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This thesis is devoted to the qualitative modeling of biological networks for therapeutic innovation. It investigates how to use the Boolean network formalism, and how to enhance it, for identifying therapeutic targets through in silico approaches. It is composed of two works: i) an algorithm using Boolean network attractors for in silico target identification in Boolean models of pathologically disturbed biological networks, and ii) an enhancement of the Boolean network formalism in modeling the dynamics of biological networks through the incorporation of fuzzy operators and edge tuning.

Target identification, one of the steps of drug discovery, aims at identifying biomolecules whose function should be therapeutically altered in order to cure the considered pathology. The first work of this thesis proposes an algorithm for in silico target identification using Boolean network attractors. It assumes that attractors of dynamical systems, such as Boolean networks, correspond to phenotypes produced by the modeled biological system. Under this assumption, and given a Boolean network modeling a pathophysiology, the algorithm identifies target combinations able to remove attractors associated with pathological phenotypes. It is tested on a Boolean model of the mammalian cell cycle bearing a constitutive inactivation of the retinoblastoma protein, as seen in cancers, and its applications are illustrated on a Boolean model of Fanconi anemia. The results show that the algorithm returns target combinations able to remove attractors associated with pathological phenotypes and then succeeds in performing the proposed in silico target identification. However, as with any in silico evidence, there is a bridge to cross between theory and practice, thus requiring it to be used in combination with wet lab experiments. Nevertheless, it is expected that the 5 ment of Boolean networks can be mathematically expressed by differential equations. This means that the existing, and advanced, computational tools aimed at handling continuous dynamical systems, such as solvers of ordinary differential equations, could be directly used.
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algorithm is of interest for target identification, notably by exploiting the inexpensiveness and predictive power of computational approaches to optimize the efficiency of costly wet lab experiments.

Quantitative modeling in systems biology can be difficult due to the scarcity of quantitative details about biological phenomenons, especially at the subcellular scale, the scale where drugs interact with there targets. An alternative to escape this difficulty is qualitative modeling since it requires few to no quantitative information. Among the qualitative modeling approaches, the Boolean network formalism is one of the most popular. However, Boolean models allow variables to be valued at only true or false, which can appear too simplistic when modeling biological processes. Consequently, the second work of this thesis proposes a modeling approach derived from Boolean networks where fuzzy operators are used and where edges are tuned. Fuzzy operators allow variables to be continuous and then to be more finely valued than with discrete modeling approaches, such as Boolean networks, while remaining qualitative. Moreover, to consider that some interactions are slower and/or weaker relative to other ones, edge states are computed in order to modulate in speed and strength the signal they convey. The proposed formalism is illustrated through its implementation on a tiny sample of the epidermal growth factor receptor signaling pathway. The obtained simulations show that continuous results are produced, thus allowing finer analysis, and that modulating the signal conveyed by the edges allows their tuning according to knowledge about the modeled interactions, thus incorporating more knowledge. The proposed modeling approach is expected to bring enhancements in the ability of qualitative models to simulate the dynamics of biological networks while not requiring quantitative information.

The main prospect of this thesis is to use the proposed enhancement of Boolean networks to build a version of the algorithm based on continuous dynamical systems. This will incorporate the accuracy of continuous simulations while keeping the advantageous of qualitative modeling. This prospect is not trivial since it requires to move from discrete to continuous dynamical systems. This brings some challenging differences such as the infinite cardinality of the state space. However, it is likely that the proposed enhance-

Résumé

Cette thèse est consacrée à la modélisation qualitative des réseaux biologiques pour l'innovation thérapeutique. Elle étudie comment utiliser les réseaux Booléens, et comment les améliorer, afin d'identifier des cibles thérapeutiques au moyen d'approches in silico. Elle se compose de deux travaux : i) un algorithme exploitant les attracteurs des réseaux Booléens pour l'identification in silico de cibles dans des modèles Booléens de réseaux biologiques pathologiquement perturbés, et ii) une amélioration des réseaux Booléens dans leur capacité à modéliser la dynamique des réseaux biologiques grâce à l'utilisation des opérateurs de la logique floue et grâce au réglage des arrêtes.

L'identification de cibles constitue l'une des étapes de la découverte de nouveaux médicaments et a pour but d'identifier des biomolécules dont la fonction devrait être thérapeutiquement modifiée afin de lutter contre la pathologie considérée. Le premier travail de cette thèse propose un algorithme pour l'identification in silico de cibles par l'exploitation des attracteurs des réseaux Booléens. Il suppose que les attracteurs des systèmes dynamiques, tel que les réseaux Booléens, correspondent aux phénotypes produits par le système biologique modélisé. Sous cette hypothèse, et étant donné un réseau Booléen modélisant une physiopathologie, l'algorithme identifie des combinaisons de cibles capables de supprimer les attracteurs associés aux phénotypes pathologiques. L'algorithme est testé sur un modèle Booléen du cycle cellulaire arborant une inactivation constitutive de la protéine du rétinoblastome, tel que constaté dans de nombreux cancers, tandis que ses applications sont illustrées sur un modèle Booléen de l'anémie de Fanconi. Les résultats montrent que l'algorithme est à même de retourner des combinaisons de cibles capables de supprimer les attracteurs associés aux phénotypes pathologiques, 8 et donc qu'il réussit l'identification in silico de cibles proposée. En revanche, comme tout résultat in silico, il y a un pont à franchir entre théorie et pratique, requérant ainsi une utilisation conjointe d'approches expérimentales. Toutefois, il est escompté que l'algorithme présente un intérêt pour l'identification de cibles, notamment par l'exploitation du faible coût des approches computationnelles, ainsi que de leur pouvoir prédictif, afin d'optimiser l'efficience d'expérimentations coûteuses.

La modélisation quantitative en biologie systémique peut s'avérer difficile en raison de la rareté des détails quantitatifs concernant les phénomènes biologiques, particulièrement à l'échelle subcellulaire, l'échelle où les médicaments interagissent avec leurs cibles. Une alternative permettant de contourner cette difficulté est la modélisation qualitative étant donné que celle-ci ne requiert que peu ou pas d'informations quantitatives. Parmi les méthodes de modélisation qualitative, les réseaux Booléens en sont l'une des plus populaires. Cependant, les modèles Booléens autorisent leurs variables à n'être évaluées qu'à vrai ou faux, ce qui peut apparaître trop simpliste lorsque des processus biologiques sont modélisés. En conséquence, le second travail de cette thèse propose une méthode de modélisation dérivée des réseaux Booléens où les opérateurs de la logique floue sont utilisés et où les arrêtes peuvent être réglées. Les opérateurs de la logique floue permettent aux variables d'être continues, et ainsi d'être plus finement évaluées qu'avec des méthodes de modélisation discrètes tel que les réseaux Booléens, tout en demeurant qualitatives. De plus, dans le but de considérer le fait que certaines interactions peuvent être plus lentes et/ou plus faibles que d'autres, l'état des arrêtes est calculé afin de moduler en vitesse et en force le signal qu'elles véhiculent. La méthode proposée est illustrée par son implémentation sur un petit échantillon de la signalisation du récepteur au facteur de croissance épidermique. Les simulations obtenues montrent que des résultats continus sont produits, permettant ainsi une analyse plus fine, et que moduler le signal véhiculé par les arrêtes permet leur réglage selon des connaissances concernant les interactions qu'elles modélisent, permettant ainsi d'incorporer davantage d'informations. Il est escompté que la méthode de modalisation proposée apportera des améliorations dans la capacité des modèles qualita- This thesis is devoted to the qualitative modeling of biological networks for therapeutic innovation. It investigates how to use the Boolean network formalism, and how to enhance it, for identifying therapeutic targets through in silico approaches. It is composed of two works: i) an algorithm using Boolean network attractors for in silico target identification in Boolean models of pathologically disturbed biological networks, and ii) an enhancement of the Boolean network formalism in modeling the dynamics of biological networks through the incorporation of fuzzy operators and edge tuning. Each of these two works have their own, specific, introduction and conclusion, followed by a general conclusion at the end of this thesis. The first work is published, available in its publisher version [START_REF] Poret | An in silico target identification using boolean network attractors: avoiding pathological phenotypes[END_REF] and author version [START_REF] Poret | Therapeutic target discovery using boolean network attractors: avoiding pathological phenotypes[END_REF]. Two further releases of the algorithm were done since its publication, all being freely available. The second work is submitted for publication to Comptes Rendus Biologies2 , the author version being already available [START_REF] Poret | Enhancing boolean networks with fuzzy operators and edge tuning[END_REF].

The topic

This section introduces the topic of this thesis, namely the qualitative modeling of biological networks for therapeutic innovation. It starts with the modeling in systems biology and then focuses on qualitative modeling. Next, biological networks are introduced before describing how they can be modeled by Boolean networks. Finally, the intended applications in drug discovery, and more precisely for target identification, are introduced.

Modeling in systems biology

Modeling in systems biology allows scientists to produce formal models of biological systems and then to implement them on computers [START_REF] Cheong | Wires in the soup: quantitative models of cell signaling[END_REF][START_REF] Mogilner | Quantitative modeling in cell biology: what is it good for?[END_REF]. With such computational models, scientists can perform in silico experiments which have the advantage of being less costly in time and resources than the traditional wet lab experiments. However, the stumbling block of in silico approaches is that they are built from the available knowledge: not all is known about everything. Nevertheless, an impressive and ever increasing amount of biological knowledge is already available in the scientific literature, databases and knowledge bases such as, to name a few, DrugBank [START_REF] David S Wishart | Drugbank: a knowledgebase for drugs, drug actions and drug targets[END_REF], KEGG [START_REF] Kanehisa | Kegg: kyoto encyclopedia of genes and genomes[END_REF], Phar-mGKB [START_REF] Whirl-Carrillo | Pharmacogenomics knowledge for personalized medicine[END_REF], Reactome [START_REF] Croft | Reactome: a database of reactions, pathways and biological processes[END_REF] and TTD [START_REF] Chen | Ttd: therapeutic target database[END_REF]. In addition to the difficulty of integrating an increasing body of knowledge comes the inherent complexity of biological systems themselves [START_REF] Kitano | Systems biology: a brief overview[END_REF]: this is where computational tools can help owing to their integrative power [START_REF] Boissel | Modeling and medical product r& d[END_REF][START_REF] Boissel | Modelling methodology in physiopathology[END_REF][START_REF] Kitano | Computational systems biology[END_REF]. This interplay between wet lab and computational biology is synergistic rather than competitive [START_REF] Ventura | From in vivo to in silico biology and back[END_REF]. Since wet lab experiments produce factual results, they can be considered as trustworthy sources of knowledge. Once these factual pieces of knowledge are obtained, computational tools can help to integrate them and infer new ones. This computationally obtained knowledge can be subsequently used to direct further wet lab experiments, thus mutually potentiating the whole.

Qualitative modeling

One of the main difficulties encountered when quantitatively modeling biological systems with, for example, systems of differential equations [START_REF] Ilea | Ordinary differential equations with applications in molecular biology[END_REF] is that the required quantitative parameter values are not straightforward to obtain. One solution to overcome this barrier is qualitative modeling since it requires few to no quantitative information while producing informative predictions [START_REF] Michelle L Wynn | Logic-based models in systems biology: a predictive and parameter-free network analysis method[END_REF]. Several qualitative modeling approaches already exist and are mostly based on logic [START_REF] Morris | Logic-based models for the analysis of cell signaling networks[END_REF][START_REF] Watterson | Logic models of pathway biology[END_REF] such as Boolean networks which are based on Boolean logic. However, this is at the cost of being qualitative: no quantification is performed. This does not mean that qualitative modeling is a downgrade of the quantitative one. This means that scientists have different approaches at their disposal, each with its advantages and disadvantages, depending on the pursued goals and available resources. If accurate numerical results are expected, quantitative modeling is required. However, if tendencies and global properties are the main concerns, qualitative modeling is entirely fitting and proved itself through several works .

Biological networks

A biological network is a way to conceptualize a set of interacting biological entities where entities are represented by nodes and interactions by edges [START_REF] Zhu | Getting connected: analysis and principles of biological networks[END_REF][START_REF] Barabasi | Network biology: understanding the cell's functional organization[END_REF]. It is based on graph theory [START_REF] Nikolaevich Bronshtein | Algorithms of graph theory[END_REF][START_REF] Huber | Graphs in molecular biology[END_REF][START_REF] Mason | Graph theory and networks in biology[END_REF], thus bringing formal tools to encode information about biological systems, particularly their topology [START_REF] Ma'ayan | Insights into the organization of biochemical regulatory networks using graph theory analyses[END_REF]. Moreover, being graphs, biological networks offer a convenient visualization [START_REF] Jill | Why a diagram is (sometimes) worth ten thousand words[END_REF] of the complex interconnections lying in biological systems. As said Napoleon Bonaparte:

"A good sketch is better than a long speech."

Several types of biological networks can be encountered, depending on the scale, the involved entities and their interconnections. For example, at the ecological scale, food webs are biological networks where nodes represent species and edges represent trophic relations [START_REF] Thomas C Ings | Review: ecological networks-beyond food webs[END_REF][START_REF] Oswald | Food webs[END_REF]. At the subcellular scale there is, for example, gene regulatory networks where nodes represent gene products and edges represent gene expression modulations [START_REF] Xiao | A tutorial on analysis and simulation of boolean gene regulatory network models[END_REF][START_REF] John | Gene expression networks[END_REF]. Whatever the scale or entities, the principle remains the same: given a biological system, nodes represent entities and edges represent interactions between them.

Boolean networks

Boolean networks [START_REF] Saadatpour | Boolean modeling of biological regulatory networks: a methodology tutorial[END_REF], pioneered in biology by Kauffman [START_REF] Stuart A Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF], Glass [START_REF] Glass | Classification of biological networks by their qualitative dynamics[END_REF],

Ostrander [START_REF] Lee | Functional boolean models for systems with continuous variables[END_REF] and Thomas [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF], are one of the existing qualitative modeling approaches. While being conceptually simple, Boolean networks are able to predict and reproduce features of biological systems and then to bring relevant insights [START_REF] Albert | Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions[END_REF][START_REF] Wang | Boolean modeling in systems biology: an overview of methodology and applications[END_REF][START_REF] Albert | Boolean network simulations for life scientists[END_REF][START_REF] Bornholdt | Boolean network models of cellular regulation: prospects and limitations[END_REF][START_REF] Huang | Genomics, complexity and drug discovery: insights from boolean network models of cellular regulation[END_REF][START_REF] Leclerco | Boolean analysis of cell regulation networks[END_REF]. This makes them an attractive and efficient approach, especially when the complexity of biological systems renders quantitative approaches unfeasible due to the amount of quantitative details they require.

