costs. However, this trade-off does not mean that the costs are
balanced. In medium characteristics, the cost of the relation collection seems
larger than the one of the linear algebra. Indeed, in the computation of Za-
jac [185], the running time to perform the sieving step is around two times
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longer than the one of the linear algebra step, and around 40 times longer in
the computation of Hayasaka, Aoki, Kobayashi and Takagi [93].

In this thesis, we focus on the relation collection for NFS. In large char-
acteristics, the relation collection is performed by enumerating elements of a
two-dimensional lattice. In medium characteristic, the dimension of the lattice
may be larger. It is therefore needed to design algorithms that work efficiently
in this type of lattices, and to try to reduce the cost of the relation collection.

Summary of contributions
The main contributions of this thesis revolve around the relation collection step
for NFS in dimension higher than two, and especially the design, analysis and
implementation of sieve algorithms on the one hand and the handling of record
computations.

Polynomial selections. In the NFS variants, the input of the relation col-
lection includes, among other parameters, polynomials to represent Fpn : the
best their quality are, the lowest is the running time of the relation collection.
We extend in three dimensions the two-dimensional quality criteria in an article
coauthored with Pierrick Gaudry and Marion Videau [72]. We also propose a
modification in the way to define these polynomials, to take into account the
specificities of the sieve algorithms used to collect the relations.

Sieve algorithms. The relation collection is divided into three main steps:
initialization of the norms, sieving and cofactorization. In addition to the line
sieve, described by Zajac [185], we describe in [72], two new sieve algorithms in
three dimensions, one of them being an extension of the two-dimensional sieve
of Franke–Kleinjung. In Chapter 6, we propose a general framework in which
these three sieve algorithms in three dimensions appear as particular cases to
sieve in higher dimensions, resulting in two algorithms to sieve in any small
dimensions.

Implementation. We implement a complete relation collection in higher di-
mensions in CADO-NFS. Our implementation allows to use all the variants of
NFS, except the (ex)TNFS one. We include dedicated sieve algorithms in three
dimensions and some of them allow to sieve in any higher dimensions.

Record computations. Our implementation was used to perform five com-
putations of discrete logarithms. We summarize the results of these computa-
tions in Chapter 8. The computations are described in three articles: one in [72],
concerns specifically the polynomial selection and the relation collection in Fp6 ,
another one coauthored with Aurore Guillevic and François Morain [84], reports
the first complete computation in Fp5 , and the last one coauthored with Aurore
Guillevic, François Morain and Emmanuel Thomé [85], reports four complete
computations in Fp6 , establishing a new record.

Other contributions. We wish also to highlight a few results we obtained
during the writing of this manuscript.
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Analysis of the MNFS variant of Zajac. In 2008, Zajac described
a variant of NFS [185, Section 6.4]. Even if Zajac described some technical-
ities about this variant, its complexity was not analyzed. We analyze it in
Appendix D and show that the complexity is the same as for another variant
proposed in 2014 by Barbulescu and Pierrot [24], that is around Lpn(1/3, 2.40).

TNFS. TNFS is the precursor of exTNFS. Barbulescu, Gaudry and Klein-
jung analyzed the complexity of this algorithm by using a specific setting [22].
We show in Chapter 5 that another polynomial selection is available, ensuring
the same complexity, especially for the individual logarithm computation.

A small implementation of NFS. To highlight the different steps of
NFS and the links between them, we provide in Appendix B a small implemen-
tation (less than 350 lines of code) of NFS on prime fields in Sage, except for
the computation of an individual logarithm. This implementation, essentially
focused on the relation collection, is described in Chapter 3.

Database of computations of discrete logarithms. The reports of
computations of a discrete logarithm are done in non-uniformed ways, as in
articles or emails to the NMBRTHRY list (https://listserv.nodak.edu/
cgi-bin/wa.exe?A0=NMBRTHRY). With Aurore Guillevic, we propose a database
that collects all the computations of discrete logarithms in a unified way with
the references of the computations [83].

Outline of the manuscript
This thesis is divided into three parts: the first part provides some background
on the mathematical and algorithmic sides of the manuscript. We begin by
focusing on the use of discrete logarithms on finite fields in cryptography and
describe some algorithms to compute discrete logarithms in Chapter 1. Before
presenting NFS, we focus in Chapter 2 on the sieve algorithms, especially the use
of the Eratosthenes sieve to factor integers in an interval. Even if we describe
these sieve algorithms over the integers, a one-dimensional set, the notions we
introduce in this chapter is used in all the subsequent chapters. We conclude this
part by describing NFS on prime fields in Chapter 3. This chapter introduces
the key notions of NFS and covers all the steps of the algorithm.

The second part is a focus on algorithms to solve the discrete logarithm
problem in medium characteristics. We describe two variants of NFS, the high
degree variant (NFS-HD) in Chapter 4 and the exTNFS one in Chapter 5.
In Chapter 4, we describe two quality criteria in three dimensions to select
the best polynomials coming from the polynomial selections. We also describe
the different variants of NFS-HD. In Chapter 5, we quickly describe some of
the variants of exTNFS. As exTNFS is a new algorithm, we also list some of
the challenges that remain to be solved in a near future to perform practical
computations using this algorithm. The NFS-HD and the exTNFS algorithms
use an high-dimensional relation collection: we describe in Chapter 6 two generic
algorithms to sieve in any small dimensions. We study them and show how the
three sieve algorithms we described in three dimensions are covered by this
general framework.

https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY
https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY
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The third part concerns the practical results of our sieve algorithms. In
Chapter 7, we justify some of the choices we did in our implementation. We
also describe how our code is integrated in CADO-NFS and the challenges we
need to solve to provide an automatic tool, as done by the cado-nfs.py script
for prime field and factorization. Finally, we describe how we have managed the
record computations we did, by describing how we found the parameters of the
relation collection and how we run the computations on a cluster.



Part I

Discrete logarithms in finite
fields

7



Chapter 1

Discrete logarithm

Computing discrete logarithm is at the heart of some widely deployed
asymmetric cryptographic primitives. The hardness of computing
discrete logarithms ensures the security of these primitives. This
hardness depends on the mathematical structure in which discrete
logarithms lie. Depending on this structure, there exist different algo-
rithms to compute discrete logarithms, and the largest computations
help cryptographers derive which security is guaranteed according to
the size of the keys.

Let G be a multiplicative group and · denote the group operation between
elements of G. Let a be an element of G, we denote by ak, where k is an
integer, the result of composing k times a with itself using ·, as ak = a ·a · · · · ·a.
This is an exponentiation of a to the power k. The inverse of an element a in the
group is denoted by a−1. The group G is finite when its cardinal n is finite and
cyclic when there exists an element g such that G = {1 = g0, g, g2, . . . , g(n−1)}.
Elements like g are called generators of the group. In the following, we call
group a finite cyclic group.

Definition 1.1 (Discrete logarithm). Let G be a group generated by g and n
the cardinality of the group. Let h be an element of G. The discrete logarithm
of h in basis g is the element k in [0, n[ such that h = gk. This element k is
often denoted by logg h.

Definition 1.2 (Discrete logarithm problem (DLP)). Given G, g and h as in
Definition 1.1, the discrete logarithm problem is to compute the integer k =
logg h. In general, n is assumed to be known.

1.1 Cryptography and discrete logarithm
In all of this section, the attackers are passive, that is they can only read the
messages exchanged between the different parties but they cannot modify or
fake a message. All the described cryptosystems will be secure under this type
of attackers.

8
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1.1.1 The Diffie–Hellman key exchange
The Diffie–Hellman key exchange [55] is used by two parties Alice and Bob to
agree on a secret key. Only Alice and Bob can compute the key, if the group
to which the key belongs, has some computational properties, to be defined in
Section 1.1.3. Let G be a group of cardinality n, g be a generator of this group.
Let these three elements be publicly available, following a given standard, so
that Alice and Bob can have access to these pieces of information. To exchange
a key K over an insecure medium, Alice chooses Ka, an element in [0, n[ and
sends gKa to Bob. For his part, Bob chooses Kb in [0, n[ and sends gKb to Alice.
The common shared key is K = (gKb)Ka = (gKa)Kb . This protocol is now
standardized among others in ANSI X9.42 [8] and is the basis of many popular
protocols over the Internet, as TLS [54]. As the key is built during the exchange,
the protocol is not strictly speaking a key exchange but a key agreement.

From the point of view of the attacker, the information he has access to is
made of the public parameters and the elements gKa and gKb . The security of
this protocol relies on the difficulty for an attacker to compute the key K.

Definition 1.3 (Computational Diffie–Hellman problem). Let G, g and n be
as in Definition 1.1, and let k and k′ be two elements in [0, n[. Then the
computational Diffie–Hellman problem is to compute gkk′ from g, gk and gk

′ .

If the discrete logarithm problem in a group is easy, the computational Diffie–
Hellman problem becomes easy. However, if the computational Diffie–Hellman
problem is easy in a group, it is not necessarily the case with the discrete
logarithm problem [133]. The security is enhanced when it is hard to answer
the Decisional Diffie–Hellman problem, that is given a, b and c randomly cho-
sen in [0, n[, it is difficult to distinguish the two distributions (ga, gb, gab) and
(ga, gb, gc).

1.1.2 The ElGamal encryption
The ElGamal encryption [59] is a well-known public-key encryption method. It
is derived from the Diffie–Hellman key exchange. Let the two parties be Alice
and Bob. Bob wants to send a ciphertext to Alice.

Key generation. Alice creates a key pair, that is a public key and a private
key. To do that, she chooses a group G of cardinality n and a generator
g of this group. Her private key Ka is an element of [0, n[. The public
key ka is composed of the group G, the generator g, the cardinality n of
the group and h = gKa : the public key ka is the 3-tuple {G, g, h}.

Encryption. This public key is sent to Bob. He can encrypt his message
m, an element of G, as follows. Bob chooses an integer r in [0, n[ and
computes c0 = m · hr. He also computes c1 = gr and sends the message
composed of c0 and c1.

Decryption. To decrypt the message (c0, c1) sent by Bob, Alice computes
c0(cKa1 )−1. She gets the message m because m = mhr

(
(gr)KA

)−1.

This encryption scheme is among other things integrated in the GNU Privacy
Guard software on two different types of group. The security of this encryp-
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tion scheme relies mainly on the hardness of solving the Computational Diffie–
Hellman problem on the group G chosen by Alice. As in the Diffie–Hellman key
exchange, the security is enhanced when Decisional Diffie–Hellman problem is
hard.

1.1.3 Proposed groups
Requirements

From these first two cryptographic schemes based on the computational hard-
ness of computing discrete logarithms, we can deduce some requirements on the
group G in order to have a strong security and a reasonable efficiency.

• To ensure a strong security, the DLP must be computationally hard to
solve in G. Ideally, the difficulty of computing a discrete logarithm should
be exponential in the size of n with the best known algorithm.

• One of the qualities of an encryption scheme is computational efficiency in
terms of running time. The basic operation of the two previous schemes
is the exponentiation, and it is required that it can be done in polynomial
time in the size of n. It is also required that the elements of G can be
represented in memory with O(logn) bits.

Choice of group

Two different groups are nowadays widely deployed in asymmetric cryptography.
Historically, Diffie and Hellman proposed to perform the key exchange in F∗pn ,
the multiplicative group of finite fields of cardinality pn, where p is a prime and
n is an integer. It fulfills all the requirements. Indeed, the elements of F∗pn
can be represented in nblog2(p)c bits and, using the binary exponentiation, we
can compute ak in O(log k) operations, each of them taking polynomial time
in O(n log p). Computing discrete logarithms in these groups is more or less
difficult, depending on the choice of p and n. These different cases depend on
the relative size of n and log p and are discussed in Section 1.3.3.

Another interesting group is the group of rational points of an elliptic curve.
Let E be an elliptic curve defined over the field Fq. Using Hasse’s theorem
on elliptic curves, the number of points of E(Fq) is equal to q + 1 − t, where
|t| < 2√q. A point (x, y) defined on E(Fq) can be represented with 2 log2 q
bits, and the double-and-add algorithm allows to perform the exponentiation
in O(log k) operations in E , each of them taking polynomial time in log q. The
best known algorithms to compute discrete logarithms in the group of rational
points of an elliptic curve have an exponential complexity in log q, except for
some specific classes of curves.

1.1.4 Signature schemes
Signature schemes are used to authenticate and provide non-repudiation of a
message, which means guaranteeing that its author is Alice and that anyone can
check that only she can be the author. In the following section, the signature
schemes are described using the multiplicative subgroup F∗p of a prime field,
keeping in mind that their variants on other finite fields and elliptic curves also
exist.
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The ElGamal signature

Alice wants to sign a message to be sent to Bob. She has a key pair, like in
Section 1.1.2. Her private key is the element Ka in [0, p− 1[. Her public key ka
is composed of the prime p, a generator g and h = gKa .

Signature generation. Let m in [0, p − 1[ be the message. To generate
the signature of the message, Alice chooses an integer e in [0, p− 1[ such
that e and p − 1 are coprime. She then computes r = ge mod p and
s = (m−Kar)e−1 mod (p− 1). Alice sends to Bob the triple {m, r, s}.

Verification Bob receives {m, r, s} and has a copy of the public key of Alice.
To verify the signature {r, s} of m, he compares hrrs mod p and gm mod
p. The equality validates the fact that m is signed by Alice. Indeed we
have, during the signature generation of Alice, the equality m = Kar +
se mod (p − 1) and, by Fermat’s little theorem, gm = gKargse = hrrs

(mod p).

DSA

The Digital Signature Algorithm (DSA) was proposed in 1991 by the National
Institute of Standards and Technology [113]. It is a variant of the ElGamal
signature. It uses groups such that their cardinality p − 1 has a large prime
factor, q. Let gq be a generator of the subgroup of order q of the group F∗p.
We can find gq with g, the generator of F∗p, by computing g(p−1)/q mod p. The
private key of Alice is an element Ka in [0, q[. Her public key is then a little bit
modified compared to the scheme of ElGamal: it is composed of the parameters
(p, q, gq, h = gKaq mod p).

Signature generation. To sign a message m in [0, q[, Alice chooses a ran-
dom integer e in [0, q[ and computes r = (gqe mod p) mod q. She also
computes s = (m + Kar) mod q. The signature of m is then (r, s) and
(m, r, s) is sent to Bob.

Verification To verify the signature of m, Bob needs to have the public key
of Alice. He computes w = s−1 mod q, u0 = mw mod q, u1 = rw mod q
and v = (gu1

q hu2 mod p) mod q. If v = r, Alice has signed the message
m.

Using DSA is faster than using the ElGamal signature scheme, because the
operation are done in a subgroup where computations can be faster. The car-
dinality q of this subgroup can be much smaller than p− 1.

1.1.5 Pairing-based cryptography
Pairings were introduced in cryptography in 1993 by Menezes, Okamoto and
Vanstone [135] and by Frey and Rück [64] as a tool to attack the discrete log-
arithm problem in several families of elliptic curves. Pairings will be thereafter
used as a constructive tool in many cryptosystems.

Definition 1.4 (Pairings [35]). Let G0 and G1 be additive groups and GT be
a multiplicative group such that these three groups have the same order. A
pairing is a map e : G0 ×G1 → GT which is
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1. bilinear: for all P0, P1 in G0 and Q0, Q1 in G1,

• e(P0 + P1, Q) = e(P0, Q)e(P1, Q) and
• e(P,Q0 +Q1) = e(P,Q0)e(P,Q1);

2. non-degenerate: for all non neutral P in G0, there exists Q in G1 such
that e(P,Q) 6= 1 and for all non neutral element Q in G1, there exists P
in G0 such that e(P,Q) 6= 1;

3. computable in polynomial time in the input size.

In cryptography, the groups G0 and G1 are groups of rational points of
elliptic curves and GT is a multiplicative subgroup of a finite field. To be
secure, the discrete logarithm problem in these three groups must be difficult.
With this requirement, one can build some cryptosystems like, among other
things, the 3-partite Diffie–Hellman key exchange proposed by Joux [99], the
identity-based encryption of Boneh and Franklin [36], the traitor tracing scheme
of Mitsunari, Sakai and Kasahara [138] and the Boneh–Lynn–Shacham short
signature scheme [37].

We briefly describe this signature scheme. Let the cardinality of G0 , G1
and GT be a prime n and g1 a generator of G1. Let m in G0 be the message
that Alice wants to sign. Alice creates her secret key Ka by selecting a random
integer in [0, n[ and computes her public key ka = Kag1 which is in G1. To sign
m, Alice computes the signature s by computing Kam, an element in G0. To
verify the signature, Bob checks if e(s, g1) = e(m, ka).

1.1.6 Torus-based cryptography
To conclude the usage of discrete logarithms in cryptography, we will give a brief
overview of the building-blocks of the torus-based cryptography. An interested
reader can found more informations in the book of Galbraith [66, Chapter 6].
Torus-based cryptography can be viewed as the same idea as the DSA: use
a subgroup of Fpn to have an efficient arithmetic, but ensure the security by
recovering the computations in a larger group.

Let consider the finite field Fp2 = Fp[X]/ϕ(X), where p is a prime and ϕ
is an irreducible polynomial of degree 2. The group F∗p2 always admits two
subgroups, one of cardinality p− 1 which is F∗p and another of cardinality p+ 1,
denoted by T2(Fp) called torus. Naively, an element of T2(Fp) is represented by
a polynomial of degree one with coefficient in Fp and the multiplication of two
elements of the torus require three multiplications over Fp using the Karatsuba
algorithm and a reduction modulo the polynomial ϕ. Using Lucas sequences,
also used in the p+1 factoring algorithm [184] and for primality tests [149, 156],
allows us to represent an element of the torus by only one element in Fp and
the multiplication of two such elements requires only one multiplication over Fp.
Cryptosystems using Lucas sequences in such a way are called LUC.

Instead of considering the finite field Fp2 , Lenstra and Verheul, the designers
of XTR [129], use Fp6 . They exploit the subgroup T6(Fp) of cardinality p2−p+1.
An elements of this subgroup can be represented by only two elements in Fp
and the multiplication of two elements requires three multiplications over Fp.
The cryptosystem CEILIDH [157], introduced by Rubin and Silverberg, can be
viewed as a generalization of the LUC and XTR cryptosystems, allowing us
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to perform the whole ElGamal encryption scheme, where XTR uses an agreed
secret key to perform a part of the encryption.

1.2 Generic algorithms
Let G be a group of cardinality n and g a generator of this group. Let t be an
element of G. In this section, we want to compute k, the discrete logarithm of
t in basis g. The three algorithms we are going to describe are generic, in the
sense that if we just know G, n, g and have access to an oracle that takes two
elements a, b of G and returns the result ab, we can solve the DLP in this group,
with a better complexity than the exhaustive search, which runs in time O(n).

1.2.1 Pohlig–Hellman
The Pohlig–Hellman algorithm [144] uses the subgroups of G if n is composite.
Let ` be a prime and e be an integer such that `e divides n. Then, there exists a
unique subgroup of G of order `e generated by g0 = gn/`

e . Let t be an element
of G such that its discrete logarithm is k. Then, t mapped in the subgroup of
order `e is equal to g0

k mod `e .
Let n be a composite number whose factorization is equal to

∏j
i=0 pi

ei , with
ei an integer and pi prime, and let pj be the largest prime factor. By computing
ki, for i in [0, j], such that (gn/piei )ki = tn/pi

ei , we can then reconstruct k by
the Chinese Remainder Theorem. The complexity of solving the DLP in G is
then dominated by the complexity of solving the DLP in a subgroup of G of
order pjej .

Let us consider the multiplicative subgroup of G of order pjej . A generator
of this subgroup is gj = gn/pj

ej and t mapped in this subgroup is denoted by tj .
Let us now consider the base-pj expansion of kj : we write kj = kj,0 + kj,1pj +
· · · + kj,ej−1pj

ej−1, with kj,0, kj,1, . . . , kj,ej−1 in [0, pj [. We have tj
pj
ej−1 =

gj
kjpj

ej−1 = gj
kj,0pj

ej−1 . Let tj,0 = tj
pj
ej−1 and gj,0 = gj

pj
ej−1 . Computing kj,0

can be done by solving the DLP of tj,0 in basis gj,0 in the group of prime order
pj . We use similar computations for the other coefficients kj,1, kj,2, . . . , kj,ej−1.

The Pohlig–Hellman reduction allows us to reduce solving a discrete loga-
rithm in G to solving discrete logarithms in subgroups of G of cardinality pi.
This algorithm needs O(

∑j
i=0 ei(logn +√pi)) group operations. Therefore, in

the rest of this section, we assume that the cardinality of G will be prime.

The two following algorithms run in time O(
√
n) if n is prime. Shoup [169]

has proved that no generic algorithm can have a complexity below Ω(
√
n).

1.2.2 Shanks’ algorithm
Shanks’ algorithm, also called baby-step giant-step, was described in [167]. The
idea is to write k as kbr + kg, with r = d

√
ne and kb, kg in [0, r[. We can then

rewrite gkbr+kg = t as gkg = t(g−r)kb . By computing all the possible values for
gkg (giant steps), with kg in [0, r[, and t(g−r)kb (baby steps), with kb in [0, r[,
we eventually find a collision for a couple (kb, kg). The discrete logarithm k of
t in basis g is then k = kbr + kg.
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This algorithm needs to perform about 2d
√
ne group operations, therefore

the expected running time is in O(
√
n). The algorithm needs to store about

d
√
ne group elements, therefore the memory complexity is in O(

√
n).

To improve the constant in the O(
√
n), Bernstein and Lange [32] and Gal-

braith, Wang, and Zhang [68] proposed to use two giant steps and one baby step,
waiting for a collision between any of the three sets. The resulting algorithm
needs 1.25

√
N group operations in total.

1.2.3 Pollard algorithms
Pollard rho

The Pollard rho algorithm [146] runs in the same time complexity as Shanks’
one, but uses a constant memory complexity. The idea is to find a relation
involving powers of t and g. To that purpose, the algorithm performs a random
walk on the elements of the group G of the form tagb, with a and b in [0, n[.
Let, for all integer i, ai and bi be in [0, n[ and xi = taigbi . The random walk
allows to find a collision, that is, two integers i0 and i1 such that xi0 = xi1 .

Let w be a function that simulates a random walk on the elements of G.
This pseudo-random walk is used to generate xi+1 = w(xi). If the xi’s seem
uniformly and independently distributed on G, then, by the birthday paradox,
the expected number of calls to w until we get a collision is in (

√
nπ/2). To have

a memory complexity in O(1), we need to use the Floyds’s cycle finding trick
and compare xi with x2i at each step. The name “rho” comes from the shape
of the path followed by the random walk: after the first collision, the pseudo
random walk enters a cycle and the pseudo-random walk seems to describe the
Greek letter ρ, as shown in Figure 1.1.

A collision occurs when a, b, a′, b′ in [0, n[ are such that tagb = ta
′
gb
′ . To

compute the discrete logarithm k of t in basis g, we compute (b − b′)/(a′ −
a) mod n. The algorithm fails if a = a′. In such a case, we choose another x0
in G.

•x0

•x1 = w(x0)

•x2 = w(x1)

•x3 = w(x2) x10 = x3

•x4 = w(x3)
•

x5 = w(x4)
•x6 = w(x5)

•x7 = w(x6)

•x8 = w(x7)•
x9 = w(x8)

Figure 1.1 – Typical orbit for the Pollard rho algorithm.
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Pollard kangaroo

The Pollard kangaroo algorithm is used when the discrete logarithm k of t is
known to lie in a small interval. Although the complexity of this algorithm
is the same as the Pollard rho or Pohlig–Hellman algorithms, the practical
computation is faster. We do not detail this algorithm, and refer to the book
of Galbraith [66, Chapter 14] and the improvements of Galbraith, Pollard and
Ruprai [67].

1.3 Index calculus algorithms
Index calculus algorithms are nowadays the best family of algorithms to compute
discrete logarithms in large finite fields or to factorize large numbers. They are
the focus of this thesis.

1.3.1 General description
Let F∗pn be a multiplicative group of cardinality pn − 1 and g be a generator of
this group. Index calculus algorithms can be decomposed into two main steps:
the first step (divided here in relation collection and linear algebra) is used to
compute the logarithm of a subset F of elements of small sizes in F∗pn . This
subset is used in a second step to compute the discrete logarithm of a large
target. The first step can therefore be considered as a precomputation for the
individual logarithm step.

Relation collection

Let F be a subset of F∗pn containing small elements of F∗pn . The relation col-
lection is used to collect multiplicative relations involving the elements of F .
A relation is then of the form

∏
i fi

mi =
∏
j fj

mj , where fi and fj belong to
F and mi and mj are integers modulo pn − 1. By taking the logarithm of
this multiplicative relation, we get a linear equation involving the logarithms
of these small elements, that is

∑
imi logg fi =

∑
jmj logg fj . We continue to

collect relations until the system built by the linear relations involving unknown
logarithms is overdetermined.

Linear algebra

The linear algebra step is used to compute the values of the logarithms of the
elements of F . As the system given by the relation collection is overdetermined
and consistent, there exists a unique solution of this system. Using the Pohlig–
Hellman reduction, we then solve the system modulo each prime involved in the
factorization of the cardinality of F∗pn . At the end of this step, all the discrete
logarithms of the elements of F in basis g are found.

Individual logarithm

Let h be a large element of F∗pn . At the end of this step, the discrete logarithm of
h will be expressed as a linear combination of logarithms of elements of F . This
linear relation is generally not easy to find. We first rewrite the logarithm of h in
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terms of some smaller elements, not all in F and for each smaller element, redo
this procedure until the involved logarithms used to decompose the logarithm
of h all belong to F .

1.3.2 A first subexponential algorithm for prime fields
In this section, we instantiate the group G by a multiplicative group of a prime
field F∗p, where p is a prime. The cardinality of this group is then p−1. Let g be
a generator of this group. From now on, the best algorithms we have described
in Section 1.2 are in O(√p). We describe here a subexponential algorithm
proposed by Adleman at the end of the 70’s [2] to find k such that t = gk, where
t is in F∗p and k is an integer.

Smoothness

Before describing the Adleman algorithm, we define the smoothness of an inte-
ger, an important notion used in the index calculus algorithm family.

Definition 1.5 (Integer smoothness). Let B be an integer. An integer n is
B-smooth if the largest prime factor of n is strictly less than B.

Let B and n ≥ B be integers, we are interested in the evaluation of the num-
ber ψ(n,B) of integers less than n that are B-smooth. Then, the probability for
a random integer less than n to be B-smooth is equal to P (n,B) = ψ(n,B)/n.
This probability cannot be quickly computed but we can obtain an asymptotic
formula. In 1983, Canfield, Erdős and Pomerance gave a good approximation
of it.

Theorem 1.1 (Smoothness probability [44]). Let ε > 0 be fixed and u be
such that 3 ≤ u ≤ (1 − ε) logn/ log logn. An approximation of ψ(n, n1/u) is
n exp(−u(log u+ log log u− 1 + o(1))).

Then, the probability for an integer less than n to be B-smooth is equal to
u−u(1+o(1)), where u ≥ 1 is the ratio between the size of n and the size of B,
u = logn/ logB. When u is large enough, u−u+o(1) is very close to ρ(u) [96,
Corollary 1.3], where ρ is the Dickman function. The Dickman function is the
unique continuous function defined on positive real numbers satisfying the delay
differential equation xρ′(x)+ρ(x−1) = 0 when x > 1 and ρ(x) = 1 when x ≤ 1.
The Dickman function is plotted in Figure 1.2.

Adleman algorithm

Let B < p be a smoothness bound to be defined later. We define the factor
base F as the primes less than B. To find relations involving the elements of F ,
we pick a random r in [0, p − 1[ and raise g to the power r: if gr viewed as an
integer is B-smooth, then we have a relation between elements of F and gr. We
need to have at least #F = π(B) relations to have a chance to build a system
of maximum rank, where π is the prime-counting function.

Let M be a matrix of size #F ×#F . We label the columns of M by primes
in F . A row of this matrix corresponds to a relation: the coefficients of the
unknowns are written in the corresponding columns. Once each needed relation
is encoded as a row of M , we solve the system Mx = y, where x and y are in
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Figure 1.2 – Graph of the functions ρ(x) and log2 ρ(x) for x in [0, 11.0].

(F∗p)#F and where each coefficient of the vector y contains the random power of
g for the corresponding relation. This computation is performed modulo each
of the prime factors of the cardinality p − 1 of the group. Then, we use the
Chinese Remainder Theorem to compute all the discrete logarithms in F∗p.

Finally, to compute the discrete logarithm of t, we compute tgrfor different
r in [0, p− 1[, until we find a relation involving only elements of F . For such an
r, tgr =

∏j
i=0 fi

mi with mi integers and fi in F . The discrete logarithm k of t
in basis g is then k = (−r +

∑j
i=0 mi logg fi) mod (p− 1).

Complexity analysis

The subexponential function. The vast majority of index calculus algo-
rithms have a subexponential complexity, that is a complexity smaller than
exponential but larger than polynomial. The range between the two extreme
complexities is covered by a real number α in [0, 1]. For an input of size log q and
given a positive constant c, the subexponential function, also called L function,
is given by Lq(α, c) = exp((c+ o(1))(log q)α(log log q)1−α).

Proposition 1.1 (L-arithmetic). Let q, ab, an, b, n, be five positive real numbers.
We have

• Lq(ab, b)Lq(an, n) =


Lq(ab, b) if ab > an;
Lq(an, n) if an > ab;
Lq(ab, b+ n) if an = ab.

• Lq(ab, b) + Lq(an, n) =


Lq(ab, b) if ab > an;
Lq(an, n) if an > ab;
Lq(ab,max(b, n)) if an = ab.

• Lq(ab, b)n = Lq(ab, nb).

• LLq(ab,b)(an, n) = Lq(anab, nbana1−an
b ).

Corollary 1.1 (of Theorem 1.1). Let q, ab, an, b, n be five positive real numbers.
Let B be an integer bounded by Lq(ab, b) and N bounded by Lq(an, n). The
probability of N to be B-smooth is equal to Lq(an − ab, (an − ab)n/b)−1.
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If we work in a field Fq, we often use the piece of notation L(α) instead of
Lq(α, c), considering that q is implicit and c is not needed in a first approxima-
tion, because any modification of α changes Lq(α, c) more than any modification
of c would do with a constant α.

The algorithm. We now prove that the Adleman algorithm has a complexity
in L(1/2). We begin by the relation collection. All the elements of F∗p of the
form gr are less than p, that is in Lp(1, 1). Let the smoothness bound B be equal
to Lp(ab, b) with ab, b two real numbers. By Corollary 1.1, the probability of gr
to be B-smooth is then equal to P = Lp(1−ab,−(1−ab)1/b). The cardinality of
F is bounded by π(B), we therefore look for π(B) < B relations. The average
number of B-smoothness tests is then less than B/P . The smoothness tests
can be done naively by trial division, each test costing B divisions. The total
cost of the relation collection is then equal to Lp(ab, 2b)Lp(1 − ab, (1 − ab)/b).
Since the first argument of the L function dominates the result, we choose
ab = 1 − ab = 1/2 and then, the complexity of the relation collection step is
Lp(1/2, 2b+ 1/(2b)).

The linear algebra step can be performed by Gaussian elimination. The
time complexity of this algorithm is polynomial in the dimension of the ma-
trix M and can be upper-bounded by O(B3). We need to solve at most
log p systems, but, written with L-functions, the coefficient is absorbed in the
o(1) and then, the linear algebra step can be performed in Lp(1/2, 3b). The
cost of the precomputation step using Adleman algorithm is then given by
Lp(1/2, 2b + 1/(2b)) + Lp(1/2, 3b). Intuitively, the cost of the precomputa-
tion must be balanced between the relation collection and the linear algebra
steps, we therefore need to have Lp(1/2, 2b+ 1/(2b)) = Lp(1/2, 3b): this occurs
when 2b + 1/(2b) = 3b, that is b =

√
2/2. The cost of the precomputation

seems then to be in Lp(1/2, 3
√

2/2). But, by using L-arithmetic, we know that
Lp(1/2, 2b + 1/(2b)) + Lp(1/2, 3b) = Lp(1/2,max(2b + 1/(2b)), 3b). The analy-
sis of the function max(2b + 1/(2b), 3b) shows that the minimal complexity is
reached when b = 1/2, that is a complexity in Lp(1/2, 2), as shown in Figure 1.3.

b

max(2b+ 1/(2b), 3b)

|
1 20 1/2 √

2/2

2
3
√

2/2

Figure 1.3 – Graph of the function max(2b+ 1/(2b), 3b) for b in [0.1, 2[.

The cost of the individual logarithm step is the cost to find one relation,
that is B/P = Lp(1/2, 3/2).

To find B-smooth numbers less than p, we can use the elliptic curve fac-
torization method [130], which has a complexity in LB(1/2,

√
2). By using this
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algorithm in the relation collection step and the Wiedemann algorithm to solve
sparse linear systems (presented in Section 3.3.2), we can reach the complexity
Lp(1/2,

√
2) for the precomputation step, and Lp(1/2,

√
2/2) for the individual

logarithm step.

1.3.3 Today’s algorithms and choices of finite fields
Nowadays, the index calculus family covers all the spectrum of the different
finite fields, with complexity at most L(1/3). Let Fpn be a finite field where p is
a prime. We distinguish three types of finite fields, as summarized in Figure 1.4.
For each case, we give the different variants and the corresponding complexities.

Characteristic

small

medium

large

log log p

logn

Fp

F2n

p = Lpn(1/3), n ≈ (log p)2

p = Lpn(2/3), n ≈ (log p)1/2

Figure 1.4 – Different domains of finite fields depending on their characteristic.

Small characteristic

The small characteristic case occurs when log p is small compared to n, typically
the cases when p = 2 and p = 3. This type of fields allows to use the Frobenius
map x 7→ xp as a way to derive a relation from another for free. Because of the
structure of the relation collection of the best index calculus algorithm, we also
need to consider the B-smoothness of polynomials lying in Fp[x]. A polynomial
in Fp[x] is B-smooth if its largest irreducible factor is of degree less than B. This
test can be done in polynomial time in the degree of the input polynomial. These
two advantages allow, among other things, to reach smaller complexities than
in the other cases. Before the end of 2012, the best algorithms ran in L(1/3),
due to the work of Coppersmith [49], Adleman [3], Adleman–Huang [5] and
Joux–Lercier [105] resulting in the function field sieve algorithm of complexity
Lpn(1/3, (32/9)1/3).

In the beginning of 2013, Joux [102] proposed a new algorithm of complex-
ity L(1/4), and in the middle of the same year, Barbulescu, Gaudry, Joux and
Thomé [21] proposed the first quasi-polynomial algorithm, that is a complex-
ity in (n log p)O(log(n log p)). Some improvements were proposed afterwards by
Granger, Kleinjung, and Zumbrägel [80] and Joux and Pierrot [109].
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Large characteristic

The finite fields Fpn are said to be of large characteristic if n is very small,
typically n is less than 4. The first L(1/3) algorithm was proposed by Gor-
don in 1993 [77], running in time Lp(1/3, 91/3). In his thesis [165], Schi-
rokauer obtains the nowadays Lp(1/3, (64/9)1/3) ≈ Lp(1/3, 1.93) complexity.
The algorithm that reaches this complexity, the number field sieve (NFS) al-
gorithm, will be more detailed in Chapter 3. A variation of NFS, called mul-
tiple number field sieve due to Coppersmith [48] and Commeine–Semaev [47],
and refined by Barbulescu and Pierrot [24], can reach a better complexity in
Lp(1/3, ((92+26

√
13)/27)1/3) ≈ Lp(1/3, 1.91). When p has a special form, it can

be exploited thanks to the special number field sieve algorithm of Gordon [76], to
reach a complexity lower than in the general case, precisely Lp(1/3, (32/9)1/3) ≈
Lp(1/3, 1.53). The majority of these algorithms are not relevant when n > 1.
The tower number field sieve (TNFS) algorithm of Barbulescu, Gaudry and
Kleinjung [22], from a former idea of Schirokauer [162], allows also to reach an
Lpn(1/3, (64/9)1/3) complexity in the general case, and Lpn(1/3, (32/9)1/3) in
special cases.

Medium characteristic

Work in this area started in 2006, when Joux, Lercier, Smart and Vercautern de-
scribed the first L(1/3) algorithm, whose complexity was Lpn(1/3, (128/9)1/3) ≈
Lpn(1/3, 2.43) [106]. In 2014, Barbulescu and Pierrot improved the constant to
((4(46+13

√
13))/27)1/3 ≈ 2.40 [24]. In 2015, Barbulescu, Gaudry, Guillevic and

Morain [20] reduced the complexity to (96/9)1/3 ≈ 2.21 and Pierrot, by com-
bining the two last improvements, reached the constant ((8(9 + 4

√
6))/15)1/3 ≈

2.16 [143].
When n is composite, the complexity drops to (64/9)1/3 ≈ 1.93 by using the

extended tower number field sieve (exTNFS) algorithm proposed by Kim and
Barbulescu [114], and in favorable cases, it is possible to reach (48/9)1/3 ≈ 1.75.
There exist many variants of exTNFS, with a multiple field variant and a variant
when p has a special form. The first algorithm that exploits this special form is
the one of Joux and Pierrot [108]; in this case, exTNFS improves the complexity
to (32/9)1/3 ≈ 1.53. We detail all these types of NFS in Part II.

Records

If lowering the overall complexity of index calculus algorithms to solve the DLP
on finite fields is an achievement, we still need to implement these algorithms
to compute discrete logarithms if we want to evaluate the practical impact of
these theoretical improvements. Indeed, we can give as an example that the
complexity of NFS to factor large integers is the same as the one to compute
discrete logarithms in the multiplicative group of a finite field of prime charac-
teristic. However the RSA-768 challenge solved at the end of 2009 [120] took
less than 15 million core hours, compared to the 46 million core hours necessary
to solve a DLP of the same size [122] in 2016. We report in Table 1.1 some of
the biggest computations of discrete logarithms in F∗pn , and in Figure 1.5 and
Figure 1.6 the evolution of the records. Except for the medium characteristic,
the records seem to follow the improvements of the algorithms. In the table
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and the two figures, p is a prime and n is an integer. Guillevic and us provide
a complete list of the computations of discrete logarithms in finite field in [83].

Finite
field Date Bit

size Algorithm Cost:
CPU days Authors

F∗2n
01/2014 9234 QPA 13.6 · 103 Granger,Kleinjung

and Zumbrägel [81]
05/2013 6168 L(1/4) 23 Joux [100]

F∗2p
10/2014 1279 L(1/4)

and QPA 1.28 · 103 Kleinjung [119]

04/2013 809 FFS 805 Caramel Team [17]

F∗3n
07/2016 4841 QPA 73.1 · 103

Adj, Canales-Martinez,
Cruz-Cortés, Menezes,

Oliveira, Rodŕıguez-Henŕıquez
and Rivera-Zamarripa [1]

09/2014 3796 QPA 359 Joux and Pierrot [110]
F∗
p57 01/2013 1425 FFS 513 Joux [101]

F∗
p47 12/2012 1175 FFS 534 Joux [101]

F∗
p12 11/2013 201 NFS 11 Hayasaka, Aoki

Kobayashi and Takagi [93]
F∗
p6 02/2008 240 NFS 38 Zajac [185]

F∗
p4 10/2015 392 NFS 510 Barbulescu, Gaudry,

Guillevic and Morain [87]

F∗
p3 08/2016 593 NFS 8.4 · 103 Gaudry, Guillevic

and Morain [73]

F∗
p2 06/2014 595 NFS 175 Barbulescu, Gaudry,

Guillevic and Morain [19]

F∗p

10/2016 1024 SNFS 136 · 103 Fried, Gaudry,
Heninger and Thomé [65]

06/2016 768 NFS 1.94 · 106 Kleinjung, Diem, Lenstra,
Priplata, and Stahlke [122]

06/2014 596 NFS 61 · 103 Bouvier, Gaudry,
Imbert, Jeljeli and Thomé [40]

Table 1.1 – Discrete logarithm records on finite fields.

Discussion on prime field

The cryptographic primitives whose security rely on the hardness of the DLP
mostly use prime fields for the computations. In this section, we discuss about
the choice of the prime p used to define Fp.

“Safe” prime and small subgroups. With the Pohlig–Hellman algorithm
(see Section 1.2.1) we have seen that solving a discrete logarithm in F∗p is as
difficult as solving a discrete logarithm in the subgroup whose order is the
largest factor of (p − 1). It follows that if the largest factor of (p − 1) is too
small, even if (p−1) is large, the computation of a discrete logarithm is easy. To
increase the hardness of computing discrete logarithms in F∗p, we look for a prime
such that p − 1 = 2p′, where p′ is a prime. With this definition, p is a Sophie
Germain prime. The density of Sophie Germain primes less than n is equal to
2Cn/(lnn)2, where C is the twin-prime constant, equal to

∏
p′>2 p

′(p′−2)/(p′−
1)2 ≈ 0.66 [170, Conjecture 5.24]. Such a prime p is called “safe” because the
order of the largest subgroup of F∗p is of order (p− 1)/2. If 2,048 is a good bit
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Figure 1.5 – Evolution of the records with NFS.
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Figure 1.6 – Evolution of the records in small characteristic.

size for p, then there exist more than 22026 safe primes, compared to more than
22036 primes, which is more than enough in both cases.

Instead of using safe primes, DSA, described in Section 1.1.4, uses prime
fields with a composite characteristic, to achieve a quick signature scheme. Pa-
rameters for p and q, the order of the subgroup in which the computations are
performed, are proposed in [113], and for p of size 2,048 bits, it is recommended
to use q of size 224 and 256 bits. Such a q is likely less than the largest prime
dividing p−1; it is chosen to balance the cost of computing a discrete logarithm
in the subgroup of order p with the Pollard rho algorithm and in the group
F∗p with NFS. A discussion on the consequences of such a choice is proposed
in [179], with applications in real-life cryptography.

Common prime. As noted previously, the choice of p is important, and to
avoid some bad choices, one can recommend to use a prime with some good
properties, defined in some trusted standard. This seems reasonable, but the
use of the same prime p in a large number of applications may decrease signif-
icantly the security of this prime. Indeed, once the precomputation step of an
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index calculus is performed given p, one can perform the individual logarithm
step as many times as there exist discrete logarithms to be computed. Let con-
sider a p of size 512 bits. Using NFS, if the precomputation step is reachable,
the individual logarithm step can be performed quickly. Using the CADO-NFS
implementation [176], the authors of the Logjam attack [6] computed a single
discrete logarithm in less than 10 minutes using a single core computer, while
the precomputation costs more than 10 years on a single core. With this attack,
and by downgrading a TLS connection, the authors showed that “82% of vul-
nerable servers [the TLS downgraded hack] use a single 512-bit group”. They
also observed that “breaking the single, most common 1024-bit prime used by
web servers would allow passive eavesdropping on connections to 18% of the
Top 1 Million HTTPS domains. A second prime would allow passive decryption
of connections to 66% of VPN servers and 26% of SSH servers”.

Special prime. As seen with the Dual EC pseudorandom number genera-
tor trapdoor [33], using standardized elements without knowing how they were
produced can potentially decrease the security of a system. In the context of
computing discrete logarithms on the multiplicative group of a finite field, it is
possible, with the Gordon algorithm [76], to build a prime that can pass all the
requirements for DSA, but, for the one who knows how this prime was built,
there exists a way to forge fake signatures, as shown in the article of Fried,
Gaudry, Henninger and Thomé [65]. This drawback can be avoided using the
recommendations of NIST’s FIPS 186 [113, Appendix A].
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Sieve algorithms

Sieve algorithms are used in number theory to enumerate elements
of a set which verify a given arithmetic property. The first described
sieve is attributed to Eratosthenes and is used to find prime num-
bers. This first algorithm allows many variants to practically im-
prove the expected running time of the sieve, for instance the use of
wheel factorizations. The main idea of the sieve of Eratosthenes to
find prime numbers will not be improved before the sieve of Atkin
and Bernstein [9], about 2,000 years later. The idea of the sieve of
Eratosthenes can also be used to generate numbers with other inter-
esting arithmetic properties, as the B-smoothness.

In this chapter, we will describe sieve algorithms that look for a given property
of elements in an integer interval [I, J [. In some of them, it is possible to reduce
the number of considered elements in [I, J [ by only looking for odd or even
integers, or more generically integers in a set of the form bZ + c, with b and c
integers. We note that bZ is a sublattice of Z of basis b and bZ+ c is a translate
of this sublattice. This notion of translate of a sublattice will be ubiquitous in
Chapter 6, where we sieve in higher dimension.

Our model of computation is a RAM (Random-Access Machine) with a direct
access memory. The classical arithmetic operations have a unit cost, just like
the comparisons, array indexing, assignement and branching.

2.1 Sieve of Eratosthenes and variants
The sieve of Eratosthenes is used to find prime numbers in an integer interval
[0, N [. In this section, we will describe the classical algorithm and some variants
around it. These algorithms use the fact that if p is a prime, all its multiple
cannot be primes.

2.1.1 Schoolbook algorithm
The algorithm is often described as an array containing all the integers between
[0, N [ and cross out the non-prime elements, as depicted in Figure 2.1. At the
end of the algorithm, the non-struck elements are prime. By definition, 0 and
1 are not prime, so the first prime number is 2. In the interval [0, N [, the

24
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multiples of 2 greater than 2, that are {4, 6, . . . , 2bN/2c}, cannot be primes.
Once we have enumerated all these non-prime elements, we look for the next
prime greater than 2. This element is 3, all its multiples larger than 3, that
are {6, 9, . . . , 3bN/3c}, are not primes. The next prime element is 5, 4 is not a
prime, because it is a multiple of 2. Once again, all the multiples of 5 larger
than 5 are not prime and we look for the new prime, that is 7. We use this
procedure as long as the next possible element is less than N .

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829

Figure 2.1 – Representation of the sieve of Eratosthenes in [0, 30[.

A description of such an algorithm is given in the following:

1. Initialize a boolean array A of size N with True values. Set A[0] and A[1]
to False.

2. While p < N

(a) Go to next position p where A[p] is equal to True; report p.
(b) For 2 ≤ k ≤ bN/pc, set A[kp] to False.

We now briefly study the time complexity of this algorithm. In each iteration
of the while loop of Item 2, we perform less than N/p updates in the array A if p
is prime. The time complexity of the sieve of Eratosthenes is O(

∑N
p prime N/p) =

O(N log logN) by Mertens’ theorems [136]. The space complexity is obviously
in O(N).

Comparison with exhaustive search

There exist many primality tests. The fastest probabilistic primality test is the
one of Miller–Rabin: given an integer n, the algorithm returns an indication
of the primality of n with a running time in O(logn), if a constant number of
witnesses are used. Instead of using the sieve of Eratosthenes to find all the
probable primes in the interval [0, N [, we can try to perform the Miller–Rabin
primality test on all the numbers in the interval. The time complexity of such
an algorithm is then in O(

∑N
n=2 logn), that is the exhaustive search runs in

O(N logN). The use of the sieve of Eratosthenes to find primes in [0, N [ is
therefore more efficient in term of running time than exhaustive search using
Miller–Rabin primality test.

First improvements

The for loop on k in Item 2b can be done on the restricted interval [p, bN/pc]
because the multiples of p less than p2 were treated previously. Then, the while
loop in Item 2 is performed when p is less than

√
N . It results in the following

algorithm:

1. Initialize the array A of size N with True values. Set A[0] and A[1] to
False.

2. While p <
√
N
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(a) Go to next position p where A[p] is equal to True; report p.
(b) For p ≤ k ≤ bN/pc, set A[kp] to False.

Even considering this, the time complexity is not improved in a major way
and one of the drawbacks of the schoolbook sieve of Eratosthenes, the huge
amount of memory needed to store all the possible primes, is not improved. In
the following, we will describe some variations around the sieve of Eratosthenes
that improve the space or/and the time complexity.

2.1.2 Segmented sieve
From one of the previous remarks, we know that we can find all the primes up
to N by sieving with all the primes up to

√
N . Instead of discovering the primes

up to
√
N during the procedure of the sieve of Eratosthenes, that is what we

do during the Item 2a of the schoolbook algorithm, we can precomput these
primes by a recursive call to the sieve of Eratosthenes and doing the while loop
of Item 2 only on the precomputed primes. This recursive call has a negligible
cost in time, O(

√
N log logN), and in memory, O(

√
N), compared to the costs

to sieve up to N .
The segmented sieve is a way to decrease the memory requirement of the

sieve of Eratosthenes by looking for primes in slices of length B. It was proposed
by Singleton [171] and used by Brent [42] and Bays–Hudson [27]. Let Ik be an
interval of length B of the form [kB, (k + 1)B[, for an integer k ≤ bN/Bc − 1.
With the precomputed primes up to

√
N , we will sieve in all the segments Ik

one after the other. At step k, a boolean array A of size B stores the primality
or not of the elements of Ik and an element a of Ik corresponds to the index
a − kB. By concatenating all these arrays, we get the array A of the classical
sieve. It just suffices to find the first location of a multiple of a prime p in Ik.
The algorithm can be described as follows:

1. Compute the primes up to
√
N .

2. For all interval Ik

(a) Initialize an array A with B cells set to True.
(b) For each precomputed primes p, set the cells corresponding to mul-

tiples of p in Ik to False.
(c) For all the positions i such that A[i] is True, report that i + kB is

prime.

The sieving step performing in Item 2b can be done as in the classical sieve
of Eratosthenes. Indeed, if i0 in Ik is a multiple of a prime p and i1 is its location
in the corresponding array A, then i0 + p is also a multiple of p, corresponding
to the location i1 + p in the array A. The first location in A can be computed
as (p− kB) mod p. But from one k to the other, it is possible to keep the next
position for p to avoid this computation. Storing this information requires to
add O(

√
N) in the memory complexity.

The number of visited cells is the same as in the classical sieve, the time
complexity is therefore O(N log logN). The space complexity is equal to about
O(
√
N) + O(B). Then, if B ≈

√
N , the space complexity of the segmented
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sieve is equal to O(
√
N). A drawback with this sieve algorithm is the number

of hits per segment if p is greater than N1/4, which is zero on average. From
an implementation point of view, the primes can be divided in families depend-
ing on the number of hit per segment. This is done in the implementation of
primesieve [182].

2.1.3 Wheel sieves
We will introduce the wheel sieve as an improvement of the sieving in congruence
classes. We begin by describing a specific sieve for the primes in the congruence
class 1 modulo 4, but the complexities in other congruence classes is the same.
We then show the advantage of the wheel sieve as an extension of the sieve of
the primes in the congruence class 1 modulo 2 and finally, the combination of
the wheel and the segmented sieves.

Sieving in a congruence class

In this section, we want to enumerate the primes in the range [0, N [ such that
the remainder of their division by 4 is equal to 1. The prime verifying these
properties can be written as 4k + 1, where k is an integer. Let A be an array
which stores at index k by a boolean the primality of 1+4k. If p can be written
as 1 + 4k, then its square is 4(4k2 + 2k) + 1 and is located at index 4k2 + 2k in
A. Therefore, to remove all the multiple of a prime p larger than its square, it
suffices to look at the indices (p2 − 1)/4 + ip of A. If p ≡ 1 mod 4 is prime, the
cell at index (p− 1)/4 will not be modified. The procedure runs as follow:

1. Compute the primes up to
√
N .

2. Create an array A indexed from 0 to (N −1)/4−1, initialized with True.

3. for all primes p up to
√
N

(a) Compute k = (p2 − 1)/4− 1.
(b) While k < (N −1)/4−1, store False in A[k] and compute k = k+p.

4. All the locations k where A[k] is equal to True give a prime p = 1+4(k+1).

Combining with a segmented like algorithm, we can reduce the memory
complexity to O(

√
N) and the time complexity is in O(N log logN).

Wheel sieve

During the first iterations of the while loop of the classical sieve described in
Section 2.1.1, we deal with small primes that generate a lot of hits. It is espe-
cially annoying when p = 2, because we already know that 2 is the only even
prime. It seems therefore interesting to consider only the odd integers larger
than 2, that is the translate of the sublattice of the odd integers, that is elements
of the form 2k+ 3, with k ≥ 0. The primality of an odd integer a larger than 2
is stored in the boolean array A at index (a− 3)/2.

Keeping the idea of removing the even numbers, we also can delete the
multiples of other small primes. Let W be the product of the first n primes. If
m in [0,W [ is divisible by one of the n primes p, p divides also m + kW , for
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any k. By removing the multiples of the n primes in the interval [0,W [, we
just consider φ(W ) elements, where φ is the Euler’s totient function. The set
of those elements coprime to W is denoted by P. The possible primes above
W are therefore of the form kW + i, where k > 0 and i is in P. Contrarily to
the previous algorithms, the set of such integers is not a translate of a single
lattice but a union of those. To store these numbers in a boolean array A, each
cell representing an element greater than the one in the previous cell, we need a
function I, that returns, given an element in P, the index of this element in P
(that is, if W = 30, P = {1, 7, 11, 13, 17, 19, 23, 29}, I(11) = 2). It is therefore
more complicated to enumerate the multiples of a prime because these multiples
are not regularly stored in A. An example of the array A when W = 30 is given
in Figure 2.2.
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Figure 2.2 – Wheel factorization with W = 30 = 2 · 3 · 5 (no primes in the gray
parts, instead of 2, 3, 5) and produced array.

Let k be an integer. We want to find the primes in the interval [0, kW [. With
the sieve of Eratosthenes, we need to stores kW booleans, instead of kφ(W ) with
the wheel sieve. We therefore save a factor around 3.75 when W = 2 · 3 · 5 and
around 4.38 when W = 2 · 3 · 5 · 7.

Segmented wheel sieve

Instead of considering the whole array A as we just described, we can consider
a radius of the wheel, formed by integers of the form kW + i. It is convenient
to sieve along a radius of the wheel, because we are in a translate of a lattice.
In a boolean array, we store the primality of a = k0W + i at index k0. As in the
segmented wheel, to find the prime up to N , we need to know all the primes up
to
√
N . The algorithm can be described as follow:

1. Compute W as the product of the first n primes and report these as prime.

2. Compute the primes up to
√
N and remove those that divide W .

3. For each of the coprimes residue i modulo W

(a) Initialize a boolean array A of size bN/W c with True
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(b) For each precomputed primes p up to
√
N , set to False the cells

corresponding to multiples of p.
(c) Report that i+ kW is prime if A[k] is True.

The space complexity of this algorithm is then equal to O(
√
N + N/W ).

The loop on the coprimes at Item 3 is executed φ(W ) times and it can be
shown that φ(W ) = O(W/ log logW ). There are about N/(Wp) updates in
A at Item 3b for each prime p, therefore the number of all the updates in
A is in O((N/W ) log logN). For a prime, finding its first multiple in A can
be done by the extended Euclidean algorithm in O(logN) basic operation and
we need to do that for all the prime up to

√
N , a number in O(

√
N/ logN).

Puting all the time complexities together, we get a time complexity equals to
O(W/ log logW (N/W log logN +

√
N)). By taking W = O(

√
N), we can get

a time complexity in O(N) and a space complexity in O(
√
N). More details

about the segmented wheel sieve can be found in the articles of Pritchard [153]
and Sorenson [173].

2.2 Other sieves
In this section, we present two sieve algorithms. The first one was introduced by
Pritchard in [154] and is inspired by the sieve of Eratosthenes while the second
uses a different idea. At the end of this section, we summarize the time and
space complexities for most of the sieve algorithms in the literature.

2.2.1 Composite sieve
In the classical sieve of Eratosthenes, some of the composite numbers are crossed
out by different primes. In this sieve (described without considering a possible
wheel), a composite is crossed out exactly once. Let a be a composite integer,
p be the smallest prime factor of a and f be the cofactor that is a = pf . The
prime p is therefore smaller or equal to the smallest prime factor of f . Then,
by considering all the possible cofactors f in [2, bN/2c] and all the primes up to
the least prime factor of f , we can generated all the composite integers up to
N . As in the schoolbook sieve, we need to store the primality of all the integers
up to N . The sieve works as follow:

1. Compute the primes up to
√
N .

2. Initialize the array A of size N with True value. Set A[0] and A[1] to
False.

3. For 2 ≤ f ≤ bN/2c

(a) For each prime p up to
√
N

i. If p is less or equal to N/f , set A[pf ] to False.
ii. If p divides f , break the loop.

4. Report indices of the True locations in A.
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The space complexity is obviously in O(N), as the time complexity because
any composite in [0, N [ is visited only once. Using a wheel, we can get a time
complexity in O(N/ log logN) and a space complexity in O(N1+o(1)) and the
segmented sieve combined with the wheel reduces once again the space com-
plexity.

2.2.2 Sieving by quadratic forms
In this section, we will consider the writing of integers modulo 12. Except 2
and 3, all the primes can be written as 12k0 + k1, with k1 in {1, 5, 7, 11}. The
primes are therefore congruent to 1 modulo 4 or 1 modulo 6 or 11 modulo 12. A
first but inefficient idea will be to sieve these congruence classes. An other idea
is to consider the writing of the primes in these families using binary quadratic
forms, the Atkin–Bernstein sieve [9].

Instead of removing the multiple of a prime, the primes are discovered by
looking for irreducible binary quadratic forms. There exist three forms to find
the primes, listed in the Section 6 of the article of Atkin and Bernstein, following
these three theorems:

Theorem 2.1. Let n be a squarefree integer such that n ≡ 1 mod 4. Then, n
is prime if and only if the cardinality of {(x, y) : x > 0, y > 0, 4x2 + y2 = n} is
odd.

