
HAL Id: tel-01649868
https://theses.hal.science/tel-01649868v1

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High quality adaptive rendering of complex photometry
virtual environments

Arthur Dufay

To cite this version:
Arthur Dufay. High quality adaptive rendering of complex photometry virtual environments. Other
[cs.OH]. Université de Bordeaux, 2017. English. �NNT : 2017BORD0692�. �tel-01649868�

https://theses.hal.science/tel-01649868v1
https://hal.archives-ouvertes.fr


THÈSE
PRÉSENTÉE À

L'UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET
D'INFORMATIQUE

par Arthur Dufay

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Rendu adaptatif haute-qualité d'environnements

virtuels à photométrie complexe

Date de soutenance : 10 Octobre 2017

Devant la commission d'examen composée de :
Xavier Granier . . . . . Professeur, Institut d'Optique . . . . . . . . . . . Directeur
Jean-Eudes Marvie . Principal Scientist, Technicolor . . . . . . . . . . Co-Directeur
Pierre Poulin . . . . . . . Professeur, DIRO, Université de Montréal Président du jury
Romain Pacanowski Research Engineer, CNRS . . . . . . . . . . . . . . . Encadrant
Daniel Meneveaux . Professeur, XLIM, Université de Poitiers . Rapporteur
Mathias Paulin . . . . . Professeur, IRIT, Université de Toulouse . Rapporteur

2017





Titre Rendu adaptatif haute-qualité d'environnements virtuels à photométrie
complexe

Résumé

La génération d'images de synthèse pour la production cinématographique
n'a cessé d'évoluer durant ces dernières décennies. Pour le non-expert, il sem-
ble que les e�ets spéciaux aient atteint un niveau de réalisme ne pouvant être
dépassé. Cependant, les logiciels mis à la disposition des artistes ont encore
du progrès à accomplir. En e�et, encore trop de temps est passé à attendre le
résultat de longs calculs, notamment lors de la prévisualisation d'e�ets spéci-
aux. La lenteur ou la mauvaise qualité des logiciels de prévisualisation pose un
réel problème aux artistes. Cependant, l'évolution des cartes graphiques ces
dernières années laisse espérer une potentielle amélioration des performances
de ces outils, notamment par la mise en place d'algorithmes hybrides rasterisa-
tion/lancer de rayons, tirant pro�t de la puissance de calcul de ces processeurs,
et ce, grâce à leur architecture massivement parallèle.

Cette thèse explore les di�érentes briques logicielles nécessaires à la mise
en place d'un pipeline de rendu complexe sur carte graphique, permettant
une meilleure prévisualisation des e�ets spéciaux. Di�érentes contributions
ont été apportées à l'entreprise durant cette thèse. Tout d'abord, un pipeline
de rendu hybride a été développé (cf. Chapitre 2). Par la suite, di�érentes
méthodes d'implémentation de l'algorithme de Path Tracing ont été testées
(cf. Chapitre 3), de façon à accroître les performances du pipeline de rendu sur
GPU. Une structure d'accélération spatiale a été implémentée (cf. Chapitre 4),
et une amélioration de l'algorithme de traversée de cette structure sur GPU
a été proposée (cf. Section 4.3.2). Ensuite, une nouvelle méthode de décor-
relation d'échantillons, dans le cadre de la génération de nombres aléatoires a
été proposée (cf. Section 5.4) et a donné lieu à une publication [Dufay et al.,
2016]. Pour �nir, nous avons tenté de combiner l'algorithme de Path Tracing et
les solutions Many Lights, toujours dans le but d'améliorer la prévisualisation
de l'éclairage global. Cette thèse a aussi donné lieu à la soumission de trois
mémoires d'invention et a permis le développement de deux outils logiciels
présentés en Annexe A.

Mots-clés Rendu, Carte Graphique, Rasterisation, Eclairage Global, Lancer
de Rayons, Path Tracing

iii



Title High quality adaptive rendering of complex photometry virtual envi-
ronments

Abstract

Image synthesis for movie production never stopped evolving over the last
decades. It seems it has reached a level of realism that cannot be outper-
formed. However, the software tools available for visual e�ects (VFX) artists
still need to progress. Indeed, too much time is still wasted waiting for results
of long computations, especially when previewing VFX. The delays or poor
quality of previsualization software poses a real problem for artists. However,
the evolution of graphics processing units (GPUs) in recent years suggests a
potential improvement of these tools. In particular, by implementing hybrid
rasterization/ray tracing algorithms, taking advantage of the computing power
of these processors and their massively parallel architecture.

This thesis explores the di�erent software bricks needed to set up a com-
plex rendering pipeline on the GPU, that enables a better previsualization of
VFX. Several contributions have been brought during this thesis. First, a hy-
brid rendering pipeline was developed (cf. Chapter 2). Subsequently, various
implementation schemes of the Path Tracing algorithm have been tested (cf.
Chapter 3), in order to increase the performance of the rendering pipeline on
the GPU. A spatial acceleration structure has been implemented (cf. Chap-
ter 4), and an improvement of the traversal algorithm of this structure on
GPU has been proposed (cf. Section 4.3.2). Then, a new sample decorrela-
tion method, in the context of random number generation was proposed (cf.
Section 5.4) and resulted in a publication [Dufay et al., 2016]. Finally, we
combined the Path Tracing algorithm with the Many Lights solution, always
with the aim of improving the preview of global illumination. This thesis also
led to the submission of three patents and allowed the development of two
software tools presented in Appendix A.

Keywords Rendering, GPU, Rasterization, Global Illumination, Ray Trac-
ing, Path Tracing

Laboratoire d'accueil Laboratoire Photonique, Numérique, Nanosciences
LP2N (UMR 5298) CNRS - Technicolor R&D

iv Arthur Dufay



Remerciements

Je tiens tout d'abord à remercier Mathias Paulin et Daniel Méneveaux qui ont
accepté d'être les rapporteurs de ma thèse. Je remercie Pierre Poulin qui a
accepté de présider le jury et qui a fait un travail de relecture du manuscrit
impressionnant, et pour ses blagues qui ont détendu l'atmosphère pendant
la soutenance. Je tiens également à remercier tous les membres de l'équipe
projet MANAO qui m'ont chaleureusement accueilli pendant mes séjours à
Bordeaux. Je souhaite également remercier tous les membres de l'équipe VFX
à Technicolor, notamment Gaël Sourimant et Cyprien Buron pour leur aide
précieuse sur 3DCast. Je remercie mes directeurs de thèse Xavier Granier
et Jean-Eudes Marvie sans qui cette thèse n'aurait pas pu exister. En�n je
remercie mes deux encadrants Romain Pacanowski et Pascal Lecocq pour leur
soutien et leurs encouragements tout au long de ce doctorat.

v



vi Arthur Dufay



Contents

Contents vii

Introduction 1
Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Thesis Manuscript Organization . . . . . . . . . . . . . . . . . . . . . 2

1 Theoretical Background 5
1.1 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Final Render and Previsualization . . . . . . . . . . . . . 7
1.2 Global Illumination . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Path Classi�cation . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Radiometric Units . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 The Rendering Equation . . . . . . . . . . . . . . . . . . 12

1.3 Monte-Carlo Integration . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Stochastic Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Path Tracing . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Light Tracing . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Explicit Light Source Connection . . . . . . . . . . . . . 17
1.4.4 Bidirectionnal Path Tracing . . . . . . . . . . . . . . . . 17

1.5 Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Fast Removal of Invisible Geometry . . . . . . . . . . . . 20
1.5.2 Rasterization Pipeline and Shading . . . . . . . . . . . . 21
1.5.3 Forward vs Deferred Shading . . . . . . . . . . . . . . . 22
1.5.4 Shading Limitations . . . . . . . . . . . . . . . . . . . . 23

1.6 Global Illumination Algorithms . . . . . . . . . . . . . . . . . . 24
1.6.1 Finite Element Methods . . . . . . . . . . . . . . . . . . 24
1.6.2 Precomputed Radiance Transfer (PRT) . . . . . . . . . . 24
1.6.3 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . 25
1.6.4 Many Lights . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.5 Monte-Carlo Ray Tracing . . . . . . . . . . . . . . . . . 27
1.6.6 Bidirectional Hybrid Algorithms . . . . . . . . . . . . . . 28

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



CONTENTS

2 Proposed Path Tracing Architecture in 3DCast 29
2.1 3DCast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Path Tracing in 3DCast . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.4 3DCast Path Tracer - Architecture Overview . . . . . . . 40

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Kernel Implementation of Path Tracing on GPU 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 GPU Cores Hierarchical Structure . . . . . . . . . . . . . 49
3.2.2 GPU Memory Layout . . . . . . . . . . . . . . . . . . . . 52

3.3 GPU Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Memory Access Bottleneck . . . . . . . . . . . . . . . . . 53
3.3.2 Register Size Limitation . . . . . . . . . . . . . . . . . . 54
3.3.3 Kernel Branching . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Path Tracing Implementation on the GPU . . . . . . . . . . . . 55
3.4.1 Path Regeneration . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 First Implementation - Single Kernel Path Tracing . . . 56
3.4.3 Multiple Kernels . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Reverse Shadow Ray . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Technical Problem Solved by the Invention . . . . . . . . 62
3.6.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . 62
3.6.3 Reverse Shadow Rays . . . . . . . . . . . . . . . . . . . . 62
3.6.4 Clustered Shadow Rays . . . . . . . . . . . . . . . . . . . 62
3.6.5 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . 62
3.6.6 Advantages of the Method . . . . . . . . . . . . . . . . . 63

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Analysis for an Adequate Spatial Acceleration Data Structure 65
4.1 Overview of Spatial Acceleration Data Structures . . . . . . . . 66

4.1.1 Uniform Grid . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 KD-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.4 BSP-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.5 BVH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Performance Comparison Between KD-Trees and BVH . . . . . 73
4.3 BVH Intersection on GPU . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 A Stackless BVH Intersection Algorithm on GPU . . . . 75
4.3.2 Faster Intersection: Roped-BVH . . . . . . . . . . . . . . 78

viii Arthur Dufay



CONTENTS

4.3.3 Roped-BVH Memory Layout on the GPU . . . . . . . . 80
4.4 Conclusion and Research Perspectives . . . . . . . . . . . . . . . 80

5 Random Number Generation on the GPU 83
5.1 Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Random Number Generation on the GPU . . . . . . . . . . . . 84

5.2.1 Fast Pixel-based Techniques . . . . . . . . . . . . . . . . 84
5.2.2 Low Discrepancy Sequences . . . . . . . . . . . . . . . . 86

5.3 Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Decorrelation Techniques . . . . . . . . . . . . . . . . . . 89

5.4 A GPU Cache Friendly Decorrelation Technique - Micro Jitter . 92
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.2 Method Description . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.4 Application to Screen Space Sampling . . . . . . . . . . 99
5.4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 101

Conclusion 103
Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . 103
Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Software Tools 107
A.1 HDR Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Sampling Software . . . . . . . . . . . . . . . . . . . . . . . . . 107

B Hybrid Rendering of Shadows 111
B.1 Technical Domain of the Invention . . . . . . . . . . . . . . . . 111
B.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.2.1 Hybrid GPU Pipeline for Alias Free Shadows . . . . . . . 111
B.2.2 Selective Ray Tracing . . . . . . . . . . . . . . . . . . . . 112

B.3 Technical Problem Solved by the Invention . . . . . . . . . . . . 112
B.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.4.2 Conservative Shadow Maps with Explicit Triangle Storage113
B.4.3 Classi�cation at Shadow Edges . . . . . . . . . . . . . . 118
B.4.4 Full Classi�cation . . . . . . . . . . . . . . . . . . . . . . 118
B.4.5 GPU Ray Tracing of Shadow Rays . . . . . . . . . . . . 119

B.5 Advantages of the Invention . . . . . . . . . . . . . . . . . . . . 120

Bibliography 121

ix



CONTENTS

x Arthur Dufay



Rendu adaptatif haute-qualité d'environnements 
virtuels à photométrie complexe 

Résumé long: 

Introduction: 
L’informatique graphique est la science qui regroupe tous les méthodes de communication 
visuelles via un ordinateur. Un de ces sous domaine, la synthèse d’image, ou rendu, et 
l’ensemble des techniques qui permet la création d’images de synthèse à l’aide d’un 
ordinateur. La synthèse d’image à plusieurs champs d’applications: les jeux vidéos, 
l’architecture, la publicité, les films d’animations, les effets spéciaux ... 
 
Au cours des dernières décennies, l’utilisation d’effets spéciaux dans les films, ainsi que la 
production de films d’animation n’a cessé de croître. Les effets spéciaux ont fait un énorme 
progrès depuis l’apparition du premier film utilisant de l’informatique graphique 3D: Tron de 
Disney (1982). Pour le non-expert, il semble que les effets spéciaux aient atteint un niveau 
de réalisme ne pouvant être dépassé. De nos jours, les images de synthèse se fondent 
naturellement dans le film. Les films d’animation ont aussi fait un grand bond en avant 
depuis Toy Story de Pixar (1995). 
Bien que la puissance de calcul disponible pour générer ce type d’images ait drastiquement 
augmenté, la quantité de données requises pour générer des images avec un tel niveau de 
réalisme croît aussi rapidement. En plus de cela, les algorithmes et techniques impliqués 
dans la génération de ces films sont en constante évolution. 
C’est particulièrement vrai pour la prévisualisation d’effets spéciaux. 
Les artistes, et plus spécifiquement les lighters, sont encore limités par les outils logiciels qui 
leur sont fournis. A l’heure actuelle, les solutions logiciels disponibles pour la prévisualisation 
d’effets spéciaux sont soit trop lent, soit ne correspondent pas en terme d’apparence au 
images finales du film. Elles ne donnent pas un retour appréciable aux artistes. 
 
Cette thèse tente d’améliorer les capacités d’un outil logiciel de production d’effets spéciaux 
développé à Technicolor. Pour cela, nous améliorons un moteur  de rendu développé en 
interne: 3DCast, livrés à des entreprises productrices d’effets spéciaux telles que MPC (The 
Moving Picture Company). 

Organisation du manuscrit de thèse: 
Ce manuscrit est divisé en cinq chapitres, chacun commençant par un rapide résumé de son 
contenu. Ils décrivent les différentes parties de la solution logicielle pour la prévisualisation 
d’effets spéciaux développées au cours de cette thèse. En effet, développer un moteur de 
rendu permettant le calcul d’illumination globale requiert de couvrir différents domaines 
d’études tels que: la représentation des matériaux, le rendu, l’intégration de Monte-Carlo, les 
structures de données d’accélération spatiale et bien d’autres. 



 
Le Chapitre 1 est dédié au pré requis théorique. Il présente les différents concepts de 
l’informatique graphique utilisés dans cette thèse tels que: le rendu, la rastérisation, le tracé 
de rayons et les techniques d’éclairage global. Des notions mathématiques sur l’intégration 
de Monte-Carlo y sont aussi présentées. 
Ce chapitre explique, après avoir revu les différentes techniques d’éclairage global, pourquoi 
nous avons choisi de concentrer nos travaux sur l’algorithme de tracé de chemins pendant 
cette thèse. 
 
Le Chapitre 2 présente le contexte industriel de cette thèse. Il introduit aussi les notions de 
synthèse d’image tels que la définition des matériaux et des sources de lumières utilisés 
dans cette thèse. En outre, il explique l’architecture logicielle du traceur de de chemins 
développé, ainsi que les techniques développées pour l’accélérer. 
 
Le Chapitre 3 sur concentre sur l’architecture des cartes graphiques et leur utilisation. Dans 
ce chapitre, nous rentrons plus en détails sur l’implémentation sur carte graphique de notre 
traceur de chemins. Dans un premier temps, nous décrivons en détails l’architecture des 
cartes graphiques dans le but de d’apporter une vision claire sur leur potentiel et leurs 
limitations. Par la suite, deux schémas implémentations sont présentées. Finalement, nous 
décrivons, un brevet qui à été soumis, permettant d’accélérer les requêtes de rayons 
d’ombrage dans un pipeline de rendu utilisant du tracé de rayons. 
 
Le Chapitre 4 porte sur un autre point crucial du moteur de rendu: les structures 
d’accélération spatiales. Plusieurs d’entre elles sont présentées, dans le but de motiver nos 
choix. Il présente aussi les techniques plus avancées que nous avons implémentées sur la 
structure de hiérarchie de volume englobant sur carte graphique. 
 
Le Chapitre 5 est dédié à notre technique de micro jittering [Dufay et al., 2016]. 
Il commence par expliquer les différents challenges de génération de nombres aléatoires sur 
carte graphique. Après avoir revu brièvement les potentiels défauts des différents 
séquences de nombres aléatoires, nous présentons, notre nouvelle méthode de 
décorrélation d’échantillons aléatoires limitant les défauts de caches sur carte graphique. 

Conclusion: 
Cette thèse adresse la prévisualisation d’effets spéciaux. Notre but principal est 
l’amélioration d’un moteur de rendu 3D existant en y ajoutant la capacité à calculer 
l’éclairage global. Pour cela nous avons choisi de concentrer nos efforts sur l’algorithme de 
tracé de chemin. Son implémentation sur du matériel graphique dédié à en effet, permis 
d’aider les artistes dans leur tâches de création en leur donnant un retour visuel plus fidèle 
au rendu final et plus rapidement. 
Cependant, la mise en place d’un tel algorithme dans un contexte industriel ne fût pas trivial. 
Pour cela nous avons dû nous intéresser à différents aspects du moteur de rendu: les 
BRDFS (cf. Section 1.2.3), le GPGPU (cf. Section 2.2.1 et Chapitre 3), les structures 
d’accélération spatiales (cf. Chapitre 4) et la génération de nombres aléatoires (cf. Chapitre 
5). Ces travaux ont mené à plusieurs contributions qui sont résumées ici. 



Résumé des contributions: 
Premièrement un moteur de rendu se basant sur l’algorithme de tracé de chemins à été 
implémenté au sein de la plateforme 3DCast. Avec, une solution pour améliorer l'interactivité 
se basant sur un quad-tree en espace image (cf. Section 2.2.4). 
 
Un brevet sur l’amélioration du tracé de rayons d’ombrage a été soumis (cf. Section 3.6).Il 
groupe les rayons d’ombrage par sources de lumières et lance les rayons de façon inverse 
(des sources de lumière vers les surfaces) pour améliorer la performance du tracé de rayon. 
 
Une optimisation de l’algorithme de traversée de la hiérarchie de boîtes englobantes sur 
carte graphique a été proposé dans la Section 4.3.2. Elle utilise un encodage de la traversée 
au sein de la structure accélératrice et permet d'accroître l’efficacité de l’algorithme de tracé 
de rayons dans notre moteur de rendu. 
 
Cette thèse a aussi permis le développement d’une nouvelle méthode de décorrélation des 
échantillons qui s’est prouvée être avantageuse pour plusieurs domaines d’intégration 
multidimensionnelle incluant le tracé de chemins et le calcul de SSAO. Cette contribution a 
été publiée dans une conférence majeure et soumis comme brevet. 
 
Finalement, pour améliorer le calcul d’ombres, un brevet permettant d’hybrider 
shadow-maps et lancer de rayons a été soumis, il est présenté en Annexe B de ce 
manuscrit. 

Travaux futurs: 

Travaux de développement: 
Plusieurs sous partie de notre moteur de rendu non pas pu être achevées pendant cette 
thèse. Cela mène à divers travaux futurs de développement. 
 
Premièrement le support de matériaux plus complexes, par exemple les BSSRDF (rendu de 
peau), est essentiel pour le rendu de surface complexe rencontrable dans un cas de 
production cinématographique. 
De pair avec ces matériaux, nous voudrions aussi implémenter un autre type de pipeline de 
rendu, en suivant la philosophie de wavefront proposé par Laine et al.[2013]. Cela serait 
particulièrement profitable avec des matériaux plus complexes. 
 
Pour la structure d’accélération spatiale nous aimerions nous intéresser aux structures plus 
complexe, notamment en ajout la possibilité de découper les triangles à notre hiérarchie de 
volumes englobants. Cela permettrait d’améliorer les performances de celle ci et lui 
permettrait de se rapprocher des performances obtenus avec un kd-tree. 
 
Finalement, bien que la flexibilité et la rapide mise en place proposé par les Compute 
Shaders d’OpenGL nous ai convenu, nous aimerions implémenter une version se basant sur 



le framework NVIDIA CUDA. Nous pensons que cela permettrait de plus finement pouvoir 
déboguer et profiler notre code grâce à tous les outils fournis par ce framework. 

Travaux de recherche: 
L’axe majeur de recherche sur lequel nous aimerions nous concentrer est les solutions 
bidirectionnelles tels le tracé de chemin bidirectionnel, ou un une solution plus complexe, par 
exemple en combinant tracé de chemin et tracé de chemin bidirectionnel. Nous pensons 
qu’en utilisant des heuristiques pour décider si un chemin caméra doit se connecter à un 
chemin lumineux nous pouvons améliorer la solution. 
Une de ces heuristiques pourrait être par exemple de se baser sur les matériaux rencontrés 
le long du chemin. Un chemin spéculaire peut être difficile voir impossible à connecter avec 
une autre BRDF spéculaire. Une autre heuristique pourrait se baser sur la quantité d’énergie 
lumineuse transportée par le rayon. Par exemple ne connecter que les chemins caméra ne 
transportant peu d’énergie à des sources de lumières. 
Utiliser un tel algorithme pourrait grandement améliorer la performance d’un moteur de 
rendu basé sur l’algorithme de tracé de chemin bidirectionnel en permettant d’avoir des 
chemins unidirectionnels et d’autres bidirectionnels. En effet, en couplant les deux nous 
pourrions gagner en temps de calcul. 
 
Un autre axe de recherche serait les algorithmes hybrides. Nous pensons que les solutions 
logicielles basés sur les techniques de multiples sources lumineuses (Many Lights, VPLs) 
ont un réel potentiel pour la prévisualisation des effets spéciaux. Combiné ces techniques 
avec des techniques de tracé de chemin pour supprimer leurs artefacts peut être un 
intéressant axe de recherche. 
De plus les techniques basées multiples source lumineuses convergent plus vite dans des 
scène comportant de nombreux matériaux diffus. 
Dans ce sens nous avons à la fin de cette thèse commencé des expérimentations mixant 
VPLs et tracé de chemin. 
 



