N

N
N

HAL

open science

Service-Level Monitoring of HT'TPS Traffic
Wazen M. Shbair

» To cite this version:

Wazen M. Shbair. Service-Level Monitoring of HTTPS Traffic. Networking and Internet Architecture

[cs.NI]. Université de Lorraine, 2017. English. NNT: 2017LORR0029 . tel-01649735

HAL Id: tel-01649735
https://theses.hal.science/tel-01649735
Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01649735
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LORRAINE

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis a disposition de I'ensemble de Ila
communauté universitaire élargie.

Il est soumis a la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de réeférencement lors de
I'utilisation de ce document.

D'autre part, toute contrefacon, plagiat, reproduction illicite
encourt une poursuite penale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4

Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

UNIVERSITE
DE LORRAINE Ecole doctorale IAEM Lorraine

Service-Level Monitoring of HT'TPS Traffic

(Identification des Services dans le Trafic HT'TPS)

THESE

présentée et soutenue publiquement le -

pour 'obtention du

Doctorat de I’Université de Lorraine

(mention informatique)

par

Wazen M. Shbair

Composition du jury

Rapporteurs : Hervé Debar Professeur a Télécom SudParis, Evry, France
Sandrine Vaton Professeure a Télécom Bretagne, Brest, France
Ezaminateurs : Georg Carle Professeur & Université Technique de Munich, Allemagne
Radu State Directeur de recherche a I’Université du Luxembourg, Luxembourg

Véronique Cortier Directrice de recherche CNRS, Nancy, France

Encadrants : Isabelle Chrisment Professeure a Télécom Nancy, Nancy, France
Thibault Cholez Maitre de conférences a Télécom Nancy, Nancy, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Acknowledgement

Firstly, I would like to express my sincere gratitude to my supervisors Isabelle Chris-
ment, Thibault Cholez and Jéréme Frangois for the continuous support of my PhD
study and the related research, for their patience, motivation, and immense knowl-
edge. Their guidance helped me in all the time of research and writing of this thesis.
I could not have imagined having a better supervisors and mentors for my PhD study.

My sincere thanks also goes to my thesis committee: Hervé DEBAR, Sandrine
VATON, Georg CARLE, Véronique CORTIER, and Radu STATE for their insight-
ful comments and encouragement, but also for their questions which encourage me
to widen my research from various perspectives.

Besides all, I would like to thank my friends in the MADYNES team for a lovely
working atmosphere and also the administration staff in LORIA and INRIA Nancy
Grand-Est for making our daily activities going smoothly. Also I specially thank
Antoine Goichot for his work with me during this thesis.

I thank the Erasmus Mundus EPIC program for funding my PhD study in the
University of Lorraine, with an extended thanks to Delphine Laurant and the Pales-
tinian coordinator in An-Najah National University. Also thanks for the CNRS
institute for funding partially my thesis.

I am grateful to the academic stuff in the computer engineering department of
the Islamic University of Gaza for their support and help. Thanks to Mohammed
Hussein, Shafik Jendia and a particular thank go to Hasan Qunoo for enlightening
me the first glance of research.

I would like to thank my closest friends, Fayez Abu-hilou, Tareq Arraj, Mo-
hammed Darbouli, Mohsen Hassan, Mounir Kassir, Hussain AJJ, Basem Shama,
Hassan Al Dreimly, Omar Ringa, Motaz Saad and their lovely families for the time
we have spent together in the last three years.

My family has always played the greatest part in my life. Thanks to those ones
who believe in me, my dad and my mum, for supporting me throughout my study
and my life in general. My brothers and sister: Wagdi, Magdy, Ahmed and Arwa
I am blessed to have you. The sweetest gratitude goes to my companion Rodina,
for leading the way to realize this dream and to my beloved daughter Sanaria, her
smile was another factor to overcome the toughest days.

Thanks to all of you. I will remain indebted for you forever.

ii

To The Memory of My Uncle
AHMED JAMIL ESHBAIR
1955-2015

iii

iv

Contents

1 General Introduction 1
LI Context] 1
[1.1.1 HTTPSusage trend| 2
[1.1.2 HTTPS and network monitoring| 3

(.2 Problem Statementlo oo 5
(L3 OQOur Contributionl 5
2 Related work 9
2.1 TIntroductionl. oo 10
2.2 Web Security Protocols| o000 11
[2.2.1 Introduction to the HT'TPS protocol 12
[2.2.2 SS5L and TLS protocols short history|. 12
223 TLS architecturel o000 13
[2.2.4 Key role players in TLS development|. 17
[2.2.5 Synthesis|o oo 18

2.3 ldentification of T'LS Traffido 19
2.3.1 Port-based methodl 0oL 19
2.3.2 Protocol structure-based methodl 19
[2.3.3 Machine learning-based method|. 20
[2.3.4 Synthesis| oL 22

2.4 Identification of HTTPS Traffic 22
241 Port-based methodl 0000 22
[2.4.2 Machine learning-based method|. 23
[2.4.3 Synthesis| 23

2.0 Identification of H'I'TPS Services) 24
[2.5.1 Website fingerprinting-based method| 25

Contents

[2.6.1 General analysis of related work|

[2.6.2 Ethical aspects of HI'T'PS monitoringl

3 Evaluation and Improvement of SNI-based HTTPS Monitoring

3.3 Strategies for Bypassing SNI-based Monitoring |
13.3.1 Exploiting backward compatibility|

13.3.2 Exploiting shared server certiicate|

3.4 Implementation and Evaluation of Bypassing Strategies|

13.4.1 Implementation of a web browser add-on|

[3.4.2 Evaluation of HI'T'PS servers supporting SNI extension| . . .

I;;,sli.l ‘Hf;ll“f:!ll“ﬂl
B.52 TFake-SNT detectionl
3.6 Evaluation of SNTI value Verification based on DNS|
3.6.1 False-Positive rate evaluation|
I;i.(i.z g) &f:lh,f:ﬂ‘d, f: y;llll;LtiS)Ill

vi

44

59

60

60

62

65

66

67

67

69

72

74

(e

78

78

78

80

5.3 Real-Time Framework for Monitoring H'I'T'PS Services|. 80
Bb3.1 Overviewl e 80
[0.5.2 The statistical features|. 81
[5.3.3 Selected machine learning algorithm| 82
B34 Architecturel 82

5.4 Evaluation of the Real-Time Monitoring Framework|{ 83
.41 Public HTTPS dataset|.o ... 84
[5.4.2 Evaluation of the number of application data packets charac- |
terizing a flow|. Lo 86

[5.4.3 Classification model generalized for multiple clients|. 90
[5.4.4 Extending the multi-level classification framework| 93

5.5 Real-Time HTTPS Firewall Prototypel 95
[9.5.1 Prototype architecture] 000 95
[b.5.2 Performance evaluation| 98

[5.6 Discussion and Analysis| 0oL 99

vii

Contents

6 General Conclusion 101
6.1 Achievements 102
6.2 Future Workl 104

List of Publications 107

List of Figures 109

List of Tables 111

(Glossary 13

Bibliography 115

Résumé de la thése en frangais 129
1 Introductionl. 129
12 osupervision réseau et protocole HI'T'PS| 129
3 Evaluation et amélioration de la supervision HTTPS par SNI| 130
|4 Un tramework a plusieurs niveaux pour l'identification de services

| HTTPS .. . 131
15 Identification en temps réel de services H1'TPS| 133
|6 Conclusion généralel 134

6.1 Travail réalisél o oo 134
6.2 Perspectives de recherche| 0000, 134

viii

Chapter 1

General Introduction

Contents
LI Conext] « « « v v v v v e et et e et e e e e 1
(1.1.1 HTTPSusagetrend| 2
(1.1.2 HTTPS and network monitoring| 3
(1.2 Problem Statement|0...
1.3 Our Contributionl

1.1 Context

Web applications have become the lifeblood of many sectors like e-commerce, soft-
ware edition, media, etc., since they are highly interactive, platform independent
and easily accessed from anywhere using web browsers, thanks to web technologies
like HTMLS5, JavaScript or PHP. Hence, the reliability of the supporting infrastruc-
ture (i.e., Internet, web servers, local networks) is more crucial than ever. Therefore,
network monitoring and analysis tools are fundamental to Internet Service Providers
(ISP) and network operators to handle security and performance issues and to avoid
costly downtime. Such tools must be continuously adapted to pursue the quick
evolution of the network traffic and to cope with modern challenges.

Today’s network monitoring solutions are slowly but steadily losing their power
due to the global trend toward the encryption of network communications, espe-
cially after the National Security Agency (NSA) revelations of massive surveillance
programﬂ and the raising awareness of users for privacy questions. Companies
like Over The Top (OTT) players (e.g., Akamai Technologies, Google) also want
to fully keep the control over their traffic and users’ data over the Internet. How-
ever, encryption undermines the effectiveness of standard monitoring approaches
and makes it difficult to identify and monitor the services behind encrypted traffic,
which is essential to properly manage the network.

"https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013-present)

https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013-present)

Chapter 1. General Introduction

The foremost examples of encryption protocols over the Internet are Transport
Layer Security (TLS) and its predecessor Secure Socket Layer (SSL). These protocols
have been originally designed to secure banking transactions on the web. However,
with the arrival of Web Q.qﬂ the TLS/SSL usage has been extended widely. Most
of the functionalities previously offered by desktop applications (music, office App.,
file transfer, email, etc.) are now offered by web applications run in the cloud, and
they can be securely accessed through web browsers and mobile applications at any
time and from anywhere thanks to the HTTPS?] protocol.

1.1.1 HTTPS usage trend

The HTTPS protocol allows web applications to secure HT'TP over TLS or SSL,
which makes it difficult for a third party to infer information about users’ interaction
with a website using packets sniffer or Man-in-the-Middle (MitM) attacks [1]. As a
result, the HT'TPS traffic is expanding rapidly alongside the need for Internet users
to benefit from security and privacy when surfing the web, and this could explain
why web users spend two-thirds of their browsing time over HTTPS websites [2].

The trend of using HT'TPS creates an "encryption rush" on Internet industry in
two dimensions. The first is the size of HI'TPS traffic, and the second is the number
of HTTPS websites. According to Cisco 2016 annual security report [3], statistics
show that the HTTPS traffic accounts for 57% of all web traffic in October 2015.
That number is in line with ISPs: in Europe, French ISPs reported that the amount
of encrypted traffic reached 50% of the Internet traffic in 2015 [4] against only 5%
back in 2012, while another ISP based in North America expects 65-70% of HTTPS
traffic by the end of 2016 [5]. Also the augmentation of HTTPS traffic is recorded
by Mozilla telemetry, where it shows that the HT'TPS traffic has reached a tipping
point and passed the halfway mark of the web traffic [6].

Regarding the number of HTTPS websites, Google Transparency Report [7]
shows that more than 50% of the web pages were served using HTTPS in October
2016, as illustrated in Figure Also the Netcraft annual survey [§] that has
been conducted over 860 million websites shows that the year 2013 has undergone a
significant change: websites are more and more being served over HT'TPS. Among
the Alexa top 1 million websites, more than 68% of them use HTTPS, despite the
cost of SSL certificates and the more complex configuration of web servers [9]. To
facilitate the movement toward HTTPS, the "Let’s Encrypt"E] program gives free
SSL certificates and an automated software to configure servers [2].