Theorem 2.2. Let n be a squarefree integer such that n ≡ 1 mod 6. Then, n
is prime if and only if the cardinality of {(x, y) : x > 0, y > 0, 3x2 + y2 = n} is
odd.

Theorem 2.3. Let n be a squarefree integer such that n ≡ 11 mod 12. Then,
n is prime if and only if the cardinality of {(x, y) : x > y > 0, 3x2 − y2 = n} is
odd.

In these three theorems, if n is the integer to be tested, we can bound x
and y in the interval [1,

√
n]. Like in the sieve of Eratosthenes, we look for all

the primes in the interval [0, N [. The primes 2 and 3 cannot be detected using
these quadratic forms. A naive algorithm of the sieve of Atkin–Bernstein can
be written as follow:

1. Initialize an array P with False, and set P [2] and P [3] to True

2. Initialize an array L with False

3. For the tuple (a, b, c, d) in {(4, 1, 1, 4), (3, 1, 1, 6), (3,−1, 11, 12)}

(a) For x and y in [1,
√
N ], if 0 < ax2+by2 < N and ax2+by2 ≡ c mod d,

negate L[ax2 + by2].
(b) For i in [0, N [, set P [i] to True if L[i] is True
(c) Reinitialize L with all the cells to False

4. For i in [0, N [, if P [i] is True and i is squarefree, report i.

The step summarized in Item 3a enumerates O(N) pairs and then, the time
complexity of these steps is in O(N). The time complexity of the squarefree
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elimination by sieving is also in O(
∑√N
p=2 N/p

2) = O(N). The total time com-
plexity is therefore in O(N). The memory complexity is also in O(N). An
efficient algorithm described in [9] using wheel sieve and segmented sieve al-
lows to have a running time in O(N/ log logN) with a memory complexity in
N1/2+o(1). The primegen software [29] implements this algorithm.

2.2.3 Complexities of some sieve algorithms
In this section, we summarize in Table 2.1 the space and time complexities of
some sieve algorithms. Several sieve algorithms have been previously described
and we mention some other to be more complete about the sieves available to
find prime numbers. We do in addition two comments that are not obvious
using only the data we summarized:

• the implementation of the Bennion’s “hopping sieve” by Galway has less
cache misses than the one of the segmented sieve [69, Section 5].

• the pseudosquares prime sieve is faster than the exhaustive search using
Miller–Rabin primality test and achieve the best space complexity [174].

Algorithm Time Space References
Eratosthenes O(N log logN) O(N) Section 2.1.1

Segmented sieve O(N log logN) O(N1/2) Section 2.1.2
Segmented wheel O(N) O(N1/2+o(1)) Section 2.1.3

Composite O(N) O(N) Section 2.2.1
Segmented wheel

composite O(N/ log logN) O(N1+o(1)) [151, 152, 56, 173]

Hopping sieve O(N log logN) O(N1/2) [69]
Quadatic form O(N) O(N) Section 2.2.2

Segmented wheel
quadatic form O(N/ log logN) O(N1/2+o(1)) [9]

Dissected
quadatic form O(N) O(N1/3) [70, 71]

Hybrid sieve O(N log logN) O(N1/4) (conjectured) [71]
Pseudosquares

prime sieve O(N logN) O(log2 N) [174]

Table 2.1 – Complexity of the sieves.

2.3 Sieve of Eratosthenes in different contexts

2.3.1 Perfect number
As a toy example of what can be done with a sieve, let now consider the enu-
meration of the perfect numbers. A perfect number is an integer for which the
sum of its divisors (excluding itself) is equal to itself. Let N be an integer and
consider the perfect numbers in [1, N [. To determine if an integer a is perfect,
we need to find all its divisors, and not only its prime factors. Then, for all
integer i less than bN/2c, we need to record that for all integer 1 < k < N/i,
the integer ki is divisible by i.

The array A used for sieving now contains integers instead of booleans. Each
index i of the array A correspond to the integer i + 1. A simple procedure to
find perfect numbers in [1, N [ can be described as follow:
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1. Initialize the array A with a 0 in each cell.

2. For i in [1, bN/2c[

(a) Set k = 2i.
(b) While k < N , add i to A[k] and set k to k + i.

3. For i in [1, N [, if i = A[i− 1], report i.

The time complexity of this algorithm in O(
∑N/2
i=1 N/i) = O(N logN) and

the memory complexity is obviously in O(N logN). To factor any number, we
can use a similar approach by considering primes and prime powers. This is the
goal of the next algorithm to find smooth numbers.

2.3.2 Smooth numbers
Let B0 be an integer. In this section, we look for B0-smooth numbers, that is
numbers in an interval [I, J [ for which the largest prime factor is less than B0,
as in Definition 1.5.

A first algorithm

Let us describe the idea of this algorithm before a more formal description. Let
P be the set of primes strictly less than B0. To find B0-smooth integers, we
want to remove the contribution of pa < J , with p in P and a a positive integer,
on all the integers in [I, J [. Removing the contribution of pa, with a > 0, is
performed by removing a times the contribution of p.

1. create an array L indexed from 0 to J − I − 1 initialized with the integers
in [I, J [;

2. for prime p < B0

(a) set a to 1;
(b) while pa < J

i. find the first multiple of pa greater than I and compute its index
i in L;

ii. while i < J − I, divide L[i] by p and set i to i+ pa;
iii. increment a;

3. for i in [0, J − I[, if L[i] = 1, then i+ I is B0-smooth.

In order to reduce the memory size of the array L, we can store an approxi-
mation of the logarithm of the integers. We then need to subtract the logarithm
of p to L[i], instead of dividing by p. To know if i+ I is B0-smooth, it suffices
to perform the test L[i] = 0 but of course, we must be careful with approxima-
tions. From now on, we consider that this change will be applied in the previous
algorithm.

This algorithm is quite powerful if J − I is greater than B0, but when
J − I � B0, the number of updates in the array L is less than 1 on average.
The following section present a strategy to find smooth numbers more efficiently.
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Algorithm in short interval

In the following algorithm, the sieving procedures do not give the exhaustive
list of B0-smooth integers in [I, J [, but are faster and give a large subset.

Remarks on the smoothness probability. A simple observation on B0-
smooth numbers shows that a B0-smooth number is often divisible by many
small primes. For example, if I = 1, J = 220, B0 = 216 − 1 and B1 = 28 + 7,
the number of B0-smooth numbers is equal to 846,695 and the number of B1-
smooth numbers is 173,552, that is more than 20% of the B0-smooth integers
are B1-smooth. When B1 is equal to 212 + 3, the proportion is about 65%. Let
now briefly study the B0-smoothness probability of n = ab, with n, a and b three
integers. Without knowledge on the form of n, the B0-smoothness probability
of n is more or less equal to u−u, with u = log(n)/ log(B0) by Theorem 1.1. The
probability of n to be B0-smooth is also equal to the probability of a and b to
be simultaneously B0-smooth. If a and b are of the same size, this probability
become ((u/2)−u/2)2, that is larger than u−u by a factor 2u. Then, we can
infer that if a number is divisible by many small integers, its probability of
smoothness is larger than for a random integer of the same size. This intuition
will be used in the next paragraph.

A new algorithm. When the sieving step seems to be uninteresting, like
in the situation described before when the interval is too small, we can try
to have a compromise between the sieving step and a more exhaustive search
algorithm. The goal of the sieving step is to distinguish between promising
B0-smooth number and almost doubtless not B0-smooth integers. To make this
distinction, we use what is called a threshold. Each prime we sieve with the
above algorithm remove its contribution in the array L. Then, if the remaining
value in L[i] is smallest than the original value, there exist some primes less
than B0 which divide i + I. The threshold T is used to decide which are the
promising B0-smooth numbers: if the value stored in L[i] is less than T , then
we hope that i+ I is B0-smooth and we compute the full factorization of i+ I
to verify if it is really B0-smooth.

Here, B1 < B0 is called the sieving bound, while B0 is the smoothness
bound. We now rewrite the previous algorithm taking into account this idea.

1. create an array L indexed from 0 to J−I−1 initialized with the logarithm
of the integers in [I, J [;

2. for all the prime p strictly less than B1

(a) let a = 1;
(b) while pa < B1

i. find the first multiple of pa greater than I and compute its index
i in L;

ii. while i < J − I, subtract log p to L[i] and set i to i+ pa;
iii. increment a;

3. for i in [0, J − I[, if L[i] ≤ T , factorize i+ I and test if it is B0-smooth.



34 Chapter 2. Sieve algorithms

Setting B1 to B0 and T to 0, we recover the first algorithm. Setting B1 to
0 and T to log J , we perform an exhaustive search. With such an algorithm,
we are aware of the possibility of missing some B0-smooth integer in [I, J [. We
need to find parameters that achieve a good compromise between the time spent
during the sieving step, the time of the factorization step and a small number
of false positives. The parameters need therefore to be carefully selected.

Choice of parameters. The previous algorithm is composed by two main
steps. To adjust the parameters of this algorithm, we must analyze carefully
the cost of these two steps. The sieving cost, summarized in Item 2, is equal
to (J − I) log logB1. For the factorization step, summarized in Item 3, the cost
of one individual B0-smooth test is equal to LB0(1/2,

√
2) using the ECM algo-

rithm [130]. This test is performed (J − I)πI,J(T,B1), where πI,J(T,B1) is the
proportion of integers that are not B1-smooth and whose remaining value is less
than T , also called survivors. The total cost of the algorithm to find B0-smooth
integer using a sieving up to B1 and a factorization step on survivors is equal to
(J−I)(log logB1+πI,J(T,B1)LB0(1/2,

√
2)). It must be compared with the cost

of the first sieving algorithm which is (J−I)(log logB0). The second algorithm is
therefore more efficient as the first one if log logB1 +πI,J(T,B1)LB0(1/2,

√
2) <

log logB0. Furthermore, the second algorithm must report a sufficient number
of B0-smooth integers in [I, J [, say almost 90% of them. The theoretical estima-
tion of this number and the proportion πI,J(T,B1) is related to the number of
k-semismooth integers, that are integers having exactly k prime factors between
B0 and B1, and can be hard to compute, see for example the theses of Cav-
alar [45, Chapter 2] and Ekkelkamp [58, Chapter 2]. Adjusting the parameters
can also be done empirically, and it is often the chosen way.

Dividing the search space

Let us now consider, in this last section, a way to deal with interval [I, J [ of a
large length, where it is impossible to store the needed informations to test the
smoothness of all the elements in [I, J [. A possible way will be to use a sieve
procedure close to the one of the segmented sieve. In this section, we describe
an other way based on the sublattices of Z. This is a one-dimensional version
of the well known special-Q sieving, that is used in dimension 2 in the classical
NFS algorithm, described in Section 3.2.3.

Let q be a prime less than B0. Let us consider the sublattice Λq of Z which
contains elements divisible by q. The intersection of Λq and [I, J [ is denoted
by Λ′q and contains almost (J − I)/q integers. In the following, we consider
only prime q such that the number of elements in Λ′q is small enough to store
in memory all the needed informations (that is essentially the logarithm of each
element) to perform the sieve algorithm and find B0-smooth numbers. The set of
such primes is denoted by [B2, B3[. Inside a set Λ′q, we remove the contribution
of q. Then, we apply a sieving procedure, which can be the same as the previous
one: for each element of Λ′q, we remove the contribution of the prime p, and
its power, less than a bound B1 and if the remaining factor is smaller than a
threshold T , implying that the element have a good chance to be B0-smooth,
we factorize it and report it, if it is B0-smooth. The complete description of the
algorithm is:
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1. for all prime q in [B2, B3[

(a) create an array L indexed from 0 to #Λ′q − 1 initialized with the
logarithm of the integers in Λ′q;

(b) in each cell of L, subtract log q;
(c) for all the prime p 6= q strictly less than B1

i. let a = 1;
ii. while pa < B1

A. find the first multiple of pa in Λ′q greater than I and compute
its index i in L;

B. while i < #Λ′q, subtract log p to L[i] and set i to i+ pa;
C. increment a;

(d) for i in [0,#Λ′q[, if L[i] ≤ T , factorize q(i + dI/qe) and test if it is
B0-smooth.

Before describing the classical choice of the parameters, the advantages and
the drawbacks of this sieve algorithm, we will define what we call a duplicate.
Definition 2.1 (Duplicate). Let N be a B0-smooth numbers in [I, J [. If N
is divisible by the primes q and p in [B2, B3[, where B3 < B0, using the sieve
algorithm above, the integer N will be probably reported two times, when we
consider the set Λ′q and Λ′p: the integer N is a duplicate.

We will first describe obvious constraints on the parameters:

• the bounds B2 and B3 should be the largest possible to decrease the
number of duplicate.

• the bound B3 should be chosen such that #Λ′q is sufficiently large, where
q is the largest possible in [B2, B3[.

• the bound B2 should be chosen such that #Λ′q fit into memory, where q
is the smallest possible in [B2, B3[.

• it is interesting to sieve if #Λ′q/B1 is larger than 1.

Classically, the bound B1 is often set to be less than q, in order to report
less duplicates. Some advantages and drawbacks of this sieve algorithm are
summarized in Table 2.2. With a correct choice of parameters, we hope that
the advantages counterbalance the drawbacks, mainly in term of running time.
We will develop below the advantages and the drawbacks, by comparing this
sieve algorithm, called special-q method, with a segmented sieve algorithm that
reaches the same goal.

Memory and parallelization. These two features are shared by the two
algorithms. Indeed, the length of the segmented sieve can be chosen to fit into
memory, as the cardinality of each Λ′q in the special-q method. During the
description of the segmented sieve, we showed that, given the location of a hit
of a prime in a segment, we can compute the location of the next hit in another
segment, which gives an advantage if we consider the natural sequence of the
segments. If we treat each segment independently, we cannot therefore use the
previous advantage, but the segments can be treated in parallel, as we can treat
each Λ′q independently.
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Advantages Drawbacks

• do not explore numbers divis-
ible by a factor larger than B0

• fit into memory

• easily parallelizable

• miss (B2−1)-smooth numbers

• generates duplicates

Table 2.2 – Advantages and drawbacks of the special-q method.

Completeness and duplicates Using the segmented sieve will divide in
many contiguous subsets of [I, J [ such that, putting altogether these subsets,
we cover exactly all the elements in [I, J [. If we consider that the parameters
B1 and T are sufficiently well designed to report all the B0-smooth numbers in
all the segment, we then report all the B0-smooth integers in [I, J [.

The use of the special-q method covers differently the interval [I, J [. If we
combine all the sets Λ′q, we have no guarantee that putting altogether these
sets, we can cover the whole interval [I, J [. It is obvious that, if N in [I, J [ is
(B2−1)-smooth, then it will never be reported by any Λ′q, where q is in [B2, B3[,
of the special-q method. Therefore, the set of reported B0-smooth integers by
the special-q method is not complete.

However, this drawback implies an advantage. In the interval [I, J [, there
exist many elements of the form ab, where a is a product of small prime and b
is a prime, or a product of primes, larger than B0. These elements are always
considered by the segmented sieve and always ignored by the special-q method.

Finally, the special-q method implies necessarily to deal with duplicates.
The number of duplicates can be small if the interval [B2, B3[ contains a small
number of primes and the bounds are relatively large. Using the segmented
sieve, we do not need to deal with duplicates, because the intersection of each
segment is empty.



Chapter 3

The number field sieve
algorithm in prime fields

The number field sieve (NFS) algorithm to compute discrete loga-
rithms is a variant of NFS to factor large integers [127]. In this
chapter, we focus on NFS in prime fields. The different variants for
extension fields will be presented in Part II.

The NFS algorithm is an index calculus algorithm, and follows the description
given in Section 1.3. In this chapter, our target finite field is Fp, where p is
a prime number. Let f0 and f1 be two irreducible polynomials with integer
coefficients sharing a common root m modulo p. Let ` be the largest prime
factor of p−1. The major difference with the index calculus algorithm sketched
in Section 1.3 is the relation collection. We first describe a general overview of
NFS and especially the relation collection before going into details.

Let K0 be a number field defined as Q[x]/f0(x) = Q(θ0), where θ0 is a root
of f0. Let O0 be the ring of integers of K0. Let ν0 be the map from Z[x] to
K0, which maps x to θ0, and ρ0 be the map from K0 to Fp, which maps θ0 to
m modulo p. Let K1 = Q(θ1), O1, ν1 and ρ1 be likewise defined. We can then
build the typical commutative diagram, as in Figure 3.1. Indeed, for an integer
polynomial a, we have ρ0(ν0(a)) = ρ1(ν1(a)).

K0 K1

Z[x]

Fp

ν0 : x 7→ θ0

ρ0 : θ0 7→ m

ν1 : x 7→ θ1

ρ1 : θ1 7→ m

Figure 3.1 – The NFS diagram to compute discrete logarithms in Fp.

Instead of performing the relation collection directly in F∗p, we perform the
relation collection in the rings of integers O0 and O1. Let B0 and B1 be two

37
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integers, called smoothness bounds or large prime bounds. The factor base F0
(respectively F1) is the set of prime ideals in O0 (respectively O1) of norms less
than B0 (respectively B1). The factor bases also contain prime ideals dividing
the leading coefficient of the polynomials f0 and f1, to take into account that
θ0 and θ1 are not necessarily algebraic integers.

Let a be a polynomial in Z[x]. We say that the principal ideal 〈a(θ0)〉 is
B0-smooth if it completely factors into prime ideals of F0. We get a relation
if a(θ0)O0 =

∏
Q∈F0

QvalQ a(θ0) is B0-smooth and a(θ1)O1 =
∏

R∈F1
RvalR a(θ1)

is B1-smooth. Instead of performing the factorization over ideals, we factorize
the norm of a(θ0) (respectively a(θ1)), defined as ± lc(f0)deg a Norm (a(θ0)) =
Res (f0, a) (respectively ± lc(f1)deg a Norm (a(θ1)) = Res (f1, a)) which is a ra-
tional. The B0-smoothness of 〈a(θ0)〉 is then defined as the B0-smoothness of
the resultant between a and f0, likewise on the side 1. Then, to find a relation,
we consider the smoothness of norms instead of the smoothness of a(θ0) and
a(θ1). Furthermore, knowing the factorization of a norm allows us to find the
factorization into ideals almost for free. Complexity analysis shows that a must
be of degree one to reach the L(1/3) complexity, we then write a = a0 + a1x.
The set of possible pairs (a0, a1) is often restricted to a search space S, a finite
subset of Z2.

A relation can be transformed in a linear relation involving the virtual log-
arithms of the ideals [163]. To be valid, this linear relation must involve the
Schirokauer maps [164], labeled λf0,i for i in [0, r0[, where r0 is the unit rank of
K0, and λf1,i for i in [0, r1[, where r1 is the unit rank of K1. The unit rank is
equal to n0 + n1 − 1, according to the Dirichlet’s unit theorem, where n0 is the
number of real roots and n1 the number of conjugate pairs of complex roots of
the polynomial that defines the number field. To avoid to deal with fractional
ideals, we use the following results.

Proposition 3.1 ([60, Section 9]). Let f(x) =
∑d
i=0 cix

i with coprime in-
teger coefficients and θ a root of f . Let J = 〈cd, cdθ + cd−1, c

2
dθ + cd−1θ +

cd−2, . . . ,
∑d
i=1 ciθ

i−1〉. The ideal J has norm |cd|, J〈1, θ〉 = (1) and for inte-
gers a0 and a1, 〈a0 + θa1〉J is an integral ideal.

Let J0 be defined as in Proposition 3.1 for f0 and J1 likewise for f1. The
norm of the integral ideal 〈a0 +a1θ0〉J0 is equal to ±Res (f0, a0 + a1x) and that
of 〈a0 + a1θ1〉J1 is equal to ±Res (f1, a0 + a1x). A relation can therefore be
written as the equality

vlog J0 +
∑

Q∈F0

valQ (a0 + a1θ0) vlogQ +
r0−1∑
i=0

λf0,i(a0 + a1θ0) vlog λf0,i ≡

vlog J1 +
∑

R∈F1

valR (a0 + a1θ1) vlogR +
r1−1∑
i=0

λf1,i(a0 + a1θ1) vlog λf1,i mod `.

Once we have found more than #F0 + #F1 + r0 + r1 relations, we put the
relations as rows of a matrix M , which must have a right kernel of dimension 1,
whose columns are indexed by the prime ideals in F0 and F1 and the characters
(Schirokauer maps). We then compute a right non-zero kernel vector w of this
matrix M ; the entries of w give the virtual logarithms of the elements of the
factor basis. Knowing these virtual logarithms, we try to compute the virtual
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logarithm of an ideal of large norm in one of the number fields by rewriting the
target element with some ideals of smaller norm while the involved ideals are
those whose virtual logarithm is already known.

3.1 Polynomial selection
To ensure a high smoothness probability and find many relations during the
relation collection, the choice of the polynomial pair (f0, f1) is crucial. We will
describe in the following the two main ways to construct a polynomial pair
and begin by describing criteria to determine which pair is the best in term of
smoothness probability.

3.1.1 Quality criteria
Let F0 (respectively F1) be the homogenization of f0 (respectively f1), that
is F0(a0, a1) = f0(−a0/a1)adeg f0

1 (respectively F1(a0, a1) = f1(−a0/a1)adeg f1
1 ).

The polynomial F0 (respectively F1) represents the resultant between an element
a0 + a1x and f0 (respectively f1). As will be explained in Section 3.2.1, the
search space S has the form [Im0 , IM0 [×[0, IM1 [, where Im0 , IM0 and IM1 are three
integers. Moreover, we only consider the pairs (a0, a1) in S such that a0 and a1
are coprime.

Size property

A first criterion to estimate the number of relations we can find with S is to
compute the sum of the smoothness probability in both sides, which can be
computed as ∑

a0∈[Im0 ,IM0 [, a1∈[0,IM1 [
gcd(a0,a1)=1

ρ

(
ln |F0(a0, a1)|

lnB0

)
ρ

(
ln |F1(a0, a1)|

lnB1

)
, (3.1)

where ρ is the Dickman function.
A simplified and easier criterion is to compute an upper bound of the sizes

of the norms corresponding to both polynomials. This is enough for getting the
optimal theoretical complexities, and can also be used as a first filter in practice.
The maximum of F0 and F1 in S is often reached when a0 = IM0 (we suppose
here that |Im0 | ≈ |IM0 |) and a1 = IM1 , because the resultant is very sensitive to
the infinity norm of the polynomials [34, Theorem 7]. Then, the sum given in
Equation (3.1) can be rewritten as

6
π2 (IM0 − Im0 )IM1 ρ

(
ln |F0(IM0 , IM1 )|

lnB0

)
ρ

(
ln |F1(IM0 , IM1 )|

lnB1

)
, (3.2)

where the factor 6/π2 takes into account the probability of two integers to be
coprime.

The first criterion is then to select the polynomial pair for which the sizes of
the norms on both sides are minimal. As a first approximation, this minimum
can be reached by minimizing the sum of the sizes of norm. Indeed, since
the Dickman rho function is convexe, the product ρ(x0)ρ(x1) is larger than
ρ(x0 + x1), and since B0 ≈ B1, Equation (3.2) can be roughly estimated as
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6
π2 (IM0 − Im0 )IM1 ρ

(
ln |F0(IM0 , IM1 )|+ ln |F1(IM0 , IM1 )|

lnB0

)
.

This can be refined by considering that, in a list of polynomial pairs that
yield a similar value for the sum of the sizes of the norms, it is better to choose
the pair for which the norms have sizes as close as possible to each other.

Local property

A drawback of Equation (3.1) is that the norms are considered as if they were
random integers of a given size. However, this assumption is not verified, be-
cause the divisibility properties of norms are not exactly the same as for random
integers. To measure the difference in terms of smoothness probability between
these two integers, Murphy introduces in his thesis [140, Section 3.2] the α quan-
tity, that depends on the polynomial that defines the number field. Then, if the
size of a norm is N (the size is given by the natural logarithm) in the number
field K0, its probability of smoothness is about the same as the one of a random
integer of size N + α(f0). We then look for negative α quantities. The formal
definition of the α quantity is obtained as a sum of local contributions:

Definition 3.1. Let f be an irreducible polynomial in Z[x], and F be its ho-
mogenization. The quantity α(f) is defined as α(f) =

∑
` prime α`(f) with, for

all prime `,

α`(f) = ln(`)
[
A(val`(n), n ∈ Z)

− A(val`(F (a0, a1), (a0, a1) ∈ Z2 and gcd(a0, a1) = 1))
]
,

where A(·) is the average value and val` the `-adic valuation.

The average value A(·) is defined here by taking the limit of the average
value of the quantity for increasingly large finite subsets of the whole set con-
sidered. These subsets are chosen to be centered balls of increasing radius. The
convergence of the series definition α(f) is proved in the article of Barbulescu
and Lachand [23].

Let f and F be as in Definition 3.1. In this case, when f has only sim-
ple roots modulo `, we can get explicit formulæ for A(val`(n), n ∈ Z) and
A(val`(F (a, b), (a, b) ∈ Z2 and gcd(a, b) = 1)). The first term can be written as
1/(`− 1). The second term is equal to `n`/(`2 − 1), where n` is the number of
simple roots of f modulo `. Then, we can write α(f) as

∑
` prime ln(`)[1/(` −

1)− `n`/(`2 − 1)]. A sketch of a proof for this formula is given in Appendix C.

Global property

Taking the α quantities into account, we can then rewrite our estimation of the
number of relations given in Equation (3.1):

∑
a0∈[Im0 ,IM0 [, a1∈[0,IM1 [

gcd(a0,a1)=1

1∏
i=0

ρ

(
ln |Fi(a0, a1)|+ α(fi)

lnBi

)
. (3.3)

The number of relations given by Equation (3.3) is somehow difficult to es-
timate and the simplification given in Equation (3.2) is too rough. A way to
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approximate this large sum is to select (a0k , a1k) as points of an ellipse that
approximates the shape of the rectangle S: explanations on why this simplifi-
cation is a good approximation of the number of relations in S is given in [140,
Section 5.2]. Let K be the number of points (a0k , a1k), for k in [0,K[, regu-
larly spaced on the ellipse. By computing the average value of the smoothness
probability of F0(a0k , a1k) and F1(a0k , a1k), we obtain an approximation of the
number of relations that we can get in S = [Im0 , IM0 [×[0, IM1 [ as

(IM0 − Im0 )IM1

[
1
K

K−1∑
k=0

1∏
i=0

ρ

(
| lnFi(a0k , a1k)|+ α(fi)

lnBi

)]
. (3.4)

The Murphy E quantity [140, Chapter 5] is precisely the quantity between
the square brackets in Equation (3.4). The number of real roots of a polynomial
tends to increase the Murphy E quantity. The shape of the set S must of course
takes into account the repartition of norms of about the same size, the Figure 3.2
shows some isonorms, using the polynomial f of the 768-bit record [122].

a0

a1

Figure 3.2 – Different isonorms for (a0, a1) pairs, where the real roots of f are
the slopes of the gray lines.

3.1.2 Generation of polynomial pairs
There exist two popular ways to construct the polynomial pair (f0, f1). The
resulting properties of the two polynomial selections will be summarized in
Table 3.1.

Common method (base-m)

This first method is the classical method used in NFS to factor integers, called
the base-m method. One chooses an integer m whose size will be determined
later. The polynomial f0 is defined by x−m and the coefficients bi of f1(x) =∑
i bix

i are given by the expansion of p in basis m, as p =
∑
i bim

i, with bi in
[0,m[. The coefficients are in general in O(m).

There exist some ameliorations of this polynomial selection, generally de-
scribed for the factorization. A first one is proposed in Murphy’s thesis [140,
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Chapter 5]: by choosing the degree d and the leading coefficient bd of f1, we
can build a polynomial pair (f0, f1) by choosing the root m =

⌊
(p/bd)1/d⌋ and

computing the other coefficients of f1 such that f1(m) = p. Then, the coefficient
of bd−1 has magnitude dbd. The second improvement is described in [116, 117].
It allows to find two polynomials with a common root m = m0/m1 mod p with
f0 = m1x − m0 and f1 of degree d such that f1(m0/m1)md

1 is equal to ±p.
With the appropriate algorithm, we can find, given bd, the coefficient bd−1 such
that |bd−1| ≤ dbd and the other coefficients have the same size as m. Another
improvement is to use rotations and translations, to reduce the size of the co-
efficients bd−2 and bd−3 [140, 12]. A translation of the pair (f0, f1) is the pair
(f0(x + k), f1(x + k)) for some integer k, and a rotation of (f0, f1) is the pair
(f0, f1 + λf0) for some polynomial λ. A last improvement is to have more
freedom about the selection of f1 by considering that |f1(m0/m1)md

1| can be a
multiple of p: a suitable multiple can be computed thanks to a lattice reduc-
tion [12, Section 3.3], that counterbalance the increasing of the norm. Some of
these methods were used in the polynomial selection done to compute discrete
logarithms in F∗p, where p was 596-bit long [40].

Joux–Lercier method

This polynomial selection proposed by Joux and Lercier [103] allows us to find
two polynomials of degree d and d + 1, one with small coefficients. This poly-
nomial selection was used to compute discrete logarithms in F∗p, where p was of
size 768 bits [122].

Choice of the polynomials. Let f0 be a polynomial of degree d + 1 with
small coefficients and a root m modulo p. Contrary to the base-m method, the
root m is deduced from the polynomial f0. We need to find a polynomial f1
with the same root modulo p. Let j be the degree of f1. The sets of valid
polynomial f1 can be described as linear combinations of polynomials pxi for
i in [0, j] and polynomials (−mk + xk) for k in [1, j]. We can observe that for
i in [0, j], the polynomial pxi is equal to mip + p(−mi + xi), then the sets of
polynomial f1 can be described by λ0p+

∑j
i=1 λi(−mi + xi), where the λi are

integers. By choosing adapted λi, we can reduce the size of the coefficients. To
find a polynomial f1 with the smallest possible coefficients, it suffices to find
a short vector of the lattice for which a basis is given by the following vectors
of length j + 1: {(p, 0, 0, . . . , 0), (−m, 1, 0, 0, . . . , 0), (−m2, 0, 1, 0, 0, . . . , 0), . . .,
(−mj , 0, 0, . . . , 0, 1)}. The coefficients (b0, b1, . . . , bd) of this short vector de-
fine the polynomial f1 =

∑j
i=0 bix

i. The coefficients of f1 are more or less in
O(p1/(j+1)), according to Theorem A.1. Once the coefficients of the polynomial
f1 are found, it remains to check if the polynomial f1 is irreducible, which is
practically always the case.
Remark 3.1. By setting d to 0, the Joux–Lercier polynomial selection is equiva-
lent to the base-m method. The case d = 1 is equivalent to the polynomials de-
fined in the article of Coppersmith–Odlzyko–Schroeppel [52], that is f0 = x2 +1
and f1 = b0 + b1x.

Choice of the parameters. We first discuss the parameter j. An upper
bound on the norms in the field K1 is 2j/2(j + 1)1/2 max(IM0 , IM1 )jp1/(j+1),
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following [34]. Therefore, the norms in K1 decrease when j increases. Then, the
degree j of f1 should not be too small. However, if j > d, the shortest vector
of the lattice generated by the basis B will give the coefficients of f0, because
these coefficients are small. The second shortest vector is not guaranteed to
have small coefficients. With Theorem A.2, we can infer that if λ1 is very short,
then the other successive minima must be quite large, especially the second
minimum. Then, j = d seems to be the best compromise.

To find the parameter d that allows to reach the minimal product of norms
in both sides, we can use the fact that the product of the norms is bounded
by 2(2d+1)/2(d + 1)1/2(d + 2)1/2 max(IM0 , IM1 )2d+1p1/(d+1). This function in d,
when IM0 and IM1 are fixed, admits a global minimum, we then can find a good
approximation of the d that reaches the best first quality criterion given in
Equation 3.2.

Properties of the base-m and Joux–Lercier polynomial selections

The two polynomial selections described above give different polynomials, which
have different properties summarized in Table 3.1.

Variant deg f0 ‖f0‖∞ deg f1 ‖f1‖∞
Base-m 1 p1/(dm+1) dm p1/(dm+1)

Joux–Lercier dJL + 1 small dJL p1/(dJL+1)

Table 3.1 – Polynomial selection for NFS in Fp.

Concerning the base-m method, the complexity analysis of Schirokauer [164]
shows that there exists an optimal value of dm that reaches the complexity in
Lp(1/3, (64/9)1/3). As in NFS to factor integers, the degree dm grows like
(3 log p/ log log p)1/3.

For the Joux–Lercier polynomial selection, the complexity analysis due to
Commeine–Semaev [47] sets the optimal degree dJL to be close dm/2, that is
dJL = (3/8 log p/ log log p)1/3.

3.2 Relation collection
Once the polynomial pair (f0, f1) is chosen according to some quality criteria,
we can begin the relation collection of the NFS algorithm. A simple procedure
to find relations is to map the polynomial a0 +a1x, where (a0, a1) is in S, in the
two number fields, then computing the norms in both number fields and keeping
(a0, a1) if the norms are doubly smooth. This simple procedure is however costly
because testing for smoothness is not a simple task. We will detail here some
methods to improve the running time of the relation collection.

3.2.1 Preliminaries
In this section, we consider a prime ideal Q of O0 of norm qd, where q is a
prime and d is the degree of the ideal. Except in the few cases where q divides
the discriminant of f0, the ideal Q can be represented by a pair (q, r), where
the polynomial r is of degree d and is a factor of f0 modulo q. In particular,
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the prime ideal Q of norm q and degree one will be denoted in the following
by (q, x + ρ) where −ρ is a root of f0 modulo q and ρ in [0, q[. From [43,
Corollary 5.5], if a0 and a1 are two coprime integers and Q is a non-zero ideal
of O0 containing a0 + a1θ0, then Q is of degree 1. Furthermore, the ideal Q of
degree one contains a0 + a1θ0 if and only if a0 + a1x ≡ 0 mod (q, x+ ρ). In this
chapter, we only consider ideals of degree one, denoted by Q = (q, x+ ρ). If a0
and a1 are not coprime, the factorization of a0 + a1θ0 into ideals involves the
same prime ideals as (a0−a1θ0)/ gcd(a0, a1), plus a few others of norm dividing
gcd(a0, a1). When a0 and a1 are not coprime, we do not get a new interesting
relation: this is again the relation obtained with (a0/ gcd(a0, a1), a1/ gcd(a0, a1))
up to some factors.

Let us consider an integer polynomial a0 + a1x. If the ideal factorization
of a0 + a1θ0 involves Q, the ideal factorization of −a0 − a1θ0 involves also Q.
The relation given by −a0 − a1x is therefore the same as the relation given by
a0 + a1x. We can therefore consider polynomials with a0 an integer and a1 a
positive integer. These two descriptions explain why, in Section 3.1, during the
estimation of the number of relations, we only consider coprime a0 and a1 with
a1 a positive integer.

If the ideal factorization of a0 + a1θ0 involves the ideal Q = (q, x+ ρ), then
a0 + a1x ≡ 0 mod (q, x + ρ). It follows that the ideal Q is also involved in
the factorization of (a0 + kq) + a1θ0, where k is an integer. The ideal Q is
also involved in (a0 + kρ) + (a1 + k)θ0, because a0 + a1x + k(x + ρ) ≡ a0 +
a1x ≡ 0 mod (q, x + ρ). Then, the set of valid pairs (a0, a1) such that an ideal
Q = (q, x+ ρ) divides a0 + a1θ0 is the lattice generated by {(q, 0), (ρ, 1)}, called
the Q-lattice.

With this background, we can describe what we do in practice for the relation
collection. The smoothness test can be performed with any factoring algorithm,
from trial division to the NFS algorithm to factorize integers. The algorithm
we use in practice is the ECM, because it depends on the size of the factors
we look for. But, even with the ECM, the smoothness test is costly. A way
to improve the practical running time of the relation collection is to look for a
subset of S that contains (a0, a1) pairs which are doubly smooth with a higher
probability than a random pair. We perform an enumeration step to remove
the contribution of the small ideals of F0 and F1 from the corresponding norms
of all the polynomials a0 + a1x with (a0, a1) in S. If a pair is marked by a lot
of small ideals, this pair has a greater chance to be doubly-smooth. This is the
same idea as the threshold idea of Section 2.3.2.

Let us now give a short description of the relation collection using this im-
provement. It uses two integers: b0 less than B0 and b1 less than B1, called
enumeration bounds (called factor base bound in the classical literature), t0 and
t1 the thresholds. The smoothness bounds B0 and B1 are also called large prime
bounds.

Selection. for i in [0, 1],

Initialization. compute the norm in Ki of all the polynomials a0 +
a1x with (a0, a1) in S and store them in an array Ti indexed by
(a0, a1),

Enumeration. for all prime ideals Q in Fi of norms below bi, com-
pute the Q-lattice and divide by q all the cells at index (a0, a1),
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such that (a0, a1) are in S and in the Q-lattice,

Cofactorization. for all coprime pairs (a0, a1) in S, if T0[(a0, a1)] is less
than t0 and T1[(a0, a1)] is less than t1, perform the full factorization of
the norm of a0 + a1x in K0 and K1. If the norms are smooth for both
sides, the pair (a0, a1) gives a valid relation.

The enumeration of the (a0, a1) pairs in a Q-lattice can be efficiently per-
formed by sieving, using the following algorithms. We use the term sieve bounds
instead of enumeration bounds.

3.2.2 The sieving algorithms
Let Q be the prime ideal of degree one (q, x + ρ) of O0, with −ρ a root of f0
modulo q, and S = [Im0 , IM0 [×[0, IM1 [.

The line sieve

The line sieve (also called sieving by rows) is one of the most basic sieving pro-
cedures, directly derived from the Eratosthenes sieve presented in Section 2.1.
We know that if a0 + a1θ0 is in Q, then a0 + kq + a1θ0 with k an integer is
also in Q. Then, we can perform a quite similar sieving procedure as the one
of Eratosthenes: by setting a1, and finding an initial a0 such that a0 + a1θ0 is
in Q, it suffices to add or remove q as long as we stay in the search space S.
Line sieve can be described as the simple following procedure to collect all the
elements of form a0 +kq+a1θ0, where k is an integer, whose norm is a multiple
of q. Let consider the sieving step on the side 0, keeping in mind that the same
applies to the side 1:

• For a1 in [0, IM1 [

1. Find a0 such that (a0, a1) is in S and is in the Q-lattice,
2. For all integers k such that Im0 ≤ a0+kq < IM0 , divide T0[(a0+kq, a1)]

by q and store the result in T0[(a0 + kq, a1)],

This sieving procedure is quite efficient when the norm q of Q is less than
the size IM0 − Im0 of [Im0 , IM0 [. Indeed, there always exists at least one element
(a0, a1) in the Q-lattice for each a1 in [0, IM1 [. When q > IM0 − Im0 , the number
of hits per line is at most one and most of the time is spent in the first step
described in Item 1, and it is better to use an other sieving algorithm.

A first lattice sieve

To tackle the drawback of the line sieve, a first procedure, described by Pol-
lard in [145] and called sieving by vector was proposed. This algorithm is not
as efficient as the one of Franke and Kleinjung [61] that will be described in
Section 6.2.2, and called lattice sieve in this manuscript.

We first perform a lattice reduction on the basis {(q, 0), (ρ, 1)} that gener-
ate the Q-lattice, which is here a Gaussian reduction since the Q-lattice is of
dimension 2. We obtain two vectors u0 and u1. Then, by doing small linear
combinations of these two vectors, we can cover a region that contains S. The
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linear combination b0u0 + b1u1 can be done by considering coprime b0 and b1.
To be sure to cover at least the search space S, it suffices to find λ0 and λ1
such that λ0u0 + λ1u1 generates a corner of S, using an algorithm to solve the
closest vector problem. Then, by finding the minimum and the maximum of λ0
and λ1 for the four corners, we can find bounds on b0 and b1. We can describe
this first lattice sieve as:

1. compute u0 and u1, a reduced basis of the Q-lattice,

2. for b0 and b1 small and coprime

• if (a0, b0) = b0u0 + b1u1 is in S, divide T0[(a0, a1)] by q and store
the result in T0[(a0, a1)].

3.2.3 Dividing the search space
The enumeration step needs a huge amount of memory: for record computations,
S contains a lot of pairs, much more than 255 for the computation of a discrete
logarithm in a 596-bit field [40]. A first way to reduce the memory requirement
is to store the logarithm of the norm instead of the norm, but it still requires
too much memory. On the running time aspect, the enumeration step can
be parallelized: the loop on the prime ideals Q can be split in some ranges
executed in parallel. But, the small prime ideals will hit a lot, and then we
must carefully implement the accesses to the arrays T0 and T1. To reduce the
amount of memory and to have a high-level parallelization, Pollard proposed
the special-Q method [145], improving an idea of Davis and Holridge [53]. In
addition, the special-Q method allows to help the smoothness test, because a
medium-to-large factor of the norm is already known. This is a two-dimensional
equivalent of what was explained in one dimension at the end of the previous
chapter, with essentially the same advantages and drawbacks.

Let Λ be the lattice of all possible pairs (a0, a1) mapped to the fields K0 and
K1. This lattice can be generated by the basis {(1, 0), (0, 1)}. A Q-lattice is a
sublattice of Λ, made of elements (a0, a1) such that all the ideal factorization
of a0 + a1θ0 involves Q. Let MQ be the 2 × 2 matrix whose rows contain the
vectors of the reduced basis of the Q-lattice and (c0, c1) be an element of the
Q-lattice. To compute the coordinates (a0, a1) of (c0, c1) in Λ, it suffices to
compute (a0, a1) = (c0, c1)MQ, as showed in Figure 3.3. In the Q-lattice, we
can use the line sieve and the lattice sieve as in Λ, for which we originally
described the sieve algorithms.

To avoid many redundant work, we only consider not so small Q, that is Q
such that its norm is larger than the sieving bound and less than the smoothness
bound. The pairs (c0, c1) are elements of a search space H, a subset of Z2 such
that c1 is non-negative. Let Hm

0 , H
M
0 , HM

1 be three integers such that HM
0

is larger than Hm
0 . We define the search space as H = [Hm

0 , H
M
0 [×[0, HM

1 [.
Because we use the same search space H for all the different special-Q lattices,
we cannot ensure that an element of this lattice and inH give exactly an element
(a0, a1) = (c0, c1)MQ in Λ and S, but because #H � #S (#H is equal to 231

in our example), (a0, a1) is almost always in S. We set the special-Q on the side
0, but it can be set on the side 1 without difficulty, and we can then rewrite the
filter step as follows, where c = (c0, c1):
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Selection. For Q in F0 of norms in ]b0, B0[,

Extract lattice. Compute the matrix MQ of the special-Q-lattice,
Sieve. For i in [0, 1],

Initialization. For all c in H, compute the norm in Ki of the
polynomial a0 + a1x with (a0, a1) = cMQ and store them
in a two-dimensional array Ti indexed by c,

Enumeration. For all prime ideals R in Fi of norms below
bi < Bi, compute the R-lattice and divide by r the cells
indexed by c, such that c is in the R-lattice and the Q-
lattice,

Cofactorization. For all c, if T0[c]/q is less than t0 and T1[c] is less than
t1, compute (a0, a1) = cMQ and if (a0, a1) is in S and a0 and a1 are
coprime, perform the full factorization of the norm of a0 +a1x in K0 and
K1 and if the norms are really Bi-smooth in both sides, (a0, a1) gives a
valid relation.
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Figure 3.3 – Extracting the Q-lattice; the gray part is the part explored by
(c0, c1) in H.

3.3 Linear algebra
In the index calculus algorithms, the linear algebra step is often the bottleneck
of the computation. Even if the relation collection was constrained to give a
small matrix, two computations were unfeasible using powerful computers, one
in 1993 by Gordon and McCurley for the computation of a discrete logarithm
in F2503 [78] and another in 2015 for the computation of a discrete logarithm in
F21039 [97]. This difficulty comes from many factors as, among other things, the
size of the matrix, the size of the prime `, the need of communication during
the computation and the memory cost. If we refer to the computation [40], the
number of prime ideals of degree one, that is almost the number of columns of
the matrix, is less than 226.3 and the number of relations, that is the number
of rows of the matrix, is less than 227.4. The maximum weight of the rows, the
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number of non-zero coefficients, is at most 20. The number of empty columns
is less than 219.2.

We now consider that the number of independent and unique relations is
larger than the number of prime ideals of degree one in both number fields,
meaning that the system is overdetermined. Using the data of the 596-bit
computation [40], the produced matrix is very sparse. This allows us to use
some well adapted algorithm to improve the computation of the right kernel of
the matrix. The so-called filtering step is used to reduce the size of the matrix,
without increasing too much the weight. Finally, we apply an algorithm to
compute the right kernel of the matrix, which takes advantage of the sparsity
of the matrix.

3.3.1 Conditioning of the matrix
The Schirokauer maps

The use of the Schirokauer maps. The first step of the linear algebra is
the transformation of the multiplicative relations into linear relations. In the
following of this section, we assume for simplicity that f0 is equal to x−m and
f1 is of degree d.

Let us consider that a = a0 + a1x gives a valid relation. We know that
a0 + a1m =

∏
j q

cj
j is smooth and the factorization of its norm is equal to its

factorization into ideals. The element a0 +a1θ1 is also smooth and let us denote
by
∏
iQ

ei
i its factorization in ideals. Let h1 be the class number of K1. The

ideals Qh1
i are principal ideals and then, Qh1

i = (πi), where πi is in K1. By
raising a0 + a1θ1 to h1, we can therefore write an equality between principal
ideals as (a0 +a1θ1)h1 = (

∏
πeii ). For a principal ideal, two different generators

differ from a unity. Hence, there exists a unit ε of K1, such that the equality
(a0 + a1θ0)h1 = ε(

∏
πeii ) holds.

To compute the unit ε, we use the Dirichlet’s unit theorem. Let UK1 be the
group of units in K1: it is isomorph to Z/(nZ)×Zr1 , where n is the number of
units of finite order and r1 is the unit rank of K1. Let ε0,1,...,r1−1 be generators of
the units of infinite order. The unit ε is equal to ζ

∏r1−1
i=0 εgii , where ζ is a torsion

unit and gi are integers. We can now write an equality after mapping all the
quantities to F∗p: the element (a0+a1x)h1 yields (ζ

∏r1−1
i=0 εgii )

∏
i π

ei
i =

∏
j q

cjh1
j .

The logarithm of ζ modulo ` is equal to 0 if ` and n are coprime, then we write
the previous relation as a additive expression by taking its logarithm modulo
`, that is

∑r1−1
i=0 gi log εi +

∑
i ei log πi(m) ≡ h1

∑
j cj log qj mod `. If h1 and `

are coprime (note that it is not checked during a practical computation), we
can divide the last expression by h1. This completely explicit approach can be
done for very specific number fields. However, computing the class numbers,
the generators πi and the units is in general as costly as computing a discrete
logarithm, that is why we use the Schirokauer maps.

Without details, Schirokauer maps are r1 independent maps (S0, S1, . . .,
Sr1−1) from K∗1 to Z/`Z, such that the relation induced by a doubly-smooth
a = a0 + a1x can be written as a linear relation:

∑r1−1
i=0 Si(a0 + a1θ1) vlogSi +∑

i ei vlogQi ≡
∑
j cj vlog qj mod `, where vlogSi, vlogQi and vlog qj are un-

knowns called virtual logarithms. In this case, where side 0 is rational, the
virtual logarithm vlog qj coincide exactly with the usual discrete logarithm.
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Computation of the Schirokauer maps. Let z be in K1 and Si(z) be
the r1 Schirokauer maps of z. Let f1,i be the factors of f1 modulo `. We
assume that there are no multiplicities. By the Chinese remainder theorem,
the algebra (Z/`Z)[x]/f1(x) is isomorphic to

∏
i(Z/`Z)[x]/f1,i(x). Let s be the

least common multiple of `deg f1,i − 1, then, if z0 is in (Z/`Z)[x]/f , zs0 = 1
by the Fermat’s little theorem. The same holds for z, that is zs ≡ 1 mod `.
By computing in ((Z/`2Z)[x]/f1(x) the expression zs mod `2, we obtain that
z ≡ 1 + `W (θ1) mod `2, where W (θ1) = W0 + W1θ1 + . . . + Wd−1θ

d−1
1 has

coefficient in Z/(`Z). The Schirokauer maps Si(z) can be taken as random
linear combinations of the Wi.

Filtering

The filtering step is used to reduce the size of the matrix. Even if this step
is not taken into account in the theoretical analysis, ignoring filtering makes a
practical computation impossible. At the end of the filtering step, the matrix
is square of dimension N and has rank N − 1, with a subsequent smaller size
and a larger but reasonable weight. In our example, the weight after filtering
is 150 on average, and the size of the matrix decreases to 222.8. The weight is
therefore increased by a factor less than 8, and the size is divided by a factor
around 11. We briefly describe some algorithms to perform this task, and refer
to the works of LaMacchia–Odlyzko [124] and Pomerance–Smith [150] as well
as the theses of Cavalar [45, Chapter 3] and Bouvier [41, Chapter 5] for more
information.

The first step of the filtering step is the singleton removal. A singleton is
a prime ideal that occurs only one time over all the relations. It appears in
the matrix as a column of weight 1. There exists a unique relation involving
this ideal and then, its discrete logarithm can be computed knowing all the
virtual logarithms of the other ideals involved in this relation and those of the
corresponding Schirokauer maps. This column can be deleted, as well as the
row corresponding to the relation. We still keep apart the relation for later use,
after the linear algebra step.

The second step is the clique removal. If an ideal is involved in only two
relations, and if one of the relations is removed, then it creates a singleton which
is removed as presented previously. Then, we remove two rows and a column.
Generically, each step of the clique removal removes two rows and one column,
but sometimes two columns can be removed. As for the singleton removal, we
need to keep track of the removed relations. Knowing which cliques are the
most interesting to be removed is done by computing the weight of a clique. We
perform these two removals until the matrix is square.
Remark 3.2. In the context of the filtering step, a clique is a connected compo-
nent, but this is not the same definition in graph theory. The word is however
used in the CADO-NFS software [176], in the theses of Cavalar [45, Chapter 3]
and Bouvier [41, Chapter 5] and in the article on the computation of the RSA-
768 integer [120].

Once we have a square matrix, finally, a structured Gaussian elimination is
performed to create a singleton and then reduce by one the number of rows and
columns. Contrarily to the removals, this elimination increases the weight of
the matrix. Let us consider a column of weight 2: the two rows of the matrix
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that have a non-zero coefficient on the shared column can be linearly combined
to obtain a new row with a zero on the shared column. By replacing one of
the original row with this new row, we create a singleton, and can apply the
singleton removal. This mechanism is performed as long as the average weight
of the rows is less than the targeted weight.

3.3.2 Linear algebra
There exist two main algorithm families to solve linear algebra problems, the
direct methods and the iterative methods. Before giving a bird’s-eye view of
the Wiedemann algorithm, we begin by discussing about the choice of the best
algorithm family in our context. Let M be a matrix of size N produced at the
end of the filtering, with γ the average number of coefficients per row.

Choice of the solver

The direct methods are classical algorithms to solve numerical linear algebra
problems. These algorithms are for example the Gaussian elimination, the
Cholesky decomposition, LU decomposition and the QR decomposition [74] with
some improvements, like the one of Bouillaguet and Delaplace [39]. These meth-
ods require O(Nω) operations in F`, where ω equals 3 with the naive algorithm
to perform matrix multiplications and 2.81 if the Strassen algorithm is used. As
mentioned in Section 3.3.1, Gaussian elimination densifies the matrix, and it is
the case for all these algorithms. Then, the space complexity of these algorithms
is in O(N2).

The two major algorithms in the iterative method family are the Lanc-
zos [125] and the Wiedemann [183] algorithms, with their block variants found
independently by Coppersmith [50] and Montgomery [139] for the block Lanc-
zos, and Coppersmith for the block Wiedemann [51] on F2, generalized in all
finite fields by Kaltofen [112]. These algorithms essentially use the matrix-
vector product operations. They need O(N) matrix-vector product operations,
and because the matrix is sparse in our context, the number of operation in F`
is in O(γN). The whole computation has therefore a running time in O(γN2)
operations in the field. We know that γ � N , then the iterative methods are
well-suited in our context. Moreover, there exist many ways to store a sparse
matrix [13, Section 10.1] and the memory complexity cannot be worst than
O(γ + N). The theses of Jeljeli [97, Chapter 5] and Vialla [181, Chapter 5]
describe some formats and their impact on the matrix-vector product imple-
mentation.

It then seems obvious that, to solve the linear algebra problems coming from
the discrete logarithm context, the best family is the one of iterative methods.

The Wiedemann algorithm

Even if the Lanczos algorithm seems to have better result in computation of
medium size, according to the work on Factoring as a Service [180], we only
consider the Wiedemann algorithm here, because it is easier to parallelize. For
a description of the Lanczos algorithm, we refer to Eberly–Kaltofen [57] and,
for the latest improvements, to a chapter book of Thomé [178].
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Let consider the minimal polynomial µM of M , defined as
∑d
i=0 mix

i, where
m0,m1, . . . ,md are in F`. The Cayley–Hamilton theorem states that d ≤ N .
Since the rank of the N×N matrix M is N−1, then 0 is an eigenvalue of M and
a root of µM ; the coefficient m0 is therefore equal to 0. Assuming µM is known,
it is possible to deduce a kernel vector w 6= 0 of M . Since µM (M) = 0, there
exists a vector x with coefficients in F`, such that M(

∑d
i=1 miM

i−1)x = 0.
The vector

∑d
i=1 miM

i−1x is a vector of the kernel of M and is a non-zero
vector if x is in the kernel of the matrix M ′ =

∑d
i=1 miM

i−1. This matrix has
a kernel of dimension at most N − 1 and if x is randomly chosen in (F`)N , the
vector x is not in the kernel of M ′ with probability `N−1/`N = 1/`. Given
the coefficients mi and a suitable vector x, the number of operations in F` to
compute w =

∑d
i=1 miM

i−1x is equal to O(γN2) .
There exist different ways to compute the coefficients m1,m2, . . . ,md. Com-

puting the characteristic polynomial by det(xIN −M) and factorizing it to find
the minimal polynomial is too costly. Another strategy is to consider that, for
all vectors x0 and x1 of size N in F`,

∑d
i=1 mix0

TM i−1x1 = 0. The coeffi-
cients mi are the coefficients of the linear sequence defined by the x0

TM i−1x1.
Let x0

T and x1 be randomly chosen. Then, with high probability according to
Kaltofen [112], we can compute the d coefficients m1, . . . ,md by computing the
2d coefficients x0

TM i−1x1, for i in [1, 2d]. The naive method needs O(N3) op-
erations in F` but there are some faster methods, such as the Berlekamp–Massey
algorithm [131, 28], which needs O(N2) operations in F`. We can summarize
the important steps of the Wiedemann algorithm as follows, where x0, x1 are
two vectors of dimension N with randomly chosen coefficients in F`:

Krylov. Compute λ1, . . . , λ2N such that λi = x0
TM ix1.

Linear generator. Compute the linear generator F (x) =
∑N
i=1 mix

i such
that

∑N
i=1 miλk+i = 0 for k in [0, N ].

Evaluation. Compute w = F (M)x1.

Improvements of the Wiedemann algorithm

There exist many improvements of the Wiedemann algorithm and we list three
of them.

Block Wiedemann. The first improvement is the block version, that allows
to distribute on several processes the computations of two steps of the Wiede-
mann algorithm: the Krylov and Evaluation steps. The idea is to consider a
block of c vectors instead of just one vector during the Krylov step. This implies
an additional cost of Õ(c2N) during the linear generator computation, but the
algorithm can now be parallelized at a high level.

Double-matrix product. The double-matrix product [118, 121] was first used
in the factorization of seventeen Mersenne numbers with the idea of the factor-
ization factory of Coppersmith [48]. Briefly, if Mraw is the matrix with the
Schirokauer maps, the filter produces M = Mraw · M0 · M1, with the matri-
ces M0 and M1 storing the operations performed by the filtering step. Using
double-matrix product, we consider M2 = Mraw ·M0 and instead of computing
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the matrix-vector product with M , we consider this product by M1 and after
by M2. If the sum of the weights of M1 and M2 is smaller than the weight of
M , this method is advantageous.

Sparse matrix of size N × (N − d)
λ = γ − d coefficients per row of small size

d dense columns of
large coefficients in F`
coming from the Schirokauer maps

Figure 3.4 – A sparse matrix given after filtering.

Tackle the Schirokauer maps. The input matrix of the block Wiedemann
algorithm, represented in Figure 3.4, is made of dense columns of large elements
due to the computation of the Schirokauer maps. The impact of these columns
on the matrix-vector product is important because each multiplication of integer
coefficients close to ` needs to be followed by a reduction modulo `. An idea
that goes back to Coppersmith [51] is to use these heavy columns as part of the
x1 block in the description above. An implementation available in CADO-NFS,
used in the computation of the 1024-bit SNFS [65], and an article by Joux and
Pierrot [98] allow to perform the computation of the matrix-vector products as
if the d dense columns were not in the matrix. If we use the block Wiedemann
algorithm with a block size c ≥ d, it reduces the complexity of the algorithm to
O(λN2) + Õ(c2N) operations in F`, thus avoiding the expensive contribution
dN2.