Introduction

Motivations

Computer Graphics (CG) is the science that regroups all the visual communi-
cation methods via a computer. One of its �elds, image synthesis, or render-
ing, is the set of techniques that enable the creation of synthetic images with
a computer. Image synthesis has many applications: video games, architec-
ture, advertisement, computer-animated movies, Visual E�ects (VFX) ... (cf.
Figure 1).

Figure 1: Left: CG advertisement: Canal+ The Bear, courtesy of Mikros Image. Right:
CG used to predict architecture design, courtesy of NVIDIA.

Over the last decades, the use of Visual E�ects in movies, as well as the pro-
duction of computer-animated movies have become more and more prominent.
VFX have made tremendous progress since one of the �rst movies featuring
3D CG: Disney's Tron (1982). To the eye of a non-expert, we seem to have
reached a level of realism that cannot be outperformed. CG images now blend
seamlessly into �lmed images (cf. Figure 2). 3D computer-animated �lm also
made impressive progress since one of Pixar's Toy Story (1995) (cf. Figure 3).

Even though the computing power available to generate such movies has
drastically increased, the required amount of data to render images with such
realism is also growing fast. In addition to that, the algorithms and techniques
involved in the making of such movies are still evolving. This is especially true
for VFX previsualization. VFX artists, especially lighters, are still limited in
their work by the tools we provide them. At this time, the available software

1



Thesis Manuscript Organization

Figure 2: Left: CG at its early stages in one of the �rst movies featuring 3D CG: Disney's
Tron (1982). Right: Impressive realistic CG integration in the recent movie The Martian
(2015). Top: green chroma-key without VFX, Bottom: insertion of VFX.

solutions for VFX previsualization (previz) are either too slow or do not match
accurately the look of the �nal movie images. They do not give an appreciable
feedback to artists.

Figure 3: Example of the progress made in the context of computer-animated movies, from
Toy Story 1995 (Left) to Finding Dory 2016 (Right). Both courtesy of Pixar Inc.

This thesis tries to enhance the capability of VFX production tools de-
veloped at Technicolor. To do so, we improve an in-house rendering engine:
3DCast (cf. Chapter 2), delivered to VFX companies such as The Moving
Picture Company (MPC).

Thesis Manuscript Organization

This manuscript is divided into �ve chapters, all starting with a brief overview
of their content. They are part of our software solution for VFX previz. In-

2 Arthur Dufay



Introduction

deed, developing a rendering engine with global illumination features requires
covering various �elds of study such as material repsesentation, rendering,
Monte-Carlo integration, spatial acceleration data structures, and so on.

Chapter 1 is dedicated to the necessary theoretical background. It presents
the di�erent concepts of Computer Graphics used during this thesis such as
rendering, rasterization, ray tracing, and global illumination techniques. A
mathematical background on Monte-Carlo integration is also presented. This
chapter explains, after reviewing di�erent global illumination techniques, why
we chose to focus our e�ort on path tracing during this thesis.

Chapter 2 presents the industrial context of this thesis. It also introduces
Computer Graphics notions such as materials and light sources used in this
thesis. In addition, it explains the architecture of the path tracer we developed,
as well as some techniques we implemented to accelerate it.

Chapter 3 focuses on GPU architecture and its use. In this chapter, we
get further into details of the GPU implementation of our path tracer. First,
we describe in detail the GPU architecture in order to give a clear view of its
potential and limitations. Then, two implementation schemes are presented.
Finally, we describe a patent we submitted, to accelerate shadow ray queries
in rendering pipelines using ray tracing.

Chapter 4 deals with another crucial point of a rendering engine: spatial
acceleration data structures. Several of them are presented to motivate further
our choices. It also presents the more advanced techniques we implemented
using a BVH on the GPU.

Chapter 5 is dedicated to our micro jittering technique [Dufay et al., 2016].
It starts by explaining the challenges of random number generation and their
uses on GPU. After reviewing quickly the caveats of di�erent random number
sequences, we present our new GPU cache friendly decorrelation technique.

All the contributions, publications, and patents published are summarized
in the Conclusion of this thesis. This manuscript ends by discussing some
potential future work.

3



Thesis Manuscript Organization

4 Arthur Dufay



Chapter 1

Theoretical Background

The essential part of this thesis relies on computing global illumination (GI)
by solving the rendering equation. In this sense, we present in this chapter
the required background to understand our work. We start, in Sections 1.1
and 1.2, by giving the de�nitions of rendering and global illumination. Then,
in Section 1.3, we present the mathematical tools needed to understand our
work. Sections 1.4 and 1.5 are dedicated to two main solutions to achieve
rendering: rasterization and ray tracing. Finally, we get further in detail in
Section 1.6, by reviewing the existing global illumination solutions that have
been introduced in the last few years.

5



1.1. Rendering

1.1 Rendering

In Computer Graphics, we de�ne the process of "rendering" (cf. Figure 1.1)
as the generation of an image (an array of pixels) from the description of a
scene. A scene is described by four main components:

• a camera model: a virtual camera composed of a 3D position, a viewing
direction, a �eld of view and a resolution.

• some geometric data (e.g., mesh).

• a set of materials that control the scattering (re�ection and/or refraction)
properties of the geometry.

• a set of light sources, which are described by geometrical and emissivity
properties.

These geometric data could be for instance a set of 3D points, the de�nition
of a volume, or in the context of this thesis, a set of 3D polygonal meshes.

Figure 1.1: A rendering of a triangle mesh: "The Stanford Bunny" (69K triangles) from
Stanford University [1993]. Left: solid view, Center: wire-frame view, Right: closeup of
wire-frame view.

Rendering, also known as image synthesis, has many applications: video
games, architecture, CG movies, Visual E�ects (VFX), data visualization, Vir-
tual Reality, ... Each �eld of application has its own speci�c demands on fea-
tures and image quality depending on the computing power capability and the
required framerate. In this thesis, we focus on using rendering for previsualiza-
tion of VFX for movie production. This implies complex lighting e�ects, that
we describe later in this document, computed on massive 3D scenes containing
high resolution 3D meshes (several millions of triangles).

Rendering can be achieved by several techniques that can be divided into
two types of methods. The ones based on rasterization (cf. Section 1.5) and
the ones based on ray tracing (cf. Section 1.4). We describe more in detail
the pros and cons of these methods in the following sections of this chapter.
Later, we will see that the two of them can be combined to take advantage of
both.

6 Arthur Dufay



1. Theoretical Background

1.1.1 Final Render and Previsualization

In the context of Computer Graphics for VFX, we can classify rendering algo-
rithms in two classes, depending on the targeted application: �nal rendering
algorithms and previsualization (previz) algorithms. The �nal render algo-

Figure 1.2: A �nal render image from Guardians of the Galaxy, courtesy of MPC.

rithms aim at producing highest quality images intended to be integrated into
a movie using a compositing stage. Computing images for �nal render is mostly
done on render farms. The latter are clusters of computers containing high-
end CPUs and huge amount of memory to avoid as much as possible swapping
(transfer from hard drive to CPU memory) that really slows down the pro-
cess of rendering by starving CPU threads. To this date, VFX studios still
rely on CPU render farms and GPUs render farms exist but are still at their
early stages. They are not used in production mostly because of their high
power consumption, which drastically increases electricity costs. GPUs are
also much more limited on memory than CPUs 1, which makes their use in
a production renderer more tedious, even though out-of-core rendering algo-
rithms exist. Rendering just one image, such as the one shown in Figure 1.2,
on a render farm for a movie could take from hours to days, hence the need of
a previsualization algorithm: it greatly helps VFX artists to have a real-time
preview of the scene they are working on.

1For instance the latest professional NVIDIA card, the P6000 has 24GB of GRAM,
whereas CPU can handle up to 512GB of RAM (8x64GB).

7



1.2. Global Illumination

1.2 Global Illumination

In this thesis, we address the problem of rendering 3D scenes with complex
lighting e�ects (cf. Figures 1.4 and 1.5) such as global illumination and caus-
tics. A global illumination algorithm generates images that sum the contribu-
tions of direct lighting and indirect lighting.

Figure 1.3: Direct lighting shown on the hemisphere centered on A, lit directly by the area
light. Indirect lighting shown on the hemisphere centered on B, lit by photons bouncing on
the scene.

Global illumination is crucial to obtain images that look realistic. We refer
to direct lighting as light contribution that comes directly from a light source
(see Figure 1.3), bounces once on an object of the scene before hitting the
camera sensor. Indirect lighting represents light contribution from rays that
hit more than one object, before hitting the camera sensor.

1.2.1 Path Classi�cation

Light paths may be classi�ed using a regular expression, introduced by Heck-
bert [1990]. It describes the materials encountered at each vertex of a light
path using the following notations:

• L: a light source

• S: a specular or glossy surface

• D: a di�use surface

• E: the camera sensor or eye

• +: 1 to n bounces

• *: 0 to n bounces

8 Arthur Dufay



1. Theoretical Background

Figure 1.4: Path tracing image demonstrating global illumination. Top: direct illumina-
tion only. Bottom: direct and indirect illumination.

9



1.2. Global Illumination

For instance, a path noted LS+DE refers to a path that starts on a light
source, hits 1 to n specular surfaces, then a di�use surface, and �nally the
camera sensor. Such path represents a caustic, see Figure 1.5.

Figure 1.5: A sketch of a caustic path LSDE (top), and its rendered version, a caustic
from a gold ring lit by a point light source showing indirect illumination only (bottom).

Using this notation direct illumination is noted L(D|S)E and indirect illu-
mination is noted L(D|S)(D|S)+E. All light paths reaching the camera sensor
are described by the regular expression L(S|D)*E.

10 Arthur Dufay



1. Theoretical Background

1.2.2 Radiometric Units

We introduce here some radiometric quantities and their I.S. units, needed for
the comprehension of this document.
A Steradian noted sr is the unit of a solid angle, it is de�ned as the ratio
between the area subtended and the square of its distance from the origin (see
Figure 1.6).

Figure 1.6: Left: one steradian, it subtends an area of r2, Ω = A
r2 = r2

r2 = 1 sr. Right:
Representation of the domain of integration Ω for the rendering equation.

The Radiant energy noted Q is the energy of electromagnetic radiation. Its
unit is in J .
The Radiant �ux noted Φ is the radiant energy emitted, re�ected, transmit-
ted or received, per unit time. Its unit is in W or J · s−1.
The Irradiance noted E is the radiant �ux received by a surface per unit area.
Its unit is in W · m−2.
The Radiosity noted B is the radiant �ux leaving a surface per unit area. Its
unit is in W · m−2.
The Radiance noted L is the radiant �ux emitted, re�ected, transmitted or
received by a surface, per unit solid angle per unit projected area. Its unit is
in W · sr−1 · m−2.

1.2.3 BRDF

In Computer Graphics the re�ective behavior of materials is described by a
4D function called Bidirectional Re�ectance Distribution Function (BRDF),
introduced by Nicodemus [1965], noted fr or brdf , and that is de�ned as:

fr(ωi,ωo) =
dLr(ωo)

dEi(ωi)
=

dLr(ωo)

Li(ωi) cos θi dωi

(1.1)

where ωi refers to the incoming light direction and ωo the outgoing or re�ected
direction. The BRDF holds the ratio of re�ected radiance along ωo to the
irradiance incident on the surface from direction ωi. Its units is in inverse

11



1.2. Global Illumination

steradian (sr−1).
A physically based BRDF must respect three constraints:

• BRDF cannot create energy, meaning that
∫

Ω
fr(ωi,ωo) cos θi dωi 6 1.

• it must be positive: fr(ωi,ωo) > 0.

• as stated in Stokes [1849] and Helmholtz [1856], for non magnetic mate-
rials, it obeys Helmholtz reciprocity: fr(ωi,ωo) = fr(ωo,ωi).

1.2.4 The Rendering Equation

To compute global illumination, Kajiya introduced [Kajiya, 1986] the rendering
equation:

Lo(x,ωo) = Le(x,ωo) +

∫
Ω

fr(x,ωi,ωo)Li(x,ωi)(ωi · n) dωi (1.2)

which states that the outgoing radiance towards ωo at x on surface S is equal
to the radiance emitted from S at x towards ωo plus the sum of all incoming
light that is re�ected by S. To compute the global illumination we have to
integrate all the incoming radiance over a hemisphere centered at x, oriented
towards n (the normal of S at x) (see Figure 1.6).
This equation can be rewritten as

Lo(x,ωo) = Le(x,ωo) + T (Lo(x,ωo))

Lo(x,ωo) = Le(x,ωo) + T (Le(x,ωo)) + T 2(Lo(x,ωo))

Lo(x,ωo) =
∞∑
i=0

T i(Le(x,ωo))

(1.3)

This reformulation using T , the light transport operator introduced by Veach
[1997], and n, the dimension of the ray space, exposes the high recursivity of
the rendering equation. Since the dimension of the ray space is potentially
in�nite, deterministic methods are not really suited for solving the rendering
equation. In fact their convergence rate is in O(n−

c
d ) where c depends on

the integration scheme and d is the dimension of the space of integration.
Furthermore solving the rendering equation is not trivial since there is, in
general, no analytical solution.

Computing this integral also involves solving the visibility problem between
surfaces. Some work by Durand et al. [1997] has been done to precompute
visibility but it solves the problem for static geometry only. Furthermore, the
complexity of their algorithm is in O(N5) in time and O(N4) in memory, N
being the number of triangles in the scene, which is not acceptable in our
context. To be fair, it still allows some possible editing of the scene: materials
and light sources can be modi�ed.

12 Arthur Dufay



1. Theoretical Background

In addition to this integral, we also need to integrate over the area of a
pixel in order to simulate the camera lens behavior and its complex e�ects
such as depth of �eld (DOF) or Bokeh.

When dealing with animated scenes, one also needs to integrate over the
exposure time to simulate motion blur.

Finally, for more advanced rendering, it is also crucial to integrate over the
spectrum of light, but this is not the subject of this thesis. Spectral rendering
is more intended to architecture and material design.

For all these reasons, in general, Monte-Carlo integration is used.

1.3 Monte-Carlo Integration

Here, we present the mathematical background on Monte-Carlo techniques
needed to understand this thesis.

De�nitions: estimator, pdf and cdf

Monte-Carlo integration is a method to integrate a function when no analytical
solution exists. It relies on the ability to evaluate the function at random
positions of its de�nition domain. It integrates it by summing up a set of
samples of this function. This sum is written as follows:

I =

∫
Ω

f(x)dx ≈ QN QN =
1

N

N∑
i=1

f(xi)

pdf(xi)
(1.4)

QN is an estimator of the integrand I, by the law of large numbers we have

lim
N→∞

QN = I, (1.5)

which shows that the estimator converges to the correct solution. The pdf(xi)
is the probability density function, a function whose integrand is equal to the
probability of choosing sample xi in the domain of integration Ω.
The cumulative distribution function of a random variable X is noted cdf(x)
and is de�ned as:

cdf(x) = Pr{X 6 x} (1.6)

The pdf and cdf are related by:∫ β

α

pdf(x)dx = Pr{α 6 X 6 β} = cdf(β)− cdf(α) (1.7)

or

pdf(x) =
dPr(x)

dx
(1.8)

13



1.3. Monte-Carlo Integration

Each sample xi is randomly chosen. For that several sampling methods ex-
ist. A sampling method has an associated pdf . In practice, the inverse cdf ,
noted cdf−1, is used to draw a sample from an arbitrary distribution using a
uniformly distributed random number. Some sampling methods are presented
in Section 5.2.

Variance, Error and Convergence Rate

The variance of a random variable X, noted V ar(X), is de�ned as the square
value of the standard deviation σ(X) and is computed as follows:

V ar(X) = σ2(X) = E[(X − E[X])2] = E[X2]− E[X]2 (1.9)

The error of the Monte-Carlo estimator εN is de�ned as:

εN =
∣∣QN − I

∣∣ (1.10)

It can be demonstrated that:

V ar(QN) =
1

N
V ar(Q1)⇔ σ(QN) =

1√
N
σ(Q1) (1.11)

which proves that the convergence rate of a Monte-Carlo estimator is inO(
√
N).

Thus to divide the variance by two, the number of samples must be multiplied
by four. Another way to reduce variance is to reduce the variance of QN , this
is exactly what importance sampling does.

According to Kalos and Whitlock [2009], the variance σ2
N of the estimator

QN can be estimated using the following equation:

σ2
N =

1

N − 1

N∑
i=1

(f(xi)−QN)2 =
N

N − 1

(
1

N

N∑
i=1

f(xi)
2 −Q2

N

)
(1.12)

Thus an estimator of the variance of the estimated mean is given by

V ar(QN) ≈ 1

N − 1

(
1

N

N∑
i=1

f 2(xi)−Q
2

N

)
(1.13)

Example: Estimating the Value of π

We can use Monte-Carlo integration to estimate the value of π. Consider a
square which length size is 2 and its inscribed circle C (see Figure 1.7). If we
uniformly and randomly create points in the square, the ratio of the number of
samples inside C over the total number of samples converges to AreaC

Areasquare
= π

4
.

In this case, Monte-Carlo integration is used to estimate the area of the circle
C, which is known to be equal to π, with a constant pdf equal to 1

4
.

14 Arthur Dufay



1. Theoretical Background

Figure 1.7: Estimating π with Monte-Carlo, 82 points inside the disc, 100 points in total,
82
100 ∗ 4 = 3.24 ≈ π.

Importance Sampling

As opposed to uniform sampling, importance sampling tries to maximize the
Monte-Carlo estimator by drawing more samples where the value of f is high.
It is a well known variance reduction technique. In fact the perfect sampling
would be the one that gives pdf(x) = c ∗ f(x), with c a constant: c = 1∫

Ω f(x)dx
,

which leads to:

lim
N→∞

QN = lim
N→∞

1

N

N∑
i=1

f(xi)

c ∗ f(xi)
=

1

c
=

∫
Ω

f(x)dx = I, (1.14)

giving the estimator a variance of zero. But, this strategy is only possible when
the value of the integrand is known in advance.

1.4 Stochastic Ray Tracing

In the previous sections, we have shown that the rendering equation can pro-
vide a solution to compute global illumination and we have also explained how
Monte-Carlo integration can be used to solve the rendering equation. We now
present di�erent algorithmic solutions that exist in Computer Graphics to put
into practice these mathematical tools, starting with stochastic ray tracing and
its derivatives.

To generate the image, the ray tracing algorithm "launches rays", de�ned
as a pair of a 3D starting point and a 3D direction in the 3D scene. For the
pinhole camera model, rays start at the camera position and pass through the
image plane as shown in Figure 1.8. Then, rays traverse the 3D scene to �nd
the closest intersection.

15



1.4. Stochastic Ray Tracing

Figure 1.8: Ray tracing principle with a pinhole camera.

1.4.1 Path Tracing

Path tracing (cf. Figure 1.9) is a recursive algorithm based on ray tracing. It
launches rays from the camera through the image plane, as described in the
previous section, and, each time a ray intersects a surface, launches a new ray
from that surface, building a path of light in the 3D scene. A path is thus
a sequence of 3D positions that ends when a light is reached or when a stop
criterion is attained. We describe these criteria, such as Russian roulette, later
on in this document.

1.4.2 Light Tracing

The path tracing algorithm operates in a reverse order compared to what
actually happens in the real world. In reality, photons are emitted from light
sources and bounce on objects until they get absorbed or reach our eye or a
camera sensor. One can render images in the same way by launching rays
starting from the light sources and making them bounce on objects in the 3D
scene until they reach the camera sensor. This process is call Light Tracing (cf.
Figure 1.9). Even though it can render the same images than with recursive
ray tracing it is far less e�cient. One simple explanation is that the camera
sensor represents only a small fraction of the scene, and so, the probability to
�nd a path that connects a light source to the camera is small. Conversely,
light sources represent a larger part of the scene, the path tracing algorithm
exploits that property.

16 Arthur Dufay



1. Theoretical Background

Figure 1.9: Path Tracing (Left) and Light Tracing (Right) act in reverse order.

1.4.3 Explicit Light Source Connection

To ensure that a path is connected to a light source, as shown in Figure 1.8,
one can, at each bounce of a ray, make a direct connection. A visibility test
needs to be done along this connection to check if light is propagated. This
is why such connection is called a shadow ray. This technique is often cited
as "next event estimation" or "next event simulation" in the literature, and
has been proposed by Kajiya [1986]. By ensuring that the path connects to at
least one light source, this technique increases the e�ciency of the Monte-Carlo
estimator.

Several solutions exist to select the light source to connect. The simplest
one is to choose deterministically the light source in a round-robin fashion.
One can also draw a random number and select uniformly a light source in
the set of light sources of the scene. Finally, an e�cient solution is to build a
cdf over the set of light sources at scene opening, then at each bounce, draw
a random number and choose a light to connect according to its potential
contribution (i.e., its power) by using the constructed cdf and the associated
pdf.

We present a solution, that has been submitted as a patent, to accelerate
the computation of shadow rays needed by next event simulation in Chapter 3.

1.4.4 Bidirectionnal Path Tracing

Looking at the two algorithms previously introduced, path tracing and light
tracing, we observe that paths starting from the camera sensor (camera paths)
may have di�culties to reach the light sources, and reversely, paths starting
from the light sources (light paths) hardly connect to the camera. Bidirectional

17



1.4. Stochastic Ray Tracing

algorithms, such as Bidirectional Path Tracing (BDPT), try to solve this prob-
lem by constructing both camera paths and light paths and connect them at
their edges to build more complex paths, as shown in Figure 1.10. Indeed
BDPT provides most often a faster convergence rate than path tracing, but it
induces a more complex GPU code, and so a slower sample rate. We will see
further in detail in Chapter 3, how code divergence and kernel implementation
on the GPU is the key to maintain a good e�ciency.

Figure 1.10: Bidirectional Path Tracing constructs paths by connecting eye path and light
path.

Figure 1.11: Caustic connection problem. Left: a possible caustic connection. Right: a
zero energy path. BRDF distributions are shown in orange lobes and hemispheres.

Caustics are also particularly di�cult to handle due to the sharp lobe of

18 Arthur Dufay



1. Theoretical Background

the specular material BRDF that produces them (cf. Figure 1.11). In fact,
as paths are traced from eye to light in path tracing, it is di�cult to build a
LS+DE path. We present solutions to this problem in Section 1.6, such as the
photon mapping algorithm for instance.

As ray tracing requires a lot of computation, another alternative for ren-
dering exists: rasterization that we describe in the next section.