In total, there is an increase of 48% of websites using HTTPS and of half a
million SSL certificates (+22%) on the Internet over the year 2013 [8]. Another
recent motivation for websites’ owners to use HTTPS is to improve their rank in
search engines. Indeed, Google has announced that they now consider the use of
HTTPS as a positive ranking parameter [10].

’https://en.wikipedia.org/wiki/Web_2.0
SHyper Text Transfer Protocol Secure (HTTPS) or HTTP-over-TLS/SSL
“https://letsencrypt.org/

https://en.wikipedia.org/wiki/Web_2.0
https://letsencrypt.org/

1.1. Context

100%
75%

e M
50% N\ f

25%

0%

Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016 Jul 2016 QOct 2016
—— Windows Android ~—— Chrome OS —— Linux —— Mac

Figure 1.1: Percentage of pages loaded over HT'TPS [7]

1.1.2 HTTPS and network monitoring

However, HTTPS is a double edged sword. On one side, the increasing share of
the HTTPS traffic has been a mostly positive step toward a more secure web. On
the other side, for ISPs and network administrators, HT'TPS causes them "blind" to
their network traffic and entails their capacity to perform proper network manage-
ment activities, such as traffic engineering, capacity planning, performance/failure
monitoring [11]. For instance, HTTPS prevents network operators from applying
Quality of Service (QoS) measurements that give a priority to critical services, or to
use caching techniques to reduce network latency and congestion.

From the security perspective, HI'TPS makes security monitoring methods un-
able to understand the traffic and to identify anomalies or malicious activities that
can be hidden in encrypted connections [12]. One possible scenario is Data FEzfil-
tration, where a local compromised machine transfers sensitive information to an
external server controlled by an attacker over an HTTPS channel to circumvent se-
curity monitoring systems (e.g., Firewall) and to look like a benign web browsing
traffic [13]. The application of security policies to encrypted traffic is also challeng-
ing.

The main purpose of the HT'TPS protocol is keeping users web browsing activities
away from eavesdroppers and tampering. Therefore, appropriate cipher suites are
needed and websites’ SSL certificate must be verified and trusted. However, HTTPS
does not mean that a website’s content is not malicious, or welcome in a given
network, even with a valid SSL certificate [14]. The authors in [15] find that 13%
of websites (over the 10,000 most popular Chinese websites) are using self-signed
SSL certificates instead of those issued and verified by a Certificate Authority (CA),
after intensive investigation of websites’ business information. Even more, based on
[16], there is a significant number of phishing websites that use valid SSL certificates
issued by trusted CAs to convince clients to trust them. An HTTPS website may
be legitimate, but it may embed advertisements that hold malicious JavaScript or
viruses, which can be transferred over HT'TPS without triggering security check
points. Thus, if we do not have the ability to circumvent such websites, we have at
least to restrict access to them.

In the field of Internet traffic management, it is important to differentiate be-
tween the three following terms: Identifying, Monitoring and Filtering. Identifying
is intended to find a fingerprint that can be used as an application identity, such as

3

Chapter 1. General Introduction

specific interaction patterns, keywords or a regular expression string. Monitoring is
defined as recording the activities on the network (accessed websites, applications,
etc.) for either online or offline investigation. Whereas filtering means restricting
access to applications or websites by adding websites URLs to blacklists or using
keyword filtering, which is not effective against encrypted HTTPS traffic |[17,/18].

Indeed, encrypted content cannot be scanned to detect malware or to check
compliance with security policy. Over ten months, from January to October 2015,
an investigation over 26 families of malicious web browser add-ons have shown a
40% decrease of the number of infections, however this was a deceptive indication.
The real reason was the increasing amount of HT'TPS traffic during the experiment
period had reduced the ability to detect the infection, as the URL information was
no more visible due to encryption [3]. In fact, there is an efficient method to monitor
and control the HT'TPS traffic based on HTTPS Proxy, where the HT'TPS traffic is
decrypted in the middle for investigation and re-encrypted again. This easy solution
has many supporters from National Security Agencies [19] to security companies
[20], and is even discussed for future Internet technical standards [21]. However,
such a method cannot be treated lightly as it denies privacy for traffic inspection’s
sake.

The related work in the field of encrypted traffic monitoring without decryp-
tion can be divided in two main parts; the first part is intended to identify at
application-level (i.e., Web, P2P, SSH, VoIP, etc.) [22,23]. While the second one
aims to recognize the specific web pages accessed on a given website using website
fingerprinting techniques [24-27]. However, identifying the type of encrypted appli-
cations is too generic-grain, while the website fingerprinting is too fine-grained, as
it works at the page-level with static content, and is no longer adapted to today’s
web fetching dynamic content from multiple Content Delivery Networks (CDN).
For instance, a user accessing Google Maps will be characterized as HT'TPS traffic
with the first type of technique (application-level), whereas the second type (website
fingerprinting) will be only able to identify a specific page of the service. As illus-
trated in Figure[I.2] accessing the service may not be from the official Google Maps
websites, but it can be embedded in another website (e.g., the map displayed on
the main page of www.loria.fr). We claim that a service-level identification that
can identify the precise services accessed through HTTPS is necessary and would
constitute a huge step toward the elaboration of monitoring solutions that could
properly handle encrypted web traffic. In the previous example, our target is to
identify when Google Maps is used independently of the access method.

To summarize this section, the dependability and security of networks and in-
frastructures will be lowered if we do not have suitable methods to identify, monitor
and control the HT'TPS traffic, which is quickly becoming the predominant appli-
cation protocol on the Internet. However, the monitoring of HT'TPS traffic has lead
to a conflict between security and users’ privacy. This is known as "Dilemmas of the
Internet age" and has been discussed not only in the academic community but in the
overall society and human rights space |28]. The answer to this paradox is complex,
as both sides may have valuable arguments. Thus, there is an urgent need for a new

4

www.loria.fr

1.2. Problem Statement

Google Maps

Client Server
..-.--“mr..Mm....;....-:. | Service-Level |

Lo 2018

12 Mot visied >

Encrypted traffic

k d
-

r.'-:u@"' i

Website Application
Fingerprinting Type

v

index page of HTTPS
(www.loria.fr)

Figure 1.2: Service-level identification

generation of HT'TPS traffic monitoring approaches to cope with the global trend
of using encryption, while respecting user’s privacy over the web.

1.2 Problem Statement

The wide development of HTTPS web applications comes with new issues related
to the management of encrypted traffic. Especially, there is an essential need for a
new method to monitor HTTPS services, which can be a source of security breaches.
Several techniques have been proposed to monitor HTTPS services, however such
methods either do not have the proper-level of identification (they do not identify
the service) or have a privacy concern related to decryption in the middle (e.g.,
HTTPS proxy). Therefore, the objective of this thesis is to provide a privacy pre-
serving approach for monitoring HT'TPS services at the service-level. Hence, the
first challenge is to asses the reliability of a recent method to monitor HT'TPS ser-
vices based on Server Name Indication (SNI), a field of TLS handshake that specifies
the name of the accessed service, and to explore and remediate possible weaknesses
in the SNI-based method. The second one is to design a more robust method, that
do not use header-information, to identify HI'TPS services based on traffic pattern
or services behaviour. The third challenge is the real-time identification of HT'TPS
services and how to identify the access to a given HTTPS service very early in the
session.

1.3 Our Contribution

Our contribution for the service-level monitoring of HT'TPS traffic, as illustrated in
Figure[1.3] span over four chapters. In Chapter[2] we explore and study the literature
work of HTTPS traffic identification and monitoring based on the necessary steps
required to identify HTTPS services. We cover the HT'TPS monitoring issues from
academic, industrial and legal viewpoints. This step gives a precise view of current
HTTPS traffic identification and monitoring techniques and highlights the remaining
challenges to be solved.

Chapter 1. General Introduction

C 2
L = 1

Related Work

SSL/TLS &
HTTPS Protocols

Limitation

Identification Methods

Identification
level and privacy
™ s | .
C 3 are not satisfied

Evaluation and Improvement
of SNI-based HTTPS Mitoring
Assess & Demonstrate
SNI-based weakness

Limitation

Improve SNI-based method
(using DNS)

Problem with shared

SSL certificates
A Robust HTTPS
Identification Framework

Limitation

Machine learning
identification framework
(SNI used for training)

Offline Approach

(forensic analysis)
Real-Time Monitoring
of Services in HTTPS Traffic

Extension of our framework
for real-time identification

Figure 1.3: Our contributions road map

Chapter [3] evaluates a recent HT'TPS monitoring method implemented in many
firewall systems, named SNI-based method. We demonstrate that SNI-based mon-
itoring can be easily cheated to bypass firewalls and monitoring systems relying on
SNI values. Therefore, we propose an improvement using the Domain Name System
(DNS) to remediate the shortage of SNI-based monitoring by detecting suspicious
access to HTTPS services. The proposed remediation is evaluated through experi-
ments. Even so, the enhanced SNI-based method is still unable to precisely identify
a given HT'TPS service if it shares a SSL certificate with other services.

In Chapter [d, we present a more robust method to identify HTTPS services
based on traffic pattern rather than inspecting header fields like SNI or using SSL
certificate. Hence, we develop a complete framework to identify accessed HT'TPS
services in a traffic dump. Our framework includes several innovations increasing the
identification accuracy and the scalability. We define a new set of statistical features
extracted from the encrypted payload. Also, we propose a multi-level classification
approach based on machine learning algorithms. The performance of the framework
is evaluated using real traffic.

6

1.3. Our Contribution

In Chapter [5] we improve our machine learning-based framework to identify
HTTPS services in real-time without decryption. By extracting statistical features
on TLS handshake packets and progressively on application data packets, we identify
HTTPS services very early in the session. We carry out extensive experiments over
a significant and open dataset that we have built. In this chapter, we also describe
our HTTPS firewall prototype that can identify services in real-time.

Chapter 1. General Introduction

Chapter 2

Related work

Contents
2.1 Totroduction] 10
2.2 Web Security Protocols|.00 11
2.2.1 Introduction to the HT'T'PS protocolf 12
2.2.2 550 and TLS protocols short history|. 12
223 TLS architecturel oL 13
2.2.4 Key role players in TLS development|. 17
2.2.5 Synthesis| oo 18

12.4.2 Machine learning-based method|. 23
2.4.3 Synthesis| o 23
2.5 Identification of HI'T'PS Services|. 24
2.5.1 Website fingerprinting-based method| 25
[2.5.2 Machine learning-based method|. 25
2.5.3 DNS and IP address-based methodsl 26
2.50.4 SNI-based methodlo 27
2.5.5 SSL certificate-based methodl 28
12.5.6 H'I'I'PS proxy-based method| 29
[2.5.7 TLS encryption key acquisition-based method|. 29
2.6 Conclusionl oo 30
[2.6.1 General analysis of related workl 30
[2.6.2 Ethical aspects of HI'TPS monitoring] 32

Chapter 2. Related work

2.1 Introduction

The accurate identification and classification of network traffic is the core compo-
nent of monitoring techniques, since it provides the baseline to evaluate the traffic.
Over time, these classification techniques have evolved, started with port-based, IP
address-based, DNS-based methods until advanced Deep Packet Inspection (DPI)
approaches. The surveys [29-32] are a valuable indicator to understand the evo-
lution of the Internet and how both academic and industrial communities handle
traffic identification. Table summarizes the main traffic classification goal of
these published surveys. The most recent one from Velan et al. [32] focuses on
classification approaches for the identification of encrypted traffic over the Internet.
They show that, in the past few years, the classification of encrypted traffic in large
protocol categories such as IPsec, SSL/TLS, SSH, BitTorrent, Skype, etc. has been
widely investigated in the community. They conclude that simply identifying the
type of encrypted traffic is not enough and that classification should be improved
to identify the underlying services. They also state that much work has been con-
ducted on SSH while TLS should now be at the center of such studies regarding its
uttermost importance today.