As their name indicates, Boolean networks are based on Boolean logic [START_REF] Boole | The mathematical analysis of logic, being an essay towards a calculus of deductive logic[END_REF] and, like biological networks, are also based on graph theory: nodes represent Boolean variables and edges represent interdependencies between them. Belonging to Boolean logic, Boolean variables can be valued at either true or false. This can appear somewhat simplistic when modeling biological processes, a point addressed in the second work of this thesis. Interdependencies between Boolean variables are mathematically implemented by Boolean functions: a Boolean function is assigned to each variable and defines its value according to the one of the variables interacting with it. Boolean functions manipulate the value of their arguments through Boolean operators, namely AN D, OR and NOT .

Starting from an initial state, that is a vector containing the initial value of all the variables of the network, its is possible to simulate its dynamics by computing the value of the state vector along a given number of iterations. To do so, at each iteration, the value of the state vector is updated through the Boolean functions according to its current and/or previous value, depending on the updating scheme. Therefore, Boolean networks can be seen as discrete dynamical systems able to model the dynamics of biological networks. To this end, each entity of the biological network is modeled by a Boolean variable and the interactions between them are encode in Boolean functions. Boolean networks can be classified according to their updating scheme as synchronous or asynchronous. If all the variables are updated simultaneously at each iteration then the network is synchronous, otherwise it is asynchronous. While there is only one synchronous updating scheme, different asynchronous updating schemes exist:

• the random order asynchronous updating scheme where, at each iteration, an updating order for the variables is randomly selected

• the general asynchronous updating scheme where, at each iteration, a randomly selected variable is updated

• the deterministic asynchronous updating scheme where a divisor is assigned to each variable and then, at each iteration, a variable is updated if and only if the iteration is a multiple of its divisor With the exception of deterministic asynchronous Boolean networks, only synchronous Boolean networks are deterministic since, at each iteration, variables have only one possible successor. This makes synchronous Boolean networks easier to compute than asynchronous ones [START_REF] Garg | Synchronous versus asynchronous modeling of gene regulatory networks[END_REF].

Target identification

Drug discovery, as its name indicates, aims at discovering new drugs against diseases. This process can be segmented into three steps: i) disease model provision, where experimental models are developed, ii) target identification, where therapeutic targets are proposed, and iii) target validation, where the proposed therapeutic targets are assessed. The applications of this thesis in therapeutic innovation, namely through the first work, focus on the second step of drug discovery: target identification [START_REF] Knowles | Target selection in drug discovery[END_REF][START_REF] Mark | Target discovery[END_REF].

Given an organism suffering from a disease, target identification aims at finding where to act among its multitude of biomolecules in order to alleviate, or ultimately cure, the physiological consequences of the disease. These biomolecules on which perturbations should be applied are called targets and are targeted by drugs [START_REF] Imming | Drugs, their targets and the nature and number of drug targets[END_REF]. This raises two questions: which target should be therapeutically perturbed and what type of perturbation should be applied on it. Broadly, the functional perturbation of a target by a drug can be either activating or inactivating, regardless the way the drug achieves it.

One solution is to test all, or at least a large number of, biomolecules for activation and inactivation. Knowing that targeting several biomolecules is potentially more effective [START_REF] Anighoro | Polypharmacology: challenges and opportunities in drug discovery[END_REF][START_REF] Grant R Zimmermann | Multi-target therapeutics: when the whole is greater than the sum of the parts[END_REF], the number of possibilities is consequently huge. This rather brute-force screening can be refined with knowledge about the pathophysiology of interest by identifying potential targets based on the role they play in it [START_REF] Jackson | Mechanism-based target identification and drug discovery in cancer research[END_REF]. Even with this knowledge, experimentally assessing the selected potential targets through wet lab experiments is far from straightforward since such experiments are costly in time and resources [START_REF] Ki Kaitin | Deconstructing the drug development process: the new face of innovation[END_REF]. Fortunately, owing to their integrative power and low cost compared to wet lab approaches, in silico approaches appear as valuable tools in improving the efficiency of target identification [START_REF] Tang | Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles[END_REF][START_REF] Mak | Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism[END_REF][START_REF] Sarker | In silico systems biology approaches for the identification of antimicrobial targets[END_REF][START_REF] Yao | In silico search for drug targets of natural compounds[END_REF][START_REF] Praveen | Targeting drug transporters-combining in silico and in vitro approaches to predict in vivo[END_REF][START_REF] Hua | In silico approaches to multitarget drug discovery[END_REF][START_REF] Vujasinovic | In silico dynamic molecular interaction networks for the discovery of new therapeutic targets[END_REF][START_REF] Chandra | Computational systems approach for drug target discovery[END_REF][START_REF] Saidani | Potential and limits of in silico target discovery-case study of the search for new antimalarial chemotherapeutic targets. Infection[END_REF][START_REF] Ulrik | Using computational modeling to drive the development of targeted therapeutics[END_REF][START_REF] Duckworth | In silico identification of novel therapeutic targets[END_REF][START_REF] Noble | Biological simulations in drug discovery[END_REF], as demonstrated through several works using various computational methods [START_REF] Carels | A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases[END_REF][START_REF] Frangou | Molecular profiling and computational network analysis of taz-mediated mammary tumorigenesis identifies actionable therapeutic targets[END_REF][START_REF] Li | Computer-aided targeting of the pi3k/akt/mtor pathway: toxicity reduction and therapeutic opportunities[END_REF][START_REF] Nicklas | In silico identification of potential therapeutic targets in the tgf-β signal transduction pathway[END_REF][START_REF] Rao | Identification of novel drug targets in hpb38, hpp12, hpg27, hpshi470, hpsjm180 strains of helicobacter pylori: an in silico approach for therapeutic intervention[END_REF][START_REF] Bilachi S Ravindranath | In silico analyses of metabolic pathway and protein interaction network for identification of next gen therapeutic targets in chlamydophila pneumoniae[END_REF][START_REF] Wu-Lung R Yang | In silico drug screening and potential target identification for hepatocellular carcinoma using support vector machines based on drug screening result[END_REF][START_REF] Iadevaia | Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis[END_REF][START_REF] Betul | Drug target identification in sphingolipid metabolism by computational systems biology tools: metabolic control analysis and metabolic pathway analysis[END_REF][START_REF] On Koborova | In silico method for identification of promising anticancer drug targets[END_REF][START_REF] Madhukar S Dasika | A computational framework for the topological analysis and targeted disruption of signal transduction networks[END_REF].

Chapter 2

Therapeutic target discovery using Boolean network attractors: avoiding pathological phenotypes

This chapter describes the first work of this thesis. The first four sections are mostly the corresponding article as published, while the last section describes improvements done after publication.

Background

The goal of this work is to propose a computational methodology implemented in an algorithm for in silico target identification using Boolean network attractors. It assumes that Boolean network attractors correspond to phenotypes produced by the modeled biological network, an assumption successfully applied in several works [20-23, 27, 28, 32-34, 36, 39, 40, 43-45, 100, 101]. Assuming that a phenotype is an observable and thus a relatively stable state of a biological system and assuming that the state of a biological system results from its dynamics, a phenotype is likely to correspond to an attractor. This assumption can be stated for any dynamical model but, in this work, only Boolean networks are considered. Reasons are that, in their most basic form, Boolean networks do not require quantitative information and that quantitative information is often not easy to obtain due to experimental limitations, particularly at the subcellular scale, the scale where drugs interact with their targets. Moreover, since synchronous Boolean networks are easier to compute than asynchronous ones, this work only considers synchronous Boolean networks. This does not exclude the possibility, at a later stage, to extend the algorithm for both synchronous and asynchronous updating schemes.

For a biological network involved in a disease, two possible variants are considered: the physiological variant, exhibited by healthy organisms, which produces physiological phenotypes, and the pathological variant, exhibited by ill organisms, which produces pathological phenotypes, or which fails to produce physiological ones. A physiological phenotype does not impair life quantity/quality whereas a pathological phenotype does. It should be noted that the loss of a physiological phenotype is also a pathological condition. The physiological and pathological variants differ in that the latter results from the occurrence of some alterations known to be responsible for disorders. With a pathological variant, there are two non-exclusive pathological scenarios: pathological phenotypes are gained or physiological phenotypes are lost.

The primary goal of the proposed algorithm is to identify, in a pathological variant, target combinations together with the perturbations to apply on them, here called bullets, which render it unable to exhibit pathological phenotypes. The secondary goal is to classify the obtained bullets according to their ability at rendering the pathological variant able to exhibit previously lost physiological phenotypes, if any.

Methods

This section introduces some basic principles, namely biological and Boolean networks, defines some concepts and then describes the proposed algorithm. An example network to illustrate how it works plus a case study to illustrate its intended applications are also described. Finally, details about implementation and code availability are mentioned.

Basic principles

Biological networks

A network can be seen as a digraph G = (V, E) where V = {v 1 , . . . , v n } is the set of cardinality n containing exactly all the nodes v i of the network and where E = {(v i,1 , v j,1 ), . . . , (v i,m , v j,m )} ⊆ V 2 is the set of cardinality m containing exactly all the edges (v i , v j ) of the network. In practice, nodes represent entities and edges represent binary relations R ⊆ V 2 involving them: v i R v j . For example, in gene regulatory networks, nodes represent gene products and edges represent gene expression modulations.

Boolean networks

A Boolean network is a network where nodes are Boolean variables x i and where edges (x i , x j ) represent the binary is input of relation:

x i is input of x j . Each x i has b i ∈ [[0, n]] inputs x i,1 , . . . , x i,b i .
The variables which are not inputs of x i have no direct influence on it. If b i = 0 then x i is a parameter and does not depend on other variables. At each iteration k ∈ [[k 0 , k end ]] of the simulation, the value x i (k) ∈ {0, 1} of each x i is updated to the value x i (k + 1) using a Boolean function f i and the values x i,1 (k), . . . , x i,b i (k) of its inputs, as in the following pseudocode:

1 for k ∈ [[k 0 , k end -1]] do 2 x 1 (k + 1) = f 1 (x 1,1 (k), . . . , x 1,b 1 (k)) 3 . . . 4 x n (k + 1) = f n (x n,1 (k), . . . , x n,bn (k))
5 end for which can be written in a more concise form:

1 for k ∈ [[k 0 , k end -1]] do 2 x(k + 1) = f (x(k))
3 end for where f = (f 1 , . . . , f n ) is the Boolean transition function and x = (x 1 , . . . , x n ) is the state vector. The value x(k) = (x 1 (k), . . . , x n (k)) ∈ {0, 1} n of x at k belongs to the state space S = {0, 1} n which is the set of cardinality 2 n containing exactly all the possible states.

If the values of all the x i are updated simultaneously at each k then the network is synchronous, otherwise it is asynchronous. With synchronous Boolean networks, x(k) has a unique possible successor x(k+1): synchronous Boolean networks are deterministic. In the particular case where k = k 0 , x(k 0 ) = x 0 is the initial state and, in deterministic dynamical systems, determines entirely the trajectory w = (x(k 0 ), . . . , x(k end )). In this work, it is assumed that k 0 = 1, so w is a sequence of length k end resulting from the iterative computation of x(k) from k 0 up to k end . This iterative computation can be seen as the discretization of a time interval: Boolean networks are discrete dynamical systems as they simulate discretely the time course of the state vector.

The set A = {a 1 , . . . , a p } of cardinality p containing exactly all the attractors a i is called the attractor set. Due to the determinism of synchronous Boolean networks, all the attractors are cycles. A cycle is a sequence (x 1 , . . . , x q ) of length q such that ∀j ∈ [ [1, q]], x j+1 = f (x j ) and x q+1 = x 1 :

once the system reaches a state x j belonging to a cycle, it successively visits its states x j+1 , . . . , x q , x 1 , . . . , x j for infinity. In the particular case where q = 1, a i is a point attractor. The set B i ⊆ S containing exactly all the x ∈ S from which a i can be reached is called its basin of attraction. With deterministic dynamical systems, the family of sets (B 1 , . . . , B p ) constitutes a partition of S.

Definitions

Some concepts used in this work should be formally defined.

• physiological phenotype: A phenotype which does not impair the life quantity/quality of the organism which exhibits it.

• pathological phenotype: A phenotype which impairs the life quantity/quality of the organism which exhibits it.

• variant (of a biological network): Given a biological network of interest, a variant is one of its versions, namely the network plus even-tually some modifications. It should be noted that this does not exclude the possibility that a variant can be the network of interest as is.

• physiological variant: A variant which produces only physiological phenotypes. It is the biological network of interest as it should be, namely the one of healthy organisms.

• pathological variant: A variant which produces at least one pathological phenotype. It is a dysfunctional version of the biological network of interest, namely a version found in ill organisms.

• physiological attractor set: The attractor set A physio of the physiological variant.

• pathological attractor set: The attractor set A patho of the pathological variant.

• physiological Boolean transition function: The Boolean transition function f physio of the physiological variant.

• pathological Boolean transition function: The Boolean transition function f patho of the pathological variant.

• run: An iterative computation of x(k) starting from an x 0 until an a i is reached. It returns w = (x(k 0 ), . . . , x(k end )) where k end depends on when a i is reached, and then on x 0 .

• physiological attractor: An a i such that a i ∈ A physio .

• pathological attractor: An a i such that a i / ∈ A physio .

• modality: The functional perturbation moda i applied on a node v j ∈ V of the network, either activating (moda i = 1) or inactivating (moda i = 0): at each k, moda i overwrites f j (x(k)) making x j (k + 1) = moda i .

• target: A node targ i ∈ V of the network on which a moda i is applied.

• bullet: A couple (c targ , c moda ) where c targ = (targ 1 , . . . , targ r ) is a combination without repetition of targ i and where c moda = (moda 1 , . . . , moda r ) is an arrangement with repetition of moda i , r ∈ [ [1, n]] being the number of targets in the bullet. Here, moda i is intended to be applied on targ i .

• therapeutic bullet: A bullet which makes A patho ⊆ A physio .

• silver bullet: A therapeutic bullet which makes A patho A physio .

• golden bullet: A therapeutic bullet which makes A patho = A physio .

The assumed link between phenotypes and attractors is the reason why attractors are qualified as either physiological or pathological according to the phenotype they produce. This is also the reason why, in this work, target identification aims at manipulating attractor sets of pathological variants.

Steps of the algorithm

The algorithm has two goals: i) finding therapeutic bullets, and ii) classifying them as either golden or silver. A therapeutic bullet makes the pathological variant unable at reaching pathological attractors, that is A patho ⊆ A physio . If such a bullet is applied on a pathological variant, the organism bearing it no longer exhibits the associated pathological phenotypes. However, a therapeutic bullet does not necessarily preserve/restore the physiological attractors. If a therapeutic bullet preserves/restores all the physiological attractors, that is if A patho = A physio , then it is a golden one, but if A patho A physio then it is a silver one. Given a physiological and a pathological variant, that is f physio and f patho , the algorithm follows five steps: The algorithm is described step by step but can be found as one block of pseudocode in Appendix A page 85.

