When people thought the earth was flat, they were wrong. When people thought the earth was spherical, they were wrong. But if you think that thinking the earth is spherical is just as wrong as thinking the earth is flat, then your view is wronger than both of them put together.

ISAAC ASIMOV -THE RELATIVITY OF WRONG

Abstract

In this thesis we study jet substructure techniques, used to explore the internal dynamics of jets in boosted regimes (i.e. jets with transverse momentum much larger than their mass). We focus on techniques for two-pronged jets, meant to identify boosted W/Z/H bosons. We propose an analytical approach using all-order resummation techniques, in perturbative QCD. In the beginning of this document, we lay down the basic ideas of resummation and introduce the ingredients (basic building blocks) used for our calculations.

Our first study explores the Y-splitter tagger and how its performance is affected by combining it to different grooming techniques : the modified MassDrop Tagger (mMDT), trimming and SoftDrop. It is known that this combination increases the Y-splitter performance, and we studied the origin of this behavior from a first principle approach. We also explore the impact of non-perturbative effects and propose some variations for the original Y-splitter.

Then, we investigate the use jet shapes as discriminating variables between twopronged hadronic decays of electroweak bosons (W/Z/H) and QCD jets background. We study three shapes: N-subjettiness, energy correlation functions and MassDrop parameter. We carry out analytical calculations for the efficiencies of signal and QCD jets with cuts on these variables. We also compare our results to Monte Carlo generators and study the impact of non-perturbative effects.

Next, we show how the knowladge accumulated in the previous studies can be used to explore the interplay between grooming/tagging techniques and the N-subjettiness. We use the ratio τ 2 /τ 1 as a discriminating variable for two-pronged jets. In this work, we propose the dichroic N-subjettiness ratio, where we use a large jet for calculating τ 2 and a smaller, tagged subjet for τ 1 . The resulting dichroic ratio gives enhanced performance compared to the original version of the jet shape, while keeping non-perturbative effect under control.

Finally, we perform a phenomenological study of the jet mass distribution with mMDT. Our theoretical predictions account for the resummation of the leading logarithm of the ratio of the jet mass over the jet transverse momentum and are matched to fixed-order matrix elements computed at next-to-leading order accuracy. We consider both the jet transverse momentum measured before (preferred) and after (not collinear safe) the mMDT procedure. Our predictions reproduce the recent measurement by the CMS collaboration.

Résumé

Dans cette thèse on étudie les techniques de sous-structure des jets, utilisées pour explorer la dynamique interne des jets dans les régimes boostés (i.e. jets avec une impulsion transverse beaucoup plus grande que leur masse). On se concentre sur les techniques pour les jets à deux coeurs, pour identifier les bosons W/Z/H boostés. On propose une approche analytique, utilisant des techniques de resommation à tous les ordres en QCD perturbative. Dans la première partie de ce document, on présente les idées basiques concernant la resommation et on introduit les ingrédients (basic building blocks ) utilisés dans nos calculs.

Notre première étude explore le Y-splitter tagger et comment sa performance est affectée par la combinaison avec une variété de techniques de grooming : le MassDrop Tagger (mMDT), trimming et SoftDrop. Selon des études Monte Carlo, cette combinaison augmente la performance du Y-splitter, on étudie l'origine de ce comportement avec des calculs théoriques. On explore aussi l'impact des effets non-perturbatives et propose des variantes améliorées de la méthode Y-splitter originale.

Ensuite, on étudie l'utilisation des jet shapes comment une variable discriminante entre les désintégrations hadroniques à deux coeurs des bosons électrofaibles et le bruit de fond des jets QCD. On considère trois shapes couramment utilisées : N-subjettiness, energy correlation functions et le paramètre MassDrop. On calcule analytiquement les efficacités pour des jets QCD et signal avec une coupure sur la variable jet shape. On compare également nos résultats aux générateurs de Monte Carlo et on étudie l'impact des effets non-perturbatifs.

Ensuite, on montre comment le savoir-faire accumulé dans les études antérieures peut être utilisé pour explorer la combinaison des techniques de prong-finder/grooming avec le N-subjettiness. On utilise le rapport τ 2 /τ 1 comment une variable discriminante pour les jets à deux coeurs. On propose le rapport dichroïque de N-subjettiness, où on utilise un gros jet (avec ou sans pre-grooming) pour calculer τ 2 et un jet plus petit, avec un prong finder pour τ 1 . Cette version donne une performance améliorée par rapport aux versions utilisées actuellement par les expériences, tout en maintenant les effets non-perturbatifs sous contrôle.

Enfin, on effectue une étude phénoménologique de la distribution de masse des jets avec mMDT. Nos prédictions théoriques prennent en compte les logarithmes dominants du rapport de la masse de jet sur l'impulsion transverse et on fait le « matching » avec les éléments de matrice à ordre fixe calculés au NLO. On discute deux options possibles, selon que les distributions sont mesurées dans des bins de l'impulsion transverse avant (version préférée) ou après le mMDT (version collinear unsafe ). Nos prédictions reproduisent des mesures faites récemment par la collaboration CMS.
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Preface

This thesis in based on work appearing in the following publications • M. Dasgupta 

Résumé de thèse en français

Actuellement, le LHC joue un rôle très important dans la physique aux hautes énergies, pas seulement grâce à la découverte récente du boson de Higgs, mais aussi pour explorer à fond des questions ouvertes dans la physique, comme la nature de la matière noire ou le problème de la hiérarchie. Il fonctionne pour le moment avec une énergie au centre de masse de [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF] TeV, en atteignant des énergies bien au-dessus de l'échelle électrofaible.

Les collisionneurs futurs vont atteindre des énergies encore plus importantes, comme par exemple, le futur collisionneur circulaire opérant à 100 TeV [START_REF] Mangano | Physics at the FCC-hh, a 100 TeV pp collider[END_REF][START_REF] Bothmann | Aspects of perturbative QCD at a 100 TeV future hadron collider[END_REF][START_REF] Arkani-Hamed | Physics opportunities of a 100 TeV proton-proton collider[END_REF]. Dans les expériences de physique des particules, partons (quarks et gluons) produits aux hautes énergies ne peuvent pas être observés directement à cause des désintégrations colinéaires de la QCD. Ce qui est observé à la place, c'est qu'ils vont désintégrer en plusieurs partons, en produisant des structures collimatées complexes, appelées jets. Ces structures sont toujours présentes dans la phénoménologie des collisionneurs de particules et elles sont étudiées depuis plusieurs années. Les particules plus lourdes, comme les bosons de Higgs, Z et W, et le quark top, ne peuvent pas être observées directement non plus, car elles se désintègrent en particules plus légères. Par exemple, un boson W qui se désintègre hadroniquement comme W → qq, en principe doit produire deux jets et un quark top doit produire trois jets.

Quand on explore des régimes à hautes énergies cependant, on est confronté avec une situation particulière: la productions d'une quantité importante de particules boostées, c'est-à-dire, particules avec un moment transverse beaucoup plus important que leurs masse p t m. Dans ce régime, le produit de la désintégration hadronique d'une particule lourde va être très collimaté et il peut finir par être groupé dans un seul jet. De plus, jets QCD du bruit de fond peuvent acquérir une masse à cause de leur radiation, fréquemment de la même ordre de grandeur que la masse des particules lourdes discutées précédemment. De telle façon, la question qui émerge naturellement est comment on peut faire la différence entre les jets du signal (boson massifs ou quark top) et les jets du bruit de fond (quarks et gluons légers).

Devant ces challenges, des techniques de sous-structure des jets ont été développées pour examiner la dynamique interne des jets. Dans cette thèse, on se concentre sur les désintégrations W/Z/H. On explore le fait que les boson électrofaibles n'ont pas de préférence pour les émissions molles et ils présentent une partage d'énergie plus symétrique, donc les jets du signal ont une structure interne caractéristique à deux coeurs d'énergie. De l'autre côté, les émissions QCD ont une probabilité avec une divergence infrarouge et donc un jet QCD typiquement possédé un seul coeur d'énergie.

Plusieurs outils de sous-structure des jets ont été développés dans les dernières années, ils sont fréquemment divisés dans trois catégories principales:

Prong finders qui imposent que le jet doit contenir deux coeurs durs d'énergie (ou trois pour le quark top), cette situation est plus fréquente pour les jets du signal que pour les jets du bruit de fond QCD (par exemple, MassDrop Tagger [START_REF] Butterworth | Jet substructure as a new Higgs search channel at the LHC[END_REF], le modified MassDrop Tagger [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] et le Y-splitter [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF][START_REF] Catani | Longitudinally invariant K t clustering algorithms for hadron hadron collisions[END_REF][START_REF] Ellis | Successive combination jet algorithm for hadron collisions[END_REF]).

Groomers qui nettoient les jets de la radiation molle et à grand angle, normalement dominée par l'événement sous-jacent, de façon à améliorer la résolution de masse (quelques exemples sont trimming [START_REF] Krohn | Jet Trimming[END_REF] et SoftDrop [START_REF] Larkoski | Soft Drop[END_REF] ).

Jet shapes qui contraignent la radiation molle et à grand angle dans le jet, normalement ces observables présentent des valeurs plus importantes pour les jets du bruit de fond QCD que pour les jets du signal (par exemple N -subjettiness [START_REF] Thaler | Identifying Boosted Objects with N-subjettiness[END_REF][START_REF] Stewart | N-Jettiness: An Inclusive Event Shape to Veto Jets[END_REF] et energy correlation functions [START_REF] Thaler | Identifying Boosted Objects with N-subjettiness[END_REF][START_REF] Stewart | N-Jettiness: An Inclusive Event Shape to Veto Jets[END_REF][START_REF] Moult | New Angles on Energy Correlation Functions[END_REF]).

On note que groomers et prong finders fréquemment se comportent de manière similaire et donc la distinction entre les deux n'est pas toujours claire.

Les techniques de sous-structure de jets ont été assimilées par la communauté expérimentale rapidement. Ce sont des outils importants pour le tagging de quarks top et bosons lourds [START_REF]Performance of Boosted W Boson Identification with the ATLAS Detector[END_REF][START_REF]Jet algorithms performance in 13 TeV data[END_REF], pour la reconstruction de la masse des jets [START_REF]Performance of Boosted W Boson Identification with the ATLAS Detector[END_REF][START_REF]Jet algorithms performance in 13 TeV data[END_REF] et aussi pour faire la différence entre quarks et gluons [START_REF]Jet algorithms performance in 13 TeV data[END_REF][START_REF] Collaboration | Discrimination of Light Quark and Gluon Jets in pp collisions at √ s = 8 TeV with the ATLAS Detector[END_REF]. Ces techniques sont utilisées dans plusieurs mesures et recherches, ici on présente quelques exemples (sans avoir une liste complète):

• Mesures de la sections efficace de quarks top boostés [START_REF] Aad | Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in √ s = 8 TeV proton-proton collisions using the ATLAS detector[END_REF][START_REF] Khachatryan | Measurement of the integrated and differential t t production cross sections for high-p t top quarks in pp collisions at √ s = 8 TeV[END_REF] ;

• Production de paires de bosons vectorielles WW/WZ associés à un dijet massif [START_REF] Aaboud | Search for anomalous electroweak production of W W/W Z in association with a high-mass dijet system in pp collisions at √ s = 8 TeV with the ATLAS detector[END_REF][START_REF] Sirunyan | Search for anomalous couplings in boosted WW/WZ → νqq production in proton-proton collisions at √ s = 8 TeV[END_REF];

• Étude de certains modes de désintégration du boson de Higgs, notamment H → b b [START_REF] Collaboration | Boosted Higgs (→ b b) Boson Identification with the ATLAS Detector at √ s = 13 TeV[END_REF][START_REF]Search for ttH production in the H → bb decay channel with √ s = 13 TeV pp collisions at the CMS experiment[END_REF];

• Mesure de l'impulsion de subjets dans collisions pp et PbPb, pour mesurer les fonctions de splitting [START_REF]Splitting function in pp and PbPb collisions at 5.02 TeV[END_REF];

• Excès temporaire de diboson vers la fin du Run-I du LHC [START_REF] Aaboud | Searches for heavy diboson resonances in pp collisions at √ s = 13 TeV with the ATLAS detector[END_REF][START_REF] Collaboration | Search for massive resonances decaying into pairs of boosted W and Z bosons at √ s = 13 TeV[END_REF].

Une partie considérable de la recherche en sous-structure des jets est basée sur des simulations Monte Carlo, avec des outils comme Pythia [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF], Herwig [START_REF] Bahr | Herwig++ Physics and Manual[END_REF] et Sherpa [START_REF] Gleisberg | Event generation with SHERPA 1.1[END_REF]. Ces outils sont très importants, mais ils peuvent être très coûteux du point de vue numérique et ils ne vont pas nécessairement apporter l'information qu'on cherche. Dans cette thèse on propose une approche analytique, qui va nous permettre de comprendre les particularités de chaque méthode. Le premier effort dans la compréhension analytique de la sous-structure des jets a été présenté dans [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF], qui a calculé la distribution de la masse des jets pour différentes techniques de groomers et prong finders.

De plus, avoir les expressions analytiques pour les observables combinés avec méthodes de sous-structure de jets nous permet de développer ces techniques dans plusieurs directions. On peut utiliser le savoir-faire acquis pendant ces études pour créer des nouveaux outils ou pour combiner des outils existants de façon optimale. Aussi, on peut utiliser ces expressions pour optimiser les paramètres de chaque méthode. Finalement, l'approche analytique nous permet de faire des calculs avec une incertitude théorique robuste, de telle façon qu'on peut comparer nos calculs avec les résultats expérimentaux.

Dans cette thèse, on se concentre sur l'approche "traditionnelle" de QCD perturbative, qui explore les propriétés de factorisation et d'exponentiation des éléments de matrices QCD et les caractéristiques des espaces de phase disponibles pour les émissions. On note que, pour mesurer la performance des méthodes de sous-structure des jets, on prend en compte deux aspects. Premièrement, le pouvoir de discrimination (la capacité de distinguer le signal du bruit de fond) et deuxièmement l'insensibilité à l'événement sous-jacent. Fréquemment on observe un compromis entre ces deux propriétés. Une approche analytique nous permet de mieux identifier ces effets et de trouver les moyens pour améliorer les outils de sous-structure de jets dans les deux directions.

Les premiers chapitres de cette thèse sont une introduction générale au domaine où on introduit des concepts importants pour la suite, définit les observables de jet pertinents pour le reste de la thèse et établit la notation utilisée dans la suite.

Dans le chapitre 2, on présente les aspects fondamentaux de la QCD, spécialement les concepts importants pour la suite de la thèse. En particulier, on discute quelques caractéristiques des interactions fortes, comme le principe du confinement de couleur, la liberté asymptotique et la sécurité colinéaire et infra-rouge ("infrared and collinear safety" ou IRC).

Dans le chapitre 3, on présente une définition formelle du concept de jet. Dans la première section 3.1 on discute comment on peut combiner des particules pour former des jets et on présente l'accord de Snowmass -un ensemble de règles à suivre pour avoir une définition cohérente de jet. Ensuite, on présente quelques exemples de définitions de jets. Ils sont divisés en deux "familles": les algorithmes de recombinaison séquentielle (section 3.2) et les algorithmes de cône (section 3.3).

Dans le chapitre 4 on présente quelques techniques de sous-structure de jets (prong finders, groomers et jet shapes) utilisées pour discriminer entre jets du signal et jets du bruit de fond QCD. On se concentre sur les techniques pour l'identification de jets à deux coeurs d'énergie, pour identifier bosons massifs comment le W, Z et Higgs, spécialement celles qui vont être utilisées dans la suite de la thèse.

Dans le chapitre 5 on présente les techniques de resommation qui sont utilisées dans la suite de la thèse. On commence en motivant la nécessité de resommation pour les observables de sous-structure de jet.On étudie un observable relativement simple, la masse d'un jet. Après le calcul, on démontre que la série à l'ordre fixé en α s ne converge pas dans la limité des environnement boostés. Pour éviter ce problème il faut faire la resommation à tous les ordres O(α n s ). De plus, on introduite les diagrammes de Lund, un outil graphique qui illustre les aspects cinématiques des émissions et qui sert de guide pour les discussions physiques. On introduit aussi les notations utilisées dans la thèse, en particulier les "basic building blocks", qui seront utilisés dans la plupart de nos calculs pour la suite.

Les chapitres suivants contiennent des travaux originaux, avec des résultats pour observable de sous-structure des jets. Comme mentionné avant, les premiers résultats ana-lytiques dans ce domaine ont été obtenus par [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] pour la distribution de masse d'un jet avec différentes techniques de grooming: trimming, pruning et MassDrop Tagger. Dans cette thèse, on a étendu cette compréhension dans deux directions: premièrement pour prong finders dans le chapitre 6 et pour jet shapes dans le chapitre 7.

Dans le chapitre 6 on explore comment la performance du tagger Y-splitter peut être améliorée en combinant celui-ci avec une variété de techniques de grooming, à savoir, modified MassDrop Tagger, trimming ou SoftDrop. Des études récentes [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF] ont montre que la combinaison de Y-splitter avec trimming peut surpasser en performance les techniques standards de tagging, même si le Y-splitter tout seul a une performance relativement basse. Notre objectif est d'étudier l'origine de cette différence de performance d'un point de vue analytique. Pour faire cela on présente de calculs pour la distribution de masse des jets QCD avec une coupure y cut sur le Y-splitter à l'ordre fixe et aussi resommé à l'ordre logarithmique dominant en log ρ et log y cut (avec ρ = m 2 /R 2 p 2 t 1 pour les régimes boostés). On présente les même résultats pour le Y-splitter combiné avec un groomer (soit trimming ou mMDT). Finalement, on propose des variations pour le Y-splitter et on étudie l'impact des effets non-perturbatives dans nos prédictions.

Dans le chapitre 7, on étudie les jet shapes comme variables discriminantes entre les jets de signal à deux coeurs et les jets QCD. Les jets shapes imposent des contraintes sur la radiation de gluons dans un jet. On s'attend à ce qu'ils aient un bon pouvoir de discrimination parce que la radiation d'un boson neutre en couleur est différent de la radiation d'un parton QCD coloré. Les observables étudies dans ce chapitre sont Nsubjettiness τ 21 = τ 2 /τ 1 , les energy correlation functions C 2 et une variation du paramètre µ 2 du tagger MDT (voir eq. (4.3)).

On a calculé la distribution de la masse des jets QCD et de jets de signal avec une coupure sur les observables v < v max , avec v = τ 21 , C 2 et µ 2 . Cette coupure peut être fixe ou récursive. On a travaillé dans la limite de jets boostées et supposé v max 1, qui est la régiondont on a naturellement besoin pour faire la séparation entre les structures à deux coeurs d'énergie et le bruit de fond. Nous visons uniquement à capturer le comportement à l'ordre du logarithme dominant, ce qui est assez pour comprendre les différences entre les jets shapes, même si on a discuté des sources de corrections à un ordre plus élevé. On a testé nos résultats analytiques en comparant avec des générateurs Monte Carlo, aussi utilisés pour étudier l'impact des effets non-perturbatifs.

Cette étude a montré que la différence entre la performance des différentes méthodes vient principalement de la région de radiation à grand angle, avec energy correlation functions le plus efficace. On a aussi étudié la version avec une étape additionnelle de grooming, avec SoftDrop, pour observer comment cela affecte l'efficacité de tagging. Comme le groomer élimine plutôt la radiation molle et à grand angle, cela a diminué l'écart entre les méthodes, mais sans changer l'ordonnancement des efficacités.

Avec une compréhension de chaque ingrédient individuel (prong finders, groomers et jet shapes), on a étudié l'interaction entre ces outils dans le chapitre 8, en utilisant mMDT et SoftDrop combinés avec N -subjettiness. On a introduit le concept de N -subjettiness "dichroïque". Dans cette version, on utilise des (sous-)jets différents au numérateur et au dénominateur du rapport de N -subjettiness τ 2 /τ 1 . Ces deux sous-jets correspondent à des dégrées de grooming différents: on calcule τ 2 dans un gros jet (grooming moins agressif ou pas de grooming) et τ 1 dans un petit jet (grooming plus agressif). Calculer τ 2 dans un gros jet nous donne une sensibilité substantielle aux différentes structures de couleur du signal (un singlet de couleur à grandes angles) et du bruit de fond (triplet de couleur pour un quark ou octet pour un gluon). Calculer τ 1 dans un jet plus petit nous assure que cette valeur est dominée principalement par la masse invariante de la structure à deux coeurs. La N -subjettiness dichroïque donne une performance plus élevée que celle de la version originale (qui utilise même jet pour le numérateur et le dénominateur). On a encore une fois utilisé des générateurs Monte Carlo pour étudier les effets non-perturbatives.

Finalement, dans le chapitre 9, on a fait une prédiction phénoménologique pour la distribution de masse avec mMDT (ou SoftDrop avec β = 0 ), motivé par des mesures de la collaboration CMS. Pour comparer avec les résultats expérimentaux, on a fait une procédure de "matching" avec des prédictions à l'ordre fixe (valables pour le régime nonboosté) et on a calculé les bandes d'incertitude théoriques. On considère la distribution de masse des jets dans plusieurs classes d'impulsion transverse. Notre prédiction théorique contient les résultats resommés à l'ordre du logarithme dominant en ρ, combinée avec les éléments de matrice à l'ordre fixe au NLO ("next-to-leading order"). On a aussi considéré les effets de z cut fini, qui sont déjà présents à l'ordre des logarithmes dominants.

Travailler avec z cut nous permet de suivre la distinction entre l'impulsion transversale des jets avant ou après le grooming, ce qu'on a appelé p t,jet et p t,mMDT , respectivement On a trouvé que p t,mMDT possède plusieurs désavantages théoriques par rapport à p t,jet . Même si les deux resommations sont les mêmes dans la limite z cut → 0, p t,mMDT a une structure plus compliquée déjà à l'ordre dominant. Cette différence provient du fait que le spectre p t,mMDT n'est pas IRC sûr, tandis que le spectre p t,jet est sûr. Par contre, la version p t,mMDT est légèrement moins sensible à l'événement sous-jacent. On a exploré les deux versions en détail.

Depuis notre travail original, les résultats CMS on été publiés [START_REF]Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at √ s = 13 TeV[END_REF]. On a observé que nos prédictions sont en bon accord avec les données. En particulier, utiliser les éléments de matrice NLO pour faire la procédure de matching améliore substantiellement la concordance à grande masse.

Il y a plusieurs directions possibles à explorer à l'avenir. Premièrement, étendre nos calculs pour des ordres logarithmiques plus élevés. Cela est faisable pour les situations où les effets non-perturbatifs sont contrôlés et partialement éliminés avec grooming. Deuxièmement, on peut développer encore plus nos calculs pour les observables de sous-structure des jets, en particulier pour le N-subjettiness et les energy correlation functions, qui se révèlent efficaces pour discriminer les jets et sont largement utilisés dans les expériences. Un exemple est le calcul pour une coupure finie v cut 1. Ce calcul est plus compliqué mais peut être important pour faire des études phénoménologiques car les valeurs typiques pour les coupures expérimentales ne sont pas nécessairement très petites. Une autre possibilité est de calculer les jet shapes avec un exposant angulaire β = 1, ce cas présente moins de simplifications que le cas β = 2, mais est le choix par défaut dans plusieurs mesures expérimentales.

Une autre application possible pour les calculs analytiques est d'explorer l'optimisation des paramètres. Les techniques de sous-structure de jets peuvent être composées de plusieurs outils (jet shape + grooming), habituellement avec une longue liste de paramètres. L'optimisation d'un grand nombre de paramètres avec des outils numériques est trop compliqué, mais elle est réalisable si l'on a des expressions analytiques. De plus, on peut utiliser le savoir-faire des calculs analytiques, spécialement pour les combinaisons de prong-finders/groomers et jet shapes, pour la conception de taggers "décorrélés" [START_REF] Dolen | Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure[END_REF]. Ils seront capables de fournir un rejet du bruit de fond qui est indépendant de la masse du jet et donc plus simple à utiliser dans le contexte d'estimation du bruit de fond dans des analyses expérimentales. En résumé, l'approche analytique de la sous-structure des jets peut améliorer la compréhension des techniques qui sont déjà largement utilisées dans les expériences. Nous pouvons utiliser ce savoir-faire pour développer de nouvelles techniques. La combinaison de techniques existantes peut également améliorer considérablement leur performance de manière non triviale. En outre, des calculs précis avec un matching aux éléments de matrice à ordre fixe et des bandes d'erreurs théoriques peuvent être comparés avec des résultats expérimentaux. Ce domaine compte une communauté très active, à la fois théorique et expérimentale, et son importance va surement grandir dans les années suivantes, dans le cadre d'un effort commun pour répondre à des questions ouvertes en physique des particules. Introduction

The LHC plays a central role in high energy physics today, not only due to the recent Higgs discovery, but also as a tool to investigate open questions in physics, such as the nature of dark matter and the hierarchy problem. It is running at a center-of-mass energy of [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF] TeV, thus reaching energies far above the electroweak scale. Future detectors will achieve even higher energies, for example, there are plans for a future circular collider operating at 100 TeV [START_REF] Mangano | Physics at the FCC-hh, a 100 TeV pp collider[END_REF][START_REF] Bothmann | Aspects of perturbative QCD at a 100 TeV future hadron collider[END_REF][START_REF] Arkani-Hamed | Physics opportunities of a 100 TeV proton-proton collider[END_REF].

In particle physics experiments, partons (quarks and gluons) produced in high energy collisions cannot be directly observed due to collinear branchings and to the QCD confinement principle. Instead they decay into many other partons, producing complex collimated structures called jets. These structures are ubiquitous in colliders phenomenology and have been studied for decades. Similarly, heavier particles, such as the Higgs boson, W or Z bosons and the top quark, cannot be directly observed as they decay into lighter particles. For example, a W boson decaying hadronically as W → qq, in principle producing two jets, and a top quark decaying as t → W b, producing three jets.

As we probe higher energies, we face an unprecedented situation: the production of a large quantity of heavy particles in the boosted regime, i.e. particles with a transverse momentum much larger than their masses p t m. In this regime, the (hadronic) decay products of a heavy particle will be very collimated and might end up being clustered into a single jet. Additionally, QCD jets in the background may acquire a mass through radiation, often in the same mass range as the heavy particles previously discussed. So the question of how to discriminate between signal jets (from a massive boson or a top quark) and background jets (from lighter partons) naturally emerges.

In face of these challenges, jet substructure techniques have been developed to examine the internal dynamics of the jet. In this thesis we will be focusing on W/Z/H decays. We will explore the fact that electroweak bosons show no preference for soft splittings and present a more symmetric energy sharing, so signal jets usually have a characteristic twopronged internal structure. By the other hand, QCD emission probabilities are infrared enhanced, favoring soft splittings, and hence a QCD jet would typically consist of a single hard prong. Jet substructure techniques can also be applied to other situations, for example, top tagging [START_REF] Kasieczka | Resonance Searches with an Updated Top Tagger[END_REF][START_REF] Anders | Benchmarking an even better top tagger algorithm[END_REF][START_REF] Schaetzel | Tagging highly boosted top quarks[END_REF][START_REF] Plehn | Stop Reconstruction with Tagged Tops[END_REF][START_REF] Kaplan | Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks[END_REF], where one usually has three-pronged jets and quark/gluon jet discrimination [START_REF] Aad | Light-quark and gluon jet discrimination in pp collisions at √ s = 7 TeV with the ATLAS detector[END_REF][START_REF] Gallicchio | Quark and Gluon Jet Substructure[END_REF].

Many different tools have been developed in the past few years, they can often be divided in three main categories:

Prong finders which impose that a jet contain two hard cores (or three for a top-quark), a situation more common in signal jets than in QCD jets which are dominated by soft-gluon radiation; in this category we have the MassDrop Tagger [START_REF] Butterworth | Jet substructure as a new Higgs search channel at the LHC[END_REF] and its modified version [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF], and the Y-splitter [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF][START_REF] Catani | Longitudinally invariant K t clustering algorithms for hadron hadron collisions[END_REF][START_REF] Ellis | Successive combination jet algorithm for hadron collisions[END_REF].

Groomers which "clean" the jets of soft and large angle radiation, often dominated by the underlying event, hence ensuring a better mass resolution; some examples are trimming [START_REF] Krohn | Jet Trimming[END_REF], SoftDrop [START_REF] Larkoski | Soft Drop[END_REF] and the modified MassDrop Tagger, that may also work as a groomer in some situations.

Jet shapes or radiation constraints, which constrain soft-gluon radiation inside jets, they are expected to be larger for QCD jets than for weak-boson decays; some examples of jet shapes are N -subjettiness [START_REF] Thaler | Identifying Boosted Objects with N-subjettiness[END_REF][START_REF] Stewart | N-Jettiness: An Inclusive Event Shape to Veto Jets[END_REF]; energy correlation functions [START_REF] Larkoski | Energy Correlation Functions for Jet Substructure[END_REF] and their generalizations [START_REF] Moult | New Angles on Energy Correlation Functions[END_REF].

It is worth notice that groomers and prong finders often behave similarly, so the distinction between these two categories is not always clear and depends on what they are being used for. Jet substructure techniques were rapidly assimilated by the experimental community. They are valuable tools for top quark and heavy boson tagging [START_REF]Performance of Boosted W Boson Identification with the ATLAS Detector[END_REF][START_REF]Jet algorithms performance in 13 TeV data[END_REF], jet mass reconstruction [START_REF] Collaboration | Jet mass reconstruction with the ATLAS Detector in early Run 2 data[END_REF], quark and gluon discrimination [START_REF]Jet algorithms performance in 13 TeV data[END_REF][START_REF] Collaboration | Discrimination of Light Quark and Gluon Jets in pp collisions at √ s = 8 TeV with the ATLAS Detector[END_REF]. These techniques are used in many measurements and searches, here we present a few of these applications, without the pretension of providing an exhaustive list.

• Measurement of the cross-section of boosted top quarks [START_REF] Aad | Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in √ s = 8 TeV proton-proton collisions using the ATLAS detector[END_REF][START_REF] Khachatryan | Measurement of the integrated and differential t t production cross sections for high-p t top quarks in pp collisions at √ s = 8 TeV[END_REF] ;

• Production of vector boson pairs WW/WZ associated with a high mass dijet [START_REF] Aaboud | Search for anomalous electroweak production of W W/W Z in association with a high-mass dijet system in pp collisions at √ s = 8 TeV with the ATLAS detector[END_REF][START_REF] Sirunyan | Search for anomalous couplings in boosted WW/WZ → νqq production in proton-proton collisions at √ s = 8 TeV[END_REF];

• Study of some decaying channels of the Higgs boson, e.g. H → b b [START_REF] Collaboration | Boosted Higgs (→ b b) Boson Identification with the ATLAS Detector at √ s = 13 TeV[END_REF][START_REF]Search for ttH production in the H → bb decay channel with √ s = 13 TeV pp collisions at the CMS experiment[END_REF];

• Measure of momentum sharing between two subjets in pp and PbPb collision, in order to measure splitting functions [START_REF]Splitting function in pp and PbPb collisions at 5.02 TeV[END_REF];

• Temporary excess of diboson in mass spectrum towards the end of Run-I [START_REF] Aaboud | Searches for heavy diboson resonances in pp collisions at √ s = 13 TeV with the ATLAS detector[END_REF][START_REF] Collaboration | Search for massive resonances decaying into pairs of boosted W and Z bosons at √ s = 13 TeV[END_REF] A considerable amount of the research on jet substructure has been based on parton shower Monte Carlo generators, like Pythia [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF], Herwig [START_REF] Bahr | Herwig++ Physics and Manual[END_REF] and Sherpa [START_REF] Gleisberg | Event generation with SHERPA 1.1[END_REF]. They are very valuable tools and combined with additional software to cluster jets, the most notable example being FastJet [START_REF] Cacciari | Dispelling the N 3 myth for the k t jet-finder[END_REF][START_REF] Cacciari | FastJet User Manual[END_REF], they can be used to simulate jet observables. Nevertheless, in this thesis, we propose an analytical approach which will allow us to understand more deeply the particularities of each method. The work presented in this thesis follows the pioneering work in ref. [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF], which calculated jet mass distributions for a few groomers and prong finders. Having analytic expressions allows one, for example, to understand the dependence on each parameter of a given jet substructure method. Doing this type of investigation using numerical tools can be very costly from a computational point of view, and not necessarily bring useful information. In fig. 1.1, we illustrate this point with a plot of signal efficiency sig vs. background efficiency bkg , obtained with a Monte Carlo generator for different jet substructure methods. Although we can see an ordering in performance, it is not obvious to understand the differences between methods using only this type of plot. Additionally, having analytic expressions for jet observables with substructure tools allow us to expand them in many directions. We can use the insight from calculations to develop new tools or to combine optimally different tools, through an understanding of how each individual tool constraints the available phase space for emissions. Also, we can use these expressions to optimize jet shapes and prong finders/groomers parameters. This is specially useful in situations with many parameters, where simulations with MC generators are not practical. Finally, the analytical approach also allow the computation of uncertainty bands, which are necessary if one wants to compare theoretical predictions with experiments.

In this work, we will focus on the "traditional" perturbative QCD (pQCD) approach. It explores factorizations and exponentiation properties of QCD matrix elements, as well as the characteristics of the phase space available for parton emissions. Despite being beyond the scope of this thesis, there are other possible approaches to calculate jet substructure observables. Notably, there is the Soft Collinear Effective Theory (SCET) approach [START_REF] Bauer | An Effective field theory for collinear and soft gluons: Heavy to light decays[END_REF][START_REF] Bauer | Invariant operators in collinear effective theory[END_REF][START_REF] Bauer | Soft collinear factorization in effective field theory[END_REF][START_REF] Bauer | Factorization and Resummation for Dijet Invariant Mass Spectra[END_REF], an effective field theory for collinear and soft parton emissions. Most recently, there are works using neural networks and machine learning techniques [START_REF] Oliveira | Jetimages -deep learning edition[END_REF][START_REF] Lapsien | A new tagger for hadronically decaying heavy particles at the LHC[END_REF][START_REF] Baldi | Jet Substructure Classification in High-Energy Physics with Deep Neural Networks[END_REF] to study jet substructure problems.

Finally, we note that when discussing performance of jet substructure methods we will take into account two aspects. First the discriminating power, i.e. ability to distinguish signal from background, and second the insensitivity to the underlying event and hadronisation effects. Avoiding these effects is important as they are notably difficult to control:

-25 -from a theoretical point of view, they contain non-perturbative effects that cannot be computed using perturbative QCD techniques and, from an experimental point of view, they carry a lot of contamination from soft physics and can be dependent on particular characteristics of the detector. Often we observe a trade-off between these two properties. Jet substructure tools usually constraint the phase space available for emission. More aggressive constraints decrease non-perturbative effects, but also decrease the amount of informations we have to identify the jet. An analytical approach allow us to better identify these effects, and find ways to improve jet substructure tools in both directions.

This thesis is divided in two parts: the first one is a general introduction to the domain, where we present the notations being used and we define some important jet and jet substructure tools. The second part contains original work in jet substructure, using an analytical approach to understand existing tools and develop new ones.

The first part is divided as follows, in chapter 2 we recall some of QCD fundamentals, specially focusing on properties that will be useful in this thesis, such as Infrared and Collinear (IRC) safety. In chapter 3 we define jets and we present some selected clustering algorithms, in particular the ones used in this thesis. Chapter 4 introduces boosted jets and present some common jet substructure tools (jet shapes, groomers and prong finders) which will be used in the rest of the thesis. Chapter 5 contains an introduction to the analytical methods used in our calculations, applied to a simple example, the jet mass distribution. We will use this example to justify the need to perform calculation of boosted jet observables at all orders in the perturbative expansion. We also define Lund diagrams, a graphical tools useful to understanding the physical aspects of jet substructure calculations and the basic building blocks, which are the fundamental blocks representing integrations in emissions phase space, and are used to express the results obtained in the second part of the thesis.

The second part of the thesis is organized as follows. In chapter 6 we study how the Y-splitter tagger can be combined with a variety of grooming techniques: the modified MassDrop Tagger (mMDT), trimming and SoftDrop. It is known from Monte Carlo studies that such combination increases the Y-splitter performance, we investigate the origin of this particular behavior. We use the insight to propose improved variation of the original Y-splitter taggers.

In chapter 7 we compute analytically the jet mass distribution with an additional cut on the jet shape variables (N-subjettiness, energy correlation functions and MassDrop parameter). We investigate the performance of these jet shapes as a discriminant variable between two-pronged hadronic decays of electroweak bosons and the QCD jets background. We explain the origin of differences between those methods. We also study the impact of non-perturbative effects and discuss how adding a grooming procedure affects the results.

In chapter 8, we further investigate the interplay between jet shapes and groomers / prong finders. We use the insight gained in the previous chapter to propose the dichroic N-subjettiness ratio. This version uses a large jet (with or without a pre-grooming step) for calculating τ 2 and a smaller, tagged subjet for τ 1 . This observable gives an enhanced performance compared to the variants currently used in experimental analyses, while keeping non-perturbative effects under control.

In chapter 9, we present a phenomenological calculation for the inclusive jet mass distribution with grooming (modified MassDrop Tagger), which will be compared with upcoming LHC measures. Our theoretical predictions account for the resummation of the leading-logarithm of the ratio of the jet mass over the jet transverse momentum and are matched to fixed-order matrix elements computed at next-to-leading order accuracy. We discuss two options according to whether the distributions are measured in bins of the jet transverse momentum before or after the mMDT, and discuss the fact that the latter is not collinear safe. Our predictions agree with the CMS measurement [START_REF]Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at √ s = 13 TeV[END_REF], which just become public.

Finally, we conclude in chapter 10, with a final discussion of the results acquired during the thesis. We also present possibilities for future works and developments in the field of jet substructure.
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-2 -QCD theoretical fundamentals

In this chapter we shortly present some fundamental aspects of Quantum Chromodynamics (QCD), focusing on concepts that will be relevant later in this thesis. We will discuss in particular some particularities of the strong interaction, such as the confinement principle and asymptotic freedom, and also infrared and collinear safety. We do not aim to present a introductory course to QCD, which can be found in [START_REF] Peskin | An Introduction to Quantum Field Theory[END_REF][START_REF] Ellis | QCD and collider physics[END_REF][START_REF] Kim | Elementary particles and their interactions : concepts and phenomena[END_REF], nor a comprehensive review, which can be found in [START_REF] Beringer | Review of Particle Physics (RPP)[END_REF][START_REF] Salam | Elements of QCD for hadron colliders[END_REF].

This chapter is divided as follows: section 2.1 is a brief review of QCD and in section 2.2 we introduce the concept of infrared and collinear safety and of Sudakov safety, accompanied by a discussion of the importance of these properties for jet physics.

Theoretical basis

Quantum Chromodynamics is the gauge field theory describing the strong interactions between color-charged particles, which are commonly referred to as partons, or more precisely quarks and gluons. It corresponds to the SU(3) sector of the Standard Model SU(3) × SU(2) × U(1). The Lagrangian of QCD is given by

L = q ψq,a (iγ µ ∂ µ δ ab -g s γ µ t C ab A C µ -m q δ ab )ψ q,b - 1 4 F A µν F A µν , ( 2.1) 
where γ µ are Dirac γ-matrices, Ψ q,a are the quark field spinors for a given flavor q and a given color a. The A C µ represents the gluon fields, C runs over all types of gluon, which are the adjoint representation the SU(3) group. In the Standard Model there are N c = 3 colors and consequently N 2 c -1 = 8 types of gluons. The t C ab are 3×3 matrices, they are the generators of the SU(3) group. We also have the masses of the quarks m q and the strong coupling constant g s , which are the fundamental parameters of QCD. For simplicity, we usually define the constant α s = g 2 s /4π as the characteristic intensity of the strong interaction. Finally, the field tensor in Eq. (2.1) is given by

F A µν = ∂ µ A A µ -∂ ν A A µ -g s f ABC A B µ A C ν , [t A , t B ] = if abc t C , ( 2.2) 
where f ABC are the structure constants of the SU(3) group.

Theoretical basis

The Feynman rules of QCD involve a 3-gluon vertex, a quark-antiquark-gluon vertex, both of order ∼ g s and a 4-gluon vertex, of order ∼ g 2 s . There are some QCD constants which emerge from the color-algebra, which will be extensively used in the following. They are associated with specific QCD emissions (respectively q → q g, g → g g and g → q q) and are given by

t A ab t A bc = C F δ ac , C F = (N 2 c -1)/(2N c ) = 4/3, (2.3) f ACD f BCD = C A δ AB , C A = N c = 3, (2.4) t A ab t B ab = T R δ AB , T R = 1/2. (2.5)
In the following I will list some properties of perturbative QCD, which are relevant to jet substructure phenomenology studied in this thesis. In this framework, the observables can be expressed in terms of the renormalized coupling α s (µ 2 R ). The variable µ R is the renormalization scale, when one takes µ R to be of the order of the momentum Q transfered in a given process, α s (Q 2 ) can be interpreted as the effective strength of the interaction (see fig. 2.1). The perturbative approach is valid for events that take place at high energy scales. At lower energy scales (Q 2 1 GeV), the intensity of strong interactions increases and this approach is no longer valid, this is known as the non-perturbative regime. The strong coupling satisfies the renormalization group equation

µ 2 R dα s dµ 2 R = -(β 0 α 2 s + β 1 α 3 s + . . . ), (2.6) 
where the term β i corresponds to the (i + 1)-loops beta-function coefficient. Results up to the term β 3 are known in literature [START_REF] Van Ritbergen | The Four loop beta function in quantum chromodynamics[END_REF][START_REF] Czakon | The Four-loop QCD beta-function and anomalous dimensions[END_REF], although in this thesis only the β 0 and β 1 terms are needed. If n f denotes the number of active quark flavors at a given energy scale, they are found to be

β 0 = 11C A -4n f T R 12π = 33 -12n f 12π (2.7
)

β 1 = 17C 2 A -n f T R (10C A + 6C F ) 24π 2 = 153 -19n f 24π 2 . (2.8)
Notice the minus sign in equation (2.6), it is the origin of an important QCD property called asymptotic freedom. It means the intensity of strong interaction between colorcharged particles becomes weaker as the characteristic energy of these interactions increase (or distance between particles decreases), and respectively, interactions become stronger at low energies. For processes involving energies of order 100 GeV or higher, one has α s ∼ 0.1.

Another fundamental property of QCD is the confinement principle, a well documented behavior from a phenomenological/experimental point of view, although it is not fully understood theoretically. It implies that color charged particles cannot be isolated and therefore, cannot be directly observed. They are necessarily part of bounded states called hadrons.

Infrared and collinear safety

One important aspect of QCD, as well as most gauge theories, is the presence of collinear and infrared divergences. A fixed-order matrix element |M(i, j, . . . )| 2 , involving the partons i, j, . . . diverges in the limit where the angle of emission between two partons tends to zero or the energy carried by one of the partons tends to zero. Examples of infrared and collinear divergences in QCD can be found in literature, for example, in section 3.1 of [START_REF] Ellis | QCD and collider physics[END_REF], and in section 17.3 of [START_REF] Peskin | An Introduction to Quantum Field Theory[END_REF], applied to gluon emissions and jet production.

In this context, one can introduce the concept of infrared and collinear (IRC) safety in perturbative QCD. An observable is IRC safe when it can be computed as an expansion of the strong coupling α s , at any order, in a way that QCD divergences described above cancel.

Let us take an observable O , depending on the 4-momentum p i of a given number n of QCD partons. A measurement of this observable can be written as

O = ∞ n=0 dΦ 1 . . . dΦ n O(p 1 , . . . , p n ), (2.9) 
where dΦ i is the integration over the available phase space for each particle and O(p 1 , . . . , p n ) is the value of the observable as a function of the momenta p i of each parton i in the event.

One can say this observable is IRC safe if it respects the conditions below. First, O is safe against soft radiation if adding any number of infinitely soft particles does not change the value of the observable. Which translates into

lim Es→0 O(p 1 , . . . , p n , p s ) = O(p 1 , . . . , p n ), (2.10) 
where p s is an infinitely soft parton emission, i.e. its energy E s is infinitely small. Similarly, an observable is safe against collinear radiation if splitting one existing parton into two collinear partons (i.e. the angle between them is infinitely small) does not change the value of the observable. This property can be written as

O(p 1 , . . . , p i , . . . , p n ) = O(p 1 , . . . , λp i , (1 -λ)p i , . . . , p n ), (2.11) 
where λ is any real number, such that 0 < λ < 1. IRC safety is an important aspect that must be taken into account when building jet observables. From a physical point of view, it makes no sense for an observable to change radically if a very soft or very collinear emission is added to the event. For experiments, IRC safety is also important, as in practice detectors have resolution limitations, which will provide some regularization of the IRC divergences of any observable they measure.

Note that a non-IRC-safe observable, i.e. one that does not have a valid expansion in α s , can sometimes be calculable in perturbative QCD using all-orders resummation (which will be discussed in chapter 5). This property is know as Sudakov safety, meaning that the perturbative Sudakov factor effectively suppresses the singular region of phase space. It is was initially observed in jet substructure objects, the ratio angularities [START_REF] Larkoski | Unsafe but Calculable: Ratios of Angularities in Perturbative QCD[END_REF]. A robust definition of this condition, based on conditional probabilities, can be found in ref. [START_REF] Larkoski | Sudakov Safety in Perturbative QCD[END_REF].

-3 -Jet basics

The goal of this chapter is to present a formal definition of jets. In section 3.1, we discuss how to combine particles into a jet and we present the Snowmass accord, which sets the basic requirements to be followed by any jet definition. Then, we list some jet algorithms. We do not provide an exhaustive list, but present an overview of some existing algorithms, in particular the ones which will be used in the rest of the thesis. There are two main "families" of jet algorithms: sequential recombination algorithms are covered in section 3.2 and cone algorithms in section 3.3.

What is a jet

Due to the IRC divergences in QCD, partons in a high energy collider emit a large quantity of other soft and collinear partons. This is known as the parton shower, which produces complex collimated structures called jets, ubiquitous in high energy colliders physics. We note that although jets are commonly described in terms of quarks and gluons, these particles are never observed as final-state particles. They will necessarily form bound states, called hadrons. This transition is known as hadronization, a non-perturbative phenomenon. At high energies, hadronization does not change considerably the energy flow of an event.

A formal interpretation of jet can be achieved trough a jet definition, a set of rules that determines how to cluster a group of particles into a jet. A definition is formed by a jet algorithm, a set of rules to recombine particles into a jet; a recombination scheme, a rule on how to define the total momentum of a jet and also an ensemble of parameters.

There is an agreement in the scientific community that a jet definition should meet some basic requirements, this is known as "Snowmass accord" [START_REF] Huth | Toward a standardization of jet definitions[END_REF], proposed in 1990. The requirements are:

1. Simple to implement in an experimental analysis; 2. Simple to implement in a theoretical calculation;

3. Defined at any order of perturbation theory; 4. Yields finite cross sections at any order of perturbation theory; 5. Yields a cross section that is relatively insensitive to hadronization.

A definition makes sense from a physical standpoint if it can be applied to experiments, Monte Carlo generators and partonic calculations and is coherent across these different representations of an event. Also, it is desirable to have jets that are insensitive to hadronization, which allow us to consider jets at a partonic level. The criteria proposed above aim to fulfill this need.

Regarding the recombination schemes, the simplest example (and the most commonly used) is the 4-momentum sum, where the total momentum of a jet is given by the sum of the 4-momentum of each constituent. Another option useful for some jet substructure tools is the winner-takes-all (WTA) scheme [START_REF] Bertolini | Jet Observables Without Jet Algorithms[END_REF][START_REF] Larkoski | Aspects of jets at 100 TeV[END_REF], where transverse momentum1 of the jet is given by the sum of the transverse momentum of the constituents, but the direction of the momentum is the same as the hardest constituent.