In this thesis, we go deeper by focusing on the most widely used encrypted
application protocol, HT'TPS, while trying to go further in the service identification
process. We think that this focus is necessary because of the increased amount and
complexity of web applications and services using HTTPS [33}|34].

Table 2.1: Main published surveys in the field of Internet traffic classification

’ Focus \ Covered Period \ Publish year \ Survey ‘
Application identification 2002-2008 2009 29]
P2P applications identification 1994-2008 2009 35)
Application identification 2004-2013 2013 30)
Payload-based identification 2009-2013 2014 31)
Encrypted traffic identification 2005-2014 2015 132]

The rest of this chapter proceeds as follows. Section provides an overview of
web security and the related TLS protocol. Then, as illustrated by Figure [2.1] we
detail the scientific related work from the most basic level of protocol identification
(TLS, HTTPS), to the finest identification level of naming the websites, as even the
web pages accessed through HT'TPS. Thus, Section considers the identification of
TLS among other encrypted traffic types. In Section[2.4] we investigate the methods
used to recognize HT'TPS applications traffic. Section [2.5]discusses the identification
of HTTPS service. Finally, in Section[2.6) we analyse the open research questions and
we discuss the trade-off between security, privacy and ethics of monitoring activities.

10

2.2. Web Security Protocols

Data Network Traffic

(Encrypted Traffic)
(P2P, VoIP, SSH, SSL/TLS,..)

(SSL/TLS)

(HTTPS)

HTTPS
Service-Level

Figure 2.1: Granularity of Internet traffic classification toward HT'TPS service mon-
itoring

2.2 Web Security Protocols

With the emergence of the Web 2.0, the increasing number of e-banking, e-government,
e-commerce, e-health, etc., web applications is notable. This can be seen as a strong
evidence that more and more business activities depend on the web as a way of
delivering services. Thus, the web technology had to evolve to satisfy new security
and privacy requirements due to the rise of critical web applications [36,37]. In the
context of web application security, the web is a client/server application running
over the standard Internet TCP/IP protocols. Therefore, the security protocols have
to take into account some considerations when providing methods to secure the web,
such as the operating environment (i.e., client/server architecture) and the users. On
the client side, web browsers are very easy to use, even if the underlying software is
complex and may hold many potential security flaws, in particular when considering
plug-in extensions. On the server side, web servers are highly exposed to attacks,
which means the level of trust and confidence should be very high. When a web
server is down, the damage is not only about money loss but also about enterprise’s
reputation. Whereas for the web users, most of them are common clients unaware of
the security risks that exist and without the experience to handle security problems;
such as untrusted SSL certificates warning [38].

There are many potential methods to secure communications, with different
mechanisms and their relative location in the TCP/IP protocol layer. Figure
shows the security protocols related to each layer of the TCP /IP protocol stack. The
SSL and TLS security protocols work between the application layer and the transport
layer. They use the Public Key Infrastructure (PKI) to provide authentication and
then symmetric keys for confidentiality. On the top application layer, we find for
example the Secure Shell (SSH) and Pretty Good Privacy (PGP) protocols, which
answer to specific security needs of a given application over TCP connection-oriented
approach to establish and manage connections [3§].

11

Chapter 2. Related work

Security Protocols TCP/IP Layers
ki
SSH, PGP o= s Application Layer
work in TLS sub-layer
SSL, TLS
Transport Layer (TCP)
work in
IPSec Network Layer (IP)
work in
PPTP, L2TP Data Link Layer (MAC)
work in
Scrambling, Hopping Physical Layer

Figure 2.2: The security-related protocols associated with the TCP/IP protocol
stack

While all of these security protocols have their advantages, the mainly used ones
to secure the web are the SSL and TLS protocols. Therefore, the rest of this section
is devoted to discuss the SSL and TLS protocols and how they were designed to
enrich web applications with security and the challenges related to their increasing
usage.

2.2.1 Introduction to the HTTPS protocol

The HTTPS protocol provides secure web communications, by using HTTP over a
secured TLS/SSL connection. To differentiate between HTTP and HTTPS services,
the HTTP websites use the port-number 80 by default, while HT'TPS ones use the
port 443. Here, we need to highlight the difference between HTTPS and encrypted-
HTTP. The HTTPS only refers to HTTP-over-TLS/SSL, while encrypted-HTTP
can be HTTP over any higher level encrypted connection like VPN, SSH or Tor
connections [24]. In the later case, the website’s URL starts with "http://". This
means that the web server does not provide a secure connection service by itself and
the secure link parameters are configured within the chosen method, but not in the
server. While in the case of HTTPS, the website’s URL starts with "https://" and
the website is hosted on an authenticated server that owns a SSL certificate. Thus,
a client and a server negotiate the secure connection parameters before exchanging
data thanks to HTTP over a dedicated secure link between them [27].

As stated in the introduction, monitoring HTTPS is essential regarding; (1) the
fast increase of HT'TPS traffic on the Internet; (2) the great diversity of web services
that now use the HTTPS protocol to provide privacy and security and, (3) despite
HTTPS good intentions, it may be used for illegitimate purposes, such as accessing
inappropriate contents or services.

2.2.2 SSL and TLS protocols short history

At the end of 1994, Netscape included the support of the second version of SSL (SSL
2.0) in Netscape Navigator after solving many issues with the first version which

12

2.2. Web Security Protocols

was just used inside Netscape Corporation. In response, Microsoft also introduced
in 1995 an encryption protocol named Private Communication Technology (PCT)
that was very close to SSL 2.0 |39]. The publication of the two concurrent security
protocols created a lot of confusion in the security community, since applications
needed to support both for interoperability reasons. To solve this issue, the Internet
Engineering Task Force (IETF) formed a working group in 1996 to standardize a
unified TLS protocol. After a long discussion with the related parties, the first
version of standard protocol (TLS 1.0) appeared in January 1999. In April 2006,
the TLS protocol version 1.1 (TLS 1.1) was released, followed by TLS 1.2 in August
2008 which is specified in the RFC5246 [40]. The most recent version of TLS is
TLS 1.3, but is still a draft. This last version follows the same specifications but
introduces improvements concerning the encryption algorithms parameters and the
handshake [41]. Based on this history, we will use the term TLS in the rest of the
thesis, while when we talk about the digital certificate, we will use the commonly
acknowledge name "SSL certificate".

The primary goal of TLS is to provide a secure channel between authenticated
communication parties, to make it impossible for potential third parties to access
transmitted data. On the web, the TLS protocol is widely used because it prevents
unauthorized view of users’ information over the web; no configuration is required
from the user side, which makes it easy to be used and all web browsers and web
servers fully support TLS natively.

2.2.3 TLS architecture

TLS is not a single protocol but it contains two layers of protocols, as illustrated
in Figure The top-layer consists of the three handshaking sub-protocols: the
Handshake, the Change Cipher Specification, and the Alert protocol. These sub-
protocols are used to manage TLS exchanges, as to allow peers to agree on an
encryption algorithm and a shared secret key, to authenticate themselves, and to
report errors to each other. The lower-layer holds the TLS Record protocol, which
can be presented as an envelope for application data and TLS messages from the
protocols above. The Record protocol is responsible for splitting data into chunks,
which are optionally compressed, authenticated with MAC, encrypted and finally
transmitted [40]. The three sub-protocols are introduced in the next subsections.

TLS handshake protocol

The handshake protocol is of prime importance because it defines the first inter-
actions and is responsible for many configuration aspects such as managing cipher
suite negotiation, server/client authentication, and session key exchange. During
the cipher suite negotiation, a client and a server make agreement about the cipher
suite that will be used to exchange data. In authentication, both parties prove their
identity using the PKI method. In the session key exchange, they exchange ran-
dom and special numbers, called the Pre-Master Secret. These numbers are used to
create their Master key, which is then applied for encryption when exchanging data.

13

Chapter 2. Related work

14

Application Layer

(HTTP)
Change -
Handshake Cipher Alert ST EREE
Data
Spec.
TLS
TLS Record Protocol
Byte [0] | Byte [1:2] | Byte [3:4] Byte [5: n]
[Content Type| Version Length Payload, MAC

Transport Layer (TCP)

Network Layer (IP)

Data Link Layer (MAC)

Physical Layer

Figure 2.3: The TLS layers and sub-protocols

Figure details the sequence of protocol messages for TLS handshake:

1.

The ClientHello message contains the usable cipher suites, supported exten-
sions and a random number.

. The ServerHello message holds the selected cipher, supported extensions and

a random number.

. The ServerCertificate message contains a certificate with a server public

key.

The ServerHelloDone indicates the end of the ServerHello and associated
messages. If the client receives a request for its certificate, it sends
a ClientCertificate message.

. Based on the server random number, the client generates a random Pre-Master

Secret, encrypts it with the public key given in the server’s certificate and sends
it to the server.

. Both client and server generate a master secret from the Pre-Master Secret

and exchanged random values.

The client and the server exchange ChangeCipherSpec to start using the new
keys for encryption.

. The client sends the Finished message to verify that the key exchange and

authentication processes were successful.

. The server sends the Finished message to the client to end the handshake

phase.

Once both sides have received and validated the Finished message from its peer,
they can exchange encrypted application data over the new TLS connection.