Step 1: computing A physio

First of all, A physio has to be computed since it is the control and, as such, determines what is pathological. To do so, runs are performed with f physio and the reached a i are stored in A physio . However, x 0 ∈ S and card S increases exponentially with n. Even for reasonable values of n, card S explodes: more than 1 000 000 possible x 0 for n = 20. One solution ensuring that all the a i are reached is to start a run from each of the possible x 0 , that is from each of the x ∈ S. Practically, this is unfeasible for an arbitrary value of n since the required computational capacity can be too demanding. For example, assuming that a run requires 1 millisecond and that n = 50, performing a run from each of the 2 50 x ∈ S requires nearly 36 000 years.

Given that with deterministic dynamical systems (B 1 , . . . , B p ) is a partition of S, a solution is to select a subset D ⊆ S of a reasonable cardinality containing the x 0 to start from. In this work, D is randomly selected from a uniform distribution. The stumbling block of this solution is that it does not ensure that at least one x 0 per B i is selected and then does not ensure that all the a i are reached. This stumbling block holds only if card D < card S.

Again given that synchronous Boolean networks are deterministic, if a run visits a state already visited during a previous run then its destination, that is the reached attractor, is already found. If so, the run can be stopped and the algorithm can jump to the next one. To implement this, the previous trajectories are stored in a set H, the history, and at each k the algorithm checks if ∃w ∈ H : x(k) ∈ w. If this check is positive then the algorithm jumps to the next run.

To detect the attractors, since with deterministic dynamical systems they are cycles, the algorithm checks at each

k if x(k + 1) is an already visited state of the current run, namely if ∃k ∈ [[1, k]] : x(k + 1) = x(k ). If this check is positive then a i = (x(k ), . .

. , x(k)).

This step can be written in pseudocode as:

1 prompt card D 2 card D = min(card D, 2 n ) 3 generate D ⊆ S 4 H = {} 5 A physio = {} 6 for x 0 ∈ D do 7 k = 1 8 x(k) = x 0 9
while true do

10 if ∃w ∈ H : x(k) ∈ w then 11 break 12 end if 13 x(k + 1) = f physio (x(k)) 14 if ∃k ∈ [[1, k]] : x(k + 1) = x(k ) then 15 A physio = A physio ∪ {(x(k ), . . . , x(k))} 16 break 17 end if 18 k = k + 1 19 end while 20 H = H ∪ {(x(1), . . . , x(k))} 21 end for 22 return A physio 23 do step 2
Line 2 catches the mistake card D > card S.

It should be noted that the purpose of this work is not to propose an algorithm for finding Boolean network attractors since advanced algorithms for such tasks are already published [START_REF] Guo | A parallel attractor finding algorithm based on boolean satisfiability for genetic regulatory networks[END_REF][START_REF] Berntenis | Detection of attractors of large boolean networks via exhaustive enumeration of appropriate subspaces of the state space[END_REF][START_REF] Zheng | An efficient algorithm for finding attractors in synchronous boolean networks with biochemical applications[END_REF][START_REF] Dubrova | A sat-based algorithm for finding attractors in synchronous boolean networks[END_REF][START_REF] Ay | Scalable steady state analysis of boolean biological regulatory networks[END_REF]. The purpose is to propose a computational methodology exploiting Boolean network attractors for in silico target identification, a methodology which requires de facto these attractors to be found. This point is discussed in the Discussion section page 46.

Step 2: generating bullets

Bullets are candidate perturbations to apply on the pathological variant to make it unable at reaching pathological attractors and then unable at producing pathological phenotypes. Generating a bullet requires a choice of targ i ∈ V and associated moda i ∈ {0, 1}. In this work, there is no sequencing in target engagement nor in modality application. This means that, given a bullet and during a given run, all the moda i are applied on their corresponding targ i throughout the run. As a consequence, for a given bullet, choosing the same targ i more than once is senseless, while it is possible to choose the same moda i for more than one targ i . Therefore, a bullet is a combination c targ without repetition of targ i together with an arrangement c moda with repetition of moda i .

If bullets containing r targets have to be generated then there are n!/(r! • (nr)!) possible c targ and, for each of them, there are 2 r possible c moda . This raises the same computational difficulty than with the state space explosion since there are (n!•2 r )/(r!•(n-r)!) possible bullets. For example, with n = 50 and r = 3 there are more than 150 000 possible bullets. Knowing that the algorithm, as explained below, computes one attractor set per bullet, the computation time becomes practically unfeasible. To overcome this barrier, the algorithm asks for r as an interval [[r min , r max ]], asks for a maximum number max targ of c targ to generate and asks for a maximum number max moda of c moda to test for each c targ . The algorithm then generates a set C targ of c targ with card C targ ≤ max targ by randomly selecting, from a uniform distribution and without repetition, nodes in the network. In the same way, the algorithm generates a set C moda of c moda with card C moda ≤ max moda by randomly choosing, from a uniform distribution and with repetition, modalities as either activating (1) or inactivating (0). The result is the bullets: per r ∈ [[r min , r max ]], a C targ together with a C moda . As with the state space explosion, the stumbling block of this method is that it does not ensure that all the possible c targ together with all the possible c moda are tested. This stumbling block holds only if

max targ < n!/(r! • (n -r)!) or max moda < 2 r .
This step can be written in pseudocode as: Line 2 catches the mistake r > n. Lines 3 and 4 create the sets in which the therapeutic bullets found in step 4 are classified as either golden or silver in step 5. Lines 6 and 7 catch the mistake where max targ or max moda is greater than its maximum, which depends on r, hence the creation of max r targ and max r moda to preserve the initially supplied value. Lines 11 and 15 ensure that only new c targ and c moda are generated.

1 prompt r min , r max , max targ , max moda 2 r max = min(r max , n) 3 golden_set = {} 4 silver_set = {} 5 for r ∈ [[r min , r max ]] do 6 max r targ = min(max targ , n!/(r! • (n -r)!)) 7 max r moda = min(max moda , 2 r ) 8 C targ = {} 9 C moda = {} 10 while card C targ < max

Step 3: computing A patho

Having the control attractor set A physio and a bullet (c targ , c moda ) ∈ C targ × C moda , the algorithm computes the variant attractor set A patho under the effect of (c targ , c moda ) by almost the same way A physio is computed in step 1. However, f patho is used instead of f physio and (c targ , c moda ) is applied: at each k, f j (x(k)) is overwritten by moda i ∈ c moda , that is x j (k + 1) = moda i , provided that v j = targ i ∈ c targ . In order to apply all the generated bullets, the algorithm uses two nested for loops. For each c targ ∈ C targ it uses successively all the c moda ∈ C moda . For each (c targ , c moda ), the algorithm computes the corresponding A patho and does steps 4 and 5.

This step can be written in pseudocode as: 

1 for c targ ∈ C targ do 2 for c moda ∈ C moda do 3 H = {} 4 A patho = {} 5 for x 0 ∈ D do 6 k = 1 7 x(k) = x 0 8 while true do 9 if ∃w ∈ H : x(k) ∈ w then 10 break 11 end if 12 x(k + 1) = f patho (x(k)) 13 for targ i ∈ c targ do 14 for v j ∈ V do 15 if v j = targ i then 16 x j (k + 1) = moda i 17 end if 18 end for 19 end for 20 if ∃k ∈ [[1, k]] : x(k + 1) = x(k ) then 21 A patho = A patho ∪ {(x(k ), . . . , x(k))} 22 break 23 end if 24 k = k + 1

Step 4: identifying therapeutic bullets

To identify therapeutic bullets among the generated ones, for each (c targ , c moda ) tested in step 3 and once the corresponding A patho is obtained, the algorithm compares it with A physio to check if A patho ⊆ A physio . This check ensures that all the pathological attractors are removed and that if new attractors appear then they are physiological. If this check is positive then the bullet is therapeutic and the algorithm pursues with step 5. This step can be written in pseudocode as:

2 do step 5 3 end if 2.2.3.5
Step 5: assessing therapeutic bullets Therapeutic bullets are qualified as either golden or silver according to their ability at making the pathological variant reaching the physiological attractors. All therapeutic bullets, being golden or silver, remove the pathological attractors without creating new ones, that is A patho ⊆ A physio . However, this does not imply that they preserve/restore the physiological attractors. A golden bullet preserves/restores all the physiological attractors: A patho = A physio whereas a silver bullet does not: A patho A physio . In this setting, golden bullets are perfect therapies whereas silver bullets are not. However, since precious things are rare and just as gold is rarer than silver, finding golden bullets is less likely than finding silver ones. Indeed, given that more constraints are required for a therapeutic bullet to be a golden one, it is more likely that the found therapeutic bullets are silver ones, except in one case: card A physio = 1.

Theorem 1. If card A physio = 1 then all therapeutic bullets are golden.

Proof.

(therapeutic bullet) ⇒ (A patho ⊆ A physio ) (1) 
(1)

⇒ (A patho ∈ P(A physio )) (2) 
(card A physio = 1) ⇒ (A physio = {a}) ( 3 ) (3) ⇒ (P(A physio ) = {∅, {a}}) ( 4 ) ((2) ∧ (4)) ⇒ ((A patho = {a}) ∨ (A patho = ∅)) (5) (deterministic dynamical systems) ⇒ (A = ∅)(6) (6) ⇒ (A patho = ∅) ( 7 ) ((5) ∧ (7)) ⇒ (A patho = {a}) ( 8 ) ((3) ∧ (8)) ⇒ (A patho = A physio ) ( 9 ) 
(9) ⇒ (therapeutic bullet is golden)

Practically, in this setting, an organism bearing a pathological variant treated with a therapeutic bullet no longer exhibits the associated pathological phenotypes. Moreover, if the therapeutic bullet is golden then the organism exhibits the same phenotypes than its healthy counterpart. However, if the therapeutic bullet is silver then the organism fails to exhibit at least one physiological phenotype. With a silver bullet this is a matter of choice: what is the less detrimental between a silver bullet and no therapeutic bullet at all. This step can be written in pseudocode as:

1 if A patho = A physio then 2 golden_set = golden_set ∪ {(c targ , c moda )} 3 else 4 silver_set = silver_set ∪ {(c targ , c moda )} 5 end if

Example network

To illustrate the algorithm, it is used on a Boolean model of the mammalian cell cycle published by Faure et al [START_REF] Faure | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF]. This model is chosen for several reasons: i) a synchronous updating is performed: to date, the algorithm focuses on synchronous Boolean networks, ii) a mammalian biological system is modeled: the closer to human physiology the model is, the better it illustrates the intended applications, iii) the cell cycle is a at the heart of cancer: this gives relevancy to the example network, iv) the network comprises ten nodes: easily computable in face of its state space, and v) attractors are already computed: useful to validate the algorithm in finding them.

A graphical representation of the example network is shown in Figure 2.1 page 35. Below are the corresponding Boolean functions where, for the sake of readability, x i stands for x i (k) and x i+ stands for x i (k + 1):

CycD + = CycD Rb + = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬CycD ∧ ¬CycB) E2F + = (¬Rb ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬Rb ∧ ¬CycB) CycE + = E2F ∧ ¬Rb CycA + = (E2F ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10)) ∨(CycA ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10)) p27 + = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB) ∨(p27 ∧ ¬(CycE ∧ CycA) ∧ ¬CycB ∧ ¬CycD) Cdc20 + = CycB Cdh1 + = (¬CycA ∧ ¬CycB) ∨ Cdc20 ∨ (p27 ∧ ¬CycB) UbcH10 + = ¬Cdh1 ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB)) CycB + = ¬Cdc20 ∧ ¬Cdh1
Having the example network, two variants are needed: the physiological one and the pathological one. The physiological variant is the network as is while the pathological variant is the network plus a constitutive activation/inactivation of at least one of its nodes. For simplicity, and given the relatively small number of entities, only one is chosen: the retinoblastoma protein Rb for which a constitutive inactivation is applied. To implement this, the corresponding f i becomes:

Rb(k + 1) = 0 in f patho .
Rb is chosen because its inactivation occurs in many cancers [START_REF] Charles | The rb and p53 pathways in cancer[END_REF]. Therefore, a network bearing a constitutive inactivation of it should be a relevant example of a pathological variant. [START_REF] Faure | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF]. CDKs (cyclin-dependent kinases) are the catalytic partners of cyclins and, in this model, are not explicitly shown since the activity of CDK-cyclin complexes essentially depends on cyclins. Furthermore, inhibition of E2F by Rb is modeled by opposing Rb to the effects of E2F on its targets. The same applies to inhibition of CycE and CycA by p27. For a complete description of the model, see [START_REF] Faure | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF]. CycD: CDK4/6-cyclin D complex, input of the model, initiates the cell cycle, activated by positive signals such as growth factors; CycE: CDK2-cyclin E complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B complex; Rb: retinoblastoma protein, a tumor suppressor; E2F: a family of transcription factors divided into activator and repressor members, in this model E2F represents the activator members; p27: p27/Kip1, a CKI (CDK inhibitor); Cdc20: an APC (Anaphase Promoting Complex, an E3 ubiquitin ligase) activator; Cdh1: an APC activator; UbcH10: an E2 ubiquitin conjugating enzyme.

Case study

To illustrate the intended usage of the proposed methodology, the algorithm is used on a Boolean model of the Fanconi Anemia/Breast Cancer (FA/ BRCA) pathway published by Rodriguez et al [START_REF] Rodriguez | A boolean network model of the fa/brca pathway[END_REF]. This model is chosen for several reasons: i) two pathological conditions are studied: required for a case study of an in silico target identification, ii) the physiological and pathological variants are clearly described: required by the algorithm, iii) it is nearly three times bigger than the example network: representative of a more comprehensive biological model while remaining computationally tractable, iv) synchronous updating is used: to date, the algorithm focuses on synchronous Boolean networks, and v) attractors are already interpreted in terms of phenotypes.

The FA/BRCA pathway is dedicated to DNA repair, more precisely to interstrand cross-link (ICL) removal. As expected with any DNA repair impairment, individuals suffering from FA/BRCA pathway malfunction are subjected to increased risk of cancer, such as in Fanconi anemia, a rare genetic disorder causing bone marrow failure, congenital abnormalities and increased risk of cancer [START_REF] Robert | Susceptibility pathways in fanconi's anemia and breast cancer[END_REF][START_REF] Auerbach | Fanconi anemia and its diagnosis[END_REF][START_REF] Winter | The genetic and molecular basis of fanconi anemia[END_REF]. Rodriguez et al propose a Boolean model comprising the FA/BRCA pathway and three types of DNA damages commonly observed in Fanconi anemia, namely ICLs, double-strand breaks (DSBs) and DNA adducts (ADDs). It should be noted that the ICL repair process creates DSBs and ADDs before removing them, thus leaving an undamaged DNA ready for the cell cycle. For a complete description of the model, see [START_REF] Rodriguez | A boolean network model of the fa/brca pathway[END_REF]. The corresponding Boolean functions can be found in Appendix B page 88.