There are many different jet algorithms in the literature. One can split these in two broad classes, the first one being cone algorithms, which have a "top-down" approach. Their goal is to identify "cone-like" structures in the event, relying on the idea that soft and collinear branching does not modify the direction of energy flow in the event. The second class is sequential recombination algorithms, which have a "bottom-up" approach, that iteratively recombine the closest pair of particles according to some predefined measure of distance.

Sequential recombination algorithms

Sequential recombination algorithms are well adapted to calculations as they deal well with QCD divergences by construction. Also, as they work by successively combining pair of particles, they have the advantage of assigning a clustering sequence to the jet, which is useful for some jet substructure techniques. Another advantage is their fast implementation, a comparison between different reclustering strategies can be found in Appendix A of [START_REF] Cacciari | FastJet User Manual[END_REF]. In particular, these are the algorithms being used in this thesis.

One of the first recombination algorithm known is the Jade algorithm, it was proposed by the JADE collaboration in the 80's [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF][START_REF] Bethke | Experimental Investigation of the Energy Dependence of the Strong Coupling Strength[END_REF], in the context of e + e -collisions. It depends on a single parameter y cut and it works as follows:

1. For each pair of particles in the ensemble, computes the distance

y Jade ij = 2E i E j (1 -cos θ ij ) Q 2 , (3.1)
where Q is the total energy in the event, θ ij is the angle between particles i and j, and E i is the energy of a given particle i.

2. Find the minimum y min in the ensemble of all y Jade ij , (a) If y min < y cut , recombine the two particles into a new one i + j → k (using a predefined recombination scheme), and replace i and j by the new particle k, then it goes back to step 1;

(b) If y min > y cut , all remaining particles are jets and stop iteration.

The main problem with Jade is that often, in the first stages of clustering, it may happen that two very soft particles going into different directions may be recombined into a single jet due to the factor ∼ E 2 in the distance definition, which clashes with the expectation of jets as collimated structures.

To overcome this issue, one redefines the distance measure (3.1). Following this line, the k t algorithm was proposed in 1993 [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF]. In this case, the distance measure is

y kt ij = 2 min(E 2 i , E 2 j )(1 -cos θ ij ) Q 2 , ( 3.2) 
and all other steps of the iteration remain the same. We see here that the minimum function prevents the problematic behavior described before. In this case the distance between two soft particles in very different directions will always be larger than one of the soft particles and a hard particle nearby. Notice that all distance measures introduced above are dimensionless. In the context of pp collisions, this may be a problem as it is much harder to estimate the total energy Q of the event. To avoid this issue, one may replace (3.2) by a dimensional variation [START_REF] Catani | Longitudinally invariant K t clustering algorithms for hadron hadron collisions[END_REF][START_REF] Ellis | Successive combination jet algorithm for hadron collisions[END_REF], where the variables have been changed so they are invariant under longitudinal boosts.

d kt ij = min(p 2 ti , p 2 tj ) ∆θ 2 ij R 2 , ( 3.3) 
where p ti is the tranverse momentum of a given constituent i, R is an additional parameter, and ∆θ ij is the distance between constituents i and j,

∆θ 2 ij = (y i -y j ) 2 + (φ i -φ j ) 2 , ( 3.4) 
with y i is the rapidity and φ i is the azimuthal angle.

The second challenge comes from the fact that hadron collision are more complex, not only there are interactions between the outgoing partons themselves, but also from the incoming beam with outgoing partons, which cause "extra" emissions. In order to avoid these issues, the inclusive-k t algorithm [START_REF] Ellis | Successive combination jet algorithm for hadron collisions[END_REF] was proposed. In this case we use the distance measure (3.3), with a parameter R, which works as a characteristic jet radius, and we also introduce the notion of particle-beam distance d kt iB = p 2 ti . It works as follows 1. For each subjet and pair of subjets we define d kt iB and d kt ij ;

2. Find the minimum among all distances d kt iB and d kt ij ;

3. If it is a distance between subjets d kt ij , merge i and j as a new subjet;

4. If it is a "beam distance", i is a final state jet and it is removed from the list.

5. Return to step 1 until there are no more subjets, then stop.

Note that our clustering only depends on R, and it is possible for arbitrary soft particles to form jets on their own. In practice, one can add a minimum threshold on transverse momentum to avoid this issue.

Posteriorly, the generalized-k t algorithm has been introduced [START_REF] Cacciari | The Anti-k(t) jet clustering algorithm[END_REF], by redefining the distance measure and adding an extra angular parameter p

d gen-kt ij = min p 2p ti , p 2p tj ∆θ 2 ij R 2 , d gen-kt iB = p 2p ti . (3.5)
For particular values of p one can recover different algorithms, for example, for p = 1 one recovers the inclusive-k t algorithm. For p = -1 , the distance measure becomes

d anti-kt ij = min 1 p 2 ti , 1 p 2 ti ∆θ 2 ij R 2 , d anti-kt iB = 1 p 2 ti , ( 3.6) 
this one know as anti-k t algorithm, proposed in [START_REF] Cacciari | The Anti-k(t) jet clustering algorithm[END_REF]. Another possibility is to set p = 0, in this case we recover Cambridge/Aachen algorithm (C/A) [START_REF] Dokshitzer | Better jet clustering algorithms[END_REF], for which the distance measure is simply defined as ∆θ 2 ij and one stops the iterations when all jets are separated by ∆θ ij > R . This algorithm is specially useful for jet substructure methods because it preserves angular ordering between constituents.

In this thesis we will use mostly use anti-k t to do the initial clustering and use the Cambridge/Aachen algorithm and the generalized-k t algorithm for substructure methods that require a declustering step.

Cone algorithms

In this category we find the first jet algorithm, proposed by Sterman and Weinberg in the 70s [START_REF] Sterman | Jets from Quantum Chromodynamics[END_REF] in the context of e + e -collisions. It states that an event can be classified as having two jets if more than a fraction 1 -of the total event's energy is contained in two cones of opening angle δ, where δ and are free parameters. However, this algorithm cannot be generalized to pp colliders straightforwardly. First, the total energy of the event is not necessarily known; and second, because one needs to consider events with more than two jets.

Cone algorithms for pp collisions still maintain the idea from Sterman and Weinberg algorithm of defining an angular cone around the direction of dominant energy flow. For that one has to introduce the concept of stable cones. A cone in this context is a circle of a fixed radius R, a free parameter of the algorithm, in the plan of the variables y × φ, i.e. rapidity vs. azimuthal angle. One can say that a cone is stable when the sum of 4-momenta of its constituents has the same direction as the center of the cone. A cone algorithm seeks to identify all stable cones in an event.

Most of cone algorithms use seeds to start this process, which are trial cone directions we start with. Then for each seed we establish a trial cone, evaluate the sum of the 4momenta of its constituents, and use the resulting 4-momentum as a new trial direction. This procedure is iterated until the cone direction no longer changes, i.e. the cone is stable. There are several variations between methods, namely on how to treat the overlap between cones, i.e. particles that are in multiple stable cones. There are two main approaches to this issue:

Progressive removal we select the particle with the highest momentum as the first seed.

Once we found the corresponding stable cone, we remove all particles in this cone from the list and repeat the process with the remaining particles until no particle (above an optional threshold) is left or no other stable cones are found.

Split-merge we selected all particles (above an optional threshold) to be seeds, and find all stable cones corresponding to this initial set of seed. Then we run a split-merge procedure, for each pair of cones that share particles: if more than a given fraction f of of the softer cone's transverse momentum belongs to particles shared with the harder cone they merge; otherwise, they split and each particle goes to the nearest cone.

A more detailed description of these methods, together with a list of possible variations is presented in section 2 of [START_REF] Salam | Towards Jetography[END_REF].

The seeded approaches present a known issue, they are not IR safe. This boils down to the fact that the algorithms fail to find all possible stable cones, and a infinitely soft or collinear emission can change the number of cones they find. In order to remedy this issue a seedless split-merge approach2 was proposed in [START_REF] Salam | A Practical Seedless Infrared-Safe Cone jet algorithm[END_REF]. The Seedless Infrared-Safe Cone (SISCone) explores the geometrical observation that any enclosure in the y × φ plane can be moved without changing its contents until it touches two points. As a consequence, one can browse all pair of particles in the event and find their respective cones and then check the stability of said cone. It has a complexity of O (N 2 log N ), N being the number of particles in the event, which is faster than other split-merge alternatives.

An infra-red safe alternative to cone algorithms using the progressive removal approach is the anti-k t algorithm. Despite it being a sequential recombination algorithm, it tends to recombine soft particles with hard ones, before recombining soft particles between themselves. It produces soft-resilient jets with regular boundaries, e.g. jets with that are similar to the ones obtained with cone algorithms [START_REF] Cacciari | The Anti-k(t) jet clustering algorithm[END_REF].

-4 -Boos t ed jet s

As discussed in the introduction (chapter 1), at the LHC one has the production of a large quantity of boosted heavy particles. We observe that in boosted environments the hadronic decay products of these particles are very collimated, and they tend to be clustered in a single jet. In fact, one can estimate the opening angle of a heavy boson decaying hadronically, it will be proportinal to θ ∼ m/p t , where m is the mass of the decaying boson and p t its traverse momentum, as illustrated in fig. 4.1.

Figu r e 4.1 -Hadronically decaying boson in a boosted environment.

In this situation, one has to use jet substructure techniques to separate H/W/Z jets from QCD jets. In this chapter, we present some of these techniques, focusing on the ones that will be used later on the thesis. In section 4.1 we present groomers and prong finders, and in section 4.2 we present jet shapes. The shapes listed here focus on the identification of 2-pronged signal jets (Z, W and Higgs bosons). It is possible to generalize them to other cases, in particular to top tagging, where one has typically a 3-pronged structure, but it is beyond the scope of this work.

Gr oomer and p r ong fi nder s

Jet groomers are procedures conceived to " clean" part of the soft and large-angle radiation present in a jet. This is the region of the phase space where one has a considerable contribution of the underlying event, i.e. what is detected in a event that is not coming purely from the primary hard scattering process. Prong finders on the other hand try to identify hard prongs in the jet, exploring the fact that QCD jets usually have one prong and signal jets have multiple prongs. The distinction between groomers and prong finder is not always clear, and one same procedure can be considered a prong finder or a groomer depending on many factors, such as how they are combined with other methods or even the choice of parameters.

The Y-splitter tagger [START_REF] Catani | New clustering algorithm for multi -jet cross-sections in e+ e-annihilation[END_REF][START_REF] Catani | Longitudinally invariant K t clustering algorithms for hadron hadron collisions[END_REF][START_REF] Ellis | Successive combination jet algorithm for hadron collisions[END_REF] clusters the jet j with the k t algorithm, then undo the last step of the clustering, dividing the jet into constituents j 1 and j 2 , with a correponding k t distance, defined as

d 12 = min p 2 t1 , p 2 t2 θ 2 12 , ( 4.1) 
where p t1 and p t2 are the transverse momenta of the two subjets and θ 2 12 is their angular separation in the rapidity-azimuth plane. 1 Then one examines the value of this distance with respect to a given mass m, usually taken to be the mass of the jet or the mass of the boson we are tagging

y = d 12 m 2 jet . (4.2)
We retain jets that satisfy y > y cut . This cut is designed to retain more symmetric signal splittings (i.e. a genuine two-pronged structure). We study the Y-splitter in detail in chapter 6 and introduce variants of this original definition.

Trimming [START_REF] Krohn | Jet Trimming[END_REF] is a grooming tool that depends on two parameters R sub and z cut . We can apply it to a given jet j, with a characteristic radius R, as follows 1. We take its constituents and recluster them into subjets of radius R sub < R with a jet algorithm of choice, usually the Cambridge/Aachen algorithm or the k t algorithm;

2. For each subjet we compare p t,sub > z cut p t,jet , if the subjet fails this test it is eliminated;

3. Assemble remaining subjets into the trimmed jet.

A first analytic study of trimming was achieved in [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]. Here, we will use it briefly in chapter 6.

The MassDrop Tagger (MDT) [START_REF] Butterworth | Jet substructure as a new Higgs search channel at the LHC[END_REF] was initially designed to be used with jets found by the Cambridge/Aachen algorithm. It involves two parameters y cut and µ and, for an initial jet labeled j, proceeds as follows:

1. Break the jet j into two subjets by undoing its last stage of clustering. Label the two subjets j 1 , j 2 such that m j1 > m j2 ;

2. If there was a significant mass drop,

m j1 < µm j2 , (4.3)
and the splitting is not too asymmetric,

y = min p 2 t,j1 , p 2 t,j2 θ 2 12 m 2 jet > y cut , ( 4.4) 
then we consider j to be the tagged jet.

3. Otherwise redefine j to be equal to j 1 and go back to step 1 (unless j consists of just a single particle, in which case the original jet is deemed untagged). ) at tree-level (from ref. [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]).

This algorithm is intended to find hard substructure in the jet, even in the presence of soft substructure strongly influencing the total jet mass. Lets observe a simple 3-particle configuration in fig. 4.2 (a) to better understand it. The parton p 1 emits p 2 and p 3 , such that θ 13 θ 12 and the soft emission p 3 dominates the mass m jet m 12 ( m 12 is the mass of the subjet formed by partons p1 and p 2 ). The algorithm C/A will split the jet into subjets j 12 and j 3 , if it passes MDT the jet is tagged, if not it follows the subjet j 12 , which contains the hard structure.

An unintended behavior for MDT was pointed out in [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF], the problematic configurations is represented in fig. 4.2 (b). Here we have θ 23 θ 12 ∼ θ 13 , so the C/A declustering will separate j 1 and j 23 as subjets. If the parent gluon of j 23 is too soft, the jet will fail the symmetry condition and the prong finder will follow the most massive subjet j 23 , and drop j 1 , which happens to contain the hard substructure of the jet.

In order to solve this "wrong branch issue" an alternative version for MDT was proposed, the modified MassDrop Tagger (mMDT) [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]. It is similar to the previous version, except that it follows the subjet with the largest transverse momentum, instead of the most massive one. It follows same procedure as the original version, except that one replaces the step 3 of the recursion with 3. Otherwise redefine j to be that of j 1 and j 2 with the larger transverse momentum p t,i and go back to step 1 (unless j consists of just a single particle, in which case the original jet is deemed untagged).

Other variations can also be considered: following the subjet with largest transverse mass m 2 + p 2 t ; changing the y cut by a z = min(p t1 , p t2 )/p t,jet cut; or dropping the mass drop condition (4.3). In this document, we will use by default the largest p t , the z cut option and neglect the condition (4.3). We study the mMDT combined with the Y-splitter tagger in chapter 6, combined with N-subjettiness in chapter 8, and as a groomer for a phenomenological study of the jet mass distribution in chapter 9.

Finally, the SoftDrop grooming procedure [START_REF] Larkoski | Soft Drop[END_REF] starts by reclustering the jet with the Cambridge/Aachen algorithm. Then it recursively undoes the last step of the clustering, splitting the current jet j into two subjets j 1 and j 2 . The procedures then stop if the splitting is symmetric enough, i.e.

z > z cut θ 12 R β , z ≡ min(p t1 , p t2 ) p t,jet . (4.5)
If the symmetry condition is not met, the procedure is recursively applied to the subjet with the largest p t . Note that eq. (4.5) with β = 0 corresponds to the mMDT procedure, if one does not consider the mass drop condition. The SoftDrop generalizes it to the case of β = 0. Typically SD is considered a groomer for β > 0 and a prong finder for β ≤ 0. The largest the value of β, the less aggressive will be the grooming procedure (i.e. the less particles are going to be groomed from the jet). In this document we use SD mostly as a groomer in chapters 6, 7 and 8.

Jet shapes

Jet shapes are functions of the constituents of the jet. They explore the fact that different type of jets have different patterns of soft-gluon radiation and are conceived in such a way that they have larger values for QCD jets and smaller values for signal jets. One way of discriminating signal jets from QCD background is imposing a cut on these observables. Below, we only define the jet shapes stidied in this thesis, mainly in chapters 7 and 8.

N -subjettiness [START_REF] Thaler | Identifying Boosted Objects with N-subjettiness[END_REF][START_REF] Stewart | N-Jettiness: An Inclusive Event Shape to Veto Jets[END_REF] is defined as follows: for a given jet, one finds a set of N axes a 1 , . . . , a N (more details on that below) and introduces

τ βτ N = i∈jet p ti min(θ βτ ia 1 , . . . , θ βτ ia N ), (4.6) 
where the sum runs over all the constituents of the jet, of transverse momentum p ti and with an angular distance θ ia j = ∆y 2 ia j + ∆φ 2 ia j to the axis a j . The standard choice for angular parameter is β τ = 1, but for this thesis we consider the case β τ = 2. This choice has shown good performance in Monte-Carlo numerical simulations [START_REF] Salam | Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging[END_REF] and considerably simplifies analytical calculation, as we will see in chapter 7. A comparison between β τ = 1 and β τ = 2 will also be presented in chapter 8.

In order to have a complete definition of N -subjettiness one needs to determine how to choose the axis a 1 , . . . , a n . Common options include:

• the optimal axes, which minimize τ N ;

• the k t axes, obtained by declustering the jet successively with the k t algorithm until we are left with N subjets;

• the generalized-k t axes with p = 1/2, that we introduced in [START_REF] Dasgupta | Jet shapes for boosted jet two-prong decays from first-principles[END_REF] (see chapter 7), obtained by declustering the jet successively with the generalized-k t algorithm until we are left with N subjets;

The generalized-k t option has the advantage of leading to a similar performance to the optimal axes at much smaller computational cost, for the case β τ = 2. More generally, for τ βτ N with a generic β τ , we would expect the generalized-k t axes with p = 1/β τ to give a close-to-optimal result. Note that for β τ 1, this choice should be used with the winner-take-all recombination scheme (defined in the previous chapter) in order to avoid recoil effects.

In what follows, we will consider the ratio τ βτ 21 = τ βτ 2 /τ βτ 1 to discriminate 2-pronged signal jets. Notice that, for our choice of β τ = 2, the 1-subjettiness τ

(2) 1 is equivalent to the squared jet mass at NNLL accuracy. This is true whenever axis defining τ 1 aligns with the jet axis, in particular for the axes choices described above.

The MassDrop parameter µ 2 [START_REF] Dasgupta | Jet shapes for boosted jet two-prong decays from first-principles[END_REF], a variation of the MassDrop Tagger [START_REF] Butterworth | Jet substructure as a new Higgs search channel at the LHC[END_REF]. For a given jet, we uncluster it into two subjets j → j 1 + j 2 , and define

µ 2 = max m 2 j1 , m 2 j2 m 2 jet . (4.7)
We use the generalized-k t (3.5), with a given parameter p, to decluster the jet. The typical choice is p = 1/2. The main difference from the original formulation of the MassDrop Tagger is that in this observable we do not apply any recursion, i.e. we simply discard the jet if the condition (7.12) is not satisfied for the first declustering.

The energy correlation functions [START_REF] Larkoski | Energy Correlation Functions for Jet Substructure[END_REF] are defined as following

e β C 2 = 1 p 2 t,jet R β C i<j∈jet p t,i p t,j θ β C ij , (4.8 
)

e β C 3 = 1 p 3 t,jet R 3β C i<j<k∈jet p t,i p t,j p t,k θ β C ij θ β C ik θ β C jk , ( 4.9) 
(4.10)

where we summed over all pairs/triplets of constituents of a jet j of radius R and p t,i is the transverse momentum of a particle i, and θ 2 ij = ∆y 2 ij + ∆φ 2 ij is the distance between particles i and j in the plan of rapidity vs. azimuthal angle.

For 2-pronged jet reconstruction, one generally uses the observable

C β C 2 = e β C 3 /(e β C
2 ) 2 as a discriminating variable. Alternatively, one can use

D β C 2 = e β C
3 /(e β C 2 ) 3 [START_REF] Larkoski | Power Counting to Better Jet Observables[END_REF]. Once again, we will concentrate on the cases β C = 2, for which e [START_REF] Bothmann | Aspects of perturbative QCD at a 100 TeV future hadron collider[END_REF] 2 is equal to the squared jet mass, for massless partons and small emission angles.

There are more general versions of the energy correlation functions, proposed recently in [START_REF] Moult | New Angles on Energy Correlation Functions[END_REF] and not studied in this thesis. This version depends on the angular parameter β C , and on two parameters n and v. It is written as

v e β C n = 1<i 1 <•••<in<n j z i 1 . . . z in v m=1 m min s<t∈{i 1 ...in} {θ β C st }, (4.11) 
where are min m denotes the m-th smallest number in the sequence.

There are new substructure discriminants, based on this energy correlation functions, notably:

• The M i = 1 e β C i+1 / 1 e β C
i series, constructed to identify i hard prongs;

• The N i = 2 e β C i+1 /( 1 e β C i ) 2 series, also suited to identify i hard prongs;

• The U i = 2 e β C i+1 series, designed for quark/gluons discrimination.

-44 -

Bases of resummation techniques

In this chapter we present the techniques used to do analytic calculation in the rest of this thesis. We start by motivating the need of resummation for calculating jet substructure observables. We study a relatively simple observable, the jet mass, we first do this calculation at fixed order in α s . We demonstrate that, for the boosted regime, this series does not converge. In order to solve this situation, we introduce all-order resummation, where we take into account terms from all orders O(α n s ). Additionally, we introduce Lund diagrams, a helpful graphic tool for guiding physical discussion. We also introduce the notation used in the rest of the thesis, in particular the basic building blocks. They are objects that will be extensively used in all substructure calculations in the next chapters.

The chapter is organized as follows, in section 5.1, we explain Lund diagrams. We present a first example of calculation in section 5.2, the jet mass distribution, first at fixed order (leading order and next-to-leading order), and then the all-order resummed calculation. Finally in section 5.3, we will present the basic building blocks.

Lund Diagram

Lund diagrams [START_REF] Andersson | Coherence Effects in Deep Inelastic Scattering[END_REF] are a graphic tool that illustrate the kinematic aspects of particles emissions. A given emission carrying a fraction z of the total transverse momentum of the parton that initiated the jet and with an emission angle θ, will be represented as a point on the diagram. The diagram has log(zθ) (proportional to the transverse momentum of the emission k t ) along the vertical axes and log(1/θ) along the horizontal axes. The kinematic limit z = 1 is represented by the diagonal black line, and it is impossible to have emissions above this line.

In the soft and collinear limit, each emission in the diagram has the following weight

dω 2 = C R dz z dθ θ α s (zθp t ) π , ( 5.1) 
where C R is a color factor depending on the parton that originated the emission (C R = C F for a quark, and C R = C A for a gluon), and we included the strong coupling α s which depends on the relative transverse momentum scale of the emission, with p t being the transverse momentum of the original parton. We can see that the weight (5.1) has the characteristic QCD soft and collinear divergences. It will become explicit for the jet mass distribution calculation, performed in next section, that jet observable distributions in boosted regimes can be interpreted as an integration over a Lund diagram phase space, with additional constraints imposed by the observable being considered.

Need for r es u m mat ion for jet mas s dis t r ibu t ion

An emission with a fixed emission angle θ can be anywhere on the vertical green line represented in fig. 5.1 (left), and a particle with a fixed momentum fraction z can be anywhere in the diagonal green line. One can also represent other observables in this diagram as we show later for the jet mass (see fig. 5.4). Emissions that are both collinear and soft occupy the central area of the diagram, represented by the green shades area in fig. 5.1 (right). As will be discussed in next section, this region corresponds to doublelogarithmic contributions, which are usually the dominant terms in our results. Soft emissions at large angle are along the vertical axes (represented by the red line), in the θ ∼ 1 region. They can generate at most single-logarithmic corrections. The same is true for hard and collinear emissions, which must be along the diagonal line z = 1. Hard and large-angle emissions are not enhanced by any QCD divergence, they can give at most a constant contribution.

Need for r es u mmat ion for jet mas s dis t r ibu t ion

Fix ed or der calcu lat ion

In this section we give a concrete example of the need for resummation for boosted jets observables. We will start by a relatively simple observable, the integrated jet mass distribution. At leading order in α s , we take a jet containing only one partonic emission. We will suppose the jet is originated by a quark, as shown in fig. 5.2, but the same reasoning can be applied to a gluon jet. In the collinear jet limit1 one can write a general distributions for any given observable using the splitting functions, which corresponds to the weight of a given emission. The splitting function for a q → q g emission is

p gq (z) = C F 1 + (1 -z) 2 z .
(5.2)

For g → q q emissions (resp. g → g g) the corresponding splitting function is

p qg (z) = T R ((1 -z) 2 + z 2 ) p gg (z) = 2C A 2 1 -z z + z(1 -z).
(5.3) For a jet with transverse moment p t and a radius R, the integrated distribution is the probability that a jet observable v(p t , θ, z, R) is smaller than a certain cut v cut . We also have to take into account virtual gluons emissions, i.e. partons that are emitted and then reabsorbed. This step is fundamental to cancel out QCD divergences. Finally, the integrated mass distribution is given by2 

P P' k 1 θ ~ 1 -z ~ z ,
Σ LO (v cut ) = α s 2π 1 0 dθ 2 θ 2 1 0 dz p gq (z) (Θ [v(p t , θ, z, R) < v cut ] -1) . (5.4)
For simplicity we work in the fixed coupling approximation, where the strong coupling is considered as constant. The differential v distribution is obtained by taking the derivative of (5.4) wrt v

1 σ dσ LO dv = α s 2π 1 0 dθ 2 θ 2 1 0 dz p gq (z)δ(v -v(p t , θ, z, R)).
(5.5) Expressions (5.5) and (5.4) can be extended to a jet initiated by a gluon simply by replacing p gq by

p xg (z) = 1 2 p gg (z) + n f p qg (z), (5.6) 
where n f is the number of active quark flavors. The mass of a jet is given by the squared sum of the (quadri-)momentum of its constituents. For the jet represented in fig. 5.2 we have

m 2 =   i∈jet p i   2 = 2P • k 1 ∼ z(1 -z)θ 2 p 2 t (5.7)
where we consider the collinear limit θ 1 and neglect parton masses. The exact meaning of the emission angle θ depends on the type of collision being considered. For e + e -collisions, it is the angle between the emitted parton and the jet direction, so we have 2P

• k 1 = 2z(1 -z)(1 -cos θ)p 2
t , which gives eq. (5.7) in the collinear limit. For pp collisions it is the separation between the emission and the original parton in the rapidity vs. azimuthal angle (y × φ), i.e. θ = √ ∆φ 2 + ∆y 2 . In this case 2P • k 1 = 2z(1 -z)(cosh ∆y -cos ∆φ)p 2 t , and in the collinear limit we also recover eq. (5.7). From expression (5.4), we see that the jet mass distribution will be

Σ LO (m) = α s 2π R 2 0 dθ 2 θ 2 1 0 dz p gq (z) Θ z(1 -z)θ 2 p 2 t < m 2 -1 , (5.8) 
We can integrate over θ, and obtain an additional constraint coming from the θ < R limit,

Σ LO (ρ) = C F α s 2π 1 0 dz p gq (z) log z ρ Θ [z(1 -z) > ρ] ,
(5.9)

where we introduced the dimensionless variable

ρ ρ = m 2 R 2 p 2 t .
(5.10)

In a boosted jet the transverse momentum p t is much larger than the mass m, therefore we have ρ 1. Under those circumstances we can simplify eq. (5.9), by neglecting constant terms and powers of ρ. In the end we find

Σ LO (ρ) = C F α s π 1 2 L 2 ρ + B q L ρ + O(1) , ( 5.11) 
with L ρ = log(1/ρ) and the B q is the term coming from hard-collinear emissions. It is given by the non-divergent part of the splitting function

B q = 1 0 dz p qg (z) 2C F - 1 z = - 3 4 .
(5.12)

If we consider a gluon jet instead, we would have the same expression but with C F → C A and B q → B g , where

B g = 1 0 dz p xg (z) 2C A - 1 z = - 11 12 + 1 3 n f T R C A .
(5.13)

An important observation about these expressions is that the (1 -z) terms in eq. (5.8) only give power corrections in ρ. We would obtain the same results if we ignore these terms from the beginning.

The same reasoning can be applied to next-to-leading order accuracy, where we consider two parton emissions. Again, we work in the boosted regime ρ 1. We have to take into account both virtual gluons emissions, as shown in fig. 5 In the case with two real emissions the mass is given by

m 2 ∼ p 2 t R 2 (x 1 + x 2 ), (5.14) 
where x i = z i θ 2 i , where each parton carries a fraction of momentum z i and has an angle of emission θ i , which we have normalized by R. We are neglecting (1 -z i ) factors, as they will give at most O (ρ) corrections. We can write the integrated mass distribution directly as a function of ρ

Σ NLO (ρ) = α s 2π 1 0 dθ 2 1 θ 2 1 1 0 dz 1 p qg (z 1 ) 1 0 dθ 2 2 θ 2 2 1 0 dz 2 p qg (z 2 ) (5.15) × [Θ(x 1 + x 2 < ρ) -Θ(x 1 < ρ) -Θ(x 2 < ρ) + 1)] .
Since we are only interested in the terms maximally enhanced by logarithms, we can consider that the emissions are strongly ordered in mass. It means we can factorize the mass constraint and replace the term in the second line of (5.15) by

[1 -Θ(x 1 < ρ)] × [1 -Θ(x 2 < ρ)],
(5.16)

and we finally have the expression

Σ NLO (ρ) = C 2 F α 2 s π 2 1 4 L 4 ρ + B q L 3 ρ + O(L 2 ρ ) .
(5.17)

Observing eqs. (5.11) and (5.17), we can identify logarithmic contributions, in particular (α s L 2 ρ ) n , α n s L 2n-1 ρ , and lower powers of L ρ , where the exponent n depends on the order of α s being considered. In boosted regimes, where ρ 1, one can expect these terms of the order of unity α s L ρ ∼ 1 or higher. In this case, the next-to-leading order terms, like (α s L 2 ρ ) 2 , can be the same order of magnitude (or larger) than the leading order terms (α s L 2 ρ ). Evidently, truncating this calculation at a given order n will not present a good predictive power.

Instead, we use an alternative method and do the resummation of all orders in α s . For resummed calculations, the accuracy of the results is based on which logarithmic terms are being considered. For example, in (5.17) we call the leading-logarithm (LL) the terms (α s L 2 ρ ) 2 . They only contain contributions of the soft and collinear region of the Lund diagram, and our calculation is exact at this order. The next-to-leading logarithm (NLL) terms contain for example the hard-collinear region of the Lund diagram. If we relax the strongly-ordered supposition made in (5.15), there would be corrections entering at NLL accuracy (multiple emission corrections).

Note that in fig. 5.3 we do not include the possibility of secondary emissions, i.e. when the initial quark emits a gluons that decay into two partons. In fact, for the jet mass this contribution in only sub-leading 3 , except for its contribution to the running coupling, as we discuss in next section.

Resummation for the jet mass

In this section we generalize the results obtained in the previous section to all orders in α s . The mass of a jet with n gluons in the final state will be:

m 2 = p 2 t R 2 n j=1
x j + O(z 2 ), x j = z j θ 2 j .

(5.18)

From fixed order calculations, we know that neglecting O(z 2 ) terms does not alter the results at leading logarithm.

We again consider all possibilities for virtual emissions. Supposing that gluons are strongly ordered, we can write the mass constraint as a product of constraints over each emission. Then, the integrated distribution is written as a sum over the distributions for all possible number of emissions:

Σ(ρ) = ∞ n=0 1 n! 1 0 dθ 2 1 θ 2 1 1 0 dz 1 p gq (z 1 ) . . . 1 0 dθ 2 n θ 2 n 1 0 dz n p gq (z n ) n i=1 [1 -Θ(x i < ρ)]. (5.19)
Expression (5.19) can be rewritten as an exponential Σ(ρ) = e -R plain (ρ) , (5.20) where R(ρ) is the Sudakov exponent, it is given by the integrated distribution for one emission with a mass limited by ρ

R plain (ρ) = α s 2π 1 0 dθ 2 θ 2 1 0 p gq (z)Θ zθ 2 > ρ = α s C F π 1 2 L 2 ρ + B q L ρ .
(5.21) At leading-logarithm, where emissions are strongly-ordered, we can say the mass constraint impose that each real emission is forbidden in the pink region, while virtual emissions are not constrained, so outside the pink region real and virtual contributions cancel each other. The Sudakov exponent at LL is the integration over the pink area, so a double-logarithm. For higher order contributions, e.g. hard and collinear emissions, we know that they must be along the z = 1 line. Instead of integration over an area, we integrate over a line, so we lose a logarithmic power, and have a NLL contribution.

Need for resummation for jet mass distribution

Similarly, if we consider particles which are no longer strongly ordered in mass, we would have multiple emissions along the same mass line, so a NLL contribution. The multiple emission correction can be computed by rewriting eq. (5.19) without the strong ordering supposition. This calculation is the same as the trust observable done in chapter 3.2 of ref. [START_REF] Banfi | Principles of general final-state resummation and automated implementation[END_REF]. In the end we obtain eq. (5.20) with a multiplicative pre-factor

Σ(ρ) = e -γ E R plain (ρ) Γ(1 + R plain (ρ))
e -R plain (ρ) , (5.22) where R plain (ρ) is the derivative of R plain (ρ) wrt L ρ . Eq. (5.22) remains valid for all additive observables, like N-subjettiness and energy correlation functions.

General comments on resummation

The need for resummation emerges whenever one has multiple scales involved in a measurement. In the case of jet mass, these scales are the mass itself m and the transverse momentum of the jet p t , but this technique can be applied to a variety of calculations in jet physics. As a general rule, the cross-section for a generic observable v can be expressed as

Σ(v) = δ f NGL σ (δ) 0 g (δ)
0 (α s )e β (5.23)

β = Lg (δ) 1 (α s L) + g (δ) 2 (α s L) + α s g (δ)
3 (α s L) + . . . (5.24) where

σ 0 = σ (δ)
0 is the corresponding Born cross-section, L = log(1/v) is the logarithm of the observable under consideration 4 and we are summing over all possible parton configurations δ = q, g .

Additionally, we may have the contribution of non-global logarithms (NGL) [START_REF] Dasgupta | Resummation of nonglobal QCD observables[END_REF] . They originate from hard boundaries in phase space, for example a cut in rapidity or a geometric jet boundary, like a limit in jet radius. These terms starts affecting predictions at NLL level, and are usually written as a multiplicative factor f NGL . They are complicated to treat analytically, but in our case they can often be avoided with grooming techniques.

If one only considers the lowest order of resummed calculation, so exclusively the g (δ) 1

terms and leading order in g

(δ)
0 , it is refereed to as the leading-log (LL) approximation. If one includes the g (δ)

i terms up to k +1 and the coefficient g (δ) 0 up to order α k-1 s it is refereed as next k -to-leading-order (N k LL). For the moment, state of the art analytical calculations are usually at NNLL accuracy [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF][START_REF] Chien | Resummation of Jet Mass at Hadron Colliders[END_REF], with some cases going up to NNNLL accuracy for specific observables [START_REF] Chien | Resummation of heavy jet mass and comparison to LEP data[END_REF].

Finally, to have predictions that are valid all over the available phase space, it is necessary to consider simultaneously fixed-order and resummed results. In order to do that, one needs to do a matching procedure. For the jet mass, doing the matching ensures that the cross-section is valid both at low-p t (p t ∼ m), where fixed-order dominates and high-p t (p t m), where resummation dominates. There are multiple types of matching schemes, but globally, they add the two ends of the calculations and subtract the double counting terms. Commonly used schemes in jet substructure include R-matching [START_REF] Catani | Resummation of large logarithms in e+ e-event shape distributions[END_REF], where we match the Sudakov factor directly, and the logR-matching, where one matches its logarithm.

Basic building blocks

In this section we will introduce the basic building blocks [START_REF] Dasgupta | Jet shapes for boosted jet two-prong decays from first-principles[END_REF], which are helpful objects for writing several results presented in the following chapters of this thesis. We deal with many integrations over the phase space z vs. θ of parton emissions, with constraints depending on the jet observable being considered. They usually can be written as combination of objects with simpler constraints, which we refer to as basic building blocks. In this section, we provide results for these simple objects, in order to avoid lengthy calculations in the rest of the thesis.

The most basic building block we shall use is the integral over a " triangle" bounded by a maximal angle, a constant k t ∝ zθ line (upper or lower bound) and a generic line of constant zθ α , as represented in fig. 5.5. The lines k t ∼ zθ correspond to a fixed transverse momentum. Expressed as a function of the minimal and maximal k t scales, the triangle can be written as

T α (k max , k min ; C R , B i ) α<1 = dθ 2 θ 2 dz P (z) α(zθ) 2π Θ(θ < k max ) Θ(zθ > k min ) θ(zθ α < k α max ) (5.25) α>1 = dθ 2 θ 2 dz P (z) α(zθ) 2π Θ(θ < 1) Θ(zθ < k max ) θ(zθ α > k min ) (5.26)
where we take C R = C F , C A and B i = B q , B g for quark or gluon jets respectively.

We no longer consider the fixed coupling approximation, for this calculation we use the strong coupling described in eq. (2.6) up to 2-loops. We also have to take into account extra sources of logarithm corrections coming from hard hadronic processes. For example, take a hard process involving q → q g, where the gluon can further decay collinearly (a secondary emission). This kind of contribution can be taken into account by doing an all-order resummation and it can be represented as an extra factor in the strong coupling α s (Q 2 ). In practice, this can be done using the CMW (Bremsstrahlung) scheme [START_REF] Dokshitzer | Specific features of heavy quark production. LPHD approach to heavy particle spectra[END_REF][START_REF] Catani | QCD coherent branching and semiinclusive processes at large x[END_REF], in which these corrections are represented by a term proportional to a constant K. At our accuracy the strong coupling can be written as

α s (Q 2 ) = α s 1 + α s β 0 log Q 2 µ 2 R -α 2 s β 1 β 0 log 1 + α s β 0 log Q 2 µ 2 R 1 + α s β 0 log Q 2 µ 2 R 2 + α 2 s K 2πβ 0 1 1 + α s β 0 log Q 2 µ 2 R 2 , ( 5.27) 
for which,

K = 67 18 - π 2 6 C A - 5 9 n f .
(5.28)

In practice, we may need to add a freezing scale to the running coupling, in order to avoid any possible soft divergences as we integrate over the phase space. We impose that the coupling α s (k t ) is replaced by α s (max(k t , μfr )), so that for k t < μfr , the strong coupling is constant. One usually sets μfr = 1 GeV. The exact expressions for these integrals depend on the positions of k min and k max compared to μfr . For k min > μfr we find, introducing L min = log(1/k min ), λ min = 2α s β 0 L min and similar quantities associated with k max ,

T α (k max , k min ; C R , B i ) (5.29) α<1 = C R 2πα s β 2 0 1 1 -α (1-λ max + 2α s β 0 B i Θ(α = 0)) log 1-λ max 1-λ min + λ max -λ min - α s β 1 β 0 1 2 log 2 (1-λ min ) - 1 2 log 2 (1-λ max ) + 1-λ max 1-λ min log(1-λ min ) -log(1-λ max ) + λ min -λ max 1-λ min + α s K 2π log 1-λ min 1-λ max + λ min -λ max 1-λ min α>1 = C R 2πα s β 2 0 1 α -1 (1-λ min ) log 1-λ min 1-λ max + λ min -λ max - α s β 1 β 0 1 2 log 2 (1-λ max ) - 1 2 log 2 (1-λ min ) + 1-λ min 1-λ max log(1-λ max ) -log(1-λ min ) + λ max -λ min 1-λ max + α s K 2π log 1-λ max 1-λ min + λ max -λ min 1-λ max ,
where the B i term for α < 1 only has to be included if the "triangle" upper edge corresponds to z = 1. The expressions above are dominate by double-logarithmic terms, known as leading-logarithm (LL). The next-to-leading logarithms (NLL) contributions are also included, from different sources: terms proportional to B i come from hard-collinear emissions, the β 1 terms from 2-loop running coupling corrections and the K terms from the CMW scheme corrections.

For k min < μfr but k max > μfr , one obtains

T α (k max , k min ; C R , B i ) (5.30) α<1 = C R 2πα s β 2 0 1 1 -α (1-λ max + 2α s β 0 B i Θ(α = 0)) log 1-λ max 1-λ fr + λ max -λ fr - α s β 1 β 0 1 2 log 2 (1-λ fr ) - 1 2 log 2 (1-λ max ) + 1-λ max 1-λ fr log(1-λ fr ) -log(1-λ max ) + λ fr -λ max 1-λ fr + α s K 2π log 1-λ fr 1-λ max + λ fr -λ max 1-λ fr + C R π(1 -α) (L min -L fr ) α s (μ fr )(L min + L fr -2L max ) + 2α s,1-loop (μ fr )B i Θ(α = 0) α>1 = C R 2πα s β 2 0 1 α -1 (1-λ min ) log 1-λ fr 1-λ max + λ fr -λ max - α s β 1 β 0 1 2 log 2 (1-λ max ) - 1 2 log 2 (1-λ fr ) + 1-λ min 1-λ max log(1-λ max ) - 1-λ min 1-λ fr log(1-λ fr ) + (λ max -λ fr )(1-λ min ) (1-λ max )(1-λ fr ) + α s K 2π log 1-λ max 1-λ fr + (λ max -λ fr )(1-λ min ) (1-λ max )(1-λ fr ) , + α s (μ fr )C R π(α -1) (L min -L fr ) 2 .
In that expression, we have introduced α s,1-loop

(k t ) = α s /(1 -2α s β 0 log(p t R/k t ))
, the running-coupling at 1-loop, which multiplies the contributions proportional to B i in the frozen region. This reflects the fact that contributions proportional to β 1 B i and KB i , coming from the 2-loop corrections to the running of α s are beyond our accuracy. And, finally, for k max < μfr , one gets

T α (k max , k min ; C R , B i ) (5.31) = C R π|1 -α| (L min -L max ) α s (μ fr )(L min -L max ) + 2α s,1-loop (μ fr )B i Θ(α = 0) .
From this fundamental building block, we can build two derived objects which will be used to describe most of the expressions in the rest of this thesis. The first one is again a triangle bound by a maximal angle, a maximal zθ α line and a minimal zθ β line, see the right plot of fig. 5.5. This can be seen as a sum of two of the above triangles. Again, we can express this new object as a function of the minimal and maximal k t scales on the maximal-angle side of the triangle, and, assuming α < β, we get

T αβ (k max , k min ; C R , B i ) α<β<1 = T α (k max , k med ; C R , B i ) -T β (k min , k med ; C R , B i ) (5.32) α<1<β = T α (k max , k med ; C R , B i ) + T β (k med , k min ; C R , B i ) (5.33) 1<α<β = T β (k med , k min ; C R , B i ) -T α (k med , k max ; C R , B i ), (5.34) 
with

k med = k β-1 β-α max k 1-α β-α min . 5
The last object we shall use is a "parallelogram" bounded by a minimal and a maximal angle and two parallel lines of constant zθ α , assuming here α > 1, see again the right plot of fig. 5.5. This is expressed as a function of the maximal k t scale k 1 (at the minimal angle) and the maximal and minimal k t scales, k 2 and k 3 at the maximal angle. We can view this as a function of three of our basic triangles

P α (k 1 , k 2 , k 3 ; C R ) = T α (k 1 , k 3 ; C R , 0) -T α (k 1 , k 2 ; C R , 0) -T α (k 1 , k 4 ; C R , 0) (5.35) with k 4 = k 1 k 3 /k 2 .
Note that we will often represent the k t scale by their logarithm, log(1/k t ) and it is worth keeping in mind that the maximal k t would correspond to the minimal log(1/k t ).

Exemple: jet mass Coming back to the jet mass distribution in section 5.2, we can see by the Lund diagram in fig. 5.4, that the mass constraint is equivalent to a triangle limited by lines z = 1 and zθ 2 = ρ. Using the basic building blocks formalism, we can write the corresponding Sudakov factor as

R plain (ρ) = T 02 (1, ρ; C R , B i ).
(5.36)

Notice that we recover the expression (5.21) in the fixed coupling approximation, i.e. in the limit β 0 , β 1 , K → 0.

Alternative treatment of hard and collinear emissions

We would like to add a word of caution about the treatment of B i terms. A possible drawback of expression (5.21) is that it becomes negative for L ρ < -2B i . This situation is also present in the basic building blocks, despite the transition point not being so trivial. In order to avoid this problem we propose an alternative way of treating these terms. In expression (5.21) for example, we can replace

L 2 ρ 2 + B i L ρ → 1 2 (L ρ + B i ) 2 , ( 5.37) 
and restrict ourselves to L ρ + B i > 0. At NLL accuracy it does not change our results and it avoids the problem of negative Sudakov factors. It has the disadvantage of adding extra (uncontrolled) terms at the NNLL accuracy. For the basic building blocks, it is equivalent to include a multiplicative factor e -B i in the k max , for the triangles that include the z = 1 line.

Using this alternative approach, the plain mass Sudakov in eq. (5.36) becomes R plain (ρ) = T 02 (e -B i , ρ; C R , 0). (5.38) This alternative approach has the advantage of having strictly positive Sudakov exponents, which eliminates undesired kinks in the plots, and is specially useful if we are doing a matching procedure. We use this approach in chapters 6, 8 and 9. The original approach, on the other hand, has the advantage of not including terms beyond our control, so it is more robust from a theoretical point of view. We use this approach in chapter 7.

-6 -Y-splitter and variations

One way of developing better jet substructure methods is to find interesting combinations between existing tools (prong finders, groomers and jet shapes). In this chapter we explore how the performance of the Y-splitter tagger can be improved by combining it to a variety of grooming techniques, namely modified MassDrop Tagger, trimming or Soft-Drop. Recent studies [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF] have shown that the particular combination of Y-splitter with trimming can outperform the standard tagging techniques, even thought the Y-splitter alone has a relatively low performance. We study the origin of this increase in performance from a theoretical point of view, using the formalism developed in the previous chapter.

In section 6.1 we present the calculation for the mass distribution of QCD jets with a Y-splitter cut y cut , both fixed order and resummation results at leading logarithm accuracy in log ρ and log y cut . In section 6.2, we present the jet mass distribution for Y-splitter and an additional grooming (either trimming or mMDT). In section 6.3, we propose variations for the Y-splitter and in section 6.4 we explore the impact of non-perturbative effects on our predictions and discuss their consequences. Finally, in section 6.5 we present an overall discuss of our findings and conclude.

Plain Y-splitter

Leading-order calculation

We start by computing the leading-order result for the jet mass distribution for QCD jets that are tagged by Y-splitter, presented in (4.2). In order to generate leading logarithmic contributions it is sufficient to consider contributions from soft and collinear gluon emissions from a hard parton.

Therefore at leading order in QCD (order α s ) we have to consider a jet made up of a hard quark or gluon and a single accompanying soft and collinear quark or gluon emissions. Here we shall explicitly consider the case of quark jets to begin with, but it is trivial to obtain the corresponding results for gluon initiated jets from the ones we derive below.

