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Abstract

This thesis is devoted to the qualitative modeling of biological networks for
therapeutic innovation. It investigates how to use the Boolean network for-
malism, and how to enhance it, for identifying therapeutic targets through in
silico approaches. It is composed of two works: i) an algorithm using Boolean
network attractors for in silico target identification in Boolean models of
pathologically disturbed biological networks, and ii) an enhancement of the
Boolean network formalism in modeling the dynamics of biological networks
through the incorporation of fuzzy operators and edge tuning.

Target identification, one of the steps of drug discovery, aims at identi-
fying biomolecules whose function should be therapeutically altered in order
to cure the considered pathology. The first work of this thesis proposes an
algorithm for in silico target identification using Boolean network attractors.
It assumes that attractors of dynamical systems, such as Boolean networks,
correspond to phenotypes produced by the modeled biological system. Under
this assumption, and given a Boolean network modeling a pathophysiology,
the algorithm identifies target combinations able to remove attractors asso-
ciated with pathological phenotypes. It is tested on a Boolean model of the
mammalian cell cycle bearing a constitutive inactivation of the retinoblas-
toma protein, as seen in cancers, and its applications are illustrated on a
Boolean model of Fanconi anemia. The results show that the algorithm re-
turns target combinations able to remove attractors associated with patho-
logical phenotypes and then succeeds in performing the proposed in silico
target identification. However, as with any in silico evidence, there is a
bridge to cross between theory and practice, thus requiring it to be used in
combination with wet lab experiments. Nevertheless, it is expected that the
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algorithm is of interest for target identification, notably by exploiting the in-
expensiveness and predictive power of computational approaches to optimize
the efficiency of costly wet lab experiments.

Quantitative modeling in systems biology can be difficult due to the
scarcity of quantitative details about biological phenomenons, especially at
the subcellular scale, the scale where drugs interact with there targets. An al-
ternative to escape this difficulty is qualitative modeling since it requires few
to no quantitative information. Among the qualitative modeling approaches,
the Boolean network formalism is one of the most popular. However, Boolean
models allow variables to be valued at only true or false, which can appear
too simplistic when modeling biological processes. Consequently, the sec-
ond work of this thesis proposes a modeling approach derived from Boolean
networks where fuzzy operators are used and where edges are tuned. Fuzzy
operators allow variables to be continuous and then to be more finely valued
than with discrete modeling approaches, such as Boolean networks, while re-
maining qualitative. Moreover, to consider that some interactions are slower
and/or weaker relative to other ones, edge states are computed in order to
modulate in speed and strength the signal they convey. The proposed for-
malism is illustrated through its implementation on a tiny sample of the
epidermal growth factor receptor signaling pathway. The obtained simula-
tions show that continuous results are produced, thus allowing finer analysis,
and that modulating the signal conveyed by the edges allows their tuning
according to knowledge about the modeled interactions, thus incorporating
more knowledge. The proposed modeling approach is expected to bring en-
hancements in the ability of qualitative models to simulate the dynamics of
biological networks while not requiring quantitative information.

The main prospect of this thesis is to use the proposed enhancement of
Boolean networks to build a version of the algorithm based on continuous
dynamical systems. This will incorporate the accuracy of continuous simula-
tions while keeping the advantageous of qualitative modeling. This prospect
is not trivial since it requires to move from discrete to continuous dynamical
systems. This brings some challenging differences such as the infinite cardi-
nality of the state space. However, it is likely that the proposed enhance-
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ment of Boolean networks can be mathematically expressed by differential
equations. This means that the existing, and advanced, computational tools
aimed at handling continuous dynamical systems, such as solvers of ordinary
differential equations, could be directly used.

Keywords: biological network, Boolean network, therapeutic target, drug
discovery, attractor, Fanconi anemia, multivalued logic, fuzzy logic, logic
model, qualitative modeling



Résumé

Cette thèse est consacrée à la modélisation qualitative des réseaux biolo-
giques pour l’innovation thérapeutique. Elle étudie comment utiliser les ré-
seaux Booléens, et comment les améliorer, afin d’identifier des cibles théra-
peutiques au moyen d’approches in silico. Elle se compose de deux travaux :
i) un algorithme exploitant les attracteurs des réseaux Booléens pour l’identi-
fication in silico de cibles dans des modèles Booléens de réseaux biologiques
pathologiquement perturbés, et ii) une amélioration des réseaux Booléens
dans leur capacité à modéliser la dynamique des réseaux biologiques grâce à
l’utilisation des opérateurs de la logique floue et grâce au réglage des arrêtes.

L’identification de cibles constitue l’une des étapes de la découverte de
nouveaux médicaments et a pour but d’identifier des biomolécules dont la
fonction devrait être thérapeutiquement modifiée afin de lutter contre la pa-
thologie considérée. Le premier travail de cette thèse propose un algorithme
pour l’identification in silico de cibles par l’exploitation des attracteurs des
réseaux Booléens. Il suppose que les attracteurs des systèmes dynamiques,
tel que les réseaux Booléens, correspondent aux phénotypes produits par le
système biologique modélisé. Sous cette hypothèse, et étant donné un réseau
Booléen modélisant une physiopathologie, l’algorithme identifie des combi-
naisons de cibles capables de supprimer les attracteurs associés aux phéno-
types pathologiques. L’algorithme est testé sur un modèle Booléen du cycle
cellulaire arborant une inactivation constitutive de la protéine du rétinoblas-
tome, tel que constaté dans de nombreux cancers, tandis que ses applications
sont illustrées sur un modèle Booléen de l’anémie de Fanconi. Les résultats
montrent que l’algorithme est à même de retourner des combinaisons de cibles
capables de supprimer les attracteurs associés aux phénotypes pathologiques,
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et donc qu’il réussit l’identification in silico de cibles proposée. En revanche,
comme tout résultat in silico, il y a un pont à franchir entre théorie et pra-
tique, requérant ainsi une utilisation conjointe d’approches expérimentales.
Toutefois, il est escompté que l’algorithme présente un intérêt pour l’identi-
fication de cibles, notamment par l’exploitation du faible coût des approches
computationnelles, ainsi que de leur pouvoir prédictif, afin d’optimiser l’effi-
cience d’expérimentations coûteuses.

La modélisation quantitative en biologie systémique peut s’avérer dif-
ficile en raison de la rareté des détails quantitatifs concernant les phéno-
mènes biologiques, particulièrement à l’échelle subcellulaire, l’échelle où les
médicaments interagissent avec leurs cibles. Une alternative permettant de
contourner cette difficulté est la modélisation qualitative étant donné que
celle-ci ne requiert que peu ou pas d’informations quantitatives. Parmi les
méthodes de modélisation qualitative, les réseaux Booléens en sont l’une des
plus populaires. Cependant, les modèles Booléens autorisent leurs variables
à n’être évaluées qu’à vrai ou faux, ce qui peut apparaître trop simpliste
lorsque des processus biologiques sont modélisés. En conséquence, le second
travail de cette thèse propose une méthode de modélisation dérivée des ré-
seaux Booléens où les opérateurs de la logique floue sont utilisés et où les
arrêtes peuvent être réglées. Les opérateurs de la logique floue permettent
aux variables d’être continues, et ainsi d’être plus finement évaluées qu’avec
des méthodes de modélisation discrètes tel que les réseaux Booléens, tout en
demeurant qualitatives. De plus, dans le but de considérer le fait que cer-
taines interactions peuvent être plus lentes et/ou plus faibles que d’autres,
l’état des arrêtes est calculé afin de moduler en vitesse et en force le signal
qu’elles véhiculent. La méthode proposée est illustrée par son implémenta-
tion sur un petit échantillon de la signalisation du récepteur au facteur de
croissance épidermique. Les simulations obtenues montrent que des résultats
continus sont produits, permettant ainsi une analyse plus fine, et que moduler
le signal véhiculé par les arrêtes permet leur réglage selon des connaissances
concernant les interactions qu’elles modélisent, permettant ainsi d’incorporer
davantage d’informations. Il est escompté que la méthode de modalisation
proposée apportera des améliorations dans la capacité des modèles qualita-
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tifs à simuler la dynamique des réseaux biologiques, tout en ne requérant pas
d’informations quantitatives.

La principale perspective de cette thèse est d’utiliser l’amélioration pro-
posée des réseaux Booléens pour construire une version de l’algorithme basée
sur les systèmes dynamiques continus. Cela permettra de bénéficier de la
précision des simulations continues tout en préservant les avantages de la
modélisation qualitative. Toutefois, cette perspective n’est pas triviale car
nécessite de passer des systèmes dynamiques discrets aux systèmes dyna-
miques continus. Cela amène quelques difficultés tel que la cardinalité infinie
de l’espace d’état. Cependant, il est possible que l’amélioration proposée des
réseaux Booléens puisse être mathématiquement exprimée par des équations
différentielles. Cela signifie que les outils informatiques existants, et avan-
cés, capables de gérer les systèmes dynamiques continus, tel que les solveurs
d’équations différentielles, pourraient être directement utilisés.

Mots clés : réseau biologique, réseau Booléen, cible thérapeutique, décou-
verte de médicament, attracteur, anémie de Fanconi, logique multivaluée,
logique floue, modèle logique, modélisation qualitative
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Chapter 1

Introduction

1.1 Thesis outline

This thesis is devoted to the qualitative modeling of biological networks for
therapeutic innovation. It investigates how to use the Boolean network for-
malism, and how to enhance it, for identifying therapeutic targets through
in silico approaches. It is composed of two works: i) an algorithm using
Boolean network attractors for in silico target identification in Boolean mod-
els of pathologically disturbed biological networks, and ii) an enhancement of
the Boolean network formalism in modeling the dynamics of biological net-
works through the incorporation of fuzzy operators and edge tuning. Each
of these two works have their own, specific, introduction and conclusion, fol-
lowed by a general conclusion at the end of this thesis. The first work is
published, available in its publisher version [1] and author version [2]. Two
further releases of the algorithm were done since its publication, all being
freely available. The second work is submitted for publication to Comptes
Rendus Biologies2, the author version being already available [3].

2http://www.journals.elsevier.com/comptes-rendus-biologies/
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1.2 The topic

This section introduces the topic of this thesis, namely the qualitative mod-
eling of biological networks for therapeutic innovation. It starts with the
modeling in systems biology and then focuses on qualitative modeling. Next,
biological networks are introduced before describing how they can be modeled
by Boolean networks. Finally, the intended applications in drug discovery,
and more precisely for target identification, are introduced.

1.2.1 Modeling in systems biology

Modeling in systems biology allows scientists to produce formal models of bi-
ological systems and then to implement them on computers [4,5]. With such
computational models, scientists can perform in silico experiments which
have the advantage of being less costly in time and resources than the tra-
ditional wet lab experiments. However, the stumbling block of in silico ap-
proaches is that they are built from the available knowledge: not all is known
about everything. Nevertheless, an impressive and ever increasing amount of
biological knowledge is already available in the scientific literature, databases
and knowledge bases such as, to name a few, DrugBank [6], KEGG [7], Phar-
mGKB [8], Reactome [9] and TTD [10]. In addition to the difficulty of in-
tegrating an increasing body of knowledge comes the inherent complexity
of biological systems themselves [11]: this is where computational tools can
help owing to their integrative power [12–14]. This interplay between wet
lab and computational biology is synergistic rather than competitive [15].
Since wet lab experiments produce factual results, they can be considered
as trustworthy sources of knowledge. Once these factual pieces of knowledge
are obtained, computational tools can help to integrate them and infer new
ones. This computationally obtained knowledge can be subsequently used to
direct further wet lab experiments, thus mutually potentiating the whole.
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1.2.2 Qualitative modeling

One of the main difficulties encountered when quantitatively modeling bi-
ological systems with, for example, systems of differential equations [16] is
that the required quantitative parameter values are not straightforward to
obtain. One solution to overcome this barrier is qualitative modeling since
it requires few to no quantitative information while producing informative
predictions [17]. Several qualitative modeling approaches already exist and
are mostly based on logic [18,19] such as Boolean networks which are based
on Boolean logic. However, this is at the cost of being qualitative: no quan-
tification is performed. This does not mean that qualitative modeling is a
downgrade of the quantitative one. This means that scientists have different
approaches at their disposal, each with its advantages and disadvantages,
depending on the pursued goals and available resources. If accurate nu-
merical results are expected, quantitative modeling is required. However, if
tendencies and global properties are the main concerns, qualitative modeling
is entirely fitting and proved itself through several works [20–45].

1.2.3 Biological networks

A biological network is a way to conceptualize a set of interacting biological
entities where entities are represented by nodes and interactions by edges
[46, 47]. It is based on graph theory [48–50], thus bringing formal tools to
encode information about biological systems, particularly their topology [51].
Moreover, being graphs, biological networks offer a convenient visualization
[52] of the complex interconnections lying in biological systems. As said
Napoleon Bonaparte:

“A good sketch is better than a long speech.”

Several types of biological networks can be encountered, depending on the
scale, the involved entities and their interconnections. For example, at the
ecological scale, food webs are biological networks where nodes represent
species and edges represent trophic relations [53,54]. At the subcellular scale
there is, for example, gene regulatory networks where nodes represent gene



CHAPTER 1. INTRODUCTION 17

products and edges represent gene expression modulations [55,56]. Whatever
the scale or entities, the principle remains the same: given a biological system,
nodes represent entities and edges represent interactions between them.

1.2.4 Boolean networks

Boolean networks [57], pioneered in biology by Kauffman [58], Glass [59],
Ostrander [60] and Thomas [61], are one of the existing qualitative modeling
approaches. While being conceptually simple, Boolean networks are able to
predict and reproduce features of biological systems and then to bring rele-
vant insights [62–67]. This makes them an attractive and efficient approach,
especially when the complexity of biological systems renders quantitative
approaches unfeasible due to the amount of quantitative details they require.

As their name indicates, Boolean networks are based on Boolean logic [68]
and, like biological networks, are also based on graph theory: nodes repre-
sent Boolean variables and edges represent interdependencies between them.
Belonging to Boolean logic, Boolean variables can be valued at either true
or false. This can appear somewhat simplistic when modeling biological pro-
cesses, a point addressed in the second work of this thesis. Interdependencies
between Boolean variables are mathematically implemented by Boolean func-
tions: a Boolean function is assigned to each variable and defines its value
according to the one of the variables interacting with it. Boolean functions
manipulate the value of their arguments through Boolean operators, namely
AND, OR and NOT .

Starting from an initial state, that is a vector containing the initial value
of all the variables of the network, its is possible to simulate its dynamics by
computing the value of the state vector along a given number of iterations. To
do so, at each iteration, the value of the state vector is updated through the
Boolean functions according to its current and/or previous value, depending
on the updating scheme. Therefore, Boolean networks can be seen as discrete
dynamical systems able to model the dynamics of biological networks. To this
end, each entity of the biological network is modeled by a Boolean variable
and the interactions between them are encode in Boolean functions.
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Boolean networks can be classified according to their updating scheme
as synchronous or asynchronous. If all the variables are updated simulta-
neously at each iteration then the network is synchronous, otherwise it is
asynchronous. While there is only one synchronous updating scheme, differ-
ent asynchronous updating schemes exist:

• the random order asynchronous updating scheme where, at each itera-
tion, an updating order for the variables is randomly selected

• the general asynchronous updating scheme where, at each iteration, a
randomly selected variable is updated

• the deterministic asynchronous updating scheme where a divisor is as-
signed to each variable and then, at each iteration, a variable is updated
if and only if the iteration is a multiple of its divisor

With the exception of deterministic asynchronous Boolean networks, only
synchronous Boolean networks are deterministic since, at each iteration, vari-
ables have only one possible successor. This makes synchronous Boolean
networks easier to compute than asynchronous ones [69].