2.2. Web Security Protocols

Client
oy

A

A @ ClientHello

Unencrypted Part

@’ ClientKeyExchange Message

@ Key Generation

@ ChangeCipherSpec

- Supported Ciphers

- Random Number

- Session ID

- SNI
- Selected Cihper
- Random Number

- Session ID
- SNI (empty)

«——

«——

Encrypted Pre-master secret

oo] @

ServerCertificate @
ServerHelloDone @

Key Generation @

Application Data | | 4——————— P || Application Data

Encrypted Part

< ChangeCipherSpec @
— =@

Figure 2.4: The TLS handshake protocol messages sequence

Table 2.2: TLS handshake protocol messages parameters

TLS Handshake Messages \

Parameters

Version, Random, SessionID, Cipher suite,

Clientfello Compression methods, Extensions
Version, Random, SessionID, Selected Ciphers,

ServerHello . .
Compression methods, Extension

Certificate Chain of X.509 certificates

ServerKeyExchange Parameters, Signature

CertificateRequest Type, Authorities

ServerDone Null

CertificateVerify Signature

ClientKeyExchange Parameters, Signature

Finished Hash value

15

Chapter 2. Related work

Client Server

U

. _—
@ ClientHello - Supported Ciphers

- Random Number
- Session ID
- SNI

4 —— ServerHello @
- Selected Cipher

- Random Number
- Session ID
- SNI (empty)

@ [||
@]| ——

| [@

— e

Application Data | | —————— | | Application Data

Figure 2.5: Resume TLS handshake protocol messages sequence

Table summaries the parameters of TLS handshake messages. Figure
shows the abbreviated TLS handshake that allows performance gains by only requir-
ing the recomputing of session keys when a TLS connection is resumed. The steps
passed over from the full handshake are ServerCertificate, ServerHelloDone
and ClientKeyExchange. Since the server and client already know each other and
share the master key, those steps are eliminated. The resumed session is trig-
gered by the client submitting the existing session ID from previous connections
in the ClientHello and the server shall respond with the same session ID in the
ServerHello (if the IDs are different, a full handshake is required) [40].

Change cipher specification protocol

This protocol changes the encryption algorithm being used by the client and server.
Thus, subsequent records will be protected under the newly negotiated algorithm
and keys. The protocol consists in a single message that holds a single byte. It also
permits a change in the TLS session without having to renegotiate the connection.
The ChangeCipherSpec message is normally sent at the end of the TLS handshake

(i.e., Step 7 in Figure [40].

SSL alert protocol

Alerts may be issued at any time, either when the connection has to be closed, or
when an error occurs. The Alert messages convey the level of the message (Warn-
ing or Fatal) and a description of the alert, which contains either "Close notify",
" Unexpected message" or "Bad record MAC" [40].

16

2.2. Web Security Protocols

2.2.4 Key role players in TLS development

The TLS protocol provides the ability to secure communications between a client
and a server, which means both parties should be configured to deal with the TLS
protocol. Here, we present different implementations of the TLS protocol. We
also provide a description of the SSL certificate, which is a keystone in the TLS
connection establishment.

TLS implementation libraries

The RCF5246 [40] describes the specifications of TLS version 1.2 and precisely spec-
ifies the interaction between a client and a server using the TLS protocol. However,
there are many implementations of the same protocol specification. The author of
[42] presents a comparison between eight open source TLS libraries; libgerypt, Libm-
crypt, Botan, Crypto++, OpenSSL, Nettle, Beecrypt and Tomcrypt. Regarding his
experiments, all TLS libraries contain approximately the same core cipher imple-
mentation, although the libraries’ performances vary. For example, OpenSSL and
Beecrypt have the highest optimization levels, but these libraries only implement
a few ciphers, while Tomcrypt, Botan and Crypto++ implement many different
ciphers.

In this work, we target the identification of HTTPS services accessed by web
browsers (e.g., Firefox, Google Chrome), which use different implementations of the
TLS protocol. Mozilla Corporation uses Network Security Services (NSS) libraries to
provide the support for TLS in Firefox web browser and other services (e.g., Thun-
derbird, SeaMonkey) [43]. Previously, Google Chrome also used the NSS libraries,
but Google has developed its own fork of OpenSSL, named BoringSSL [44].

SSL certificate

In HTTPS, the client and server complete a TLS handshake during which the server
(or sometimes both parties) presents an X.509 digital certificate that holds a public-
key associated with the server’s domain name. These certificates are assumed to
be issued by a trusted CA. As illustrated in Figure [2.6] a X.509 certificate is often
linked to a website domain and holds a temporal validity period, a public key,
and a digital signature provided by a trusted CA. The web browsers check that
the certificate’s identity matches the requested domain name, that the certificate is
within its validity period, and that the digital signature of the certificate is valid.
The certificate’s public key is then used by the client to share a session secret with
the server in order to establish an end-to-end encrypted channel [45]. There are
three types of SSL certificates according to the validation process depth:

o The Domain Validated certificate (DV) asserts that a domain name is mapped
to the correct web server (IP address) through DNS. However, this type does
not identify organizational information, so it should not be used for commercial
websites.

17

Chapter 2. Related work

e The Organization Validated certificate (OV) includes additional CA-verified
information, such as an organization name and a postal address. These extra
validations make OV SSL Certificates more expensive than DV certificates.

o The Extended Validation certificate (EV) uses the highest level of authenti-
cation, including diligent human validation of a site’s identity and business
registration details. Because of the extensive validation, EV is the most ex-
pensive among SSL certificates.

To save the cost and management of SSL certificates needed for web applica-
tions that require multiple domain names, a single X.509 certificate can be linked
to multiple hosts and domains. This method is possible thanks to the X.509v3
specification’s support for the SubjectAltName field, which allows one certificate to
specify more than one host or domain name, and the support for wildcards in both
the CommonName and SubjectAltName fields.

Version

Certificate serial number

Version 1
Signature algorithm identifier

Period of validity Version 2

Subject Name

Version 3

Public key Information v

Issuer Unique ID

Subject Unique ID v

Extensions

All versionsI Signature

Figure 2.6: X.509 SSL certificate format [46)

2.2.5 Synthesis

In this section, we did a brief introduction about the web security and the related
web environment parameters. In particular, we presented the main concept of the
TLS protocol, its architecture, format, and the associated sub-protocols (Handshake,
Change Cipher Specification, SSL Alert), which will be needed in the rest of the
thesis. The following sections concern encrypted traffic identification and discuss
the required steps and the possible methods to identify the services behind HT'TPS
traffic.

18

2.8. Identification of TLS Traffic

2.3 Identification of TLS Traffic

In this section, we review studies that aim to detect TLS traffic among other types of
encrypted traffic (i.e., TLS vs. non-TLS). This is motivated by the need to recognize
the high-level protocol (TLS) before dealing with sub-protocols running within. The
relevant work to identify TLS traffic can be grouped into three methods: port-based,
protocol structure-based and, machine learning-based.

2.3.1 Port-based method

The port-based method is a straightforward approach to identify Internet appli-
cations and protocols, since the transport layer port numbers are assigned by the
Internet Assigned Numbers Authority (IANA). However, to effectively identify the
TLS traffic by solely relying on port-number is impossible, since the TLS protocol
is widely-used with many application layer protocols. For instance, HT'TPS, FTPS
and SMTPS protocols use TLS over port 443, 990, 465 respectively. Moreover, the
authors in [47] observe that 8% of non-TLS traffic use standard TLS ports, while
6.8% of TLS traffic use ports not officially associated with TLS. This can be ex-
plained by misconfigured web servers or users trying to conceal their activities to
avoid port-based filtering |1]. This leads to have deeper and more robust identifica-
tion methods for TLS.

2.3.2 Protocol structure-based method

TLS-level DPI techniques have been used to identify TLS traffic by examining pack-
ets’ payload to recognize the TLS format. More precisely, studies [47H50] inspect
packets’ payload for detecting TLS traffic based on the TLS Record Protocol struc-
ture. Figure shows the content of the first five bytes of the TLS Record.

Bernaille et al. [47] want to identify TLS traffic as early as possible, so they
use the standard TLS format to detect ServerHello packets. As illustrated in
Figure the ServerHello packet is a part of the TLS handshake protocol and it
sets the parameters of the TLS connection (e.g., TLS version, Selected Cipher, etc.).
Therefore, the presence of a valid ServerHello packet is a strong indication that the
monitored ﬂowE] is a TLS one. The authors in [50] propose a "TLS Traffic Detector"
to isolate pure TLS flows, which are then more deeply proceed to recognize services
behind them. The TLS detector compares the first 5 bytes of packets payload (i.e.,
Bytes [0:4] as explained above) with the standard TLS record format to take a
decision. It benefits from the idea that the TLS packet payloads should start with
the same structure. So checking the first few bytes of the payload for any packet in
the flow (not just on the ServerHello packet as in [47]) is sufficient to label a flow
as TLS.

5The flow is a set of packets that have the same 4-tuples (source IP address, source port,
destination IP address and destination port)

19

Chapter 2. Related work

NA TLS 1.3
0x303 | TLS 1.2
0x302 | TLS 1.1
0x301 | TLS 1.0
0x300 | SSL V3.0

Byte [0] Byte [1:2] Byte [3:4] Byte [5: n]
Content Type Version Length Payload

0x14 | ChangeCipherSpec

0x15 SSL Alert

0x16 Handshake

0x17 ApplicationData

Figure 2.7: TLS record format

Finsterbusch et al. [31] evaluate the OpenDPlﬂ approach that has been used for
traffic identification based on DPI. OpenDPI is able to classify TLS traffic with an
accuracy of 100% by using the information in the TLS Record protocol to identify
TLS flows in two phases [49]. In the first phase, it detects a packet which has a
valid TLS Record Protocol structure in the payload to read the content type and
the TLS version. In the second phase, OpenDPI intercepts the next following packet
in the reverse direction. If it has one or more TLS Record protocol structures, then
OpenDPI marks this packet as TLS and it continues to check all packets in both
directions.

Liu et al. [49] present a structure-based method to detect TLS traffic. The
proposed method, named Double Record Protocol Structure Detection (DRPSD), is
able to identify TLS traffic using the first 8 packets. The principle idea is based on
the fact that to identify the TLS protocol based on the Record Protocol Structure,
it is important to count how many Record Protocol Structures are detected. From
their experimental results, they find that almost all TLS flows have one or more
packets containing two Record Protocol Structures. Thus, they check the packet’s
payload, if they find double Record Protocol Structures in the payload of a packet,
then the corresponding flow is identified as a TLS flow. Using their own private TLS
dataset, the DRPSD approach has 99.17% identification accuracy.

2.3.3 Machine learning-based method

Due to the shortage of port-based analysis technique to classify encrypted traffic,
more attention has been focused on machine learning algorithms using flow features
for traffic identification. Encryption motivates the usage of this novel approach
to address the limitations of legacy methods against encrypted traffic. Thus, flow

Shttps://github.com/thomasbhatia/0OpenDPI

20

https://github.com/thomasbhatia/OpenDPI

2.8. Identification of TLS Traffic

Table 2.3: Machine learning algorithms performance to identify TLS flows [1]

’ ‘ AdaBoost ‘ C4.5 ‘ Naive Bayes ‘ RIPPER ‘

Accuracy 95.69% 85.13% 89.26% 82.59%
FPR TLS 4% 14% 11% 17%
FPR Non-TLS 2% 1% 1% 1%

statistics such as flow duration, packet size, and inter-arrival time are used as features
to build a statistical signature for the TLS protocol [51].

The main requirements before using machine learning methods are training
dataset (i.e., solved examples), relevant statistical features, machine learning algo-
rithms and evaluation techniques. As illustrated in Figure the learning process
is divided into three phases; Training, Classification and Validation. In training, the
statistical features and machine learning algorithms are trained to make prediction.
The output of the training phase is a model used in the Classification phase to iden-
tify unseen data. In the Validation phase, the results of classification are validated
to measure the performance of the classification model [30].