Let us write the four-momenta of the particles as p = p t (1, 1, 0, 0) , k = ω t (cosh y, cos φ, sin φ, sinh y) , (6.1) where p is the four-momentum of the hard quark, written in terms of its transverse momentum p t wrt the beam and where without loss of generality we can set its rapidity wrt the beam to zero. Likewise ω t is the transverse momentum of the emitted soft gluon, with rapidity y and azimuthal angle φ. In the soft and collinear limit we have ω t p t and θ 2 = (y 2 + φ 2 )

1. Let us first study the jet mass distribution with a cut on d 12 /m 2 (see eq. (4.1)), with m being the jet mass. In the soft and collinear approximation d 12 = ω 2 t θ 2 while m 2 = ω t p t θ 2 so that we apply the Y-splitter cut on the quantity x = ω t /p t i.e. the transverse momentum fraction of the gluon, such that x > y cut . The calculation for the jet mass distribution is then simple to write down1 

1 σ dσ dρ LO,soft-coll. = C F α s π 1 0 dx x dθ 2 θ 2 δ ρ -xθ 2 Θ (x > y) , (6.2) 
where, as we are working in the LL accuracy, we have taken a fixed-coupling approximation. In writing (6.2), we have implicitly normalized all angles to R so that θ runs up to 1 (instead of up to R) and all R dependence that arises at our accuracy is incorporated into our definition of ρ = m 2 /(p t R) 2 . Note that eq. (6.2) is written for quark jets. One can easily extrapolate this, and the following formulae, to gluon jets by replacing C F by C A . We can easily integrate (6.2) to obtain

ρ σ dσ dρ LO,soft-coll. = C F α s π ln 1 y Θ (y > ρ) + ln 1 ρ Θ (ρ > y) . (6.3)
The result above is identical to results obtained for the MassDrop Tagger (and the Mass-Drop Tagger (mMDT) ) as well as for pruning [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]. It reflects that at this order the action of Y-splitter, in the small ρ limit, is to remove a logarithm in ρ and replace it with a (smaller) logarithm in y. This implies a reduction in the QCD background at small ρ relative to the plain jet mass result. For ρ > y, the cut is redundant and we return to the case of the plain QCD jet mass. It is also straightforward to extend the soft approximation by considering hard-collinear corrections. To include these effects one simply makes the replacement 1

x → 1+(1-x) 2 2x

i.e. includes the full p gq splitting function. It is also simple to include finite y corrections in the above result by inserting the proper limits of integration that are obtained from the Y-splitter condition when one considers hard collinear rather than soft gluon emission.

The Y-splitter condition is satisfied for y/(1 -y) < x < 1/(1 + y) and we obtain the result, for ρ < y/(1 + y):

ρ σ dσ dρ LO,coll. = C F α s π ln 1 y - 3 4 
1 -y 1 + y . (6.4) This result is again identical to the case of (m)MDT with the y cut > y condition.

NLO result and all-orders form

In this section we compute the next-to-leading order result in the soft and collinear limit, before extending this result to all orders in the next section.

Thus we need to consider the case of two real emissions off the primary hard parton as well as a real and a virtual emission, also treated in the soft and collinear limit. We shall work in the classical independent emission approximation which is sufficient to obtain the leading logarithmic result for jet mass distributions.

We consider a jet made up of a primary hard parton and two soft gluons with fourmomenta k 1 and k 2 . When the jet is declustered one requires the Y-splitter cut to be satisfied for the jet to be tagged. There are two distinct situations that arise at this order: the situation where the largest k t gluon passes the Y-splitter cut as well as sets the mass of the jet or the situation where the largest k t gluon passes the Y-splitter cut so the jet is accepted but the jet mass is set by a lower k t emission.

For the one-real, one-virtual contributions the situation is the same as that for the leading-order calculation i.e. the real emission both passes the Y-splitter cut and sets the mass.

Let us assume that the jet mass is set by emission k 1 with energy fraction x 1 and which makes an angle θ 1 with the jet axis or equivalently the hard parton direction, with x 1 , θ 1 1. For simplicity, it is useful to introduce for every emission k i , the respective quantities

κ i ≡ x i θ i , ρ i ≡ x i θ 2 i , (6.5) 
related to the transverse momentum (k t scale) of emission k i wrt the jet axis and the contribution of emission k i to the jet mass. We can then write

1 σ dσ dρ NLO,soft-coll. = C F α s π 2 dΦ 2 δ (ρ -ρ 1 ) Θ (κ 1 > κ 2 ) Θ (x 1 > y) Θ (ρ 2 < ρ) + Θ (κ 2 > κ 1 ) Θ (κ 2 > ρy) Θ (ρ 2 < ρ) -Θ (x 1 > y) , ( 6.6) 
where we introduced the notation

dΦ 2 ≡ dx 1 x 1 dx 2 x 2 dθ 2 1 θ 2 1 dθ 2 2 θ 2 2 , ( 6.7) 
for the two-gluon emission phase space in the soft-collinear limit.

The first line within the large parenthesis expresses the condition that the gluon which sets the mass has the higher k t i.e. κ 1 > κ 2 as well as satisfies the Y-splitter constraint on the higher k t gluon κ 2 1 /ρ 1 = x 2 1 θ 2 1 /(x 1 θ 2 1 ) = x 1 > y. The emission k 2 cannot dominate the jet mass by assumption, which gives rise to the veto condition ρ 2 < ρ. The first term on the second line within the parenthesis expresses the condition that the gluon k 1 now has lower k t than emission k 2 . Emission k 2 passes the Y-splitter cut κ 2 2 /ρ > y, where ρ is the mass set by emission k 1 . The final term on the last line, with negative sign, is the contribution where emission k 2 is virtual.

For the term on the first line we make the replacement Θ (κ

1 > κ 2 ) = 1 -Θ (κ 2 > κ 1
). These two terms can be combined with the virtual corrections and the first term of the second line, respectively, to give

1 σ dσ dρ NLO,soft-coll. = C F α s π 2 dΦ 2 δ (ρ 1 -ρ) Θ (x 1 > y) (Θ (ρ 2 < ρ) -1) + dΦ 2 δ (ρ -ρ 1 ) Θ (κ 2 > κ 1 ) Θ (ρ 2 < ρ) [Θ (κ 2 > yρ) -Θ (x 1 > y)] . (6.8)
The fundamental reason for writing the result in the above form is to separate what we expect to be the leading logarithmic contribution in the first line from sub-leading contributions which involve a higher k t emission giving a smaller contribution to the jet mass than emission k 1 . Hence we anticipate that the term in the second line in eq. ( 6.8) will produce results that are beyond our accuracy, in the limit of small ρ. On explicit calculation of this term one gets, for ρ < y,

C F α s π 2 dΦ 2 δ (ρ 1 -ρ) Θ (κ 2 > κ 1 ) Θ (ρ 2 < ρ) [Θ (κ 2 > yρ) -Θ (x 1 > y)] = C F α s π 2 1 2ρ ln 1 ρ ln 2 1 y -ln 3 1 y = C F α s π 2 1 2ρ ln y ρ ln 2 1 y . ( 6.9) 
The above result implies that in the ρ → 0 limit there are at best single logarithmic (in ρ) contributions to the integrated jet mass distribution from the second line of eq. (6.8). Using Θ(ρ 2 < ρ) -1 = -Θ(ρ 2 > ρ), the first line of eq. (6.8) gives

1 σ dσ dρ NLO,LL = - C F α s π 2 dΦ 2 Θ (x 1 > y) δ (ρ -ρ 1 ) Θ (ρ 2 > ρ) , ( 6.10) 
which produces the leading logarithmic (LL) corrections we require. Upon evaluation, it produces for ρ < y, ρ σ dσ dρ

NLO,LL = - C F α s π 2 1 2 ln 1 y ln 2 1 ρ , ( 6.11) 
which has the structure of the leading-order result multiplied by a double logarithmic term in ρ. We note that for ρ > y the Y-splitter cut becomes redundant and one returns to the result for the standard plain jet mass distribution, computed in section 5.2. We

θ) log(1/ log( θ) ρ 1 x > y Y - s p l i t t e r c d t 1 x θ) log(1/ log( θ) ρ 2 1 k > y ρ 2 t2
Y-splitter cdt x Figure 6.1 -Lund diagrams for the two possible configurations in resummed mass distribution: emission that dominates the jet mass also has the largest k t (left) and emission with larger k t does not dominates mass. recall that by "leading logarithmic (LL) accuracy" we mean that we only keep the terms that are maximally enhanced in ln ρ.

The result in eq. ( 6.11) has a simple physical interpretation. The largest k t emission which sets the mass comes with a cut on its energy precisely as at leading order which, produces an α s ln 1 y behavior. Emission k 2 on the other hand is subject to a veto condition such that ρ 2 < ρ. After cancellation against virtual corrections one obtains an α s ln 2 1 ρ behaviour from this emission, exactly as for the leading-order contribution to the integrated plain jet mass distribution. Based on this we can expect that at all orders, to leading-logarithmic accuracy, one ought to multiply the leading-order (LO) result by a double logarithmic Sudakov suppression factor like that for the plain jet mass. The leading-order result then appears as a single-logarithmic prefactor in front of a resummed double-logarithmic Sudakov exponent, as we shall see in the following.

Lastly we note that the full result of our calculation of eq. (6.6) can be written in the form

1 σ dσ dρ NLO,soft-coll. = C F α s π 2 1 2ρ -ln 1 y ln 2 1 ρ + ln y ρ ln 2 1 y , ( 6.12) 
where the first term on the right side contains the leading logarithms in ρ while the second term is subleading in ρ (being purely single logarithmic), although it is enhanced by logarithmic terms in y.

All-orders resummation for log(ρ)

Eqs. (6.10), (6.11) can be easily generalized to all orders. To LL accuracy, one can generalize the reasoning for the NLO case and one has to consider only the situation where the highest k t emission dominates the jet mass. A jet-mass veto then applies to all other real emissions. This situation is depicted in the Lund diagram to the left in fig. 6.1.

The emission denoted with a black dot sets the jet mass i.e. satisfies ρ 1 ≡ x 1 θ 2 1 = ρ. The blue shaded region corresponds to emissions that give a contribution to the mass xθ 2 > ρ and hence are vetoed. Considering these emissions to be emitted according to an independent emission pattern the veto condition gives a Sudakov suppression factor represented by the blue shaded area in the figure, which is identical to the suppression factor obtained for the plain jet mass at leading-logarithmic accuracy. In addition to this, emissions with a higher transverse momentum which set a lower mass than ρ are also vetoed since we assumed that the emission which sets the mass is the highest k t emission. This is denoted by the red shaded area in the figure but as this region produces only terms that are sub-leading in ρ we shall not consider it for the moment. Finally, we also have to consider the Y-splitter constraint which for this configuration corresponds to x 1 > y where the line x = y is shown in red in the figure. The all-orders fixed-coupling result from this configuration, which captures the leading double-logarithms in ρ, is

ρ σ dσ dρ LL = C F α s π ln 1 y × exp - C F α s 2π ln 2 1 ρ , (for ρ < y), ( 6.13) 
while for ρ > y the result is that for the plain mass distribution. Eq. ( 6.13) corresponds to the result reported already in [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF]. Note that a similar result is obtained also for the case of Y-pruning in the regime α s ln 1 zcut ln 1 ρ 1 (see eq. 5.10b of [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]). It is simple to include running-coupling corrections both in the prefactor i.e. those associated to the emission which sets the mass as well as in the Sudakov exponent. Likewise hard-collinear emissions may be treated by using the full splitting function in the prefactor and the Sudakov exponent, yielding the modified leading logarithmic approximation. Lastly we can also include finite y corrections into the prefactor as they may be of numerical significance since they occur already at leading order (see eq. ( 6.4)).

The general result, for ρ < y then reads

ρ σ dσ dρ LL = 1 1+y y 1+y dx 1 p i (x 1 ) α s (x 1 ρ) 2π e -R plain (ρ) , ( 6.14) 
where p i = p gq for a quark jet, and p i = p xg for a gluon jet. The Sudakov exponent ("radiator") is the same as for the plain jet mass case, studied in previous section,

R plain (ρ) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ xθ 2 > ρ = T 02 (e -B i , ρ; C R , 0), (6.15) 
where we are using the basic building blocks defined in (5.32). We take C R = C F and B i = B q for a gluon jet, and C R = C A and B i = B g for a gluon jet. Note that here and henceforth we shall only specify the transition points in a small y approximation. Thus the exact transition point ρ = y/(1 + y) will be approximated by ρ = y. In the above expression and the remainder of the text, the arguments of the running coupling have to be understood as factors of p 2 t R 2 .

All-orders resummation for log(y)

In the present case, if y becomes small enough, we can also perform an all-order resummation of the logarithms of 1/y. Such terms, which are formally at the level of sub-leading logarithms in ρ, were already identified in our fixed-order NLO calculation, see eq. (6.12).

In order to resum them we will have to consider also situations where the highest transverse momentum emission does not set the jet mass. To write a general resummed result it is convenient to return to the Lund diagrams in fig. 6.1. The figure on the left denotes, as we stated before, the situation where the highest transverse momentum emission both passes the Y-splitter constraint and also sets the mass, with a veto on higher mass emissions. Now however we also account for the contribution from the red shaded region that corresponds to an additional veto on emissions with a higher transverse momentum than the emission which sets the mass. The figure on the right denotes a second situation where there is an emission k 2 which is the highest k t emission i.e. κ 2 > κ 1 . The red shaded region now denotes the additional veto on any emissions with transverse momentum greater than κ 2 . The blue region as before corresponds to a veto on emissions with larger mass than ρ = ρ 1 and the Y-splitter condition now corresponds to κ 2 2 > ρy where the line x 2 θ 2 = ρy is shown in the figure.

Taking both the above described situations into account one can write the result as (for now we ignore finite y effects to which we shall return)

ρ σ dσ dρ LL+LL y = 1 ρ dx 1 p i (x 1 ) α s (ρx 1 ) 2π e -R plain (ρ)   Θ(x 1 > y)e -R k t (κ 1 , ρ) + (6.16) + dθ 2 2 θ 2 2 dx 2 p i (x 2 ) α s (κ 2 2 ) 2π Θ (ρ 2 < ρ) Θ (κ 2 > ρx 1 ) Θ (κ 2 > ρy) e -R k t (κ 2 , ρ)   ,
where the first term in large brackets comes from the Lund diagram on the left and the second term from that on the right. Note that R kt is also a Sudakov type exponent defined as

R kt (κ, ρ) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ xθ 2 < ρ Θ (xθ > κ) = 2T 0,2 ρe -B i , k t ; C R , 0 . (6.17)
which arises from a veto on transverse momentum of emissions above the scale k t while at the same time imposing that the mass of the vetoed emissions is lower than ρ, as required for taking into account the red shaded regions in the Lund diagrams of fig. 6.1. This expression can be simplified quite significantly: one first splits the second line into a contribution with x 1 > y and a contribution with ρ < x 1 < y. After integration over x 2 and θ 2 and combining the contribution from x 1 > y with the first line of (6.16) one can write the final result as where we have restored the finite y corrections in the leading contribution (first term).

ρ σ dσ dρ LL+LL y = e -R plain (ρ) 1 1+y y 1+y dx 1 p i (x 1 ) α s (x 1 ρ) 2π + 1 -e -R k t ( √ ρy,ρ) y ρ dx 1 p i (x 1 ) α s (x 1 ρ) 2π , ( 6 
The correction term one thus obtains relative to (6.14) has a prefactor proportional to α s ln y ρ multiplied by a Sudakov-like factor, starting at order α s and resumming terms of the form α n s ln 2n 1 y . This is consistent with the result obtained at NLO in eq. ( 6.12).

Comparison to Monte Carlo

In order to validate our analytic results, we have compared them to Monte-Carlo simulations. We have used Pythia (v8.186) [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF] with the 4C tune [START_REF] Corke | Interleaved Parton Showers and Tuning Prospects[END_REF] to generate qq → qq events at parton level with √ s = 13 TeV. Jets are reconstructed with the anti-k t algorithm with R = 1 as implemented in FastJet [START_REF] Cacciari | Dispelling the N 3 myth for the k t jet-finder[END_REF][START_REF] Cacciari | FastJet User Manual[END_REF] and we require that the jets satisfy p t > 3 TeV and rapidity |y| < 4. Unless explicitly stated otherwise, we use this same setup to all Monte Carlo simulations involving Y-splitter tagger in this chapter.

The comparison to our analytic calculations is shown in fig. 6.2 with Pythia on the left and our results on the right. All our results include the contribution from the full splitting function including hard-collinear effects to the Sudakov exponent, and use a 1-loop approximation for the running of the strong coupling with α s (m Z ) = 0.1383. This value matches the one used in Pythia for the final-state shower. Furthermore, the plot with our analytic results includes both the leading logarithmic result described in eq. (6.14) (dashed curves) as well as the result augmented to include resummation of double logarithms in y, eq. (6.16) (solid curves) for two values of y. We note firstly the good overall agreement with Monte Carlo results for both variants of the analytics, which indicates that our modified leading-logarithmic results successfully explain the performance of Y-splitter on QCD background jets. The observed differences between analytics and Monte Carlo can arise due to different treatment of next-to-leading logarithmic effects such as those due to soft emissions at large angles and initial state radiation included in the Monte Carlo studies but left out of our resummed calculations.

It is noteworthy that the ln y resummation although a visible effect, is fairly modest. The essential dependence of the results on y is already captured by the leading-logarithmic resummation of eq. (6.14).

Y-splitter with grooming

In this section we shall consider the Y-splitter method supplemented with grooming procedures, specifically the modified MassDrop Tagger (equivalently SoftDrop β = 0) and trimming. The effectiveness of applying grooming subsequent to the use of Y-splitter on a jet has been clearly demonstrated in the Monte Carlo studies carried out in [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF]. It was shown that while Y-splitter alone has a very poor signal efficiency (similar to that for an ungroomed jet which is severely affected by ISR and Underlying Event), grooming makes a considerable difference to the performance of Y-splitter on signal jets. On the other hand we have already seen that on QCD background jets Y-splitter gives a double-logarithmic Sudakov type factor multiplying a single logarithmic prefactor, which implies a desirable strong suppression of background. Using Y-splitter with grooming did not significantly alter the performance of Y-splitter on background jets, in the sense that applying a grooming procedure after one imposes a Y -splitter cut does not alter the double-logarithmic Sudakov behavior for the QCD background.

This fact coupled with the great improvement seen in signal efficiency resulted in Y-splitter+grooming outperforming other standard taggers for signal significance at high p t . Here we seek to understand from a first principles viewpoint why grooming does not appear to strongly impact the basic performance of Y-splitter on background. We start by studying Y-splitter with trimming in the next sub-section, which was the combination employed in [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF].

Y-splitter with trimming: fixed-order results

To study the impact of trimming on Y-splitter, we shall consider taking a jet accepted by Y-splitter and then apply trimming to it (see definition in section 4.1). It is important to highlight that it is crucial to apply the Y-splitter condition on the plain jet and apply grooming afterwards. We show in appendix A that applying grooming first and then imposing the Y-splitter condition on the groomed jet leads to a smaller suppression of the QCD background.

We shall set the f cut parameter of trimming to be equal to the parameter y of Ysplitter, a choice that will become clear presently 2 . We first note that, at leading order, for a soft emission to pass Y-splitter it must have an energy fraction x > y. When one applies trimming afterwards such an emission is unaffected as, with our choice of f cut trimming removes only emissions with x < y. Thus at leading-order Y-splitter with trimming trivially returns the same result as Y-splitter alone.

We shall now examine the role of trimming at the NLO level. Let us consider that the mass of the final jet after grooming is set by an emission k 1 . In other words, we first impose the Y-splitter cut on the plain jet and, if it passes, we compute the trimmed jet mass.

At order α 2 s we have to consider both a second real emission k 2 as well as a virtual gluon contribution. Cosidering the leading logarithm limit (soft and collinear emissions), the mass distribution can be written as

1 σ dσ dρ NLO,soft-coll = C F α s π 2 dΦ 2 (I 1 + I 2 + I 3 + I 4 ) (6.19) 
with

I 1 = δ (ρ -ρ 1 ) Θ (κ 1 > κ 2 ) Θ κ 2 1 ρ 1 + ρ 2 > y Θ (ρ 2 < ρ) Θ in 2 , ( 6.20) 
I 2 = δ (ρ -ρ 1 ) Θ (κ 1 > κ 2 ) Θ κ 2 1 ρ 1 + ρ 2 > y Θ out 2 , ( 6.21) 
I 3 = δ (ρ -ρ 1 ) Θ (κ 2 > κ 1 ) Θ κ 2 2 ρ 1 + ρ 2 > y Θ (ρ 2 < ρ) Θ in 1 , (6.22) 
I 4 = -δ (ρ -ρ 1 ) Θ(x 1 > y), ( 6.23) 
where we introduced the shorthand notations Θ in i and Θ out i to represent that emission k i is respectively left in or removed by trimming. We recall the condition for an emission to be removed by trimming is

Θ out i = 1 -Θ in i = Θ(x i < y) Θ(θ i > r), (6.24) 
with r ≡ R trim R and R trim the trimming radius. Let us detail the physical origin of these different contributions. The contribution I 1 contains the conditions on x 1 , x 2 , θ 1 , θ 2 such that k 1 sets the mass (ρ = ρ 1 ) and has the higher transverse momentum, κ 1 > κ 2 . It also contains the condition for the Y-splitter cut to pass κ 2 1 /(ρ 1 + ρ 2 ) > y, and the condition that k 2 is left in by trimming represented by Θ in 2 . Lastly it contains the veto on the mass ρ > ρ 2 such that emission k 2 cannot set the mass. Likewise I 2 contains the conditions that emerge when k 2 is removed by trimming which itself corresponds to the condition Θ out 2 . For both I 1 and I 2 , the Y-splitter condition implies x 1 > y and therefore guarantees that emission k 1 is left in by trimming. These configurations reproduce the leading-logarithmic terms of the pure Y-splitter cut, and also generate subleading contributions coming from the region where k 2 is removed by trimming and has ρ 2 > ρ, One can easily see this by inserting 1 = Θ(ρ

2 > ρ) + Θ(ρ 2 < ρ) in I 2 .
On the other hand, I 3 represents the situation when k 1 is the lower transverse momentum emission and sets the mass. In this case, the Y-splitter condition implies x 2 > y, i.e. emission k 2 is kept by trimming, and we thus have to impose that ρ 2 < ρ 1 . We also have to impose that emission k 1 is left in by trimming corresponding to Θ in 1 . Lastly I 4 corresponds to the situation when k 2 is virtual and all that is required is for k 1 to pass the Y-splitter cut.

A comment is due about the Y-splitter condition used in the above formulae (6.20) - (6.22). In situations where emission k 1 dominates the mass even though emission k 2 is not groomed away it is possible, at leading logarithmic accuracy, to replace ρ 1 + ρ 2 in the denominator of the Y-splitter constraints by ρ = ρ 1 . Specifically this applies to the I 1 and I 3 terms above. We have however chosen to treat the Y-splitter constraint exactly in all terms since in the term involving I 2 , where emission k 2 is groomed away, there is no condition on ρ 2 requiring it to be less than ρ. Retaining the exact Y-splitter constraint in all terms proves convenient for reorganising and combining various contributions as we shall do below, while only differing from the leading-logarithmic simplification by subleading terms which we do not control.

In order to highlight that the use of grooming techniques does not drastically modify the background rejection obtained with Y-splitter alone, it is interesting to express the calculations as grooming-induced corrections to those already carried out for Y-splitter. To this end, in the contribution involving I 1 let us replace Θ in 2 with 1 -Θ out 2 which splits the contribution from I 1 into two pieces

I 1 = I full 1 -I out 1 . The contribution from I full
1 , where we can use ρ 1 + ρ 2 ≈ ρ 1 in the Y-splitter condition, is just the same as the corresponding leading term for the pure Y-splitter case. It can be combined with the virtual term I 4 (which is also identical to the pure Y-splitter case) to produce the NLO leading-logarithmic result we reported earlier for Y-splitter, cf. (6.13) and (6.14). We can apply a similar procedure for the term I 3 such that I 3 = I full 3 -I out 3 , where I full 3 is the contribution to the pure Y-splitter case from the situation that the the highest k t emission passes Y-splitter but does not set the jet mass. Recall that this configuration produces only terms beyond our formal leading-logarithmic accuracy (cf. the second term in eq. (6.18)). The remaining terms, all involving Θ out 2 , constitute the trimming-induced corrections to Y-splitter. It is then useful to write the result in the following form:

1 σ dσ dρ NLO,soft-coll = 1 σ dσ dρ NLO,YS + F trim,a + F trim,b (6.25) 
where 1 σ dσ dρ NLO,YS is the pure Y-splitter result given by (6.18), and we defined 

F trim,a = C F α s π 2 dΦ 2 δ (ρ -ρ 1 ) Θ (κ 1 > κ 2 ) Θ κ 2 1 ρ 1 + ρ 2 > y [1 -Θ (ρ 2 < ρ)] Θ out 2 , (6.
F trim,b = - C F α s π 2 dΦ 2 δ (ρ -ρ 1 ) Θ (κ 2 > κ 1 ) Θ κ 2 2 ρ 1 + ρ 2 > y Θ (ρ 2 < ρ) Θ out 1 , (6.27) 
which arises from the -I out 3 term. At this stage, within our accuracy we can replace ρ 1 + ρ 2 by ρ 2 in (6.26) and by ρ 1 in (6.27). We can then express the constraints in (6.26) in the form

δ (ρ -ρ 1 ) Θ ρx 1 x 2 > ρ 2 Θ ρx 1 y > ρ 2 [1 -Θ (ρ 2 < ρ)] Θ out 2 . (6.28)
We note that the above implies the condition x 1 > y and Θ out 2 imposes the condition x 2 < y since emission k 2 has to be removed by trimming. Thus we have that x 1 /x 2 > x 1 /y. As a consequence (6.28) can be written as

δ (ρ -ρ 1 ) Θ ρ 2 < ρx 1 y -Θ (ρ 2 < ρ) Θ ρ 2 < ρx 1 y Θ out 2 . (6.29)
For x 1 < y this vanishes while for x 1 > y the term in big square brackets gives Θ ρ 2 < ρx 1 y -Θ (ρ 2 < ρ). Thus one finally gets for F trim,a

F trim,a = C F α s π 2 dΦ 2 Θ out 2 δ (ρ -ρ 1 ) Θ (x 1 > y) Θ ρ 2 < ρx 1 y -Θ (ρ 2 < ρ) .
(6.30) The above result has a simple interpretation. The veto on emissions that one places for the case of pure Y-splitter is modified by the action of trimming. In the region where emissions are removed by trimming, emissions are no longer subject to the direct constraint that the mass must be less than ρ, which represents the subtraction of the Θ (ρ 2 < ρ) veto condition in the Θ out 2 region. However emissions in this region, even though they are removed by trimming, are still subject to the constraint k 2 t1 /m 2 jet > y which is the Ysplitter cut and where m 2 jet is the squared invariant mass of the ungroomed jet, to which all emissions, including those removed eventually by grooming, do contribute. Thus one gets the correction to pure Y-splitter given by (6.30), from those configurations where the highestk t emission sets the final jet mass. These, we recall, are the configurations that generate the leading logarithmic corrections for pure Y-splitter.

It is simple to calculate F trim,a(b) . The form of the result depends on the value of ρ and there are various regimes that emerge. In what follows we shall choose values such that r 2 < y, as is common for phenomenological purposes, although our main conclusions will be unchanged by making a different choice. One has:

• The regime ρ < y 2 r 2
Here we find

F trim,a = 1 ρ C F α s π 2 1 2 ln 1 r 2 ln 2 y (6.31) F trim,b = - 1 ρ C F α s π 2 1 2 ln 1 r 2 ln 2 y (6.32) F trim,a + F trim,b = 0. (6.33)
The above results are noteworthy since they indicate that in the small ρ limit, ρ → 0, where one may regard resummation of logarithms of ρ to be most important, the overall correction to Y-splitter vanishes at our leading-logarithmic accuracy. This is also the essential reason for the fact that trimming does not appear to significantly modify the performance of Y-splitter on background jets, as the basic structure of a Sudakov form factor suppression at small ρ is left unchanged.

• The regime y 2 r 2 < ρ < yr 2 One obtains

F trim,a = 1 ρ C F α s π 2 1 2 ln 2 1 y ln 1 r 2 - 1 6 ln 3 ρ y 2 r 2 , ( 6.34) 
while for F trim,b the result coincides with that quoted in (6.32). Thus we have for the full correction from trimming:

F trim,a + F trim,b = - 1 ρ C F α s π 2 1 6 ln 3 ρ y 2 r 2 . (6.35)
It is instructive to ex,mine the behavior of (6.35) at the transition points: for ρ = y 2 r 2 it vanishes and hence trivially matches (6.33), while for ρ = yr 2 we get

- 1 ρ C F α s π 2 1 6 ln 3 1 y . (6.36)
• The regime y 2 > ρ > yr 2

Here one gets

F trim,a = 1 ρ C F α s π 2 1 2 ln y ρ ln 2 1 y - 1 6 ln 3 1 y . (6.37)
On the other hand the result for F trim,b in this region is

F trim,b = - 1 ρ C F α s π 2 1 2 ln y ρ ln 2 1 y , ( 6.38) 
such that

F trim,a + F trim,b = - 1 ρ C F α s π 2 1 6 ln 3 1 y , ( 6.39) 
i.e. independent of ρ.

Note that the above result is identical to that reported in (6.36) for ρ = yr 2 as one would expect.

• The regime y > ρ > y 2

Here one obtains

F trim,a = 1 ρ C F α s π 2 1 3 ln 3 y ρ + 1 2 ln 2 y ρ ln ρ y 2 . (6.40)
The result for F trim,b in this region remains the same as in (6.38) so that

F trim,a + F trim,b = 1 ρ C F α s π 2 ln y ρ 5 6 ln 1 ρ ln 1 y - 7 6 ln 2 1 y - 1 6 ln 2 1 ρ , ( 6.41) 
which matches (6.39) at ρ = y 2 and vanishes at ρ = y.

For ρ > y the functions F trim,a(b) vanish and there is no correction to Y-splitter which itself coincides with the plain jet mass.

To summarise, we find that, in the formal small ρ limit, we recover the same result as for the pure Y-splitter case at this order (see the region ρ < y 2 r 2 ). As we move towards larger values of ρ i.e. beyond ρ = y 2 r 2 , we find that the result becomes substantially more complicated. We find transition points at y 2 r 2 , yr 2 , y 2 and y which arise due to the use of trimming. The result in all these regions contains logarithms of ρ along with logarithms of y ( as well as ln r terms) . However in these regions logarithms of ρ cannot be considered to be dominant over other logarithms such as those in y. To get a better feeling for the size of the corrections to the pure Y-splitter case in various regions it is helpful to look at the behavior at the transition points. At ρ = y 2 r 2 the correction due to trimming vanishes while at ρ = yr 2 one finds an overall correction varying as 1 ρ α 2 s ln 3 y which is formally well beyond our leading-logarithmic accuracy in ρ, although enhanced by logarithms of y. The behavior at other transition points is similarly highly subleading in ρ though containing logarithms in y. As we have already noted before resummation of ln y enhanced terms has only a modest effect and does not affect our understanding of the basic behavior of the tagger (see fig. 6.2).

The fixed-order results of this section already explain why the action of trimming following the application of Y-splitter only changes the performance of Y-splitter at a subleading level. It is simple to carry out a resummed calculation valid at the leading logarithmic level in ρ but with only an approximate treatment of subleading terms. Such a resummed calculation is in fact seen to be in qualitative agreement with Monte Carlo studies. However a feature of the result obtained with trimming, which is perhaps undesirable from a phenomenological viewpoint, is the presence of multiple transition points in the final result. While these transition points are not as visible as for the case of pure trimming itself (see [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]) it may nevertheless be desirable to think of using grooming methods which are known to have less transition points in conjunction with Y-splitter. To this end we shall first investigate the modified MassDrop Tagger (mMDT) at fixedorder before addressing the question of resummation and comparisons to Monte Carlo of Y-splitter with grooming.

Y-splitter with mMDT: fixed-order results

The NLO calculation for Y-splitter with mMDT proceeds similarly to the case of the Ysplitter trimming combination but with differences of detail. If one considers the correction to the pure Y-splitter case at this order, we arrive at functions F mMDT,a(b) which can be computed exactly like F trim,a(b) with the only difference being in the condition Θ out 2 for removal of emission k 2 by the mMDT as well as condition Θ in 1 = 1 -Θ out 1 which differs from the trimming case. To be more explicit, for mMDT to remove the emission k 2 one has that Θ out 2 = Θ (θ 2 > θ 1 ) Θ (x 2 < y) since mMDT would not reach emission k 2 if it were at smaller angle than k 1 , as k 1 passes the mMDT cut.

In contrast to trimming, the final result contains only two transition points at ρ = y 2 and ρ = y. We obtain for the correction to Y-splitter F mMDT = F mMDT,a + F mMDT,b such that:

• For ρ < y 2 F mMDT = - 1 ρ C F α s π 2 1 6 ln 3 1 y . (6.42)
This agrees with the result for trimming at yr 2 < ρ < y 2 , quoted in eq. ( 6.39).

• For y > ρ > y 2

Here again the result is identical to that obtained for trimming i.e. the sum of F trim,a and F trim,b in the same region.

Note that one can alternatively obtain the mMDT results by taking the limit r → 0 in the trimming results.

As before, for ρ > y one obtains no correction from grooming or Y-splitter and the result for the plain mass is recovered, meaning once more that grooming will not substantially affect the small-ρ behavior of Y-splitter.

In summary using mMDT as a groomer produces a result that, as for the case of trimming, produces only sub-leading corrections in terms of logarithms of ρ and hence leaves the pure Y-splitter Sudakov unaltered at leading logarithmic level in the limit of small ρ. The sub leading terms carry enhancements involving logarithms of y as for trimming, but there are fewer transition points for mMDT than trimming, which is certainly a desirable feature from a phenomenological viewpoint.

All-orders calculation for Y-splitter with mMDT

As explicitly shown via fixed-order calculations in the previous section, the use of grooming methods subsequent to the application of Y-splitter does not modify the leading logarithmic results in a small ρ resummation. It is straightforward to see that this statement extends beyond fixed-order to all perturbative orders and is the reason why the performance of Y-splitter on background jets is not fundamentally altered by groomers.

Beyond the leading logarithmic level however the situation with Y-splitter becomes more complicated when one introduces grooming. One may therefore wonder about the practical impact of formally sub-leading corrections on the tagger behavior. It is therefore of some interest to write down a resummed result that goes beyond leading-logarithmic accuracy in ρ and captures some of the formally sub-leading terms that emerge in the various regimes we have identified, such as those enhanced by logarithms of y. In this section we will carry out the same kind of resummation as reflected by eqs. (6.16) and (6.18) for the Y-splitter combined with mMDT case. We work in the leading logarithmic accuracy and keep both leading logarithms in ρ and y cut .

At our accuracy, we can assume that the groomed mass is dominated by a single emission, say emission 1 with momentum fraction x 1 and at an angle θ 1 to the jet axis. The fact that emission 1 is kept in the groomed jet guarantees that x 1 > y cut . We then have to consider four separate cases according to which emissions dominate the k t and mass scales entering the Y-splitter condition. We can write

σ ρ dσ dρ = 1 y dx 1 p i (x 1 ) α s (ρx 1 ) 2π e -R mMDT(ρ) (6.43) e -R k t (κ 1 ;ρ) e -Rout(ρ;κ 1 ) + y ρ dρ 3 ρ 3 R out (ρ 3 ; κ 1 )e -Rout(ρ 3 ;κ 1 ) Θ(κ 2 1 > yρ 3 ) + √ ρ κ 1 dκ 2 κ 2 R kt (κ 2 ; ρ)e -R k t (κ 2 ;ρ) e -Rout(ρ;κ 2 ) Θ(κ 2 2 > yρ) + y ρ dρ 3 ρ 3 R out (ρ 3 ; κ 2 )e -Rout(ρ 3 ;κ 2 ) Θ(κ 2 2 > yρ 3 ) .
In the above expression, the two terms on the second line correspond to emission 1 also dominating the k t scale, while the last two lines correspond to an additional emission 2 dominating the k t scale. In both cases, the plain jet mass can either be dominated by emission 1 (the first term in each squared brackets) or by an additional emission 3 (the second terms in each squared brackets). Different terms are weighted by different Sudakov factors:

R mMDT (ρ) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ(x > y) Θ(xθ 2 > ρ), (6.44) R kt (κ i ; ρ) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ(xθ > κ i ) Θ(xθ 2 < ρ), (6.45) R out (ρ; κ i ) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ(x < y) Θ(xθ > κ i or xθ 2 > ρ). (6.46)
These are graphically represented in fig. 6.3. The R mMDT (ρ), R kt (κ; ρ) and R out (ρ; κ) are the derivatives of the above radiators wrt to the logarithm of (one over) their first argument.

Note that the intermediate transition at κ i in R out comes from the fact that an emission with x < y and a k t scale larger than κ i would dominate both the k t and mass scales and the Y-splitter condition would not be satisfied. This region is therefore automatically excluded.

Both integrations on ρ 3 can be performed quite straightforwardly:

y ρ dρ 3 ρ 3 R out (ρ 3 ; κ i )e -Rout(ρ 3 ;κ i ) Θ(ρ 3 < κ 2 i /y) = e -Rout(κ 2 i /y) -e -Rout(ρ) . ( 6.47) 
In the above equation, we can drop the κ argument of R out (ρ; κ) for the following reason: for ρ < κ 2 /y, xθ > κ and x < y automatically imply xθ 2 > ρ so that we can replace Θ(xθ > κ i or xθ 2 > ρ) by Θ(xθ 2 > ρ). We therefore have

R out (ρ) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ(x < y) Θ(xθ 2 > ρ). (6.48)
Using (6.47) for both squared brackets in (6.43), we obtain

σ ρ dσ dρ = 1 y dx 1 p i (x 1 ) α s (ρx 1 ) 2π e -R mMDT(ρ) e -R k t (κ 1 ;ρ)-Rout(κ 2 1 /y) + √ ρ κ 1 dκ 2 κ 2 R kt (κ 2 ; ρ)e -R k t (κ 2 ;ρ)-Rout(κ 2 2 /y) . (6.49)
While this equation is suitable for practical purposes, specifically numerical integration over k t2 and z 1 , it is not ideal to see the logarithmic structure of the result. For that purpose it proves to be better to factor exp[-R out (ρ)], which would combine with the exp[-R mMDT (ρ)] prefactor to give the plain jet mass Sudakov, leading to

σ ρ dσ dρ LL+LLy = 1 y dx 1 p i (x 1 ) α s (ρx 1 ) 2π e -R plain (ρ) (6.50) e -R k t (κ 1 ;ρ)-(Rout(κ 2 1 /y)-Rout(ρ)) + √ ρ κ 1 dκ 2 κ 2 R kt (κ 2 ; ρ)e -R k t (κ 2 ;ρ)-(Rout(κ 2 2 /y)-Rout(ρ)) ,
where R plain (ρ) and R kt (κ; ρ) are defined in eqs. (6.15) and (6.17) respectively, and

R out (ρ) -R out (κ 2 1 /y) = dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π Θ(x < y) Θ(κ 2 1 /y > xθ 2 > ρ). (6.51)
One can show that the second line in (6.50) only brings subleading logarithmic contributions (in ln ρ), so that the LL result is fully given by the first line in (6.50) and corresponds to the LL result for pure Y-splitter. This can be obtained from the following observations. The R kt factors, already encountered before, bring at most subleading corrections proportional to α s ln 2 y. Then, since κ 2 1 /y = ρx 1 /y and y < x 1 < 1, R out (ρ) -R out (κ 2 1 /y) can at most bring single-logarithmic corrections proportional to α s ln ρ ln y. This remains valid for R out (ρ) -R out (κ 2 2 /y) since ln(κ 2 1 /κ 2 2 ) can at most introduce logarithms of y. Alternatively, it is instructive to evaluate (6.50) with a fixed-coupling approximation. Assuming, for simplicity, that ρ < y 2 , and working in the soft-collinear approximation (for quark jets) where we can use p i (x) = 2C F /x, we have

R kt (κ i ; ρ) = 2α s C F π ln ρ κ 2 i , (6.52) R kt (κ i ; ρ) = α s C F 2π ln 2 ρ κ 2 i , (6.53) R out (ρ) -R out (κ 2 i /y) = α s C F 2π ln 2 y ρ -ln 2 y 2 κ 2 i . ( 6.54) 
Substituting these expressions in eq. (6.50) one can reach after a few manipulations

σ ρ dσ dρ LL+LLy = e -R plain (ρ) 1 y dx x α s C F π 1 + α s C F π ln 1 x ln x y e - αsC F 2π
ln 2 x-ln x y ln y 3 ρ 2 x . (6.55)

In the above expression, the factor in front of the exponential as well as the first term in the exponential only yield terms of the form (α s ln 2 y) n , and the second term in the exponential will lead to both (α s ln 2 y) n and (α s ln y ln ρ) n contributions. These are both subleading compared to the leading-logarithmic accuracy in ρ so that (6.55) will lead to the αsC F π ln 1 y e -R plain(ρ) result plus subleading contributions as expected. While a complete evaluation of the integral over x in (6.55) is not particularly illuminating -it gives an error function -it is interesting to expand it to second order in α s . One obtains

σ ρ dσ dρ LO+NLO,soft-coll = α s C F π ln 1 y - 1 2 α s C F π 2 ln 1 y ln 2 ρ -ln ρ ln y + 4 3 ln 2 y , (6.56)
which correctly reproduces the sum of (6.12) and (6.42).

Comparison to Monte Carlo

Our result eq. ( 6.50) shows that the leading logarithmic results obtained for Y-splitter with mMDT coincide with those for pure Y-splitter since the factor in the big square bracket only generates subleading corrections to the pure Y-splitter result. This result also contains the resummation of leading logarithmic terms in y, which are subleading from the point of view of ln ρ resummation. The analytic results for mMDT with ln y resummation are plotted in fig. 6.4. Also plotted for reference is the leading logarithmic resummed result, which is independent of whether we groom with mMDT or trimming, or not at all. We can see that, as also observed before for the pure Y-splitter case, resummation of ln y terms brings only modest differences compared to the leading logarithmic answer. In fig. 6.4 the plot on the left shows the results obtained with Monte Carlo studies for Ysplitter with trimming and mMDT compared to pure Y-splitter. 3 The plot reaffirms our observation that grooming does not alter the essential feature of a Sudakov suppression at small ρ. The Monte Carlo result for trimming also shows some hints of the transition in behavior induced by subleading terms and is correspondingly less smooth than the mMDT result which has fewer transition points. We note that while we have performed a ln y resummation in order to assess their impact on the LL result we do not claim that these terms are numerically more important (for practically used values of y) than other subleading in ρ effects we have neglected, such as non-global logarithms and multiple emission effects. Non-global logarithms in particular are known to have a substantial impact on the peak height of the jet-mass spectrum [START_REF] Dasgupta | Resummation of nonglobal QCD observables[END_REF]. However these other effects are harder to treat and hence we used the ln y resummation as a convenient method to assess the impact of some subleading terms on 6.3. Variants the LL result.

Variants

Y-splitter with mass declustering

We have seen in the previous section that beyond the strict leading logarithmic approximation in ln 1 ρ , the behavior of the tools can be quite complex, especially when we combine Y-splitter with grooming. In this section, we discuss a small modification to the definition of Y-splitter that largely simplifies this calculation and has the fringe benefit of coming with a small performance enhancement.

Most of the complication in the calculations we have done so far comes from the fact that the emission which passes the Y-splitter cut is the highest k t emission, which can be different from the emission that dominates the mass. Such configurations produce only terms beyond leading-logarithmic accuracy but as we have seen their structure is rather involved. The discussion and results beyond LL would clearly be simpler if the k t scale entering Y-splitter was directly calculated based on the emission that dominates the jet mass. One can readily achieve this by replacing the k t declustering by a generalized-k t declustering with p = 1/2 which respects the ordering in mass so that the emission that passes Y-splitter is also the emission that dominates the jet mass. If we consider a soft emission with momentum fraction x 1 at an angle θ 1 , which dominates the mass, this would give a cut of the form

x 2 1 θ 2 1 x 1 θ 2 1 = x 1 > y. (6.57)
More precisely if we choose to include finite y corrections one obtains

(min (x 1 , 1 -x 1 )) 2 θ 2 1 x 1 (1 -x 1 )θ 2 1 > y ⇒ 1 1 + y > x 1 > y 1 + y . ( 6.58) 
We denote this variant Y m -splitter, where the subscript m refers to the fact that we now use a mass-ordered declustering procedure. Regardless of whether we ultimately measure the jet mass without grooming or the groomed jet mass, Y m -splitter computed on the plain jet will always impose that the emission that dominates the plain jet mass has a momentum fraction larger than y. In the case where we measure the plain jet mass, we would therefore simply recover the result quoted in (6.14) with no α 2 s ln y ρ ln 2 1 y correction. On top of that, the Y m -splitter condition guarantees that the emission dominating the plain mass also passes the trimming (or mMDT) condition. We would therefore also recover (6.14) for the Y m -splitter+grooming case, as only emissions that do not essentially affect the jet mass can be removed by grooming.

Comparisons between Monte-Carlo simulations, still using Pythia8 at parton level, and the analytic expectation (6.14) are presented in fig. 6.5. We clearly see that our analytic result captures very well the shape observed in the Monte-Carlo simulation. It also appears that differences between the ungroomed case and the two groomed cases are -76 - 
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smaller than what was observed for the standard Y-splitter case discussed in the previous two sections (see e.g. fig. 6.4), as one would expect from the analytical viewpoint. It appears also that using Y m -splitter comes with a fringe benefit, namely the fact that it suppresses the mass spectrum somewhat more than Y-splitter does. As an additional test of our analytic calculations, we can compare the difference between our results for the mass-ordered case eq. ( 6.18) and eq. (6.14) representing our result for the usual k t ordered Y-splitter to Monte-Carlo results. This is shown in fig. 6.6 and, bearing in mind that our analytic calculation only resums contributions maximally enhanced by ln 1 y , shows a good agreement between the two sides of the figure. fig. 6.6 also illustrates the fact that the difference between Y-and Y m -splitter essentially behaves like ln y ρ up to running coupling corrections.

A comment is due about differences between the groomed and ungroomed jet mass after imposing the Y m -splitter condition. We would still expect these differences to appear at subleading logarithmic orders in ρ but they would not be enhanced by double logarithms of y. It is also interesting to notice that while most of the NLL corrections to the overall exp[-R plain (ρ)] Sudakov factor would be the same as for the plain jet mass, the correction due to multiple emissions would be different. This can be understood from the fact that, if several emissions, (x 1 , θ 1 ), . . . (x n , θ n ) contribute significantly to the plain jet mass, only the largest, say (x 1 , θ 1 ), will be used to compute the k t scale leading to the Y m -splitter constraint

x 2 1 θ 2 1 > y n i=1 x i θ 2 i , (6.59) 
which is no longer as simple as (6.57), albeit more constraining. One can still carry out a resummation with this exact condition but it leads to more complicated expressions which go beyond our accuracy. Note that at the same, single-logarithmic, order of accuracy, one would anyway have to include additional contributions, in particular the nontrivial contribution from non-global logarithms.

Y-splitter with mass declustering and a z cut

It is possible to further simplify the analytic computations by having the Y-splitter condition behave like a z cut rather than a y cut . As before, we first decluster the jet using the generalized k t algorithm with p = 1/2 to obtain two subjets j 1 and j 2 . We then impose the condition

z cut ≡ min(p t1 , p t2 ) p t1 + p t2 > z. (6.60)
As for the case of a mass declustering with a y cut , this would lead to (6.14) at leading logarithmic accuracy in ln 1 ρ , and be free of subleading corrections enhanced by logarithms of z. Moreover, if multiple emissions, (x 1 , θ 1 ), . . . (x n , θ n ), contribute to the plain jet mass, with x 1 θ 2 1 ≥ x i θ 2 i , the Y m -splitter condition will give which is significantly simpler than the corresponding condition with a y cut , eq. (6.59). This is valid independently of which mass, groomed or ungroomed, we decide to measure. However, even if we apply a grooming procedure, the Y m -splitter condition (6.61) guarantees that the emission (x 1 , θ 1 ) which dominates the jet mass is kept by grooming and dominates also the groomed jet mass. The multiple-emission correction to the measured jet mass, groomed or ungroomed, will therefore be sensitive to all the emissions, including (x 1 , θ 1 ), kept in the jet used to measure the mass. Their resummation leads to the standard form [START_REF] Catani | Resummation of large logarithms in e+ e-event shape distributions[END_REF] for additive observables exp(-γ E R mass )/Γ(1 + R mass ), where R mass is the ln 1 ρ -derivative of the Sudakov associated with the mass we consider i.e. either the plain jet mass or the groomed jet mass Sudakov. The mass distribution is then given by ρ σ dσ dρ

z cut = x 1 > z, ( 6 
LL+ME = 1-z z dx 1 p i (x 1 ) α s (x 1 ρ) 2π e -R plain (ρ)-γ E R mass (ρ) Γ (1 + R mass (ρ)) , ( 6.62) 
with the superscript "ME" indicating that the contribution from multiple emissions is included and

R mass (ρ) = 1 0 dθ 2 θ 2 dx p i (x) α s (x 2 θ 2 ) 2π ρδ(xθ 2 -ρ) Θ in , (6.63)
where the Θ in imposes that the emission is kept by grooming, or is set to 1 for the plain jet mass. A comparison between (6.62) and Monte-Carlo simulations is provided in fig. 6.7. Despite the simplicity of the analytic results, and the fact that the general shape is well reproduced by the analytic results, one should note that the Monte Carlo simulations show a slightly larger spread between the different groomers than what was observed with Furthermore, the mass spectrum is slightly higher at small masses with a z cut than with a y cut , and we should therefore expect a slightly better tagging performance for the latter. This can be seen directly in the Monte Carlo plots in figs. [START_REF] Schaetzel | Tagging highly boosted top quarks[END_REF].5 and 6.7, and ought to be apparent from an analytic calculation including multiple emissions also for the y cut case. Physically, we attribute that to the fact that the Y m -splitter condition including multiple emissions is more constraining in the case of a y cut . (6.59), than with a z cut (6.61).