1.2.5 Target identification

Drug discovery, as its name indicates, aims at discovering new drugs against
diseases. This process can be segmented into three steps: i) disease model
provision, where experimental models are developed, ii) target identification,
where therapeutic targets are proposed, and iii) target validation, where the
proposed therapeutic targets are assessed. The applications of this thesis in
therapeutic innovation, namely through the first work, focus on the second
step of drug discovery: target identification [70,71].

Given an organism suffering from a disease, target identification aims at
finding where to act among its multitude of biomolecules in order to allevi-
ate, or ultimately cure, the physiological consequences of the disease. These
biomolecules on which perturbations should be applied are called targets and
are targeted by drugs [72]. This raises two questions: which target should be
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therapeutically perturbed and what type of perturbation should be applied
on it. Broadly, the functional perturbation of a target by a drug can be either
activating or inactivating, regardless the way the drug achieves it.

One solution is to test all, or at least a large number of, biomolecules for
activation and inactivation. Knowing that targeting several biomolecules is
potentially more effective [73,74], the number of possibilities is consequently
huge. This rather brute-force screening can be refined with knowledge about
the pathophysiology of interest by identifying potential targets based on the
role they play in it [75]. Even with this knowledge, experimentally assess-
ing the selected potential targets through wet lab experiments is far from
straightforward since such experiments are costly in time and resources [76].
Fortunately, owing to their integrative power and low cost compared to wet
lab approaches, in silico approaches appear as valuable tools in improving
the efficiency of target identification [77–88], as demonstrated through several
works using various computational methods [89–99].



Chapter 2

Therapeutic target discovery
using Boolean network attractors:
avoiding pathological phenotypes

This chapter describes the first work of this thesis. The first four sections are
mostly the corresponding article as published, while the last section describes
improvements done after publication.

2.1 Background

The goal of this work is to propose a computational methodology imple-
mented in an algorithm for in silico target identification using Boolean net-
work attractors. It assumes that Boolean network attractors correspond to
phenotypes produced by the modeled biological network, an assumption suc-
cessfully applied in several works [20–23, 27, 28, 32–34, 36, 39, 40, 43–45, 100,
101]. Assuming that a phenotype is an observable and thus a relatively stable
state of a biological system and assuming that the state of a biological system
results from its dynamics, a phenotype is likely to correspond to an attractor.
This assumption can be stated for any dynamical model but, in this work,
only Boolean networks are considered. Reasons are that, in their most ba-
sic form, Boolean networks do not require quantitative information and that

20
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quantitative information is often not easy to obtain due to experimental lim-
itations, particularly at the subcellular scale, the scale where drugs interact
with their targets. Moreover, since synchronous Boolean networks are easier
to compute than asynchronous ones, this work only considers synchronous
Boolean networks. This does not exclude the possibility, at a later stage,
to extend the algorithm for both synchronous and asynchronous updating
schemes.

For a biological network involved in a disease, two possible variants are
considered: the physiological variant, exhibited by healthy organisms, which
produces physiological phenotypes, and the pathological variant, exhibited
by ill organisms, which produces pathological phenotypes, or which fails to
produce physiological ones. A physiological phenotype does not impair life
quantity/quality whereas a pathological phenotype does. It should be noted
that the loss of a physiological phenotype is also a pathological condition.
The physiological and pathological variants differ in that the latter results
from the occurrence of some alterations known to be responsible for disor-
ders. With a pathological variant, there are two non-exclusive pathological
scenarios: pathological phenotypes are gained or physiological phenotypes
are lost.

The primary goal of the proposed algorithm is to identify, in a pathologi-
cal variant, target combinations together with the perturbations to apply on
them, here called bullets, which render it unable to exhibit pathological phe-
notypes. The secondary goal is to classify the obtained bullets according to
their ability at rendering the pathological variant able to exhibit previously
lost physiological phenotypes, if any.

2.2 Methods

This section introduces some basic principles, namely biological and Boolean
networks, defines some concepts and then describes the proposed algorithm.
An example network to illustrate how it works plus a case study to illustrate
its intended applications are also described. Finally, details about implemen-
tation and code availability are mentioned.
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2.2.1 Basic principles

2.2.1.1 Biological networks

A network can be seen as a digraph G = (V,E) where V = {v1, . . . , vn} is
the set of cardinality n containing exactly all the nodes vi of the network
and where E = {(vi,1, vj,1), . . . , (vi,m, vj,m)} ⊆ V 2 is the set of cardinality m

containing exactly all the edges (vi, vj) of the network. In practice, nodes
represent entities and edges represent binary relations R ⊆ V 2 involving
them: vi R vj. For example, in gene regulatory networks, nodes represent
gene products and edges represent gene expression modulations.

2.2.1.2 Boolean networks

A Boolean network is a network where nodes are Boolean variables xi and
where edges (xi, xj) represent the binary is input of relation: xi is input of xj.
Each xi has bi ∈ [[0, n]] inputs xi,1, . . . , xi,bi . The variables which are not in-
puts of xi have no direct influence on it. If bi = 0 then xi is a parameter
and does not depend on other variables. At each iteration k ∈ [[k0, kend]] of
the simulation, the value xi(k) ∈ {0, 1} of each xi is updated to the value
xi(k+1) using a Boolean function fi and the values xi,1(k), . . . , xi,bi(k) of its
inputs, as in the following pseudocode:

1 for k ∈ [[k0, kend − 1]] do
2 x1(k + 1) = f1(x1,1(k), . . . , x1,b1(k))

3 . . .
4 xn(k + 1) = fn(xn,1(k), . . . , xn,bn(k))

5 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do
2 x(k + 1) = f(x(k))

3 end for

where f = (f1, . . . , fn) is the Boolean transition function and x = (x1, . . . , xn)

is the state vector. The value x(k) = (x1(k), . . . , xn(k)) ∈ {0, 1}n of x at
k belongs to the state space S = {0, 1}n which is the set of cardinality 2n
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containing exactly all the possible states.
If the values of all the xi are updated simultaneously at each k then

the network is synchronous, otherwise it is asynchronous. With synchronous
Boolean networks, x(k) has a unique possible successor x(k+1): synchronous
Boolean networks are deterministic. In the particular case where k = k0,
x(k0) = x0 is the initial state and, in deterministic dynamical systems, de-
termines entirely the trajectory w = (x(k0), . . . ,x(kend)). In this work, it is
assumed that k0 = 1, so w is a sequence of length kend resulting from the
iterative computation of x(k) from k0 up to kend. This iterative computation
can be seen as the discretization of a time interval: Boolean networks are
discrete dynamical systems as they simulate discretely the time course of the
state vector.

The set A = {a1, . . . , ap} of cardinality p containing exactly all the
attractors ai is called the attractor set. Due to the determinism of syn-
chronous Boolean networks, all the attractors are cycles. A cycle is a sequence
(x1, . . . ,xq) of length q such that ∀j ∈ [[1, q]], xj+1 = f(xj) and xq+1 = x1:
once the system reaches a state xj belonging to a cycle, it successively visits
its states xj+1, . . . ,xq,x1, . . . ,xj for infinity. In the particular case where
q = 1, ai is a point attractor. The set Bi ⊆ S containing exactly all the
x ∈ S from which ai can be reached is called its basin of attraction. With
deterministic dynamical systems, the family of sets (B1, . . . , Bp) constitutes
a partition of S.

2.2.2 Definitions

Some concepts used in this work should be formally defined.

• physiological phenotype: A phenotype which does not impair the
life quantity/quality of the organism which exhibits it.

• pathological phenotype: A phenotype which impairs the life quan-
tity/quality of the organism which exhibits it.

• variant (of a biological network): Given a biological network of
interest, a variant is one of its versions, namely the network plus even-
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tually some modifications. It should be noted that this does not exclude
the possibility that a variant can be the network of interest as is.

• physiological variant: A variant which produces only physiological
phenotypes. It is the biological network of interest as it should be,
namely the one of healthy organisms.

• pathological variant: A variant which produces at least one patho-
logical phenotype. It is a dysfunctional version of the biological network
of interest, namely a version found in ill organisms.

• physiological attractor set: The attractor set Aphysio of the physio-
logical variant.

• pathological attractor set: The attractor set Apatho of the patholog-
ical variant.

• physiological Boolean transition function: The Boolean transi-
tion function f physio of the physiological variant.

• pathological Boolean transition function: The Boolean transition
function f patho of the pathological variant.

• run: An iterative computation of x(k) starting from an x0 until an ai

is reached. It returns w = (x(k0), . . . ,x(kend)) where kend depends on
when ai is reached, and then on x0.

• physiological attractor: An ai such that ai ∈ Aphysio.

• pathological attractor: An ai such that ai /∈ Aphysio.

• modality: The functional perturbation modai applied on a node vj ∈
V of the network, either activating (modai = 1) or inactivating (modai =

0): at each k, modai overwrites fj(x(k)) making xj(k + 1) = modai.

• target: A node targi ∈ V of the network on which a modai is applied.
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• bullet: A couple (ctarg, cmoda) where ctarg = (targ1, . . . , targr) is a com-
bination without repetition of targi and where cmoda = (moda1, . . . ,modar)

is an arrangement with repetition of modai, r ∈ [[1, n]] being the num-
ber of targets in the bullet. Here, modai is intended to be applied on
targi.

• therapeutic bullet: A bullet which makes Apatho ⊆ Aphysio.

• silver bullet: A therapeutic bullet which makes Apatho � Aphysio.

• golden bullet: A therapeutic bullet which makes Apatho = Aphysio.

The assumed link between phenotypes and attractors is the reason why at-
tractors are qualified as either physiological or pathological according to the
phenotype they produce. This is also the reason why, in this work, target
identification aims at manipulating attractor sets of pathological variants.

2.2.3 Steps of the algorithm

The algorithm has two goals: i) finding therapeutic bullets, and ii) classifying
them as either golden or silver. A therapeutic bullet makes the pathological
variant unable at reaching pathological attractors, that is Apatho ⊆ Aphysio. If
such a bullet is applied on a pathological variant, the organism bearing it no
longer exhibits the associated pathological phenotypes. However, a therapeu-
tic bullet does not necessarily preserve/restore the physiological attractors.
If a therapeutic bullet preserves/restores all the physiological attractors, that
is if Apatho = Aphysio, then it is a golden one, but if Apatho � Aphysio then it
is a silver one.

Given a physiological and a pathological variant, that is f physio and f patho,
the algorithm follows five steps:

1. with f physio it computes the control attractor set Aphysio

2. it generates bullets and, for each of them, it performs the three following
steps

3. with f patho plus the bullet, it computes the variant attractor set Apatho
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4. it assesses the therapeutic potential of the bullet by comparing Aphysio

and Apatho to detect pathological attractors

5. if the bullet is therapeutic then it is classified as either golden or silver
by comparing Aphysio and Apatho for equality

These steps can be written in pseudocode as:

1 with f physio compute Aphysio

2 generate bullet_set

3 for bullet ∈ bullet_set do
4 with f patho plus bullet compute Apatho

5 if Apatho ⊆ Aphysio then
6 bullet is therapeutic
7 if Apatho = Aphysio then
8 bullet is golden
9 else

10 bullet is silver
11 end if
12 end if
13 end for

The algorithm is described step by step but can be found as one block of
pseudocode in Appendix A page 85.

2.2.3.1 Step 1: computing Aphysio

First of all, Aphysio has to be computed since it is the control and, as such,
determines what is pathological. To do so, runs are performed with f physio

and the reached ai are stored in Aphysio. However, x0 ∈ S and card S

increases exponentially with n. Even for reasonable values of n, card S

explodes: more than 1 000 000 possible x0 for n = 20. One solution ensuring
that all the ai are reached is to start a run from each of the possible x0, that
is from each of the x ∈ S. Practically, this is unfeasible for an arbitrary
value of n since the required computational capacity can be too demanding.
For example, assuming that a run requires 1 millisecond and that n = 50,
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performing a run from each of the 250 x ∈ S requires nearly 36 000 years.
Given that with deterministic dynamical systems (B1, . . . , Bp) is a parti-

tion of S, a solution is to select a subset D ⊆ S of a reasonable cardinality
containing the x0 to start from. In this work, D is randomly selected from a
uniform distribution. The stumbling block of this solution is that it does not
ensure that at least one x0 per Bi is selected and then does not ensure that
all the ai are reached. This stumbling block holds only if card D < card S.

Again given that synchronous Boolean networks are deterministic, if a
run visits a state already visited during a previous run then its destination,
that is the reached attractor, is already found. If so, the run can be stopped
and the algorithm can jump to the next one. To implement this, the previous
trajectories are stored in a set H, the history, and at each k the algorithm
checks if ∃w ∈ H : x(k) ∈ w. If this check is positive then the algorithm
jumps to the next run.

To detect the attractors, since with deterministic dynamical systems they
are cycles, the algorithm checks at each k if x(k + 1) is an already visited
state of the current run, namely if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′). If this
check is positive then ai = (x(k′), . . . ,x(k)).

This step can be written in pseudocode as:

1 prompt card D

2 card D = min(card D, 2n)

3 generate D ⊆ S

4 H = {}
5 Aphysio = {}
6 for x0 ∈ D do
7 k = 1

8 x(k) = x0

9 while true do
10 if ∃w ∈ H : x(k) ∈ w then
11 break
12 end if
13 x(k + 1) = f physio(x(k))

14 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
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15 Aphysio = Aphysio ∪ {(x(k′), . . . ,x(k))}
16 break
17 end if
18 k = k + 1

19 end while
20 H = H ∪ {(x(1), . . . ,x(k))}
21 end for
22 return Aphysio

23 do step 2

Line 2 catches the mistake card D > card S.
It should be noted that the purpose of this work is not to propose an

algorithm for finding Boolean network attractors since advanced algorithms
for such tasks are already published [102–106]. The purpose is to propose
a computational methodology exploiting Boolean network attractors for in
silico target identification, a methodology which requires de facto these at-
tractors to be found. This point is discussed in the Discussion section page
46.

2.2.3.2 Step 2: generating bullets

Bullets are candidate perturbations to apply on the pathological variant to
make it unable at reaching pathological attractors and then unable at pro-
ducing pathological phenotypes. Generating a bullet requires a choice of
targi ∈ V and associated modai ∈ {0, 1}. In this work, there is no sequenc-
ing in target engagement nor in modality application. This means that,
given a bullet and during a given run, all the modai are applied on their
corresponding targi throughout the run. As a consequence, for a given bul-
let, choosing the same targi more than once is senseless, while it is possible
to choose the same modai for more than one targi. Therefore, a bullet is a
combination ctarg without repetition of targi together with an arrangement
cmoda with repetition of modai.

If bullets containing r targets have to be generated then there are n!/(r! ·
(n−r)!) possible ctarg and, for each of them, there are 2r possible cmoda. This
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raises the same computational difficulty than with the state space explosion
since there are (n!·2r)/(r!·(n−r)!) possible bullets. For example, with n = 50

and r = 3 there are more than 150 000 possible bullets. Knowing that the
algorithm, as explained below, computes one attractor set per bullet, the
computation time becomes practically unfeasible. To overcome this barrier,
the algorithm asks for r as an interval [[rmin, rmax]], asks for a maximum num-
ber maxtarg of ctarg to generate and asks for a maximum number maxmoda

of cmoda to test for each ctarg. The algorithm then generates a set Ctarg of
ctarg with card Ctarg ≤ maxtarg by randomly selecting, from a uniform dis-
tribution and without repetition, nodes in the network. In the same way,
the algorithm generates a set Cmoda of cmoda with card Cmoda ≤ maxmoda by
randomly choosing, from a uniform distribution and with repetition, modal-
ities as either activating (1) or inactivating (0). The result is the bullets:
per r ∈ [[rmin, rmax]], a Ctarg together with a Cmoda. As with the state space
explosion, the stumbling block of this method is that it does not ensure that
all the possible ctarg together with all the possible cmoda are tested. This
stumbling block holds only if maxtarg < n!/(r! · (n− r)!) or maxmoda < 2r.