3.4 Individual logarithm
Let T be an arbitrarily large element of F∗p and g be a generator of F∗p. In this
last step, we are looking for the discrete logarithm k of T in basis g modulo `,
assuming that the virtual logarithms of all the factor base elements are known.
A careful analysis of the complexity of this phase can be found in the articles
of Commeine–Semaev [47] and that of Fried, Gaudry, Heninger and Thomé [65,
Appendix A].

The probability to find an integer e such that logg(T e) can be completely
written in terms of the precomputed logarithms is very small. Therefore, the
individual-logarithm computation cannot be done in one step. The goal is then
to build a tree from the target T to all the precomputed logarithms, using
logarithms of elements of intermediate sizes, to allow at each step of the descent
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to express a logarithm of an element of size N in terms of logarithms of elements
of size less than N . This tree is depicted in Figure 3.5. This is what is called
the descent step.

T

T0

T00 T01

T010 T011 . . . T01k2

. . . T0k0

T1

T10 T11 . . . T1k1

Factor base

Initialization
Section 3.4.2

Descent
Section 3.4.3

Figure 3.5 – Descent tree.

3.4.1 Lifting elements
Before describing the descent steps, we will describe how to lift an element T in
F∗p in a number field. We assume that T viewed as an integer is prime.

Trivial case

For simplicity, we assume in the following that T is lifted in a number field K0
defined by a linear polynomial f0 = m0 + xm1. Then, there exists a unique
prime ideal of degree one above T , which is T = (T, x+ (−m0/m1 mod T )). By
abuse of notation, the ideal above T in the number field will be denoted by T
too in the following.

General case

Let K1 be defined by a polynomial f1 of degree d with integer coefficients. Let
P be the ideal of O1 defined as (p, x−m). Let z be an element of K1 such that z
modulo P is equal to T . There exist z0 and z1 in K1 such that z ≡ z0z

−1
1 mod P,

where z0 is equal to z0,0 +z0,1θ1 + · · ·+z0,d−1θ
d−1
1 and z1 to z1,0 +z1,1θ1 + · · ·+

z1,d−1θ
d−1
1 . The 2d integers (z0,0, z0,1, . . . , z0,d−1, z1,0, z1,1, . . . , z1,d−1) verify the

equation z ≡ z0z
−1
1 mod P if they are equal to a linear combination of the row

vectors of the matrix L equals to,
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

p
−m 1
−m2 1

... . . .
−md−1 1

TId Id


.

The shortest vector of the lattice generated by the rows of L has infinity norm
around p1/(2d) (see Theorem A.1), then the coefficients of z0 and z1 must be rel-
atively small. The norms of z0 and z1 are about in (d+1)(d−1)/2dd/2(2d)d/2p1/2

‖f1‖d−1
∞ = O(p1/2‖f1‖d−1

∞ ). We hope that the factorizations into ideals of z0
and z1 involve only ideals of degree 1, which is highly probable, or ideals of
small degrees. The largest norm of these ideals must be in L(2/3) to ensure
a complexity of the descent in L(1/3), as in the initialization of the descent.
The elements z0 and z1 must be doubly L(2/3)-smooth which happens with
probability L(1/3) when ‖f1‖∞ is in O(1). If we want to lift in a field defined
by f1 whose ‖f1‖∞ is in O(p1/d), the complexity remains in L(2/3), but with a
largest constant incompatible with the descent complexity.

3.4.2 Initialization of the descent
From here, we assume that there is a rational side. The goal is to express T e with
elements less than a bound Binit which is larger than the factor base bounds.
The value of Binit must be in L(2/3) to allow an L(1/3) overall complexity.

Improved smoothness test

The first step of the descent is to look for the Binit-smoothness of T e for a
random integer e. This step can be improved using the idea of the early-abort
strategy of Pomerance [147] proposed by Barbulescu [14, Chapter 4] in the NFS
context and summarized in [88]. As with some sieving procedures, the goal is
to detect promising Binit-smooth numbers. The strategy here is to remove with
the ECM the small factors of T e below a bound B′ less than Binit. Depending
on the size of the remaining unfactored part of T e, T e is fully factorized or not.
If the full factorization allows to reach the Binit-smoothness bound, then we
continue the descent, otherwise we pick a new random integer e. This first filter
can be itself decomposed in other filters of the same type, decreasing the size of
the bound B′ in each new filter.

Rational reconstruction and initial splitting

Instead of directly using the early-abort strategy, we can look for the rational
reconstruction of T e ≡ u/v mod p, with u and v in O(√p). We test the Binit-
smoothness of these two elements and if both are Binit-smooth, then we can
continue the descent. Otherwise, we pick a new random element e. This can be
combined with the early-abort strategy.

A further improvement of this method is to use a sieving procedure, as
described in Joux–Lercier [103]. The idea is to write T e using two different
rational reconstructions, that is T e ≡ u0/v0 ≡ u1/v1 mod p, with u0, u1, v0
and v1 of size about the half of the size of p. Then, for any integers k0 and k1,
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T e ≡ (k0u0 + k1u1)/(k0v0 + k1v1) mod p. Finding a pair (k0, k1) can be done
by sieving as in the relation collection presented in Section 3.2. Indeed, the
polynomial G0(k0, k1) = k0u0 + k1u1 can be viewed as the homogenization of
the linear polynomial g0(x) = u0 + xu1, likewise for G1(k0, k1) = k0v0 + k1v1
with g1(x) = v0 + xv1. Then, the search of (k0, k1) can be done with g0 and
g1 playing the role of the polynomials that define the number fields, new factor
bases Gg0 and Gg1 and the smoothness bounds both equal to Binit. We can also
set a special-Q. If t is the norm of T, then the rational reconstruction can be
done by looking for u0 of roughly the same size as the size v0 + t, and the same
for u1 with v1 + t. Setting a special-Q on the side 1, the objects become of the
same size as without the special-Q. With the special-Q method, this allows to
not modify e if we do not find doubly smooth relations, and pick a new special-Q
of norm almost Q. This method is called tkewness (for skewness: as skewness
is often associated to polynomial selection in NFS, a word was invented, taking
the letter coming after “s”) in the CADO-NFS software [176].

3.4.3 Descent step
After the initialization of the descent, there probably exist some elements in F∗p
of unknown logarithm in the factorization of T e. We need then to descend each
of them individually. The methods described in the previous section cannot be
applied because the size of the elements becomes too small to use these methods.
We can use the special-Q method as follow.

Let q in F∗p be an element whose logarithm is unknown and such that q is
a prime. Let Q the prime ideal above q of degree one in the number field K0
or K1. We use a similar procedure of the one described in Section 3.2.3, but
with a simple modification: the smoothness test on the side 0 must be done
without considering the norm q of Q. Indeed, the smoothness bounds are below
the norm of Q to allow to continue the descent. In some specific case, when the
descent is not possible, we allow that the smoothness bounds are a bit larger
than q to involve new ideals that we hope to yield an easier descent path in a
next step.

As noted in [65, Appendix A], the descent step can be done faster at some
point by mapping integer polynomials of degree t − 1 higher than one. The
sieving algorithms to perform this will be described in Section 6.4. The major
drawback of this descent step using polynomials of degree t − 1 is the degree
of the prime ideals involved in a relation, which can be less or equal to t − 1.
The virtual logarithms of these prime ideals are not known but can be found by
redoing a small relation collection step, using these unknown ideals as special-Q
and keeping a relation involving the prime ideals of degree one whose virtual
logarithms are already known.

3.4.4 Individual logarithm procedure
We put together the two steps described above in a description that is close to
an algorithm:

Reduction. Pick some random power e, compute T e.

Initialization. Compute two rational reconstructions of T e = u0/v0 =
u1/v1 and find by sieving (k0, k1) such that k0u0 + k1u1 and k0v0 + k1v1
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are Binit-smooth.

Descent. For all the prime factors q of k0u0 + k1u1 and k0v0 + k1v1 for
which logg q is unknown

1. Build an empty list L.
2. Compute the ideal Q above q in one number field, say K0, and add

Q to L.
3. While L is not empty

• Perform a special-Q descent to find a relation (a, b) and add the
ideal of unknown virtual logarithm to L.

Reconstruction. Knowing all the intermediate logarithms, compute k =
logg T .

At each step of the descent by special-Q, we need to adjust the parameters of
the sieve and, even if the complexity analysis gives a bound on the smoothness
bound depending on the size of the special-Q that are processed, this bound
cannot be used as it is in the practical descent. Furthermore, when a special-Q
cannot be descended given a smoothness bound, the choice between increasing
the sieving region, or increasing the smoothness bound or both or something
else, as the extreme choice of wasting the relation involving this special-Q to
look for a new one is hard, even if the overall complexity remains in L(1/3).

3.5 A small example
In order to give an example of some steps of the NFS algorithm, we propose a
very simple implementation of the different steps of NFS to compute discrete
logarithms in F∗p, where p is a prime and ` the largest factor of p− 1, using the
Sage software [177]. This implementation can be found in Appendix B.

We use the base-m polynomial selection where m equals
⌊
p1/(d+1)⌋, where d

is the degree of f1 = f1,0 + f1,1x+ . . .+ f1,dx
d. The ideals whose norm divides

f1,d and f1,d−1 and those whose norm divides the discriminant of the polynomial
are difficult to process: during the relation collection, if a factor of the resultant
between a polynomial a0 + a1x and f1 involves a prime equals to these avoided
norms, we forget this relation. Of course, in a real implementation, this would
not be the case.

The relation collection is done by applying line sieving inside the special-
Q method, the special-Q is set on side 1. Let {b0, b1} be the basis of the
special-Q-lattice used to extract all the elements a0 + a1θ1 in the special-Q.
The coefficients a0 and a1 of such an element are a linear combination of b0
and b1, say (a0, a1) = c0b0 + c1b1, where c0 and c1 are integers. For each
ideal R = (r, x + ρ) to be sieved, we need to consider a basis of the R-lattice
inside the special-Q-lattice. The elements a0 + a1θ1 in R verify the equation
a0 + a1x ≡ 0 mod (r, x + ρ), which can be rewritten as c0b0[0] + c1b1[0] −
ρ(c0b0[1] + c1b1[1]) ≡ 0 mod r. If b0[0]− ρb1[0] is not zero modulo r, then the
R-lattice extracted from the special-Q-lattice has basis {(r, 0), (ρ0, 1)}, where
ρ0 ≡ (ρb1[1] − b1[0])/(b0[0] − ρb0[1]) mod r. We perform the enumeration of
the special-Q-lattice for many special-Q.
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Once the number of relations is larger than the number of ideals in the factor
basis, we compute an almost complete factorization in ideals of the relations.
Indeed, at this step, the factorization of the resultants between a = a0 + a1x
and the polynomials fi is known, but the factorization of a0 +a1θi is not known.
This factorization is computed by taking for all prime factor p of the resultant,
the corresponding ideals (p, x+ρ), where x+ρ is a degree one factor of a modulo
p. In this factorization, we forget some of the ideals whose norms divide the
leading coefficients of the polynomial fi, but these factors are the same for all
relations and can be replaced by a column of 1 in the matrix. The matrix is
built by packing the left columns of the matrix with the ideals on the side 0, the
right columns with the ideals on side 1, the column of 1 and the Schirokauer
maps on side 1. We then can compute the right kernel modulo ` of the matrix
and find the virtual logarithms of almost all the ideals, the virtual logarithm of
the column of 1 and the one of the Schirokauer maps.

To verify if the computation is correct, we map in the rational side, the
side 0, all the prime q less than the smoothness bound and test if its virtual
logarithm vq verify qvr(p−1)/` ≡ rvq(p−1)/` mod p, for an ideal of norm r of
virtual logarithm vr, if . We note that the virtual logarithms are given in an
arbitrarily basis and to have the virtual logarithms in a chosen basis, it suffices
to divides them by the virtual logarithm of the chosen element.

In our example, we take p = 2`+ 1, where ` = 3141592653589793238462773
and therefore, p is of size 83 bits. Such a p requires to perform a polynomial
selection with a polynomial f1 of degree 3, if we use the base-m method. We
choose the same smoothness bounds on both side, which is equal to 212, the
same sieving bound, which is equal to 210, and the same threshold, which is
equal to 236. All the special-Q, set on side 1, have norm between the sieving
bound and the smoothness bound. The sieving region for all the special-Q is
equal to [−27, 27[×[0, 27[. This corresponds to a sieving region for the (a0, a1)
pairs of about [−220, 220[×[0, 220[. We collect 3325 raw relations and even if
we use the special-Q method, we do not have duplicate relations. All these
relations allow to find the virtual logarithm modulo ` of 1187 ideals, that is, all
except one ideals in the factor basis.

3.6 The special and multiple NFS algorithms

3.6.1 The special NFS algorithm
The special NFS algorithm was used many times in the context of integer fac-
torization, in particular for the Cunningham Project whose aim is to give the
factorization of the numbers bn ± 1, where b is in {2, 3, 5, 6, 7, 10, 11, 12}, and
especially the Mersenne numbers of the form 2n − 1. The adaptation in the
context of the discrete logarithm computation is due to Gordon [76]. It exploits
the special form of the prime p defining F∗p.

In order to have an efficient arithmetic modulo the prime p, one can choose
p as 2n − c, where c is a small integer. However, by choosing f0(x) = x− 2n/d
and f1(x) = xd− c, where d is a divisor of n, we get a polynomial f0 of degree 1
and of infinity norm in O(p1/d), and f1 of degree d and of infinity norm in O(1),
instead of O(p1/d) with the base-m method. The complexity analysis, if c and
d match the requirements, shows that the constant term of the NFS complexity
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decreases, from (64/9)1/3 to (32/9)1/3. Such “efficient” Mersenne-like primes
must therefore be avoided for discrete logarithm cryptography.

An application of special NFS is the building of trapdoored primes. To
construct such a prime, given a certain size S, the polynomials f0 and f1 are
first chosen to reach the following requirement, given by the complexity analysis:
the size of the resultant between f0 and f1 must be very close to S, f1 is chosen
to have degree d and coefficients in O(1) with a good α quantity, and f0 must
be a linear polynomial f0 = f0,0 + xf0,1 with f0,0 ≈ f0,1 in O(2(log2 p)/d). The
degree d is equal to (3 log p/ log log p)1/3, as in the base-m method. Details can
be found in [76, Section 5] and in [65, Algorithm 1].

3.6.2 The multiple NFS algorithm
The multiple number field sieve algorithm is a variant of NFS which was first pro-
posed by Coppersmith in [48] in the factorization context, adapted to compute
discrete logarithms in large characteristic by Matyukhin in [132] and refined by
Commeine and Semaev [47]. We use here the formalism used in the Barbulescu–
Pierrot article [24]. It briefly consists in proposing many ways instead of one to
find relations.

If we analyze the two polynomial selections described in Section 3.1 and
summarized in Table 3.1, we note that the two sides are asymmetric, that is the
polynomials f0 and f1 have a different degree and infinity norm. Let us consider
the Joux–Lercier polynomial selection. We can consider different polynomials
f1 during the lattice reduction. Indeed, in the original NFS algorithm, we look
for a polynomial f1 with the smallest possible coefficients and then look for the
smallest vector of the lattice built during the polynomial selection, but all the
vectors given by a lattice reduction can be more or less chosen equivalently. Let
f1 be the classical polynomial chosen during this polynomial selection and f2 by
the polynomial whose coefficients are given by the second smallest vector of the
reduced basis. Using the polynomial pair (f0, f2) instead of (f0, f1) is valid for
the original NFS algorithm, as for (f0, λ0f1 +λ1f2), with λ0 and λ1 two integers.
We can define V −1 polynomials f1, f2 . . . , fV−1 as small linear combinations of
f1 and f2, for some integer V . The degree of all these polynomials is the same.
The smoothness probability of the norms in the number fields Ki = Q[x]/fi(x)
for i in [1, V [ is therefore roughly the same, as the number of relations involving
ideals of O0 and Oi. The side 0 plays an important role during the relation
collection of MNFS, and each relation must involve ideals of O0. The MNFS
algorithm implies a modified commutative diagram, as represented in Figure 3.6.

One can try to find a relation involving ideals of Oi and Oj for j > i ≥ 1.
We recall that all the polynomials fi with i ≥ 1 have the same degree, say d,
and the same infinity norm of magnitude p1/(d+1), compared to the degree d+1
of f0 and small coefficients. Let E be the value of the bound of the coefficients
of the polynomial a mapped in Ki. The complexity analysis gives that E =
Lp(1/3, (8/9)1/3). An upper bound [34] of the norms in K0 is 2(d+1)/2(d +
2)1/2Ed+1 and an upper bound in Ki is 2(d)/2(d+ 1)1/2Edp1/(d+1), with i ≥ 1.
The norms in Ki are therefore much larger than in K0, with i ≥ 1. Then,
even if there maybe exist relations involving ideals of Oi and Oj for j > i ≥ 1,
the search of such a relation is substantially more time-consuming than only in
O0 and Oi. We then build an asymmetric commutative diagram, as shown in
Figure 3.6 with the bold arrows.
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K0 K1 . . .Ki. . . KV−2 KV−1

Z[x]

F∗p

Figure 3.6 – The multiple NFS diagram for Fp.

The linear algebra stays unchanged, except that we need to consider the Schi-
rokauer maps in all the number fields. The individual logarithm computation
can be done theoretically using only two sides. The complexity analysis shows
that the constant term of the NFS complexity decreases, from (64/9)1/3 ≈ 1.93
to ((92 + 26

√
13)/27)1/3 ≈ 1.91.
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Discrete logarithm in
medium characteristic
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Chapter 4

The high-degree variant of
the number field sieve
algorithm

Adleman–DeMarrais introduced in [4] the first subexponential al-
gorithm to compute discrete logarithms in medium characteristic
fields and has a running time in L(1/2). In 2006, Joux, Lercier,
Smart and Vercauteren [106] described the high-degree variant of
the number field sieve algorithm that achieves a running time in
Lpn(1/3, 2.43). This variant is called high-degree because the poly-
nomials that give relations can have a degree larger than 1. Based
on this variant, the complexity of the algorithm was further improved
to the complexity Lpn(1/3, 2.16) using the variant of Pierrot [143], a
combination of the multiple number field sieve algorithm with a poly-
nomial selection introduced by Barbulescu, Gaudry, Guillevic and
Morain [20].

The NFS-HD algorithm is an index-calculus algorithm that shares many prop-
erties with NFS for prime field: we therefore keep the same pieces of nota-
tion introduced in Chapter 3. The fields targeted by NFS-HD are of the form
Fpn , where n > 1 is a small integer and p is a medium prime [106], that is
Lpn(1/3, ·) < p < Lpn(2/3, ·).

Let f0 and f1 be two irreducible polynomials with integer coefficients, and
sharing a common irreducible factor ϕ of degree n modulo p. Keeping the
same notation for the number field K0 defined by f0 and K1 defined by f1, we
form the commutative diagram of Figure 4.1. We force that the degree of f0 is
less than or equal to the one of f1. We reserve the notation a for the integer
polynomial that will be sent through the diagram. Its degree is set to t − 1 so
that we perform the relation collection in dimension t, and in the classical NFS
algorithm, we have t = 2.

We limit a sieving region, or equivalently a search space, by setting the
bounds on the coefficients, in this case the coefficients of a.

Definition 4.1. Let t ≥ 1. A t-sieving region S is a t-dimensional box of the
form [Im0 , IM0 [×[Im1 , IM1 [× · · · × [Imt−1, I

M
t−1[, where all the [Imi , IMi [ are integer

61
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K0 K1

Z[x]

Fpn = Fp[x]/ϕ(x)

ν0

ρ0

ν1

ρ1

Figure 4.1 – The NFS-HD diagram to compute discrete logarithms in Fpn .

intervals. The t-sieving region, also called sieving region when t is implicit, must
contain the element (0, 0, . . . , 0).

By abuse of notation, we say that a polynomial a = a0 +a1x+ · · ·+at−1x
t−1

is in a sieving region S if (a0, a1, . . . , at−1) = a is in S.
The relation collection is essentially conducted like over a prime field, the

major difference is the modification of the searching space S and then, the
sieving algorithm used to improve the running time has to be modified.

The linear algebra is performed exactly as for a prime field. The number
of Schirokauer maps can be larger, but thanks to the algorithm that uses the
Schirokauer maps as input vectors, the problem of dealing with at most 2n
Schirokauer maps can be essentially avoided, see Section 3.3.2.

Finally, the individual logarithm step can be conducted as over a prime field,
that is using a special-Q descent for example. Guillevic proposes in [86, 88] a
way to improve the initial splitting step of the computation with an algorithm
that allows to reduce the coefficients of the targeted elements.

4.1 Polynomial selections
In this section, we will present six different algorithms that produce two valid
polynomials (f0, f1). In order to choose the best pair, we can use the following
strategies: we first estimate the size of the norms given the degree t − 1 of
the polynomial a, the extension n and a size for the characteristic p for all the
polynomial selections. We select the two or three polynomial selections that give
the smallest estimated norms and distinguish the best pair using the α and the
Murphy-E quantity, as in Section 3.1. The quality criteria need however to be
adapted to higher dimension. This is not a simple matter, and we concentrate
on dimension 3.

4.1.1 Quality criteria in 3 dimensions
Size properties

The first estimate we use is the size of the norms on both sides. An upper
bound of the product of two norms is (‖f0‖∞‖f1‖∞)t−1E2(deg f0+deg f1)/t, by
following [20, Section 4.1], where E is the bound on a 2-sieving region: typical
value of E can be found in [20, Table 2]. Another strategy to estimate the
product of the two norms is to build some typical polynomials f0 and f1 and
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sample some polynomials a in an approximate sieving region bounded by E1/t

and computing the average of the product of the norms. Whatever the way to
compute the upper bound, we select the two or three best polynomial selections,
according to different value of t, that reach the smallest product of the norms.

Local properties

In Chapter 3, we have introduced the α quantity as a way to correct the esti-
mation of the smoothness probability of a norm to be smooth. We recall that,
if the norms have a size N (expressed in base e) on average in a number field
defined by f0 (respectively f1), the smoothness probability of these norms is es-
timated by the smoothness probability of integers of size N+α(f0) (respectively
N +α(f1)). The definition of the α quantity can be found in Definition 3.1 and
we just recall that α(f0) =

∑
` prime α`(f0), where for all prime `,

α`(f) = ln(`)
[
A(val`(n), n ∈ Z)

− A(val`(Resx(f(x), a(x)), where a ∈ Z[x],deg a = t− 1, a irreducible))
]
,

where val` is the `-adic valuation and A(·) is the average value, defined by taking
the limit of the average value of the quantity for increasingly large finite subsets
of the whole set considered. To disambiguate this choice, we take these subsets
as intersections of S with centered balls of increasing radius. Another potential
issue with this definition is the convergence of the series defining α(f). We leave
it as a conjecture: since adapting the proof of [23] goes beyond the scope of this
thesis. When t = 3, and if ` does not divide the leading coefficient of f or its
discriminant, then we have the equality

α`(f) = ln(`)
`− 1

(
1− n1

`(`+ 1)
`2 + `+ 1 − 2n2

`2

(`+ 1)(`2 + `+ 1)

)
,

where n1 and n2 are the number of linear (respectively, degree-2) irreducible fac-
tors of f modulo `. The proof of this computation is taken from our article [72]
and can be found in Appendix C.

Global property

As for the two-dimensional case, we can define a similar formula to Equation 3.3
to estimate the number of relations in the sieving region S by

∑
a∈S

a irreducible

ρ

(
ln |Res(f0, a)|+ α(f0)

lnB0

)
ρ

(
ln |Res(f1, a)|+ α(f1)

lnB1

)
. (4.1)

Because the relation collection is often performed with the special-Q method
(see below for a generalization of the method presented in Section 3.2.3). We
can take it into account by considering that we put the special-Qs, for example
on side 0, and that the size of a typical special-Q is lnQ. Equation (4.1) becomes

∑
a∈S

a irreducible

ρ

(
ln |Res(f0, a)|+ α(f0)− lnQ

lnB0

)
ρ

(
ln |Res(f1, a)|+ α(f1)

lnB1

)
.

(4.2)
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As in the two-dimensional case, evaluating exactly this formula is equivalent
to performing the full relation collection, but for efficiency reasons, we would like
to avoid to do that when selecting the best polynomials. In the two-dimensional
case, we walk in the boundary of the searching space: we follow this idea in the
three-dimensional case. The rationale is that when we multiply a polynomial
a by a scalar r, the resultant between a and f is multiplied by rdeg f , and
therefore the sizes of the norms on a line through the origin are well controlled
once one value on it is known. With the special-Q method, since we are dealing
with many ideals Q, each of them favoring some direction, viewed globally the
general shape of the sieving region will be a sphere, or an ellipsoid if there is some
skewness on f0 and f1. Hence, we will use this approximation for computing
a Murphy E value and compare the polynomial pairs: we pick a sphere or
an ellipsoid corresponding to our sieving region, and perform a Monte Carlo
evaluation of the integral on its surface. In practice, we found it convenient
to use a Fibonacci sphere [75] as evaluation points, see Figure 4.2: indeed, the
points on a Fibonacci sphere are regularly spaced on the sphere.
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Fibonacci sphere.

Figure 4.2 – Points on a sphere.

As in NFS for prime fields (see Section 3.1.1), the number of real roots of
a polynomial f tends to increase the Murphy E quantity. A real root in f will
correspond to a plane in the direction of which the isonorm sphere is deformed
with a bump. In the three-dimensional case, we also need to consider the com-
plex roots. The isonorm sphere is therefore also stretched in the direction of the
lines corresponding to polynomials close to irreducible factors of degree 2.

Figure 4.3 illustrates how the sphere is modified in the directions corre-
sponding to real and complex roots of f . This clearly shows that the spherical
approximation is not accurate enough and justifies the use of the more precise
Murphy E estimate.

Explicit Galois actions

The possibility of an explicit, easy to compute, Galois action, having the same
expression for f0 and f1 is an additional criteria to take into account. For
a polynomial fi, and a homography σ(x) = n(x)/d(x), we define fσi (x) =
fi(σ(x))d(x)deg fi . Then, σ is said to be an explicit Galois action for fi if fσi is
proportional to fi. In that case, σ is an automorphism of the number field Ki.
In this field, a(σ(x)) is a conjugate of a(x): they have the same norm. In our
context we need to work with polynomials, so we consider aσ = a(σ(x))d(x)deg a.
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(a) 0 real roots. (b) 2 real roots.

(c) 4 real roots. (d) 6 real roots.

Figure 4.3 – Isonorms for polynomials of degree 6 with real roots. The red
planes correspond to real roots and the green lines to complex roots.

The norm is therefore multiplied by the norm of d(x)deg a, which is typically a
small, smooth number.

Let consider that σ is an explicit Galois action of order k for f0. It is possible
to build a t-searching space S ′ which is a 1/k-portion of S and such that, for all
a in S ′, the polynomials a(σi) are in S, where i is in [0, k[. Therefore, the relation
collection on side 0 can be done by enumerating only the polynomials a in S ′,
and then recover all the polynomials a in S that have by construction a smooth
norms on this side. On side 1, the relation collection is performed classically. If
the time to perform the relation collection on the whole of S on side 0 is T0 and
T1 on side 1, the acceleration factor is equal to (T0 + T1)/(T0/k + T1), which
tends to 2 when k is large.

But if σ is an explicit Galois action of order k for both f0 and f1, and if a is
a polynomial that has a smooth norm on both sides and hence yields a relation,
then aσ also yields a relation: we can deduce the k − 1 additional relations for
free, by letting σ act on a, allowing us to have an acceleration factor equals
to k. In a special-Q context, it is simple to organize the computation in order
to save a factor k in the relation collection phase. Indeed, the special-Qs can
be organized in orbits of k conjugate ideals, and if a polynomial a yields a
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principal ideal divisible by Q, then aσ yields a principal ideal divisible by Qσ.
It is therefore enough to sieve only one of the special-Qs per orbit, and to derive
relations for the other special-Qs under conjugation by σ.
Remark 4.1. On prime fields, due to the polynomial selections used in that
case, it is not possible to have the same Galois action on both sides, but it is
possible to enforce a Galois action in one side. This is what was done for the
computation in a prime field of size 431 bits by Joux and Lercier [104].

4.1.2 Generation of polynomial pairs
There exists many polynomial selections for NFS-HD to define the polynomial
pair (f0, f1). Each of them allows to reach a different shape for the polynomial
pair, sometimes resulting in a different complexity. The names of the polynomial
selections are the one used in the article of Barbulescu, Gaudry, Guillevic and
Morain [20].

JLSV0

This first polynomial selection is one of the polynomial selection described
in [106, Section 2.1] to reach the L(1/3) complexity. The polynomial f0 is
chosen to have degree n, small coefficients and to be irreducible in Fp. The
polynomial f1 is equal to the sum or the difference of p to f0. Such polynomials
were used in [106] to compute discrete logarithms over F∗p3 , where p3 was 394-bit
long, by Zajac in F∗p6 , where p6 was 240-bit long [185], and by Hayasaka, Aoki,
Kobayashi and Takagi in F∗p12 , where p12 was 203-bit long [93]. This polynomial
selection produces unbalanced polynomials in term of infinity norm and it is not
possible to enforce a Galois action on both sides.

JLSV1

Original description. This polynomial selection was first described in [106,
Section 2.3]. It was proposed to balance the infinity norm of the two polynomi-
als. To build f0, we choose two polynomials g0 and g1 of degree n with small
coefficients and c0 an integer close to √p. If g0 + c0g1 is irreducible over Fp,
then we set f0 to g0 + c0g1. Thanks to the extended Euclidean algorithm, we
can compute c1 and c2 of size about log√p such that c0 ≡ c1/c2 mod p. We
define f1 as c2g0 + c1g1.

Taking into account the special-Qs. Let consider that we set a special-
Q (see Section 3.2.3 or Section 4.2.2) on side 1. Because we know that the
norms on this side are divisible by Q, the norm of a typical special-Q, the
resulting norm on this side is about Res(a, f1)/Q. We remarked in Section 3.1
that, given a list of polynomial pairs that yield a similar value for the sum
of the sizes of the norms, it is better to choose the pairs for which the norms
have sizes close to each other. Using this remark, we look for polynomials such
that Res(a, f1)/Q ≈ Res(a, f0). Using a crude upper bound, the ratio between
the norms on both sides is Res(a, f1)/Res(a, f0) ≈ ‖f1‖t−1

∞ /‖f0‖t−1
∞ ≈ Q. We

therefore need to select polynomials with unbalanced infinity norms, but we
keep the gap between the two infinity norms under control. We can perform
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such a task using an unbalanced extended Euclidean algorithm, as shown in the
following.

Let 0 ≤ ε < 1/2 be the variable that helps us to control the balancing
between the two norms. The infinity norm of f0 must be smaller than the one
of f1, we therefore try to have the infinity norm of f1 close to p1/2−ε. Using a
similar construction of the one of JLSV1, it suffices to chose c0 close to p1/2−ε.
To have the product of the two norms close to the one of the original JLSV1, we
need to have the infinity norm of f1 close to p1/2+ε (reaching a smaller bound
will decrease the complexity of NFS-HD and seems impossible with the method
we use). It can be done by using again the extended Euclidean algorithm to
compute c0 ≡ c1/c2 mod p, with c1 close to p1/2−ε and c2 close to p1/2+ε. We
define again f1 as c2g0 + c1g1, which have an infinity norm close to p1/2+ε. The
ratio between the two norms is therefore equal to p2ε(t−1), which must be as
close as possible to Q, and equality is reached by fixing ε = logp(Q)/(2(t− 1)).

Exploiting a Galois action. The construction of the polynomials allows
the possibility to enforce the same Galois automorphism on both polynomials.
Barbulescu, Gaudry, Guillevic and Morain reproduce a list of particular forms
for g0 and g1 for n in 2, 3, 4, 6 to use nice automorphisms [19, Table 4]. The
combination of the enforcement of a Galois action of order 6 and the unbalanced
form to take into account the special-Qs was used in our article with Gaudry
and Videau [72] to perform the relation collection in three different Fp6 , where
p6 were 240-bit, 300-bit and 389-bit long. The original version combined with
a Galois automorphism of order 3 was also used in the computation over Fp3 ,
where p3 was 508-bit long by Guillevic and Morain [90], and over Fp4 with a
392-bit long characteristic by Barbulescu, Gaudry, Guillevic and Morain [87].

JLSV2

Original description. This polynomial selection is not particularly well de-
signed for the medium characteristic, but we recall it for completeness. It was
originally described in [106, Section 3.2] for finite fields Fpn of large character-
istic. It is now outperformed by the generalized Joux–Lercier, described in the
next paragraph. Let g0 be a polynomial of degree n with small coefficients and
irreducible over Fp and assume for the moment we set f0 equal to this poly-
nomial (we will show in the following that this is not the best choice)). We
consider a polynomial f1 of degree d2 ≥ n. We must ensure that, f0 and f1
share a same irreducible factor ϕ of degree n modulo p. Without loss of general-
ity, the polynomial ϕ is monic and we can therefore write that f1 ≡ kϕ mod p,
where k is a polynomial of degree d2 − n. The coefficients of ϕ are labeled as
ϕi, where i is in [0, n] and ϕn = 1. We can build valid polynomials f1 as linear
combinations of polynomials pxj , where j is in [0, d2], and of the polynomials
ϕ(x)xm, where m is in [0, d2 − n]. We can remark that the polynomial pxq,
where q is in [n, d2] can be rewritten as a linear combination of ϕ(x)xm and
pxj , where m is in [0, d2−n] and j is in [0, n[. To find a polynomial f1 with the
smallest possible coefficients, it suffices to find a short vector of the lattice for
which a basis is given by the rows of the following (d2 + 1)× (d2 + 1) matrix
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Mϕ,d2,n =

p
p

. . .
p

ϕ0 ϕ1 · · · ϕn−1 ϕn
ϕ0 ϕ1 · · · ϕn−1 ϕn

. . . . . . . . . . . .
ϕ0 ϕ1 · · · ϕn−1 ϕn



 n

 d2 + 1− n

.
(4.3)

Remark 4.2. The notation Mϕ,d2,n will be used again for the GJL and Sarkar–
Singh polynomial selections. This corresponds to the matrix given in [20, Algo-
rithm 2], because the authors force f0 to be monic and the coefficients of f0 are
smaller than p, therefore ϕ = f0.

The volume of the lattice described previously is equal to pn and we know
that the infinity norm of the shortest lattice vector is not much larger than
pn/(d2+1) following Theorem A.1. The infinity norm of f1 is then in O(pn/(d2+1)).
But, because f0 has small coefficients and has degree n, the shortest vector has
the coefficients of f0 and the second shortest vector has most probably large
coefficients.

Because of this drawbacks, the authors of [106] propose to use f0 with larger
coefficients: instead of setting f0 to g0, they build f0 as g0(x + W ), where
W is a constant to be defined latter. The largest coefficient of f0 is close to
lc(g0)Wn ≈ Wn. If W is sufficiently large, the shortest vector of the previous
lattice will probably not be formed by the coefficients of f0 and can therefore
define the coefficients of f1. To balance the infinity norms of f0 and f1, we
need to have Wn ≈ pn/(d2+1), that is W ≈ p1/(d2+1). To ensure that the
shortest vector is not made of the coefficients of f0, the coefficient W must
be larger than p1/(d2+1). The output coefficients describe not necessarily an
irreducible polynomial, it is therefore needed to test the irreducibility of the
possible polynomial f1.

Remarks. We can observe that the size of the coefficients of f0 are in geomet-
ric progression of ratio W : indeed the leading coefficient is in O(1), the term
in xd2−1 is in O(W ) and so on to the constant term in O(Wn). We say that
f0 has a skewness W . But, with the classical basis reduction, the coefficients
of f1 are almost all of the same size, that is a skewness of 1. During the re-
lation collection, it is better to have the same skewness for both polynomials,
or, close to it. The optimal skewness for f1 is obtained when d2 = n because
the volume of the lattice pn = Wn(d2+1) is equal to the product of the expected
values of the coefficients of f1, that is (W d2 ,W d2−1, . . . , 1). If d2 is larger than
n, the expected values for f1 are in (W bd2 ,W b(d2−1), . . . , 1), where b = 2n/d2.
To obtain such a polynomial f1, it is possible to perform a skew basis reduction
with weights (W−bd2 ,W−b(d2−1), . . . , 1) (or equivalently (1,W b, . . . ,W bd2)), as
described in Section A.1.

The choice of a polynomial g0 with small coefficients seems not necessary
to define the polynomial f0: it seems sufficient to build a polynomial f0 with
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coefficients in O(Wn) to reach the same bounds as the original description. It
is however maybe harder to enforce a Galois action in such a polynomial than
in the original construction. With such a construction, the skew basis reduction
is not necessary.

Generalized Joux–Lercier

The generalized Joux–Lercier (GJL) was introduced by Barbulescu, Gaudry,
Guillevic and Morain [20, Section 3.2] as an extension of the Joux–Lercier poly-
nomial selection for prime fields, described in Section 3.1: with the same rea-
soning, the gap between the degrees of f0 and f1 is 1.

First, we select an irreducible polynomial f1 with small coefficients of degree
d3 + 1, where d3 ≥ n. To be valid, this polynomial must have an irreducible
factor ϕ(x) = ϕ0 + ϕ1x + · · · + ϕnx

n of degree n modulo p. Without loss
of generality, this factor can be considered as monic. The polynomial ϕ is a
valid candidate to be the polynomial that defines Fpn . To define f0, we know
that ϕ is a common factor of f0 and f1 modulo p. The valid candidates to
define f0 are therefore the linear combinations of pxi for i in [0, d3] and xjϕ,
for j in [0, d3 − n]. We can remark that pxi for i in [n, d3] can be written
as pxi = pxn−iϕ −

∑n−1
k=0 ϕkpx

k−n−i. We can therefore describe all the valid
polynomials f0 as

∑n−1
i=0 λipx

i +
∑d3−n
i=0 λi+nx

iϕ, where the λi are integers.
To minimize the coefficients of f0, we can find a short vector in the lattice
whose basis vectors are rows of the (d3 + 1)× (d3 + 1) matrix Mϕ,d3,n following
Equation (4.3).

If f0 is irreducible, then the pair (f0, f1) is valid. The infinity norm of the
shortest vector is bounded by pn/(d3+1), following Theorem A.1. The coefficients
of f0 are therefore bounded by O(pn/(d3+1)). Due to the construction of the
polynomials, it is not possible to enforce the same Galois action on both sides,
but it can be done on the side 1.

Conjugation

This method was proposed by Barbulescu, Gaudry, Guillevic and Morain [20,
Section 3.3] and has a theoretical impact on the complexity of NFS-HD in the
general case, allowing us to reach a complexity in Lpn(1/3, 2.21).

We begin the polynomial selection by choosing three irreducible integer poly-
nomials µ, g0 and g1, with small coefficients, where g0 is of degree n, g1 is of
degree less or equal to n, and µ(x) = µ0 +µ1x+x2 is quadratic and monic. If µ
has two roots λ0 and λ1 in Fp and g0+λ0g1 is irreducible over Fp, we can define f0
and f1, otherwise, we need to find new polynomials g0, g1 and µ. We know that
µ(x) ≡ (x− λ0)(x− λ1) mod p. By evaluating µ in −g0/g1 and multiplying by
g2

1 , we get the irreducible polynomial (g0 +λ0g1)(g0 +λ1g1) = µ0g
2
1−µ1g0g1 +g2

0
and we set f1 to this polynomial, therefore f1 has degree 2n and small coeffi-
cients. A degree n factor of f1 modulo p is g0 + λ0g1, and we now look for a
polynomial f0 that has this polynomial as a factor modulo p: a valid choice will
be f0 = g0 +λ0g1, but λ0 has almost the same size as p. Thanks to the extended
Euclidean algorithm, we can compute two integers b0 and b1 in O(√p) such that
λ0 = b1/b0 mod p and then, we can set f0 to b0g0 + b1g1: this polynomial has
coefficients in O(√p) and degree n.



70 Chapter 4. The high-degree variant of the number field sieve algorithm

In order to have a monic polynomial f1, the degree of g0 is chosen to
be smaller than n. The construction of f1 given in this section corresponds
to the one given in the original description, consisting in the computation of
Resy(µ(y), g0 + yg1) = (g0 + λ0g1)(g0 + λ1g1).

As with the JLSV1 polynomial selection, this construction allows the pos-
sibility to enforce a common Galois automorphism on both polynomials. This
construction was used in some practical computation of discrete logarithms: two
Fp2 of size 529 bits [19] and of size 595 bits [20] by Barbulescu, Gaudry, Guillevic
and Morain, and three Fp3 of size respectively 512 bits by the same team [15],
508 bits by Guillevic, Morain and Thomé [91] and 592 bits by Gaudry, Guillevic
and Morain [73].

Sarkar–Singh

This polynomial selection, called A by the authors, was introduced by Sarkar
and Singh [160, Section 5]. It can be seen as a generalization of the GJL and
the conjugation polynomial selections. This polynomial selection improves the
complexity of the boundary case, that is when p is between the large and the
medium characteristic.

The algorithm to perform the polynomial selection A needs as input the
characteristic p, the extension degree n, a divisor d5 of n and an integer r larger
or equal to n/d5. Let k be equal to n/d5. We give here a quick overview of the
polynomial selection before going into details. The following process is repeated
until f0 and f1 are irreducible over Z and ϕ is irreducible over Fp.

1. Select a polynomial µ of degree r + 1, with small coefficients, irreducible
over Z and which has an irreducible factor µ′ of degree k modulo p.

2. Select g0 and g1 with small coefficients with g0 of degree d5 and g1 of
degree less or equal to d5.

3. Define

(a) f1 = Resy(µ(y), g0 + yg1).
(b) ϕ = Resy(µ′(y), g0 + yg1) mod p.
(c) ψ0 as the polynomial whose coefficients are given by the shortest

vector of the lattice generated by the rows of Mµ′,r,n, defined in
Equation (4.3).

(d) f0 = Resy(ψ0(y), g0 + yg1).

We now explain why this polynomial selection gives a valid pair (f0, f1).
The polynomial µ of degree r is irreducible over Z, then the polynomial f1 =
µ(−g0/g1)gr1 = Resy(µ(y), g0 + yg1) is irreducible. The polynomial µ′ is an
irreducible factor of µ modulo p, then ϕ = µ′(−g0/g1)gk1 = Resy(µ′(y), g0 +yg1)
divides f1 modulo p. The polynomial ψ0, which has generically degree r + 1,
is a linear combination of µ′ and polynomial pxi, for i in [0, r[, then modulo p,
the polynomial µ′ divides ψ0. Finally, f0 is a multiple of ϕ modulo p, then f0
and f1 are divisible by ϕ, which defines Fpn .

With this description, f1 has degree d5r and small coefficients and f0 has
degree d5(r + 1) and coefficients in pn/(d5(r+1)), following the classical analysis
that involves short vectors of a lattice. We can remark that, if d5 = 1, the
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produced polynomials have the same shape as the one using the GJL polynomial
selection, and if d5 = n and r = k = 1, we have the bounds of the conjugation
method. As for the JLSV1 and conjugation method, it is possible to enforce a
Galois action of order d5 for f0 and f1 by taking special forms for g0 and g1.

Summary of the polynomial selections

The following table summarizes the different polynomial selections described
previously. The “Galois action” column is set to “none” if a Galois action of
the same order cannot be applied on both sides, and to the maximal order of
a possible Galois action otherwise. In order to have more room to select the
polynomial f0 and f1, the infinity norm of f1 in GJL and conjugation polynomial
selection are often chosen to be in O(log p) instead of O(1). This implies that
the polynomial µ defined in conjugation and A has coefficients in O(log p).

The bounds on the different variables are the following. The variable ε for
JLSV1 is in [0, 1/2[ and depends on the size of the special-Qs we set. The degree
d2 in JLSV2 must be larger or equal to n, as for the degree d3 for the generalized
Joux–Lercier. The degree d5 for the polynomial selection A described by Sarkar
and Singh is a positive divisor of n, and r is an integer larger or equal to n/d5.

Variant deg f0 ‖f0‖∞ deg f1 ‖f1‖∞
Common

Galois action
JLSV0 n small n p none
JLSV1 n p1/2−ε n p1/2+ε n

JLSV2 n pn/(d2+1) d2 ≥ n pn/(d2+1) gcd(n, d2)
GJL d3 ≥ n pn/(d3+1) d3 + 1 small none

Conjugation n p1/2 2n small n

A d5r ≥ n pn/(d5(r+1)) d5(r + 1) small d5

Table 4.1 – Polynomial selections for NFS-HD in Fpn , where d5 divides n and
r ≥ .n/d5.

In Section 4.4, we give a general framework to get the theoretical complexity.
In the general case, the best polynomial selection is the conjugation one. How-
ever, the situation is not as clear when we perform practically a computation,
and we often need to test two or more polynomial selectionss to select the best
polynomial pair.

4.1.3 Practical results
About JLSV0 and JLSV2

The JLSV0 and JLSV2 polynomial selections seem to be surpassed by respec-
tively the JLSV1 and GJL polynomial selections. The JLSV0 gives a polynomial
f1 skewed for only one coefficients and to balance this, we need to have the co-
efficients of the polynomial a with the skewness of f1, that is ai/ai+1 = p1/n:
this was observed by Zajac [185, Section 8.2]. This shape of sieving region is
hardly compatible with the special-Q method. The norm are clearly unbalanced
and no Galois action can be enforced. This is why we prefer to use the JLSV1
method, instead of the JLSV0 polynomial selection.
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Concerning the JLSV2 polynomial selection, we use a similar reasoning as
the one in [19, Section 6.1.2]. Let us consider an upper bound of the prod-
uct of the norms which is Ed2+np2n/(d2+1), where E is a bound on the siev-
ing region and the degree of the polynomials we sieve is 1. If we try to take
into account the skewness of the polynomial f0, this product can be optimisti-
cally decreased to Ed2+np3n/(2(d2+1)). Using the GJL polynomial selection, the
bound on the product of the norms drops to E2d3+1pn/(d3+1). The ratio of
the product of the norms given by the JLSV2 and GJL polynomial selections
is about p1/n−2E, which is much smaller than 1 in practice. Another way
to show that the GJL polynomial selection is closer to the optimal than the
JLSV2 polynomial selection is to compare the resultant between f0 and f1 for
each polynomial selection. Using the bound on the resultant given in [34], we
have Res(f0, f1) ≈ (n + 1)d2/2(d2 + 1)n/2pn

2/(d2+1)pd2n/(d2+1) with the JLSV2
polynomial selection and Res(f0, f1) ≈ (d3 + 1)(d3+1)/2(d3 + 2)d3/2pn with the
GJL polynomial selection. We know that pn must divide the resultant be-
tween the two polynomials, and a good polynomial selection should not exceed
too much pn. Forgetting the smaller term in the two resultants, we get that
Res(f0, f1) = pn(n+d2)/(d2+1) for the JLSV2 polynomial selection, instead of
Res(f0, f1) = pn for the GJL polynomial selection. Therefore, the GJL poly-
nomial selection seems to outperform the JLSV2 polynomial selection in any
case.

Short discussion on the extension degree n

In our arsenal of polynomial selections, we now consider the JLSV1, GJL, con-
jugation and A polynomial selections.

Prime extension. When n is a prime, the parameter d5 of the polynomial
selection A can take the value 1 or n. The resultant between f0 and f1 is
bounded by the formula given in [34], which can be separated on two parts:
the significant one, which depends only on n, and the frequently avoided part,
which is equal to (d5r+1)(d5(r+1))/2(d5(r+1)+1)d5r/2. We reach the minimum
when d5 = 1 and r = n or when d5 = n and r = 1 ; there are the GJL or
conjugation methods. The polynomial selection A contains therefore only the
GJL and conjugation methods.

If a Galois action can occur on the two sides, it seems difficult that the
possible smaller norms reached by the GJL polynomial selection can compensate
the advantage of using the Galois action. The only remaining choices are the
two polynomial selections: the JLSV1 and conjugation methods.

Composite extension. For simplicity, we do not cover the case where r >
n/d5 for the polynomial selection A. As for the prime extension, the GJL
polynomial selection seems not to be competitive when a Galois action occurs.
It is however necessary to deal with all the divisors of n for the polynomial
selection A.

The following paragraph can also be applied in prime extension. If we use
the unbalanced version of the JLSV1 polynomial selection, it seems easier to
find polynomials with a good, very negative, α quantity: the polynomial f1 has
coefficients larger than f0 and adding or removing a small multiple of f0 does
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not affect the infinity norm or the Galois action and can decrease α(f1). It
is not possible to do such a technique for all the other polynomial selections
without changing the degree or the infinity norm of one of the polynomials.
This method can also be applied for the balanced JLSV1 polynomial selection,
with less freedom.

Experimental results

There exist in the literature two reports about the comparison of polynomial
selections: one about an F∗p3 of size 508 bits [91] with a two-dimensional sieving
step and one about an F∗p6 of size 300 bits, which can be found in our article [72],
with a three-dimensional sieving step. The number of relations per Q is given
without taking into account the Galois action, then, for a fair comparison, the
number of relations per Q must be multiplied by the order of the possible Galois
action.

As remarked before, the GJL polynomial in Table 4.2 cannot be competitive,
even if the number of relations per Q is larger than using the JLSV1 method. We
can also notice that the Murphy-E are close to each other and that the Murphy-
E function takes smaller values for the GJL than for the JLSV1 polynomials,
but the number of relations does not follow this order. This problem arises
also in factorization (see for example the bug number 21311 of CADO-NFS).
The data of Table 4.2 are extracted from the corresponding article, with some
additional data provided by the authors.

JLSV1 Conjugation GJL
α values −3.0,−2.8 −4.16,−2.94 −2.1, 1.2
Murphy E 2−39.9 2−39.5 2−40.9

Special-q side 0 and 1 0 and 1 0
Infinity norms 284.7, 285.3 285.1, 28.4 2129.4, 22

Galois action 3 3 none
Smoothness bounds 227, 227 227, 227 228, 226

Relations per Q 4.2 5.9 4.9

Table 4.2 – Experiments on sieving in a 508-bit Fp3 (data from [91]).

The size of norms for Table 4.3 are given after removing the contribution of
the special-Qs. The smallest size of the Fp6 is suitable for the unbalanced JLSV1,
but the trend reported in this table is probably not as important for larger sizes.
The smoothness bounds are the same for all the polynomial selection, which are
(225, 225).

Unbal. JLSV1 Conjugation A (8, 6) A (9, 6)
α values −12,−4.9 −6.4,−0.8 −4.6, 1.2 −6.5, 1.9
Murphy E 2−19.0 2−27.3 2−22.5 2−23.0

Special-q side 1 1 0 0
Average of norms 2128, 2139 2148, 2251 2143, 2153 2144, 2186

Galois action 6 6 2 3
Relations per Q 25.7 0.2 1.2 0.9

Table 4.3 – Experiments on sieving in a 300-bit Fp6 .
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4.2 Relation collection
After the polynomial selection, we have a representation of the field that helps
us to perform the relation collection the most efficiently. Keeping the notation
of Section 3.2.1, we can anew give the classical way to perform the relation
collection. We recall that the enumeration bounds b0 and b1 are respectively
less than B0 and B1, t0 and t1 are the thresholds, that is the largest remaining
norms we cofactorize.

Selection. For i in [0, 1],

Initialization. Compute the norm in Ki of all the polynomials a in
S and store them in an array Ti indexed by (a0, a1, . . . , at−1),

Enumeration. For all prime ideals Q in Fi of norms below bi, com-
pute the Q-lattice and divide by q all the cells at index (a0, a1, . . .,
at−1), such that a is in S and in the Q-lattice,

Cofactorization. For all coprime tuple (a0, a1, . . . , at−1) in S, if T0[(a0,
a1, . . ., at−1)] is less than t0 and T1[(a0, a1, . . . , at−1)] is less than t1,
perform the full factorization of the norm of a0 + a1x + · · · + at−1x

t−1

in K0 and K1. If the norms are smooth for both sides, the polynomial a
gives a valid relation.

If t = 2, we get the description given in Section 3.2.1. The parameter t is
however very important in NFS-HD, because using polynomials of degree higher
than 1, that is dealing with lattice of dimension higher than 2, allows us to reach
the complexity in L(1/3), which can be impossible given p and n if t is equal
to 2. In the following, we will describe how to define the ideals and how to use
the special-Q method. The sieving algorithms will be described in Chapter 6.

4.2.1 Building the lattice of an ideal
Let Q be a prime ideal of O0 of norm qd, where q is a prime and d is the degree
of the ideal. Except in few cases, we can represent Q as a pair (q, g), where g is
a polynomial of degree d dividing f0 modulo q. Given t, we take into account
during the sieving step all the possible Q that can appear in the factorization of
the norm of a on the side 0. The ideals that can be involved in this factorization
have necessarily a degree d less than t: let us write g as g = g0 +g1x+ · · ·+gdx

d

with the leading coefficient of g equal to 1. We know that, if the ideal Q of
degree one contains a(θ0), where a is of degree one, the a ≡ 0 mod (q, g). The
same occurs if a is of degree t− 1 and the degree d of Q is less or equal to t− 1.
Such polynomials a can therefore be written as λiqxi + µjx

jg(x), where i is in
[0, t[, j is in [0, t − d[ and λi and µj are integers. We can remark that, when
i ≥ d, qxi can be written as linear combinations of xjg and qxk, where j is in
[0, i− d] and k in [0, d]. Then, the coefficients of a polynomial a in Q are given
by a linear combination of the basis of a lattice, where the basis vectors are rows
of the following t× t matrix
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MQ =



q
q

. . .
q

g0 g1 · · · gd−1 1
g0 g1 · · · gd−1 1

. . . . . . . . . . . .
g0 g1 · · · gd−1 1



 d

 t− d

. (4.4)

4.2.2 Dividing the search space
In higher dimension, the special-Q method can be applied as in two dimensions.
In two dimensions, it is not possible to perform the computation of discrete
logarithms in a large size finite field without applying a special-Q method. It
seems reasonable that the same thing applies in higher dimensions, but the first
use of a special-Q method in higher dimensions to perform the relation collection
reported by Zajac in [186] in an Fp6 of size 240 bits was not conclusive. In 2015,
Hayasaka, Aoki, Kobayashi and Takagi attacked again the same field, using the
same polynomial selection, but applying a special-Q method described by the
same authors in [93] and an adapted sieve for the three-dimensional case and
achieved the computation of Zajac in about the same CPU core time [94]. In
the following, we will especially describe the approach of [93] to compute the
R-lattice in a special-Q-lattice, that is a description of the set of polynomials a
that are in the ideals R and Q. We denote by (q, g) the ideal Q and by (r, h) the
ideal R, where q and r are primes and g and h are integer polynomials of degree
respectively dQ and dR. A polynomial a in Q and R verify the two modular
equations a ≡ 0 mod (q, g) and a ≡ 0 mod (r, h).

The polynomial a is in Q and the coefficients of a are given by linear
combinations of the rows of MQ (4.4). To enumerate the polynomial a in
S that are in Q, we compute a = cMQ, where c is an integer vector in
H = [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · · × [Hm

t−1, H
M
t−1[, a t-sieving region. The ma-

trix MQ is composed by sparse vectors with large coefficients, which is not
convenient to try to enumerate the polynomials a in S that are in Q. We ex-
plore a part of the intersection of the Q-lattice and the searching space S by
performing linear combinations of a basis of the Q-lattice, the coefficients of the
linear combination are bounded by [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · · × [Hm

t−1, H
M
t−1[:

it is therefore common to deal with a reduced basis of the Q-lattice, given by a
basis reduction of MQ, eventually with some skewness if S is skew. Let MBR

Q be
the t× t matrix whose rows form a reduced basis of Q: we therefore enumerate
a = cMBR

Q .
The polynomial a is also in R. In the R-lattice, we know that the coefficients

of a polynomial a are given by a linear combination of the rows of the matrix
MR. We use a modified version of the matrix MR, denoted MR, which results
of some linear combinations of the rows of the matrix to get

MR =
(
rIdR 0
TR It−dR

)
, (4.5)
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where Ik is the identity matrix of size k × k. The coefficients a of a are given
by a linear combination ofMR, that is a = dMR, where d is an integer vector
of dimension t. Because (adR , adR+1, . . . , at−1) = (ddR , ddR+1, . . . , dt−1), we
obtain the relation (a0, a1, . . . , adR−1) ≡ (adR , adR+1, . . . , at−1)TR mod r. By
replacing the coefficients of a by their expression a = cMBR

Q , we can obtain a
relation involving Q, R and c. Let MBR

Q be divided into two blocks (M0
Q|M1

Q)
such that (a0, a1, . . . , adR−1) = cM0 and (adR , adR+1, . . . , at−1) = cM1. We
obtain therefore the relation

c(M0
Q −M1

QTR) ≡ 0 mod r. (4.6)
By looking for t linearly independent vectors that solve Equation 4.6, we can

build the matrix of the R-lattice in the Q-lattice, which generically follows the
form

MQ,R =
(
rIdR 0
∗ It−dR

)
. (4.7)

The goal of the sieve algorithms described in Chapter 6 is to enumerate all
the elements in the intersection of the lattice formed by the rows of MQ,R and
the sieving region H.