Conversely, one should expect a z cut -based Y m -splitter to be less sensitive to nonperturbative effects than a y cut -based Y m -splitter. Which is studied with more detail in section 6.4.

Y-splitter with SoftDrop pre-grooming

There is one last possible adaptation of the Y-splitter method that we wish to introduce. Our original motivation to combine Y-splitter with grooming was to reduce the sensitivity of the plain jet mass to non-perturbative effects, especially important for the consequent loss of signal efficiency. We have then considered the mMDT and trimming as possible ways to solve that issue. For these situations, we have shown that it was crucial to apply the Y-splitter condition on the plain jet mass and use grooming to determine the final jet mass after applying the Y-splitter condition.

There is however an alternative, and in some sense intermediate, possibility. Instead of using the modified MassDrop Tagger or trimming we can groom the jet using SoftDrop. More precisely, one first applies a SoftDrop procedure -with parameters ζ cut < y cut and β -to the jet in order to reduce the non-perturbative effects and, after this pre-grooming step, we impose the Y-splitter condition on the pre-groomed jet.

In practice, this would be very similar to the case of the plain jet mass discussed in -80 - 

R SD (ρ) = dθ 2 θ 2 dx P (x) α s (x 2 θ 2 ) 2π Θ x > ζ cut θ β Θ xθ 2 > ρ (6.65) = T 02 (e -B i , ρ; C R , 0) -T -β,0 (ζ cut , ρ; C R , 0).
As for the "pure" Y m -splitter case discussed in section 6.3.1, this result captures the leading behavior, without any additional subleading logarithms of y cut to resum. Furthermore, (6.64) is also largely unaffected by a possible mMDT or trimming one would apply after the Y m -splitter condition since the latter guarantees that the emission that dominates the mass carries a momentum fraction larger than y cut . 4Compared to the pure Y-splitter case (6.14), we should expect the pre-groomed result (6.64) to show a worse performance. This is due to the fact that SoftDrop grooms away a region of the phase-space that would otherwise be constrained in the ungroomed case, resulting into a smaller Sudakov suppression for the SoftDrop+Y-splitter case compared to the pure Y-splitter case.

Conversely, the region which is groomed away is also the region which is expected to be the most affected by non-perturbative effects, the underlying event in particular. We should therefore expect the pre-groomed Y-splitter to be more robust against nonperturbative effects.

Note also that, although we have advocated so far that it is important to apply the groomer after the Y-splitter condition, here we apply the grooming procedure first. This makes sense since we here apply a much gentle grooming procedure -SoftDrop with positive β -and, as a consequence, we still benefit from a large Sudakov suppression.

Finally, we have compared our analytic result (6.64) with Pythia8 Monte Carlo simulations in fig. 6.9 and we see once again that it does capture the overall behavior. We also notice in the Monte-Carlo simulations that once the pre-grooming step has been applied, the effect of an extra grooming (mMDT or trimming) has almost no effect.

Non-perturbative effects

Our discussion has so far focused on pure perturbative effects. It is nevertheless also important to assess the size of non-perturbative effects, which we would like to be as small as possible, for better theoretical control.

While for a perturbative understanding of taggers one can use methods based on first principles of QCD, for understanding the role of non-perturbative corrections this is much less straightforward. Non-perturbative corrections at hadron colliders originate both from hadronisation corrections as well as from the underlying event and can have a substantial effect on tagger performances. In this section, we use Monte Carlo event generators to estimate the magnitude of this effects.

Hence in order to estimate non-perturbative effects, we have used Pythia8 with tune 4C [START_REF] Corke | Interleaved Parton Showers and Tuning Prospects[END_REF] to simulate W jets (our signal, obtained from W W events) and quark jets (our background, obtained from qq → qq Born-level events). For each event, we select the (plain) jets passing a given p t cut that we shall vary between 250 GeV and 3 TeV and then apply one of the tagging procedures used in this paper to obtain a mass distribution for the signal and background jets. For Y-splitter, we have used a y cut (or z cut ) of 0.1, adapting the mMDT and trimming energy cut accordingly. Finally, in order to obtain the signal and background efficiencies we have kept jets which, after the whole procedure, have a mass between 60 and 100 GeV. All efficiencies presented in this section are normalised to the total inclusive jet cross-section to obtain (W or quark) jets above the given p t cut.

In the previous section, we have considered a large range of Y-splitter conditions (k t or mass declustering, y cut or z cut ) and grooming options (ungroomed jets, mMDT, trimming or pre-grooming). It is hopeless to compare all possible combinations in a human-readable plot. We have therefore selected a few representative cases to illustrate both signal-vbackground performance and sensitivity to non-perturbative effects. Between Y-splitter and Y m -splitter conditions, we have limited ourselves to the latter, since it has a slightly better performance than the former. The better performance is expected from our analytic calculations and also confirmed directly in Monte Carlo studies. We have considered both a y cut and a z cut type of condition, using in practice y cut = z cut = 0.1. We have then studied 4 grooming options: the ungroomed (or pure) case which acts as a baseline, mMDT and trimming both applied after the Y m -splitter condition, and SoftDrop pre-grooming for which the Y m -splitter condition is applied after the pre-grooming. With a y cut -based Y m -splitter condition, the momentum fraction used in the mMDT and trimming is set to y cut /(1 + y cut ), while for a z cut -based Y m -Splitter condition it is simply set to z cut . For the SoftDrop pre-grooming, we have set β = 2 and ζ cut = 0.05. The signal and background efficiencies obtained from our simulations when varying the boosted jet p t are presented in fig. 6.10 for simulations including hadronisation and the underlying event, which we also refer as "full event". For a more direct comparison of the performance of the variants of Y-splitter we have considered here, we have shown the resulting signal significance, computed as ε S / √ ε B in fig. 6.12. However, differences observed in background efficiencies are usually exponential -notice the logarithmic scale on the right-hand plot of fig. 6.10 -and are therefore expected to have more impact than smaller variations in signal efficiencies. The ordering is therefore usually respected when we look at the signal significance, fig. 6.12.

These plots should be considered together with fig. 6.11 where we have plotted the ratio of the efficiencies obtained with hadronisation and the underlying event to those obtained without, as a measure of non-perturbative effects.

Additionally, to facilitate the discussion, we have plotted in fig. 6.13 two important quantities when considering the performance of a boosted-object tagging method: on the vertical axis we show the raw performance of the method, measured as usual by the signal significance. On the horizontal axis we have a measure of the method's robustness defined in terms of insensitivity to non-perturbative contributions. Here we have used a non-perturbative correction factor defined as the ratio of the efficiencies at particle (full) and parton levels and have explicitly considered the case of quark jets, with similar trends expected for gluon jets.

Our association of robustness of a given tool with the role of non-perturbative corrections should perhaps be clarified. As we have mentioned before, non-perturbative effects cannot be fully estimated using first principles of QCD. Although one can always use event generator models for hadronisation and the underlying event there can be considerable variation in results between different event generators and also between tunes for a given generator. Given the existence of such differences and the potential dependence on event generator models and tunes it is clearly desirable to at least attempt to quantify the extent to which different taggers receive non-perturbative contributions.

Furthermore, it also becomes important to consider designing tools which give high performance without relying on large non-perturbative contributions. In that respect, there have been previous instances of developing such improved tools as for example can be seen in the much smaller non-perturbative contributions to the modified massdrop tagger (in particular when defined with a z cut ), or SoftDrop, when compared to the substantial plain-mass like non-perturbative corrections for tools such as pruning and trimming [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]. Isolating and understanding these tools which systematically show limited non-perturbative contributions is important for the design of future substructure methods.

Given the above discussion, ideally we want a method with high performance and robustness, i.e. with a large signal significance and a non-perturbative correction factor close to 1.

We can then make the following generic observations:

• Effect of grooming. We can see from fig. 6.13 that adding grooming improves considerably both the performance and the robustness. Based on what we have discussed before, the improvement in performance comes mainly from the impact on signal efficiency. However it is crucial to impose the Y-splitter constraint on the plain jet instead of the groomed jet, otherwise one only gets a much smaller Sudakov suppression of the QCD background, as discussed in appendix A.1. We should however stress that subleading corrections sometimes come with several transition points in the mass distribution, which can be an issue for practical applications in an experimental context.

• k t or mass declustering? As we have seen in our calculations, even though they lead to the same LL result, the overall analytic structure is found to be much simpler for the case of mass declustering. In particular, the groomed (trimmed or mMDT) and plain jet results are given by the LL result with no additional double-logarithmic contributions in the LL+LL y approximation. Corrections to that result would be purely single-logarithmic in the jet mass, e.g. coming from multiple emissions. Then, although it is not explicitly shown in the figure, using mass declustering comes with a small gain in performance. We traced it back to the absence of the extra terms between the LL and LL+LL y results. events at full level, versus the ratio of the background efficiency calculated, for a quark-jet sample, at full level and at parton level. In all cases, we have required that the mass is between 60 and 100 GeV, and signal and background efficiencies are computed wrt the inclusive jet rate for each p t cut. The different points on each curve correspond to different values of the jet p t , from 250 GeV to 3 TeV. Each curve represents a specific method: we use either a standard y cut condition (solid lines) or with a z cut condition (dashed lines), with y cut = z cut = 0.1. Results are presented for a Y m -splitter condition computed on the plain jet followed by no grooming (red), trimming (blue) or mMDT (green); or with a pre-grooming, e.g. SoftDrop with β = 2 and ζ cut = 0.05. For comparison, the results without the Y-splitter condition were added (pointed lines).

• Trimming or mMDT? At LL accuracy, both give the same perturbative performance. In practice, at large p t we see that trimming tends to give a slightly better performance and is slightly less robust. It remains to be investigated whether this is generally true or a consequence of our specific choice of parameters (see "A word of caution" below). Even if it was a general observation, it is not obvious that one should prefer trimming over the mMDT. Indeed, we have seen that trimming introduces more transition points (and therefore kinks) in the mass distribution than the mMDT, although they are reduced by the use of Y m -splitter). These can have undesirable effects in experimental analyses, e.g. for side-band estimates of the backgrounds or if the signal lies on top of a transition point.

• y cut or z cut ? Contrary to the case of k t vs. mass declustering, the situation is less obvious here: the y cut variant shows a better performance, in part traced back to single-logarithmic effects like multiple emissions, but at the same time the z cut variant appears less sensitive to non-perturbative effects. The choice between the two is therefore again a trade-off between performance and robustness. In terms of the analytic structure of the results, we should point out that the z cut variant is likely more amenable to a higher logarithmic accuracy resummation more than the y cut version. In particular it gives a simple expression for the resummation of multiple emission effects.

• Pre-grooming. We see yet again the same trade-off between performance which is globally in favor of Y m -splitter+grooming, and robustness which is globally in favor of pre-grooming. The differences in performance are explicitly predicted by our analytic results, already at LL accuracy. The differences in robustness are also expected from the fact that SoftDrop cuts out soft-and-large-angle radiation. It is however interesting to notice that compared to the results obtained for mMDT, trimming and SoftDrop alone, the addition of the Y m -splitter condition still results in a sizeable performance gain.

• A word of caution. We should point out that fig. 6.13 was obtained for one specific choice of the free parameters like the jet radius, y cut , z cut or mass-window parameters. In practice, we do not expect to see substantial differences if we were to adopt a different setup, especially for the main features which are backed up by analytic calculations. However, some of the differences observed in fig. 6.13 go beyond our analytic accuracy and can depend on our choice of parameters. This concerns, in particular, the subleading differences observed between trimming and the mMDT, or details about the precise size of non-perturbative effects.

It is worth noting that our analytical calculations alone do not provide the final word when comparing the performance of say Y-splitter with mMDT and Y-splitter with trimming, since these methods differ by subleading perturbative corrections and sensitivity to non-perturbative effects terms we have not attempted to control. With more work subleading terms, such as those beyond leading-logarithmic accuracy, should be calculable
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within our theoretical framework. However it is less simple to account for the role of nonperturbative effects, as one needs to rely on event generator tools to quantify them. At the same time a marked dependence of tagger performance on non-perturbative corrections will lead to greater theoretical uncertainty which motivates the study of taggers that are less susceptible to non-perturbative corrections, as the z cut variation or of pre-grooming with Soft-Drop shown in this chapter.

Final discussion

In this chapter, we have studied analytically the effect of imposing a Y-splitter condition on boosted jets. We also have considered the combination of a Y-splitter cut together with a grooming procedure, namely trimming and mMDT. We concluded that this combination increases Y-splitter performance.

We have also considered variants of the Y-splitter condition: first the standard one defined in terms of a cut on k 2 t /m 2 (known also as a y cut condition), secondly a variant called Y m -splitter where the k t scale is computed using a "mass declustering", i.e. by undoing the last step of a generalized-k t clustering with p = 1/2, and finally replacing the standard y cut condition by a z cut condition, where we cut directly on the subjet momentum fractions instead of k 2 t /m 2 . One important observations about these variations is that, keeping only the dominant terms enhanced by logarithms of the jet mass at all orders (LL), the same behavior is recovered for all these variants when applied to QCD background jets.

Alternatively, we can apply a more gentle SoftDrop grooming to the jet and then impose the Y-splitter condition and compute the jet mass on that pre-groomed jet. In this case we do observe a change in the leading log ρ term, which represents a small loss of discriminating power. Nevertheless, the pre-grooming procedure also decreases non-perturbative effects.

From fig. 6.13, we can observe that there is a trade-off between discriminant power and robustness against non-perturbative when comparing different variation options. But in the end, these variants still outperform the standard methods such as pure mMDT, pure trimming or pure SoftDrop at high p t .

The good performance of the Y-splitter+grooming boosted object tagger comes from the combination of two effects. First, for the Y-splitter without grooming the QCD background is suppressed relative to the case of the plain jet mass. The exponential Sudakov factor, which is usually double-logarithmic in the jet mass, becomes a mass logarithm multiplied by a log y cut factor, which is considerably smaller for boosted jets. Second, the use of grooming does not significantly affect this background suppression due to the fact that it induces only subleading corrections to the pure Y-splitter case. Due to the combination of both effects, the use of grooming considerably improves the signal efficiency relative to the pure Y-splitter case.

-7 -Jet Shapes

In this chapter we study jet shapes as a discriminant variable between two-pronged hadronic decays of an electroweak boson (W/Z/H) and the background formed by decaying QCD partons. These jet shapes put constraints on the gluon radiation patterns in a jet. We expect them to have a good discriminating power because gluon radiation from color-neutral bosons is different from that of colored QCD jets.

The shapes studied are the N-subjettiness ratio τ

(βτ ) 21 = τ (βτ ) 2 /τ (βτ ) 1
, the energy correlation function C

(β C ) 2
and a variant of the µ 2 parameter of the MDT (see eq. ( 4.3)). We note that, while the MDT also has an energy cut y cut , in this work we only consider the mass-drop condition. We have fixed the angular parameter β τ = β C = 2, this choice has the advantage of imposing τ

(2) 1 = e (2) 2 = ρ = m 2 /R 2 p 2
t and shows good performance in Monte Carlo studies.

We carry out analytical studies for the jet mass distributions for background and signal jets with cuts on shape variables v < v max , with v = τ 21 , C 2 and µ 2 . We apply this cuts in two different ways: either a fixed cut or recursive cut. We work in the limit ρ 1 (relevant for boosted object studies) and v max 1, which is desirable to separate two-pronged structures from QCD background. We aim only at capturing the (modified) leading-logarithmic behavior, which is sufficient to capture the main differences between the three shapes, although we also commented several sources of next-to-leading logarithmic corrections. We test our analytical results by comparing to fixed-order results from EVENT2 and to results from parton shower Monte Carlo generators. We also present pure Monte Carlo studies of the impact of non-perturbative corrections.

In section 7.1, we discuss the general form of the results obtained. In section 7.2, we perform the detailed calculations for background jets for both non-recursive and recursive variants for each shape variable and we compare the expansion of our results Monte Carlo generators. In section 7.3 we do the same for signal jets. In sections 7.4, we study nonperturbative effects and discuss the impact of a combination with a grooming procedure. Finally, in section 7.5 we discuss the comparative performance of all three shapes and their variations.

Generic structure of the results

For QCD jets, there are two basic physical quantities that we will be interested in: the jet mass distribution after applying a given fixed, recursive or not, cut on one of the shapes (N-subjettiness, mMDT parameter or energy correlation); or the distribution of a jet shape for a given fixed value of the jet mass. The latter situation only applies to the non-recursive cases.

For signal jets, we are interested in jets of a fixed mass so the calculation will mostly focus on what fraction of these jets satisfy the constraint on the jet shape v, hence on the distribution of v for an object of a given mass. Jets which fail the constraint on v will be discarded.

Our calculations apply to the boosted regime, where the jet transverse momentum is much larger than its mass, so we can take the limit ρ

1. As we focus on the leading double logarithm, soft and collinear emissions can be considered as strongly ordered and the mass of the jet is dominated by the strongest of these emissions, which we will refer as p 1 . We will assume that this emission occurs at an angle1 Rθ 1 and with a fraction z 1 of the jet total transverse momentum p t . This has to satisfy the constraint z 1 (1 -z 1 )θ 2 1 = ρ, where, for QCD jets we can neglect the (1-z 1 ) factor which would only lead to subleading power corrections in ρ.

All the shapes, v, that we consider put constraints on additional emissions. This means that we can always consider, as a starting point, a system made of two partonsthe "leading parton p 0 " initiating the jet and the "first, leading, emission p 1 " which sets the jet mass for QCD jets, or the two prongs of a massive boson decay for signal jetsand study additional radiation from this system.

In the leading-logarithmic approximation, the constraint on radiation will always take the form of a Sudakov suppression coming on top of the mass requirement. For QCD jets, the mass distribution with a cut on v can always be written as

ρ σ dσ dρ <v = 1 ρ dθ 2 1 θ 2 1 1 ρ dz 1 p i (z 1 ) ρ δ(z 1 θ 2 1 -ρ) α s (z 1 θ 1 p t R) 2π e -R plain (ρ)-Rv(z 1 ,ρ) = 1 ρ dz 1 p i (z 1 ) α s ( √ z 1 ρ p t R) 2π e -R plain (ρ)-Rv(z 1 ,ρ) , ( 7.1) 
where p i is the corresponding splitting function, depending if it is a quarks or gluon jet.

In the above R plain (ρ) (see eq. (5.36)) is the Sudakov resumming the leading log(1/ρ) contributions to the plain jet mass and R v (z 1 , ρ) the extra contribution coming from the additional cut on v.

In the approximation we shall be working at, instead of the usual splitting functions P (z 1 ) (5.2) it is sufficient to consider its leading logarithmic contribution from its 2C R /z 1 term and a subleading hard collinear contribution 2C R B i δ(z 1 -1), where C R is the color charge of a jet initiated by a parton of flavor i and B i is the integral of the non-singular part of the corresponding splitting function, already defined in section 5.3. Finally, eq. (7.1) can therefore be replaced by

ρ σ dσ dρ <v = 1 ρ dz 1 z 1 α s ( √ z 1 ρ p t R)C R π e -R plain (ρ)-Rv(z 1 ,ρ) + α s ( √ ρ p t R)C R π B i e -R plain (ρ)-Rv(z 1 =1,ρ) . (7.2)
Note however that keeping the full integration over the splitting function is sometimes useful in comparing background and signal efficiencies and can lead to potentially large subleading corrections. 2 For all the analytic plots in this chapter, where the integration over z 1 is done numerically, we have decided to keep the exact p i (z 1 ) splitting function and use eq. (7.1).

If instead we want to obtain the probability to satisfy the cut on the shape v for a jet of a given mass one get (for the non-recursive versions):

Σ v (v) = R plain (ρ)e -R plain -1 ρ σ dσ dρ <v , ( 7.3) 
with R plain being the derivative of R plain wrt log(1/ρ). Note that the shapes we consider all require at least three particles in the jet to be non-zero, meaning that the distribution dσ/dρ| <v -or, equivalently, the double-differential distribution in both the mass and the shape, d 2 σ/dρdv -starts at order α 2 s . Conversely, Σ(v) will start at order α s , since it is normalized to the jet mass which itself starts at order α s .

For the following calculation, we treat logarithms of the shape and the jet mass on an equal footing. Hence, by leading logarithms, we mean, for fixed coupling, double logarithms of any kind, i.e. in either the shape or the jet mass or both. For the figures and the comparisons to Monte Carlo simulations, we will also include the (leading order) running-coupling contributions as well as a few relevant NLL effects. A list of NLL contributions and a more detailed discussion in included in 7.4.

For signal jets, we will directly be interested in the efficiency, i.e. in the fraction of jets (of the original jet mass) that will satisfy the constraint on v. This can be written as

Σ sig (v) = 1 ρ dz 1 p sig (z 1 )e -R v,sig (z 1 ,ρ) (7.4)
where the signal "splitting function" p sig (z 1 ) depends on the process being studied and is assumed to be normalised to unity. Again, we can either decide to keep the full integration over z 1 or, at our level of accuracy, keep only the dominant part without any z 1 dependence and the first log(1/z 1 ) and log(1/(1 -z 1 )) corrections. Note that here z 1 can no longer be neglected in the constraint on the jet mass, ρ = z 1 (1 -z 1 )θ 2 1 . Given these basic expressions, our main task is to compute the Sudakov factors R v for all the shapes under consideration. We do that in the next two sections. 

Calculations for the QCD background

The results below give the generic expression for the Sudakov form factor assuming one works in the (modified) leading-log approximation , using the basic building blocks formalism. It is helpful to clarify the notations once and for all:

L ρ = log(1/ρ) = log(p 2 t R 2 /m 2 ), L τ = log(1/τ 21 ), L 1 = log(1/z 1 ), L µ = log(1/µ 2 ), (7.5) L v = log(1/[τ 21 , µ 2 or C 2 ]), L e = log(1/C 2 ).
We assume, as stated before, that the angles are normalized to the jet radius R. For a fixed mass ρ and momentum fraction z 1 , we have θ 2 1 = ρ/z 1 . We also recall the constants being used, for quark jets, we have C R = C F and B i = B q = -3/4 while for gluon jets we have

C R = C A and B i = B g = -(11C A -4n f T R )/(12C A ).

τ 21 cut (pure N -subjettiness cut)

We first consider the case where we impose a cut τ 21 < τ cut on the N -subjettiness of a jet of a given mass ρ. We are interested in the limit τ cut 1.

3 The first step is to find an expression for τ 21 in the limit where emissions are strongly ordered in angle and transverse momentum fraction. Let us assume there is a second leading emission (in mass) occurs at an angle θ 2 , wrt the leading parton p 0 , (initiating the jet) and carries a transverse momentum fraction z 2 of the leading parton. 4For τ 2 , three different situations are possible, depending on how these partons are combined with the N-subjettiness axes:

• one axis coincides with p 0 , the other with p 1 + p 2 , giving τ

(0,12) 2 = z 1 z 2 /(z 1 + z 2 )θ 2 12 ,
• one axis coincides with p 1 , the other with p 0 + p 2 , giving τ

(1,02) 2 = z 2 θ 2 2 ,
• one axis coincides with p 2 , the other with p 0 + p 1 , giving τ

(2,01) 2

= z 1 θ 2 1 , where we have again neglected subleading large-z i contributions, and θ 12 is the angle between the first and second emissions.

Since the emission p 1 dominates the mass, we have always τ

(2,01) 2 τ (1,02) 2
. By the other hand, the ordering between τ (0,12) 2 and τ 

(1,02) 2 is less clear. When θ 2 θ 1 , z 2 θ 2 2 z 1 θ
≈ z 1 z 2 /(z 1 + z 2 )θ 2 1 . For z 1 z 2 , we get τ (0,12) 2 ≈ z 1 θ 2 1 z 2 θ 2 2 , while for z 1 z 2 , we get τ (0,12) 2 ≈ z 2 θ 2 1 z 2 θ 2 2 . 5
The value of τ 21 will depend on how we choose out axes for the N-subjettiness. For the cases described in section 4.2, we have

• the optimal axes should minimize τ 2 and hence give τ 2 = z 2 θ 2 2 .

• for the k t axes, we should therefore find the minimum of d andd (kt) 12 = min(z 1 , z 2 )θ 12 . In that case, we also will find

(kt) 01 = z 1 θ 1 , d (kt) 02 = z 2 θ 2 ,
τ 2 ≈ z 2 θ 2 2 except in a region z 2 θ 2 2 z 1 θ 2 1 , z 2 θ 2 z 1 θ 1 , i.e.
the region where the emission p 2 has smaller mass but larger k t than the emission p 1 , and where we get τ 2 ≈ z 1 θ 2 1 .

• for the gen-k t (1/2) axes, we should find the pair that minimises the distance d

(1/2) ij = min(z i , z j )θ 2 ij .
In this case, the minimum will always be d 02 or d 12 and yield τ 2 = z 2 θ 2 2 . In the end, the case of k t axes is clearly more complex. In what follows we shall therefore focus on the two other axes choices. Based on considerations similar to the ones above, one can show that the gen-k t (1/2) axes will agree with the minimal axes up to NNLL corrections (mostly occurring when two angles become comparable or when there is a hard splitting). From a numerical point of view, computing the optimal axes can be an expensive step and we can view the gen-k t (1/2) option as a simpler alternative reproducing essentially the same performance, in what follows, we shall concentrate on this choice. Both choices lead to following jet shape

τ 21 = z 2 θ 2 2 z 1 θ 2 1 , ( 7.6) 
up to corrections which are beyond the LL accuracy we aim for here. 5 Note that if we target single logarithmic accuracy, we should also worry about the situation where

θ 2 ≈ θ 1 . In that case, z 2 z 1 and τ (0,12) 2 ≈ z 2 θ 2 12 .
This would give at most a constant-factor correction to τ 21 and hence only contribute at a NNLL compared to the approximation

τ 2 ≈ z 2 θ 2 2 .
Furthermore, we also have to consider secondary emissions, where the radiation is emitted from the gluon (z 1 , θ 2 1 ) itself. If z 2 denotes the fraction of the (first emitted) gluon energy carried by the extra emission at an angle θ 12 , with θ 12 < θ 1 due to angular ordering, we find

τ sec 21 = z 2 θ 2 12 θ 2 1 , ( 7.7) 
where the different normalization wrt eq. (7.6) is purely due to z 2 being normalized to the gluon energy fraction z 1 .

In the limit of small τ 21 , additional emissions at smaller mass do not affect the result. The one-gluon emission will thus exponentiate according to eq. ( 7.1) and we get

R τ (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(ρ > z 2 θ 2 2 > ρτ ) + θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 12 ) 2π p g (z 2 ) Θ(z 2 θ 2 12 /θ 2 1 > τ ), (7.8) 
where the first line takes into account emissions from the leading parton p 0 while the second accounts for secondary gluon emissions from the first emitted gluon p 1 . The arguments of the strong coupling are given as factors multiplying the "natural" scale of the problem, p t R. The phase-space corresponding to the primary emissions is represented in fig. 7.1a. This is the most simple result because the phase-space just corresponds to a triangle for the primary emissions and another one for the secondary emissions:

R τ (z 1 ) = T 02 (0, L ρ + L v ; C R , B i ) -T 02 (0, L ρ ; C R , B i ) + T 02 L ρ + L 1 2 , L ρ + L 1 2 + L v ; C A , B g , ( 7.9) 
where the negative term subtracts the Sudakov factor for the plain jet mass which has been factored out in our expressions.

For greater clarity and comparison proposes, we shall also quote results with a fixed coupling approximation. In this case, the final exponent does not depend on z 1 and we find

R (fixed) τ (z 1 ) = α s C R π L 2 τ /2 + L ρ L τ + B i L τ + α s C A π L 2 τ /2 + B g L τ .
(7.10)

µ 2 cut

As for the case of N -subjettiness, we first have to find the value of the MassDrop parameter µ 2 . Since µ 2 is defined by undoing the last clustering step, it will depend on the jet algorithm we use to (re-)cluster the jet. The C/A algorithm is a common choice but does not work here. Indeed, undoing the last step of a C/A clustering would separate the emission at the largest angle from the rest of the jet, regardless of the transverse momentum of that emission. This is not infrared safe, we further discuss infrared-safety in appendix B.1. Instead, we shall define µ 2 by undoing the last step of a generalised-k t clustering with p = 1/2. The motivation for this is the same as the motivation for the axes choice in the previous section: the generalised-k t algorithm with p = 1/2 follows closely the ordering in mass. To keep things unambiguous, we shall denote by µ 2 p the mass-drop parameter obtained by undoing the last step of a generalised-k t clustering with parameter p. The (infrared-unsafe) case of a C/A clustering would correspond to µ 2 0 while we will be interested in µ 2 1/2 , although the calculation can be performed for any positive p. To avoid any possible confusion, we must stress that this argument only applies to the nonrecursive version of the µ 2 parameter and that the recursive application of a µ 2 p cut is infrared-safe for any p.

In order to find the two subjets, we need to find the minimal distance amongst the gen-k t (1/2) distances d 01 , d 02 and d 12 which gives the two subjets and µ 2 1/2 will be given by the mass of the two particles which have been clustered divided by the total mass of the jet.

Again, we consider the leading parton p 0 and two emissions p 1 (θ 1 , z 1 ) and

p 2 (θ 2 , z 2 ) with z 1 θ 2 1 z 2 θ 2 2 . The smallest distance is either d 02 = z 2 θ 2 2 or d 12 = min(z 1 , z 2 )θ 2 12 . For θ 2 θ 1 , θ 12 ≈ θ 1 and d 12 ≥ z 2 θ 2 1 z 2 θ 2 2
, so that the hard subjet mass is z 2 θ 2 2 . The opposite case, θ 2 θ 1 (implying z 2 z 1 ), is more subtle: one has to compare the pairwise clustering distances

d 02 = z 2 θ 2 2 with d 12 = z 2 θ 2 12
, where we have used θ 12 ≈ θ 2 . If we remember that each emission comes with an additional angle, ϕ i around the jet axis, the minimum depends on ϕ 2 -ϕ 1 . In half the cases this will cluster 0 and 1 and giving a subjet mass z 2 θ 2 2 , in the other half, it will cluster 1 and 2, giving a subjet mass of z 1 z 2 θ 2 2 . Similar considerations allow one to show that the secondary emissions also have an extra factor z 1 compared to the N -subjettiness case.

In the end we find

(z 1 θ 2 1 )µ 2 1/2 ≈                      z 2 θ 2 2 z 1 θ 2 1 for θ 2 < θ 1 or (θ 2 > θ 1 and θ 2 < θ 12 ), z 2 θ 2 2 θ 2 1 for (θ 2 > θ 1 and θ 2 > θ 12 ), z 1 z 2 θ 2 12 θ 2 1
for secondary emissions.

(7.11)

There is a crucial difference between MassDrop and N -subjettiness: the latter can be seen as (1/p t ) j∈subjets m 2 j /p t,j which has an extra 1/p t,j compared to µ 2 1/2 . This leads to different expressions whenever the jet with the largest mass is not the one with the largest p t . The secondary emissions and large-angle radiations will therefore give additional suppressions for N -subjettiness compared to the MassDrop.

With similar arguments, it is easy to realise that additional emissions with smaller masses will not affect this calculation, so that, at leading-logarithmic accuracy, the lowest order simply exponentiates according to eq. (7.1). The vetoed phase-space for emissions is represented in fig. 7.1b and we get

R µ 2 1/2 (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(θ 2 2 < θ 2 1 ) Θ(ρ > z 2 θ 2 2 > ρµ 2 ) + Θ(θ 2 2 > θ 2 1 ) 1 2 Θ(ρ > z 2 θ 2 2 > ρµ 2 ) + 1 2 Θ(ρ > z 2 θ 2 2 > θ 2 1 µ 2 ) + θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 12 ) 2π p g (z 2 ) Θ(z 1 z 2 θ 2 12 /θ 2 1 > µ 2 ). (7.12)
In order to present the results in a more clear manner, we will divide the Sudakov exponent into two contributions: R 0 clustered with the main parton and R 1 clustered with the emission setting the mass.

R µ 2 1/2 ,0 (z 1 ) = T 02 L ρ -L 1 2 , L ρ + L 1 2 + L v ; C R , B i -T 02 L ρ -L 1 2 , L ρ + L 1 2 ; C R , B i + 1 2 P 2 L ρ + L 1 2 , L ρ , L ρ + L v ; C R , B i R µ 2 1/2 ,1 (z 1 ) = 1 2 P 2 L ρ + L 1 2 , L ρ , L ρ -L 1 + L v ; C R , B i + T 02 L ρ + L 1 2 , L ρ -L 1 2 + L v ; C A , B g Θ(L v > L 1 ) (7.13) 
The total Sudakov R µ 2 1/2 is the sum of these two contributions. For a fixed coupling approximation, we find

R (fixed) µ 2 1/2 (z 1 ) = α s C R π (L ρ + L 1 + L µ )L µ /2 + 1 2 (L ρ -L 1 )(L µ -L 1 )Θ(L µ > L 1 ) + B i L µ + α s C A π (L µ -L 1 ) 2 /2 + B g (L µ -L 1 ) Θ(L µ > L 1 ). (7.14)

C 2 cut

For two strongly-ordered emissions p 1 (z 1 , θ 1 ) and p 2 (z 2 , θ 2 ), such that z 1 θ 2 1 z 2 θ 2 2 , one finds, for primary emissions,

C 2 = 1 z 2 1 θ 4 1 z 1 z 2 (1 -z 1 -z 2 )θ 2 1 θ 2 2 θ 2 12 z 2 θ 2 2 z 1 θ 2 1 max(θ 2 1 , θ 2 2 ) (7.15)
which is the same result as the one we obtained in the N -subjettiness case with an extra factor max(θ 2 1 , θ 2 2 ). 6 For secondary emissions, θ 12 θ 1 , hence θ 2 θ 1 and we have (with z 2 measuring the momentum fraction wrt emission 1)

C 2 z 2 θ 2 12 θ 2 1 θ 2 1 = z 2 θ 2 12 . (7.16)
The corresponding phase-space is represented in fig. 7.1c and gives

R C 2 (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(ρ > z 2 θ 2 2 ) Θ(θ 2 2 < θ 2 1 ) Θ(z 2 θ 2 2 θ 2 1 > ρC) + Θ(θ 2 2 > θ 2 1 ) Θ(z 2 θ 4 2 > ρC) + θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 12 ) 2π p g (z 2 ) Θ(z 2 θ 2 12 > C). (7.17)
After the integration, we observe the need to disentangle two cases depending on whether we have a contribution from emissions at small angles or not:

R C 2 (z 1 ) Lv<Lρ-L 1 = T 24 (L ρ , L ρ + L v ; C R , B i ) Lv>Lρ-L 1 = T 02 (0, L ρ -L 1 + L v ; C R , B i ) -T 02 (0, L ρ ; C R , B i ) (7.18) + T 24 (L 1 + L v , L ρ + L v ; C R , B i ) + T 02 L ρ + L 1 2 , 3L 1 -L ρ 2 + L v ; C A , B g .
For a fixed coupling approximation, one finds7 

R (fixed) C 2 (z 1 ) = α s C R π L 2 e /2 + (L e -L ρ + L 1 )(L 1 + B i )Θ(L e > L ρ -L 1 ) + α s C A π (L e -L ρ + L 1 ) 2 /2 + B g (L e -L ρ + L 1 ) Θ(L e > L ρ -L 1 ). (7.19)

Recursive τ 21 cut

We now move to the same calculations as above but apply the cut recursively. We will undo one step of clustering, with the C/A algorithm. Then we check if the jet pass the cut v cut , is it passes we stop the procedure; if not, we eliminate the softer subjet and repeat.

The calculation of the shapes mostly remains unchanged but the recursion will affect the allowed phase-space for emissions. As before, let us assume that p 1 (θ 1 , z 1 ) is the emission that dominates the mass after the recursion procedure has been applied and see what constraints on the phase-space the cut imposes on additional emissions p 2 (θ 2 , z 2 ).

For emissions at angles θ 2 smaller than θ 1 , the de-clustering will reach p 1 before p 2 , which corresponds to the same situation as for the non-recursive case. In fact it remains true for all the three shape variables considered.

Differences occur for emissions at angles larger than θ 1 . The physical reason for that comes from emissions at angles larger than θ 1 and which would dominate the mass, i.e. for which z 2 θ 2 2 > z 1 θ 2 1 . In the non-recursive case, these emissions are forbidden by our constraint on the jet mass and this is included in the Sudakov suppression for the jet mass R plain (ρ) in eq. (7.1), which imposes that the mass of the jet is truly dominated by the (z 1 , θ 2 1 ) emission. In the situation where the cut on the shape is applied recursively, some extra care is needed since some of these emissions -that are vetoed in the nonrecursive case because they would lead to a larger jet mass -can be simply discarded by the recursive procedure. In such a case, they should no longer be forbidden.

For the large-angle region θ 2 > θ 1 , we have to separate 4 different regions:

• For z 2 θ 2 2 < ρτ , we have τ 21 ≈ z 2 θ 2 2 /z 1 θ 2 1 = z 2 θ 2 2 /ρ < τ , meaning that the constraint is satisfied, this region is therefore allowed.

• For ρτ < z 2 θ 2 2 < ρ, we have τ 21 ≈ z 2 θ 2 2 /z 1 θ 2 1 = z 2 θ 2
2 /ρ as in the previous case, but this time it does not satisfy the condition τ 21 < τ . The emission (z 2 , θ 2 2 ) will thus be discarded, meaning that this region is again allowed.

• For ρ < z 2 θ 2 2 < ρ/τ , we now have τ 21 ≈ z 1 θ 2 1 /z 2 θ 2 2 = ρ/z 2 θ 2 2 , i.e. τ 21 > τ .
The condition is once again not satisfied and the region is allowed.

• For z 2 θ 2 2 > ρ/τ , we find similarly τ 21 ≈ z 1 θ 2 1 /z 2 θ 2 2 = ρ/z 2 θ 2 2 < τ .
The condition on τ 21 would be met, leaving a jet with a mass z 2 θ 2 2 > ρ. This region is therefore forbidden.

Compared to the non-recursive case, the vetoed region at large angle is reduced. Notice that, because the recursive version of the jet shapes only alter the phase space at angles larger than θ 1 , contributions coming from secondary emissions are left unchanged.

In the above discussion, we tacitly assumed that we were working with the gen-k t (1/2) axes or with the optimal axes, but the argument is more general. We could also define τ 21 using the exclusive C/A axes, automatically available from the declustering procedure. Indeed, in that case, all emissions with z 2 θ 2 2 < ρ/τ would fail the cut on τ 21 and be discarded. We will come back to that point later on.

Again, the lowest order result simply exponentiates and the Sudakov suppression, depicted in fig. 7.2a is

R τ,rec (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(θ 2 2 > θ 2 1 ) Θ(z 2 θ 2 2 > ρ/τ ) + Θ(θ 2 2 < θ 2 1 ) Θ(z 2 θ 2 2 > ρτ ) + θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 2 ) 2π p g (z 2 ) Θ(z 2 θ 2 12 /θ 2 1 > τ ) -R plain (ρ), (7.20) 
where we have subtracted R plain (ρ) which has already been included in (7.1).

The phase-space constraints can take three different forms, depending on the angle of the mass-dominant emission. Remember also that we do subtract the Sudakov factor corresponding to the plain jet mass. R τ,rec (z 1 )

Lv<L 1 = T 02 L ρ -L 1 2 , L ρ + L 1 2 + L v ; C R , B i -T 02 L ρ -L 1 2 , L ρ + L 1 2 ; C R , B i -P 2 L ρ -L 1 2 -L v , L ρ -L v , L ρ ; C R , B i + T 02 L ρ + L 1 2 , L ρ + L 1 2 + L v ; C A , B g L 1 <Lv<Lρ = T 02 L ρ -L 1 2 , L ρ + L 1 2 + L v ; C R , B i + T 02 (0, L v -L ρ ; C R , B i ) -T 02 (0, L ρ ; C R , B i ) + T 02 L ρ + L 1 2 , L ρ + L 1 2 + L v ; C A , B g Lv>Lρ = T 02 L ρ -L 1 2 , L ρ + L 1 2 + L v ; C R , B i -T 02 (0, L ρ ; C R , B i ) + T 02 L ρ + L 1 2 , L ρ + L 1 2 + L v ; C A , B g . (7.21)
For a fixed coupling approximation, this gives

R (fixed) τ,rec (z 1 ) = α s C R π L 2 τ /2 -L ρ L τ + 2L 1 L τ + B i L τ Θ(L τ < L 1 ) + L 2 τ -L ρ L τ + L 1 L τ + L 2 1 /2 + B i L 1 Θ(L 1 < L τ < L ρ ) + 1 2 (L ρ + L 1 + L τ + 2B i )(L τ + L 1 -L ρ ) Θ(L ρ < L τ ) + α s C A π L 2 τ /2 + B g L τ . (7.22)

Recursive µ 2 cut (pure MassDrop Tagger)

The situation is mostly the same as for the recursive τ 21 cut. Here, the use of a recursive criterion allows to use either the subjets naturally given by the C/A declustering or the gen-k t (1/2) subjets. The results presented in this section are valid for both µ 2 0 and µ 2 1/2 , although, as we will see in the next paragraph, different axes choice yield the same answer for the mass distribution in different ways, and would give different answers for other observables.

As before, for θ 2 smaller than θ 1 , the declustering has no effect and the results are as obtained in sec. 7.2.2. The complication related to the clustering distance for θ 2 θ 1 is absent here because of the declustering, and only emissions with z 2 θ 2 2 > ρ/µ 2 have to be vetoed. In all other cases, either the MassDrop condition fails and the emission is simply discarded, or the MassDrop condition is satisfied but the mass of the jet remains z 1 θ 2 1 . 8 For the natural choice, µ 2 0 , all emissions in the region z 2 θ 2 2 < ρ/µ 2 0 will fail the condition and be discarded before the recursion continues. That said, the only remaining difference between a recursive µ 2 cut and a recursive τ 21 cut will be in the extra factor z 1 in the secondary emissions and we find

R µ 2 ,rec (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(θ 2 2 > θ 2 1 ) Θ(z 2 θ 2 2 > ρ/µ 2 ) + Θ(θ 2 2 < θ 2 1 ) Θ(z 2 θ 2 2 > ρµ 2 ) + θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 2 ) 2π p g (z 2 ) Θ(z 1 z 2 θ 2 12 /θ 2 1 > µ 2 ) -R plain (ρ). (7.23)
The result of this integration is the same as for the recursive N -subjettiness cut (7.21), except that the second argument of the C A term should be Lρ-L 1 2 +L v instead of Lρ+L 1 2 +L v and that term comes with a Θ(L v > L 1 ).

For a fixed coupling approximation, we get

R (fixed) µ 2 ,rec (z 1 ) = α s C R π L 2 µ /2 -L µ L ρ + 2L µ L 1 + B i L µ Θ(L µ < L 1 ) + L 2 µ -L µ L ρ + L µ L 1 + L 2 1 /2 + B i L 1 Θ(L 1 < L µ < L ρ ) + 1 2 (L ρ + L 1 + L µ + 2B i )(L µ + L 1 -L ρ ) Θ(L ρ < L µ ) + α s C A π (L µ -L 1 ) 2 /2 + B g (L µ -L 1 ) Θ(L µ > L 1 ), (7.24) 
where the C R contribution is the same as for the recursive τ 21 cut and the C A contribution is the same as for the non-recursive µ 2 1/2 cut.

Recursive C 2 cut

Again, the calculation unfolds as for the two recursive cases above with a contribution from "failed" conditions for θ 2 > θ 1 and a standard constraint for θ 2 < θ 1 . In the first 8 As for the axes choice in N -subjettiness, these regions will differ for µ 2 0 and µ 2 1/2 .

case, e 2 (resp. e 3 ) is set by emission p 2 (resp. p 1 ) and θ 12 ≈ θ 2 . In the second case, e 2 (resp. e 3 ) is set by emission p 1 (resp. p 2 ) and θ 12 ≈ θ 1 , yielding

C 2 = z 1 θ 2 1 z 2 Θ(θ 2 > θ 1 ) + z 2 θ 2 2 z 1 Θ(θ 2 < θ 1 ). (7.25)
The Sudakov exponent will ultimately be given by

R C,rec (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(θ 2 2 > θ 2 1 ) Θ(z 2 θ 2 2 > z 1 θ 2 1 ) Θ(z 2 > ρ/C) + Θ(θ 2 2 < θ 2 1 ) Θ(z 2 θ 2 2 > z 1 θ 2 1 ) + Θ(θ 2 2 < θ 2 1 ) Θ(z 2 θ 2 2 < z 1 θ 2 1 ) Θ(z 2 θ 2 2 > ρC/θ 2 1 ) + θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 2 ) 2π p g (z 2 ) Θ(z 2 θ 2 12 > C) -R plain (ρ). (7.26)
Again, we have three different cases9 

R C 2 ,rec (z 1 ) Lv<Lρ-L 1 = -T 02 (L ρ -L v , L ρ ; C R , B i Lv<Lρ = T 02 L ρ -L 1 2 , 3L 1 -L ρ 2 + L v ; C R , B i -T 02 L ρ -L 1 2 , L ρ + L 1 2 ; C R , B i -T 02 (L ρ -L v , L ρ ; C R , B i ) + T 02 3L ρ -L 1 2 -L v , L ρ + L 1 2 ; C R , B i + T 02 L ρ + L 1 2 , 3L 1 -L ρ 2 + L v ; C A , B g Lv>Lρ = T 02 L ρ -L 1 2 , 3L 1 -L ρ 2 + L v ; C R , B i -T 02 (0, L ρ ; C R , B i ) + T 02 L ρ + L 1 2 , 3L 1 -L ρ 2 + L v ; C A , B g (7.27)
For a fixed coupling approximation, we obtain

R (fixed) C,rec (z 1 ) = α s C R π -L 2 e /2 Θ(L e < L ρ -L 1 ) (7.28) + (L v + L 1 -L ρ )(L v + 2L 1 -L ρ + B i ) -L 2 e /2 Θ(0 < L ρ -L e < L 1 ) + [(L e + 2L 1 -2L ρ )(L e + 2L 1 )/2 + B i (L e -2L ρ + 2L 1 )] Θ(L e > L ρ ) + α s C A π (L e + L 1 -L ρ ) 2 /2 + B g (L e + L 1 -L ρ ) Θ(L e > L ρ -L 1 ).

