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Introduction

...all models are wrong, but some
are useful.

Box G. E. P.

The first chapter is devoted to a problem of non-parametric estimation. The
difference from parametric estimation is that the unknown object to be estimated
is infinite dimensional. As a model we have continuous time observations of a
periodic inhomogeneous Poisson process with the known period τ . We suppose
that the observation is done in the time interval [0, T ], where T = nτ. The setting
of the problem is asymptotic, that is, we will consider the case where n tends
to infinity. A Poisson process is a point process - random countable realizations
in some space, called the state space. We will identify the Poisson process with
the counting process of the points of a realization in bounded subsets of the state
space. Hence, the Poisson process is a non-negative, integer-valued process. To
each Poisson process is associated a measure on the state space, called the mean
measure of the Poisson process. If the state space is the interval [0, T ], then each
locally-compact Borel measure can be given by a single function, which, for the
mean measure we call the mean function. If the mean function Λ(·) is absolutely
continuous with respect to the Lebesgue measure

Λ(t) =

∫ t

0

λ(s)ds,

then the function λ(·) is called the intensity function of the Poisson process. Pe-
riodicity of the Poisson process means that the intensity function exists and is a
τ−periodic function

λ(t) = λ(t+ kτ), k ∈ Z+, t ∈ [0, τ ].

The periodic Poisson process {X(t), t ∈ [0, T ], T = nτ} with the known period τ
can be transformed to a Poisson process on the interval [0, τ ], observed indepen-
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Introduction 8

dently n times, using the following notations

Xj(t) = X((j − 1)τ + t)−X((j − 1)τ), t ∈ [0, τ ],

Xj = {Xj(t), t ∈ [0, τ ]}, j = 1, · · · , n.

Hence, our observations will be i.i.d. (independent, identically distributed) Poisson
processes Xn = (X1,X2, · · · ,Xn) on the interval [0, τ ]. We consider the problem
of the estimation of the mean function. The mean function estimation problem is
very close to the distribution function estimation problem from i.i.d. observations
of real random variables. More precisely, we can construct consistent estimators
without regularity conditions on the unknown object (since there is an unbiased
estimator for the unknown object). It is well known that, for example, in the
density (i.i.d. random variables case) or intensity (inhomogeneous Poisson pro-
cess) estimation problems, even for constructing a consistent estimator we have to
impose regularity conditions (existence and Hölder continuity of some derivative,
[40]) on the unknown object. In the works of Kutoyants [21],[20] it was shown that
the empirical mean function

Λ̂(t) =
1

n

n∑
j=1

Xj(t)

is consistent, asymptotically normal estimator with the optimal rate and is even
asymptotically efficient for a large number of loss functions (including polynomi-
als). Our work treats only the case of L2 loss function or known as mean integrated
squared error (MISE). Asymptotic efficiency we understand in the following way.
For all estimators the following lower bound is true

lim
δ→0

lim
n→+∞

sup
Λ∈Vδ

n

∫ τ

0

EΛ(Λ̄n(s)− Λ(s))2ds ≥
∫ τ

0

Λ∗(s)ds,

where Vδ is a shrinking vicinity of Λ∗ in sup norm

Vδ = {Λ(·) : sup
t∈[0,τ ]

|Λ(t)− Λ∗(t)| ≤ δ}.

The estimator Λ̃n(t) for which we have equality

lim
δ→0

lim
n→+∞

sup
Λ∈Vδ

n

∫ τ

0

EΛ(Λ̃n(s)− Λ(s))2ds =

∫ τ

0

Λ∗(s)ds

is said to be asymptotically efficient.

We will use this result in a slightly modified way

inf
Λ̄n

lim
n→+∞

sup
Λ∈F

(
EΛ||
√
n(Λ̄n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0,
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where F is a subset of a ball of radius R centered around a given (known) mean
function Λ∗. The statement of asymptotic efficiency of the mean function is true for
several bounded sets (particularly for Σ(R) and Fperm (R, S), see below for defini-
tions), and, obviously, if it is true for some set, then it is true for all sets containing
that set. The empirical mean function is not the only asymptotically efficient esti-
mator. Our first goal is to construct a class of asymptotically efficient estimators.
Below we always consider a kernel type estimator

Λ̃n(t) =

∫ τ

0

Kn(s− t)(Λ̂n(s)− Λ∗(s))ds+ Λ∗(t),

with non-negative, integrable, normalized kernels Kn(·) on [− τ
2
, τ

2
],

Kn(u) ≥ 0,

∫ τ
2

− τ
2

Kn(u)du = 1, n ∈ N ,

that are symmetric and we continue them τ periodically on the whole real line R

Kn(u) = Kn(−u), Kn(u) = Kn(u+ kτ), u ∈
[
−τ

2
,
τ

2

]
, k ∈ Z.

Then, their Fourier coefficients with respect to the trigonometric basis will be

Λ̃1,n = Λ̂1,n, Λ̃2l,n =

√
τ

2
K2l,n(Λ̂2l,n − Λ∗2l) + Λ∗2l,

Λ̃2l+1,n =

√
τ

2
K2l,n(Λ̂2l+1,n − Λ∗2l+1) + Λ∗2l+1, l ∈ N ,

with

Λl =

∫ τ

0

Λ(t)φl(t)dt, Λ∗l =

∫ τ

0

Λ∗(t)φl(t)dt.

Our first result states
Proposition ([6]). Suppose that the kernels satisfy also the condition

n sup
l≥1

∣∣∣∣√τ

2
K2l,n − 1

∣∣∣∣2 −→ 0,

as n→ +∞. Then, over a Λ∗ centered B(R) =
{

Λ :
∫ τ

0
[Λ(t)− Λ∗(t)]

2dt ≤ R
}

ball
of mean functions in L2, the following equality holds

lim
n→+∞

sup
Λ∈B(R)

(
EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0.
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We prove also
Proposition. For the kernel-type estimator with kernels satisfying the condition

n sup
l≥1

∣∣∣∣∣
√

τ
2
K2l,n − 1

2πl
τ

∣∣∣∣∣
2

−→ 0,

as n→ +∞, the following equality holds

lim
n→+∞

sup
Λ∈Σ(R)

(
EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0,

where the set Σ(R) is

Σ(R) =

{
Λ,

∫ τ

0

(λ(t)− λ∗(t))2dt ≤ R, Λ∗(0) = Λ(0) = 0, Λ∗(τ) = Λ(τ)

}
.

To give explicitly a class of asymptotically efficient estimators
Remark. Suppose that K(u), u ∈

[
− τ

2
, τ

2

]
is a non-negative, integrable, normal-

ized function

K(u) ≥ 0, u ∈
[
−τ

2
,
τ

2

]
,

∫ τ
2

− τ
2

K(u)du = 1,

which is symmetric and we continue it τ periodically on the whole real line

K(u) = K(−u), K(u) = K(u+ kτ), u ∈
[
−τ

2
,
τ

2

]
, k ∈ Z.

Let the positive sequence hn ≤ 1 be such that h2
nn −→ 0, n → +∞. Then, the

kernels

Kn(u) =
1

hn
K

(
u

hn

)
1I
{
|u| ≤ τ

2
hn

}
satisfy the condition

n sup
l≥1

∣∣∣∣∣
√

τ
2
K2l,n − 1

2πl
τ

∣∣∣∣∣
2

−→ 0.

To compare asymptotically efficient estimators we prove the following result. Let

Fperm (R, S) =

{
Λ(·) :

∫ τ

0

[Λ(m)(t)]2dt ≤ R, Λ(0) = 0, Λ(τ) = S

}
,

where R > 0, S > 0, m > 1, m ∈ N are given constants. Periodicity means that
the intensity function λ(·) is periodic (hence the equality of its values and the
values of its derivatives on the endpoints of the interval [0, τ ]). Introduce as well

Π = Πm(R, S) = (2m− 1)R

(
S

πR

m

(2m− 1)(m− 1)

) 2m
2m−1

.
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Proposition. Then, for all estimators Λ̄n(t) of the mean function Λ(t), following
lower bound holds

lim
n→+∞

sup
Λ∈Fperm (R,S)

n
2m

2m−1

(∫ τ

0

EΛ(Λ̄n(t)− Λ(t))2dt− 1

n

∫ τ

0

Λ(t)dt

)
≥ −Π.

This inequality compares second order asymptotic term of maximal loss over some
non-parametric class of functions (under additional regularity conditions on the
unknown mean function). Hence the estimators reaching that lower bound will
be called second order efficient. In our work we explicitly calculate asymptotic
minimal error for the second order estimation. The constant Πm(R, S) plays the
same role in second order estimation as the Pinsker constant in density estimation
problem or the inverse of the Fisher information in the regular parametric estima-
tion problems. But unlike mentioned problems here the constant is negative. This
is due to the fact that for the empirical mean function

EΛ

∫ τ

0

(Λ̂(t)− Λ(t))2dt =
1

n

∫ τ

0

Λ(t)dt,

therefore the second term is equal to zero. We propose also an estimator

Λ∗n(t) = Λ̂0,nφ0(t) +
+∞∑
l=1

Kl,nΛ̂l,nφl(t),

where {φl}+∞
l=1 is the trigonometric cosine basis on L2[0, τ ]. For the first order

efficiency we used the trigonometric basis with both sine and cosine functions
present, here we took only the cosine basis to avoid technical difficulties and, as a
result, the proposed estimator does not depend on the center of the ellipsoid (here
it is present as the quantity S). Λ̂l,n are the Fourier coefficients of the empirical
mean function with respect to this basis and

K̃l,n =

(
1−

∣∣∣∣πlτ
∣∣∣∣m α∗n)

+

, α∗n =

[
S

nR

τ

π

m

(2m− 1)(m− 1)

] m
2m−1

,

Nn =
τ

π
(α∗n)−

1
m ≈ Cn

1
2m−1 , x+ = max(x, 0), x ∈ R.

We emphasis the fact that though in the definition there is an infinite sum, but in
reality it contains only finite terms, but the number of terms Nn tends to infinity

as n→ +∞ with the rate n
1

2m−1 . Our next result is
Proposition. The estimator Λ∗n(t) attains the lower bound described above, that
is,

lim
n→+∞

sup
Λ∈Fperm (R,S)

n
2m

2m−1

(∫ τ

0

EΛ(Λ∗n(t)− Λ(t))2dt− 1

n

∫ τ

0

Λ(t)dt

)
= −Π.
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That is, our proposed estimator is asymptotically second order efficient. Result is
presented in [6].

The explicit calculation of the asymptotic error in a non-parametric estimation
problem was first done by Pinsker [36] in the model of observation of a signal in
the white Gaussian noise. The idea was to consider the minimax risk of integral-
type quadratic loss functions on a Sobolev ellipsoid. The concept of second order
efficiency was introduced by Golubev and Levit [13] in the problem of distribution
function estimation for the i.i.d. model. In the paper [13], authors proved a lower
bound which allows to compare second term of the expansion of the maximal
loss over some set of functions and minimize that term. They proposed also an
estimator which attains that lower bound, hence that lower bound is sharp.

Later, second order efficiency was considered for some other models. For example,
Dalalyan and Kutoyants [3] proved second order asymptotic efficiency in the esti-
mation problem of the invariant density of an ergodic diffusion process. Golubev
and Härdle [12] proved second order asymptotic efficiency in partial linear models.

The second chapter of this work is devoted to the approximation problem of the
solution of a forward-backward stochastic differential equation (forward BSDE
or FBSDE). We suppose that the diffusion coefficient of the forward equation
depends on an unknown one-dimensional parameter, therefore the solution of the
backward equation also depends on that parameter. It is well-known that if we
observe the solution of a stochastic differential equation on the whole interval,
even bounded and very small, then we can estimate the unknown parameter in
the diffusion coefficient “without an error”, hence it is not a statistical problem.
Our considerations are based on the observations of the solution of the forward
equation on a finite interval, at equidistant discrete points. As the number of
observations tends to infinity, the distance between the observation times tends to
zero. Such a statement of problem is called high frequency asymptotics. At a given
point of time we have to construct an estimator for the unknown parameter based
on the observation times before that time only, hence we have to construct an
estimator process. We are seeking an estimator which is computationally simple,
but of course, we do not want to lose in the performance of the estimator (we
want it to be still asymptotically efficient). For that reason we are looking for an
estimator which is also asymptotically efficient.

The BSDE was first introduced in the linear case by Bismuth [2] and in general
case this equation was studied by Pardoux and Peng [33]. Since that time the
BSDE attracts attention of probabilists working in financial mathematics and has
obtained an intensive developement (see, e.g. El Karoui et al. [5], Ma and Yong
[30] and the references therein). The detailed exposition of the current state of
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this theory can be found in Pardoux and Răscanu [35].

We consider the following problem. Suppose that we have a stochastic differential
equation (called forward)

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T,

and two functions f (t, x, y, z) and Φ (x) are given. We have to find a couple of
stochastic processes (Yt, Zt) such that it satisfies the stochastic differential equation
(called backward)

dYt = −f (t,Xt, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T

with the final value YT = Φ (XT ).

The solution of this problem is well-known. We have to solve a special partial
differential equation, to find its solution u (t, x, ϑ) and to put Yt = u (t,Xt, ϑ) and
Zt = σ (ϑ, t,Xt)u

′
x (t,Xt, ϑ).

We are interested in the problem of approximation of the solution (Yt, Zt) in the
situation where the parameter ϑ is unknown. Therefore we first estimate this pa-
rameter with help of some good estimator ϑ?t,n, 0 < t ≤ T based on the discrete time
observations (till time t) of the solution of the forward equation and then we pro-
pose the approximations Y ?

t = u
(
t,Xt, ϑ

?
t,n

)
, Z?

t = σ
(
ϑ?t,n, t, Xt

)
u′x
(
t,Xt, ϑ

?
t,n

)
.

Moreover, we show that the proposed approximations are in some sense asymp-
totically optimal.

The main difficulty in the construction of this approximation is to find an estimator
-process ϑ?t,n, 0 < t ≤ T which can be easily calculated for all t ∈ (0, T ] and at the
same time has asymptotically optimal properties. Unfortunately we cannot use the
well-studied pseudo-MLE (maximum likelihood estimator) based on the pseudo-
maximum likelihood function because its calculation is related to the solution of
nonlinear equations and numerically is sufficiently difficult problem.

The one-step MLE was proposed in the local asymptotically normal statistical
models by Le Cam [25] as a method to improve an arbitrary estimator with the
optimal rate up to an asymptotically efficient one. Volatility parameter estima-
tion has another asymptotic property. Under regularity conditions, the volatility
parameter estimation model is locally asymptotically mixed normal ([4], [9], [11]).
We propose here a one-step MLE-process, which was recently introduced in the
case of ergodic diffusion [23] and diffusion process with small noise [24]. As in
the construction of the one-step MLE, we take a preliminary estimator and im-
prove its asymptotic performance by transforming it to an optimal estimator. The
difference is that the one-step MLE-process allows us even to improve the rate
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of the preliminary estimator. Note that the multi-step Newton-Raphson proce-
dure for construction of parameter estimators was first proposed by Kamatani
and Uchida [19]. They considered the discrete time observations in the case of
observations of ergodic diffusion process where the unknown parameters were in
the drift and diffusion coefficients. The asymptotics in their work corresponds to
the “high frequency” and large samples. The multi-grid process allows them to
obtain asymptotically efficient estimators. The review of statistical problems for
the BSDE model of observations can be found in [22].

Note that the problem of volatility parameter estimation by discrete time obser-
vations is actually a well developed branch of statistics (see, for example, [38] and
references therein). The particularity of our approach is due to the need of updated
on-line estimator ϑ?t,n which depends on the first observations up to time t.

Let us fix some (small) τ > 0. We call the interval [0, τ ] the learning interval
and we construct the estimator process for the values of t ∈ [τ, T ]. Based on
the learning interval we construct a preliminary estimator, then we improve this
estimator up to an optimal (asymptotically efficient) estimator which, on the other
hand, is computationally easy calculable. As a preliminary estimator ϑ̂τ,n we
take a particular minimum contrast estimator (MCE) (for a general method of
constructing MCE estimators for the diffusion parameter see [9]) which is called the
pseudo-maximum likelihood estimator (PMLE), constructed by the observations
Xτ,n =

(
X0, Xt1,n , . . . , XtN,n

)
, where tN,n ≤ τ < tN+1,n. To defining the PMLE

introduce the log pseudo-likelihood ratio

Lt,k
(
ϑ,Xk

)
= −1

2

k∑
j=0

ln
[
2πσ2

(
ϑ, tj−1, Xtj−1

)
δ
]

−
k∑
j=1

[
Xtj −Xtj−1

− S
(
tj−1, Xtj−1

)
δ
]2

2σ2
(
ϑ, tj−1, Xtj−1

)
δ

and define the PMLE ϑ̂τ,n by the equation

Lτ,N(ϑ̂τ,n, X
N) = sup

ϑ∈Θ
Lτ,N

(
ϑ,XN

)
, .

This estimator is consistent and asymptotically conditionally normal ([9])√
n

T

(
ϑ̂τ,n − ϑ0

)
= Iτ,n (ϑ0)−1

√
2

N∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj + o (1)

=⇒ ξτ (ϑ0) = Iτ (ϑ0)−1
√

2

∫ τ

0

σ̇ (ϑ0, s,Xs)

σ (ϑ0, s,Xs)
dw (s) .
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Here the random Fisher information matrix is

Iτ (ϑ0) = 2

∫ τ

0

σ̇ (ϑ0, s,Xs) σ̇ (ϑ0, s,Xs)
T

σ2 (ϑ0, s,Xs)
ds

and

Iτ,n (ϑ0) = 2
N∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)σ̇(ϑ0, tj−1, Xtj−1

)T

σ2(ϑ, tj−1, Xtj−1
)

δ −→ Iτ (ϑ0) ,

where dot means the derivative with respect to the unknown parameter ϑ.

Introduce the pseudo score-function (Aj−1 (ϑ) = σ2
(
ϑ, tj−1, Xtj−1

)
)

∆k,n

(
ϑ,Xk

)
=

k∑
j=1

˙̀
(
ϑ,Xtj−1

, Xtj

)

=
k∑
j=1

[(
Xtj −Xtj−1

− Sj−1 δ
)2 − Aj−1 (ϑ) δ

]
Ȧj−1 (ϑ)

2A2
j−1 (ϑ)

√
δ

.

For any t ∈ [τ, T ] define k by the condition tk ≤ t < tk+1. The one-step MLE-
process is introduced by the relation

ϑ?k,n = ϑ̂τ,n +
√
δ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X

k), k = N + 1, . . . , n. (0.1)

Our goal is to show that the corresponding approximation

Y ?
tk,n

= u
(
tk, Xtk , ϑ

?
k,n

)
, k = N + 1, . . . , n,

is asymptotically efficient. To do this we need to present the lower bound on the
risks of all estimators and then to show that for the proposed approximation this
lower bound is reached. Our first result is
Proposition. The one-step MLE-process ϑ?k,n, k = N + 1, . . . , n is consistent,
asymptotically conditionally normal (stable convergence)

δ−1/2
(
ϑ?k,n − ϑ0

)
=⇒ ξt (ϑ0) , ξt(ϑ0) =

∆t(ϑ0)

It(ϑ0)

and is asymptotically efficient for t ∈ [τ∗, T ] where τ < τ∗ < T and for bounded
loss functions.

Then we prove a lower bound for the approximation of the solution of a FBSDE
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Proposition. Suppose that the coefficients of the diffusion process satisfies R con-
ditions, then, for the loss function `(u) = |u|p, p > 0, the following lower bound is
true

lim
ε→0

lim
n→+∞

sup
|ϑ−ϑ0|<ε

Eϑ`
(
δ−1/2

(
Ȳtk,n − Ytk

))
≥ Eϑ0`(u̇(ϑ0, t, Xt)ξt(ϑ0)).

Here u (ϑ, t, x) satisfies the equation

∂u

∂t
+ S (t, x)

∂u

∂x
+
σ (ϑ, t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, σ (ϑ, t, x)

∂u

∂x

)
.

Proposition. Suppose that the conditions of regularity hold, then the estimators

Y ?
tk,n

= u(tk, Xtk , ϑ
?
k,n), Z?

tk,n
= u′x(tk, Xtk , ϑ

?
k,n)σ(tk, Xtk , ϑ

?
k,n), tk ∈ [τ, T ] ,

are consistent Y ?
tk,n
−→ Yt, Z

?
tk,n
−→ Zt, (convergence in probability) and asymp-

totically conditionally normal (stable convergence)

δ−1/2
(
Y ?
tk,n
− Ytk

)
=⇒ 〈u̇ (t,Xt, ϑ0) , ξt (ϑ0)〉,

δ−1/2
(
Z?
tk,n
− Ztk

)
=⇒ σ (t,Xt, ϑ0) 〈u̇′x (t,Xt, ϑ0) , ξt (ϑ0)〉

+ u′x (t,Xt, ϑ0) 〈σ̇ (t,Xt, ϑ0) , ξt (ϑ0)〉.

These results are presented in the work [7].

It have to be mentioned that we could construct the approximation of Yt and Zt
as follows

Ŷt,n = u(t,Xt, ϑ̂k,N) and Z?
t = σ

(
ϑ̂t,N , t, Xt

)
u′x

(
t,Xt, ϑ̂t,N

)
,

that is, using only the preliminary estimator. Note that this type of approximation
is not asymptotically efficient, since we use only part of the observations (only the
learning interval). Hence we are looking for another estimator of ϑ which can
provide smaller error of estimation.

Then, we are considering a Pearson diffusion

dXt = −Xtdt+
√
ϑ+X2

t dWt, X0, 0 ≤ t ≤ T.

For this model, using the preliminary estimator

ϑ̄N =
n

TN

[
X2
tN
−X2

0 − 2
N∑
j=1

Xtj−1

[
Xtj −Xtj−1

]
−

N∑
j=1

X2
tj−1

δ

]
,
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we propose the one-step MLE process

ϑ?tk,n = ϑ̄N +
√
δ

k∑
j=1

[
Xtj −Xtj−1

+Xtj−1
δ
]2 − (ϑ̄N +X2

tj−1

)
δ

2Itk,n
(
ϑ̄N
) (
ϑ̄N +X2

tj−1

)2√
δ

, τ ≤ tk ≤ T.

and prove the proposition
Proposition. The one-step MLE-process ϑ?tk,n is consistent: for any ν > 0

Pϑ0

(
max
N≤k≤n

∣∣ϑ?tk,n − ϑ0

∣∣ > ν

)
→ 0

and for all t ∈ (τ, T ] the convergence

δ−1/2
(
ϑ?tk,n − ϑ0

)
=⇒ ζt (ϑ0)

holds. Moreover, this estimator is asymptotically efficient.

The result is presented in [8].
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Chapter 1

Estimation of the mean of a
Poisson process

1.1 Introduction

As an introduction to the theory of Poisson processes can be used the book [18],
for the introduction to the statistical theory of Poisson processes we refer to [21].