4.3 Individual logarithm
At this step, we have found almost all the virtual logarithms of the factor
basis, coming from the linear algebra step. Using these virtual logarithms, we
want to compute the discrete logarithm of a target T in Fpn = Fp[x]/ϕ(x)
modulo `, a large prime factor of pn − 1. As in Chapter 3, we need to lift
h = h0 +h1x+ . . .+hn−1x

n−1 in one of the number fields. We describe first the
rational reconstruction method, similar to the one described in Section 3.4.1,
and a new method proposed by Guillevic in [86, 88] that improves the norm of
z, the element in the number field K1 defined by the irreducible polynomial f1
of degree d such that z in K1 maps to T in Fpn (the element T could be lifted
on the side 0 in the same way). The target T can always be considered as monic
thanks to the following lemma:

Lemma 4.1 ([86, Lemma 2]). Let T be an element of F∗pn . Let ` be a divisor
of the order of F∗pn that does not divide the order of the multiplicative group of
a proper subfield of Fpn . Let T ′ = uT , where u is in a proper subfield of Fpn .
Then, log T = log T ′ mod `.

Let T ′ be equal to T/ lc(T ) in Fpn . From Lemma 4.1, we get log T ≡
log T ′ mod `. We view the coefficients T0, T1, . . . , Tn−1 in Fp of T as integers. A
simple way to lift T on K1 is to use the lift T0+T1θ1+. . .+Tn−2θ

n−2
1 +θn−1

1 . The
norm of this element is large, typically in O(pd‖f1‖n−1

∞ ), and we try to reduce
it with the two following methods, to have a better probability to involve ideals
of norms below a smoothness bound B for the booting step.

4.3.1 Rational reconstruction over number field
Let P be the ideal of O1 defined as (p, ϕ(x)). As in prime field, let z0 and
z1 be two elements in K1 such that T = z0/z1 mod P, where z0 is equal to
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z0,0 + z0,1θ1 + · · ·+ z0,d−1θ
d−1
1 and z1 to z1,0 + z1,1θ1 + · · ·+ z1,d−1θ

d−1
1 . These

2d integers verify the equation z = z0/z1 mod P if they are equal to a linear
combination of vectors of the lattice whose basis vectors are rows of the following
2d× 2d matrix, where Id is the d× d identity matrix,



pIn

ϕ0 ϕ1 · · · ϕn−1 1
ϕ0 ϕ1 · · · ϕn−1 1

. . . . . . . . . . . .
ϕ0 ϕ1 · · · ϕn−1 1
T (θ1)

Id

T (θ1)θ1
...

T (θ1)θd−1
1



 n

 d− n

 d

.

By finding the shortest vector of this lattice, we can find z0 and z1 with
infinity norm close to pn/(2d) (see Theorem A.1. The norms in K1 of z0 and z1
are therefore bounded by ‖f1‖d−1

∞ pn/2. For some of the polynomial selections in
our arsenal, we summarize in Table 4.4 the norms of z{0,1}, the product of the
norms of z0 and z1 that gives the bound on the complexity of the B-smoothness
test for z0 and z1 and the norm of the targeted element T .

Variant Norm(z{0,1}(θ1)) = N1 N2
1 Norm(T (θ1))

JLSV1 (balanced) pn−1/2 p2n−1 p(3n−1)/2

GJL pn/2 pn pd3

Conjugation pn/2 pn p2n

A pn/2 pn pd5(r+1)

Table 4.4 – Bound on the norm of z{0,1} for different polynomial selections.

We report only the norm of z0 and z1 for a lift on side 1: indeed, the lift
on side 0 is either the same or larger. We can remark that the only polynomial
selection that cannot allow us to have a rational reconstruction which gives less
chance to be B-smooth than multiplying T by a random power of the generator
g is for the JLSV1 polynomial selection.

4.3.2 Reducing the coefficients of the target
Using Lemma 4.1, Guillevic observes that there exist many elements in F∗pn that
have the same discrete logarithm: the number of such elements is finite, there
necessarily exists one with the smallest norm in K1, that is essentially with the
smallest coefficients. The goal of [88, Algorithm 4] is to find one of the elements
with small coefficients, let us call it T ′. This section is based on a description
of Guillevic in [88, Section 4]. To find a preimage of T with small coefficients,
we use different properties. The first one is that if we add a multiple of pxi
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to T , where i is in [0, d[, then log(T + jpxi) ≡ log T mod `, where j is in Fp.
The second one is that if we add a multiple xiϕ to T , where i is in [0, d − n[,
then log(T + jxiϕ) = log T mod `, where j is in Fp. The last one, following
Lemma 4.1, is to use a basis of the largest subfield of Fpn .

These three properties help us to find a suitable polynomial T ′. Let k be
the largest proper divisor of n: the field Fpk is a proper subfield of Fpn . Let
(1, u, u2, . . . , uk−1) be a polynomial basis of this subfield, where u is a polynomial
in F∗pn . Using Lemma 4.1, we know that multiplying T by a linear combination
of the basis polynomials does not change its logarithm: the linear combination
achieving the lowest coefficients is obtained by finding the shortest vector of
the lattice generated by the coefficients of (T, uT, u2T, . . . , uk−1T ). This lattice
admits an echelon form and even a reduced echelon form E = (e0, e1, . . . , ek−1)
because each basis vector is defined in Fp and then each basis vector can be
multiplied by the inverse of the pivot. This basis E gives some of the basis
vectors B of the lattice that generates the coefficients of T ′. We add to B the
vectors formed by the coefficients of xiϕ(x), for i in [0, d − n[. For now, the
basis does not contain the contribution of pxi, for i in [0, d[. As usual, the
polynomial pxi for i in [n − d, d[ can be generated by a linear combination of
uiT and xjϕ(x), where i is in [0, d[ and j in [0, d− n[. The basis B is therefore
composed by the coefficients of:

• pxi, for i in [0, n− k[;

• uiT , for i in [0, k[;

• xiϕ(x), for i in [0, d− n[.

The volume of this lattice is equal to pn−k. The smallest vector of this
lattice gives the smallest possible coefficients of the polynomial T ′ and have a
good chance to reach a smallest norm in K1 than the one of T : as usual, the
infinity norm of T ′ is close to p(n−k)/d: we summarize the result of this method
in Table 4.5.

Variant Section 4.3.1 Norm(T (θ1)) Norm(T ′(θ1))
JLSV1 (balanced) p2n−1 p(3n−1)/2 p(3n−1)/2−k

GJL pn pd3 pn−k

Conjugation pn p2n pn−k

A pn pd5(r+1) pn−k

Table 4.5 – Bound on the norm of T ′ using Guillevic’s method for different
polynomial selections and comparison with rational reconstruction.

4.4 Complexity analysis
In this section, we give a general result for the complexity of NFS, given a
polynomial selection. Let f0 be a polynomial of degree k0,0n and of infinity norm
equal to pk0,1 and f1 be a polynomial of degree k1,0n and of infinity norm equal
to pk1,1 , where ki,j are real numbers and ki,0 ≥ 1. Let E be the infinity norm of
the polynomial a of degree t and B be the smoothness bound for both sides. We
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recall that the resultant between a and f0 can be approximated by Ek0,0npk0,1t.
Following [24, 143], we define p = LQ(lp, cp), where lp is in ]1/3, 2/3[ andQ = pn,
B = LQ(1/3, cb), E = LQ(lp − 1/3, cecp) and t = ct/cp(logQ/ log logQ)2/3−lp .
By following the analysis given in the previous articles or like in Appendix D,
we get

• cect = 2cb;

• the norm on side 0 is in LQ(2/3, k0,0ce + k0,1ct);

• the norm on side 1 is in LQ(2/3, k1,0ce + k1,1ct);

• if P is the probability of a polynomial a to be doubly smooth, B = 1/P .

Using Corollary 1.1, the probability of smoothness on side 0 is equal to
LQ(1/3,−(k0,0ce + k0,1ct)/(3cb)) and LQ(1/3,−(k1,0ce + k1,1ct)/(3cb)) on side
1. We obtain that 3c2

b = k0,0ce + k0,1ct + k1,0ce + k1,1ct, then 3c2
bct − 2(k0,0 +

k1,0)cb − (k0,1 + k1,1)c2
t = 0. We try to minimize the overall complexity of

NFS, in LQ(1/3, 2cb), under this constraint. Using Lagrange multipliers, we get
that ct = 3c2

b/(2(k0,1 + k1,1)). Using the value of ct in the constraint, we get
cb = (8(k0,0 + k1,0)(k0,1 + k1,1)/9)1/3, that is a complexity of NFS in

LQ

(
1
3 ,

3

√
64C

9

)
= LQ

(
1
3 ,

3

√
64 (k0,0 + k1,0)(k0,1 + k1,1)

9

)
.

Variant k0,0 k0,1 k1,0 k1,1 C
JLSV0 1 0 1 1 2
JLSV1 1 1/2 1 1/2 2
JLSV2 1 n/(d2 + 1) d2/n n/(d2 + 1) 2(n+ d2)/(d2 + 1)
GJL d3/n n/(d3 + 1) (d3 + 1)/n 0 1 + d3/(d3 + 1)

Conjugation 1 1/2 2 0 3/2
A d5r/n n/(d5(r + 1)) d5(r + 1)/n 0 1 + r/(r + 1)

Table 4.6 – Coefficients of the polynomial selections for NFS-HD in Fpn .

For the example of the JLSV0, JLSV1 and conjugation polynomial selec-
tions, we get, using Table 4.6, the announced complexity, that is (128/9)1/3 and
(96/9)1/3. We leave at an open question the possibility to find a new polynomial
selection that reach a lower complexity than the obtained with the conjugation
polynomial selection. An important constraint is that Res (f0, f1) = pn, that is
k0,1k1,0 + k0,0k1,1 = 1.

Let d ≥ 1. If f0 has degree n and infinity norm equals to p1/d and f1 has
degree dn and infinity norm equals to O(1), we can reach a better complexity, in
LQ(1/3, (64/9(d+1)/d)1/3), than the one reached by the conjugation polynomial
selection. However, as of current knowledge, this complexity can be reached only
when p has a special form, as we will describe in the following section.

4.5 The special and multiple NFS algorithms

4.5.1 The special NFS algorithm
As in prime field, a special construction for the characteristic of the targeted
field Fpn can be used to improved the running time of NFS to compute dis-
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crete logarithms. The special NFS variant of Joux–Pierrot [108] is particularly
well designed for computing discrete logarithms in fields used for pairing-based
cryptography: indeed, it is hard to ensure that a pairing maps to a finite field
Fpn with a small n, and there exist constructions (see for example the survey of
Freeman, Scott and Teske [63]) that allow to reach a nice field Fpn , where p is
defined as the evaluation of a polynomial P in a variable u, where P has degree
d that does not depend on p and small coefficients and u is small compared to
p. Let f0 be an irreducible polynomial of degree n equal to λxn + r(x) − u,
where r is a degree dr polynomial with small coefficients and λ a small integer,
often equal to 1. The polynomial f1 is defined as P (λxn + r(x)) and is a valid
polynomial because f1 = P (f0 + u) ≡ p mod f0 and then, f0 divides f1 modulo
p. With such a construction, the polynomial f0 has coefficients in O(pd) and
degree n, and f1 has coefficients in O((dr + 1)λ) and degree dn. Some config-
urations for the choice of dr are reported in [108], resulting in a complexity of
Lpn(1/3, (64/9 · (d+ 1)/d)1/3).

4.5.2 The multiple NFS algorithm
The multiple NFS algorithm we will describe here comes from the development
of multiple NFS presented in Section 3.6.2 and we keep the same pieces of
notation: the integer V is the number of number fields needed to reach the best
complexity. It seems that, for all polynomial selections described in Section 4.1,
we can derive a multiple NFS variant: in the following, we list those that allowed
historically to reduce the complexity of NFS in medium characteristic and in
the boundary case p = Lpn(2/3, ·). We begin with a variant proposed by Zajac
in 2008, never analyzed before, and continue with the classical MNFS variant,
the one of Barbulescu–Pierrot [24], the one of Pierrot [143] and finally the one
of Sarkar–Singh [160].

The first proposition of adapting to Fpn the multiple number field sieve
algorithm over prime field was described in 2008 by Zajac [185, Section 6.4].
The construction is derived from the JLSV0 polynomial selection. Let f0 be
a polynomial of degree n with small coefficients. It is possible to build a valid
polynomial f1 as f0 +ph1, where h1 is a polynomial, if f0 +ph1 is irreducible. To
not increase the degree of f1, we choose a polynomial h1 of degree less than n: it
is possible to produce many polynomials fi as f0 +phi, where hi is a polynomial
of degree less than n and i is in [1, V [, that are equal to f0 modulo p. If the
fi are irreducible, the number field Ki defined as Q[x]/fi(x) are defined to be
compatible in a multiple number field sieve approach. If E is the bound on the
coefficients of the polynomial a, the bound of the norm of a in K0 is almost
equal to En and Enpt in the other number fields. This leads to an asymmetric
MNFS algorithm, that is a relation is given by a polynomial a if the norm of
a is smooth in K0 and an other Ki, as depicted in Figure 3.6. We analyze the
complexity in Appendix D and show that the complexity of this variant is equal
to Lpn(1/3, 2.40).

In 2014, Barbulescu and Pierrot introduced in [24] an algorithm that can
be applied on the medium characteristic case using multiple number fields that
reach also Lpn(1/3, 2.40). This MNFS algorithm is obtained by extending the
JLSV1 polynomial selection. Let f0 and f1 be the two polynomials built during
the JLSV1 polynomial selection described in Section 4.1. If the polynomial
f0 + f1 is irreducible, this polynomial shares a common factor with f0 and f1 in
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Fpn . More generically, all the polynomials fi = αi,0f0 + αi,1f1 have a common
factor, where i is in [3, V [ and αi,0 and αi,1 are two integers: to not increase
the norm on the side i, the coefficients αi,0 and αi,1 are in

√
V . In all sides,

the norms are almost equal: we therefore need to perform a symmetric MNFS
algorithm, that is a relation can be found by involving at least two sides, but
there does not exists a favored one as in almost all the MNFS variants, as show
in Figure 4.4.

K0 K1 . . .Ki. . . KV−2 KV−1

Z[x]

F∗pn

Figure 4.4 – The symmetric multiple NFS diagram for Fpn using the Barbulescu–
Pierrot variant: no particular field is favored.

In 2015, Pierrot [143] proposed to use the conjugation polynomial selection
of Barbulescu, Gaudry, Guillevic and Morain [19] as the polynomial selection
to define multiple number fields. This variant allows to reach a new complexity
in Lpn(1/3, 2.16). Let consider that f0 and f1 are as defined in the description
of the conjugation polynomial selection described in Section 4.1. The norm
on side 1 is smaller than in side 0: it seems then interesting to try to have
a polynomial with the same properties than the one of f1 but it is does not
seem to be possible. We therefore stick to build polynomials with the same
shape as the one of f0. This automatically leads to an asymmetric MNFS
algorithm, where the side 1 is the favored side. To build the V − 2 other
polynomials f2, f3, . . . , fV−1, we use the fact that the rational reconstruction of
λ0 can be equal to b1/b0 ≡ b3/b2 mod p, where b2 and b3 are in O(√p) and the
rational reconstruction (b0, b1) and (b2, b3) are linearly independent over Q. It
is therefore possible to build a polynomial f2 that have a common factor with f0
and f1 as f2 = b2g0+b3g1. To build the V −3 other polynomials, we can consider
linear combination of f0 and f2 as fi = αi,0f0 + αi,1f2, where i is in [3, V [ and
αi,0 and αi,1 are integers in O(

√
V ). The norms on side 0, 2, 3, . . . , V − 1 have

almost the same size, larger than the norms on side 1. Therefore, the relation
collection is performed involving the factorization in ideals in the side 1 and an
other side, which is in {0, 2, 3, . . . , V − 1}, as depicted in Figure 4.5.

Concerning the boundary case, that is p = Lpn(2/3, ·), the best suited poly-
nomial selection is the one of Sarkar–Singh, the polynomial selection A. Let f0
and f1 be defined as in the original description. A valid polynomial f2 can be
built using ψ1, a polynomial whose coefficients are given by the second minimum
of the lattice defined by the rows of Mµ′,r,n, as Resy(ψ1(y), g0 +yg1), which can
have the same shape as the shortest vector. If f2 is irreducible, it is possible to
build V − 3 other polynomials fi, where i is in [3, V [, as fi = αi,0f0 + αi,1f2,
where αi,0 and αi,1 are integers in O(

√
V ). As in MNFS using the conjugation

polynomial selection, the side 1 is predominant to find relations. The different
complexity depending on the parameters r, d and k are summarized in [160,
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K0 K1 . . .Ki. . . KV−2 KV−1

Z[x]

F∗pn

Figure 4.5 – The asymmetric multiple NFS diagram for Fpn using the Pierrot
variant: the side 1 is predominant.

Figure 4].



Chapter 5

The extended tower number
field sieve algorithm

The extended tower number field sieve (exTNFS) algorithm, devel-
oped by Kim and Barbulescu [114], is the algorithm that reaches
the best know complexity for finite fields of medium characteristic,
when the extension degree is composite. The exTNFS algorithm has
a complexity between Lpn(1/3, (64/9)1/3) and Lpn(1/3, (48/9)1/3),
this lowest complexity arising when n has a factor of an appropriate
size depending on the size of pn. It is based on the tower number
field sieve (TNFS) algorithm, an idea of Schirokauer [162] for the
large characteristic, analyzed by Barbulescu, Gaudry and Kleinjung
in [22] to have a complexity of Lpn(1/3, (64/9)1/3), and advanta-
geous when p has a special form.

The TNFS and exTNFS algorithms are relatively young index calculus algo-
rithms for which, there is therefore few hindsight on these algorithms. Indeed,
there exists no implementation of these two algorithms to perform practical
records. In this chapter, we try to propose a short state of the art of (ex)TNFS
and some practical challenges, especially for the polynomial selection and re-
lation collection. We skip the linear algebra step, since dealing with a large
number of Schirokauer maps seems under control. We begin by presenting
TNFS as an introduction of exTNFS.

5.1 Prelimiaries: the tower NFS algorithm
The TNFS algorithm uses a different representation of the target field Fpn from
the one in the classical NFS algorithm. In NFS, the field Fp is represented as
Z/pZ, and Fpn as Fp[x]/ϕ(x) where ϕ is a polynomial of degree n over Fp. With
TNFS, the field Fpn is viewed as R/pR, where R is the quotient ring Z[t]/h(t)
and h is a polynomial of degree n irreducible over Fp.

Let first consider the tower of number fields, as represented in Figure 5.1.
Let ι be a root of h and let Q(ι) be the number field defined by h as Q[t]/h(t).
The polynomial h is irreducible modulo p, there exists therefore a unique ideal
p over p in Q(ι). Let f0 and f1 be two irreducible polynomials over R sharing

83
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a same root m modulo p in R. Let K0 (respectively K1) be the number field
defined by Q(ι)[x]/f0(x) = Q(ι, θ0) (respectively Q(ι)[x]/f1(x) = Q(ι, θ1)).

Q

Q(ι)

K0 K1

h

f0 f1

Figure 5.1 – Tower of number fields.

The conditions on h, f0 and f1 impose that there exist a ring homomorphism
from R[x] = Z[ι][x] to Fpn involving K0 and an other involving K1. This allows
us to build a commutative diagram, as for the previous variant of NFS, as
depicted in Figure 5.2.

K0 K1

R[x]

R/pR = Fpn
θ0 7→ m mod p θ1 7→ m mod p

Figure 5.2 – The TNFS diagram to compute discrete logarithms in Fpn .

As in the classical NFS algorithm, it is sufficient to use polynomials a in
R[x] of degree 1 in x [22]. In this context, the polynomial a is defined as
a = a0(t) + a1(t)x, where the polynomials a0 and a1 are of degree n − 1 over
Z. The total number of coefficients of a polynomial a is therefore 2n: to define
the bounds on the coefficients, we need a (2n)-searching space S. To obtain
relations, we test the smoothness as ideals of a mapped in K0 and K1: if it
is doubly smooth, the polynomial a gives a relation. The norm of a in K0
is given by Rest(Resx(a, f0), h) and the same things occurs on side 1. Let
F0(a0, a1) the homogenization of f0 such that F0(a0, a1) = f0(−a0/a1)adeg f0

1 .
Because a has degree 1, the norm of a is equal to Rest(F0(a0, a1), h), which
is an integer. An upper bound for this norm is equal to (deg f0 + 1)3n/2(n +
1)(3 deg f0+1)n/2‖a‖n deg f0

∞ ‖f0‖n∞‖h‖
(n−1) deg f0
∞ . The relation collection will be

performed quite the same way as in exTNFS case, we then refer to Section 5.4
for more details.

The individual logarithm step must be analyzed carefully, because lifting an
element in one of the number fields can in some cases be non negligible, as it is
the case in NFS.
Remark 5.1. The algorithm PiRaTh, from the first names of the authors, in [143,
Figure 4] corresponds to TNFS.
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5.1.1 Polynomial selections
The polynomial h is less constrained than the polynomial f0 and f1: it must only
have degree n and be irreducible modulo p. As remarked during the computation
of an upper bound of the norms, its infinity norm is raised to a potentially large
power: we therefore look for a polynomial h with small coefficients. If we can
enforce a Galois action of order n in h, the coefficients of h can be taken a little
bit larger, hopping that the practical gain during the relation collection will
largely counterbalance the fact that the norms are larger: one can save a factor
of n in the relation collection.

The authors of [22] remark that their is no gain by taking the coefficients
of f0 and f1 in the whole R and it suffices to consider the polynomial over
Z ⊂ R. Let the common root m of f0 and f1 be therefore in Z. A way to
find the polynomials f0 and f1 is to perform the polynomial selection described
for prime field, see Section 3.1. We just recall in Table 5.1 the shape of the
polynomial selections, where dm and dJL are positive integers.

Variant deg f0 ‖f0‖∞ deg f1 ‖f1‖∞
Base-m 1 p1/(dm+1) dm p1/(dm+1)

Joux–Lercier dJL + 1 small dJL p1/(dJL+1)

Table 5.1 – Polynomial selection for TNFS in Fpn .

5.1.2 Individual logarithm
In this section, we want to compute the discrete logarithm of T = T0+T1t+· · ·+
Tn−1t

n−1 an element of Fpn , where the Ti are large element of Fp. The goal
is that the individual logarithm step is kept negligible during the complexity
analysis. We describe here the booting step of the individual logarithm, since
the special-Q-descent is under control. We show that using the Joux–Lercier
polynomial selection allows, as for the base-m polynomial selection analyzed in
the original article [22], to have a negligible cost for the individual logarithm
computation.

Using the base-m polynomial selection

As in NFS, we lift T on the rational side, that is the side 0. Let t the ideal
above T in Q(ι), that is t = (T, h mod T ). The ideal above t of K0 is equal to
T = (t,m0 + m1x mod t), if f0(x, t) is equal to m0 + m1x. The norm of the
ideal T in K0 is bounded essentially by pnpn/(dm+1) = pn(1+o(1)). Following [22,
Section 3.5], this is sufficient to obtain the needed complexity.

Using the Joux–Lercier polynomial selection

Let the ideal P of K0 be defined as (p, x−m) = ((p, h(t)), x−m). Let z, z0, z1
be three elements of K0 such that T ≡ z ≡ z0/z1 mod P. Let d be equal to
dJL + 1 and let zi be equal to (zi,0,0 + zi,0,1t + · · · + zi,0,n−1t

n−1) + (zi,1,0 +
zi,1,1t+ · · ·+zi,1,n−1t

n−1)x+ · · ·+(zi,d−1,0 +zi,d−1,1t+ · · ·+zi,d−1,n−1t
n−1)xd−1.

The coefficients of z0 and z1, listed as
(z0,0,0, z0,0,1, . . . , z0,0,n−1, z0,1,0, z0,1,1, . . . , z0,1,n−1, . . . , z0,d−1,0, z0,d−1,1, . . . , z0,d−1,n−1,
z1,0,0, z1,0,1, . . . , z1,0,n−1, z1,1,0, z1,1,1, . . . , z1,1,n−1, . . . , z1,d−1,0, z1,d−1,1, . . . , z1,d−1,n−1),
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are valid if they are given by a linear combination of vectors of the lattice for
which a basis is given by the rows of the following (2nd)× (2nd) matrix, where
In is the identity matrix of size n× n, i an integer in [0, n[ and j an integer in
[0, d[, 

pIn
−mIn In
−m2In In

... . . .
−md−1In−1 In−1

tixjT mod (p, h, x−m) Ind


.

The infinity norm of the shortest vector is around pn/(2nd) following Theo-
rem A.1, the infinity norm of z0 and z1 is therefore close to p1/(2d). The norm
of z0 and z1 in K0 is almost bounded by pn/2: the product of the norm to be
tested for smoothness is then close to pn. We can therefore reach the expected
complexity bound, which is Lpn(1/3, (64/9)1/3) for the general case.

5.1.3 The multiple and special TNFS algorithms
As for the classical NFS algorithm, there exist a multiple variant (MTNFS)
and a special variant (STNFS) of TNFS. The complexity achieved by MT-
NFS is the same than the one achieved by MNFS in large characteristic [24],
that is Lpn(1/3, ((92 + 26

√
13)/27)1/3). The STNFS variant reach the same

complexity as SNFS [76] on prime field, which is Lp(1/3, (32/9)1/3), but the
complexity covers the whole high characteristic finite fields with the complexity
Lpn(1/3, (32/9)1/3).

5.2 General framework for exTNFS
The extended tower NFS algorithm can be viewed as a modification of TNFS.
Indeed, in TNFS, we shift the extension not on the number fields, as in NFS,
but directly on the polynomials a mapped in the number fields. Using exTNFS,
the extension degree n = ηκ is divided in two parts: the part η is shifted on the
polynomial a, and the part κ on the number fields.

Let us now be more precise. For simplicity, we consider that η and κ are
coprime. We can represent Fpn as F(pη)κ . Let h be an integer polynomial of
degree η irreducible over Fp and ι be a root of h. We define Fpη asR/pR, whereR
is the number field Z[t]/h(t). As in TNFS, we look for two ring homomorphisms
from R[x] = Z[ι][x] to Fpn involving for one a number field K0 defined by f0
and for the other a number field K1 defined by f1, where f0 and f1 are two
polynomials over R sharing a common irreducible factor ϕ of degree κ. With
this setting, we can define Fpn = F(pη)κ ≈ (R/pR)[x]/ϕ(x). This provides then
the following commutative diagram.
Remark 5.2. Examining Figure 5.3 allows us to recognize some classical dia-
grams:

• if R = Z, the diagram corresponds to NFS

– for non-prime fields if ϕ has degree larger than 1.
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K0 ⊃ R[x]/〈f0(x)〉 R[x]/〈f1(x)〉 ⊂ K1

R[x]

(R/pR)[x]/〈ϕ(x)〉 ≈ Fpn

mod(p, ϕ(x)) mod(p, ϕ(x))

Figure 5.3 – The exTNFS diagram to compute discrete logarithms in Fpn .

– for for prime fields if ϕ has degree 1.

• if ϕ(x) = x−m, this is the diagram for TNFS.

We now will give some details and list some challenges on the polynomial
selection and the relation collection. We do not take care of the individual
logarithm step, since it is under controlled thanks to the work of Guillevic [88,
Section 4.2]: a particular case is studied in [187]. We do not detail how are
defined the case of the multiple exTNFS (MexTNFS) algorithm and the case
where p has a special form (SexTNFS): the reached complexity are, in the
general case, the one in fields of large characteristic, that is Lpn(1/3, (32/9)1/3

for SexTNFS and Lpn(1/3, ((92+26
√

13)/27)1/3 for MexTNFS. The end of this
chapter will discuss about the cryptographic consequences of the new complexity
reaches by exTNFS.

5.3 Polynomial selections
Instead of the classical NFS algorithm, we have three polynomials to select (we
then use the term polynomial triple), instead of the usual two. Classically, the
coefficients of h are chosen to be small.

5.3.1 Literature on polynomial selection for exTNFS
In all the works described in this section, the polynomial h is considered as fixed
with small coefficients: no other condition is required. The goal is then to define
f0 and f1, as in the classical NFS algorithm.

The polynomial selections available for exTNFS are basically variations
of the ones proposed for the number field sieve algorithm for medium and
large characteristic (see Section 4.1) as described by Kim and Barbulescu [114].
Sarkar and Singh propose extensions of the polynomial selection A [161, 158],
called B and C, allowing us to compute discrete logarithm in Fpn for any com-
posite n. For now on, the polynomials that defines K0 and K1 have coefficients
in R and not only in Z. Kim and Jeong propose a generalization of the classical
JLSV2 and conjugation polynomial selections [115] (called gJLSV and gConj)
that reach a better complexity than the one obtained by Sarkar–Singh. Finally,
Sarkar–Singh propose a new generalization of Kim–Jeong [159], the polynomial
selection D, that improves the complexity found by Kim and Jeong in some
cases. For simplicity, we can keep in mind that, when n is composite and not a
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prime power, the general complexity is in Lpn(1/3, (64/9)1/3). A more detailed
description of these works can be found in [134, Section 4].

The shape of the polynomials f0 and f1 defined in all the previous articles
are summarized in Table 5.2, where d5 (respectively d6 and d9) is a factor of κ
and r5 (respectively r6 and r9) is larger or equal to κ/d5 (respectively κ/d6 and
κ/d9).

deg f0 ‖f0‖∞ deg f1 ‖f1‖∞
JLSV1 (in Z) κ p1/2 κ p1/2

JLSV2 (in Z) κ pκ/(d2+1) d2 ≥ κ pκ/(d3+1)

GJL (in Z) d3 ≥ κ pκ/(d3+1) d3 + 1 small
Conj (in Z) κ p1/2 2κ small
B (in Z) d5r5 ≥ κ pn/(d5(r5+1)) d5(r5 + 1) small

C (in R) d6r6 ≥ κ p(r6(η+1)+κ/d6)/(r6η+1) d6(r6 + 1) small
gJLSV (in R) κ pκ/(d7+1) d7 ≥ κ pκ/(d7+1)

gConj (in R) κ p1/2 2κ small
D (in R) d9r9 ≥ κ pκ/(d9(r9+1)) d9(r9 + 1) small

Table 5.2 – Polynomial selections for exTNFS in Fpn , where d5, d6 and d9 divide
κ and ri ≥ κ/di.

Remark 5.3. In the C polynomial selection, the value η can theoretically be
replaced by any value in [1, η]: it is the parameter λ in the origin article.

If dealing with polynomials f0 and f1 with coefficients over R seems the-
oretically promising, dealing with integer polynomials f0 and f1 as proposed
in the article that describes first exTNFS is yet a challenge, because the qual-
ity criteria, that is the equivalent of the α and Murphy-E functions, are not
described.

5.3.2 Quality criteria
In this section, we will describe some of the available choices for the polynomial
selection step, our practical experiments and the challenges we need to solve to
select the best polynomial triple: we focus on integer polynomials h, f0 and f1.

Galois actions

As in the classical NFS variant for the medium characteristic, we can hope to
have an important speed-up by using Galois actions. A Galois action of order
k0 ≤ η can be enforced in the polynomial h and a common Galois action of order
k1 ≤ κ can be shared by f0 and f1. This allows us to emulate a Galois action
in the classical NFS algorithm of order k0k1. The particular case of h = t2 + 1,
which have a Galois action of order k0 = 2, is detailed in [22, Section 7.1].

Practical experiments

We extend the implementation we did of the three-dimensional relation collec-
tion, described in Chapter 7, to propose an implementation of exTNFS with a
four-dimensional relation collection. If the norms of the elements for a 389-bit
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Fp6 seems to have the same size than the one for a 300-bit Fp6 using the classical
NFS algorithm, the smoothness of the elements are experimentally much worse.
This is probably due to a not-so-good polynomial triple: indeed, the size of the
norms is mainly dependent of the size of the coefficient, but not on the quality
of a triple.

It is therefore necessary to explicit the quality criteria for the exTNFS case.
Considering only integer polynomials triples, the difficulty consists in distin-
guishing good triples, because the generation itself is the same than for the
classical NFS. We describe first a workaround to distinguish such triples.

A fake α-function

Since an α-function is not available yet in the literature for exTNFS, we try to
simulate one, and call it β-function. Our goal is not to estimate how many bits
in base e we gain by using a given triple, but just to distinguish between two
triples the most promising one. We will show in the following that there is a
degree 1 ideal Q of norm q in K0 (respectively K1) if h have a root modulo q
and if f0 (respectively f1) have a root modulo q.

Therefore, one can choose an irreducible integer polynomial h of small coeffi-
cients having sufficiently many roots modulo small primes (and possibly having
a Galois action of maximal order). The list of such small primes is denoted by
L and we define our β-function as β(f) =

∑
`∈L α`(f), where ` is a prime in the

list L and α` is defined either as in Section 3.1.1 or in Section 4.1.1.
Remark 5.4. The use of the quantity α`(f) is nonsense but is a simple way to
take into account the contribution of the small primes.

Challenge: precise quality criteria

The β-function is obviously not elegant, but we believe that, in the absence
of a true α-function, the β-function allows us to select not so bad polynomial
triples. It seems however feasible to have a well defined α-function in particular
cases, especially in the case h = t2 + 1. One of the difficulties is to find the
equivalent notion of the irreducibility of a in the definition of α` to avoid to
consider duplicated polynomials a.

Once the α-function is defined, we can hope to find a formula to compute
the equivalent of the Murphy-E quantity. If there exists an equivalent of the
Fibonacci sphere in dimension higher than 3, it seems therefore not so difficult
to compute this quantity.

5.4 Relation collection
As for the polynomial selection, we consider only polynomial triples defined over
the integers. We will show briefly how we can use the special-Q method, as in
the classical NFS algorithm, the remaining task being to understand how we
can define a relation in exTNFS.

5.4.1 Defining the ideals
The complexity of exTNFS shows, as the one about TNFS, that the degree
in the variable x of the polynomial a can be taken equal to 1. We then can
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write a(x) as a0(t) + a1(t)x, where a0 and a1 are two polynomials of degree
η − 1 in Z[t]. The factorization of a in prime ideals in K0 involves ideals
R which can be represented as (r, x − ρ(t)), where r is a prime ideal in the
number field Z[t]/h(t) and ρ(t) a root of f modulo r. The prime ideal r is
written as (r, hr(t)), with r the norm of r and hr a polynomial of degree d
which divides h modulo r. The lattice of polynomials a involving R in its ideal
factorization is generated by {r, rt, . . . , rtd−1, hr(t), thr(t), . . . , tη−d−1hr(t), x −
ρ(t), t (x− ρ(t)) , . . . , tη−1 (x− ρ(t))}. We denote by MR the matrix whose rows
are the vector of this basis. We can define as well ideals of larger degree, but
as ideals of inertia degree 1 are more numerous (the same apply for ideal r of
inertia degree d = 1), we only deal with them.

5.4.2 Relation
A relation in exTNFS is given by a polynomial a(x, t) = a0(t)+a1(t)x. The norm
of this polynomial mapped into K0 (respectively K1), is, as in TNFS, equal to
Rest(Resx(a(x, t), f0(x, t)), h(t)) (respectively Rest(Resx(a(x, t), f1(x, t)), h(t))).
Let us consider the mapping into K0. As in TNFS, this resultant can be rewrit-
ten as Res(f0(−a1/a0)adeg f0

0 , h). The quantity is upper bounded by (deg f0 +
1)3η/2(η + 1)(3 deg f0+1)η/2‖a‖η deg f0

∞ ‖f0‖η∞‖h‖
deg f0(η−1)
∞ .

As in Section 5.3.2 for the definition of α, a problem during the relation
collection is the definition of the polynomials a that give relations. In the
classical NFS algorithm, the polynomials a must verify:

• a is irreducible over Z,

• the leading coefficient of a is positive.

The polynomials a in exTNFS can be described by 2η coefficients, half of
them describing a0(t) = a0,0 +a0,1t+ . . .+a0,η−1t

η−1 and the other half a1(t) =
a1,0 +a1,1t+ . . .+a1,η−1t

η−1. The coefficients a1,η−1 is forced to be positive, to
avoid to deal with a relation and its opposite, which is a translation of the second
condition. But, the translation of the first condition is not obvious: morally, we
look for polynomials a irreducible over R. The conditions to be checked are not
well defined, and the irreducibility over R is maybe not the only condition to
give a relation.

5.4.3 Dividing the search space
Let Q be an ideal of K0, MQ be a 2η × 2η matrix whose rows are vectors of a
basis of a Q-lattice. The coefficients of the polynomial a whose norm in K0 is
divisible by Q is given by a = cMQ, with c in Z2η. In this Q-lattice, we want
to enumerate the polynomials a divisible by ideals R.

Let consider an R-lattice ΛR. Modulo r, the first basis vector of ΛR is
therefore equals to 0, its rank become 2η − 1. The coefficients of a polynomial
a involving the ideal R in its ideal factorization can be generated by a linear
equation modulo r. This relation can be written as aUR ≡ 0 mod r, with UR

a 2η × 1 matrix. In the Q-lattice, a = cMQ, and combining this relation with
the one in the R-lattice, we obtain cMQUR ≡ 0 mod r. The vectors c ∈ Z2η

verifying this relation are element of a lattice, which a basis is formed by the
rows of the matrix MQR, which can be written as, α{0,1,...,t−2} in Z/rZ,



5.5. Cryptographic consequences 91

MQR =



b0
b1
...
...

bt−1

 =



r 0 0 · · · 0
α0 1 0 · · · 0
... 0 . . . . . . 0
...

... . . . . . . 0
αt−2 0 · · · 0 1

 . (5.1)

Challenges

There remain therefore two main challenges to run the relation collection:

• define the conditions on the polynomials a to be a valid relation,

• enumerate the elements of the intersection of a sieving region and the
lattice generated by MQR.

The first challenge is quite the same for the polynomial selection to define
the α quantity. To solve the second challenge, we recall that the relation col-
lection can be divided in three parts: initialization of the norms, sieving and
cofactorization. The cofactorization is about the factorization of integers and
the provenance of this integers is not taken into account. It is therefore not a
problem for exTNFS: cofactoring with ECM chains is described in Section 7.4.1.
The situation is less clear for the initialization of the norms. In Section 7.1, we
describe a general algorithm to initialize the norms, but accuracy and running
time are not guaranteed for dimensions larger than 4. The matrix in Equa-
tion (5.1) as the same form as in Equation (4.7). In Chapter 6, we will describe
and analyze sieve algorithms to enumerate elements of such lattices.

Therefore, the second challenge has some solution, at least in dimension 4.
The first challenge remains.

5.5 Cryptographic consequences
A quick look at the cryptosystems whose security relies of the hardness of com-
puting discrete logarithms in medium characteristic finite fields shows that:

• XTR [129] is defined over Fp6 ,

• pairings using BN [26] curves and BLS12 [25] curves are defined over Fp12 ,

• pairings using KSS [111] curves are defined over Fp18 ,

• pairings using BLS24 [25] curves are defined over Fp24 .

We can observe that the extension degree is always composite and some of
the systems were proposed before 2006.

Before 2006 and the article of Joux, Lercier, Smart and Vercauteren [106], the
best complexity to compute discrete logarithms in medium characteristic was
in L(1/2) [79]. The complexity of the Lpn(1/3, c1/3) algorithms was improved,
from c = 128/9 in 2006 to c = 64/9 today. It is obvious that the parameters
designed for cryptosystems before 2014 to reach a given security level need to
be updated.
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This is what Menezes, Sarkar and Singh did in [134], and more recently
Barbulescu and Duquesne [18]. However, even if these articles try to be the
closest possible to what it can be expected empirically, the validation of these
theoretical results will have to be confirmed by a complete implementation of
exTNFS, and some of the challenges that are listed in this chapter should be
solved to run these practical experiments. For example, it is assumed that a
relation collection in dimension 24 or 36 exist, which is not currently the case.
In the next chapter, we propose algorithms to sieve in small dimensions.



Chapter 6

Sieving for the number field
sieve algorithms

The relation collection of the NFS algorithms can be performed ef-
ficiently with a sieving strategy, a result known since the use of the
quadratic sieve of Pomerance to factorize large integers [148]. In-
stead of the classical NFS algorithm where the relation collection
involve polynomials of degree one (dimension two), the relation col-
lection in the context of the medium characteristic must be done with
polynomial of degree higher than one, see Chapter 3 and Chapter 4.
If sieving in dimension two is well described in the literature, sieving
in higher dimension received significantly less attention.

In this chapter, we will present efficient algorithms to sieve in dimension higher
or equal to 2. We will begin with a short remainder about the line sieve and
the sieve of Franke–Kleinjung, an efficient way to sieve in two dimensions when
the line sieve becomes inefficient. We then describe a general algorithm to sieve
in any small dimension, with a specialization to the 3-dimensional case.

Let Λ be a full-rank lattice of dimension t. Let H be the t-sieving region
equal to [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · ·× [Hm

t−1, H
M
t−1[, following Definition 4.1: we

recall that Hm
k are negative and HM

k are positive. The length of an interval
[Hm

k , H
M
k [ is denoted by the integer Ik. We recall that the goal of the sieving

step is, given the lattice Λ and the sieving region H, to find all the elements of
Λ that lie in H. In the following, we consider that a basis of Λ is of the form

B = {(r, 0, 0, . . . , 0), (λ0, 1, 0, 0 . . . , 0), . . . , (λt−1, 0, 0, . . . , 0, 1)},

where r is a prime and the λi are non-negative and less than r. The vectors
of the basis B are denoted by {b0, b1, . . . , bt−1}. The special form of this basis
comes from the basis of a degree 1 prime ideal in a special-Q-lattice, as explained
in Chapter 4 and Chapter 5.

We believe that our description of the general algorithms of this chapter can
be adapted to other forms of the basis like the Hermite normal form, but we do
not discuss it further.

For an integer k in [0, t[, we define the extended sieving region Hk as [Hm
0 ,

HM
0 [×[Hm

1 , H
M
1 [× . . . × [Hm

k , H
M
k [×Zt−(k+1): with this definition, the sieving

93
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region H is equal to Ht−1. This extended sieving region will be used to define
the three sorts of vectors we introduce to describe our sieve algorithms.
Remark 6.1. Let ` be less than t. The expected number of elements in the inter-
section of the lattice Λ of volume r and a cuboid [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · · ×

[Hm
` , H

M
` [×{c`+1} × {c`+2} × · · · × {ct−1}, where (c`+1, c`+2, . . . , ct−1) are in

Zt−(`+1), is close to I0I1 · · · I`/r.

6.1 Transition-vectors
A key notion for all our algorithms is the transition-vectors, that generalize the
vectors introduced in the Franke–Kleinjung algorithm (see Section 6.2.2) which
are 1–transition-vectors.

Definition 6.1. Let k be in [0, t[. A k–transition-vector is an element v 6= 0
of Λ such that there exist c and cn in the intersection of the lattice Λ and
the extended sieving region Hk, with cn = c + v such that the t − 1 − k last
coordinates of c and cn are equal and the coordinate cn[k] must be the smallest
possible larger than c[k].

In other words, a k–transition-vector allows to jump from one vector in the
intersection of Λ and H to another one with a different coordinate k, without
missing any vectors. A set of k–transition-vectors is complete if it contains all the
possible k–transition-vectors. Given an algorithm E that uses transition-vectors
to perform the enumeration of the elements in the intersection of Λ and H, a
group of i sets of k–transition-vectors are (i−1)-suitable if they allow to reach all
the elements in the intersection of the form (·, ·, . . . , ·, ci+1, ci+2, . . . , ct−1), where
k is in [0, i[, i in [0, t[ and (ci+1, ci+2, . . . , ct−1) in [Hm

i+1, H
M
i+1[×[Hm

i+2, H
M
i+2[× · · ·

×[Hm
t−1, H

M
t−1[. Note that is is quite impossible to know, given a group of i sets

of transition-vectors without knowledge on how they were produced, if a set is
complete or if the i sets are (i− 1)-suitable without performing the generalized
line sieve, described later in Section 6.4.4: this is mainly due to the fact that it is
impossible to determine if an element of a lattice is a transition-vector without
performing the generalized line sieve, because of the condition on the coordinate
cn[k] in Definition 6.1 that requires there does not exist an element c′ with a
coordinate k between the one of c and the one of cn.
Remark 6.2. The shape of the lattices we consider imposes that, if there exists
a 0–transition-vector v, then v is the only element of the set of 0–transition-
vectors.

6.2 Reminders in 2 dimensions
In this section, we set t = 2, implying that the basis B = {b0, b1} is equal
to {(r, 0), (λ0, 1)}. We call line a 1-dimensional subset of the lattice Λ parallel
to the abscissa axis and plane the whole elements of Λ. We are looking for
elements that are in the intersection of Λ and the sieving region H, which is
equal in this context to [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [ (classically, the value Hm

1 is set
to 0). The line sieve, becomes inefficient when there is less than one element per
line (r > I0 following Remark 6.1). This is why the lattice sieve, which is the
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sieve of Franke and Kleinjung, is used, an other algorithm to quickly enumerate
the elements in the plane.

6.2.1 Line sieve
In this first section, we give anew a description of the line sieve, already described
in Section 3.2.2, in order to show how we can rewrite this algorithm to fit into
the general description of our algorithms. During the line sieve, the expected
number of elements per line is greater than 1. Sieving in a line is performed by
a procedure similar to the sieve of Eratosthenes. To begin this procedure, one
needs to find a starting point in the line. An element (c0, c1) of the lattice is
the linear combination of the two basis vectors and can therefore be written as
(c0, c1) = e0b0 + e1b1. Given the ordinate e1 in [Hm

1 , H
M
1 [, a possible starting

point is found if its abscissa e0r+e1λ0, where e0 = d(Hm
0 − e1λ0)/re, is less than

HM
0 : this starting point is the one with the smallest possible abscissa in the line

that fit into the sieving region. To enumerate the other elements of the line, we
add to this starting point multiples of b0: b0 is indeed the 0–transition-vector.
An algorithm to perform the line sieve is the following:

1. Set e1 to Hm
1 .

2. While e1 < HM
1

(a) Find the element (c0, c1) of the lattice with the smallest possible
abscissa.

(b) Enumerate the elements of the line by adding multiple of b0 to this
starting point until their abscissa becomes larger than HM

0 .
(c) Increment e1.

This algorithm spends a lot of time by finding a starting point because of
the divisions and ceilings. A way to improve efficiency is to use the information
given by a previous line to find the starting point of the following line. Indeed,
from an element e0b0 + e1b1, if (e1 + 1) < HM

1 , a valid element of the lattice is
given by e0b0 + (e1 + 1)b1. If this point is not in the sieving region, we must
subtract b0.

If the vectors b1 + kb0, where k is an integer, fit in the sieving region H,
they are therefore 1–transition-vectors: given the following algorithm, the set
of 1–transition-vectors {b1, b1 − b0} and the 0–transition-vector are 1-suitable.

1. Set c to 0.

2. While c[1] < HM
1

(a) Enumerate the elements of the line by adding positive or negative
multiples of b0 to c.

(b) Set c to c+ b1 and subtract b0 if c does not fit in H.

3. Set c to −b1.

4. While c[1] ≥ Hm
1

(a) Enumerate the elements of the line by adding positive or negative
multiples of b0 to c.
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(b) Set c to c− b1 and add b0 if c does not fit in H.

Even if Hm
1 is classically set to 0, we describe the case of negative ordinate

for completeness in Item 4 and in order to correspond to the generic algorithm
in the following. The complete pseudo-code is given in Appendix E.1. Item 3
of the previous algorithm sets c to −b1 instead of 0 to avoid to sieve again the
line (·, 0).

If the volume of Λ becomes larger than I0, the average number of elements
per line is less than 1. Sieving in a line becomes expensive because if there exists
a point in the line, it is the only one in the line, and the cost of discovering one
element is the same as the one to discover no element.

6.2.2 Lattice sieve
In this section, we assume that λ0 is a non-zero coefficient. Otherwise, the basis
{b0, b1} of the lattice is orthogonal and the elements to be sieved are of the form
(0, e1), with e1 in [Hm

1 , H
M
1 [, which can be processed specifically and efficiently.

The lattice sieve is used when there is less than one element per line. We
can therefore sort these elements by their increasing c1-coordinate. Furthermore,
there exist no 0–transition-vector. If we perform a line sieve, as presented in the
previous section, or the sieve by vector briefly described in Section 3.2.2, and
sort the elements found by increasing c1 coordinate, we can observe that the
set of 1–transition-vectors is composed of at most three vectors, as illustrated
in Figure 6.1.

c0

c1

••
•••• ••••

•

•
• • • •• • • •• •

HM
0Hm

0

Figure 6.1 – Three 1–transition-vectors.

Preliminaries

Franke and Kleinjung proved in [61] that, given a lattice Λ of basis B and
a sieving region H, there exists a basis {u,v} of Λ, well adapted to perform
efficiently the enumeration of the elements of Λ that are in H. The basis {u,v}
is described in Proposition 6.1. The only three possible 1–transition-vectors
are u, v and u + v, as shown in Proposition 6.2 and Corollary 6.1, and the
enumeration can be easily managed, as described at the end of this section.
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Proposition 6.1 ([61, Proposition 1]). Let H be a sieving region, Λ be a lattice
of basis B and volume r ≥ I0. There exists a unique basis {u,v} of Λ such that:

• the coordinates u[1] and v[1] are positive;

• the coordinates u[0] and v[0] verify −I0 < u[0] ≤ 0 ≤ v[0] < I0 and
v[0]− u[0] ≥ I0.

Proposition 6.2 ([61, Proposition 2]). Let H, Λ, u and v be as in the previous
proposition. Let (c0, c1) be in the intersection of Λ and H0. Then the element of
this intersection with the smallest ordinate larger than c1 is obtained by adding
to (c0, c1) the following vector:

u if c0 ≥ Hm
0 − u[0].

v if c0 < HM
0 − v[0].

u+ v if HM
0 − v[0] ≤ c0 < Hm

0 − u[0].

Remark 6.3. In Figure 6.1, the vector u is dashed, the vector u+ v is dotted
and the vector v is solid.

We can also go in decreasing order instead of increasing order with respect
to the c1-coordinate, which is useful if we did not start from the bottom end of
the sieving region.

Corollary 6.1. Let H, Λ, u and v be as in the previous proposition. Let (c0, c1)
be in the intersection of Λ and H0. Then the element of this intersection with
the largest ordinate smaller than c1 is obtained by subtracting from (c0, c1) the
following vector: 

u if c0 < HM
0 + u[0].

v if c0 ≥ Hm
0 + v[0].

u+ v if HM
0 + u[0] ≤ c0 < Hm

0 + v[0].

Proof. The proofs of Proposition 6.1 and Proposition 6.2 are given in [61].
The proof of Corollary 6.1 is derived from the Proposition 6.2. Let H, Λ, u

and v be as in Proposition 6.2. Let (c0, c1) be an element of the intersection of Λ
and [Hm

0 , H
M
0 [×Z. Let (c′0, c′1) be the element resulting from the addition of u

to (c0, c1). The condition on c0 in Proposition 6.2, that is Hm
0 −u[0] ≤ c0 < HM

0
is translated into the condition Hm

0 ≤ c0 +u[0] < HM
0 +u[0]. The coordinate c′0

is equal to c0+u[0], that is what we claim for the first condition in Corollary 6.1.
The same idea applies on v and u+ v to prove the result of Corollary 6.1.

Enumeration à la Franke–Kleinjung

First, we need to compute the basis verifying the properties listed in Propo-
sition 6.1. We can remark that the ordinates of u and v are relatively small
and the abscissae are relatively large. More precisely, we mean that u[0] and
v[0] are in O(I0) and u[1] and v[1] are in O(r/I0). We can therefore perform a
weighted basis reduction with weight w = (1/I0, I0/r) (or w = (r, I2

0 )) but with
no guarantee of the correctness of the two output vectors: it can be necessary
to do a small linear combination of these vectors to fit into the bounds given
in Proposition 6.1. However, we can compute them efficiently and correctly by
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applying a Gaussian reduction with stopping criteria that allows to reach the
bounds given in Proposition 6.1, as shown in the proof of this proposition in [61],
resulting in Function reduce-qlattice.

Function reduce-qlattice(b0, b1, I0).
input : the basis {b0, b1}, the length I0 of [Hm

0 , H
M
0 [

output: the reduced basis {u,v} where u and v verify Proposition 6.1
u← −b0, v ← b1;
while v[0] ≥ I0 do

u← reduce(u,v); // reduction of u by v
if u[0] > −I0 then break;
v ← reduce(v,u); // reduction of v by u
if v[0] < I0 then break;
u← reduce(u,v); // reduction of u by v
if u[0] > −I0 then break;
v ← reduce(v,u); // reduction of v by u

end
k ← v[0]− I0 − u[0];
if v[0] > −u[0] then v ← v − (bk/u[0]c)u;
else u← u+ (bk/v[0]c)v;
return (u,v);

The reduce function in reduce-qlattice of u by v is the Euclidean opera-
tion that allows to have the absolute value of u[0] less than the absolute value
of v[0] by removing the appropriate number of times v to u. Finally, the sieving
procedure is the following:

Basis reduction. Compute from b0 and b1 the two vectors u and v that
reach the conditions of Proposition 6.1, with reduce-qlattice.

Enumerate positive ordinates. Let c be equal to 0. While c[1] is less
than HM

1

1. Report c.
2. Following Proposition 6.2, add to c the 1–transition-vector corre-

sponding to c[0].

Enumerate negative ordinates. Let c be equal to either −u, or −v or
−(u+v), according to which vector must be subtracted following Corol-
lary 6.1 when the abscissa is zero. While c[1] is larger than Hm

1 :

3. Report c.
4. Following Corollary 6.1, subtract to c the 1–transition-vector corre-

sponding to c[0].

The enumeration parts, concerning the positive and negative ordinates, can
be depicted as in Figure 6.2. Depending on the abscissa of an element, we know
which vector we need to add or subtract to continue the enumeration. The full
pseudo-code of the lattice sieve is given in Algorithm E.2.
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uv u+ v

−u −v−(u+ v)
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c1
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0Hm

0

Figure 6.2 – Areas of elements for which the same 1–transition-vector is added.

6.2.3 Unification of the two sieves
To conclude this reminder, we propose a unification of the two sieves, namely
the line sieve and the sieve of Franke–Kleinjung, assuming that λ0 is a non-zero
coefficient. Depending on the volume of the lattice Λ and the sieving region H,
we know how to build the possible transition-vectors:

• if the volume of Λ is less than I0, the vector b0 is the 0–transition-vector
and the 1–transition-vectors b1 and b1 − b0 form two sets that are 1-
suitable for the unified algorithm we propose in the following.

• if the volume of Λ is larger than I0, there exists no 0–transition-vector
and three 1–transition-vectors are computed using the output of Func-
tion reduce-qlattice.

Once the sets of 0–transition-vector and 1–transition-vectors are constituted,
the enumeration of the elements in the intersection of Λ and H is simple: given
an element c in this intersection, we try to find all the element in the line, that
is add to c all the multiple of the 0–transition-vector, add a 1–transition-vector
and apply on the new vector the two previous steps. The algorithm looks like:

Initialization.

1. Given Λ and H, compute the sets of 0–transition-vector and 1–
transition-vectors. If the 0–transition-vector exists, we call it v,
otherwise, the operations involving v must be skipped.

2. Set c to 0.

Enumeration.

3. While c[1] < HM
1 :

(a) Set d to c.
(b) While c[0] < HM

0 , report c and add v to c.
(c) Set d to c− v.
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(d) While c[0] ≥ Hm
0 , report c and subtract v to c.

(e) Set c to the addition of d and a 1–transition-vector such that
c has the smallest possible positive ordinate and an abscissa in
[Hm

0 , H
M
0 [.

4. Set c to the opposite of a 1–transition-vector such that c has the
smallest possible negative ordinate and an abscissa in [Hm

0 , H
M
0 [.

5. While c[1] ≥ Hm
1 :

(a) Perform Item 3a, Item 3b, Item 3c and Item 3d.
(b) Set c to the subtraction of d and a 1–transition-vector such that

c has the smallest possible negative ordinate and an abscissa in
[Hm

0 , H
M
0 [.

When the volume of Λ is less than I0, we get exactly the algorithm of the
line sieve, and when the volume of Λ is larger than I0, the step in Item 3b,
Item 3c and Item 3d are just the report of c and the final step in Item 3e can
be performed according to Proposition 6.2.

Let H denote the sieving region and Λ the lattice of dimension t. In this
case, an extension of the line sieve and the sieve of Franke–Kleinjung, also called
plane sieve, can be performed, as shown at Section 6.4.4. But, when the volume
of the lattice is larger than I0I1, the average number of elements per plane is
less than one and the plane sieve can be not as efficient as we can hope. In this
chapter, we present a general algorithm to sieve in small dimensions. We first
present a sieve algorithm with an oracle that produces the transition-vectors and
then, because the oracle does not exist with the features we want, an algorithm
that try to generate a subset of the transition-vectors and how to perform the
enumeration with such a subset.

6.3 Sieve algorithm with oracle
In this section, given the lattice Λ and the sieving region H, we consider that
an oracle can produce a complete set of k–transition-vectors, where k is in
[0, t[. The main idea of the enumeration algorithm is, given an element c in the
intersection of Λ and H, to modify its t − 1 first coordinates, that is finding
all the elements in Λ ∩ H with the coordinates (·, ·, · · · , ·, c[t − 1]). Once the
enumeration of those elements is performed, a (t−1)–transition-vector is added
to c such that the new element fits in H. And then, we perform recursively the
enumeration of the elements with the last coordinate equal to c[t− 1].