The physiological variant is the FA/BRCA pathway model as is. To it, Rodriguez et al propose two pathological variants, here called patho1 and patho2, modeling two mutations involving genes of the FA/BRCA pathway. These mutations are observed in patients suffering from Fanconi anemia [START_REF] Neveling | Genotype-phenotype correlations in fanconi anemia[END_REF]. The first one involves the FANCA gene, corresponding to the F Acore variable, and the second one involves the FANCD1/BRCA2 or FANCN/PALB2 gene, corresponding to the F ANCD1N variable. These mutations are of loss-of-function kind: to simulate them the corresponding f i become F Acore(k + 1) = 0 for FANCA gene null mutation in f patho1 and F ANCD1N (k + 1) = 0 for FANCD1/BRCA2 or FANCN/PALB2 gene null mutation in f patho2 .

Implementation

The algorithm is implemented in Fortran compiled with GFortran1 . The code is available on GitHub2 at https://github.com/arnaudporet/kali.

Results

In this section, results produced with the algorithm on the example network are exposed to illustrate how it works. Next, results produced with the algorithm on the case study are exposed to illustrate its intended applications for target identification.

Results of step 1

Owing to the relatively small size of the example network, card D is set to card S = 1024. Since card D = card S, all the attractors are found. Attractors are presented as matrices where, for an attractor of length q, lines correspond to the x i (k), k ∈ [ [1, q]], and columns to x(k). The algorithm returns the following attractors:

a 1 = CycD 1 1 1 1 1 1 1 Rb 0 0 0 0 0 0 0 E2F 0 1 1 1 0 0 0 CycE 0 0 1 1 1 0 0 CycA 0 0 0 1 1 1 1 p27 0 0 0 0 0 0 0 Cdc20 1 0 0 0 0 0 1 Cdh1 1 1 1 1 0 0 0 UbcH10 1 1 0 0 0 1 1 CycB 0 0 0 0 0 1 1 a 2 = CycD 0 Rb 1 E2F 0 CycE 0 CycA 0 p27 1 Cdc20 0 Cdh1 1 UbcH10 0 CycB 0
each of them attracting 50% of the x ∈ S under f physio . Then, A physio = {a 1 , a 2 } and corresponds to the results obtained by Faure et al. In terms of phenotypes, a 1 corresponds to cell cycle whereas a 2 corresponds to quiescence.

Results of steps 2 to 5

Results of steps 2 to 5 are grouped since only the therapeutic bullets found in step 4 and classified in step 5 are returned. The algorithm is launched with r min = 1 and r max = 2. Due to the relatively small size of the example network, max targ and max moda are set to their maximum, namely max targ = 45 and max moda = 4. Consequently, all the possible bullets made of 1 to 2 targets are tested. The algorithm returns the following therapeutic bullets: +CycD silver +CycD -p27 silver -CycD +Rb silver +CycD -Rb silver where + means therapeutic activation andmeans therapeutic inactivation. It should be noted that no golden bullets are found, an unsurprising result since they are rarer than silver ones.

Given these results, therapeutic activation of Rb alone, which is pathologically inactivated, is not enough to remove the pathological attractors. Indeed, as seen in the third bullet, therapeutic activation of Rb must be accompanied by therapeutic inactivation of CycD. To better illustrate what is performed to obtain these therapeutic bullets, below is A patho without any bullet:

a 3 = CycD 0 0 0 0 0 0 0 0 Rb 0 0 0 0 0 0 0 0 E2F 1 1 1 1 0 0 0 0 CycE 0 1 1 1 1 0 0 0 CycA 0 0 1 1 1 1 1 0 p27 1 1 1 0 0 0 0 0 Cdc20 0 0 0 0 0 0 1 1 Cdh1 1 1 1 1 0 0 0 1 UbcH10 1 0 0 0 0 1 1 1 CycB 0 0 0 0 0 1 1 0 a 4 = CycD 1 1 1 1 1 1 1 Rb 0 0 0 0 0 0 0 E2F 1 1 1 0 0 0 0 CycE 0 1 1 1 0 0 0 CycA 0 0 1 1 1 1 0 p27 0 0 0 0 0 0 0 Cdc20 0 0 0 0 0 1 1 Cdh1 1 1 1 0 0 0 1 UbcH10 1 0 0 0 1 1 1 CycB 0 0 0 0 1 1 0
each of these two attractors attracting 50% of the x ∈ S under f patho . It should be noted that a 4 = a 1 ∈ A physio : a 4 is a physiological attractor which also belongs to A patho . Indeed, it is possible that the pathological variant exhibits physiological attractors: A patho is not the set containing exactly all the pathological attractors, it is the attractor set of the pathological variant, so

A physio ∩ A patho = ∅ is possible. However, a 3 / ∈ A physio : it is a pathological
attractor and is what a therapeutic bullet, being golden or silver, is intended to remove. Again to better illustrate what is performed to obtain these therapeutic bullets, below is A patho under the third bullet:

CycD 0 Rb 1 E2F 0 CycE 0 CycA 0 p27 1 Cdc20 0 Cdh1 1 UbcH10 0 CycB 0 which is a 2 .
As expected for a therapeutic bullet, the pathological attractor a 3 is removed. However, the physiological attractor a 1 is not restored: the third therapeutic bullet is silver. Consequently, with this therapeutic bullet no cell cycle occurs and the only reachable phenotype is quiescence. While disabling the cell cycle of cancer cells is beneficial, disabling the cell cycle of healthy cells is not. As mentioned above, with silver bullets this is a matter of choice.

Results of the case study

With the case study, card S = 268 435 456: computing attractors from all the x ∈ S becomes too demanding. Indeed, it should be recalled that the algorithm computes one attractor set per bullet, namely A patho under the tested bullet. Consequently, card D is set to a more reasonable value: card D = 10 000. Despite that card D < card S, it seems sufficient for the algorithm to find all the attractors, just as Rodriguez et al whose the computation covers the whole state space. Below are the computed attractors: where • a 1 : cell cycle progression

• A physio = {a 1 } • A patho1 = {a 1 } • A patho2 = {a 1 , a 2 },
a 1 = ICL 0 0 F ANCM 0 0 F Acore 0 0 F ANCD2I 0 0 MUS81 0 0 F ANCJBRCA1 0 0 XP F 0 0 F AN1 0 0 ADD 0 0 DSB 0 0 P CNAT LS 0 0 MRN 0 0 BRCA1 0 0 ssDN ARP A 0 0 F ANCD1N 0 0 RAD51 0 0 HRR 0 0 USP 1 0 0 KU 0 0 DN AP K 0 0 NHEJ 0 0 AT R 0 0 AT M 0 0 p53 0 0 CHK1 0 0 CHK2 0 0 H2AX 0 0 CHKREC 0 1 a 2 = ICL F ANCM F Acore
• a 2 : cell cycle arrest

In physiological conditions, in case of a damaged DNA, cells repair it before performing the cell cycle, or die if repair fails. Such checkpoints enable cells to ensure genomic integrity by preventing damaged DNA to be replicated and then propagated [START_REF] Bartek | Dna damage checkpoints: from initiation to recovery or adaptation[END_REF][START_REF] Ishikawa | Dna damagedependent cell cycle checkpoints and genomic stability[END_REF]. Otherwise, genetic instability may appears, potentially leading to cancer [START_REF] Nakanishi | Genetic instability in cancer cells by impaired cell cycle checkpoints[END_REF]. The results show that the physiological variant is able to ensure genomic integrity since its unique attractor is a 1 where ICL = DSB = ADD = 0: DNA damages are repaired, if any, and the cell cycle can safely occur. Interestingly, the same physiological phenotype is computed for patho1 where A patho1 = A physio . This suggests that cells bearing FANCA gene null mutation are nonetheless able to repair DNA. With patho2, a pathological attractor appears: a 2 , where DSB = 1. This suggests that cells bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation are unable to repair DSBs, explaining why a 2 corresponds to cell cycle arrest: DNA remains damaged. It should be noted that a 1 ∈ A patho2 , suggesting that from some x 0 , that is under some conditions, such cells could be able to repair DNA. However, a 1 attracts only 29.5% of the x ∈ D under f patho2 , indicating that the pathological phenotype associated with a 2 is the most likely.

Altogether, according to the computed attractors and their phenotypic interpretation, and limited to the scope studied by the model of Rodriguez et al, FANCA gene null mutation may not induce pathological phenotypes. However, with FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, two phenotypes are predicted: a physiological one and a pathological one, the latter being the most likely. Therefore, the algorithm has to operate on patho2 to find bullets able to remove the pathological attractor a 2 . By comprehensively testing all the bullets made of 1 to 3 targets, the algorithm returns the following results: number of all possible bullets number of therapeutic bullets In this case study, DNA damages such as ICLs and DSBs are the pathological events. Unsurprisingly, the algorithm suggests them to be targeted: this is a logical consequence. However, DNA damages are not biomolecules in themselves and directly targeting them by means of drugs appears senseless.

r = 1 56 1 (1.786%) r =
What is relevant are the biomolecules of the FA/BRCA pathway suggested as therapeutic targets. Interestingly, ATM dominates all the other candidates, predicting it to be a pivotal therapeutic target for the patho2 condition, namely the FA/BRCA pathway bearing FANCD1/BRCA2 or FANCN/ PALB2 gene null mutation, as observed in Fanconi anemia.

Discussion

Under the assumption that attractors of dynamical systems and phenotypes of biological networks are linked when the former models the latter, the results show that the algorithm succeeds in performing the proposed in silico target identification. It returns therapeutic bullets for a pathological variant of the mammalian cell cycle relevant in cancer and for a pathological variant modeling Fanconi anemia. Consequently, the algorithm can be used on other synchronous Boolean models of biological networks involved in diseases for in silico target identification. However, both the physiological and pathological variants have to be known. This can constitute a limit of the proposed methodology since not all the pathophysiologies are known. Target identification, whether performed in silico or not, is a step belonging to a wider process: drug discovery. Having demonstrated a potential target in silico, or even in vitro, is far from having a medication. Further work and many years are necessary before obtaining a drug which is effective in vivo. For example, and among other characteristics, such a drug has to be absorbed by the organism, has to reach its target and has to be nontoxic at therapeutic dosages. Furthermore, as with any in silico evidence, it should be validated through wet lab experiments: there is a bridge to cross between theory and practice. For example, targeting ATM should restore a physiological running of the FA/BRCA pathway bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation. However, if ATM operates in other pathways, targeting it may disturb them, thus potentially creating de novo non-physiological conditions. Nevertheless, it is expected that the algorithm is of interest for target identification.

While finding Boolean network attractors of biological networks is not the purpose of this work, it is a necessary step which is in itself a challenging field of computational biology. Therefore, incorporating advances made in this field could be an interesting improvement. Another possible improvement could be to extend the algorithm for asynchronous Boolean networks since such models are likely to more accurately describe the dynamics of biological systems [START_REF] Zhu | Asynchronous stochastic boolean networks as gene network models[END_REF][START_REF] Liang | Stochastic boolean networks: an efficient approach to modeling gene regulatory networks[END_REF]. In biological systems, events may be subjected to stochasticity, may not occur simultaneously or may not belong to the same time scale, three points that a synchronous updating scheme does not take into account. Yet another possible improvement could be to use a finer logic, such as multivalued logic. One of the main limitations of Boolean models is that variables can take only two values. In reality, things are not necessarily binary and variables should be able to take more values. Multivalued logic enables it in a discrete manner where variables can take a finite number of values between 0 (false) and 1 (true). For example, one can state that Rb is partly impaired rather than totally. Such a statement is not implementable with Boolean models but is with multivalued ones such as, for example, a three-valued logic where true = 1, moderate = 0.5 and false = 0.

Finally, considering the basin of attraction of the pathological attractors could be an interesting extension of the criterion for selecting therapeutic bullets. In that case, the therapeutic potential of bullets could be assessed by estimating their ability at reducing the basin of the pathological attractors, as performed by Fumia et al with their Boolean model of cancer pathways [START_REF] Herman | Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes[END_REF]. Such a criterion enables to consider the particular case where pathological attractors are removed, that is where pathological basins are reduced to the empty set, but also the other cases where pathological basins are not necessarily reduced to the empty set. Such a less restrictive selection of therapeutic bullets would enable to consider more targeting strategies for counteracting diseases.

Additional improvements

First of all, some additional definitions should be stated:

• physiological state space: The state space S physio of the physiological variant.

• pathological state space: The state space S patho of the pathological variant.

• testing state space: The state space S test of the pathological variant under the effect of a bullet.

• physiological basin: The basin of attraction B physio,i of a physiological attractor a physio,i .

• pathological basin: The basin of attraction B patho,i of a pathological attractor a patho,i .

• n-bullet: A bullet made of n targets.

Among the possible improvements mentioned in the Discussion section page 46, two were done after publication, namely extending the algorithm for multivalued logic and considering pathological basins for selecting therapeutic bullets.

Multivalued logic

Background

One of the main limitations of Boolean networks is that variables can take only two values, which can be quite simplistic. Depending on what variables model, such as activity level of enzymes or abundance of gene products, considering more than two possible levels should enable models to be more realistic. Without leaving the logic-based modeling formalism, one solution is to extend Boolean logic to multivalued logic [START_REF] Rescher | Many-valued logic[END_REF]. As with Boolean logic, variables of multivalued logic are discrete, their value belonging to [[0; 1]] where 0 means false and 1 means true. With Boolean logic, only 0 and 1 can be used to valuate variables. With multivalued logic, an arbitrary finite number h of values in [[0; 1]] can be used. Therefore, variables of multivalued logic can model more than only two possible levels, enabling models to be more realistic than those based on Boolean logic.