This chapter deals with the second order estimation problem for the mean function
of a Poisson process. Poisson process is a special type of point processes which
serves for modeling the occurrence of random events during a time interval, with
the property that the number of events are stochastically independent on non-
intersecting time intervals and have the Poisson distribution on these intervals.
Being the simplest example of a point process with useful applications in modeling
various random events (as for example, arrivals of clients in some serving loca-
tions) it serves as one of the building blocks for creating statistical concepts for
stochastic processes. In this chapter, observing an inhomogeneous Poisson process
on a segment of the real line independently several times, our goal is to estimate
the mean function of that process in an asymptotically efficient way, as the num-
ber of observations tends to infinity. The problem has very evident resemblance
to the estimation problem of the distribution function of a real random variable
from independent, identically distributed observations. As in the latter problem,
where empirical distribution function turns out to be an asymptotically efficient
estimator in the minimax sense (see, for example, [10],[28]), the empirical mean
function is an asymptotically the best estimator for the mean function for various
loss functions ([21],[20]). To compare the performances of estimators throughout
this chapter we use only the Hilbert space norm of square integrable functions and

19
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are interested in minimizing the mean integrated square error (MISE) asymptot-
ically over bounded sets. Obviously enough, the empirical mean function is not
the only asymptotically efficient estimator for the mean function in this sense. We
start by construction a class of estimators that share the same property over some
specified compact set. The main result of this chapter consists of proving a lower
bound, which compares the second order mean integrated square error (SMISE)
of all estimators and allows to compare the asymptotically efficient (first order)
estimators. The proof is done using the technique developed in [1], which uses the
van Trees inequality from [10]. Thus, following the work [13], we introduce the
notion of the second order asymptotic efficiency. This is done under additional
smoothness assumptions on the unknown mean function. The rate of convergence
of the second order term is explored and the limit constant of the SMISE is calcu-
lated. The latter plays the role of the Pinsker constant of nonparametric estimation
problems where the rate of convergence is less than the classical parametric rate
of convergence. The whole notion of the second order efficiency (introduced in [13]
for the distribution function estimation and carried out for various other models in
[3],[12]) serves as an analogue of the Pinsker theory [36] (see also [31],[40]) for the
problems where the classical parametric rate of convergence is attained in a non-
parametric estimation problem. In the last part of this chapter, the construction
of the second order asymptotically efficient estimator is given.

1.2 Model description

We consider the mean function estimation problem of a periodic Poisson process
with the known period τ. Recall that {X(t), t ∈ [0, T ]} is an inhomogeneous Pois-
son process if for each fixed time point it is a non-negative, integer-valued random
variable, starts from zero X(0) = 0 almost surely, has independent increments and
there is a non-decreasing, continuous function Λ(t) such that

P(X(t)−X(s) = k) =
[Λ(t)− Λ(s)]k

k!
e−[Λ(t)−Λ(s)], 0 ≤ s < t ≤ T, k ∈ Z+,

(Z+ denotes the set of all non-negative integer numbers). Here Λ(t), t ∈ [0, τ ] is
called mean function of the Poisson process, because EX(t) = Λ(t). For each non-
decreasing, continuous function there is a Poisson process with the mean function
being that function ([18]), hence the mean functions will be identified with these
functions. If the mean function is absolutely continuous

Λ(t) =

∫ t

0

λ(s)ds,
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then λ(·) is called the intensity function. Periodicity of the Poisson process means
that the intensity function exists and is a τ−periodic function

λ(t) = λ(t+ kτ), k ∈ Z+, t ∈ [0, τ ].

The periodic Poisson process {X(t), t ∈ [0, T ], T = nτ} with the known period τ
can be transformed to a Poisson process on the interval [0, τ ], observed indepen-
dently n times, using the following notations

Xj(t) = X((j − 1)τ + t)−X((j − 1)τ), t ∈ [0, τ ],

Xj = {Xj(t), t ∈ [0, τ ]}, j = 1, · · · , n.

Hence, we observe i.i.d. observations of an inhomogeneous Poisson process on a
segment of the real line Xn = (X1,X2, · · · ,Xn) where Xj = {Xj(t), t ∈ [0, τ ]} is
a Poisson process on the interval [0, τ ]. The estimation problem of the intensity
function is well developed in various works by several authors. We mention here
only two of them [21], [37] and an upcoming book [20]. In this chapter we consider
the problem of estimation of the mean function Λ(t).

For a Poisson process X(t) with the mean function Λ(t) denoting by π(t) = X(t)−
Λ(t),

X(t) = Λ(t) + π(t),

therefore, the estimation problem of the mean function can be seen as an informa-
tion transmission problem, where the noise π(t), unlike the classical Gaussian white
noise model, depends on the unknown function Λ(t). Indeed, Eπ(t) = 0, Var π(t) =
Λ(t).

Suppose X = {X(t), t ∈ [0, τ ]} is a Poisson process which induces a measure on
the Skorokhod space (D,B(D), {Pθ, θ ∈ Θ = [α, β]}) from the given parametric
family. Denote by Λ(θ, t) the mean functions of the corresponding measures. If
supθ∈Θ Λ(θ, τ) < +∞ and λ(θ, ·) > 0, then the measures {Pθ, θ ∈ Θ = [α, β]}
are equivalent and the Radon-Nykodim derivative (the likelihood function) for all
θ, θ1 ∈ Θ equals

lnL(θ, θ1,X) =

∫ τ

0

ln
λ(θ, t)

λ(θ1, t)
dX(t)−

∫ τ

0

[λ(θ, t)− λ(θ1, t)]dt.

Take λ(θ1, t) ≡ λ,

lnL(θ,X) =

∫ τ

0

[lnλ(θ, t)− lnλ]dX(t)−
∫ τ

0

[λ(θ, t)− λ]dt,
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then, the derivative of the logarithm of the likelihood ratio equals (π(θ, t) = X(t)−
Λ(θ, t))

∂ lnL(θ,X)

∂θ
=

∫ τ

0

∂λ(θ,t)
∂θ

λ(θ, t)
dX(t)−

∫ τ

0

∂λ(θ, t)

∂θ
dt =

∫ τ

0

∂λ(θ,t)
∂θ

λ(θ, t)
dπ(θ, t).

Finally, the Fisher information of a Poisson process equals

I(θ) = Eθ

(
∂ lnL(θ,X)

∂θ

)2

=

∫ τ

0

[
∂λ(θ,t)
∂θ

λ(θ, t)

]2

λ(θ, t)dt. (1.1)

Each function Λ̄n(t) = Λ̄n(t,Xn) which is measurable with respect to (w.r.t.) the
observations is called an estimator. This general definition of an estimator does
not depend on the estimating object, but obviously, to have “good” estimators
we need to compare it with the unknown object, subject to the estimation. For
this reason we need a loss function, which, in our case, is the expectation of the
L2−norm, the mean integrated squared error (MISE) denoted by EΛ||Λ̄ − Λ||2,
here ||Λ||2 =

∫ τ
0

Λ2(t)dt, Λ ∈ L2[0, τ ], (for the estimators not square-integrable the
MISE is supposed +∞) and EΛ is the mathematical expectation w.r.t. the measure
induced by the Poisson process under the assumption that its true mean function
is the given function Λ(·). A very simple, on the other hand, an asymptotically
the best estimator (see below for definitions) is the empirical mean function (the
EMF)

Λ̂n(t) =
1

n

n∑
j=1

Xj(t).

For our subsequent results an important role will play the equality

EΛ||
√
n(Λ̂n − Λ)||2 =

∫ τ

0

Λ(t)dt. (1.2)

This means that the EMF tends to the unknown mean function in expected square
norm, that the rate of convergence is the classical

√
n rate, as in parametric prob-

lems, and the asymptotic value of the MISE (which is, in fact, non-asymptotic) is
the right-hand side of the equation. The first question that arises is the possibility
of construction of estimators with the rate of convergence higher than

√
n and for

the highest (optimal) rate the minimal (attainable) asymptotic MISE. The answer
of the first part of this question is negative and the minimal (attainable) asymp-
totic MISE is that of the EMF. The following theorem of Kutoyants ([20]) states
these facts.
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Denote by Σ(R) the set of absolutely continuous mean functions centered around
given (arbitrary) absolutely continuous mean function Λ∗, with intensity functions
satisfying

Σ(R) =

{
Λ,

∫ τ

0

(λ(t)− λ∗(t))2dt ≤ R, Λ∗(0) = Λ(0) = 0, Λ∗(τ) = Λ(τ)

}
.

Theorem 1.1. In the L2 estimation problem of the mean function the optimal rate
of convergence is

√
n and the minimal asymptotic MISE is that of the empirical

mean function, uniformly over the set Σ(R)

lim
n→+∞

inf
Λ̄n

sup
Λ∈Σ(R)

(
EΛ||
√
n(Λ̄n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0, (1.3)

where infΛ̄n is taken over all possible estimators.

The theorem in [20] is stated slightly differently (for shrinking vicinities). The
proof is given in the Appendix.
Remark 1.1. This result is true for sets other than Σ(R) too (see in the Appendix).
For example, we can take an L2 ball centered around Λ∗ or take higher order
derivatives in the definition of Σ(R)∫ τ

0

(λ(p)(t)− λ(p)
∗ (t))2dt ≤ R, p ∈ N .

In fact, if we take as a set only the center of the above set {Λ∗}, the result is
not true for arbitrary Λ∗ (there is a counterexample of an estimator with smaller
asymptotic MISE than that of the EMF, it is called the Hodges estimator ([20]).)
The set has to be sufficiently “rich” ([10]), that is, to contain certain (exponential)
functions. The result is true for all sets containing these functions. We will
characterize these functions during the proof. �

1.3 First Order Efficiency

In this section we are going to construct a class of estimators that also satisfy the
equation (1.3), thus are also asymptotically efficient (as the EMF). Consider the
kernel-type estimators, defined as the convolution of the EMF

Λ̃n(t) =

∫ τ

0

Kn(s− t)Λ̂n(s)ds,
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where the kernels Kn(·) are non-negative, integrable, normalized functions on
[− τ

2
, τ

2
],

Kn(u) ≥ 0,

∫ τ
2

− τ
2

Kn(u)du = 1, n ∈ N ,

that are symmetric and we continue them τ periodically on the whole real line R

Kn(u) = Kn(−u), Kn(u) = Kn(u+ kτ), u ∈
[
−τ

2
,
τ

2

]
, k ∈ Z. (1.4)

Consider the trigonometric basis, which is a complete, orthonormal basis in L2[0, τ ]

φ1(t) =

√
1

τ
, φ2l(t) =

√
2

τ
cos

2πl

τ
t, φ2l+1(t) =

√
2

τ
sin

2πl

τ
t, l ∈ N .

A simple calculation of the Fourier coefficients of the kernel-type estimator (1.5)
w.r.t. this basis gives us

Λ̃1,n = Λ̂1,n, Λ̃2l,n =

√
τ

2
K2l,nΛ̂2l,n, Λ̃2l+1,n =

√
τ

2
K2l,nΛ̂2l+1,n, l ∈ N ,

where

Λ̃l,n =

∫ τ

0

Λ̃n(t)φl(t)dt, Λ̂l,n =

∫ τ

0

Λ̂n(t)φl(t)dt, Kl,n =

∫ τ

0

Kn(t)φl(t)dt.

Indeed,

Λ̃l,n =

∫ τ

0

Λ̃n(t)φl(t)dt =
1

n

n∑
j=1

∫ τ

0

Xj(s)

(∫ τ

0

Kn(s− t)φl(t)dt
)

ds

=
1

n

n∑
j=1

∫ τ

0

Xj(s)

(∫ s

s−τ
Kn(u)φl(s− u)du

)
ds.

We calculate separately the even and odd Fourier coefficients

Λ̃2l+1,n =

√
2

τ

1

n

n∑
j=1

∫ τ

0

Xj(s)

(∫ s

s−τ
Kn(u) sin

2πl

τ
(s− u)du

)
ds

=

√
2

τ

1

n

n∑
j=1

∫ τ

0

Xj(s) sin
2πl

τ
s

(∫ s

s−τ
Kn(u) cos

2πl

τ
udu

)
ds

−
√

2

τ

1

n

n∑
j=1

∫ τ

0

Xj(s) cos
2πl

τ
s

(∫ s

s−τ
Kn(u) sin

2πl

τ
udu

)
ds.
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Since ∫ s

s−τ
Kn(u) sin

2πl

τ
udu =

∫ τ
2

− τ
2

Kn(u) sin
2πl

τ
udu = 0,∫ s

s−τ
Kn(u) cos

2πl

τ
udu =

∫ τ

0

Kn(u) cos
2πl

τ
udu =

√
τ

2
K2l,n,

then (the second one can be proved in the same way)

Λ̃2l+1,n =

√
τ

2
K2l,n · Λ̂2l+1,n, Λ̃2l,n =

√
τ

2
K2l,n · Λ̂2l,n.

The kernel-type estimators are linear estimators and we are going to prove asymp-
totic efficiency of these estimators for appropriately chosen kernels. To anticipate
the theory that we will develop in the next section, we modify these estimators to
fit into the set Σ(R). This set is centered around the (known) mean function Λ∗,
hence we will consider the following kernel-type estimators (we freely use Λ∗ in the
definition of the estimators since it is known)

Λ̃n(t) =

∫ τ

0

Kn(s− t)(Λ̂n(s)− Λ∗(s))ds+ Λ∗(t). (1.5)

Then, their Fourier coefficients will be

Λ̃1,n = Λ̂1,n, Λ̃2l,n =

√
τ

2
K2l,n(Λ̂2l,n − Λ∗2l) + Λ∗2l,

Λ̃2l+1,n =

√
τ

2
K2l,n(Λ̂2l+1,n − Λ∗2l+1) + Λ∗2l+1, l ∈ N , (1.6)

with

Λl =

∫ τ

0

Λ(t)φl(t)dt, Λ∗l =

∫ τ

0

Λ∗(t)φl(t)dt.

We are proceeding with the calculation of SMISE for the introduced estimators.
Using the Parseval equality with the (1.6), and denoting σ2

l,n = E|Λ̂l,n − Λl|2, we
get

EΛ||
√
n(Λ̃n − Λ)||2 − EΛ||

√
n(Λ̂n − Λ)||2 =

+∞∑
l=1

(τ
2
K2

2l,n − 1
)
n(σ2

2l,n + σ2
2l,n)

+
+∞∑
l=1

n

∣∣∣∣√τ

2
K2l,n − 1

∣∣∣∣2 [(Λ2l − Λ∗2l)
2 + (Λ2l+1 − Λ∗2l+1)2].

(1.7)
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Using the fact that (see the equation (1.2))

EΛ||Λ̂n − Λ||2 =
∑
l=1

σ2
l,n =

1

n

∫ τ

0

Λ(t)dt ≤ τ

n
Λ∗(τ),

we obtain from (1.7) the following upper bound

EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt ≤ sup
l≥1

(τ
2
K2

2l,n − 1
)
τΛ∗(τ)+

+ n sup
l≥1

∣∣∣∣√τ

2
K2l,n − 1

∣∣∣∣2 +∞∑
l=1

[(Λ2l − Λ∗2l)
2 + (Λ2l+1 − Λ∗2l+1)2].

Since ||Λ|| ≤ ||Λ−Λ∗||+ ||Λ∗|| ≤
√
R+ ||Λ∗|| and using the fact

√
τ
2
K2l,n ≤ 1, we

get

1− τ

2
K2

2l,n ≤ 2

(
1−

√
τ

2
K2l,n

)
,

and also because of the inequality

+∞∑
l=1

[(Λ2l − Λ∗2l)
2 + (Λ2l+1 − Λ∗2l+1)2] ≤ R,

we state the first result on the construction of asymptotically efficient estimators
(see the Remark 1.1, since we maximize here over the ball B(R), not the set Σ(R)
as it is stated in the Theorem 1.1).
Proposition 1.1. For the kernel-type estimator (1.5) with a kernel satisfying (1.4)
and the condition

n sup
l≥1

∣∣∣∣√τ

2
K2l,n − 1

∣∣∣∣2 −→ 0,

as n → +∞, over a Λ∗ centered B(R) =
{

Λ :
∫ τ

0
(Λ(t)− Λ∗(t))

2dt ≤ R
}

ball of
mean functions in L2, the following equality holds

lim
n→+∞

sup
Λ∈B(R)

(
EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0.

In fact, it is a variation of the EMF and, in some sense, is artificially created. We
would like to enlarge the class of asymptotically efficient estimators, in order to
have much more practical estimators. From the second term in the right-hand side
of (1.7), we see that imposing additional regularity conditions on the unknown
mean function (we replace the ball B(R) in L2 by the compact set Σ(R) which is
called a Sobolev ellipsoid), we can relax the condition of uniform convergence of
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Fourier coefficients of the kernel to 1. And one of the reasons of doing this is that we
would like also to describe a class of asymptotically efficient estimators not in terms
of the Fourier coefficients of the kernel, but to give the kernel function explicitly
(not by its Fourier series). The second result on construction of asymptotically
efficient estimators is given by the following proposition.
Proposition 1.2. For the kernel-type estimator (1.5) with a kernel satisfying (1.4)
and the condition

n sup
l≥1

∣∣∣∣∣
√

τ
2
K2l,n − 1

2πl
τ

∣∣∣∣∣
2

−→ 0,

as n→ +∞, the following equality holds

lim
n→+∞

sup
Λ∈Σ(R)

(
EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0,

where the set Σ(R) is defined in the Theorem 1.1.

Proof. Using the equality (1.7) and denoting σ̃2
l,n = n(σ2

2l,n + σ2
2l+1,n)

(
2πl
τ

)2
, we

can write

EΛ||
√
n(Λ̃n − Λ)||2 − EΛ||

√
n(Λ̂n − Λ)||2 =

+∞∑
l=1

(
τ
2
K2

2l,n − 1
)(

2πl
τ

)2 σ̃2
l,n

+ n sup
l≥1

(
τ
2
K2l,n − 1

)2(
2πl
τ

)2

+∞∑
l=1

[(
2πl

τ

)2

(Λ2l − Λ∗2l)
2 + (Λ2l+1 − Λ∗2l+1)2

]
. (1.8)

Simple calculations give us ([6]) σ2
2l,n+σ2

2l+1,n = 2
n

(
τ

2πl

)2
(

2
τ
Λ(τ)−

√
2
τ
λ2l

)
, where

λl =
∫ τ

0
λ(t)φl(t)dt. Whence σ̃2

l,n = 4
τ
Λ(τ)− 2

√
2
τ
λ2l.

The mean function Λ belongs to the set Σ(R) if and only if its Fourier coefficients
satisfy the inequality (see the proof of the Proposition 1.4)

+∞∑
l=1

[(
2πl

τ

)2

(Λ2l − Λ∗2l)
2 + (Λ2l+1 − Λ∗2l+1)2

]
≤ R,

therefore, we can write

|EΛ||
√
n(Λ̃n − Λ)||2 − EΛ||

√
n(Λ̂n − Λ)||2| ≤

4

τ
Λ(τ)

+∞∑
l=1

1− τ
2
K2

2l,n(
2πl
τ

)2 − 2

√
2

τ

+∞∑
l=1

1− τ
2
K2

2l,n(
2πl
τ

)2 λ2l + n sup
l≥1

(√
τ
2
K2l,n − 1

)2(
2πl
τ

)2 R.
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Denote hn = supl≥1

1−
√

τ
2
K2l,n

2πl
τ

. Evidently,
1−
√

τ
2
K2l,n

2πl
τ

≤ hn, l ≥ 1. Consider the set

of all sequences that satisfy this inequality

K =

{
K̄2l,n,

∣∣∣∣√τ

2
K̄2l,n

∣∣∣∣ ≤ 1,
1−

√
τ
2
K̄2l,n

2πl
τ

≤ hn

}
.

Now, find the minimal sequence on the set K

K0
2l,n = arg min

K
|K̄2l,n| =

√
2

τ

(
1− hn

2πl

τ

)
+

.

Obviously, passing from K2l,n to K0
2l,n will increase the right-hand side of (1.8).

Hence

|EΛ||
√
n(Λ̃n − Λ)||2 − EΛ||

√
n(Λ̂n − Λ)||2| ≤

4

τ
Λ(τ)

+∞∑
l=1

1− τ
2
(K0

2l,n)2(
2πl
τ

)2 − 2

√
2

τ

+∞∑
l=1

1− τ
2
(K0

2l,n)2(
2πl
τ

)2 λ2l + nhnR. (1.9)

The third term of the right-hand side tends to zero, as n → +∞, because of the
condition of the theorem. For the second term, use the Cauchy-Schwarz inequality

+∞∑
l=1

1− τ
2
(K0

2l,n)2(
2πl
τ

)2 λ2l ≤ 2
+∞∑
l=1

1− τ
2
K0

2l,n(
2πl
τ

)2 λ2l ≤ 2hn

+∞∑
l=1

τ

2πl
λ2l

≤ 2hn

(
+∞∑
l=1

( τ

2πl

)2
) 1

2
(

+∞∑
l=1

λ2
2l

) 1
2

≤ 2hn

(
+∞∑
l=1

( τ

2πl

)2
) 1

2

||λ||

≤ 2hn

(
+∞∑
l=1

( τ

2πl

)2
) 1

2

(
√
R + ||λ∗||).

Here we have used the fact that
∑+∞

l=1 λ
2
l =

∫ τ
0
λ2(t)dt and that Λ ∈ Σ(R). There-

fore, the second term in (1.9) also has a numerical sequence as its upper bound
which tends to zero.

Consider the first term of (1.9). First, Λ(τ) = Λ∗(τ). Then, denoting the entire
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part of following sequence by Nn =
[
τ

2π
1
hn

]
, we find

+∞∑
l=1

1− τ
2
(K0

2l,n)2(
2πl
τ

)2 =
Nn∑
l=1

1− τ
2
(K0

2l,n)2(
2πl
τ

)2 +
+∞∑

l=Nn+1

( τ

2πl

)2

=

Nn∑
l=1

2hn
2πl
τ
− h2

n

(
2πl
τ

)2(
2πl
τ

)2 +
+∞∑

l=Nn+1

( τ

2πl

)2

=

hnτ

π

Nn∑
l=1

1

l
− h2

nNn +
+∞∑

l=Nn+1

( τ

2πl

)2

.

Using the fact that the following limit exists (it is a positive number smaller that
1 and is called the Euler-Mascheroni constant)

γ = lim
n→+∞

γn, γn =
n∑
l=1

1

l
− lnn,

and the fact that
∑+∞

l=Nn+1
1
l2
→ 0, as n→ +∞, we get

+∞∑
l=1

1− τ
2
(K0

2l,n)2(
2πl
τ

)2 =
hnτ

π
(γNn + lnNn)− h2

nNn +
+∞∑

l=Nn+1

( τ

2πl

)2

,

which tends to zero, since h2
nn −→ 0, as n → +∞. Therefore, the first term of

(1.9) also tends to zero.