\ Training
Training traffic Analysis Sampler)
pmtugmfl\ —) = [—— 1| Training
Q . = — set
LA a5 Al
= i - + Trained
i i model
Oracle Analysis Sampler| | Learning
E e |/ .. e A
Training traffic C{ > - "9 /<\
pm?gcmxj"' i _,g E °e -.
Ground truth Compute features Sampling Mode! building
Classification Validation
E [
Analy5|s Trafning traffic
¢ protocol A
@C{T"Q _» [Classification
+ 1 + |
Analysis | —»
Oracle
@C%j"ﬁ Apply trained Classification D B Training traffic
model results 2B C protocol X
Compute features
Evaluate accuracy Ground truth

Figure 2.8: Machine learning phases |30]

The feasibility of machine learning in the context of identifying TLS traffic was
performed in [1]. Four machine learning algorithms (AdaBoost, C4.5, RIPPER and
Naive Bayesian) were evaluated with 22 statistical features (e.g., Mean, Standard
deviation, Max, Min, etc.) computed over the packet size and packets inter-arrival
time. For their evaluation, the authors use a private dataset generated locally to
assess the TLS traffic identification. As training dataset, they have 50,000 TLS flows
labelled as Native-TLS, TLS-Tunneled, or Non-TLS. Table [2.3] presents accuracy
and False Positive Rate (FPR) of the machine learning algorithm for identifying
TLS flows. The AdaBoost algorithm achieves the highest accuracy with 95% of
flows classified correctly as TLS and a 4% False Positive Rate.

21

Chapter 2. Related work

Table 2.4: Identification of TLS traffic methods

’ Method \ Features \ Accuracy \ Publish Year \ Reference ‘
Port-based Port number - 2007 [47]
ServerHello packets 100% 2007 |47
First 8 Packets 99.17% 2012 149]

Protocol structure First 2 bidirectional

Packets 100% 2014 [31)
First 5 bytes 100% 2015 [50]
Machine learning Packet size, timing 95% 2011 1

(AdaBoost)

2.3.4 Synthesis

To summarize this section, we noticed that the identification of TLS is mainly han-
dled by (1) using the TLS record format; (2) employing machine learning approach
over the encrypted payload, as shown in Table Based on experimental results
given in the related work, we are able to recognize TLS traffic among other types of
encrypted traffic with a high level of accuracy.

However, investigating protocols run inside TLS is a totally different challenge,
since we need to identify different protocols types (e.g., HT'TP, FTP, SMTP, etc.)
through TLS encrypted connections. In the following section, we will consider that
we have already detected TLS traffic for the next fine-grained level of identification.
So we go deeper into the identification of the TLS traffic to detect exactly which
TLS flows contain HTTP traffic.

2.4 Identification of HTTPS Traffic

Among application level protocols over TLS, the HTTP protocol is the most used
one [32]. Hence, in this section, we consider the studies addressing the challenge of
detecting HTTP traffic inside TLS connections (i.e., HTTPS). A direct application
to HTTPS monitoring techniques is to check some properties of web traffic against
a set of rules provided by an organization to allow or deny the traffic according to
the network security policy. Like previously, a large set of techniques is possible
from the simplest, with port-based filters, to the most advanced ones with protocol
structure-based or machine learning-based techniques.

2.4.1 Port-based method

The port number 443 can be used to identify HTTPS traffic, however port 443 can
also be used by malicious applications to hide their activities behind the HTTPS
port to mimic a web browsing traffic [1]. Alternatively, some HTTPS web server
can be configured to use a different port number, for instance the port 8080 [47].
Unfortunately, this technique does not allow fine-grained monitoring and encom-
pass the whole usage of a protocol without distinguishing between allowed or blocked

22

2.4. Identification of HT'TPS Traffic

websites and services. Given the wide usage of HT'TPS today, this method alone is
not sufficient to answer operational needs. Beyond web-filtering, other applications,
such as P2P clients can easily bypass this type of filtering by using random ports
or hiding themselves behind ports of other protocols. Many approaches have been
proposed to overcome the usage of non-standard ports with HI'TPS. In spite of that,
the port number 443 is still widely used in the large body of literature [13}/52H57] to
easily collect and build HTTPS dataset for further experiments.

2.4.2 Machine learning-based method

Haffner et al. [11] propose to extract a statistical signature from the packet payload.
In the case of unencrypted traffic they extract ASCII words from the data stream
as features. For HT'TPS, they extract words from the handshake phase, since it is
unencrypted as shown in Figure The existence and the location of such words
in the first 64-Bytes of a reassembled TCP data stream is encoded in a binary
vector and used as input for different machine learning algorithms (Naive Bayes,
AdaBoost and Maximum Entropy). The evaluation over dataset from ISP shows
that AdaBoost identifies HTTPS traffic with 99.2% accuracy.

Wright et al. [52] demonstrate how web applications behaviour can still be used
as a signature to identify the accessed website, even if its traffic is transmitted via
HTTPS flows. The authors use the fact that some information remains intact after
encryption like packet size, timing, and direction, to identify the common application
protocols by applying k-nearest neighbors algorithm (KNN) and Hidden Markov
Model (HMM). The KNN algorithm detects HTTPS flows with 100% accuracy and
the HMM algorithm performs 88% accuracy.

The authors in [47,/51] share the concept of identifying HTTPS in two steps. In
the first step, the TLS traffic is detected based on the protocol-format as discussed
in Section while, in the second step, the HT'TP traffic in TLS channels is
recognized by applying machine learning methods. In [58], the authors use the size
of the first five packets of a TCP connection to identify HTTPS applications with
81.8% accuracy rate. The performance of their classifier has been improved (up to
85%) in [47] by adding a pre-processing phase, where they first detect the TLS traffic
based on protocol-format and then identify the HTTP traffic within TLS. Sun et
al. [51] propose a hybrid solution, which first detects TLS protocol by inspecting
the TLS protocol-format, then applies a machine-learning algorithm (Naive Bayes)
to determine application protocols running over TLS connections. The Naive Bayes
algorithm is used with 8 statistical features; Mean, Maximum, Minimum of packet
length, and Mean, Maximum, Minimum of Inter-Arrival time, flow duration and
number of packets. Using a private dataset, results show the ability to recognize
over 99% of TLS traffic and to detect the HTTPS traffic with 93.13% accuracy.

2.4.3 Synthesis

The related work in the identification of HTTP within the TLS protocol, as illus-
trated in Table has used different methods with an acceptable level of accuracy.

23

Chapter 2. Related work

Table 2.5: Identification of HT'TPS traffic methods

’ Method \ Features \ Accuracy \ Pub. Year \ Reference ‘
2006 2754
Port-based Port 443 100%* 2016 [13,55]
[56L57]
Machine learning ?&;;k;t s12¢, 100%, 88% 2006 I52]
(KNN, HMM) - (KNN, HMM)
Direction
Machine learning K q 99.2% 92005 (1)
(AdaBoost) Cywores e
Machine learning | TLS-Format,
(Gaussian Mixture) | First 5 packets size 85% 2007 147)
TLS-Format,
Machine learning P:fmck'ets size,
(Naive Bayes) Timing, 93.13% 2010 [51]
Flow duration,
Packets number

* If user not malicious (i.e., alters port number)

However, each method claims its own private HT'TPS dataset. Due to privacy and
security issues, there is no representative full public HT'TPS dataset, which prevents
others from having a strong and fair comparison of their respective identification ac-
curacy. Levillain et al. [59] analyse some of the existing public HTTPS datasets
published between 2010 and 2015. Their investigation shows that some datasets
contain only SSL certificates information, while in the other ones the whole TLS
answers were truncated. The situation will remain ambiguous in the absence of a
reference dataset for all. That leads to another research question about reproducible
research and dataset construction [1,32,[59]. We should also question the represen-
tativity of the dataset, since HTTPS nowadays is a multi-purpose protocol (i.e., it
can deliver video, music, games, etc.), but it was not the case a couple of years ago.
In this work, our challenge is to precisely name the service that generates a given
HTTPS flow. Indeed, HT'TPS is considered as a single class in the aforementioned
papers, even if web applications can provide very different kinds of services. The
next section delves more into HTTPS traffic itself, to explore the current methods
to name the specific web service that generate a given HT'TPS flow.

2.5 Identification of HTTPS Services

The increased complexity of web applications provides the ability to deliver a wide
set of services such as online-storage, content providers, social media, video, etc.,
thanks to Web 2.0, all transmitted via HTTPS connections [50]. The identification
of HTTPS services is a serious challenge, since most of the legacy techniques lose
their power when facing encryption. Here, we present a large set of solutions that
show the higher difficulty of the problem. The possible techniques can be based

24

2.5. Identification of HTTPS Services

on website fingerprinting or machine learning approaches, on values extracted from
DNS, IP address, SNI, or SSL certificate, on an HTTPS proxy server or on the
acquisition of TLS encryption keys. All these approaches are discussed in the rest
of this section.

2.5.1 Website fingerprinting-based method

Identifying the accessed webpages over secure connections is well-known as website
fingerprinting, which has been presented in many relevant works [24}25]/60-62].
Cheng et al. [63] propose one of the earliest method to distinguish the pages visited
by users over TLS connections by inspecting the TCP/IP header, which contains
payload size and other information. Their technique is based on calculating the
size of a downloaded page, which is often unique among all files in a given site.
Liberator et al. [24] propose two systems to infer the source of encrypted HTTP
traffic (not HTTPS) covered by a SSH-tunnel. The first one is based on the Naive
Bayes classifier and the second one on Jaccard’s coefficient. Both systems rely on
the packet length while discarding timing information. Herrmann et al. [25] present
a multinomial Naive Bayes classifier based on the normalised frequency distribution
of IP packet size for HT'TP websites accessed over SSH-tunnel.

Panchenko et al. |26] focus only on Tor, which is out of the scope of this thesis.
Panchenko also introduces the concepts of Open-world and Close-world experiments.
In Close-world, the training and testing of the classifier takes place over a predefined
set of websites, while an Open-world indicates the usage of both interested and un-
known websites. Miller et al. [27] propose a method to identify the accessed page
among 500 pages hosted by the same HT'TPS website, based on clustering techniques
to classify patterns in traffic. Their results show the possibility to recognize individ-
ual pages from the same website accessed over HTTPS with 89% accuracy. They
successfully detect the access to the home-page and to many internal-pages from a
given website but at the cost of a specific learning at a single website page-level,
while more effort is needed to identity embedded services in web pages.

All the aforementioned studies, as compared in [27], are intended to determine
the home-page or internal-pages from a website. This is too fine-grained, as it works
at the page-level, specially in the case of naming services that offer contents to other
web pages. For example, Facebook uses Akamai Content Delivery Network (CDN)
to obtain content. So Facebook’s contents (photos, videos and profiles informa-
tion, etc.) are retrieved from "akamaihd.net" and not from "facebook.com". Thus,
from the website fingerprinting view, the diversity of the services on the third-party
providers are neglected because of the page centric view.