The vector 0 is, by definition, in the sieving region and is the starting point
of our enumeration algorithm. The complete algorithm is the following (but for
simplicity, we do not care if we report several times the same element):

Initialization.

1. Get the transition-vectors from the oracle O(H,Λ).
2. Set c to 0 and k to t− 1.

Enumeration.

3. While c[k] < HM
k :
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(a) Report c.
(b) If k > 0, call recursively this enumeration procedure with input

c and k − 1.
(c) Add v to c, where v is a k–transition-vector which implies that

(c+ v)[k] is the smallest possible value larger than c[k].
4. Recover c as it was when the procedure was called.
5. While c[k] ≥ Hm

k :
(a) Report c.
(b) If k > 0, call recursively this enumeration procedure with input

c and k − 1.
(c) Subtract v to c, where v is a k–transition-vector which implies

that (c− v)[k] is the smallest possible value smaller than c[k].
Remark 6.4. By unrolling the recursive calls, we get exactly the algorithm given
in Section 6.2.3 when t = 2, modulo avoiding the duplicates.
Proposition 6.3. Let Λ be a lattice and H be a sieving region of dimension t.
The algorithm described previously reports at least once all the elements in the
intersection of Λ and H.
Proof. We prove it by induction.

Let k = 0. The set of 0–transition-vectors is either empty or contains an
element, say v. If the set is empty, the two while loops are broken at the first
iteration and only c is reported, which is correct: if another element was in
the same line as c, this would create a 0–transition-vector. Otherwise, from an
element c, we can find with the algorithm all the elements in the same line as
the one of c, that is c+ αv, where α is an integer.

Let k = 1. Let c be in the intersection of Λ and H. All the elements of the
form (·, c[1], c[2], . . . , c[t− 1]) are reported by the case k = 0. By the definition
of the transition-vectors, if the set of 1–transition-vector is not empty, there
exists at least one vector v in the set of the 1–transition-vectors that allows to
reach a point in H0 with the smallest ordinate larger than the one of c. There
does not exist any element of Λ∩H with an ordinate in ]c[1], (c+ v)[1][. Then,
by considering all the additions or subtractions of a 1–transition-vector and the
case k = 0, we cannot miss any element of the form (·, ·, c2, c3, . . . , ct−1) in Λ∩H,
where all the ci are in [Hm

i , H
M
i [.

Let k = k0 < t. Suppose that, given c, the algorithm enumerate all the
elements of the form (·, ·, . . . , ·, c[k0 + 1], c[k0 + 2], · · · , c[t− 1]). Using the same
argument as for the case k = 1, we can enumerate all the elements of the form
(·, ·, . . . , ·, ck0+1, ck0+2, . . . , ct−1) in Λ∩H, where all the ci are in [Hm

i , H
M
i [.

The enumeration algorithm is described, however the oracle to get the sets of
transition-vectors is not determined in our description. Algorithms to compute
Graver basis [82] can be used to find t sets of transition-vectors that are (t− 1)-
suitable with respect to our enumeration algorithm. When the volume r of the
lattice Λ is less than I0, we prove in Section E.3 that the t sets of transition-
vectors given in Section 6.4.4, which are (t−1)-suitable, are in the Graver basis.
Such a proof can be extended with the sets of transition-vectors of Section 6.4.4
when I0 < r < I1. We have experimentally verified for other r that the t
sets of transition-vectors obtained by the computation of a Graver basis are
(t− 1)-suitable.
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Definition 6.2 (Graver basis). Let Λ be a full-rank lattice of dimension t. Let
L be the set of non-zero vectors of Λ in an orthant which cannot be written
as the sum of two non-zero vectors of the lattice in this orthant. The Graver
basis of a lattice is the intersection of the L defined in each orthant of the
t-dimensional space.

Remark 6.5. Let Λ and L be as in Definition 6.2, for a given orthant. If a
vector v is in L, there does not exist an element u of Λ in the orthant such that
u[i] ≤ v[i], for i in [0, t[.

We use the software 4ti2 [175] as an oracle, but the timing of the computa-
tion of the Graver basis often exceeds the time to perform a generalized plane
sieve, whose a possible description can be found at the end of Section 6.4.4.
In the generic case, it seems not possible to bound the cardinality of a Graver
basis by a function of r and t, as it often contains an exponential number of
vectors [142]. We report in Table 6.1 the number of vectors in the Graver
basis for a given size and the number of generated nearly-transition-vectors
(a weaker notion than transition-vectors, that includes the transition-vectors
and, given a vector of v of the lattice, it is easy to verify if v is or not a
nearly-transition-vectors, see Section 6.4.1), with respect to the sieving region
H = [−25, 25[×[−25, 25[×[−25, 25[×[0, 25[.

Volume of
lattice

Cardinality of
Graver basis

Number of
nearly-transition-vectors

min average max min average max
[0, 26[ 4 241 2827 4 119 489

[26, 212[ 107 4217 132036 31 437 5173
[212, 218[ — 9839 — — 98 —
[218, 223[ — 19778 — — 8 —

Table 6.1 – Experiments on Graver basis thanks to the graver binary of 4ti2.

Concerning the first two lines of Table 6.1, the description of the generalized
sieves in Section 6.4.4 can be performed without the need for an algorithm to
compute a Graver basis. As we can see, the number of vectors generated by the
Graver basis computation is way too large, compared to what we need to get t
sets of transition-vectors that are (t− 1)-suitable. The results are obtained by
considering 500 random lattices. For the last two lines, we just give an average
number on 10 lattices, since dealing with some lattices of these volumes can
require more than 20 hours of computation and more than 16 GB of memory,
which is incompatible with the expected running time of our algorithm.

As this oracle spends a lot of time to give t sets of transition-vectors that are
(t− 1)-suitable, we therefore propose our own construction of an approximated
oracle: we accept the fact that in some not-too-frequent cases, one or more
sets of possible transition-vectors do not allow to have the t sets of transition-
vectors being (t−1)-suitable and possibly contain rather than transition-vectors
nearly-transition-vectors.
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6.4 Sieve algorithm without oracle
If we do not have access to an oracle that generates complete or suitable sets
of transition-vectors (and it is generally the case), we need to provide a specific
algorithm that build transition-vectors. But, we cannot prove efficiently that
a vector is a transition-vector. That is why we will define and use the nearly-
transition-vectors: nearly-transition-vectors share the same properties than the
transition-vectors except the condition that, between c in the intersection of H
and Λ and c + v, where v is a k–nearly-transition-vector, there can exist an
element c′ with the coordinate k between the one of c and c + v. Verifying if
v is a k–nearly-transition-vector is easy, we need to verify Property 6.2. This
change does not impact drastically the enumeration algorithm, but by using
the weaker notion of nearly-transition-vectors, we could miss a large number of
elements. We will describe two different sieve algorithms: their major difference
is the construction of the nearly-transition-vectors and imply modifications in
the enumeration algorithms. Before describing the algorithm, we define a level
of a sieving algorithm for a sieving region H, a key notion for the rest of the
description.

Definition 6.3 (Level). Let Λ be a lattice and H be a sieving region. We
define the maximum level of a sieve algorithm with respect to Λ and H as
the minimal integer value ` ≤ t − 1 such that the intersection of the cuboids
[Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · ·×[Hm

` , H
M
` [×{c`+1}×{c`max+2}×· · ·×{ct−1}, where

(c`max+1, c`max+2, . . . , ct−1) are in [Hm
`max+1, H

M
`max+1[×[Hm

`max+2, H
M
`max+2[× · · ·×

[Hm
t−1, H

M
t−1[, and the lattice Λ contain more than one element on average.

In case H contains less than one element on average, we set the maximum
level `max to the value t− 1.

In the following algorithms, the level will play a central role. It allows us to
control the most efficiently which type of sieve is used.

Example 6.1. Let H be equal to [−215, 215[×[0, 215[ and the volume r = 217 +
29 of the lattice Λ.With respect to H and Λ, the level is equal to 1. In this case,
because r > I0, the lattice sieve is the most efficient sieve to be used, and our
general algorithms will degenerate in the lattice sieve. But, it is also possible to
use the line sieve to enumerate the elements in the intersection of H and Λ.

The general algorithms degenerates in the line sieve when the level is equal
to 0. In our sieve algorithms, the parameter ` can be replaced by any smaller
integer: it will result in the call of a less efficient sieve in term of running time,
but will enumerate all the expected elements.

6.4.1 Preliminaries
In this section, we define two new types of vectors that try to approximate the
notion of transition-vectors and describe some properties that are shared by the
two sieve algorithms we will describe.

Nearly-transition-vectors

Given a vector v of a lattice Λ and a sieving region H, it is almost impossible
to determine quickly if the vector v is a transition-vector or not, as described
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in Section 6.1. A nearly-transition-vector shares almost the same properties
as a transition-vector, the only difference is that we do not require that the
coordinate cn[k] of Definition 6.1 is the smallest possible larger than c[k]
Definition 6.4. Let k be in [0, t[. A k–nearly-transition-vector is an element
v 6= 0 of Λ that allows to reach, from c in the intersection of Λ and Hk, a new
element cn = c+ v in this intersection, such that the t− 1− k last coordinates
of c and cn are equal and the coordinate cn[k] must be larger than c[k].
Proposition 6.4. Let k be in [0, t[. The vector v in the lattice Λ is a k–nearly-
transition-vector if:

1. the coordinate k of v is positive,

2. for all j in ]k, t[, v[j] = 0,

3. for all j in [0, k], |v[j]| < Ij.
A k–transition-vector is necessarily a k–nearly-transition-vector. Instead of

the difficulty to show efficiently if, given a vector v of a lattice Λ and a sieving
region H, the element v is or not a transition-vector, it is possible to efficiently
prove that v is or not a nearly-transition-vector, by only verifying the conditions
of Proposition 6.4

Shape of the nearly-transition-vectors

We will first describe the shape of the nearly-transition-vectors for the two and
three-dimensional cases and then generalize our observations.

Shape of the nearly-transition-vectors in two and three dimensions.
In the 2-dimensional case, when r < I0, that is ` = 0, we apply the line sieve and
we know that the 0–transition-vector is equal to (r, 0). Given the algorithm in
Section 6.3, the set of the 0–transition-vector and the set of 1–transition-vectors
{(λ0, 1), (λ0 − r, 1)} are 1-suitable. The shape of these transition-vectors, and
then nearly-transition-vectors, is therefore in (O(r), 1).
Remark 6.6. The notation O(i) is used here to mean that the value is almost
equal to the value i.

Still in the case t = 2, when r > I0, that is ` = 1, there does not exist a
0–transition-vector and the set of 1–transition-vectors is constituted by vectors
in the set {u,v,u + v}, where u and v are the two Franke–Kleinjung vectors.
As remarked in Section 6.2.2, the first coordinates of u and v are in O(I0) and
the second are in O(r/I0).

The shape of the nearly-transition-vectors in the three-dimensional case,
given in [94, 72], are the following:

• when ` = 0, the shape is equal to (O(r), O(1), O(1));

• when ` = 1, the shape is equal to (O(I0), O(r/I0), O(1));

• when ` = 2, the shape is equal to (O(I0), O(I1), O(r/(I0I1))).
It seems obvious, given a level `, to try to generalize this shape as (we

do not write the O(·) notation for clarity) (I0, I1, . . . , I`−1, r/(I0 × I1 × · · · ×
I`−1), 1, 1, . . . , 1). In the following, we will show why this general shape is the
expected one.
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General shape of the nearly-transition-vectors. The general shape de-
scribed previously is the one we can expect by doing a crude generalization of
the cases of two and three dimensions; we will show that this is exactly what
we need to have in the two situations where ` < t− 1 and ` = t− 1.

Level ` < t − 1. In this situation, the number of elements of the form
(·, ·, . . . , ·, c`+1, c`+2, . . . , ct−1) where ck is in [Hm

k , H
M
k [ is on average larger than

one. These sets of elements are in cuboids where the t− (`+ 1) last coordinates
are fixed: we say that the dimension of such cuboids is equal to ` + 1. To
try to explore all these cuboids, the k–nearly-transition-vectors, where k is in
[`+1, t−1[, must have, a coordinate k equal to ideally 1, in order to exhaustively
enumerate all the possible cuboids of dimension `, and if not 1, then a value
the smallest possible. Inside a cuboid of dimension ` + 1, the average number
of elements is equal to (I0 × I1 × · · · × I`)/r, larger than one, while the average
number of elements in a cuboid of dimension ` included in a cuboid of dimension
`+ 1 is less than one.

Hence, a k–nearly-transition-vector c, where k is in [0, `[, has the coordinates
c[j] in the magnitude of Ij , where j is in [0, k], because we except less than one
element per cuboid of dimension k + 1. Following Definition 6.3, a `–nearly-
transition-vector verify the same property except for the coordinate ` which is
in the order of r/(I0×I1×· · ·×I`−1), in order to find more than one element per
cuboid of dimension ` + 1. Putting all together, the nearly-transition-vectors
have more or less the form (I0, I1, . . . , I`−1, r/(I0 × I1 × · · · × I`−1), 1, 1, . . . , 1).

Level ` = t− 1. If r is less than I0 × I1 × · · · × It−1 (it means that the
volume of Λ is larger than the number of elements in H, allowing us to expect
more than one element per cuboid of dimension t), the shape of the nearly-
transition-vectors is in (I0, I1, . . . , It−2, r/(I0 × I1 × · · · × It−2)) using the same
previous arguments as when ` < t− 1.

If r is larger than I0× I1×· · ·× It−1, the shape of the vector is the same but
the last coordinate is larger than It−1: this will give a vector with a not-so-small
last coordinate, which is consistent with what we expect: all the coordinates
except the last one must enumerate less than one element per cuboid of the
corresponding dimension, and the last one must allow to find less than one
element in H.

Obtaining the shape. We describe in the following two algorithms to
produce nearly-transition-vectors. These two ways result in two different but
similar enumeration algorithms. Each of them has advantages and drawbacks,
that we discuss later. To produce these nearly-transition-vectors, the two algo-
rithms uses a skew lattice reduction, as described in Section A.1, with the same
(vector of) weight w: we therefore define it before going into details.

Definition 6.5 (Weight). Let ` be a level of a sieve with respect to Λ and
H. The shape of the nearly-transition-vectors at this level is equal to s =
(I0, I1, . . . , I`−1, r/(I0 · I1 · · · · · I`−1), 1, 1, . . . , 1). The weight w we use in the
weighted lattice basis reduction is defined by the t-tuple (1/s[0], 1/s[1], . . . ,
1/s[t− 1]).
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Enumeration algorithm

The enumeration algorithm to enumerate the elements in the intersection of the
lattice and the sieving region is similar to the one given in Section 6.3. This
algorithm has a major drawback, the use of nearly-transition-vectors cannot
ensure that the report of the elements in the intersection of the lattice and the
sieving region is exhaustive. This is the reason of the use of skew-small-vectors to
compute during the enumeration some missing nearly-transition-vectors, when
possible. We describe the two possible situations on an example, assuming that
t = 2 and the set of 1–transition-vectors is equal to {u,v,u + v}, where these
three vectors are as in Figure 6.2.

Suitable nearly-transition-vectors. In our example, if only u and u+ v
are in the set of 1–nearly-transition-vectors, we say that the set of 1–nearly-
transition-vectors is suitable, which is a notion different but close to the one
for a group of i sets of transition-vectors. If we consider the enumeration of
the elements in H, all the new elements have their abscissa in [Hm

0 , H
M
0 [. We

indeed miss some elements in the enumeration as we lack the vector v, but
the enumeration is stopped when the bounds [Hm

1 , H
M
1 [ are reached and this

condition is the only stopping criteria. We now give a more formal and general
description of this case.

A set of k–nearly-transition-vectors is suitable if, given any element of the
lattice such that its coordinates fit in Hk, there exist at least one k–nearly-
transition-vector to go from this element to an other in Hk−1, meaning that we
can find another one element that reach all the bounds of the k first intervals
of the sieving region except for the coordinate k, that is a stopping criteria
at a point of the enumeration. In this situation, the enumeration can fail to
report some elements but the enumeration is stopped regularly. In the follow-
ing algorithms, we try to reduce the number of missed elements by generating
sufficiently many nearly-transition-vectors during the initialization of the enu-
meration but we do not try to test if this situation occurs during the enumeration
and therefore do not propose mechanisms to avoid missing elements.

Lack of nearly-transition-vectors. In our example, if only u and v are in
the set of 1–nearly-transition-vectors, we say that there is a lack in the set of
1–nearly-transition-vectors. If we consider the enumeration of the elements in
the plane, we cannot always find a new element in the strip around the ordinate
axis bounded by [Hm

0 , H
M
0 [. Contrary to the previous case, for which the enu-

meration is stopped when the bounds [Hm
1 , H

M
1 [ are reached, the enumeration

can be stopped well before having reached these bounds, implying the missing
of a possibly large proportion of the elements we hope to enumerate. We now
give a more formal and general description of this case.

There is a lack in the set of k–nearly-transition-vectors if, given any element
of the lattice such that its coordinates fit in H, there are cases where there
are no k–nearly-transition-vector to go from this element to another one in
Hk−1. The enumeration can be stopped even if there are elements left to be
enumerated. At this stage, it is impossible to determine the reason of the lack
of k–nearly-transition-vector. It could be because of a strong skewness of the
lattice, or because the shape of the sieving region is unbalanced, or because the
initialization procedure did not produce enough k–nearly-transition-vector. In
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this case, we need to find a new k–nearly-transition-vector, computed on the
fly during the enumeration. We want this situation to be very rare in order to
get an efficient sieve. In this case, we propose strategies to find new nearly-
transition-vectors: these strategies are also called fall-back stategies.

Fall-back strategies

To perform these strategies, we use the notion of skew-small-vectors. In the
following, we will describe a general fall-back strategy, instantiated differently
by the two enumeration algorithms.

Skew-small-vectors. The initialization step of the two enumeration algo-
rithms build a lot of vectors having the specific shape we have described above.
All the vectors we will produced by the initialization procedure are not nearly-
transition-vectors, but have coordinates close to the one we target: these vectors
will be called skew-small-vectors. Even if some vectors can be very small and
seem to not respect the target shape, we still keep the name skew-small-vector.
A k–nearly-transition-vector is necessarily a k–skew-small-vector.

Definition 6.6. Let k be in [0, t[. A k–skew-small-vector is an element v 6= 0
of Λ that allows to reach, from c in Λ, a new element cn = c+v in Λ, such that
the t − 1 − k last coordinates of c and cn are equal and the coordinate cn[k]
must be larger than c[k].

Proposition 6.5. Let k be in [0, t[. A vector v in the lattice Λ is a k–skew-
small-vector if:

1. the coordinate k of v is positive,

2. for all j ∈]k, t[, v[j] = 0.

Summary of the different types of vectors. We propose to depict in
Figure 6.3 the three types of vectors on a 2-dimensional example. In this context,
there are only one 0–transition-vector, 1–transition-vectors, 0–nearly-transition-
vectors, 1–nearly-transition-vectors.

Let Λ be a lattice and H be a sieving region. Let v be a k–skew-small-vector
and Hk be an extended sieving region. We distinguish three cases, according to
the type of the vector v:

• if v is a k–skew-small-vector, there is no guaranty that c + v is in the
extended sieving region if c is an element in the intersection of Λ and H.

• if v is a k–nearly-transition-vector, there exists an element c in the inter-
section of Λ and H such that c+ v is in the extended sieving region.

• if v is a k–transition-vector, there exists an element c in the intersection
of Λ and H such that c + v is in the extended sieving region with the
smallest possible coordinate k larger than the one of c.

Let c be an element in the intersection of the lattice Λ and the sieving
region H, and v be a k–skew-small-vector. We give here the patterns of a
k–skew-small-vector, which is the same for a k–nearly-transition-vector or a
k–transition-vector, and the one of c+ v.
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Figure 6.3 – Some vectors of the lattice. The vector 1 is the opposite of the 0–
transition-vector, 2 is a 0–nearly-transition-vector, 3 is a 1–transition-vector,
4 is a 1–nearly-transition-vector, 5 is the opposite of a 1–transition-vector,
6 is a 1–transition-vector and 7 is a 1–skew-small-vector.

c[0] c[1] . . . c[k] c[k + 1] c[k + 2] . . . c[t− 1]
+ v[0] v[1] . . . v[k] > 0 0 0 . . . 0

(c+ v)[0] (c+ v)[1] . . . (c+ v)[k] c[k + 1] c[k + 2] . . . c[t− 1]

Generating nearly-transition-vectors on the fly. Let us consider the case
when, during the enumeration, the addition of the known nearly-transition-
vectors fails to land in Hk−1, according to the previous description of a lack
of nearly-transition-vectors. The case of the subtraction follows the same idea.
The set of known nearly-transition-vectors can be computed by the two methods
described in the following, one for each enumeration algorithm. The main idea
is to store all the vectors produced by the initialization procedure, and not
only keep the nearly-transition-vectors. We assume that the sets of j–skew-
small-vectors, where j is in [0, t[, are not empty. Let consider the set of k–
skew-small-vectors and the element c in Λ∩Hk. Adding a k–skew-small-vector,
say v, to c makes the result necessarily out of the sieving region. But, it is
possible to minimize the coordinates of c + v using d, a linear combination of
{b0, b1, . . . , bk−1}, and obtain a potential new k–nearly-transition-vector equal
to c + v − d. This idea will be specialized depending on the context of our
algorithms.

Bird’s-eye view of the algorithms

The structure of the algorithm is similar to the one of Section 6.3. The input of
the algorithm is a lattice Λ and a sieving region H. The algorithm reports the
elements in the intersection of Λ and H.

Initialization.

1. Given H and Λ, call a procedure findV that returns some nearly-
transition-vectors and skew-small-vectors.
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2. Set c to 0 and k to t− 1

Enumeration.

3. While c[k] < HM
k :

(a) Report c.
(b) If k > 0, call recursively this enumeration procedure (sieve)

with input c and k − 1.
(c) Add v to c, where v is a k–nearly-transition-vector, such that

c lands in Hk−1 (add)
(d) If not possible, call a fall-back strategy (fbAdd) that tried to

produce a new element in H, and therefore a new k–nearly-
transition-vector, by using k–skew-small-vectors.

4. Recover c as it was when the procedure was called.
5. While c[k] ≥ Hm

k :
(a) Perform Item 3a, Item 3b, Item 3c and Item 3d by considering

c− v instead of c+ v.

This description allows us to propose the general form of the enumeration
algorithm in Algorithm 6.1 and of the Function sieve. The sign ... denotes
that Function sieve can have additional arguments.

Function sieve(k, c, H, T , S, Λ, L, ...)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors T , the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ, the list L
that contains the elements in H ∩ Λ

ct ← c;
while ct[k] < HM

k do
if ct ∈ H then L← L ∪ {ct};
if k > 0 then sieve(k − 1, ct,H, T, S,Λ, L, ...);
ct ← add(k, c,H, T, S,Λ, ...);

end
ct ← sub(k, c,H, T, S,Λ);
while ct[k] ≥ Hm

k do
if ct ∈ H then L← L ∪ {ct};
if k > 0 then sieve(k − 1, ct,H, T, S,Λ, L, ...);
ct ← sub(k, c,H, T, S,Λ, ...);

end

Remark 6.7. From an implementation point of view, the k–nearly-transition-
vectors are sorted by increasing k-coordinate and tested in this order.

The two procedures we need to instantiate in this general description are on
the one hand the generation of the nearly-transition-vectors and the skew-small-
vectors, in Item 1 (findV), and on the other hand the strategies to produce a
new nearly-transition-vector, in Item 3d (fbAdd). These two procedures are
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Algorithm 6.1: General structure of the enumeration algorithms.
input : the basis {b0, b1, . . . , bt−1} of Λ, the sieving region H, the

level ` with respect to H and Λ, the bounds on the small
linear combinations A

output: list of visited point in Λ ∩H
(T, S) = findV(Λ,H, `,A); L← ∅;
sieve(t− 1,0,H, T, S,Λ, L, ...);
remove duplicates of L;
return L;

linked together, and so the way we produce the nearly-transition-vectors and
skew-small-vectors to ensure or try to ensure some properties will affect the way
we use and design the fall-back strategies.

We briefly summarize in Table 6.2 the major differences between the two
proposed algorithms. The justification of the choices will be given in the appro-
priate sections.

globalntvgen localntvgen
Initialization Skew lattice reduction on

the whole basis
Skew lattice reduction on
the first ` + 1 vectors and
t − (` + 1) closest vector
problems solutions

Fall-back Frequently used Rarely used, aggressive
strategy

Table 6.2 – Main features of the two sieve algorithms.

We choose the name globalntvgen for the first algorithm because all the
nearly-transition-vectors are build from the whole skew basis of the initializa-
tion, instead of the second algorithm, for which all the nearly-transition-vectors
are more controlled, named localntvgen.

6.4.2 First algorithm: globalntvgen

Initial generation of the nearly-transition-vectors

We apply a weighted basis reduction on the basis {b0, b1, . . . , bt−1} with weight
w. Then, we perform small linear combinations of the output basis vectors. Each
produced vector is at least a skew-small-vector and can be a nearly-transition-
vector. We use k different lists to store the k–skew-small-vectors (that is all the
produced vectors), and k other lists to store specifically the k–nearly-transition-
vectors.

Generating nearly-transition-vectors on the fly

At this step, all the additions to c in the sieving region H of a k–nearly-
transition-vector fail to land in Hk−1. The addition of v, a k–skew-small-vector,
is necessarily out of Hk−1. We try to minimize the coefficients of c+v by using
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the set of vectors Bk = {b0, b1, . . . , bk−1}. Indeed, we want to find an element
with the same coordinate k than the one of (c+ v), but with the k first coordi-
nates smaller than c+v: the specific pattern of the vectors of Bk allows to reach
such a goal. Let d be the vector subtracted to c + v to shrink its coefficients.
If c+ v− d fits in the sieving region, v− d is a new k–nearly-transition-vector.
If not, set c to c + v − d and redo this procedure, until c + v − d fits in H
or its coordinate k is larger than HM

k . When this procedure is called, the set
of k–skew-small-vectors have already been filled by the initialization step. The
patterns of the different vectors is the following:

c[0] c[1] . . . c[k − 1] c[k] c[k + 1] c[k + 2] . . . c[t − 1]
+ v[0] v[1] . . . v[k − 1] v[k] > 0 0 0 . . . 0
− d[0] d[1] . . . d[k − 1] 0 0 0 . . . 0

(c + v
−d)[0]

(c + v
−d)[1] . . .

(c + v
−d)[k − 1] (c + v)[k] c[k + 1] c[k + 2] . . . c[t − 1]

The different steps of this generation on the fly are the following, given c in
Λ ∩H and k in [0, t[:

1. While c[k] < HM
k

(a) For all k–skew-small-vectors v
i. Reduce the coefficients of c + v by d, a linear combination of
{b0, b1, . . . , bk−1}.

ii. If c+ v − d is in H, return c+ v − d.
(b) Set c to one of the vector c+ v − d computed during the for loop.

2. Return fail.

If this procedure do not fail, the new element in H is the output of this
procedure and v − d is the new k–nearly-transition-vector, computed by the
difference between the output and the input vector of this procedure. This new
k–nearly-transition-vector is inserted in the corresponding lists (of k–nearly-
transition-vectors and k–skew-small-vectors) for further use.

Complete algorithm

We now summarize all the steps of the algorithm to enumerate the largest
possible number of elements in the intersection of the lattice and the sieving
region.

The generation of the nearly-transition-vectors needs a set A = [Am0 , AM0 [×
[Am1 , AM1 [× · · · × [Amt−1, A

M
t−1[ defined by integer intervals. This set is used to

bound the coefficients of the small linear combinations. The function index,
used by Function findV1 is a function that returns, given a vector v, the highest
index of a non-zero coordinate.

The enumeration algorithm is split into three main functions, as described
previously. Function sieve1, which is nothing that Function sieve instanti-
ated for the globalntvgen, is the recursive function called to perform all the
steps of the enumeration and is written in Appendix E.2, as Algorithm E.3
that combine all the different function. Function add1 is called to try to add
a nearly-transition-vector and fbAdd1 to try to find a new nearly-transition-
vector, if add1 fails to continue the enumeration. The extended sieving region
in Line 1 of Function add1 is used to stop regularly the enumeration thanks to



112 Chapter 6. Sieving for the number field sieve algorithms

Function findV1(Λ, H, `, A)
input : the basis {b0, b1, . . . , bt−1} of Λ, the sieving region H, the

level ` with respect to Λ and H, the bounds A on the small
linear combinations

output: sets of nearly-transition-vectors and skew-small-vectors
T ← {∅, ∅, . . . , ∅}; S ← {∅, ∅, . . . , ∅}; // sizes of T and S are t
compute the weight w according to the shape of
nearly-transition-vectors given by ` and H;
{b′0, b′1, . . . , b′t−1} ←
perform a skew basis reduction of Λ with weight w;

for coprime (a0, a1, . . . , at−1) ∈ A do
v ← a0b

′
0 + a1b

′
1 + · · ·+ at−1b

′
t−1;

k ← index(v);
if v[k] < 0 then v ← −v ;
S[k]← S[k] ∪ {v};
if v is a k–nearly-transition-vector then T [k]← T [k] ∪ {v};

end
for 0 ≤ k < t do sort S[k] and T [k] by increasing k coordinate;
return (T, S);

an already existing nearly-transition-vector: indeed, if we reach all the k first
bound except the (k + 1)th ([Hm

k , H
M
k [), we can consider that there does not

exist an element between the last element in H and the following element in
Hk−1. Function sub1 and Function fbSub1 are similar to Function add1 and
Function fbAdd1, but with subtraction, and will be described in Appendix E.2.
The function CVA (Closest Vectors Around the targeted element) is a function
that, given an element c of a lattice Λ and an integer k, returns some lattice
vectors in the lattice generated by {b0, b1, . . . , bk} close to the element c .

A first experiment

One of the drawbacks of the algorithm is particularly visible in the case ` = 1.
Let us consider a basis of the lattice equal to {(881, 0, 0), (448, 1, 0), (268, 0, 1)}
and a sieving region equal to [−27, 27[×[−27, 27[×[0, 26[. A weighted lattice
reduction can produce the basis {(15, 2, 0), (−165, 1, 1), (268, 0, 1)}. We however
know that, in this case, a basis reduction on {(881, 0, 0), (448, 1, 0)} to obtain
the Franke–Kleinjung basis, gives {(15, 2, 0), (−253, 25, 0)}. Although this is a
highly skewed basis, and therefore a bit rare, this situation occurs in practice.
The small linear combinations will have difficulty to produce the second basis
vector. With only the vector (15, 2, 0), we are necessarily in the case of a lack of
nearly-transition-vectors and producing the second vector with the procedure to
compute nearly-transition-vectors on the fly would require to take into account
very large intervals and make things prohibitively expensive without guarantee
of results. With our implementation, we cannot find this second vector of the
example.

The main explanation of this situation is the use of the skew basis reduc-
tion for two reasons. When the level is equal to 1 with respect to H and Λ,
we know exactly the form of the 1–transition-vectors (and so the form of the
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Function fbAdd1(k, c, H, S, Λ)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set S of skew-small-vectors, the basis {b0, b1, . . . , bt−1}
of Λ

output: a new element in H ∩ Λ or an element out of H
while c[k] < HM

k do
L← ∅;
for v ∈ S[k] do

D ← CVA(c+ v,Λ, k − 1);
for d ∈ D do

if c+ v − d ∈ H then return c+ v − d;
L← L ∪ {c+ v − d};

end
end
set c to an element of L;

end
return c; // c is out of H

Function add1(k, c, H, T , S, Λ)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors, the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ

output: a new element in H ∩ Λ or an element out of H
1 for v ∈ T [k] do
2 if c+ v ∈ Hk−1 then return c+ v;
3 end
4 if k > 0 then
5 d← fbAdd1(k, c,H, S,Λ);
6 if d ∈ H then T [k]← T [k] ∪ {d− c}; S[k]← S[k] ∪ {d− c};
7 c← d;
8 else
9 c← (HM

0 , HM
1 , . . . ,HM

t−1); // c is out of H
10 end
11 return c;

1–nearly-transition-vectors) and then, a part of a convenient basis thanks to
Proposition 6.1 and in some cases, the skew basis combined with the small lin-
ear combination does not allow to verify this proposition. If the basis reduction
applies only on the ` first vectors of the basis B, we can more easily control what
happens on the vectors (control the behavior of the 0 at the end of the vectors)
and replace the skew basis reduction by a more appropriate algorithm, such
as the one of Franke–Kleinjung when ` = 1 and possibly the one of Hayasaka,
Aoki, Kobayashi and Takagi [94] when ` = 2, even if we do not know how to
compute all the 2–transition-vectors with such a convenient basis. This is what
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we do with localntvgen, similar to globalntvgen. The goal is to try to ensure
that the sets of k–nearly-transition-vectors, for k in [0, `], are at least suitable.

6.4.3 Second algorithm: localntvgen
The localntvgen uses another strategy to build the nearly-transition-vectors.
To take into account the shape of the nearly-transition-vectors we generate, we
propose a different fall-back strategy. This algorithm is the best suited in the
case ` = 1, and we believe that this algorithm is better to enumerate all the
elements in the intersection of the lattice and the sieving region. This can result
in a drawback in terms of timing and we summarize drawbacks and advantages
of these two sieve algorithms in the next section.

Initial generation of the nearly-transition-vectors

We apply a weighted basis reduction on {b0, b1, . . . , b`} with the weight w.
With the output vectors, we perform some small linear combinations. Each lin-
ear combination gives a k–skew-small-vector and possibly a k–nearly-transition-
vector, where k is in [0, `+ 1[. We consider that these sets of nearly-transition-
vectors are suitable, because, to build k–nearly-transition-vectors, we use lin-
ear combination of k–nearly-transition-vectors. However, we obviously cannot
ensure that without performing a generalized line sieve. To build possible k–
nearly-transition-vectors where k is in [`+ 1, t[, we try to minimize the (`+ 1)th
first coordinate of each bk by a linear combination of the output vectors of the
basis reduction of {b0, b1, . . . , b`}.
Remark 6.8. Another approach to generate possible k–nearly-transition-vectors
where k is in [`+ 1, t[ is to try to minimize the coordinates of bk using the basis
{b0, b1, . . . , bk−1}. The output vectors are then valid inputs for the enumeration
described in the globalntvgen, but not for the localntvgen.

We give an overview of the patterns of the skew-small-vectors, and then
nearly-transition-vectors, in the case ` = 2 and t = 6 in Table 6.3.

k globalntvgen localntvgen Remark 6.8
0 (> 0, 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0, 0)
1 (·, > 0, 0, 0, 0, 0) (·, > 0, 0, 0, 0, 0) (·, > 0, 0, 0, 0, 0)
2 (·, ·, > 0, 0, 0, 0) (·, ·, > 0, 0, 0, 0) (·, ·, > 0, 0, 0, 0)
3 (·, ·, ·, > 0, 0, 0) (·, ·, ·, 1, 0, 0) (·, ·, ·, 1, 0, 0)
4 (·, ·, ·, ·, > 0, 0) (·, ·, ·, 0, 1, 0) (·, ·, ·, ·, 1, 0)
5 (·, ·, ·, ·, ·, > 0) (·, ·, ·, 0, 0, 1) (·, ·, ·, ·, ·, 1)

Table 6.3 – Overview of the patterns of the k–skew-small-vectors when ` = 2.

Generating nearly-transition-vectors on the fly

With the previous initial generation of the nearly-transition-vectors, the pat-
terns of the skew-small-vectors are more specific than the ones given in Propo-
sition 6.5, especially when k > `. Such a k–skew-small-vector verifies that the
coordinate ` to the coordinate k− 1 are equal to 0, the coordinate k is equal to
1 and the coordinate (k + 1) to the coordinate t− 1 are equal to 0.
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At this step, all the additions to c in the sieving region H of a k–nearly-
transition-vector fail to land in Hk−1. The addition of v, a k–skew-small-vector,
is necessarily out of Hk−1. We try to minimize the coefficients of c+ v by the
set of vectors resulting in the skew lattice reduction of {b0, b1, . . . , b`} to keep
unchanged the coordinate (` + 1) to the coordinate t − 1 of c + v. Let d the
vector subtracted to c+v to shrink its coefficients. If c+v−d fits in the sieving
region, a new element in the intersection of Λ and H is found, and therefore a
new k–nearly-transition-vector. For instance, when ` = 2, t = 6 and k = 5, the
different vectors respect the patterns:

c[0] c[1] c[2] c[3] c[4] c[5]
+ v[0] v[1] v[2] 0 0 1
− d[0] d[1] d[2] 0 0 0

(c+ v − d)[0] (c+ v − d)[1] (c+ v − d)[2] c[3] c[4] c[5] + 1

If k > `+1, the coordinate (`+1) to the coordinate k−1 of c have not been
modified, and therefore, some cube of dimension `+ 1 were not explored, to try
to find a new starting point: to explore it, we need to call this procedure with
input k−1 and one of the vectors generated previously. If all the recursions fail
to find a new element in the intersection of the lattice and the sieving region, we
set c to c+v−d and redo this procedure with input k and c, until a generated
element fits in the H or its coordinate k is larger than HM

k . The different steps
of this generation are the following, given c in Λ ∩H and k in [0, t[:

1. While ct[k] < HM
k

(a) For all k–skew-small-vectors v
i. Reduce the coefficients of c + v by d, a linear combination of
{b0, b1, . . . , b`}.

ii. If c+ v − d is in H, return c+ v − d.
(b) Set c to one of the vector c+ v − d computed during the for loop.
(c) If k − 1 > ` , use this procedure (additive or subtractive case) with

c and k − 1 as inputs and return the result if it does not fail.

2. Return fail.

The possible k–nearly-transition-vector is then the subtraction of the output
new element in the intersection of Λ and H found by this procedure and the
input vector c, and we store it for further use.
Remark 6.9. The instruction given in Item 1(a)i must be done a little bit more
carefully. Indeed, if ` = t − 1, we want to modify, with the vector given by
the small linear combination, the t − 1 first coordinates of c + v, and not the
whole coordinates, as written. Therefore, when ` = t − 1, we look for a linear
combination of {b0, b1, . . . , bt−2}.

Complete algorithm

We now summarize all the steps of the localntvgen to enumerate as many
elements as possible in the intersection of the lattice and the sieving region.
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Function findV2(Λ, H, `, A)
input : the basis {b0, b1, . . . , bt−1} of Λ, the sieving region H, the

level ` with respect to Λ and H, the bounds on the small
linear combinations A

output: sets of nearly-transition-vectors and skew-small-vectors
T ← {∅, ∅, . . . , ∅}; S ← {∅, ∅, . . . , ∅}; // sizes of T and S are t
compute the weight w according to the shape of
nearly-transition-vectors given by ` and H;
{b′0, b′1, . . . , b′`} ←
perform a skew basis reduction of {b0, b1, . . . , b`} with weight w;

for coprime (a0, a1, . . . , a`) ∈ A do
v = a0b

′
0 + a1b

′
1 + · · ·+ a`b

′
`;

k ← index(v);
if v[k] > 0 then

S[k]← S[k] ∪ {v};
if v is a k–nearly-transition-vector then T [k]← T [k] ∪ {v};

end
end
for `+ 1 ≤ k < t do

D ← CVA(bk,Λ, `);
for v ∈ D do

v ← bk − v;
if v[k] > 0 then

S[k]← S[k] ∪ {v};
if v is a k–nearly-transition-vector then T [k]← T [k] ∪ {v};

end
end

end
for 0 ≤ k < t do sort by increasing k coordinate S[k] and T [k];
return (T, S) ;

As in the generation of the nearly-transition-vectors for the globalntvgen,
we need a set A = [Am0 , AM0 [×[Am1 , AM1 [× · · ·×[Am` , AM` [ and the function index
to perform Function findV2.

Function findV2 implies a modification of the functions that try to find
a new nearly-transition-vector, that is Function fbAdd2 and Function fbSub2.
These two functions are called by Function add2 and Function sub2 only when
k > ` or k = t − 1. The function CVA is the same as the one described in the
globalntvgen. The sieve function for the localntvgen is the same as the one
of the globalntvgen and is written in Appendix E.2.

Before giving some differences between the two algorithms, we describe two
specializations of our enumeration algorithms, that are the generalized line and
plane sieves. In the case of the generalized line sieve, both enumeration algo-
rithms are the same and the initial generation is given in the next section. In the
case of the plane sieve, the algorithm to generate the nearly-transition-vectors
is a specialization of the one given for the localntvgen. It is maybe possible
to modify the generation of nearly-transition-vectors for the globalntvgen (a
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Function fbAdd2(k, c, H, S, Λ, `)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set S of skew-small-vectors, the basis {b0, b1, . . . , bt−1}
of Λ, the level `

output: a new element in H ∩ Λ or an element out of H
while c[k] < HM

k do
L← ∅;
for v ∈ S[k] do

if ` = t− 1 then
D ← CVA(c+ v,Λ, t− 2);

else
D ← CVA(c+ v,Λ, `);

end
for d ∈ D do

if c+ v − d ∈ H then return c+ v − d;
L← L ∪ {c+ v − d};

end
end
set c to an element of L;
if k − 1 > ` then

d← fbAdd2(k − 1, c,H, S,Λ, `); if d ∈ H then return d;
d← fbSub2(k − 1, c,H, S,Λ, `); if d ∈ H then return d;

end
end
return c; // c is out of H

Function add2(k, c, H, T , S, Λ, `)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors, the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ, the level
`

output: a new element in H ∩ Λ or an element out of H
1 for v ∈ T [k] do
2 if c+ v ∈ Hk−1 then return c+ v;
3 end
4 if k > ` or k = t− 1 then
5 d← fbAdd2(k, c,H, S,Λ, `); c← c+ d;
6 if c ∈ H then T [k]← T [k] ∪ {d− c}; S[k]← S[k] ∪ {d− c};
7 c← d;
8 else
9 c← (HM

0 , HM
1 , . . . ,HM

t−1); // c is out of H
10 end
11 return c;
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way will be to use Remark 6.8) to have, as described below, an algorithm that
enumerates all the elements in the intersection of the lattice and the sieving
region, but we do not discuss it.

6.4.4 Generalized line and plane sieves
There exist two particular cases that allow to get an algorithm which guarantees
that all the elements in the intersection of the lattice and the sieving region are
reported.

Generalized line sieve

When ` = 0, it means that for all dimensions, cuboids contain on average more
than one element, the sieve algorithm is equivalent to a generalized line sieve,
see also the thesis of Zajac [185, Section 7] for another description. For the line
sieve, we know that the suitable sets of transition-vectors, and necessarily the
suitable sets of nearly-transition-vectors, is well defined. We do not perform the
algorithm to produce new possible nearly-transition-vectors. If the following
vectors fit in the sieving region, there are k–transition-vectors:

• the suitable set of 0–transition-vector is necessarily equal to {b0}.

• the suitable set of 1–transition-vectors is a subset of {b1, b1 − b0}.

• the suitable set of 2–transition-vectors is a subset of {b2, b2 − b0}.

• . . .

• the suitable set of (t−1)–transition-vectors is a subset of {bt−1, bt−1−b0}.

It is the only case where we know how to compute all the suitable sets of
transition-vectors. It is also the only time where there exists a 0–transition-
vector.

Generalized plane sieve

Let us assume that I0 is smaller than r. In this case, we can perform Algo-
rithm reduce-qlattice to compute the reduced basis {u,v} that gives the
three possible 1–transition-vectors. It is not possible to guarantee that we can
produce k–transition-vectors, where k is in [2, t[. We use the localntvgen to
generate nearly-transition-vectors. It is indeed easier to solve the closest vector
problem in two dimensions than in larger dimensions. We have therefore:

• the suitable set of 1–transition-vectors is a subset of {u,v,u+ v}.

• some 2–nearly-transition-vectors can be computed by minimizing the co-
efficients of b2 using linear combinations of u and v.

• some 3–nearly-transition-vectors can be computed by minimizing the co-
efficients of b3 using linear combinations of u and v.

• . . .
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• some (t−1)–nearly-transition-vectors can be computed by minimizing the
coefficients of bt−1 using linear combinations of u and v.

To be sure that we do not miss any elements, if we need to compute nearly-
transition-vectors on the fly, we must use only k–skew-small-vectors with a
coordinate k equal to one. The minimization of the coordinates of a vector
out of the sieving region must be done using only u and v. Instead of us-
ing the function CVA in Function fbAdd2 and Function fbSub2, we can use
another approach. From an element c of the lattice Λ out of the extended siev-
ing region [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [×Zt−2, we can try to find an element cn =

(·, ·, c[2], c[3], . . . , c[t− 1]) by using u or v to have the first coordinate of cn in
[Hm

0 , H
M
0 [ and after that, using the enumeration of Franke–Kleinjung to have

the second coordinate in [Hm
1 , H

M
1 [. If it is not possible, the third to the coor-

dinate t− 2 must be modified using the skew-small-vectors according to Func-
tion fbAdd2 and Function fbSub2 to reach a new element in the intersection of
Λ and H.

6.4.5 Differences
The case ` = 0 and ` = 1 are treated before, so we only consider the cases where
the level ` > 1. In this section, we list some advantages and drawbacks of the
two algorithms: we first discuss some theoretical features of the algorithms, and
verify these assertions practically, trying also to avoid or reduce the impacts of
the drawbacks, when possible.

Concerning the algorithms

We summarize in Table 6.4 some advantages and drawbacks of the two algo-
rithms. In the rest of this section, we give some justifications of this classifica-
tion.

Advantages Drawbacks

globalntvgen
• nearly-transition-

vectors with small
coordinates

• always fall-back
• less provable

localntvgen

• less fall-back
• more provable
• CVA can be processed

with a precomputation
step

• nearly-transition-
vectors with possibly
larger coordinates

• fall-back strategy can
be long because of re-
cursive calls

Table 6.4 – Some advantages and drawbacks of the two enumeration algorithms.

About the nearly-transition-vectors. The way to generate the nearly-
transition-vectors is the main difference between the two algorithms. In Ta-
ble 6.4, we claim that the coefficients of the nearly-transition-vectors have
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small coordinates with the globalntvgen, and possibly large ones with the
localntvgen. In fact, we want to say that the coordinates of the skew-small-
vectors produced after the skew basis reduction with the globalntvgen are
always smaller or equal to the skew-small-vectors produced after the skew basis
reduction performed with the localntvgen: indeed, because the skew basis re-
duction with the globalntvgen is performed on the whole basis, contrary to the
localntvgen (except when ` = t− 1), the coefficients of the output vectors are
necessarily smaller or equal to the one produced by the skew lattice reduction
performed with the localntvgen, dealing with a subset of the basis vectors.
The reduction of the remaining vectors in the localntvgen is once again less
aggressive than with the globalntvgen.

Fall-back strategies. Highly dependent on the way to generate the nearly-
transition-vectors, the fall-back strategies are different in the two algorithms.
In the localntvgen, we assume that we have found at least suitable k–nearly-
transition-vectors, where k ∈ [0, `], a fact that cannot be proved. We therefore
need to perform sufficiently many linear combinations, to ensure to discover all
the possible nearly-transition-vectors. But, if it is possible to increase specifi-
cally the number of k–skew-small-vectors, where k ∈ [0, `], in the localntvgen,
it is not possible to do the same for the globalntvgen: this is why, each time
we fail to leave the addition or subtraction of a nearly-transition-vector in the
globalntvgen, we need to call the fall-back strategy. As this strategy modifies,
at a depth k, the k first coordinates, we just need one call to the fall-back strat-
egy to try to find, or not, a new element. Therefore, the fall-back strategy for
the globalntvgen is often called.

Concerning the localntvgen, the call to the fall-back strategy is less fre-
quent: indeed, if no k–nearly-transition-vector, where k ≤ `, can be added or
subtracted, we consider that it is not possible, at this depth of the sieving step,
to find a new element, and then this depth is ignored. However, when k−1 > `,
the k–skew-small-vectors modify the ` first coordinates and the coordinate k,
but not the others. We therefore need to use the fall-back strategy to modify
this non-impacted coordinates, if we do not find a new element in the intersec-
tion of the lattice and the sieving region. This strategy can therefore be more
costly than the one for the globalntvgen.

Provability. With the general line and plane sieves, we can prove that these
two algorithms enumerate all the elements in the intersection of the lattice and
the sieving region. These two algorithms are modifications of the localntvgen.
With the specific shape of the k–nearly-transition-vectors and k–skew-small-
vectors, that is a 1 for the coordinate k when k > `, we can have more guarantees
that we enumerate all the elements than with the globalntvgen.

CVA. All the calls to the CVA function in the localntvgen are performed with
the input (·,Λ, `). It is possible to compute only once an interesting represen-
tation of the lattice {b0, b1, . . . , b`} to solve the closest vector problem and,
for each call to CVA, solve this problem by computing a matrix-vector product,
using an idea close to the Babai’s rounding technique [10]. To produce more
interesting vectors, we do not only return the closest vector, but the vectors
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that form the fundamental domain around c (it contains necessarily the closest
vector).

Practical results

With the generalized line and plane sieves that corresponds to the case ` = 0
and ` = 1, we have two specific algorithms to enumerate efficiently and com-
pletely the elements of the intersection between the lattice and the sieving
region, we then stick to level higher than or equal to 2. We perform our
experiments with a 4-dimensional sieving (t = 4) where the level are equal
to 2 and 3. On each level, we sample 1,000 random lattices and perform
the enumeration of the elements of these lattices that are in the sieving re-
gion H = [−25, 25[×[−25, 25[×[−25, 25[×[0, 25[ that contains 223 elements. We
choose to generate almost the same number of vectors in the two algorithms,
which is essentially dependent on the set A to perform the small linear combina-
tion. When ` = 2, the set A is equal to [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1] for the
globalntvgen and [−2, 2]× [−2, 2]× [−1, 1] for the localntvgen. When ` = 3,
the set A is equal to [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1] for both algorithms. We
summarize the results in Table 6.5 and Table 6.6.

globalntvgen localntvgen
min mean max min mean max

Number of skew-small-vectors 40 41
Number of nearly-transition-vectors
at the beginning 4 16.5 33 1 12.3 24

Number of nearly-transition-vectors
at the end 6 18 33 4 14 24

Expected number of elements 32 156.5 1978 32 156.5 1978
Number of elements 18 149.7 1983 18 139.7 1983
Number of call
to the fall-back strategy 1 269.5 2854 0 1.7 8

Table 6.5 – Experiments at level 2.

globalntvgen localntvgen
min mean max min mean max

Number of skew-small-vectors 40 40
Number of nearly-transition-vectors
at the beginning 1 9.9 26 1 9.9 26

Number of nearly-transition-vectors
at the end 1 10.2 26 1 10.2 26

Expected number of elements 1 3.9 31 1 3.9 31
Number of elements 1 4.8 47 1 4.8 47
Number of call
to the fall-back strategy 3 18 113 0 0.8 4

Table 6.6 – Experiments at level 3.
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Which algorithm to choose?

The results of our simple Sage implementations seem to confirm some of the
advantages and drawbacks we have anticipated. These implementations are
available in CADO-NFS [176].

The globalntvgen. An unexpected advantage of this algorithm, probably
due to the small coordinates of the nearly-transition-vectors, is the number of
enumerated elements. This number is not, or for a tiny part, increased by the
large number of call to the fall-back strategy, which is the major drawback high-
lighted by the practical experiment. A more careful analysis of the algorithm,
especially the test to perform or not the fall-back strategy, is maybe a way to
make this algorithm practicable. It seems too early to avoid to perform any
fall-back strategy.

The localntvgen. A first good point of this algorithm is that the number
of calls to the fall-back strategy is very low, even if the strategy seems to
possibly use it a lot. It produces often a new useful nearly-transition-vector.
The number of elements enumerated is a little bit less than with the previous
algorithm, meaning probably that the generation of nearly-transition-vectors
and skew-small-vectors may not be fully optimized, even if it is closer to the
globalntvgen.

At this point, and given the description of the algorithms, the localntvgen
seems to be the most efficient, because of the possible preprocessing for the
computation of the closest vectors, and the small number of calls to the fall-
back strategy. The number of enumerated elements is more than satisfying.
However, the practical results do not exclude the globalntvgen, if we ignore
the fall-back strategy we have proposed.

Implementation of the algorithms. Concerning the implementation of the
line and plane sieves, it seems better to have a specific implementation: indeed,
the algorithms can add some useful nearly-transition-vectors, but may be used in
a suboptimal context, that is use a nearly-transition-vector where a smaller not
already known nearly-transition-vector must be discovered. For these reasons,
a specific implementation is required, maybe one for the two sieve algorithms if
it is possible to merge the algorithms without impacting the running time and
the correctness of the results.

Concerning the sieve for a higher level, the situation is not as clear as in the
previous situation and the implementation choice will be conclusive with a real
implementation, and not a prototype in Sage. We discuss one choice: a specific
implementation given `, or a general implementation (in other words, should we
unroll the recursive calls or not).

Starting with the first remark of this paragraph, it seems that we need to
have a specific implementation for each `. It allows indeed more control on what
happens during a recursive call, especially if some patterns can be observed
and detected to have an expected and predictable behavior. We know that, if
very small nearly-transition-vectors are involved in the skew basis reduction,
it will be difficult to generate new nearly-transition-vectors on the fly, and we
can then discard this step of the algorithms. Except this pattern, we do not
find other predictable behavior and the conclusion we did about this pattern,
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that is avoiding the generation of nearly-transition-vectors on the fly, must be
done in each recursive call, and not for a specific one. Therefore, a generic
implementation of the algorithms seems to be the best solution, at least in first
approximation.

6.4.6 The 3-dimensional case
In this section, we rewrite the algorithms given in the article coauthored with
Gaudry and Videau [72] to show that they are in adequacy with the general
algorithms described previously, especially the localntvgen. It is obvious that
the line sieve follows the general algorithm, so we stick to the plane and space
sieves. Here, the dimension t is equal to 3, and the integer ` is equal to 0 in the
case of the line sieve, 1 for the plane sieve and 2 for the space sieve.

Plane sieve

We recall here briefly the different steps of the plane sieve. The plane sieve
follows the remarks given in the particular case ` = 1 written in the previous
section.

Initialization. In this section, we report the different steps of the initializa-
tion. We keep the order of the description given in the general algorithm and
link it to the different items of [72]. As we show in Section 6.2.2, the Franke–
Kleinjung algorithm conditions produce, given b0 and b1, two skew vectors u
and v with weight (I0, r/I0, 1, 1, . . . , 1): this is what is performed in Item 2
of the initialization of the plane sieve. Item 1 is the one that select b2 to be
the vector whose coefficients are minimized using u and v. A common way to
minimize these coefficients is to compute a closest vector of b2, that is a linear
combination of u and v, and subtract it to b2, as mentioned in Item 3, result-
ing in a possible 2–nearly-transition-vector, at least a 2–skew-small-vector, with
the last coordinate equal to 1. We increase the number of possible 2–nearly-
transition-vectors by adding or subtracting u and v by Item 4. Then Item 5
returns possible 2–nearly-transition-vectors.

Enumeration. The enumeration algorithm is the same as the one in the de-
scription of the generalized plane sieve in Section 6.4.4.

Space sieve

We use the space sieve when ` = 2. The notion of transition-vectors in [72]
is not the same as the one in this document, so we keep the definition of this
chapter, keeping in mind that transition-vectors in [72] are exactly 2–nearly-
transition-vectors. To identify the different steps described in [72, page 342], we
define paragraph 1 as the first paragraph after [72, Lemma 6].

Initialization. The initialization corresponds to the second paragraph, writ-
ten after [72, Lemma 6]. The weighted LLL shares the same weights as the skew
lattice reduction performed during the generation of nearly-transition-vectors
using the globalntvgen and localntvgen. In [72, Algorithm 3], the list Lz
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is split into lists: the list Lz=0 contains 1–nearly-transition-vectors and the list
Lz 6=0 contains 2–nearly-transition-vectors.

Enumeration. The enumeration process begins with 0. We note that, in the
space sieve, the sieving region bounds the third coordinate in [0, HM

2 [, so the
enumeration is done only on ascending third coordinate. In the while loop of [72,
Algorithm 3], the first for loop tries to enumerate elements in a plane, this is
what we do when we call the sieve algorithm recursively. The second for loop
tries to add a 2–nearly-transition-vector. If it cannot find a valid new element
in the intersection of Λ and H, the plane sieve is called on the last valid point.
This is what we do, but, in order to avoid to enumerate the plane twice, we
begin the plane sieve with a point in Λ out of H in a plane above.

Another approach. Instead of trying to precompute some nearly-transition-
vectors and skew-small-vectors, Hayasaka, Aoki, Kobayashi and Takagi propose
in [94] a way to find an adapted basis in the 3-dimensional case, allowing them
to find all the transition-vectors by doing positive linear combinations of the
three basis vectors. Using an appropriate algorithm to compute on the fly the
transition-vector allows to enumerate the elements in the intersection of the
plane and the sieving region. We were unfortunately not able to reproduce
the algorithm to compute the adapted basis or the enumeration algorithm. We
believe that computing a small subset of possible transition-vectors is better
than always computing the transition-vectors on the fly, but this precomputation
is better if the basis is well adapted, as it will be with [94, Algorithm 1].
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Chapter 7

Implementation

The relation collection is divided in 3 main tasks, where the sieving
algorithms described in Chapter 6 are one of the main step. A full
implementation of the relation collection for the high degree variant
of NFS, containing these sieving algorithms, have been implemented
and integrated in the CADO-NFS software [176]. Even if the sieving
algorithms are the main purpose of this thesis, the other steps must
be implemented carefully to have a correct running time.