Methods

Boolean logic can be seen as a particular case of multivalued logic: it is a bivalued logic where variables take their value in {0, 1}. While Boolean operators work well in this case, multivalued logic requires suitable logical operators to be introduced. One solution is to use a mathematical formulation of the Boolean operators which also works with any multivalued logic, just as the Zadeh operators. These logical operators are a mathematical generalization of the Boolean ones proposed for fuzzy logic by its pioneer Lotfi Zadeh. Fuzzy logic, and particularly fuzzy operators, are described in the Fuzzy operators section page 65 since they constitute one of the key points of the second work of this thesis. For now, what is important is that the Zadeh operators are logical operators compliant with multivalued logic, including the Boolean one, and are the ones used in this work for extending the algorithm to multivalued logic. Their mathematical formulation is as follow:

AN D(x, y) = min(x, y) OR(x, y) = max(x, y) NOT (x) = 1x

With a h-valued logic, card S = h n . If h = 2 then this is the Boolean case, where card S already raises computational difficulties. With an arbitrary h > 2, card S raises even more computational difficulties. The same applies to the testable bullets since there are h r possible c moda and then (n! • h r )/(r! • (nr)!) possible bullets. To illustrate how the algorithm works with a multivalued logic without overloading it, a 3-valued logic is used with {0, 0.5, 1} as domain of value: x i (k) ∈ {0, 0.5, 1}. 0 and 1 have the same meaning as in Boolean logic, namely false and true respectively. 0.5 is an intermediate truth degree which can be seen as an intermediate level of activity or abundance, depending on what is modeled. Consequently, S = {0, 0.5, 1} n implying x 0 , x(k) ∈ {0, 0.5, 1} n , D ⊆ {0, 0.5, 1} n and moda i ∈ {0, 0.5, 1}. Moreover, the Boolean operators of the f i are replaced by the Zadeh operators. This results in the following minor changes in the pseudocode of the algorithm described in Appendix A page 85:

line Boolean logic h-valued logic 2 card D = min(card D, 2 n ) card D = min(card D, h n ) 29 max r moda = min(max moda , 2 r ) max r moda = min(max moda , h r )
How the algorithm works with this 3-valued logic is illustrated with the example network, whose the logical functions become:

CycD + = CycD Rb + = max(min(1 -CycD, 1 -CycE, 1 -CycA, 1 -CycB), min(p27, 1 -CycD, 1 -CycB)) E2F + = max(min(1 -Rb, 1 -CycA, 1 -CycB), min(p27, 1 -Rb, 1 -CycB)) CycE + = min(E2F, 1 -Rb) CycA + = max(min(E2F, 1 -Rb, 1 -Cdc20, 1 -min(Cdh1, UbcH10)), min(CycA, 1 -Rb, 1 -Cdc20, 1 -min(Cdh1, UbcH10))) p27 + = max(min(1 -CycD, 1 -CycE, 1 -CycA, 1 -CycB), min(p27, 1 -min(CycE, CycA), 1 -CycB, 1 -CycD)) Cdc20 + = CycB Cdh1 + = max(min(1 -CycA, 1 -CycB), Cdc20, min(p27, 1 -CycB)) UbcH10 + = max(1 -Cdh1, min(Cdh1, UbcH10, max(Cdc20, CycA, CycB))) CycB + = min(1 -Cdc20, 1 -Cdh1)
which is f physio . For f patho , owing to this 3-valued logic, a constitutive but partial inactivation of Rb is simulated. Its corresponding f i becomes:

Rb + = 0.5 in f patho .

Results

With the example network modeled by this 3-valued logic, card S = 59 049, which remains computationally tractable. Therefore, card D = card S: all the attractors are found. With the physiological variant, the algorithm returns: 

A physio = {a physio1 , a physio2 , a physio3 , a physio4 ,
a physio6 = CycD 1 1 1 1 1 1 Rb 0 0 0 0 0 0 E2F 0 1 1 1 0 0 CycE 0 0 1 1 1 0 CycA 0 0 0 1 1 1 p27 0 0 0 0 0 0 Cdc20 1 0 0 0 0 0 Cdh1 1 1 1 1 0 0 UbcH10 1 1 0 0 0 1 CycB 0 0 0 0 0 1
with their corresponding basin of attraction: It should be noted that a physio2 and a physio6 are the two physiological attractors found in the Boolean case. Indeed, since {0, 1} ⊂ {0, 0.5, 1} and since the Zadeh operators also work with Boolean logic, Boolean logic is included in this three-valued logic. This means that results obtainable with the former are also obtainable with the latter. With the pathological variant, where Rb is constitutively but partially inactivated, the algorithm returns: with their corresponding basin of attraction: As in the Boolean case, the algorithm is launched with r min = 1 and r max = 2. max targ and max moda are set to their maximum, namely max targ = 45 and max moda = 9: all the 1, 2-bullets are tested. The algorithm returns the following therapeutic bullets:

a i B i (
A patho = {a physio1 ,
a i B i (
CycD[0] silver CycD[0.5] silver CycD[0] Rb[0.5] silver CycD[0.5] Rb[0.5] silver CycD[1] Rb[0] silver CycD[0] E2F [0.5] silver CycD[0.5] E2F [0.5] silver CycD[0] CycE[0.5] silver CycD[0.5] CycE[0.5] silver CycD[0] CycA[0.5] silver CycD[0.5] CycA[0.5] silver CycD[0] p27[0.5] silver CycD[0.5] p27[0.5] silver CycD[0] Cdc20[0.5] silver CycD[0.5] Cdc20[0.5] silver CycD[0] Cdh1[0.5] silver CycD[0.5] Cdh1[0.5] silver CycD[0] UbcH10[0.5] silver CycD[0.5] UbcH10[0.5] silver CycD[0] CycB[0.5] silver CycD[0.5] CycB[0.5] silver
where X[y] means that the node X ∈ V has to be set to the value y ∈ {0, 0.5, 1}. For example, the third therapeutic bullet is made of the targets CycD and Rb whose the value has to be set to 0 and 0.5 respectively. As in the Boolean case, it should be noted that no golden bullets are found, an unsurprising result since they are rarer than silver ones.

Discussion

The algorithm is now extended for multivalued logic, which includes the Boolean one. This means that the previous strictly Boolean version of the algorithm is included in this new one. Moreover, allowing variables to take an arbitrary finite number of values should enable to more accurately model bio-logical processes and produce more fine-tuned therapeutic bullets. However, this accuracy and fine-tuning are at the cost of an increased computational requirement. Indeed, in this work, the computational requirement essentially depends on the cardinality of the state space, which itself depends on the size of the model and the used multivalued logic. Therefore, the size of the model and the used multivalued logic should be balanced: the smaller the model is, the more variables should be finely valued. For example, for a fine therapeutic investigation, the model should only contain the essential and specific pieces of the pathophysiology of interest, modeled by a finely valued logic. On the other hand, for a gross therapeutic investigation, an exhaustive model could be used but modeled by a coarse-grained logic, such as the Boolean one. Finally, it should be noted that the ultimate multivalued logic is the infinitely valued one, which is fuzzy logic. With fuzzy logic, the whole [0; 1] ⊂ R is used to valuate variables, which should bring the best accuracy for the qualitative modeling formalism. Using fuzzy logic to qualitatively model biological networks is addressed in the second work of this thesis.

Therapeutic bullet assessment

Background

Till now, the algorithm requires therapeutic bullets to remove all the pathological attractors from the pathological state space, so that the pathological variant no longer exhibits pathological phenotypes. This criterion for selecting therapeutic bullets can appear somewhat drastic since it is all or nothing. A less strict criterion should enable to consider more targeting strategies, and then more possibilities for counteracting diseases. Certainly, a less restrictive criterion could bring less "powerful" therapeutic bullets, but being too demanding potentially leads to no results and loss of nonetheless interesting findings.

The therapeutic potential of bullets could be assessed by estimating their ability at reducing the cardinality of the pathological basins. This is a more permissive criterion since therapeutic bullets no longer have to necessarily remove the pathological attractors. Reducing the cardinality of a pathological basin renders the corresponding pathological attractor less reachable, and then the associated pathological phenotype less likely. This new criterion includes the previous one: removing an attractor means reducing its basin of attraction to the empty set. Therefore, therapeutic bullets obtainable with the previous criterion are also obtainable with this new one.

Methods

To implement this new criterion for selecting therapeutic bullets, the algorithm considers a bullet as therapeutic if it increases card B physio,i in S test without creating de novo attractors. Since the attractors are either physiological or pathological, increasing card B physio,i is equivalent to decreasing card B patho,i . The goal of this new criterion is to increase the physiological part of S test , which is equivalent to decreasing its pathological part. Consequently, a pathological variant treated by such a therapeutic bullet tends to, but not necessarily reaches, an overall physiological behavior. However, as with the previous criterion, it does not ensure that all the a physio,i are preserved/restored. A fortiori, it does not ensure that the B physio,i in S test are as in S physio . This means that it does not ensure that the reachability of the a physio,i is preserved/restored. Nevertheless, as with the previous criterion, this is a matter of choice between a therapeutic bullet or not. To assist this choice and better visualize the effects of therapeutic bullets, the card B physio,i and card B patho,i in S test are computed.

Implementing this new criterion for selecting therapeutic bullets is a major change. Therefore, the pseudocode of the algorithm presented in Appendix A page 85 is rewritten and structured into three modules:

• the compute_A function, which computes A physio or A patho , depending on which of the f physio or f patho is passed • the compute_cover function, which for two attractor sets A 1 and A 2 computes the covering of S 2 by B 1,i , expressed in percents of card S 2

• the compute_T function, which computes a set T of therapeutic bullets Below is the corresponding pseudocode:

function A = compute_A(f , c targ , c moda , D, V ) A = {} for x 0 ∈ D do k = 1 x(k) = x 0 while true do x(k + 1) = f (x(k)) for targ i ∈ c targ do for v j ∈ V do if v j = targ i then x j (k + 1) = moda i end if end for end for if ∃k ∈ [[1, k]] : x(k + 1) = x(k ) then a i .seq = (x(k ), . . . , x(k)) if ∃a j ∈ A : a i .seq = a j .seq then a j .f req = a j .f req + 1 else a i .f req = 1 A = A ∪ {a i } end if break end if k = k + 1 end while end for for a ∈ A do a.f req = a.f req • 100/card D end for return A end function
For A physio and A patho , which are computed without bullet, the empty bullet ((), ()) has to be passed. The a i are represented as structures composed of two fields: a i .seq, which is the sequence of a i (line 15), and a i .f req, which is the corresponding card B i , expressed in percent of card D. To compute a i .f req, the algorithm counts the number of times a i is reached (line 19 if this is the first time a i is reached, line 17 otherwise) and then, once all the x 0 ∈ D are computed, translates a i .f req in percent of card D (line 28).

function y = compute_cover(A 1 , A 2 ) 1 cover = 0 2 for a 1 ∈ A 1 do 3 if ∃a 2 ∈ A 2 : a 1 .seq = a 2 .seq then 4 cover = cover + a 2 .f req 5 end if
6 end for 7 return cover end function If a 1 also belongs to A 2 (line 3) then the cardinality of its basin in S 2 is used to compute the covering of S 2 by B 1,i (line 4).

function T = compute_T (f physio , f patho , r min , r max , max targ , max moda , max D , h, V ) A therapeutic bullet as defined by the previous criterion, that is which removes all the a patho,i from S test , makes de facto card B physio,i = 100% in S test . As already mentioned, the previous criterion is included in this new one: therapeutic bullets obtainable with the former are also obtainable with the latter. This can be checked by noting that the 1, 2-therapeutic bullets found with the previous criterion are also found with this new one.

1 n = card V 2 D = {} 3 while card D < max D do 4 generate x 0 / ∈ D 5 D = D ∪ {x 0 } 6 end while 7 A physio = compute_A(f physio , (), (), D, V ) 8 A patho = compute_A(f patho , (), (), D, V ) 9 T = {} 10 cover patho = compute_cover(A physio , A patho ) 11 for r ∈ [[
With this case study, A physio = {a physio1 }, so B physio,i = B physio1 . Therefore, in this particular case where card A physio = 1, therapeutic bullets have to increase card B physio1 in S test . It should be recalled that card B physio1 = 29.4% in S patho , so therapeutic bullets have to make card B physio1 > 29.4% 

Discussion

The algorithm now uses a new criterion for selecting therapeutic bullets which brings a wider range of targeting strategies of varying predicted efficacy. Moreover, no information is lost from the previous criterion since results obtainable with the previous one are also obtainable with this new one. This new criterion is based on a more permissive assumption stating that reducing the reachability of pathological attractors is therapeutic. For an in silico tool such as this algorithm, a more permissive assumption is important since theoretical findings have to outlive the bottleneck separating prediction to reality. Indeed, results predicted in silico have to be validated in vitro and/ or in vivo. Therefore, requiring only perfect predictions such as therapeutic bullets removing all the pathological attractors could left insufficient results after validation. All the more so that a prediction of apparently poor interest could reveal itself as an insight of great interest and vice versa, hence the necessity of obtaining a wide range of theoretical findings. This new criterion for selecting therapeutic bullets also brings a finer assessment of their potential since all the percentages between card B physio,i in S patho and 100% are considered. With the previous criterion, the only therapeutic potential is card B physio,i = 100% in S test , thus reducing the assessment to therapeutic or not. However, things are not necessarily black or white but rather a continuum of gray nuances, so the assessment of therapeutic potentials should be nuanced too, just as it is now.

Chapter 3 Enhancing Boolean networks with fuzzy operators and edge tuning

This chapter describes the second work of this thesis, mostly as prepublished.

Background

This work is an extension of the Boolean network formalism aimed at enhancing it. The basic principles remain the same: given a biological network, entities are modeled by variables and their interactions by functions allowing their value to be updated at each iteration of the simulation. However, Boolean operators are replaced by the operators of fuzzy logic [START_REF] Nikolaevich Bronshtein | Fuzzy logic[END_REF][START_REF] Lotfi | Fuzzy logic[END_REF], allowing variables to be valued at any real number between 0 and 1, that is to consider all the possible truth degrees between the absolutely true and the definitively false. Therefore, results obtainable with fuzzy operators, while remaining qualitative, can be finer than those obtainable with Boolean operators. In some cases, the ON/OFF nature of Boolean logic is a relevant choice, as for example with gene regulatory networks where gene expression level can be approximated by Boolean states. However, in some other cases where things are not necessarily binary, such as in signaling pathways where enzymes can be more or less active, using fuzzy operators can be an interesting choice.

In addition of using fuzzy operators, some additional features are introduced in order to capture more behavioral aspects of biological networks. These additional features concern the edges of the network, which are seen as conveyors of signals corresponding to influences exerted by entities of the network onto other ones. This signal, together with its modulation, are taken into account so that edges can be tuned. To do so, edge states are computed and the signal they convey can be slowed or weakened. This results in a qualitative modeling approach intended to bring a fine qualitative quantification of biological network behaviors.

Talking about a qualitative quantification can appear somewhat contradictory but is common in thinking processes, which are at the basis of any scientific reasoning. Simple examples of such qualitative quantification could be to state that an enzyme is more active than another one, or to state that an enzyme is moderately active: quantification is expressed by perceptions and tendencies. Indeed, qualitative quantification is expressed by words rather than measurements, hence its qualitative nature, and is characteristic of fuzzy logic [START_REF] Lotfi | From computing with numbers to computing with words[END_REF][START_REF] Lotfi | Fuzzy logic = computing with words[END_REF].

Fuzzy logic-based modeling is a promising approach successfully developed in several works [START_REF] Morris | Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli[END_REF][START_REF] Bree B Aldridge | Fuzzy logic analysis of kinase pathway crosstalk in tnf/egf/insulin-induced signaling[END_REF][START_REF] Huang | Fuzzy modeling of signal transduction networks[END_REF][START_REF] Franco-Lara | Application of fuzzylogic models for metabolic control analysis[END_REF][START_REF] Du | Modeling gene expression networks using fuzzy logic[END_REF][START_REF] Lee | Incorporating qualitative knowledge in enzyme kinetic models using fuzzy logic[END_REF]. However, this work is not fuzzy logic-based: there are no fuzzy sets, no membership functions, no degrees of membership and no fuzzy inference systems. Only the operators are taken from fuzzy logic to replace the Boolean ones, the goal being to enhance the Boolean network formalism by extending it to a continuous form and by adding edge tuning.

Methods

This section introduces fuzzy operators and then describes how the proposed logic-based modeling is built. An example to illustrate it, together with its implementation, are also described.