Remark 1.2. Suppose that K(u), u ∈
[
− τ

2
, τ

2

]
is a non-negative, integrable, nor-

malized function

K(u) ≥ 0, u ∈
[
−τ

2
,
τ

2

]
,

∫ τ
2

− τ
2

K(u)du = 1,

which is symmetric and we continue it τ periodically on the whole real line

K(u) = K(−u), K(u) = K(u+ kτ), u ∈
[
−τ

2
,
τ

2

]
, k ∈ Z.

Let the positive sequence hn ≤ 1 be such that h2
nn −→ 0, n → +∞. Then, the

kernels

Kn(u) =
1

hn
K

(
u

hn

)
1I
{
|u| ≤ τ

2
hn

}
(1.10)

satisfy (1.4) and the condition of the proposition 1.2.
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Indeed, (1.4) is obvious and√
τ

2
K2l,n − 1 =

1

hn

∫ τ

0

K

(
u

hn

)
1I
{
|u| ≤ τ

2
hn

}
cos

(
2πl

τ
u

)
du− 1 =

=

∫ τ
2hn

− τ
2hn

K(t) cos

(
2πl

τ
hnt

)
1I
{
|t| ≤ τ

2

}
dt− 1 =

=

∫ τ
2

− τ
2

K(t)

[
cos

(
2πl

τ
hnt

)
− cos(0)

]
dt.

Since the trigonometric functions satisfy the Lipschitz condition with the constant
1, then ∣∣∣∣√τ

2
K2l,n − 1

∣∣∣∣ ≤ 2πl

τ
hnτ

∫ − τ
2

− τ
2

K(t)dt.

Hence, as n→ +∞,

n sup
l≥1

∣∣∣∣∣
√

τ
2
K2l,n − 1

2πl
τ

∣∣∣∣∣ ≤ nhnτ −→ 0,

which ensures that the kernel type estimator (1.5) with the kernel (1.10) is asymp-
totically efficient over the set Σ(R). �

1.4 Second Order Efficiency

As it was mentioned in the previous section to establish first order efficiency we
do not need any regularity conditions. Now, imposing regularity conditions on the
unknown mean function we compare second term of the expansion of the mean
integrated square error, which allows us to compare first order asymptotically effi-
cient estimators. An estimator, for which the asymptotic error of the second term
is minimal, is called second order asymptotically efficient estimator (see Proposi-
tion 1.4). Below, we establish the lower bound for the second term of the expansion
of the mean integrated square error, find asymptotic error explicitly and construct
a second order asymptotically efficient estimator.

1.4.1 Presentation of results

We consider here an ellipsoid centered not around a given mean function, but
centered around the null function. For a given integer m > 1 consider the following
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set of non-decreasing, positive functions on [0, τ ] such that their (m−1)th derivative
is absolutely continuous and

Fperm (R, S) =

{
Λ(·) :

∫ τ

0

[Λ(m)(t)]2dt ≤ R, Λ(0) = 0, Λ(τ) = S

}
, m > 1, (1.11)

where R > 0, S > 0 are given constants. Periodicity means that the intensity
function λ(·) is periodic (hence the equality of its values and the values of its
derivatives on the endpoints of the interval [0, τ ]).Introduce as well

Π = Πm(R, S) = (2m− 1)R

(
S

πR

m

(2m− 1)(m− 1)

) 2m
2m−1

. (1.12)

Proposition 1.3. Consider Poisson observations X = (X1,X2, · · · ,Xn). Then,
for all estimators Λ̄n(t) of the mean function Λ(t), following lower bound holds

lim
n→+∞

sup
Λ∈Fm(R,S)

n
2m

2m−1

(∫ τ

0

EΛ(Λ̄n(t)− Λ(t))2dt− 1

n

∫ τ

0

Λ(t)dt

)
≥ −Π.

In the next proposition we propose an estimator which attains this lower bound,
thus we will prove that this lower bound is sharp. Introduce

Λ∗n(t) = Λ̂0,nφ0(t) +
Nn∑
l=1

K̃l,nΛ̂l,nφl(t),

where {φl}+∞
l=0 is the trigonometric cosine basis in L2[0, τ ], Λ̂l,n are the Fourier

coefficients of the empirical mean function with respect to this basis and

K̃l,n =

(
1−

∣∣∣∣πlτ
∣∣∣∣m α∗n)

+

, α∗n =

[
S

nR

τ

π

m

(2m− 1)(m− 1)

] m
2m−1

,

Nn =
τ

π
(α∗n)−

1
m ≈ Cn

1
2m−1 , x+ = max(x, 0), x ∈ R.

The next proposition states
Proposition 1.4. The estimator Λ∗n(t) attains the lower bound described above,
that is,

lim
n→+∞

sup
Λ∈Fm(R,S)

n
2m

2m−1

(∫ τ

0

EΛ(Λ∗n(t)− Λ(t))2dt− 1

n

∫ τ

0

Λ(t)dt

)
= −Π.



32 CHAPTER 1. ESTIMATION OF THE MEAN OF A POISSON PROCESS

1.4.2 Proof of Proposition 1.4

Consider the L2[0, τ ] Hilbert space. Evidently, Fperm (R, S) ⊂ L2[0, τ ]. The main
idea of the proof is to replace the estimation problem of the infinite-dimensional
(continuum) mean function by the estimation problem of infinite-dimensional but
countable vector of its Fourier coefficients. Recall that the space L2[0, τ ] is isomor-
phic to the space

`2 =

{
θ = (θl)

+∞
l=0 :

+∞∑
l=0

θ2
l < +∞

}
, ||θ|| =

(
+∞∑
l=0

θ2
l

) 1
2

.

Our first goal is to describe the set Θ ⊂ `2 of Fourier coefficients of the functions
from the set Fperm (R, S).

Consider a complete, orthonormal system in the space L2[0, τ ],

φ0(t) =

√
1

τ
, φl(t) =

√
2

τ
cos

πl

τ
t, l ∈ N . (1.13)

For the first order efficiency we used the trigonometric basis with both sine and
cosine functions present, here we took only the cosine basis to avoid technical
difficulties and, as a result, the proposed estimator does not depend on the center
of the ellipsoid (here it is present as the quantity S). Each function f ∈ L2[0, τ ] is
a L2−limit of its Fourier series

f(t) =
+∞∑
l=0

θlφl(t), θl =

∫ τ

0

f(t)φl(t)dt.

Suppose that

Λl =

∫ τ

0

Λ(t)φl(t)dt, λl =

∫ τ

0

λ(t)φl(t)dt.

Then
Lemma 1.1. The mean function Λ belongs to the set Fperm (R, S) if and only if its
Fourier coefficients w.r.t. the cosine trigonometric basis satisfy

+∞∑
l=1

(
πl

τ

)2m

Λ2
l ≤ R, Λ(τ) = S, (1.14)

or, the Fourier coefficients of its intensity function satisfy

+∞∑
l=1

(
πl

τ

)2(m−1)

λ2
l ≤ R, Λ(τ) = S. (1.15)
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For the proof see, for example, [40] (lemma A.3). To introduce the estimator
denote the Fourier coefficients of the empirical mean function by

Λ̂l,n =

∫ τ

0

Λ̂n(t)φl(t)dt, l ∈ Z+, Λ̂n(t) =
1

n

n∑
j=1

Xj(t).

Consider the estimator

Λ̃n(t) =
+∞∑
l=0

Λ̃l,nφl(t), Λ̃l,n = Kl,nΛ̂l,n.

Here Kl,n are some numbers. Without loss of generality we can take K0,n = 1,

that is Λ̃0,n = Λ̂0,n. In this case, using the Parseval’s equality, we get

EΛ‖Λ̃n − Λ‖2 − EΛ‖Λ̂n − Λ‖2 =
+∞∑
l=1

(K2
l,n − 1)σ2

l,n +
+∞∑
l=1

|Kl,n − 1|2 Λ2
l . (1.16)

Here σ2
l,n = EΛ(Λ̂l,n − Λl)

2. To compute this quantity, introduce the notation

πj(t) = Xj(t)− Λ(t).

In the sequel, we are going to use the following property of stochastic integral (see,
for example, [18])

EΛ

[ ∫ τ

0

f(t)dπj(t)

∫ τ

0

g(t)dπj(t)

]
=

∫ τ

0

f(t)g(t)dΛ(t), f, g ∈ L2[0, τ ].

Further, in view of the integration by parts, we have

Λ̂l,n − Λl =
1

n

n∑
j=1

∫ τ

0

πj(t)φl(t)dt =
1

n

n∑
j=1

∫ τ

0

(∫ τ

t

φl(s)ds

)
dπj(t).

which entails that

σ2
l,n = EΛ|Λ̂l,n − Λl|2 =

1

n

∫ τ

0

(∫ τ

t

φl(s)ds

)2

dΛ(t).

Simple algebra yields

σ2
l,n =

1

n

( τ
πl

)2
[
Λ(τ)− 2

τ

∫ τ

0

cos

(
2πl

τ
t

)
λ(t)dt

]
.



34 CHAPTER 1. ESTIMATION OF THE MEAN OF A POISSON PROCESS

Combining with (1.16), this leads to

EΛ‖Λ̃n − Λ‖2 − EΛ‖Λ̂n − Λ‖2 =
S

n

+∞∑
l=1

( τ
πl

)2

(K2
l,n − 1)

+
+∞∑
l=1

(Kl,n − 1)2 Λ2
l +

1

n

√
2

τ

+∞∑
l=1

( τ
πl

)2

(1−K2
l,n)λ2l. (1.17)

For the third term in the right-hand side we have∣∣∣∣∣ 1n
√

2

τ

+∞∑
l=1

( τ
πl

)2

(1−K2
l,n)λ2l

∣∣∣∣∣ ≤
≤ 1

n

√
2

τ
max
l

|1−K2
l,n|(

πl
τ

)m +∞∑
l=1

(
πl

τ

)m−1

λ2l

(
πl

τ

)−1

≤ 1

n

√
2

τ
max
l

|1−K2
l,n|(

πl
τ

)m
(

+∞∑
l=1

(
πl

τ

)2(m−1)

λ2
2l

) 1
2
(

+∞∑
l=1

(
πl

τ

)−2
) 1

2

.

Using (1.15) from the Lemma 1.1 we obtain(
+∞∑
l=1

(
πl

τ

)2(m−1)

λ2
2l

) 1
2

≤
√
R.

Hence ∣∣∣∣∣ 1n
√

2

τ

+∞∑
l=1

( τ
πl

)2

(1−K2
l,n)λ2l

∣∣∣∣∣ ≤ C

n
max
l

|1− |Kl,n|2|(
πl
τ

)m
Now, consider the first two terms of the right-hand side of the equation (1.17).
Introduce a set of possible kernels (for all cn > 0)

Cn =

{
Kl,n : |Kl,n − 1| ≤

∣∣∣∣πlτ
∣∣∣∣m cn} .

From (1.14) follows

S

n

+∞∑
l=1

( τ
πl

)2

(K2
l,n − 1) +

+∞∑
l=1

|Kl,n − 1|2 Λ2
l =

S

n

+∞∑
l=1

( τ
πl

)2

(K2
l,n − 1)+

+∞∑
l=1

|Kl,n − 1|2(
πl
τ

)2m

(
πl

τ

)2m

Λ2
l ≤

S

n

+∞∑
l=1

( τ
πl

)2

(K2
l,n − 1) + c2

nR.
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Hence, minimizing the later over the set Cn

K̃l,n = arg min
Cn
|Kl,n| =

(
1−

∣∣∣∣πlτ
∣∣∣∣m cn)

+

, (1.18)

we obtain

sup
Λ∈Fperm (R,S)

(
EΛ‖Λ̃n − Λ‖2 − EΛ‖Λ̂n − Λ‖2

)
≤

S

n

+∞∑
l=1

( τ
πl

)2

(K̃2
l,n − 1) + c2

nR +
C

n
max
l

|1− K̃2
l,n|(

πl
τ

)m . (1.19)

Here Λ̃n(t) is the estimator corresponding to the kernel K̃(u). In fact, we have
not yet constructed the estimator. We have to specify the sequence of positive
numbers cn in the definition (1.18). Consider the function

H(cn) =
S

n

+∞∑
l=1

( τ
πl

)2

(K̃2
l,n − 1) + c2

nR

and minimize it with respect to the positive sequence cn. Introduce as well Nn =
τ
π
c
− 1
m

n . Then

H(cn) =
S

n

[∑
l≤Nn

( τ
πl

)2
(
c2
n

(
πl

τ

)2m

− 2cn

(
πl

τ

)m)
−
∑
l>Nn

( τ
πl

)2
]

+ c2
nR.

To minimize this function consider its derivative

H ′(cn) =
S

n

∑
l≤Nn

( τ
πl

)2
[

2cn

(
πl

τ

)2m

− 2

(
πl

τ

)m]
+ 2cnR = 0. (1.20)

Consider such sums (β ∈ N )

∑
l≤Nn

lβ =

[Nn]∑
l=1

(
l

[Nn]

)β
[Nn]β = [Nn]β+1

[Nn]∑
l=1

(
l

[Nn]

)β
1

[Nn]
,

hence, if cn −→ 0, as n −→ +∞,

1

[Nn]β+1

∑
l≤Nn

lβ −→
∫ 1

0

xβdx,

that is, ∑
l≤Nn

lβ =
[Nn]β+1

β + 1
(1 + o(1)), n −→ +∞.
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Using this identity we can transform (1.19) (remembering that Nn = τ
π
c
− 1
m

n )

S

n

(
cn

(π
τ

)2(m−1) ∑
l≤Nn

l2(m−1) −
(π
τ

)m−2 ∑
l≤Nn

lm−2

)
= −cnR,

S

n

(
cn

(π
τ

)2(m−1) N2m−1
n

2m− 1
−
(π
τ

)m−2 Nm−1
n

m− 1

)
= −cnR(1 + o(1)),

S

n

τ

π
c
−m−1

m
n

(
1

2m− 1
− 1

m− 1

)
= −cnR(1 + o(1)).

Finally, for the solution of (1.20), we can write

c∗n = α∗n(1 + o(1)), α∗n =

[
S

nR

τ

π

m

(2m− 1)(m− 1)

] m
2m−1

. (1.21)

Now, using the identity (β ∈ N , β > 1)∑
l>Nn

1

lβ
=

1

Nβ−1
n

∫ +∞

1

1

xβ
dx · (1 + o(1)), n −→ +∞,

for β = 2 ∑
l>Nn

1

l2
=

1

Nn

· (1 + o(1)), n −→ +∞,

calculate

H(c∗n) =
S

n

[
(c∗n)2

(π
τ

)2(m−1) N2m−1
n

2m− 1
− 2c∗n

(π
τ

)m−2 Nm−1
n

m− 1
−
(τ
π

)2 1

Nn

]
(1 + o(1))

+ (c∗n)2R =
S

n

τ

π

[
(c∗n)2 (c∗n)−

2m−1
m

2m− 1
− 2c∗n

(c∗n)−
m−1
m

m− 1
− (c∗n)

1
m

]
(1 + o(1)) + (c∗n)2R =

=
S

n

τ

π
(c∗n)

1
m

−2m2

(2m− 1)(m− 1)
(1 + o(1)) + (c∗n)2R =

= (−2m)R(c∗n)
1
m (c∗n)

2m−1
m (1 + o(1)) + (c∗n)2R =

= −(2m− 1)(α∗n)2R(1 + o(1)),

where we have used the relation (1.21). Now, choosing the sequence cn = α∗n for
the definition of the estimator in (1.18), we obtain from (1.19)

sup
Λ∈Fperm (R,S)

(
EΛ‖Λ̃n − Λ‖2 − EΛ‖Λ̂n − Λ‖2

)
≤

≤ −(2m− 1)(α∗n)2R(1 + o(1)) +
C

n
max
l

|1− |K̃2l,n|2|(
2πl
τ

)m . (1.22)
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If we show that

1

n
max
l

|1− K̃2
l,n|(

πl
τ

)m = o(n−
2m

2m−1 ), (1.23)

then, since

Π = (2m− 1)(α∗n)2Rn
2m

2m−1 ,

we get from (1.22)

lim
n→+∞

n
2m

2m−1 sup
Λ∈Fperm (R,S)

(
EΛ‖Λ̃n − Λ‖2 − EΛ‖Λ̂n − Λ‖2

)
≤ −Π.

This combined with the proposition will end the proof. To prove (1.23) recall that

K̃l,n =

(
1−

∣∣∣∣πlτ
∣∣∣∣m α∗n)

+

, α∗n =

[
S

nR

τ

π

m

(2m− 1)(m− 1)

] m
2m−1

.

Therefore, for m > 1 we have

1

n
max
l

|1− K̃2
l,n|(

πl
τ

)m ≤ 2

n
max
l

1− K̃l,n(
πl
τ

)m =
2

n
α∗n =

C

n
3m−1
2m−1

= o(n−
2m

2m−1 ).

1.4.3 Proof of Proposition 1.3

Consider the following minimax risk

Rn = inf
Λ̄n

sup
Fperm (R,S)

(
EΛ||Λ̄n − Λ||2 − EΛ||Λ̂n − Λ||2

)
,

where the inf is taken over all possible estimators Λ̄n = Λ̄n(t,Xn) (functions Λ̄n(t, ·)
that are measurable w.r.t. the second variable). We have to prove that

lim
n→+∞

n
2m

2m−1Rn ≥ −Π.

The proof follows the main steps from [13]. The following graphic represents the
sketch of the proof.

A. Reduction of the minimax risk to a Bayes risk.

B. Choosing a parametric family of functions, where the Bayesian prior distribu-
tion is concentrated (the heavy functions).
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Figure 1.1: Sketch of the proof

C. Calculation of the Bayes risk for the least favorable prior.

D. Shrinking the least favorable prior to fit the ellipsoid.

In the part C, in the problem of Bayes risk maximization, we replace the set of all
prior distributions concentrated on the ellipsoid Fperm (R, S) by the set of all prior
distributions concentrated on that ellipsoid in mean. Thus we enlarge the class of
possible prior distributions, as it is represented in the third graphic of the Figure
1.1. Hence, the necessity of the part D (see Remark 1.4).

Reduction to a Bayes risk of a parametric family

For each estimator Λn(t) there exists an estimator Λ̄n ∈ Fperm (R, S) so that (see
also Section 3.3.2, [40])

EΛ||Λn − Λ||2 ≥ EΛ||Λ̄n − Λ||2.

Indeed, if Λn /∈ L2[0, τ ] then this inequality is trivial for all Λ̄n ∈ Fperm (R, S) and
if Λn ∈ L2[0, τ ] then we can take as Λ̄n the projection of the estimator Λn on the
closed, convex set Fperm (R, S). Therefore

Rn ≥ inf
Λ̄n∈Fperm (R,S)

sup
Fperm (R,S)

(
EΛ||Λ̄n − Λ||2 − EΛ||Λ̂n − Λ||2

)
.

For each parametric family of mean functions

{Λθ = Λ(θ, t), t ∈ [0, τ ], θ ∈ Θ ⊂ `2},

denote
Θ0 = {θ ∈ Θ, Λθ ∈ Fperm (R, S)}, Θc

0 = Θ \Θ0,
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and suppose that there is a probability measure Q(dθ) defined on the set Θ. The
subset Θ of the Hilbert space `2, as well as the measure Q(θ), will be chosen latter.
Hence

Rn ≥ inf
Λ̄n∈Fperm (R,S)

sup
Λ∈Fperm (R,S)

(
EΛ||Λ̄n − Λ||2 − EΛ||Λ̂n − Λ||2

)
≥ inf

Λ̄n∈Fperm (R,S)
sup

Λθ∈Fperm (R,S)

(
Eθ||Λ̄n − Λθ||2 − Eθ||Λ̂n − Λθ||2

)
≥ inf

Λ̄n∈Fperm (R,S)

∫
Θ0

(
Eθ||Λ̄n − Λθ||2 − Eθ||Λ̂n − Λθ||2

)
Q(dθ)

= inf
Λ̄n∈Fperm (R,S)

E
(
||Λ̄n − Λθ||2 − ||Λ̂n − Λθ||2

)
− sup

Λ̄n∈Fperm (R,S)

∫
Θc0

(
Eθ||Λ̄n − Λθ||2 − Eθ||Λ̂n − Λθ||2

)
Q(dθ)

= R∗n −R0
n,

where E is the expectation with respect to the measure Q(dθ)Pn(dx) and the last
equality is a notation.

Bayes risk evaluation of an auxiliary parametric family

In this subsection we are interested in the evaluation of the term R∗n. Denote

rn(Λθ, Λ̄n) = E
(
||Λ̄n − Λθ||2 − ||Λ̂n − Λθ||2

)
, then,R∗n = inf

Λ̄n∈Fperm (R,S)
rn(Λθ, Λ̄n).

Using the Parseval’s equality for the basis (1.13), we can write

rn(Λθ, Λ̄n) =
+∞∑
k=0

{
E|Λ̄k,n − Λθ

k|2 − E|Λ̂k,n − Λθ
k|2
}
,

with

Λ̄k,n =

∫ τ

0

Λ̄n(t)φk(t)dt, Λθ
k =

∫ τ

0

Λ(θ, t)φl(t)dt, Λ̂k,n =

∫ τ

0

Λ̂n(t)φk(t)dt.

The paper [1] suggested that the lower bound for this term can be obtained using
the van Trees inequality. For various types of this inequality see [10]. The following
one is called the L2-type van Trees inequality ([10]) (for a special case of this
inequality see [13], for the proof in the one dimensional parameter case see also
[40]).
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Suppose (X ,A, {Pθ, θ ∈ Θ}, ν) is a measurable space, where the probability mea-
sures are absolutely continuous w.r.t. the measure ν(dx)

Pθ << ν, θ ∈ Θ, f(x, θ) =
dPθ

dν
(x).

Here Θ =
∏+∞

i=1 [αi, βi] ⊂ `2 is a hyper-rectangle. Introduce the following conditions

I. f(x, θ) is measurable in (x, θ) and for ν almost all x ∈ X the functions θk 7→
f(x, θ) are absolutely continuous on the segment [αk, βk],

II. The Fisher information is finite and integrable

Ik(θ) =

∫
X

(
∂f(x,θ)
∂θk

f(x, θ)

)2

f(x, θ)ν(dx) < +∞,
∫

Θ

Ik(θ)dθ < +∞, k ∈ N ,

III. The components of the vector θ = (θ1, θ2, · · · ) are independent random vari-
ables w.r.t. the Lebesgue measure, with the absolutely continuous densities
pk(x), x ∈ [αk, βk], so that pk(αk) = pk(βk) = 0 and

Ik =

∫ βk

αk

[p′k(x)]2

pk(x)
dx < +∞, k ∈ N .