This step can be written in pseudocode as:

1 prompt rmin, rmax,maxtarg,maxmoda

2 rmax = min(rmax, n)

3 golden_set = {}
4 silver_set = {}
5 for r ∈ [[rmin, rmax]] do
6 maxr

targ = min(maxtarg, n!/(r! · (n− r)!))

7 maxr
moda = min(maxmoda, 2

r)

8 Ctarg = {}
9 Cmoda = {}

10 while card Ctarg < maxr
targ do

11 generate ctarg /∈ Ctarg

12 Ctarg = Ctarg ∪ {ctarg}
13 end while
14 while card Cmoda < maxr

moda do
15 generate cmoda /∈ Cmoda
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16 Cmoda = Cmoda ∪ {cmoda}
17 end while
18 do steps 3 to 5
19 end for
20 return golden_set, silver_set

Line 2 catches the mistake r > n. Lines 3 and 4 create the sets in which the
therapeutic bullets found in step 4 are classified as either golden or silver in
step 5. Lines 6 and 7 catch the mistake where maxtarg or maxmoda is greater
than its maximum, which depends on r, hence the creation of maxr

targ and
maxr

moda to preserve the initially supplied value. Lines 11 and 15 ensure that
only new ctarg and cmoda are generated.

2.2.3.3 Step 3: computing Apatho

Having the control attractor set Aphysio and a bullet (ctarg, cmoda) ∈ Ctarg ×
Cmoda, the algorithm computes the variant attractor set Apatho under the
effect of (ctarg, cmoda) by almost the same way Aphysio is computed in step
1. However, f patho is used instead of f physio and (ctarg, cmoda) is applied: at
each k, fj(x(k)) is overwritten by modai ∈ cmoda, that is xj(k + 1) = modai,
provided that vj = targi ∈ ctarg. In order to apply all the generated bullets,
the algorithm uses two nested for loops. For each ctarg ∈ Ctarg it uses
successively all the cmoda ∈ Cmoda. For each (ctarg, cmoda), the algorithm
computes the corresponding Apatho and does steps 4 and 5.

This step can be written in pseudocode as:

1 for ctarg ∈ Ctarg do
2 for cmoda ∈ Cmoda do
3 H = {}
4 Apatho = {}
5 for x0 ∈ D do
6 k = 1

7 x(k) = x0

8 while true do
9 if ∃w ∈ H : x(k) ∈ w then
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10 break
11 end if
12 x(k + 1) = f patho(x(k))

13 for targi ∈ ctarg do
14 for vj ∈ V do
15 if vj = targi then
16 xj(k + 1) = modai

17 end if
18 end for
19 end for
20 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
21 Apatho = Apatho ∪ {(x(k′), . . . ,x(k))}
22 break
23 end if
24 k = k + 1

25 end while
26 H = H ∪ {(x(1), . . . ,x(k))}
27 end for
28 do step 4 and 5
29 end for
30 end for

Lines 13–19 are where bullets are applied.

2.2.3.4 Step 4: identifying therapeutic bullets

To identify therapeutic bullets among the generated ones, for each (ctarg, cmoda)

tested in step 3 and once the corresponding Apatho is obtained, the algorithm
compares it with Aphysio to check if Apatho ⊆ Aphysio. This check ensures
that all the pathological attractors are removed and that if new attractors
appear then they are physiological. If this check is positive then the bullet
is therapeutic and the algorithm pursues with step 5.

This step can be written in pseudocode as:

1 if Apatho ⊆ Aphysio then
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2 do step 5
3 end if

2.2.3.5 Step 5: assessing therapeutic bullets

Therapeutic bullets are qualified as either golden or silver according to their
ability at making the pathological variant reaching the physiological attrac-
tors. All therapeutic bullets, being golden or silver, remove the patholog-
ical attractors without creating new ones, that is Apatho ⊆ Aphysio. How-
ever, this does not imply that they preserve/restore the physiological at-
tractors. A golden bullet preserves/restores all the physiological attractors:
Apatho = Aphysio whereas a silver bullet does not: Apatho � Aphysio.

In this setting, golden bullets are perfect therapies whereas silver bullets
are not. However, since precious things are rare and just as gold is rarer than
silver, finding golden bullets is less likely than finding silver ones. Indeed,
given that more constraints are required for a therapeutic bullet to be a
golden one, it is more likely that the found therapeutic bullets are silver
ones, except in one case: card Aphysio = 1.

Theorem 1. If card Aphysio = 1 then all therapeutic bullets are golden.

Proof.

(therapeutic bullet) ⇒ (Apatho ⊆ Aphysio) (1)

(1) ⇒ (Apatho ∈ P(Aphysio)) (2)

(card Aphysio = 1) ⇒ (Aphysio = {a}) (3)

(3) ⇒ (P(Aphysio) = {∅, {a}}) (4)

((2) ∧ (4)) ⇒ ((Apatho = {a}) ∨ (Apatho = ∅)) (5)

(deterministic dynamical systems) ⇒ (A �= ∅)(6)
(6) ⇒ (Apatho �= ∅) (7)

((5) ∧ (7)) ⇒ (Apatho = {a}) (8)

((3) ∧ (8)) ⇒ (Apatho = Aphysio) (9)

(9) ⇒ (therapeutic bullet is golden) (10)
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Practically, in this setting, an organism bearing a pathological variant
treated with a therapeutic bullet no longer exhibits the associated patho-
logical phenotypes. Moreover, if the therapeutic bullet is golden then the
organism exhibits the same phenotypes than its healthy counterpart. How-
ever, if the therapeutic bullet is silver then the organism fails to exhibit at
least one physiological phenotype. With a silver bullet this is a matter of
choice: what is the less detrimental between a silver bullet and no therapeutic
bullet at all.

This step can be written in pseudocode as:

1 if Apatho = Aphysio then
2 golden_set = golden_set ∪ {(ctarg, cmoda)}
3 else
4 silver_set = silver_set ∪ {(ctarg, cmoda)}
5 end if

2.2.4 Example network

To illustrate the algorithm, it is used on a Boolean model of the mammalian
cell cycle published by Faure et al [43]. This model is chosen for several
reasons: i) a synchronous updating is performed: to date, the algorithm fo-
cuses on synchronous Boolean networks, ii) a mammalian biological system
is modeled: the closer to human physiology the model is, the better it illus-
trates the intended applications, iii) the cell cycle is a at the heart of cancer:
this gives relevancy to the example network, iv) the network comprises ten
nodes: easily computable in face of its state space, and v) attractors are
already computed: useful to validate the algorithm in finding them.

A graphical representation of the example network is shown in Figure 2.1
page 35. Below are the corresponding Boolean functions where, for the sake
of readability, xi stands for xi(k) and xi+ stands for xi(k + 1):
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CycD+ = CycD

Rb+ = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬CycD ∧ ¬CycB)

E2F+ = (¬Rb ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬Rb ∧ ¬CycB)

CycE+ = E2F ∧ ¬Rb

CycA+ = (E2F ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10))

∨(CycA ∧ ¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10))

p27+ = (¬CycD ∧ ¬CycE ∧ ¬CycA ∧ ¬CycB)

∨(p27 ∧ ¬(CycE ∧ CycA) ∧ ¬CycB ∧ ¬CycD)

Cdc20+ = CycB

Cdh1+ = (¬CycA ∧ ¬CycB) ∨ Cdc20 ∨ (p27 ∧ ¬CycB)

UbcH10+ = ¬Cdh1 ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB+ = ¬Cdc20 ∧ ¬Cdh1

Having the example network, two variants are needed: the physiological
one and the pathological one. The physiological variant is the network as
is while the pathological variant is the network plus a constitutive activa-
tion/inactivation of at least one of its nodes. For simplicity, and given the
relatively small number of entities, only one is chosen: the retinoblastoma
protein Rb for which a constitutive inactivation is applied. To implement
this, the corresponding fi becomes:

Rb(k + 1) = 0

in f patho. Rb is chosen because its inactivation occurs in many cancers [107].
Therefore, a network bearing a constitutive inactivation of it should be a
relevant example of a pathological variant.
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Figure 2.1 – Graphical representation of the example network adapted from [43]. CDKs
(cyclin-dependent kinases) are the catalytic partners of cyclins and, in this model, are
not explicitly shown since the activity of CDK-cyclin complexes essentially depends on
cyclins. Furthermore, inhibition of E2F by Rb is modeled by opposing Rb to the effects
of E2F on its targets. The same applies to inhibition of CycE and CycA by p27. For a
complete description of the model, see [43]. CycD: CDK4/6-cyclin D complex, input of
the model, initiates the cell cycle, activated by positive signals such as growth factors;
CycE: CDK2-cyclin E complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B
complex; Rb: retinoblastoma protein, a tumor suppressor; E2F: a family of transcription
factors divided into activator and repressor members, in this model E2F represents the
activator members; p27: p27/Kip1, a CKI (CDK inhibitor); Cdc20: an APC (Anaphase
Promoting Complex, an E3 ubiquitin ligase) activator; Cdh1: an APC activator; UbcH10:
an E2 ubiquitin conjugating enzyme.

2.2.5 Case study

To illustrate the intended usage of the proposed methodology, the algorithm
is used on a Boolean model of the Fanconi Anemia/Breast Cancer (FA/
BRCA) pathway published by Rodriguez et al [27]. This model is chosen
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for several reasons: i) two pathological conditions are studied: required for
a case study of an in silico target identification, ii) the physiological and
pathological variants are clearly described: required by the algorithm, iii)
it is nearly three times bigger than the example network: representative
of a more comprehensive biological model while remaining computationally
tractable, iv) synchronous updating is used: to date, the algorithm focuses
on synchronous Boolean networks, and v) attractors are already interpreted
in terms of phenotypes.

The FA/BRCA pathway is dedicated to DNA repair, more precisely to
interstrand cross-link (ICL) removal. As expected with any DNA repair
impairment, individuals suffering from FA/BRCA pathway malfunction are
subjected to increased risk of cancer, such as in Fanconi anemia, a rare genetic
disorder causing bone marrow failure, congenital abnormalities and increased
risk of cancer [108–110]. Rodriguez et al propose a Boolean model comprising
the FA/BRCA pathway and three types of DNA damages commonly observed
in Fanconi anemia, namely ICLs, double-strand breaks (DSBs) and DNA
adducts (ADDs). It should be noted that the ICL repair process creates
DSBs and ADDs before removing them, thus leaving an undamaged DNA
ready for the cell cycle. For a complete description of the model, see [27].
The corresponding Boolean functions can be found in Appendix B page 88.

The physiological variant is the FA/BRCA pathway model as is. To it,
Rodriguez et al propose two pathological variants, here called patho1 and
patho2, modeling two mutations involving genes of the FA/BRCA pathway.
These mutations are observed in patients suffering from Fanconi anemia [111].
The first one involves the FANCA gene, corresponding to the FAcore vari-
able, and the second one involves the FANCD1/BRCA2 or FANCN/PALB2
gene, corresponding to the FANCD1N variable. These mutations are of
loss-of-function kind: to simulate them the corresponding fi become

FAcore(k + 1) = 0

for FANCA gene null mutation in f patho1 and
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FANCD1N(k + 1) = 0

for FANCD1/BRCA2 or FANCN/PALB2 gene null mutation in f patho2.

2.2.6 Implementation

The algorithm is implemented in Fortran compiled with GFortran1. The
code is available on GitHub2 at https://github.com/arnaudporet/kali.

2.3 Results

In this section, results produced with the algorithm on the example network
are exposed to illustrate how it works. Next, results produced with the
algorithm on the case study are exposed to illustrate its intended applications
for target identification.

2.3.1 Results of step 1

Owing to the relatively small size of the example network, card D is set
to card S = 1024. Since card D = card S, all the attractors are found.
Attractors are presented as matrices where, for an attractor of length q, lines
correspond to the xi(k), k ∈ [[1, q]], and columns to x(k). The algorithm
returns the following attractors:

1http://www.gnu.org/software/gcc/fortran/
2https://github.com/
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a1 =

CycD 1 1 1 1 1 1 1

Rb 0 0 0 0 0 0 0

E2F 0 1 1 1 0 0 0

CycE 0 0 1 1 1 0 0

CycA 0 0 0 1 1 1 1

p27 0 0 0 0 0 0 0

Cdc20 1 0 0 0 0 0 1

Cdh1 1 1 1 1 0 0 0

UbcH10 1 1 0 0 0 1 1

CycB 0 0 0 0 0 1 1

a2 =

CycD 0

Rb 1

E2F 0

CycE 0

CycA 0

p27 1

Cdc20 0

Cdh1 1

UbcH10 0

CycB 0

each of them attracting 50% of the x ∈ S under f physio. Then, Aphysio =

{a1, a2} and corresponds to the results obtained by Faure et al. In terms
of phenotypes, a1 corresponds to cell cycle whereas a2 corresponds to quies-
cence.

2.3.2 Results of steps 2 to 5

Results of steps 2 to 5 are grouped since only the therapeutic bullets found
in step 4 and classified in step 5 are returned. The algorithm is launched
with rmin = 1 and rmax = 2. Due to the relatively small size of the example
network, maxtarg and maxmoda are set to their maximum, namely maxtarg =

45 and maxmoda = 4. Consequently, all the possible bullets made of 1 to 2

targets are tested. The algorithm returns the following therapeutic bullets:



CHAPTER 2. THERAPEUTIC TARGET DISCOVERY 39

+CycD silver
+CycD −p27 silver
−CycD +Rb silver
+CycD −Rb silver

where + means therapeutic activation and − means therapeutic inactivation.
It should be noted that no golden bullets are found, an unsurprising result
since they are rarer than silver ones.

Given these results, therapeutic activation of Rb alone, which is patho-
logically inactivated, is not enough to remove the pathological attractors.
Indeed, as seen in the third bullet, therapeutic activation of Rb must be
accompanied by therapeutic inactivation of CycD. To better illustrate what
is performed to obtain these therapeutic bullets, below is Apatho without any
bullet:

a3 =

CycD 0 0 0 0 0 0 0 0

Rb 0 0 0 0 0 0 0 0

E2F 1 1 1 1 0 0 0 0

CycE 0 1 1 1 1 0 0 0

CycA 0 0 1 1 1 1 1 0

p27 1 1 1 0 0 0 0 0

Cdc20 0 0 0 0 0 0 1 1

Cdh1 1 1 1 1 0 0 0 1

UbcH10 1 0 0 0 0 1 1 1

CycB 0 0 0 0 0 1 1 0
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a4 =

CycD 1 1 1 1 1 1 1

Rb 0 0 0 0 0 0 0

E2F 1 1 1 0 0 0 0

CycE 0 1 1 1 0 0 0

CycA 0 0 1 1 1 1 0

p27 0 0 0 0 0 0 0

Cdc20 0 0 0 0 0 1 1

Cdh1 1 1 1 0 0 0 1

UbcH10 1 0 0 0 1 1 1

CycB 0 0 0 0 1 1 0

each of these two attractors attracting 50% of the x ∈ S under f patho. It
should be noted that a4 = a1 ∈ Aphysio: a4 is a physiological attractor which
also belongs to Apatho. Indeed, it is possible that the pathological variant
exhibits physiological attractors: Apatho is not the set containing exactly all
the pathological attractors, it is the attractor set of the pathological variant,
so Aphysio ∩Apatho �= ∅ is possible. However, a3 /∈ Aphysio: it is a pathological
attractor and is what a therapeutic bullet, being golden or silver, is intended
to remove.