Fuzzy operators

The main difference between Boolean and fuzzy logic is that the former is discrete, that is valued in [[0; 1]] ⊂ N, whereas the latter is continuous, that is valued in [0; 1] ⊂ R. Fuzzy logic can be seen as a generalization of Boolean logic, implying that the fuzzy counterparts of the Boolean operators have to behave like them on [[0; 1]] but have to be defined on [0; 1]. The generalization of the Boolean AN D operator is the t-norm, the generalization of the Boolean OR operator is the s-norm and the generalization of the Boolean NOT operator is the complement:

t-norm : [0; 1] 2 →[0; 1] : (x, y) → t-norm(x, y) s-norm : [0; 1] 2 →[0; 1] : (x, y) → s-norm(x, y) complement : [0; 1] →[0; 1] : x → complement(x)
where x, y ∈ [0; 1]. There exist different mathematical formulations of the t-norm, s-norm and complement, all fulfilling the rules of Boolean algebra [START_REF] Nikolaevich Bronshtein | Boolean algebras and switch algebra[END_REF] but defined on [0; 1]. For convenience, both the Boolean and fuzzy operators can be named AN D, OR and NOT , the context specifying which of them is referred to.

Due to the ability of fuzzy operators to be continuous, variables can take their value in [0; 1]. Therefore, they can be equal to 1 (true), 0 (false) or all the other real numbers of [0; 1] (more or less true): all the truth degrees between true and false are considered. This could be more realistic in a world where things are not necessarily binary. For example, a Boolean model of a signaling pathway allows enzymes to be ON or OFF and nothing between. However, one can expect that an enzyme is allowed to be in an intermediate activity level, an expectation not implementable with Boolean models but which is with fuzzy ones. Whatever the truth degrees represent, using fuzzy operators enables to consider all the intermediate levels of what is modeled without leaving the qualitative modeling formalism.

The proposed logic-based modeling

First of all, it should be mentioned that a distinction is made between quantitative and qualitative parameters, this distinction residing in what parameters translate. A quantitative parameter translates a quantification obtained by experimental measurements whereas a qualitative parameter translates a perception by means of truth degrees. For example, regarding the velocity of a biochemical reaction, "slow" could be expressed by the truth degree 0.2 whereas "fast" by 0.8: this is the truth degree of the statement "This biochemical reaction is fast.". Unlike an experimental quantification which is de facto objective, a perception is subjective, so the same applies to its associated truth degree. Incorporating qualitative parameters should not yield the scarcity of parameter values encountered in quantitative modeling since qualitative information is relatively easy to obtain.

To build the proposed logic-based modeling from Boolean networks, the Boolean operators AN D, OR and NOT have to be replaced by the fuzzy operators t-norm, s-norm and complement. Furthermore, the initial states x i (k 0 ) of the x i have to belong to [0; 1]. As a consequence, the value of the x i belongs to [0; 1]: x i (k) ∈ [0; 1], the f i become functions from [0; 1] n to [0; 1]:

f i : [0; 1] n → [0; 1] : x → f i (x)
the value of x and x 0 belongs to [0; 1] n : x(k), x 0 ∈ [0; 1] n and f becomes a function from [0; 1] n onto itself:

f : [0; 1] n → [0; 1] n : x → f (x)
Finally, additional features are added in order to capture more behavioral aspects of biological networks. These features concern the edges and are presented separately for the sake of clarity before being integrated all together.

Edge computation

As with node states, edge states are computed. For convenience, edges can be notated e ij instead of (x i , x j ). An edge e ij is seen as a channel conveying the signal sent by its source x i to its target x j which uses it to compute its state thanks to f j . Practically, e ij conveys the value x i (k) of x i to x j and then f j uses it to compute x j (k + 1). This is implicitly done in Boolean networks where x j (k + 1) = f j (. . . , x i (k), . . . ) but, in this work, this is made explicit in order to modulate the signal conveyed by the edges. Consequently, the f j no longer directly accept the x i (k) as arguments but accept the e ij (k). Since e ij conveys x i (k), its value e ij (k) should be x i (k), but this is where additional features are added. Indeed, a function f edge ij is attributed to each e ij :

e ij (k + 1) = f edge ij (x i (k), e ij (k))
It should be noted that, in addition to the value x i (k) of the source x i , f edge ij also takes as argument the value e ij (k) of e ij itself. This is required for the additional feature edge reactivity described below. As mentioned above, the f j have now to accept the e ij (k) instead of the x i (k). For convenience, the f j are renamed f node j :

x j (k + 1) = f node j (e(k))
where e = (. . . , e ij , . . . ) is the counterpart of x = (. . . , x i , . . . ), namely the state vector of the edges, its value at the iteration k being e(k) = (. . . , e ij (k), . . . ). Consequently, f becomes f node = (. . . , f node i , . . . ):

x(k + 1) = f node (e(k))
and its counterpart the transition function of the edges f edge = (. . . , f edge ij , . . . ) is introduced:

e(k + 1) = f edge (x(k), e(k))
On the basis of the updating scheme of synchronous Boolean networks, the computation becomes:

1 for k ∈ [[k 0 , k end -1]] do 2 . . . 3 e ij (k + 1) = f edge ij (x i (k), e ij (k)) 4 . . . 5 x i (k + 1) = f node i (. . . , e ij (k), . . . ) 6 . . .

end for

which can be written in a more concise form:

1 for k ∈ [[k 0 , k end -1]] do 2 e(k + 1) = f edge (x(k), e(k)) 3 x(k + 1) = f node (e(k))
4 end for

Edge reactivity

The additional feature edge reactivity is implemented by a qualitative parameter p ij ∈ [0; 1] attributed to each e ij . p ij is the portion of the signal conveyed by e ij which is updated at each k, namely the portion of the value e ij (k) which is updated to x i (k):

e ij (k + 1) = (1 -p ij ) • e ij (k) + p ij • x i (k)
The higher p ij is, the higher is the portion of e ij (k) which is updated: a highly reactive edge has a p ij close to 1 whereas a faintly reactive edge has a p ij close to 0. Biologically, edge reactivity can take into account that some biological interactions can be slower, or of higher inertia, than other ones. For example, an edge modeling a gene expression activation of a gene product by a transcription factor should have a lower p ij than an edge modeling an activating phosphorylation of an enzyme by another one. Indeed, gene expression is a complex mechanism involving several steps and then takes more time to be accomplished and terminated than a phosphorylation.

Edge weakening

The additional feature edge weakening is implemented by a qualitative parameter q ij ∈ [0; 1] attributed to each e ij . q ij is a weakening coefficient applied at each k to the signal conveyed by e ij , that is to x i (k):

e ij (k + 1) = q ij • x i (k)
The higher q ij is, the lower is the weakening of the signal x i (k) conveyed by e ij : a strong edge has a q ij close to 1 whereas a weak edge has a q ij close to 0. Biologically, edge weakening can take into account that some biological interactions can be weaker than other ones. For example, given a receptor, an edge modeling its activation by a partial agonist should have a lower q ij than an edge modeling its activation by a full agonist.

Combining the all

Edge reactivity and edge weakening are described separately for the sake of clarity but are both computed at each iteration:

e ij (k + 1) = (1 -p ij ) • e ij (k) + p ij • q ij • x i (k)
hence the mathematical formulation of the f edge ij :

f edge ij (x i , e ij ) = (1 -p ij ) • e ij + p ij • q ij • x i

Implementation

In this work, k is not the time, it only represents the iterations performed during a run. Although quantifying time through k is possible, here the goal is to visualize sequences of events linked by causal connections without time quantification. To do so, k 0 = 1 and k end = 50: 49 iterations are performed during a run. Furthermore, the initial state e ij (k 0 ) of each e ij is assumed to be equal to the initial state x i (k 0 ) of its source x i : e ij (k 0 ) = x i (k 0 ). To illustrate the proposed logic-based modeling, it is implemented on an example with GNU Octave 1 . The code is available on GitHub 2 at https://github.com/arnaudporet/smoosim.

Example

The used example is a tiny sample of the epidermal growth factor receptor signaling pathway [START_REF] Oda | A comprehensive pathway map of epidermal growth factor receptor signaling[END_REF] adapted from [START_REF] Morris | Logic-based models for the analysis of cell signaling networks[END_REF]. It is chosen for its simplicity so that it can be mentally computed in order to easily judge the produced results. A digital electronic representation is shown in 

AKT (k + 1) = P I3K(k) Raf (k + 1) = OR(EGF R(k), AKT (k)) ERK(k + 1) = Raf (k)
By applying the above-described methodology, below are the obtained f edge ij and f node i where AN D, NOT and OR stand for the fuzzy operators:

1 http://www.gnu.org/software/octave/ 2 https://github.com/

(EGF, EGF R)(k + 1) = (1 -p EGF,EGF R ) • (EGF, EGF R)(k) +p EGF,EGF R • q EGF,EGF R • EGF (k) (HRG, EGF R)(k + 1) = (1 -p HRG,EGF R ) • (HRG, EGF R)(k) +p HRG,EGF R • q HRG,EGF R • HRG(k) (EGF R, P I3K)(k + 1) = (1 -p EGF R,P I3K ) • (EGF R, P I3K)(k) +p EGF R,P I3K • q EGF R,P I3K • EGF R(k) (ERK, P I3K)(k + 1) = (1 -p ERK,P I3K ) • (ERK, P I3K)(k) +p ERK,P I3K • q ERK,P I3K • ERK(k) (P I3K, AKT )(k + 1) = (1 -p P I3K,AKT ) • (P I3K, AKT )(k) +p P I3K,AKT • q P I3K,AKT • P I3K(k) (EGF R, Raf )(k + 1) = (1 -p EGF R,Raf ) • (EGF R, Raf )(k) +p EGF R,Raf • q EGF R,Raf • EGF R(k) (AKT, Raf )(k + 1) = (1 -p AKT,Raf ) • (AKT, Raf )(k) +p AKT,Raf • q AKT,Raf • AKT (k) (Raf, ERK)(k + 1) = (1 -p Raf,ERK ) • (Raf, ERK)(k) +p Raf,ERK • q Raf,ERK • Raf (k) EGF (k + 1) = input set manually HRG(k + 1) = input set manually EGF R(k + 1) = OR((EGF, EGF R)(k), (HRG, EGF R)(k)) P I3K(k + 1) = AN D((EGF R, P I3K)(k), NOT ((ERK, P I3K)(k))) AKT (k + 1) = (P I3K, AKT )(k) Raf (k + 1) = OR((EGF R, Raf )(k), (AKT, Raf )(k)) ERK(k + 1) = (Raf, ERK)(k)
It should be noted that f node EGF and f node HRG do not accept any e ij (k) as argument. This is because they are associated with the two inputs EGF and HRG of the network and are consequently set manually. Nodes are rectangles whereas logical gates are ellipses. This digraph should be read from left to right. For example, the node P I3K is an input of the node AKT and the node ERK, due to a feedback loop, is an input of the node P I3K. Logical gates are not nodes and, as such, edges only pass through them. For example, the edge (ERK, P I3K) passes through a NOT and AN D gate whereas the edge (Raf, ERK) does not pass through any logical gate.

Fuzzy operators

As mentioned above, there exist different mathematical formulations of the fuzzy operators, all fulfilling the rules of Boolean algebra but defined on [0; 1]. In this work, the algebraic formulation is used:

AN D(x, y) = x • y OR(x, y) = x + y -x • y NOT (x) = 1 -x
which is one of the most simple and convenient.

Additional features

Since p ij ∈ [0; 1], its value can be set to any real number of [0; 1]. However, p ij is a qualitative parameter and rather than requiring to precisely valuate it as in quantitative models, its value is randomly picked in specified intervals of [0; 1] from a uniform distribution. By the way, this random selection introduces a little of a rudimentary stochasticity, although introducing randomness is not the purpose of this work. To do so, [0; 1] is split into intervals of truth degrees reflecting various edge reactivities: For example, p ij = fast means that the value of p ij is randomly picked in [0.5; 0.75] from a uniform distribution. This random selection occurs before each run and, once selected, the value of p ij remains the same during the run. To better approach the behavior of the modeled biological network, replicates are made: r runs are performed and the results are superposed. In this work, r = 10. q ij , x i (k 0 ) ∈ [0; 1] are subjected to the same replication with the following splits of [0; 1]:

strong q ij = 1 weak q ij ∈ [0.75; 1] weaker q ij ∈ [0.5; 0.75] faint q ij ∈ [0.25; 0.5] fainter q ij ∈ [0; 0.25] down q ij = 0 and full x i (k 0 ) = 1 much more x i (k 0 ) ∈ [0.75; 1] much x i (k 0 ) ∈ [0.5; 0.75] few x i (k 0 ) ∈ [0.25; 0.5] fewer x i (k 0 ) ∈ [0; 0.25] none x i (k 0 ) = 0
plus the entire interval [0; 1] in case of an undetermined edge weakening or initial state.

Results

In this section, results obtained with the example through five simulations are presented. Although the obtained curves are continuous due to the use of fuzzy operators, they are not quantitative. As qualitative results, rather than looking for numerical values, one can say, for example, that P I3K is totally inhibited or that ERK is partly activated, two simple examples of qualitative quantification expressed by words and perceptions. 

EGF (k + 1) = ⎧ ⎨ ⎩ full if k ≥ k EGF none if k < k EGF HRG(k + 1) = none
The network being assumed to be at the resting state, x 0 = (. . . , none, . . . ). The p ij are set to fast and the q ij to strong. The corresponding results are shown in Figure 3.2 page 75. As expected, before EGF activation, the network is at rest: the signaling cascade is not active. However, once EGF activated, the signaling cascade activates. This ultimately activates ERK, hence the subsequent inactivation of P I3K despite sustained EGF R activity. Since AKT is activated by P I3K, it also deactivates.

Simulation 2

In addition to the inputs described in simulation 1, a perturbation is introduced. It consists in disabling the inhibitory effect of ERK on P I3K, that is in disabling the edge (ERK, P I3K). It points out an advantage of computing edge states: disturbing a node disturbs all its effects while selectively disturbing edges prevents this. To implement this perturbation, the parameter values are as in simulation 1, except q ERK,P I3K which is set to weaker.

With q ERK,P I3K = weaker, the signal conveyed by the edge (ERK, P I3K) is weakened throughout this simulation. The corresponding results are shown in 

Simulation 3

A perturbation is again applied to the edge (ERK, P I3K). However, in this simulation the perturbation concerns its reactivity, namely p ERK,P I3K , which is set to slower. The other parameter values are as in simulation 1.

With p ERK,P I3K = slower, the signal conveyed by the edge (ERK, P I3K) is slowed throughout this simulation. The corresponding results are shown in 

Simulation 4

In this simulation, no perturbations are applied and the parameter values are as in simulation 1. However, rather than totally activating EGF , it is set to few. Therefore, f node EGF and f node HRG become:

EGF (k + 1) = ⎧ ⎨ ⎩ few if k ≥ k EGF none if k < k EGF HRG(k + 1) = none
The corresponding results are shown in Figure 3.5 page 78. As expected, the activation of EGF is not total and the same applies to the entire signaling cascade. For example, P I3K does not totally activate since EGF R does not. Furthermore, P I3K is not totally inhibited by ERK since ERK itself does not totally activate. 