1.5 Rasterization

Ray tracing requires a lot of computing power. An alternative algorithm
to generate images exists, rasterization and its rendering pipeline (cf. Fig-
ure 1.12). Rasterization produces images from 3D models composed of quads
or most of the time triangles by projecting them on a 2D plane. It can be
executed on a CPU or a GPU, but, thanks to its simplicity and scalability to
highly parallel architectures, it has been established as the standard for real-
time rendering algorithms on GPU over the years. In fact, rasterization has
promoted the use of GPU for real-time graphics.

Figure 1.12: A simpli�ed view of a GPU rasterization pipeline.

Rasterization requires a set of matricesMVP.M represents a model matrix,
that transforms a triangle from object coordinate space to world coordinate
space This matrix is used to move, scale and rotate objects in the scene as
desired. V is a view matrix, that de�nes the camera position and orientation
(i.e., the viewpoint for a particular rendering). Finally, P is a projection

19



1.5. Rasterization

matrix, that de�nes the view frustum of the camera. Figure 1.13 shows a
perspective view frustum.

Figure 1.13: A perspective view frustum.

1.5.1 Fast Removal of Invisible Geometry

To further accelerate rasterization, some techniques are used to discard data
that do not contribute to the �nal image, we present them here.

Culling and Back-Face Culling

The culling step is done before applying the set of transformation matrices to
a triangle. It consists of rejecting all triangles that are totally outside of the
viewing frustum.

An optional back-face culling operation can also be used. In fact, as 3D
scenes are made of 3D objects, which often have a thickness, it is impossible
to see a triangle from behind because there is always a front face closer to the
camera. Therefore, activating back-face culling can save computation time by
discarding all triangles that have a dot product between camera-to-triangle
and triangle normal greater than 0 (see Figure 1.14).

Clipping

After transforming a triangle in image space via the transformation matrices,
a triangle may fall partially or totally outside of the image. The process of
discarding this triangle out of the image is called clipping.

20 Arthur Dufay



1. Theoretical Background

Figure 1.14: Back-face culling applied on a cube. Green polygons are kept, red ones are
seen from behind and are discarded.

Z-Bu�er

The rasterization process is coupled with the so-called "Z-Bu�er algorithm".
Indeed, when projecting a triangle in the 2D image plane, multiple triangles
may fall on the same pixel. To know which triangle has to be stored in that
pixel, the Z-Bu�er algorithm stores the depth of the projected point. Each
time a triangle falls into a non empty pixel, its depth is compared to the depth
stored. If the new triangle has a smaller depth (i.e., it is closer to the camera),
the value in the Z-Bu�er for this pixel is overwritten. Otherwise, the triangle
is discarded.

1.5.2 Rasterization Pipeline and Shading

To this end, we have not discussed what is actually stored in each pixel of
the rendered image. We explained how the Z-Bu�er algorithm works to select
the closest visible triangle, but we did not detail the pixel value. To further
understand the process of rendering we have �rst to introduce the rasterization
pipeline.

The basic rendering pipeline shown in Figure 1.12 is composed of two main
stages: vertex (resp. fragment) processing handled by the vertex (resp. frag-
ment) shader. These two shaders are two di�erent GPU programs, that can
be built in the GPU or programmed by the user.

21



1.5. Rasterization

The vertex processing does all the work described in the previous sections to
got from a 3D triangle-based model to a set of pixels, also called fragments. It
operates on triangle vertices. The fragment shader is invoked for each fragment
that actually contains a projected triangle. Its job is to "shade" each pixel of
the image. The process of shading is to compute the appearance of a projected
triangle in a pixel. To compute shading, a set of variables is passed through
the pipeline from the vertex shader to the fragment shader, such as surface
normals, 2D or 3D positions, colors, etc.

Shading can be really simple, such as a �at shading, or a more advanced
one such as the Phong shading (cf. Figure 1.15). The main di�erence between
these two is that values that passed through the rendering pipeline from the
vertex shader to the fragment shader of portions of the triangle between get
interpolated in the case of the Phong shading. In �at shading only one value
for each fragment is given to the fragment shader, typically the value of the
�rst vertex of the triangle.

Figure 1.15: A sphere rendered by rasterization.

1.5.3 Forward vs Deferred Shading

The shading algorithm presented in Section 1.5.2 and shown in Figure 1.12
describes what is called forward shading. In forward shading objects are ras-
terized and shaded at the same time, one object after another, the Z-Bu�er
taking care of keeping the relevant fragment in the resulting image. Another
option is to use a deferred shading pipeline (cf. Figure 1.16). In deferred shad-
ing all the objects are rasterized in a �rst pass and a set of parameters for each
visible triangle is kept in a temporary bu�er called a G-Bu�er, the G stands
for geometry. Once this is done, a second pass generates an image from the
values stored in the G-Bu�er by shading the fragments. Typical data found in
a G-Bu�er are surface normals, 3D position, material identi�er.

When the shading is costly to evaluate, the deferred shading algorithm
gives better performances than the forward shading one, because it evaluates

22 Arthur Dufay



1. Theoretical Background

Figure 1.16: A deferred shading pipeline. It implies two passes of rendering. The �rst one
to draw geometries in each pixel. The second one to shade each pixel.

the shading only once per fragment. In comparison, with forward shading,
when N triangles project themselves in the same fragment, the shading is
evaluated N times. We will see in Section 2.2 how a G-Bu�er can be used to
accelerate path tracing on GPU.

1.5.4 Shading Limitations

The fragment shader can compute simple or more complex appearances but is
always restricted to direct illumination or fake indirect illumination, because
when it computes the appearance of a pixel it does not have access to the
whole scene geometry. We describe in more details direct illumination, indirect
illumination and global illumination in Section 1.4. Furthermore, simulating
the physics of light and computing a real appearance in a fragment shader
would require too much computing resource, and this is not the purpose of a
fragment shader.

There are other limitations to rasterization. For instance, it cannot com-
pute real multiple refraction. Some work has been done using textures storing
back-faces of objects and nearby geometries (see Wyman [2005a] and Wyman
[2005b]). It gives a good approximation and works in real time but it is limited
to two interfaces. To compute full refraction, with multiple interfaces, and no
approximation on the refracted vectors, the ray tracing algorithm is required.

23



1.6. Global Illumination Algorithms

1.6 Global Illumination Algorithms

As we have seen before, computing images with global illumination is not
straightforward. One can use Monte-Carlo integration, but this requires heavy
computation. Over the last decades, many other solutions have been intro-
duced in Computer Graphics to solve the rendering equation, sometime par-
tially by adding restrictions to the types of light paths supported by the solu-
tion. Global illumination techniques can be divided in six classes:

• Finite Element Methods (Radiosity)

• Precomputed Radiance Transfer (PRT)

• Photon Mapping (PM) and its extensions: Progressive Photon Mapping
(PPM), Stochastic Progressive Photon Mapping (SPPM)

• Instant Radiosity also known as Many lights methods or Virtual Point
Lights (VPLs)

• Monte-Carlo Ray Tracing

• Bidirectional Hybrid Algorithms

In this section we brie�y describe them to further argument our choice
for the path tracing algorithm as a solution for interactive previsualization of
VFX. The state-of-the-art report of Ritschel et al. [2012] is the starting point
of our study. They widely cover all the global illumination techniques.

1.6.1 Finite Element Methods

Finite elements methods, also call radiosity, were �rst introduced to Computer
Graphics by Goral et al. [1984]. To compute global illumination, they rely on a
set of geometrical patches that discretize the scene surfaces. Every patch stores
a precomputed radiosity value. The main advantage of this method is that it
allows fast camera movements. Indeed, once the values of the patches have
been precomputed, solving the rendering equation is done easily by fetching
the values in the surrounding patches.

More recently, Thiedemann et al. [2011] used voxels to store precomputed
irradiance. Even though their method can render global illumination quite fast
on the GPU they are limited to two-bounce global illumination.

Despite the quick render time this kind of methods o�ers, we found that
they require too much precomputation and memory. We did not consider them
as a good solution in our context.

1.6.2 Precomputed Radiance Transfer (PRT)

Precomputed radiance transfer methods (PRT) were �rst introduced by Sloan
et al. [2002]. They used spherical harmonics (SHs) to store a transfer func-

24 Arthur Dufay



1. Theoretical Background

tion that includes both shading and visibility. As SHs can encode only low-
frequency functions, their method is limited to di�use shading or mid-glossy
shading, but it is fast. Indeed, shading computation only requires a dot prod-
uct.

PRT methods have been extended using other bases to encode them. For
instance using wavelets by Ng et al. [2003]. A good survey of PRT methods
can be found in [Ramamoorthi, 2009].

To support highly specular surfaces PRTmethods have been extended using
spherical gaussians (SGs) by Wang et al. [2009a], and anisotropic spherical
gaussians (ASGs) to handle anisotropic BRDFs. Their method provides good
result in real time, but are still limited to static scenes.

Finally, Xu et al. [2014] introduced a new method to compute interre�ec-
tions using SGs. Their method works in real time, but is limited to one-bounce
interre�ections, and so, it cannot truly compute global illumination.

Due to their limitation on the BRDFs they can handle in some cases, their
precomputation step, and their restriction to static scenes, we did not consider
these methods as a good solution for our previsualization tool.

1.6.3 Photon Mapping

The Photon Mapping (PM) algorithm was introduced by Jensen [1996]. As the
light tracing algorithm it launches paths from light sources. However, instead
of trying to reach the camera sensor, it stores photons at each vertex of the
light path in a dedicated kd-tree (the photon map). Then, in a second pass,
called gathering pass, the contribution of photons that are in a neighboring
area of the shaded surface is accumulated. The main advantage is that this
method is more e�cient to generate caustic paths LS+DE, as paths start from
light sources. The initial algorithm proposed by Jensen [1996] is biased, but
has been improved by Hachisuka et al. [2008]. In fact by having a progres-
sive algorithm, that decreases the photon gathering kernel size progressively,
Hachisuka et al. [2008] ensure that the bias converges to zero, and so make the
integrator consistent.

More recently, Stochastic Progressive Photon Mapping (SPPM) introduced
by Hachisuka and Jensen [2009], also improves PPM by adding the ability of
computing radiance over a region instead of only a point. Indeed, the PPM
method was restricted to the computation of radiance at a point, rays starting
from that point progressively average the contribution of photons. The SPPM
algorithm is then capable of computing more complex ray tracing e�ects such
as depth of �eld and anti-aliasing.

Despite its robustness, the �rst output of the progressive photon mapping
(PPM) can have a strange look. In fact they tend to generate some ugly
artifacts when the number of gathered photons is too low (see Figure 1.17).
Furthermore, the algorithm is not artist friendly in our opinion, parameters

25



1.6. Global Illumination Algorithms

Figure 1.17: Artifacts of Photon Mapping when the number of photons is too
low. Rendered using Mitsuba, 2500 photons, 119 seconds on an Intel i7-4790K
8 cores CPU.

like the gathering radius kernel or the number of photons emitted, are not
adjusted easily by a VFX artist. Even though PPM performs really well in
LS+DE, it is also known to be slower than path tracing for large outdoor scenes
where most of the illumination comes from the sky. For all these reasons we
did not choose PM or PPM for our previsualization tool.

1.6.4 Many Lights

The many lights, instant radiosity, or virtual point lights (VPLs) methods
were �rst introduced by Keller [1997]. Like the PM algorithm it is a two-pass
algorithm that starts by launching rays from light sources. It stores VPLs
at each vertex of the light path instead of photons. In a second pass, every
VPL is considered as a point light source that emits light uniformly in all
directions. It then permits the reutilisation of VPLs for every surface of the
scene, decreasing memory consumption compared to the PM solution.

The many lights methods have been improved over the past decades several
times. A good overview is given by Dachsbacher et al. [2014a]. It reviews all
the techniques that make VPLs scalable. For instance when dealing with a
large number of VPLs, one can use Matrix Row Column Sampling introduced
by Ha²an et al. [2007]. Their technique uses a matrix where columns store
VPLs and rows pixels to shade. By shading only a few surfaces (rows), they
can detect the most relevant VPLs (columns). Then, after a clustering step,
they can shade all pixels with a reduced number of VPLs.

Other techniques that try to cluster the VPLs exist, such as Lightcuts
introduced by Walter et al. [2005] and the more recent Bidirectional Lightcuts
by Walter et al. [2012]. They both rely on a hierarchical tree structure that
organizes VPLs in such a way that only a small number of all VPLs is needed

26 Arthur Dufay



1. Theoretical Background

to shade pixels.
However, most of these techniques rely on Shadow Maps to compute visibil-

ity between surfaces and VPLs, which consumes a lot of memory when dealing
with a large number of VPLs. Furthermore, to support specular materials, a
lot of VPLs must be shot. In addition to that, the �rst iterations of VPL based
algorithms tend to generate "splotches" (see Figure 1.18), giving a resulting
image that is too di�erent from a �nal render image in our opinion. This is due

Figure 1.18: Artifacts of VPLs often called "splotches" due to a close distance
between a VPL and a surface.

to a 1
d2 factor, with d the distance between a VPL and the shaded surface in the

computation of the VPL contribution that generates high energy. For these
reasons, we did not consider them as a good solution in our context. However,
we will see in Chapter 5.5 that VPLs and path tracing can be combined to
take bene�t from both strategies.

1.6.5 Monte-Carlo Ray Tracing

As described in Section 1.4, Monte-Carlo ray tracing methods solve the ren-
dering equation by launching rays in the 3D scene. They can be classi�ed in
three types:

• Unidirectional ray tracing: Path Tracing (PT) and Light Tracing (LT)

• Bidirectional path tracing (BDPT)

• Metropolis light transport (MLT)

The unidirectional methods cover path tracing and light tracing. As pre-
viously explained, they are easy to implement but do not perform well with
complex light paths.

27



1.7. Conclusion

Bidirectional path tracing performs better but is harder to implement ef-
�ciently on the GPU. In certain cases, for instance outdoor scenes, it is also
outperformed by path tracing.

Finally Metropolis light transport (MLT), introduced by Veach and Guibas
[1997], is probably the best algorithm to solve complex light paths but in most
cases, it has poor performances. It is based on a mutation strategy that, once
a light path has been found tries to slightly alter it to �nd new light paths that
have a high contribution to the image. A good practical introduction to MLT
can be found in [Cline, 2005]. Due to its complex heuristic, it is on average
outperformed by both PT and BDPT.

They are in our opinion the more versatile methods, they do not require
any precomputation, except for the spatial acceleration data structure (cf.
Section 4), and are highly parallelizable. The code of a path tracer can be
well tailored to �t in the GPU (cf. Chapter 3) and is easily adapted to fully
use the GPU computation power. For all these reasons we think it is the best
algorithm in our context to solve the rendering equation.

1.6.6 Bidirectional Hybrid Algorithms

More recently some hybrid algorithms have been introduced, for instance the
Vertex Connection and Merging (VCM) by Georgiev et al. [2012a]. It is a
hybrid technique that combines both BDPT and PPM in a nice unbiased
algorithm. Although their algorithm can generate complex light paths, it is
not straightforward to implement on a GPU. Furthermore, to fully understand
their solution, one has to start by implementing a path tracer. In fact, it is a
good starting point to learn how to write GPU algorithms properly. For this
reason we started with the implementation of a path tracer, with in mind that
the next step would be a bidirectional solution like BDPT or a hybrid solution
such as VCM.

1.7 Conclusion

In this chapter we presented mathematical tools needed to render an image.
We also reviewed the di�erent Computer Graphics methods to solve the render-
ing equation and to compute global illumination. Based on what we presented,
the path tracing algorithm seems to be a good solution for our VFX previsu-
alization software. It is indeed a versatile, easy to setup and robust algorithm
that can ful�ll our requirements.

The industrial context of this thesis is presented in the next chapter as well
as practical Computer Science tools needed to implement our path tracer.

28 Arthur Dufay



Chapter 2

Proposed Path Tracing
Architecture in 3DCast

As previously explained in Section 1.1.1, VFX artists need a software solution
to obtain a previsualization of the VFX they are designing. This is especially
true at the lighting stage, when light sources, materials, and lighting e�ects
are set up by lighters.

This chapter is dedicated to the industrial context of this thesis. We present
here a solution that Technicolor provides to artists: the 3DCast platform (cf.
Section 2.1). This mixed reality platform is the backbone of all the work
that has been done during this thesis. It is able to render complex 3D scenes
featuring massive lighting or volumetric rendering.

Unfortunately, the 3DCast platform does not support global illumination,
hence the need to extend it with a path tracing solution described in Section 2.2
as well as the di�erent features (materials, light sources, ...) that are supported
by our rendering engine.

One crucial point for a previsualization software is interactivity. We present
in Section 2.2.4, our solution to achieve a better interactivity in our hybrid
GPU path tracer.

29



2.1. 3DCast

2.1 3DCast

At Technicolor, the VFX Interactive Synthesis Team, develops and exploits
3DCast, a mixed reality framework that enables real-time visualization of 3D
virtual worlds on networked devices such as mobile phones, tablets, desktop or
laptop PCs. It allows real-time animation and rendering of complex 3D virtual
worlds (see Figure 2.1).

Figure 2.1: Examples of interactive renderings produced with 3DCast. Left
image shows some transmittance function mapping as described by Delalandre
et al. [2011]. Right image: a complex 3D virtual world.

The topics covered by the research and engineering teams using the 3DCast
platform include: progressive meshes, procedural models, human animation,
3D interfaces, facial expressions, volumetric rendering (Figure 2.2) and massive
dynamic lighting (Figure 2.3), among others.

Figure 2.2: Volumetric rendering in 3DCast using the technique introduced by
Gautron et al. [2013].

Within 3DCast, worlds can be fetched from local drives or streamed through
heterogeneous networks, including LAN, ADSL, Wi�. Furthermore, the anima-
tion, interaction and rendering can be performed on PC clusters, workstations,
or smart-phones (i.e., heterogeneous clients). For performance reasons, only a
subset of the virtual world visible from the current viewpoint may be transmit-
ted and visualized. In this case, when navigating through the virtual world,
streaming algorithms may anticipate which elements of the environment need

30 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

Figure 2.3: Massive dynamic lighting in 3DCast.

to be streamed to the client. Hence these algorithms combine low bandwidth
consumption with high reactivity.

3DCast is a modular high-performance virtual reality platform based on an
extended X3D scene graph as well as a set of plug-ins: OpenGL scene graph
implementation, streaming of large terrains, video e�ects, etc.

Based on this description, the platform is made of three abstraction layers:

• The system layer provides generic encapsulation of system dependent
calls. This ensures the multi-OS interoperability of the platform.

• The application layer provides generic containers and tools for applica-
tion creation. It also provides some generic built-in components:

� The distributed meta scene graph and Internet protocol allow for
3D world distribution and synchronization.

� The generic scene graph renderer allows for heterogeneous 3D world
adaptive rendering (see Figure 2.4).

• The components layer conceptually regroups all the components (built-
in and "external" ones). Components can be added at compilation time
or at run-time through the use of a plug-in system provided by the appli-
cation layer. Thus, developers can quickly design their own applications
for the platform. For instance, the current component set includes:
VRML/X3D scene graph, a plug-in for large landscapes, several video
e�ects, high de�nition textures management, etc.

These built-in components provide generic data structures and algorithms for
the generated 3DCast application. They also ensure interoperability of the
"external" components.

The 3DCast platform is delivered to Technicolor clients and associated
companies, like The Moving Picture Company (MPC), as both a standalone
software and an Autodesk [2017] Maya plugin. The 3DCast renderer plugin for

31



2.1. 3DCast

Figure 2.4: Adaptive terrain streaming using 3DCast from the work of Lerbour
et al. [2010].

Maya really helps lighters by giving them a better render than the standard
Maya Viewport. It provides them a better feedback, for instance using our
contact visualization system, see Figure 2.5, that helps them to place objects
in 3DScene. This tool was published by Marvie et al. [2016].

Figure 2.5: Contact visualization in the 3DCast Maya Plugin helps in detecting missing
contacts (Right image: red rectangle) and so prevents from �oating objects (Left image:
�nal render with Mental Ray). Middle image shows the standard Maya Viewport.

Even though 3DCast can render complex lighting e�ects, it cannot com-
pute global illumination. This is a well-demanded feature by lighters at the
previsualization stage. In fact, giving them the ability to previsualize what the
�nal render can look like in a few seconds or minutes instead of a few hours
using a �nal render algorithm is a tremendous asset. The main challenge of
my PhD was to enhance 3DCast with a global illumination solution. We made
the choice of focusing on a path tracing solution because it is, in our opinion,
the most versatile global illumination algorithm that simulates light transport
without the bias that can be introduced by rasterization techniques. It is also
the solution that would give the closest result to the �nal render image, be-
cause most of the �nal render production renderer uses path tracing. Table 2.1
shows the di�erent algorithms used by some well-known production renderers.
Path tracing is still today the "gold" standard algorithm used in production
even though it does not perform well when rendering complex light paths such
as caustics as explained in Section 1.4.4. Nevertheless, bidirectional algorithms
such as vertex connection and merging by Georgiev et al. [2012a], presented

32 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

in Section 1.6.6, start to appear in production, for instance at Pixar [2017] in
their Renderman renderer. Since we chose to focus our work on path tracing,
our main goal is to make it faster using the GPU, and doing so applicable on
a lighter personal computer for previsualization of VFX.

Company Name Renderer Name Rendering Algorithms
Pixar [2017] Renderman Path Tracing - Vertex Connec-

tion and Merging (VCM)
Solid Angle [2017] Arnold Path Tracing
Chaos Group [2017] V-Ray Path Tracing
NVIDIA [2017b] Mental Ray Path Tracing

MaxwellRender [2017] Maxwell Hybrid of Bidirectional Path
Tracing and Metropolis Light
Transport

Table 2.1: Some of the most used production renderers for VFX with their corresponding
rendering algorithms.

2.2 Path Tracing in 3DCast

We describe in this section all the path tracing features that are, in our opinion,
mandatory for a previsualization path tracing engine and thus, were imple-
mented in 3DCast during this PhD. Obviously, this is still a work in progress
and some features are lacking, they are documented as future work in Sec-
tion 2.3.

2.2.1 GPGPU

The �rst task to develop a GPU path tracer was to support General-purpose
processing on graphics processing units (GPGPU) in 3DCast. It permits to
launch any kind of computation on the GPU using computation kernels. We
will not enter in detail of the GPU compute capabilities in this section, since
Chapter 3 is dedicated to that.