Again to better illustrate what is performed to obtain these therapeutic
bullets, below is Apatho under the third bullet:

CycD 0

Rb 1

E2F 0

CycE 0

CycA 0

p27 1

Cdc20 0

Cdh1 1

UbcH10 0

CycB 0

which is a2. As expected for a therapeutic bullet, the pathological attractor
a3 is removed. However, the physiological attractor a1 is not restored: the
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third therapeutic bullet is silver. Consequently, with this therapeutic bullet
no cell cycle occurs and the only reachable phenotype is quiescence. While
disabling the cell cycle of cancer cells is beneficial, disabling the cell cycle of
healthy cells is not. As mentioned above, with silver bullets this is a matter
of choice.

2.3.3 Results of the case study

With the case study, card S = 268 435 456: computing attractors from
all the x ∈ S becomes too demanding. Indeed, it should be recalled that
the algorithm computes one attractor set per bullet, namely Apatho under
the tested bullet. Consequently, card D is set to a more reasonable value:
card D = 10 000. Despite that card D < card S, it seems sufficient for the
algorithm to find all the attractors, just as Rodriguez et al whose the com-
putation covers the whole state space. Below are the computed attractors:

• Aphysio = {a1}

• Apatho1 = {a1}

• Apatho2 = {a1, a2}, a1 and a2 attracting respectively 29.5% and 70.5%

of the x ∈ D under f patho2

where
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a1 =

ICL 0 0

FANCM 0 0

FAcore 0 0

FANCD2I 0 0

MUS81 0 0

FANCJBRCA1 0 0

XPF 0 0

FAN1 0 0

ADD 0 0

DSB 0 0

PCNATLS 0 0

MRN 0 0

BRCA1 0 0

ssDNARPA 0 0

FANCD1N 0 0

RAD51 0 0

HRR 0 0

USP1 0 0

KU 0 0

DNAPK 0 0

NHEJ 0 0

ATR 0 0

ATM 0 0

p53 0 0

CHK1 0 0

CHK2 0 0

H2AX 0 0

CHKREC 0 1

a2 =

ICL 0

FANCM 0

FAcore 0

FANCD2I 0

MUS81 0

FANCJBRCA1 1

XPF 0

FAN1 0

ADD 0

DSB 1

PCNATLS 0

MRN 1

BRCA1 1

ssDNARPA 1

FANCD1N 0

RAD51 0

HRR 0

USP1 0

KU 0

DNAPK 0

NHEJ 0

ATR 1

ATM 1

p53 1

CHK1 1

CHK2 1

H2AX 1

CHKREC 0

and their biological interpretation:

• a1: cell cycle progression

• a2: cell cycle arrest
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In physiological conditions, in case of a damaged DNA, cells repair it
before performing the cell cycle, or die if repair fails. Such checkpoints enable
cells to ensure genomic integrity by preventing damaged DNA to be replicated
and then propagated [112, 113]. Otherwise, genetic instability may appears,
potentially leading to cancer [114]. The results show that the physiological
variant is able to ensure genomic integrity since its unique attractor is a1

where ICL = DSB = ADD = 0: DNA damages are repaired, if any, and the
cell cycle can safely occur. Interestingly, the same physiological phenotype
is computed for patho1 where Apatho1 = Aphysio. This suggests that cells
bearing FANCA gene null mutation are nonetheless able to repair DNA.
With patho2, a pathological attractor appears: a2, where DSB = 1. This
suggests that cells bearing FANCD1/BRCA2 or FANCN/PALB2 gene null
mutation are unable to repair DSBs, explaining why a2 corresponds to cell
cycle arrest: DNA remains damaged. It should be noted that a1 ∈ Apatho2,
suggesting that from some x0, that is under some conditions, such cells could
be able to repair DNA. However, a1 attracts only 29.5% of the x ∈ D under
f patho2, indicating that the pathological phenotype associated with a2 is the
most likely.

Altogether, according to the computed attractors and their phenotypic
interpretation, and limited to the scope studied by the model of Rodriguez
et al, FANCA gene null mutation may not induce pathological phenotypes.
However, with FANCD1/BRCA2 or FANCN/PALB2 gene null mutation,
two phenotypes are predicted: a physiological one and a pathological one,
the latter being the most likely. Therefore, the algorithm has to operate
on patho2 to find bullets able to remove the pathological attractor a2. By
comprehensively testing all the bullets made of 1 to 3 targets, the algorithm
returns the following results:

number of all possible bullets number of therapeutic bullets
r = 1 56 1 (1.786%)
r = 2 1 512 20 (1.323%)
r = 3 26 208 191 (0.729%)

all therapeutic bullets being golden since card Aphysio = 1, as demonstrated
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in the Theorem 1 page 32. A list of the computed therapeutic bullets can be
found in Appendix C page 90. Given that in a1, what the pathological variant
is forced to reach by means of therapeutic bullets, almost all variables are
valued at 0, it is unsurprising that all targets in the computed therapeutic
bullets have to be inhibited, that is set to 0.

Below is the frequency of each node in the found therapeutic bullets:



CHAPTER 2. THERAPEUTIC TARGET DISCOVERY 45

node frequency in the found therapeutic bullets
ATM 87.736%

ICL 22.170%

BRCA1 18.396%

DSB 11.792%

MRN 10.377%

FANCM 9.906%

ADD 9.906%

FANCJBRCA1 9.434%

ssDNARPA 9.434%

FANCD1N 9.434%

RAD51 9.434%

HRR 9.434%

USP1 9.434%

CHK2 9.434%

H2AX 9.434%

FAcore 8.019%

FANCD2I 8.019%

FAN1 8.019%

p53 8.019%

CHK1 8.019%

XPF 7.547%

ATR 2.358%

MUS81 0.943%

PCNATLS 0.472%

KU 0.472%

DNAPK 0.472%

NHEJ 0.472%

CHKREC 0%

In this case study, DNA damages such as ICLs and DSBs are the pathologi-
cal events. Unsurprisingly, the algorithm suggests them to be targeted: this
is a logical consequence. However, DNA damages are not biomolecules in
themselves and directly targeting them by means of drugs appears senseless.
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What is relevant are the biomolecules of the FA/BRCA pathway suggested
as therapeutic targets. Interestingly, ATM dominates all the other candi-
dates, predicting it to be a pivotal therapeutic target for the patho2 condi-
tion, namely the FA/BRCA pathway bearing FANCD1/BRCA2 or FANCN/
PALB2 gene null mutation, as observed in Fanconi anemia.

2.4 Discussion

Under the assumption that attractors of dynamical systems and phenotypes
of biological networks are linked when the former models the latter, the
results show that the algorithm succeeds in performing the proposed in silico
target identification. It returns therapeutic bullets for a pathological variant
of the mammalian cell cycle relevant in cancer and for a pathological variant
modeling Fanconi anemia. Consequently, the algorithm can be used on other
synchronous Boolean models of biological networks involved in diseases for in
silico target identification. However, both the physiological and pathological
variants have to be known. This can constitute a limit of the proposed
methodology since not all the pathophysiologies are known.

Target identification, whether performed in silico or not, is a step be-
longing to a wider process: drug discovery. Having demonstrated a potential
target in silico, or even in vitro, is far from having a medication. Further
work and many years are necessary before obtaining a drug which is effective
in vivo. For example, and among other characteristics, such a drug has to
be absorbed by the organism, has to reach its target and has to be non-
toxic at therapeutic dosages. Furthermore, as with any in silico evidence, it
should be validated through wet lab experiments: there is a bridge to cross
between theory and practice. For example, targeting ATM should restore a
physiological running of the FA/BRCA pathway bearing FANCD1/BRCA2
or FANCN/PALB2 gene null mutation. However, if ATM operates in other
pathways, targeting it may disturb them, thus potentially creating de novo
non-physiological conditions. Nevertheless, it is expected that the algorithm
is of interest for target identification.

While finding Boolean network attractors of biological networks is not
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the purpose of this work, it is a necessary step which is in itself a challenging
field of computational biology. Therefore, incorporating advances made in
this field could be an interesting improvement. Another possible improve-
ment could be to extend the algorithm for asynchronous Boolean networks
since such models are likely to more accurately describe the dynamics of bi-
ological systems [115,116]. In biological systems, events may be subjected to
stochasticity, may not occur simultaneously or may not belong to the same
time scale, three points that a synchronous updating scheme does not take
into account.

Yet another possible improvement could be to use a finer logic, such as
multivalued logic. One of the main limitations of Boolean models is that
variables can take only two values. In reality, things are not necessarily
binary and variables should be able to take more values. Multivalued logic
enables it in a discrete manner where variables can take a finite number of
values between 0 (false) and 1 (true). For example, one can state that Rb is
partly impaired rather than totally. Such a statement is not implementable
with Boolean models but is with multivalued ones such as, for example, a
three-valued logic where true = 1, moderate = 0.5 and false = 0.

Finally, considering the basin of attraction of the pathological attractors
could be an interesting extension of the criterion for selecting therapeutic
bullets. In that case, the therapeutic potential of bullets could be assessed by
estimating their ability at reducing the basin of the pathological attractors, as
performed by Fumia et al with their Boolean model of cancer pathways [21].
Such a criterion enables to consider the particular case where pathological
attractors are removed, that is where pathological basins are reduced to
the empty set, but also the other cases where pathological basins are not
necessarily reduced to the empty set. Such a less restrictive selection of
therapeutic bullets would enable to consider more targeting strategies for
counteracting diseases.

2.5 Additional improvements

First of all, some additional definitions should be stated:
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• physiological state space: The state space Sphysio of the physiological
variant.

• pathological state space: The state space Spatho of the pathological
variant.

• testing state space: The state space Stest of the pathological variant
under the effect of a bullet.

• physiological basin: The basin of attraction Bphysio,i of a physiolog-
ical attractor aphysio,i.

• pathological basin: The basin of attraction Bpatho,i of a pathological
attractor apatho,i.

• n-bullet: A bullet made of n targets.

Among the possible improvements mentioned in the Discussion section page
46, two were done after publication, namely extending the algorithm for mul-
tivalued logic and considering pathological basins for selecting therapeutic
bullets.

2.5.1 Multivalued logic

2.5.1.1 Background

One of the main limitations of Boolean networks is that variables can take
only two values, which can be quite simplistic. Depending on what variables
model, such as activity level of enzymes or abundance of gene products,
considering more than two possible levels should enable models to be more
realistic. Without leaving the logic-based modeling formalism, one solution
is to extend Boolean logic to multivalued logic [117]. As with Boolean logic,
variables of multivalued logic are discrete, their value belonging to [[0; 1]]

where 0 means false and 1 means true. With Boolean logic, only 0 and 1

can be used to valuate variables. With multivalued logic, an arbitrary finite
number h of values in [[0; 1]] can be used. Therefore, variables of multivalued
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logic can model more than only two possible levels, enabling models to be
more realistic than those based on Boolean logic.

2.5.1.2 Methods

Boolean logic can be seen as a particular case of multivalued logic: it is
a bivalued logic where variables take their value in {0, 1}. While Boolean
operators work well in this case, multivalued logic requires suitable logical
operators to be introduced. One solution is to use a mathematical formula-
tion of the Boolean operators which also works with any multivalued logic,
just as the Zadeh operators. These logical operators are a mathematical gen-
eralization of the Boolean ones proposed for fuzzy logic by its pioneer Lotfi
Zadeh. Fuzzy logic, and particularly fuzzy operators, are described in the
Fuzzy operators section page 65 since they constitute one of the key points
of the second work of this thesis. For now, what is important is that the
Zadeh operators are logical operators compliant with multivalued logic, in-
cluding the Boolean one, and are the ones used in this work for extending the
algorithm to multivalued logic. Their mathematical formulation is as follow:

AND(x, y) = min(x, y)

OR(x, y) = max(x, y)

NOT (x) = 1− x

With a h-valued logic, card S = hn. If h = 2 then this is the Boolean
case, where card S already raises computational difficulties. With an arbi-
trary h > 2, card S raises even more computational difficulties. The same
applies to the testable bullets since there are hr possible cmoda and then
(n! ·hr)/(r! · (n− r)!) possible bullets. To illustrate how the algorithm works
with a multivalued logic without overloading it, a 3-valued logic is used with
{0, 0.5, 1} as domain of value: xi(k) ∈ {0, 0.5, 1}. 0 and 1 have the same
meaning as in Boolean logic, namely false and true respectively. 0.5 is an in-
termediate truth degree which can be seen as an intermediate level of activity
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or abundance, depending on what is modeled. Consequently, S = {0, 0.5, 1}n
implying x0,x(k) ∈ {0, 0.5, 1}n, D ⊆ {0, 0.5, 1}n and modai ∈ {0, 0.5, 1}.
Moreover, the Boolean operators of the fi are replaced by the Zadeh oper-
ators. This results in the following minor changes in the pseudocode of the
algorithm described in Appendix A page 85:

line Boolean logic h-valued logic
2 card D = min(card D, 2n) card D = min(card D, hn)

29 maxr
moda = min(maxmoda, 2

r) maxr
moda = min(maxmoda, h

r)

How the algorithm works with this 3-valued logic is illustrated with the
example network, whose the logical functions become:

CycD+ = CycD

Rb+ = max(min(1− CycD, 1− CycE, 1− CycA, 1− CycB),

min(p27, 1− CycD, 1− CycB))

E2F+ = max(min(1−Rb, 1− CycA, 1− CycB),min(p27, 1−Rb, 1− CycB))

CycE+ = min(E2F, 1−Rb)

CycA+ = max(min(E2F, 1−Rb, 1− Cdc20, 1−min(Cdh1, UbcH10)),

min(CycA, 1−Rb, 1− Cdc20, 1−min(Cdh1, UbcH10)))

p27+ = max(min(1− CycD, 1− CycE, 1− CycA, 1− CycB),

min(p27, 1−min(CycE,CycA), 1− CycB, 1− CycD))

Cdc20+ = CycB

Cdh1+ = max(min(1− CycA, 1− CycB), Cdc20,min(p27, 1− CycB))

UbcH10+ = max(1− Cdh1,min(Cdh1, UbcH10,max(Cdc20, CycA,CycB)))

CycB+ = min(1− Cdc20, 1− Cdh1)

which is f physio. For f patho, owing to this 3-valued logic, a constitutive but
partial inactivation of Rb is simulated. Its corresponding fi becomes:

Rb+ = 0.5

in f patho.
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2.5.1.3 Results

With the example network modeled by this 3-valued logic, card S = 59 049,
which remains computationally tractable. Therefore, card D = card S:
all the attractors are found. With the physiological variant, the algorithm
returns:

Aphysio = {aphysio1, aphysio2, aphysio3, aphysio4, aphysio5, aphysio6}

where

aphysio1 =

CycD 0

Rb 0.5

E2F 0.5

CycE 0.5

CycA 0.5

p27 0.5

Cdc20 0.5

Cdh1 0.5

UbcH10 0.5

CycB 0.5

aphysio2 =

CycD 0

Rb 1

E2F 0

CycE 0

CycA 0

p27 1

Cdc20 0

Cdh1 1

UbcH10 0

CycB 0

aphysio3 =

CycD 0.5

Rb 0.5

E2F 0.5

CycE 0.5

CycA 0.5

p27 0.5

Cdc20 0.5

Cdh1 0.5

UbcH10 0.5

CycB 0.5

aphysio4 =

CycD 1

Rb 0

E2F 0.5

CycE 0.5

CycA 0.5

p27 0

Cdc20 0.5

Cdh1 0.5

UbcH10 0.5

CycB 0.5
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aphysio5 =

CycD 0 0

Rb 0.5 1

E2F 0 0.5

CycE 0 0

CycA 0 0

p27 0.5 1

Cdc20 0.5 0

Cdh1 0.5 1

UbcH10 0.5 0.5

CycB 0 0.5

aphysio6 =

CycD 1 1 1 1 1 1 1

Rb 0 0 0 0 0 0 0

E2F 0 1 1 1 0 0 0

CycE 0 0 1 1 1 0 0

CycA 0 0 0 1 1 1 1

p27 0 0 0 0 0 0 0

Cdc20 1 0 0 0 0 0 1

Cdh1 1 1 1 1 0 0 0

UbcH10 1 1 0 0 0 1 1

CycB 0 0 0 0 0 1 1

with their corresponding basin of attraction:

ai Bi (in % of card Sphysio)
aphysio1 9.9%

aphysio2 20.1%

aphysio3 33.3%

aphysio4 24.5%

aphysio5 3.4%

aphysio6 8.8%

It should be noted that aphysio2 and aphysio6 are the two physiological attrac-
tors found in the Boolean case. Indeed, since {0, 1} ⊂ {0, 0.5, 1} and since
the Zadeh operators also work with Boolean logic, Boolean logic is included
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in this three-valued logic. This means that results obtainable with the former
are also obtainable with the latter. With the pathological variant, where Rb
is constitutively but partially inactivated, the algorithm returns:

Apatho = {aphysio1, aphysio3, apatho1}

where

apatho1 =

CycD 1

Rb 0.5

E2F 0.5

CycE 0.5

CycA 0.5

p27 0

Cdc20 0.5

Cdh1 0.5

UbcH10 0.5

CycB 0.5

with their corresponding basin of attraction:

ai Bi (in % of card Spatho)
aphysio1 33.3%

aphysio3 33.3%

apatho1 33.3%

Only aphysio1 and aphysio3 remain, while apatho1 appears and is what therapeu-
tic bullets have to remove from Stest.