Simulation 5

In this simulation, both EGF and HRG are set to few. Therefore, f node EGF and f node HRG become: 

EGF (k + 1) = ⎧ ⎨ ⎩ few if k ≥ k EGF none if k < k EGF HRG(k + 1) = ⎧ ⎨ ⎩ few if k ≥ k HRG none if k < k HRG with k HRG = k EGF ,

Discussion

Owing to the use of fuzzy operators, the simulations performed with the example show that the proposed logic-based modeling is able to produce continuous results while remaining qualitative. This allows qualitative variables to be more finely valued than with discrete approaches, such as Boolean networks, by taking into account all the possible levels of what is modeled. Moreover, thanks to the additional features edge reactivity and edge weakening attributed to each edge, it is possible to tune in speed and strength the interactions taking place in the modeled biological network. This is expected to take into account that some interactions can be weaker or slower relative to other ones and therefore to be more realistic in their qualitative modeling.

A little of stochasticity on the two additional features edge reactivity and edge weakening is also realized through the random selection of their value in specified intervals followed by replication and superposition of the produced results. This stochasticity, although very rudimentary, constitutes a line of improvement which should yield more realism since events taking place in biological systems are themselves subjected to stochasticity [START_REF] Buiatti | Randomness and multilevel interactions in biology[END_REF][START_REF] Ullah | Stochastic approaches in systems biology[END_REF]. Another improvement could be to apply information theory [START_REF] Ce Shannon | A mathematical theory of communication[END_REF] on the signal conveyed by the edges, as previously introduced for cell signaling [START_REF] Rhee | The application of information theory to biochemical signaling systems[END_REF][START_REF] Waltermann | Information theory based approaches to cellular signaling[END_REF]. This improvement should enable to better model how the edges of a network convey the information, particularly how they preserve its fidelity against noise from its sender, such as a receptor, to its receiver, such as a transcription factor. Altogether, starting from Boolean networks and still founded on their basic principles, this work is expected to bring a fine qualitative quantification of the behavior of biological networks.

A qualitative quantification remains qualitative and should not be confused with a true quantification which involves experimental measurements, values and units [START_REF] Benenson | Measurements and measurement errors[END_REF]. The qualitative quantification proposed in this work has the goal of bringing enhancements in the ability of qualitative models to simulate the behavior of biological networks. One of the main goals, and advantages, of qualitative modeling remains to propose an alternative to, but not a replacement of, quantitative approaches when the frequently encountered scarcity in quantitative information makes the work unreasonably or unnecessarily difficult.

It is also possible to use qualitative and quantitative approaches in combination. For example, qualitative modeling can be used to explore global properties and then quantitative modeling can be used to focus on particular aspects. Knowing the difficulty of quantitative modeling in systems biology, this two-steps approach could make modeling more efficient by highlighting where to deploy quantitative approaches. Qualitative and quantitative approaches can also be merged into hybrid models [START_REF] Faiz M Khan | Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic[END_REF][START_REF] Samaga | Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks[END_REF][START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF] which attempt to exploit the advantages of these two approaches in one. Hybrid models, or semi-quantitative models, can be good compromises between the convenience of qualitative modeling and the accuracy of quantitative modeling.

Chapter 4 Conclusion

This thesis devoted to the qualitative modeling of biological networks for therapeutic innovation brings two works. The first one is an algorithm for in silico target identification in Boolean models of pathologically disturbed biological networks while the second one aims at improving the Boolean network formalism in modeling the dynamics of biological networks.

The algorithm for in silico target identification shows that it finds, in Boolean models of pathologically disturbed biological networks, combinations of targets able to push pathological behaviors toward physiological ones. It is intended to be of use in the early steps of target identification by providing an efficient way to identify candidate targets prior to costly wet lab experiments. However, this algorithm produces in silico results and has to be considered as such: mathematical models approximate reality without reproducing it, qualitative modeling is not quantitative, and theory must meet practice. Consequently, it should be used in combination with wet lab experiments in a synergistic manner aimed at improving the efficiency of the overall target identification process by performing prior screenings of candidate targets. This is why the criterion for selecting therapeutic bullets is softened: with a too strict criterion, the risk of highlighting too few candidate targets and to miss some interesting ones is too hight. It should be noted that this algorithm fits into the encompassing field investigating how to control biological systems, a field with tremendous applications in biomedicine. Several endeavors based on qualitative modeling approaches have been made in this way [START_REF] Campbell | Stabilization of perturbed boolean network attractors through compensatory interactions[END_REF][START_REF] Qiu | On control of singleton attractors in multiple boolean networks: integer programming-based method[END_REF][START_REF] Srihari | Evolution and controllability of cancer networks: a boolean perspective[END_REF][START_REF] Chen | Finding optimal control policy in probabilistic boolean networks with hard constraints by using integer programming and dynamic programming[END_REF][START_REF] Kobayashi | Optimal control of gene regulatory networks with effectiveness of multiple drugs: A boolean network approach[END_REF][START_REF] Kobayashi | Symbolic approach to verification and control of deterministic/probabilistic boolean networks[END_REF], demonstrating its utility in investigating how to take control over pathologically disturbed biological systems.

The second work proposes a qualitative modeling approach derived from Boolean networks. It adds the possibility to tune the edges of the network according to knowledge about the modeled interactions. Furthermore, by using fuzzy operators, it allows continuous simulations to be performed. These extensions should enable to incorporate more knowledge, notably about biological processes, and to obtain more accurate results. In exchange, it requires the parameters controlling how the signal flows in the edges to be valued. These parameters are intended to be qualitative, that is parameters whose the valuation is knowledge-based, by opposition to quantitative parameters whose valuation is data-based. In other words, qualitative parameters translate qualitative information, an information which should be easier to obtain than the quantitative one. Indeed, quantitative models require their parameters to be valued by data obtained through experimental measurements. However, due to experimental limitations, such measurements can be challenging. Qualitative information is easier to obtain but at the cost of being qualitative, as its name indicates. This is the well-known trade-off between what is wished and what is obtainable.

Two improvements were done on the first work after its publication, namely handling multivalued logic and softening the selection of therapeutic bullets. These two improvements are relatively minor since they do not change the computational principles of the algorithm, namely computing dynamics of discrete dynamical systems. The second work proposes a continuous qualitative modeling, thus requiring to move from discrete to continuous dynamical systems. The continuous can be seen as the ultimate generalization of the discrete and is surely more accurate but brings some challenging differences. For example, with discrete dynamical systems of reasonable size, it is possible to compute the whole state space and then to find all the attractors. For discrete dynamical systems of bigger size, owing to the finite cardinality of their state space, it is at least possible to quantify which portion of it is computed and then to estimate the likeliness of finding all the attractors. With continuous dynamical systems, the state space has an infinite cardinality. Therefore, estimating the likeliness of finding all the attractors is far less straightforward, not to mention the certainty of finding all the attractors.

Continuous dynamical systems are mostly modeled by differential equations for which advanced solvers are available, such as LSODE (the Livermore Solver for Ordinary Differential Equations) [START_REF] Hindmarsh | Odepack, a systematized collection of ode solvers[END_REF]. The second work introduces continuous dynamical systems made of logical equations, for which advanced solvers do not seem to exist. However, mathematically speaking, it is likely that these continuous logical equations are differential equations thought and built in a different way. Consequently, it would be possible to mathematically express them as differential equations and then to use available computational tools aimed at analyzing continuous dynamical systems. This is a way to pursue the second work and to incorporate it into the first one in order to build a version of it based on continuous dynamical systems. 

Appendix C

Therapeutic bullets found for the case study.
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25 end while 26 H

 2526 = H ∪ {(x(1), . .. , x(k)Lines 13-19 are where bullets are applied.
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 21 Figure 2.1 -Graphical representation of the example network adapted from[START_REF] Faure | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF]. CDKs (cyclin-dependent kinases) are the catalytic partners of cyclins and, in this model, are not explicitly shown since the activity of CDK-cyclin complexes essentially depends on cyclins. Furthermore, inhibition of E2F by Rb is modeled by opposing Rb to the effects of E2F on its targets. The same applies to inhibition of CycE and CycA by p27. For a complete description of the model, see[START_REF] Faure | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF]. CycD: CDK4/6-cyclin D complex, input of the model, initiates the cell cycle, activated by positive signals such as growth factors; CycE: CDK2-cyclin E complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B complex; Rb: retinoblastoma protein, a tumor suppressor; E2F: a family of transcription factors divided into activator and repressor members, in this model E2F represents the activator members; p27: p27/Kip1, a CKI (CDK inhibitor); Cdc20: an APC (Anaphase Promoting Complex, an E3 ubiquitin ligase) activator; Cdh1: an APC activator; UbcH10: an E2 ubiquitin conjugating enzyme.
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 31 page 72. Below are the corresponding Boolean functions where AN D, NOT and OR stand for the Boolean operators: EGF (k + 1) = input set manually HRG(k + 1) = input set manually EGF R(k + 1) = OR(EGF (k), HRG(k)) P I3K(k + 1) = AN D(EGF R(k), NOT (ERK(k)))
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 31 Figure3.1 -Digital electronic representation of the example. Nodes are rectangles whereas logical gates are ellipses. This digraph should be read from left to right. For example, the node P I3K is an input of the node AKT and the node ERK, due to a feedback loop, is an input of the node P I3K. Logical gates are not nodes and, as such, edges only pass through them. For example, the edge (ERK, P I3K) passes through a NOT and AN D gate whereas the edge (Raf, ERK) does not pass through any logical gate.

instantaneous p ij = 1

 1 faster p ij ∈ [0.75; 1] fast p ij ∈ [0.5; 0.75] slow p ij ∈ [0.25; 0.5] slower p ij ∈ [0; 0.25] down p ij = 0 plus the entire interval [0; 1] in case of an undetermined edge reactivity.
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 32 Figure 3.2 -Activation of the signaling cascade by EGF and subsequent inhibition of P I3K by ERK.
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 3333 Figure 3.3 -Weakening the inhibitory effect of ERK on P I3K.
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 3434 Figure 3.4 -Slowing the inhibitory effect of ERK on P I3K.
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 35 Figure 3.5 -Consequences on the signaling cascade of a partial activation of EGF .
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 36 Figure 3.6 -Cumulative effect of partly activated EGF and HRG on the signaling cascade.
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  Theorem 1 page 32. A list of the computed therapeutic bullets can be found in Appendix C page 90. Given that in a 1 , what the pathological variant is forced to reach by means of therapeutic bullets, almost all variables are valued at 0, it is unsurprising that all targets in the computed therapeutic bullets have to be inhibited, that is set to 0.Below is the frequency of each node in the found therapeutic bullets:

	node	frequency in the found therapeutic bullets
	AT M		87.736%
	ICL		22.170%
	BRCA1		18.396%
	DSB		11.792%
	MRN		10.377%
	F ANCM		9.906%
	ADD		9.906%
	F ANCJBRCA1	9.434%
	ssDN ARP A		9.434%
	F ANCD1N		9.434%
	RAD51		9.434%
	HRR		9.434%
	USP 1		9.434%
	CHK2		9.434%
	H2AX		9.434%
	F Acore		8.019%
	F ANCD2I		8.019%
	F AN1		8.019%
	p53		8.019%
	CHK1		8.019%
	XP F		7.547%
	AT R		2.358%
	MUS81		0.943%
	P CNAT LS		0.472%
	KU		0.472%
	DN AP K		0.472%
	NHEJ		0.472%
	CHKREC		0%
	2	1 512	20 (1.323%)
	r = 3	26 208	191 (0.729%)

all therapeutic bullets being golden since card A physio = 1, as demonstrated in the

  Only a physio1 and a physio3 remain, while a patho1 appears and is what therapeutic bullets have to remove from S test .

	a physio1	33.3%
	a physio3	33.3%
	a patho1	33.3%

in % of card S patho )

  r min , r max ]] do is the desired card D and h is the cardinality of the domain of value, which depends on the used multivalued logic. A physio and A patho are computed without bullet, so the empty bullet ((), ()) is passed to compute_A (lines 7 and 8). cover patho is the covering of S patho by B physio,i (line 10) and cover test is the covering of S test by B physio,i (line 26). A test is the pathological attractor set under the effect of the tested bullet (line 24). A therapeutic bullet has to avoid the appearance of de novo attractors (line 25) and has to increase the covering of S test by B physio,i (line 27). This new criterion for selecting therapeutic bullets is illustrated on the case study modeled by Boolean logic: h = 2. Since patho1 does not produce pathological attractors, only patho2 is computed. As previously, wholly computing S is too demanding. Therefore, D is intended to have a reasonable cardinality: max D = 100 000. All the 1, 2-bullets are tested: r min = 1, r max = 2, max targ = 378 and max moda = 4. However, their therapeutic potential is no longer expressed as golden or silver but by their gain. It is displayed as follow: x% → y% where card B physio,i = x% in S patho and y% in S test . Consequently, in order to increase the physiological part of S test , a therapeutic bullet has to make y > x. The card B physio,i and card B patho,i in S test are also computed and expressed in percent of card S test . The algorithm returns 59 therapeutic bullets whose the list can be found in Appendix D page 97.

	15 16 17 18 19 20 21 29 30 31 32 33 end for end while generate c targ / ∈ C targ C targ = C targ ∪ {c targ } while card C moda < min(max moda , h r ) do generate c moda / ∈ C moda C moda = C moda ∪ {c moda } end while end if end if end for end for 34 return T end function max D 2.5.2.3 Results

12

C targ = {} 13 C moda = {} 14 while card C targ < min(max targ , n!/(r! • (nr)!)) do 22 for c targ ∈ C targ do 23 for c moda ∈ C moda do 24 A test = compute_A(f patho , c targ , c moda , D, V ) 25 if A test ⊆ A physio ∪ A patho then 26 cover test = compute_cover(A physio , A test ) 27 if cover test > cover patho then 28 T = T ∪ {(c targ , c moda )}

  in S test . For example, below are the computed 1-therapeutic bullets: patho,i , namely a patho1 , from S test . However, the other four therapeutic bullets are only obtainable with this new criterion since they do not remove a patho1 from S test . Nevertheless, as therapeutic bullets, they increase card B physio1 in S test . This highlight the ability of this new criterion to unravel more therapeutic bullets of varying therapeutic potential, thus opening the way for more targeting strategies of varying theoretical efficacy. Of course, therapeutic bullets of poor potential are also unraveled, such as -F ANCD2I which only increases card B physio1 from 29.4% in S patho to 30.4% in S test . However, in silico tools should not restrict their predictions to only those exhibiting a high theoretical potency since predicted does not necessarily mean true. Indeed, a prediction of apparently poor interest can reveal itself of great interest in practice, and vice versa.

	bullet	gain	B physio1 B patho1
	-F ANCM	29.4% → 44.6%	44.6% 55.4%
	-F ANCD2I 29.4% → 30.4%	30.4% 69.6%
	-XP F	29.4% → 46.2%	46.2% 53.8%
	-F AN1	29.4% → 32.9%	32.9% 67.1%
	-AT M	29.4% → 100%	100%	0%

-AT M is a therapeutic bullet also found with the previous criterion since it removes all the a

  EGF and HRG are the two inputs of the example and, since both can activate EGF R, one is sufficient to initiate the signaling cascade. It is assumed that, at the resting state, both the inputs are down: ∀k, EGF (k) = HRG(k) = none. However, at k EGF = k end /10, EGF is activated: ∀k > k EGF , EGF(k) = full. Therefore, f node EGF and f node HRG become:

	3.3.1 Simulation 1

  the other parameter values being as in simulation 1. The corresponding results are shown in Figure3.6 page 79. It points out that the effect of EGF and HRG on EGF R is cumulative due to an OR gate. Indeed, although both EGF and HRG are set to few, cumulating their effect on EGF R makes the signaling cascade more active than in simulation 4 where only EGF is set to few.