2.5.2 Machine learning-based method

In [23], the authors develop a passive approach for webmail HTTPS traffic identifica-
tion in order to understand the shift in usage trend regarding mail traffic evolution.
Three novel features are proposed (1) service proximity: the existence of a POP,
IMAP or SMTP server within a domain is a strong indication that a mail server

25

Chapter 2. Related work

exists; (2) activity profiles: clients access their e-mail frequently in a scheduled man-
ner, so it is possible to build daily and weekly profiles; (3) periodicity: the usage
of application timers like AJAX technology to periodically (e.g., every 5 minutes)
check for new messages creates high frequency time patterns and indicates how the
email service is running. These features are used with the Support Vector Machine
(SVM) algorithm to differentiate between mail and non-mail services within HTTPS
flows. The evaluation over a dataset from ISP shows the ability to identify HT'TPS
mail related traffic with 93.2% accuracy.

Chen et al. [64] use the traffic pattern of the AutoComplete function, which
populates a list of suggested content according to each letter a user enters, such as
in Google and Yahoo search engines. This small amount of input data causes state
transitions in a web application which generate traffic that can be used to enumerate
all possible inputs to match the triggered traffic pattern. Based on real scenarios,
they show how such a method can be applied to leak out sensitive information
(i.e. the searched keywords) from top online web applications despite the usage of
HTTPS. V. Berg. [65] develops a tool that uses encrypted traffic patterns to identify
user activities over Google Maps that is now accessed over HT'TPS. The tool collects
satellite map tiles and builds a database of the different image sizes correlated with
their (x,y,z)-triplets coordinates. To identify the accessed region over Google Maps,
the tool maps the size of images in HT'TPS flow to (x,y,z)-triplets and then clusters
the results into a specific region. As a proof of concept, the tool’s dataset has been
configured with city profiles, where it can correctly detect the transition between
such cities.

Dubin et al. [66] intend to determine the name of a video accessed over HTTPS
websites such as YouTube. The proposed approach contains three modules: the
first one detects a Youtube video based on SNI (e.g., googlevideos.com); while the
second one combines several YouTube packets into a peak, defined as a section of
traffic where there is a silence before and after. They extract the total number of
bits from a peak as the Bit-Per-Peak (BPP) feature. The third module passes the
feature to the SVN machine learning classification algorithm. Over a dataset of
10000 YouTube video streams of 100 video titles, they can identify the title of the
accessed video with 95 % accuracy.

Korczynski et al. [67] use the TLS handshake messages interaction to build a
stochastic fingerprints based on Markov chains for identifying services in HTTPS
traffic. The Markov chain states model a sequence of the TLS handshake message
types appearing in a single direction flow of a given service from a server to a client.
The authors test the proposed approach on 12 HTTPS services such as Twitter,
Dropbox over private datasets. Their results show that they can detect Twitter,
Dropbox, Gadu-Gadu with 91.13%, 76.36% and 86.26% accuracy respectively.

2.5.3 DNS and IP address-based methods

Prior to any HTTP request is sent a DNS query to resolve the IP address of a
host. DNS queries can be used to monitor and filter blacklisted domain addresses.
For example, recently, the Turkish government ordered ISPs to block a famous

26

2.5. Identification of HTTPS Services

social networking website. This filtering performed by DNS servers was quickly
bypassed by using alternative DNS servers, such as Google DNS servers. Therefore,
the identification based on DNS is ineffective if the client behind a monitoring system
uses directly the IP address or a local resolution. In this case, no DNS query is sent.

The identification based on the IP address of an HT'TPS service is another radical
method. However, blocking large websites via IP is very troublesome, since the IP
addresses being used for these websites can be very different depending on where
the accessing host is located, or whether load balancing is being used across multiple
addresses. The IP address ranges to block can be quite large and scattered, not to
mention that they are prone to change in time. Even more, nowadays, the "Virtual
Hosting" allows a single machine to serve many websites and many web servers are
often associated to the same IP address.

These tendencies make monitoring based on IP addresses an inefficient technique
to block a specific service or website. For example, blocking a service like Gmail
from Google services, while allowing users to access other services like Search or
Maps is impossible based only on IP addresses: the whole range of Google’s services
share the same address space that must be either fully blocked or allowed. Above all,
websites’ IP addresses can be changed with little interruption in service by updating
the DNS record. That makes tracking and updating IP blacklists difficult.

2.5.4 SNI-based method

One recently practical technique to identify HT'TPS traffic is named SNI-based mon-
itoring and uses the Server Name Indication (SNI), a field of the TLS handshake.
The SNI is a clear string value from the TLS ClientHello message that provides
a convenient way to know what service is accessed by a new HTTPS connection.
SNI-based monitoring has been integrated in many firewall solutions. For example,
the Clavister{?] web content filtering system supports both HT'TP and HTTPS traffic,
where HTTPS filtering is performed based on the SNI value or on the CommonName
field in the SSL certificate. The Sphirewallﬁ firewall system has recently included
this SNI-based method to filter HTTPS traffic with the 0.9.9.5 release (July 2013).
It can determine the name of the remote host in a HT'TPS web request by looking
at the SNI value in the initial TLS handshake. Sophos Unified Threat Management
(UT M)ﬂ is another example of a hardware and software network firewall system
that recently (in UTM 9.2, released in September 2013) included the SNI-based
monitoring feature.

From another perspective, the authors in [68] report that some commercial traffic
shaper devices use the SNI extension to detect high bandwidth consuming web
applications like Youtube and Netflix. While it has been proven in [69] that the
T-Mobile operator in the USA uses the SNI value to identify a set of services that
are free of charge for their customers. As mentioned previously, Dubin et al. [66]
perform a first filter to get only network flows belonging to Youtube by looking at

"https://www.clavister.com/
Shttp://www.sphirewall.net
9http://www.sophos.com/en-us.aspx

27

https://www.clavister.com/
http://www.sphirewall.net
http://www.sophos.com/en-us.aspx

Chapter 2. Related work

the SNI extension. For example, if the "googlevideos.com" string is found in the
SNI extension, the flow is tagged as Youtube and is processed further to extract
features to identify the title of the accessed video using a machine learning method
as explained before in Section [2.5.2]

Bortolameotti et al. |[13] use the SNI extension in conjunction with SSL certificate
information to detect connections toward malicious websites. They examine the
claimed SNI value using: (1) Levenshtein distance between the SNI value and top
100 most visited websites; (2) the structure of the "server-name" string in the SNI
extension; (3) the format of the "server-name" string, which is a DNS hostname
format. Based on their experiments, they are able to detect malicious connections
that present SNI with weird values or strings, other than DNS resolvable names,
which may be used as a mean for messaging, perhaps used by criminals as a command
and control channel.

2.5.5 SSL certificate-based method

Originally, SSL certificates were only used to verify the identities of servers and
clients. However, they are also employed to recognize the accessed service over
HTTPS flows. Certificate authorities guarantee the identity of a website by digitally
signing the website’s leaf certificate using a browser-trusted signing certificate. Most
recent browsers and operating systems integrate trusted signing certificates known
as "Root Certificates" [45]. The TLS protocol enables client software to build secure
communications terminated by server/client holding the private key authenticated
by the certificate. The most critical attribute, that all HI'TPS server certificates
hold, is the domain name. This attribute is located in the CommonName field under
Subject. One or more domains are often included in the SubjectAlternativeName
field in an X.509 extension [70]. Based on X.509 extension the alternative name field
gives the ability to use a single certificate for multiples domains.

Kim et al. [50] use the certificate public information to build SSL/TLS Iden-
tification Method (SSIM) to name the services behind HTTPS traffic. The pro-
posed method consists of three modules: (1) a TLS traffic detector module isolates
pure TLS traffic before beginning the service identification; (2) the service signature
module extracts certificate authority information, Server IP and Session ID from a
SSL certificate; (3) the session ID-IP-based service identifier module recognizes non-
identified flows from the previous modules by finding a relationship between a server
IP and a session ID. Based on their experiments, they can classify 95% of TLS traffic
belonging to Google, Facebook and Kakaotalk with about 90% accuracy for the cor-
responding services. As discussed in the previous subsection, the authors in [13] use
also the SSL certificate information (with SNI extension) to detect malicious con-
nections. By investigating the claimed SSL certificate validity, release dates and the
content of SubjectAlternativeName, they can detect several malicious connections
with blacklisted IPs using an expired certificate of Amazon.com.

HTTPS services identification can be based on the CommonName field in the SSL
server certificate. However, this technique is inefficient as many companies share the
same certificate across different services and domain names. For example, blocking

28

2.5. Identification of HTTPS Services

HTTPS Proxy

Clear

HTTPS Link

HTTPS Link| _
Client p——

% Traffic

Client Remote Server

Figure 2.9: HTTPS proxy server

Youtube.com from its SSL certificate would imply to block all the other domain
names covered by this certificate and given in SubjectAltName (i.e., all the other
Google services). In this case, it is impossible by simply looking at the certificate
among different Google services to have a fine-grained monitoring between services.

2.5.6 HTTPS proxy-based method

All the above monitoring HT'TPS techniques exploit meta-data, but not what en-
crypted packets actually contain. DPI techniques inspect the content of packets,
looking for keywords or regular expressions to identify what the packets hold. How-
ever, due to encryption, DPI totally loses its effectiveness [71]. This leads to first
decrypt the traffic thanks to an HT'TPS proxy, before applying any DPI. The proxy
server is a server acting as a MitM. To be able to access encrypted HTTPS traffic
between a client and a remote server, it pretends to be the intended remote server
and then, it establishes a secure connection to the real server. As shown in Figure
when a client connects to the remote server via an HT'TPS proxy, the client
in place connects to the proxy server, which plays the role of a destination server
by providing its own SSL certificate. Then, the proxy establishes another secure
connection with the real remote server. Thanks to this method, all encrypted web
traffic is open to the proxy in clear at the expense of users’ privacy.

Existing commercial solutions such as Forefront Threat Management Gateway
(TMG) 2010 uses the HTTPS proxy method for HTTPS inspection, which acts as
a trusted MitM instead of just processing HTTPS connection blindly [72]. Also,
the F ireEyﬂ product applies the proxy model to provide visibility into untrusted
TLS traffic. The product is designed to intercept and forward all desired network
traffic for decrypting, examining and then re-encrypting TLS sessions again. FireEye
argues that this method responds to the growing number of cyber criminals that use
TLS as a cover to get inside organizations and keep being undetected [20].

Ohttps:/ /www2.fireeye.com

29

Chapter 2. Related work

2.5.7 TLS encryption key acquisition-based method

This last unconventional monitoring solution may be encountered at the government
level. There are at least two methods for acquiring the decryption keys, the Key-
Recovery mechanism and the cracking of encryption algorithms. In [73] the authors
describe the Key-Recovery mechanism or "Key escrow", where all encryption keys are
stored in a trusted third party, such as a government, or designated private entities.
The third party has the right to access keys for authorized law enforcement purpose.
As a result, a government may limit access to HTTPS websites that refuse to share
their TLS keys with the escrow system [74]. Exploiting encryption algorithms is
different from the preceding ones, as it needs high computation power to be able to
crack the encryption. A method for cracking is a flaw in the mathematical algorithm
used to encrypt data, such as the factorization problem of widely used public-key
cryptosystems. For instance, RSA 768-bit can be broken with a state-of-the-art
algorithm and a high computation power |75]. Adrian et al. [76] evaluate the security
of Diffie-Hellman key exchange, where they find that 82% of vulnerable servers use
a single 512-bit group, which makes it possible to compromise connections of 7% of
Alexa top million HTTPS websites.