As in the Boolean case, the algorithm is launched with rmin = 1 and
rmax = 2. maxtarg and maxmoda are set to their maximum, namely maxtarg =

45 and maxmoda = 9: all the 1, 2-bullets are tested. The algorithm returns
the following therapeutic bullets:
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CycD[0] silver
CycD[0.5] silver
CycD[0] Rb[0.5] silver
CycD[0.5] Rb[0.5] silver
CycD[1] Rb[0] silver
CycD[0] E2F [0.5] silver
CycD[0.5] E2F [0.5] silver
CycD[0] CycE[0.5] silver
CycD[0.5] CycE[0.5] silver
CycD[0] CycA[0.5] silver
CycD[0.5] CycA[0.5] silver
CycD[0] p27[0.5] silver
CycD[0.5] p27[0.5] silver
CycD[0] Cdc20[0.5] silver
CycD[0.5] Cdc20[0.5] silver
CycD[0] Cdh1[0.5] silver
CycD[0.5] Cdh1[0.5] silver
CycD[0] UbcH10[0.5] silver
CycD[0.5] UbcH10[0.5] silver
CycD[0] CycB[0.5] silver
CycD[0.5] CycB[0.5] silver

where X[y] means that the node X ∈ V has to be set to the value y ∈
{0, 0.5, 1}. For example, the third therapeutic bullet is made of the targets
CycD and Rb whose the value has to be set to 0 and 0.5 respectively. As
in the Boolean case, it should be noted that no golden bullets are found, an
unsurprising result since they are rarer than silver ones.

2.5.1.4 Discussion

The algorithm is now extended for multivalued logic, which includes the
Boolean one. This means that the previous strictly Boolean version of the
algorithm is included in this new one. Moreover, allowing variables to take an
arbitrary finite number of values should enable to more accurately model bio-
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logical processes and produce more fine-tuned therapeutic bullets. However,
this accuracy and fine-tuning are at the cost of an increased computational
requirement. Indeed, in this work, the computational requirement essen-
tially depends on the cardinality of the state space, which itself depends on
the size of the model and the used multivalued logic. Therefore, the size of
the model and the used multivalued logic should be balanced: the smaller
the model is, the more variables should be finely valued. For example, for
a fine therapeutic investigation, the model should only contain the essential
and specific pieces of the pathophysiology of interest, modeled by a finely
valued logic. On the other hand, for a gross therapeutic investigation, an
exhaustive model could be used but modeled by a coarse-grained logic, such
as the Boolean one. Finally, it should be noted that the ultimate multivalued
logic is the infinitely valued one, which is fuzzy logic. With fuzzy logic, the
whole [0; 1] ⊂ R is used to valuate variables, which should bring the best
accuracy for the qualitative modeling formalism. Using fuzzy logic to qual-
itatively model biological networks is addressed in the second work of this
thesis.

2.5.2 Therapeutic bullet assessment

2.5.2.1 Background

Till now, the algorithm requires therapeutic bullets to remove all the patho-
logical attractors from the pathological state space, so that the pathological
variant no longer exhibits pathological phenotypes. This criterion for select-
ing therapeutic bullets can appear somewhat drastic since it is all or nothing.
A less strict criterion should enable to consider more targeting strategies, and
then more possibilities for counteracting diseases. Certainly, a less restric-
tive criterion could bring less “powerful” therapeutic bullets, but being too
demanding potentially leads to no results and loss of nonetheless interesting
findings.

The therapeutic potential of bullets could be assessed by estimating their
ability at reducing the cardinality of the pathological basins. This is a more
permissive criterion since therapeutic bullets no longer have to necessarily
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remove the pathological attractors. Reducing the cardinality of a pathologi-
cal basin renders the corresponding pathological attractor less reachable, and
then the associated pathological phenotype less likely. This new criterion in-
cludes the previous one: removing an attractor means reducing its basin of
attraction to the empty set. Therefore, therapeutic bullets obtainable with
the previous criterion are also obtainable with this new one.

2.5.2.2 Methods

To implement this new criterion for selecting therapeutic bullets, the algo-
rithm considers a bullet as therapeutic if it increases card

⋃
Bphysio,i in Stest

without creating de novo attractors. Since the attractors are either physio-
logical or pathological, increasing card

⋃
Bphysio,i is equivalent to decreasing

card
⋃

Bpatho,i. The goal of this new criterion is to increase the physiological
part of Stest, which is equivalent to decreasing its pathological part. Conse-
quently, a pathological variant treated by such a therapeutic bullet tends to,
but not necessarily reaches, an overall physiological behavior. However, as
with the previous criterion, it does not ensure that all the aphysio,i are pre-
served/restored. A fortiori, it does not ensure that the Bphysio,i in Stest are
as in Sphysio. This means that it does not ensure that the reachability of the
aphysio,i is preserved/restored. Nevertheless, as with the previous criterion,
this is a matter of choice between a therapeutic bullet or not. To assist this
choice and better visualize the effects of therapeutic bullets, the card Bphysio,i

and card Bpatho,i in Stest are computed.
Implementing this new criterion for selecting therapeutic bullets is a ma-

jor change. Therefore, the pseudocode of the algorithm presented in Appendix
A page 85 is rewritten and structured into three modules:

• the compute_A function, which computes Aphysio or Apatho, depending
on which of the f physio or f patho is passed

• the compute_cover function, which for two attractor sets A1 and A2

computes the covering of S2 by
⋃

B1,i, expressed in percents of card S2

• the compute_T function, which computes a set T of therapeutic bullets
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Below is the corresponding pseudocode:
function A = compute_A(f , ctarg, cmoda, D, V )

1 A = {}
2 for x0 ∈ D do
3 k = 1

4 x(k) = x0

5 while true do
6 x(k + 1) = f(x(k))

7 for targi ∈ ctarg do
8 for vj ∈ V do
9 if vj = targi then

10 xj(k + 1) = modai

11 end if
12 end for
13 end for
14 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
15 ai.seq = (x(k′), . . . ,x(k))

16 if ∃aj ∈ A : ai.seq = aj.seq then
17 aj.freq = aj.freq + 1

18 else
19 ai.freq = 1

20 A = A ∪ {ai}
21 end if
22 break
23 end if
24 k = k + 1

25 end while
26 end for
27 for a ∈ A do
28 a.freq = a.freq · 100/card D

29 end for
30 return A
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end function
For Aphysio and Apatho, which are computed without bullet, the empty bullet
((), ()) has to be passed. The ai are represented as structures composed of
two fields: ai.seq, which is the sequence of ai (line 15), and ai.freq, which
is the corresponding card Bi, expressed in percent of card D. To compute
ai.freq, the algorithm counts the number of times ai is reached (line 19 if
this is the first time ai is reached, line 17 otherwise) and then, once all the
x0 ∈ D are computed, translates ai.freq in percent of card D (line 28).
function y = compute_cover(A1, A2)

1 cover = 0

2 for a1 ∈ A1 do
3 if ∃a2 ∈ A2 : a1.seq = a2.seq then
4 cover = cover + a2.freq

5 end if
6 end for
7 return cover

end function
If a1 also belongs to A2 (line 3) then the cardinality of its basin in S2 is used
to compute the covering of S2 by

⋃
B1,i (line 4).

function T = compute_T (f physio,f patho, rmin, rmax,maxtarg,maxmoda,

maxD, h, V )

1 n = card V

2 D = {}
3 while card D < maxD do
4 generate x0 /∈ D

5 D = D ∪ {x0}
6 end while
7 Aphysio = compute_A(f physio, (), (), D, V )

8 Apatho = compute_A(f patho, (), (), D, V )

9 T = {}
10 coverpatho = compute_cover(Aphysio, Apatho)

11 for r ∈ [[rmin, rmax]] do
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12 Ctarg = {}
13 Cmoda = {}
14 while card Ctarg < min(maxtarg, n!/(r! · (n− r)!)) do
15 generate ctarg /∈ Ctarg

16 Ctarg = Ctarg ∪ {ctarg}
17 end while
18 while card Cmoda < min(maxmoda, h

r) do
19 generate cmoda /∈ Cmoda

20 Cmoda = Cmoda ∪ {cmoda}
21 end while
22 for ctarg ∈ Ctarg do
23 for cmoda ∈ Cmoda do
24 Atest = compute_A(f patho, ctarg, cmoda, D, V )

25 if Atest ⊆ Aphysio ∪ Apatho then
26 covertest = compute_cover(Aphysio, Atest)

27 if covertest > coverpatho then
28 T = T ∪ {(ctarg, cmoda)}
29 end if
30 end if
31 end for
32 end for
33 end for
34 return T

end function
maxD is the desired card D and h is the cardinality of the domain of value,
which depends on the used multivalued logic. Aphysio and Apatho are com-
puted without bullet, so the empty bullet ((), ()) is passed to compute_A

(lines 7 and 8). coverpatho is the covering of Spatho by
⋃

Bphysio,i (line 10) and
covertest is the covering of Stest by

⋃
Bphysio,i (line 26). Atest is the pathologi-

cal attractor set under the effect of the tested bullet (line 24). A therapeutic
bullet has to avoid the appearance of de novo attractors (line 25) and has to
increase the covering of Stest by

⋃
Bphysio,i (line 27).
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2.5.2.3 Results

This new criterion for selecting therapeutic bullets is illustrated on the case
study modeled by Boolean logic: h = 2. Since patho1 does not produce
pathological attractors, only patho2 is computed. As previously, wholly com-
puting S is too demanding. Therefore, D is intended to have a reasonable
cardinality: maxD = 100 000. All the 1, 2-bullets are tested: rmin = 1,
rmax = 2, maxtarg = 378 and maxmoda = 4. However, their therapeutic
potential is no longer expressed as golden or silver but by their gain. It is
displayed as follow: x% → y% where card

⋃
Bphysio,i = x% in Spatho and y%

in Stest. Consequently, in order to increase the physiological part of Stest, a
therapeutic bullet has to make y > x. The card Bphysio,i and card Bpatho,i

in Stest are also computed and expressed in percent of card Stest. The algo-
rithm returns 59 therapeutic bullets whose the list can be found in Appendix
D page 97.

A therapeutic bullet as defined by the previous criterion, that is which
removes all the apatho,i from Stest, makes de facto card

⋃
Bphysio,i = 100% in

Stest. As already mentioned, the previous criterion is included in this new
one: therapeutic bullets obtainable with the former are also obtainable with
the latter. This can be checked by noting that the 1, 2-therapeutic bullets
found with the previous criterion are also found with this new one.

With this case study, Aphysio = {aphysio1}, so
⋃

Bphysio,i = Bphysio1. There-
fore, in this particular case where card Aphysio = 1, therapeutic bullets have
to increase card Bphysio1 in Stest. It should be recalled that card Bphysio1 =

29.4% in Spatho, so therapeutic bullets have to make card Bphysio1 > 29.4%

in Stest. For example, below are the computed 1-therapeutic bullets:

bullet gain Bphysio1 Bpatho1

−FANCM 29.4% → 44.6% 44.6% 55.4%

−FANCD2I 29.4% → 30.4% 30.4% 69.6%

−XPF 29.4% → 46.2% 46.2% 53.8%

−FAN1 29.4% → 32.9% 32.9% 67.1%

−ATM 29.4% → 100% 100% 0%

−ATM is a therapeutic bullet also found with the previous criterion since
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it removes all the apatho,i, namely apatho1, from Stest. However, the other
four therapeutic bullets are only obtainable with this new criterion since
they do not remove apatho1 from Stest. Nevertheless, as therapeutic bullets,
they increase card Bphysio1 in Stest. This highlight the ability of this new
criterion to unravel more therapeutic bullets of varying therapeutic potential,
thus opening the way for more targeting strategies of varying theoretical
efficacy. Of course, therapeutic bullets of poor potential are also unraveled,
such as −FANCD2I which only increases card Bphysio1 from 29.4% in Spatho

to 30.4% in Stest. However, in silico tools should not restrict their predictions
to only those exhibiting a high theoretical potency since predicted does not
necessarily mean true. Indeed, a prediction of apparently poor interest can
reveal itself of great interest in practice, and vice versa.

2.5.2.4 Discussion

The algorithm now uses a new criterion for selecting therapeutic bullets which
brings a wider range of targeting strategies of varying predicted efficacy.
Moreover, no information is lost from the previous criterion since results
obtainable with the previous one are also obtainable with this new one. This
new criterion is based on a more permissive assumption stating that reducing
the reachability of pathological attractors is therapeutic. For an in silico
tool such as this algorithm, a more permissive assumption is important since
theoretical findings have to outlive the bottleneck separating prediction to
reality. Indeed, results predicted in silico have to be validated in vitro and/
or in vivo. Therefore, requiring only perfect predictions such as therapeutic
bullets removing all the pathological attractors could left insufficient results
after validation. All the more so that a prediction of apparently poor interest
could reveal itself as an insight of great interest and vice versa, hence the
necessity of obtaining a wide range of theoretical findings.

This new criterion for selecting therapeutic bullets also brings a finer as-
sessment of their potential since all the percentages between card

⋃
Bphysio,i

in Spatho and 100% are considered. With the previous criterion, the only
therapeutic potential is card

⋃
Bphysio,i = 100% in Stest, thus reducing the
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assessment to therapeutic or not. However, things are not necessarily black
or white but rather a continuum of gray nuances, so the assessment of ther-
apeutic potentials should be nuanced too, just as it is now.