  Therapeutic bullets found for the case study using the new criterion.

	-F ANCD2I -F ANCJBRCA1 -AT M -AT M -F Acore -RAD51 -F ANCM -HRR -F ANCD1N -AT M -F AN1 -ssDN ARP A -AT M -CHK2 golden golden -AT M golden -AT M golden -CHK2 golden golden bullet gain B physio1 B patho1 bullet gain B physio1 B patho1
	-ICL -F ANCD2I -AT M -USP 1 -RAD51 -MRN -F Acore -F ANCD2I -F ANCD1N -USP 1 -CHK1 -AT M -HRR -AT M 29.4% → 30.4% -AT M -AT M -H2AX -H2AX -AT M -p53 -AT M -p53 29.4% → 100% 100% golden golden golden golden golden golden 30.4% 0%	69.6%
	-ICL -ADD -ICL -ICL -ICL -F ANCD1N -HRR -F Acore -AT M -MRN -DSB -AT M -F Acore -F AN1 29.4% → -AT M -DSB -CHK2 golden golden golden -RAD51 golden -p53 golden -AT M golden 33% 33% -AT M -CHK1 29.4% → 100% 100% 0%	67%
	-BRCA1 -F ANCD2I -ssDN ARP A -ICL -ICL -ICL -F Acore -AT M -AT M -USP 1 -F ANCD1N -AT M -DSB -MUS81 29.4% → 100% -AT M -AT M -CHK2 -H2AX -DN AP K golden golden golden golden golden -DSB golden 100% -AT M -CHK2 29.4% → 100% 100% 0%	0%
	-BRCA1 -MRN -XP F -F ANCD1N -F ANCM -ICL -F ANCD2I -AT M -H2AX 29.4% → 100% -ssDN ARP A -AT M -HRR -AT M -RAD51 -AT M -USP 1 -AT M -F ANCD1N -AT M -DSB -p53 -F AN1 29.4% → 33.2% 100% golden golden golden golden golden golden 33.2% 0%	66.8%
	-BRCA1 -ADD -ICL -F AN1 -F ANCM -ICL -F ANCM -F ANCD2I -BRCA1 -ICL -XP F -XP F -F ANCD2I Appendix D -ADD -F ANCD2I -AT M -AT M -DSB -F ANCD1N -AT M -DSB -MRN -F ANCD1N -HRR -USP 1 -ADD 29.4% → 30.5% -CHK1 golden -H2AX golden -USP 1 golden -AT M golden -CHK1 golden -KU golden -AT M golden -AT M golden -AT M golden -AT M golden -AT M golden -AT M golden 30.5% -F ANCD2I -F ANCD1N 29.4% → 30.4% 30.4%	69.5% 69.6%
	-F AN1 -F AN1 -ICL -F Acore -F ANCJBRCA1 -HRR -MRN -AT M -MRN -ADD -AT M -p53 -F ANCD2I -RAD51 29.4% → 30.4% -AT M -H2AX golden golden -AT R golden -AT M golden -AT M golden -H2AX golden 30.4%	69.6%
	-AT M -F ANCJBRCA1 -F AN1 -CHK2 -ssDN ARP A -RAD51 -ICL -F Acore -USP 1 -AT M -ICL -F ANCM -F ANCD2I -USP 1 29.4% → 30.4% -H2AX golden -AT M golden -AT M golden -AT M golden -p53 golden -DSB golden 30.4%	69.6%
	-ICL -ssDN ARP A -F ANCJBRCA1 -ssDN ARP A -AT M -DSB -MRN -AT M -H2AX golden golden golden -F ANCM -ssDN ARP A -AT M golden -XP F -AT M -CHK2 golden -ICL -DSB -HRR golden -F ANCD2I -AT M 29.4% → 100% 100%	0%
	-XP F -AT M -XP F -XP F -ICL -ICL -F ANCJBRCA1 -AT M -AT M -MRN -CHK1 -AT M -DSB -BRCA1 29.4% → 100% -AT M -CHK2 golden golden -p53 golden -H2AX golden -CHK2 golden -AT M golden 100%	0%
	-F Acore -ADD -F Acore -F Acore -ICL -RAD51 -XP F -ADD -USP 1 -F ANCD2I -HRR -MRN -XP F -USP 1 29.4% → 46.2% -AT M -AT M -AT M -AT M -DSB -AT M	golden golden golden golden golden golden 46.2%	53.8%
	-F ANCM -AT M -HRR -HRR -ssDN ARP A -ICL -XP F -F ANCD1N 29.4% → 46.2% -AT M -CHK2 golden -p53 -CHK1 golden -AT M -H2AX golden -AT M -CHK1 golden -F ANCD1N -AT M golden -F AN1 -AT M golden 46.2%	53.8%
	AT M -RAD51 -F Acore -HRR -BRCA1 -F ANCJBRCA1 -RAD51 -AT M -AT M -AT M -RAD51 -ICL -ADD bullet -XP F -RAD51 29.4% → 46.2% golden -p53 -H2AX golden golden -p53 golden -AT M golden -AT M golden -AT M golden gain B physio1 B patho1 46.2% 53.8%
	-AT M -F ANCD2I -ICL -F ANCJBRCA1 -F ANCD1N -CHK2 -ssDN ARP A -AT M golden -AT M -CHK2 golden golden -AT M golden -F AN1 -ADD -AT M golden -ICL -DSB -AT R golden -ICL -DSB -CHK1 golden -F ANCM 29.4% → 44.6% 44.6% 55.4% -XP F -HRR 29.4% → 45.3% 45.3% 54.7%
	-HRR -F ANCM -F AN1 -F ANCM -F ANCJBRCA1 -MRN -AT R -RAD51 -AT M -ADD -HRR -AT M -ICL -F ANCD2I -F ANCD2I 29.4% → 30.4% golden -AT M -AT M -AT M -AT M -CHK2 -DSB golden golden golden golden golden golden 30.4% 69.6% -XP F -USP 1 29.4% → 46.2% 46.2% 53.8%
	-ssDN ARP A -RAD51 -AT M -F ANCD2I -RAD51 -AT M -F Acore -AT M -F ANCM -USP 1 -ADD -USP 1 -ICL -F ANCD2I -XP F 29.4% → 46.2% golden -H2AX golden -AT M golden -CHK2 golden -AT M golden -AT M golden -AT M golden 46.2% 53.8% -XP F -KU 29.4% → 46.1% 46.1% 53.9%
	-BRCA1 -F ANCJBRCA1 -XP F -ADD -F ANCD1N -AT M -ICL -AT M -F ANCJBRCA1 -AT M -F ANCM -RAD51 -F AN1 29.4% → 32.9% golden -AT M -AT M -CHK1 -H2AX -AT M 32.9% golden golden golden golden golden 67.1% -XP F -DN AP K 29.4% → 46.1% 46.1% 53.9%
	-MRN -F ANCJBRCA1 -AT M -ICL -USP 1 -AT M -ICL -F ANCJBRCA1 -DSB golden -AT M -MRN -F ANCD1N -AT M -F ANCM -F Acore -AT M -CHK1 -AT M 29.4% → 100% -XP F -NHEJ 29.4% → 41.6%	golden golden golden golden golden 100% 41.6%	0% 58.4%
	-F AN1 -F ANCM -ssDN ARP A -ADD -HRR -F ANCM -ICL -F ANCD2I -HRR -MRN -AT M -ssDN ARP A -AT M golden -AT R -AT M -USP 1 -AT M -AT M -p53 29.4% → 30.9% 30.9% golden golden golden golden golden 69.1% -XP F -AT M 29.4% → 100% 100% 0%
	-ICL -MRN -MRN -MRN -ICL -XP F -ICL -MUS81 -F ANCM -USP 1 -DSB -BRCA1 -RAD51 -F ANCD1N 29.4% → -F AN1 -ADD 29.4% → 32.9% golden -AT M -AT M -AT M -AT M -AT M 53%	golden golden golden golden golden 53% 47% 32.9% 67.1%
	-F Acore -F AN1 -F ANCM -F ANCD1N -ICL -DSB -HRR -F AN1 -AT M -F Acore -BRCA1 -ICL -XP F 29.4% → 58.6% -AT M golden -AT M -AT M -p53 -ssDN ARP A golden golden golden golden -AT M golden 58.6% 41.4% -F AN1 -F ANCD1N 29.4% → 32.9% 32.9% 67.1%
	-USP 1 -BRCA1 -ssDN ARP A -F ANCD1N -F AN1 -ICL -ICL -F AN1 -F AN1 -RAD51 -AT M -AT M -RAD51 -USP 1 -DSB 29.4% → 33.9% -AT M golden -H2AX golden -p53 golden -AT M golden -AT M golden -NHEJ golden 33.9% 66.1% 29.4% → 32.9% 32.9% 67.1%
	-AT M -F ANCJBRCA1 -ADD -F AN1 -AT M -BRCA1 -AT M -F ANCM -F ANCJBRCA1 -AT M -H2AX golden -AT M -CHK2 golden golden -CHK2 golden golden -BRCA1 -AT M -p53 golden -ICL -DSB 29.4% → 100% 100% -F AN1 -HRR 29.4% → 32.2% 32.2%	0% 67.8%
	-ADD -MRN -F ANCD2I -ADD -ssDN ARP A -BRCA1 -ICL -AT M -F AN1 -USP 1 -AT M -ssDN ARP A -AT M -AT M golden -ssDN ARP A -AT M -RAD51 -AT M -CHK1 -HRR -AT M 29.4% → 100% 29.4% → 32.9%	golden golden golden golden golden 100% 32.9%	0% 67.1%
	-RAD51 -F Acore -F ANCD2I -ICL -F Acore -F ANCJBRCA1 -AT M -AT M golden -ssDN ARP A -AT M -F AN1 -AT M -DSB -F ANCD1N golden golden golden golden -F ANCJBRCA1 -USP 1 -AT M golden -F ANCM -F Acore 29.4% → 45.8% 45.8% 54.2% -F AN1 -KU 29.4% → 31.7% 31.7% 68.2%
	-XP F -F Acore -XP F -ICL -F ANCD2I -ssDN ARP A -F ANCM -F ANCD2I -HRR -F ANCD1N -AT M -RAD51 -HRR -USP 1 29.4% → 46.3% golden -AT M -AT M -AT M -AT M -AT M 46.3% golden golden golden golden golden 53.7% -F AN1 -DN AP K 29.4% → 31% 31% 69%
	-F ANCM -F ANCD2I -F AN1 -ICL -F ANCD2I -F ANCJBRCA1 -AT M -AT M golden -BRCA1 -AT M -BRCA1 -AT M -AT M -CHK2 -ICL -DSB -H2AX -F ANCM -F AN1 29.4% → 47.3% 47.3% golden golden golden golden golden 52.7% -F AN1 -AT M 29.4% → 100% 100% 0%
	-F ANCD1N -AT M -MRN -AT M -F ANCD1N -ADD -ADD -AT M -XP F -ssDN ARP A -F ANCM -BRCA1 -F ANCM -ADD 29.4% → 47.3% golden -AT M -CHK1 golden golden -H2AX golden -AT M golden -AT M golden 47.3% 52.7% -ADD -AT M 29.4% → 100% 100% 0%
	-AT M -F Acore -AT M -MRN -USP 1 -MRN -F ANCM -F ANCD1N 29.4% → 44.6% -CHK1 golden -p53 -CHK2 golden -HRR -AT M golden -AT M -H2AX golden -AT M -CHK1 golden -AT M -CHK1 golden 44.6% 55.4% -MRN -AT M 29.4% → 100% 100% 0%
	-ICL -RAD51 -XP F -F Acore -ICL -ICL -F ANCM -RAD51 -DSB -AT M -AT M -F AN1 -F ANCJBRCA1 -AT M -AT M golden -CHK2 golden -CHK1 golden -AT M golden -AT M golden golden 29.4% → 44.6% 44.6% 55.4% -BRCA1 -AT M 29.4% → 100% 100% 0%
	-AT M -F ANCM -ADD -ICL -ICL -F ANCD1N -F ANCM -HRR -ssDN ARP A -AT M -ADD -AT M -BRCA1 -p53 -XP F -AT M 29.4% → 44.1% golden -H2AX golden -AT M golden -AT M golden -DSB golden -CHK1 golden 44.1% 55.9% 29.4% → 100% 100% 0%
	-F ANCJBRCA1 -AT M -P CNAT LS -F AN1 -F ANCD2I -ADD -ICL -ADD -USP 1 -AT M -ICL -DSB -F ANCM -USP 1 29.4% → 44.3% golden -AT M -DSB -AT M -CHK2 -BRCA1 44.3% golden golden golden golden golden 55.7% -F ANCD1N -AT M 29.4% → 100% 100% 0%
	-F ANCJBRCA1 -AT M -ADD -AT M -F ANCD2I -AT M -XP F -BRCA1 -MRN -AT M -F ANCM -AT M 29.4% → 100% -p53 -p53 -H2AX -AT M -CHK2 -RAD51 -AT M 29.4% → 100%	golden golden golden golden golden 100% 100%	0% 0%
	-F ANCM -ICL -ICL -RAD51 -F ANCJBRCA1 -BRCA1 -MRN -MUS81 -AT R -AT M -HRR -AT M 29.4% → 100% -AT M -AT M -AT M -CHK1 -AT M		golden golden golden golden golden 100%	0%
	-USP 1	-AT M	29.4% → 100%		100%	0%

http://www.journals.elsevier.com/comptes-rendus-biologies/

http://www.gnu.org/software/gcc/fortran/

https://github.com/
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Appendix A

The algorithm in one block of pseudocode. 

Appendix B

Boolean functions of the case study where, for the sake of readability, x i stands for x i (k) and x i+ stands for x i (k + 1):