Towards NLL accuracy

In the previous chapters we were only aiming to achieve only a (modified) leadinglogarithmic description of the shape variables we study here. This level of approximation is enough to capture the main physical features of various jet tagging and grooming tools Nevertheless it is interesting to extend the scope of our calculations. As the studied jet shapes have some broad similarities, so in order to highlight the differences between these tools it would be helpful to increase the accuracy of the analytical predictions, so that differences that may arise beyond LL effects are effectively highlighted. We would also expect such differences to show up in the Monte Carlo event generator studies, like those carried out below, since event generators would partially capture many sources of subleading corrections.

In this section we discuss several extra ingredients that are required to reach NLL accuracy: soft-and-large-angle contributions, multiple emissions, the two-loop β function for α s , finite z 1 corrections and non-global logarithms [START_REF] Dasgupta | Resummation of nonglobal QCD observables[END_REF]. For the plots where we compare to Monte Carlo simulations, we will include some of these effects: multiple emission effects, two-loop running coupling corrections, and finite z 1 corrections.

We will not include contributions which are power-suppressed in the jet radius R. Although they would be relevant for a full phenomenological prediction, and can be substantial at the peak of the distributions (see section 5 of [START_REF] Dasgupta | On jet mass distributions in Z+jet and dijet processes at the LHC[END_REF]), these are expected to have little impact when comparing the discriminative power of different jet shapes.

Soft-and-large-angle radiation.

A source of single-logarithmic corrections comes from radiating soft gluons at large angles. This would correspond to all the limits beyond the strict collinear ordering that we have adopted until now i.e. it can come from either

θ 1 ∼ R, or θ 2 ∼ R, or θ 1 ∼ θ 2 .
The first two regions would give single-logarithmic corrections proportional to R 2 . In the small-R approximation we have adopted so far, these would further be suppressed. At the same order of accuracy, one would also have to include contributions coming from initial-state radiation and potential color-correlation with the recoiling partonic system [START_REF] Dasgupta | On jet mass distributions in Z+jet and dijet processes at the LHC[END_REF]. Taking these into account would also add single-logarithmic contributions to the mass distributions. This significantly complicates the discussion, especially for signal jets, where the mass would no longer be identical to the boosted heavy-boson mass and we would have to impose a certain window around the signal mass. In practice, therefore, one usually applies these techniques together with some grooming procedure which would drastically change this discussion. Some results have already been obtained in [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF] for grooming techniques. We present results for jet shapes with SoftDrop grooming in appendix B.5.

The situation for θ 1 ∼ θ 2 is a bit more involved and we show in Appendix B.2 that it would only contribute to single-logarithmic corrections suppressed by θ 2 1 . These contributions are also at most proportional to R 2 , although since radiation constraints tend to take most of their discriminative power from the large-angle region θ 2 > θ 1 , it makes sense to consider a region θ 1 R. In that case, the contribution from the θ 1 ∼ θ 2 region would be even further suppressed.

Multiple emissions.

Multiple gluon emissions also bring single-logarithmic corrections to our results and we briefly discuss below how to account for them for the non-recursive variants of the shapes.

They correspond to cases where several gluon emissions, (z 2 , θ 2 ), . . . , (z n , θ n ), are only strongly ordered in angle and give similar contributions to the shape v, i.e. when v(z 2 , θ 2

2 ; z 1 , θ 2 1 ) ∼ • • • ∼ v(z n , θ 2 n ; z 1 , θ 2 1
). This will come with a single-logarithmic correction α n-1 s L n-1 v to the resummed Sudakov exponent. It is important to realise that we will keep working in the v 1 limit and so neglect the contribution where all the z i θ 2 i , i ≥ 2, are of the same order as z 1 θ 2 1 . This would also give a single logarithmic correction of the form α n s L n ρ f n (v). Up to power corrections, we can take f n constant and this correction would therefore simply be equivalent to the multiple-emission correction to the plain jet mass, cancelling against the corresponding normalisation in the spectrum of v. 10 So, from now on, we focus on the region where all the z i θ 2 i , i ≥ 2, are much smaller than z 1 θ 2 1 and compute the corresponding correction to R v (z 1 ) for a fixed z 1 .

The case of N -subjettiness and energy correlation functions are mostly straightforward. In the kinematical configurations under consideration, the (optimal or gen-k t ) N -subjettiness axes will still align with the jet axis and with the emission (z 1 , θ 1 ) setting the mass. At a given z 1 , both τ 21 and C 2 will therefore be additive and the correction to

R v (z 1 ) will be γ E R v (z 1 ) + log[Γ(1 + R v (z 1 ))] where γ E is the Euler constant and R v (z 1 ) is the derivative of R v (z 1 ) wrt L v .
The situation is a bit more involved for the MassDrop parameter. Had we defined µ 2 as (m 2 j 1 + m 2 j 2 )/m 2 , µ 2 would have been additive and the similar conclusion as for τ 21 and C 2 would have been reached. Since µ 2 is defined as a maximum over the two subjets rather than a sum, we should instead use the fact that the condition µ 2 < µ 2 cut will be satisfied if both m 2 j 1 < µ 2 cut m 2 and m 2 j 2 < µ 2 cut m 2 . In practice, the emissions will either be clustered with the original hard parton or with the emission setting the mass. How exactly the particles in the jet are sifted in these two sets can depend non-trivially on the details of the clustering. If we take as an approximation, the assumption that particles behave independently, they will be clustered with the hard parton or the emission setting the mass according to which is geometrically closer, in a way similar to the heavy-jet mass in e + e -collisions [START_REF] Catani | Heavy jet mass distribution in e+ eannihilation[END_REF]. If we split R µ 2 1/2 (z 1 ) in two contributions according to whether the emissions are clustered with one or the other of the subjets,

R µ 2 1/2 ,0 (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 ) Θ(θ 2 2 < θ 2 1 ) Θ(ρ > z 2 θ 2 2 > ρµ 2 ) + 1 2 Θ(θ 2 2 > θ 2 1 )Θ(ρ > z 2 θ 2 2 > ρµ 2 ) (7.29) and R µ 2 1/2 ,1 (z 1 ) = 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π p i (z 2 )Θ(θ 2 2 > θ 2 1 ) 1 2 Θ(ρ > z 2 θ 2 2 > θ 2 1 µ 2 )
10 These type of corrections may however be crucial in trying to obtain the spectrum of v at finite v.
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+ θ 2 1 0 dθ 2 12 θ 2 12 1 0 dz 2 α s (z 1 z 2 θ 12 ) 2π p g (z 2 ) Θ(z 1 z 2 θ 2 12 /θ 2 1 > µ 2 ), (7.30) 
each of these two parts become additive and we obtain the following correction to R µ 2 1/2

γ E R µ 2 1/2 (z 1 ) + log[Γ(1 + R µ 2 1/2 ,0 (z 1 ))] + log[Γ(1 + R µ 2 1/2 ,1 (z 1 ))]. (7.31)
This is however only an approximation, but even at this stage, it can also be seen as the fact that, compared to N -subjettiness and energy correlation functions, the MassDrop parameter is more delicate to tackle analytically.

Before going to comparisons with Monte Carlo simulations, we can observe that the two axes of 2-subjettiness can be viewed as partitioning the jet in two subjets, one with the jet constituents closer to the hard parton, one with those closer to the emission setting the mass. If instead of summing over all particles in the jet we were summing independently over the contributions of each of the two subjets and defining a modified 2-subjettiness as the maximum of these two contributions, the resummation of multiple emissions for that observable would follow eq. (7.31). However, since Γ(1 + R 0 )Γ(1 + R 1 )/Γ(1 + R 0 + R 1 ) < 1 we should expect this variant of 2-subjettiness to perform worse than its original definition. Conversely, defining the MassDrop parameter as (m 2 j 1 + m 2 j 2 )/m 2 j would not only make its analytic behaviour simpler but could also translate into a slightly more efficient tool. Two-loop running coupling. The inclusion of the two-loop β function is purely a technical complication and they are already included in the basic building blocks defined in chapter 5.3. For simplicity and in order to keep a uniform notation along the thesis the were already directly included in the previous sections.

Non-global logarithms. Non-global logarithms are known to be difficult contributions to handle, especially if we want to go beyond the large-N c approximation, where a general treatment is still lacking. We will not provide an explicit calculation of their contribution in this paper. We note however that it might be beneficial to apply grooming techniques such as SoftDrop which are known to eliminate the contributions from non-global logarithms, this option is presented in appendix B.5.

Finite z 1 corrections. Finite z 1 corrections would typically give contributions to R(z 1 ) like α s log(1/v) log(1/z 1 ) or α s log(1/v) log(1/(1 -z 1 )). The first of these two terms, integrated over the 1/z 1 part of the splitting function corresponding to the first emission, will give a double-logarithmic contribution that we already have included. The second term, as well as the first term integrated over the non-singular contributions to the p(z 1 ) splitting function will become important at NLL accuracy. Indeed, after integration over z 1 , they would give corrections proportional to α s L v which contribute at the singlelogarithm accuracy. To properly include these corrections, it is sufficient to integrate over the full P (z i ) splitting function (rather than just including the finite piece as a B i term) and to keep the full z 1 dependence when we calculate the shapes in order to get single-logarithmic corrections to R(z 1 ).

The corresponding results are presented in appendix B.3. It is interesting to note that their calculation allows for a nice physical discussion of similarities and differences between background and signal jets. Unless explicitly mentioned, these results will be used for the plots in this paper.

Comparison with fixed-order Monte Carlo

As a partial cross-check of our results, the expressions obtained above can be expanded in a series in α s and compared to EVENT2 [START_REF] Catani | A General algorithm for calculating jet crosssections in NLO QCD[END_REF][START_REF] Seymour | Event2[END_REF] simulations. Here we compare the (non-recursive) τ 21 , µ 2 1/2 and C 2 distributions at order α s . Note that since we are using the N -subjettiness implementation from FastJet contrib, we have to use pp coordinates (transverse momentum, rapidity and azimuth) rather than e + e -ones (energy and polar coordinates). 11 To maximise the efficiency and provide quark jets with a monochromatic p t , events are rotated so that their original 2 → 2 scattering gives 2 jets at y = 0.12 After that rotation, jets are reconstructed with the standard (pp) anti-k t algorithm [START_REF] Cacciari | The Anti-k(t) jet clustering algorithm[END_REF] with R = 0.4.

On the analytic side, we take the fixed-order results, as running coupling corrections would only enter at order α 2 s , expand (7.3) to first order in α s , and perform the z 1 integration.

For N -subjettiness, starting from (7.10) we get

τ dΣ(τ ) dτ = α s C F π (L ρ + L τ + B q ) + α s C A π (L τ + B g ). (7.32) 
For the mass-drop parameter, we use (7.14) and reach

µ 2 dΣ(µ 2 ) dµ 2 Lµ<Lρ = 1 L ρ + B q α s C F 4π 3L 2 ρ + 6L ρ L µ -L 2 µ + 4B q (2L ρ + L µ ) + 4B 2 q + α s C A 2π L 2 µ + 2B q L µ + 2B g (L µ + B q ) Lµ>Lρ = 1 L ρ + B q α s C F π L 2 ρ + L ρ L µ + B q (2L ρ + L µ ) + B 2 q + α s C A 2π 2L µ L ρ -L 2 ρ + 2B q L µ + 2B g (L ρ + B q ) . (7.33)
Finally, for the energy correlation function, we start from (7.19) and obtain 

C 2 dΣ(C 2 ) dC 2 Le<Lρ = 1 L ρ + B q α s C F 2π L e (4L ρ -L e + 4B q ) + α s C A 2π L e (L
Le>Lρ = α s C F 2π 2L e + L ρ + B q L ρ + 2B q L ρ + B q + α s C A 2π 2L e -L ρ + 2B g -B q L ρ L ρ + B q .
The comparison with EVENT2 is presented in fig. 7.3 where we have plotted the shape distributions at order α s together with our analytic prediction. In these plots, a constant factor α s /(2π) has been factored out. From fig. 7.3, we see that this difference goes at least to a constant at large L v , meaning that we do control the leading logarithmic behavior.

In principle, one can also wonder if the constant term can be obtained from an analytic calculation, which is, strictly speaking, beyond our leading-logarithmic accuracy. For example, we have included in equations (7.32)-(7.34) corrections coming from the hard part of the splitting function. However, we have neglected large-angle contributions proportional to R 2 and expected to be small for R = 0.4, as well as possible finite z 1 corrections. It is unclear from fig. 7.3 whether or not this fully accounts from the apparent constant value observed at large L v . In this respect, it is also interesting to note that, contrary to the jet mass where besides the logarithmic and constant terms we would only have power corrections, the constant term in the L v expansion has some corrections proportional to 1/L ρ , coming from the normalisation of the shape distributions by the jet mass cross-section (see eq. (7.3)). These terms can make the convergence slower.

To extract more precise information, we have fitted, in each bin of the jet mass, the coefficient of L v and the constant term. This has been done in each color channel and reported in fig. 7.4. Again, we see a good agreement for the linear rise with L v as well as for the constant terms proportional to C A and N f . The slow convergence of the C F term is related to the above discussion. More precise statements would require going to larger values of L v and L ρ . This is difficult to explore due to limited machine precision.

Comparison with parton-shower Monte Carlo

Our resummed analytic results can be directly compared to parton-shower Monte Carlo event generators such as Pythia [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF] or Herwig [START_REF] Bahr | Herwig++ Physics and Manual[END_REF]. To do this, we have generated QCD dijet events in 14 TeV pp collisions simulated with Pythia. We have selected anti-k t (R=1) jets with a transverse momentum of at least 3 TeV.

For our analytical predictions, unless explicitly mentioned otherwise, we have included all the computed global NLL corrections discussed in section 7.2.7. We have fixed α s (m z ) = 0.1185 with n f = 5 and frozen the coupling at µ f r = 1 GeV. Note that Pythia uses a different prescription for the strong coupling, with α s (m z ) = 0.1383 and a 1-loop running. However, our analytic results use the 2-loop β function. It is discussed in appendix E of [START_REF] Dasgupta | Jet shapes for boosted jet two-prong decays from first-principles[END_REF] that it does not alter the results.

In fig. 7.5, we compare the analytic results obtained for the distribution of N -subjettiness, the MassDrop parameter and the energy correlation functions, at a given jet mass, with the same distributions obtained with Pythia at parton-level, including only final-state radiation. First of all, if we look at the large L v region, where our analytic description is valid, we see that it does reproduce nicely the Pythia simulations. However, at smaller L v , Pythia tends to produce more peaked distributions than what we obtain analytically. any case, the main message that one has to take from this comparison is that the generic ordering between the different shapes is well captured by our analytic calculations. Instead of plotting the distributions themselves, we can instead look at the mass distributions. This has the advantage that we can also consider the recursive versions of the cuts on the shapes. In fig. 7.6, we plotted the ratio of the mass distribution obtained after a given cut, L v > 2.4, applied recursively (dashed lines) or not (solid lines) on our three shapes, divided by the jet mass distribution without applying any cut. Globally, our analytic calculations tends to reproduce the main features of the Monte Carlo simulations, although they show longer tails at small masses. Note that for these plots, we have used D 2 instead of C 2 since the former peaks at values of L v closer to the other two shapes. Furthermore, since we have not computed multiple-emission corrections for the recursive versions of the shape constraints, we have also left aside the multiple-emission corrections to the non-recursive versions for the analytic results plotted in fig. 7.6. We notice that including the multiple-emission corrections for the non-recursive shapes tends to reduce the tails towards small mass, bringing more resemblance to the Pythia results. We could expect a similar behaviour for the corresponding recursive versions.

Finally, we want to investigate how the three shapes we have considered are affected by initial-state radiation (ISR) and non-perturbative effects such as hadronisation and the underlying event (UE). To get an insight about the importance of these effects, we which look much closer to Pythia, although a more detailed resummation of subleading logarithms of ρ (and L v when if becomes small), and potentially fixed-order corrections (e.g. for secondary emissions) would be needed to draw stronger conclusions. have looked, for each jet mass, at the cut on L v that has to be applied to obtain a 25% tagging rate compared to the plain jet mass. This is plotted in fig. 7.7 where we see that, as expected, the cuts are quite sensitive to ISR and the UE, with hadronisation effects remaining relatively small.

We attribute this behavior to the sensitivity of the shapes to soft and large-angle radiation. We also see that the energy correlation function tends to be more sensitive to these effects than N -subjettiness and the mass-drop parameter. In practice, one would rarely use such a cut without some additional grooming of the jet, limiting the nonperturbative effects at least on the reconstruction of the jet mass. We will come back to this point later, in section 7.4.

Calculations for the signal

We now turn to the case of signal jets, i.e. jets coming from boosted colorless objects that decay into a q q pair (or a pair of gluons), like a W , Z or Higgs boson, or a photon.

As already briefly discussed in sec. 7.1, the splitting of such a boosted object X into a q q pair differs from a QCD gluon emission in the sense that it does not diverge as 1/z at small transverse-momentum fraction. This means that, although we are still in the regime ρ 1 and we shall still consider the limit of small v for all jet shapes v we study in this paper, now L 1 = log(1/z 1 ) is no longer large. As for the case of QCD jets, we shall write the results as a function of z 1 , see eq. (7.4), but now we will keep the correction in z 1 and 1 -z 1 . These finite z 1 corrections would generate single-logarithmic terms under the form of contributions with one logarithm of z 1 or 1 -z 1 and one logarithm of ρ or v. It is illustrative to expand out results in series of log(1/ρ) and log(1/v) to see explicitly how these terms appear.

Besides the careful inclusion of the z 1 and 1 -z 1 dependence, the calculation follows the same logic as what has been done above and mostly consists of two copies of the contribution from "secondary emissions" in the QCD case, one for each of the decay products of the boosted colorless object. The contributions from each parton will just differ by the replacement z 1 ↔ (1 -z 1 ). For simplicity, we still use L 1 = log(1/z 1 ) and additionally introduce L -= log(1/(1 -z 1 )).

Finally, as was already seen to be the case for the secondary emission contributions for QCD jets, the results presented in this section apply invariantly for the recursive or non-recursive versions of the shapes.

τ 21 cut

Following the same construction as in section 7.2.1, we find that for an emission off the parton carrying a momentum (1 -z 1 )p t , we have

τ 21 = z 2 θ 2 2 z 1 θ 2 1 . (7.35)
This leads to

R τ (z 1 ) = θ 2 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π P q (z 2 ) Θ(z 2 θ 2 2 /θ 2 1 > z 1 τ 21 ) + [z 1 ↔ (1 -z 1 )
], (7.36) where

θ 2 1 = ρ/[z 1 (1 -z 1 )
]. After doing this integration one finds

R τ (z 1 ) = T 02 L ρ + L --L 1 2 , L ρ + L -+ L 1 2 + L v ; C R , B i (7.37) + T 02 L ρ + L 1 -L - 2 , L ρ + L 1 + L - 2 + L v ; C R , B i .
In order to better highlight the physics behind our calculation, we present the fixed coupling approximation. Keeping only the first non-trivial terms in L 1 and L -, we find

R (fixed) τ (z 1 ) = α s C R π L 2 τ + (L 1 + L -+ 2B i )L τ . (7.38)

µ 2 cut

As for the case of QCD jets discussed in Section 7.2.2, expressions for µ 2 differ from the N -subjettiness ones due to the fact that the p t normalisations are different.

For an emission off the parton carrying a momentum (1 -z 1 )p t , we have

µ 2 1/2 = (1 -z 1 )z 2 θ 2 2 z 1 θ 2 1 . ( 7.39) 
This leads to

R µ 2 1/2 (z 1 ) = θ 2 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π P q (z 2 ) Θ(z 2 θ 2 2 /θ 2 1 > z 1 /(1 -z 1 )µ 2 1/2 ) + [z 1 ↔ (1 -z 1 )] (7.40)
Note that formally the Θ constraint above will result in the condition Θ(µ 2 < (1z 1 )/z 1 ) but this will only lead to power corrections in µ 2 and can hence be neglected.

The only difference between N -subjettiness and a µ 2 1/2 cut lies in the z 1 and 1 -z 1 corrections. We find

R µ 2 1/2 (z 1 ) = T 02 L ρ + L --L 1 2 , L ρ -L -+ L 1 2 + L v ; C R , B i Θ(L v > L --L 1 ) (7.41) + T 02 L ρ + L 1 -L - 2 , L ρ -L 1 + L - 2 + L v ; C R , B i Θ(L v > L 1 -L -)
For a fixed coupling approximation the extra contributions from the two legs thus cancel, giving

R (fixed) µ 2 1/2 (z 1 ) = α s C R π L 2 µ + 2B i L µ . (7.42)
Note that in the case of the signal, the calculation for µ 2 0 would lead to the same result. However, other effects like soft and large-angle gluon emissions that we have neglected here would appear at the same order and lead to an infrared divergence for µ 2 0 .

C 2 cut

This time for emissions off the parton carrying a momentum (1 -z 1 )p t , we find

C 2 = ρ z 2 1 (1 -z 1 ) z 2 θ 2 2 θ 2 1 . (7.43)
This leads to

R C 2 (z 1 ) = θ 2 1 0 dθ 2 2 θ 2 2 1 0 dz 2 α s (z 2 θ 2 ) 2π P q (z 2 ) Θ z 2 θ 2 2 θ 2 1 > z 2 1 (1 -z 1 )C 2 ρ + [z 1 ↔ (1 -z 1 )] (7.44)
Again, the expression for C 2 looks very similar, except for the logarithms involving z 1 . We find14 

R C 2 (z 1 ) = T 02 L ρ + L --L 1 2 , 3L -+ 3L 1 -L ρ 2 + L v ; C R , B i Θ(L v > L ρ -L --2L 1 ) (7.45) + T 02 L ρ + L 1 -L - 2 , 3L 1 + 3L --L ρ 2 + L v ; C R , B i Θ(L v > L ρ -L 1 -2L -)
For a fixed coupling approximation, we get

R (fixed) C 2 (z 1 ) = α s C R π (L e -L ρ ) 2 + (3L 1 + 3L -+ 2B i )(L e -L ρ ) Θ(L e > L ρ ). (7.46)
Again, formally the extra factor z 2 1 (1 -z 1 ) will enter in the Θ(L e > L ρ ) condition but its effect is only power corrections and then can be neglected.

Integration over the z 1 splitting

For most of the splitting relevant for phenomenological studies, the splitting function in terms of z 1 is expressed as z k 1 (1 -z 1 ) k or as a linear combination of such terms (typically, only k = 0 and k = 1 are needed for W/Z/H or photon signals).

Introducing B 2 (x) = B(x, x) = Γ 2 (x)/Γ(2x), the integration over z 1 can be performed in the fixed-coupling approximation, using

1 0 dz 1 z k 1 (1 -z 1 ) k exp - α s C R π p L v (L 1 + L -) = B 2 1 + k + α s C R π pL v , ( 7.47) 
with p a number varying from one shape to another.

Comparison with fixed-order Monte Carlo

Similarly to what was presented in section 7.2.8 for QCD jets, we can compare our results with EVENT2 simulations. In this case, we boost the event along the z axis and rotate it to obtain boosted photons decaying to a jet at y = 0. The expansion of the above results to first order in α s gives, after integration over z 1

τ dΣ(τ ) dτ = α s C F π (2L τ + 2B q + a γ ), (7.48 
)

µ 2 dΣ(µ 2 ) dµ 2 = α s C F π (2L µ + 2B q ), (7.49) C 2 dΣ(C 2 ) dC 2 = α s C F π 2(L e -L ρ ) + 2B q + 3a γ Θ(L e > L ρ ). (7.50) 
In the above expressions, a γ = 3 2 a 0 -1 2 a 1 = 13 6 with a 0 = 2 and a 1 = 5 3 . The comparison of these analytic results with EVENT2 simulations is presented in fig. 7.8 and shows a good agreement. It is also interesting to notice that the convergence seems faster than it was for QCD jets, probably due to the fact that here the jet mass is fixed.

Comparison with parton-shower Monte Carlo

As for the case of the QCD background jets, we want to compare our analytic calculations to parton-shower Monte Carlo simulations. This time, we used Pythia to generate ZZ events with both Z bosons decaying to hadrons. To match the jet selection of section 7.2.9 in the case of QCD jets, we have selected anti-k t (R = 1) jets with p t ≥ 3 TeV and artificially varied the mass of the Z boson to scan over the ρ range. The distributions obtained for the shapes are plotted on fig. 7.9 for Z bosons decaying hadronically. As for the case of QCD jets, we see a good overall description of the features of the distributions and of the differences between the three shapes, particularly in the large L v region which is targeted by our calculation.

Based on the results for both the signal and the QCD background, we have plotted a set of ROC curves on fig. 7.10 obtained by varying the cut on the three shapes for a given value of the jet mass. Note that here, the signal and background efficiencies are normalised to the sample of jets that are within the mass window under investigation. The main result here is that a cut on the energy correlation function is more efficient at rejecting the QCD background than a cut on N -subjettiness, itself performing a bit better than a cut on the MassDrop parameter. This behavior is clearly seen in both the Pythia simulations and our analytic calculations. 16 We leave a detailed discussion of this comparison for section 7.5.

Non-perturbative effects and combination with grooming

We have already seen in section 7.2.9 and in fig. 7.7 that initial-state radiation and nonperturbative effects can have a large impact on the shapes we have studied. One difficulty in trying to assess these effects is that they do not only affect the different shapes we are interested in but also the jet mass and hence our selection of a sample of jets with a mass lying within a given window.

To make a physically meaningful comparison, we have to adapt our normalisation of the background and signal efficiencies compared to what we used to produce fig. 7.10. Instead, we shall now compute the efficiencies as the fraction of the jets passing the initial p t cut which satisfy both the constraint on the mass and the constraint on the shape. In such a case, as the cut on the shape increases, the signal and background efficiencies progressively increase to ultimately reach an endpoint, common to all shapes, where just the cut on the mass is effective.

As before, we work with anti-k t jets with R = 1 and impose a p t cut of 3 TeV. For the signal, we used a massive Z boson with a mass of 217 GeV and impose the constraint on the mass that 5 < log(p 2 t R 2 /m 2 ) < 5.5. 17 Here the background is taken as quark-only to match with the results presented in the previous sections.

The top row of fig. 7.11 shows the ROC curves obtained for our three shapes starting from events including only final-state radiation effects at parton level (in red) and adding successively initial-state radiation (in green), hadronisation effects (in blue) and the underlying event (in black). We clearly see large deviations from what we observe for pure FSR results, noticeably when adding initial-state radiation and the underlying event. Concentrating on the endpoint of these curves, where the cut on the shapes has no effect, we see that these effects are already present when applying the initial mass cut.

In practice, when working with large-R jets, one usually first applies a grooming procedure in order to obtain, at the very least, a good resolution on the jet mass. The In all cases, we impose that 5 < log(p 2 t R 2 /m 2 ) < 5.5. The left, central and right columns correspond to τ 21 , µ 2 1/2 and C 2 , respectively. For the top row, the mass and shape constraints are imposed on the plain, ungroomed, jet. For the plots on the bottom row, we have first applied a SoftDrop procedure with β = 2 and z cut = 0.1 before imposing the mass and shape constraints. bottom row of fig. 7.11 shows the same plot as on the top row, now obtained by first grooming the jet with the SoftDrop procedure [START_REF] Larkoski | Soft Drop[END_REF], using z cut = 0.1 and β = 2, before imposing the cut on the mass and on the shapes. Although this reduces the performance observed on events with pure final-state radiation, this has two positive effects: (i) it stabilises remarkably the ROC curves against initial-state radiation and non-perturbative effects, and (ii) at full parton level it even gives better performance than without the grooming procedure. Again, the ordering between the three shapes remains the same, albeit with strongly reduced differences compared to the plain jet case.

Despite the fact that the results in this section only depend on numerical simulations, as the goal is to study non-perturbative effects, it is rather straightforward to compute LL distributions with SoftDrop using the basic building blocks formalism. In appendix B.5 we present the Sudakov factors exponents in Section 7.2 for QCD jets with a SoftDrop grooming. The results for the signal jets remain the same, which is explained with more detail in the same appendix.

Discussion

In this chapter, we have provided a first-principles comparison of the performance of three common jet-shapes : N -subjettiness, the MassDrop parameter and energy correlation functions. In order to ensure infrared safety, we have defined the mass-drop parameter based on the subjets obtained via a clustering with the generalized k t with p = 1/2. Similarly, for N -subjettiness, we find that using the exclusive gen-k t (p = 1/2) algorithm is an efficient alternative to the more complicated optimal axes. The usage of the gen-k t algorithm is closely connected to the fact that it respects the ordering in mass, which is helpful in our situation where we work at a fixed jet mass and study shapes that have a mass-like behavior.

The main observation from our analytical results and simulations involving only finalstate radiation is that there appears to be a clear ordering in the discriminating power of the shapes we have studied: the energycorrelation function ratio is more powerful than the N -subjettiness ratio which, in turn, is more powerful than the µ 2 parameter.

Our results indicate a Sudakov suppression of both the signal and the background for v 1. This suppression is however more powerful for the background for two major reasons. Recall that, since we work at a fixed jet mass, both the QCD jets and the signal jets can be seen as two-pronged objects. 18 A cut on the shape thus constrains additional radiation from that system. Given that, discrimination power comes from constraints on radiation at angles smaller and larger than the opening angle between the two prongs. For large angles, the cut on the shape only affects the background due to the colorsinglet nature of the signal. At small angles, the radiation from each of the two prongs is proportional to their color factors, which tend to be larger for QCD jets, involving gluons in their two-prong decay, than for resonances mostly decaying to quarks. 19 Since quark-gluon discrimination exploiting differences in color factors only lead to moderate discrimination power [START_REF] Larkoski | Energy Correlation Functions for Jet Substructure[END_REF][START_REF] Gallicchio | Quark and Gluon Tagging at the LHC[END_REF][START_REF] Larkoski | Gaining (Mutual) Information about Quark/Gluon Discrimination[END_REF][START_REF] Aad | Light-quark and gluon jet discrimination in pp collisions at √ s = 7 TeV with the ATLAS detector[END_REF], we expect that the large-angle effect would be the main source of difference in tagging two-body decays. The ordering in discrimination power between the different shapes can also be understood from a different viewpoint. Say we work at a given signal efficiency. The corresponding cut on the shape would determine the constraints on small-angle radiation for both the signal and the background (up to color-factor effects discussed above). Once this is fixed, one has to look at the constraint put on the large-angle radiation for QCD jets. In that region, it is clear from our results, that the radiation veto imposed by a cut on C 2 is more constraining than that imposed by a cut on τ 21 , itself more constraining than a cut on µ 2 . This effect can be directly observed in fig. 7.1, comparing the large angle region of each Lund diagram.

This statement can be made more quantitative from our analytic results. First, the difference between τ 21 and µ 2 mostly comes from the large-angle region where gluon emissions are clustered with the gluon setting the mass. The extra z 1 factor in the expression for µ 2 compared to τ 21 , see eq. (7.6) vs. (7.11), results in a smaller vetoed region for µ 2 . Parametrically, this region scales like α s log(1/θ 2 1 ) log(1/v) ∝ α s log(1/ρ) log(1/v). This can be deduced algebraically from our results by fixing the signal efficiency and computing the background for the corresponding cut (with additional α s log 2 (1/v) terms also coming from the small-angle region).

In the case of C 2 , the constraint at large angle now becomes proportional to θ 4 2 , see eq. (7.15), and this translates into an additional vetoed region compared to τ 21 , which is proportional to α s log 2 (1/θ 2 1 ) ∝ α s log 2 (1/ρ). In conclusion, we expect the ordering between the shapes to be more visible when increasing the boost of the jet. This difference should also grow faster with p t /m when comparing C 2 and τ 21 than for τ 21 and µ 2 . This is indeed what is observed from both pure-FSR Monte Carlo studies and from our analytic calculations, as seen in fig. 7.12, where we have plotted the background rejection rate for a 25% signal efficiency as a function of log(1/ρ) = log(p 2 t R 2 /m 2 ). 20The next important observation is that, without grooming, the shapes are significantly affected by ISR and non-perturbative effects, UE in particular. These model-dependent effects can be substantial enough to wash out or even invert the differences between the shapes observed from pure FSR and analytic studies (see e.g. the top row of fig. 7.11). This is due to the impact of these effects on both the mass resolution for the jet -mostly for signal jets -and the sensitivity of the shapes themselves. Since ISR and UE mostly affect the soft-and-large-angle region, we expect C 2 to be more affected than τ 21 , itself more affected than µ 2 (see the discussion above) and this is indeed what we observe from Monte Carlo studies.

The arguments above can be applied when comparing the recursive and non-recursive versions of the shapes: the recursive versions have a smaller vetoed region at large angle while retaining the same small-angle region as their corresponding non-recursive version. Thus, although the recursive versions have the advantage of being less sensitive to ISR and non-perturbative effects, they have a smaller discriminating power.

Furthermore, we have seen that applying a grooming procedure on the jet before computing its mass and values of the shapes largely improves the robustness against ISR and non-perturbative effects, also restoring the ordering between the shapes observed with pure FSR. Again, this can be interpreted as grooming cutting away a part of the soft-and-large-angle region. This increased robustness however comes at a price in that reducing the soft-and-large-angle region using grooming also reduces the discriminating power of the shape cuts. In practice, there will be a trade-off between sheer efficiency and robustness against model-dependent effects.

In addition, note that working at a fixed jet mass ensures that our results are infraredand collinear safe because it fixes automatically the value of τ 1 and e 2 . If we were to impose a cut on the shapes without fixing the jet mass, our results would still be finite after integration of (7.1) over ρ because the infrared region is killed by the plain mass Sudakov. This is an example of Sudakov-safe observables [START_REF] Larkoski | Unsafe but Calculable: Ratios of Angularities in Perturbative QCD[END_REF][START_REF] Larkoski | Sudakov Safety in Perturbative QCD[END_REF].

Another key aspect of our results is that a cut on the shapes leads to an exponential suppression of the signal efficiency. This has to be contrasted with two-prong taggers like the MassDrop Tagger, trimming or pruning which would only give a linear suppression [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF]. This means that although it initially seems natural to work in the small v limit, in practice one will not be able to take the cut on v too small. In practice, computing corrections for finite v could then become relevant for this discussion.

-8 -Dichroic N-subjettiness

In this chapter, we further explore the interplay between grooming/tagging techniques and jet shapes, in particular N-subjettiness. We introduce the concept of "dichroic" Nsubjettiness ratios for improved radiation constraints. Starting from an object in which two hard prongs have been identified ("tagged"), the dichroic variant of N-subjettiness differs from standard subjettiness ratios in that it uses different (sub)jets for the numerator and denominator of the τ 2 /τ 1 ratio. These two (sub)jets will generally overlap and correspond to different degrees of tagging/grooming. The reason for calling this "dichroic" is that the radiation patterns in the two different (sub)jets are driven by distinct color flows.

In this work we will use a large jet for calculating τ 2 and a smaller, tagged subjet for τ 1 . Calculating τ 2 on the large jet provides substantial sensitivity to the different color structures of signal (color singlet when viewed at large angles) and background (color triplet for a quark-jet or octet for a gluon-jet). Calculating τ 1 on the tagged subjet ensures that it is not substantially affected by the overall color flow of the large jet, but rather is governed essentially by the invariant mass of the two-prong structure found by the tagger. The resulting dichroic τ 2 /τ 1 ratio gives enhanced performance compared to the original version of N -subjettiness, which adopts the same (sub)jet for numerator and denominator.

Section 8.1 presents the dichroic N-subjettiness. In section 8.2 we study the performance of this observable using Monte Carlo simulations. Finally, in section 8.3 we present analytical calculations for this observable using the basic bulding blocks computed in chapter 5 and compare our predictions to Monte Carlo generators.

Dichroic subjettiness ratios

Combining mMDT/SD with N -subjettiness

In this chapter we will present the dichroic combination of a tagger with a radiation constraint. The discussion below assumes that we use SoftDrop or the modified MassDrop Tagger as our tagger and a cut on τ 21 as a radiation constraint, but we believe that the core argument can also be applied to other shapes, for example to energy correlation functions.

Let us consider a high-p t large-radius (R 1) jet on which we have applied an mMDT (or SD) tagger. The original large-radius jet will be called the full jet. The part of the jet that remains after the mMDT/SD tagging procedure will be called the tagged jet, and has an angular size comparable to the angle between the two hard prongs identified by the tagger. The N -subjettiness variables τ 1 and τ 2 can be evaluated either on the full or the tagged jet and there are three combinations of interest: One can be tempted to also consider a fourth option where τ 1 is computed on the full jet and τ 2 on the tagged jet. It is straightforward to show, following the same arguments as below, that this is not the best combination, as one might expect intuitively.

τ tagged 21 ≡ τ tagged 2 τ tagged 1 , ( 8 
To understand how these different variants work, we will take two approaches. First we will consider what values of τ 21 arise for different kinematic configurations involving three particles in the jet, i.e. two emissions in the case of QCD jets, and the original two prongs plus one additional emission in the case of signal jets. Then we will use this information to understand how a cut on τ 21 constrains the radiation inside the jet.

During this discussion it will be useful to keep in mind the core difference between signal and background jets. In the case of the background jets, the whole Lund plane and the "leaf", where secondary emissions take place, can contain emissions. In the case of signal jets, emissions are mostly limited to the region where angles are smaller than the decay opening angle and transverse momenta smaller than the mass. The leaves in the two cases have different color factors, however we will neglect this aspect in our discussion. 1 Rather we will concentrate on the differences that arise at large angle, i.e. from the different coherent radiation patterns of colored versus net color-neutral objects.

We consider the situation where, after the tagger has been applied, the tagged jet mass is dominated by emission "a", i.e. ρ ≈ z a θ 2 a (in the case of the signal jet this is the softer of the two prongs). The Lund plane phase space can then be separated into 3 regions depicted in fig. 8.1. Region A (in red) is the region that is constrained to be free of radiation by the fact that the tagger has triggered on emission a. This corresponds to the region where both zθ 2 > z a θ 2 a and the SoftDrop condition (4.5) are satisfied. Of the remaining phase space, region B (blue) corresponds to emissions that are contained inside the tagged jet. It is populated in both signal and background cases. It contains not only emissions that satisfy the mMDT/SD condition (z > z cut in the case of mMDT), but also emissions with zθ 2 < z a θ 2 a and θ < θ a , due to the Cambridge/Aachen declustering used by mMDT/SD. Region C (green) corresponds to emissions that are in the original full jet, but not in the tagged jet. It is uniformly populated in the background case, while in the signal case it is mostly empty of radiation, except at the left-hand edge (initial-state radiation) and the right-hand edge (leakage of radiation from the colorsinglet q q decay). The emission with the largest zθ 2 in each of regions B and C will respectively be labelled b and c and we will assume strong ordering between emissions.

There are three kinematic cases to consider for the relative zθ b /z a θ2 a . Given that the signal result is always the same, the performance of the signal/background discrimination will be best for the method that gives the largest background τ 21 result (recall that one enhances signal relative to background by requiring τ 21 < τ cut ).

Let us examine the background separately for each of the three kinematic cases shown in fig. 8.1:

1. For z a θ 2 a z b θ 2 b z c θ 2
c , all three τ 21 variants give the same result as for the signal,

z b θ 2 b /z a θ 2 a . 2 2. For z 2 a θ 2 a z 2 c θ 2 c z 2 b θ 2 b , τ tagged 21
is still still given by z b θ 2 b /z a θ 2 a , but τ full 21 and τ dichroic 21 now both take the larger value of z c θ 2 c /z a θ 2 a . They should therefore perform better in this case.

Finally, for z

2 c θ 2 c z 2 a θ 2 a z 2 b θ 2 b , τ tagged 21 is again given by z b θ 2 b /z a θ 2 a ; τ full 21 is given by z a θ 2 a /z c θ 2 c
, since τ 1 is dominated by emission c, while τ 2 is dominated by emission a. Depending on the exact configuration, τ full 21 may be larger or smaller than z b θ 2 b /z a θ 2 a and so may or may not be advantageous. τ dichroic 21 has a value of z a θ 2 a /z a θ 2 a = 1, which is always larger than the signal and larger than the other two variants.

Overall therefore, τ dichroic 21 is expected to be the best of the three variants. Alternatively, we can also see the benefit of the dichroic combination by examining directly how emissions are constrained when one applies a given cut on the τ 21 ratio. We have represented the Lund diagrams relevant for our discussion in fig. 8.2, where we have used the same regions A, B and C as in the above discussion.

We start by considering a jet for which we already have applied the mMDT/SD procedure, resulting in a (mMDT/SD) mass ρ dominated by emission "a". This automatically comes with a mMDT/SD prefactor and Sudakov suppression represented by the solid red line and shaded light red area (region A) in fig. 8.2, guaranteeing that there are no emissions at larger mass kept by the mMDT/SD.

For τ tagged

21

, emissions in region B are vetoed down to a mass scale ρτ cut while emissions in region C, i.e. outside the mMDT/SD tagged jet, are left unconstrained. This results in the (additional) Sudakov suppression given by the blue area (region B) in fig. 8.2(a).

The situation for τ full 21 is a bit more involved and we have three cases to consider. The first case is when there is (at least) one emission in region C with zθ 2 > z a θ 2 a /τ cut ≡ ρ/τ cut and is represented in fig. 8.2(b). Let us then call emission "c" the emission in region C with the largest zθ 2 , which thus comes with a Sudakov suppression imposing that there are no other emissions in region C with zθ 2 > z c θ 2 c . Emission "c" will dominate τ 1 so that the cut on τ 21 will come with an extra suppression factor in region C extending from z c θ 2 c down to zθ 2 = z c θ 2 c τ cut . Consequently, all emissions down to z c θ 2 c τ cut are vetoed as depicted in fig. 8.2(b). The second case is when the emission in region C with the largest zθ 2 satisfies z a θ 2 a ≡ ρ < z c θ 2 c < ρ/τ cut . This region, represented by the hatched area in fig. 8.2(b), is entirely forbidden because it would give a value of τ 21 ≥ z a θ 2 a /z c θ 2 c which is always larger than τ cut . The third case is when there are no emissions in region C with zθ 2 > ρ. This directly comes with a Sudakov suppression in region C vetoing emission down to zθ 2 = ρ. In this case, τ 1 is dominated by emission "a" and the constraint on τ 21 further vetoes emissions with ρτ cut < zθ 2 < ρ in both regions B and C. These two vetoes combine to vetoing all emission down to ρτ cut as represented in fig. 8

.2(c).

If instead we use our new τ dichroic 21 variable, we are always in the situation of fig. 8.2(c), where we veto all emissions down to a mass scale ρτ cut in both regions B and C. This new version therefore comes with the strongest Sudakov suppression, i.e. of the three τ 21 variables it is the one that, for background jets, is least likely to have a small τ 21 value. Given that the three τ 21 variants behave similarly to each other for signal, the signal-to-background discrimination should be improved for the dichroic variant.

With our dichroic method, we actually recover the same overall Sudakov suppression as the one we had when measuring the full jet mass and cutting on the full N -subjettiness. The gain of our new method (8.1c) compared to this full N -subjettiness case comes from the fact that the prefactor associated with the jet mass is now subject to the constraint imposed by the tagger. If we take for example the case of the mMDT, this prefactor would be largely suppressed for the background -going from ∼ α s log(1/ρ) for full Nsubjettiness to ∼ α s log(1/z cut ) for the dichroic method -while the signal would only be suppressed by a much smaller factor ∼ 1 -2z cut . Additionally, measuring the tagged jet mass instead of the full jet mass significantly reduces ISR and non-perturbative effects which would otherwise affect the resolution of the signal mass peak.

Finally, we note that the gain in performance is expected to increase for larger boosts due to region C getting bigger (double-logarithmically in ρ).

Dichroic subjettiness with SoftDrop (pre-)grooming

Since τ dichroic 21 uses τ 2 computed on the full jet, including all the soft radiation at large angles, we can expect this observable to be quite sensitive to poorly-controlled nonperturbative effects -hadronisation and the underlying event -and to pileup.

The standard strategy to mitigate these effects is to kill two birds with one stone and to use mMDT (or SD) both as a two-prong tagger and as a groomer, and impose the τ 21 constraint on the result. This is equivalent to the τ tagged 21 variant discussed (fig. 8.2(a)), with the drawback and loss of performance described in the previous section.

We show here how we can achieve a background rejection that is larger than for τ tagged 21 and more robust with respect to non-perturbative effects than τ dichroic

21

. Conceptually, the idea is that the tagger and groomer achieve two different tasks: the tagger selects a two-prong structure in the jet, imposing a rather hard constraint on the soft radiation in order to do so, leading to a small R prefactor for the jet mass. This is not quite what we want from a groomer, which should get rid of the soft-and-large-angle radiation while retaining enough of the jet substructure to have some discriminating power when using radiation constraints.

This suggests the following picture: we first apply a "gentle" grooming procedure to the jet, like a SoftDrop procedure with a positive value of β. This is meant to clean the jet of the unwanted soft effects3 while retaining as much as possible the information about the perturbative radiation in the jet. We can then carry on with the dichroic method presented in the previous section, i.e. use a more aggressive tagger, like mMDT, 4to compute the jet mass and τ 1 and compute τ 2 on the SD (pre-)groomed jet: Note that we will always choose our mMDT-tagging and SD-grooming parameters such that the tagged jet is the same whether tagging is performed before or after grooming. For mMDT-tagging with parameter z cut and SD-grooming with parameters ζ cut and β, this implies ζ cut ≤ z cut and β ≥ 0.

τ dichroic 21,groomed = τ 2 (SD jet) τ 1 (mMDT jet) . ( 8 
Using the same arguments as in section 8.1.1, we can show straightforwardly that this method will have a larger rejection than with the other two variants where one would be

ρ A ρτ C B log( z θ) ) θ log(1/ cut Figure 8.
3 -Phase space constraints on QCD jets obtained from our new combination including grooming: we first groom the jet, e.g. with Soft-Drop. We then compute both the jet mass and τ 1 on the tagged jet (here using the mMDT), yielding the solid red line prefactor and the shaded red region (A) for the Sudakov exponent. We then impose a cut on the τ 21 ratio with τ 2 computed on the SD jet, leading to the extra shaded blue and green regions (B and C) for the Sudakov exponent.

computing the jet mass on the mMDT-tagged jet and the τ 21 ratio either on the mMDTtagged jet, τ tagged 21,groomed ≡ τ tagged

21

, or on the SD-groomed jet, τ full 21,groomed , owing to a larger Sudakov suppression of the background, for a similar signal efficiency.

Compared to the other possible situation where both the jet mass and the τ 21 ratio are computed on the SD-groomed jet, the dichroic variant would have a smaller R prefactor, associated with mMDT instead of SD. This again leads to a larger background rejection.

Because of the initial grooming step, the groomed dichroic subjettiness ration is expected to be less discriminating than the ungroomed version introduced in Section 8.1.1. Indeed, the associated Sudakov exponent is smaller since we have amputated part of the soft-large-angle region. One should however expect that this groomed variant will be less sensitive to non-perturbative effects. Overall, there is therefore a trade-off between effectiveness, in terms of achieving the largest suppression of the QCD background for a given signal efficiency, and perturbative robustness, in terms of limiting the sensitivity to poorly-controlled non-perturbative effects.

Performance in Monte Carlo simulations

Let us now investigate the effectiveness and robustness of dichroic subjettiness ratios in Monte Carlo simulations, using Pythia 8.186 [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF], at a centre-of-mass energy of √ s = 13 TeV. Our signal sample consists of W W events, while for the background we use dijet events. Jets are reconstructed with the anti-k t algorithm with R = 1 and in determining signal and background efficiencies we keep all jets above a given p t cut. 5 We use the modified MassDrop Tagger with z cut = 0.1 for the 2-prong tagging and vary the cut on the τ 21 ratio. Whenever a SoftDrop grooming procedure is included, we use ζ cut = 0.05 and Figure 8.4 -τ 21 distributions for jets in dijet (solid lines) and W W (dashed lines) events again imposing p t > 2 TeV and including SoftDrop grooming. Different colors correspond to different combinations of jets used for the computation of the jet mass, τ 1 and τ 2 as indicated in the legend, our new dichroic combination being plotted in black. We have selected jets with a mass is between 60 and 100 GeV. The cross-section used for normalisation, σ, is defined after the jet p t and mass cut, so that all curves integrate to one. [START_REF] Cacciari | Dispelling the N 3 myth for the k t jet-finder[END_REF][START_REF] Cacciari | FastJet User Manual[END_REF] and fjcontrib 1.024 [START_REF]Fastjet contrib[END_REF].