Chapter 3

Enhancing Boolean networks with
fuzzy operators and edge tuning

This chapter describes the second work of this thesis, mostly as prepublished.

3.1 Background

This work is an extension of the Boolean network formalism aimed at en-
hancing it. The basic principles remain the same: given a biological network,
entities are modeled by variables and their interactions by functions allow-
ing their value to be updated at each iteration of the simulation. However,
Boolean operators are replaced by the operators of fuzzy logic [118,119], al-
lowing variables to be valued at any real number between 0 and 1, that is to
consider all the possible truth degrees between the absolutely true and the
definitively false. Therefore, results obtainable with fuzzy operators, while
remaining qualitative, can be finer than those obtainable with Boolean op-
erators. In some cases, the ON/OFF nature of Boolean logic is a relevant
choice, as for example with gene regulatory networks where gene expression
level can be approximated by Boolean states. However, in some other cases
where things are not necessarily binary, such as in signaling pathways where
enzymes can be more or less active, using fuzzy operators can be an inter-
esting choice.

63
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In addition of using fuzzy operators, some additional features are intro-
duced in order to capture more behavioral aspects of biological networks.
These additional features concern the edges of the network, which are seen
as conveyors of signals corresponding to influences exerted by entities of the
network onto other ones. This signal, together with its modulation, are taken
into account so that edges can be tuned. To do so, edge states are computed
and the signal they convey can be slowed or weakened. This results in a qual-
itative modeling approach intended to bring a fine qualitative quantification
of biological network behaviors.

Talking about a qualitative quantification can appear somewhat contra-
dictory but is common in thinking processes, which are at the basis of any
scientific reasoning. Simple examples of such qualitative quantification could
be to state that an enzyme is more active than another one, or to state
that an enzyme is moderately active: quantification is expressed by percep-
tions and tendencies. Indeed, qualitative quantification is expressed by words
rather than measurements, hence its qualitative nature, and is characteristic
of fuzzy logic [120,121].

Fuzzy logic-based modeling is a promising approach successfully devel-
oped in several works [122–127]. However, this work is not fuzzy logic-based:
there are no fuzzy sets, no membership functions, no degrees of membership
and no fuzzy inference systems. Only the operators are taken from fuzzy
logic to replace the Boolean ones, the goal being to enhance the Boolean
network formalism by extending it to a continuous form and by adding edge
tuning.

3.2 Methods

This section introduces fuzzy operators and then describes how the proposed
logic-based modeling is built. An example to illustrate it, together with its
implementation, are also described.
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3.2.1 Fuzzy operators

The main difference between Boolean and fuzzy logic is that the former
is discrete, that is valued in [[0; 1]] ⊂ N, whereas the latter is continuous,
that is valued in [0; 1] ⊂ R. Fuzzy logic can be seen as a generalization of
Boolean logic, implying that the fuzzy counterparts of the Boolean operators
have to behave like them on [[0; 1]] but have to be defined on [0; 1]. The
generalization of the Boolean AND operator is the t-norm, the generalization
of the Boolean OR operator is the s-norm and the generalization of the
Boolean NOT operator is the complement:

t-norm : [0; 1]2→[0; 1] : (x, y) �→ t-norm(x, y)

s-norm : [0; 1]2→[0; 1] : (x, y) �→ s-norm(x, y)

complement : [0; 1] →[0; 1] : x �→ complement(x)

where x, y ∈ [0; 1]. There exist different mathematical formulations of the
t-norm, s-norm and complement, all fulfilling the rules of Boolean algebra
[128] but defined on [0; 1]. For convenience, both the Boolean and fuzzy
operators can be named AND, OR and NOT , the context specifying which
of them is referred to.

Due to the ability of fuzzy operators to be continuous, variables can take
their value in [0; 1]. Therefore, they can be equal to 1 (true), 0 (false) or
all the other real numbers of [0; 1] (more or less true): all the truth degrees
between true and false are considered. This could be more realistic in a world
where things are not necessarily binary. For example, a Boolean model of a
signaling pathway allows enzymes to be ON or OFF and nothing between.
However, one can expect that an enzyme is allowed to be in an intermediate
activity level, an expectation not implementable with Boolean models but
which is with fuzzy ones. Whatever the truth degrees represent, using fuzzy
operators enables to consider all the intermediate levels of what is modeled
without leaving the qualitative modeling formalism.
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3.2.2 The proposed logic-based modeling

First of all, it should be mentioned that a distinction is made between quan-
titative and qualitative parameters, this distinction residing in what parame-
ters translate. A quantitative parameter translates a quantification obtained
by experimental measurements whereas a qualitative parameter translates a
perception by means of truth degrees. For example, regarding the velocity
of a biochemical reaction, “slow” could be expressed by the truth degree 0.2

whereas “fast” by 0.8: this is the truth degree of the statement “This bio-
chemical reaction is fast.”. Unlike an experimental quantification which is de
facto objective, a perception is subjective, so the same applies to its asso-
ciated truth degree. Incorporating qualitative parameters should not yield
the scarcity of parameter values encountered in quantitative modeling since
qualitative information is relatively easy to obtain.

To build the proposed logic-based modeling from Boolean networks, the
Boolean operators AND, OR and NOT have to be replaced by the fuzzy
operators t-norm, s-norm and complement. Furthermore, the initial states
xi(k0) of the xi have to belong to [0; 1]. As a consequence, the value of the xi

belongs to [0; 1]: xi(k) ∈ [0; 1], the fi become functions from [0; 1]n to [0; 1]:

fi : [0; 1]
n → [0; 1] : x �→ fi(x)

the value of x and x0 belongs to [0; 1]n: x(k),x0 ∈ [0; 1]n and f becomes a
function from [0; 1]n onto itself:

f : [0; 1]n → [0; 1]n : x �→ f(x)

Finally, additional features are added in order to capture more behavioral
aspects of biological networks. These features concern the edges and are pre-
sented separately for the sake of clarity before being integrated all together.



CHAPTER 3. ENHANCING BOOLEAN NETWORKS 67

3.2.2.1 Edge computation

As with node states, edge states are computed. For convenience, edges can
be notated eij instead of (xi, xj). An edge eij is seen as a channel conveying
the signal sent by its source xi to its target xj which uses it to compute its
state thanks to fj. Practically, eij conveys the value xi(k) of xi to xj and then
fj uses it to compute xj(k + 1). This is implicitly done in Boolean networks
where xj(k+1) = fj(. . . , xi(k), . . . ) but, in this work, this is made explicit in
order to modulate the signal conveyed by the edges. Consequently, the fj no
longer directly accept the xi(k) as arguments but accept the eij(k). Since eij

conveys xi(k), its value eij(k) should be xi(k), but this is where additional
features are added. Indeed, a function f edge

ij is attributed to each eij:

eij(k + 1) = f edge
ij (xi(k), eij(k))

It should be noted that, in addition to the value xi(k) of the source xi, f edge
ij

also takes as argument the value eij(k) of eij itself. This is required for the
additional feature edge reactivity described below. As mentioned above, the
fj have now to accept the eij(k) instead of the xi(k). For convenience, the
fj are renamed fnode

j :

xj(k + 1) = fnode
j (e(k))

where e = (. . . , eij, . . . ) is the counterpart of x = (. . . , xi, . . . ), namely
the state vector of the edges, its value at the iteration k being e(k) =

(. . . , eij(k), . . . ). Consequently, f becomes fnode = (. . . , fnode
i , . . . ):

x(k + 1) = fnode(e(k))

and its counterpart the transition function of the edges f edge = (. . . , f edge
ij , . . . )

is introduced:
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e(k + 1) = f edge(x(k), e(k))

On the basis of the updating scheme of synchronous Boolean networks, the
computation becomes:

1 for k ∈ [[k0, kend − 1]] do
2 . . .
3 eij(k + 1) = f edge

ij (xi(k), eij(k))

4 . . .
5 xi(k + 1) = fnode

i (. . . , eij(k), . . . )

6 . . .
7 end for

which can be written in a more concise form:

1 for k ∈ [[k0, kend − 1]] do
2 e(k + 1) = f edge(x(k), e(k))

3 x(k + 1) = fnode(e(k))

4 end for

3.2.2.2 Edge reactivity

The additional feature edge reactivity is implemented by a qualitative pa-
rameter pij ∈ [0; 1] attributed to each eij. pij is the portion of the signal
conveyed by eij which is updated at each k, namely the portion of the value
eij(k) which is updated to xi(k):

eij(k + 1) = (1− pij) · eij(k) + pij · xi(k)

The higher pij is, the higher is the portion of eij(k) which is updated: a
highly reactive edge has a pij close to 1 whereas a faintly reactive edge has
a pij close to 0. Biologically, edge reactivity can take into account that some
biological interactions can be slower, or of higher inertia, than other ones. For
example, an edge modeling a gene expression activation of a gene product
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by a transcription factor should have a lower pij than an edge modeling
an activating phosphorylation of an enzyme by another one. Indeed, gene
expression is a complex mechanism involving several steps and then takes
more time to be accomplished and terminated than a phosphorylation.

3.2.2.3 Edge weakening

The additional feature edge weakening is implemented by a qualitative pa-
rameter qij ∈ [0; 1] attributed to each eij. qij is a weakening coefficient
applied at each k to the signal conveyed by eij, that is to xi(k):

eij(k + 1) = qij · xi(k)

The higher qij is, the lower is the weakening of the signal xi(k) conveyed by
eij: a strong edge has a qij close to 1 whereas a weak edge has a qij close to
0. Biologically, edge weakening can take into account that some biological
interactions can be weaker than other ones. For example, given a receptor,
an edge modeling its activation by a partial agonist should have a lower qij

than an edge modeling its activation by a full agonist.

3.2.2.4 Combining the all

Edge reactivity and edge weakening are described separately for the sake of
clarity but are both computed at each iteration:

eij(k + 1) = (1− pij) · eij(k) + pij · qij · xi(k)

hence the mathematical formulation of the f edge
ij :

f edge
ij (xi, eij) = (1− pij) · eij + pij · qij · xi
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3.2.3 Implementation

In this work, k is not the time, it only represents the iterations performed
during a run. Although quantifying time through k is possible, here the
goal is to visualize sequences of events linked by causal connections without
time quantification. To do so, k0 = 1 and kend = 50: 49 iterations are
performed during a run. Furthermore, the initial state eij(k0) of each eij

is assumed to be equal to the initial state xi(k0) of its source xi: eij(k0) =

xi(k0). To illustrate the proposed logic-based modeling, it is implemented
on an example with GNU Octave1. The code is available on GitHub2 at
https://github.com/arnaudporet/smoosim.

3.2.3.1 Example

The used example is a tiny sample of the epidermal growth factor receptor
signaling pathway [129] adapted from [18]. It is chosen for its simplicity
so that it can be mentally computed in order to easily judge the produced
results. A digital electronic representation is shown in Figure 3.1 page 72.
Below are the corresponding Boolean functions where AND, NOT and OR

stand for the Boolean operators:

EGF (k + 1) = input set manually

HRG(k + 1) = input set manually

EGFR(k + 1) = OR(EGF (k), HRG(k))

PI3K(k + 1) = AND(EGFR(k), NOT (ERK(k)))

AKT (k + 1) = PI3K(k)

Raf(k + 1) = OR(EGFR(k), AKT (k))

ERK(k + 1) = Raf(k)

By applying the above-described methodology, below are the obtained f edge
ij

and fnode
i where AND, NOT and OR stand for the fuzzy operators:

1http://www.gnu.org/software/octave/
2https://github.com/
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(EGF,EGFR)(k + 1) = (1− pEGF,EGFR) · (EGF,EGFR)(k)

+pEGF,EGFR · qEGF,EGFR · EGF (k)

(HRG,EGFR)(k + 1) = (1− pHRG,EGFR) · (HRG,EGFR)(k)

+pHRG,EGFR · qHRG,EGFR ·HRG(k)

(EGFR,PI3K)(k + 1) = (1− pEGFR,PI3K) · (EGFR,PI3K)(k)

+pEGFR,PI3K · qEGFR,PI3K · EGFR(k)

(ERK,PI3K)(k + 1) = (1− pERK,PI3K) · (ERK,PI3K)(k)

+pERK,PI3K · qERK,PI3K · ERK(k)

(PI3K,AKT )(k + 1) = (1− pPI3K,AKT ) · (PI3K,AKT )(k)

+pPI3K,AKT · qPI3K,AKT · PI3K(k)

(EGFR,Raf)(k + 1) = (1− pEGFR,Raf ) · (EGFR,Raf)(k)

+pEGFR,Raf · qEGFR,Raf · EGFR(k)

(AKT,Raf)(k + 1) = (1− pAKT,Raf ) · (AKT,Raf)(k)

+pAKT,Raf · qAKT,Raf ·AKT (k)

(Raf,ERK)(k + 1) = (1− pRaf,ERK) · (Raf,ERK)(k)

+pRaf,ERK · qRaf,ERK ·Raf(k)

EGF (k + 1) = input set manually

HRG(k + 1) = input set manually

EGFR(k + 1) = OR((EGF,EGFR)(k), (HRG,EGFR)(k))

PI3K(k + 1) = AND((EGFR,PI3K)(k), NOT ((ERK,PI3K)(k)))

AKT (k + 1) = (PI3K,AKT )(k)

Raf(k + 1) = OR((EGFR,Raf)(k), (AKT,Raf)(k))

ERK(k + 1) = (Raf,ERK)(k)

It should be noted that fnode
EGF and fnode

HRG do not accept any eij(k) as argument.
This is because they are associated with the two inputs EGF and HRG of
the network and are consequently set manually.
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Figure 3.1 – Digital electronic representation of the example. Nodes are rectangles
whereas logical gates are ellipses. This digraph should be read from left to right. For
example, the node PI3K is an input of the node AKT and the node ERK, due to a
feedback loop, is an input of the node PI3K. Logical gates are not nodes and, as such,
edges only pass through them. For example, the edge (ERK,PI3K) passes through a
NOT and AND gate whereas the edge (Raf,ERK) does not pass through any logical
gate.

3.2.3.2 Fuzzy operators

As mentioned above, there exist different mathematical formulations of the
fuzzy operators, all fulfilling the rules of Boolean algebra but defined on [0; 1].
In this work, the algebraic formulation is used:

AND(x, y) = x · y
OR(x, y) = x+ y − x · y
NOT (x) = 1− x

which is one of the most simple and convenient.

3.2.3.3 Additional features

Since pij ∈ [0; 1], its value can be set to any real number of [0; 1]. However,
pij is a qualitative parameter and rather than requiring to precisely valuate
it as in quantitative models, its value is randomly picked in specified inter-
vals of [0; 1] from a uniform distribution. By the way, this random selection
introduces a little of a rudimentary stochasticity, although introducing ran-
domness is not the purpose of this work. To do so, [0; 1] is split into intervals
of truth degrees reflecting various edge reactivities:
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instantaneous pij = 1

faster pij ∈ [0.75; 1]

fast pij ∈ [0.5; 0.75]

slow pij ∈ [0.25; 0.5]

slower pij ∈ [0; 0.25]

down pij = 0

plus the entire interval [0; 1] in case of an undetermined edge reactivity.
For example, pij = fast means that the value of pij is randomly picked
in [0.5; 0.75] from a uniform distribution. This random selection occurs be-
fore each run and, once selected, the value of pij remains the same during
the run. To better approach the behavior of the modeled biological network,
replicates are made: r runs are performed and the results are superposed. In
this work, r = 10. qij, xi(k0) ∈ [0; 1] are subjected to the same replication
with the following splits of [0; 1]:

strong qij = 1

weak qij ∈ [0.75; 1]

weaker qij ∈ [0.5; 0.75]

faint qij ∈ [0.25; 0.5]

fainter qij ∈ [0; 0.25]

down qij = 0

and

full xi(k0) = 1

much more xi(k0) ∈ [0.75; 1]

much xi(k0) ∈ [0.5; 0.75]

few xi(k0) ∈ [0.25; 0.5]

fewer xi(k0) ∈ [0; 0.25]

none xi(k0) = 0

plus the entire interval [0; 1] in case of an undetermined edge weakening or
initial state.