Denote by Q the distribution of the vector θ.

IV. The function ψ(θ) is such that θk 7→ ψ(θ) are absolutely continuous on
[αk, βk], k ∈ N , and EQψ(θ) < +∞.

Now, suppose that the components of Xn = (X1, X2, · · · , Xn) are independent,
identically distributed according to the law Pθ. Denote the distribution of Xn by
Pn(dx) and by E the expectation w.r.t. the measure Q(dθ)Pn(dx).
Theorem 1.2 (The van Trees inequality, [10]). Under the assumptions I-IV, for
all estimators ψn = ψn(Xn) the following inequality holds

E|ψn − ψ(θ)|2 ≥

[
EQ

∂ψ(θ)
∂θk

]2

nEQIk(θ) + Ik
, k ∈ Z+.

The proof of this inequality is given in the Appendix.

We use the van Trees inequality for the Poisson measures, to obtain an inequality
for the Fourier coefficients of the mean function. Recall the form of the Fisher
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information for a family of Poisson measures (1.1). Taking ψ(θ) = Λθ
k, and ap-

plying the van Trees inequality for the Poisson measures, we obtain the following
inequality

E|Λ̄k,n − Λθ
k|2 ≥

[
EQ

∂Λθk
∂θk

]2

nEQIk(θ) + Ik
, k ∈ Z+. (1.24)

Remark 1.3. We are going to choose a parametric family in a way to maximize the
right-hand side of the above inequality. Such functions we call the heavy functions.
The family of these functions will be the least favorable. �

Consider the second order mean integrated Bayes risk for the a parametric family

rn(Λθ, Λ̄n) =
+∞∑
k=0

{
E|Λ̄k,n − Λθ

k|2 − E|Λ̂k,n − Λθ
k|2
}

=

=
+∞∑
k=0

{
E|Λ̄k,n − Λθ

k|2 − σ2
k,n

}
. (1.25)

To compute the variance σ2
k,n = E|Λ̂k,n − Λθ

k|2 introduce the notations

πj(t) = Xj(t)− Λ(t), gk(t) =

∫ τ

t

φk(s)ds.

In the sequel, we are going to use the following property of stochastic integral

EΛ

[ ∫ τ

0

f(t)dπj(t)

∫ τ

0

g(t)dπj(t)

]
=

∫ τ

0

f(t)g(t)dΛ(t), f, g ∈ L2[0, τ ].

Further, in view of the integration by parts, we have

Λ̂k,n − Λk =
1

n

n∑
j=1

∫ τ

0

πj(t)φk(t)dt =
1

n

n∑
j=1

∫ τ

0

(∫ τ

t

φk(s)ds

)
dπj(t).

which implies that

σ2
k,n =

1

n
EQ

∫ τ

0

(∫ τ

t

φk(s)ds

)2

dΛ(θ, t) =
1

n
EQ

∫ τ

0

g2
k(s)λ(θ, t)dt. (1.26)

The van Trees inequality (1.24) gives us the following lower bound

rn(Λθ, Λ̄n) ≥
+∞∑
k=0

( [
EQ

∂Λθk
∂θk

]2

nEQIk(θ) + Ik
− σ2

k,n

)

=
+∞∑
k=0

[
EQ

∂Λθk
∂θk

]2

− nEQIk(θ)σ
2
k,n

nEQIk(θ) + Ik
−

+∞∑
k=0

σ2
k,nIk

nEQIk(θ) + Ik
. (1.27)
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The Fourier coefficients of the function from the parametric family can be written
as

Λθ
k =

∫ τ

0

Λ(θ, t)φk(t)dt =

∫ τ

0

λ(θ, t)gk(t)dt,

∂Λθ
k

∂θk
=

∫ τ

0

gk(t)
∂λ(θ, t)

∂θk
dt =

∫ τ

0

gk(t)
∂(lnλ(θ, t))

∂θk
λ(θ, t)dt,

and the application of the the Cauchy-Schwarz inequality entails[
EQ

∂Λθ
k

∂θk

]2

≤ EQ

[∫ τ

0

g2
k(t)λ(θ, t)dt

]
EQIk(θ).

The equality in the Cauchy-Schwarz inequality possible if and only if, for some
constant c ∈ R

∂(lnλ(θ, t))

∂θk
= cgk(t), k ∈ Z+.

Hence, the solutions of these differential equations with the terminal condition
Λ(τ) = S is

λ(θ, t) =
S

τ
exp

{
+∞∑
k=0

θkgk(t)

}
. (1.28)

are the heavy functions, so the right-hand side of (1.24) will be maximal and for
this parametric family ∫ τ

0

g2
k(t)λ(θ, t)dt = Ik(θ), (1.29)

therefore (1.27) becomes

rn(Λθ, Λ̄n) ≥ − 1

n

+∞∑
k=1

EQIk(θ) Ik
nEQIk(θ) + Ik

− 1

n

EQI0(θ) I0

nEQI0(θ) + I0

≥

≥ − 1

n

+∞∑
k=1

EQIk(θ) Ik
nEQIk(θ) + Ik

− I0

n2
. (1.30)

We have to impose conditions on the parametric set Θ for the heavy functions
λ(θ, t) to fit the ellipsoid Fperm (R, S). Consider the following set

Θ1 =

{
θ :

(
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

θ2
k ≤ R

}
. (1.31)
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We are going to show that asymptotically, if `2 norm of the parameter θ tends to
zero over the set Θ1, then the parametric family asymptotically fits the ellipsoid
Fperm (R, S). We need also to calculate the asymptotics of the Fisher information
of the mentioned parametric family. The following lemma is similar to Lemma 9
from [13].
Lemma 1.2. Consider the parametric family (1.28) with θ ∈ Θ1 ∩ Θn, where Θ1

is defined in (1.31) and

Θn =

{
θ :

+∞∑
k=0

θ2
k ≤ εn

}
, εn = o((lnn)−1).

Then, as n→ +∞, uniformly in θ ∈ Θ1 ∩Θn the following properties hold

1. Λ(θ, τ) = S + o(1),

2. Ik(θ)→ S
τ

(
τ
πk

)2
, for all k ∈ N ,

3.
∫ τ

0
[λ(m−1)(θ, t)]2dt ≤ R + o(1).

Proof.

1. Using the Cauchy-Schwarz inequality we can write∣∣∣∣∣
+∞∑
k=0

gk(t)θk

∣∣∣∣∣ ≤ C
+∞∑
k=0

∣∣∣∣ θk
1 + k

∣∣∣∣ ≤ C||θ||`2 ≤ Cεn −→ 0,

hence from (1.28) we obtain the following uniform convergence over Θ1 ∩Θn

as n→ +∞
λ(θ, t) −→ S

τ
,

which implies
Λ(θ, t) −→ S.

2. According to (1.29)

Ik(θ) =

∫ τ

0

g2
k(t)λ(θ, t)dt −→ S

τ

∫ τ

0

g2
k(t)dt =

S

τ

( τ

πk

)2

.

3. Following a suggestion from [13] (Lemma 9), we are going to use a well known
fact from [39]. For a function g(·) periodic on [0, τ ] the following inequality
is true for 0 ≤ s < k

sup
t∈[0,τ ]

|g(s)(t)|2 ≤ C||g(k)||2p||g||2(1−p), p =
2s+ 1

2k
. (1.32)
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Denote f(t) =
∑+∞

k=0 θkgk(t), F (t) = ef(t). For the (m − 1)th derivative of
F (t) we have the following representation

F (m−1)(t) = F (t)[f (m−1)(t) + P (f ′(t), · · · , f (m−2)(t))], (1.33)

where P (·) is a polynomial. Then, using the Parseval’s equality, we find (see
(1.31))

||S
τ
f (m−1)||2 =

(
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

θ2
k ≤ R, ||f ′||2 =

+∞∑
k=0

θ2
k ≤ εn −→ 0.

Applying (1.32) for g = f ′ with k = m− 1 and 1 ≤ s ≤ m− 2 gives us

sup
t∈[0,τ ]

|f (s)(t)|2 ≤ C||f (m−1)||
2m−3
m−1 ||f ′||

1
m−1 −→ 0.

Since, according to the first statement of this Lemma,

F (t) −→ 1

uniformly, as n→ +∞, then, combining previous statements with (1.33), we
get ∫ τ

0

[λ(m−1)(θ, t)]2 = ||λ(m−1)||2 ≤ R + o(1).

Using the Lemma 1.2, we can transform (1.30) to

rn(Λθ, Λ̄n) ≥ − 1

n

+∞∑
k=1

S
τ

(
τ
πk

)2
Ik

nS
τ

(
τ
πk

)2
+ Ik

(1 + o(1))− I0

n2
. (1.34)

Least favorable Bayesian risk calculation

In this subsection we are going to carry out C and D parts of the proof, namely, to
choose the least favorable prior distribution Q(θ) and to calculate the correspond-
ing Bayesian risk. For a general overview of the Bayes risk maximization problem
we refer to [17].

Recall that Q(θ) is the distribution of the vector θ and the conditions on Q(θ)
are that it has to be concentrated on some hyper-rectangle (Theorem 1.2) and the
vector θ has to satisfy the inequality (Lemma 1.2)(

S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

θ2
k ≤ R.
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We have to choose a prior distribution satisfying these two conditions, which max-
imizes the functional (see (1.34))

− 1

n

S

τ

+∞∑
k=1

1

nS
τ

1
Ik

+
(
πk
τ

)2 ,

where Ik is the Fisher information of the co-ordinate θk.

First, independence is less favorable ([17]), that is, the co-ordinates θk must be
chosen independently Q(dθ) =

∏+∞
j=1 pj(θj)dθj. Then, for each random variable ξ

with the density p(x), the variance σ2 and the Fisher information I =
∫
R

[p′(x)]2

p(x)
dx,

the following inequality σ2 · I ≥ 1 holds, with the equality if and only if ξ is nor-
mally distributed. Therefore, denoting ϕk = 1

Ik
, we have to choose θk distributed

N (0, ϕk). Thus, we derive the maximization problem of the functional

S(ϕ) = − 1

n

S

τ

+∞∑
k=1

1

nS
τ
ϕk +

(
πk
τ

)2 ,

over the set {
ϕ = (ϕk)k≥1 :

(
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

ϕk ≤ R

}
.

Applying the Lagrange multipliers method, first, for a constant µ2, µ > 0 we have
to solve the equality

1

n

S

τ

nS
τ[

nS
τ
ϕk +

(
πk
τ

)2
]2 = µ2

(
S

τ

)2(
πk

τ

)2(m−2)

,

whence

ϕ0
k =

1

n

τ

S

(
πk

τ

)2(
1

µ

( τ

πk

)m
− 1

)
+

,

and denoting W =
(

1
µ

) 1
m τ

π
, we obtain the solution of the above mentioned equa-

tion

ϕ0
k =

1

n

τ

S

(
πk

τ

)2((
W

k

)m
− 1

)
+

, k ∈ N . (1.35)
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The number W can be found from the equation

(
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

ϕ0
k = R.

Actually, since ϕ0
k depends on n, the number W = Wn also depends on n, hence,

as n→ +∞, we can find the asymptotics of Wn.

1

n

S

τ

+∞∑
k=1

(
πk

τ

)2(m−1)((
W

k

)m
− 1

)
+

= R,

1

n

S

τ

∑
k≤W

(
πk

τ

)2(m−1)((
W

k

)m
− 1

)
= R,

1

n

S

τ

(π
τ

)2(m−1) ∑
k≤W

[
Wmkm−2 − k2(m−1)

]
= R,

1

n

S

τ

(π
τ

)2(m−1)
[
WmW

m−1

m− 1
− W 2m−1

2m− 1

]
(1 + o(1)) = R.

Finally for W = Wn we have the following asymptotic behavior, as n→ +∞,

Wn =
τ

π

[
nπR

S

(m− 1)(2m− 1)

m

] 1
2m−1

(1 + o(1)). (1.36)

Now, we are going to calculate the maximal value of the functional S(ϕ). Using
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(1.35) we calculate

S(ϕ0) = − 1

n

S

τ

+∞∑
k=1

1

nS
τ
ϕ0
k +

(
πk
τ

)2 =

= − 1

n

S

τ

[∑
k≤W

1(
πk
τ

)2 (W
k

)m +
∑
k>W

( τ

πk

)2
]

=

= − 1

n

S

τ

(τ
π

)2
[

1

Wm

∑
k≤W

km−2 +
∑
k>W

1

k2

]
(1 + o(1)) =

= − 1

n

S

τ

(τ
π

)2
[

1

Wm

∑
k≤W

Wm−1

m− 1
+

1

W

]
(1 + o(1)) =

= − 1

n

S

τ

(τ
π

)2 1

W

m

m− 1
(1 + o(1)) =

= −R(2m− 1)
S

nπR

m

(m− 1)(2m− 1)

τ

πW
(1 + o(1)) =

= −R(2m− 1)n−
2m

2m−1

[
S

πR

m

(m− 1)(2m− 1)

] 2m
2m−1

(1 + o(1)) =

= −n−
2m

2m−1 Π(1 + o(1)).

Where we have used (1.36) and the definition of Π. Lemma 1.2 combining with
(1.30) gives us

rn(Λθ, Λ̄n) ≥ −n−
2m

2m−1 Π(1 + o(1)),

for all estimators Λ̄n, hence

R∗n ≥ −n
− 2m

2m−1 Π(1 + o(1)).

If we show that R0
n = o(n−

2m
2m−1 ), then we can write

Rn ≥ −n−
2m

2m−1 Π(1 + o(1)),

which was the statement of the Proposition 1.3.

Completion of the proof of the Proposition 1.3

The finish the proof of the Proposition 1.3 we have to show that for the residual

term we have R0
n = o(n−

2m
2m−1 ). We use a technique from [40] (Section 3.3.2).
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Denote d = supΛ∈Fperm (R,S) ||Λ||. Then, for Θ0 = {θ : Λ(θ, ·) ∈ Fperm (R, S)} (see
(1.31))

|R0
n| ≤ sup

Λ̄n∈Fperm (R,S)

∫
Θc0

∣∣∣∣EΛ

∫ τ

0

(Λ̄n(t)− Λ(θ, t))2dt− 1

n

∫ τ

0

Λ(θ, t)dt

∣∣∣∣Q(dθ)

≤ 2

∫
Θc0

(d2 + ||Λθ||2)Q(dθ) +

√
τ

n

∫
Θc0

||Λθ||2Q(dθ).

By the Cauchy-Schwarz inequality we have

∫
Θc0

||Λθ||2Q(dθ) ≤

(∫
Θc0

||Λθ||4Q(dθ)

) 1
2
(∫

Θc0

Q(dθ)

) 1
2

,∫
Θc0

||Λθ||2Q(dθ) ≤ (EQ||Λθ||4)
1
2

√
Q(Θc

0).

Finally, for the residual term we obtain

|R0
n| ≤ 2

[
d2Q(Θc

0) + (EQ||Λθ||4)
1
2

√
Q(Θc

0)
]

+

√
τ

n
(EQ||Λθ||4)

1
2

√
Q(Θc

0)).

Since d2 and EQ||Λθ||4 are bounded then to prove R0
n = o(n−

2m
2m−1 ) we have to

prove that

Q(Θc
0) = o(n−

4m
2m−1 ).

Remark 1.4. We have mentioned earlier that in the Bayes risk maximization
problem we looked for the least favorable prior distribution not among the probabil-
ity distributions concentrated on the ellipsoid Fperm (R, S), but among the probability
distributions concentrated on that ellipsoid in mean. Hence, the obtained normal
distributions for θk satisfy the condition

+∞∑
k=1

(
πk

τ

)2(m−2)

θ2
k ≤ R

only in mean. To shrink the feast favorable prior to fit the ellipsoid we have
to slightly modify the variances of the components θk. We will consider the θk
normally distributed with the zero mean and the variance ϕδk, 0 < δ < 1, which
are approximations of the variance (1.35). �
Remark 1.5. In the Theorem 1.2 we need θk to be concentrated on bounded inter-
vals, which is not the case if we take these random variables normally distributed.
We are going to take bounded random variables, which asymptotically has the same
properties as the chosen least favorable normal distributions. �
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Consider i.i.d. random variables with zero mean, unit variance and density p(x),
such that for some G > 0

|ξk| < G and I =

∫
R

[p′(x)]2

p(x)
dx = 1 + δ, 0 < δ < 1.

Suppose that the measure Q(dθ) is induced by the random variables θk = ξk
√
ϕδk,

where

ϕδk =
1

n

τ

S

(
πk

τ

)2((
W (1− δ)

k

)m
− 1

)
+

.

In this case the main part of the lower bound (1.34) will not change

S(ϕδk) =
1

1− δ
S(ϕ0

k)(1 + o(1))

and since (
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

ϕ0
k = R

we find (
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

EQθ
2
k = (1− δ)R(1 + o(1)).

Using this equality calculate (see (1.31))

Q(Θc
1) = Q

{(
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

θ2
k > R

}
=

= Q

{(
S

τ

)2 +∞∑
k=1

(
πk

τ

)2(m−2)

(θ2
k − Eθ2

k) > δR

}
≤ e−

2δ2R2

P ,

here, the last part is due to the Hoeffding’s inequality (see, for example, Lemma
2.8, [40]) and

P = G4

(
S

τ

)2 ∑
k≤W

(
πk

τ

)4(m−2)

(ϕδk)
2 =

G2

n2

∑
k≤W

(
πk

τ

)4(m−1) [
Wm(1− δ)m

km
− 1

]2

≤ C
W 4m−3

n2
,

hence P = O(n−
1

2m−1 ), which in turn gives us Q(Θc
1) ≤ exp(−Cn

1
2m−1 ).
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For sufficiently large n we have Q(Θn) = 1, according to the choice of ϕδk and εn
(see Lemma 1.2). Hence Q(Θn∩Θ1) = Q(Θ1). Using the statement 3 from Lemma
1.2, we get

lim
n→+∞

Q(Θ0) = lim
n→+∞

Q(Θn ∩Θ1) = lim
n→+∞

Q(Θ1),

therefore

Q(Θc
0) ≤ exp(−Cn

1
2m−1 ).

To obtain the statement of the Proposition 1.3 let n → +∞ and δ → 0 in the
following inequality

Rn ≥ −
n−

2m
2m−1

1− δ
Π(1 + o(1)) + o(n−

2m
2m−1 ).



Chapter 2

Approximation of the solution of
a BSDE

2.1 Stochastic differential equations

To introduce stochastic differential equations we need the definition of the Wiener
process. Consider a probability space (Ω,F ,P).
Definition 2.1 ([29]). A stochastic process (Wt), 0 ≤ t ≤ T is called Wiener
process if

1. W0 = 0 almost sure,

2. It has independent increments,

3. Wt −Ws has normal N (0, |t− s|) distribution,

4. For almost all ω ∈ Ω the functions Wt = Wt(ω) are continuous on 0 ≤ t ≤ T.

Denote the natural filtration of the Wiener process FWt = σ(Ws, s ≤ t), 0 ≤ t ≤ T .
The Wiener process is a continuous (Wt,FWt ) martingale

E(Wt|FWs ) = Ws, t > s,

moreover
E((Wt −Ws)

2|FWs ) = t− s.

Like any process with independent increments the Wiener process is a Markov
process

E
[
f(Wt+s)|FWs

]
= E [f(Wt+s)|Ws] ,

for any measurable function with supx |f(x)| < +∞.

51
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Consider a non-homogeneous stochastic differential equation (SDE)

dXt = S(t,Xt)dt+ σ(t,Xt)dWt, X0 = x0, t ∈ [0, T ]. (2.1)

Proposition 2.1 ([29]). Under the conditions (∀x, y ∈ R, ∀t ∈ [0, T ])

1. |S(t, x)− S(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ L|x− y|2, (Lipschitz condition)

2. S2(t, x) + σ2(t, x) ≤ L(1 + x2), (no faster than linear growth condition)

the stochastic differential equation (2.1) has a unique, strong solution, that is, there
exits a (FWt )−adapted stochastic process {Xt, t ∈ [0, T ]} on the probability space
(Ω,F ,P), which satisfies with probability 1

Xt = x0 +

∫ t

0

S(u,Xu)du+

∫ t

0

σ(u,Xu)dWu, t ∈ [0, T ].

Uniqueness means that for another process {Yt, t ∈ [0, T ]} with such properties
one has

P( sup
0≤t≤T

|Xt − Yt| > 0) = 0.

Remark 2.1. Since X0 = x0 is constant then it has all moments

E|Xt|m < +∞, m ∈ N .

�

The theory of backward stochastic differential equations relies on the martingale
representation theorem.

2.2 Backward stochastic differential equations

In this section we are going to introduce the notion of the backward stochastic
differential equation (BSDE) in the Markovian case. In this case the backward
stochastic differential equations are called forward backward stochastic differential
equations (FBSDE).

2.2.1 Markovian case

Let us recall what is the BSDE in the Markovian case. Suppose that we are given a

filtered probability space
(

Ω, (Ft)t∈[0,T ] ,P
)

with the filtration (Ft)t∈[0,T ] satisfying

the usual conditions. Define the stochastic differential equation (called forward)

dXt = S(t,Xt) dt+ σ(t,Xt) dWt, X0, 0 ≤ t ≤ T,
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where (Wt,Ft, 0 ≤ t ≤ T ) is the standard Wiener process and X0 is F0 measurable
initial value. The trend coefficient S (t, x) and diffusion coefficient σ2 (t, x) satisfy
the Lipschitz and linear growth conditions

|S (t, x)− S (t, y)|2 + |σ (t, x)− σ (t, y)|2 ≤ L |x− y|2 , (2.2)

S2 (t, x) + σ2 (t, x) ≤ C
(
1 + x2

)
, (2.3)

for all x, y ∈ R and for all t ∈ [0, T ]. Here L > 0 and C > 0 are some constants. By
these conditions the stochastic differential equation has a unique strong solution
(see Liptser and Shiryaev [29]).

Further, for given two functions f (t, x, y, z) and Φ (x) we have to construct a couple
of processes (Yt, Zt) such that the solution of the stochastic differential equation

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T,

(called backward) has the terminal value YT = Φ (XT ).

This equation is often written as follows

Yt = Φ (XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, 0 ≤ t ≤ T.

We suppose that the functions f (t, x, y, z) and Φ (x) satisfy the conditions

|f (t, x, y1, z1)− f (t, x, y2, z2)| ≤ L (|y1 − y2|+ |z1 − z2|) ,
|f (t, x, y, z)|+ |Φ (x)| ≤ C (1 + |x|p) ,

for all x, y, z, yi, zi ∈ R, i = 1, 2 and for all t ∈ [0, T ]. Here p > 0.

This is the so-called Markovian case. For the existence and uniqueness of a solution
see Pardoux and Peng [34].