Several APIs for GPGPU are available:

• Direct3D Compute Shaders

• NVIDIA CUDA

• OpenGL Compute Shaders

• OpenCL

As we did not want to be restricted to Windows users, so we rejected the
Direct3D option. At the the time we started working, OpenCL was slower than
OpenGL Compute Shaders or NVIDIA CUDA. It was mostly due to memory

33



2.2. Path Tracing in 3DCast

transfer between OpenGL context and OpenCL context, so we rejected it also.
That left us with NVIDIA CUDA and OpenGL Compute Shaders. As 3DCast
was already using OpenGL for rendering, and NVIDIA CUDA being limited to
NVIDIA graphic cards we chose to implement our prototypes using OpenGL
Compute Shaders.

With hindsight, NVIDIA CUDA would have been a better choice. In
fact, being limited to NVIDIA graphic cards is not a big issue. Further-
more, NVIDIA provides some very powerful performance analysis tools with
the CUDA framework. To this end, the pro�ling of OpenGL Compute Shaders
is still at its early stages.

2.2.2 Materials

Four BRDFs are implemented in the 3DCast Path Tracer. We think that these
four models are su�cient to represent a wide variety of materials encountered
in 3D scenes.

Normalized Phong BRDF The normalized Phong BRDF, introduced by
Lafortune and Willems [1994], whose formula is:

brdfPhong =
kd
π
× Cdiff +

ks(e+ 1)

2π
× Cspec ×

(r · ωo)e

ωi · n
(2.1)

with n the normal at the surface, ωo and ωi respectively the outgoing and
incoming vector and r the re�ection of the vector ωi over n.
e controls the shininess of the material, a small value (under 10) gives a rough
appearance to the material, whereas a large value (over 1000) gives a highly
specular appearance. kd and ks are �oating point values in [0, 1], with these

Figure 2.6: A di�use blue Phong BRDF left, gold glossy Phong BRDF right.

two parameters our Phong BRDF can represent a di�use BRDF with ks = 0
and kd ∈ [0, 1], or a specular or glossy BRDF with kd = 0 and ks ∈ [0, 1], see
Figure 2.6.

34 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

Cdiff and Cspec are respectively the di�use and specular color of the material,
both are RGB values with 8 bits per channel. Note that using RGB values
introduces some bias in the computation of the rendering equation. To avoid
that, one needs to use spectral rendering and so, to de�ne materials by a
spectrum instead of a RGB color. In our context of application, spectral
rendering is not pertinent, it would require too much computation time and
RGB colors are su�cient for the image quality we want to obtain.

A mix of di�use and glossy or specular can also be produced with kd and ks ∈
[0, 1], see Figure 2.7. To respect the energy conservation rule we have to ensure
that kd + ks 6 1.

Figure 2.7: A mix of blue di�use and specular BRDF. With kd = 0.5 and ks = 0.5.

Perfect Mirror A perfect mirror BRDF is also implemented, it can be rep-
resented as a Dirac, that re�ects light in a unique direction, the re�ected
direction of light.

brdfmirror = ks × Cspec × δ(r − ωo) =

{
ks × Cspec if r = ωo

0 otherwise.

Refractive materials Refractive materials are also handled, using an ap-
proximation introduced by Schlick [1994]:

Rschlick = R0 + (1−R0)(1− ωi · n)5

R0 =

(
n1 − n2

n1 + n2

)2 (2.2)

n1 and n2 are the indices of refraction of the two media at the interface. Rschlick

approximates the Fresnel term: it gives the ratio of re�ected/refracted light.

35



2.2. Path Tracing in 3DCast

Cook Torrance A more advanced BRDF is also implemented, the Cook
Torrance BRDF introduced by Cook and Torrance [1982]. We compute it
using the following formula:

brdfCookTorrance =
ks × Cspec × F ×G×D

4(n · ωo)(n · ωi)
(2.3)

We use it with a Beckmann distribution, where the D term corresponds to
the microfacet distribution, F is the Fresnel term and G is the geometrical
attenuation. We use a Schlick [1994] approximation for the F term. D, F and
G are computed as follows:

D =
e

(n·h)2−1

m2(n·h)2

πm2(n · h)4

G = min

(
1,

2(n · h)(n · ωo)

(ωo · h)
,
2(n · h)(n · ωi)

(ωo · h)

)
F = F0 + (1− F0)(1− (ωo · h))5

(2.4)

h is the halfway vector and computed as: h = ωo+ωi

|ωo+ωi| . The m parameter

ranges in [0, 1] and controls the roughness of the material. F0 is the material
response at normal incidence, it can be computed from the refractive index of

the material µ using the following formula: F0 =
(

1−µ
1+µ

)2

.

Importance sampling Following the equations given in Dutré et al. [2001],
importance sampling is implemented for the Phong BRDF. Samples for a dif-
fuse lobe are generated using the following cosine weighted distribution:

x = cos(2πr1)
√

1− r2
2

y = sin(2πr1)
√

1− r2
2

z = r2

(2.5)

where r1 and r2 are random numbers in the range [0, 1]. The pdf of such
random direction is pdf(θ) = 1

2π
.

For a glossy lobe, we use a sampling method proportional to the power
exponent of the BRDF:

x = cos(2πr1)

√
1− r

2
e+1

2

y = sin(2πr1)

√
1− r

2
e+1

2

z = r
1

e+1

2

(2.6)

where e is the Phong exponent, the pdf of such random direction is pdf(θ) =
e+1

cose(θ)
.

36 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

2.2.3 Light Sources

Four di�erent types of light sources are supported in the 3DCast path tracer.
They allow the setup of di�erent lighting e�ects. We present them here. As
for material colors (Cdiff and Cspec) previously de�ned, light source colors are
also de�ned as RGB color encoded with 8 bits per color channel, and so, do
not feature spectral rendering.

• Point Light: it is de�ned by its position, its color (in RGB space) and
its intensity. It represents a single point in 3D space and thus has no
equivalent in the real world. It emits the same amount of light in all
directions. Its contribution is evaluated as follows:

Lo(x,ωo) =
LightColor ∗ LightPower[W ] ∗ fr(ωi,ωo)[sr−1]

‖ωi‖2[m2]
(2.7)

where ‖ωi‖2 is the distance between the point light and the shaded point
x.

• Spot Light: in our implementation, a spot light is a point light with
one restriction. It does not emit light in all directions but only in a cone
(cf. Figure 2.8). Spot lights can also be implemented with a decay factor
over the cone, having rays farther from the main direction of the spot
light emitting less light. We did not take into account this decay factor
in our implementation.

Figure 2.8: The Mitsuba cap model from Jakob [2010]. Rendered with a copper material,
standing on a plane and lit by a spot light with no decay factor and a uniform blueish
environment light.

• Environment Light: An environment light has no position in the 3D
scene: its purpose is to illuminate the entire scene. It can be represented
as a sphere englobing the whole scene and positionned at in�nity (cf.
Figure 2.9).

37



2.2. Path Tracing in 3DCast

Figure 2.9: The mitsuba cap model, from [Jakob, 2010], with a glossy material, standing
on a plane and lit by an environment light.

• Area Light: An area light (cf. Figure 2.10) provides a closer representa-
tion of the real world, having a surface and providing smoother and more
realistic illumination. In our implementation, we consider area lights as
polygonal di�use emitters, limited to rectangular shapes. It emits the
same amount of light in all directions that have a positive scalar prod-
uct with the normal of the area light and nothing in the others (i.e., it
emits light in front of its geometry and nothing behind it). Compared
to point light or spot light sources they have the advantage of casting
nicer soft shadows and give a more realistic look. The drawback is that
they need to be sampled: multiple rays have to be sent to compute their
contribution. To solve that problem analytic solutions exist, see Lecocq
et al. [2016] or Heitz et al. [2016], but none of them take into account
visibility and occlusions.

Russian Roulette

When using Monte-Carlo path tracing, a lot of computation time can be spent
on launching rays that contribute faintly to the image. In fact, looking at the
in�nite sum of the rendering equation (cf. Equation 1.3), we see that as the
path length grows, we add samples with less and less energy because energy
gets absorbed along the path by BRDFs.

To solve that problem three potential solutions exist. The �rst one is to
limit the path length by a �xed threshold, this �ts well to the GPU but some
bias is introduced, due to energy lost by paths that would have been longer if
they were not stopped by the threshold.

Another solution is to use Russian roulette, a technique that was introduced

38 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

Figure 2.10: A statue (Hebemissin model) in a box lit by an area light on the ceiling,
casting soft shadows.

by Veach [1997]. Even though it may increase variance in some cases, it has the
bene�t of increasing the e�ciency of the Monte-Carlo integrator by keeping
a constant contribution of samples along a path. This is done by adding
a probability p for each path to be stopped at each bounce. We �x p to
the inverse of the absorption factor of the BRDF. This is a common choice
that permits to simplify the computation of the Monte-Carlo integrator. For
instance, in the case of a di�use BRDF with an absorption value of 1− kd, we
set p = 1

kd
. In the Monte-Carlo integrator, p and kd of the BRDF get canceled

out, leaving us with a constant energy along the path.

Still, using Russian roulette, paths could be very long. This is why we
opted for another solution. We combined Russian roulette with a maximum
�xed length of path. By setting this maximum value very high we minimize
the bias and still save computation time.

Tone Mapping

All our rendered images are stored using 32 bits per channel corresponding to
the OpenGL format RGBA32F. This is mandatory since our rendering algo-
rithm computes images that have unbounded �oating values. For instance, a
point light source with a power of 1000 watts that illuminates a surface with
a di�use BRDF of kd = 0.5 can lead to a pixel value of 500. Furthermore,
we compute our images iteratively. Indeed, the results of the Monte-Carlo
integrator are added at each frame, as described in Section 2.11. Hence the
need to store the results in a high precision bu�er as we do not want to loose
information. However, a typical computer screen has a limited luminance
range. It displays images with only 8 bits per channel. To display our images,

39



2.2. Path Tracing in 3DCast

a tone mapping operator converts our high dynamic range images (HDR) to
low dynamic range images (LDR). We used the following linear tone mapping
operator, that applies a gamma correction and rescales luminance:

vec3 linearToneMapping( in vec3 color , in float gammaFactor ,

in float maxDisplayLuminance )

{

// compute luminance of pixel

float lum = luminance( color );

// apply gamma correction

float gammaCorrectedLuminance = pow(lum ,gammaFactor);

vec3 result = vec3(gammaCorrectedLuminance/lum) * color;

// rescale luminance

return result / maxDisplayLuminance;

}

To compute the luminance of a HDR pixel we use the following equation from
Reinhard et al. [2008], that works for a color c in RGB space:

luminance = 0.2126 ∗ c.red + 0.7152 ∗ c.green + 0.0722 ∗ c.blue (2.8)

2.2.4 3DCast Path Tracer - Architecture Overview

Addressing the Whole GPU Memory: NV_shader_bu�er_load ex-
tension

When dealing with path tracing on GPU, each time a ray is launched to �nd
an intersection, the entire 3D scene needs to be accessible to avoid starvation
of threads waiting for geometry to test. It is worsened by slow data trans-
fer between GPU memory and CPU memory. Fortunately, NVIDIA provides
an extension to address the whole GPU memory with data pointers. The
GL_NV_shader_bu�er_load, see [Brown et al., 2010], provides a mechanism
to organize pointers and fetch any data on the GPU from a shader. Using
this, we can access all the geometry of the scene as well as its corresponding
spatial acceleration data structures, described in Chapter 4, each time a ray is
launched by a compute shader. Obviously, this works as long as the 3D scene
�ts in the GPU memory. We did not develop any out of core solution during
this thesis.

Rasterization as Primary Ray

To further accelerate computations in our path tracer we developed a hybrid
path tracing pipeline, using a G-Bu�er from a rasterization pass as the pri-
mary rays (i.e., rays starting from the camera). This pipeline is described
in Figure 2.11. Using the G-Bu�er we can start the path of our path tracer

40 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

at the surface stored in the G-Bu�er. To keep an interactive framerate the
path tracer computes paths in an iterative manner, launching only one path
per pixel per frame. At each frame, the path tracer launches rays until the
path is terminated, then its contribution is added to the image as shown in
Figure 2.11.

Figure 2.11: Our hybrid path tracing pipeline, using a G-Bu�er from a rasterization pass
to replace primary rays. Top red square shows the �rst pass that computes the G-Bu�er
using a rasterizer. Middle red square shows a pass of path tracing. Bottom blue square
shows the full algorithm composed of one pass of A and several passes of B.

However, this method has some drawbacks, for instance, we can not sim-
ulate ray traced depth of �eld. To do that we would have to replace the
G-Bu�er by a full path tracer, launching rays starting from the camera, and
therefore simulating the camera lens behavior. Using this G-Bu�er technique
also introduces some spatial bias.

Quad-Tree Pixel Sampling

When trying to compute global illumination in a complex scene, even launching
only one path or even just one ray per pixel can take several seconds on the
GPU. Thus, to reach an interactive framerate, we can compute only a subset
of the image at each frame. In fact as the launching of computation kernels on

41



2.2. Path Tracing in 3DCast

the GPU blocks any interaction that the user might have with the computer,
the computing time must be as short as possible. This is a really important
point in the context of a previsualization tool. It must give feedback to the
user as fast as possible without interrupting its work.

To reach this interactive framerate we chose to divide our image into square
tiles of 256 pixels (i.e., tiles of 16 pixels per side). At each of these 256 sub-
frames, we compute only one pixel in each tile. Note that this could have been
extended to tiles of adjustable size.

Figure 2.12: Our 256 iterations pattern for �lling a path tracing tile of 16×16 pixels.

The order in which we choose the pixel to compute at each sub-frame
follows a hierarchical structure similar to a quad-tree. For the four �rst sub-
frames, we select the four left-top most pixels in each sub-tile of 4×4. The 12
next frames: frames 5-16, compute the 12 pixels in each sub-tile of size 2×2,

42 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

and so on. This order is presented in Figure 2.12.

By doing that, we can splat the value of already computed pixels in the
tile to non-computed pixels really fast We use a simple loop that starts at the
higher resolution of the quad-tree and goes to a lower resolution until it �nds a
computed pixel, see Algorithm 2.1. Note that this algorithm splats only values
for the �rst frame, from frame 2 all the pixels in the image will be computed
at least once, so splatting will not be needed anymore.

Algorithm 2.1: Splatting algorithm for the �rst frame of our path tracer with
a tile of 256 pixels.

int i=0;

int factorSize = 1;

ivec2 texelPosition2 = texelPos;

//only four iterations with a tile of 16x16 pixels:

while(i<5)

{

//load pixel value

vec4 tempVec4 = imageLoad(indirectLightingImage , texelPos2);

//if ray has been computed

if( tempVec4.w >= 1 )

{

//use the value stored in indirectLightingImage

color = tempVec4.xyz/tempVec4.w;

break;

}

i++;

// otherwise go to next resolution

factorSize = factorSize * 2;

texelPos2 = ivec2( int(texelPos.x/factorSize),int(texelPos.y/

factorSize));

texelPos2 = ivec2( int(texelPos2.x*factorSize),int(texelPos2.

y*factorSize));

}

This splatting technique also helps us to have a quicker feedback on indirect
lighting when moving the camera or editing the scene, see Figure 2.13.

Even though this multiple frame computation improves interactivity it has
a major drawback. The computation time required to compute a full image
at 1 sample per pixel (spp) takes more time than a full image computation
at 1 spp in one frame. We think that this is mostly due to OpenGL driver
overhead and GPU cache misses. Indeed, when we split the computation of
an image into multiple sub-frames, pixels that are close to each other in image
space will not be computed at the same time with our quad-tree repartition.
These pixels tend to generate similar rays in 3D space and so have some GPU

43



2.2. Path Tracing in 3DCast

Figure 2.13: Our splatting technique to preview indirect lighting. Following the blue
arrow order, �rst image: no indirect lighting, second image: only one pixel computed in
each tile of 16×16 and splat to all the other pixels in the tiles, third image one pixel in each
tile of 8×8 computed, and last image all the pixels computed at least once.

44 Arthur Dufay



2. Proposed Path Tracing Architecture in 3DCast

Scene SPP
One-Pass 16-Pass blocks 256-Pass Quad-tree

FPS Time (s) FPS
Time (s)

FPS
Time (s)

Time Ratio Time Ratio

Siebnik 50 0.20 254.2 2.91
275.1

35.96
356.0

1.08 1.40

Interior 100 0.31 319.5 4.56
351.1

46.49
550.7

1.10 1.72

Dragon 100 1.47 67.93 18.62
85.91

128.26
199.6

1.26 2.94

Cathedral 100 0.76 131.4 10.13
157.9

65.37
391.6

1.20 2.98

Museum 50 0.14 347.9 2.11
378.9

26.82
477.3

1.09 1.37

Hairball 50 0.22 227.3 2.93
272.6

18.31
699

1.20 3.08

Table 2.2: Benchmark of several implementations of our path tracer, images of 1280x720
pixels on an NVIDIA GTX970, using three di�erent methods. The one-pass method com-
putes the image in one GPU kernel launch. The 16-pass blocks methods launches 16 passes
of GPU kernels on 1

16 of the entire image. And �nally our 256-pass quad-tree described
in Section 2.2.4 and Figure 2.12. The "Time Ratio" column shows the performance factor
over the fastest method (the one-pass method). Note how the 16-pass method as well as
the 256-pass quad-tree method decrease performance. The six test scenes are presented in
Figure 2.14.

cache coherence. The full image computation method is then more performant
than our multiple frame computation, it computes neighboring pixels in the
same GPU warp, at the same time. We conducted a benchmark to measure
the overhead of our method, results are shown in Table 2.2. We added in this
benchmark another method of �rst frame computation: the 16-Pass blocks
method, which computes the image in 16 passes on the GPU by operating on
each pass on a sub-frame of 1

16
of the entire image. This benchmark also shows

the increase interactivity we obtain using our quad-tree method (see the FPS
column).

2.3 Conclusion

We have presented in this chapter the applicative context of this thesis as well
as the features we have implemented in our path tracer. This basis helped us
to better understand the challenge of implementing a production renderer.

Obviously, there are still some features lacking, as future work for the
materials. We would like to implement any material that can be used to
simulate skin behavior, for instance using a bidirectional scattering-surface

45



2.3. Conclusion

Figure 2.14: The six test scenes for the �rst frame computation benchmark. From left
to right, top to bottom: Siebnik (80K triangles), Interior (85K triangles), Dragon (870K
triangles), Museum (1.5M triangles), Cathedral (1.01M triangles) and Hairball (2.88M tri-
angles).

re�ectance distribution function (BSSRDF).
As explained in Section 2.2.4 we can access the whole GPU memory but

we do not provide any mechanism to handle scenes that do not �t on GPU
memory. Thus some future work would be to address out of core techniques.

Finally, in Section 2.2.4, we provide a solution to obtain a better interac-
tivity in our hybrid rendering pipeline.

In the next chapters, we will further explain where the challenges were to
implement this path tracer. For instance by analyzing how to properly write
GPU kernels, and take care of potential cache misses induced by kernel code
(cf. Chapter 3). We will also see how to accelerate algorithmically ray queries
using spatial acceleration data structures in Chapter 4. Finally, we will further
increase performance of our path tracer by leveraging GPU computing power
(cf. Chapter 5) with our new decorrelation technique.

46 Arthur Dufay



Chapter 3

Kernel Implementation of Path
Tracing on GPU

To better understand our implementation choices we need to understand how
a GPU works. In this chapter, we present more in detail the GPU architecture
and how to implement a path tracer on the GPU.

In Section 3.1, we start by presenting the architecture of a modern GPU
and give the basic concepts of general-purpose processing on graphics pro-
cessing units (GPGPU). Even though our implementation relies on OpenGL
Compute Shaders, we base our presentation on the CUDA speci�cation since
they share the same philosophy and restrictions on thread assignment and
memory limitations.

Then, to review the impact on performance due to implementation choices,
we implemented two di�erent path tracers that are presented in Sections 3.4.2
and 3.4.3. Especially, we present in these sections how to split the GPU kernel,
and expose a benchmark of these two implementations on several GPUs.

Finally we describe the Fast visibility test using reversed shadow rays patent
we submitted, that helps to accelerate shadow-ray queries in Section 3.6.

47



3.1. Introduction

3.1 Introduction

For a long time, CPU has been the main central computing unit on a com-
puter. However, since the last decade, GPUs and their huge computing power
(cf. Figure 3.1) have become more and more used as computing units. For

Figure 3.1: Rising of GPU computing power vs CPU power. Courtesy of
NVIDIA.

instance the latest NVIDIA GPU for the consumer market, the GTX 1080, has
a processing power of 7967 GFLOPS (Giga Floating point operation per sec-
ond) at single precision and 2560 cores, whereas the latest Intel CPU for mass
market, the i7-6900K has 8 cores (16 threads supported with hyper threading)
and a computing power of 819 GFLOPS at single precision. The GFLOPS for
a CPU can be calculated using the following formula:

GFLOPSCPU = #cores × core frequency (GHz) × OPC (3.1)

where OPC is the number of operations per clock cycle. For an Intel i7-6900K
the OPC rises to 16 at double precision and 32 at single precision. For a
GPU, the formula is a little bit di�erent. GPUs have the ability to compute
a mul-add, the combination of a multiplication and an addition, for instance,
a = b × c + d, in one clock cycle. They also have a dedicated mul-add and

48 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

mul hardware. The GFLOPS on a GPU can be calculated using the following
formulas:

OPCGPU = (#mul−addunits
× 2 + #mulunits

)

GFLOPSGPU = #cores × #SIMDunits
× OPCGPU × core frequency (GHz)

(3.2)

It is not surprising that highly parallelizable algorithms are now set up on
GPUs, but, to pro�t fully of the GPU computing power, one needs to take great
care when writing computing kernels. GPUs have a very peculiar architecture
that must be taken into consideration. A good introduction to GPGPU and
GPU architecture can be found in [Kirk and Hwu, 2010].

3.2 GPU Architecture

We now introduce in detail the GPU architecture and its components. We base
our presentation on the NVIDIA Kepler architecture described in [NVIDIA,
2012a] and [NVIDIA, 2012b]. Note that more recent architectures have been
introduced since: the Pascal and Maxwell architectures. However the Kepler
architecture remains su�cient to understand the main principles of the GPU.