N -subjettiness and mass distributions with various τ 21 ratios (β τ = 2)

We start by examining the τ 21 distribution. This is plotted in fig. 8.4 for both QCD jets (solid lines) in dijet events and W jets (dashed lines) in W W events. We select jets above 2 TeV and always apply SoftDrop grooming. In practice, we use parton-level events, and impose a cut on the reconstructed jet mass (SD-groomed or mMDT-tagged) 60 < m < 100 GeV. We consider four cases: the τ full 21,groomed distribution when we cut on the SD-groomed mass and the τ tagged 21 , τ full 21,groomed and τ dichroic 21,groomed distributions when we cut on the mMDT-tagged mass. As expected, the distributions for signal (W ) jets are peaked at smaller values of τ 21 than the corresponding distribution for background (QCD) jets. Fig. 8.4 shows that all the signal distributions, and in particular the three options where one measures the mMDT-tagged jet mass, are very similar. This is in agreement with our discussion in the previous section. Comparatively the background distributions look rather different. The case where everything is computed from the mMDT-tagged jet (the solid blue curve) peaks at smaller values of τ 21 as expected from its smaller Sudakov suppression, related to the fact that this combination puts no constraints on large-angle emissions (region C in the previous section). Furthermore, the dichroic combination, the solid black curve in fig. 8.4, is expected to have the largest suppression and is indeed peaked at larger τ 21 values, translating into a larger discrimination against signal jets.

Note that the τ 21 distribution for the dichroic combination also shows a peak for τ 12 > 1 that we have not discussed in our earlier argumentation. This comes from events with multiple emissions in region C, as discussed in our analytic calculations in section 8.3. Results for the mass distribution obtained for background (QCD dijets) jets at parton level (without UE) are presented in fig. 8.5. As in fig. 8.4, SoftDrop grooming has always been applied prior to any additional tagging or N -subjettiness cut. Again, we can identify most of the features discussed in section 8.1. First of all, if we compare the mMDTtagged mass (dashed blue curve) to the SD-groomed jet mass (dashed red curve) we see that the latter is smaller than the former at small masses, owing to the larger Sudakov factor R SD > R mMDT , but larger at intermediate masses, due to the larger prefactor

R SD > R mMDT .
Then, we can consider the effect of the additional constraint on the τ 21 ratio, taken here as τ 21 < 0.3 for illustrative purpose. If we compute τ 21 on the same jet as for the mass (τ full 21,groomed in solid red and τ tagged 21 in solid blue for the SD-groomed and mMDTtagged jets respectively), we see that the cut reduces the background, that the reduction increases for smaller masses and that the reduction is larger for the SD-groomed jet than for the mMDT-tagged jet. This last point is a reflection of the fact, that the Sudakov suppression associated with the N -subjettiness cut is larger when both the mass and τ 21 are computed on the SD-groomed jet than when both the mass and τ 21 are computed on the mMDT-tagged jet (fig. 8.2(left)). Then, when measuring the mMDT-tagged jet mass, one sees that computing τ 21 on the SD-groomed jet (τ full 21,groomed , the solid green curve in fig. 8.5) shows a larger suppression than computing τ 21 on the mMDT-tagged jet, although the difference is reduced at very small masses. Finally, if we consider our new, dichroic case, eq. (8.2) (τ dichroic 21,groomed , the solid black curve), we see a larger suppression than in all other cases, as expected from our earlier arguments. 

Signal v. background discrimination and other performance measures

To further test the performance of our new method, we have also studied ROC (receiver operating characteristic) curves, shown in fig. 8.6 for parton-level simulations and in fig. 8.7 for hadron-level events including hadronisation and the underlying event. In all cases, we impose the constraint that the (full, tagged or groomed) mass is between 60 and 100 GeV. Efficiencies are given relative to the inclusive cross-section for having jets above our p t cut. Let us first discuss the result of parton-level simulations, fig. 8.6, where the dichroic ratio is again represented by the black curves. Without grooming (the left-hand plot in the figure), our method shows a substantial improvement compared to all other combinations considered, outperforming them by almost 30% in background rejection at a signal efficiency of 50% and by more than a factor of 2 at a signal efficiency of 40%. After Soft-Drop grooming (right-hand plot), the dichroic method, i.e. computing the jet mass and τ 1 on the mMDT-tagged jet and τ 2 on the SD-groomed jet, still shows an improvement, albeit less impressive than what is observed using the full jet to compute τ 2 .

If instead we consider the results at hadron level, including both the perturbative parton shower as well as non-perturbative effects, in fig. 8.7, we see that the dichroic subjettiness ratio still does a better job than the other variants but the gain is smaller. For example, measuring the mMDT-tagged mass with a cut on the groomed dichroic ratio, τ dichroic 21,groomed , the optimal choice in fig. 8.7, is only slightly better than the next best choice where one measures the SD-groomed mass and imposes a constraint on τ full 21,groomed . This is because in going from parton to hadron level, the ρ groomed vs. τ full 21,groomed curve has moved down more than the ρ tagged -τ dichroic 21,groomed curve, i.e. the former is getting a significantly larger boost in its discriminating power from non-perturbative effects. 6 This is potentially problematic, because one does not necessarily want signal-to-background discrimination power for a multi-TeV object to be substantially driven by the physics that takes place at a scale of 1GeV, physics that cannot, with today's techniques, be predicted from first principles. Additionally, phenomena happening on a scale of 1GeV are difficult to measure reliably.

In evaluating the overall performance of different τ 21 combinations we will consider both the signal significance and the size of non-perturbative effects, as we done in fig. 6.13 in chapter 6. For a given method and p t cut, we first determine the τ 21 cut required to obtain a desired signal efficiency (at hadron level). For that value of the τ 21 cut, we can compute the signal significance, defined as ε S / √ ε B (computed at hadron level) which is a measure of the discriminating power of the method; we then estimate non-perturbative effects as the ratio between the background efficiency at hadron level divided by the background efficiency at parton level, which is a measure of robustness against nonperturbative effects. We will show results for a range of different signal-efficiency choices .8 -Signal significance plotted versus the non-perturbative effects for the QCD background (defined as the ratio between the background "fake" tagging rate at hadron and parton level). Different curves correspond to different combinations indicated in the legend. For the solid curves, a SoftDrop (β = 2 and ζ cut = 0.05) grooming is applied, while no grooming is applied for the dashed curves. In the left-hand plot, we impose a 2 TeV p t cut on the initial jet. The symbols on each curve then correspond to a signal efficiency (computed at hadron level) ranging from 0.05 upwards in steps of 0.05, with the large symbol on each line corresponding to ε S = 0.5 and the efficiency at the right-hand extremity explicitly labelled. In the right-hand plot, the signal efficiency (computed at hadron level) is fixed to be 0.5 and the p t cut on the jet is varied between 500 GeV and 3 TeV (in steps of 500 GeV, labelled explicitly for the groomed dichroic ratio), with the large symbol on each line corresponding to a 3 TeV cut.

and jet p t cuts. In fig. 8.8, which highlights the key performance features of the dichroic method, we plot the signal significance versus the non-perturbative effects for different methods. In the left-hand panel, the curves correspond to a range of τ 21 cuts for jets with p t > 2 TeV. The points on the curves correspond to different signal efficiencies (starting from 0.05, in steps of 0.05, and with ε S = 0.5 indicated by a bigger point). In the right-hand panel, the points on the curves correspond to different p t cuts, with the τ 21 cut adjusted (as a function of p t ) so as to ensure a constant signal efficiency of 0.5. In both plots, the τ 21 cut is determined so as to achieve the expected signal efficiency at hadron level and the same cut is used for parton-level results. To avoid the proliferation of curves, the result for the ungroomed ρ full -τ full 21 is not shown since it is obvious from the ROC curves in figs. 8.6 and 8.7(left) that it is extremely sensitive to non-perturbative effects.

In both plots, we see that the dichroic method comes with larger discriminating power with a relatively limited sensitivity to non-perturbative effects, provided one first applies a grooming step. Without the grooming step, one observes a much larger sensitivity to non-perturbative effects, as one might expect. 7 It also appears that the performance gain increases when the boost, i.e. the jet p t , increases. This was also expected from our arguments in section 8.1. Finally, compared to the common setups in the literature, namely with modified MassDrop tagging with a cut on τ 21 applied either on the mMDT (ρ tag -τ tagged 21 , the dot-dashed blue curve) or on the full jet (ρ tag -τ full 21 , the dashed green curve), our dichroic method with grooming (solid black) gives up to a factor of two improvement in signal significance, with comparable non-perturbative effects. Considering other combinations that have not been widely used experimentally, τ full 21,groomed with either a groomed (ρ groom , solid red) or a tagged (ρ tag ), solid green) jet mass both perform well, however τ dichroic 21,groomed still remains the best, with an optimal significance that is about 25% larger, and smaller non-perturbative corrections for any given signal significance.

As a final check, we have studied the dependence of the signal efficiency on the τ 21 cut, as shown in fig. 8.9. Comparing the left and right-hand plots, it appears clearly that applying SoftDrop grooming helps to reduce non-perturbative effects which otherwise significantly lower the signal efficiency. It is also interesting to notice that without grooming, the signal efficiency obtained with our dichroic method (the dashed black curve on the left plot of fig. 8.9) only reaches its plateau for cuts on τ 21 larger than 1 already at parton level. This can likely be attributed to initial-state radiation in the jet at angles larger than the decay angle of the W boson. These effects are strongly reduced by SoftDrop grooming (see also the discussion in Section 8.3).

Brief comparison with other tools

To complete our Monte Carlo studies, in fig. 8.10 we compare the performance of τ dichroic 21,groomed with various other tools: mMDT tagging alone, SoftDrop grooming alone (β = 2 as above), and also the Y m -variant of Y-splitter, combined with SoftDrop (pre-)grooming or with trimming, as described in detail in ch. 6. (see also [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF]). Whereas in the analogous fig. 8.8, all curves involved the same signal efficiency, here this is no longer the case. Accordingly efficiencies are reported versus p t in table 8.1.

Let us start by examining the pure mMDT result: as known already from [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] it provides mild tagging, it has small non-perturbative corrections and only modest dependence on p t . SoftDrop (β = 2), when used alone, has slightly lower significance and larger nonperturbative corrections. 8 These two tools have the highest signal efficiencies, of about 63% and 76% respectively at 2 TeV.

Next we examine combinations that involve Y m -splitter. This cut is similar in its effect to z cut in mMDT. When used in conjunction with SD (pre-)grooming, the highest-mass emission that passes the SD cut is also the one that is unclustered by Y m -splitter and so it is required to pass the y cut condition. As a result, the constraint in the Lund plane turns out, at the leading-log level, to be identical to that obtained with τ dichroic 21,groomed and the condition τ cut = 1, with a Sudakov suppression vetoing all emission down to a mass scale ρ in the SD-groomed jet, and a small prefactor ∼ α s ln(1/y cut ). This is reflected in fig. 8.10, where one sees that the τ dichroic 21,groomed < 1 curve (black open diamonds) is remarkably similar to the SD+Y m -splitter curve (red open squares). Where the τ dichroic 21,groomed variable has an advantage is that one can now further adjust the choice τ cut , whereas with SD+Y m -splitter that freedom is not available.

Of the various possible combinations involving Y-splitter, we are considering the Y m with trimming, as it gives the best signal-to-background discrimination. It is shown as red solid squares in fig. 8.10. Overall it performs less well than the mMDT plus τ dichroic 21,groomed combination with ε S fixed to 0.4, even though is has a broadly similar signal efficiency.

Another point to discuss concerns the choice of β τ in the N -subjettiness definition, eq. (4.6). Many experimental uses of N -subjettiness ratios have concentrated on the choice β τ = 1, while throughout this article we have used β τ = 2. A discussion of the β τ = 1 case is given in appendix C.1, including comparisons of dichroic and normal variants. Dichroic always perform best also for β τ = 1, and so in the brief summary that we give here we will only show dichroic results.

An argument often given for the choice of β τ = 1 is that it is less sensitive to nonperturbative effects. Where the β τ value is not explicitly labelled, it is equal to 2. Note that the default signal-efficiency working point for the dichroic subjettiness ratios is 0.4 here rather than the 0.5 chosen in fig. 8 β τ = 2 (circles). For the β τ = 1 case, we have considered either exclusive-k t axes with the standard E-scheme four-vector recombination (triangles), or the exclusive-k t axes with the winner-takes-all (WTA) recombination scheme (squares). In both the SD-groomed and ungroomed cases, the non-perturbative corrections are somewhat smaller for β τ = 1 (except in the WTA groomed case). In the ungroomed case, β τ = 1 also leads to better signal-discrimination. However once SD-grooming is included the signal discrimination is best for the β τ = 2 case. If one is concerned about the slightly larger non-perturbative effects for the SD-groomed β τ = 2 case, then one can slightly increase the τ cut choice: in fig. 8.8(right) where τ cut was chosen so as to obtain a higher signal efficiency of ε S = 0.5 the τ dichroic 21,groomed (β τ = 2) performance is very similar to the τ dichroic 21,groomed (β τ = 1,ε S = 0.4) performance in fig. 8.10(right). Therefore, it is the SD-groomed, β τ = 2, dichroic ratio that appears to give the best overall performance.

Analytic calculations

In this section, we consider brief analytic calculations relating to the observables we have presented so far. Our main goal here is to illustrate that the discussion from section 8.1 -where we used Lund diagrams to motivate dichroic subjettiness ratios -does indeed capture the qualitative picture observed in Monte Carlo simulations. To that aim, it is sufficient to use leading-logarithmic accuracy, where we control double logarithms, i.e.

α n s ln j ρ ln k τ cut ln z cut ln m ζ cut with j + k + + m = 2n, assuming ρ, τ cut , z cut , ζ cut 1.
For the QCD background, we find, for τ cut < 1:9 ρ full , τ full 21 :

ρ σ dσ dρ <τ = b i ρ dz z α s ( √ zρp t R)C R π exp -R full (ρ, τ, z) , (8.4a 
)

ρ mMDT , τ tagged 21 : ρ σ dσ dρ <τ = b i zcut dz z α s ( √ zρp t R)C R π exp -R mMDT (ρ, τ, z) , (8.4b)
ρ SD , τ full 21,groomed :

ρ σ dσ dρ <τ = b i z SD (ρ) dz z α s ( √ zρp t R)C R π exp -R SD (ρ, τ, z) , (8.4c 
)

ρ mMDT , τ dichroic 21 : ρ σ dσ dρ <τ = b i zcut dz z α s ( √ zρp t R)C R π exp -R full (ρ, τ, z) , (8.4d) 
ρ mMDT , τ dichroic 21,groomed :

ρ σ dσ dρ <τ = b i zcut dz z α s ( √ zρp t R)C R π exp -R SD (ρ, τ, z) , (8.4e) 
where

z SD (ρ) = max (ρ β ζ 2 cut ) 1/(2+β) , ρ and R full (ρ, τ, z) = 1 0 dθ 2 2 θ 2 2 1 0 dzp i (z 2 ) α s (z 2 θ 2 ) 2π Θ(z 2 θ 2 2 > τ ρ), (8.5) 
+ 1 0 dθ 2 2 θ 2 2 1 0 dzp xg (z 2 ) α s ( √ zρz 2 θ 2 ) 2π Θ(z 2 θ 2 2 > τ ), R SD (ρ, τ, z) = 1 0 dθ 2 θ 2 1 0 dzp i (z) α s (z 2 θ 2 ) 2π Θ(zθ 2 > τ ρ)Θ(z > z cut θ β ) (8.6) + 1 0 dθ 2 2 θ 2 2 1 0 dzp xg (z 2 ) α s ( √ zρz 2 θ 2 ) 2π Θ(z 2 θ 2 2 > τ ),
where we supposed that the emission angle θ is already normalized to the jet radius R and the choice of p i (z) depends on the flavor of the initial parton (quark or gluon). We can obtain R mMDT by imposing β → 0 in the expression R SD . Notice that these expression (8.5) in particular is equivalent to eq. (7.8), obtained in chapter 7.

Using the basic building blocks, this exponents can be written as

R full (ρ, τ, z) = T 02 (τ ρ, b i ; C R ) + T 02 ( √ zρτ, √ zρb g ; C A ), (8.7a 
)

R mMDT (ρ, τ, z) = R full (ρ, τ, z) -T 02 (τ ρ, z cut ; C R ) + T 02 ( √ zρτ, z cut ρ/z; C R ), (8.7b 
)

R SD (ρ, τ, z) = R full (ρ, τ, z) -T -β0 (τ ρ, ζ cut ; C R ) + T -β0 ( √ zρτ, ζ cut (ρ/z) (β+1) 2 ; C R ). (8.7c) 
Note that the full and mMDT jet mass Sudakov introduced respectively in eq. (8.5) and eq. ( 8.6) can be written as

R full (ρ) = R full (ρ, 1, "any z") , (8.8a) R mMDT (ρ) = R mMDT (ρ, 1, "any z") . ( 8.8b) 
In the above expressions, z corresponds to the momentum fraction of the emission dominating the jet mass (emission "a" in figs. 8.1 and 8.2). We keep the z integration explicit since the secondary emissions, the C A terms, depend explicitly on z. In all cases, the integration over z runs over the region kinematically allowed by the tagger defining the jet mass. The Sudakov exponent in these expressions is then essentially given by the jet on which we compute τ 2 . While we only target leading-logarithmic accuracy, our results also include the singlelogarithmic contributions coming from hard collinear splittings, which are often phenomenologically important. They appear as the b i factors in eqs. (8.4) and (8.7), where we have introduced b i = exp(B i ). 10 These contributions can effectively be taken into account by limiting all z integrations to b i for primary emissions and b g for secondary emissions.

Finally, as expected, if one takes the limit β → ∞ of the SD results, one recovers the full results. Also, the limit β → 0 of (8.4c), reduces to (8.4b).

So far, we have not yet discussed the case where ρ is computed from the mMDT-tagged jet and τ 21 from the full jet. This is more involved due to the two separate kinematic configurations involved (see fig. 8.1(b-c)). In the end, we find (assuming ρ < z cut ) ρ mMDT , τ full 21 :

ρ σ dσ dρ <τ = b i zcut dz z α s ( √ zρp t R)C R π exp -R full (ρ, τ, z) + Θ z cut > ρ τ b i zcut dz z α s ( √ zρp t R)C R π exp -R mMDT (ρ) × × zcut ρ/τ dρ c ρ c zcut ρc dz c z c α s ( √ z c ρ c p t R)C R π exp -R out,full (ρ c , τ, z c ) , ( 8.9) 
and a similar expression with "full" replaced by "SD" for the case where τ 21 is calculated on the SD jet. In the above expression, we have used

ρ c = z c θ 2 c and R out,full (ρ c , τ, z c ) = T 02 (ρ c τ, z cut ; C R ) + T 02 ( √ ρ c z c τ, √ ρ c z c b g ; C A ) , (8.10a) R out,SD (ρ c , τ, z c ) = R out,full (ρ c , τ, z c ) -T -β2 (ρ c τ, ζ cut ; C R ) + T -β2 ( √ ρ c z c τ, ζ cut (ρ c /z c ) (β+1)/2 ; C R ). (8.10b)
The configurations contributing to the last two lines of eq. (8.9) come from jets with at least one emission in region C (discarded by mMDT) with ρ c ≡ z c θ 2 c > ρ/τ cut . They result in an extra contribution to the mass distribution, which would then be larger than what we obtain with our dichroic combination (eq. (8.4d) or, equivalently, the first line of eq. (8.9)). When using the dichroic combination, these configurations would all have τ 21 ≥ 1 (up to τ 21 = z cut /ρ). In particular, for a cut τ 21 < τ cut with τ cut > 1, the dichroic combination leads to:

ρ mMDT , τ dichroic 21 : ρ σ dσ dρ <τ τ >1 = b i zcut dz z α s ( √ zρp t R)C R π e -R mMDT (ρ) (8.11) 
e -R out,full (ρτ )

+ zcut ρτ dρ c ρ c zcut ρc dz c z c α s ( √ z c ρ c p t R)C R π e -R out,full (ρc,ρτ /ρc,zc) with R out,full (ρτ ) = T 02 (ρτ, z cut ; C R ) (8.12a) R out,SD (ρτ ) = R out,full (ρτ ) -T -β2 (ρτ, ζ cut ; C R ). (8.12b) 
This result splits into 2 contributions corresponding to the two terms in the round bracket on the second line of (8.11): the first term comes from configurations where there is no emission in region C with zθ 2 > ρτ cut , and it corresponds to values of τ dichroic 21 < 1 (this is manifest, because in eq. (8.11), given for τ cut > 1, it has no dependence on τ cut ). For the second contribution, the part corresponding to values of τ dichroic 21 ≥ 1, there is an emission "c" with z c θ 2 c > ρτ cut . To guarantee τ 21 < τ cut , we then need to veto emissions (both primary and secondary) with zθ 2 > ρτ cut . 11 Note that this second contribution itself includes two sub-contributions: the case where emission "c" is the only emission in region C with zθ 2 > ρ, yielding a contribution to the τ 21 distribution proportional to δ(τ 21 -1) (recall that τ full 2 is set by the second hardest emission overall, which makes it equal to τ tagged 1 ); and a second sub-contribution where, in addition to emission "c", there is at least one additional emission with ρτ cut > zθ 2 > ρ, yielding a continuum with τ 21 > 1 in the τ 21 distribution (see fig. 8.4 as well as the right plot of fig. 8.11 below). One can calculate the δ(τ 21 -1) contribution to the τ 21 distribution by taking the difference between (8.11) and (8.4d) for τ cut → 1 which gives

b i zcut dz z α s ( √ zρp t R)C R π zcut ρ dρ c ρ c zcut ρc dz c z c α s ( √ z c ρ c p t R)C R π e -R full (ρ)-R C A (ρc,zc,ρ) , ( 8.13) 
where R full (ρ) is the full jet mass Sudakov given in eq. (8.8a), and

R C A (ρ c , z c , ρ) = T 0 ( z c /ρ c ρ, √ ρ c z c b g ; C A ). eq. (8.13
) is equal to the τ cut → 1 limit of the second term in round brackets in eq. (8.11). In practice the δ-function contribution gets smeared out to values of τ 12 > 1 through the effect of multiple emissions.

Note that it is relatively straightforward to check that the limit τ cut → 1 in eq. (8.9), or the limit τ cut → z cut /ρ in eq. ( 8.11) both tend to the mMDT jet mass distribution.

From the equations above, the τ 21 distribution, for a given jet mass, can be obtained by taking the derivative with respect to τ cut and normalising by the jet mass distribution without any cut on τ 21 . Background efficiencies can also be obtained straightforwardly by integrating any of the above mass distributions over the allowed mass window.

For signal jets, we assume that if the jet mass is not within some reasonable window around the boson mass, then the jet is discarded. We then find the following signal efficiency

ε S = f ISR 1-z min z min dz p sig (z) exp -R sig (ρ, τ cut , z) , (8.14) 
with z min = ρ, z SD (ρ) or z cut depending on whether the mass is computed on the full jet, the SD-groomed jet or the mMDT-tagged jet, respectively. The τ 21 distribution for a given jet mass can be obtained by taking the derivative of ε S with respect to τ cut (and normalising appropriately). In eq. (8.14) the Sudakov exponent is given by

R sig (ρ, τ, z) = T 02 ( z(1 -z)ρτ ; (1 -z)ρ/zb i ; C R ) -T 02 ( zρ/(1 -z); (1 -z)ρ/zb i ; C R ) + T 02 ( z(1 -z)ρτ ; zρ/(1 -z)b i ; C R ) -T 02 ( (1 -z)ρ/z; zρ/(1 -z)b i ; C R ) , (8.15) 
valid for small τ . Here we target double-logarithmic accuracy, α n s ln 2n τ , though we also include a set of finite-z and hard-splitting corrections that were found to be numerically important (see discussion in the end of chapter 7). These represent only a subset of nextto-leading logarithmic terms. Note that for z 1 (1 -z 1) the term on the fourth (second) line is zero, while the term on the third (first) line corresponds to each one of the (symmetric) branches in the signal emission. For simplicity, in our numerical results we will use p sig (z) = 1 in eq. (8.14). 12Eq. (8.14) also includes a factor f ISR that accounts for the effect of initial-state radiation (ISR). Such effects are present both for signal and background jets and are generically single-logarithmic. As such they are subleading compared to the double-logarithms that we resum.

Nevertheless, if we consider signal jets and examine the limit of large p t with M , τ cut , etc. all fixed, then because of the absence of double logarithms of ρ, single-logarithmic ISR effects (α s ln ρ) n can be numerically dominant [START_REF] Dasgupta | On jet substructure methods for signal jets[END_REF]. Physically, they are associated with the requirement that ISR should not substantially modify the mass of the signal jet. The correction involves (α s ln ρ) n terms, only when the mass is determined on the full jet and the factor f ISR then takes the form

f ISR = exp - C R 2πβ 0 R 2 log 1 1 -2λ , ( 8.16 
)

λ = β 0 α s (p t ) log 1 ρ + O log M δM , log 1 τ cut , • • • , ( 8.17) 
where a non-global contribution (formally of the same logarithmic order) is ignored for simplicity. In the above formula, δM is size of the mass window in which signal jets are accepted, and a full treatment of all single-logarithmic corrections would need to account also for logarithms of δM/M . A more complete treatment of f ISR would be relevant for precise phenomenological applications. The finite O (α s ) component associated with highp t emissions could be obtained e.g. using POWHEG [START_REF] Nason | A New method for combining NLO QCD with shower Monte Carlo algorithms[END_REF][START_REF] Frixione | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method[END_REF][START_REF] Alioli | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX[END_REF], aMC@NLO [START_REF] Alwall | The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations[END_REF] or at NNLO using MATRIX [START_REF] De Florian | Differential Higgs Boson Pair Production at Nextto-Next-to-Leading Order in QCD[END_REF] or MCFM [START_REF] Campbell | An Update on vector boson pair production at hadron colliders[END_REF][START_REF] Campbell | Vector boson pair production at the LHC[END_REF][START_REF] Boughezal | Color singlet production at NNLO in MCFM[END_REF].

We can now compare our analytic predictions with the Monte Carlo results from the previous Section. We use α s (m Z ) = 0.1383, as in the Pythia 8 simulations presented in the previous Section, and freeze the coupling for scales below µ fr = μfr p t R, which we set to 1 GeV. We start with the QCD mass distributions, shown on the left plot of fig. 8.11, to be compared to the Monte Carlo results presented in fig. 8.5. Globally, we see that our analytic calculation captures correctly the main patterns discussed earlier. We note however that the analytic distributions, especially those involving the full jet mass, are less peaked than the Monte Carlo ones. This is likely due to subleading logarithmic corrections, like multiple-emission corrections which would effectively increase the Sudakov exponent.

The τ 21 distributions for both QCD jets and signal (W ) jets are shown in the right plot of fig. 8.11, to be compared with fig. 8.4. The ordering between the different curves is well captured by our analytic expressions. Differences related to the over-simplicity of our leading-logarithmic approximation are larger than what was seen for the mass distribution. First, our analytic calculations are non-zero when τ 21 → 1. This region is however not under control within our strongly-ordered approximation. Similarly, the kink observed for τ 21 ∼ 0.5 is not physical. It comes from the onset of the secondary-emission quarks after the decay of the two W bosons have been calculated in [START_REF] Gunion | Lepton Correlations in Gauge Boson Pair Production and Decay[END_REF] and could in principle be used to compute p sig (z). This would however be specific to the W W process considered here just as an example. We therefore use the "splitting function" of an unpolarised W boson. This simplification does not affect significantly any of the results presented here. contribution which starts, in our formulas, at τ 21 = b g . The analytic calculation for our dichroic combination is given by the black curves in the right plot of fig. 8.11. The dijet case clearly has a contribution proportional to δ(τ 21 -1) (cf. eq. (8.13)) (scaled down by a factor of 5 for clarity), which is not observed in the Monte Carlo results. In practice, additional emissions at smaller zθ 2 would also contribute to τ 21 , and they would transform the δ(τ 21 -1) contribution into a Sudakov peak at τ 21 1, which is visible on the Monte Carlo simulations.

Finally, let us turn to the ROC curves, plotted in fig. 8.12. We again see that they reproduce the main qualitative features observed in section 8.2. There are however quantitative differences between our analytic results and the Monte Carlo simulations. For example, our calculation over-estimates the signal efficiencies. A more quantitative description would require a more precise analytic treatment including subleading corrections, beyond the strong-ordering approximation, and fixed-order corrections for signal efficiencies.

Final considerations

In this chapter we have examined the interplay between boosted-object tagging algorithms, mMDT or SoftDrop, and radiation constraints, notably as imposed through Nsubjettiness cuts. The analysis points to a new N -subjettiness ratio, τ dichroic 21 = τ full 2 /τ tagged 1 , where the numerator is evaluated on the full jet, while the denominator is evaluated on is effective in maintaining good signal-to-background significance while substantially limiting non-perturbative effects.

The overall behavior of our dichroic τ 21 variable with grooming (see fig. 8.4), is that the τ 21 distribution for signal jets is left largely unmodified by the change to a dichroic variant, whereas the distribution for background jets is shifted to substantially higher values of τ 21 , increasing the ability to distinguish signal and background. Figs. 8.8 and 8.10 provide a summary of the signal-significance and non-perturbative corrections for a range of boosted-object identification methods. One sees that τ dichroic 21,groomed with β τ = 2 provides the best signal significance of any of the methods and that, for a given signal significance, it tends to limit the size of non-perturbative effects relative to other methods.

-9 -Groomed jet mass distribution

In this chapter we perform a phenomenological study of the jet mass distribution with mMDT (or SoftDrop with β = 0) motivated by an upcoming CMS measurement [START_REF]Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at √ s = 13 TeV[END_REF]. 1 In order to compare with experiments, we matched resummed and fixed-order predictions and computed theoretical uncertainty bands.

We consider jet mass distributions in several transverse momentum bins. Our theoretical prediction accounts for the resummation of the leading large logarithms of ρ and is matched to fixed-order matrix elements computed at next-to-leading order (NLO), we also consider finite z cut effects, which enter already at LL accuracy. Crucially, working at finite z cut allows us to keep track of the distinction between the jet transverse momentum before or after grooming, henceforth p t,jet and p t,mMDT , respectively. We find that the use of p t,mMDT has several theoretical disadvantages with respect to p t,jet . While the two resummations coincides for z cut → 0, the former has a more involved perturbative structure already at leading order. This difference stems from a basic fact, namely while the ungroomed p t,jet spectrum is an Infra-Red and Collinear (IRC) safe quantity, the jet p t,mMDT spectrum (with no additional cuts) is Sudakov safe but not IRC safe. Conversely, the p t,mMDT spectrum is slightly less sensitive to the underlying event than p t,jet one and, arguably, more resilient to pile-up. It is therefore interesting to explore both options in more details.

This chapter is organized as follows. Resummation and matching of the mass distribution with p t,jet are done in section 9.1, followed by the case of p t,mMDT in section 9.2. A Monte Carlo study of non-perturbative corrections is presented in section 9.3 and we collect our final phenomenological predictions and discuss them in section 9.4.

Jet mass distributions with mMDT

In this chapter, we focus on the invariant mass of a mMDT jet produced in proton-proton collisions with a centre-of-mass energy of 13 TeV. Our selection cuts closely follow the ones of the upcoming CMS measurement [START_REF]Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at √ s = 13 TeV[END_REF]: jets are defined with the anti-k t algorithm with jet radius R = 0.8. Next, we select the two hardest jets, j a and j b , of the event and impose the following conditions: In practice, these cuts are intended to select dijet events. We note however that the transverse momentum cut on the second jet results in large perturbative corrections for the dijet cross-section which render the mass distribution unstable in the first transverse momentum bin. Imposing only a p t cut on the leading jet and the symmetry condition would have been similarly efficient at selecting dijet events, and would have improved the perturbative convergence.

For every jet that passes the above cuts, we apply the mMDT procedure with z cut = 0.1. We compute the (groomed) jet mass squared m 2 = ( i p i ) 2 , where the sum runs over all particles in the groomed jet. We continue using the dimensionless variable ρ = m 2 /(p 

and the corresponding normalised version. Furthermore, the quantity that is measured experimentally is the mass distribution integrated over a set of mass bins m i < m < m i+1 , which is the observable we are going to explicitly show in our plots. Note that in eq. (9.1) p t,jet is the jet transverse momentum before grooming. We will consider the alternative choice, namely the groomed transverse momentum p t,mMDT in section 9.2. The leading logarithmic resummation of mMDT jet masses has been performed in [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] and resummation for SoftDrop observables, i.e. for generic β, was performed to NLL accuracy in [START_REF] Larkoski | Soft Drop[END_REF] and to NNLL accuracy in [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF]. All the logarithmic contributions in SoftDrop observables are of collinear origin, while soft-emission at large angle can at most contribute with logarithms of z cut . Thanks to this observation, the resummed calculation can be done in the collinear limit and the resulting structure is much simpler than the one that we encounter in the resummation of the jet mass distributions without grooming, see for instance [START_REF] Chien | Resummation of Jet Mass at Hadron Colliders[END_REF][START_REF] Dasgupta | On jet mass distributions in Z+jet and dijet processes at the LHC[END_REF][START_REF] Jouttenus | Jet Mass Spectra in Higgs + One Jet at NNLL[END_REF]. In particular, soft radiation at large angle, which would give rise to a nontrivial matrix structure in color space, is groomed away: only dipoles involving the measured jet are logarithmically enhanced and require resummation, while initial-state radiation does not contribute. For the same reason, these observables are free of non-global logarithms.

At this stage, a word of caution about our counting of the logarithmic accuracy is in order. While for a generic (non-zero) β, the SoftDrop mass distribution is dominated by double logarithms -with LL accuracy resumming those double logarithms, NLL accuracy including single-logarithms as well, etc... -these double logarithms are absent for mMDT (i.e. SoftDrop with β = 0) in the region ρ < z cut :

ρ dσ dρ (ρ; z cut ) = ∞ n=1 n m=1 c n,m (z cut ) α n s log m-1 1 ρ + O(ρ) , ( 9.4) 
where the dependence on the transverse momentum bin is understood. Single logarithmic terms in the jet mass are therefore formally the leading contribution and will be referred to as LL in what follows. Note that this counting is different from the (modified) leadinglogarithm we used in previous sections, where our accuracy was double logarithms (both of the jet shape and of ρ). Also, the logarithmic counting of refs. [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF] differs from ours because it refers to the accuracy of the objects that appear in the factorization theorem. These functions are separately double-logarithmic, even for β = 0, and the cancellation of the double logarithms only happens when they are combined. 2 In our counting, the NLL [START_REF] Larkoski | Soft Drop[END_REF] and NNLL [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF] results obtained for a generic β, actually correspond respectively to LL and NLL accuracy, in the small z cut limit, for mMDT. Thus, the state-of-the art evaluation of eq. (9.4) accounts for all the coefficients cn,n (z cut ) and cn,n-1 (z cut ), where

lim zcut→0 c n,m (z cut ) = cn,m (z cut ) + O(z cut ). (9.5) 
For phenomenology, one typically uses z cut 0.1, so it is important to investigate the size of finite z cut corrections. In this study we restrict ourselves to LL accuracy, while maintaining for the full z cut dependence, i.e. we fully account for all coefficients c n,n (z cut ).

Finally, in the region ρ > z cut grooming is not active and we recover the traditional jet mass result [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]. In this region we are going to perform a less sophisticated calculation which resums the double logarithms and those single logarithmic contributions of collinear origin. We find this procedure acceptable because in this region ρ ∼ z cut and we expect these contributions to be less important than the fixed-order corrections, which we include at NLO.

Resummation at finite z cut

The major complication with respect to the small-z cut limit has to do with the flavor structure. Let us consider for instance a q → qg splitting which does not satisfy the mMDT condition. There is an O(z cut ) probability for the gluon to be harder than the quark. In such a case, the declustering sequence would follow the gluon branch rather than the quark, resulting into a nontrivial mixing between quarks and gluons. The resummed distribution therefore acquires a matrix structure in flavor space [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] 

3 ρ d 2 σ dp t,jet dρ = (R q R g ) exp -R q -R q→g R g→q R q→g -R g -R g→q σ q σ g , ( 9.6) 
where σ q(g) is Born-level cross section for a quark (gluon) with transverse momentum p t,jet and R q(g) = ∂ L R q(g) , with L = log(1/ρ). As previously discussed, because we are dealing with a SoftDrop observable, the radiators R i can be computed in the collinear limit. Denoting by θ the emission angle (in units of the jet radius R) with respect to the hard momentum and with z the momentum fraction, we have

R q = 1 0 dθ 2 θ 2 1 0 dz p gq (z) α s (zθp t,jet R) 2π Θ (z cut < z < 1 -z cut ) Θ(zθ 2 > ρ), (9.7a) R g = 1 0 dθ 2 θ 2 1 0 dz p xg (z) α s (zθp t,jet R) 2π Θ (z cut < z < 1 -z cut ) Θ(zθ 2 > ρ), (9.7b) R q→g = 1 0 dθ 2 θ 2 1 0 dz p gq (z) α s (zθp t,jet R) 2π Θ (1 -z < z cut ) Θ(zθ 2 > ρ), (9.7c 
)

R g→q = 1 0 dθ 2 θ 2 1 0 dz p qg (z) α s (zθp t,jet R) 2π [Θ (1 -z < z cut ) + Θ (z < z cut )] Θ(zθ 2 > ρ), (9.7d) 
recalling that we are using the QCD constants defined in chapter 2 and p ab (z) are the splitting functions given in chapter 5.

At the LL accuracy we are working at, the above expressions can be further simplified. Besides the strict leading-logarithmic terms in ρ, it is trivial to also include the doublelogarithmic terms in z cut and this allows for a more transparent treatment of the transition point at ρ = z cut . In that context, it is helpful to separate eq. (9.7) in a contribution R i , coming from the 1/z part of the splitting function that includes the logarithmic and constant terms in z cut , and a remainder which contains the corrections power-suppressed in z cut . Later, this will make it easy to study the size of the finite-z cut corrections. For these contributions, we neglect the z factor in the argument of α s and in the constraint zθ 2 > ρ. The details of our calculation are given in appendix D.1.1 and, our final result reads

R q = C F R q (ρ; z cut ) Θ(ρ < e Bq ) + C F I(ρ; z cut ) π q (z cut ) Θ(ρ < z cut ), (9.8a) R g = C A R g (ρ; z cut ) Θ(ρ < e Bg ) + C A I(ρ; z cut ) π g (z cut ) Θ(ρ < z cut ), (9.8b) R q→g = C F I(ρ; z cut ) π q→g (z cut ) Θ(ρ < z cut ), (9.8c) R q→g = n f T R I(ρ; z cut ) π g→q (z cut ) Θ(ρ < z cut ), (9.8d) 
where we have introduced

R i (ρ; z cut ) = 1 2πα s β 2 0 W 1 + 2α s β 0 B i -W 1 + 2α s β 0 log(z m ) (9.9a) + 2W 1 + α s β 0 log(ρz m ) -2W 1 + α s β 0 (log(ρ) + B i ) , I(ρ; z cut ) = zcut ρ dx x α s (xp t R) π = 1 πβ 0 log 1 + α s β 0 log(z cut ) 1 + α s β 0 log(ρ) , ( 9.9b) 
with W (x) = x log(x), z m = max(z cut , ρ), B q and B g given in (5.12) and (5.13),

π q (z cut ) = log(1 -z cut ) + 3z cut 2 , (9.10a) π g (z cut ) = log(1 -z cut ) + 2z cut - z 2 cut 2 + z 3 cut 3 - n f T R C A z cut -z 2 cut + 2z 3 cut 3 , (9.10b) π q→g (z cut ) = -log(1 -z cut ) - z cut 2 - z 2 cut 4 , (9.10c) π g→q (z cut ) = z cut -z 2 cut + 2z 3 cut 3 . ( 9.10d) 
We note that the diagonal radiators vanish for ρ = exp(B i ) and, since B q is (slightly) larger than B g , this produces distributions with an end-point at ρ = exp(B q ). Furthermore, the appearance of z m = max(z cut , ρ) reproduces the transition point at ρ = z cut , when the mMDT becomes active. We show explicitly below that it corresponds to a transition between a plain jet mass behaviour at large mass and a single-logarithmic behaviour at low mass.

To gain some insight in this direction, it is helpful to consider the limit of these expressions in a fixer-order approximation, where we find

R (f.c.) i (ρ; z cut ) = α s 2π log(ρ) -B i 2 -log 2 (z m /ρ) , (9.11a) 
I (f.c.) (ρ; z cut ) = zcut ρ dx x α s (xp t R) π = α s π log z cut ρ . ( 9.11b) 
This clearly shows that the distribution is double-logarithmic for ρ > z cut (where z m = ρ), where we recover the ungroomed jet mass distribution calculated in chapter 5, and becomes single-logarithmic for ρ < z cut (where z m = z cut ). In the latter case, we also see that the finite-z cut corrections, proportional to I are entering at the same order as the small-z cut contributions, that is at the leading-logarithmic accuracy. Thus, these contributions must be included to formally obtain the full LL result.

In order to assess perturbative uncertainties we follow a standard procedure. We vary the factorisation scale (in the Born-level cross-sections σ q and σ g ) and the renormalisation scale (both in the resummation formula and in the Born-level cross-sections) by a factor of two around the hard scale p t,jet R, keeping the ratio of scales never larger than 2 or smaller than 1/2, i.e. we employ a canonical 7-point scale variation [START_REF] Cacciari | The t anti-t cross-section at 1.8-TeV and 1.96-TeV: A Study of the systematics due to parton densities and scale dependence[END_REF]. We also introduce a resummation scale µ Q , which we use to rescale the argument of the logarithms we are resumming L = log p t,jet R µ Q ρ . We use variations of µ Q by a factor of 2 around the hard scale p t,jet R to assess the size of logarithmic contributions beyond our accuracy.

Fixed-order calculations and matching prescription

The resummed jet mass spectrum discussed in the previous section is reliable in the ρ 1 region, where the distribution is dominated by collinear splittings. In order to accurately describe the ρ ∼ 1 region we have to resort to fixed-order computations. Ultimately, we will match the two calculations yielding theoretical predictions which are accurate at both small and large ρ, as discussed in the following.

All our fixed-order predictions are obtained using the public code NLOJet++ [START_REF] Catani | A General algorithm for calculating jet crosssections in NLO QCD[END_REF][START_REF] Nagy | Next-to-leading order calculation of three jet observables in hadron hadron collision[END_REF] together with the parton distribution set CT14 [START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF] at NLO. Jets are then clustered with the anti-k t algorithm as implemented in FastJet [START_REF] Cacciari | Dispelling the N 3 myth for the k t jet-finder[END_REF][START_REF] Cacciari | FastJet User Manual[END_REF] and we use the implementation of mMDT in fjcontrib [START_REF]Fastjet contrib[END_REF]. Jet mass distributions are obtained by considering 2 → 3 partonic processes at LO and NLO. Moreover, we also use NLOJet++ to calculate the bin cross section σ bin , see eq. ( 9.2), and the quark and gluon cross sections, σ q and σ g respectively. In order to estimate the theoretical uncertainty, we vary renormalisation and factorisation scales around the central value µ R = µ F = p t,jet R, with the 7-point method.

We are now ready to match the resummed and the fixed-order calculations. Before discussing different matching schemes, we address the issue of the end-point of the distribution at large ρ. It is not difficult to show, see e.g. [START_REF] Dasgupta | On jet mass distributions in Z+jet and dijet processes at the LHC[END_REF], that the LO distribution has an end-point at ρ max,LO = 1 4 + O (R 2 ). At NLO up to three partons can be reconstructed in a single jet, leading to ρ max,NLO = 25 64 + O (R 2 ) (see appendix D.2 for details). On the other hand, our resummed calculation has an end-point at ρ = exp(B q ), see eq. (9.8). It is desirable to match curves with the same end-point, therefore we modify the argument of the logarithms in the resummation in such a way that the resummed distribution has the same end-point as the fixed-order it is matched to (see e.g. [START_REF] Catani | Resummation of large logarithms in e+ e-event shape distributions[END_REF])

log 1 ρ → log 1 ρ - 1 ρ max,i + e -Bq , (9.12) 
where for R = 0.8 the end-points are found to be ρ max,LO = 0.279303 and ρ max,NLO = 0.44974 (see appendix D.2). The combination of resummed and fixed-order results comes with a certain degree of ambiguity. Different matching schemes must produce resummed and matched distributions, LO+LL and NLO+LL, at the quoted accuracy but they can differ for terms that are subleading in both logarithmic and fixed-order counting. The simplest matching scheme is the additive one, which consists of adding the two results while removing double counting. This scheme suffers from two issues. Firstly, when matching to NLO fixed-order results, our LL calculation only includes the leading α 2 s log(1/ρ) contribution and misses the constant α 2 s term, so an additive matching would tend to a constant at small ρ which is not physically correct. Secondly, even at LO, matching with our LL calculation requires a precise numerical calculation of the small-ρ tail, which can be delicate to reach in the fixed-order calculation. Therefore, we have decided to employ an alternative matching scheme, namely multiplicative matching. We discuss it in some detail for the NLO+LL case and then recover from it the simpler LO+LL. Naively, multiplicative matching can be defined as indicates the jet mass differential distribution computed at accuracy X, i.e. σ (m) X ≡ dσ X dm . This construction applies both to the normalised and unnormalised distributions.

Equation (9.13) is however not ideal either because at NLO accuracy, the fixed-order cross-section turns negative at small mass. Asymptotically both σ (m) NLO and σ (m) LL,NLO would be negative and their ratio would tend to 1 but there is a region where they would be close to zero and where eq. ( 9.13) would therefore be unreliable. To fix this issue, we can write the fixed-order distribution explicitly as This is the expression we use in order to obtain our matched results. The LO+LL results can be easily deduced from the above expression by simply dropping the O(α s ) correction in brackets, in which case the expression corresponds to what would have been obtained with a naive multiplicative matching. We can also define alternative matching schemes.

For instance, we can work with cumulative distributions

Σ X (m) = m 0 dm dσ X dm = 1 + α s Σ (1) X + α 2 s Σ (2) 
X + O α 3 s , (9.17)

and employ the so-called log-R matching [START_REF] Catani | Resummation of large logarithms in e+ e-event shape distributions[END_REF], which combines together the logarithm of the cumulative distributions. This results in

Σ log-R NLO+LL = Σ LL exp α s Σ (1) -Σ (1) LL + α 2 s Σ (2) -Σ (2) 
LL -

α 2 s 2 Σ (1) 2 -Σ (1) LL 2 
. (9.18) A comparison between the different matching schemes will be discussed in the following. 