The solution (Yt, Zt) can be constructed as follows. Suppose that u (t, x) satisfies
the equation

∂u

∂t
+ S (t, x)

∂u

∂x
+
σ (t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, σ (t, x)

∂u

∂x

)
,

with the terminal condition u (T, x) = Φ (x).

Let us put Yt = u (t,Xt) , then we obtain by Itô’s formula

dYt =

[
∂u

∂t
+ S (t,Xt)

∂u

∂x
+
σ (t,Xt)

2

2

∂2u

∂x2

]
dt+ σ (t,Xt)

∂u

∂x
dWt.

Hence if we denote Zt = σ (t,Xt)u
′
x (t,Xt) then this equation becomes

dYt = −f (t,Xt, Yt, Zt) dt+ Zt dWt, Y0 = u (0, X0)

with the terminal value YT = u (T,XT ) = Φ (XT ).
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2.2.2 Black and Scholes model

To illustrate the results from the previous section we consider a particular model,
which is called the Black-Scholes model. We consider the following forward equa-
tion

dXt = αXtdt+ ϑXt dWt, X0 = x0, 0 ≤ t ≤ T

and two functions f (x, y, z) = βy + γxz and Φ (x). We have to approximate the
solution of the backward equation

dYt = −βYtdt− γXtZtdt+ ZtdWt, YT = Φ (XT )

in the situation where ϑ ∈ (a, b) , a > 0 is unknown.

The corresponding partial differential equation is

∂u

∂t
+ (α + ϑγ)x

∂u

∂x
+
ϑ2x2

2

∂2u

∂x2
+ βu = 0, u (T, x, ϑ) = Φ (x) .

The solution of this equation is the function

u (t, x, ϑ) =
eβ(T−t)√

2πϑ2 (T − t)

∫ ∞
−∞

e
− z2

2ϑ2(T−t) Φ

(
xe

(
α+ϑγ−ϑ

2

2

)
(T−t)−z

)
dz.

Hence, using this function we can find the solution of the FBSDE.

2.3 Statement of the problem

2.3.1 Continuous time observations

Let us remind the situation which we have in the case of continuous time observa-
tions of the solution of the stochastic differential equation

dXt = S(t,Xt) dt+ σ(ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T.

(see, e.g., [41]). By Itô’s formula

X2
t = X2

0 + 2

∫ t

0

Xs dXs +

∫ t

0

σ (ϑ0, s,Xs)
2 ds,

where ϑ0 is the true value.
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The trajectory fitting estimator (TFE) ϑ∗ of the parameter ϑ can be defined as
follows

inf
ϑ∈Θ

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

Xs dXs −
∫ t

0

σ2 (ϑ, s,Xs) ds

]2

dt

=

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

Xs dXs −
∫ t

0

σ2 (ϑ∗, s,Xs) ds

]2

dt.

In this case also the estimator is equal to the unknown parameter (with probability
1) ϑ∗ = ϑ0 under the following mild identifiability condition : for any ν > 0 with
probability 1 we have

inf
|ϑ−ϑ0|>ν

∫ T

0

[∫ t

0

σ (ϑ, s,Xs)
2 ds−

∫ t

0

σ (ϑ0, s,Xs)
2 ds

]2

dt > 0.

If this condition is not fulfilled, then on an event of positive probability, for some
ϑ1 6= ϑ0 we have∫ t

0

σ (ϑ1, s,Xs)
2 ds =

∫ t

0

σ (ϑ0, s,Xs)
2 ds, ∀t ∈ [0, T ],

which implies that for all t ∈ [0, T ]

σ2 (ϑ1, t, Xt) = σ2 (ϑ0, t, Xt) .

In such a situation no estimation method can provide us a consistent estimator.

Let us illustrate this situation by several examples.

Example 1. Suppose that σt (ϑ, x) =
√
ϑht (x) , ϑ ∈ (α, β) , α > 0, and the

observed process is

dXt = St (X) dt+
√
ϑht (X) dWt, X0, 0 ≤ t ≤ T,

where St (X) and ht (X) are some functionals of the past, say,

St (X) = M (t,Xt) +

∫ t

0

N (s,Xs) ds, ht (X) = P (t,Xt) +

∫ t

0

q (s,Xs) ds,

whereM (·) , N (·) , P (·) , q (·) are smooth functions. This is an example of so-called
diffusion type process [29].

To estimate ϑ without error we use two approaches. The first one is the TFE

ϑ∗ = arg inf
ϑ∈Θ

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

XsdXs − ϑ
∫ t

0

h2
s (X) ds

]2

dt

= DT (h)−1

∫ T

0

[
X2
t −X2

0 − 2

∫ t

0

XsdXs

] ∫ t

0

h2
s (X) ds dt = ϑ0,
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where

DT (h) =

∫ T

0

(∫ t

0

h2
s (X) ds

)2

dt

The second possibility is the following. Let G (x) be a two-times continuously
differentiable function. By the Itô’s formula for G (Xt) we can write

G (Xt) = G (X0) +

∫ t

0

G′ (Xs) dXs +
ϑ0

2

∫ t

0

G′′ (Xs)h
2
s (X) ds.

We solve this equation w.r.t. (with respect to) ϑ0 and obtain for all t ∈ (0, T ] with
probability 1 the equality

ϑ̄t =
2G (Xt)− 2G (X0)− 2

∫ t
0
G′ (Xs) dXs∫ t

0
G′′ (Xs)hs (X)2 ds

= ϑ0.

Therefore we have for all t ∈ (0, T ] the estimator ϑ̄t = ϑ0. Note that we need not
to know S (·) and the only condition we use is that for all t ∈ (0, T ]∫ t

0

G′′ (Xs)h
2
s (X) ds 6= 0.

Therefore we obtain an estimator of the unknown parameter without error.

Example 2. Suppose that the unknown parameter is ϑ = (ϑ1, . . . , ϑd) ∈ Rd
+ and

the diffusion coefficient

σ2 (ϑ, t,Xt) = λ+
d∑
l=1

ϑlhl (t,Xt) , ϑl ∈ (α, β) ,

where λ > 0 and the functions hl (·) > 0 are known and ϑl > 0, l = 1, . . . , d.
The observed diffusion process is

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T.

If we denote the vector Ht = (Hl,t, . . . , Hl,t)

Hl,t =

∫ t

0

hl (s,Xs) ds, l = 1, . . . , d,

and introduce d× d matrix Ht and vector X̃t by the relations

Ht =

∫ t

0

HtH
T
t ds, X̃t =

[
X2
t −X2

0 − 2

∫ t

0

XsdXs − λt
]
Ht,
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then the TFE is

ϑ∗t = H−1
t

∫ t

0

[
X2
s −X2

0 − 2

∫ s

0

XvdXv − λs
]
Hs ds = ϑ0.

Here we suppose that the matrix Ht for some values of t is non degenerate and we
calculate the estimator for these values of t. We see that once more we estimate
the unknown parameter without error.

Therefore in the case of continuous time observations the approximations

Ŷt = u
(
t,Xt, ϑ̄t

)
and Ẑt = u′x

(
t,Xt, ϑ̄t

)
σ
(
ϑ̄t, t, Xt

)
or Ŷt = u (t,Xt, ϑ

∗
t ) and Ẑt = u′x (t,Xt, ϑ

∗
t )σ (ϑ∗t , t, Xt) are without errors: Ŷt =

Yt, Ẑt = Zt.

2.3.2 High frequency asymptotics

Recall that in the case of continuous time observations there is no statistical prob-

lem of estimation of ϑ because the measures
{

P
(T )
ϑ , ϑ ∈ Θ

}
corresponding to dif-

ferent values of ϑ are singular.

Then in Example 1 with ht (X) = h (t,Xt) and G (x) = x2 we obtain the well-
known estimator

ϑ̄k,n =
X2
tk
−X2

0 − 2
∑k

j=1 Xtj−1

(
Xtj −Xtj−1

)∑k
j=1 h

(
tj−1, Xtj−1

)2
δ

, δ =
T

n
.

It can be easily shown that if n→∞ then for a fixed t and corresponding k =
[
nt
T

]
we have these convergences in probability

k∑
j=1

Xtj−1

(
Xtj −Xtj−1

)
−→

∫ t

0

XsdXs,

k∑
j=1

h
(
tj−1, Xtj−1

)2
δ →

∫ t

0

h (s,Xs)
2 ds

and therefore, in probability,

ϑ̄k,n −→
X2
t −X2

0 − 2
∫ t

0
XsdXs∫ t

0
h (s,Xs)

2 ds
= ϑ0.
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2.4 Parameter estimation

2.4.1 Minimum contrast estimator

In this section we are considering the construction of the estimators in general
case. The observed forward equation

dXt = S (t,Xt) dt+ σ (ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T (2.4)

can be written as

Xtj −Xtj−1
=

∫ tj

tj−1

S (s,Xs) ds+

∫ tj

tj−1

σ (ϑ, s,Xs) dWs. (2.5)

but we consider a (wrong) model which we obtain if we replace the functions
S (s,Xs) and σ (ϑ, s,Xs) in these integrals by the constant on the interval [tj−1, tj]
values S

(
tj−1, Xtj−1

)
and σ

(
ϑ, tj−1, Xtj−1

)
respectively. Then we obtain

Xtj −Xtj−1
= S

(
tj−1, Xtj−1

)
δ + σ

(
ϑ, tj−1, Xtj−1

) (
Wtj −Wtj−1

)
. (2.6)

Note that if (2.6) is true then the random variables

Xtj −Xtj−1
− S

(
tj−1, Xtj−1

)
δ

σ (ϑ, tj−1, Xj−1)
√
δ

j = 1, . . . , n

are i.i.d. with the standard Gaussian distribution N (0, 1).

Introduce the log pseudo-likelihood for the model (2.6)

Lt,k
(
ϑ,Xk

)
= −1

2

k∑
j=0

ln
[
2πσ2

(
ϑ, tj−1, Xtj−1

)
δ
]

−
k∑
j=1

[
Xtj −Xtj−1

− S
(
tj−1, Xtj−1

)
δ
]2

2σ2
(
ϑ, tj−1, Xtj−1

)
δ

and define the pseudo-maximum likelihood estimator (PMLE) ϑ̂t,n by the equation

Lt,k(ϑ̂t,n, X
k) = sup

θ∈Θ
Lt,k

(
θ,Xk

)
, .

As it was already explained such estimator cannot be used for the construction
of the approximations of BSDE due to the complexity of the calculations of the
solution of this equation for all k in nonlinear case. Below we will use this estimator
as a preliminary one for the construction of an one-step MLE-process.

Regularity conditions. (R)
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R1 The functions S (·) and σ (·) satisfy the conditions of Lipschiz and of linear
growth.

R2 The function σ (ϑ, t, x) is strictly positive and has two continuous derivatives
w.r.t. ϑ.

|σ̇ (ϑ, t, x)|+ ‖σ̈ (ϑ, t, x)‖ ≤ C (1 + |x|p) (2.7)

R3 With probability one, the information matrix

It (ϑ) = 2

∫ t

0

σ̇ (ϑ, s,Xs) σ̇ (ϑ, s,Xs)
T

σ2 (ϑ, s,Xs)
ds

is strictly positive for all t ∈ (0, T ].

R4 The function u (t, x, ϑ) is continuously differentiable w.r.t. ϑ and the derivative
satisfies the condition

|u̇ (t, x, ϑ)| ≤ C (1 + |x|p) .

It is convenient to replace the likelihood ratio function by the contrast function

Ut,k
(
ϑ,Xk

)
=

k∑
j=1

δ ln a
(
ϑ, tj−1, Xtj−1

)
+

k∑
j=1

(
Xtj −Xtj−1

− S
(
tj−1, Xtj−1

)
δ
)2

a
(
ϑ, tj−1, Xtj−1

) ,

where a (ϑ, t, x) = σ (ϑ, t, x)2. The estimator ϑ̂t,n satisfies the equation

Ut,k

(
ϑ̂t,n, X

k
)

= inf
ϑ∈Θ

Ut,k
(
ϑ,Xk

)
. (2.8)

The contrast function converges to the following limit

Ut,k
(
ϑ,Xk

)
−→ Ut

(
ϑ,X t

)
=

∫ t

0

[
a (ϑ0, s,Xs)

a (ϑ, s,Xs)
− ln

a (ϑ0, s,Xs)

a (ϑ, s,Xs)

]
ds

+

∫ t

0

ln a (ϑ0, s,Xs) ds.

Identifiability condition.
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I1 The random function Ut (ϑ,X t) , ϑ ∈ Θ, 0 < t ≤ T with probability 1 has a
unique minimum at the point ϑ = ϑ0

inf
ϑ∈Θ

Ut
(
ϑ,X t

)
= Ut

(
ϑ0, X

t
)
, 0 < t ≤ T.

In realty this condition requires only the uniqueness of the solution since the func-
tion x 7→ x − lnx attains its minimum at x = 1 implies that Ut(ϑ,X

t) is al-
ways larger than Ut(ϑ0, X

t). Hence ϑ0 is always a minimum point of the mapping
ϑ 7→ Ut(ϑ,X

t).

Introduce the vector-process

ξt (ϑ0) = It (ϑ0)−1
√

2

∫ t

0

σ̇ (ϑ0, s,Xs)

σ (ϑ0, s,Xs)
dw (s) , 0 < t ≤ T.

Note that the Wiener process w (s) , 0 ≤ s ≤ T here is independent on the diffusion
process Xs, 0 ≤ s ≤ T .

For given t ∈ (0, T ] the value tk in the estimator ϑ̂tk,n satisfies the condition
tk ≤ t < tk+1.

2.4.2 Local asymptotic mixed normality

Theorem 2.1. Suppose that the Regularity and Identifiability conditions are ful-
filled. Then for all t ∈ (0, T ] the estimator ϑ̂tk,n is consistent and asymptotically
conditionally normal (stable convergence)√

n

T

(
ϑ̂t,n − ϑ0

)
=⇒ ξt (ϑ0) . (2.9)

Moreover this estimator is asymptotically efficient.

The proofs of this theorem can be found in [4] (lower bound, d = 1) and in [9]
(properties of estimator, d ≥ 1 ).

Let us outline the proof. Suppose that the consistency of the estimator ϑ̂tk,n defined
by the equation (2.8) is already proved.

Introduce independent random variables

wj = (2δ)−1/2
[(
Wtj −Wtj−1

)2 − δ
]
, Ewj = 0, Ew2

j = δ, Ewjwi = 0
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for j 6= i and note that the empirical Fisher information matrix

It,n (ϑ0) = 2
k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)σ̇(ϑ0, tj−1, Xtj−1

)T

σ2(ϑ, tj−1, Xtj−1
)

δ −→ It (ϑ0) (2.10)

as n → ∞. Then by the Taylor’s expansion of the solution ϑ̂t,n of the system of
d-equations

∂Ut,k
(
ϑ,Xk

)
∂ϑ

= 0

we can write the representation of the MCE

δ−1/2
(
ϑ̂t,n − ϑ0

)
=

It,n (ϑ0)−1
√

2
k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj (1 + o (1)) .

The symbols o,O are always understood in the sense of convergence in probability.

Now the convergence (2.9) follows from (2.10) and (stable convergence)

k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj =⇒

∫ t

0

σ̇(ϑ0, s,Xs)

σ(ϑ, s,Xs)
dw (s) .

Note that the approximation Ŷt,n = u(t,Xtk , ϑ̂t,n) is computationally difficult to
realize because solving the equation (2.8) for all tk, k = 1, . . . , n especially in non
linear case is almost impossible. This is the reason for proposing the one-step
MLE-process as follows.

Let us fix some (small) τ > 0 and denote by ϑ̂τ,n the MCE constructed by the
observations Xτ,n =

(
X0, Xt1,n , . . . , XtN,n

)
, where tN,n ≤ τ < tN+1,n.

By the Theorem 2.1, this estimator is consistent and asymptotically conditionally
normal√

n

T

(
ϑ̂τ,n − ϑ0

)
= Iτ,n (ϑ0)−1

√
2

N∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)

σ(ϑ0, tj−1, Xtj−1
)
wj + o (1)

=⇒ ξτ (ϑ0) = Iτ (ϑ0)−1
√

2

∫ τ

0

σ̇ (ϑ0, s,Xs)

σ (ϑ0, s,Xs)
dw (s) .

Here the random Fisher information matrix is

Iτ (ϑ0) = 2

∫ τ

0

σ̇ (ϑ0, s,Xs) σ̇ (ϑ0, s,Xs)
T

σ2 (ϑ0, s,Xs)
ds.
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2.5 Approximation of the solution

In this section we are considering a statistical problem of the estimation of the
solution of a FBSDE. We suppose that the diffusion coefficient of the forward
equation depends on an unknown parameter, hence the solution of the FBSDE
also depends on that unknown parameter. Based on the observations from the
solution of the forward equation we construct two process-estimators to efficiently
approximate the solution of the FBSDE.

2.5.1 Estimator process

We consider the problem of the approximation of the solution (Yt, Zt) of BSDE in
the situations, where the forward equation contains an unknown finite-dimensional
parameter ϑ:

dXt = S(t,Xt) dt+ σ(ϑ, t,Xt) dWt, X0, 0 ≤ t ≤ T. (2.11)

Then the solution u of the corresponding partial differential equation

∂u

∂t
+ S (t, x)

∂u

∂x
+
σ2 (ϑ, t, x)

2

∂2u

∂x2
= −f

(
t, x, u, σ (ϑ, t, x)

∂u

∂x

)
,

depends on ϑ, i.e., u = u (t, x, ϑ). The backward equation

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T,

we obtain if we put Yt = u (t,Xt, ϑ) and Zt = u′x (t,Xt, ϑ)σ (ϑ, t,Xt). But as ϑ is
unknown we propose the natural approximations

Ŷt = u(t,Xt, ϑ
∗
t ), Ẑt = u′x(t,Xt, ϑ

∗
t )σ(ϑ∗t , t, Xt).

Here ϑ∗t , 0 ≤ t ≤ T is some good estimator-process of ϑ with small error. In this
problem the good estimator means the following

• ϑ?t = ϑ?t (X t), i.e., it depends on observations X t = (Xs, 0 ≤ s ≤ t) till time
t.

• Easy to calculate for each t ∈ (0, T ].

• Provides an asymptotically efficient estimator of Yt, i.e., we have in some
sense

Eϑ

(
Ŷt − Yt

)2

→ min
Ȳt

Eϑ

(
Ȳt − Yt

)2
.
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As we have already fixed the approximation Yt as Ŷt = u(t,Xt, ϑ
∗
t ) the main prob-

lem is how to find a good estimator-process ϑ∗t , 0 ≤ t ≤ T?

Observe that the problem of estimation of ϑ is singular, i.e., the parameter ϑ can
be estimated by continuous time observations without error. The problem become
more interesting if we consider the discrete time observations. Suppose that the
solution of the equation (2.4) is observed in discrete times ti = iT

n
and we have to

study the approximations

Ŷtk = u(tk, Xtk , ϑ̂tk), Ẑtk = σ
(
ϑ̂tk , tk, Xtk

)
u′x(tk, Xtk , ϑ̂tk), k = 1, . . . , n,

of the solution Yt, Zt of BSDE

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T.

Here k satisfies the conditions tk ≤ t < tk+1 and the estimator ϑ̂tk can be con-
structed by the observations Xk = (X0, Xt1 , . . . , Xtk) up to time tk. The properties
of estimators we study in the so-called higher frequency asymptotics: n→∞. Ob-
serve that the problem of estimation of the parameter ϑ in the case of discrete-time
observations of the processes like (2.4) was extensively studied last years (see, e.g.,
[38] and the references therein).

2.5.2 One-step maximum likelihood estimator (MLE) pro-
cess

Introduce the pseudo score-function (Aj−1 (ϑ) = σ
(
ϑ, tj−1, Xtj−1

)2
)

∆k,n

(
ϑ,Xk

)
=

k∑
j=1

˙̀
(
ϑ,Xtj−1

, Xtj

)

=
k∑
j=1

[(
Xtj −Xtj−1

− Sj−1 δ
)2 − Aj−1 (ϑ) δ

]
Ȧj−1 (ϑ)

2A2
j−1 (ϑ)

√
δ

.

For any t ∈ [τ, T ] define k by the condition tk ≤ t < tk+1 and the one-step PMLE-
process by the relation

ϑ?k,n = ϑ̂τ,n +
√
δ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X

k), k = N + 1, . . . , n. (2.12)

Our goal is to show that the corresponding approximation

Y ?
tk,n

= u
(
tk, Xtk , ϑ

?
k,n

)
, k = N + 1, . . . , n
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is asymptotically efficient. To do this we need to present the lower bound on the
risks of all estimators and then to show that for the proposed approximation this
lower bound is achieved.

Of course we could construct the approximation of Yt and Zt as follows

Ŷtk,n = u(tk, Xtk , ϑ̂k,n) and Ẑtk,n = u′x(tk, Xtk , ϑ̂k,n)σ
(
ϑ̂k,n, tk, Xtk

)
,

that is, using only the first estimator. Note that this type of approximation is
not asymptotically efficient, since for constructing the estimator for the parameter
we are not using whole observations, but only part of it. That is why we are
constructing another estimator of ϑ which can provide smaller error of estimation.

2.5.3 Local asymptotic mixed normality

First we recall some known results on asymptotically efficient estimation of the

parameter ϑ. The family of measures
{

P
(k,n)
ϑ , ϑ ∈ Θ

}
induced in Rk by the obser-

vations Xk are locally asymptotically mixed normal (LAMN), i.e., the likelihood
ratio

Zk,n (v) =
dP

(k,n)
ϑ0+ v√

n

dP
(k,n)
ϑ0

, v ∈ Vn =

{
v : ϑ0 +

v√
n
∈ Θ

}
,

admits the representation

Zk,n (v) = exp

{
〈v,∆k,n

(
ϑ0, X

k
)
〉 − 1

2
vIk,n (ϑ0) vT + rn

}
,

where rn → 0 = rn(v, ϑ0) → 0 in probability for fixed ϑ0 ∈ Θ and fixed v ∈ R.
The proof can be found in [4] (d = 1) and in [11] (d ≥ 1).

In statistical problems with such property of the families of measures we have,
so-called, Jeganathan-type lower bound on the risks of all estimators ϑ̄k,n:

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
ϑ̄k,n − ϑ

))
≥ Eϑ0` (ξt (ϑ0)) .

Here ` (v) , v ∈ Rd is some symmetric, non decreasing loss function (see the condi-
tions in [16]).

Therefore we can call estimator ϑ∗k,n is asymptotically efficient if for some function
` (·) and all ϑ0 ∈ Θ we have the equality

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
ϑ∗k,n − ϑ

))
= Eϑ0` (ξt (ϑ0)) .
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We say that the estimator-process ϑ∗k,n, k = N +1, . . . , n is asymptotically efficient
for the values t ∈ [τ∗, T ], if we have this equality for all t ∈ [τ∗, T ]. Here 0 < τ <
τ∗ < T
Theorem 2.2. The one-step MLE-process ϑ?k,n, k = N + 1, . . . , n is consistent,
asymptotically conditionally normal (stable convergence)

δ−1/2
(
ϑ?k,n − ϑ0

)
=⇒ ξt (ϑ0) (2.13)

and is asymptotically efficient for t ∈ [τ∗, T ] where τ < τ∗ < T and a bounded loss
functions.