3.2.1 GPU Cores Hierarchical Structure

Hardware Structure

An NVIDIA GPU has a hierarchical structure (cf. Figures 3.2 and 3.3). CUDA
cores are grouped into warps. Up to this day on any NVIDIA card, a warp is
always made of 32 threads. Warps are then grouped together to �ll a Streaming
Multiprocessor (SM or SMX, X stands for next generation, as opposed to the
older Fermi's architecture SM). Each Kepler SMX contains exactly 192 cores
(i.e., 6 warps). This is true for every NVIDIA Kepler GPU. To vary the number
of cores available on a card, NVIDIA varies the number of SMs. SMs are then
grouped into Graphics Processing Clusters (GPCs). The highest level of the
hierarchy, that grouped all the GPCs is the grid. Each level of the hierarchy
has its own dedicated memory or execution unit. For instance, GPCs have a
dedicated raster engine to execute core graphics functions.

.

Logical Structure

In addition to this hardware structure, there is a logical structure. When one
wants to launch a kernel computation on the GPU, one has to specify both
the number of threads and their repartition on the GPU. This is done by
specifying the number of blocks that group threads together. Thread blocks

49



3.2. GPU Architecture

Figure 3.2: A view of the NVIDIA GK110 Processor based on Kepler archi-
tecture, courtesy of NVIDIA.

50 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

Figure 3.3: A detailed view of a Kepler SMX, courtesy of NVIDIA.

51



3.2. GPU Architecture

are also called workgroups. A memo of the terminology used by CUDA is
given in Table 3.1.

GPGPU ensures that threads inside a block will be executed together.
Thanks to that, some synchronization barriers can be used inside a group. On
the contrary, there is no synchronization scheme available for the whole grid,
and no assumption can be made on the order in which groups will be executed.

Blocks also allow the use of shared memory, for fast data access and reuti-
lization of data across several threads. After the number of blocks and their
size have been speci�ed, the GPU will distribute the blocks on the SMs. Note
that all the blocks have the same size. Several blocks can be assigned to one
SM as long as the resources available on that SM satisfy the resources needed
by the block.

Thread Lightweight process, to be executed in parallel
SIMT Single Instruction Multiple Threads, see Flynn

[1972] taxonomy
Workgroup/Block Logical structure that groups threads together
Warp Group of 32 threads executed in an SIMT manner
SM Streaming Multiprocessor, physical structure that

executes one or more Workgroups
SMX New generation SM
GPC Graphics Processing Cluster, physical structure

that groups SMs together
Grid Whole set of threads that execute the kernel, con-

tains one or more Workgroups
Kernel Set of instructions: code to be executed on the GPU

by the Workgroups
SFU Special function unit, executes speci�c functions

(cosinus, log, ...)
ALU Integer Arithmetic Logic Unit
FPU Floating Point Unit

Table 3.1: Terminology of the CUDA programming language.

3.2.2 GPU Memory Layout

As shown in Figure 3.4, the memory layout inside a GPU is also hierarchical.
It goes from fastest to slowest in this order (numbers are given for the Kepler
GK104 and GK110):

• Registers 65,536 32-bit, i.e., 64KB per SM

• L1 cache + Shared Memory 64KB and Read-Only Data Cache 48KB per
SM, low latency (10-20 cycles), very high bandwidth 1.5-2.5 TB/s

52 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

• L2 cache 1536KB on Kepler GK110, 512 KB on Kepler GK104, medium
latency (100-300 cycles), high bandwidth ≈ 750 GB/s

• GRAM (also called DRAM) 3GB-6GB on Kepler GK110 high latency
(400-800 cycles), low bandwidth ≈ 250GB/s

It starts with the lowest layer the registers. Registers are used to store
automatic scalar (non-array) variables. Each thread has a private copy of
these scalar variables. Array variables are stored in global memory (GRAM or
DRAM), which make them slower to access. In some cases, when using �xed
size array, the compiler may decide to store an array into registers. The L1
cache also stores the shared memory for the workgroup. On top of that, an
L2 cache stores temporarily accessed variables for the grid. Finally, GRAM
stores all the data that may be accessed in a kernel code.

Figure 3.4: NVIDIA general GPU memory architecture

3.3 GPU Limitations

Even though GPUs have a tremendous computing power, they have several
limitations (see below) that must be taken into account.

3.3.1 Memory Access Bottleneck

Memory access is a major bottleneck when using GPGPU. The performance
of a kernel execution directly depends on the presence or not of data in the
cache. In fact, registers and L1 cache are really fast compared to L2 cache
or the even slower GRAM. When a kernel tries to access some data that is
not present in the cache, a long fetching operation moves this data from L2
or GRAM to L1 cache. As threads work in parallel inside a warp, increasing
the number of memory fetches directly impacts performance. An algorithm

53



3.3. GPU Limitations

that makes the threads work on the same data performs better than one that
accesses totally random data.

3.3.2 Register Size Limitation

Another limitation that appears in GPGPU is the number of registers. When
there are not enough registers available to ful�ll kernel requirements, the SMX
reduces the number of blocks running in parallel.

Take for example the Kepler GK104. It can have at maximum 2048 threads
per SMX, and 1024 threads per block. The register size for its SMX is 65536
(65K) of 32-bit registers, and the number of registers available per thread (if
the SMX is fully utilized) is 65536

2048
= 32. If one uses computing blocks of

1024 threads, with 32 registers per thread, the number of threads that can
be executed concurrently will be 2048, (i.e., 2 blocks of 1024 threads). Now,
with the same thread repartition, if the registers used per thread is increased
to 33, there would not be enough registers for 2048 threads to work in parallel
on an SMX. The number of concurrent threads will be reduced. Since the
reduction in the number of concurrent threads running on a SMX is done at
block granularity, in this example, the number of concurrent threads will be
reduced from two blocks per SMX to one block per SMX. Only 1024 threads
will run in parallel, leading to a 50% of SMX utilization. In this example to
increase SMX utilization, the block size must be reduced.

Great care must be taken on the register utilization and the repartition of
threads on the grid. This high variation on SMX occupancy shown in the last
example happens at some threshold on the number of registers. A good tool
to compute the best thread repartition is provided by NVIDIA, the CUDA
Occupancy Calculator (cf. [NVIDIA, 2017a]).

3.3.3 Kernel Branching

The Single Instruction Multiple Threads (SIMT) nature of the GPU also im-
poses some constraints. The GPU executes the same instruction for all the
threads. It means that, when using an if-else statement, if at least one thread
needs to execute the if-then part, all the threads will execute it with it. Ob-
viously, the same rule applies for the else part. In the case of a for-loop, it is
even worse, since all the threads run the loop as long as one thread still needs
to run it. This particularity can lead to poor performance. Kernel code with
a lot of branching can lead to long execution times. To counter this e�ect,
several solutions exist. One can, for instance, reduce branching by rewriting
the code. Another alternative is to split the kernel code (at the branching
point) in several sub-kernels. Then the thread pool is split on the CPU to
execute the corresponding sub-kernels code on the GPU.

54 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

3.4 Path Tracing Implementation on the GPU

The path tracing algorithm may look like a simple algorithm as presented in
Algorithm 1, but its e�cient implementation on the GPU can be tedious. Sev-
eral variants of path tracing are presented and well studied in [Davidovi£ et al.,
2014]. In this section, we present some of them and explain from where per-
formance di�erences between them might come from. We start by explaining
path regeneration principle. Then, we present the two implementations of our
path tracer and give a benchmark to compare them.

Algorithm 1 Pseudo code of Path Tracing using a GBu�er for primary rays.
1: for all pixels in Image do
2: for i=0 to nbSamples do
3: //retrieve starting surface (primary ray) from GBu�er
4: surface = surfaceFromGBu�er( pixel )
5: for numBounce = 0 to maxBounces do
6: //generate ray using BRDF importance sampling
7: path.generateRay( surface )
8: //ray trace
9: hit = path.closestHit()
10: if hit then
11: surface = hit.surface
12: //choose one or more light source(s) and trace a shadow
13: //ray to add its contribution (next event simulation)
14: path.addLightContribution(surface)
15: if stopOnRussianRoulette(path) then
16: break;
17: end if
18: else
19: //stop the loop, the contribution of the background of
20: //the scene such as an environment map can be added here
21: break;
22: end if
23: end for
24: //add the contribution of the path
25: pixel.addPath( path )
26: end for
27: end for

3.4.1 Path Regeneration

When dealing with path tracing on the GPU, one has to face the sparse warp
problem: not all threads in a warp are active. This problem comes from both

55



3.4. Path Tracing Implementation on the GPU

the Russian roulette and the possibility that a path may terminate when it
leaves the scene. In both cases, there is a divergence in the length of the
paths in the warp. With each thread having its own path to process, the warp
occupancy drops as the path length grows.

Novák et al. [2010] introduce the path regeneration technique, which con-
sists of reassigning a new path to the terminated threads. This strategy main-
tains a 100% warp occupancy. However, as stated by van Antwerpen [2011],
this strategy has two main drawbacks. First, during the regeneration phase,
there is a code divergence: only threads that need a new path need the regen-
eration phase. Secondly, it leads to a divergence in the bounce state of the
threads inside a warp, i.e., inside a warp, a thread might be computing the
third bounce of path while another might be on the �rst bounce. This bounce
state divergence breaks the primary ray coherence and results in a performance
drop. This is even true for secondary rays (paths at their �rst bounce) that
still have some potential coherence when leaving a �at surface, and especially
using our decorrelation technique presented in Section 5.4.

To counter this e�ect, van Antwerpen [2011] proposes a stream compaction
in addition to the regeneration. It consists of removing all terminated paths
from the stream of threads. The stream of threads is then compacted and
the removed samples use the regeneration and are placed at the end of the
stream. By doing so, the regenerated samples are executed in the same warp,
and SIMD e�ciency remains high.

3.4.2 First Implementation - Single Kernel Path Tracing

We now present here our �rst implementation of our GPU path tracer. All the
code is written in one GPU kernel, presented in Algorithm 2. In this version
we did not use regeneration, nor stream compaction. This implementation
was a good starting point for our GPU path tracer. It is quite similar to the
naivePTsk by Davidovi£ et al. [2014].

3.4.3 Multiple Kernels

Even though the previous algorithm (cf. Algorithm 2) using a single kernel
was already giving good performance, we wanted a more �exible pipeline for
our GPU path tracer. Indeed, according to Laine et al. [2013], a path tracer
implemented on the GPU as one megakernel, is harmful to performance. To
solve that problem, they propose a wavefront approach. Using their solution
the GPU path tracer is then cut in multiple kernels. They also sort paths on
the di�erent materials they encounter, and execute a dedicated GPU kernel for
each material. This method improves performance when dealing with complex
materials, such as car paint which is composed of several layers, and makes it
hard to evaluate.

56 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

Algorithm 2 Path Tracing using a single kernel on the GPU. The grid di-
mensions match the image dimensions (i.e., there is a 1-to-1 mapping between
pixels and threads). The kernel is invoked N times to compute N paths.

1: result = vec3(0,0,0)
2: energy = vec3(1,1,1)
3: //setup secondary ray from GBu�er
4: //a surface contains the starting point, normal and material
5: fetchGBu�er(pathNum, threadID, surface)
6: for bounce = 0 to maxNumberOfBounces do
7: //Update brdf and pdf value according to a new random ray direction
8: sampleBRDF(pathNum, threadID, surface, ray, brdf, pdf)
9: if closestHit(ray) then
10: surface = getSurfaceHit(ray)
11: //next event estimation
12: incomingRadiance = sampleOneLight(ray,surface)
13: if russianRouletteTermination(material) then
14: //Stop bounce loop
15: bounce = maxNumberOfBounces
16: end if
17: else
18: incomingRadiance = sampleSkydome(ray)
19: //Stop bounce loop
20: bounce = maxNumberOfBounces
21: end if
22: energy *= brdf * pdf
23: result += incomingRadiance * energy
24: end for
25: storePathInImage(result)

57



3.4. Path Tracing Implementation on the GPU

Following that philosophy, we decided to implement a multiple kernel ver-
sion (see Algorithm 3). It is composed of three GPU kernels.

• The sampling kernel (A)

• The ray tracing kernel (B)

• The accumulation kernel (C)

Kernel A, depending on the BRDF of the current ray starting surface, uses
importance sampling to generate a new ray direction. It also features the path
regeneration, in case the path was terminated by a previous call of Kernel
C. Kernel B, launches a ray to �nd the next closest intersection. If needed,
a shadow ray is shot to account for next event estimation (see Section 1.4.3).
Kernel C is responsible for the Russian roulette termination criterion, as well
as storing the path in the rendered image.

This implementation scheme is quite similar to the RegenerationPTmk de-
scribed in Davidovi£ et al. [2014]. It has several advantages for our previsual-
ization tool. First, if the ray tracing step in Kernel B takes too much time
to compute, due to too complex geometry, we can easily do it in several passes
to prevent the GPU from blocking user interaction.

We can also follow the Laine et al. [2013]'s idea, and replace Kernel A
by several dedicated kernels based on the material to compute more complex
BRDFs and importance sampling techniques.

In comparison to the single kernel implementation described in Section 3.4.2,
this version gives us a faster framerate. Indeed, the pipeline computes only a
single bounce of the path at each frame, giving a faster feedback.

We also avoid several pitfalls of the GPU using this implementation scheme.
First, the number of registers used is smaller (cf. Section 3.3.2), and the
number of instructions per kernel is also reduced. Secondly, by using di�erent
Kernel A based on the material type we can reduce the kernel branching (cf.
Section 3.3.3).

58 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

Algorithm 3 Path Tracing using three kernels on the GPU. The grid dimen-
sions match the image dimensions (i.e., there is a 1-to-1 mapping between
pixels and threads). The kernel is invoked N times to compute N paths.

1: Kernel A
2: //Setup path state from bu�er, regenerate path from GBu�er if needed
3: fetchState(threadID, pathNum, surface, energy, bounceNum)
4: //Update brdf and pdf value according to a new random ray direction
5: sampleBRDF(pathNum, threadID, surface, ray, brdf, pdf)
6: energy *= brdf * pdf
7: storeState(ray, surface, pathNum, bounceNum, surface, energy)

8: Kernel B
9: fetchState(threadID, surface, ray)
10: //Compute intersection and store result
11: closestHit(ray)
12: storeState(ray)
13: if closestHit(ray) then
14: surface = getSurfaceHit(ray)
15: //Next event estimation
16: incomingRadiance = sampleOneLight(ray,surface)
17: bounceNum += 1
18: else
19: incomingRadiance = sampleSkydome(ray)
20: //Stop path
21: bounceNum = maxNumberOfBounces
22: end if
23: storeState(ray,surface,incomingRadiance,bounceNum)

24: Kernel C
25: fetchState(pathNum, threadID, surface, energy, incomingRadiance, boun-

ceNum)
26: if russianRouletteTermination(material) then
27: //Stop path
28: bounceNum = maxNumberOfBounces
29: end if
30: storeState(ray,surface,incomingRadiance,bounceNum)
31: storeSubPathInImage(incomingRadiance * energy)

59



3.5. Benchmark

3.5 Benchmark

We present here (cf. Tables 3.2, 3.3, 3.4 and 3.5) a benchmark on the two
implementations of the GPU path tracer we presented in the last sections. All
these benchmarks were done with a 1280× 720 pixels viewport. A maximum
of 7 bounces was used, except for the San Miguel scene in Tables 3.4 and 3.5.
This benchmark was done in two phases. A �rst time, before we implemented
the Russian roulette in our path tracer, on a GTX 970 (Maxwell) and a mobile
Quadro K4000M (Kepler). Later, after having added the Russian roulette, on
a GTX 570 (Fermi) and a GTX TitanX (Maxwell). If we would have been able
to redo the benchmark with the Russian roulette on the GTX970 and Quadro
K4000M we would more than probably have measured a better performance
gain using the multiple kernel implementation.

Scene # Triangles # SPP Time (s) Acceleration
SK MK factor

Cornell Box 3 cubes 48 500 54.5 328.6 0.166
Cornell Box Ring 492 100 20.37 68.92 0.296
Cornell Box Statue 63,970 100 17.87 68.12 0.262
Sponza 67,414 100 338 176.38 1.92
Interior Scene 85,324 100 250.3 140.3 1.78
Cornell Box Dragon 871,426 100 54.97 77.44 0.71
Cathedral 1,013,732 100 109.6 63.1 1.74
Museum 1,436,926 100 569.3 265.9 2.14
Rungholt 6,704,264 100 331.36 156.98 2.11

Table 3.2: Comparison of two path tracing implementations on an NVIDIA GTX 970
(Maxwell architecture).

Scene # Triangles # SPP Time (s) Acceleration
SK MK factor

Cornell Box 3 Cubes 48 500 30.14 29.44 1.02
Cornell Box Ring 492 100 48.19 38.53 1.25
Cornell Box Statue 63,970 100 44.85 34.53 1.30
Sponza 67,414 100 1076 759.4 1.42
Interior Scene 85,324 100 633.8 427.3 1.48
Cornell Box Dragon 871,426 100 129.8 86.52 1.50
Cathedral 1,013,732 100 297.6 200.6 1.48
Museum 1,436,926 100 1566 1091 1.44
Rungholt 6,704,264 100 683.7 536.3 1.27

Table 3.3: Comparison of two path tracing implementations on an NVIDIA Quadro
K4000M (Kepler architecture).

60 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

Scene # Triangles # SPP Time (s) Acceleration
SK MK factor

Interior Scene 85,324 100 226.35 159.95 1.42
Cornell Box Dragon 871,426 100 86.30 73.69 1.17
Cathedral 1,013,732 100 108.88 78.10 1.39
Museum 1,436,926 100 480.17 358.19 1.34
Rungholt 100 Lights 6,704,264 100 342.45 207.26 1.65
San Miguel (3 bounces) 10,495,071 100 636.86 452.46 1.67
San Miguel (7 bounces) 10,495,071 100 1016.50 609.72 1.41

Table 3.4: Comparison of two path tracing implementations on an NVIDIA GTX 570
(Fermi architecture).

Scene # Triangles # SPP Time (s) Acceleration
SK MK factor

Interior Scene 85,324 100 40.36 91.33 0.44
Cornell Box Dragon 871,426 100 17.78 59.82 0.30
Cathedral 1,013,732 100 18.56 47.06 0.39
Museum 1,436,926 100 80.22 117.72 0.68
Rungholt 100 Lights 6,704,264 100 71.43 92.65 0.77
San Miguel (3 bounces) 10,495,071 100 125.64 164.59 0.76
San Miguel (7 bounces) 10,495,071 100 200.97 179.24 1.12

Table 3.5: Comparison of two path tracing implementations on an NVIDIA GTX TitanX
(Maxwell architecture).

As expected the multiple kernel option is pro�table. However, its interest is
limited by several factors. First, on more recent GPU architectures (Maxwell)
the performance gain is smaller than on older ones (Kepler and Fermi). This
is due to an augmentation of cache performance, both in size and speed, on
recent architectures by NVIDIA. Secondly, on bigger GPUs (more computing
kernels) like the GTX TitanX, the performance gain is noticeable only for the
largest scene (San Miguel).

However, in these test scenes, only a basic Phong shading was tested. We
truly believe that we would have a much more pro�table gain using the multiple
kernel option with more complicated materials.

We also think that Kernel B can be optimized, by ray sorting or another
option. In that sense, in the next section, we present a patent we submitted
to further increase shadow ray queries.

61



3.6. Reverse Shadow Ray

3.6 Reverse Shadow Ray

3.6.1 Technical Problem Solved by the Invention

As presented in Section 1.4.3, to increase path tracing e�ciency a direct con-
nection to a light source is done at each bounce of the path. However, as
the light source is randomly chosen, this leads to a potential shadow-ray di-
vergence. Indeed, GPU threads working in the same warps are gonna try to
connect their respective path to di�erent light sources.

Our solution helps to reduce computing time in the light sampling stage in
path tracing engine. It is based on a reversed shadow ray technique, and helps
to get a better coherency between shadow rays computed in the same GPU
warp.

3.6.2 Proposed Solution

Instead of launching light visibility rays from the surface to the light, we launch
it from the light to the surface. Since those rays are just visibility rays, they
only need to return if there is an intersection between two points in 3D space,
the light source and the surface being lit, so the orientation they took does not
matter.

3.6.3 Reverse Shadow Rays

By doing intersection query in reverse order we improve ray coherency because
rays computed in parallel on the GPU will start from roughly the same point
in 3D space. In other words the possible ray start position from a light source
is greatly reduced compared to a classic light ray query when rays can start
from any surface in the 3D scene.

3.6.4 Clustered Shadow Rays

To improve performance we cluster shadow rays by light source origin. By
doing that, all the threads in a GPU warp will compute shadow rays starting
from the same light source. This clustered solution can be done using several
methods such as a fast GPU reduction over a bu�er containing ray queries. An
example is given by van Antwerpen [2011] (referred to stream compaction).

3.6.5 Clustering Algorithm

We consider a 2D grid of threads mapped to 2D grid pixels of the image.
We consider a 2D bu�er as the light sampling bu�er, also mapped on the
computing grid and the image grid. Each thread in the computing grid will be
responsible of computing a path for a pixel. At each bounce along the path, the

62 Arthur Dufay



3. Kernel Implementation of Path Tracing on GPU

next event estimation will randomly choose a light and store its index in the
light sampling bu�er. One can reduce the light sampling bu�er into N small
bu�ers, N being the number of light sources potentially chosen by the path
tracer, and then compute reverse ray queries on those N bu�ers to solve the
visibility between sampled light sources and surfaces. This clustered method
is described in Figures 3.5 and 3.6.

Figure 3.5: Our reverse shadow ray technique launches rays from light sources
to surfaces (red arrows).

Figure 3.6: A light sampling bu�er is constructed, aligned with the image grid.
Then, it is split in smaller bu�ers to regroup shadow rays per light source.

3.6.6 Advantages of the Method

This method is compatible with any ray tracing system or deferred rendering
engine. It is easy to implement and gets faster path tracing without any change
to the sampling strategy.

63



3.7. Conclusion

3.7 Conclusion

We have presented in this chapter two di�erent implementations of a GPU path
tracer and review their respective performance. Even though the constant in-
crease in both speed and size of the GPU memory cache limits the potential
gain in performance of the multiple kernel implementation, we believe that it
is still a good option since the increasing complexity of 3D scenes will counter-
balance it. Once again, a more complex surface material than the one we used
in our test scenes would have exposed a more pro�table performance gain. As
future work, we would like to implement the stream compaction technique of
van Antwerpen [2011]. On a wider �eld of research, we would also like to in-
vestigate on automatic procedures to implement kernels according to the GPU
used.