The only public available implementation of a relation collection for the high
degree variant is the one of Zajac [185]. It contains an implementation of the
line sieve for the three-dimensional case. The implementation we propose offer
the way to deal with the special-Q-method, to sieve with the line, plane and
space sieves, as presented in Section 6.4.6, and to use a Galois action of order
6. In the following, we will describe and explain our implementation choices.
This chapter can be viewed as a documentation of some parts of our code and
justification of our choices. We note that, in our description, the basis vectors of
a lattice are rows of a matrix, but, in our C implementation, this is the columns
of a matrix that form the basis of a lattice.

We recall first the parameters used to perform the relation collection, using
a sieving step and the special-Q-method to accelerate the computation. Let
t− 1 be the degree of the polynomial a used to find a relation. The set of valid
coefficients of a polynomial a is bounded by a t-searching space S, but because
of the large number of polynomials that have coefficients in S, we divide S
using the special-Q-method: if MQ is the matrix whose rows are the reduced
basis vectors of the special-Q-lattice, a valid polynomial a has coefficients equal
to cMQ, where c is an element of a t-sieving region H, containing a constant
number of elements, largely smaller than the number of elements contained in
S. For each norm on side 0 of a polynomial a = cMQ, we remove by sieving
the factors smaller than the sieving bound b0 in each norm, and for each norm
below a threshold T0, we keep the polynomial a of the corresponding norm,
because it has a high probability to be B0-smooth. We apply the same thing
on side 1 and if a polynomial a is reported two times, we perform the complete
factorization of both norms. If the norms are doubly-smooth, the polynomial
a gives a relation. Let us give a bird’s-eye view of the different steps of the
algorithm we have implemented: we set the special-Q on side 0, but it can be

126
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set on side 1.

• For all the special-Q whose norm is in ]b0, B0[

1. build the matrix MQ that represents the special-Q-lattice
2. for all sides i:

(a) initialize the norms on side i and if i = 0, remove from each norm
the norm of the special-Q.

(b) for all ideals on side i of norm smaller than bi, use the sieving
algorithm dedicated for the size of the ideals.

(c) for all c in H, if a = cMQ have a resulting norm smaller than
Ti, store the polynomial a in an array Ai.

3. if the polynomial a is in A0 and A1

(a) compute the norms of a on both sides and test it for smoothness:
if the norms are doubly-smooth, report a and the factorization
of the norms in both sides

(b) if a Galois action is enforced, use the Galois action on a and
report it.

In this description, we can justify a first implementing choice, the use of the
array Ai. To store the norms of all the elements, we can store the norms of
a on each side. However, only a few polynomials after the sieving step have a
resulting norm less than the threshold of the corresponding side. Then, storing
only the interesting information (a has a good chance to have a smooth norm),
allows us to reduce drastically the memory footprint: it allows us to reduce by
a factor almost 2 the memory footprint instead of using the basic strategy of
storing the norms on both sides. Let us now go deeper into details of some
important steps of the algorithms.

7.1 Initialization of norms
Let consider that the matrix MQ is given, see Section 7.2.1 for more information.
Basically, the number of elements in H is large, around 230 for the largest
computation. We discuss here two important elements: in which data structure
we store the norms in a first part, and how we compute the norms in a second
part.

7.1.1 Storage
Data structure

The sieving region H is a t-sieving region. Each polynomial a is linked to a
vector c in H, we therefore index each cell of the array that store the norms by
the coordinate of the corresponding vector c. A first way to store the norm is
to use a t-dimensional array A: we access the norm of a = cMQ by looking at
A[c[0]][c[1]] . . . [c[t − 1]]. To access one element, we need to query t arrays, by
looking first in A[c[0]], then to the index c[1] of the previous array and so on to
the index (c[t − 1] − 1) of the last array. These multiple indirections can slow
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down the implementation, since we need to have around (HM
0 − Hm

0 )(HM
1 −

Hm
1 ) · · · (HM

t−1 −Hm
t−1)

∑b0
p primes 1/p access to indices of the array A.

To avoid this problem of indirections, we store the (HM
0 − Hm

0 )(HM
1 −

Hm
1 ) · · · (HM

t−1 − Hm
t−1) elements of A in a one dimensional array. The norm

of a = cMQ is stored at index (c[0] −Hm
0 ) + (c[1] −Hm

1 )(HM
0 −Hm

0 ) + . . . +
(c[t−1]−Hm

t−1)
∏t−2
k=0(HM

k −Hm
k ). From an index in the one dimensional array,

we can also compute the corresponding vector c. Choosing HM
i −Hm

i to be a
power of two can accelerate the computations by using bit shifting.

Storing one norms

The representation in memory of one norm is very important. Indeed, the basic
choice is to store the exact result of a norm. But the norms we need to store are
not integers of size 64 bits, or 128 bits (modern compiler allows us to use natively
integers of size 128 bits). Storing the exact norm implies using mpz t, which can
have a prohibitive cost for the memory requirement. Let consider that the sizes
of the norms are smaller than 2256, which is the order of magnitude of what
we require to store the norms given by the conjugation polynomial selection,
see [72, Table 2]. Storing an integer of this size using a mpz t require around 56
bytes.

A way to reduce the memory footprint is to store the logarithm of the norm,
traditionally on a char. In the implementation of the relation collection with a
two-dimensional relation collection in CADO-NFS [176], the basis is chosen to
use all the bits of a char: in our implementation, it is possible to specify a basis,
but we do not take care of fitting exactly in one byte. It remains to validate
that storing the logarithm is sufficient for our purpose. During the sieving step,
if we store the value of the norm, we will divide the norm by each factor found
during the sieving step. This can be easily transform by subtracting from the
logarithm of the norm the logarithm of the removed factor. The comparison
with the threshold can also be done by comparing with the logarithm of the
threshold. We can wonder if there is a loss of precision by using: there is in
fact a loss of precision, because using a char will discard the fractional part of
the logarithm. This problem can be partially avoided by using an appropriate
threshold that take into account this imprecision.

7.1.2 Algorithm to initialize the norms
We have described how we store the norms for one side. Computing the norm
of a on one side, say 0, is almost equivalent to computing the resultant between
a and f0, using the algorithm given in Appendix F. We recall that H contains
between 220 to 230 elements. Computing the resultant for each polynomial
a, whose coefficients are given by cMQ, is the first approach we can have:
indeed, it is the most accurate method. However, it is often difficult to combine
the best accuracy and the best running time. Indeed, computing 220 to 230

resultants is expensive. One other method is to use an upper bound on the
resultant, typically the one given by Bistritz–Lifshitz in [34]. This method has
the advantage to be the evaluation of a simple function, which can be accelerated
by a few precomputations. Intermediately, we can compute the resultant by
discarding a little bit of accuracy, using floating point computation on double,
instead of preserving the whole precision by using mpz t.
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The main problem of all these approaches is that we need to compute for
each cell of the array in which we store the norms the corresponding resultant,
or an approximation of it, which represents too many computations. In the
following, we will use a property of the resultant to speed up the computation.

Using the continuity of the resultant

The resultant can be viewed as the determinant of the Sylvester matrix formed
by the coefficients of f0 and a. The resultant is therefore a polynomial in the
coefficients of a: the resultant is continuous and infinitely differentiable. This
means that there exists a neighborhood of a where all the polynomials a′ have
the same size of norm, in base 2 for example. Using this idea, by finding some
areas where the norm of the polynomials a have the same size, we can set to each
of the polynomials the same value. It allows us to not compute the norm of all
the polynomials a, but just one typical norm in the neighborhood. But, when
we consider the special-Q-lattice, the location of two contiguous polynomials a
can differ from a factor, maybe too large to have two contiguous polynomials a
with the same size of norms. We will show that this factor is not so large, and
allows us to use the continuity of the resultant, even in the special-Q-lattice.

Let consider the bound on the resultant between a and f0 given in [34]:
if we discard the factor depending only on the degrees of the polynomial,
the logarithm of the resultant between a and f0 is close to deg f0 log ‖a‖∞ +
deg a log ‖f0‖∞, where deg a = t−1 in a vast majority of case. An upper bound
of the infinity norm of a = cMQ is given by ‖a‖∞ = t‖c‖∞Q1/t, where Q is
the size of the special-Q. By considering the logarithm of this bound, we get
log t + 1/t logQ + log ‖c‖∞: log ‖c‖∞ does not vary too much when ‖c‖∞ has
not-too-large variation around a given value. Therefore, there exists a neigh-
borhood C of c where the polynomials a = cMQ have almost the same size of
norms.

In the following, we will describe how to initialize the norms by searching
a neighborhood of polynomials a = cMQ which have the same size of norm
by looking for portions, that are cuboids, of H with this property. We use the
following recursive procedure, with H as the first given cuboid:

1. Compute the norm of the 2t + 1 polynomials a = cMQ, where c are
the coordinates of the 2t vertices of the cuboid and the coordinates of a
random element inside the cuboid.

2. If the size of the norms are almost the same, say N , then set to N the
norms of all the elements in this cuboid.

3. Othewise, divide the input cuboid in 2t equal cuboids, and call this pro-
cedure recursively on each of them.

Experimental results

In this section, we try to validate the approach given previously to initialize the
norms, by using the computation of the resultant with a floating point precision.
We give the timing and the accuracy of all the methods described previously.

The average timing is found by using on side 1 the 991 first special-Q (one
per orbit of a Galois action of order 6) whose norm is largest than 220 on a
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sieving region H = [−27, 27[×[−27, 27[×[0, 27[ using the polynomial designed to
perform the relation collection step for an F∗p6 of 300-bit size, see Section 8.2.3.
We use an Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz and compile the code
with gcc (Debian 6.3.0-6) 6.3.0 20170205. We count together the time to
initialize both sides, because they have no reason to take advantage of the
presence of the special-Q or not, and in fact, have the same magnitude order.
The timings are reported in Table 7.1. To compare the accuracy of our different
initialization algorithms, we compute the relative error of the initialization of
norms for 100 special-Qs distributed on the range of special-Qs used in our
computations. The results are summarized on Figure 7.1. For the algorithm
we used in our computations, called “Continuity double”, we have a sufficient
accuracy and the best timing. This is therefore the algorithm that is used by
default in our implementation.

Resultant Upper bound Continuity
mpz t double mpz t double

Average
timing (s) 86.8 18.2 1.29 0.890 0.251

Table 7.1 – Average timing for different initialization algorithms.
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Figure 7.1 – Proportion of norms having the same relative error.



7.2. Sieving 131

7.2 Sieving
Once the norms are initialized, the sieving step is performed: it consists to re-
move in the norms the contribution of the norm of the ideals that are involved in
the factorization in ideals. The lattice described by the matrix in Equation (4.7)
allows us to enumerate the elements c of the sieving region H such that Q and
R are involved in the factorization of a(θ0), where the coefficients of a are given
by cMQ = eMQ,RMQ, where e are in Zt. We first described the preliminaries
steps of the sieving: building what we call sieving basis, that is the set of all the
ideals to be considered in the sieving step, building the matrices MQ and MQ,R

and finally, how we select the special-Q we use in the orbit of a Galois action.
We then described our choice for the implementation of the sieving algorithm,
and gives some benchmarks, essentially for the space sieve.
Remark 7.1. Because the ideal of degree 1 are more numerous than the one of
larger inertia degree, we only deal with ideals R of inertia degree 1. However,
dealing with special-Qs of larger inertia degree is not a problem, even if it is not
useful for the relation collection, due to the too large norms it implies.

7.2.1 Dealing with ideals
Building the sieving basis

The sieving basis contain the ideals to be sieved. To build the sieving base on
side 0, we use the procedure:

• For all prime r less than the sieving bound b0

1. If r divides the leading coefficient of f0, the ideal (r, x) is a projective
ideal.

2. For all the simple factor h of f0 modulo r
(a) if the degree of h is 1, the ideal (r, h) is of inertia degree 1.
(b) else, if deg h < t, the ideal (r, h) is of inertia degree deg h.

We distinguish the ideal of inertia degree equal to 1 and of larger inertia
degree, because their representation are different in our implementation, even if
we do not sieve the ideals of inertia degree larger than 1. To store an ideal, we
store these four informations, to identify an ideal R = (r, h):

• the prime r;

• the polynomial h, a factor of f0 modulo r;

• the block matrix TR of size (deg h)× (t− 1− deg h), see Equation (4.5);

• the logarithm in base 2 of rdegh.

The main difference between an ideal of inertia degree equal to 1 and of
larger inertia degree is the way to store the block matrix TR: indeed, an array
of one dimension is sufficient to describe TR when the degree of h is 1, and a
two-dimensional array is necessary when h have a larger degree.
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Building the matrices of the ideals

In a special-Q-lattice, we need to build the lattice whose elements a involves the
ideal R of inertia degree equal to 1 in a(θ0): this lattice have as basis vectors
the rows of the matrix given in Equation (4.7). To build this matrix, we look for
vectors verifying the Equation (4.6). Let TQ,R be equal to M0

Q−M1
QTR mod r:

we require that the first non-zero coefficient of TQ,R is equal to 1. It is always
possible by multiplying each coefficients of TQ,R by the inverse of the first non-
zero coefficient of M0

Q−M1
QTR. If TQ,R has a 1 as its first coefficient, a basis of

the R-lattice in the Q-lattice have basis vectors as rows of the matrix MQ,R that
has exactly the shape given in Equation (4.7). We assume that we are in this
case. The second row of the matrix MQ,R is equal to (−TQ,R[1] + r, 1, 0, . . . , 0),
the third is equal to (−TQ,R[2] + r, 0, 1, 0, 0, . . . , 0) and so on to the last vector
equals to (−TQ,R[t− 1] + r, 0, 0, . . . , 0, 1). The matrix MQ,R is therefore equal
to

MQ,R =
(

r 0
−TQ,R[i] + r It−1

)
, (7.1)

where It−1 is the identity matrix of size (t − 1) × (t − 1) and i is an integer in
[1, t[.

Selecting the best special-Q

Let the special-Qs be set on side 0. When a Galois action of order k can be
applied on both sides, there exist k conjugate special-Qs that have exactly the
same norm. From the description on how to deal with a Galois action and the
special-Q method, see Section 4.1.1, we know that we can use one special-Q in
each orbit and apply the Galois action on the found relations to recover all the
relations in each other special-Q in the same orbit. For the k special-Qs in a
same orbit, the portion of the space they covered are different, even if they are
conjugate under the Galois action.

We therefore try to find one of the k special-Qs that covers the most in-
teresting searching space in term of polynomial a. To identify the one which
looks the most interesting, we compute for all the special-Qs of the same orbit,
the largest norm reached by one of the vertices of the sieving region H. The
special-Q that reaches the smallest largest norm is selected as the special-Q that
will be used as the representative of the orbit, because we can hope that the
norms of the elements in the whole sieving region are the smallest. Using the
parameters of the computation of the 300 bits Fp6 , see Section 8.2.3, for the first
991 orbits of special-Qs whose norms are larger than 220, this heuristic selects
in 16% of the cases the best special-Q (as if we select randomly the special-Q
in an orbit), and in 0.1% of the cases the worst special-Q: on average, we get
265 relations and miss 37.5 relations in an orbit.

A way to improve the selection of the best special-Q would be to simulate
the Murphy E function, by computing some additional norms on the shape of
the sieving region H and computing the sum given in Equation (4.2) with these
elements.
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7.2.2 The sieving algorithms
All the previous steps have installed the preliminaries of the sieving step: we
have initialized the norms of the elements that are in the special-Q-lattice, we
know how to build the R-lattice inside the special-Q-lattice. We can now remove
the contribution of the ideals of inertia degree equal to 1 in the corresponding
norms. Let Ii bet the length of the interval i of a t-sieving region H, for i in
[0, t[. If the norm r of R is less than I0, we use the line sieve, because the level
with respect to H and the lattice is equal to 0. When r is less I0I1, we use the
plane sieve, because of a level equal to 1 and otherwise, we use the space sieve
(the level is equal to 2).

The implementation we propose of the three sieve algorithms seems to not
follow the recursive general algorithms given in Chapter 6, because we have
essentially unroll the recursive calls. For the line and plane sieves, we provide
an implementation that works in any dimension, as we proposed a general line
and plane sieves in Section 6.4.4. However, for the space sieve, we have specify
our implementation in three dimensions, as the description in Section 6.4.6. We
detail here the implementation choice we did.

The line sieve

Let consider Equation (4.6). We look for all the elements c such that cTQ,R ≡
0 mod r. Let i be the index of the first non-zero coordinate of TQ,R, which is
equal to 1 following what we impose in the preliminaries. We therefore have
the equality c[i] ≡ −

∑t−1
k=i+1 c[k]TQ,R mod r. As the norm of R is less than

HM
i − Hm

i , we know that there always exists a solution of this equation such
that c[i] is in Ii, given c[i+1], c[i+2], . . . , c[t−1]. To enumerate all the possible
c in the intersection of the lattice formed by MQ,R and the sieving region, we
performed the following steps:

1. For the (
∏t−1
k=i+1 Ik) possible values for (ci+1, ci+2, . . . , ct−1) in [Hm

i+1,

HM
i+1[×[Hm

i+2, H
M
i+2[× · · · × [Hm

t−1, H
M
t−1[

(a) Find a value ci in [Hm
i , H

M
i [, such that ci ≡ −

∑t−1
k=i+1 ckTQ,R mod r.

(b) For all the value ci + λr in [Hm
i , H

M
i [, mark in the array of norms

that the value at index (·, ·, · · · , ·, ci + λr, ci+1, . . . , ct−1) is divisible
by r, where λ is in Z.

For Item 1, we use the following procedure, that is in brief, adding one to the
first possible coordinate of (ci+1, ci+2, . . . , ct−1) to stay in [Hm

i+1, H
M
i+1[×[Hm

i+2,
HM
i+2[× · · · × [Hm

t−1, H
M
t−1[.

1. Set k to i+ 1 and increment ck.

2. While ck = HM
k

(a) Set ck to Hm
k .

(b) Increment k.
(c) If k < t, increment ck.
(d) Otherwise, break the loop.
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Typically, the enumeration begins with (ci+1, ci+2, . . . , ct−1) equals to (Hm
i+1,

Hm
i+2, . . . ,H

m
t−1) and goes to (HM

i+1− 1, HM
i+2− 1, . . . ,HM

t−1− 1), therefore, if we
use the previous procedure only the number of required times to enumerate
all the needed elements, that is (

∏t−1
k=i+1 H

M
k − Hm

k ), the directive in Item 2c
is always performed and so, the one in Item 2d is never performed. A better
enumeration will be to use a procedure close to the one to enumerate n-ary
Gray code to perform less multiplication and reduction than we need with our
proposed line sieve.

When the norm of R becomes larger than the length I0 of the interval
[Hm

0 , H
M
0 [, we can not ensure that, for all (·, ·, · · · , ·, ci+1, ci+2, . . . , ct−1), there

always exists such an element in the sieving region H. This is why we use the
plane sieve.

The plane sieve

Preliminaries. Let consider the lattice described by the rows of MQ,R defined
in Equation (7.1). This description below follows the initialization procedure
of the localntvgen. We first look for the 1–nearly-transition-vectors thanks to
the Franke–Kleinjung algorithm, and the look for 2–nearly-transition-vectors,
which have their coordinate 2 equal to 1 and small coordinates 0 and 1 (thanks
to the CVA function we explicit in the context of the plane sieve).

The first step of the plane sieve algorithm is to have a pleasant basis of
the plane defined by the first two vectors of MQ,R: we therefore use a basis
reduction, for example Function reduce-qlattice, to get u and v that reach
the bounds given by Franke and Kleinjung (Proposition 6.2).

Then, we look for vectors allowing us to modify only the first two coordinates
and an other coordinate of an element in the lattice to produce an other element
in the lattice. Let i be the index of the (i+ 1)th vector wi of the matrix MQ,R.
If i > 1, the vector wi have two non-zero values: one at index 0, denoted by
Ri and one at index i, equals to 1. We want to reduce the two first coefficients
of wi: this is equivalent to remove to (R, 0) its closest vector in the lattice
described by {(r, 0), (−TQ,R[1] + r, 1)} = {(r, 0), (T, 1)}. To find the closest
vector and some closest vectors to (Ri, 0), we proceed as follow:

1. Let u′ and v′ be the two vectors output by the Gauss reduction on
{(r, 0), (T, 1)}, or {u,v}.

2. Let G be the matrix whose rows are the coefficients of u′ and v′

3. For all 1 < i < t

(a) Compute over the rational number (xi, yi) = (Ri, 0)G−1.
(b) Using the element bxieu′ + byiev′, build the triangle around (Ri, 0)

which the edges are formed by u′, v′ and u′ ± v′.
(c) Returns the three differences between (Ri, 0) and a vertex of the

triangle.

The following procedure is summarized in Figure 7.2. Item 3a does not need
a full inversion of G, which is a 2 × 2 matrix: indeed, the computation of xi
is equal to Riv[1]/(u[0]v[1] − u[1]v[0]) and yi is equal to −Riu[1]/(u[0]v[1] −
u[1]v[0]).
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Figure 7.2 – Triangle around the target (R, 0) composed by close vectors.

By extending all the vectors to the dimension t in the previous procedure,
that is replacing (Ri, 0) by wi, (r, 0) and (T, 1) by the two first vectors of MQ,R,
we get three closest vectors, stored in a set Wi, of wi.

Algorithm. In our arsenal, we therefore have at this point:

• the vectors u and v that reach the conditions of Proposition 6.2;

• for i > 1, the set of three vectors Wi where the first two coordinates are
relatively small and the coordinate i is equal to 1.

We now can describe the algorithm in three dimensions, and give a quick
overview of the modification we need to apply for larger dimensions.

1. Set c to (0, 0, 0), the starting point of our algorithm.

2. While c[2] < HM
2 , do

(a) Enumerate, with u, v and u+ v, all the element in the intersection
of the lattice and the sieving region of shape (·, ·, c[2]).

(b) Add to c one of the vectors W2, such that the new vector c is in the
sieving region.

(c) If it is not possible,
i. Add to c one of the vectors W2, such that the new vector c has its

first coordinate coordinate in [Hm
0 , H

M
0 [ or the closest possible

to an element of the sieving region if it is not possible.
ii. If c is not in the sieving region, use a multiple of the vector u or
v with the largest first coordinate to have the first coordinate of
c in [Hm

0 , H
M
0 [.

In dimension t larger than 3, we do the following modification:

• The vector c is set to an element C = (·, ·, Hm
2 , H

m
3 , . . . ,H

m
t−1) in the

lattice but not necessarily in the sieving region at Item 1.

• The while loop at Item 2 is modified to a for loop for an element k in 0
to (

∏t−1
i=2 H

M
i −Hm

i ) − 1, the control on the bounds of the vector c will
be carry out by our last modification.
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• To enumerate all the possible (
∏t−1
i=2 H

M
i −Hm

i )− 1 plane, we use a pro-
cedure, close to the one described for the line sieve, described below.

To enumerate all the possible planes, we store in a list S indexed from 0 to t,
a current starting point at index i that have the same (i+ 1)th first coordinates
as the one of the vector c used in our enumeration. Once we reach a new plane,
we update S. At the beginning of the algorithm, the list S contains t times
the vector C defined above, even if it is not necessary to define S[0] and S[1].
The procedure is the following, given in input the list S, the t− 2 lists Wi, the
Franke–Kleinjung vectors u and v and the t-sieving region H:

1. Set k to 2 and c to an element of a new plane starting from S[2], using
the vectors of W2 and eventually the Franke–Kleinjung vectors u and v
to have c[0] in [Hm

0 , H
M
0 [.

2. While c[k] = HM
k

(a) Increment k
(b) If k < t, set c to an element of a new plane starting from S[k], using

the vectors of Wk and eventually the Franke–Kleinjung vectors u and
v to have c[0] in [Hm

0 , H
M
0 [.

(c) Othewise, break the loop.

3. For i in [2, k], set S[k] to c.

The output of this algorithm gives a new starting point in H to enumerate
a plane and the updated list S.

The plane sieve is the last of our enumeration algorithm that guarantees to
discover all the elements in the intersection of the lattice and the sieving region.
But, the plane sieve becomes inefficient when the volume of the lattice is larger
than I0I1, this is why we use the space sieve.

The space sieve

The space sieve is the last sieve algorithm we use in the three-dimensional case.
As this algorithm has some heuristic parts, we will describe them and explain
the choices behind.
Remark 7.2. Unlike the line and plane sieve, we do not have yet implemented a
version of the space sieve in dimension higher than 3 fully functional, we then
stick to the three-dimensional case.

A very simplified sketch of the plane sieve is given in the following:

Initialization. Look for the 1–nearly-transition-vectors and the 2–nearly-
transition-vectors. Set c to (0, 0, 0).

Enumeration. While c[2] < HM
2

1. Enumerate the plane (·, ·, c[2]).
2. Add to c one of the 2–nearly-transition-vectors with the smallest

third coordinate to have a new element in the sieving region.
3. If it is not possible
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(a) Use the plane sieve to enumerate all the plane (·, ·, d), where
HM

2 > d > c[2] and find a new element cn in the sieving region.
(b) Add cn − c to the 2–nearly-transition-vectors and set c to cn.

Enumeration. The enumeration part is not really more complicated that it
seems. In Item 2, we try all the 2–nearly-transition-vectors we have precom-
puted, sorted by increasing coordinate 2. We now describe the initialization
step, that is how we find these 2–nearly-transition-vectors.

Initialization. A way to compute the sets of 1–nearly-transition-vectors and
2–nearly-transition-vectors is to perform small linear combination of an adapted
basis. To find such a basis, we can use a skew basis reduction, described in
Section A.1 to have three basis vectors v0,v1,v2 such that:

• the coordinate vi[0] must be less or not too large compare to I0.

• the coordinate vi[1] must be less or not too large compare to I1.

• the coordinate vi[2] is small.

To obtain such a basis, we perform a skew lattice reduction with the weights
w = λ(1/I0, 1/I1, I0I1/r), where λ is a real number. To perform the LLL
algorithm, we have an implementation of LLL over the mpz t and over the
int64 t: the implementation uses temporarily the type int128 t and have a
fallback to the implementation on the mpz t.

Choice of λ. The parameter λ can be set to rI0I1: this implies that w
is equal to (rI1, rI0, I

2
0I

2
1 ). The weight can therefore be encoded on int64 t.

It seems reasonable because r is often less than 232 (much less in our compu-
tations), and I0 and I1 are less than 215 (less than 211 in our computations).
However, if we use this definition of the weight in our implementation, the
weighted scalar product will probably produce temporary integers larger than
2127, and then, the LLL computation of int64 t will probably backtrack almost
every time to the LLL on mpz t. A quite natural workaround is to consider that
I0 = I1 (it is always the case in all of our computation): the weight w can now
be written as (r, r, I3

0 ), but the weighted scalar product can produce integer of
size larger than 64-bit, which are not allowed in our implementation. We need
to stick to the weight w = (1, 1, I3

0/r), which is a little bit less precise than what
we can expect, due to the storage of I3

0/r on int64 t.

Small linear combinations. Once the skew basis B composed by v0, v1
and v2 is computed, we compute 27 linear combinations λivi, where the λi are
in [−1, 2[. As a k–nearly-transition-vector has its coordinate k positive and 0
is not a nearly-transition-vector, we can restrict our computation to 13 linear
combinations. To be useful, a large proportion of these linear combinations
must give 2–nearly-transition-vectors or 1–nearly-transition-vectors.

Modification of the weights. During the small linear combinations, we
want to produce the largest number of nearly-transition-vectors. If the skew
basis given as input of the small linear combinations step is too stretch on the two
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first coordinates, it will be maybe too difficult to find nearly-transition-vectors
with the strategy we proposed. It is why we modify the theoretical weight w
to have a bit smaller coordinates than expected on the two first coordinates
and a bit larger last coordinate. It allows us to have better chance that a
skew-small-vector produced by the small linear combinations will be a nearly-
transition-vector. Experimentally, we choose to have the weight (1, 1, 2I3

0/r)
to take into account this modification, that gives in our experiment, the best
number of nearly-transition-vectors with a good enumeration of all the elements
in the intersection of the lattice and the sieving region.

The space sieve in practice. In this last paragraph, we show the efficiency
of the space sieve in term of running time and accuracy. We also provide some
data about the number of nearly-transition-vectors (generated initially, used,
computed on the fly).

Timings. We first tried to use an enumeration algorithm following [92,
Algorithm 10]; the space sieve turned out to be about 120 times faster than our
implementation of this enumeration algorithm.

We also compared the efficiency of the space sieve and the plane sieve. We
sampled 1600 special-Qs among those that we used during the computation of a
300-bit Fp6 and sieved about 216.7 ideals of norm larger than I0I1 on each side.
On average for each side, the plane sieve takes 5.20s in a single core i5-4570
CPU @ 3.20GHz, against 1.38s for the space sieve.

Accuracy. We know that the line and plane sieves report all the elements
contained in the intersection of the sieving region and the lattice: it gives us a
reference to compare the number of elements enumerated using the space sieve,
because these elements must also be found using the line and plane sieves.
With the same 1600 special-Qs used previously, we miss on average 5.7% of the
elements in the intersections per special-Qs by using the space sieve: compared
to the acceleration factor due to the space sieve, it seems reasonable to use the
space sieve.

Number of nearly-transition-vectors. The space sieve algorithm relies
heavily on the notion of nearly-transition-vectors, but the number of them is
not easily controlled and we hope to find transition-vectors. For a given lattice
which have no 1–transition-vector, we can define the 2–transition-vector asso-
ciated to a point in the plane [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [. In Figure 7.3, pictures

are shown where a different color is associated to each transition vector, as we
do in Figure 6.2 for the Franke–Kleinjung vectors. The example on the right
is highly degenerate, in the sense that there are many different transition vec-
tors; however, in this example, most of the area is covered by the vector with
the smallest coordinate 2. We also expect that, if we need all the 2–transition-
vectors to enumerate all the elements in the intersection of a lattice and the
cylinder of square basis [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [×Z, it is not necessary to have

found all the 2–transition-vectors to enumerate the elements in the intersection
of a lattice and a sieving region.

On average for 224 different lattices coming from our 300-bit Fp6 example for
which we can use the space sieve, our initialization to find 2–nearly-transition-
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Figure 7.3 – Three examples of how transition vectors cover the plane
[Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [. Each color corresponds to a transition vector; below

each picture, the colors are listed in the increasing order of the coordinate 2 of
the corresponding vector.

vectors procedure generates 10 vectors, at least 1 and at most 13. On average,
only 4 are necessary to perform the enumeration, at least 1 and at most 13.
During this enumeration, the plane sieve is called as a fall-back strategy on
average 0.08 times, and at most 7 times. But, in more than 40% of the case,
this fall-back strategy was just called to reach the bound of the coordinate 2,
and then, do not enumerate any new element.

7.3 Post-processing variants

7.3.1 The multiple number field sieve variants
As described in Section 4.5.2, there exist two different versions of the multiple
number field sieve algorithm, depending on the polynomial selection we use.
These two versions implies a different implementation of the cofactorization
step.

Asymmetric version

The asymmetric version is the simplest to implement. Recall that, at the be-
ginning of Item 3 of the description of the relation collection at the beginning of
this chapter, we have V arrays A0 to AV−1 that contain, in a certain order (but
the same for each Ai), the polynomials a that give a relation. In the asymmetric
version, we have a main side, say the side 0: we enumerate the polynomials a in
A0, look for each polynomial a if we can find it in Ai, where i is in [1, V [, and for
each side i, do the cofactorization in each sides and if the norms are smooth in
at least two sides, keep the relation and give the factorization for each smooth
norm.

Symmetric version

The symmetric version is more complicated. Indeed, there does not exist a main
side, then we need to look, at each time, if a polynomial in an array is in at
least one other array. To do that efficiently, we recall that the arrays Ai contain
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the indices of the vector c in the one-dimensional array A and the arrays Ai are
constructed to store increasing values. We use a similar algorithm to the one
described below to find all the polynomials a that give a relation

1. Set k to the minimal value of all the minimal values of the arrays.

2. Set K to the maximal value of all the maximal values of the arrays.

3. While k < K

(a) If k occurs at least in two arrays
i. Find the corresponding vector c of the index k.

ii. Compute the polynomial a = cMQ.
iii. Perform the cofactorization in each needed side. If there is at

least two smooth norms, report a and the smooth factorizations
of the corresponding sides.

(b) Set k to the next minimal values of the arrays.

7.3.2 Using Galois automorphism
We will describe in this section how we implement the Galois action, and specif-
ically the Galois of order 6 we use in our computation, that is given by σ : x 7→
−(2x+1)/(x−1). We run the relation collection with polynomials a of degree 2,
therefore let a be equal to a0+a1x+a2x

2 a polynomial that gives a valid relation.
Let y be equal to−(2x+1)/(x−1), therefore, because y 6= −2, x = (y−1)/(y+2).
By replacing x by (y − 1)/(y + 2) and by multiplying by (y + 2)2, we finfindt
a0 + a1x + a2x

2 = (−4a0 − 2a1 + a2) + (4a0 + a1 − 2a2)y + (a0 + a1 + a2)y2.
Therefore, σ(a) = (−4a0 − 2a1 + a2) + (4a0 + a1 − 2a2)x + (a0 + a1 + a2)x2.
In other words, the Galois action σ acting on a gives the polynomial a′ whose
coefficients are given by the matrix-vector product

(a′0, a′1, a′2) = (a0, a1, a2)

 4 4 1
−2 1 1
1 −2 1

 . (7.2)

Let f0 and f1 be two polynomials as defined in Chapter 4 that share the
same Galois action σ. Let a be a polynomial that gives a relation, that is
Res(f0, a) = N0 and Res(f1, a) = N1 are smooth. Let σ be acting on a to
produce a′: following the description on how to deal with the Galois action
in Section 4.1.1, we know that Res(f0, a

′) = N0 × Res(f0, x − 1)/ lc f0 and
Res(f1, a

′) = N1×Res(f1, x−1)/ lc f1, where Res(fi, x−1)/ lc fi is the norm in
the appropriate number field of the denominator of the rational function that
defines σ. If the polynomial a′ is not content free, we must divided it by this
content, that implies a division of the resultants by the content raises to the
degree of the corresponding polynomial.

7.4 Integration into CADO-NFS
In this section, we will describe how the implementation is integrated into
CADO-NFS, and what we would need to have an automatic tool like the script
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cado-nfs.py to perform the complete computation of a discrete logarithm,
given only the field Fpn and the element from which we want to compute the
discrete logarithm.

7.4.1 Using parts of CADO-NFS and NTL
Most of the code of CADO-NFS is written in C and our implementation of the
relation collection in higher dimension is also written in C. There exists an im-
plementation of polynomials over mpz t, called mpz poly, in which we mainly
had to add the support of the computation of the resultant between two univari-
ate polynomials, following Algorithm F.1. There exists also an implementation
of polynomials over double, called double poly, in which we also added an im-
plementation of the resultant: this implementation is not robust against loss of
precision, but has a fall-back to the computation of the resultant using mpz poly
in some cases.

We also use the implementation of the LLL algorithm over the mpz t, and
based our implementation on the LLL over int64 t on this code, itself based
on the code provided in the NTL library [168].

For license compatibility, NTL (under GPL) could not be included in CADO-
NFS (under LGPL), requiring to implement some needed algorithms. But, with
the change in the license used by NTL, now under (L)GPL, it will be possible to
use it: an interesting algorithm for the relation collection in higher dimension
will be the irreducibility test over Z of a polynomial. Verifying if a degree 2
polynomial is irreducible over Z is not a difficult task, but for higher degree, it
is more complicated. Then, in our implementation of the relation collection, if
a polynomial of degree higher than 2 gives a relation, we do not check if this
polynomial is irreducible or not, but we provide a tool written in C++ using
NTL that takes as input a file containing the output relations and verify if the
polynomial that gives the relation is irreducible.

ECM chain

In addition to the use of some libraries available in CADO-NFS, we use the
whole mechanism of the ECM chain to perform the cofactorization step of the
relation collection. We describe here a simplified version: the input of this
description is one norm N0, without the small factors, coming from the relation
collection and the corresponding smoothness bounds B0, the output indicates
if the norm is B0-smooth, or if it is with high probability not B0-smooth.

1. While the loop is not broken

(a) Set B1, the usual parameters of the ECM algorithm, to a small value
and A, the possible factor found by ECM, to 0.

(b) For i in [0, k[
i. randomly choose one curve and perform ECM on it with B1

ii. if a factor is found, set A to this factor and break the for loop.
iii. increase B1.

(c) If A = 0 or A > B0, the input integer N0 is not B0-smooth and break
the loop.
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(d) Else,
i. divide N0 by A,
ii. if N0 < B0, the input integer N0 is B0-smooth and break the

loop.

The complete implementation of this simple description can be found in
sieve/ecm/facul.cpp. The integer k of Item 1b, namely the number of curves
we use, is chosen according to the target probability (90%, 95%, 99%) of finding
a factor of size logB0. The increasing of B1, from the value 105 set in Item 1a
in CADO-NFS, in Item 1(b)iii is to add

√
B1 to B1. Continuing or not the

cofactorization procedure in Item 1(d)ii is a more complicated test than the one
written here.

The simple described strategy is not optimal for the two-dimensional relation
collection: the first calls to ECM are probably useless, because the factors up
to the sieving bound are removed from the norm. But, in our implementation
of the relation collection, we do not remove from the norms all the primes up
to the sieving bound, and we only perform a trial division with a smaller bound
than the sieving bound: the first calls to ECM in our context is therefore useful.
In CADO-NFS, ECM uses two types of curves: the Brent–Suyama one and the
Montgomery one. Using Edward curves [31, 16] will probably give better result
and could also be used in CADO-NFS.

Let us consider that all the primes, and their powers, up to the sieve bound
are removed from the norms we test for smoothness. Let us also consider that
we want to know if the two norms (N0, N1) are doubly smooth. Then, if the
algorithm we described before can be applied, we can use clever strategies, as
proposed by Kleinjung [62]. Some of them are implemented and available on
demand in CADO-NFS.

The cofactorization on one side can be also done by using a factorization
tree, as proposed in [30] and used practically for the computation in a 768-bit
prime field [122]. This strategy still applies in our context, even if we remove
only a few small primes.

Finally, Miele, Bos, Kleinjung and Lenstra evaluate in [137] the feasibility
of the cofactorization on GPU, instead of the classical one on CPU.

7.4.2 Road map to an automatic tool
In this last section, we will describe some theoretical and practical challenges
to solve in order to have an automatic tool to compute discrete logarithm using
our implementation of the relation collection in three dimension and higher,
as the cado-nfs.py script does for both discrete logarithm in prime fields and
factorization. We do not discuss on how to make the input and output of the
different steps understandable by the top-level script, but which programs we
need at all the steps of the computation.

Polynomial selection

In Chapter 4, we have shown that there exist 6 different polynomial selections:
even if two of them are now surpassed and the polynomial selectionA generalizes
two others, it remains two different polynomial selection, the JLSV1 and the A
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one, the last one parametrized by two parameters, that gives 4 different types
of polynomial pairs for a Fp6 .

It is possible, as shown in the last different practical computations in Fpn [72,
91, 85], to distinguish by estimating the size of norms, and therefore the Mur-
phy E value, for a typical but not optimized polynomial pair, which polynomial
selections are better than others, and then consider only two or three types of
polynomial pairs. We must also take into account the Galois action and the
ability to have a large negative α value.

Once we have found the probably best polynomial selection, we need to
perform the polynomial selection. In dimension 3, we have implemented a way to
compute the α and Murphy-E values, according to the description of Section 4.1.
If all the needed functions for the JLSV1 polynomial selection are available in
the mpz poly, it is not the case to perform the A polynomial selection. When
this polynomial selection drops to the conjugation polynomial selection, we need
to compute a bivariate resultant, that is why we implemented one in the new
type mpz poly bivariate: the algorithm we use is described in Algorithm F.2.
The other needed function are already implemented in mpz poly. But, when
the A polynomial selection does not correspond to the conjugation one, we need
to perform at least a test of irreducibility over Z[x], which is not implemented
in CADO-NFS. Because this test is implemented in NTL and its license is now
compatible with the one of CADO-NFS, it may be possible to implement the A
polynomial selection in all the cases.

However, this task is not easy, and needs to be carefully implemented to
consider the largest number of polynomial pairs in the shortest time. A brief
overview of how to perform such a task will be presented in Section 8.1.1.

Parameters for the relation collection

As the complete computations of a 240, 300, 389 and 422-bit Fp6 [85] and a
324-bit Fp5 [84] were performed using a three-dimensional relation collection,
we can provide parameters that have a good chance to work for fields of close
size with the same extension. However, for intermediate or larger sizes, or for
different extension, it is difficult to predict which parameters can be useful, see
Section 8.1.2 for details. This is the choice of the discrete logarithm implementa-
tion in CADO-NFS: parameter files are available to compute discrete logarithm
in prime fields of size 100, 200, and 512-bit.

Linear algebra

Concerning the linear algebra, the main modifications concern the condition-
ing of the matrix, since the Wiedemann algorithm deal with matrices, and is
agnostic of the way the matrix was produced.

In CADO-NFS, all the processing to build the matrix highly relies on the
fact that the relation collection is done with polynomial of degree one, and then
involves ideals of degree one. Before the filtering, the relations and the ideals are
labeled in a unique way, taking advantage of the degree one of both ideals and
relations. To reuse this system without entirely modifying all the mechanism,
we encode a relation given by a triple (a0, a1, a2) in a unique way that makes
believe to CADO-NFS that the relation comes from a (A0, A1) pair. If these
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changes work for practical computations, these features are not robust and not
ready to be pushed into production.

A nice feature when a Galois action of order k is shared by the polynomials
that define the number fields is the ability to reduce the number of column by
a factor around k. This feature, available for a computation where the relation
collection is performed with polynomial of degree 1 in Fp2 , is currently at work.

Descent

This is probably the most difficult step to automate at this point, because we
have only few experience about the initialization step with Guillevic’s work [86,
88] and with the descent using a three-dimensional relation collection. For now,
this task still requires human effort to select which parameters are the best,
given a size of special-Q to be descended and a targeted smoothness bound.
The initialization step is coded in Magma and the descent step relies on our
implementation of the relation collection. Once the choice of the parameters is
stable, we can hope to implement an automatic tool.

The initialization procedure expresses the target as a product of ideals in one
number field (say the number field 0). All the ideals Q = (q, g) of norm larger
than the corresponding smoothness bound are inserted in a stack S as (0, q, g).
This stack is the input of this simplified descent algorithm (in particular, we do
not take care of the building of the tree):

1. While S is not empty:

(a) pop out the first element of the stack and store it as (s, q, g).
(b) perform the relation collection by setting the ideal (q, g) on side s
(c) select the best relation and add to S, for each side i, the element

(i, q, g), where (q, g) is an ideal of norm larger than the smoothness
bound on side i.

(d) if there is no relation, use a fall-back strategy.

In Item 1c, we call best relation the relation that will require less effort to
descend the ideals of this relation whose norms are larger than the smoothness
bound of the corresponding number field. This effort depends on the number
of ideals that is needed to descend and the size of these ideals. The effort to
descend one ideal of a given size is known, thanks to the parameters we have
previously identified: indeed, for a given size of a special-Q, the time to descend
a specific special-Q is known.

The fall-back strategy in Item 1d is used when no relation was found. In
this case, the first things to do is to modify the parameters: increasing the
smoothness bounds, the searching space, the thresholds, ... If this still gives
nothing, an extreme choice is to discard completely the relation that have given
the special-Q which is impossible to descend.
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Experimental results

To validate the practical impact of the improvement and new algo-
rithms proposed theoretically, we try to run computations in a finite
field of the largest characteristic we can reach, given an extension
degree. It also helps cryptographers to (re)evaluate the security of a
cryptosystem based on a certain type of fields.

Before running a computation or a part of the computation, especially the re-
lation collection, we need to find good parameters. By good, we mean that the
computation can be performed using a reasonable amount of resources in a not
so large running time. As we have shown in Chapter 3, Chapter 4 and Chap-
ter 5, NFS is composed of multiple algorithms, each of them having different
parameters. We will focus on the relation collection, describing how we can
evaluate if parameters have a chance to give a complete set of relations and how
we perform the computation on a cluster. We will also summarize the results
of the computations we did.

8.1 Looking for good parameters for the relation
collection

We recall first that the input of the relation collection is the following:

• the polynomials that define the number fields;

• the sieving intervals that define the sieving region;

• the sieving bounds;

• the thresholds;

• the smoothness bounds;

• the range of special-Qs;

• the side of the special-Qs.

145
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Remark 8.1. There exist also other parameters, which have less impact on the
computation, for instance the number of curves used to perform the cofactor-
ization step using ECM chain (see Section 7.4.1), if we do not use the default
parameters.

In all these parameters, we can distinguish the one that can be theoretically
defined to be the best, and the others that are more linked to the implementa-
tion. We will justify in the appropriate section this assertion, but we can from
now give a scheme of the procedure to find good parameters:

1. select the polynomials;

2. select the smoothness bound, the original search space and the side of the
special-Qs;

3. select the sieving region per special-Q, the sieving bounds, the thresholds
and the range of special-Qs.

We will describe briefly how the polynomial selection can be performed for
NFS-HD and how we can select good parameters for the relation collection step.

8.1.1 Polynomial selection
We begin first by the selection of the polynomials because we have the Murphy
functions in our toolbag to distinguish some of the best polynomial pairs we can
produce, using one of the four polynomial selections described in Section 4.1.

The first step is to distinguish which are the best polynomial pairs using
the Murphy-E function, given a searching space and smoothness bounds, as
in [91, Figure 1], in [84, Figure 1] or in [85, Figure 2]. We now know on which
polynomial selection we can concentrate our effort. We recall that the JLSV0
and JLSV2 are not taken into account as shown in Section 4.1.3

Let us consider that we focus on one polynomial selection. Concerning the
α function, the main part considers the number of roots modulo small primes,
therefore, having a large negative value does not depend on the size of the coef-
ficients of the polynomials. However, the Murphy-E value is highly dependent
on the size of the coefficient of the polynomials. Then, we must control the size
of the coefficients, allowing us to reduce the set of possible good polynomials.
By looking at Table 4.1, all the polynomial selections, except the JLSV1 one,
involve a polynomial with small coefficients. Polynomials of tiny coefficients
are not numerous, we have therefore a small room to find a polynomial with a
good α value. The second polynomial is, except for the conjugation polynomial
selection, depends on the shortest vector of a lattice, and the second shortest
vector of this lattice has often larger coefficients. We have therefore not a large
choice to define the polynomials.

With the JLSV1 polynomial selection, even if the polynomial g0 and g1 of
the description in Section 4.1.2 have small coefficients, we have more freedom by
choosing the parameters c0, c1, c2 of size about log√p. If we use the asymmetric
variant of the JLSV1 polynomial selection, we can subtract a small multiple of
the polynomial with the smallest coefficients to the polynomial of the largest
coefficients, to obtain a better α value without increasing a lot the Murphy-E
value.
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About the conjugation polynomial selection, we have only a few choices to
define the polynomial of degree 2n, because it depends on the roots modulo
p of the quadratic polynomial µ. But, there is a bit more room to define the
polynomial of degree n, thanks to the rational reconstruction: it is possible to
perform very small linear combinations between two polynomials obtained by
two different rational reconstructions to increase the Murphy E value.

8.1.2 Parameters for the relation collection
To select the best parameters in term of running time and number of relations
found, we first recall some obvious bounds on the parameters, then give first
approaches to find these parameters and finally how we estimate the cost of the
computation and the number of found relations.

Bounds on the parameters

The first obvious bound is the sieving intervals. Indeed, the sieving region de-
fined by the sieving intervals must fit in memory if we use the standard descrip-
tion of the sieving algorithm (it exists the possibility to divide a search space
that does not fit in memory in subregions that fit in memory, as in [122] where
the original region per special-Q contains 240 elements: this works is under de-
velopment in the implementation of the two-dimensional sieving in CADO-NFS,
and this is not clear how to do such a task in an higher-dimensional sieving).
Practically, the sieving region does not exceed 231 elements for the practical
computation we can achieve, according to the majority of the parameter files
available in CADO-NFS.

The range of special-Qs has its largest value less than the smoothness bound
of the corresponding side. For the lowest value, there is no theoretical reason
to fix it above the sieving bound: indeed, if the special-Q is an ideal we sieve,
it suffices to not consider this ideal during the sieving step, to avoid to remove
two times the contribution of the same ideal. But, the smallest the special-Qs
are, the largest the number of duplicates is. The range of special-Qs begins
therefore just above the sieving bound, and must finish before the smoothness
bound.

The largest ideal we sieve is often an ideal that has a chance to have at least
one element in the intersection of the lattice of this ideal in the Q-lattice and
the sieving region. If the norm of the largest ideal we sieve is r, and the length
of the intervals that define the t-sieving region are Ii, where i is in [0, t[, the
norm of the ideal r is less than I0I1 · · · It−1.

About the smoothness bounds, an obvious bound is imposed by the linear
algebra step. In our computations, we consider that the large prime bounds
cannot exceed 229, but the implementation available in CADO-NFS can deal
with larger smoothness bounds. This is dependent on the number of relations
we can obtain to help the filtering step to reduce the size of the matrix.

Finding a first set of parameters

We assume from now on that we have selected one polynomial pair and want
to find the other parameters.
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Trade-offs. A first, non-surprising, remark, is that, if we increase the param-
eters, we increase the number of relations we find. But this remark must be
nuanced.

Let us consider for example that we increase by one bit the length of all
the intervals that define the sieving region. It is probable that we increase
the number of relations. But, by always increasing the length of the sieving
intervals, we reach values where the increasings do not allow us to discover
new relations, or very few. Concerning the running time, it obviously increases
when a parameter increases. We then can have a trade-off between the number
of found relations and the running time.

This consideration is about the same for all the parameters. It exists there-
fore one or several sets of parameters that allow to have the best trade-off
between the running time and the number of relation. It seems however that
there exist parameters that can be chosen before the others.

Using Murphy-E. We have claimed earlier that the polynomial selection can
be done without considering the other parameters. Once we have the polyno-
mials that define the number fields, the smoothness bounds and the original
search space can be approximated by considering the Murphy-E value, defined
in Chapter 3 and Chapter 4.

Since only the smoothness bounds and the original search space are needed
to compute the Murphy E value, we can approximate them. The rationale is
to evaluate the number of relations we can obtain by increasing or decreasing
the smoothness bounds to have a complete set of relation. For the smoothness
bounds we get, we modify the search space to be consistent with the estimated
cost of the linear algebra. In the same time, we can chose the side of the
special-Qs: it is often the side where the norms are the largest.

From the original search space, we can almost define the sieving region per
special-Q and the range of special-Qs by considering that the number of elements
in the original search space must be equal to the number of elements considered
by the largest special-Q multiplied by the volume of this special-Q. If all these
parameters are fixed, we have three free parameters on the seven we have listed.
It is more difficult to fix these parameters: we therefore use the algorithm to
estimate the number of found relations and the timings described in the following
section, to fix it after some experiments using different possible parameters.

Using previous computations. An alternative or a complementary ap-
proach to the one we have described previously is to use the parameters of
previous computations. It is obviously easier to use and infer if the computa-
tions we use are performed in the same type of field and with a similar approach
(with or without special-Q-method, with three-dimensional sieving algorithms,
. . . ). Before our computations, there existed two reports of computations in Fp6 ,
the one of Zajac [185] and the one of Hayasaka, Aoki, Kobayashi and Takagi [94].
These give to us first references we can try to improve.

But, if we perform from scratch a computation, or perform a significant
record in a given field, a solution is to use parameters of computations done in
different contexts to approximate the good parameters for our computations.
The informations and parameters we have before trying to run a relation collec-
tion are about the size of the field and the polynomials that define the number
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fields, and maybe the smoothness bounds and the searching space. We look for
the parameters of a previous computation that target the same size, concerning
the field or the length of a large integer to be factored, as we can found in
CADO-NFS for example: this computation is called our reference.

Using these parameters, we can obtain some essential informations, a crucial
one is the size of the norms in both sides. If these sizes are close to the one
we can obtain with the reference computation, the parameters can be doubtless
used as a first approximation, and refined locally. But if the sizes of the norms
are different, smaller or larger, we need to change our reference: now, we look
for parameters that allow to reach the same size of norms: this computation
will be our new reference.

With this strategy, we quickly reach a reasonable first set of parameters.

Estimations

Let us consider that we have a first set of parameters and want to estimate
if the number of relations allows us to have a complete set of relations and if
the running time is achievable. The estimation we propose is relatively simple,
but quite powerful. The rationale is to sample N special-Qs almost equally
distributed along the range of special-Qs to have an idea of the distribution
of the number of relations we hope to obtain given a size of a special-Q. We
describe in the following the different steps of the estimation, in a simplified
way but close enough to reality: we do not take care in particular of the non-
equidistribution of the special-Qs. As input of the estimations, we have the
parameters we want to estimate, especially the range of special-Qs [qm, qM ].
The function π is the prime counting function.

1. Set s to (qM − qm)/N , and L to an empty list.

2. For i from qm to qM with step s

(a) Set q to the next or previous prime to i that allows to build a special-
Q of inertia degree 1.

(b) Perform the special-Q-method with the special-Q and the other pa-
rameters, extract the number of found relations r and the timing t
of this computation.

(c) If this computation will be done with a Galois action of order k and
the output relation are the conjugated relation, divide by k the timing
and the number of relations.

(d) Add to the list L the triple (q, t, r).

3. Set the estimated number of relations r and timing t to 0.

4. For all the two consecutive elements (q0, t0, r0) and (q1, t1, r1) in L

(a) Add to r the quantity (π(q1)− π(q0))(r0 + r1)/2.
(b) Add to t the quantity (π(q1)− π(q0))(t0 + t1)/2.

5. Output the estimated number of relations r and timing t.
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In Item 4a, we compute the average number of relations we hope to find in
the interval [q0, q1] by considering that the average number of relations between
q0 and q1 is almost the number of relations per special-Q we have. An other
approach is to compute the linear regression in [q0, q1] of the number of relations,
that is (π(q1)−π(q0))(r1+(r0−r1)/2) (we assume that r1 ≥ r0). The same thing
can be applied in Item 4b. The trend of our estimations is not modified, but
there can be a little bit overvalued, on the contrary to the original description.

In this estimation, we however forget to take into account the number of
duplicates, which can vary between 10% and 30% in our computations, and can
exceed 50%, if we refer to the computation of the 1024-bit SNFS [65]. This
must be taken into account before doing a computation.

Refinements

In the previous section, we have considered that the polynomial selection is
fixed, in order to select the other parameters. But, if we consider the JLSV1
asymmetric polynomial selection described in Section 4.1, this polynomial se-
lection has a dependency in the size of the special-Qs, that is a parameter fixed
at the end of the selection of the parameters. The strategy we propose and use
in our computations is to start from a symmetric polynomial selection, find the
parameters and then, perform an asymmetric polynomial selection, taking into
account the size of the special-Qs. There is no reason that the older parameters
are not suitable with this new polynomial selection.

There are two parameters that are almost only dependent on the implemen-
tation of the sieving algorithms: the sieving bounds and the thresholds. Let us
consider that we have found parameters to have a complete set of relations. We
can maybe improve the running time by modifying these two parameters: this is
highly dependent of the implementations of the sieving algorithms and the ECM
and the strategies to perform the cofactorization step. This local improvement
must not modify drastically the number of found relations but can decrease the
running time.

8.2 Computations

8.2.1 Using a cluster
Modern computations of discrete logarithms over finite field use a lot of core
hours, see Table 1.1. Many steps of NFS are parallelizable (see [6, Figure 1]),
especially the relation collection. In this phase, the special-Q-method allows us
to run several instances for different special-Q without the need of communi-
cation between instances. The relations given by each instance are aggregated
and, when all the instances are finished, we only need to remove the duplicates
(in our computations, a simple call to the shell command sort -u was enough).

The scheduler available on the clusters we used is OAR (https://oar.imag.
fr/). Dealing with a cluster involves to deal with many other users and so, using
exclusively all the machines of a cluster during more than a few hours is not
allowed. A nice feature of the OAR scheduler is the ability to submit a job with
the options besteffort and idempotent: the first one allows to submit a job
which can be interrupted at any times by a higher priority job, and the second

https://oar.imag.fr/
https://oar.imag.fr/
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one allows to reload automatically an interrupted job when the resources are
anew available.

To maximize the chance to always have a job that runs on a node of a
cluster, it is better to divide the tasks in the most atomic way as possible. In
our computations, it means that the range of special-Qs per task should be
relatively small (around a dozen). This has many advantages:

• it is easier to estimate the running time of a task,

• if a task is killed by someone, it is easier to identify it because its running
time is much lower than expected, and rerun it (by hand or thanks to
idempotent),

• if a problem occurs on a machine, we lose a few hours of computations, it
is easier to identify the missing special-Qs and rerun the small range.