CHAPTER 3. ENHANCING BOOLEAN NETWORKS 74

3.3 Results

In this section, results obtained with the example through five simulations
are presented. Although the obtained curves are continuous due to the use
of fuzzy operators, they are not quantitative. As qualitative results, rather
than looking for numerical values, one can say, for example, that PI3K is
totally inhibited or that ERK is partly activated, two simple examples of
qualitative quantification expressed by words and perceptions.

3.3.1 Simulation 1

EGF and HRG are the two inputs of the example and, since both can
activate EGFR, one is sufficient to initiate the signaling cascade. It is as-
sumed that, at the resting state, both the inputs are down: ∀k, EGF (k) =

HRG(k) = none. However, at kEGF = kend/10, EGF is activated: ∀k >

kEGF , EGF (k) = full. Therefore, fnode
EGF and fnode

HRG become:

EGF (k + 1) =

⎧⎨
⎩
full if k ≥ kEGF

none if k < kEGF

HRG(k + 1) = none

The network being assumed to be at the resting state, x0 = (. . . , none, . . . ).
The pij are set to fast and the qij to strong. The corresponding results
are shown in Figure 3.2 page 75. As expected, before EGF activation, the
network is at rest: the signaling cascade is not active. However, once EGF

activated, the signaling cascade activates. This ultimately activates ERK,
hence the subsequent inactivation of PI3K despite sustained EGFR activity.
Since AKT is activated by PI3K, it also deactivates.

3.3.2 Simulation 2

In addition to the inputs described in simulation 1, a perturbation is intro-
duced. It consists in disabling the inhibitory effect of ERK on PI3K, that
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Figure 3.2 – Activation of the signaling cascade by EGF and subsequent inhibition of
PI3K by ERK.

is in disabling the edge (ERK,PI3K). It points out an advantage of com-
puting edge states: disturbing a node disturbs all its effects while selectively
disturbing edges prevents this. To implement this perturbation, the param-
eter values are as in simulation 1, except qERK,PI3K which is set to weaker.
With qERK,PI3K = weaker, the signal conveyed by the edge (ERK,PI3K) is
weakened throughout this simulation. The corresponding results are shown
in Figure 3.3 page 76. As expected, weakening the edge (ERK,PI3K) re-
sults in a weakened inhibition of PI3K by ERK: ERK does not totally
inhibit PI3K.
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Figure 3.3 – Weakening the inhibitory effect of ERK on PI3K.

3.3.3 Simulation 3

A perturbation is again applied to the edge (ERK,PI3K). However, in
this simulation the perturbation concerns its reactivity, namely pERK,PI3K ,
which is set to slower. The other parameter values are as in simulation 1.
With pERK,PI3K = slower, the signal conveyed by the edge (ERK,PI3K) is
slowed throughout this simulation. The corresponding results are shown in
Figure 3.4 page 77. As expected, slowing the edge (ERK,PI3K) results in a
slowed inhibition of PI3K by ERK: although ERK totally inhibits PI3K,
it does it slower than in simulation 1 where pERK,PI3K = fast.



CHAPTER 3. ENHANCING BOOLEAN NETWORKS 77

0

0.2

0.4

0.6

0.8

1

EGF

0

0.2

0.4

0.6

0.8

1

HRG

0

0.2

0.4

0.6

0.8

1

EGFR

0

0.2

0.4

0.6

0.8

1

PI3K

0

0.2

0.4

0.6

0.8

1

AKT

0

0.2

0.4

0.6

0.8

1

Raf

0

0.2

0.4

0.6

0.8

1

ERK

Figure 3.4 – Slowing the inhibitory effect of ERK on PI3K.

3.3.4 Simulation 4

In this simulation, no perturbations are applied and the parameter values
are as in simulation 1. However, rather than totally activating EGF , it is
set to few. Therefore, fnode

EGF and fnode
HRG become:

EGF (k + 1) =

⎧⎨
⎩
few if k ≥ kEGF

none if k < kEGF

HRG(k + 1) = none

The corresponding results are shown in Figure 3.5 page 78. As expected, the
activation of EGF is not total and the same applies to the entire signaling
cascade. For example, PI3K does not totally activate since EGFR does
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not. Furthermore, PI3K is not totally inhibited by ERK since ERK itself
does not totally activate.
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Figure 3.5 – Consequences on the signaling cascade of a partial activation of EGF .

3.3.5 Simulation 5

In this simulation, both EGF and HRG are set to few. Therefore, fnode
EGF

and fnode
HRG become:

EGF (k + 1) =

⎧⎨
⎩
few if k ≥ kEGF

none if k < kEGF

HRG(k + 1) =

⎧⎨
⎩
few if k ≥ kHRG

none if k < kHRG
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with kHRG = kEGF , the other parameter values being as in simulation 1.
The corresponding results are shown in Figure 3.6 page 79. It points out
that the effect of EGF and HRG on EGFR is cumulative due to an OR

gate. Indeed, although both EGF and HRG are set to few, cumulating their
effect on EGFR makes the signaling cascade more active than in simulation
4 where only EGF is set to few.
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Figure 3.6 – Cumulative effect of partly activated EGF and HRG on the signaling
cascade.

3.4 Discussion

Owing to the use of fuzzy operators, the simulations performed with the
example show that the proposed logic-based modeling is able to produce
continuous results while remaining qualitative. This allows qualitative vari-
ables to be more finely valued than with discrete approaches, such as Boolean
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networks, by taking into account all the possible levels of what is modeled.
Moreover, thanks to the additional features edge reactivity and edge weaken-
ing attributed to each edge, it is possible to tune in speed and strength the
interactions taking place in the modeled biological network. This is expected
to take into account that some interactions can be weaker or slower relative
to other ones and therefore to be more realistic in their qualitative modeling.

A little of stochasticity on the two additional features edge reactivity and
edge weakening is also realized through the random selection of their value in
specified intervals followed by replication and superposition of the produced
results. This stochasticity, although very rudimentary, constitutes a line of
improvement which should yield more realism since events taking place in
biological systems are themselves subjected to stochasticity [130, 131]. An-
other improvement could be to apply information theory [132] on the signal
conveyed by the edges, as previously introduced for cell signaling [133, 134].
This improvement should enable to better model how the edges of a network
convey the information, particularly how they preserve its fidelity against
noise from its sender, such as a receptor, to its receiver, such as a transcrip-
tion factor. Altogether, starting from Boolean networks and still founded
on their basic principles, this work is expected to bring a fine qualitative
quantification of the behavior of biological networks.

A qualitative quantification remains qualitative and should not be con-
fused with a true quantification which involves experimental measurements,
values and units [135]. The qualitative quantification proposed in this work
has the goal of bringing enhancements in the ability of qualitative models
to simulate the behavior of biological networks. One of the main goals, and
advantages, of qualitative modeling remains to propose an alternative to, but
not a replacement of, quantitative approaches when the frequently encoun-
tered scarcity in quantitative information makes the work unreasonably or
unnecessarily difficult.

It is also possible to use qualitative and quantitative approaches in com-
bination. For example, qualitative modeling can be used to explore global
properties and then quantitative modeling can be used to focus on particular
aspects. Knowing the difficulty of quantitative modeling in systems biology,
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this two-steps approach could make modeling more efficient by highlighting
where to deploy quantitative approaches. Qualitative and quantitative ap-
proaches can also be merged into hybrid models [136–138] which attempt to
exploit the advantages of these two approaches in one. Hybrid models, or
semi-quantitative models, can be good compromises between the convenience
of qualitative modeling and the accuracy of quantitative modeling.



Chapter 4

Conclusion

This thesis devoted to the qualitative modeling of biological networks for
therapeutic innovation brings two works. The first one is an algorithm for
in silico target identification in Boolean models of pathologically disturbed
biological networks while the second one aims at improving the Boolean
network formalism in modeling the dynamics of biological networks.

The algorithm for in silico target identification shows that it finds, in
Boolean models of pathologically disturbed biological networks, combinations
of targets able to push pathological behaviors toward physiological ones. It
is intended to be of use in the early steps of target identification by pro-
viding an efficient way to identify candidate targets prior to costly wet lab
experiments. However, this algorithm produces in silico results and has to
be considered as such: mathematical models approximate reality without re-
producing it, qualitative modeling is not quantitative, and theory must meet
practice. Consequently, it should be used in combination with wet lab experi-
ments in a synergistic manner aimed at improving the efficiency of the overall
target identification process by performing prior screenings of candidate tar-
gets. This is why the criterion for selecting therapeutic bullets is softened:
with a too strict criterion, the risk of highlighting too few candidate targets
and to miss some interesting ones is too hight. It should be noted that this
algorithm fits into the encompassing field investigating how to control bio-
logical systems, a field with tremendous applications in biomedicine. Several

82
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endeavors based on qualitative modeling approaches have been made in this
way [139–144], demonstrating its utility in investigating how to take control
over pathologically disturbed biological systems.

The second work proposes a qualitative modeling approach derived from
Boolean networks. It adds the possibility to tune the edges of the network
according to knowledge about the modeled interactions. Furthermore, by us-
ing fuzzy operators, it allows continuous simulations to be performed. These
extensions should enable to incorporate more knowledge, notably about bio-
logical processes, and to obtain more accurate results. In exchange, it requires
the parameters controlling how the signal flows in the edges to be valued.
These parameters are intended to be qualitative, that is parameters whose
the valuation is knowledge-based, by opposition to quantitative parameters
whose valuation is data-based. In other words, qualitative parameters trans-
late qualitative information, an information which should be easier to obtain
than the quantitative one. Indeed, quantitative models require their param-
eters to be valued by data obtained through experimental measurements.
However, due to experimental limitations, such measurements can be chal-
lenging. Qualitative information is easier to obtain but at the cost of being
qualitative, as its name indicates. This is the well-known trade-off between
what is wished and what is obtainable.

Two improvements were done on the first work after its publication,
namely handling multivalued logic and softening the selection of therapeu-
tic bullets. These two improvements are relatively minor since they do not
change the computational principles of the algorithm, namely computing
dynamics of discrete dynamical systems. The second work proposes a con-
tinuous qualitative modeling, thus requiring to move from discrete to con-
tinuous dynamical systems. The continuous can be seen as the ultimate
generalization of the discrete and is surely more accurate but brings some
challenging differences. For example, with discrete dynamical systems of rea-
sonable size, it is possible to compute the whole state space and then to find
all the attractors. For discrete dynamical systems of bigger size, owing to
the finite cardinality of their state space, it is at least possible to quantify
which portion of it is computed and then to estimate the likeliness of finding
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all the attractors. With continuous dynamical systems, the state space has
an infinite cardinality. Therefore, estimating the likeliness of finding all the
attractors is far less straightforward, not to mention the certainty of finding
all the attractors.

Continuous dynamical systems are mostly modeled by differential equa-
tions for which advanced solvers are available, such as LSODE (the Livermore
Solver for Ordinary Differential Equations) [145]. The second work intro-
duces continuous dynamical systems made of logical equations, for which
advanced solvers do not seem to exist. However, mathematically speaking,
it is likely that these continuous logical equations are differential equations
thought and built in a different way. Consequently, it would be possible to
mathematically express them as differential equations and then to use avail-
able computational tools aimed at analyzing continuous dynamical systems.
This is a way to pursue the second work and to incorporate it into the first
one in order to build a version of it based on continuous dynamical systems.



Appendix A

The algorithm in one block of pseudocode.

1 prompt card D

2 card D = min(card D, 2n)

3 generate D ⊆ S

4 H = {}
5 Aphysio = {}
6 for x0 ∈ D do
7 k = 1

8 x(k) = x0

9 while true do
10 if ∃w ∈ H : x(k) ∈ w then
11 break
12 end if
13 x(k + 1) = f physio(x(k))

14 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
15 Aphysio = Aphysio ∪ {(x(k′), . . . ,x(k))}
16 break
17 end if
18 k = k + 1

19 end while
20 H = H ∪ {(x(1), . . . ,x(k))}
21 end for
22 return Aphysio

85
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23 prompt rmin, rmax,maxtarg,maxmoda

24 rmax = min(rmax, n)

25 golden_set = {}
26 silver_set = {}
27 for r ∈ [[rmin, rmax]] do
28 maxr

targ = min(maxtarg, n!/(r! · (n− r)!))

29 maxr
moda = min(maxmoda, 2

r)

30 Ctarg = {}
31 Cmoda = {}
32 while card Ctarg < maxr

targ do
33 generate ctarg /∈ Ctarg

34 Ctarg = Ctarg ∪ {ctarg}
35 end while
36 while card Cmoda < maxr

moda do
37 generate cmoda /∈ Cmoda

38 Cmoda = Cmoda ∪ {cmoda}
39 end while
40 for ctarg ∈ Ctarg do
41 for cmoda ∈ Cmoda do
42 H = {}
43 Apatho = {}
44 for x0 ∈ D do
45 k = 1

46 x(k) = x0

47 while true do
48 if ∃w ∈ H : x(k) ∈ w then
49 break
50 end if
51 x(k + 1) = f patho(x(k))

52 for targi ∈ ctarg do
53 for vj ∈ V do
54 if vj = targi then
55 xj(k + 1) = modai
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56 end if
57 end for
58 end for
59 if ∃k′ ∈ [[1, k]] : x(k + 1) = x(k′) then
60 Apatho = Apatho ∪ {(x(k′), . . . ,x(k))}
61 break
62 end if
63 k = k + 1

64 end while
65 H = H ∪ {(x(1), . . . ,x(k))}
66 end for
67 if Apatho ⊆ Aphysio then
68 if Apatho = Aphysio then
69 golden_set = golden_set ∪ {(ctarg, cmoda)}
70 else
71 silver_set = silver_set ∪ {(ctarg, cmoda)}
72 end if
73 end if
74 end for
75 end for
76 end for
77 return golden_set, silver_set



Appendix B

Boolean functions of the case study where, for the sake of readability, xi

stands for xi(k) and xi+ stands for xi(k + 1):

ICL+ = ICL ∧ ¬DSB

FANCM+ = ICL ∧ ¬CHKREC

FAcore+ = FANCM ∧ (ATR ∨ATM) ∧ ¬CHKREC

FANCD2I+ = FAcore ∧ ((ATM ∨ATR) ∨ (H2AX ∧DSB)) ∧ ¬USP1

MUS81+ = ICL

FANCJBRCA1+ = (ICL ∨ ssDNARPA) ∧ (ATM ∨ATR)

XPF+ = (MUS81 ∧ p53 ∧ ¬(FAcore ∧ FANCD2I ∧ FAN1))

∨(MUS81 ∧ ¬FANCM)

FAN1+ = MUS81 ∧ FANCD2I

ADD+ = (ADD ∨ (MUS81 ∧ (FAN1 ∨XPF ))) ∧ ¬PCNATLS

DSB+ = (DSB ∨ FAN1 ∨XPF ) ∧ ¬(NHEJ ∨HRR)

PCNATLS+ = (ADD ∨ (ADD ∧ FAcore)) ∧ ¬(USP1 ∨ FAN1)

MRN+ = DSB ∧ATM ∧ ¬((KU ∧ FANCD2I) ∨RAD51 ∨ CHKREC)

BRCA1+ = DSB ∧ (ATM ∨ CHK2 ∨ATR) ∧ ¬CHKREC

ssDNARPA+ = DSB ∧ ((FANCD2I ∧ FANCJBRCA1) ∨MRN)

∧¬(RAD51 ∨KU)
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FANCD1N+ = (FANCD2I ∧ ssDNARPA ∧ ¬CHKREC)

∨(ssDNARPA ∧BRCA1)

RAD51+ = ssDNARPA ∧ FANCD1N ∧ ¬CHKREC

HRR+ = DSB ∧RAD51 ∧ FANCD1N ∧BRCA1 ∧ ¬CHKREC

USP1+ = ((FANCD1N ∧ FANCD2I) ∨ PCNATLS) ∧ ¬FANCM

KU+ = DSB ∧ ¬(MRN ∨ FANCD2I ∨ CHKREC)

DNAPK+ = (DSB ∧KU) ∧ ¬CHKREC

NHEJ+ = ((DSB ∧DNAPK ∧KU) ∧ ¬(ATM ∧ATR))

∨(¬((FANCJBRCA1 ∧ ssDNARPA) ∨ CHKREC)

∧DSB ∧DNAPK ∧XPF )

ATR+ = (ssDNARPA ∨ FANCM ∨ATM) ∧ ¬CHKREC

ATM+ = (ATR ∨DSB) ∧ ¬CHKREC

p53+ = (((ATM ∧ CHK2) ∨ (ATR ∧ CHK1)) ∨DNAPK) ∧ ¬CHKREC

CHK1+ = (ATM ∨ATR ∨DNAPK) ∧ ¬CHKREC

CHK2+ = (ATM ∨ATR ∨DNAPK) ∧ ¬CHKREC

H2AX+ = DSB ∧ (ATM ∨ATR ∨DNAPK) ∧ ¬CHKREC

CHKREC+ = ((PCNATLS ∨NHEJ ∨HRR) ∧ ¬DSB)

∨((¬ADD) ∧ (¬ICL) ∧ (¬DSB) ∧ ¬CHKREC)



Appendix C

Therapeutic bullets found for the case study.