We also presented our patent Fast visibility test using reversed shadow rays,
designed to increase the e�ciency of shadow ray queries in ray tracing appli-
cations. Unfortunately, in our industrial context, it did not result in any ray
tracing performance improvement. This is due to a too important platform
overhead and an impossibility for us to measure precisely where the caveats of
our implementation were. We still believe that it can be a pro�table option for
simpler platforms, and even more using CUDA instead of OpenGL Compute
Shaders to �nely adjust kernel implementation.

We have demonstrated in this chapter that the consideration of thread
repartition, as well as their cache fetching operations, is directly a�ecting ray
tracing performance. In the next chapters we will see how to further increase
performance, algorithmically by using dedicated data structures (cf. Chap-
ter 4), and on focusing on sampling strategies (cf. Chapter 5).

64 Arthur Dufay



Chapter 4

Analysis for an Adequate Spatial
Acceleration Data Structure

Since path tracing requires a huge amount of rays to be launched in the 3D
scene and thus many ray-mesh intersection tests, it is "mandatory" to orga-
nize the scene 3D geometric data in an adequate data structure prior to the
rendering stage. In Computer Graphics, many structures known as spatial ac-
celeration data structures (SADS) have been introduced over the past decades.
These data structures help to reduce the number of ray-triangle intersection
tests by partitioning triangles into subsets of the 3D scene. Theoretically, they
can reduce the complexity of the ray-triangle intersection problem from O(N)
to O(log(N)) at best, N being the number of triangles of the scene. In this
thesis context, we have to be even more careful on this aspect since ray queries
can represent up to 95% of the computing time on the GPU for a complex scene
(containing several millions of triangles). The last 5% is taken by sampling
and shading.

We review the four main SADS in Section 4.1, to identigy the most �tted for
our path tracer. Then in Section 4.2, we compare kd-tree and BVH to further
argument the choice we made in our path tracer. After that, we describe how
we implement our traversal algorithms on the GPU (cf. Section 4.3). Finally,
we propose a solution for some noticeable performance gain by encoding a part
of the traversal algorithm using a roped-BVH in Section 4.3.2.

65



4.1. Overview of Spatial Acceleration Data Structures

4.1 Overview of Spatial Acceleration Data Struc-

tures

4.1.1 Uniform Grid

The uniform grid was introduced by Fujimoto and Iwata [1985]: it subdivides
space regularly, having a unique size of cells. This is the simplest SADS. It is
easy to implement and the number of cells is fully controlled by the user, by
specifying the size of the cell and knowing the 3D scene extent.

Intersection

Intersecting a uniform grid is pretty straightforward, one just needs to intersect
each cell along the ray in a "closest to farther" cell order. Once an intersecting
cell is found, all triangles belonging to that cell are tested for intersection. The
uniform grid accelerates ray tracing performance by avoiding intersection test
with all triangles contained in cells not intersected by the ray, or farther than
the closest triangle intersected.

Limitations

A uniform grid does not adapt to the topology of the scene, thus, leading to an
unoptimized memory usage, especially for sparsely distributed geometry See
red rectangles in Figure 4.1.

Figure 4.1: A uniform grid. The red rectangles show memory waste and unoptimized
subdivision leaving to unnecessary traversal.

It also leads to large memory consumption. A triangle can be present in
multiple cells, thus consuming memory by referencing this triangle multiple
times. This limitation is a large one for use on the GPU.

66 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

4.1.2 Octree

The octree was introduced simultaneously by two researchers, Hunter [1978]
and Reddy and Rubin [1978]. It is similar to the uniform grid but adds the
potential of having di�erent cell sizes, reducing the empty space subdivision
seen with the regular grid. The process of creating an octree is similar to the
uniform grid, it starts by de�ning a starting cell size, then it subdivides each
nonempty cell until it reaches a minimum cell size threshold or a minimum
number of triangles contained in the cell threshold. The octree cells are stored
in an octonary tree, each cell containing 0 or 8 child nodes. A subdivided cell
is always split at the middle of each of its three axes X Y Z.

Figure 4.2: Left: 2D example of an octree, called a quadtree. Right: 3D example of an
octree.

Intersection

The intersection process for an octree is the same as that for a uniform grid,
adding the step of going down in the hierarchy of cells when the ray intersects
a cell that has been subdivided by the octree creation process.

4.1.3 KD-Tree

Kd-trees were introduced by Bentley [1975]. To date, they are, with BVH the
most used acceleration data structures due to good ray tracing performances.
We give a comparison between these two structures, based on the article by
Vinkler et al. [2016] in Section 4.2. However, they su�er from a high construc-
tion cost, due to the di�culty of �nding the split planes that subdivide voxels,
and a high memory consumption.

A kd-tree is, like an octree, a space partitioning structure, but stored as a
binary tree. Each node of the tree can contain 0 or 2 child nodes. A kd-tree
divides the space with planes perpendicular to one of the coordinate system

67



4.1. Overview of Spatial Acceleration Data Structures

axes X Y Z. A split plane might cut some triangles, so a kd-tree needs to store
multiple references to triangles that fall in multiple nodes. This leads to a
potential high memory consumption.

Figure 4.3: Kd-tree examples in 2D (left) and 3D (right).

Construction

Spatial median split plane. A simple construction method for a kd-tree is
to choose alternatively each axis for the split plane, and set the split position
at the median of the current node. This naive construction scheme referred as
spatial median splitting does not produce the best trees but is often chosen for
its low computation cost.

The Surface Area Heuristic. Many construction heuristics have been in-
troduced to build kd-trees: most of them rely on a metric introduced in 1990
by MacDonald and Booth [1990], the Surface Area Heuristic (SAH). They
make the observation that the number of rays likely to intersect a convex ob-
ject is roughly proportional to its surface area, assuming that ray origins and
directions are uniformly distributed in 3D space, which is the case in our ray
tracing scenario. The SAH is computed as follows:

SAH =
∑

n∈Nodes

SA(n)

SA(root)
× Ci +

∑
l∈leafnodes

SA(l)

SA(root)
× Ct (4.1)

with:

Ct: cost of intersection ray-triangle

Ci: cost of intersection ray-node (only the box)

SA(root): surface area of the whole tree

68 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

An optimal kd-tree would be the one that minimizes the SAH for a scene.
However it is impossible to compute all the possible trees for a scene, so, most
kd-tree construction algorithms rely on a local and greedy approximation that
also acts as a termination criteria, computed as follows:

SAHlocal = Ct × Tnode −Ci +Ct ×
(
SA(Left)× Tleft

SA(node)
+
SA(Right)× Tright

SA(node)

)
(4.2)

where Left and Right are the potential left and right child of the node if it is
split, and with:

Tnode: number of triangles in the node

Tleft: number of triangles in the left child node

Tright: number of triangles in the right child node

A positive SAHlocal means that the intersection cost of all triangles in the
node is superior to the cost of intersecting a sub-tree composed of the left and
right children of this node, and so the node must be split. Most of the SAH-
based kd-trees also add a minimum number of triangles contained in a node,
so a node must ful�ll two conditions to be split: having an SAHlocal > 0 and
enough triangles. The Ci and Ct are empirical values that are implementation
dependent.

Even though, the local SAH is not su�cient to construct an optimal kd-tree
e�ciently, because at the construction of each node, several split planes that
generate di�erent potential sub-tree and so di�erent local SAH costs exist.
Finding the best split plane in an a�ordable computing time is not trivial
and we do not address this problem in this thesis. A good solution has been
introduced by Wald and Havran [2006]. They start with a naive approach
that builds a kd-tree in O(N2), then re�ned it to a O(N log2N) complexity by
sorting the triangles at each recursive call of the kd-tree construction. Finally,
by using a presorting step, they reach O(N logN) complexity which is the
asymptotic lower bound. It is proven easily that O(N logN) is the lower
bound for a SAH kd-tree construction. Let N be the number of triangles and
T(N) the cost of building a tree composed of N triangles. If we assume that a
split plane divides N triangles into two bins of N

2
triangles, and that the cost

of �nding such a plane is in O(N), the equation below proves this lower bound.

T (N) = N + 2T

(
N

2

)
+ ...+ 2log(N)T

(
N

2log(N)

)
=

log(N)∑
i=1

2i
N

2i
= O(N log(N))

(4.3)
However, the fast construction of an e�cient kd-tree is not trivial. A

solution has been proposed by Wu et al. [2011]. Their method can produce
high-quality kd-trees using an SAH-based construction, and is optimized to
run on the GPU. However, the construction time with their method is still too
slow to consider reconstructing the kd-tree at each frame.

69



4.1. Overview of Spatial Acceleration Data Structures

Traversal on GPU

In this thesis and in our path tracing implementation we focus on BVH, see
Section 4.1.5. We did not design any particular algorithm for kd-tree traversal
on GPU. For a stackless kd-tree traversal on GPU, one can take a look at
the work of Popov et al. [2007], in which they adapt an existing stackless
traversal algorithm for kd-tree to the GPU and give a CUDA implementation
that achieves good performance.

4.1.4 BSP-Tree

The term BSP-Tree refers to Binary Space Partitioning tree. BSP-Trees gen-
eralize kd-trees by adding the capability of the split plane to be oriented arbi-
trarily.

Figure 4.4: BSP-Tree.

Due to their complex topology and high combinatorial construction process,
they are not really practical for ray tracing applications on the GPU.

4.1.5 BVH

All SADS previously introduced in this document are space partitioning struc-
tures. Another class of SADS is object partitioning structures: their construc-
tion process relies on a hierarchical object representation. Bounding Volume
Hierarchy (BVH) belongs to this family.

A BVH is stored as an N-ary tree, each node containing 0 or N pointers
to its children nodes. In this thesis, we focus on binary tree BVHs. Each
node that does not have any child is a leaf node. To minimize the impact on
memory, we store references to triangles only in the leaf nodes.

70 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

Memory and node boundaries

Since BVHs do not split triangles, except for some peculiar, more advanced
BVH that we will introduce later, they have the property of being bounded
in the number of nodes and depth. Furthermore, for a BVH containing N
triangles, the worst case is a "left or right comb": a BVH having all its leaf on
left or right, as shown in Figure 4.5.

Figure 4.5: A right side comb shaped BVH.

For a binary BVH containing N triangles, its maximum depth is N and its
maximum number of nodes is 2N -1. This nice property is more than appre-
ciable for a GPU path tracer, where, currently, memory is more limited than
on a CPU.

Construction

To construct our BVH, we rely on the SAH introduced in Section 4.1.3. We
�x the minimum of triangles in a leaf to six, Ct = 1.0 and Ci = 2.4. As
these parameters really depend on the implementation of the BVH traversal,
a lot of di�erent values can be found in the literature. For instance [Aila and
Laine, 2009] use a minimum of eight primitives with Ci = 1.2 and Ct = 1.0,
whereas [blender.org, 2017] uses a minimum of one primitive with Ci = 1.0
and Ct = 1.0.

We do not build a unique BVH for the whole 3D scene, but a BVH for each
di�erent geometry present in the scene. We do take care of multiple instances
of geometries, allowing them to reference a unique BVH. By doing so we can
easily move objects in the scene without any reconstruction of the SADS. This
method has some drawbacks, as it leaves us with as many BVHs as di�erent
geometries in the 3D scene. To counter that, we could build a unique BVH

71



4.1. Overview of Spatial Acceleration Data Structures

over the whole set of triangles of the 3Dscene. It is equivalent as considering
the 3D scene as a unique geometry. But, this would force us to add a reference
to a material for each triangle. By having di�erent geometries, and using an
instance system, we can assign a material to a whole object. An object is a
set of a material, a model matrix and a reference to a geometry.

Meta-BVH

We tried to add a meta-BVH over this �at hierarchy of BVHs, to better or-
ganize the scene. Our meta-BVH is built using the same heuristic than our
BVH. Instead of containing triangles its nodes reference object BVHs. Unfor-
tunately, as presented in Table 4.1, results were not conclusive. The advantage
of our meta-BVH was noticeable only in pathological cases like the multiple
dragon scene presented in Figure 4.6.

Scene # Triangles / Million Rays/s Acceleration
# Objects Meta-BVH OFF/ON factor

Plane Dragons 872,285,416 / 1002 0.4 / 0.84 2.104
Interior Scene 85,324 / 109 0.89 / 0.94 1.05
San Miguel 10,495,071 / 253 0.27 / 0.23 0.843

Table 4.1: A path tracing benchmark with and without our Meta-BVH on an NVIDIA
GTX Titan X. All scenes were rendered with a max path length of 3 indirect bounces,
performances measured on indirect lighting bounces only. The Meta-BVH is pro�table in
pathological cases only, like the Plane Dragons scene.

Figure 4.6: The three test scenes for the Meta-BVH benchmark. From left to right:
San Miguel (10M triangles 253 objects), Interior Scene (85K triangles 109 objects), Plane
Dragons (872M triangles 1002 objects).

This is mostly due to the repartition of objects in the scene. In the San
Miguel scene for instance, there are 253 objects which have bounding boxes
with an extent that covers the whole scene, leading to 253 huge bounding
boxes. Obviously, adding a Meta-BVH to such a chaotic scene hierarchy does
not improve performance.

In conclusion, this Meta-BVH heuristic, to be e�cient, needs an algorithm
that reorganizes the scene hierarchy and creates or merges objects.

72 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

4.2 Performance Comparison Between KD-Trees

and BVH

The performance di�erences between BVH and kd-trees have been well studied
by Vinkler et al. [2016]. They studied the ray tracing performance of these two
SADS on the GPU over 16 di�erent scenes with a wide diversity of geometry
complexity. This study proves that BVH performs better on scenes with small
to medium sizes (80K triangles to 7M triangles). For larger scenes, kd-trees
perform better. This is mostly due to the duplication of triangles that appears
inherently in the kd-trees and that does not seem to be an advantage on small
to medium scenes. On larger scenes, even though kd-trees duplicate a lot of
references to triangles, they allow to discard a lot of 3D space and thus give
better performances than BVHs.

However, in our context, we thought that the BVH is the most appropriated
data structure, for its small memory consumption and capability to handle
relatively complex scenes. At this time, GPU memory is still smaller than
CPU memory and we need to be as compact as possible. For instance the latest
professional NVIDIA card, the P6000 has 24GB of GRAM, whereas CPU can
handle up to 512GB of RAM (8 x 64GB). Since we chose to implement the
BVH in our path tracer, we present in more details how we did to intersect it
on the GPU.

4.3 BVH Intersection on GPU

Another technical problem we have to face when dealing with BVH in a GPU
path tracer is the traversal algorithm. On a CPU, a standard BVH traversal
algorithm can be written as a recursive algorithm (see Algorithm 4.1) or dere-
cursi�ed with a stack (see Algorithm 4.2). On a GPU it is impossible to write
a recursive algorithm, and a stack implementation is tedious and could use a
big part of the limited GPU memory. It is still feasible to write a stack-based
BVH traversal on the GPU: a good implementation is given by Aila and Laine
[2009]. We chose a stackless algorithm described in the next section.

Algorithm 4.1: A recursive BVH traversal algorithm on the CPU.

bool BVH:: intersect(Ray& r)

{

if(root ->getBBox ->intersect(r))

{

return root ->intersect(r);

}

return false;

}

73



4.3. BVH Intersection on GPU

bool BVHNode :: intersect(Ray& r)

{

bool rayIntersect = false;

if( hasChild () )

{

if(node ->child [0]. getBBox ().intersect(r))

{

rayIntersect = node ->child [0]. intersect(r);

}

if(node ->child [1]. getBBox ().intersect(r))

{

rayIntersect |= node ->child [1]. intersect(r);

}

}

else

{

for(int i=0; i<_nbTriangles; i++)

{

rayIntersect |= rayTriangleIntersect(_triangles[i],r);

}

}

return rayIntersect;

}

Algorithm 4.2: An iterative BVH traversal algorithm using a stack of BVH
nodes on the CPU.

bool BVH:: intersect(Ray r)

{

std::stack <BvhNode*> stack;

stack.push(root);

bool rayIntersect = false;

while( !stack.empty () )

{

BvhNode* node = stack.top();

stack.pop();

if( !node.getBBox ().intersect(r) )

{

continue;

}

if( node ->hasChild () )

{

stack.push(node ->child [0]);

stack.push(node ->child [1]);

}

else

{

74 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

for(int i=0; i<node ->_nbTriangles; i++)

{

rayIntersect |= rayTriangleIntersect(node ->

_triangles[i],r);

}

}

}

return rayIntersect;

}

4.3.1 A Stackless BVH Intersection Algorithm on GPU

Our stackless BVH intersection on the GPU (cf. Algorithm 4.3) uses pointers
to the parent node, and, a boolean to know if a node is the left child of its
father to iterate through the tree. It corresponds to a depth �rst traversal like
Algorithms 4.1 and 4.2. It uses a goToNextNode() function, which purpose is
to �nd the next node in the tree to test. This function goes up and down right
on the tree if it is possible (i.e., we were on a node with a right brother), see
case A in Figure 4.7. Otherwise, it goes up in the tree until it can apply case
A, this situation corresponds to case B in Figure 4.7.

Algorithm 4.3: An iterative BVH traversal algorithm on GPU, using no stack.

bool goToNextNode(inout int nodeID , inout bool

lastNodeWasALeftChild)

// return true if the traversal must continue , false

otherwise

//the stop condition is determine by looking if we step on

the root node

{

//read father

nodeID = fatherNodeID;

readNode(nodeID , fatherNodeID , leftChildID , rightChildID);

//if last child was left child go down right

if(lastNodeWasALeftChild)

{

//go down right

nodeID = rightChildID;

lastNodeWasALeftChild = false;

}

//else go until find a father who is a left child of his

father

else

{

// while is right

while( isARightChild(nodeID) )

{

nodeID = fatherNodeID;

75



4.3. BVH Intersection on GPU

readNode(nodeID , fatherNodeID , leftChildID ,

rightChildID);

}

//if we pass on the root node while going up in the tree

and

// starting from a right child , we have traverse the

whole tree

//we need to spot the traversal

if( isRootNode(nodeID) )

return false;

//go up in tree

nodeID = fatherNodeID;

readNode(nodeID , fatherNodeID , leftChildID , rightChildID

);

//go down right

nodeID = rightChildID;

lastNodeWasALeftChild = false;

}

return true;

}

bool intersectionWithBVHIterative(inout Ray ray)

{

bool res = false;

//Test root node == bbox of the entire object

if(! rayBoxIntersection(ray , 0) )

{

return res;

}

int leftChildID = 0;

int rightChildID = 0;

int fatherNodeID = 0;

int nodeID = 0;

bool lastNodeWasALeftChild = false;

int offsetTriangles = 0;

//read root

readNode(nodeID , fatherNodeID , leftChildID , rightChildID);

//if all triangles are in root node

if(isLeaf(nodeID))

{

return intersectionWithLeafNode(ray , nodeID);

}

//go to first left child

76 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

nodeID = leftChildID;

readNode(nodeID , fatherNodeID , leftChildID , rightChildID);

while( true )

{

//it's not a leaf

while( !isLeaf(nodeID) )

{

//if intersect node go down left

if(rayBoxIntersection(ray , nodeID))

{

lastNodeWasALeftChild = true;

nodeID = leftChildID;

}

else

{

if( !goToNextNode(nodeID , lastNodeWasALeftChild) )

return res;

}

readNode(nodeID , fatherNodeID , leftChildID ,

rightChildID);

}

//Test the triangles in the leaf

res = intersectionWithLeafNode(ray , nodeID);

//go up in tree to test other leaves

if( !goToNextNode(nodeID , lastNodeWasALeftChild) )

return res;

readNode(nodeID , fatherNodeID , leftChildID , rightChildID

);

}

return res;

}

Figure 4.7: Illustration of the goingToNextNode() function in a BVH. Two cases can
happen: case A the node is a left child, only two nodes are fetched to go from the red node
to the green one. Case B the node is a right child, three or more node fetches are needed to
go from red to green.

77



4.3. BVH Intersection on GPU

4.3.2 Faster Intersection: Roped-BVH

To improve Algorithm 4.3, we have made the choice of encoding the traversal
in the tree. In fact looking at Algorithm 4.3 and Figure 4.7 we see that the
depth traversal of the tree is deterministic and that case B in Figure 4.7, which
illustrates the goToNextNode() function, can be very expensive. Thus a simple
solution is to store pointers to next node to test and replace the goToNextN-
ode() function by only one node fetch (see Algorithm 4.4). This new pointer
hierarchy is illustrated in Figure 4.8, where the orange curves represent the
new pointers. This new hierarchy has another big improvement, it consumes
less memory, as there is no need to store a pointer to the parent anymore. The
left and right child pointers are replaced by two pointers: one to the next node
to test if the ray intersects the node, the other to the next node to test if the
ray does not intersect the node. In the case of a leaf node, only one pointer
is needed, the next node to test. This new traversal algorithm gives a better
performance on GPU. We did see a 1.3 to 1.9 acceleration factor (depending
on the scene), compared to the traversing Algorithm 4.3. A benchmark is pre-
sented in Table 4.2. The same approach has been recently published by Torres
et al. [2009], without receiving much attention.

Figure 4.8: Left: A goToNextNode() call on a roped BVH, it requires only one node fetch.
Right: The new pointer hierarchy (orange curves) of a roped BVH compared to standard
BVH (black dotted lines).

78 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

Scene # Triangles Million Rays/s Acceleration factor
BVH Roped BVH

Cornell Box 3 cubes 48 15.420 14.564 0.944
Cornell Box Ring 492 7.786 13.217 1.697
Cornell Box Hebemissin 63,970 9.039 13.107 1.450
Interior Scene 85,324 0.663 0.877 1.323
Cornell Box Dragon 871,426 2.789 4.915 1.763
Museum 1,436,926 0.358 0.606 1.695
Hairball 2,880,000 0.414 0.566 1.368
Rungholt 6,704,264 0.553 1.062 1.921
San Miguel 10,495,071 0.149 0.263 1.768

Table 4.2: A path tracing benchmark with a BVH compared to a roped BVH on an
NVIDIA GTX 970. All scenes where rendered at a 1024× 768 resolution, with a max path
length of three indirect bounces, performances measured on indirect lighting bounces.