Indeed, for a range of special-Qs of norms close to each other, it is relatively
easy to have a good idea of the running time of each special-Q, and then the
whole running time of the small range. As the range is small, an interruption of
the jobs is easily detectable and a workaround can be quickly performed. But,
there are also some drawbacks:

• it can be difficult to manage all the tasks without the proper dedicated
scripts and can become like a “baby-sitting” of jobs,

• the sieve basis is read by each thread at the start of a special-Q range.

These drawbacks can fortunately be minimized. Reading the sieve basis is
almost free (less than 2 seconds for the whole range of special-Qs), compared to
the time to perform the relation collection (more than 200 seconds per special-Q
for the Fp6 of size 422 bits). About the “baby-sitting” of jobs, writing automatic
scripts that send to a node a range of special-Qs not previously or currently used
is not an easy task and we propose a quick overview of how this can be done.

First, we need to identify on the machines the largest number of thread we
can use on a node to fit into memory. We need also to divide the targeted
range of special-Qs in smaller ranges that contain an almost constant number
of special-Q: this must be done by computing the number of primes in a range
or by counting how many special-Qs there exist in the range. To launch a job,
the process is essentially:

1. While there exists ranges of special-Qs that has not yet be sieved:

(a) look for available node
(b) for a given node

i. select as many ranges of special-Qs as the node can accept
ii. launch the relation collection on the different ranges of special-Qs

When we launch a range of special-Qs, we tag it to indicate that we process
it. When the output is complete, the special-Qs range is tag to be finished,
otherwise, if the output keeps unchanged for a lot of time, we reschedule it or
wait if idempotent is available.
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We now give some details about the computation we perform. The com-
putation in extension degree 5 was performed with Guillevic and Morain [84].
The computations in extension degree 6 was split in two works: the first one
concerning the polynomial selection and the relation collection in three finite
fields of size 240, 300 and 389-bit with Gaudry and Videau, with the help from
Guillevic for polynomial selection [72], and a second one completing these com-
putations with the linear algebra and individual logarithm steps and computing
a discrete logarithm in a 422-bit size field, performed with Guillevic, Morain
and Thomé [85].

8.2.2 Extension of degree 5
We select the 65-bit prime p = 31415926535897932429 =

⌊
1019π

⌋
+ 45, and

consider the finite field Fp5 where p5 − 1 = (p− 1) · 11 · 101 · 191 · 7363691 ·
33031656232204364259865845615041 · ` where ` is the 113-bit prime equal to
18872357657025660688767070155926911. Since the extension degree is prime,
exTNFS [114] algorithm is restrained to its TNFS original form [22], with R a
degree-5 number field above Q and sieving in dimension 10, or to NFS-HD, with
R = Q (no tower), to compute discrete logarithms in the prime order subgroup
of F∗p5 of cardinality `.

Our computations were done using Xeon CPU E5520 @ 2.27GHz cores.

Polynomial selection

The JLSV1 and generalized Joux–Lercier (gJL) are expected to be the best
polynomial selections, as shown in [84, Figure 1]. The best pair of polynomials
(f0, f1) we get was found using the JLSV1 method:

f0 = x5 − 5x4 − 5368736472x3 + 10737472959x2 − 5368736477x− 2,
f1 = 5851642500x5 − 29258212500x4 + 25042672429x3 + 37689292642x2

− 4215540071x− 11703285000.

We also provide two other polynomial pairs:

• one using the JLSV0 polynomial selection

f0 = x5 + 14x4 − 7x3 − 4x2 − 4x+ 15,
f1 = 28f0 + p

= 256x5 + 3584x4 − 1792x3 − 1024x2 − 1024x+ 31415926535897936269.

• one using the gJL polynomial selection

f0 = 2x6 + 3x5 − x4 + 2x3 − 3x2 − 2x− 3,
f1 = 4682288594364150x5 + 10520016140415817x4 − 17832477142237943x3

− 15171722661935206x2 + 1592160578567340x+ 1708993376270808.

The α-values of these polynomial are reported in Table 8.1.
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α(f0) α(f1)
JLSV0 −2.0 −3.5
JLSV1 −4.0 −8.3

gJL −0.4 −4.5

Table 8.1 – α-values for the polynomial selection in Fp5 .

Relation collection

Three-dimensional relation collection. The relation collection was per-
formed using the special-Q sieve [93] and the three-dimensional sieving algo-
rithms described in Chapter 6. The smoothness bounds are set to 225, and the
cofactorization is performed if on both sides, the remaining norms are smaller
than 280, that is slightly more than three times the size of the large primes
involved in the factorization of the norms. The special-Qs are set on side 1 and
have norms in ]221, 223.75[: inside a special-Q-lattice, we sieve on both sides the
ideals of inertia degree 1 that have a norm bellow 221. There are 156,186 such
ideals on side 0 and 155,192 on side 1. There are fewer ideals of inertia degree
2 of norm below than the smoothness bounds (759 on side 0 and 778 on side
1), and rare projective ideals (6 on side 1, which is coherent the factorization of
the leading coefficient of f1, that is 5851642500 = 22 · 34 · 54 · 11 · 37 · 71). We
did not sieve these ideals.

In each special-Q-lattice, we consider a sieving region that contains 225 ele-
ments c of the lattice, where the coordinates (c[0], c[1], c[2]) are in the sieving
region [−28, 28[×[−28, 28[×[0, 27[. The time per special-Q during the computa-
tion was between 15.37 seconds and 93.87 seconds, and the largest number of
relations per special-Q is 34. The cost to find the 6,171,924 relations was about
359 CPU days.

Two-dimensional relation collection. For comparison, the relation collec-
tion was also performed with a two-dimensional sieving using the CADO-NFS
implementation. For this computation, we use a polynomial pair coming from
the JLSV0 polynomial selection.

The special-Qs are set on side 0 and have norms in ]224.25, 226[: inside a
special-Q-lattice, we sieve on both sides the ideals of inertia degree 1 that have
a norm bellow 224.25. The smoothness bounds are set to 226 on side 0 and 227

on side 1, and the cofactorization is performed if on both sides, the remaining
norms is less than 252 on side 0 and 254 on side 1, that is 2 large primes on both
sides.

In each special-Q-lattice, we consider a sieving region that contains 229 ele-
ments c of the lattice, where the coordinate (c[0], c[1]) are in [−214, 214[×[0, 214[.
The time per special-Q during the computation was between 0.54 seconds and
18.14 seconds, and the largest number of relations special-Q is 21. The cost
to find the 10, 458, 616 relations was about 375 CPU days. It is smaller than
the 11, 561, 362 = π(226) + π(227) that are almost needed, where π is the prime
counting function.

We also provide an estimation using other parameters we expect to give a
complete set of relations using a two-dimensional relation collection. Finally,
the best running time for the relation collection and the smallest matrix are
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reached by using the three-dimensional relation collection.

Summary of parameters for the relation collection. In Table 8.2, we
summarize the parameters we use for the real computation and the results of
some experiments with other parameters without performing the whole compu-
tation, but by inferring the results using a sample of special-Qs.

Dimension 2 2 2 3
Polynomials JLSV0 JLSV0 JLSV1 JLSV1

Sieving bounds 224.25, 224.25 224.25, 224.25 224.25, 224.25 221, 221

Smoothness bounds 226, 227 226, 227 226, 226 225, 225

Thresholds 252, 254 252, 254 252, 252 280, 280

Special-q side 0 1 1 1
Special-q-range ]224.25, 226[ ]224.25, 227[ ]224.25, 226[ ]221, 223.75[
Sieving region 229 229 229 225

Mean of norms 2118, 2203 — — 2144, 2128

Raw relations 10, 458, 616 — — 6, 171, 924
Unique relations 8, 256, 215 ≈ 16, 000, 000 ≈ 9, 900, 000 4, 999, 773
Needed relations ≈ 11, 561, 362 ≈ 11, 561, 362 ≈ 7, 915, 618 ≈ 4, 127, 378

Set of relations Incomplete Complete
(probably)

Complete
(probably) Complete

Time (CPU days) 375 ≈ 900 ≈ 400 359

Table 8.2 – Data for the relation collections in Fp5 of 324 bits.

Filtering

On the 6,171,924 relations produced with the relation collection, 4,999,773 were
unique, and this led to a 1,489,631×1,489,625 matrix after singleton removal,
reduced to a final 490,307×490,301 matrix after more intensive filtering.

Linear algebra

The linear algebra step is performed using the block-Wiedemann algorithm.
The parameters used were m = 12 and n = 6. Then 6 parallel jobs were run,
one for each of the 6 sequences. Each parallel job used a 2 × 2 node topology,
each node having 8 cores.

The time to compute the Krylov subspaces was 237 hours, then 4 hours
for the linear generator and 35 hours for the creation the solutions from the
generator. 3,787,509 logs were reconstructed (out of at most 4,128,343 possible
logs).

Individual logarithms

We finally ran the computation of an individual logarithm. First note that
h = X+1 generates the whole multiplicative group F∗p5 where Fp5 is represented
using f0 as defining polynomial. We find that h lifts to K0 as z + 1 of norm
22 · 32 · 52 · 23 · 1037437, corresponding to the factorization in O0

(z + 1) = 〈3, x+ 4〉2〈2, x3 + x2 + x+ 3〉〈5, x+ 6〉2〈23, x+ 1〉〈1037437, x+ 1〉.

All logs were known from the first phase (including that of the degree-two ideal
above 2), but that of norm 1037437 that we needed to descend. Finally,

vlog(h) = 6948023766431672832537048942111617 mod `.
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Now, consider the target made of the decimals of π
t = 3141592653589793238X4 + 4626433832795028841X3+

9716939937510582097X2 + 4944592307816406286X + 2089986280348253421.

After 20,000 seconds we find that the lift of h9002259 t has a smooth norm and
corresponding ideal factorization

〈2, x3 + 2〉2〈41, x+ 11〉〈43, x+ 21〉〈3471899, x+ 3245828〉
〈37276061, x+ 17122378〉〈3115088134901, x+ 1265257252254〉

〈366996697855783, x+ 268803256185002〉
〈377568478750783, x+ 9644708969240〉
〈4811620104558151, x+ 2380670555180752〉
〈120866356812660071, x+ 98064663938425303〉
〈4133950459282418267, x+ 1195413435698177697〉.

All ideals of norm > 37276061 had to be re-expressed in terms of prime ideals
of smaller norm. Contrary to the relation collection step, we can re-express the
elements by looking for a relation given by a degree 1 polynomial, and therefore
use the program las_descent of the CADO-NFS package [176], which took
11,958 seconds, finally leading to

vlog(t) = 2842707450406843989059381483536738 mod `.

Note that we could use ideals of inertia degree larger than 1 whose logarithms
would be known from the first step, though they rarely pop up at this stage,
except for the smallest ones. Re-expressing these ideals would require to find a
relation given by a polynomial of degree at most 2.

Summary of the computation

We summarize in Table 8.3 the running time of the four main steps of our
computation using a three-dimensional relation collection.

Part Time (CPU days)
Polynomial selection 15
Relation collection 359

Linear algebra 11.5
Individual logarithm 0.37

Total 386

Table 8.3 – Timing for each part of the computation of the discrete logarithm
in Fp5 of 324 bits.

8.2.3 Extension of degree 6
The experiments in this section have been done with our C implementation of
the three-dimensional sieving that we made available in the CADO-NFS official
repository [176] (commit 089d552...). In the file README.nfs-hd, instructions
are given to reproduce all our experiments. The polynomial selection based on
the criteria and constructions that we explained in Section 4.1 was carried out
by Aurore Guillevic. All the running times are given after normalization for a
single core at 2 GHz.
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Computation with a 240-bit example of the literature

Polynomial selection and relation collection. Our first experiment fol-
lows the two previous computations made by Zajac [185] and Hayasaka et al. [94]
for a 40-bit prime p = 1081034284409, yielding ` = 389545041355532555398291.
They used different sieving algorithms but the same polynomial pair, the same
smoothness bounds and the same sieving region for the polynomials a. With
these parameters, the Murphy E value computed with our description is about
2−24.5 with Zajac’s parameters and 2−21.6 for Hayasaka’s parameters. The dif-
ference between the two is due to the special-Q sieve.

We selected our own polynomials. In this small field, the best polynomial
selection appears to be the asymmetric JLSV1 method with the explicit Galois
action of order 6 given by x 7→ −(2x+1)/(x−1). We chose f0 = x6 +91354x5 +
228370x4 − 20x3 − 228385x2 − 91348x+ 1 and f1 = 23667000x6 + 6549182x5 −
338632045x4−473340000x3−16372955x2+135452818x+23667000. We selected
the smoothness bounds and the sieving region in order to reduce the total sieving
time. The sizes of norms are about 115 bits on the f0-side and 117 bits on the
f1-side, after subtracting the contribution of the special-Q. We sieved all the
prime ideals r of inertia degree 1 less than 219. The thresholds are set to 265.
We obtained 1312416 raw relations with 12.3% duplicates. These results are
summarized in Table 8.4.

Zajac [185] Hayasaka et al. [94] Our work
Polynomials JLSV0 JLSV0 JLSV1
Special-q sieve No Yes Yes

Enumeration algorithm Line sieve Line sieve and
FK method in 3D

Line, plane and
space sieves

Sieving region
(global or per q) 219 × 214 × 1149 28 × 28 × 26 27 × 27 × 26

Smoothness bounds 222.64, 222.64 222.64, 222.64 223, 223

α values 1.7, 0 1.7, 0 −1.8, −11.5
Murphy-E 2−24.5 2−21.6 2−20.1

Number of special-Qs — 217.77 214.44

Order of the Galois action — — 6
Number of relations 1077984 937575 1151099
Number of needed relations 854833 893773 1128604
Timing (days) 24.13 21.94 0.90

Table 8.4 – Relation collections in Fp6 with p = 1081034284409.

Individual logarithm. We aim to compute the discrete logarithm of c = x5+
3141592653589793238x4 +4626433832795028841x3 +9716939937510582097x2 +
4944592307816406286x + 2089986280348253421 obtained from the decimals of
π, in basis g = x + 4, in Fp6 = Fp[x]/(ϕ(x)), where ϕ = f0 in this case. We
found

vlog(g) = 129187912983303781856450 and

vlog(c) = 284315950357331821900688,

so that gh vlog(c) = ch vlog(g) in Fp6 , where h = (p6 − 1)/` is the cofactor.
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Computation for a 300-bit finite field

We choose p = 1043035802846857, a 50-bit prime, and a large factor of p6 − 1
` = 1087923686020386502029991931593.

Polynomial selections. We report here the three different pairs of polyno-
mials we used to build Table 4.3:

• Conjugation:

• f0 = x12 + 12x11 + 40x10 − 20x9 − 245x8 − 200x7 + 344x6 + 592x5 +
250x4 − 20x3 − 26x2 + 1;
• f1 = 31943784x6 + 201177002x5 + 23785745x4 − 638875680x3

−502942505x2 − 9514298x+ 31943784.

• Sarkar–Singh with d = 2, yielding degrees (8, 6):

• f0 = 2x8 − 2x7 + 6x6 − 4x5 + 9x4 − 4x3 + 6x2 − 2x+ 2;
• f1 = 13305451020x6 + 13068452527x5 − 122274520263x4

+74260869388x3 − 122274520263x2 + 13068452527x+ 13305451020.

• Sarkar–Singh with d = 3, yielding degrees (9, 6):

• f0 = x9 + 2x8 − 5x7 − 9x6 + 13x5 + 24x4 − 2x3 − 15x2 − 7x− 1;
• f1 = 10266423024x6−6028238612x5−67420797690x4−2036172080x3

+116716740730x2 + 67626776756x+ 10266423024.

The JLSV1 polynomial pair we used is f0 = x6 − 867578x5 − 2168960x4 −
20x3 + 2168945x2 + 867584x + 1 and f1 = 2404471680x6 + 4874502674x5 −
23880818515x4−48089433600x3−12186256685x2 +9552327406x+2404471680,
with the same Galois action as for the smaller example.

Relation collection. Before performing this computation, we have compared
four different polynomial selections, summarized in Section 4.1.3.

For the relation collection, we kept the sieving region and the smoothness
bounds of the experiments and used the polynomials given by the asymmetric
JLSV1 polynomial selection. The 214.7 special-Qs are set on the f1-side. The
sieving bounds equal to 220.5 and the thresholds were set to 280. We obtained
4637772 raw relations that gave 4231562 unique relations after duplicate re-
moval; there are 4129438 ideals in the factor bases. The relation collection time
is 6.84 days.

Linear algebra. The block Wiedemann algorithm was used with parameters
m = 30 and n = 10. The cumulated running times for the various steps of the
algorithm were 32 core hours for the computation of the Krylov sequences, 3
core hours for the computation of the linear generator, and 4.5 core hours for
the computation of the solution vector (on a Xeon CPU E5520 @ 2.27GHz). We
got 3,650,023 logarithms of the factor bases.
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Individual logarithm. Keeping the notations of the previous computation,
g = x + 5, c = x5 + 3141592653589793238x4 + 4626433832795028841x3 +
9716939937510582097x2 + 4944592307816406286x+ 2089986280348253421. We
find

vlog(g) = 732699947206837604640731573271 and

vlog(c) = 766651238054992225393286911609.

Computation for a 389-bit finite field

Polynomial selection and relation collection. We have selected p =
31415926535897942161, a 65-bit prime, yielding a 130-bit large prime factor of
p6 − 1 to be ` = 986960440108936476119700657858603407761. For this compu-
tation, the asymmetric JLSV1 polynomial selection with the same Galois action
of order 6 seems to give anew the best polynomials in terms of Murphy-E value.
The polynomial pair is chosen to be f0 = x6 − 218117072x5 − 545292695x4 −
20x3+545292680x2+218117078x+1 and f1 = 288064804440x6+1381090484642
x5−868245854995x4 −5761296088800x3−3452726211605x2 +347298341998x+
288064804440. We selected the sieving region to be 210 × 210 × 28 and two
smoothness bounds equal to 228. The 218.7 special-Qs are set on the f1 side and
the average value of the norms are 2160 on the f0-side and 2173 on the f1-side.
The sieving bounds are equal to 221 and the thresholds are set to 290. The
relation collection required 790 days to find 29428326 unique relations after the
removal of less than 20.3% duplicates; this is greater than the 29261526 ideals
in the factor bases. This computation was done with commit da20cf....

Linear algebra. We used parameters n = 10 and m = 20 in the Block-
Wiedemann implementation in CADO-NFS. The cumulated numbers of core-
years for the various steps of the algorithm are 80 days for the Krylov sequences,
6 days for the linear generator computation, and 14 days for the final compu-
tation of the solution, which yielded the values of 19,805,202 logarithms of the
factor bases.

Individual logarithm. Keeping the notations of the previous computation,
g = x + 3, c = x5 + 3141592653589793238x4 + 4626433832795028841x3 +
9716939937510582097x2 + 4944592307816406286x+ 2089986280348253421. We
find

vlog(g) = 907665820983150820551985406251606874974 and

vlog(c) = 594727449023976898713456336273989724540.

Computation for a 422-bit finite field

The prime p is made of the first 22 decimals of the RSA1024 challenge. We have
p = 1350664108659952233509 and a large factor of p2− p+ 1, a factor of p6− 1,
is ` = 2802294215702278424000412713285495714623. This example comes from
the pairing context.
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Polynomial selection and relation collection. For this computation, we
select the sieving region to be 210×210×28 for each special-q. Both smoothness
bounds are equal to 229 and sieving bounds are equal to 221. We set the 223.6

special-Qs on the f0-side whose norm are larger than the corresponding sieving
bound. However, the Galois action of order 6 allows us to only consider 221.1

special-Qs and deduce the relations possibly given by the 5 other special-Qs
in the orbit for free. The average of the maximal norms is about 2151 on side
0 (the contribution of the special-Qs are removed) and 2203 on side 1. We
found about 72 M unique relations in about 8400 days on a single core (see
Table 8.5), after removing the 28.8% duplicates. The computation was ran
using clusters of Grid’5000 (https://www.grid5000.fr) with a method close
to the one described in Section 8.2.1.

We experimented a non-conventional trick. We designed two polynomials
with balanced coefficient size but unbalanced α: we were lucky and got α(f1) =
−14.4, but α(f0) = −2, 2 only. We put the special-Q on the side 0, so that the
norm after removing the contribution of the special-Q was of 142 to 191 bits. On
side 1, the norm growed from 175 to 245 bits. The two sides are unbalanced, but
because of the high effect of α on side 1 (equivalent to removing α/ log(2) = 48
bits), we got enough relations. We increased the threshold on side 1 from 110
to 115 then 121.

Cluster Threads/node Time (days)
Xeon E5-2650 2.00 GHz, 8 cores/CPU, 2 CPUs/node 31 4803
Xeon E5-2630 v3 2.40 GHz, 8 cores/CPU, 2 CPUs/node 31 1981
Opteron 6164 HE 1.70 GHz, 12 cores/CPU, 2 CPUs/node 23 588
Xeon X3440 2.53GHz, 4 cores/CPU, 1 CPU/node 4 518
Xeon L5420 2.50 GHz, 4 cores/CPU, 2 CPUs/node 7 312
Xeon X5570 2.93 GHz, 4 cores/CPU, 2 CPUs/node 8 198

Table 8.5 – Time per machine.

Linear algebra. We used a combination of Xeon E5-2630v3, E5-2650 and
E7-4850 v3 CPUs, connected with Infiniband FDR fabric. The block Wiede-
mann algorithm was used with parameters m = 30 and n = 10. The cumulated
running times for the various steps of the algorithm were 2.67 core-years for the
computation of the Krylov sequences, 0.1 core-year for the computation of the
linear generator, and 0.3 core-year for the computation of the solution vector.

Individual computation. Define Fp2 = Fp[i]/(i2 + 2). The curve E/Fp2 :
y2 = x3 + b, b = i + 2 is supersingular of trace p, hence of order p2 − p + 1.
Define Fp6 = Fp2 [j]/(j3 − b). The embedding field of the curve E is Fp6 .
We take G0 = (6, 875904596857578874580 + 221098138973401953062i) as a generator
of E(Fp2), and G1 = [651]G0 is a generator of E(Fp2)[`]. The distorsion map
φ : (x, y) 7→ (xp/(jb(p−2)/3), yp/(b(p−1)/2)) gives a generator G2 = φ(G1) of the
second dimension of the `-torsion, j ∈ Fp6 is a cube root of b. We take the
point P0 = (314159265358979323847 + 264338327950288419716i, 935658401868915145130 +
643077111364229171931i) ∈ E(Fp2) from the decimals of π, and P = 651P0 ∈
E(Fp2)[`] will be our challenge. We aim to compute the discrete logarithm
of P in basis G1. For doing so, we transfer the generator G1 and the point
P to Fp6 , as g = eTate(G1, φ(G1)) and t = eTate(P1, φ(G1)). The initial
splitting with Guillevic’s algorithms [86, 88] gave a 40-bit smooth generator

https://www.grid5000.fr
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g545513 = uvw (−141849807327922 − 5453622801413x + 54146406319659x2)
where u ∈ Fp2 , v ∈ Fp3 , w ∈ Fp so that their logarithm modulo ` is zero.
The norm of the latter term is 40-bit smooth and its factorization is equal
to 33 · 72 · 112 · 17 · 317 · 35812537 · 16941885101 · 17450874689 · 22088674079 ·
35134635829 · 85053580259 · 144278841431 · 1128022180423 · 2178186439939.

We also got a 44-bit smooth challenge: g58779t = uvw(−137392843659670−
34918302724509x + 13401171220212x2). The norm of the latter term is 44-bit
smooth: 821 ·3877 ·6788447 ·75032879 ·292064093 ·257269999897 ·456432316517 ·
1029313376969 · 3142696252889 · 4321280585357 · 18415984442663.

We obtained that vlog(g) = 1463611156020281390840341035255174419992
and vlog(t) = 1800430200805697040532521612524029526611, so that logg(t) =
vlog(t)/ vlog(g) mod ` = 752078480268965770632869735397989464592.

8.2.4 Summary of the computations
With these five computations, we can add some rows to Table 1.1.

Finite
field Date Bit

size Algorithm Cost:
CPU days Authors

F∗
p6

2017 422 NFS 9.52 · 103 Grémy, Guillevic,
Morain and Thomé [85]

2017 389 NFS 890 Grémy, Guillevic,
Morain and Thomé [85]

F∗
p5 2017 324 NFS 386 Grémy, Guillevic and Morain [84]

Table 8.6 – Discrete logarithm records on finite fields (complement to Table 1.1).



Conclusion

In this work, we have presented and studied variants of the number field sieve
algorithm that compute efficiently discrete logarithms in medium characteristic
finite fields. Among the four main steps of these algorithms, we focused on
the relation collection by presenting sieve algorithms in small dimensions, thus
providing an efficient way to perform this step. Even if the discrete logarithm
problem was at the heart of the emergence of the public-key cryptography, the
attention has been more focused on the factorization algorithms for a long time.
But this situation changed in the last few years, increasing the demand for
collecting relations in dimension larger than two.

For the classical version of NFS in medium characteristic, we have explained
how to compute the quality criteria of Murphy, the α and Murphy E quantities,
to take into account the specificities of the three-dimensional relation collection.
We also described a modification of the JLSV1 polynomial selection to take into
account the special-Q-method by unbalancing the sizes of the coefficients with
respect to the size of the special-Qs.

We have also described our implementation of the relation collection for the
classical NFS algorithm, especially how the norms are initialized and how we
implemented the three sieve algorithms (line, plane and space sieves) we need
in three dimensions. Two of them, the generalized line and plane sieves, are
furthermore described and implemented to enumerate elements in lattices of
any dimensions.

Our implementation, combined with the quality criteria and the unbalanced
JLSV1 polynomial selection, allowed us to perform the relation collection for
five computations of discrete logarithms. A first computation in Fp6 redo the
record of the literature in less time, and the three others establish new records,
the largest one a 422-bit Fp6 . The implementation was also used to compute a
discrete logarithm in a 324-bit Fp5 , the first computation in this extension.

Finally, we proposed a general framework to sieve in any small dimensions,
where the three three-dimensional sieves are particular cases. In this general
framework, we described and analyzed two algorithms. We introduce the notion
of transition vector to generalize the vectors produced in Franke-Kleinjung’s
algorithm, and a weaker notion called nearly-transition vector. The major
difference between the two proposed algorithm is the building of the nearly-
transition-vectors. Because of the pattern of nearly-transition-vector, this im-
plies a modification of the enumeration step, when no nearly-transition-vector
allows to reach a new valid point, called fall-back strategy. The globalntvgen
algorithm generates nearly-transition-vectors thanks to a skew basis reduction
on the whole basis of the lattice and always calls the fall-back strategy. The
localntvgen algorithm generates nearly-transition-vectors by mixing a skew
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basis reduction and some closest vector computations, and rarely calls an ag-
gressive fall-back strategy. The generalized line sieve is a particular case of both
algorithms, the generalized plane sieve and the space sieve are particular case
of localntvgen.

Perspectives
Sieve algorithms and relation collection. We have proposed two generic
algorithms to sieve in any small dimensions. Even though we propose a Sage
implementation to do some experiments on these algorithms, challenges still
remain which are:

• the initialization step with a Graver basis: computing a Graver basis of a
lattice is costly, but our problem is bounded and we can maybe modify the
algorithm to take into account these bounds and then have a faster than
expected initialization step to have the best nearly-transition-vectors,

• the initialization step: we have described initialization steps for both al-
gorithms, highly dependent on the results of a skew basis reduction, but
there exist maybe other mechanisms to produce nearly-transition-vectors
of better quality,

• the fall-back strategies: in globalntvgen, the strategy seems unnecessary,
which is not expected and we wonder if this strategy is really needed
theoretically,

• the running time: there does not exist an efficient implementation of both
algorithms to compare the running time to an existing algorithm (for
example, the enumeration of element of a lattice in a sphere, as in [92,
Algorithm 10], or the generalized plane sieve),

• the correctness: in our Sage implementation, we only focus on the cor-
rectness, and therefore use a probably too large number of calls to LLL
or skew LLL (especially for globalntvgen), but it impacts necessarily the
running time.

Besides the questions about the enumeration part itself, a problem occurs
in the relation collection with the initialization of the norms. If the algorithm
we proposed in Chapter 7 works for any dimension, its efficiency and accuracy
are not guaranteed for dimensions higher than 4. It is highly probable that, in
dimension 6 and higher, the cost of the initialization of norms will outmatch
the cost of sieving, whereas, classically, the initialization of the norms and the
cofactorization steps are negligible.

Implementation of the three-dimensional sieves. Even if our implemen-
tation allowed us to perform some record computations, it is not highly opti-
mized, and there exist many ways to improve our work:

• some routines can be implemented differently to provide a speed-up, such
as the computation of the Franke–Kleinjung vectors, which can be writ-
ten in assembly language, or the three-dimensional LLL, which can be
especially implemented for this dimension,
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• marking the hits can be done by using bucket sieving, which is more
efficient than updating each hit in the array, due to memory accesses that
are more cache-friendly,

• the storage of the small factors that divide a norm may allow us to decrease
the time spent in the cofactorization step.

ExTNFS. The exTNFS algorithm is for now the algorithm that provides
the best complexity to compute discrete logarithms in finite fields of medium
characteristics. Even if we omit the questions about the relation collection listed
above, proposing an implementation of this algorithm does not seem to be easy.
In addition to the challenges we have listed in Chapter 5.

First, the number of polynomial selection methods available to define the
number field is large, and we need to have at least a Murphy-E like function
to distinguish some of the best pairs. As the coefficients of the polynomials
are algebraic integers, it is also needed to develop algorithms that enumerate
and produce good polynomials: the description of a generic α-value is therefore
necessary.

Everything seems under control in the linear algebra and in the computation
of an individual logarithm. But, it is also what was said about these steps for
NFS-HD and we discovered during our computations several difficulties.

Special-Q method. In all dimensions, the special-Q method can be refined,
due to the quantity of parameters we need to tune. For example, it is widely
believed that the special-Qs must be larger than the sieving bound, not only for
practical reasons, but also because the number of duplicates using such special-
Qs was expected to be large: the last experiment using the CADO-NFS software
seems to invalidate this intuition (see for example commit f8350cb...).

An idea we found interesting to explore, especially in the context of (M)NFS
in higher dimension, is the possibility to force special-Qs in several sides, instead
of one side. The advantage is expected to be more visible when the norms in
some sides are balanced: instead of strongly decreasing the norm in one side
only, we will decrease the norms in all the sides, keeping the balancedness. To
build the equivalent of the special-Q-lattice where there is only one special-Q,
it suffices to compute the intersection of all the special-Q-lattices, which can
be done by solving a system of congruences thanks to the Chinese remainder
theorem.

Another perspective is to put two, or more, special-Qs on the same side [38]:
it may help to build a matrix with the left columns as sparse as possible, im-
plying that the filtering step can produce smaller matrices than expected.

It seems anyway that the relation collection step, and especially the special-
Q method, have more freedom than what we consider in this thesis.

MNFS. Despite its theoretical advantage to compute discrete logarithms,
there is no reported record using MNFS. This can be explained by some reasons:

• the constraints for the polynomial selection about the size of the coeffi-
cients, a common Galois action, a negative α-value are difficult to reach
with two polynomials, and even more difficult for more than two polyno-
mials,
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• the sizes of the actual records are maybe too small to observe a practical
gain by using more than two number fields,

• most of the implementations of NFS use two number fields, with some op-
timizations, especially during the cofactorization step, difficult to translate
to multiple number fields.

Even if the practical gain of using exTNFS seems to be more promising than
using MNFS, it can be still attractive to deal with MNFS, if the challenge about
the polynomial selection is solved, that is finding three or four good polynomials
instead of two. First, the effort to have an implementation of MNFS seems less
significant than for exTNFS. Starting from an implementation of NFS, the sieve
algorithms are already available, the main change arise in the cofactorization
step. Packing the matrix needs certainly some work to take into account the
columns coming from the new number fields and the related Schirokauer maps.
The descent can be done by considering only two number fields, at least for a
first computation. Secondly, some records, as the one of Gaudry, Guillevic and
Morain in Fp3 [73], use almost all the possible special-Qs range in both sides:
a larger computation will need certainly to increase the smoothness bounds, if
two number fields are used, but keeping the same smoothness bounds and using
a third number field can be considered. Finally, the exTNFS algorithm have
also multiple variant: understanding the behavior of MNFS in a simpler context
can be a first step to understand the impact of the multiple variant of exTNFS.
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Discrete Logarithm Computation. In: Coron, J.S., Nielsen, J. (eds.) EU-
ROCRYPT 2017. LNCS, vol. 10210, pp. 202–231. Springer (2017), an-
nouncement available at the NMBRTHRY archives, item 004934. Cited
pages 21, 23, 52, 55, 58, 150.

[66] Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge Uni-
versity Press (2012). Cited pages 12, 15, 180.

[67] Galbraith, S., Pollard, J., Ruprai, R.: Computing discrete logarithms
in an interval. Mathematics of Computation 82(282), 1181–1195 (2013).
Cited page 15.

[68] Galbraith, S., Wang, P., Zhang, F.: Computing elliptic curve discrete log-
arithms with improved baby-step giant-step algorithm. Cryptology ePrint
Archive, Report 2015/605 (2015). Cited page 14.

[69] Galway, W.: Robert Bennion’s ”hopping sieve”. In: Buhler, J. (ed.)
ANTS-III. LNCS, vol. 1423, pp. 169–178. Springer (1998). Cited page
31.

[70] Galway, W.: Dissecting a Sieve to Cut Its Need for Space. In: Bosma,
W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 297–312. Springer (2000). Cited
page 31.

[71] Galway, W.F.: Analytic Computation of the Prime-Counting Function.
Ph.D. thesis, University of Illinois (2004). Cited page 31.
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sur les corps finis. Ph.D. thesis, Université de Lorraine (2015). Cited pages
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Appendix A

Background on lattices

Lattices are not the main interest of this thesis, but we use results on lattices
in few chapters. We therefore recall a selection of results that will be useful in
this thesis, especially in Chapter 3, Chapter 4, Chapter 5 and Chapter 6.

A.1 Lattice and basis reduction
In this section, we introduce some notions on lattices and basis reduction we
used in the following section, and in some chapters of this thesis. We begin by
defining a restricted definition of a lattice. We follow here the definitions given
in [66, Chapter 16] and in [172, Chapter 5]. In the following, if a vector u has
size n, we access to its coordinates are (u0, u1, . . . , un−1) by u[i] = ui, where i
is in [0, n[.

Definition A.1 (Lattice). Let B = {b0, b1, . . . , bn−1} be a linearly indepen-
dent set of vectors in Zm for some integers n and m ≥ n. The lattice generated
by B is the set Λ of integer linear combination of the bi. The set B is a basis of
the lattice, its rank is n and if m = n, the lattice is full rank.

The basis {b0, b1, . . . , bn−1}, whose elements are in Zm, of a lattice can be
written as a n × m matrix M with each row i represents the vector bi. In
the following, all the matrices representing a lattice will be written with this
convention.

Definition A.2 (Volume of a lattice). Let Λ be a lattice in Zm. The volume
of Λ is the volume of the fundamental parallelepiped generated by of any basis
of Λ. If Λ is full-rank and if M is a matrix of a basis of Λ, the volume of Λ is
equal to detM , denoted det Λ.

Lemma A.1 (Basis of a lattice). Let M and M ′ be two n ×m matrices rep-
resenting the basis vector of a lattice, for some integers m and n. These two
matrices represent the same lattice if and only if there exist a n×n unimodular
matrix U such that M ′ = UM .

A common way to study lattices is to deal with a short and nearly orthogonal
lattice basis. An algorithm to find such a basis is the LLL algorithm, that
computes an LLL reduced basis, defined in Definition A.3, that is close to reach
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these two requirements. Let u and v be two vectors of Qm. We denote by 〈·|·〉
the scalar product between two elements of Qm defined by 〈u|v〉 = u[0]v[0] +
u[1]v[1] + · · · + u[n − 1]v[n − 1]. The classical norm of u is defined as ‖u‖ =√
〈u|u〉. The infinity norm of an element u is defined as the maximum of the

magnitude of its coefficient, say ‖u‖∞ = max0≤i<n(|u[i]|).

Definition A.3 (LLL reduction). Let B = {b0, b1, . . . , bn−1} be a basis of
a lattice in Zm. The Gram-Schmidt orthogonalization of B is the orthogonal
family b∗0, b∗1, . . . , b∗n−1 of Qm defined as b∗i = bi −

∑i−1
j=0 µi,jb

∗
j where µi,j =

〈bi|b∗j 〉/‖b∗j‖2. The basis B is LLL reduced with factor (δ, η), δ in ]1/4, 1[ and
η in [1/2,

√
δ[, if:

Size reduction for 0 ≤ j < i < n, |µi,j | < η,

Lovász condition for 0 < i < n, ‖b∗i ‖2 ≥ (δ − µ2
i,i−1)‖b∗i−1‖2.

We can compute a LLL-reduced basis with factor (δ, 1/2) in polynomial time
thanks to the LLL algorithm [128].

For a n-tuple (w0, w1, . . . , wn−1), the weighted scalar product is equal to
〈u|v〉w = w2

0u[0]v[0]+w2
1u[1]v[1]+· · ·+w2

n−1u[n−1]v[n−1]. A basis B is skew-
LLL reduced with factor (δ, η) and weight w the LLL reduction with factor (δ, η)
which uses instead of the classical scalar product the weighted scalar product.
Remark A.1. To simplify our notation, we say that a basis is LLL reduced if
the basis is LLL reduced with factor (99/100, 1/2). We also indistinctly denote
a skew-LLL reduced basis by the term weighted reduced basis or skew reduced
basis.

We now recall bounds on some specific vectors of a lattice.

Theorem A.1 (Minkowski first theorem). Let Λ be a full-rank lattice of rank
n, the norm λ1 of the shortest vector, with respect to the classical norm, is less
or equal to

√
n(|det Λ|)1/n. The norm λ∞1 of the shortest vector, with respect to

the infinity norm, is less or equal to |det Λ|1/n.

Definition A.4 (Succesive minima). Let Λ be a lattice of rank n. The succes-
sive minima of this lattice are the n real λi such that, for i in [1, n], there exist
i linearly independent vectors of the lattice whose norm is less or equal to λi.

Theorem A.2 (Minkowski second theorem). Let Λ a full-rank lattice of rank
n, the product of the n successive minima is less or equal to nn/2|det Λ|.

A.2 Sublattices and translate
Definition A.5 (Sublattice). Let Λ0,Λ1 be lattices in Zm of the same rank n.
The lattice Λ1 is a sublattice of Λ0 if, for all x in Λ1, x is also in Λ0.

Let M0,M1 be n × m matrices that represent respectively a basis of the
lattices Λ0 and Λ1. If Λ1 is a sublattice of Λ0 then there exists a n×n matrices
B such that M1 = BM0.

Definition A.6 (Translate of a lattice). Let Λ be lattices in Zm of rank n
generated by a basis {b0, b1, . . . , bn−1}. A translate of Λ by a vector x in Zm
is the set x plus linear integer combinations of the bi.
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Let M be a n × m matrices that reprensents a basis of a lattice Λ. The
elements of a translate of Λ can be respresented as (a0, a1, . . . , am−1)M + x,
with a0, a1, . . . , am−1 integers.

A.2.1 Hard problems in lattices
Definition A.7 (Shortest vector). Let Λ be an lattice in Zm. The shortest
vector is the non-zero vector v of Λ such that ‖v‖ is minimal.

A good approximation of the shortest vector in a lattice can be computed us-
ing LLL: with an LLL-reduced basis with factor (δ, η) of a lattice Λ of rank n, the
norm of the shortest vector basis is not larger than (1/(δ−η2))(n−1)/4(det Λ)1/n

following [141, Theorem 1]. The squared norm of the first non-zero basis vector
given by a LLL reduction of factor (δ, 1/2) is no more than 1/(δ−1/4)n−1 times
that of the shortest vector in the lattice [166, Theorem 1] (the case δ = 3/4 has
been proved in the original article about LLL [128, Proposition 1.6]).

Definition A.8 (Closest vector). Let Λ be an lattice in Zm. Let t be a vector
in Qm. The closest vector of t is the vector v of Λ such that ‖t− v‖ is minimal.



Appendix B

A small NFS
implementation

This implementation can be found at https://github.com/lgremy/smallnfs.
P.<x> = ZZ[]; l = 3141592653589793238462773; p = 2 * l + 1; d = 3;
B = [4096, 4096]; I =[2ˆ11, 2ˆ11]; H = [2ˆ7, 2ˆ7]; fbb = [B[0] // 4, B[1] // 4];
thresh = [B[0]ˆ3, B[1]ˆ3]

# ---------- Utilities ----------
# Pseudo ideal factorization
def pseudo_ideal_facto(a, rel):

facto = []
for i in rel:

if a[1] % i[0] == 0:
facto.append(((i[0], P(0)), i[1]))

else:
Q.<y> = GF(i[0])[]
for fac in Q(a).factor():

if fac[0].degree() == 1:
facto.append(((i[0], P(fac[0])), i[1]))

return facto

# Square and multiply
def pow_mod(a, n, f):

if n == 0:
return 1

elif n == 1:
return a

elif n % 2 == 0:
return pow_mod((a * a) % f, n / 2, f)

else:
return (a * pow_mod((a * a) % f, (n - 1) / 2, f)) % f

# aˆ(lb*(p-1)/l) == bˆ(la*(p-1)/l)
def assert_rat_side(a, la, b, lb, p, l):

assert(power_mod(a, lb * (p - 1) // l, p) == power_mod(b, la * (p - 1) //
l, p))

# Build the matrix associated to an ideal
def ideal_matrix(ideal):

return matrix([[ideal[0], 0], ideal[1].coefficients(sparse=False)])

# ---------- Polynomial selection ----------
# Base m with f0 of degree 1 and lc(f0) == 1
def pol_sel(m, d, p):

f0 = x - m
f1 = [0] * (d + 1)
f1[d] = p // mˆd
r = f1[d] * mˆd
for i in range(d - 1, -1, -1):

f1[i] = (p - r) // mˆi
r = r + f1[i] * mˆi

f1 = P(f1)
return (f0, P(f1))

def build_ideal(poly, q, lc, lcp):
ideal = []
avoid = []
if poly.discriminant() % q != 0:

if lc % q == 0 and lcp % q != 0:
ideal.append((q, P(0))) # q is purely projective

if lc % q == 0 and lcp % q == 0:
avoid.append(q)
return (ideal, avoid)

Q.<y> = GF(q)[]
for fac in Q(poly).factor():
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if fac[0].degree() == 1 and fac[1] == 1:
ideal.append((q, P(fac[0])))

else:
avoid.append(q)

return (ideal, avoid)

# Build factor basis
def build_fb(f, B):

avoid = []; F = []
for i in range(len(f)):

avoidtmp = []
Ftmp = []
poly = f[i]
lc = poly.leading_coefficient()
lcp = poly.coefficients(sparse=False)[poly.degree() - 1]
for q in primes(B[i]):

(ideals, avoids) = build_ideal(poly, q, lc, lcp)
for k in ideals:

Ftmp.append(k)
for k in avoids:

avoidtmp.append(k)
avoid.append(avoidtmp)
F.append(Ftmp)

return (F, avoid)

# ---------- Relation collection ----------
# Return True if F is B-smooth and do not have factor in avoid
def is_smooth_and_avoid(N, B, avoid):

if N == 0:
return (False, 0)

if N == 1:
return (False, 0)

fac = N.factor()
if fac[len(fac) - 1][0] < B:

for f in fac:
if f[0] in avoid:

return (False, 0)
return (True, fac)

return (False, 0)

# Compute norm
def norm(a, f):

return abs(a.resultant(f))

# Line sieve
def line_sieve(p, r, H, L, side):

x0 = 0
for e1 in range(0, H[1]):

e0 = x0
while e0 < H[0]:

if e0 >= -H[0]:
L[e0 + H[0]][e1][side] = L[e0 + H[0]][e1][side] / p

e0 = e0 + p
e0 = x0 - p
while e0 >= -H[0]:

if e0 < H[0]:
L[e0 + H[0]][e1][side] = L[e0 + H[0]][e1][side] / p

e0 = e0 - p
x0 = x0 + r
if x0 >= H[0]:

x0 = x0 - p

# Arrange matrix special-q
def arrange_matrix_spq(M):

coeff = []
if M[0][1] < 0:

coeff.append([-1, 0])
else:

coeff.append([1, 0])
if M[1][1] < 0:

coeff.append([0, -1])
else:

coeff.append([0, 1])
M = matrix(coeff) * M
if M[0][1] > M[1][1]:

M.swap_rows(0, 1)
return M

# Verify smoothness of a0 + a1 * x
def good_rel_spq(a0, a1, f, q, qside, avoid):

n = norm(a0 + a1 * x, f[0])
if qside == 0:

n = n / q
fac0 = is_smooth_and_avoid(n, B[0], avoid[0])
n = norm(a0 + a1 * x, f[1])
if qside == 1:

n = n / q
fac1 = is_smooth_and_avoid(n, B[1], avoid[1])
return fac0[0] and fac1[0]

# Root in q-lattice
def root_qlattice(M, i):

inv = M[0][0] - M[0][1] * i[1][0]
if inv % i[0] == 0:

return None
return ((i[1][0] * M[1][1] - M[1][0]) * (M[0][0] - M[0][1] *

i[1][0]).inverse_mod(i[0])) % i[0]
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# Special-q + line sieve
def spq_sieve(ideal, qside, f, B, H, F, avoid, fbb, thresh, nb_rel):

Q.<y> = GF(ideal[0])[]
assert(Q(ideal[1]) in [fac[0] for fac in Q(f[qside]).factor()])
M = ideal_matrix(ideal).LLL()
M = arrange_matrix_spq(M)
R = []
L = [[[norm(P(list(vector((i0, i1)) * M)), f[0]), norm(P(list(vector((i0,

i1)) * M)), f[1])] for i1 in range(0, H[1])] for i0 in range(-H[0],
H[0])]

for i in F[0]:
if i[0] > fbb[0]:

break
r = root_qlattice(M, i)
if r != None:

line_sieve(i[0], r, H, L, 0)
for i in F[1]:

if i[0] > fbb[1]:
break

if (i[1].degree() == 1):
r = root_qlattice(M, i)
if r != None:

line_sieve(i[0], r, H, L, 1)
for i0 in range(-H[0], H[0]):

for i1 in range(0, H[1]):
if (L[i0 + H[0]][i1][0] < thresh[0] and L[i0 + H[0]][i1][1] <

thresh[1]):
[a0, a1] = list(vector((i0, i1)) * M)
if gcd(a0, a1) == 1 and a1 >= 0:

if good_rel_spq(a0, a1, f, ideal[0], qside, avoid):
R.append((a0 + a1 * x, norm(a0 + a1 * x, f[0]).factor(),

norm(a0 + a1 * x, f[1]).factor()))
if len(R) == nb_rel:

return R
return R

# Remove duplicate relations
def dup(L):

D = {}
for i in L:

D[i[0]] = (i[1], i[2])
L = []
for i in D:

L.append((i, D[i][0], D[i][1]))
return L

# High level function to perform relation collection
def find_rel_spq_sieve(f, B, H, F, avoid, fbb, thresh):

R = []
for i in F[1]:

if i[0] > fbb[1] and i[1].degree() == 1:
R = R + spq_sieve(i, 1, f, B, H, F, avoid, fbb, thresh, -1)

return dup(R)

# ---------- Linear algebra ----------
# Number of SMs
def nb_SM(f):

return len(f.real_roots()) + (len(f.complex_roots()) -
len(f.real_roots())) / 2 - 1

# Compute SM exponent
def sm_exp(f, l):

Q.<y> = GF(l)[]
return lcm([lˆi[0].degree() - 1 for i in Q(f).factor()])

# Compute SM
def compute_SM(a, sm_1_exp, nb_sm_1, l, f):

Q.<y> = IntegerModRing(lˆ2)[]
aq = Q(a); fq = Q(f); L = []
tmp = list(P(pow_mod(aq, sm_1_exp, fq)) - 1)
i = len(tmp) - 1
while len(L) < nb_sm_1:

L.append(Integer(tmp[i] / l))
i = i - 1

return L

# Row transformation
def row_trans(r, F, column_1, nb_sm_1, sm_1_exp, l, f1):

L = [0 for i in range(len(F[0]) + len(F[1]) + column_1)]
for ideal in pseudo_ideal_facto(r[0], r[1]):

L[F[0].index(ideal[0])] = ideal[1]
for ideal in pseudo_ideal_facto(r[0], r[2]):

L[len(F[0]) + F[1].index(ideal[0])] = -ideal[1]
if column_1 == 1:

L[len(F[0]) + len(F[1])] = 1
if nb_sm_1 != 0:

L = L + compute_SM(r[0], sm_1_exp, nb_sm_1, l, f1)
return L

# Build the matrix of relations
def build_mat(R, F, f1, l, column_1, nb_sm_1, sm_1_exp):

M = []
for r in R:

L = row_trans(r, F, column_1, nb_sm_1, sm_1_exp, l, f1)
M.append(L)

return matrix(GF(l), M)

# Virtual logarithms
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# Return all the indices such that L[i] == k
def index(L, k):

return [i for i in range(len(L)) if L[i] == k]

# Find not known virtual log
def not_known(K):

nk = []
for i in range(1, K.dimensions()[0]):

L = list(set(list(K[i])))
for j in L:

if j != 0:
nk = nk + index(list(K[i]), j)

return nk

# Associate virtual logarithm to ideal
def associate(F, K, nk, column_1, nb_sm_1):

V = [{}, {}]; col1 = -1; SM1 = [-1 for i in range(nb_sm_1)]
for i in range(len(F[0])):

if i not in nk:
V[0][F[0][i]] = K[i]

for i in range(len(F[1])):
if i + len(F[0]) not in nk:

V[1][F[1][i]] = K[len(F[0]) + i]
if column_1 == 1:

col1 = K[len(F[0]) + len(F[1])]
for i in range(nb_sm_1):

SM1[i] = K[i + len(F[0]) + len(F[1]) + column_1]
return (V, col1, SM1)

# ---------- Individual logarithm ----------
# Compute individul logarithm of an ideal above next_prime(B[0]) in K0 (always exists)
def ind_log_0(f, B, H, F, avoid, V, col1, fbb, thresh, SM1, sm_1_exp, l):

q = next_prime(B[0])
# Assume we can have a relation with the previous setting
spq = build_ideal(f[0], q, f[0].leading_coefficient(),

f[0].coefficients(sparse=False)[f[0].degree() - 1])[0][0]
# Take the first relation
r = spq_sieve(spq, 0, f, B, H, F, avoid, fbb, thresh, -1)[0]
pseudo_ideal_facto_0 = pseudo_ideal_facto(r[0], r[1])
coeff_spq = Integer(pseudo_ideal_facto_0[[i[0] for i in

pseudo_ideal_facto_0].index(spq)][1])
vlog = (-(sum([V[0][i[0]] * i[1] for i in pseudo_ideal_facto_0 if i[0] in

V[0].keys()])) + (sum([V[1][i[0]] * i[1] for i in
pseudo_ideal_facto(r[0], r[2])])) - col1)

if len(SM1) != 0:
sm = compute_SM(r[0], sm_1_exp, len(SM1), l, f[1])
for i in range(len(SM1)):

vlog = vlog - sm[i] * SM1[i]
vlog = vlog % l
vlog = (vlog * coeff_spq.inverse_mod(l)) % l
V[0][spq] = vlog

# ---------- Main ----------
def main(d, p, B, H, l, fbb, thresh):

print("Polynomial selection")
m = floor(pˆ(1/(d + 1)))
f = pol_sel(m, d, p)

# Build factor basis
(F, avoid) = build_fb(f, B)

print("Relation collection")
R = find_rel_spq_sieve(f, B, H, F, avoid, fbb, thresh)
assert(len(R) >= len(F[0]) + len(F[1]))

print("Linear algebra")
sm_1_exp = sm_exp(f[1], l)
nb_sm_1 = nb_SM(f[1])
column_1 = 0
# Add a column of 1 that resprents the ideals that divide the leading
# coefficient
if f[1].leading_coefficient() != 1:

column_1 = 1
M = build_mat(R, F, f[1], l, column_1, nb_sm_1, sm_1_exp)
K = M.right_kernel().basis_matrix()

# Virtual logarithm
nk = not_known(K)
K = K[0]
(V, col1, SM1) = associate(F, K, nk, column_1, nb_sm_1)

print("Individual logarithm")
ind_log_0(f, B, H, F, avoid, V, col1, fbb, thresh, SM1, sm_1_exp, l)
# Assert on rational side
for i in range(len(V[0].keys())):

for j in range(i + 1, len(V[0].keys())):
assert_rat_side(Integer(V[0].keys()[i][0]),

Integer(V[0][V[0].keys()[i]]), Integer(V[0].keys()[j][0]),
Integer(V[0][V[0].keys()[j]]), p, l)

return (V, col1, SM1)
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Polynomial selection for the
NFS

In this chapter, we try to investigate how the α quantity is computed, according
to Definition 3.1. We just recall that, given a irreducible polynomial f over Z
and an integer t > 1, α(f) =

∑
` prime αl(f), with for all prime `,

α`(f) = ln(`)
[
A(val`(n), n ∈ Z)

− A(val`(Resx(f(x), a(x)), where a ∈ Z[x],deg a = t− 1, a irreducible))
]
,

where A(·) is the average value and val` the `-adic valuation.

C.1 First term
Let us investigate the first term of α`(f) which is A(val`(n), n ∈ Z). This term is
equal to 1/(`−1) and the sketch of the proof is the following. A random number
n is divisible by ` with probability 1/`, is divisible by `2 with probability 1/`2

and so on. The average valuation of ` is therefore
∑∞
i=1 1/`i = 1/(1−1/`)−1 =

1/(`− 1).

C.2 Second term

C.2.1 Two dimensional case
Simplified case

Let us now investigate the second term, firstly on a monic polynomial of degree
one, say f(x) = x−m. We know that Resx(f(x), a(x)) = a0 +ma1. In this case,
the condition to have a irreducible is translated into gcd(a0, a1) = 1, which can
be written as ` does not divide gcd(a0, a1).

If a0 and a1 are in [0, `[, there exists `2 − 1 pairs (a0, a1) that fit in the
condition on the polynomial a. For any a1, if a0 ≡ −a1m mod `, then ` divides
the resultant between f and a, otherwise it does not. If a1 = 0, the previous
modular equation does not have a solution. If a1 6= 0, there exists only one
solution for the modular equation. Then, there exist `− 1 polynomial a0 + a1x
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such that their resultant with f is divisible by `: the average value is therefore
equal to (`− 1)/(`2 − 1).

If a0 and a1 are in [0, `2[, there exists `4 − `2 pairs (a0, a1) that fit in the
condition on the polynomial a. The divisibility of the resultant between a and
f by `2 occurs when a0 ≡ −ma1 mod `2. If ` does not divides a1, there exists
one value for a0 such that a0 ≡ −ma1 mod `2. If ` divides a1, then ` does not
divide a0 and a 6≡ −a1m mod ` and there is no valuation. The number of valid
polynomial a such that their resultant with f is divisible by `2 is therefore `2−`:
the average value is then (`2 − `)/(`4 − `2) = (`− 1)/(`(`2 − 1)).

By continuing to consider that a0 and a1 are in [0, `k[, we can show that the
average value for this set is (`− 1)/(`k(`2 − 1)). To have the complete value of
the second term, we need to compute the sum of all the average value of the
different sets [0, `k[2, that is

∑∞
k=1(`− 1)/(`k(`2 − 1)) = `/(`2 − 1).

General case

If ` does not divide the discriminant of f nor its leading coefficient, the previous
result can be extended to any non linear polynomial, by lifting all the unique
roots thanks the Hensel’s lemma: the second term is equal to `/(`2 − 1). If the
roots are multiple, the formula change a bit, see for example [11, Section 3.2.3]:
an α function that covers all the case is available in CADO-NFS.

Another strategy is to evaluate this term thanks to a Monte-Carlo approach:
this is the choice of the implementation available in Magma.

C.2.2 Three dimensional case
We now reproduce the proof of formula to compute αl(f) in some situation.

General case

Proposition C.1 ([72, Proposition 2]). Let f be an irreducible polynomial over
Z and ` be a prime not dividing the leading coefficient of f or its discriminant.
Then, in the case of sieving in dimension t = 3,

αl(f) = ln(`)
`− 1

(
1− n1

`(`+ 1)
`2 + `+ 1 − 2n2

`2

(`+ 1)(`2 + `+ 1)

)
,

where n1 and n2 are the number of linear (respectively, degree-2) irreducible
factors of f modulo `.

Proof. The condition on the leading coefficient allows us to avoid questions
about projective roots, and the condition on the discriminant implies that any
irreducible factor of f modulo ` can be lifted to an irreducible factor of f of the
same degree over the `-adic ring Z`.