2.6 Conclusion

HTTPS is quickly becoming the predominant application protocol on the Inter-
net. It answers to the need of Internet users to benefit from security and privacy
when accessing the web. But the increasing amount of HT'TPS traffic comes with
challenges related to its management to guarantee basic network properties such
as security, QoS, reliability, etc. The encryption undermines the effectiveness of
standard monitoring techniques and makes it difficult for ISPs and network admin-
istrators to properly identify services behind HTTPS traffic and to properly apply
network management operations.

2.6.1 General analysis of related work

This chapter provides a focused view of HI'TPS traffic identification methods, start-
ing from the identification of the lower-level TLS protocol to the precise identification
of HTTPS services. We have found that efficient methods exploiting the standard
structures of the TLS protocol are able to identify TLS traffic among other types
with a high level of accuracy. The identification of HTTP with TLS can also be rec-
ognized with acceptable level of accuracy, but the real challenge is the identification
of services inside HTTPS traffic.

Many recent approaches, as summarized in Table intend to identify HT'TPS
services based on the plain-text information that appears in the TLS handshake
phase, or based on the statistical signature (e.g., machine learning-based methods) of
HTTPS web services but they are often dedicated to a specific application (Webmail
services, Google Maps, Youtube). While the website fingerprinting technique is
not adapted to identify particular services, simpler practical solutions have either

30

2.6. Conclusion

SJOSRIED ¢ 19A0 SOOIAIDS ()] 10J OYEY OAINSOJ ONIJ, JO dFRIDAR O,
(enfea uorsua)xe NG SI9)[R *9'T) SNOII[RU J0U I9sN JT .

Mw.@_ 910¢ «%00T 0OpIA OQNINOX
69| 910¢ *%00T SOITAIBS O9PIA | o1
L [}RTLIOJUT UOISU)XD aseq-
39 S10¢ +%00T S9OIAIOG 3 INS POSEATINS
21 G10¢ *%00T SUOT}O2UUO[) SNODITRIN
£1] 510¢ +001 SOOTAIOG | UOT)RULIOTUT 918DTJ11.I90 0100111100
0] c102 %06 IATIeS 1 JUT 93€0HII90 "TSS YeoI}Ied 1TSS
()] 1103 VN sdeyy o[8005) 9ZIS sogew] SOINSBOWL [ROIISIIRIG
9] 010¢ VN SpI0MADY OIBG uonouny ajerduro)ojny QUIYDRUL 9)81G
29] ¥10% %299 S9OIAIDG Iaplo sadessowl QT surey) AOYIBA
99 910¢ 9%G6 SO[ILT, O9PIA Yoo J-10 -1
£yo1poreg

| %8 SOOTAIOG [reux uoneInp UoIssog Jurures @%2 o\wmv
f5d 0108 %876 IAI9G [rewy sorgoad KAty [TLTRS] QUITDRIN

‘Ayraarxoxd 901A10G
2.2 ¥10¢ %68 UOI}ORIL(] PUR 9ZIS 1930%]
: So3eJ [euloju sunyuridiogury 991sqo,
9] 8661 %96 dl 1 IOpI() pue 9ZIs joyoed El PM

7 90URI9JoY 7 Teax ysiiqng 7 AoeIndoy 7 [°A9T UOIYedYIIuaP]

SaJanjesq 7

POYIRIN

o1je1} ST I H Ul S99IAISS JO UOIYRIYIIUSP] 9° 9[qel,

31

Chapter 2. Related work

privacy or reliability troubles. The HTTPS proxy is an efficient solution, but it
breaks privacy as it decrypts the traffic in the middle which is not acceptable for us.
Other approaches like IP, DNS, SSL certificates do not work well. The monitoring
based on IP addresses faces a real challenge with virtual hosting, where a single
IP address serves many hosted websites. The DNS-based method can be bypassed
if the client behind a monitoring system uses directly the server IP address. The
monitoring based on SSL certificates also has a problem with shared certificates,
where a single certificate is used by several services.

Yet, some approaches provide promising results like SNI-based and machine
learning-based methods. We have noticed that the reliability of the SNI-based so-
lution to monitor HTTPS services has never been evaluated. For machine leaning-
based techniques, there are different methods for HT'TPS and TLS identification,
but each approach validates its result using a private dataset. This prevents others
from having a strong and fair comparison of their respective identification accuracy.
The situation will remain ambiguous in the absence of a reference dataset for all.

According to the aforementioned summary, the objective of this thesis is to
provide a reliable and privacy preserving identification of services in HT'TPS traffic.
Thus, the next following chapters aim to define new solutions for HI'TPS services
identification. First, we deeply assess the SNI-based method in Chapter (3| Second,
we motivate the need for a more robust method to identify HT'TPS services based on
traffic pattern, and not on header information like SNI. Thus, we propose a machine
leaning-based approach with dedicated features and a novel multi-level classification
technique to identify HTTPS at service-level with high accuracy. Third, we tackle
the real-time identification of HTTPS services by refining our approach.

2.6.2 Ethical aspects of HT'TPS monitoring

In Section we have noticed that there is a very efficient method to monitor
and control HTTPS traffic based on HT'TPS proxy. Enterprise owners may have
certainly good arguments for monitoring and filtering access to their network for
security, productivity or responsibility reasons [17]. However, this is not sufficient
to legitimate the exposition of employees’ private data with an HT'TPS proxy. As
sensitive data is mostly transmitted via HTTPS services, it is hardly acceptable
to trust a third-party to screen this information and break users’ privacy. On the
opposite side, the IETF has issued the RFC7258 [77] about the monitoring activ-
ities legality. It defines that the surveillance by collecting protocol meta-data and
application content, traffic analysis (e.g., correlation, timing or measuring packet
sizes) and subverting the cryptographic keys is considered as Pervasive Monitoring
(PM), what the authors consider as an attack against the privacy of Internet users,
and it should be mitigated. From another viewpoint, the authors in [78], claim that
large-scale Internet traffic monitoring is ineffective as it is only able to identify trivial
crimes, but cannot recognize professional criminals. They also arise another impor-
tant question: how to guarantee that an administration in power will never abuse
the intercepted information to intimidate its opponents. The authors conclude that
if online monitoring may fix some problems, it can create even more serious ones.

32

2.6. Conclusion

In conclusion, HT'TPS monitoring is a sensitive and complex question. We think
that, while challenging, the monitoring of HT'TPS services without decryption can
provide a viable compromise between the knowledge needed for network manage-
ment and users’ privacy. The research community should focus on proposing new
identification techniques offering both security and privacy.

33

Chapter 2. Related work

34

Chapter 3

Evaluation and Improvement of
SNI-based HTTPS Monitoring

Contents
8.1 Introductionl 0o 36
3.2 SNT Extension Overviewl 36
B21 Standardwsel o000 36
8.2.2 Deployment and support|. 37
B23 Alternativeused 38
3.3 Strategies for Bypassing SNI-based Monitoring |. 40
8.3.1 Exploiting backward compatibility] 40
13.3.2 Exploiting shared server certificate| 41
3.4 Implementation and Evaluation of Bypassing Strategies| 42
3.4.1 Implementation of a web browser add-on| 42
13.4.2 Evaluation of HT'TPS servers supporting SNI extension| . . 44
13.4.3 Evaluation of the bypassing strategies| 45
3.5 SNI-based Monitoring Improvement| 47
B.5.1 Architecturel o o 47
B.5.2 Fake-SNI detectionl 49
8.6 Evaluation of SNI value Verification based on DNS . 50
[3.6.1 False-Positive rate evaluationl 50
B.6.2 Overhead evaluationl 51
3.7 Discussion and Analysis| 52

35

Chapter 3. Fwvaluation and Improvement of SNI-based HTTPS Monitoring

3.1 Introduction

The security of data and transactions is a key element to run critical services over
the Internet. This wide spread of networks and services makes an increased need for
efficient monitoring methods to ensure that network systems and users work within
a predefined policy, to avoid some malicious web applications or inappropriate con-
tent [79], and to guarantee network performances. That is why enterprise networks
statistics [17] show that 66% of companies monitor their employees’ network activ-
ity. However, it is very hard for an I'T organization to properly monitor and manage
TLS-encrypted web traffic which may cause security problems [80]. For example, an
enterprise’s sensitive information may be leaked out over daily used web services or
social media that run over encrypted connections, and such leaks are hardly detected
[81].

This chapter explores a novel and practical technique to identify HTTPS traffic,
named SNI-based monitoring that uses Server Name Indication (SNI), a standard-
ized extension of the TLS handshake. The SNI extension’s content provides a direct
way to know what service is accessed by a new HTTPS connection. As explained in
the previous chapter (Section , many firewall systems and some network oper-
ators now use the SNI extension to precisely identify and manage HT'TPS traffic.

The rest of this chapter is organized as follows. Section provides an overview
of the SNI extension and how it is used for HT'TPS monitoring and filtering. Sec-
tion evaluates the reliability of the SNI-based filtering and explains our strategies
to bypass it. Section[3.4]describes the implementation and evaluation of our tool "Es-
cape" tested against existing firewalls and also presents our investigation of HT'TPS
servers accessible with a fake SNI. Our solution to improve the SNI-based monitor-
ing is described in Section Section evaluates the proposed approach and
related overhead. Finally, Section summarizes and concludes this chapter.

3.2 SNI Extension Overview

In this section, we overview the original use of the SNI extension for virtual hosting,
and also the alternative uses like HI'TPS monitoring and traffic shaping.

3.2.1 Standard use

Virtual hosting is commonly used to make multiple websites hosted on a single server
machine. However, a new challenge has appeared to make it compatible with TLS.
Originally Virtual hosting can be either "IP-based" or "mame-based". In the first
type, a website is mapped to a unique IP address of the server. This is compatible
with HTTPS since the server can select the correct SSL certificate based on the
IP address. But it is expensive to reserve an IP address for each website, and
the server needs several network interfaces to do so. Therefore, in a name-based
method, all hosted websites share the same IP address and the server must identify
the website based on the HT'TP header, by reading the website’s URL in the GET
request. The problem with this named-based identification when used with HTTPS

36

3.2. SNI Extension Overview

is that the HTTP header is sent encrypted once the TLS connection is already
established, and thus cannot help to identify the proper certificate. Indeed, since
each virtual website has its own SSL certificate, the problem is to select and expose
the certificate corresponding to the intended website. Thus, an extension of the
protocol was designed to enable TLS to effectively operate with virtual web hosting
and overcome this limitation [82].

The SNI extension allows a client to specify the hostname it is attempting to
connect to when the TLS negotiation starts, as shown in Figure The hostname
contains the fully qualified DNS hostname of the server. This makes a server able
to have multiple certificates on a single IP address and to ultimately host multiple
HTTPS sites using different certificates on the same IP address [45]. So, with the SNI
extension, a server is able to present the correct mapping between virtual hosts and
the respective certificates [83], thus to provide virtual hosting of HTTPS websites.