Proof. The proof follows the main steps of the similar proof given in [23].

We have for any ν > 0 the estimates

P
(k,n)
ϑ0

{∣∣ϑ?k,n − ϑ0

∣∣ > ν
}
≤ P

(k,n)
ϑ0

{∣∣∣ϑ̂τ,n − ϑ0

∣∣∣ > ν

2

}
+ P

(k,n)
ϑ0

{∣∣∣√δ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X
k)
∣∣∣ > ν

2

}
.

We can write ∣∣∣Ik,n(ϑ̂τ,n)− Ik,n(ϑ0)
∣∣∣ ≤ C

∣∣∣ϑ̂τ,n − ϑ0

∣∣∣ −→ 0

and
√
δ
∣∣∣∆k,n(ϑ̂τ,n, X

k)−∆k,n(ϑ0, X
k)
∣∣∣ −→ 0.

Further, it can be shown that

P
(k,n)
ϑ0

{∣∣∣√δ Ik,n(ϑ0)−1∆k,n(ϑ0, X
k)
∣∣∣ > ν

2

}
.

Moreover, more detailed analysis allows to verify the uniform consistency as well:

P
(k,n)
ϑ0

{
max

N+1≤k≤n

∣∣ϑ?k,n − ϑ0

∣∣ > ν

}
−→ 0

See the similar problem in [23], Theorem 1. The asymptotic conditional normality
as well follows from the similar steps. We have

δ−1/2
(
ϑ?k,n − ϑ0

)
= δ−1/2

(
ϑ̂τ,n − ϑ0

)
+ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X

k)

= δ−1/2
(
ϑ̂τ,n − ϑ0

)
+ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ0, X

k)

+ Ik,n(ϑ̂τ,n)−1
[
∆k,n(ϑ̂τ,n, X

k)−∆k,n(ϑ0, X
k)
]
.
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The central statistics

Ik,n(ϑ̂τ,n)−1∆k,n(ϑ0, X
k) =⇒ ξt (ϑ0) .

We have to show that

bn = δ−1/2
(
ϑ̂τ,n − ϑ0

)
+ Ik,n(ϑ̂τ,n)−1

[
∆k,n(ϑ̂τ,n, X

k)−∆k,n(ϑ0, X
k)
]
−→ 0.

The representation

∆k,n(ϑ̂τ,n, X
k)−∆k,n(ϑ0, X

k)

=
k∑
j=1

∫ 1

0

˙̀
(
ϑ0 + v

(
ϑ̂τ,n − ϑ0

)
, Xtj−1

, Xtj

)(
ϑ̂τ,n − ϑ0

)
dv

allows us to write

Ik,n(ϑ̂τ,n)bn

=

[
Ik,n(ϑ̂τ,n) +

k∑
j=1

∫ 1

0

῭
(
ϑ (v) , Xtj−1

, Xtj

)
dv
√
δ

] (
ϑ̂τ,n − ϑ0

)
√
δ

,

where ϑ (v) = ϑ0 + v
(
ϑ̂τ,n − ϑ0

)
. Further

k∑
j=1

῭
(
ϑ (v) , Xtj−1

, Xtj

)
=

k∑
j=1

῭
(
ϑ0, Xtj−1

, Xtj

)
+O

(
ϑ̂τ,n − ϑ0

)
= −

k∑
j=1

Ȧj−1 (ϑ0) Ȧj−1 (ϑ0)T

2A2
j−1 (ϑ0)

√
δ + o (1)

because in two other terms after the differentiation

˙̀
(
ϑ,Xtj−1

, Xtj

)
=

[(
Xtj −Xtj−1

− Sj−1 δ
)2 − Aj−1 (ϑ) δ

]
Ȧj−1 (ϑ)

2A2
j−1 (ϑ)

√
δ

contains the quantity[
Xtj −Xtj−1

− Sj−1δ
]2 − Aj−1 (ϑ0) δ = −σ2

(
tj−1, Xtj−1

, ϑ0

)
δ

+

(∫ tj

tj−1

[
S (s,Xs)− S

(
tj−1, Xtj−1

)]
ds+

∫ tj

tj−1

σ (s,Xs, ϑ0) dWs

)2

= 2

∫ tj

tj−1

X̃s

[
S (s,Xs)− S

(
tj−1, Xtj−1

)]
ds+ 2

∫ tj

tj−1

X̃sσ (s,Xs, ϑ0) dWs

+

∫ tj

tj−1

[
σ2 (s,Xs, ϑ0)− σ2

(
tj−1, Xtj−1

, ϑ0

)]
ds = O

(
δ2
)

+O (δ) .
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Here X̃s = Xs −Xtj−1
− Sj−1s. Hence

X̃s =

∫ s

tj−1

[
S (r,Xr)− S

(
tj−1, Xtj−1

)]
dr +

∫ s

tj−1

σ (r,Xr, ϑ0) dWr

= O
(
δ3/2
)

+ σ
(
tj−1, Xtj−1

, ϑ0

) [
Ws −Wtj−1

]
+O (δ) .

Note that for the stochastic integral as n→∞ we have∫ tj

tj−1

X̃sσ (s,Xs, ϑ0) dWs

= σ2
(
tj−1, Xtj−1

, ϑ0

) ∫ tj

tj−1

[
Ws −Wtj−1

]
dWs (1 + o (1))

= σ2
(
tj−1, Xtj−1

, ϑ0

) [(Wtj −Wtj−1

)2 − δ
2

]
.

Therefore

Ik,n(ϑ̂τ,n) +
k∑
j=1

∫ 1

0

῭
(
ϑ (v) , Xtj−1

, Xtj

)
dv
√
δ

= Ik,n(ϑ̂τ,n)−
k∑
j=1

Ȧj−1 (ϑ0) Ȧj−1 (ϑ0)T

2A2
j−1 (ϑ0)

δ + o (1)

= Ik,n(ϑ̂τ,n)− Ik,n(ϑ0) + o (1) −→ 0.

The obtained relations prove the convergence (2.13). More detailed analysis shows
that this convergence is locally uniform. Hence the one-step MLE-process is
asymptotically efficient for the bounded loss functions.

In the next section we are considering asymptotically efficient approximation of
the solution of a FBSDE. For that reason we establish a lower bound to compare
all estimators.

2.5.4 Lower bound on approximation of the solution of a
FBSDE

We are considering a system of SDEs,

dXt = S(t,Xt)dt+ σ(ϑ, t,Xt)dWt, X0 = x0, t ∈ [0, T ], (2.14)
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satisfying the conditions of existence and uniqueness. Here the unknown parameter
ϑ is one-dimensional and belongs to an open interval Θ = (α, β) ⊂ R. We have
the observations at discrete times 0 = t0 < t1 < t2 < · · · < tn = T, tj = j T

n
of the

solution of this SDE
Xn = (Xt0 , Xt1 , · · · , Xtn).

Denote by k the number of observation times before the time moment t

0 = t0 < t1 < t2 < · · · < tk ≤ t < tk+1, k =

[
tn

T

]
, tk = k

T

n
, δ =

T

n
.

For our statistical model we have only the observations up until the time t

Xk = (Xt0 , Xt1 , · · · , Xtk),

which induce the probability measures Pn,k
ϑ on Rk. The probability measures

{Pn,k
ϑ , ϑ ∈ Θ} are equivalent.

Proposition 2.2 (Gobet, [11]). If the following conditions are fulfilled

1. the diffusion coefficient σ(ϑ, t, x) is of class C1+α, (α > 0) with respect to
the parameter ϑ, the functions S, σ, σ̇, S ′, σ′ are of class C1,2 with respect to
(t, x) and σ′, S ′ are uniformly bounded (dot is the derivative w.r.t. ϑ, prime
w.r.t. the variable x),

2. σ(ϑ, t, x) > 0, for all ϑ ∈ Θ, x ∈ R, t ∈ [0, T ],

then the family of probability measures {Pn,k
ϑ , ϑ ∈ Θ} satisfies the LAMN condition

at each point ϑ = ϑ0 of the parametric set Θ, that is, the Radon-Nikodym derivative
of Pn,k

ϑ0+
√
δv

w.r.t. Pn,k
ϑ0

has such a representation

ln
dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk) = v∆n,k(ϑ0)− 1

2
v2In,k(ϑ0) + rn,k(v, ϑ0),

where rn,k(v, ϑ0) −→ 0, in Pn,k
ϑ0

probability, for every v ∈ R and

∆n,k(ϑ0) =
√

2
k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)2

σ(ϑ0, tj−1, Xtj−1
)2

(wtj − wtj−1
) =⇒ ∆t(ϑ0) =

=
√

2

∫ t

0

σ̇(ϑ0, s,Xs)

σ(ϑ0, s,Xs)
dw(s),

stably in Pn,k
ϑ0

law, w(t) is a Wiener process independent on {Xs, 0 ≤ s ≤ t} and

In,k(ϑ0) = 2
k∑
j=1

σ̇(ϑ0, tj−1, Xtj−1
)2

σ(ϑ0, tj−1, Xtj−1
)2
δ −→ It(ϑ0) = 2

∫ t

0

σ̇(ϑ0, s,Xs)
2

σ(ϑ0, s,Xs)2
ds,

in Pn,k
ϑ0

probability.
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Lemma 2.1. Under the conditions of Proposition 2.2 the stochastic process

Yt(ϑ0, v) = ev∆t(ϑ0)− 1
2
v2It(ϑ0)

has mathematical expectation equal to 1.

Proof. Denote ξ = ∆t(ϑ0)√
It(ϑ0)

, η =
√

It(ϑ0), then ξ is a standard normal distribution

independent on η and
Yt(ϑ0, v) = evξη−

1
2
v2η2

.

Eevξη−
1
2
v2η2

=

∫
R

∫
R

evxy−
1
2
v2y2

dP(ξ < x, η < y) =

=

∫
R

e−
1
2
v2y2

∫
R

evxye−
1
2
x2

dxdP(η < y) =

∫
R

e−
1
2
v2y2

e
1
2
v2y2

dP(η < y) = 1,

since P(ξ < x, η < y) = P(ξ < x)P(η < y). Hence

Eev∆t(ϑ0)− 1
2
v2It(ϑ0) = 1.

Remark 2.2. The LAMN condition does not imply the absolute continuity of mea-
sures Pn,k

ϑ0+
√
δv

and Pn,k
ϑ0
, but one can estimate the singular part of these measures

by the lemma above. Indeed,

lim
n→+∞

Eϑ0

dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk) = 1.

Since
dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk) =⇒ ev∆t(ϑ0)− 1
2
|v|2It(ϑ0)

stably in law, hence

lim
n→+∞

Eϑ0

dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk) ≥ Eev∆t(ϑ0)− 1
2
|v|2It(ϑ0) = 1,

on the other hand

Eϑ0

dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk) ≤ 1,

finally we obtain

lim
n→+∞

Eϑ0

dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk) = 1.

�
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Remark 2.3. In fact, the expectation is equal to 1 without limit since the measures
induced by discrete observations are equivalent. �

Next proposition is used in proving the lower bound in the statistical model where
we have local asymptotic mixed normality property.
Proposition 2.3 (Jeganathan, [15]). If the family of measures {Pn,k

ϑ , ϑ ∈ Θ}
defined above satisfies the LAMN condition at the point ϑ = ϑ0 ∈ Θ, then there
exist

• an increasing sequence {mn} tending to infinity as n −→ +∞,

• functions cn : Θ×R −→ R so that

sup
|v|≤δ
|cn(ϑ0, v)− 1| −→ 0,

as n −→ +∞, for every δ > 0, such that, denoting

Ẑn,k(v) = cn,k(ϑ0, v)e[v∆∗n,k(ϑ0)− 1
2
v2In,k(ϑ0)],

where
∆∗n,k(ϑ0) = ∆n,k(ϑ0)I(|∆n,k(ϑ0)| ≤ mn),

and

Qn,k
ϑ0,v

(A) =

∫
A

Ẑn,k(v)Pn,k
ϑ0
,

we have following convergences

1. sup|v|≤b

∣∣∣Eev∆∗n,k(ϑ0)− 1
2
v2It(ϑ0) − 1

∣∣∣ −→ 0.

2. sup|ξ|≤B

∣∣∣∫Ω
ξdPn,k

ϑ0+
√
δv
−
∫

Ω
ξdQn,k

ϑ0,v

∣∣∣ −→ 0,

for all B > 0, b > 0, as n −→ +∞.

Proof. Since ∆n,k(ϑ0) =⇒ ∆t(ϑ0), then, for each α > 0, ∆α
n,k(ϑ0) =⇒ ∆α

t (ϑ0),
where we have denoted

∆α
n,k(ϑ0) = ∆n,k(ϑ0)I {|∆n,k(ϑ0)| ≤ α} ,

∆α
t (ϑ0) = ∆t(ϑ0)I {|∆t(ϑ0)| ≤ α} .

From this weak convergence we derive

sup
|v|≤α

∣∣∣Eev∆α
n,k(ϑ0)− 1

2
v2In,k(ϑ0) − Eev∆α

t (ϑ0)− 1
2
v2It(ϑ0)

∣∣∣ −→ 0,
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as n −→ +∞, for each fixed α > 0. This result is similar to the fact that from
weak convergence (convergence of distribution functions) follows convergence of
characteristic functions. Therefore, for all α > 0, ε > 0, there exits nε ∈ N such
that starting from number nε we have

sup
|v|≤α

∣∣∣Eev∆α
n,k(ϑ0)− 1

2
v2In,k(ϑ0) − Eev∆α

t (ϑ0)− 1
2
v2It(ϑ0)

∣∣∣ < ε,

hence there is a sub-sequence of natural numbers km ∈ N such that for all n > km,

sup
|v|≤m

∣∣∣Eev∆m
n,k(ϑ0)− 1

2
v2In,k(ϑ0) − Eev∆m

t (ϑ0)− 1
2
v2It(ϑ0)

∣∣∣ < 1

m
.

Since one can always construct the sequence km in such a way that k1 < k2 <
· · · < kn < · · · , then, choosing a sequence mn of natural numbers in the following
way

kmn ≤ n < kmn+1

(each natural number n is in some interval [kj, kj+1), so we are constructing cor-
respondence between n and the index of the left point of that interval), we have
that mn is increasing, though not strictly, mn → +∞, as n→ +∞, and

sup
|v|≤mn

∣∣∣Eev∆∗n,k(ϑ0)− 1
2
v2In,k(ϑ0) − Eev∆∗t (ϑ0)− 1

2
v2It(ϑ0)

∣∣∣ < 1

mn

,

where ∆∗n,k(ϑ0) = ∆mn
n,k(ϑ0) and ∆∗t (ϑ0) = ∆mn

t (ϑ0). Hence, for all b > 0 we can
write

sup
|v|≤b

∣∣∣Eev∆∗n,k(ϑ0)− 1
2
v2In,k(ϑ0) − Eev∆∗t (ϑ0)− 1

2
v2It(ϑ0)

∣∣∣ −→ 0,

as n −→ +∞. Now, we are going to show that for all b > 0

sup
|v|≤b

∣∣∣Eev∆∗t (ϑ0)− 1
2
v2It(ϑ0) − 1

∣∣∣ −→ 0,

as n tends to infinity. Using Lemma 2.1 we can calculate

sup
|v|≤b

∣∣∣Eev∆∗t (ϑ0)− 1
2
v2It(ϑ0) − 1

∣∣∣ =

sup
|v|≤b

∣∣∣Eev∆∗t (ϑ0)− 1
2
v2It(ϑ0) − Eev∆t(ϑ0)− 1

2
v2It(ϑ0)

∣∣∣ =

= sup
|v|≤b

∫
{|∆t(ϑ0)|>mn}

e−
1
2
v2It(ϑ0)dP ≤∫

{|∆t(ϑ0)|>mn}
dP = P{|∆t(ϑ0)| > mn} −→ 0,



72 CHAPTER 2. APPROXIMATION OF THE SOLUTION OF A BSDE

as n −→ +∞, since It(ϑ0) > 0 and mn −→ +∞, as n −→ +∞. Combining two
previous convergences we get

sup
|v|≤b

∣∣∣Eev∆∗n,k(ϑ0)− 1
2
v2It(ϑ0) − 1

∣∣∣ ≤
sup
|v|≤b

∣∣∣Eev∆∗n,k(ϑ0)− 1
2
v2It(ϑ0) − Eev∆∗t (ϑ0)− 1

2
v2It(ϑ0)

∣∣∣+
+ sup
|v|≤b

∣∣∣Eev∆∗t (ϑ0)− 1
2
v2It(ϑ0) − 1

∣∣∣ −→ 0, n −→ +∞,

Hence,

sup
|v|≤b

∣∣∣Eev∆∗n,k(ϑ0)− 1
2
v2It(ϑ0) − 1

∣∣∣ −→ 0.

Once more using Lemma 2.1, we can show that

Zn,k(v) =
dPn,k

ϑ0+
√
δv

dPn,k
ϑ0

(Xk), Ẑn,k(v) = cn,k(ϑ0, v)ev∆∗n,k(ϑ0)− 1
2
v2It(ϑ0) (2.15)

are uniformly integrable. Indeed from LAMN condition we have

Zn,k(v) =⇒ ξ, Eξ = 1,

(in fact this means contiguity of corresponding measures), and using Lemma 2.1
we also obtain

lim
n−→+∞

Eϑ0Zn,k(v) = 1,

that is, we can pass to the limit under the sign of the integral, which is possible if
and only if the sequence Zn,k(v) is uniformly integrable. In the same way, since

Ẑn,k(v)− Zn,k(v) −→ 0,

in Pn,k
ϑ0

probability, as n −→ +∞, then

Ẑn,k(v) = (Ẑn,k(v)− Zn,k(v)) + Zn,k(v) =⇒ ξ, Eξ = 1.

Finally, for all v ∈ R
lim

n−→+∞
Eϑ0Ẑn,k(v) = 1,

that is, Ẑn,k(v) is uniformly integrable too. Hence second assertion of the theorem
follows.

Conditions R. Diffusion process (2.14) is such that
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1. With respect to ϑ, the diffusion coefficient σ(ϑ, t, x) has the derivative and

|σ̇(ϑ, t, x)− σ̇(ϑ̃, t, x)| ≤ H|ϑ̃− ϑ|α, ∀ϑ̃, ϑ ∈ Θ, α > 0,

2. With respect to x, the function σ̇(ϑ, t, x) is of class C2 (twice continuously
differentiable), the functions σ(ϑ, t, x), S(t, x) are of class C3,

3. With respect to t, the functions

S(t, x), σ(ϑ, t, x), σ̇(ϑ, t, x), σ′(ϑ, t, x), S ′(t, x)

are of class C1,

4. For the diffusion and drift coefficients we have

|σ′(ϑ, t, x)| ≤ A, |S ′(t, x)| ≤ A, σ(ϑ, t, x) > 0,

and ∣∣∣∣ σ̇(ϑ, t, x)

σ(ϑ, t, x)

∣∣∣∣ ≥ κ > 0, ∀(ϑ, t, x) ∈ Θ× [0, T ]×R,

5. u̇(ϑ, t, x), u′(ϑ, t, x), u̇′(ϑ, t, x) are continuous w.r.t. the parameter ϑ and

|φ(t, x, ϑ)| ≤ C(1 + |x|p), p > 0,

where φ(t, x, ϑ) = u̇(ϑ, t, x), u′(ϑ, t, x), u̇′(ϑ, t, x).
Theorem 2.3. Suppose that the coefficients of the diffusion process (2.14) satisfies
R conditions, then, for the loss function `(u) = |u|p, p > 0, the following lower
bound is true

lim
ε→0

lim
n→+∞

sup
|ϑ−ϑ0|<ε

Eϑ`
(
δ−1/2

(
Ȳtk,n − Ytk

))
≥ Eϑ0`(u̇(ϑ0, t, Xt)ξt(ϑ0)),

ξt(ϑ0) =
∆t(ϑ0)

It(ϑ0)
.

Proof. We are following the ideas of the proof of [14]. Denote

A = sup
|ϑ−ϑ0|<ε

Eϑ`
(
δ−1/2

(
Ȳtk,n − Ytk

))
≥

≥ 1

2ε

∫
|ϑ−ϑ0|<ε

Eϑ

{
`
[
δ−1/2

(
Ȳtk,n − Ytk

)]}
dϑ,

Using the change of variable ϑ = ϑ0 +
√
δv one has

A ≥ 1

2b

∫
|v|<b

Eϑ0+
√
δv

{
`
[
δ−1/2

(
Ȳtk,n − Ytk

)]}
dv,
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for any constants b > 0, ε > 0, as n is sufficiently large. Using the Taylor’s
expansion we obtain

Ytk = u(tk, Xtk , ϑ) = u(tk, Xtk , ϑ0 +
√
δv) =

= u(tk, Xtk , ϑ0) +
√
δvu̇(tk, Xtk , ϑ0 + α(v)

√
δv) =

= Y 0
tk

+ u̇(tk, Xtk , ϑ̃)
√
δv, 0 < α(v) < 1.

Here we have denoted

Y 0
tk

= u(tk, Xtk , ϑ0), ϑ̃ = ϑ0 + α(v)
√
δv.

Therefore we obtain the inequality

A ≥ 1

2b

∫
|v|<b

Eϑ0+
√
δv

{
`
[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)

]}
dv.

Denote `a(x) = min(a, `(x)). Since the loss function is positive, then, changing the
measure, one has

A ≥ 1

2b

∫
|v|<b

Eϑ0

{
`a

[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)

] dPn
ϑ0+
√
δv

dPn
ϑ0

(Xk)

}
dv

=
1

2b

∫
|v|<b

Eϑ0

{
`a

[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)

]
Zn,k(v)

}
dv

=
1

2b

∫
|v|<b

Eϑ0

{
`a

[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)

] (
Zn,k(v)− Ẑn,k(v)

)}
dv

+
1

2b

∫
|v|<b

Eϑ0

{
`a

[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)

]
Ẑn,k(v)

}
dv

=
1

2b

∫
|v|<b

Eϑ0

{
`a

[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)

]
Ẑn,k(v)

}
dv + o(1).