Algorithm 4.4: An iterative roped BVH traversal algorithm on GPU, using no
stack.

bool intersectionWithRopedBVHIterative(inout Ray ray)

{

bool res = false;

// start at root node

int nextNodeID = 0;

int nextNodeIDNoIntersection = 0;

while(nextNodeID >= 0)

{

readNode(nodeID , nextNodeID , nextNodeIDNoIntersection);

if( rayBoxIntersection(ray , nodeID) )

{

//leaf node

if(isLeaf(NodeID))

{

res = intersectionWithLeafNode(ray , nodeID);

}

//go to next node

nodeID = nextNodeID;

}

else

{

nodeID = nextNodeIDNoIntersection;

}

}

return res;

}

79



4.4. Conclusion and Research Perspectives

4.3.3 Roped-BVH Memory Layout on the GPU

We present here in details the memory layout of our roped-BVH. It is stored
in two GPU bu�ers: the node bu�er and the BBOX bu�er. The node bu�er
stores the tree structure (i.e., the links between each node of the tree and the
node description). This node bu�er is a 1D array of integers. A link in the
tree is just an integer indicating in which cell the pointed node is stored: this
is equivalent to a pointer mechanism. A non-leaf node is then stored on four
integers:

• a pointer to the next node to traverse in case the ray intersects the
current node

• a pointer to the next node to traverse if the ray does not intersect the
current node

• a pointer to the BBOX of the node in the BBOX bu�er

• the number of triangles in the sub-tree starting at this node.

The number of triangles is stored as a negative value do di�erentiate non-leaf
node and leaf node. The two pointers to the next nodes correspond to the
orange links in Figure 4.8. In the case of a leaf node, we add to this four
integers a set of pointers to the triangles contained in that node. Finally,
the BBOX bu�er stores as �oating point values the XYZ coordinates of the
bottom-left and up-right corners of each BBOX of each node of the tree.

As future work, it would be interesting to see if we can gain even more
performance by replacing the integer (4 bytes) pointers by smaller data types
like short integers (2 bytes). This, of course, can be done only if the number of
nodes in the tree does not exceed the maximum value that can be represented
by this smaller data type. By doing so it potentially would reduce both memory
consumption and traversal time because a node fetch would probably be faster.

4.4 Conclusion and Research Perspectives

We have presented in this chapter the four main SADS, and described how we
use the BVH that we have chosen for our path tracer. Even though SADS were
not the main area of study in this thesis we tried to get the best performance
from the BVH, for instance by developing the roped BVH. To push further
we could have used a more advanced SADS, like the SVBH from Stich et al.
[2009]. They describe a hybrid SADS, that adds to the BVH the possibility
to split triangles. This SBVH is somehow similar to a kd-tree and is probably,
up to now, one of the most powerful acceleration data structures.

Another potential good solution for a robust production renderer might
be to switch between a kd-tree and a BVH depending on the 3D scene, and

80 Arthur Dufay



4. Analysis for an Adequate Spatial Acceleration Data Structure

this is the solution NVIDIA took in Optix (Parker et al. [2010]). In that sense,
some research on how to choose a more appropriate SADS might be more than
helpful. In addition to that, maybe the SAH heuristic needs to be revisited:
a new heuristic, even empirically developed from benchmarks of ray tracing
on 3D scenes on the newest GPU hardware might be giving good results in
constructing SADS. Indeed, as previously explained in Chapter 3, di�erent
GPU architectures induce di�erent memory layouts and performances: one
optimization that works on a GPU might not be as good on another, so an
adaptive solution might be the best option.

Once again one of the main limitations of the GPU is memory cache. We
will see in Chapter 5 how we further enhance performance by increasing cache
coherency.

81



4.4. Conclusion and Research Perspectives

82 Arthur Dufay



Chapter 5

Random Number Generation on
the GPU

In the �rst chapter, we saw that computing realistic images can be achieved
by using Monte-Carlo integration. However, this requires generating random
numbers that will be used as samples for the Monte-Carlo integrator. Gener-
ating random numbers on the GPU is not trivial, and we have to take good
care of the properties of the generated samples as well as the computation
time involved by the random number generator (RNG). We also pointed out
in the previous chapters that cache coherency is crucial to obtain maximum
performance. Random samples are used to produce random ray directions and
thus sample generation and ray tracing performance are tightly linked.

In this chapter, we present our work to obtain more coherence between rays.
We �rst introduce a mathematical tool to evaluate the quality of a sampling
(cf. Section 5.1). Then in Section 5.2, we describe several methods to generate
random numbers on the GPU and see their bene�ts when they are used for a
GPU path tracer. After that in Section 5.4, we present our new decorrelation
method. It depends on some parameters, relative to the sampling used, and
can be adjusted semi-automatically.

83



5.1. Discrepancy

5.1 Discrepancy

In Chapter 1 we saw that importance sampling can be used to improve e�-
ciency of a Monte-Carlo integrator. However, when no particular information
is known about the function of which we try to estimate the integrand, a uni-
form sampling is done. For instance, this is the case when we try to solve
the rendering equation for a perfectly di�use surface. The lambertian surface
re�ects light equally in all directions, as we have seen in Figure 2.6 and no in-
formation of the visibility is known prior to rendering. In that case, the more
the samples are well distributed the more e�cient the Monte-Carlo integrator
will be on average.

To ensure that samples are well distributed, a measure known as the dis-
crepancy, and noted DN(P ), has been introduced. It is well presented by
Niederreiter [1992]. Intuitively, the discrepancy is the biggest di�erence be-
tween the density of samples expected and measured in a sub-volume J ; it is
computed as follows:

DN(P ) = sup
B ∈ J

∣∣∣∣A(B;P )

N
− λs(B)

∣∣∣∣ (5.1)

where P is the sample set, N = card(P ), A(B;P ) are all the samples of P
that fall in the sub-volume B and λs(B) the S-dimensional Lebesgue measure.
J is the set of S-dimensional intervals of the form:

J :
s∏
i=1

[ai, bi) = {x ∈ Rs : ai 6 xi < bi}with 0 6 ai < bi 6 1 (5.2)

Another measure, known as the star discrepancy, is more practical. In fact it
is computed on a more restrictive set of intervals J∗:

J∗ :
s∏
i=1

[0, bi) = {x ∈ Rs : 0 < bi}with 0 < ui 6 1 (5.3)

Star discrepancy corresponds to consider only sub-volumes of the integration
domain that start with a vertex at the origin [0]s. As the star discrepancy is
much easier to compute we will use it rather than the discrepancy to assess the
quality of the sampling used. Since the star discrepancy of a sampling guar-
antees that it is well distributed, when estimating the integrand of a function
with it, it ensures that we will not miss important values of the function.

5.2 Random Number Generation on the GPU

5.2.1 Fast Pixel-based Techniques

On the CPU there are built-in functions such as C-language rand() from the
STL or libC, or the more recent C++11 mt19937, an implementation of the

84 Arthur Dufay



5. Random Number Generation on the GPU

Mersenne twister algorithm from Matsumoto and Nishimura [1998]. On the
contrary, no random functions are provided on the GPU. Thus to generate
random numbers we often rely on a combination of trigonometric functions
and permutation of bits. These techniques could be classi�ed in pixel-based
techniques because they rely on a seed, often determined with the pixel-ID to
generate a random number. For instance, one could use the method described
in Algorithm 5.1. This technique has the advantage of being easy to implement,
predictive and has a low computational cost.

Algorithm 5.1: A pixel based RNG, with its associated seed function.

// compute a seed for the RNG based on pixel coordinates

void seed(int x, int y, int screenWidth)

{

float seed = 0.0174532 * y * screenWidth + x;

seed *= sin(seed);

return seed;

}

vec2 rng(float& seed)

{

// fract returns the fractional part of x. It is calculated as

x - floor(x).

return fract(sin(vec2(seed +=0.1, seed +=0.1)) *

vec2 (43758.5453123 ,22578.1459123));

}

However, this does not give really well-distributed samples and is limited
in the number of dimensions it can produce (see Figure 5.1).

Figure 5.1: 100 points generated using a pixel-based RNG as described in Algorithm 5.1.

85



5.2. Random Number Generation on the GPU

Wang Hash

Another interesting RNG was introduced by Wang [1997] and is computed as
presented in Algorithm 5.2.

Algorithm 5.2: A pixel-based RNG, with its associated seed function.

float wangHash(uint &seed)

{

seed = (seed ^ 61) ^ (seed >> 16);

seed *= 9;

seed = seed ^ (seed >> 4);

seed *= 0x27d4eb2d;

seed = seed ^ (seed >> 15);

return (float(seed)) / 0xffffffffU;

}

An example of a sample set generated with Wang Hash is shown in Fig-
ure 5.2. It was �rst introduced as a hash function but gives a quite good result
as a simple RNG on GPU as presented by [Reed, 2013].

Figure 5.2: Wang Hash, 100 points.

5.2.2 Low Discrepancy Sequences

Low discrepancy sequences (LDS) are an alternative to fully random num-
bers for Monte-Carlo integration. Their intrinsic property is that for any
sub-sequence S : x1, ..., xN , S has a low discrepancy. Thus, using an LDS
to compute a Monte-Carlo integrator improves e�ciency as explained in Sec-
tion 5.1. A method that uses an LDS instead of a fully random sequence to

86 Arthur Dufay



5. Random Number Generation on the GPU

compute a Monte-Carlo integrator is called a quasi-Monte-Carlo method. We
expose in this section three well-known low discrepancy sequences.

Van der Corput Sequence

We �rst introduce the van der Corput [1935] sequence, that is de�ned as:

gb(n) =
L−1∑
k=0

dk(n)b−k−1 (5.4)

where b is the base in which number n is represented.

Hammersley Sequence

The Hammersley [1959] sequence is an LDS based on the van der Corput
sequence. It is computed as follows:

x(n) =
(
gb1(n), ..., gbs−1(n),

n

N

)
(5.5)

where b1, ..., bs−1 are co-prime integers greater than 1 and N is the number of
samples. We see here that using a uniform distribution as the �rst dimension
for the Hammersley distribution restricts its usage. Indeed the number of
samples has to be decided prior to rendering and all the samples must be
taken. Otherwise, the Monte-Carlo integrator will be biased if the pdf is not
corrected accordingly to the non-taken samples. Due to this restriction, we did
not use this sequence in our path tracing. However, the Hammersley sequence
is still a good choice when the number of samples is �xed: it is well distributed
and really easy to compute.

Halton Sequence

The Halton [1960] sequence solves the problem of the �xed number of points
in the Hammersley sequence by using only numbers from the van der Corput
sequence. It is computed as follows:

x(n) = (gb1(n), ..., gbs(n)) (5.6)

where b1, ..., bs−1 are co-prime integers greater than 1. It is well distributed and
easy to generate on a GPU, but as shown in Figure 5.3, the sampling quality
decreases when going into higher dimensions.

Sobol Sequence

The Sobol sequence is another LDS introduced by Sobol [1967]. Before describ-
ing its properties we must introduce two de�nitions from Niederreiter [1992],
the (t,m,s)-nets and the (t,s)-sequences.

87



5.3. Decorrelation

Figure 5.3: Halton sequence, left: dimensions 2 and 3, right: dimensions 7 and 9, 100
points. Observe how sampling quality decreases when getting higher in the dimensions of
the sequence, leaving a lot of empty spaces and producing alignments.

Let 0 6 t 6 m be integers. A (t,m,s)-net in base b is a point set P of bm

points in [0, 1[s such that there are exactly bt points in each b-adic elementary
interval E with volume bt−m.

For an integer t > 0, a sequence x0, ..., xN of points in [0, 1[s is a (t,s)-
sequence in base b if, for all integers k > 0 andm > t, the point set xkbm , ..., x(k+1)bm−1

is a (t,m,s)-net in base b.

In other words, in our case, a (0,m,2)-net will hold a unique point in each
sub-interval of side length b−m of the integration domain. This property guar-
antees a low discrepancy value, and so a fast convergence in a GPU path
tracer.

The Sobol(0,2) sequence is a (0,2)-sequence in base 2, it implies that each
successive set of 2m points is a (0,m,2)-net, giving a fast convergence when
using it in a path tracing engine.

However, due to its complexity to generate it, it is tedious to use it in a GPU
path tracer. Its values must be precomputed on the CPU and uploaded to the
GPU. It also has the same problem than the Halton sequence: its distribution
quality decreases as we get to higher dimension (cf. Figure 5.4).

5.3 Decorrelation

5.3.1 Introduction

In the context of path tracing, when using low discrepancy sequences we have to
deal with decorrelation of samples between the di�erent pixels of the generated

88 Arthur Dufay



5. Random Number Generation on the GPU

Figure 5.4: Sobol sequence, left: dimensions 2 and 3, right: dimensions 7 and 9, 100
points. Observe how the sampling quality decreases when getting higher in the dimensions
of the sequence, leaving a lot of empty spaces and producing alignments.

image. If we consider the path space as the sampling space, the maximum
dimension of the sampling is equal to the maximum length of a path, described
in Section 2.2.3. If we add to these dimensions the set of pixels of the image,
each pixel being a dimension of the multidimensional Monte-Carlo integrator,
we end up with potentially millions of dimensions for a 1280×720 pixel image.
This is far too much to handle with an LDS sequence. To solve this problem,
in Computer Graphics, we bound path space by reusing the same LDS for each
pixel of the image. However, this adds correlation issues. The most striking
example of correlation issues is the structured noise induced by coherent path
tracing as shown in Figure 5.5. A coherent path tracer reuses the same samples
for each pixel of the image. It still converges without any bias in the �nal image
but intermediate results (i.e., non-converged images) show ugly artifacts.

This is why we did not consider it as a solution in our context of pre-
visualization. However, some work has been done by Sadeghi et al. [2009] to
minimize those coherency artifacts. By interleaving several coherent sequences
they break the structured noise. To sum up, to use an LDS in a path tracing
engine we have to decorrelate samples.

5.3.2 Decorrelation Techniques

We now present some decorrelation techniques useful in the context of path
tracing.

89



5.3. Decorrelation

Figure 5.5: Left: coherent path tracing 128spp. Right: path tracing with Cranley Patter-
son rotation 128spp. Artifacts of coherent path tracing are induced by the re-utilization of
the same sampling sequence for each pixel. The structured noise is more prominent on �at
surfaces.

Rotation

One trivial solution to reduce correlation issues in path tracing is to use a
rotation method. Let us consider a set of samples S on the hemisphere centered
on normal ~n. By using a simple rotation matrixM , we can rotate the sampling
S around the normal, which gives a new sampling. If we consider these samples
as ray directions that start from a surface, rotating them around normal ~n of
the surface gives new directions in world space, see Figure 5.6.

Figure 5.6: The rotation method to decorrelate samples applies a rotation in disk space
(left) to generate new samples in the hemisphere (right).

Rotation matrix M can be computed using one of the pixel-based tech-
niques described in Section 5.2.1. The main advantage of this method is that
it preserves the discrepancy property on the disc. On the other hand, this
decorrelation technique does not cover properly the integration domain. As
shown in Figure 5.7, we observe undesirable circular patterns and areas that
never get sampled.

90 Arthur Dufay



5. Random Number Generation on the GPU

Figure 5.7: A superposition of a 50 points sample-set of the Halton sequence projected
on a disk (black points), and 50 rotated sample-set of this set (blue points). See how the
rotation method induces circular patterns.

Index O�set Technique

Another option to decorrelate LDS samples in path tracing is to use di�erent
sub-sequences of the LDS. In fact, one can generate a table of indices O, and
for each pixel p of the image, start the LDS at an index given by the table.
Let M the number of pixels in the image, N the number of samples in S. The
decorrelated sub-sequence S ′pi for pixel pi is then written as follows:

O : [u1, ..., uM ], ui ∈ N
S : [x1, ..., xN ]

S ′p1
: [xu1+1, ..., xu1+N ]...S ′pN : [xuN+1, ..., xuM+N ]

(5.7)

This technique still has some drawbacks. When using it on a GPU path
tracer, several threads working in parallel in the same warp ask for samples
that might fall far from each others in the LDS. In the case of the Halton
sequence, for instance, generating such samples with di�erent IDs in the LDS in
parallel leads to code divergence. In other words, this decorrelation technique
can potentially increase the computing time of the RNG. In our opinion, this
technique is also not su�cient to fully get rid of coherency artifacts. As many
pixels potentially use the same or a close o�set, they will have too many
samples in common, which introduces some bias in the Monte-Carlo estimator.

Cranley Patterson Rotation

Cranley Patterson rotation, introduced by [Cranley and Patterson, 1976], is
a well-known decorrelation technique. It uses a D-dimension vector δ of ran-

91



5.4. A GPU Cache Friendly Decorrelation Technique - Micro Jitter

dom values to alterate a sampling of dimension D. This random vector is
chosen once and for all the samples. Applying Cranley Patterson rotation to
a sampling S to obtain a new sampling S ′ is written as follows:

δ : [u1, ..., uD], ui ∈ R
S : [x1, ..., xN ]

S ′ : [x1 + δ − bx1 + δc, ..., xN + δ − bxN + δc]
(5.8)

The method is called a rotation because a �oating modulo is applied on the
altered value, as shown in Figure 5.8.

Figure 5.8: Left: Cranley Patterson applied on two points x0 and xi of the same input
sampling to optain new samples x′0 and x′i. As x′i falls outside of the domain it gets re-
projected using a simple modulo. Right: Cranley Patterson applied on the whole point
set.

We found it to be the most useful technique to generate quickly new samples
on the GPU. One just needs to precompute on the CPU a bu�er of random
values with as many values as pixels in the image to render. Then, when using
the same RNG for each pixel, for instance, a Halton sequence, one just needs to
alterate the output of the RNG with the value stored in the Cranley Patterson
bu�er.

5.4 A GPU Cache Friendly Decorrelation Tech-

nique - Micro Jitter

5.4.1 Motivation

We saw in the previous section that Cranley Patterson rotation can be used to
decorrelate samples in path tracing. However, using it straight as it is on the
GPU could have some impact on the performance. Actually, if we compare
it to coherent path tracing, as presented in Section 5.3.1, it tends to generate
rays that are fully incoherent (cf. Figure 5.9).

92 Arthur Dufay



5. Random Number Generation on the GPU

Figure 5.9: The Cranley Patterson rotation method induces totally random numbers and
so fully incoherent rays. This breaks the GPU cache coherency as paths are computed in
parallel.

To solve this problem, one can rely on coherent path tracing (i.e., avoid any
decorrelation method). Indeed it greatly helps in preserving the GPU cache
coherency as shown in Figure 5.10. However, as presented in Section 5.3.1, it is
not a solution for previsualization because, until the image is fully converged,
it exhibits some structured noise.

Figure 5.10: Coherent path tracing, which does not use any decorrelation method, presents
the best GPU cache coherency and thus the best ray tracing performance.

Another solution is to rely on ray-reordering techniques, but their imple-
mentation on the GPU is quite tedious.

Seeing the good performance that coherent path tracing can give, we wanted
to �nd a solution in between coherent path tracing and Cranley Patterson ro-
tation, i.e., a solution that can remove the structured noise of coherent path
tracing, but at the same time, keep some GPU cache coherency. We came up
with the idea of a micro jitter method that we describe in the next section.

93



5.4. A GPU Cache Friendly Decorrelation Technique - Micro Jitter

5.4.2 Method Description

Our micro jitter method works similarly as Cranley Patterson rotation. It
is a decorrelation technique. The only di�erence with Cranley Patterson is
that the jitter vector δ, used to alterate the sampling, is randomly chosen in a
well-de�ned range.

Figure 5.11: Our micro jitter method generates new sample sets (orange and blue) from
an input sequence (black) by jittering samples.

By controlling the amount of jitter we apply, the new set of samples gen-
erated with our method tends to generate rays that are similar in 3D space.
This similarity between rays greatly helps in reducing cache misses when rays
are traced in parallel on the GPU (see Figure 5.12). Quasi-similar rays that
will be traced by threads belonging to the same warp will likely hit the same
object in 3D space (i.e., they will fetch the same BVH nodes) and will be faster
to trace than totally incoherent rays. This is especially true for �rst bounces
of paths.

Adjusting the Jitter Radius

General Formulation To apply our method, the amount of jitter must be
selected carefully. As shown in Figure 5.13, if the amount of jitter is too
small, by superposing several jittered sets of samples, we clearly see that some
parts of the integration domain are not covered. Indeed, a jitter radius too
small generates new points in a too small region. If the average space between
samples is larger than this region, our method cannot generate points that fully
cover the integration domain. The jitter radius must be chosen depending on
the distribution of the input sample set.

However, the amount of jitter must be as small as possible to maintain
a pro�table gain in performance. As the amount of jitter gets bigger our

94 Arthur Dufay



5. Random Number Generation on the GPU

Figure 5.12: Our micro jitter technique preserves cache coherency by generating similar
rays in 3D space, while avoiding artifacts of coherent path tracing.

Figure 5.13: Our micro jitter applied once (left), 150 times with a too small jitter (middle),
with a proper amount (right). The original distribution is shown in blue.

95



5.4. A GPU Cache Friendly Decorrelation Technique - Micro Jitter

method tends to reproduce the Cranley Patterson rotation behavior, and so,
the ray tracing performance drops. On the other hand, a jitter too small would
reproduce the structured noise of coherent path tracer.

A perfectly distributed sampling will leave, on average, an empty hypercube
around each sample of size N

−1
S , N being the number of samples, s the number

of dimensions. For a 2D sampling it would be 1√
N
. Our jitter radius µ must

then be set to: µ = K√
N
with K = 1 for a perfectly distributed sampling. This

can be generalized to any dimension with the formula: µ = KN
−1
S . K depends

on the quality of the sample set.

Application to the Halton Sequence However, when dealing with LDS as
the Halton sequence, the distribution is not perfect. In consequence, we must
set µ to a larger value. As the star discrepancy is a measure of the distribution
of samples, we use it to select our amount of jitter. We �nd out empirically
that the star discrepancy of the Halton sequence is roughly proportional to
f(x) = 2.5√

N
(cf. Figure 5.14). We could have set our jitter radius to µ = 2.5√

N
but, in practice, we do not have any information about the shape of the empty
space between samples. They can be perfectly squared or very elongated.
Therefore, to ensure that we do not miss part of the integration domain, we
double this jitter radius. For the Halton sequence the samples are then jittered
by a vector: δ ∈ [−µ, µ] with µ = 2.5√

N
.

Figure 5.14: Plot of the star discrepancy of the Halton sequence depending on the number
of samples. See how f(x) = 2.5√

N
can �t the star discrepancy.