Perturbative results

We now present our results for the resummed and matched jet mass distribution. We pick two representative bins in transverse momentum, namely 460 < p t,jet < 550 GeV and p t,jet > 1300 GeV. In fig. 9.1 we show the mass distribution in logarithmic bins of the mass:

4 ∆σ ∆ log m ≡ m i+1 -m i log (m i+1 /m i ) ∆σ ∆m , ( 9.19) 
where m i+1 and m i are, respectively, the upper and lower edge of each mass bin. Blue lines with a solid band represent distributions obtained with fixed-order calculations and their uncertainty, while green or red curves with a hatched band are for resummed and matched results obtained using eq. (9.16). We estimate the theoretical uncertainty on the matched result by taking the envelope of all the curves obtained by varying the arbitrary scales (µ R , µ F , µ Q ) which enter the fixed-order and resummed calculations, as previously detailed. At the top we compare leading order distributions to LO+LL results, while at the bottom we show the NLO curve compared to NLO+LL. The plots on the left are for the lower-p t,jet bin, while the ones on the right for the boosted bin. We can see that the normalisation uncertainty is rather large especially when we consider LO distributions. Therefore, it is also interesting to look at normalised distribution, with the normalisation taken to be the jet cross-section in the relevant transverse momentum bin calculated at LO and NLO, respectively for the LO(+LL) and NLO(+LL) results. We show our results for the normalised distributions in fig. 9.2. In order to estimate the importance of finite z cut we compared in fig. 9.3 the resummed and matched NLO+LL normalised distribution, in red, to an approximation in which the resummation is performed in the z cut → 0 limit, in grey, for two different transverse momentum bins. From the top plots we can already see that, for z cut = 0.1, these effects are small and the two curves fall well within each other's uncertainties bands. Looking at the bottom plots we can see that these effects at at most a couple of percent at NLO+LL (red curves). For comparison, we also show, in green, the same ratio in the case of the LO+LL result. Note that the bands in the ratio plots represent the uncertainty on the effect, not the overall uncertainty which is of the order of 10%, as can be seen from the top plots. These findings justify the approximation of refs. [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF], which achieved higherlogarithmic accuracy but in the small-z cut limit. We will see in the next section that the situation radically changes when consider bins in p t,mMDT .

Finally, in fig. 9.4 we compare two different matching schemes. In particular, we plot the ratio between the NLO+LL distribution obtained with log-R matching eq. (9.18) to the one obtained with multiplicative matching eq. (9.16), with their respective perturbative uncertainties. We see that the two results are in good agreement and they fall within each other's scale variation bands. 

Jet mas s dis t r ibu t ions w it h mMDT u s ing p t,mMDT

We now consider the alternative option where the mMDT jet mass is measured in bins of p t,mMDT rather than p t,jet . We begin our discussion pointing out a known but perhaps under-appreciated fact: the transverse momentum distribution dσ dp t,mMDT is not IRC safe, see e.g. [START_REF] Larkoski | Soft Drop[END_REF]. We then proceed, as before, by discussing our calculation for the jet mass distribution in bins of p t,mMDT .

Collinear u ns afet y (bu t Su dakov s afet y ) of p t,mMDT

The mMDT groomer only imposes a cut on the transverse momentum fraction z. Therefore, real emission emissions below z cut are groomed away without any constraint on the emission angle, resulting in collinear singularities that do not cancel against the corresponding virtual corrections. Thus, the p t,mMDT distribution is IRC unsafe and it cannot be computed order-by-order in the strong coupling α s , producing a divergence even at the level of the first emission. However, this observable still enjoys the property of Sudakov 

Figu r e 9.3 -

Comparison between the resummed and matched calculation with finite z cut (red) and the result with the resummation computed in the z cut → 0 limit. The ratio plots at the bottom show that for z cut = 0.1 these type of corrections are very small. safety and it is therefore calculable provided we perform an all-order computation. We note that the situation is instead di erent if one considers SoftDrop with β > 0, which does regulate the collinear region.

One way to explicitly show the IRC unsafety of the p t,mMDT distribution is to study fixed-order distributions in e + e -collisions using the program EVENT2 [START_REF] Catani | The Dipole Formalism for the Calculation of QCD Jet Cross Sections at Next-to-Leading Order[END_REF][START_REF] Catani | A General algorithm for calculating jet crosssections in NLO QCD[END_REF], for which we can easily control the infrared cut-o scale. In practice, we simulate events at Born level and at O(α s ), including both real emissions and virtual corrections. We cluster the full event with the e + e -version of the anti-k t algorithm with radius R = 0.4 and select jets with an energy larger than 0.95 √ s/2, with √ s = 1 TeV. We note that, at this order in perturbation theory, jets have either one or two constituents. We then run the following e + e -version of mMDT: jets with one constituent are kept untouched, and for jets with two constituents we either keep them intact if min(E 1 , E 2 ) > z cut E jet , or only keep the most energetic particle otherwise. We use z cut = 0.1. We consider the jet cross section for E > 0.95 √ s/2 before and after applying mMDT. At Born level, jets after the mMDT procedure are identical to the ungroomed jets. At O(α s ), for an initial jet with an energy above the cut-o , the mMDT jet energy can drop below the cut-o because of a collinear real emission inside the jet that does not pass the mMDT condition. This cannot happen for virtual corrections and so we do expect a leftover singularity.

In numerical codes, both the real and the virtual terms are simulated down to an infrared cut-o so that the numerical result is always finite. When lowering the infrared cut-o parameter the cross section for the ungroomed case is expected to remain constant (modulo small power corrections), while the cross section for mMDT jets is expected to have a residual logarithmic dependence on the cut-o as a consequence of the IRC unsafety. Fig. 9.5 shows the results of our simulations when varying the infra-red cut-o used in EVENT2 . We indeed clearly see a constant behaviour for the (IRC safe) inclusive cross-section and a logarithmically diverging behaviour for the (IRC unsafe) cross-section after the mMDT procedure. Moving back to pp collisions, we study how the nature of the observable, IRC safety for p t,jet and Sudakov safety for p t,mMDT , correlates with the size of non-perturbative corrections due to the hadronisation process and to multiple parton interactions, i.e. the underlying event (UE). To achieve this we use a phenomenological approach based on Monte Carlo parton showers simulations. In order to minimise potential bias due to a particular non-perturbative model, we use a variety of parton showers with di erent tunes, namely the AUET2 [START_REF]New ATLAS event generator tunes to 2010 data[END_REF] tune of Herwig 6.521 [START_REF] Corcella | HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes)[END_REF][START_REF] Corcella | HERWIG 6.5 release note[END_REF], the Z2 [START_REF] Field | Early LHC Underlying Event Data -Findings and Surprises[END_REF] and Perugia 2011 [START_REF] Skands | Tuning Monte Carlo Generators: The Perugia Tunes[END_REF][START_REF] Cooper | Importance of a consistent choice of alpha(s) in the matching of AlpGen and Pythia[END_REF] tunes of Pythia 6.428 [START_REF] Sjostrand | PYTHIA 6.4 Physics and Manual[END_REF], the 4C [START_REF] Corke | Interleaved Parton Showers and Tuning Prospects[END_REF] and the Monash 13 tune [START_REF] Skands | Tuning PYTHIA 8.1: the Monash 2013 Tune[END_REF] of Pythia 8.223 [START_REF] Sjostrand | A Brief Introduction to PYTHIA 8.1[END_REF].

The results of this study are presented in fig. 9.6, where the plot on the left shows the ungroomed p t,jet spectrum, while the one on the right the p t,mMDT distribution. In each plot, we show two sets of curves. The first set (labelled " hadronisation" on the plots) represents, for each Monte Carlo, the ratio between hadron-level and parton-level results, without UE. The second set (labelled " UE" ) instead shows the ratio of hadronlevel results with and without the UE contribution. The p t,jet plot shows all the features we would expect from an IRC safe observable. Non-perturbative corrections are suppressed by negative powers of the jet transverse momentum. Moreover, since we are dealing with high-p t jet with a fairly large radius (R = 0.8) hadronisation corrections are rather small [START_REF] Dasgupta | Non-perturbative QCD effects in jets at hadron colliders[END_REF]. The Sudakov-safe p t,mMDT distribution instead exhibits larger hadronisation corrections, which do not appear to be power suppressed [START_REF] Larkoski | Sudakov Safety in Perturbative QCD[END_REF]. On the other hand, as perhaps expected in the presence a groomer, we note that p t,mMDT is less sensitive to .5 -Dependence of the jet cross-section before and after applying mMDT, as a function of the infrared cut-off used in EVENT2 . The cross-section before grooming is stable but the one after grooming diverges logarithmically, thus making the IRC unsafety apparent.

the UE contribution than p t,jet , especially at moderate transverse momentum. We can therefore expect that p t,mMDT will be more resilient against pile-up (not considered here), which has a structure similar to the UE.

In this study we are primarily interested in jet mass distributions, while we only use the jet cross section for normalisation purposes. Measuring a non-vanishing mMDT mass resolves a two-prong structure within the jet, thus acting as an angular cut-off and regulating the collinear divergence. This means that the unnormalised distribution is IRC safe. However, as we shall see in the following section, the resulting all-order structure is different compared to the one previously described and rather cumbersome. We also note that, because the difference between p t,jet and p t,mMDT is O(z cut ), if we choose to use p t,mMDT we are forced to work at finite z cut . As a final note, we point out that despite its issues related to IRC safety, p t,mMDT shows some interesting properties in perturbative QCD. For example, it is directly related to the "energy loss" distribution computed in ref. [START_REF] Larkoski | Soft Drop[END_REF] in the small z cut limit. Modulo small corrections induced by the running of the coupling, the energy loss distribution -i.e. the p t,mMDT distribution at fixed p t,jet -is independent of α s and of the color factor of the parton initiating the jet. We discuss this briefly in the context of the p t,mMDT jet cross-section in appendix D.3.

Fixed-order structure of the mass distribution

In order to better understand the structure of the mass distribution with p t,mMDT we analytically calculate eq. (9.20) to LO and NLO, in the collinear limit. We start with Figu r e 9.6 -Monte Carlo study of the impact of hadronisation and underlying event (UE) on the ungroomed p t,jet distribution (left) and on the p t,mMDT distribution (right). a jet of momentum p t,jet . At O(α s ) the jet is made of at most two partons. If one of them is groomed away by mMDT, then the resulting groomed jet is massless. Thus, in order to have a non-vanishing mass, the emission must pass the z cut condition, leading to p t,mMDT = p t,jet . Therefore, the LL distribution at LO is the same for the two transverse momentum choices and it reads (see also ref. [START_REF] Dasgupta | Jet substructure with analytical methods[END_REF])

ρ dσ LL,LO dρ (ρ; z cut , p t1 , p t2 ) = p t2 p t1 dp t,jet σ q (p t,jet )R q + σ g (p t,jet )R g . (9.21)
The situation changes when we move to NLO. We consider the sum of the double real emission diagrams and the real-virtual contributions, while the double virtual only gives vanishing masses. At NLO we have di erent color structures. For convenience, we explicitly consider the C 2 F contribution, which originates from the independent emission of two collinear gluons 1 and 2 o a quark leg. Analogous results can be obtained for the other color structures. Because we are interested in the LL contribution, we can order the two emissions in angle, i.e. θ 1 θ 2 , θ 12 . The relevant contributions correspond to the situation where gluon 2 is real (and dominates the mMDT jet mass) and the large-angle gluon 1 is either real and groomed away, or virtual. The only di erence with respect to our calculation in the p t,jet case is that here we further have to make sure that the measured p t,mMDT falls in the transverse momentum bin under consideration, say p t1 < p t,mMDT < p t2 . Assuming for the moment that p t1 < p t,jet < p t2 , we therefore have the additional constraint on the double-real emission contribution that p t,mMDT = (1-z 1 )p t,jet still falls in the same transverse momentum bin. We thus have

ρ dσ LL,NLO,C 2 F a dρ = α s 2π 2 ρ p t2 p t1 dp t,jet σ q (p t,jet ) (9.22) • 1 0 dθ 2 1 θ 2 1 1 0 dz 1 p gq (z 1 ) Θ (z cut > z 1 ) Θ ((1 -z 1 )p t,jet > p t1 ) -1 • 1 0 dθ 2 2 θ 2 2 1 0 dz 2 p gq (z 2 )Θ (z 2 > z cut ) Θ (1 -z 2 > z cut ) Θ θ 2 1 > θ 2 2 δ ρ -z 2 θ 2 2 .
After some algebra, the distribution in the ρ < z cut region can be written in terms of the R i functions previously defined

ρ dσ LL,NLO,C 2 F a dρ = p t2 p t1 dp t,jet σ q (p t,jet )R q -R q -R q→g (9.23) - min p t2 , p t1 1-z cut p t1 dp t,jet σ q (p t,jet ) R q α s 2π log 1 ρ zcut 1- p t1 p t,jet dz 1 p gq (z 1 ).
We note that the first contribution coincides with the expansion of the resummation formula eq. ( 9.6) to second order. However, the second term, proportional to α 2 s log(1/ρ), is a new LL contribution that signals the different all-order structure of the mass distribution with p t,mMDT . Note that we have put a label a in eqs. (9.22) and (9.23) because there is actually a second configuration that contributes, namely when the ungroomed jet has p t,jet > p t2 . If the first emission is groomed away, we may end up with p t,mMDT < p t2 , so that this contribution has now leaked into the lower bin. For a quark-initiated jet with two gluon emissions. this results into an additional LL piece:

ρ dσ LL,NLO,C 2 F b dρ = p t2 1-z cut p t2 dp t,jet σ q (p t,jet ) R q α s 2π log 1 ρ zcut 1- p t2 p t,jet dz 1 p gq (z 1 ). (9.24) 

Resummation

In order to resum the groomed jet mass spectrum in the case of the p t,mMDT selection we have to generalise the calculation described in the previous section to all orders. Clearly, the situation is much more complicated than the p t,jet case chiefly because the value of p t,mMDT is determined by all the emissions that fail the mMDT condition and therefore our calculation must keep track of them. Because of this complication we are not able to find simple analytic expressions that capture the all-order behaviour, nevertheless we can achieve LL accuracy in the groomed mass distribution using an approach based on generating functionals [START_REF] Ellis | QCD and collider physics[END_REF][START_REF] Dokshitzer | Basics of perturbative QCD[END_REF] and, in particular, the application of this formalism to the description of the angular evolution of jets with small radius [START_REF] Dasgupta | Small-radius jets to all orders in QCD[END_REF][START_REF] Dasgupta | Inclusive jet spectrum for small-radius jets[END_REF]. We start by defining an evolution variable which is closely related to the angular scale θ at which we resolve a jet a factor z in our choice of the scale of the running coupling. This means that we are not including running-coupling effects in the double-logarithmic small-z cut contributions. This approximation can be explicitly studied in the context of a selection on p t,mMDT and we show in appendix D.1.2 that this only have a modest impact on the final results.

t = 1 θ 2 dθ 2 θ 2 α s (θ p t,jet R) 2π = 1 2πβ 0 log 1 1 + 2α s β 0 log(θ) = α s 2π log 1 θ 2 + O(α 2 s ), ( 9 

Matching and perturbative results

As for the case of the ungroomed p t,jet , an accurate description valid both in the ρ 1 region and in the ρ ∼ 1 region requires the matching of our LL resummation to a fixedorder calculation. As before, the latter is obtained using NLOJet++. We note that at LO, the results are identical to the ones obtained in the p t,jet case in section 9.1.3.

In order to match fixed-order and resummed calculations we have to work out the expansion of the resummed cross-sections to LO and NLO. This can be obtained by expanding eq. (9.26) to first and second order in α s . In practice, we have found more convenient to reuse here the same code as in ref. [START_REF] Dasgupta | Small-radius jets to all orders in QCD[END_REF], with minor modifications to include additional information about the successive branching angles and momentum fractions as well as simplifications related to the fact that we do not have to include splittings in the soft branch. For fixed p t , we have checked our numerical results against an explicit analytic calculation. Note that at NLO, i.e. at O(α 2 s ), we should include both a contribution coming from two emissions (see also the earlier discussion in section 9.2.2) as well as a running-coupling correction coming from the expansion of eq. (9.25) to O(α 2 s ). We compare the expansion of the LL resummation to O (α 2 s ) against the exact NLO-Jet++ NLO correction in fig. 9.7, for both p t,jet (blue) and p t,mMDT (red) and for two different transverse momentum bins. We first note that at small mass the expansion of the resummed distribution has the same slope of the corresponding fixed-order, meaning that we do indeed control the O(α Figu r e 9.8 -In this figure we compare resummed and matched jet mass distributions in the case of ungroomed p t,jet selection (blue) or groomed p t,mMDT selection (green). culation. More interestingly, fig. 9.7 shows explicitly that the mass distribution obtained in the p t,mMDT and p t,jet cases di er already at the LL accuracy. This is manifest from the fact that the p t,mMDT and p t,jet curves have di erent slopes at small mass. The di erence in slope is captured by our analytic calculation and is due to the e ects already discussed in section 9.2.2.

We are now ready to discuss the matching itself. We adopt the multiplicative matching scheme introduced in eq. (9.16). Our results are shown in fig. 9.8 for the (unnormalised) jet-mass cross-section. The hatched (green) curves are the results obtained for the p t,mMDT case and they are compared to the results already obtained in section 9.1.3 shown in shaded blue. The plots on the top are for LO+LL, while the ones at the bottom for NLO+LL. We pick the same representative bins in transverse momentum as before, namely 460 < p t < 550 GeV and p t > 1300 GeV, with p t being either p t,mMDT or p t,jet . The cross-sections are significantly smaller for the p t,mMDT case than for the p t,jet case, mostly because the overall jet cross-section is smaller. This is related to the loss of transverse momentum due to the mMDT procedure, which is also discussed in appendix D.3. We also see, in particular on Figu r e 9.9 -The top plots show the groomed jet mass distribution for 460 < p t < 550 GeV, with hadronisation and the underlying event, for di erent Monte Carlo parton showers. The plot on the left is for the ungroomed p t,jet , while the one of the right for p t,mMDT . The bottom plots show the ratios hadron-level to parton-level and with-towithout the underlying event.

the NLO+LL results for the high-p t bin, that the p t,mMDT distributions decrease slightly faster than the p t,jet ones at small mass. This feature was already observed in fig. 9.7.

We note that due to the IRC unsafety of the p t,mMDT jet cross-section, the normalisation of the fixed-order jet mass distribution is ill-defined. The resummed and matched cross-sections could simply be normalised to unity but we found that this procedure tends to clearly underestimate the size of the perturbative uncertainty and is potentially dangerous as it relies on the computation of the resummed cross-section down to very small masses where non-perturbative e ects are dominant. We have therefore decided to present only predictions for the unnormalised distributions.

Non-p er t u r bat iv e cor r ect ions

In this section we perform a Monte Carlo study of non-perturbative contributions considering e ects coming from the hadronisation process as well as from the underlying event.

In order to study non-perturbative corrections to the jet mass distribution we consider the same set of Monte Carlo tunes used for studying the p t spectra in section 9.2. As usual, we consider two representative transverse momentum bins. In fig. 9 Figu r e 9.10 -Same as fig. 9.9 but for the bin p t > 1300 GeV.

460 < p t < 550 GeV, while in fig. 9.10 we consider p t > 1300 GeV. In both cases, the plots on the left refer to the ungroomed p t,jet selection, while the ones on the right refer to the p t,mMDT case.

In the top plots we show the (unnormalised) jet mass distributions as obtained from each Monte Carlo program. The striking feature is the huge discrepancy between these results, even at large masses. In particular, the predictions obtained with the most recent Pythia 8 tunes appear to be a factor of 2 larger than the other tunes in the region of interest for this study. This performance of standard parton shower tools, worrisome at first glance, should be put in parallel with our LO+LL results (see e.g. fig. 9.8) which exhibit a similar uncertainty band. This indicates the need to match the parton shower with NLO fixed-order matrix elements.

In the bottom plots of figs. 9.9 and 9.10 we instead show, for each Monte Carlo, the ratio of hadron-to-parton level results (labelled " hadronisation") and the ratio with-towithout the underlying event contribution (labelled " UE"). We first note that in both the p t,jet and p t,mMDT selection cases, the groomed mass distribution has very small sensitivity to the underlying event, as we expect from mMDT being an (aggressive) groomer. This contribution becomes more sizeable at large masses essentially because the e ective jet radius becomes larger. Moreover, this e ect is more visible in the moderate p t bin since the power-suppression in the hard scale of the process becomes weaker. Hadronisation corrections have instead a di erent shape for the p t,jet and p t,mMDT selections, most likely stemming from the di erent properties of the underlying transverse momentum distribu-tion. For the p t,jet case, hadronisation corrections are sizeable in the low mass bins, with a peculiar peak in the 5-10 GeV bin, and at very large masses, close to the end-point region. For both small and large masses, this also comes with a larger spread of the hadronisation corrections across the generators and tunes. However, there exists a rather large region in mass, increasing in size as p t,jet grows, where these contributions are genuinely small. Hadronisation corrections appear rather different in the p t,mMDT selection case. They come with opposite sign at small masses and appear to be non-negligible in a wider region of the mass distribution, similarly to what was already noticed in section 9.2.1 for the jet cross-section.

Given the large kinematic range over which the non-perturbative corrections appear to be small, upcoming LHC data could bring valuable constraints on the perturbative aspects of parton showers. Additionally, the behaviour at low mass, with very little sensitivity to the underlying event, could help constraining hadronisation models. For example, measurements on both quark and gluon-enriched jet samples would be complementary to the quark-dominated LEP data currently used to tune hadronisation models [START_REF] Andersen | Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report[END_REF][START_REF] Gras | Systematics of quark/gluon tagging[END_REF].

In practice, for this study, we use the above Monte Carlo results to estimate the size and the uncertainty of non-perturbative corrections on the groomed mass distribution. For each Monte Carlo generator and tune we construct the ratio particle-level, i.e. hadronisation with UE, to parton-level, in each mass and transverse momentum bin. We take the average value of this ratio as a correction factor to apply to the perturbative NLO+LL results obtained in the previous sections. We take the envelope of the corrections across different generators and tunes as an estimate of the non-perturbative uncertainty, which we add in quadrature to the perturbative uncertainty. We consider this solution an acceptable and rather conservative estimate of non-perturbative contributions.

Final results

We can now present our final results for the groomed jet mass distribution for both the p t,jet and p t,mMDT selection. Our perturbative results, which are accurate to NLO+LL, are multiplied by a bin-by-bin (in both mass and transverse momentum) non-perturbative correction factor obtained from Monte Carlo parton showers. The total uncertainty is taken as the sum in quadrature of the perturbative and non-perturbative uncertainties. The former is obtained by varying renormalisation, factorisation, and resummation scales as described in section 9.1 and taking the envelope of the result; the latter by considering the envelope of the five different Monte Carlo generators and tunes. Fig. 9.11 and fig. 9.12 show the results (in black, with grey uncertainty bands) for the ungroomed p t,jet selection in the two representative transverse momentum bins: 460 < p t,jet < 550 GeV and p t,jet > 1300 GeV. The former is the jet mass distribution, while the latter is normalised to the NLO jet cross-section in the appropriate transverse momentum bin. Similarly, in fig. 9.13 we show our final results for the p t,mMDT selection. As discussed in the paper, the NLO jet cross section is not well-defined in this case, so we only present unnormalised distributions. For comparison, we also show in red the purely perturbative NLO+LL results with their uncertainties. As previously noted, non-perturbative correc- tions are sizeable (with large uncertainties) in the first few mass bins (m 10 GeV) and at very large masses, close to the end-point region. Nevertheless, there exists a region in mass, which increases in size as p t,jet grows, where non-perturbative e ects are genuinely small and a meaningful comparisons between experiments and perturbation theory can be performed. However, we have found that, when we consider normalised distributions in fig. 9.12, the uncertainty related to these non-perturbative contributions is, at best, of the same order as the NLO+LL perturbative calculation.

The above results clearly demonstrate the value of jet substructure algorithms to perform phenomenological studies in QCD. In particular, the region in mass where nonperturbative contributions are genuinely small o ers an opportunity to test the modeling of perturbative radiation in analytic resummations and parton showers. In that respect, one could even consider the possibility to use experimental data in this mass region for a novel measurement of the strong coupling. On the other hand, the lower mass bins, which are sensitive to hadronisation but have small UE contaminations, can be used to test (and tune) the hadronisation models of Monte Carlo event generators.

Finally, we have found that the p t selection is better suited for theoretical calculations and the resulting resummation has a relatively simple form that can be, in principle, extended to higher-logarithmic accuracy. Moreover, for the typical choice z cut = 0.1, finite z cut corrections, although formally entering already at LL accuracy, appear to be very small. This justifies the small-z cut approximation used in refs. [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF] to achieve higher logarithmic accuracy. However, the finite z cut corrections would inevitably increase for larger values of z cut . Also, it would be interesting to achieve a complete picture at NLL accuracy, including the finite z cut corrections, even though our findings in this paper suggest that the latter would be small. We have also found that logarithms of z cut give a non-negligible contribution, thus indicating the necessity of their resummation. We have also studied the perturbative uncertainty of our calculation, observing that matching to NLO greatly reduces the theoretical uncertainty especially in the case of unnormalised distributions. Non-perturbative effects are reduced compared to the ungroomed jet mass and only remain sizeable at low mass, where hadronisation dominates, or at very large masses, close to the end-point of the distribution.

The p t,mMDT selection has instead more theoretical issues but it can also present some advantages from a phenomenological viewpoint. The main theoretical complication stems from the fact that the p t,mMDT jet spectrum is not IRC safe, but only Sudakov safe. The jet mass distribution is itself safe, with the mass acting as a regulator for collinear emissions, but the inclusive p t,mMDT cross-section is only Sudakov safe. Due to the complicated flavor structure of the all-order resummation, we were only able to arrive at a numerical resummation of the LL contributions. A possible extension of our results to a higher logarithmic accuracy is therefore expected to be difficult, even in principle. From a phenomenological viewpoint, it would be interesting to see whether the slightly smaller sensitivity to the underlying event of the p t,mMDT choice implies a smaller sensitivity to pileup. More generally, an understanding of hadronisation corrections for Sudakov-safe observables would also be interesting.

To summarise, in this work we have derived theoretical predictions for the invariant mass distribution of jets groomed with mMDT, including a study of the perturbative and non-perturbative theoretical uncertainties. The situation where distributions are computed in bins of the initial (ungroomed) jet p t exhibit a simpler analytic structure, compared to the case where the binning is done using the groomed jet p t . This means that the former is more likely to be amenable to a theoretical calculation with higher logarithmic accuracy.

-10 -Conclusion

As underlined in the introduction of this thesis, now that the Run II of the LHC is achieving energies well above the electroweak scale, jet substructure tools play an important role in particle physics. This importance will only grow in the next runs and, eventually, with the construction of future accelerators with even higher energy scales. More generally, jets are ubiquitous in collider phenomenology and as they are complex structures, substructure tools are helpful to understand their internal dynamics, specially at boosted regimes.

There is an active community developing and researching jet substructure tools, both on the theoretical and experimental aspects. Numerical tools play a major role in this domain, notably parton shower Monte Carlo generators as Pythia, Herwig and Sherpa. They can be used to simulate jet substructure observables when combined with the appropriated softwares like FastJet, which does the clustering of particles into jets and also with fjcontrib, which contains a multitude of extensions for different jet observables. Nevertheless, in this thesis we argued that an analytical approach can, in conjunction with these tools, bring valuable insights to the field. Although analytic calculations do not completely replace Monte Carlo simulations, the analytical approach is capable of understanding the source of the differences between methods. Also, it allow for precise calculations with uncertainties that can be compared to experimental measures.

In this thesis, we focused on methods for two-pronged jet tagging, i.e. methods developed to identify jets originating from heavy bosons like the Higgs, W and Z. We used the "traditional" perturbative QCD approach, which explores factorizations and exponentiation properties of QCD matrices to achieve all-orders resummation in α s , which is necessary to have a good predictive power in boosted regimes. Other approaches to jet substructure are used in literature, notably the Soft Collinear Effective Theory which uses factorization theorems to achieve all-orders resummation. Some examples of applications if this method can be found in refs. [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF][START_REF] Larkoski | Analytic Boosted Boson Discrimination[END_REF][START_REF] Abbate | Thrust at N 3 LL with Power Corrections and a Precision Global Fit for alphas(mZ)[END_REF]. Other approach that gained attention recently is the use of deep learning techniques to identify jets.

The first chapters of this thesis are introductory, essentially meant to define relevant jet observables and lay down notations. In chapter 2, we recalled the basis of QCD, discussing the concepts of infra-red and collinear safety and Sudakov safety, that are relevant in the context of jet substructure. In particular, the Sudakov safety property was first observed in the study of ratio angularities [START_REF] Larkoski | Unsafe but Calculable: Ratios of Angularities in Perturbative QCD[END_REF], a jet substructure observable.

Then in chapter 3, we presented the formal definition of jets and some jet algorithms that are relevant to this work. It is important to stress that jets are known for a long time in particle physics, before we achieved the energy scales necessary to have a boosted regimes. The first jet algorithms were proposed in the context of e + e -collisions in the 70's. In chapter 4, we presented the particularities of jets in boosted regimes. We also presented some jet substructure tools (prong finders, groomers and jet shapes), focusing on the ones that are relevant for the rest of this thesis. Finally, in chapter 5, we motivated the need for resummed calculations using a simple example, namely the jet mass distribution. We presented the Lund diagrams, a graphic tool that we used extensively to illustrate physical discussions. We also introduced the basic building blocks, which allowed us to expresses our results in a compact form, without the need to repeat the same lengthy calculation multiple times.

The next chapters of this thesis presented original results for calculations of jet substructure observables. The first analytic results in this field have been obtained by ref. [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] for the jet mass with different groomer: trimming, pruning and MassDrop Tagger. In this work we extended this understanding in two directions, first for the combination of prong finder with groomers in chapter 6, then for jet shapes in chapter 7.

In chapter 6, we studied the Y-splitter tagger combined with three different grooming techniques: the modified MassDrop Tagger (mMDT), trimming and SoftDrop. This work followed previous Monte Carlo studies which showed that such combinations increase the tagger performance. We studied the origin of this behavior and also introduced improved variants of the original Y-splitter method. We used Monte Carlo generators to study the impact of non-perturbative effects and, comparing the different variants, we observed a trade-off between robustness against NP effects and the tagging performance. In terms of sheer performance the Y m -splitter+trimming or Y m -splitter+mMDT combinations with a standard y cut should be preferred. If instead we want maximum robustness, e.g. to reduce uncertainties, Y m -splitter+mMDT with a z cut condition or SoftDrop pre-grooming (with either a y cut or a z cut condition) appear at the same time both efficient and robust.

In chapter 7, we studied three jet shapes, N-subjettiness, energy correlation functions and MassDrop parameter, used as discriminating variables between two-pronged hadronic decays of electroweak bosons and QCD jets from the background. For each case, we computed the jet mass distribution with an additional cut on the jet shape variable. This study showed that the difference in performance between methods comes mostly from the large angle emissions, with energy correlation functions being the most efficient. We used Monte Carlo generators to study non-perturbative effects and validate our results. We also added a SoftDrop grooming to the jet and observed how it affects the tagging efficiencies. As this groomer removes mostly at the soft and large angle emissions, it diminishes the differences in discriminating power between methods, but the ordering remains the same.

Given the understanding of the individual ingredients (prong finders, groomers and jet shapes) we studied the interplay between these tools in chapter 8, using mMDT and SoftDrop combined with N-subjettiness. We proposed the dichroic N-subjettiness ratio, where we use a large jet (with or without a SoftDrop pre-grooming step) for calculating τ 2 and a smaller, tagged subjet for τ 1 . We observed an enhanced performance compared to the variants currently used in experimental analyses, while keeping non-perturbative effects under control. Comparing the versions with and without pre-grooming, we observed again a trade-off between performance and robustness against non-perturbative effects.

Finally, in chapter 9, we performed a phenomenological study of the jet mass distribution after applying the mMDT. Our goal it to compare our results with current LHC predictions. We accounted for the resummation of the leading logarithm of the ratio of the jet mass over the jet transverse momentum and matched it to fixed-order matrix elements computed at next-to-leading order. We discussed two options according to whether the distributions are measured in bins of the jet transverse momentum before (p t,jet ) or after the mMDT (p t,mMDT ). We call attention to the fact that the distribution differential in the transverse momentum after grooming is not collinear safe, only Sudakov safe. This generates many theoretical complications, which make a higher order computation extremely complicated, so we encourage the use of the p t,jet variant. Importantly, since our original work in chapter 9, the CMS results are now available [START_REF]Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at √ s = 13 TeV[END_REF]. It turns out that our predictions agree nicely with the data. In particular, using NLO matrix elements shows a substantial improvement at large jet mass.

There are many different directions to be explored in future works, the first one being expand our resummed calculations to higher orders. This is feasible for situations where the non-pertubative effects are relatively under control and non-global logarithms are eliminated thought grooming (as they are very difficult to control analytically). One example of observable that fulfills these properties and that we intend to compute at NLL is the groomed jet mass distribution, using the p t,jet variation as mentioned above. We are currently doing this calculation for the SoftDrop groomer with a general β SD parameter at NLL accuracy [START_REF] Schunk | A study of jet mass distributions with grooming[END_REF]. There are results available in literature at NNLL+LO accuracy, obtained with SCET approach [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF], but our results take into account finite z cut effects and are matched to NLO matrix elements.

There is also room for improvement in our calculations of jet shapes, in particular N-subjettiness and energy correlation functions, which are shown to be efficient to discriminate jets and are largely used in experiments. We intend to do calculation for finite jet shape cuts v cut 1. The calculations are more complicated, but it is important if one intends to do a phenomenological study, as the typical cuts chosen in experiments are usually not so small. Other possibility is to do calculation for jet shapes with the angular exponent β = 1, this case does not have many of the simplifications of the β = 2 case, but is the default choice in many experimental measurements.

Another application of analytic calculations we intend to explore is the optimization of parameters. Composite jet substructure methods (e.g. jet shape + grooming) usually involve a long list of parameters -for example, a cut in the jet shape v cut , a cut from the groomer y cut or z cut , possibly angular parameters β, the jet radius R. Optimizing such a large array of parameters with numerical tools would be too complicated, but it is feasible if one has analytic expressions for observables efficiencies. In future studies, we would like to apply this procedure to some of the methods studied in the thesis (in particular the ones more resilient to NP effects, e.g. dichroic jet shapes with pre-grooming and Y m -splitter+mMDT/trimming variations), to verify if it can bring improvements to existing methods.

We also intend to apply the insight acquired from the analytic calculations, specially for combinations of taggers and dichroic radiation constraints, for the future design of "decorrelated" taggers [START_REF] Dolen | Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure[END_REF]. These would provide a background rejection that is independent of the tagged jet mass and thus straightforward to use in the context of data-driven background estimates.

To summarize, the analytical approach to jet substructure can bring a better understanding of techniques that are already largely used in experiments. We can use this information to improve them or develop new techniques. Combining existing techniques can also improve considerably their performance in a nontrivial manner. Additionally, precise calculations matched with fixed order matrix elements and with theoretical error bands can be compared with experimental results. This domain has a very active community, both theoretical and experimental, and its importance will only grow in the following years, as part of a bigger effort to answer open questions in particle physics.

-A -Further details on Y-splitter A.1 Why not use the groomed mass in the Y-splitter condition?

We have argued in section 6.2 that we should first impose the Y-splitter condition on the plain jet and, if the condition is satisfied, measure the groomed jet mass. One might be tempted to also use the groomed jet mass in the definition of the Y-splitter condition. We show in the following that this does not lead to an efficient tagger. For simplicity, let us use the modified MassDrop Tagger (trimming would yield similar results, albeit a bit more complex and involving additional transition points) and assume that emission 1 dominates the groomed mass. We still have two ways to proceed: we can either decluster the groomed jet or the plain jet to get the k t scale entering the Y m -splitter condition. The situation where we use the groomed jet is almost trivial: the declustering will either select emission 1 or an emission, say 2, at smaller mass and larger k t . In both cases, the resulting Y-splitter condition is trivially satisfied, since, e.g. in the second case, k 2 t2 > k 2 t1 = x 1 ρ > yρ. Hence, neither the grooming procedure nor the Y-splitter condition place any constraint on radiation at larger mass in the groomed-away region, meaning that we would get This has to be compared to eq. (6.14) for the situation(s), considered in the main text, where we use the plain jet mass in the Y m -splitter condition. The result in (A.1) is significantly less efficient since it comes with a much weaker Sudakov suppression.

Let us assume instead that we decluster the plain jet in order to define the Y-splitter k t scale. In the groomed-away region, emission with k t smaller than k t1 will be unconstrained. Emission with k t larger than k t1 will also be allowed since the resulting Y-splitter condition k 2 t2 > ρy is always met due to k 2 t2 > k 2 t1 > ρy. We would therefore again recover (A.1). Finally, let us briefly discuss the case of Y m -splitter, with mass declustering applied to the plain jet. This is slightly different because now there could be an emission, say -171 -emission 2, in the groomed-away region, with a mass larger than ρ and a k t smaller than k t1 . In that case the Y m -splitter condition would impose k 2 t2 > ρy, yielding an additional suppression compared to (A.1)

ρ dσ dρ = 1 1+y y 1+y dx 1 p i (x 1 )
α s (x 1 ρ) 2π e -R mMDT (ρ)-R out,low-k t (ρ) , (A.2) with R out,low-kt (ρ) = dθ 2 θ 2 dx p i (x)

α s (x 2 θ 2 ) 2π Θ xθ 2 > ρ Θ(x 2 θ 2 < ρy). (A.3)
This is better than (A.1) but still remains less efficient than (6.14) by double logarithms of ρ.

In the end, it is not our recommendation to use the groomed jet mass in the Y-or Y m -splitter condition. 1 -Three topologies potentially contributing to the emission of the gluon dominating the value of the shape, starting with a massive two-pronged object. Left: small-angle emission from the prong carrying a fraction 1 -z 1 of the jet p t ("prong 1"), centre: small-angle emission from the prong carrying a fraction z 1 of the jet p t ("prong 2"), right: large-angle emission from the parent object ("parent"). that it vanishes. In the end, there are no soft and large-angle single-logarithmic corrections to what we have computed earlier in the text.

B.3 Including finite z 1 corrections: QCD (background) and signal jets

We have argued in section 7.2.7 that if we wish to achieve NLL accuracy it is mandatory to include all finite z 1 and 1 -z 1 factors in our expressions for the shapes, with z 1 the fraction of the jet transverse momentum carried by the emission that dominates the mass of the jet. The main reason behind that is that they can be raised to powers of order α s log(1/v) which would give single-logarithmic corrections after integration over z 1 .

In this appendix, our main goal is to discuss these extra source of NLL terms. As a fringe benefit of this discussion, we will at the same time provide a unified description of the signal and background distributions, allowing for interesting interpretations of the results obtained in this paper.

If we want to properly include the finite z 1 corrections we first need to carefully identify the origin of the gluon emissions. In the collinear limit, sufficient to capture all the finite z 1 corrections, colour coherence indicates that we can encounter three situations, represented in fig. B.1. The first two situations correspond to gluon emissions at small angle θ 2 θ 1 from the splitting of either the hardest or the softest of the two prongs (carrying respectively a fraction 1 -z 1 and z 1 of the jet transverse momentum). These are the first two plots of fig. B.1 and will be referred to as the "prong 1" and "prong 2" topologies respectively for the 1 -z 1 and z 1 case. The third option corresponds to gluons emitted at large angle θ 2 θ 1 from the parent parton in the jet. This is represented on the rightmost plot of fig. B.1 and will be called the "parent" topology in what follows. In that approach, the distribution for QCD jets will receive contributions from all three topologies -the first and third weighted by C R and the second, corresponding to secondary emissions, weighted by C A -while signal jets coming from the decay of colour-neutral bosons would only receive contributions from the first two topologies, both weighted by C R .

For each of the three topologies, one then has to find the expression for the shape in ρ (B.6)

θ 12 >θ 2 = (1 -z 1 )z 2 θ 2 2 ρ C 2,prong1 = z 2 z 1 θ 2 2 C 2,prong2 = z 2 1 -z 1 θ 2 12 C 2,parent = z 2 θ 4 2 ρ . (B.7)
For parent emissions, we again had to separate two cases for the mass-drop parameter corresponding to the clustering of the second emission with one of the two prongs, with θ 2 being the angle wrt "prong 1" and θ 12 the angle to "prong 2". With these expressions we can compute the Sudakov form factors. It is convenient to introduce C R,1 , C R,2 and C R,p respectively as the colour factors associated with the "prong 1", "prong 2" and "parent" topologies. Similarly, we denote B 1 , B 2 the hardsplitting coefficient associated with the two "prong" configurations, realising that the large-angle topology will not receive a hard-splitting correction. Note that in the case of a boson decay, we can simply set C R,p = 0.

The results for the emissions collinear to the 1 -z 1 branch ("prong 1") are as follows:

R τ,prong1 (z 1 ) = T 02 L ρ -L 1 + L - 2 , L ρ + L 1 + L - 2 + L v ; C R,1 , B 1 (B.8) -T 02 L ρ -L 1 + L - 2 , L ρ + L 1 -L - 2 ; C R,1 , B 1 Θ(L 1 > L -) Θ(L v + L 1 > 0) Θ(L v + L -> 0) R µ 2 ,prong1 (z 1 ) = T 02 L ρ -L 1 + L - 2 , L ρ + L 1 -L - 2 + L v ; C R,1 , B 1 (B.9) -T 02 L ρ -L 1 + L - 2 , L ρ + L 1 -L - 2 ; C R,1 , B 1 Θ(L 1 > L -) Θ(L v > L --L 1 ) Θ(L v > 0) R C 2 ,prong1 (z 1 ) = T 02 L ρ -L 1 + L - 2 , 3L -+ 3L 1 -L ρ 2 + L v ; C R , B i (B.10) -T 02 L ρ -L 1 + L - 2 , L ρ + L 1 -L - 2 ; C R,1 , B 1 Θ(L 1 > L -) Θ(L v > L ρ -L --2L 1 ) Θ(L v > L ρ -L 1 -2L -),
where the last two Θ constraints come from the fact that the first term has to be positive and larger than the second term. Note that the second term in each of these three expressions is the same and come from the kinematic constraint than the second emission (z 2 , θ 2 ) does not dominate the mass.

The results for the "prong 2" topology have not been given explicitly but can be directly obtained from the "prong 1" topology by inverting L 1 and L -which corresponds to inverting z 1 and 1 -z 1 .

For the emissions from the parent object, we find in a similar way Note also that another interesting check of our results is to compare our fixed-order results with Pythia simulations also done with a fixed coupling. Although we do not show explicit plots here, this comparison shows similar features as the ones observed with a running-coupling prescription.

R τ,parent (z 1 ) =P 2 L ρ + L 1 + L - 2 , L ρ , L ρ + L v ; C R,p , 0 Θ(L v > 0) (B.11) R µ 2 ,parent (z 1 ) = 1 2 P 2 L ρ + L 1 + L - 2 , L ρ , L ρ -L -+ L v ; C R,p , 0 Θ(L v > L -) + 1 2 P 2 L ρ + L 1 + L - 2 , L ρ , L ρ -L 1 + L v ; C R,p , 0 Θ(L v > L 1 ) (B.12) R C 2 ,parent (z 1 ) = P 2 L ρ + L 1 + L - 2 , L ρ , L 1 + L -+ L v ; C R,p , 0 + T 24 (L 1 + L -+ L v , L ρ + L v ; C R,p , 0) Θ(L v > L ρ -L 1 -L -) + T 24 (L ρ , L ρ + L v ; C R,p , 0) Θ(0 < L v < L ρ -L 1 -L -) (B.
Dep endence on t he jet t r ans v er s e moment u m. Throughout this paper, we have shown results for jets with a large transverse momentum of 3 TeV. Here, we briefl y show that our calculations remain valid for less boosted jets, closer to those used in today' s phenomenological analyses.

In fig. B.3, we show ROC curves obtained from Pythia simulations and our analytic calculations, for three di erent jet transverse momenta: 3 TeV, 1 TeV and 500 GeV. For this comparison, we have kept the ratio m/p t fixed, i.e. considered a mass of 358, 120 and 60 GeV respectively for each of the three p t scales. We see that the dependence on the jet p t is mild, which is expected since the result only depend on p t through the p t R scale entering in α s . Our conclusions are therefore also valid for jets of more moderate transverse momentum. Note that the small di erences observed in Pythia simulations between di erent jet p t are well reproduced by our analytic calculation.

B.5 Results for jet shapes with grooming

In this appendix we present the Sudakov factors corresponding to the (non-recursive) jet shapes studied in chapter 7 with the addition of a SoftDrop grooming step, with parameters z cut and β. These results are expressed using the basic building blocks. The results for N-subjettiness are not present in this appendix, as they are already included in chapter 8, where we discussed the dichroic N-subjettiness ratio.

In this case, the jet mass distribution for QCD jets can be written in a similar manner as eq. ( 7.1), with some adaptations where L z = log(1/z cut ). We note that the addition of SoftDrop does not alter the secondary emissions. This is a consequence the strong ordering between emission angles, so secondary emissions are never selected by the C/A de-clustering procedure. For a more concrete example, suppose the mass of our jet is set by an emission p 1 , with a certain emission angle θ 1 . Then, p 1 emits another parton p 2 with an emission angle θ 2 . At LL accuracy, we have θ 2 θ 1 . As a consequence, p 1 is always going to be selected by the SoftDrop procedure first, it cannot be eliminated because it is the emission that sets the mass of the jet, so it passes the SoftDrop condition and stops the procedure. So there are no additional constraints in the secondary emission and they are going to be given by the same expressions as for the ungroomed case. The calculations for signal emissions are not affected for the same reason, as electroweak boson decays have no collinear divergences.

B.5.1 Mass Drop

As stated in the main text, the Sudakov will have two different contributions, depending on how partons are clustered. The first contribution has an a new transition point L tr,0 = -βL ρ /2 + (β + 2)L 1 /2 + L v . It is given by

R SD µ 2 1/2 ,0 (z 1 ) Lz<L tr,0 = T -β2 L ρ + L 1 2 , L z + β + 1 2 (L ρ -L 1 ); C R , 0 (B.16) + T 02 L ρ -L 1 2 , L ρ + L 1 2 + L v ; C R , B i -T 02 L ρ -L 1 2 , L ρ + L 1 2 ; C R , B i Lz>L tr,0 = T -β2 (1 + β)L ρ -L v + L z 2 + β , (1 + β)(L ρ + L v ) + L z 2 + β ; C R , 0 + P 2 L ρ + L 1 2 , (1 + β)L ρ -L v + L z 2 + β , (1 + β)(L ρ + L v ) + L z 2 + β ; C R , 0
-C -Further details on dichroic subjettiness ratios C.1 Dichroic subjettiness ratios for β τ = 1

In section 8.1, we have argued in favor of the dichroic subjettiness ratios using Nsubjettiness with β τ = 2. In this appendix, we briefly discuss the case β τ = 1, for which the dichroic variant can also be considered. Note that for β τ = 1, we have defined the N -subjettiness axes through an exclusive-k t declustering. This can be done either using the standard E-scheme four-vector recombination or the winner-takes-all (WTA) recombination scheme. For simplicity, we will focus on E-scheme results here. A brief comparison between the two axis choices is shown in fig. 8.10(right). We can make several observations based on these plots. First, as for β τ = 2, we see that the dichroic ratio also outperforms the other combination for β τ = 1. The performance gain is however smaller, especially with SD grooming.