Here we have used the Proposition 2.3. Suppose that the Lipschitz condition holds
for the derivative

|u̇(tk, Xtk , ϑ0 + α(v)
√
δv)− u̇(tk, Xtk , ϑ0)| ≤ L|α(v)|

√
δ|v|,

since `a(u) also satisfies the Lipschitz condition

|`a(u)− `a(v)| ≤ L0|u− v|,

then,∣∣∣`a[δ−1/2
(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ̃)]− `a

[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ0)

]∣∣∣
≤ L0|v||u̇(tk, Xtk , ϑ̃)− u̇(tk, Xtk , ϑ0)| ≤ L0L|v|2|α(v)|

√
δ ≤ L0Lb

2
√
δ,
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Further,

ev∆̂n,k(ϑ0)− 1
2
|v|2In,k(ϑ0) ≤ ev∆̂n,k(ϑ0) ≤ C,

since |v| < b and ∆̂n,k(ϑ0) is a truncation of some vector (hence, it is bounded).
Then,

1

2b

∫
|v|<b

Eϑ0

{
L0Lb

2
√
δev∆̂n,k(ϑ0)− 1

2
|v|2In,k(ϑ0)

}
dv ≤ C

√
δ,

where C is a constant. Hence, this term is o(1) as δ → 0. Finally we have such an
inequality

A ≥ 1

2b

∫
|v|<b

Eϑ0

{
`a
[
δ−1/2

(
Ȳtk,n − Y 0

tk

)
− vu̇(tk, Xtk , ϑ0)

]
Ẑn,k(v)

}
dv + o(1).

Denote

ξn = e
1
2

∆̂n,k(ϑ0)2

In,k(ϑ0) , y = v
√

In,k(ϑ0)− ∆̂n,k(ϑ0)√
In,k(ϑ0)

ηn =
δ−1/2

(
Ȳtk,n − Y 0

tk

)
u̇(tk, Xtk , ϑ0)

+
∆̂n,k(ϑ0)

In,k(ϑ0)
.

Using these notations and changing the order of integration by Fubini’s theorem
one can obtain

A ≥ 1

2b
Eϑ0

{
ξn

∫
K̃b

`a

[
u̇(tk, Xtk , ϑ0)

(
ηn −

y√
In,k(ϑ0)

)]
e−

1
2
|y|2dy

}
+ o(1),

where

K̃b =

{∣∣∣∣∣ y√
In,k(ϑ0)

+
∆̂n,k(ϑ0)

In,k(ϑ0)

∣∣∣∣∣ < b

}
.

Denote

C =

{∣∣∣∣∣∆̂n,k(ϑ0)

In,k(ϑ0)

∣∣∣∣∣ < b−
√
b√

In,k(ϑ0)

}
.

Then, on this set K√b = {|y| <
√
b} ⊂ K̃b. Since ξn > 0 and the loss function is

positive,

A ≥ 1

2b

∫
C

ξn

∫
K√b

`a

[
u̇(tk, Xtk , ϑ0)

(
ηn −

y√
In,k(ϑ0)

)]
e−

1
2
|y|2dydPn

ϑ0
+ o(1).
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By the Anderson’s lemma one has∫
K√b

`a

[
u̇(tk, Xtk , ϑ0)

(
ηn −

y√
In,k(ϑ0)

)]
e−

1
2
|y|2dy ≥

≥
∫
K√b

`a

[
u̇(tk, Xtk , ϑ0)

y√
In,k(ϑ0)

]
e−

1
2
|y|2dy = J(a, b).

Therefore,

A ≥ 1

2b

∫
C

ξn

∫
K√b

`a

[
u̇(tk, Xtk , ϑ0)

y√
In,k(ϑ0)

]
e−

1
2
|y|2dydPn

ϑ0

+ o(1) =
J(a, b)

2b

∫
C

ξndPn,k
ϑ + o(1)

=
J(a, b)

2b
En,k
ϑ

{
ξn1I

{∣∣∣∣∣∆̂n,k(ϑ0)

In,k(ϑ0)

∣∣∣∣∣ < b−
√
b√

In,k(ϑ0)

}}
+ o(1).

Passing to the limit we get

lim
n−→+∞

A ≥ J(a, b)√
2π

2b−
√
b

2b
.

Since a, b are arbitrary, then

lim
a−→+∞
b−→+∞

J(a, b) = Eϑ0`(u̇(ϑ0, t, Xt)ξt(ϑ0)).

2.5.5 Asymptotically efficient approximation of the solu-
tion of a FBSDE

Introduce for the values tk ∈ [τ, T ] the estimators

Y ?
tk,n

= u(tk, Xtk , ϑ
?
k,n), Z?

tk,n
= u′x(tk, Xtk , ϑ

?
k,n)σ(tk, Xtk , ϑ

?
k,n).

Theorem 2.4. Suppose that the conditions of regularity hold, then the estimators

(
Y ?
t,n, t ∈ [τ, T ]

)
and

(
Z?
t,n, t ∈ [τ, T ]

)
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are consistent

Y ?
tk,n
−→ Yt, Z?

tk,n
−→ Zt,

and are asymptotically conditionally normal (stable convergence)

δ−1/2
(
Y ?
tk,n
− Ytk

)
=⇒ 〈u̇ (t,Xt, ϑ0) , ξt (ϑ0)〉,

δ−1/2
(
Z?
tk,n
− Ztk

)
=⇒ σ (t,Xt, ϑ0) 〈u̇′x (t,Xt, ϑ0) , ξt (ϑ0)〉

+ u′x (t,Xt, ϑ0) 〈σ̇ (t,Xt, ϑ0) , ξt (ϑ0)〉.

Proof. Let us denote v?k,n = δ−1/2
(
ϑ?k,n − ϑ0

)
and write the Taylor expansion

Y ?
tk,n

= u(tk, Xtk , ϑ0 + δ1/2v?k,n) = u(tk, Xtk , ϑ0)

+ δ1/2〈v?k,n, u̇(tk, Xtk , ϑ0)〉+ o
(
δ−1/2

)
,

Z?
tk,n

= u′x(tk, Xtk , ϑ0 + δ1/2v?k,n)σ(tk, Xtk , ϑ0 + δ1/2v?k,n)

= σ (tk, Xtk , ϑ0) 〈u̇′x (tk, Xtk , ϑ0) , ξtk (ϑ0)〉
+ u′x (tk, Xtk , ϑ0) 〈σ̇ (tk, Xtk , ϑ0) , ξtk (ϑ0)〉+ o

(
δ−1/2

)
.

Now the proof follows from the Theorem 2.2 and the regularity of the functions
u (·), u′x (·) and σ (·).
Remark 2.4. Note that we do not evaluate the difference δ−1/2(Y ?

t,n − Yt) for
t ∈ [tk, tk+1) because in the representation

δ−1/2(Y ?
t,n − Yt) = δ−1/2(Y ?

t,n − Ytk) + δ−1/2(Ytk − Yt)

for the second term we have the relation

δ−1/2(Yt − Ytk) = δ−1/2u′x(t, X̃tk , ϑ0) (Xt −Xtk)

= u′x(t,Xtk , ϑ0)σ (ϑ0, tk, Xtk)
(Wt −Wtk)√
tk+1 − tk

(1 + o (1))

= u′x(t,Xtk , ϑ0)σ (ϑ0, tk, Xtk) ζt
√
vn (t) (1 + o (1))

Here ζt ∼ N (0, 1) and vn (t) = (tk+1 − tk)−1 (t− tk). The study of the limit of
vn (t) for all t ∈ [0, T ] is a special interesting problem. �

To prove the optimality of the presented approximations Y ?
tk,n

and Z?
tk,n

we need
the lower bound of Jeganathan type given in the following proposition. Below

η (t,Xt, ϑ0) = 〈u̇′x (t,Xt, ϑ0) , ξt (ϑ0)〉+ u′x (t,Xt, ϑ0) 〈σ̇ (t,Xt, ϑ0) , ξt (ϑ0)〉
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Proposition 2.4. Let the conditions of regularity be fulfilled. Then for all esti-
mators Ȳtk,n and Z̄tk,n we have

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
Ȳtk,n − Ytk

))
≥ Eϑ0` (〈u̇ (t,Xt, ϑ0) , ξt (ϑ0)〉) ,

lim
ε→0

lim
n→∞

sup
|ϑ−ϑ0|≤ε

Eϑ`
(
δ−1/2

(
Z̄tk,n − Ztk

))
≥ Eϑ0` (η (t,Xt, ϑ0)) .

The proof of this proposition is similar to the proof of the lower bound in the
problem of approximation of the solution of BSDE in the asymptotics of small
noise given in the works [24].

Example. Black-Scholes model. We are given the forward equation

dXt = αXtdt+ ϑXt dWt, X0 = x0, 0 ≤ t ≤ T

and two functions f (x, y, z) = βy + γxz and Φ (x). We have to approximate the
solution of the backward equation

dYt = −βYtdt− γXtZtdt+ ZtdWt, YT = Φ (XT )

in the situation where ϑ ∈ (a, b) , a > 0 and is unknown.

The corresponding partial differential equation is

∂u

∂t
+ (α + ϑγ)x

∂u

∂x
+
ϑ2x2

2

∂2u

∂x2
+ βu = 0, u (T, x, ϑ) = Φ (x) .

The solution of this equation is the function

u (t, x, ϑ) =
eβ(T−t)√

2πϑ2 (T − t)

∫ ∞
−∞

e
− z2

2ϑ2(T−t) Φ

(
xe

(
α+ϑγ−ϑ

2

2

)
(T−t)−z

)
dz.

The discrete-time observations are Xn = (X0, Xt1 . . . , Xtn). We can calculate the
pseudo MLE-process

ϑ̂tk,n =

(
1

tk

k−1∑
j=0

(Xtj+1
−Xtj − αXtjδ)

2

X2
tj

) 1
2

.

The estimator of Yt = u (t,Xt, ϑ0) is

Ŷtk =

∫ ∞
−∞

e
− z2

2ϑ̂2
tk,n

(T−tk)
+β(T−tk)√

2πϑ̂2
tk,n

(T − tk)
Φ

(
Xtke

(α+ϑ̂tk,nγ−
ϑ̂2
tk,n

2
)(T−tk)−z

)
dz,
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where k =
[
t
T
n
]
.

Approximation of Ẑt = ϑ0Xtu
′ (t,Xt, ϑ0) can be written explicitly as well.

The one-step MLE-process is constructed as follows. Let us fix a learning interval
[0, τ ] , τ < T and introduce the estimator ϑ̂τ,n constructed by the observations
XN = (X0, Xt1 . . . , XtN ), where N =

[
nτ
T

]
as preliminary. Then we have

ϑ?k,n = ϑ̂τ,n +
1

2ϑ̂τ,n

k∑
j=1

[(
Xj −Xtj−1

− αXtj−1
δ
)2 − ϑ̂2

τ,nX
2
tj−1

δ
]
.

The corresponding approximations are

Ŷ ?
tk

= u
(
tk, Xtk , ϑ

?
k,n

)
, Z?

t = ϑ?k,nXtu
′ (t,Xt, ϑ

?
k,n

)
, N + 1 ≤ k ≤ n

and by Theorem 2.4 and by Proposition 2.4 these approximations are asymptoti-
cally conditionally normal and asymptotically efficient.

2.5.6 Pearson diffusion

To illustrate the results obtained in the first chapter we consider an example of a
parameter estimation problem for the particular model of observations of Pearson-
type diffusion process

dXt = −Xtdt+
√
ϑ+X2

t dWt, X0, 0 ≤ t ≤ T. (2.16)

Here ϑ ∈ Θ = (α, β) , α > 0 is unknown parameter.

Note that this is a particular case of the family of stochastic processes known as
Pearson diffusions [38], section 1.3.7.

It is easy to see that in the case of continuous time observation the problem of
parameter estimation is degenerated (singular), i.e. the unknown parameter ϑ can
be estimated without error. Indeed, by Itô’s formula we can write

X2
t = X2

0 + 2

∫ t

0

Xs dXs +

∫ t

0

[
ϑ+X2

s

]
ds.

Hence for all t ∈ (0, T ] we have the equality

ϑ̂ = t−1

[
X2
t −X2

0 − 2

∫ t

0

Xs dXs −
∫ t

0

X2
s ds

]
(2.17)
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and ϑ̂ = ϑ. This effect is due to the singularity of the measures induced by the
observations in the space of realizations.

Such problems of parameter estimation in the diffusion coefficient are usually
studied in the case of discrete time observations Xn = (Xt0 , Xt1 , . . . , Xtn), where
0 = t0 < t1 < . . . < tn = T . Then the problem is no more singular and became
an interesting statistical estimation problem. There is a diversity of the choice of
observing times ti. In this section we present results from the paper [7]. We take
the simplest case of equidistant observations, i.e. tj = jδ, δ = T

n
and we study the

properties of the estimators in the asymptotics of high frequency as n → ∞. Our
goal is to construct an asymptotically efficient estimator of the parameter ϑ. Note
that the family of measures induced by the observations Xk = (Xt0 , Xt1 , . . . , Xtk)
with tk satisfying tk ≤ t < tk+1 and fixed t are locally asymptotically mixed normal
(LAMN) and for all estimators ϑ∗k we have the lower bound for the risk

lim
ν→0

lim
n→∞

sup
|ϑ−ϑ0|<ν

Eϑ`
(√

k (ϑ∗k − ϑ)
)
≥ Eϑ0` (ζt (ϑ0)) . (2.18)

Here as a loss function ` (·) can be taken, for example, polynomial ` (u) = |u|p , p >
0. For the definition of the random function ζt (ϑ0) see (2.22) below. An estimator
ϑ∗k is called asymptotically efficient if for all ϑ0 ∈ Θ we have

lim
ν→0

lim
n→∞

sup
|ϑ−ϑ0|<ν

Eϑ`
(√

k (ϑ∗k − ϑ)
)

= Eϑ0` (ζt (ϑ0)) . (2.19)

The proof of this statement can be found in [4] and [16].

The estimator we construct in two steps. First we propose a consistent estimator
ϑ̄N of this parameter based on the first N observations XN = (Xt0 , Xt1 , . . . , XtN )
on the time interval [0, τ ]. Here τ = tN = N T

n
. Then using this estimator and

one-step type device we propose an asymptotically efficient estimator.

The first consistent estimator we obtain from the equality (2.17) by replacing the
integrals by the corresponding integral sums

ϑ̄N =
n

TN

[
X2
tN
−X2

0 − 2
N∑
j=1

Xtj−1

[
Xtj −Xtj−1

]
−

N∑
j=1

X2
tj−1

δ

]
.

The consistency of this estimator follows immediately from the limits

N∑
j=1

Xtj−1

[
Xtj −Xtj−1

]
−→

∫ τ

0

Xs dXs,

N∑
j=1

X2
tj−1

δ −→
∫ τ

0

X2
s ds

and the relation (2.17).
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The next step is to see the behavior of the error of estimation.

Consider ξN =
√
N
(
ϑ̄N − ϑ

)
. Then

ξN =

√
N

τ

[∫ τ

0

Xs [2dXs +Xsds]−
N∑
j=1

Xtj−1

[
2
(
Xtj −Xtj−1

)
+Xtj−1

δ
]]
.

We have

Xtj−1

[
Xtj −Xtj−1

]
−
∫ tj

tj−1

Xs dXs =

∫ tj

tj−1

[
Xtj−1

−Xs

]
dXs

= −
∫ tj

tj−1

Xs

[
Xtj−1

−Xs

]
ds+

∫ tj

tj−1

[
Xtj−1

−Xs

]√
ϑ0 +X2

s dWs

= O
(
δ3/2
)

+

∫ tj

tj−1

(∫ s

tj−1

√
ϑ0 +X2

r dWr

)√
ϑ0 +X2

s dWs

= O
(
δ3/2
)

+
(
ϑ0 +X2

tj−1

)[(Wtj −Wtj−1

)2 − δ
2

]

= O
(
δ3/2
)

+
(
ϑ0 +X2

tj−1

)√δ

2
wj,

where we used the estimate Xtj −Xtj−1
= O

(
δ1/2
)

and denoted

wj =

(
Wtj −Wtj−1

)2 − δ
√

2δ
, Ewj = 0, Ew2

j = δ, Ewjwi = 0, i 6= j.

We have as well

X2
tj−1

δ −
∫ tj

tj−1

X2
s ds =

∫ tj

tj−1

[
X2
tj−1
−X2

s

]
ds = O

(
δ3/2
)
.

Therefore we obtain the stable convergence (see [38])

ξN =

√
2δN

τ

N∑
j=1

(
ϑ0 +X2

tj−1

)
wj + o (1) =⇒ ξτ =

√
2

τ

∫ τ

0

(
ϑ0 +X2

s

)
dw (s) .

More detailed analysis shows that we have the convergence of moments too: for
any p > 0

n
p
2 Eϑ0

∣∣ϑ̄N − ϑ0

∣∣p −→ Eϑ0 |ξτ |
p .
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The pseudo log-likelihood function is

L
(
ϑ,XN

)
= −1

2

N∑
j=1

ln
(

2π
(
ϑ+X2

tj−1

))
−

N∑
j=1

[
Xtj −Xtj−1

+Xtj−1
δ
]2

2
(
ϑ+X2

tj−1

)
δ

.

It is easy to see that the equation L̇
(
ϑ,XN

)
= 0 has no solution, which can be

written in explicit form. Hence the corresponding pseudo MLE cannot be written
in explicit form too. Remind that this estimator is asymptotically efficient [4], [9].

Our goal is to use the well-known one-step MLE device [25], [26] in the construction
of one-step MLE-process. This estimator-process is asymptotically equivalent to
the pseudo MLE but can be calculated in explicit form. This type of estimator-
processes were proposed in [23] in the problem of approximation of the solution
of backward stochastic differential equation for several models of observations (see
the review of recent results in [22]).

Let us fix t ∈ (τ, T ] and take such k that tk ≤ t < tk+1. As n → ∞ we have
k → ∞ and tk → t. We consider the estimation of ϑ by the observations Xk =
(Xt0 , Xt1 , . . . , Xtk). Recall that by the first XN observations we already obtained
the estimator ϑ̄N . Denote the pseudo Fisher information

Itk,n (ϑ0) =
1

2

k∑
j=1

δ(
ϑ0 +X2

tj−1

)2 −→ It (ϑ0) =
1

2

∫ t

0

ds

(ϑ0 +X2
s )2 , n −→ +∞.

The one-step MLE-process introduced first in [23] is

ϑ?tk,n = ϑ̄N +
√
δ

k∑
j=1

[
Xtj −Xtj−1

+Xtj−1
δ
]2 − (ϑ̄N +X2

tj−1

)
δ

2Itk,n
(
ϑ̄N
) (
ϑ̄N +X2

tj−1

)2√
δ

, τ ≤ tk ≤ T.

Let us denote

∆tk,n

(
ϑ,Xk

)
=

k∑
j=1

[
Xtj −Xtj−1

+Xtj−1
δ
]2 − (ϑ+X2

tj−1

)
δ

2
(
ϑ+X2

tj−1

)2√
δ

, τ ≤ tk ≤ T.

The main result concerning the Pearson diffusion is the following theorem.
Theorem 2.5. The one-step MLE-process ϑ?tk,n is consistent: for any ν > 0

Pϑ0

(
max
N≤k≤n

∣∣ϑ?tk,n − ϑ0

∣∣ > ν

)
→ 0 (2.20)
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and for all t ∈ (τ, T ] the convergence

δ−1/2
(
ϑ?tk,n − ϑ0

)
=⇒ ζt (ϑ0) (2.21)

holds. Moreover, this estimator is asymptotically efficient in the sense (2.19).

Proof. The consistency of the estimator is proved following the same steps as it
was done in [23] and we follow the main steps of the proof of the similar result in
[23], where can be found the details. We have the presentation

δ−1/2
(
ϑ?tk,n − ϑ0

)
= δ−1/2

(
ϑ̄N − ϑ0

)
+

∆tk,n

(
ϑ̄N , X

k
)

Itk,n
(
ϑ̄N
)

= δ−1/2
(
ϑ̄N − ϑ0

)
+

∆tk,n

(
ϑ̄N , X

k
)
−∆tk,n

(
ϑ0, X

k
)

Itk,n (ϑ0)

+ ∆tk,n

(
ϑ̄N , X

k
)( 1

Itk,n
(
ϑ̄N
) − 1

Itk,n (ϑ0)

)
+

∆tk,n

(
ϑ0, X

k
)

Itk,n (ϑ0)
.

We have the stable convergence

∆tk,n

(
ϑ0, X

k
)

Itk,n (ϑ0)
=⇒ ζt (ϑ0) = It (ϑ0)−1

∫ t

0

dw (s)√
2 (ϑ0 +X2

s )
. (2.22)

From the continuity of Fisher information Itk,n (ϑ) and consistency of ϑ̄N we obtain

1

Itk,n
(
ϑ̄N
) − 1

Itk,n (ϑ0)
−→ 0.

Further

∆tk,n

(
ϑ̄N , X

k
)
−∆tk,n

(
ϑ0, X

k
)

Itk,n (ϑ0)
=

∆̇tk,n

(
ϑ̃N , X

k
) (
ϑ̄N − ϑ0

)
Itk,n (ϑ0)

= −
Itk,n

(
ϑ̃N

)
Itk,n (ϑ0)

δ−1/2
(
ϑ̄N − ϑ0

)
+ o

(
δ1/2
)

= −δ−1/2
(
ϑ̄N − ϑ0

)
+ o

(
δ1/2
)
.

Hence (stable convergence)

δ−1/2
(
ϑ?tk,n − ϑ0

)
=

∆tk,n

(
ϑ0, X

k
)

Itk,n (ϑ0)
+ o (1) =⇒ ζt (ϑ0) .

It can be shown that the moments converge too: for any p > 0

Eϑ0

∣∣δ−1/2
(
ϑ?tk,n − ϑ0

)∣∣p −→ Eϑ0 |ζt (ϑ0)|p .

Moreover this convergence is uniform on ϑ. Therefore the one-step MLE-process
is asymptotically efficient estimator for polynomial loss functions.
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Remark 2.5. The asymptotically efficient estimator process is constructed for
values t ∈ (τ, T ]. Note that it is possible to have such process for all t ∈ (0, T ]. To
do this we have to consider the preliminary estimator ϑ̄N on the interval [0, τn] with
τn → 0 but sufficiently slowly. As it follows from the proof of the similar result in
[23] we have to take N = nκ with κ ∈ (1

2
, 1). Then ξτn =⇒ ξ0 =

√
2 (ϑ0 +X2

0 ) η,
where η ∼ N (0, 1). Now for all t ∈ (0, T ] we have

ηt,T (ϑ0) = δ−1/2
(
ϑ?tk,n − ϑ0

)
=⇒ ζt (ϑ0) .

More detailed analysis shows that the random process ηt,T (ϑ0) , τ∗ ≤ t ≤ T with any
τ∗ ∈ (0, T ) weakly convergences to ζt (ϑ0) , τ∗ ≤ t ≤ T in the space of continuous
on [τ∗, T ] functions (see [23] for details). �



Conclusion

In this work we considered two models. In the first chapter we considered non-
parametric estimation problem for the mean function of an inhomogeneous Poisson
process. We obtained the following results:

I. Consider a kernel type estimator with the kernel Kn : R −→ R

Λ̃n(t) =

∫ τ

0

Kn(s− t)(Λ̂n(s)− Λ∗(s))ds+ Λ∗(t).