−ATM golden
−ATM −CHK2 golden
−HRR −ATM golden
−ssDNARPA −ATM golden
−BRCA1 −ATM golden
−MRN −ATM golden
−FAN1 −ATM golden
−ICL −DSB golden
−FAcore −ATM golden
−USP1 −ATM golden
−ATM −H2AX golden
−ADD −ATM golden
−RAD51 −ATM golden
−XPF −ATM golden
−FANCM −ATM golden
−FANCD1N −ATM golden
−ATM −CHK1 golden
−ICL −ATM golden
−ATM −p53 golden
−FANCJBRCA1 −ATM golden
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−FANCD2I −ATM golden
−ICL −FANCD1N −ATM golden
−ICL −FAcore −DSB golden
−BRCA1 −USP1 −ATM golden
−BRCA1 −ssDNARPA −ATM golden
−BRCA1 −ATM −CHK1 golden
−ADD −ATM −H2AX golden
−FAN1 −MRN −ATM golden
−ATM −CHK2 −H2AX golden
−ICL −DSB −MRN golden
−XPF −MRN −ATM golden
−FAcore −FANCD2I −ATM golden
−FANCM −ATM −CHK2 golden
−RAD51 −ATM −p53 golden
−ICL −ssDNARPA −ATM golden
−FANCM −ATR −ATM golden
−RAD51 −ATM −H2AX golden
−ADD −FANCD1N −ATM golden
−ICL −USP1 −ATM golden
−FANCM −MRN −ATR golden
−MRN −USP1 −ATM golden
−FAN1 −HRR −ATM golden
−BRCA1 −ATM −H2AX golden
−FANCJBRCA1 −ADD −ATM golden
−MRN −ssDNARPA −ATM golden
−FAcore −ssDNARPA −ATM golden
−FAcore −FANCD1N −ATM golden
−FANCD2I −BRCA1 −ATM golden
−ADD −MRN −ATM golden
−ATM −p53 −CHK2 golden
−RAD51 −ATM −CHK2 golden
−FANCM −ATM −H2AX golden
−ADD −PCNATLS −ATM golden
−FANCJBRCA1 −ATM −p53 golden
−FANCM −MRN −ATM golden
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−FANCJBRCA1 −ATM −CHK2 golden
−FANCD2I −USP1 −ATM golden
−ADD −ATM −CHK2 golden
−FANCD2I −FANCD1N −ATM golden
−MRN −HRR −ATM golden
−ICL −DSB −USP1 golden
−FAN1 −FANCD1N −ATM golden
−FAN1 −ATM −H2AX golden
−FANCJBRCA1 −FAN1 −ATM golden
−ssDNARPA −ATM −H2AX golden
−ATM −CHK1 −CHK2 golden
−ADD −HRR −ATM golden
−ATM −p53 −CHK1 golden
−FAcore −ATM −H2AX golden
−FANCD2I −ATM −CHK2 golden
−FAN1 −RAD51 −ATM golden
−FANCD2I −RAD51 −ATM golden
−FANCJBRCA1 −XPF −ATM golden
−ICL −FANCJBRCA1 −DSB golden
−ssDNARPA −HRR −ATM golden
−MRN −BRCA1 −ATM golden
−FANCM −FAN1 −ATM golden
−ssDNARPA −ATM −p53 golden
−FAN1 −ATM −CHK2 golden
−FANCD2I −ssDNARPA −ATM golden
−FANCD2I −FAN1 −ATM golden
−XPF −HRR −ATM golden
−FAN1 −BRCA1 −ATM golden
−ADD −ATM −CHK1 golden
−FAcore −HRR −ATM golden
−XPF −ATM −CHK1 golden
−ADD −BRCA1 −ATM golden
−ICL −FAN1 −DSB golden
−ADD −ATM −p53 golden
−ICL −MUS81 −ATM golden
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−FAcore −RAD51 −ATM golden
−ATM −CHK1 −H2AX golden
−ICL −MRN −ATM golden
−ssDNARPA −ATM −CHK2 golden
−XPF −RAD51 −ATM golden
−FANCM −ATM −CHK1 golden
−ICL −DSB −KU golden
−ICL −MRN −ATR golden
−ssDNARPA −RAD51 −ATM golden
−FANCJBRCA1 −ssDNARPA −ATM golden
−XPF −ATM −p53 golden
−FAcore −MRN −ATM golden
−HRR −ATM −H2AX golden
−HRR −ATM −p53 golden
−FANCJBRCA1 −FANCD1N −ATM golden
−FANCM −ADD −ATM golden
−FAcore −ATM −CHK2 golden
−ICL −ATM −CHK1 golden
−MRN −FANCD1N −ATM golden
−ADD −ssDNARPA −ATM golden
−MRN −RAD51 −ATM golden
−FANCD1N −ATM −p53 golden
−FANCD1N −RAD51 −ATM golden
−BRCA1 −ATM −CHK2 golden
−ADD −RAD51 −ATM golden
−ICL −DSB −FANCD1N golden
−ICL −RAD51 −ATM golden
−ICL −ATM −CHK2 golden
−FANCD1N −ATM −H2AX golden
−MRN −ATM −H2AX golden
−FAcore −FAN1 −ATM golden
−ICL −XPF −ATM golden
−FANCD2I −ADD −ATM golden
−FANCD2I −ATM −H2AX golden
−ICL −ATR −ATM golden
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−FANCM −HRR −ATM golden
−USP1 −ATM −H2AX golden
−ICL −DSB −RAD51 golden
−ICL −ATM −H2AX golden
−FANCD1N −USP1 −ATM golden
−FANCM −FANCD2I −ATM golden
−FANCD2I −MRN −ATM golden
−FAcore −ADD −ATM golden
−ICL −FAcore −ATM golden
−FANCM −ssDNARPA −ATM golden
−XPF −ATM −H2AX golden
−FAcore −USP1 −ATM golden
−HRR −ATM −CHK1 golden
−BRCA1 −RAD51 −ATM golden
−FAN1 −ADD −ATM golden
−FANCJBRCA1 −MRN −ATM golden
−FANCM −USP1 −ATM golden
−FANCJBRCA1 −ATM −H2AX golden
−FANCM −FAcore −ATM golden
−HRR −USP1 −ATM golden
−ICL −FANCM −ATM golden
−ICL −DSB −ssDNARPA golden
−FAN1 −USP1 −ATM golden
−FANCM −FANCJBRCA1 −ATM golden
−ssDNARPA −ATM −CHK1 golden
−FAcore −FANCJBRCA1 −ATM golden
−FANCD2I −HRR −ATM golden
−FANCD2I −FANCJBRCA1 −ATM golden
−XPF −ssDNARPA −ATM golden
−USP1 −ATM −CHK1 golden
−ICL −DSB −ATM golden
−ICL −ADD −DSB golden
−USP1 −ATM −CHK2 golden
−XPF −BRCA1 −ATM golden
−RAD51 −ATM −CHK1 golden
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−FANCD1N −ATM −CHK2 golden
−RAD51 −HRR −ATM golden
−ICL −ATM −p53 golden
−ICL −DSB −DNAPK golden
−FANCM −FANCD1N −ATM golden
−BRCA1 −FANCD1N −ATM golden
−ICL −HRR −ATM golden
−FANCJBRCA1 −HRR −ATM golden
−USP1 −ATM −p53 golden
−XPF −ATM −CHK2 golden
−ICL −DSB −CHK2 golden
−ICL −XPF −DSB golden
−ssDNARPA −FANCD1N −ATM golden
−FANCJBRCA1 −RAD51 −ATM golden
−ICL −DSB −ATR golden
−HRR −ATM −CHK2 golden
−ADD −USP1 −ATM golden
−FANCM −RAD51 −ATM golden
−FANCJBRCA1 −ATM −CHK1 golden
−FANCM −ATM −p53 golden
−XPF −FANCD1N −ATM golden
−FAcore −BRCA1 −ATM golden
−ICL −DSB −NHEJ golden
−BRCA1 −ATM −p53 golden
−BRCA1 −HRR −ATM golden
−FANCJBRCA1 −USP1 −ATM golden
−ssDNARPA −USP1 −ATM golden
−ICL −DSB −H2AX golden
−FANCM −BRCA1 −ATM golden
−MRN −ATM −CHK1 golden
−ICL −FANCJBRCA1 −ATM golden
−FANCD1N −ATM −CHK1 golden
−ICL −DSB −BRCA1 golden
−MRN −ATM −CHK2 golden
−FANCJBRCA1 −BRCA1 −ATM golden
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−FAN1 −ssDNARPA −ATM golden
−MRN −ATM −p53 golden
−FANCD1N −HRR −ATM golden
−ICL −MUS81 −DSB golden
−ICL −DSB −p53 golden
−XPF −USP1 −ATM golden
−XPF −ADD −ATM golden
−ATM −p53 −H2AX golden
−ICL −FANCM −DSB golden
−ICL −DSB −HRR golden
−ICL −BRCA1 −ATM golden
−RAD51 −USP1 −ATM golden
−ICL −FAN1 −ATM golden
−ICL −ADD −ATM golden
−ICL −DSB −CHK1 golden
−ICL −FANCD2I −DSB golden
−ICL −FANCD2I −ATM golden



Appendix D

Therapeutic bullets found for the case study using the new criterion.

bullet gain Bphysio1 Bpatho1

−FANCM 29.4% → 44.6% 44.6% 55.4%

−FANCD2I 29.4% → 30.4% 30.4% 69.6%

−XPF 29.4% → 46.2% 46.2% 53.8%

−FAN1 29.4% → 32.9% 32.9% 67.1%

−ATM 29.4% → 100% 100% 0%

−ICL −FANCD2I 29.4% → 30.9% 30.9% 69.1%

−ICL −MUS81 29.4% → 53% 53% 47%

−ICL −XPF 29.4% → 58.6% 58.6% 41.4%

−ICL −FAN1 29.4% → 33.9% 33.9% 66.1%

−ICL −DSB 29.4% → 100% 100% 0%

−ICL −ATM 29.4% → 100% 100% 0%

−FANCM −FAcore 29.4% → 45.8% 45.8% 54.2%

−FANCM −FANCD2I 29.4% → 46.3% 46.3% 53.7%

−FANCM −FAN1 29.4% → 47.3% 47.3% 52.7%

−FANCM −ADD 29.4% → 47.3% 47.3% 52.7%

−FANCM −FANCD1N 29.4% → 44.6% 44.6% 55.4%

−FANCM −RAD51 29.4% → 44.6% 44.6% 55.4%

−FANCM −HRR 29.4% → 44.1% 44.1% 55.9%

−FANCM −USP1 29.4% → 44.3% 44.3% 55.7%

−FANCM −ATM 29.4% → 100% 100% 0%
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bullet gain Bphysio1 Bpatho1

−FAcore −FANCD2I 29.4% → 30.4% 30.4% 69.6%

−FAcore −FAN1 29.4% → 33% 33% 67%

−FAcore −ATM 29.4% → 100% 100% 0%

−FANCD2I −FAN1 29.4% → 33.2% 33.2% 66.8%

−FANCD2I −ADD 29.4% → 30.5% 30.5% 69.5%

−FANCD2I −FANCD1N 29.4% → 30.4% 30.4% 69.6%

−FANCD2I −RAD51 29.4% → 30.4% 30.4% 69.6%

−FANCD2I −USP1 29.4% → 30.4% 30.4% 69.6%

−FANCD2I −ATM 29.4% → 100% 100% 0%

−FANCJBRCA1 −ATM 29.4% → 100% 100% 0%

−XPF −ADD 29.4% → 46.2% 46.2% 53.8%

−XPF −FANCD1N 29.4% → 46.2% 46.2% 53.8%

−XPF −RAD51 29.4% → 46.2% 46.2% 53.8%

−XPF −HRR 29.4% → 45.3% 45.3% 54.7%

−XPF −USP1 29.4% → 46.2% 46.2% 53.8%

−XPF −KU 29.4% → 46.1% 46.1% 53.9%

−XPF −DNAPK 29.4% → 46.1% 46.1% 53.9%

−XPF −NHEJ 29.4% → 41.6% 41.6% 58.4%

−XPF −ATM 29.4% → 100% 100% 0%

−FAN1 −ADD 29.4% → 32.9% 32.9% 67.1%

−FAN1 −FANCD1N 29.4% → 32.9% 32.9% 67.1%

−FAN1 −RAD51 29.4% → 32.9% 32.9% 67.1%

−FAN1 −HRR 29.4% → 32.2% 32.2% 67.8%

−FAN1 −USP1 29.4% → 32.9% 32.9% 67.1%

−FAN1 −KU 29.4% → 31.7% 31.7% 68.2%

−FAN1 −DNAPK 29.4% → 31% 31% 69%

−FAN1 −ATM 29.4% → 100% 100% 0%

−ADD −ATM 29.4% → 100% 100% 0%

−MRN −ATM 29.4% → 100% 100% 0%

−BRCA1 −ATM 29.4% → 100% 100% 0%

−ssDNARPA −ATM 29.4% → 100% 100% 0%

−FANCD1N −ATM 29.4% → 100% 100% 0%

−RAD51 −ATM 29.4% → 100% 100% 0%

−HRR −ATM 29.4% → 100% 100% 0%

−USP1 −ATM 29.4% → 100% 100% 0%
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bullet gain Bphysio1 Bpatho1

−ATM −p53 29.4% → 100% 100% 0%

−ATM −CHK1 29.4% → 100% 100% 0%

−ATM −CHK2 29.4% → 100% 100% 0%

−ATM −H2AX 29.4% → 100% 100% 0%
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