In terms of the sensitivity to non-perturbative effects, we see that N -subjettiness ratios with β τ = 1 are rather stable even without any SD grooming step. This small sensitivity to non-perturbative effects might have been anticipated since the corresponding k t cut is less affected by soft-and-large-angle emissions than for β τ = 2. A consequence of this observation is that grooming is less critical when using a cut on N -subjettiness ratios with β τ = 1, and without SD grooming the dichroic combination shows a more sizeable performance gain compared to the other approaches, cf. the bottom-left plot of 

C.2 Example code for dichroic subjettiness ratios

In this last appendix, we briefly indicate how dichroic subjettiness ratios can be implemented using tools available in FastJet and fjcontrib. In particular, we make use of the RecursiveTools contrib (for ModifiedMassDropTagger and SoftDrop) and of the Nsubjettiness contrib. First, besides standard FastJet headers needed for jet clustering, one needs to include the following headers: #i n c l u d e < f a s t j e t / c o n t r i b / ModifiedMassDropTagger . hh> // mMDT t a g g e r #i n c l u d e < f a s t j e t / c o n t r i b / SoftDrop . hh> // o p t i o n a l SD grooming #i n c l u d e < f a s t j e t / c o n t r i b / N s u b j e t t i n e s s . hh> // tau1 and tau2

Then, one should declare the basic objects needed for tagging, computing τ 1 and τ 2 , and, optionally, grooming: // th e t a g g e r [ h e r e mMDT with a z c ut ] // Note : by d e f a u l t , t h i s a u t o m a t i c a l l y r e c l u s t e r s with C/A doub le z c u t = 0 . 1 ; f a s t j e t : : c o n t r i b : : ModifiedMassDropTagger mmdt_tagger ( z c u t ) ; // ( o p t i o n a l ) groomer [ h e r e SoftDrop ] // Note : by d e f a u l t , t h i s a u t o m a t i c a l l y r e c l u s t e r s with C/A doub le b e t a = 2 . 0 ; doub le z e t a c u t = 0 . 0 5 ; f a s t j e t : : c o n t r i b : : SoftDrop sd_pre_groomer ( beta , z e t a c u t ) ; // N-s u b j e t t i n e s s with beta_tau=2 and gen-kt a x e s // ( f o r t h e o r e t i c a l r e a s o n s i t i s p r e f e r r e d t o use // an u n n o r m a l i s e d measure ) doub le beta_tau = 2 . 0 ; f a s t j e t : : c o n t r i b : : UnnormalizedMeasure measure ( beta_tau ) ; f a s t j e t : : c o n t r i b : : GenKT_Axes axes_gkt ( 1 . 0 / beta_tau ) ; f a s t j e t : : c o n t r i b : : N s u b j e t t i n e s s tau1 ( 1 , axes_gkt , measure ) ; f a s t j e t : : c o n t r i b : : N s u b j e t t i n e s s tau2 ( 2 , axes_gkt , measure ) ; Note that all parameters here are given as examples and have not been optimised. Also, when used with events contaminated by pileup, a proper pileup mitigation technique should be implemented. This can for example be done by passing a fastjet::Subtractor to the mMDT and SD via the set_subtractor method, and using a GenericSubtractor [START_REF] Soyez | Pileup subtraction for jet shapes[END_REF] or a ConstituentSubtractor [START_REF] Berta | Particle-level pileup subtraction for jets and jet shapes[END_REF] for the N -subjettiness variables. Alternatively one can use methods that carry out event-wide pileup-suppression such as PUPPI [START_REF] Bertolini | Pileup Per Particle Identification[END_REF] or Soft-Killer [START_REF] Cacciari | SoftKiller, a particle-level pileup removal method[END_REF].

Finally, for a given jet (jet in the example below), one can compute the dichroic subjettiness ratio using f a s t j e t : : PseudoJet j e t ; // g i v e n j e t f a s t j e t : : PseudoJet pre_groomed_jet = sd_pre_groomer ( j e t ) ; // grooming f a s t j e t : : PseudoJet t a g g e d _ j e t = mmdt_tagger ( pre_groomed_jet ) ; // t a g g i n g double tau1_tagged = tau1 ( t a g g e d _ j e t ) ; // $\tau_1 ^{\ t e x t { t agg ed }} $ double tau2_groomed = tau2 ( pre_groomed_jet ) ; // $\tau_2 ^{\ t e x t { groomed }} $ double tagged_mass = t a g g e d _ j e t .m( ) ; // tagged mass double t a u 2 1 _ d i c h r o i c = tau2_groomed / tau1_tagged ; // $\tauDG$ -186 - Our results are expressed in terms of α s = α s (R p t ), evolved from α s (m Z ) = 0.118 with a two-loop approximation (n f = 5). 1 Note that for the minimal jet mass of 1 GeV that we consider in this paper and the variations of the renormalisation and resummation scales, µ R and µ Q , our perturbative results always remain above the Landau pole. We could decide to freeze the coupling at a scale µ NP that we would vary around 1 GeV, and hence obtain an uncertainty associated to using perturbative QCD in a region sensitive to nonperturbative effects. However this effect should be included already in our estimate of the non-perturbative effects via the Monte Carlo simulations discussed in section 9.3.

To obtain the results presented in the main text, we have written the splitting functions entering the flavor-diagonal contributions as a sum of two different contributions: The cut-off at z = e B i is such that the leftover finite part only generates power corrections in z cut while the log(1/z cut ) and constant terms are included in the first terms proportional to 1/z. Note that this will naturally produce distributions with an end-point at ρ = e B i . That said, the contribution from the first term can be integrated straightforwardly and gives the R i function given in eq. (9.8). We note that these e ects are sizeable, although still within the theoretical uncertainty.

Next, we consider the contributions coming from the second term in eq. (D.1), as well as from the fl avor-changing contributions, which will be power-suppressed in z cut . For these, we can safely ignore the factor z in both the argument of α s and the constraint Θ(zθ 2 > ρ). The z and θ 2 integration then factorise to give finite part: where the integration boundaries z min and z max depend on which matrix element we consider and should match those imposed by the mMDT conditions in eq. (9.7). Once again, to our accuracy, there is some freedom in the choice of the upper integration boundary of the θ 2 integration. Setting it to z cut ensures that there are no corrections beyond the transition point ρ = z cut . Note that neglecting the finite z cut e ects is equivalent to keeping only the contribution from R i while neglecting the contribution from eq. (D.2).

D.1.2 Imp act of t he z fact or in t he s cale of t he r u nning cou p ling

If the parameter z cut is chosen to be rather small, finite-z cut corrections are negligible but logarithmic corrections can become relevant. The resummation of the leading-logarithmic corrections in z cut is relatively straightforward and it was discussed in Ref. [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] (see also Refs. [START_REF] Frye | Precision physics with pile-up insensitive observables[END_REF][START_REF] Frye | Factorization for groomed jet substructure beyond the next-to-leading logarithm[END_REF]). Firstly, successive gluon emissions must be ordered in mass rather than in angle. Secondly, the argument of the QCD running coupling should be taken as k t = zθp t R -188 - (at least for the calculation of R i ). Both effects are included in our calculation. However, to LL accuracy (in ρ) the argument of the running coupling could more simply be chosen as θp t R. This choice leads to simpler analytic expressions and is what we naturally obtain when we consider bins of p t,mMDT , see eq. (9.25). It is therefore of some interest to investigate how neglecting the factor z in the argument of the running coupling affects our findings. In this case, the R i functions in eq. (9.9) become

D.2. End-point of the ρ distribution

R i = 1 πα s β 2 0 W 1 + α s β 0 (log(ρ) -B i ) -W 1 + α s β 0 log(ρ/z m ) -α s β 0 (log(z m ) -B i ) .
(D.3) In fig. D.1 we show the impact of these corrections on the normalised matched distributions. Remembering that the uncertainty on the lower panels is the actual uncertainty on the ratio, we see that the effects are genuinely present. However, they remain within our overall theoretical uncertainties shown on the mass distribution (upper plots).

D.2 End-point of the ρ distribution

As discussed in section 9.1.2, we have modified the argument log (1/ρ) to take into account end-point effects i.e. the fact that ρ has a maximum value ρ max for a jet with transverse momentum p t and radius R. In this appendix, we give the details of the computation of ρ max at LO and NLO.

At LO, where we have two partons p 1 and p 2 in the jet, the calculation is straightforward. The mass of the jet, and therefore ρ, will be maximal when the final partons are as distant as possible, but are still clustered into a single jet. Let us first work in the small-angle limit. Then, the angular distance between the two partons is θ 12 = R, as shown in the left plot of fig. D.2. If the two partons carry a transverse momentum p t1 = xp t and p t2 = (1 -x)p t , respectively, the jet mass is given by

m 2 = p 2 t R 2 x(1 -x). (D.4)
This is maximal when the momentum is equally distributed between the two partons, x = 1/2, for which we have ρ (small-R) max,LO = 1/4. If we relax our small-angle approximation, we should take into account that the mass of the system of two partons separated by a distance R will depend on their orientation in the rapidity-azimuthal angle plane. It is straightforward to include this in the above analytic calculation and we find that ρ is maximal when the two partons have the same rapidity, leading to ρ max,LO = R -2 tan 2 R 2 [START_REF] Dasgupta | On jet mass distributions in Z+jet and dijet processes at the LHC[END_REF]. For our choice of R = 0.8, this gives ρ max,LO = 0.279303.

At NLO, the same reasoning applies but is complicated by the presence of one more parton in the jet. We start again by considering the small-R limit. Remembering that the three partons must be clustered into a single anti-k t jet of radius R, we can assume, without loss of generality, that p 1 and p 2 are the first pair of partons to be clustered into a subjet with momentum p 12 , with p 12 then clustered with parton p 3 . In order to have all 3 partons clustered into a single jet, we must must have θ 12 ≤ R and θ (12)3 ≤ R. We define ϕ as being the angle between θ 12 and θ The maximum jet mass is thus reached for x = 5/8, which corresponds to ρ (small-R) max,NLO = 25/64. If we lift the small-R approximation, the situation becomes more complex since the mass now depends explicitly on the angle ϕ as well as on an additional overall rotation angle ψ of the 3-parton system. One can write analytic expressions for the jet mass and transverse-momentum conservation and, for given values of ϕ and ψ we can maximise the mass. The maximisation over ϕ and ψ has been done numerically -imposing that ∆R 12 < R and ∆R [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]3 < R as required by the clustering -and we find is ρ max,NLO = 0.44974 for R = 0.8.

D.3 LL predictions for the p t,mMDT jet cross-section

Before investigating in detail the double-differential cross-section d 2 σ/(dp t,mMDT dm), one might be tempted to study the jet cross-section, dσ/dp t,mMDT . Despite looking simpler, the latter is actually plagued with the issue of IRC unsafety, while for the former, the Enfin, on effectue une étude phénoménologique de la distribution de masse des jets avec mMDT. Nos prédictions théoriques prennent en compte les logarithmes dominants du rapport de la masse de jet sur l'impulsion transverse et on fait le « matching » avec les éléments de matrice à ordre fixe calculés au NLO. On discute deux options possibles, selon que les distributions sont mesurées dans des bins de l'impulsion transverse avant (version préférée) ou après le mMDT (version collinear unsafe ). Nos prédictions reproduisent des mesures faites récemment par la collaboration CMS.
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 11 Figure 1.1 -Monte Carlo efficiency curves for several jet substructure methods.
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 21 Figure 2.1 -Summary of measurements of α s as a function of the energy scale Q (from ref. [53]).
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 42 Figure 4.2 -Three particle configurations O(α 2 s) at tree-level (from ref.[START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]).
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 1 Figu r e 5.1 -Left: Lund diagram with lines to represent emissions at a fixed angle θ and a fixed momentum z. Right: Lund diagram with soft/hard and collinear/large θ regions represented.
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 52 Figure 5.2 -Feynman diagram for q → q g .
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 54 Figure 5.4 -Lund diagram for mass distribution
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 55 Figu r e 5.5 -Left: representation of the basic building block used to present our results. It appears in two di erent forms whether we have α < 1 or α > 1. Right: two additional fundamental objects built from T α .
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 262 Figure 6.2 -Jet mass distribution with Y-splitter for y = 0.05, 0.1, Pythia simulations (left) and analytical calculation (right). For analytical results, solid lines include log y resummation and dashed lines do not.

  [START_REF] Aad | Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in √ s = 8 TeV proton-proton collisions using the ATLAS detector[END_REF] which arises from combining the contributions from I 2 and -I out 1 and
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 63 Figure 6.3 -Lund diagram representing Sudakov exponents for the resummation of the log y for Y-splitter with mMDT.
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 264 Figure 6.4 -Jet mass distribution for Y-splitter with selected groomers, Pythia simulations (left) and analytical results (right). For analytical curves, we show results with only log ρ resummation (black) and results with log y terms for pure Y-splitter (red) and Y-splitter with mMDT (green).
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 265266 Figure 6.5 -Analytical results for jet mass distribution for Y m -splitter (right) compared to Pythia simulations (left) combined with selected groomers.
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 67 Figure 6.7 -Mass distributions for a Y m -splitter condition with a z cut instead of a y cut , followed by mMDT (green), trimming (blue) or no grooming (red), Pythia simulations (left) and analytical results (right) with multiple-emission corrections.
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 68 Figure 6.8 -Lund diagram corresponding to Y m -splitter applied on a pre-groomed jet with SoftDrop. The shadowed area corresponds to the region allowed by SoftDrop and entering into the Sudakov factor. The red line corresponds to the Y msplitter condition.
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 71 Figure 7.1 -Plots of the phase-space constraints on emissions setting the mass (in red) and the jet shape (in blue).
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 72 Figure 7.2 -Same as fig. 7.1 but this time for cases where the cut is applied recursively.
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 74 Figure 7.4 -Coefficients of the L v (top row) and constant (bottom row) terms extracted from the distributions in different bins of the jet mass. For each distribution, we have separated the results in the different color channels. In all cases, a factor α s /(2π) has been factored out of the numbers that are shown.
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 275 Figure 7.5 -Distributions obtained from quark jets for each of the three shapes studies. Left: results obtained with Pythia including only final-state radiation (we used p t,jet > 3 TeV, and 4 < L ρ < 4.5); right: results of our analytic calculations (for p t = 3 TeV and L ρ = 4.25).
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 77 Figure 7.7 -As a function of the jet mass, value of the cut on a given shape, log(1/v cut ) which would correspond to a 25% tagging rate. Results correspond to dijet events obtained with Pythia with p t,jet > 3 TeV. The various curves correspond to different levels of the simulations. The three plots, from left to right, correspond to N -subjettiness, the MassDrop parameter and the energy correlation function.
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 78 Figure 7.8 -Distributions for the (non-recursive) shapes at order α s for a few specific bins in the jet mass for the hadronic decay of a Z boson. A constant factor α s /(2π) has been factored out of the cross-section. The top row shows the distributions themselves, with solid lines corresponding to EVENT2 simulations and dashed lines to our analytic calculation. The bottom row shows the difference between the two.
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 792710 Figure7.9 -Distributions obtained from Z → q q jets for each of the three shapes studies. Left: results obtained with Pythia including only final-state radiation (for 4 < L ρ < 4.5); right: results of our analytic calculations (for L ρ = 4.25).
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 711 Figure7.11 -Effects of the initial-state radiation (green), hadronisation (blue) and underlying event (black) on the ROC curves, compared to pure final-state radiation (red). In all cases, we impose that 5 < log(p 2 t R 2 /m 2 ) < 5.5. The left, central and right columns correspond to τ 21 , µ2 1/2 and C 2 , respectively. For the top row, the mass and shape constraints are imposed on the plain, ungroomed, jet. For the plots on the bottom row, we have first applied a SoftDrop procedure with β = 2 and z cut = 0.1 before imposing the mass and shape constraints.
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 2712 Figure7.12 -Background fake rate for a 25% signal efficiency as a function of the jet mass. As above, we used R = 1 and p t,jet > 3 TeV for the Pythia simulation (left plot) and p t = 3 TeV, for the analytic calculation (right plot).
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 2222222281 Figure 8.1 -Schematic representation of three possible kinematic configurations for the combination of τ 21 with mMDT/SD (shown specifically for mMDT or SD with β = 0).In each Lund diagram, emission "a" corresponds to the emission that dominates the mMDT/SD jet mass. This defines three regions: region A (red) is vetoed by mMDT, region B (blue) contains the constituents of the mMDT/SD jet and region C (blue) is the difference between the mMDT/SD jet and the full jet. Emissions "b" and "c" are respectively in regions B and C, and the three plots correspond to three different orderings of z c θ 2 c compared to z a θ 2 a and z b θ 2 b . The table below the plots shows the corresponding value of τ 21 for both the QCD background (where all three regions have to be included) and the signal (where only regions A and B are present). For simplicity, "b/a" stands for (z b θ 2 b )/(z a θ 2 a ), and so forth.
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 22182 Figure 8.2 -Regions where real emissions are vetoed when combining a mMDT/SD tagger with a cut on τ 21 . See text for details.

  β = 2 as illustrative parameter choices, for clarity we use separate symbols z cut and ζ cut respectively for the parameters of mMDT and SD. Jet reconstruction and manipulation are performed with FastJet 3.2.0
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 21212121 TeV, Pythia(8.186) anti-k t (R=1), p t >2 TeV, 60<m<100 GeV tagger: mMDT(z cut =0.1)ε B ε S ROC curves ⎯ parton level ⎯ ungroomed ρ full , τ
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 87 Figure 8.7 -Same as figure as 8.6, now for hadron level (including the underlying event).
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 218 Figure8.8 -Signal significance plotted versus the non-perturbative effects for the QCD background (defined as the ratio between the background "fake" tagging rate at hadron and parton level). Different curves correspond to different combinations indicated in the legend. For the solid curves, a SoftDrop (β = 2 and ζ cut = 0.05) grooming is applied, while no grooming is applied for the dashed curves. In the left-hand plot, we impose a 2 TeV p t cut on the initial jet. The symbols on each curve then correspond to a signal efficiency (computed at hadron level) ranging from 0.05 upwards in steps of 0.05, with the large symbol on each line corresponding to ε S = 0.5 and the efficiency at the right-hand extremity explicitly labelled. In the right-hand plot, the signal efficiency (computed at hadron level) is fixed to be 0.5 and the p t cut on the jet is varied between 500 GeV and 3 TeV (in steps of 500 GeV, labelled explicitly for the groomed dichroic ratio), with the large symbol on each line corresponding to a 3 TeV cut.
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 89 Figure 8.9 -Signal efficiency plotted as a function of the cut τ cut on τ 21 for all the combinations considered in figs. 8.6 and 8.7. Solid curves correspond to hadron-level results while dashed curves are obtained at parton level. The left plot is obtained starting from the full jet, while for the right plot, a SoftDrop grooming has been applied.

Fig. 8 .Figure 8 . 10 -

 8810 Figure 8.10 -Signal significance and non-perturbative effects for background, for jet p t cuts ranging from 500GeV to 3 TeV in steps of 500GeV, as in fig. 8.8(right). The 3 TeV point is always labelled with a larger symbol. The plots compare τ dichroic 21,groomed (β τ = 2) with a range of other tools, including Y m -splitter (left) and β τ = 1 dichroic subjettiness ratios (right).Where the β τ value is not explicitly labelled, it is equal to 2. Note that the default signal-efficiency working point for the dichroic subjettiness ratios is 0.4 here rather than the 0.5 chosen in fig.8.8. The signal efficiencies for other cases are given in table 8.1.
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 811 Figure 8.11 -Same as figure as 8.5 and 8.4 now obtained from our analytic calculation instead of Monte Carlo simulations. In the right-hand plot, for clarity, the δ-function that appears at τ dichroic 21,groomed = 1 (dijets) has been represented with finite width and scaled down by a factor of 5.
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 812 Figure 8.12 -Same as figure as 8.6 now obtained from our analytic calculation instead of Monte Carlo simulations.

1 .

 1 both jets must have p t,jet > 200GeV and central rapidity, namely |y| < 2.4; 2. the transverse momenta of the jets must satisfy |p ta -p tb | < 0.3(p ta + p tb ) in order to select symmetric configurations; 3. the jets should be well-separated in azimuth, i.e. ∆φ ja,j b > π/2.

  substitute eq. (9.14) and (9.15) into eq. (9.13) and expand to the desired accuracy, to obtain σ
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 11 Figu r e 9.1 -In this figure we show the resummed and matched jet mass distribution in the 460 < p t,jet < 550 GeV transverse momentum bin (on the left), and in the p t,jet > 1300 GeV bin (on the right). The top panels show LO+LL, while the bottom panels NLO+LL.
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 2 Figu r e 9.2 -Same as in fig.9.1 but for the normalised distribution.
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 94 Figu r e 9.4 -Comparison of the jet mass distribution in two di erent matching schemes, the multiplicative one eq. (9.16) and the log-R one eq. (9.18).
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 29 Figure9.5 -Dependence of the jet cross-section before and after applying mMDT, as a function of the infrared cut-off used in EVENT2 . The cross-section before grooming is stable but the one after grooming diverges logarithmically, thus making the IRC unsafety apparent.
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 11 Figu r e 9.11 -Final results for the jet mass distribution in the case of the ungroomed p t,jet selection. The perturbative calculation is performed at NLO+LL and nonperturbative corrections are included as a multiplicative factor obtained from Monte Carlo parton showers. Perturbative uncertainties are obtained varying renormalisation, factorisation and resummation scales as detailed in section 9.1. Non-perturbative uncertainties are obtained considering the spread of five di erent Monte Carlo tunes, as detailed in section 9.3. Perturbative and non-perturbative uncertainties are added in quadrature.
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 1213 Figu r e 9.12 -Final results at NLO+LL, with non-perturbative corrections, for the normalised jet mass distribution, in the case of the ungroomed p t,jet selection.

dx 1

 1 p i (x 1 ) α s (x 1 ρ) 2π e -R mMDT (ρ) . (A.1)

  Figure B.1 -Three topologies potentially contributing to the emission of the gluon dominating the value of the shape, starting with a massive two-pronged object. Left: small-angle emission from the prong carrying a fraction 1 -z 1 of the jet p t ("prong 1"), centre: small-angle emission from the prong carrying a fraction z 1 of the jet p t ("prong 2"), right: large-angle emission from the parent object ("parent").
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 1323 Figu r e B.3 -Similar plot as in fig.7.10 where we show Pythia results (left) and analytic calculations (right) of the signal and background e ciencies for two di erent running-coupling prescriptions obtained for di erent jet transverse momenta, keeping L ρ fixed to 4.25 (or, in the 4-4.5 range for Pythia simulations).

1 zcut dz 1

 11 p i (z 1 ) α s ( √ z 1 ρ) 2π e -R SD plain (ρ)-R SD v (z 1 ,ρ) . (B.14)The SoftDrop mass distributions Sudakov is given byR SD plain (ρ) = T 02 (0, L ρ ; C R , B i ) -T -β2 (L z , L ρ ; C R , 0), (B.15)

Fig. C. 1

 1 shows ROC curves similar to those presented in Figs. 8.6 and 8.7, this time including results for β τ = 1 as dashed lines.

  Fig. C.1. Finally, we can argue that β τ = 2 gives somewhat better performance than β τ = 1. To be fair, the comparison should be made between τ dichroic 21,groomed for β τ = 2 (the solid black line on the bottom-right plot of fig. C.1) and τ dichroic 21 for β τ = 1 (the dashed black line on the bottom-left plot) which both show good signal significance and limited non-perturbative corrections. This comparison shows a somewhat larger background rejection in the β τ = 2 case for typical signal efficiencies in the 0.2-0.6 range, as also seen in fig. 8.10.
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 1 Figure C.1 -ROC curves providing a comparison between different N -subjettiness ratios for β τ = 1 (dashed lines) and β τ = 2 (solid lines). The same 4 variants as in Figs. 8.6 and 8.7 are included. The left (right) column corresponds to full (SD-groomed) jets. The top (bottom) row corresponds to parton-level (hadron-level) events.
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 1 Figu r e D.1 -Comparison of the jet mass distribution with and without the resummation of logarithmic corrections in z cut originating from the running of the strong coupling. We note that these e ects are sizeable, although still within the theoretical uncertainty.
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 22 Figure D.2 -Configurations with maximal mass for LO (left) and NLO (right).

  [START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF]3 , as shown in the right plot of fig. D.2, and we parametrise the momentum fractions of the partons asz 1 = xt, z 2 = x(1 -t), z 3 = 1 -x. (D.5)Since θ (12)1

Titre:

  Comprendre le sous-structure des jets au LHC Mots clés : jets, sous-structure, physique de particules, LHC, phenomenologie Résumé : Dans cette thèse on étudie les techniques de sous-structure des jets, utilisées pour explorer la dynamique interne des jets dans les régimes boostés (jets avec une impulsion transverse beaucoup plus grande que leur masse). On se concentre sur les techniques pour les jets à deux coeurs, pour identifier les bosons W/Z/H boostés. On propose une approche analytique, utilisant des techniques de resommation à tous les ordres en QCD perturbative. Dans la première partie de ce document, on présente les idées basiques concernant la resommation et on introduit les ingrédients (basic building blocks) utilisés dans nos calculs. Notre première étude explore le Y-splitter tagger et comment sa performance est affectée par la combinaison avec une variété de techniques de grooming : le MassDrop Tagger (mMDT), trimming et SoftDrop. Selon des études Monte Carlo, cette combinaison augmente la performance du Y-splitter, on étudie l'origine de ce comportement avec des calculs théoriques. On explore aussi l'impact des effets non-perturbatives et propose des variantes améliorées de la méthode Y-splitter originale. Ensuite, on étudie l'utilisation des jet shapes comment une variable discriminante entre les désintégrations hadroniques à deux coeurs des bosons électrofaibles et le bruit de fond des jets QCD. On considère trois shapes couramment utilisées : N-subjettiness, energy correlation functions et le paramètre MassDrop. On calcule analytiquement les efficacités pour des jets QCD et signal avec une coupure sur la variable jet shape. On compare également nos résultats aux générateurs de Monte Carlo et on étudie l'impact des effets non-perturbatifs. Ensuite, on montre comment le savoir-faire accumulé dans les études antérieures peut être utilisé pour explorer la combinaison des techniques de prong-finder/grooming avec le Nsubjettiness. On utilise le rapport τ 2 \ τ 1 comment une variable discriminante pour les jets à deux coeurs. On propose le rapport dichroïque de N-subjettiness, où on utilise un gros jet (avec ou sans pre-grooming) pour calculer τ 2 et un jet plus petit, avec un prong finder pour τ 1 . Cette version donne une performance améliorée par rapport aux versions utilisées actuellement par les expériences, tout en maintenant les effets non-perturbatifs sous contrôle.
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  Mass distribution for QCD jets with p t > 2 TeV (anti-k t , R = 1) at parton level, including SoftDrop grooming. The dashed lines, in red for the SDgroomed jet and in blue for the mMDTtagged jet, are the mass distributions with no constraint on N -subjettiness. The solid lines have an additional cut τ 21 < 0.3 with different combinations of jets used for the computation of the jet mass, τ 1 and τ 2 as indicated in the legend, our dichroic combination being plotted using a solid black line. The cross section used for normalisation, σ is that for jets above the p t cut.
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 81 .8. The signal efficiencies for other cases are given in table 8.1. Signal efficiencies for the various tools shown in fig. 8.10.

	jet p t cut [GeV]

  2 t,jet R 2 ).We calculate the ρ distribution in a given transverse momentum bin p t1 < p t,jet < p t2 :

			dσ dρ	(ρ; z cut , p t1 , p t2 ) =	p t2 p t1	dp t,jet	d 2 σ dp t,jet dρ	.	(9.1)
	We also define the normalised distribution as					
		dσ dρ	(ρ; z cut , p t1 , p t2 ) =	1 σ bin (p t1 , p t2 )	dσ dρ	(ρ; z cut , p t1 , p t2 ) ,	(9.2)
	where σ bin is the jet cross section in the transverse momentum bin under consideration.
	We also explicitly consider the jet mass distribution	
	dσ dm	(m; z cut , p t1 , p t2 ) =	p t2 p t1	dp t,jet	d 2 σ dp t,jet dm	=	p t2 p t1	dp t,jet	2m p 2 t,jet R 2	d 2 σ dp t,jet dρ	,	(

  .[START_REF] Collaboration | Discrimination of Light Quark and Gluon Jets in pp collisions at √ s = 8 TeV with the ATLAS Detector[END_REF] with, as before, α s = α s (p t R). This definition of t includes leading collinear logarithms induced by the running of the QCD coupling when going to small angles. When mMDT (and more generically SoftDrop) recurses to smaller and smaller angular scales, the corresponding value of evolution variable t increases until it reaches a non-perturbative value Comparison between the full NLO correction (solid) to the jet mass distribution to the O (α 2 s ) expansion of the LL resummation (dashed) for both p t,jet (blue) and p t,mMDT (red) in two different transverse momentum bins.
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  = (1 -t)θ 12 and θ (12)2 = tθ 12 , we haveθ 2 13 = (1 -t) 2 θ 2 12 + θ 2 (12)3 + 2(1 -t)θ 12 θ (12)3 cos ϕ, (D.6) θ 2 23 = t 2 θ 2 12 + θ 2 (12)3 + 2tθ 12 θ (12)3 cos ϕ. (D.7)The jet mass is then found to bem 2 = p 2 t (z 1 z 2 θ 2 12 + z 1 z 3 θ 2 13 + z 2 z 3 θ 2 23 ) = p 2This is maximal for θ 12 = θ (12)3 = R and momentum equally distributed between p 1 and p 2 , i.e. t = 1/2, in which case we have

			t xt(1 -t)θ 2 12 + p 2 t x(1 -x)θ 2 (12)3 .	(D.8)
	m 2 = p 2 t R 2 x	5 4	-x .	(D.9)

The transverse momentum is the component of the 4-momentum transverse to the beam direction, this quantity is frequently used when studying jets from pp collisions.

Seedless approaches were proposed before[START_REF] Blazey | Run II jet physics[END_REF], but they were not viable due to the time of computation.

For simplicity, we will use the simplified notation θ 12 instead of ∆θ 12 .

Large-angle emissions are sligthly more complicated, and we will not consider them for this example. For other cases in this thesis, they are either eliminated thought grooming or are proven to cancel outa discussion about large-angle emissions is presented in appendix B.2

.[START_REF] Bothmann | Aspects of perturbative QCD at a 100 TeV future hadron collider[END_REF] For clarity we will write Heaviside step functions as Θ[a -b] ≡ Θ[a > b].

This is not true for all jet observables, see for example the jet shapes in chapter 7.

There are cases where another scale is added to the problem, for example when we are computing the jet mass cross section plus a cut is a jet shape, as we do in chapter 7. In these cases, there are two different logarithms that need to be resummed, so eq. (5.24) needs to be adapted accordingly.

T 0β (k max = 1, k min ) is related to the radiator given in Appendix A.1 of Ref.[START_REF] Banfi | Principles of general final-state resummation and automated implementation[END_REF].

In order to lighten notation we will omit the subscript "cut" in y cut when there is no room for ambiguity.

If we keep into account finite y corrections, we should actually use f cut = y/(1 + y), which is what we have done in practice in our Monte Carlo simulations.

We used the implementation of mMDT (and SoftDrop) provided in fjcontrib[START_REF]Fastjet contrib[END_REF].

Differences between groomers would still apply due to sub-leading single logarithmic terms coming from multiple-emission contributions to the jet mass. Note also that in the case of trimming, there would be an interference between the SoftDrop and trimming conditions when the latter starts cutting angles smaller than R trim , which occurs for ρ = ζ cut R 2+β trim .

Practically, it is easier to normalize all angles to the jet radius R.

See also the discussion in section 7.2.7.

In order to keep the notation as light as possible, we shall drop the "cut" subscript when no confusions are possible, we will also ignore the subscript β in the N-subjettiness and energy correlation function, as they are already fixed.

Note that for N -subjettiness with β = 2, we do not have to worry about recoil effects and we can focus on the simpler E-scheme recombinations, which uses 4-momentum sum of the particles.

Contrary to what we have for µ 2 1/2 (see Appendix. B.2), eq. (7.15) is continuous for θ 1 = θ 2 . Using the exact expression for θ 12 in the region θ 2 ≈ θ 1 will therefore not lead to (single) logarithmically enhanced terms.

Eqss (7.18) and(7.19) can be trivially expressed as a result of D 2[START_REF] Larkoski | Power Counting to Better Jet Observables[END_REF] by replacing L v by L v -L ρ .

Again, (7.27) can be expressed as a result for D 2 replacing L v by L v -L ρ .

Alternatively, we could have used an e + e -implementation of the jet shapes (and clustering) together with unmodified e + e -events. Such an implementation is already readily available in the fastjet-contrib implementation of energy correlation functions. This would however give the same logarithms as in our pp study so we decided to stay with a single coordinate system throughout this paper.

Given the block structure of EVENT2 events, each event can be uniquely associated with a corresponding event with 2 partons in the final state. The latter can be used to define the event rotation. Another approach would be to rotate the event so as to align its thrust axis at y = 0.

Using the prescription from[START_REF] Jones | Theoretical uncertainties on alpha(s) from event shape variables in e+ e-annihilations[END_REF] we can replace R(v) by R(v/(1 -v)) and impose an endpoint, e.g. at v = 1/2, which would be the case for N -subjettiness at the order α s . That would produce distributions

Expressions (7.45) and(7.46) can be trivially expressed as a result for D 2 replacing L v by L v -L ρ .

It appears that the exact outcome depends on the value used for the EVENT2 parameter metype, referring to the matrix elements. Set to 1, our default here, we recover the expected situation of a boosted photon. Set to 0, it behaves like a boosted scalar particle, i.e. with a z-independent splitting function.

We show in appendix B.4 that this remains valid for less boosted jets, e.g. with p t = 500 GeV.

Working with the nominal Z mass would bring us yet closer to the non-perturbative region and increase even further the effects observed here.

Strictly speaking, this is only true in the strongly-ordered limit, relevant in the small v context considered in this paper (up to NLL in L v ). For more generic situations, one would also have to consider multi-pronged QCD jets.

This argument would be reversed for resonances decaying to gluons.

We used the same samples as sections 7.2.9 and 7.3.6, using a 3 TeV cut on the jet p t and varying its mass.

At low p t a significant part of τ

's discriminating power is arguably associated with the leaf and, for gluon-initiated background jets, with the part of the main Lund plane that is at small angles compared to the decay opening. This is mostly equivalent to quark-gluon discrimination, which is known to be only moderately effective[START_REF] Gallicchio | Quark and Gluon Tagging at the LHC[END_REF][START_REF] Gallicchio | Quark and Gluon Jet Substructure[END_REF][START_REF] Larkoski | Energy Correlation Functions for Jet Substructure[END_REF][START_REF] Andersen | Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report[END_REF] and not to improve significantly at high-p t . These effects are included in the analytic calculations of section 8.3.

Even if the signal and background have the same value, the different color factor of the leaf, discussed earlier, still ensures discriminating power, because z b θ 2 b /z a θ 2 a tends to be smaller for C F color factors (signal) than for C A color factors (background).

In the presence of pileup, one should still apply a pileup subtraction procedure[START_REF] Altheimer | Boosted objects and jet substructure at the LHC[END_REF], like areamedian subtraction[START_REF] Cacciari | Pileup subtraction using jet areas[END_REF][START_REF] Cacciari | The Catchment Area of Jets[END_REF], charged-track-based techniques[START_REF]Tagging and suppression of pileup jets[END_REF][START_REF] Cacciari | Use of charged-track information to subtract neutral pileup[END_REF][START_REF] Krohn | Jet Cleansing: Pileup Removal at High Luminosity[END_REF], the constituent subtractor[START_REF] Berta | Particle-level pileup subtraction for jets and jet shapes[END_REF], SoftKiller[START_REF] Cacciari | SoftKiller, a particle-level pileup removal method[END_REF] or PUPPI[START_REF] Bertolini | Pileup Per Particle Identification[END_REF]. This can be done straightforwardly with SoftDrop and mMDT.

[START_REF] Kasieczka | Resonance Searches with an Updated Top Tagger[END_REF] Or SD with a smaller value of β than used in the grooming.

All jets in the signal sample above that cut are considered to be signal-like, even if they came from initial-state radiation; however such initial-state jets will have been relatively rare in our sample and so should not affect our final conclusions.

That there should be larger non-perturbative effects in the ρ groomed -τ full 21,groomed can be understood as follows: because ρ groomed accepts a larger fraction of signal events in a given mass window than ρ tagged , to reach the same final efficiency the τ 21 cut must be pushed closer to the non-perturbative region.

As seen in chapter 7, grooming largely reduces the impact of initial-state radiation as well.

The performance of SD can be somewhat improved for a specific m/p t value by taking a negative value for β and adjusting z cut such that one effectively removes branchings with z < 0.1 at that m/p t scale (see section 7 of[START_REF] Larkoski | Soft Drop[END_REF]).

In order to simplify the notation we will drop the subscription "cut" in τ cut , when no confusion is possible.

We are adopting the alternative treatment to hard and collinear emissions, as discussed in sec.5.3 

Note that the difference between the Sudakov suppression in the two contributions comes from secondary emissions, i.e. we haveR out,full (ρ c , ρτ cut /ρ c , z c ) = R out,full (ρτ cut )+T 0 ( √ ρ c z c τ cut , √ ρ c z c b g ; C A ).

For the W W process under consideration, correlations between the incoming quarks and the final

The CMS results have recently become public and are is good agreement with our calculation.

We would like to thank Andrew Larkoski for clarifying this point.

More precisely, the resummation of ref.[START_REF] Dasgupta | Towards an understanding of jet substructure[END_REF] was performed in case of a y cut , but its modification to a z cut is straightforward.

The binned distribution is computed using eq. (9.3). For a given p t,jet we thus need to integrate ρd 2 σ/(dp t,jet dρ) over a range in ρ. In practice, this can be written as a difference between the cumulative ρ distribution taken at the bin edges, which, for the resummed results, is obtained by removing the (R q R g ) pre-factor in eq. (9.6).

Similarly, we can wonder why, once we have an emission satisfying the mMDT condition and the de-clustering procedure stops, we keep generating branchings only on the hardest branch. This is simply because further branchings on a soft branch would never dominate the jet mass and can therefore be neglected. This would not be valid for observables sensitive to secondary emissions, like N -subjettiness with N > 1, for which all branchings should be included at angles smaller than the first branching which passes the mMDT condition.

In this discussion, we neglect additional effects from non-global logarithms.

Meaning in particular that one can discard the 1 -z 2 factors.

Our use of the two-loop running coupling to compute α s at the hard scale comes from the fact that we ultimately match our resummed calculation to a NLO fixed-order calculation which itself uses the two-loop running coupling as obtained from the NLO CT14 PDF set[START_REF] Dulat | New parton distribution functions from a global analysis of quantum chromodynamics[END_REF].

See eq. (5.9) of Ref.[START_REF] Larkoski | Soft Drop[END_REF].
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t max . Thus, by considering successive 1 → 2 angular-ordered splittings, we can write down LL evolution equations for a generating functional associated to a quark, Q(x, t), or to a gluon G(x, t), where x is the momentum fraction. The relevant evolution equations were derived in ref. [START_REF] Dasgupta | Small-radius jets to all orders in QCD[END_REF]. The only difference here is that after each splitting we follow the branch with the highest transverse momentum, as it is appropriate for the mMDT algorithm. We obtain

-p xg (z)G(x, t) . (9.26b)

These equations can be implemented numerically under the form of a Monte Carlo generator producing angular-ordered (from large angles to small ones) parton branchings.

Compared to the implementation used in [START_REF] Dasgupta | Small-radius jets to all orders in QCD[END_REF], the only difference is that the successive branchings follow the hardest of the two partons obtained at the previous step of the showering. We record the angle θ and momentum fraction z of all the emissions. In order to obtain the mMDT mass spectrum, two extra ingredients are needed: firstly, we need to impose the mMDT condition and, secondly, we should impose an ordering in invariant mass rather than an ordering in angle. Since mMDT proceeds by declustering a C/A tree, imposing the mMDT condition on our angular-ordered events is trivial: we simply search for the first emission that satisfies z cut < z < 1 -z cut . From the momentum fractions of all the previous emissions, i.e. those at larger angles, we can then reconstruct the momentum fraction groomed away by the mMDT procedure and thus p t,mMDT . Then, once we have reached an emission that passes the mMDT condition, we investigate all the emissions to find the one that dominates the mass. If these emissions have angles θ i , obtained by inverting eq. (9.25), and momentum fractions z i , we take, to LL accuracy,

In particular, it is worth pointing out that we can use the momentum fraction z i , relative to each branching, instead of the actual momentum of each parton with respect to the initial jet. This is simply because the difference between the two does not generate any logarithmic enhancement. 5 Finally, since the resummation is obtained from a Mote Carlo event generator, it can directly be interfaced with NLOJet++ at Born-level to obtain predictions for the jet mass cross-section.

Before we present matched results, we note that, compared to the resummation done in the previous section for the p t,jet case, the use of eq. (9.25) implies that we are neglecting -B -Further details on jet shapes

B.1 Infrared (un)safety of C/A de-clustering

In this appendix, we provide a few additional details regarding the infrared unsafety of the µ 2 parameter with Cambridge/Aachen de-clustering. To avoid any possible confusion, we must stress that the discussion below only applies to the non-recursive version of the µ 2 parameter and that the recursive application of a µ 2 p cut is infrared-safe for any p. That said, let us consider a jet with three particles: a hard parton, a first emission with momentum fraction z 1 at an angle θ 1 and a second emission with momentum fraction z 2 at an angle θ 2 , with z 1 θ 2 1 > z 2 θ 2 2 and θ 2 θ 1 . This corresponds to the leading-order (O(α 2 s )) configuration for a jet with m 2 = (z 1 θ 2 1 +z 2 θ 2 2 )p 2 t and with a generic

). At the next order of the perturbation theory, one would have to include real emissions of gluons with momentum fraction z 3 and angle θ 3 as well as the corresponding virtual corrections and the soft divergence z 3 → 0 is supposed to cancel between the real and virtual contributions. However, for θ 3 θ 1 and z 3 → 0, the virtual contribution would give

) as for the 2-particle configuration, but the real emissions would give µ 2 real = 1 because of the C/A de-clustering. This would lead to an infrared unsafety at µ 2 virt . This situation can happen at any value of µ, depending on the original three-particle configuration.

Although we have not made an explicit calculation, one might expect that the Sudakov R µ 2 p would receive a contribution proportional to (α s /p) log 2 (1/θ 2 1 ), with θ 2 1 = ρ/z 1 , which diverges in the limit p → 0.

B.2 Soft and large-angle emissions

In all the calculations we have performed so far, we have included hard collinear splittings which correspond to the terms proportional to B i and B g in our results. At the same order we could also have single-logarithmic contributions coming from soft and large-angle emissions. In practice, keeping the same notations as above, this means working in the approximation z 2 z 1 without assuming any specific ordering between θ 1 and θ 2 .

B.4 Further comparisons

In this appendix, we provide a few additional comparisons between our analytic predictions and Monte Carlo simulations. One-loop vs. two-loop running coupling. First, in sections 7.2.9 and 7.3.6, we have used a one-loop running of α s , with α s (m Z ) = 0.1383, for Pythia simulations, and compared that to analytic calculations including two-loop corrections and using α s (m Z ) = 0.1185. In the case of our analytic calculation, this choice is motivated by the fact that two-loop corrections are easily included and we then used the world-average value [START_REF] Olive | Review of Particle Physics[END_REF] at the Z-boson mass. For the Pythia simulation, we simply kept the default which is a one-loop running. We could also have run Pythia with a two-loop running of the coupling and impose α s (m Z ) = 0.1185. We did not do that in the main text because that can only safely be done with a retuning of other parameters in Pythia (mostly for the non-perturbative effects). It is however interesting to check that this difference in the treatment of the running of the strong coupling does not come with large effects. The result is presented in fig. B.2, where we see that this is indeed a small effect which does not alter in any way the conclusions of this paper. We also see from that figure that the size of the effect is similar in Monte Carlo simulations and in our analytic predictions.

The second contribution is non-zero only for the case L v > L 1 . It has an additional transition point at L tr,1 = -β(L ρ -L 1 )/2 + L v and it is given by

(z 1 ) is the sum of these two contributions.

B.5.2 Energy Correlation

We have a transition point at c = ρ/z 1 , the same as the case without SoftDrop (see eq. (7.18)). For the first region,

For the region where L v < L ρ -L 1 , we have an additional transition point at ratio to CT14nlo, central scale

Figure D.4 -Theoretical uncertainties on the ratio (dσ/dp t,mMDT )/(dσ/dp t ). Uncertainties associated with the choice of the renormalisation and factorisation scales as well as with the choice of PDF are shown relative to the ratio obtained for the central scale choice and our default CT14nlo PDF set.

measured jet mass acts as a regulator of the collinear divergence. In this appendix, we therefore briefly depart from our study of the double-differential mass distribution to concentrate instead on the Sudakov-safe dσ/dp t,mMDT . The results of both our LL calculation and of Monte Carlo simulations at different levels are presented in fig. D.3, for the ratio (dσ/dp t,mMDT )/(dσ/dp t ). We can make two main observations: firstly, our LL calculation provides a good description of what is observed at parton level. Secondly, as already noticed in fig. 9.6, hadronisation effects are sizeable while UE correction are more modest. Additionally, fig. D.3 shows the dependence of our LL calculation when varying the value t max of t at which we stop parton branchings. For all the results presented in the main body of the paper, we have adopted t max = 1.2 which shows stable results in fig. D.3.

From a theoretical viewpoint, dσ/dp t,mMDT can be viewed as the convolution of the jet spectrum d 2 σ/dp t with the "jet energy drop", 1/σ dσ/d∆ E distribution, computed in the original Soft Drop paper [START_REF] Larkoski | Soft Drop[END_REF] at LL accuracy in ∆ E , neglecting finite z cut corrections. For the specific case of mMDT, i.e. the limit β → 0 of Soft Drop, we found the remarkable property that, modulo running-coupling corrections, the energy-drop spectrum is independent of α s and of the flavor of the parton initiating the jet. 2 It is therefore interesting to study the theoretical uncertainty of our LL calculation of dσ/dp t,mMDT , as measured from scale variation. This is shown in fig. D.4. The observed theoretical uncertainty is indeed very small, well below 1%. This should be contrasted with the much larger spread of the parton-level results from our Monte Carlo simulations, the top-left panel of fig. D.3. This could be related to subleading effects not captured by scale variation, or to effects of finite shower cut-off, seen also in our LL calculation when varying t max . The question D.3. LL predictions for the p t,mMDT jet cross-section of the power corrections to the p t,mMDT cross-section, and to Sudakov-safe observables in general, is therefore interesting both from the point of view of Monte Carlo simulations and all-order calculations. Title : Understanding jet substructure at the LHC Keywords : jets, substructure, particle physics, LHC, phenomenology Abstract : In this thesis we study jet substructure techniques, used to explore the internal dynamics of jets in boosted regimes (jets with transverse momentum much larger than their mass). We focus on techniques for two-pronged jets, meant to identify boosted W/Z/H bosons. We propose an analytical approach using all-order resummation techniques, in perturbative QCD. In the beginning of this document, we lay down the basic ideas of resummation and introduce the ingredients (basic building blocks) used for our calculations. Our first study explores the Y-splitter tagger and how its performance is affected by combining it to different grooming techniques : the modified MassDrop Tagger (mMDT), trimming and SoftDrop. It is known that this combination increases the Y-splitter performance, and we studied the origin of this behavior from a first principle approach. We also explore the impact of non-perturbative effects and propose some variations for the original Ysplitter. Then, we investigate the use jet shapes as discriminating variables between twopronged hadronic decays of electroweak bosons (W/Z/H) and QCD jets background. We study three shapes: N-subjettiness, energy correlation functions and MassDrop parameter. We carry out analytical calculations for the efficiencies of signal and QCD jets with cuts on these variables. We also compare our results to Monte Carlo generators and study the impact of non-perturbative effects. Next, we show how the knowladge accumulated in the previous studies can be used to explore the interplay between grooming/tagging techniques and the Nsubjettiness. We use the ratio τ 2 \ τ 1 as a discriminating variable for twopronged jets. In this work, we propose the dichroic N-subjettiness ratio, where we use a large jet for calculating τ 2 and a smaller, tagged subjet for τ 1 . The resulting dichroic ratio gives enhanced performance compared to the original version of the jet shape, while keeping nonperturbative effect under control. Finally, we perform a phenomenological study of the jet mass distribution with mMDT. Our theoretical predictions account for the resummation of the leading logarithm of the ratio of the jet mass over the jet transverse momentum and are matched to fixed-order matrix elements computed at next-to-leading order accuracy. We consider both the jet transverse momentum measured before (preferred) and after (not collinear safe) the mMDT procedure.