Then, their Fourier coefficients with respect to the trigonometric basis will
be

Λ̃1,n = Λ̂1,n, Λ̃2l,n =

√
τ

2
K2l,n(Λ̂2l,n − Λ∗2l) + Λ∗2l,

Λ̃2l+1,n =

√
τ

2
K2l,n(Λ̂2l+1,n − Λ∗2l+1) + Λ∗2l+1, l ∈ N ,

with

Λl =

∫ τ

0

Λ(t)φl(t)dt, Λ∗l =

∫ τ

0

Λ∗(t)φl(t)dt.

1. For the mentioned kernel-type estimator with a kernel satisfying (1.4)
(see in the text) and the condition

n sup
l≥1

∣∣∣∣√τ

2
K2l,n − 1

∣∣∣∣2 −→ 0, n→ +∞,

then, over a Λ∗ centered B(R) =
{

Λ :
∫ τ

0
(Λ(t)− Λ∗(t))

2dt ≤ R
}

ball of
mean functions in L2, the following equality holds

lim
n→+∞

sup
Λ∈B(R)

(
EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0.
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2. For the kernel-type estimator with a kernel satisfying (1.4) and the
condition

n sup
l≥1

∣∣∣∣∣
√

τ
2
K2l,n − 1

2πl
τ

∣∣∣∣∣
2

−→ 0,

as n→ +∞, the following equality holds

lim
n→+∞

sup
Λ∈Σ(R)

(
EΛ||
√
n(Λ̃n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
= 0,

where the set Σ(R) is defined in the Theorem 1.1.

3. Suppose that K(u), u ∈
[
− τ

2
, τ

2

]
is a non-negative, integrable, normal-

ized function

K(u) ≥ 0, u ∈
[
−τ

2
,
τ

2

]
,

∫ τ
2

− τ
2

K(u)du = 1,

which is symmetric and we continue it τ periodically on the whole real
line

K(u) = K(−u), K(u) = K(u+ τ), u ∈
[
−τ

2
,
τ

2

]
.

Let the positive sequence hn ≤ 1 be such that h2
nn −→ 0, n → +∞.

Then, the kernels

Kn(u) =
1

hn
K

(
u

hn

)
1I
{
|u| ≤ τ

2
hn

}
satisfy (1.4) and the condition of the previous proposition.

4. For all estimators Λ̄n(t) of the mean function Λ(t), following lower bound
holds

lim
n→+∞

sup
Λ∈Fperm (R,S)

n
2m

2m−1

(
EΛ||Λ̄n − Λ||2 − EΛ||Λ̂n − Λ||2

)
≥ −Π.

5. We propose an estimator

Λ∗n(t) = Λ̂0,nφ0(t) +
+∞∑
l=1

Kl,nΛ̂l,nφl(t),

where {φl}+∞
l=1 is the trigonometric cosine basis on L2[0, τ ] and

K̃l,n =

(
1−

∣∣∣∣πlτ
∣∣∣∣m α∗n)

+

, α∗n =

[
S

nR

τ

π

m

(2m− 1)(m− 1)

] m
2m−1

,

Nn =
τ

π
(α∗n)−

1
m ≈ Cn

1
2m−1 , x+ = max(x, 0), x ∈ R.
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Then, the estimator Λ∗n(t) attains the lower bound described above,
that is,

lim
n→+∞

sup
Λ∈Fperm (R,S)

n
2m

2m−1

(
EΛ||Λ̄n − Λ||2 − EΛ||Λ̂n − Λ||2

)
= −Π.

That is, our proposed estimator is asymptotically second order efficient.

Results are presented in [6].

II. In the second chapter we considered the problem of the estimation of the
solution of a FBSDE and obtained the following results: For the solution of
a SDE

dXt = S(t,Xt)dt+ σ(ϑ, t,Xt)dW (t)

observed at discrete moments of time we introduce the pseudo score-function
(here Aj−1 (ϑ) = σ2

(
ϑ, tj−1, Xtj−1

)
)

∆k,n

(
ϑ,Xk

)
=

k∑
j=1

˙̀
(
ϑ,Xtj−1

, Xtj

)

=

[(
Xtj −Xtj−1

− Sj−1 δ
)2 − Aj−1 (θ) δ

]
Ȧj−1 (ϑ)

2A2
j−1 (ϑ)

√
δ

,

and the random Fisher information

Iτ (ϑ0) = 2

∫ τ

0

σ̇ (ϑ0, s,Xs) σ̇ (ϑ0, s,Xs)
T

σ2 (ϑ0, s,Xs)
ds.

For any t ∈ [τ, T ] define k by the condition tk ≤ t < tk+1 and the one-step
PMLE-process by the relation

ϑ?k,n = ϑ̂τ,n +
√
δ Ik,n(ϑ̂τ,n)−1∆k,n(ϑ̂τ,n, X

k), k = N + 1, . . . , n.

1. The one-step MLE-process ϑ?k,n, k = N + 1, . . . , n is consistent and
asymptotically conditionally normal (stable convergence)

δ−1/2
(
ϑ?k,n − ϑ0

)
=⇒ ξt (ϑ0)

and is asymptotically efficient for t ∈ [τ∗, T ] where τ < τ∗ < T and a
bounded loss functions.
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2. Suppose that the coefficients of the diffusion process satisfies R condi-
tions, then, for the loss function `(u) = |u|p, p > 0, the following lower
bound is true

lim
ε→0

lim
n→+∞

sup
|ϑ−ϑ0|<ε

Eϑ`
(
δ−1/2

(
Ȳtk,n − Ytk

))
≥ Eϑ0`(u̇(ϑ0, t, Xt)ξt(ϑ0)).

Here u (ϑ, t, x) satisfies the equation

∂u

∂t
+ S (t, x)

∂u

∂x
+
σ (ϑ, t, x)2

2

∂2u

∂x2
= −f

(
t, x, u, σ (ϑ, t, x)

∂u

∂x

)
.

3. Suppose that the conditions of regularity hold, then the estimators

Y ?
tk,n

= u(tk, Xtk , ϑ
?
k,n), Z?

tk,n
= u′x(tk, Xtk , ϑ

?
k,n)σ(tk, Xtk , ϑ

?
k,n), tk ∈ [τ, T ] ,

are consistent Y ?
tk,n
−→ Yt, Z

?
tk,n
−→ Zt, and are asymptotically condi-

tionally normal (stable convergence)

δ−1/2
(
Y ?
tk,n
− Ytk

)
=⇒ 〈u̇ (t,Xt, ϑ0) , ξt (ϑ0)〉,

δ−1/2
(
Z?
tk,n
− Ztk

)
=⇒ σ (t,Xt, ϑ0) 〈u̇′x (t,Xt, ϑ0) , ξt (ϑ0)〉

+ u′x (t,Xt, ϑ0) 〈σ̇ (t,Xt, ϑ0) , ξt (ϑ0)〉.

4. Consider a Pearson diffusion

dXt = −Xtdt+
√
ϑ+X2

t dWt, X0, 0 ≤ t ≤ T.

For this model, using the preliminary estimator

ϑ̄N =
n

TN

[
X2
tN
−X2

0 − 2
N∑
j=1

Xtj−1

[
Xtj −Xtj−1

]
−

N∑
j=1

X2
tj−1

δ

]
,

we propose the one-step MLE process

ϑ?tk,n = ϑ̄N +
√
δ

k∑
j=1

[
Xtj −Xtj−1

+Xtj−1
δ
]2 − (ϑ̄N +X2

tj−1

)
δ

2Itk,n
(
ϑ̄N
) (
ϑ̄N +X2

tj−1

)2√
δ

, τ ≤ tk ≤ T.

and prove that the one-step MLE-process ϑ?tk,n is consistent: for any
ν > 0

Pϑ0

(
max
N≤k≤n

∣∣ϑ?tk,n − ϑ0

∣∣ > ν

)
→ 0

and for all t ∈ (τ, T ] the convergence

δ−1/2
(
ϑ?tk,n − ϑ0

)
=⇒ ζt (ϑ0)

holds. Moreover, this estimator is asymptotically efficient.

The results are presented in [7],[8].
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Proof. [Theorem 1.2] We are going to use an important equality, that µ−almost
everywhere (µ is the Lebesbue measure on Θ and µ(Θ) < +∞)

Eθ

(
∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
= 0, j ∈ {1, · · · , n}, k ∈ N .

To prove this, first note that∫
X

∫
Θ

∣∣∣∣∂f(X, θ)

∂θk

∣∣∣∣ dθν(dx) < +∞.

Indeed, for ν−almost all x ∈ X the function θk 7→ f(x, θ) is absolutely continu-

ous on [αk, βk], hence the derivative
∂f(Xj ,θ)

∂θk
exists almost everywhere on [αk, βk].

Choose x ∈ X so that θk 7→ f(x, θ) is absolutely continuous, then

{θk ∈ [αk, βk] : f(x, θ) = 0} ⊂ {θk ∈ [αk, βk] :
∂f(x, θ)

∂θk
= 0} ∪ Ax,

where Ax ⊂ [αk, βk] is of Lebesgue measure 0. Then, denoting, B = {(x, θ) :
f(x, θ) 6= 0} and using the Tonelli theorem to write the double integral as an
iterated integral∫

X

∫
Θ

∣∣∣∣∂f(x, θ)

∂θk

∣∣∣∣ dθν(dx) =

∫
X

∫
Θ

∣∣∣∣∂f(x, θ)

∂θk

∣∣∣∣ 1I(B)dθν(dx) =∫
Θ

(∫
X

∣∣∣∣∣
∂f(x,θ)
∂θk

f(x, θ)

∣∣∣∣∣ 1I(B)Pθ(dx)

)
dθ =

∫
Θ

∫
X

∣∣∣∣∣
∂f(x,θ)
∂θk

f(x, θ)

∣∣∣∣∣ 1I(B)Pθ(dx)dθ.

Applying the Cauchy-Schwarz inequality to the last integral gives us∫
X

∫
Θ

∣∣∣∣∂f(x, θ)

∂θk

∣∣∣∣ dθν(dx) ≤ (EQIk(θ))
1
2

√
µ(Θ) < +∞.
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Therefore, we can use the Fubini theorem, according to which for all a, b ∈ [αk, βk]∫ b

a

∫
X

∂f(θ, x)

∂θk
ν(dx)dθk =

∫
X

(∫ b

a

∂f(θ, x)

∂θk
dθk

)
ν(dx) =

=

∫
X
f(θ, x)|θk=bν(dx)−

∫
X
f(θ, x)|θk=aν(dx) = 0,

since f(θ, x) is a density for all θ ∈ Θ. Here a, b and θk were arbitrary, therefore
for µ−almost all θ ∈ Θ

Eθ

(
∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
=

∫
X

∂f(θ, x)

∂θk
ν(dx) = 0.

The function pk(θ)
∏n

j=1 f(Xj, θ) is absolutely continuous in θk and since pk(αk) =
pk(βk) = 0, hence ∫ βk

αk

∂

∂θk

(
pk(θ)

n∏
j=1

f(Xj, θ)

)
dθk = 0,

by same arguments, using the integration by parts formula,∫ βk

αk

ψ(θ)
∂

∂θk

(
pk(θ)

n∏
j=1

f(Xj, θ)

)
dθk = −

∫ βk

αk

∂ψ(θ)

∂θk
pk(θ)

n∏
j=1

f(Xj, θ)dθk.

Combining these two equalities, for the estimator ψn = ψn(Xn) the equality holds∫ βk

αk

(ψn − ψ(θ))
∂

∂θk

(
pk(θk)

n∏
j=1

f(Xj, θ)

)
dθk =

∫ βk

αk

∂ψ(θ)

∂θk
pk(θk)

n∏
j=1

f(Xj, θ)dθk.

Consider θ(k) = (θ1, · · · , θk−1, θk+1, · · · ), the parameter θ without the θk coordi-
nate, the corresponding set Θ(k) = {θ(k), θi ∈ [αi, βi], i 6= k}, and its distribution
Q(k)(dθ(k)). Integrating the last equality w.r.t. the measure Q(k)(dθ(k))νn(dx) gives
us ∫

Xn

∫
Θ(k)

∫ βk

αk

(ψn − ψ(θ))
∂

∂θk

(
pk(θk)

n∏
j=1

f(Xj, θ)

)
dθkQ

(k)(dθ(k))νn(dx) =

∫
Xn

∫
Θ(k)

∫ βk

αk

∂ψ(θ)

∂θk
pk(θk)

n∏
j=1

f(Xj, θ)dθkQ
(k)(dθ(k))νn(dx).
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Using the Foubini theorem, we can show that the right-hand side equals to∫
Xn

∫
Θ(k)

∫ βk

αk

∂ψ(θ)

∂θk
pk(θk)

n∏
j=1

f(Xj, θ)dθkQ
(k)(dθ(k))νn(dx) = EQ

∂ψ(θ)

∂θk
.

Modifying also the left-hand side, we finally can write

∫
Xn

∫
Θ

(ψn − ψ(θ))

∂
∂θk

(
pk(θk)

∏n
j=1 f(Xj, θ)

)
pk(θk)

∏n
j=1 f(Xj, θ)

Q(dθ)Pn
θ (dx) = EQ

∂ψ(θ)

∂θk
.

Applying the Cauchy-Schwarz inequality we deduce∫
Xn

∫
Θ

(ψn − ψ(θ))2Q(dθ)Pn
θ (dx)

∫
Xn

∫
Θ

Y 2Q(dθ)Pn
θ (dx) ≥

≥
[
EQ

∂ψ(θ)

∂θk

]2

,

with the notation

Y =

∂
∂θk

(
pk(θk)

∏n
j=1 f(Xj, θ)

)
pk(θk)

∏n
j=1 f(Xj, θ)

.

First, calculate the following derivatives

∂

∂θk

(
pk(θk)

n∏
j=1

f(Xj, θ)

)
=

= p′k(θk)
n∏
j=1

f(Xj, θ) + pk(θk)
n∑
j=1

f(X1, θ) · · ·
∂f(Xj, θ)

∂θk
· · · f(Xn, θ) =

= pk(θk)
n∏
j=1

f(Xj, θ)

(
p′k(θk)

pk(θk)
+

n∑
j=1

∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
.

Further, the following mathematical expectation equals

E

(
p′k(θk)

pk(θk)
+

n∑
j=1

∂f(Xj ,θ)

∂θk

f(Xj, θ)

)2

=

E
(
p′k(θ)

pk(θ)

)2

+
n∑
i=1

n∑
j=1

E
∂f(Xi,θ)
∂θk

f(Xi, θ)

∂f(Xj ,θ)

∂θk

f(Xj, θ)
+

n∑
j=1

E
p′k(θ)

pk(θ)

∂f(Xj ,θ)

∂θk

f(Xj, θ)
.
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Here, we use the following identities

Eθ

(
∂f(Xi,θ)
∂θk

f(Xi, θ)

∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
= Eθ

(
∂f(Xi,θ)
∂θk

f(Xi, θ)

)
Eθ

(
∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
= 0,

Eθ

(
p′k(θ)

pk(θ)

∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
=

∫
Θ

p′k(θ)

pk(θ)
Eθ

(
∂f(Xj ,θ)

∂θk

f(Xj, θ)

)
Q(dθ) = 0,

E

(
∂f(Xj ,θ)

∂θk

f(Xj, θ)

)2

= EQIk(θ), E
(
p′k(θ)

pk(θ)

)2

= EQ

(
p′k(θ)

pk(θ)

)2

= Ik.

These identities are true because of the basic identity Eθ

(
∂f(Xi,θ)

∂θk

f(Xi,θ)

)
= 0. Combining

all these facts we get

E

 ∂
∂θk

(
pk(θk)

∏n
j=1 f(Xj, θ)

)
pk(θk)

∏n
j=1 f(Xj, θ)

2

= nEQIk(θ) + IK .

Finally, in the Cauchy-Schwarz inequality above, we can replace∫
Xn

∫
Θ

Y 2Q(dθ)Pn
θ (dx) = EY 2 = nEQIk(θ) + Ik,

which completes the proof.

Proof. [Theorem 1.1]. We want to proof that for all estimators Λ̄n

lim
n→+∞

sup
Λ∈Fperm (R,S)

(
EΛ||
√
n(Λ̄n − Λ)||2 −

∫ τ

0

Λ(t)dt

)
≥ 0,

where

Fperm (R, S) =

{
Λ(·) :

∫ τ

0

[Λ(m)(t)]2dt ≤ R, Λ(0) = 0, Λ(τ) = S

}
, m ∈ Z+.

Periodicity means that the intensity function λ(·) is periodic (hence the equality of
its values and the values of its derivatives on the endpoints of the interval [0, τ ]).
For m = 0 we get an L2 ball

Fper0 (R, S) =

{
Λ(·) :

∫ τ

0

Λ2(t)dt ≤ R, Λ(0) = 0, Λ(τ) = S

}
.
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For m > 1 the statement of this theorem follows from the Proposition 1.3. From
Lemma 1.1 we know that Λ ∈ Fperm (R, S) if and only if its Fourier coefficients w.r.t.
the cosine basis satisfy

+∞∑
l=1

(
πl

τ

)2m

Λ2
l ≤ R, Λ(τ) = S.

Using the inequalities

+∞∑
l=1

Λ2
l =

+∞∑
l=1

( τ
πl

)2
(
πl

τ

)2

Λ2
l ≤

(τ
π

)2
+∞∑
l=1

(
πl

τ

)2

Λ2
l ≤

(τ
π

)4
+∞∑
l=1

(
πl

τ

)4

Λ2
l

therefore Fper2 (R, S) ⊂ Fper1 (R1, S) ⊂ Fper0 (R2, S), which ensures that for the
functional

Fn(Λ̄n,Λ) = EΛ||
√
n(Λ̄n − Λ)||2 −

∫ τ

0

Λ(t)dt

the following is true

sup
Λ∈Fper0 (R2,S)

Fn(Λ̄n,Λ) ≥ sup
Λ∈Fper1 (R1,S)

Fn(Λ̄n,Λ) ≥ sup
Λ∈Fper2 (R,S)

Fn(Λ̄n,Λ),

and since the Theorem is true for m > 1 then, the Theorem is true for m = 0 and
m = 1.
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Two problems of statistical estimation for stochastic processes 

 
Résumé 
Le travail est consacré aux questions de la statistique des 
processus stochastiques. Particulièrement, on considère deux 
problèmes d'estimation. Le premier chapitre se concentre sur 
le problème d'estimation non-paramétrique pour le processus 
de Poisson non-homogène. On estime la fonction moyenne de 
ce processus, donc le problème est dans le domaine 
d'estimation non-paramétrique. On commence par la définition 
de l'efficacité asymptotique dans les problèmes non-
paramétriques et on procède à exploration de l'existence des 
estimateurs asymptotiquement efficaces. On prend en 
considération la classe des estimateurs à noyau. Dans la thèse 
il est démontré que sous les conditions sur les coefficients du 
noyau par rapport à une base trigonométrique, on a l'efficacité 
asymptotique dans le sens minimax sur les ensembles divers. 
Les résultats obtenus soulignent le phénomène qu'en imposant 
des conditions de régularité sur la fonction inconnue, on peut 
élargir la classe des estimateurs asymptotiquement efficaces. 
Pour comparer les estimateurs asymptotiquement efficaces (du 
premier ordre), on démontre une inégalité qui nous permet de 
trouver un estimateur qui est asymptotiquement efficace du 
second ordre. On calcule aussi la vitesse de convergence pour 
cet estimateur, qui dépend de la régularité de la fonction 
inconnue et finalement on calcule la valeur minimale de la 
variance asymptotique pour cet estimateur. Cette valeur joue le 
même rôle dans l'estimation du second ordre que la constante 
de Pinsker dans le problème d'estimation de la densité ou 
encore l'information de Fisher dans les problèmes d'estimation 
paramétrique.    
Le deuxième chapitre est dédié au problème de l’estimation de 
la solution d’une équation différentielle stochastique rétrograde 
(EDSR). On observe un processus de diffusion qui est donnée 
par son équation différentielle stochastique dont le coefficient 
de la diffusion dépend d’un paramètre inconnu. Les 
observations sont discrètes. Pour estimer la solution de  
l’EDSR on a besoin d’un estimateur-processus pour le 
paramètre, qui, chaque instant n’utilise que la partie des 
observations disponible. Dans la littérature il existe une 
méthode de construction,  qui minimise une fonctionnelle. On 
ne pouvait pas utiliser cet estimateur, car le calcul serait 
irréalisable. Dans le travail nous avons proposé un estimateur-
processus qui a la forme simple et peut être facilement calculé. 
Cet estimateur-processus est un estimateur asymptotiquement 
efficace et en utilisant cet estimateur on estime la solution de 
l’EDSR de manière efficace aussi. 

 

Mots clés estimation non-paramétrique, efficacité 

asymptotique, processus stochastiques 

----------------------------------------------------------------------- 

 

Abstract 

This work is devoted to the questions of the statistics of 
stochastic processes. Particularly, the first chapter is devoted 
to a non-parametric estimation problem for an inhomogeneous 
Poisson process. The estimation problem is non-parametric 
due to the fact that we estimate the mean function. We start 
with the definition of the asymptotic efficiency in non-parametric 
estimation problems and continue with examination of the 
existence of asymptotically efficient estimators. We consider a 
class of kernel-type estimators. In the thesis we prove that 
under some conditions on the coefficients of the kernel with 
respect to a trigonometric basis we have asymptotic efficiency 
in minimax sense over various sets. The obtained results 
highlight the phenomenon that imposing regularity conditions 
on the unknown function, we can widen the class of 
asymptotically efficient estimators. To compare these (first 
order) efficient estimators, we prove an inequality which allows 
us to find an estimator which is asymptotically efficient of 
second order. We calculate also the rate of convergence of this 
estimator, which depends on the regularity of the unknown 
function, and finally the minimal value of the asymptotic 
variance for this estimator is calculated. This value plays the 
same role in the second order estimation as the Pinsker 
constant in the density estimation problem or the Fisher 
information in parametric estimation problems. 
The second chapter is dedicated to a problem of estimation of 
the solution of a Backward Stochastic Differential Equation 
(BSDE). We observe a diffusion process which is given by its 
stochastic differential equation with the diffusion coefficient 
depending on an unknown parameter. The observations are 
discrete. To estimate the solution of a BSDE, we need an 
estimator-process for a parameter, which, for each given time, 
uses only the available part of observations. In the literature 
there exists a method of construction, which minimizes a 
functional. We could not use this estimator, because the 
calculations would not be feasible. We propose an estimator-
process which has a simple form and can be easily computed. 
Using this estimator we estimate the solution of a BSDE in an 
asymptotically efficient way. 
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