Let ϕ be a quadratic irreducible factor of f over Z`. Let a be a quadratic
polynomial with coefficients in Z whose content is not divisible by `. Then the
`-adic valuation of the resultant of ϕ and a is 2k, where k is the largest integer
such that a is proportional to ϕ modulo `k. The number of a with coefficients in
[0, `k − 1] that satisfy this condition is `k − `k−1 since they are the polynomials
of the form γϕ, where γ is not divisible by `. Furthermore, the number of
polynomials a with coefficients in [0, `k−1] whose content is not divisible by ` is
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`3k − `3k−3. Hence the proportion of those polynomials for which the valuation
of its resultant with ϕ is at least 2k is (`k − `k−1)/(`3k − `3k−3). Finally, the
contribution due to ϕ in the expected valuation of the resultant of f and a is∑
k≥1 2(`k − `k−1)/(`3k − `3k−3) = 2`2/((`2 − 1)(`2 + `+ 1)).
The case of the contributions of roots of f is handled similarly: the number

of polynomials a with coefficients in [0, `k − 1] whose content is not divisible
by ` and that give a value divisible by `k when evaluated at an `-adic root
ρ of f is `2k − `2k−2, since they are all of the form (x − ρ)(αx − β), with
α and β in [0, `k − 1] and not simultaneously divisible by `. Therefore the
contribution of a root ρ in the expected valuation of the resultant of f and a is∑
k≥1(`2k − `2k−2)/(`3k − `3k−3) = (`2 + `)/(`3 − 1).

Workaround in particular cases

When the proposition does not apply, the natural workaround is to compute
the factorization of f over the `-adic field (see for instance [46, Chapter 6.1])
and for each factor do the same kind of study as in the proof of the proposi-
tion. One could argue that, since computing the `-maximal order is required
for converting relations to rows of the matrix, this is appropriate. However,
computing α must be as fast as possible because we might want to investigate
billions of polynomials. In the classical two-dimensional case, a very simple lift-
ing is enough to deduce the average `-adic valuation. In the following section,
we sketch a similar approach that, in many cases, will give the average valuation
without having to perform a full `-adic factorization.

Finally, the case where ` divides the leading coefficient of f is dealt with
by adding the contribution of the (possibly multiple) root 0 in the reverted
polynomial f(1/x)xdeg f .

Computing the average `-adic valuation

In the case of two-dimensional sieving, the average `-adic valuation can be com-
puted with the small recursive lifting function given as Algorithm C.1. This is
what is done, for instance, in the CADO-NFS implementation. This is admit-
tedly much simpler and faster that running a full factorization of f over the
`-adics, which is advantageous when many polynomials have to be tested.

The equivalent for three-dimensional sieving is not as simple, but can still
be faster in many cases than a full `-adic factorization. Let us give first the
modifications to be made for computing the contribution of irreducible factors of
degree 2 modulo `. The normalization factor C must be changed to `2/(`2+`+1).
Then all the computations must no longer be done over the integers, but over
the unramified extension Q`2 of Q` of degree 2. Only the roots genuinely over
this extension are considered in the for loop, but their computation is still
done modulo `: in step 4, we are now doing polynomial factorization over F`2 .
Finally, in step 6, the contribution to add is 1/(`2− 1), and in step 8, the result
of the recursive call must be multiplied by C/`2 instead of C/`. We obtain
Algorithm C.2.

We emphasize that this algorithm returns the correct answer, even in the
case where the degree-2 factor is a multiple factor of f modulo `; knowing the
nature of the `-adic factorization above this multiple factor is not required.
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The case of a multiple factor of degree 1 is less straightforward, because the
contribution to the average valuation will not be the same for a split, inert or
ramified factor above this root. Still, in most cases, and in particular when
the root is only a double root, it is possible to adapt Algorithm C.1 and get
the correct answer. We skip the details; the corresponding code is given in the
nfs-hd directory of the CADO-NFS repository.

Algorithm C.1: av val dim2

Average `-adic valuation,
two-dimensional case.

input : a polynomial f , a
prime `

output: the average `-adic
valuation of
Resx(f(x), a− bx)

1 v ← `-valuation of the content
of f ;

2 f ← f/`v ;
3 C ← `/(`+ 1); v ← Cv ;
4 for r in Roots(f) modulo ` do
5 if r is a simple root then
6 v ← v + C/(`− 1);
7 else
8 v ← v + C/`×

av val dim2(f(r +
`x), `);

9 end
10 end
11 return v;

Algorithm C.2: av val dim3 deg2

Average `-adic valuation, three-
dimensional case; contribution of ir-
reducible factors of degree 2.

input : a polynomial f over Q`2 , a
prime `

output: the contribution to the average
`-adic valuation of
Resx(f(x), ax2 + bx+ c), coming
from irreducible factors of
degree 2 mod `

1 v ← minimum `-valuation of the
coefficients of f ;

2 f ← f/`v ;
3 C ← `2/(`2 + `+ 1); v ← Cv ;
4 for r in Roots(f) modulo ` do
5 at top-level of recursion, if r is in Q`,

skip it;
6 if r is a simple root then
7 v ← v + C/(`2 − 1);
8 else
9 v ← v + C/`2×

av val dim3 deg2(f(r + `x), `);
10 end
11 end
12 return v;
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Complexity analysis of
Zajac’s MNFS

In this appendix, we analyze the MNFS variant described by Zajac in [185,
Section 6.4] to compute discrete logarithms in fields Fpn = FQ of medium char-
acteristic. We recall that the number of number fields is denoted by V , the
polynomials used in this variant are defined by:

• the polynomial f0 is an irreducible polynomial with small coefficients, say
in O(1), of degree n,

• the polynomials fi, where i is in [1, V [, are defined by fi = f0 + phi,
where the hi are polynomials of degree less than n such that the fi are
irreducible.

We essentially follow the analyses given by Barbulescu–Pierrot in [24] and
Pierrot in [143]. In medium characteristic, we have p = LQ(lp, cp), where lp is in
]1/3, 2/3[, then, the extension degree n is equal to 1/cp(logQ/ log logQ)1−lp).
Let Bi the smoothness bound on side i, E be the bound on the coefficients of the
polynomial a of degree t−1 mapped in the number fields. We assume that we can
express the parameters V = LQ(1/3, cv), B0 = LQ(1/3, cb), Bi6=0 = LQ(1/3, c′b),
E = LQ(lp − 1/3, cecp) and t = ct/cp(logQ/ log logQ)2/3−lp .

Let first consider the high-level point of view of the complexity of an index
calculus, assuming that the individual logarithm step is negligible. The number
of ideal involved in a relation on side i is equal to π(Bi) ≤ Bi, where π is the
prime counting function. The cost of the linear algebra is asymptotically equal
to (B0 + (V − 1)Bi)2 ≤ (B0 + V Bi)2 using the Wiedemann algorithm and the
cost of the relation collection is bounded, using the ECM algorithm to perform
the cofactorization step, by Et(LB0(1/2,

√
2) + (V − 1)LBi(1/2,

√
2)) = O(Et)

following Proposition 1.1. In a first approximation which can be suboptimal,
see for example the analysis in Section 1.3.2, these two costs are balanced, that
is Et = (B0 + V Bi)2. We require in addition that V Bi = B0: it seems anew
suboptimal to have the bounds Bi smaller than B0 while the norms on the
side 0 are lower than the norms on other sides (but it allows us to perform a
simple complexity analysis), we therefore get that Bi = LQ(1/3, cb − cv) and
asymptotically, we have

Et = B2
0 , (D.1)

which can be translated by cect = 2cb.
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In addition, during the relation collection, we must produce as many rela-
tions as the number of unknown ideals, that is around 2B0 = O(B0) relations.
Let P be the probability of getting a relation, that is having a smooth norm on
side 0 and one in another side i where i is in [1, V [. We must have EtP = B0,
that is, using Equation (D.1),

B = 1/P. (D.2)

With these parameters, we can give an upper bound on the norms in each
number field. On side 0, the upper bound N0 is equal to (deg a+deg f0)!‖f0‖deg a

∞
‖a‖deg f0
∞ ≈ ‖f0‖t∞‖a‖n∞ = En. On the other side, the upper bound Ni is

equal to Enpt. Expressed with the L function, we have N0 = LQ(2/3, ce) and
Ni = LQ(2/3, ce + ct). At this step, we can try to minimize the product of the
norms, but this strategy seems suboptimal and we continue our computation.
Using the bounds on the norms, we can estimate the probability P of getting
a relation: this probability is equal to the product of the probability that the
norm of a polynomial a on side 0 is B0-smooth and the probability that the
norm of a in at least one other side is Bi-smooth. Using Corollary 1.1, the
probability of smoothness on side 0 is equal to LQ(1/3,−1/3 · ce/ct). The
probability of smoothness in at least one other side is equal to 1− (1− Pi)V ≈
V Pi, where Pi is the probability of a norm to be Bi-smooth, that is V Pi =
LQ(1/3, cv − 1/3 · (ce + ct)/(cb − cv)). Putting together, the probability P is
equal to LQ(1/3,−1/3 ·ce/ct+cv−1/3 ·(ce+ct)/(cb−cv). Using Equation (D.1)
and Equation (D.2), we get cb = 2/(3ct) − cv + (2cb + c2

t )/(3ct(cb − cv)). By
expanding this equation, we get

g(ct, cb, cv) = 3ctc2
b − 4cb + 2cv − 3ctc2

v − c2
t = 0. (D.3)

The cost of the MNFS algorithm is equal to LQ(1/3, 2cb), that is the cost of
the linear algebra since it is equal to the cost of the relation collection. We want
to minimize this cost, that is minimize f(ct, cb, cv) = 2cb, under the constraint in
Equation (D.3). Using the method of Lagrange multipliers, we get the following
system, where λ is non-zero real number.

∂f

∂cv
+ λ

∂g

∂cv
= λ(2− 6ctcv) = 0

∂f

∂cb
+ λ

∂g

∂cb
= 2 + λ(6ctcb − 4) = 0

∂f

∂ct
+ λ

∂g

∂ct
= λ(3c2

b − 3c2
v − 2ct) = 0

.

From the first and third rows of this system, we deduce that ct = 2/(6cv)
and cb =

√
c2
v + 4/(18cv). Putting the value of these two variables, in Equa-

tion (D.3), we get −972c6
v − 252c3

v + 1 = 0. We deduce that cv = ((2
√

13 −
7)/54)1/3, then cb = ((46 + 13

√
13)/54)1/3. The complexity of this MNFS vari-

ant is therefore in

LQ

(
1/3,

(
4(46 + 13

√
13)

27

)1/3

≈ 2.40

)
.

This is exactly the complexity announced in [24], recalled in Section 4.5.2,
using the JLSV1 polynomial selection instead of the JLSV0 one.



Appendix E

Sieving algorithms

E.1 Two-dimensional sieve algorithms
In this section, we give the algorithms of the line sieve and the lattice sieve. Let
Λ be a lattice whose a basis follows the one given in Chapter 6. Let H be a
sieving region of shape [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [.

E.1.1 Line sieve
We give, in Algorithm E.1, the algorithm of the line sieve in the case of the
volume of Λ is less or larger than HM

0 −Hm
0 . When the volume of the lattice Λ

is larger than HM
0 −Hm

0 , the only difference with Algorithm E.1 is the append
of c to the list L: we need to verify before this append if c is in H. This is
because the transition-vectors in this case are not the same as the case when
the volume of Λ is less than HM

0 −Hm
0 .

E.1.2 Lattice sieve
Let the volume of Λ be larger than HM

0 −Hm
0 . In this case, we apply the sieve

of Franke–Kleinjung, described in Algorithm E.2. Function reduce-qlattice

is described in Section 6.2.2.

E.2 General algorithm
In this section, we will give the algorithm of the functions we have not describe
in Section 6.4. We recall the general structure of the sieve algorithm:

Initialization.

1. Given H and Λ, the procedure findV returns nearly-transition-
vectors and skew-small-vectors.

2. Set c to 0 and k to t− 1

Enumeration.

3. While c[k] < HM
k :
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Algorithm E.1: A line sieve algorithm when the volume of Λ is less
than HM

0 −Hm
0 .

input : the basis {b0, b1} of Λ, the sieving region H
output: list of elements in Λ ∩H
c← 0; L← ∅;
while c[1] < HM

1 do
ct ← c;
while c[0] < HM

0 do L← L ∪ c; c← c+ b0;
c← ct − b0; // Avoid to append two times ct to L
while c[0] ≥ Hm

0 do L← L ∪ c; c← c− b0;
c← c+ b0; // c is again in the sieving region

c← c+ b1;
end
c← −b1;
while c[1] ≤ Hm

1 do
ct ← c;
while c[0] < HM

0 do L← L ∪ c; c← c+ b0;
c← ct − b0; // Avoid to append two times ct to L
while c[0] ≥ Hm

0 do L← L ∪ c; c← c− b0;
c← c+ b0; // c is again in the sieving region

c← c− (b1 − b0);
end
return L;

(a) Report c.
(b) If k > 0, call recursively this enumeration procedure (sieve)

with input c and k − 1.
(c) Add v to c, where v is a k–nearly-transition-vector, such that

c lands in Hk−1 (add)
(d) If not possible, the fall-back strategy (fbAdd) try to produce a

new element in H, and then a new k–nearly-transition-vector,
by using k–skew-small-vectors.

4. Recover c as it was when the procedure was called.
5. While c[k] ≥ Hm

k :
(a) Perform Item 3a, Item 3b, Item 3c and Item 3d by considering

c− v instead of c+ v.

With the functions described in Section 6.4 and the functions below, we
instantiate this general description in Algorithm E.3 and Algorithm E.4, that is
the first and second sieve algorithms we describe in Section 6.4.
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Algorithm E.2: Lattice sieve.
input : the basis {b0, b1} of Λ, the sieving region H
output: list of elements in Λ ∩H
(u,v)← reduce-qlattice(b0, b1);
c← 0; L← ∅;
// increasing c[1]
while c[1] < HM

1 do
L← L ∪ {c};
if Hm

0 − u[0] ≤ c[0] < HM
0 then

c← c+ u;
else if Hm

0 ≤ c[0] < HM
0 − v[0] then

c← c+ v;
else

c← c+ u+ v;
end

end
// avoid to report 0 two times

if Hm
0 ≤ 0 < HM

0 + u[0] then
c← −u;

else if Hm
0 + v[0] ≤ 0 < HM

0 then
c← −v;

else
c← −(u+ v);

end
// decreasing c[1]
while c[1] ≤ Hm

1 do
L← L ∪ {c};
if Hm

0 ≤ c[0] < HM
0 + u[0] then

c← c− u;
else if Hm

0 + v[0] ≤ c[0] < HM
0 then

c← c− v;
else

c← c− (u+ v);
end

end
return L;



196 Appendix E. Sieving algorithms

Function fbSub1(k, c, H, S, Λ)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set S of skew-small-vectors, the basis {b0, b1, . . . , bt−1}
of Λ

output: a new element in H ∩ Λ or an element out of H
while c[k] ≥ Hm

k do
L← ∅;
for v ∈ S[k] do

D ← CVA(c− v,Λ, k − 1);
for d ∈ D do

if c− v − d ∈ H then return c− v − d;
L← L ∪ {c− v − d};

end
end
set c to an element of L;

end
return c; // c is out of H

Function sub1(k, c, H, T , S, Λ)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors, the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ

output: a new element in H ∩ Λ or an element out of H
1 for v ∈ T [k] do
2 if c− v ∈ Hk−1 then return c− v;
3 end
4 if k > 0 then
5 d← fbSub1(k, c,H, S,Λ);
6 if d ∈ H then T [k]← T [k] ∪ {c− d}; S[k]← S[k] ∪ {c− d};
7 c← d;
8 else
9 c← (Hm

0 − 1, Hm
1 − 1, . . . ,Hm

t−1 − 1); // c is out of H
10 end
11 return c;
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Function sieve1(k, c, H, T , S, Λ, L)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors, the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ, the list L
that contains the elements in H ∩ Λ

ct ← c;
while ct[k] < HM

k do
if ct ∈ H then L← L ∪ {ct};
if k > 0 then sieve1(k − 1, ct,H, T, S,Λ, L);
ct ← add1(k, c,H, T, S,Λ);

end
ct ← sub1(k, c,H, T, S,Λ);
while ct[k] ≥ Hm

k do
if ct ∈ H then L← L ∪ {ct};
if k > 0 then sieve1(k − 1, ct,H, T, S,Λ, L);
ct ← sub1(k, c,H, T, S,Λ);

end

Algorithm E.3: globalntvgen.
input : the basis {b0, b1, . . . , bt−1} of Λ, the sieving region H, the

level ` with respect to H and Λ, the bounds on the small
linear combinations A

output: list of visited point in Λ ∩H
(T, S) = findV1(Λ,H, `,A); L← ∅;
sieve1(t− 1,0,H, T, S,Λ, L);
remove duplicates of L;
return L;
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Function fbSub2(k, c, H, S, Λ, `)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set S of skew-small-vectors, the basis {b0, b1, . . . , bt−1}
of Λ, the level ` with respect to H and Λ

output: a new element in H ∩ Λ or an element out of H
while c[k] < HM

k do
L← ∅;
for v ∈ S[k] do

if ` = t− 1 then
D ← CVA(c− v,Λ, t− 2);

else
D ← CVA(c− v,Λ, `);

end
for d ∈ D do

if c− v − d ∈ H then return c− v − d;
L← L ∪ {c− v − d};

end
end
set c to an element of L;
if k − 1 > ` then

d← fbAdd2(k − 1, c,H, S,Λ, `); if d ∈ H then return d;
d← fbSub2(k − 1, c,H, S,Λ, `); if d ∈ H then return d;

end
end
return c; // c is out of H

Function sub2(k, c, H, T , S, Λ, `)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors, the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ, the level
` with respect to H and Λ

output: a new element in H ∩ Λ or an element out of H
1 for v ∈ T [k] do
2 if c− v ∈ Hk−1 then return c− v;
3 end
4 if k > ` or k = t− 1 then
5 d← fbSub2(k, c,H, S,Λ, `); c← c− d;
6 if c ∈ H then T [k]← T [k] ∪ {c− d}; S[k]← S[k] ∪ {c− d};
7 c← d;
8 else
9 c← (Hm

0 − 1, Hm
1 − 1, . . . ,Hm

t−1 − 1); // c is out of H
10 end
11 return c;
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Function sieve2(k, c, H, T , S, Λ, L, `)
input : an integer k defining which nearly-transition-vectors are

considered, the current element c ∈ H ∩ Λ, the sieving region
H, the set T of nearly-transition-vectors, the set S of
skew-small-vectors, the basis {b0, b1, . . . , bt−1} of Λ, the list L
that contains the elements in H∩Λ, the level ` with respect to
H and Λ

ct ← c;
while ct[k] < HM

k do
if ct ∈ H then L← L ∪ {ct};
if k > 0 then sieve2(k − 1, ct,H, T, S,Λ, L, `);
ct ← add2(k, c,H, T, S,Λ, `);

end
ct ← sub2(k, c,H, T, S,Λ, `);
while ct[k] ≥ Hm

k do
if ct ∈ H then L← L ∪ {ct};
if k > 0 then sieve2(k − 1, ct,H, T, S,Λ, L, `);
ct ← sub2(k, c,H, T, S,Λ, `);

end

Algorithm E.4: localntvgen.
input : the basis {b0, b1, . . . , bt−1} of Λ, the sieving region H, the

level ` with respect to H and Λ, the bounds on the small
linear combinations A

output: list of visited point in Λ ∩H
(T, S) = findV2(Λ,H, `,A); L← ∅;
sieve2(t− 1,0,H, T, S,Λ, L, `);
remove duplicates of L;
return L;
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E.3 Suitability of Graver basis
In this section, we will proof that the transition vectors listed in Section 6.4.4
when the volume r of Λ is less than I0 are in the Graver basis of Λ.

Let us consider (r, 0, 0, . . . , 0), the 0–transition-vector. The vector (r, 0, 0, . . . ,
0) is obviously in the Graver basis. Indeed, in the orthants such that the first
coordinate of the vectors is positive, there does not exist two non-zero vectors
u and v of Λ in the orthant such that u+ v = (r, 0, 0, . . . , 0).

Let us now consider the set of 1–transition-vectors described in Section 6.4.4
is equal to {b1, b1 − b0}. We recall that b1 is equal to (λ0, 1, 0, 0, . . . , 0), where
λ0 is in [0, r[. In the positive orthant, where b1 lies, we cannot express b1 as a
sum of two non-zero vectors u and v of this orthant. Indeed, let u be equal to
(c0, 0, 0, . . . , 0) and v = (c1, 1, 0, 0, . . . , 0), where c0 and c1 are two non-negative
integers. Due to the shape of our lattice, the integer c0 is necessarily a non-zero
multiple of r, and, because 0 < λ0 < r, the integer c1 will be negative, which is
not possible. Then, the element b1 is in the Graver basis of Λ. We can prove,
for all 0 < i < t, that bi is in the Graver basis of Λ.

The element b1−b0 = (λ0−r, 1, 0) is also an element of this Graver basis. In-
deed, by trying to express (λ0−r, 1, 0) as the sum of two elements (c0, 0, 0, . . . , 0)
and (c1, 1, 0, 0, . . . , 0), where c0 and c1 are negative, the integer c0 is necessarily
a positive multiple of −r, and then c1 must be positive, which are not allowed.

Then, the vector b0, the vectors bi and bi−b0, where i is in [1, t[, are in the
Graver basis of Λ.
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Resultants

F.1 Univariate polynomials
We recall here the algorithm to compute the resultant of univariate polynomials
in Algorithm F.1, following the description given in [46, Algorithm 3.3.7]. Let a
and b be two polynomials of Z[X] where b 6= 0 and deg a ≥ deg b. The goal of the
pseudo-division function (pseudodiv) is to compute (lc b)deg a−deg b+1

a = bq+r,
with q and r two polynomials of Z[X] with deg r < deg b.

Function pseudodiv(a, b).
Input: two polynomials a and b of Z[X]
Output: two polynomials q (quotient) and r (remainder) of Z[X]
r ← a; q ← 0; e = deg a− deg b+ 1;
while deg r ≥ deg b do

s← (lc r)xdeg r−deg b;
q ← (lc b)q + s;
r ← (lc b)r − sb;
e = e− 1;

end
k ← (lc b)e;
q ← kq; r ← kr;

F.2 Bivariate polynomials
Computing resultants between bivariate polynomials is one of the needed op-
erations to perform the conjugation and A polynomial selection. Classically,
the resultant between two bivariate integer polynomials is computed with an
evaluation and interpolation strategy, as in Algorithm F.2.

Let a and b be two bivariate polynomials of Z[X][Y ]. Let dXa and dXb be
the degree of a and b in the variable X, and dYa and dYa the degree in Y . The
goal of the following algorithm is to compute ResX(a, b). This resultant is a
polynomial in Y of degree max(dYa , dYb )(dXa + dXb ): to compute it, we need to
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Algorithm F.1: Resultant between a and b.
Input: two polynomials a and b of Z[X].
Output: the resultant of a and b.
if a = 0 or b = 0 then

return 0
end
g ← 1; h← 1; s← 1; t← (cont a)deg b(cont b)deg a;
a← a/ cont a; b← b/ cont b;
if deg a < deg b then

swap a and b;
if deg a ≡ 1 mod 2 and deg b ≡ 1 mod 2 then

s← −1;
end

end
while deg b > 0 do

d← deg a− deg b;
if deg a ≡ 1 mod 2 and deg b ≡ 1 mod 2 then

s← −s;
end
compute r, the remainder of the pseudo division of a and b (see
Function pseudodiv);
a← b;
b← r/(ghd);
g ← lc a;
h← h(1−d)gd;

end
if b = 0 then

return 0
else

h← h1−deg a(lc b)deg a;
return s · t · h

end

compute max(dYa , dYb )(dXa +dXb )+1 resultants between polynomials by specifying
the variable Y in a and b.
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Algorithm F.2: Resultant of bivariate polynomials ResX(a, b).
Input: two polynomials a and b of Z[X][Y ].
Output: the resultant, in Y , of a and b.
N ← max(dYa , dYb )(dXa + dXb ) + 1;
yeval ← random value;
L← ∅;
for i in [0, N [ do

aeval(X)← a(X, yeval);
beval(X)← b(X, yeval);
// If deg(aeval) 6= dXa or deg(beval) 6= dXb , the value yeval is

not a valid point to perform the interpolation

while deg(aeval) = dXa or deg(beval) = dXb do
yeval ← yeval + random value;
aeval(X)← a(X, yeval);
beval(X)← b(X, yeval);

end
L← L ∪ {(yeval,Res(aeval, beval))};
yeval ← yeval + random value;

end
/* interpolate can be computed by any interpolation

algorithm, as the Lagrange interpolation */

return interpolate(L);



Résumé en français

La cryptologie est la science du secret. Cette science se divise en deux dis-
ciplines principales : la cryptographie, qui décrit des systèmes de chiffrement,
et la cryptanalyse, qui étudie la sécurité de ces systèmes. Avant 1976, la cryp-
tographie était uniquement symétrique, à savoir que la clef de chiffrement est
la même que celle permettant le déchiffrement. Ce type de chiffrement a un in-
convénient majeur, celui de la distribution des clefs. En effet, garantir que la clef
commune entre deux parties ne soit connue que d’elles seules semble impossible
sans une rencontre physique de celles-ci. En 1976, Diffie et Hellman, aidés de
Merkle [95], décrivent l’échange de clef Diffie-Hellman [55], un protocole per-
mettant de partager à travers un moyen de communication publique une clef
commune. Ce protocole marque le début de la cryptographie asymétrique.

1 Le problème du logarithme discret
La sécurité de l’échange de clefs proposé par Diffie et Hellman repose sur

un problème mathématique supposé difficile, le problème du logarithme discret.
D’autres problèmes supposés difficiles peuvent être utilisés en cryptographie
asymétrique, comme par exemple la factorisation d’entier ou la recherche de
vecteurs courts dans un réseau. Dans cette thèse, nous nous concentrons sur le
problème du logarithme discret défini dans les corps finis, dont l’énoncé est le
suivant :

Définition 1 (Problème du logarithme discret). Soient Fpn un corps finis, g
un générateur du groupe multiplicatif F∗pn et h un élément de F∗pn . Le problème
du logarithme discret réside dans le calcul de l’entier k tel que gk = h, aussi
exprimé k = logg(h).

L’utilisation du problème du logarithme discret a amené le développement de
plusieurs systèmes de chiffrement, comme le chiffrement et la signature ElGamal,
la cryptographie basée sur les couplages et celle basée sur les tores. Pour que
tous ces systèmes soient considérés comme sûr, une condition nécessaire est que
le problème du logarithme discret soit difficile.

Depuis 1993 et le crible linéaire de Adleman et Demarrais [4], le problème
du logarithme discret dans tous les corps finis peut être résolu grâce à un algo-
rithme de complexité sous-exponentielle, qui s’exprime sous la forme Lpn(α, c) =
exp((c+ o(1))(log pn)α(log log pn)1−α) [147, 126]. Tous les algorithmes de com-
plexité sous-exponentielle permettant le calcul d’un logarithme discret sont de
la famille des algorithmes par calcul d’indice [123]. Dans ces algorithmes, le but
est de trouver le logarithme discret d’un sous ensemble d’éléments dit petits,
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puis d’exprimer le logarithme d’un grand élément à partir des petits éléments.
La réalisation de ces deux parties de l’algorithme est divisée en trois étapes,
quand une représentation aisée du corps a été définie, en effectuant :

1. la recherche de relations : l’objectif est de produire un nombre suffisant
de relations du type

∑
i ei logg fi =

∑
j ej logg fj , où les fi et fj sont des

petits éléments ;
2. l’algèbre linéaire : les logarithmes inconnus des petits éléments deviennent

les inconnues d’un système d’équations linéaires, tirées des relations ;
3. le calcul d’un logarithme individuel : le logarithme du grand élément est

exprimé en fonction de logarithmes de plus petits éléments jusqu’à n’uti-
liser que des éléments dont le logarithme est connu.

Si la représentation du corps fini est bien choisie, la complexité du meilleur
algorithme pour calculer un logarithme discret dépend du type de corps finis
ciblé. Elle est estimée :

— quasi-polynomiale pour les corps finis de petites caractéristiques, souvent
p = 2 ou p = 3 ;

— en Lpn(1/3, (64/9)1/3) pour les corps finis de grandes caractéristiques, par
exemple n = 1 ;

— en Lpn(1/3, (64/9)1/3) pour les corps finis de moyennes caractéristiques
quand n est composé, et en Lpn(1/3, (96/9)1/3) quand n est premier.

Dans les cas de moyenne et grande caractéristiques, l’algorithme permettant
d’atteindre la complexité en L(1/3) est le crible algébrique, number field sieve
(NFS) en anglais. Initialement proposé pour factoriser de grands entiers [127],
NFS a été étendu au calcul de logarithmes discrets, tout d’abord pour les corps
premiers [77] puis pour d’autres corps finis. L’algorithme NFS est un algorithme
par calcul d’indice : cependant, l’étape de définition du corps finis devient une
étape à elle seule, appelée sélection polynomiale.

Pour évaluer l’impact des algorithmes sous-exponentiels, les cryptographes
essayent d’établir des records de calculs, pour indiquer quelles sont les tailles
de clefs obsolètes, et réévaluer la sécurité des systèmes de chiffrement existants.
Avec Guillevic, nous avons créé une base de donnée recensant tous ces records,
et plus généralement, tous les calculs de logarithmes discrets [83].

2 L’algorithme NFS en moyenne caractéristique
L’une des spécificités de NFS est la façon dont sont collectées les relations.

Cette recherche de relations se déroule par l’intermédiaire de corps de nombres
K0 et K1. Soient f0 et f1 deux polynômes à coefficients entiers et irréductibles de
degrés supérieurs ou égaux à n, définissant K0 et K1. Soit ϕ un facteur commun
de degré n de f0 et f1 modulo p. Soit a un polynôme irréductible de degré t−1.
Si la factorisation de a dans K0 implique des idéaux de petites normes, et s’il en
est de même dans K1, alors une relation dans Fpn = Fp[x]/ϕ(x) impliquant de
petits éléments de Fpn peut être déduite. Le choix de f0 et f1 est crucial pour
assurer les meilleures probabilités de friabilité dans K0 et K1.

Cependant, utiliser des corps de nombres implique également quelques modi-
fications dans la phase d’algèbre linéaire, par exemple l’ajout de colonnes denses
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Q[x]/f0(x) ∼= K0 K1 ∼= Q[x]/f0(x)

Z[x]

Fpn = Fp[x]/ϕ(x)

Figure 1 – Diagramme de NFS pour le calcul de logarithme discret dans Fpn .

dans la matrice pour l’algèbre linéaire provenant notamment des applications
de Schirokauer.

La recherche de relation, représentée en Figure 1 est une étape impor-
tante de NFS, et depuis son utilisation dans le crible quadratique par Pome-
rance [148], elle est réalisée efficacement en utilisant des algorithmes de cribles.
Un désavantage de ces algorithmes est la mémoire qu’ils occupent : en effet, ils
doivent stocker la valeur des normes de tous les polynômes a qui ont une chance
de produire une relation. Comme ce nombre est suffisamment important pour
ne pas tenir en mémoire, Pollard a proposé la méthode par special-Qs [145],
qui permet de diviser l’espace des polynômes a en ne considérant que ceux dont
la factorisation dans un des corps de nombres fait intervenir l’idéal Q, ce qui
représente un sous-réseau de l’ensemble initial des polynômes a et ainsi un sous-
ensemble de plus petite taille des polynômes a pouvant produire une relation.
En itérant sur plusieurs special-Qs, l’espace original des polynômes a est presque
entièrement couvert.

Cette méthode par special-Qs permet également de simplifier le calcul d’un
logarithme individuel. Après une première phase de réécriture de la cible, vue
comme un élément d’un des corps de nombres, chaque idéal Q dont le logarithme
n’est pas connu est exprimé en fonction d’idéaux de taille plus petite en forçant
Q dans la factorisation en idéaux à la manière d’un special-Q, et ainsi de suite
jusqu’à ce que la cible ne soit exprimée qu’en utilisant les idéaux de logarithmes
connus.

En 2006, Joux, Lercier, Smart et Vercauteren décrivent la première version
de NFS en moyenne caractéristique (NFS-HD) [106], d’une complexité Lpn(1/3,
(128/9)1/3 ≈ 2.43). En 2014, Barbulescu et Pierrot atteignent une complexité
en Lpn(1/3, 2.40) avec l’algorithme MNFS, un algorithme proposé initialement
pour la factorisation [48] et pour les corps premiers [47], qui exploite plusieurs
corps de nombres au lieu de deux pour diminuer la complexité. Nous analy-
sons une variante de MNFS, proposée par Zajac en 2008 [185] utilisant une
autre sélection polynomiale que celle utilisée par Barbulescu et Pierrot, qui
atteint cette même complexité. En 2015, Barbulescu, Gaudry, Guillevic et Mo-
rain proposent une nouvelle sélection polynomiale, permettant d’atteindre la
complexité Lpn(1/3, (96/9)1/3 ≈ 2.21). En combinant cette dernière sélection
polynomiale et MNFS, Pierrot obtient la complexité Lpn(1/3, 2.16). Enfin, Sar-
kar et Singh [160] obtiennent dans le cas médian entre moyenne et large ca-
ractéristiques une meilleure complexité, grâce à une nouvelle sélection polyno-
miale. Leurs caractéristiques sont listées en Table 1.
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Variant deg f0 ‖f0‖∞ deg f1 ‖f1‖∞
JLSV0 n petit n p
JLSV1 n p1/2 n p1/2

JLSV2 n pn/(d2+1) d2 > n pn/(d2+1)

GJL d3 > n pn/(d3+1) d3 + 1 petit
Conjugation n p1/2 2n petit

A d5r > n pn/(d5(r+1)) d5(r + 1) petit

Table 1 – Sélections polynomiales pour NFS-HD dans Fpn , où d5 est un facteur
de n et r un entier supérieur ou égale à n/d5.

L’une des spécificité de NFS-HD réside dans la recherche de relations. Dans
le cas classique de la grande caractéristique, la complexité théorique est atteinte
en utilisant des polynômes a de degré un : la recherche de relation est réalisée
en dimension deux. Avec NFS-HD, le degré de ces polynômes peut être plus
grand. Cela implique quelques différences avec le cas classique, dans la sélection
polynomiale et la phase de crible.

Le meilleur type de sélection polynomiale se déduit en estimant la taille des
normes des polynômes a dans chaque corps de nombres K0 et K1. Cependant,
même si un seul type se détachait, le nombre de paires possibles est important,
et une ou plusieurs offriront les meilleures probabilités de friabilité. En deux di-
mensions, Murphy [140] a décrit deux fonctions permettant de calculer la qualité
d’une paire de polynômes. Avec Gaudry et Videau [72], nous avons étendu en
trois dimensions ces critères notamment le critère α qui permet de quantifier le
comportement d’un polynôme f modulo de petits premiers, ce qui implique que
les idéaux de petites normes seront nombreux, ces idéaux étant très présents
dans la factorisation en idéaux.
Définition 2 (Fonction α de Murphy). Soit f un polynôme irréductible à co-
efficients entiers et un entier t > 1. La quantité α du polynôme f a pour valeur
α(f) =

∑
` premier α`(f), avec pour tous premiers `,

α`(f) = ln(`)
[
1/(`− 1)

− A(val`(Resx(f(x), a(x)), où a ∈ Z[x],deg a = t− 1, a irréductible))
]
,

où A(·) est la valeur moyenne et val` la valuation `-adique.
Dans le cas de la dimension trois, nous explicitons le terme α`. Si ` est un

premier qui ne divise ni le coefficient dominant de f ni son discriminant, alors le
second terme vaut, où n1 et n2 sont le nombre de racines simples, respectivement
multiples, de f modulo ` :

α`(f) = ln(`)
`− 1

(
1− n1

`(`+ 1)
`2 + `+ 1 − 2n2

`2

(`+ 1)(`2 + `+ 1)

)
,

Nous avons également décrit une modification de la sélection polynomiale
JLSV1 permettant de tenir compte de la méthode par special-Qs, forcé ici du
côté 1, impliquant un déséquilibre contrôlé entre ‖f0‖∞ = p1/2−ε et ‖f1‖∞ =
p1/2+ε, où ε > 0.

Nous savons donc maintenant sélectionner les meilleurs polynômes pour la re-
cherche de relations en dimension trois. Cependant, la recherche de relations ef-
fectuée avec des cribles adaptés en trois dimensions semble encore trop coûteuse.
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Zajac propose un premier crible en ligne en trois dimensions, dont le temps de
crible est presque deux fois supérieur à celui de l’algèbre linéaire [185] dans le
calcul d’un logarithme discret dans un Fp6 de taille 240 bits. Hayasaka, Aoki,
Kobayashi et Takagi, pour le même calcul, obtiennent un temps de recherche de
relations similaire, malgré un nouveau crible adapté à la dimension trois [94] et
l’utilisation de la méthode par special-Qs [93]. Pour améliorer ce temps de cal-
cul, nous avons proposé deux nouveaux cribles adaptés en trois dimensions [72] :
le plane sieve, une généralisation du crible de Franke et Kleinjung en deux di-
mensions [61], et le space sieve, un nouveau crible. Ces nouveaux algorithmes de
crible, combinés à la sélection polynomiale adapté pour la méthode par special-
Qs et réalisée par Guillevic, nous a permis de gagner un facteur supérieur à
vingt sur le temps de crible de l’exemple de Zajac.

L’algorithme NFS-HD n’est pas la seule variante de NFS qui nécessite une
recherche de relations en dimension plus grande que deux. En 2015, Barbulescu,
Gaudry et Kleinjung analysent l’algorithme tower NFS [22] (TNFS), une va-
riante proposé par Schirokauer [162], qui nécessite de chercher des relations en
dimension paire à partir de quatre, particulièrement efficace lorsque p a une
forme spéciale et pour la grande caractéristique. À ce propos, nous montrons
qu’une autre sélection polynomiale que celle originalement envisagée par les au-
teurs permet d’atteindre la complexité attendue. La même année, Kim et Barbu-
lescu décrivent l’algorithme extended TNFS [114] (exTNFS), qui s’attaque à la
moyenne caractéristique, avec une recherche de relations du même type, à savoir
de dimension paire. Le crible en ligne et le plane sieve s’étendent très naturel-
lement à n’importe quelle dimension, comme le montre notre implémentation
présente dans CADO-NFS [176]. Cependant, le space sieve a été conçu en di-
mension trois, et sa généralisation à toutes les dimensions semble plus difficile.
De plus, le space sieve ne serait pas toujours le meilleur algorithme en dimension
quatre. C’est pourquoi nous avons proposé un cadre général pour cribler dans
toutes les petites dimensions.

3 Algorithmes de cribles généralisés
Pour simplifier notre explication, nous ne considérons pas la méthode par

special-Qs dans le reste de notre explication. Soient a un polynôme de degré t−1
égal à a0 + a1x + · · · + at−1x

t−1 et a le vecteur des coefficients de a. Tous les
polynômes a dont la factorisation en idéaux dans K0 fait intervenir l’idéal R de
norme r ont leurs coordonnées décrites par un élément du réseau ΛR de dimen-
sion t et de base B = {(r, 0, 0, . . . , 0), (α0, 1, 0, 0, . . . , 0), (α1, 0, 1, 0, 0, . . . , 0), . . . ,
(αt−2, 0, 0, . . . , 0, 1)}, où les αi sont déterminés par l’idéal R. L’ensemble des
coefficients de a est borné par une région de crible H, définie par les intervalles
[Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · · × [Hm

t−1, H
M
t−1[. La longueur de ces intervalles sera

notée Ii = HM
i −Hm

i .
Nous allons nous appuyer sur la notion de densité des éléments du réseau

dansH. La région de crible a un volume fixe VH égal à I0I1 · · · It−1. La densité du
réseau ΛR de volume r correspond au nombre d’éléments estimés présents dans
l’intersection de ΛR avec H, soit VH/r. En dimension trois, quand le réseau est
très dense, r < I0, le crible en ligne est utilisé ; quand le réseau est moyennement
dense, r < I0I1, le plane sieve est utilisé ; dans les autres cas, le space sieve est
utilisé. Le crible en ligne peut bien évidemment être utilisé dans tous les cas,
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mais son efficacité sera réduite quand r > I0. Un des désavantages du space
sieve réside dans le caractère heuristique du crible : lors de l’énumération des
éléments de l’intersection du réseau ΛR et de la région de crible H, le space sieve
peut ne pas rapporter tous les éléments présents, bien qu’il en rapporte une
grande majorité. Pour ces trois cribles, nous définissons la notions de vecteurs
de transition approchés.

Définition 3. Soit k un entier de [0, t[. Un k-vecteur de transition approché est
un élément v 6= 0 de ΛR qui permet d’atteindre, à partir de a dans l’intersection
de ΛR et [Hm

0 , H
M
0 [×[Hm

1 , H
M
1 [× · · ·× [Hm

k , H
M
k [×Zt−(k+1), un nouvel élément

an = a+ v dans cette intersection, tel que les t− 1− k dernières coordonnées
de a et an soient égales et que la coordonnée an[k] soit plus grande que a[k].

Ces vecteurs de transition approchés sont l’analogue des vecteurs de Franke
et Kleinjung [61] mais ne capturent pas la condition qu’il n’existe pas d’élément
ayant une coordonné k entre celle de a et celle de an. Cependant, vérifier qu’un
vecteur est un vecteur de transition approché est aisé : essentiellement, si sa
coordonnées j est plus petite que Ij , alors le vecteur est un vecteur de transition
approché. La forme des vecteurs de transition approchés en dimension trois est
la suivante, où O(c) signifie proche de la valeur c :

— grande densité : les vecteurs de transition approchés ont une forme proche
de (O(r), O(1), O(1)).

— moyenne densité : les vecteurs de transition approchés ont une forme
proche de (O(I0), O(r/I0), O(1)).

— faible densité : les vecteurs de transition approchés ont une forme proche
de (O(I0), O(I1), O(r/(I0I1))).

En plus grande dimension, cette forme se généralise, étant donné le niveau
de densité ` : en dimension trois, la grande densité correspond à ` = 0, la
moyenne à ` = 1 et la faible à ` = 2. Étant donné un niveau de densité,
la forme générale sera, en simplifiant les notations en n’écrivant plus le O(·),
(I0, I1, . . . , I`−1, r/(I0I1 · · · I`−1), 1, 1, . . . , 1).

Fort de cette forme générale, nous allons décrire deux algorithmes permettant
de construire de tels vecteurs. Le premier, globalntvgen, effectue une réduction
de réseau déséquilibrée dans le sens d’obtenir des vecteurs de bases ayant la
forme recherchée. Il effectue ensuite de petites combinaisons linéaires entre ses
vecteurs pour augmenter le nombre de potentiel de vecteurs de transition ap-
prochés. Le second, localntvgen, n’effectue la réduction de base déséquilibrée
que sur les ` premier vecteurs. Après de petites combinaisons linéaires des vec-
teurs produits, il effectue une recherche de vecteurs proches de chacun des vec-
teurs n’ayant pas servi au calcul de la base réduite, dans cette même base
de ` vecteurs. Les modèles de vecteurs de transition approchés pour ses deux
différents algorithmes sont listés en Table 2.

Comme le space sieve, ces deux algorithmes ne permettent pas de garantir
une énumération exhaustive. De plus, à partir d’un élément de H ∩ ΛR, nous
n’avons aucune garantie qu’un des vecteurs de transition approchés permettent
de rester dans l’intersection. Dans ces cas, les deux algorithmes disposent de
stratégies pour générer de nouveaux vecteurs de transition approchés ou de
sortir � proprement � de l’intersection. Puisque les deux algorithmes génèrent
leurs vecteurs de transition approchés différemment, la stratégie de générations
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k globalntvgen localntvgen

0 (> 0, 0, 0, 0, 0, 0) (> 0, 0, 0, 0, 0, 0)
1 (·, > 0, 0, 0, 0, 0) (·, > 0, 0, 0, 0, 0)
2 (·, ·, > 0, 0, 0, 0) (·, ·, > 0, 0, 0, 0)
3 (·, ·, ·, > 0, 0, 0) (·, ·, ·, 1, 0, 0)
4 (·, ·, ·, ·, > 0, 0) (·, ·, ·, 0, 1, 0)
5 (·, ·, ·, ·, ·, > 0) (·, ·, ·, 0, 0, 1)

Table 2 – Modèles des k-vecteurs de transition approchés quand ` = 2.

de nouveaux vecteurs de transition approchés seront différentes. Pour pouvoir
réaliser ces stratégies, les deux algorithmes vont conserver tous les vecteurs
produits durant la phase de création des vecteurs de transition approchés, et
non pas seulement les vecteurs de transition approchés. Tous ces vecteurs seront
appelé vecteurs déséquilibrés.

Définition 4. Soit k un entier de [0, t[. Un k-vecteur déséquilibré est un élément
v 6= 0 de ΛR qui permet d’atteindre, à partir a de ΛR, un nouvel élément
an = a+v de ΛR, tel que les t− 1− k dernières coordonnées de a et an soient
égales et la coordonnée an[k] soit plus grande que a[k].

Soit a un élément de ΛR ∩H tel qu’aucun k-vecteur de transition approché
ne permette de rester dans ΛR ∩H. Soit v un k-vecteur de transition approché.
L’élément a+v est nécessairement en dehors de l’intersection de ΛR et H. Pour
essayer de trouver un nouveau k-vecteur de transition approché, l’élément a+v
est réduit par un vecteur d, un élément proche de a+v dans une certaine base,
qui sera définie suivant l’algorithme de crible utilisé. Plusieurs vecteurs proches
peuvent être utilisés pour tester différentes réductions.

Pour l’algorithme globalntvgen, la base pour chercher un vecteur proche
est constituée des k premiers vecteurs de B. Ainsi, les coordonnées 0 à k − 1
de a + v peuvent être modifiées, la coordonnée k étant modifiée par les k-
vecteurs déséquilibrés. Cette stratégie est appelée à chaque fois qu’un k-vecteur
de transition approché semble manquer.

Pour l’algorithme localntvgen, la base est composée des ` premiers vecteurs
de B. Ainsi, les coordonnées 0 à `− 1 sont modifiées, la coordonnée k étant mo-
difié par les k-vecteurs déséquilibrés. Comme les k-vecteurs déséquilibrés sont
creux, la stratégie est appelée récursivement sur les k−1-vecteurs déséquilibrés,
jusqu’à ce que k 6 `, quand les coordonnées des k-vecteurs déséquilibrés de-
viennent denses.

4 Implémentation et calculs records
Nous avons implémenté une recherche de relations en dimension trois, au

sein du logiciel CADO-NFS [176]. Nous détaillons nos choix d’implémentation et
expliquons comment les trois étapes de la recherche de relations sont effectuées :
l’initialisation des normes ; les trois cribles (en ligne, plane et space) qui diffèrent
dans leur implémentation de l’algorithme général des algorithmes globalntvgen
et localntvgen ; la cofactorisation avec les châınes d’ECM.

En partie grâce à cette implémentation, nous avons, avec Gaudry et Vi-
deau [72], et grâce à la sélection polynomiale réalisée par Guillevic, été capables
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de réaliser la recherche de relations dans des corps Fp6 de taille 300 et 389
bits. Ces calculs ont été complétés par l’algèbre linéaire et le calcul d’un loga-
rithme individuel dans un article coécrit avec Guillevic, Morain et Thomé et
nous avons établi un nouveau record dans un corps Fp6 de taille 422 bits. De
plus, avec Guillevic et Morain, nous avons réalisé le premier calcul complet dans
un corps Fp5 de taille 324 bits. Ces calculs sont résumés en Table 3

Corps
fini

Taille
(bits) Algorithme Coût

(jours CPU) Auteurs

F∗
p6

422 NFS 9, 52 · 103 Grémy, Guillevic,
Morain et Thomé [85]

389 NFS 890 Grémy, Guillevic,
Morain et Thomé [85]

F∗
p5 324 NFS 386 Grémy, Guillevic et Morain [84]

Table 3 – Records de calculs de logarithmes discrets.

5 Conclusion
Dans cette thèse, nous proposons une étude de la recherche de relations

pour NFS en moyenne caractéristique. Pour ce type de corps fini, la recherche
de relations doit se faire en dimension plus grande que deux pour atteindre la
meilleure complexité, que ce soit avec les variantes classiques de NFS autour de
sa description originale en 2006, ou avec l’algorithme plus récent exTNFS quand
n s’écrit sous la forme d’un produit ηκ, sous certaines conditions sur η et κ que
nous ne détaillerons pas ici. L’algorithme exTNFS est relativement jeune, et les
questions autour de cet algorithme, notamment pour avoir une implémentation
de celui-ci, sont grandes. Très brièvement, l’algorithme exTNFS exploite un
diagramme similaire à celui de la Figure 1, à ceci près que les ensembles Z et
Q sont remplacés par un anneau quotient R défini par Q(t)/h(t), avec h un
polynôme irréductible de degré η.

Nous avons mentionné que, pour NFS, la phase de description du corps
devenait une étape à part entière, la sélection polynomiale. Il en est de même
pour exTNFS, pour lequel trois polynômes sont à définir : h, f0 et f1. Pour cette
étape, neuf sélections polynomiales, voir Table 4, ont été décrites [114, 161, 158,
115, 159], les plus générales d’entre elles définissant les coefficients de f0 et f1
dans R.

Cependant, au contraire de NFS, les critères de qualité, et essentiellement
celui défini par la fonction α de Murphy, ne sont pas définis. En effet, si le choix
de h semble indépendant de celui de f0 et f1, ce polynôme influence la qualité
de f0 et f1 et les bonnes caractéristiques pour h ne sont pas encore déterminées.
En effet, les idéaux des corps de nombres K0 et K1 définis par f0 et f1 sont
eux-mêmes construits à partir d’idéaux dans R. Le critère de qualité α sera donc
défini par au moins deux polynômes h et f .

Cet effort pour trouver les bonnes qualités des polynômes n’est pas vain. Fort
de notre implémentation de NFS en dimension 3, nous avons implémenté une re-
cherche de relations en dimension 4 pour exTNFS, qui n’utilise ni globalntvgen,
ni localntvgen, mais un précurseur de ces algorithmes, et nous avons pu consta-
ter que les tailles des normes pour l’exemple du calcul de logarithme discret dans
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deg f0 ‖f0‖∞ deg f1 ‖f1‖∞
JLSV1 (dans Z) κ p1/2 κ p1/2

JLSV2 (dans Z) κ pκ/(d2+1) d2 > κ pκ/(d3+1)

GJL (dans Z) d3 > κ pκ/(d3+1) d3 + 1 petit
Conj (dans Z) κ p1/2 2κ petit
B (dans Z) d5r5 > κ pn/(d5(r5+1)) d5(r5 + 1) petit

C (dans R) d6r6 > κ p(r6(η+1)+κ/d6)/(r6η+1) d6(r6 + 1) petit
gJLSV (dans R) κ pκ/(d7+1) d7 > κ pκ/(d7+1)

gConj (dans R) κ p1/2 2κ petit
D (dans R) d9r9 > κ pκ/(d9(r9+1)) d9(r9 + 1) small

Table 4 – Sélections polynomiales pour exTNFS dans Fpn , où d5, d6 et d9 sont
des facteurs de κ et ri > κ/di.

un corps Fp6 de 389 bits étaient du même ordre que celles obtenues avec NFS
dans un corps Fp6 de 300 bits, pour lequel la recherche de relations avait pris
une petite dizaine de jours-cœur. Cependant, du fait de la mauvaise qualité sup-
posée des polynômes h, f0 et f1, le nombre de relations produites n’était pas
celui escompté. De plus, le nombre de polynômes a différents mais ayant la même
factorisation en idéaux pouvait dans certain cas être très élevé : cela vient proba-
blement de critères trop peu précis pour définir les caractéristiques pour qu’un
polynôme a donne une relation. La phase de crible de la recherche de relations
peut être réalisée avec les deux algorithmes que nous proposons, globalntvgen
et localntvgen. L’étape de la cofactorisation ne semble pas problématique
puisque les normes des éléments sont toujours des entiers. Concernant l’initiali-
sation des normes, la première phase de la recherche de relations, l’algorithme
que nous proposons semble peiner, au delà de la dimension quatre, à tenir un
temps raisonnable, par rapport à celui du crible, or plus la dimension est grande,
plus les tailles de normes sont faibles, et donc plus le calcul semblerait facile.

Dans la phase d’algèbre linéaire, l’étape de préparation de la matrice est celle
qui présente le plus d’inconnues, puisque le calcul du noyau à droite de la matrice
ne dépend pas de la façon dont la matrice a été construite. Les deux inconnues
que nous pouvons identifier à ce stade sont le passage de la factorisation des
normes à la factorisation en idéaux ainsi que la prise en compte des applications
de Schirokauer.

Concernant le calcul d’un logarithme individuel, Guillevic a proposé une
extension de son travail pour NFS permettant d’améliorer le début de cette
phase [88]. La descente par special-Q semble elle aussi sous contrôle. Cette
dernière étape du calcul semble donc être la moins ardue des quatre phases de
l’algorithme exTNFS.

Au terme de cette étude sur le calcul de logarithmes discrets dans les corps fi-
nis de moyenne caractéristique, nous avons pu montrer par des expérimentations
pratiques la validité des travaux théoriques menés au sujet de NFS depuis 2006.
Les six sélections polynomiales ont toutes été considérées dans nos calculs, même
si la sélection JLSV1 était la plus intéressante dans Fp5 et Fp6 , la recherche
de relations en dimension trois a prouvé son efficacité, même en utilisant une
implémentation moins compétitive que celle présente en dimension deux [72],
et l’utilisation des techniques d’amorçage [86, 88] pour le calcul du logarithme
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individuel a participé à la rapidité des calculs [84, 85]. Les problèmes posés par
le nouvel algorithme exTNFS, tant théoriques que pratiques, ouvrent le champ à
de nouvelles améliorations et une meilleure compréhension de l’algorithme NFS
lui-même, puisque tous ces algorithmes partagent une même structure, celle des
algorithmes à calcul d’indice, et une recherche de relations très similaire.

D’autres questions sont aussi ouvertes, notamment au sujet des deux algo-
rithmes globalntvgen et localntvgen : une meilleure compréhension de leurs
qualités et défauts semble nécessaire avant d’envisager une implémentation ef-
ficace, de l’un voire des deux algorithmes. L’utilisation de special-Qs dans plu-
sieurs corps de nombres au lieu d’un seul, par exemple en vue de réaliser la
recherche de relations dans MNFS, peut également être considérée.



Résumé

La sécurité des systèmes cryptographiques à clef publique repose sur la di�-

culté de résoudre certains problèmes mathématiques, parmi lesquels se trouve le

problème du logarithme discret sur les corps �nis Fpn . Dans ce�e thèse, nous

étudions les variantes de l’algorithme de crible algébrique, number �eld sieve

(NFS) en anglais, qui résolvent le plus rapidement ce problème, dans le cas où

la caractéristique du corps est dite moyenne.

NFS peut être divisé en quatre étapes principales : la sélection polynomiale,

la recherche de relations, l’algèbre linéaire et le calcul d’un logarithme indivi-

duel. Nous décrivons ces étapes, en insistant sur la recherche de relations, une

des étapes les plus coûteuses. Une des manières e�caces de réaliser ce�e étape

est d’utiliser des algorithmes de crible.

Contrairement au cas classique où la recherche de relations est réalisée dans

un espace à deux dimensions, les corps �nis que nous ciblons requièrent une

énumération d’éléments dans un espace de plus grande dimension pour a�eindre

la meilleure complexité théorique. Il existe des algorithmes de crible e�caces en

deux dimensions, mais peu pour de plus grandes dimensions. Nous proposons et

analysons deux nouveaux algorithmes de crible perme�ant de traiter n’importe

quelle dimension, en insistant particulièrement sur la dimension trois.

Nous avons réalisé une implémentation complète de la recherche de relations

pour plusieurs variantes de NFS en dimensions trois. Ce�e implémentation, qui

s’appuie sur nos nouveaux algorithmes de crible, est di�usée au sein du logiciel

CADO-NFS. Nous avons pu valider ses performances en nous comparant à des

exemples de la li�érature. Nous avons également été en mesure d’établir deux

nouveaux records de calcul de logarithmes discrets, l’un dans un corps Fp5 de

taille 324 bits et l’autre dans un corps Fp6 de taille 422 bits.

Abstract

�e security of public-key cryptography relies mainly on the di�culty to solve

some mathematical problems, among which the discrete logarithm problem on

�nite �elds Fpn . In this thesis, we study the variants of the number �eld sieve

(NFS) algorithm, which solve the most e�ciently this problem, in the case where

the characteristic of the �eld is medium.

�e NFS algorithm can be divided into four main steps: the polynomial selec-

tion, the relation collection, the linear algebra and the computation of an individ-

ual logarithm. We describe these steps and focus on the relation collection, one

of the most costly steps. A way to perform it e�ciently is to make use of sieve

algorithms.

Contrary to the classical case for which the relation collection takes place in

a two-dimensional space, the �nite �elds we target require the enumeration of

elements in a higher-dimensional space to reach the best theoretical complexity.

�ere exist e�cient sieve algorithms in two dimensions, but only a few in higher

dimensions. We propose and study two new sieve algorithms allowing us to treat

any dimensions, with an emphasis on the three-dimensional case.

We have provided a complete implementation of the relation collection for

some variants of the NFS in three dimensions. �is implementation relies on our

new sieve algorithms and is distributed in the CADO-NFS so�ware. We validated

its performances by comparing with examples from the literature. We also estab-

lish two new discrete logarithm record computations, one in a 324-bit Fp5 and

one in a 422-bit Fp6 .
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