In RFC6066 [84], the SNI extension behaviour is explained as follows: in order to
provide any of the server names, clients may include an extension of type SNI in the
(extended) ClientHello message as shown in Figure The "extension-data" field
of the SNI shall contain ServerNameList, where it must at most contain one server-
name. A server that receives a ClientHello containing the SNI extension uses this
information to select an appropriate certificate to be returned to the client. Then,
the server answers with an extended ServerHello, where the SNI extension should
be empty. When the server decides whether or not to accept a request to resume a
TLS session, the content of a SNI extension may be used in the look up of the session
in the server’s session cache. Thus, a client should use the same SNI extension as in
the full handshake to request the session resumption, otherwise the server refuses to
resume the session and requires the client to start a new full handshake [84]. This
behaviour is used to detect if a given server supports SNI extension or not, as we
explain later in this chapter.

3.2.2 Deployment and support

Introduced in 2003, the SNI extension has been widely used by browsers, servers
and CAs. Most current server software, such as Apache or Microsoft 1IS 8, already
support the SNI extension [83]. On the browser side, all browsers released in the
past 5 years already support the SNI extension, such as Mozilla Firefox, Internet
Explorer, Safari or Google Chrome. This means that there is a global trend for
supporting the SNI extension and all new versions of web browsers and client-side
applications support it. The only limitation concerns older hosts based on Windows-
XP (and below) whose old TLS implementation does not consider the SNI extension.
However, those hosts should not be allowed to access the web in a security-sensitive
context because they miss security updates (since 04/2014 concerning WindowsXP)
and are consequently very vulnerable. Moreover, their number is always decreasing
and accounts (in September 2016) for only 2.76% of host{']

"http://www.w3counter.com/globalstats. php

37

http://www.w3counter.com/globalstats.php

Chapter 3. Fwvaluation and Improvement of SNI-based HTTPS Monitoring

Client Server
@

@ ClientHello - Supported Ciphers

- Random Number
- Session ID

< ServerHello @
- Selected Cipher

- Random Number
- Session ID

< ServerCertificate @
< ServerHelloDone @

Continue Handshake steps

v

Application Data | | @—————— || Application Data

Figure 3.1: SNI extension of the TLS handshake protocol

3.2.3 Alternative uses

Due to the simplicity of extracting the SNI extension content from HTTPS sessions,
it has been used for different purposes, not only for security reasons but also for
performance by enabling traffic shaping for HTTPS services.

SNI-based HTTPS monitoring

Monitoring based on SNI extension relies on checking the "server-name" value in the
extension. This value provides the DNS name of the HT'TPS website to be accessed.
It is a convenient way (i.e., meaningful string) to know what service is accessed, also
the "server-name" value can be compared against a list (i.e., blacklist or whitelist)
to enforce HT'TPS filtering. As shown in Figure the firewall inspects the SNI
extension within the ClientHello message to check if the "server-name' is in a
black/white list or not, and according to the response, the firewall resets the con-
nection or allows the ClientHello message to pass through toward the destination
server, and further complete the TLS handshake.

Since the content of the SNI extension is a simply extracted value, this is a
lightweight process, yet precise to the "service-level", compared to statistical and
website fingerprinting techniques to identify the source of HTTPS traffic. It also
preserves the privacy of users whose encrypted payload is left untouched.

38

3.2. SNI Extension Overview

Firewall

@ TLS ClientHello
message Detector

Extensions list

@ Extract SNI &
server-name

Client | v

Check server-name in
Block/Access list

1
1
1
1
1
1
1
1
1
1
server-name 1
1
1
1
1
1
1
1
1
1

Blocked Legal
website website
HTTPS
Reset connection .| Server

Figure 3.2: SNI monitoring/filtering approach

Traffic shaping

The bandwidth-hungry applications (e.g., YouTube, Netflix) create a real challenge
for resource-constrained networks like mobile networks. Thus, mobile operators
manage scarce network resources using various techniques such as traffic shaping,
in which a given flow is delayed or buffered to prioritize the flow of other services.
The main benefit of traffic shaping is to give the priority to critical services (e.g.,
VoIP) over less-critical traffic, like web browsing. While from another perspective,
traffic shapers might rate-limit high-volume flows to avoid network congestion and
also to control the impact of bandwidth-consuming applications from affecting other
services [85].

In the context of the alternative SNI extension uses, Molvai et al. [68] found
that some commercial traffic shapping devices detect applications via the SNI con-
tent value, and therefore they trigger the traffic shaping process against a given
application. Moreover, as reported in [69] T-Mobile (a mobile operator in the USA)
has recently announced the "BingeOn"lEl service, that provides their customers with
zero-rates video streams from a large number of partner sites like Youtube, Hulu,
Amazon. The principle of zero-rating is that ISPs do not charge users for the traffic
related to certain services, often because those services agree to use limited band-
width resources (limited to 1.5 Mbps). The interesting point is that BingeOn detects
when an HTTPS flow concerns a zero-rate service by applying regular expressions
on the content of the SNT extension [69] to match pre-defined names.

2http://www.t-mobile.com/offer/binge-on-streaming-video.html

39

http://www.t-mobile.com/offer/binge-on-streaming-video.html

Chapter 3. FEwvaluation and Improvement of SNI-based HT'TPS Monitoring

3.3 Strategies for Bypassing SNI-based Monitoring

The wide support and deployment of the SNI extension makes it a prime choice
to identify and manage HTTPS traffic nowadays. However, we will show in this
section that SNI-based filtering is not reliable and we will describe two strategies
exploiting SNI weaknesses regarding (1) backward compatibility and (2) multiple
services using a single certificate. These weaknesses can be used for circumventing
middleboxes relying on the SNI extension to monitor and manage HTTPS traffic.
In the following sections, we will take the example of a firewall enforcing a blacklist
of websites.

3.3.1 Exploiting backward compatibility

According to the related RFC6066 [84], the SNI extension is designed to be backward
compatible. This means that if a server does not recognize the SNI extension or the
"server-name" value inside, it should still continue the handshake. The first bypass-
ing strategy consists in sending a ClientHello message without the SNI extension
present or with an alternative "server-name" value during the TLS handshake. In
both cases, the firewall will not find the blacklisted name and the ClientHello
message will pass toward the remote server.

In order to write a proof of concept, a full control over the SNI extension’s values
is needed. We have customized an HTTPS Java client provided with the Oracle 8
JDK and we added the ability to alter the SNI extension through the TLS socket
configuration. We have tested the two following scenarios exploiting the backward
compatibility, both were able to bypass the SNI-based filtering.

First Scenario: removing the SNI extension

We initialize the TLS handshake with a ClientHello message without SNI. Once
the connection is established, an HT'TP host header is sent with the host value of the
blocked website. Since the HT'TP host header is sent after establishing the secure
connection, it will be encrypted and it is impossible for the firewall to identify the
requested server past the TLS handshake.

Second Scenario: inserting an alternative "server-name" value

It consists in changing the "server-name" field of the SNI extension with an alternate
value that is not related with the real name of the web server. For instance, setting
the "server-name" value with "www.g00gle.com", "abcde.net", etc. in order to escape
the blacklist. We summarize the technique in the following steps, assume we try to

access "www.facebook.com":

e Create TLS Java socket with domain name and port 443:
TARGET_HTTPS_SERVER=facebook.com
TARGET_HTTPS_PORT=443

40

8.8. Strategies for Bypassing SNI-based Monitoring

o Configure the TLS socket with a customized SNI object where "server-name"
value is faked, then use this socket to connect to a blocked website:
server-name=bypassf@ceb00k. com

o Send (encrypted) HTTP host header with host field holding the right address
of the blocked website:
GET/HTTP/1.1/r/n
HOST:facebook.com:443

3.3.2 Exploiting shared server certificate

One property of the certificate standard X.509 is an AlternativeName field, which
can hold a set of domain names using the same certificate for the TLS handshake.
Basically, it allows the service provider to use one server certificate for a set of
services. In our context, this can be used to get access to a banned website by
sending a SNI value for non-banned websites sharing the same server certificate.
From the firewall side, the connection seems to be legal, but in fact, after com-
pleting the handshake, the traffic to the banned website will be totally encrypted
and smoothly pass the firewall. Our main example is Google services, since there are
many Google services sharing the same Google server’s certificate like YouTube and
Google Maps. Thus, let us assume YouTube is restricted by an SNI-based filtering
solution but Google Maps is not, the bypassing technique works as follows:

e TLS socket with domain name and port 443:
TARGET_HTTPS_SERVER= maps.google.com
TARGET _HTTPS_PORT=443;

e Create SNI object with another service sharing the same certificate:
server_name = maps.google.com

e Get access to Youtube by sending HTTP host header:
GET/HTTP/1.1/r/n
HOST :www.youtube.com:443

As shown in Figure[3.3] we perform the handshake using Google Maps and receive
a server certificate for Maps, then we send HT'TP host header for "www.youtube.com",
and we get all YouTube traffic encrypted with Google Maps server certificate, both
websites sharing the same infrastructure. Once the traffic is encrypted, the firewall
cannot detect the YouTube traffic based on TLS information.

At the end of this section, we have envisioned and validated two means to bypass
SNI-based filtering. Users can easily access prohibited resources by passing through
the firewall and without even the need of a third party to circumvent the filtering
system. In the next section, we present our large-scale evaluation of these weaknesses
and the implementation of a more advanced and convenient tool directly into a web
browser.

41

Chapter 3. Fwvaluation and Improvement of SNI-based HTTPS Monitoring

Firefox Firewall Server

—
N il
-
] Pt e
] '~
p X i =
.
S ~‘ L]
e T b

1: Client Hello Message

2: Ckeck SNI
Allow/Block

i 3: Allow Client Hello Message

|SNI = maps.google.com |

]
]
i
'
i
1
I
i
1

4: Server Hello Messag

i
E 4: Server Hello Message
!
E

Complete TLS Handshake 5: Secure Connection |

»

g

! 6: HTML GET Header
i|Host: www.youtube.com:443

HTML Page

i
F"._"._.““.““ e s
i
i
]
i

v
]
o
I
[i
1
i
I
0
i
"
"

Figure 3.3: Shared SSL certificate scenario to access a blocked service with a legiti-
mate one

3.4 Implementation and Evaluation of Bypassing Strate-
gies

In this section, we first present our Firefox add-on as a proof-of-concept of the SNI-
based filtering weaknesses. We then evaluate the support of the SNI extension by
many popular web services. Finally we assess the performance of the bypassing
strategy.

3.4.1 Implementation of a web browser add-on

As a direct application of the aforementioned results, we present an add-on named
EscapeEl that we have developed for the Firefox web browser. The choice of a
web browser add-on is motivated by the strong relation between our work and web
browsing, the ease of use for Internet users and the support of several architectures
and operating systems through the web browser. The core of the add-on is based on
another extension, named Convergencep_zl that intercepts TLS connections to perform
a supplementary check on the certifica