96 Arthur Dufay



5. Random Number Generation on the GPU

Application to the Hammersley Sequence For the Hammersley sequence,
we set the jitter radius to δ ∈ [−µ, µ] with µ = 1.5√

N
(cf. Figure 5.15).

Figure 5.15: Plot of the star discrepancy of the Hammersley sequence depending on the
number of samples. See how f(x) = 1.5√

N
can �t the star discrepancy.

To use our micro jitter method with another sample set, one just needs to
adjust the jitter radius with the star discrepancy of the desired sample set.

5.4.3 Results

Performance Analysis

As shown in Figure 5.17, we tested our micro jitter method over several LDS
and obtained a better performance. The results average the experiment con-
ducted on three di�erent scenes (all shown in Figure 5.16): the interior scene
(85K triangles), the museum scene (15M triangles) and the dragon scene (870K
triangles). We tested our technique with ambient occlusion (AO) computation
and path tracing with a maximum of three indirect bounces. A close-up view
of path tracing using our method is shown in Figure 5.18.

As previously explained, the amount of jitter is linked directly to the num-
ber of samples in the sequence. As the sampling count increases, the amount
of jitter gets reduced and performance increases. The upper bound for this
performance gain is the performance of coherent path tracing.

We can also notice that the performance gain is better for AO computa-
tion than path tracing (PT) computation. Indeed, AO computation requires
launching only one secondary ray, not a full path, whereas PT launches one
to three bounces in our experiment. As our method increases performance by

97



5.4. A GPU Cache Friendly Decorrelation Technique - Micro Jitter

Figure 5.16: The three test scenes for our micro jitter performance analysis. From left
to right: Interior scene (85K triangles), Dragon scene (870K triangles) and Museum (1.5M
triangles).

taking pro�t of ray coherence, it is quite straightforward that the �rst bounce
of the path gets a better performance gain, hence the better performance gain
for AO computation. If we carried out tests with more than three bounces
for PT, we would have seen a smaller performance gain with our micro jitter
method.

Figure 5.17: Performance gains of our method on several rendering algorithms: Ambient
occlusion (AO) and path tracing, tested on di�erent samplings.

Error Analysis

We also conducted some analysis on the images generated with our method. To
do so, we computed the RMSE (Root Mean Square Error) of image di�erences
of ambient occlusion images computed with our decorrelation method and
a reference image. We did the same thing with images computed with the

98 Arthur Dufay



5. Random Number Generation on the GPU

Figure 5.18: A close-up view of a path traced image using our µ-jitter method versus a
reference image using Cranley Patterson rotation. No di�erences are noticeable.

Cranley Patterson rotation. We then compared the RMSE values obtained
with the two methods (see Table 5.1). Our technique did not show any loss in
image quality (cf. Figure 5.19).

5.4.4 Application to Screen Space Sampling

Even though our µ-jitter was designed for decorrelating path tracing samples,
we found an application for faster sampling in screen space techniques. Our
method can be applied to screen space ambient occlusion (SSAO) computation
for instance. Indeed, SSAO computation requires fetching several samples in a
2D texture around a pixel to average depth values stored in a Z-Bu�er. These
samples lie in a �xed size kernel and have a randomly chosen position. In most
cases the random position of the pixels samples are precomputed, a Poisson
sampling is often used. To apply our method in this case, one can reuse the
same sample set across all pixels, and alter it with a constrained jitter vector.
The sample set corresponds to the 2D position of the fetched pixels.

We tested it and got faster computation of SSAO. On average, we saw an
acceleration factor of 1.47.

99



5.4. A GPU Cache Friendly Decorrelation Technique - Micro Jitter

RMSE - AO - Halton Sequence
spp CP Micro-jitter
8 0.0994 0.0990
16 0.0621 0.0624
32 0.0385 0.0381
64 0.0236 0.0239
128 0.0148 0.0148
256 0.0086 0.0088
512 0.0058 0.0058

RMSE - AO - Hammersley Sequence
spp CP Micro-jitter
8 0.0950 0.0950
16 0.0567 0.0572
32 0.0337 0.0336
64 0.0200 0.0196
128 0.0119 0.0116
256 0.0070 0.0070
512 0.0042 0.0042

Table 5.1: Results of our RMSE measurements on ambient occlusion images generated
with Cranley Patterson rotation method (CP) and our micro jitter, with Halton sequence
and Hammersley sequence. Red numbers highlight di�erences between CP and ours.

Figure 5.19: Comparison of our µ-jitter method vs the Cranley Patterson rotation on AO
computation at di�erent spp. Our new decorrelation technique does not exihibit any loss in
image quality.

100 Arthur Dufay



5. Random Number Generation on the GPU

5.4.5 Limitations

We presented here a method that improves cache coherency in path tracing.
However, our method has some drawbacks. Firstly, with our micro jitter, the
number of samples must be determined in advance to adapt the jitter radius (cf.
Section 5.4.2). This is a huge limitation, but it can be overcome, using batches
of samples. Secondly, our method is scene topology dependent. Incoherent
scenes with small triangles, like the Hairball scene (cf. Figure 5.20), have too
many variations of triangle normals from one pixel to another. This generates
totally random directions for the secondary rays, whatever the decorrelation
technique chosen.

Figure 5.20: The Hairball scene (2,880,000 triangles) does not bene�t from our method.
Too many di�erent triangle normals generate totally random rays in any cases.

5.5 Conclusion and Future Work

We presented here a simple way to improve ray tracing performance in a GPU
path tracer. The development of our method led to the submission of a patent
(Micro-Jittering for GPU-Friendly Monte Carlo Multi-Dimensional Integra-
tion Problems) and a publication in a major conference [Dufay et al., 2016]. It
was successfully tested in the open source path tracing engine Blender Cycles
(see blender.org [2017]), with just a few lines of code. Our method is indeed
much easier to implement than a full ray sorting algorithm like [Garanzha
and Loop, 2010]. This contribution has been well received by the scienti�c
community and has been added to the Blender Cycles roadmap for the next
release.

101



5.5. Conclusion and Future Work

As future work, we would like to compare the bene�t of our method to a
full ray sorting solution. Another point would be to address more in detail how
to adjust automatically the jitter size to any sample distribution, especially in
the case of adaptive sampling when the number of samples is not �xed.

102 Arthur Dufay



Conclusion

In this thesis we addressed the previsualization of VFX. Our main goal was
then to enhance an already existing 3D rendering platform with global illumi-
nation capability. For that we chose to focus our interest on the path tracing al-
gorithm. Its implementation on dedicated graphic hardware can, indeed, truly
help VFX artists in their designing tasks, by giving them a faster feedback
and a resulting image closer to the �nal render algorithm output. However,
the setup of such rendering engine in an industrial context was not trivial. For
that, we had to tackle several aspects of the rendering engine: BRDFs and ma-
terials (cf. Section 1.2.3), GPGPU (cf. Section 2.2.1 and Chapter 3), spatial
acceleration data structures (cf. Chapter 4) and random number generation
(cf. Chapter 5). This lead to several contributions that are summarized here.

Contributions Summary

First of all a full path tracing engine was successfully implemented inside the
3DCast platform. Inside that, a solution to increase interactivity was proposed,
our quad-tree computation (cf. Section 2.2.4).

A �rst patent on tracing shadow rays in ray tracing applications was sub-
mitted (cf. Section 3.6). It clusteres shadow rays by light sources and launches
rays in a reverse manner (from light sources to surfaces) to improve ray tracing
performance.

An optimization of the traversal algorithm of a BVH on GPU was proposed
in Section 4.3.2. Using an encoded traversal inside the spatial acceleration data
structure it further increases the e�ciency of ray tracing intersection test in
our rendering engine.

This thesis also lead to the development of a new decorrelation technique
that proves to be pro�table for several multi-dimensional integration problems
including path tracing and SSAO computation. This contribution has been
published in a major conference [Dufay et al., 2016], and submitted as a patent:
Micro-Jittering for GPU Friendly Monte Carlo.

Finally, a third patent, to increase speed of shadow computation is pre-
sented in Annex B: it is submitted.

103



Future Work

Future Work

Implementations

Several topics of our path tracing engine were not completed during this thesis.
This leads to several future projects.

First, the support of more complex material de�nitions, such as BSSRDF
(e.g., skin behavior), is essential to deal with complex surface description, as
found in a production renderer.

In pair with such materials we would like to implement another path tracing
GPU pipeline featuring the wavefront idea of Laine et al. [2013]. That would
have been bene�cial only when dealing with complex materials.

For spatial acceleration data structure, we use a quite standard BVH. The
implementation of a more advanced one, using some splitting heuristic, that
increases BVH performance and makes it closer to a kd-tree would be an
interesting point to investigate.

Finally, even though the �exibility of an easy setup o�ered by OpenGL
Compute Shaders was pro�table, we would like to implement our solution using
the NVIDIA CUDA framework. We believe that the pro�ling and debugging
tools accessible for this GPGPU framework would be a tremendous asset in
our case.

Research Topics

Bidirectional solution The major research area we would focus on next is
bidirectional algorithms such as bidirectional path tracing (BDPT), or even
a more complex solution, that combines both path tracing (PT) and BDPT.
We thought of using heuristics to decide whether or not a camera path must
try to connect to a light path. One of these heuristics could be based the
material encounter along the path. Remember that a specular path might
be di�cult to connect or even impossible to connect with highly specular
BRDFs (cf. Figure 1.11). Another heuristic might be the quantity of energy
transported along the camera path (i.e., only low energy camera paths might
need connections to light paths). Using such algorithm we could potentially
greatly improve performance of a BDPT by making some paths bidirectional
and others unidirectional. Indeed, coupling two bu�ers to sort bidirectional
paths and unidirectional paths, we could save some computation time.

Hybrid algorithms Another point we would like to investigate is hybrid
algorithms. We think that the many lights methods truly have a potential
for VFX previsualization. Combining these techniques with path tracing to
remove their artifacts (cf. Figure 1.18) is an interesting research �eld. Fur-
thermore, VPL methods are faster to converge than PT methods in �at di�use

104 Arthur Dufay



Conclusion

areas. See Figure 5.21 for a comparison of the two of them.

Figure 5.21: Path tracing (50spp) vs 25600 VPLs. Each method uses one bounce of
indirect illumination. Path tracing still presents some noise and VPLs display artifacts.

We started some test at the end of this PhD where we used some heuristics
to decide for each pixel of the image whether to use VPLs or path tracing
for indirect illumination. We used a heuristic based on the harmonic distance.
We precomputed it using some ray tracing method. Then indirect illumination
is computed using PT if the harmonic distance is under a desired threshold,
otherwise VPLs are used (cf. Figure 5.22).

The next step would be to �nd a way to have a smooth transition between
the two methods.

105



Future Work

Figure 5.22: Combination of VPLs and path tracing for indirect illumination computation.
One bounce only. 50 spp for path tracing and 25600 VPLs.

106 Arthur Dufay



Appendix A

Software Tools

During this thesis, two tools outside of 3DCast were developed They are pre-
sented here.

A.1 HDR Viewer

We can dump frames in raw HDR (RGBA 32 bits per channel) from 3DCast.
This snapshots can then be opened in our HDR Viewer tool (cf. Figure A.1).
We can apply a linear tone mapping to each open image and combine them
(addition of the pixel values). Pixels values are also displayed using the mouse
cursor. Values (with and without tone mapping) are shown as both colored
rectangles and textual values.

A.2 Sampling Software

To visualize the potential sampling used in our rendering engine, we developed
a software that generates samples from several well-known methods (cf. Fig-
ure A.2). A uniform jitter can also be applied to the generated samples as well
as a projection on a disk.

107



A.2. Sampling Software

Figure A.1: A tool to vizualize, apply tone mapping and combine HDR snap-
shots from 3DCast. Pixel values are displayed in both RGB textual values and
square color on the left side.

108 Arthur Dufay



A. Software Tools

Figure A.2: A software we developed to visualize samplings generated using
various methods.

109



A.2. Sampling Software

110 Arthur Dufay



Appendix B

Hybrid Rendering of Shadows

B.1 Technical Domain of the Invention

This invention addresses the problem of high quality rendering of shadows
in 3D scenes at interactive frame rates for games, VFX pre-visualization and
VFX production. Rendering high quality shadows in 3D scenes is achieved
by using ray tracing techniques allowing precise visibility test between light
sources and surfaces. The visibility test consists in casting a ray toward light
sources, and determines whether or not it intersects an element of the scene.
If an intersection is found, the point is considered in shadow. Computing such
intersection for every pixel of the scene can become prohibitive even when
using an optimized GPU ray tracing engine and dedicated spatial acceleration
data structures.

B.2 State of the Art

This section provides comments on the most signi�cant previous work to the
best of our knowledge for hybrid rendering of shadows. A good survey on
real-time rendering techniques for shadows can be found in [Eisemann et al.,
2011].

B.2.1 Hybrid GPU Pipeline for Alias Free Shadows

The closest invention related to ours is the hybrid GPU rendering pipeline for
Alias-Free Shadows proposed by Hertel et al. [2009]. They combine rasteriza-
tion of a shadow map with a GPU ray tracer to accelerate the rendering of ray
traced shadows. To that end they consider the conservative rasterization of a
shadow map in which they store depth, triangle ID and a �ag indicating if the
triangle fully covers or not the shadow map pixel. Using a simple depth test
and checking the triangle coverage �ag, they are able to quickly classify pixels

111



B.3. Technical Problem Solved by the Invention

that are lit or shadowed. For remaining unclassi�ed view samples they further
perform an intersection test against the rasterized triangle by retrieving its
coordinates through its ID. For remaining pixels classi�ed as uncertain they
cast shadow rays using a GPU ray tracer to solve their lit status.

Drawbacks Their method requires triangle indexing of the scene and stor-
age of the triangles in a geometry bu�er. If vertices are animated, this bu�er
needs to be updated and may introduce some computational overhead. More-
over many di�erent triangle IDs can be stored locally in a shadow map espe-
cially in presence of unorganized geometry (trees, leaves for instance). Storing
unorganized triangle IDs lead to scattered memory accesses that are proved to
be ine�cient on GPU architectures. We suspect this as the bottleneck of their
method because the reported speed up does not show so much improvement
in rendering times. Best speed up reported is 1.46× over a full ray tracing
solution. The use of the triangle coverage �ag is prone to errors for slanted
surfaces.

Finally their technique performs excessive ray tracing computations in areas
lying along shadow edges. Computational overhead becomes prohibitive in
presence of models with geometry density similar or slightly greater than the
shadow map resolution. We propose a simple and e�cient solution to handle
this (cf. Figure B.7).

B.2.2 Selective Ray Tracing

Lauterbach et al. [2009] use also a conservative shadow map to accelerate
shadow ray tracing computations. They propose to analyze the 8 depth sam-
ples around a depth sample to detect the presence of shadow edges. It is done
by comparing the maximum absolute depth di�erence with the minimum depth
variation determined by the far and near planes. Depending on the surface
inclination regarding the light source they determine pixels that need to be
ray traced or not.

Drawbacks The method fails in detecting small holes in geometry due to
the �nite resolution of the shadow map and the lack of geometric information.
Moreover it is sensitive to shadow map bias.

B.3 Technical Problem Solved by the Invention

The proposed invention takes advantage of e�cient GPU rasterization engines
combined with GPU ray tracing techniques to drastically accelerate rendering
times of ray traced shadows. It relies on a fast and precise lit/shadowed pixel

112 Arthur Dufay



B. Hybrid Rendering of Shadows

classi�cation using conservative shadow maps, that outperforms previous so-
lutions. Ray tracing shadow computations are then limited to a small subset
of pixels that signi�cantly reduces ray tracing operations over previous solu-
tions. Our solution does not introduce any artifact and could achieve real-time
performance in complex scenes at quality equivalent to full ray traced shadows.

B.4 Proposed Solution

Our solution consists in rasterizing the shadow map in a conservative way
and explicitly storing the entire triangle de�nition in shadow map pixels. By
proceeding like this we avoid scattered random accesses into GPU memory.
Secondly we propose a modi�cation of depth fragment generation that im-
proves the lit classi�cation and gives a better estimate of maximum ray length
for ray traced shadows. Finally by considering neighborhood of shadow map
pixels we further improve the classi�cation lit/shadowed of pixels at shadow
edges. GPU ray tracing operations are then limited to a small subset of pixels
in the image resulting in drastically reduced computation times.

B.4.1 Overview

Our solution works at three stages:

• In the �rst stage we render the conservative shadow map with explicit
triangle storage using a modi�ed minimal conservative depth.

• In the second stage, the scene is rendered. Using a fragment shader, we
proceed to pixel classi�cation by querying the shadow map.

• In the third stage, GPU ray tracing of shadow rays is performed on
unclassi�ed pixels with limited ray traversal distance.

B.4.2 Conservative Shadow Maps with Explicit Triangle
Storage

We describe in this section the generation of the conservative shadow map.
We brie�y recall the principles of conservative rasterization, then we describe
how we pack the entire triangle de�nition in a single RGBA shadow map pixel.
Then we describe a new method that computes a minimum depth value at a
pixel that is more consistent regarding the triangle coverage within the pixel.

Conservative Rasterization

The �rst pass consists in generating the conservative shadow map. Standard
rasterization evaluates a triangle at pixel centers. A triangle that intersects a

113



B.4. Proposed Solution

pixel but does not overlap its center would not produce any fragment. Conse-
quently no information will be written in that pixel.

Conservative rasterization guarantees that fragments will be produced for
any closer triangle in the pixel area. Techniques to perform conservative ras-
terization have been proposed by Hasselgren et al. [2005] and Hertel et al.
[2009]. They both rely on the same idea: move slightly triangle edges forward
in their normal direction by a length of half a pixel width.

For shadows, conservative rasterization of shadow maps allows rapid clas-
si�cation of lit area. It guarantees that depth of the closest visible triangle
will be written whatever the triangle coverage inside a pixel. Therefore if the
depth of the view sample projected in light space is less or equal to the depth
stored in the pixel, it guarantees that the pixel is fully lit.

Explicit Triangle Storage

At the di�erence of Hertel et al. [2009] we propose to explicitly store geometric
information regarding the closest visible triangle in shadow map pixels. To that
end we use the compact triangle storage described in Figure B.1.

Figure B.1: Explicit triangle storage using our compact representation.

The idea consists in storing for each pixel of an RGBA shadow map the
2D coordinates of the projected triangle, its depth evaluated at the pixel cen-
ter and the compressed partial derivatives in shadow map space. Using this
information, we are able to perform a shadow ray intersection directly against
the triangle stored in the pixel. The main advantage is that it requires a sin-
gle texture fetch to access the triangle information instead of deferred random
accesses using triangle IDs.

114 Arthur Dufay



B. Hybrid Rendering of Shadows

Intersection Test

Another advantage of using this representation is that the shadow ray inter-
section is less expensive compared to shadow ray intersection with full triangle
3D coordinates. It is accomplished using inexpensive early rejection test and
simple 2D point in triangle. We start by reconstructing the depth at view
sample projection p over the triangle plane using the �rst order approximation
formula:

dZ̃ = pZ̃ + (px − cx)
dpZ̃
dx

+ (py − cy)
dpZ̃
dy

(B.1)

See Figure B.2 for notations.

Figure B.2: Triangle notations.

Given the reconstructed depth, the intersection test becomes simple as
presented in Algorithm 4.

Algorithm 4
1: if dZ̃ > pZ then
2: return no_intersection // early rejection
3: else
4: if p is inside the 2D triangle then // simple 2D test
5: return intersection // i.e. shadow
6: end if
7: end if
8: return no_intersection

Minimum Depth Fragment Generation

When performing conservative rasterization we have to choose carefully which
depth value to write in the depth bu�er. Hertel et al. [2009] use a slope scale
depth correction that shifts triangles towards the light source such as the depth
value at pixel center corresponds to the minimal value found in the pixel area
crossed by the triangle plane. The choice of minimum depth is used for the
classi�cation of lit pixels. Thanks to conservative rasterization, if the depth

115



B.4. Proposed Solution

of the view sample projected in light space is less or equal than the minimum
depth stored in the corresponding pixel we conclude that the pixel is fully lit.

However if we consider a surface in front of slanted surfaces, as depicted in
Figure B.3, the slope scale depth correction may spawn incorrect depth values.
In this situation pixels on the green surface cannot be classi�ed as lit resulting
in unnecessary expensive ray tracing operations.

Figure B.3: Incorrect depth spawned using slope scale minimum depth.

We propose an alternative to slope scale depth correction that computes the
real minimum depth encountered in the pixel area. It enforces the classi�cation
of pixels as depicted in Figure B.3. As a side e�ect, it provides a better ray
length estimation that is later used to optimize the ray traversal in the GPU
ray tracer described in Section B.4.5.

To that end we exploit the partial depth derivatives computed at the
shadow map generation to speed up �nding of the minimum depth. Depth
derivatives indicate decreasing depth variation along the shadow map axis.
They form also a gradient vector in 2D that indicates the decreasing direction
in the pixel. We simply use this vector to select the triangle edge that holds
the smallest depth. It is identi�ed as the one with normal vector closest to the
gradient vector.

Once identi�ed, we perform the intersection of this edge with the box sur-
rounding the pixel and determine depth at intersection points. Depth at in-
tersection point m is computed as follow:

depthi = pZ̃ + (mx − cx)
dpZ̃
dx

+ (my − cy)
dpZ̃
dy

(B.2)

• If two intersection points are found, we take the minimum depth of both
(cf. Figure B.4 case a).

116 Arthur Dufay



B. Hybrid Rendering of Shadows

Figure B.4: Minimum depth �nding cases.

• If one intersection is found then we conclude that a triangle vertex is
inside the pixel. We then take the minimum depth from the vertex
location and the intersection point (cf. Figure B.4 case b).

• If no intersection is found, the edge is either fully inside or fully outside
the area. If the edge is fully inside we take the minimum depth from the
two vertices location.

• If edge is fully outside, we then select the adjacent edges and perform
intersections with surrounding pixel area box.

• If only one intersection is found on each box side pointed by the nega-
tive gradient direction in axis X and axis Y, we then conclude that the
corresponding box corner is covered by the triangle and take minimum
depth at this corner (cf. Figure B.4 case c).

depthmin = pZ̃ + 0.5
dpZ̃
dx

+ 0.5
dpZ̃
dy

(B.3)

This corresponds to the same formula used by the slope scale based depth
correction.

• Otherwise, if two intersections are found we take the minimum depth at
intersection points and vertex. If four intersections are found, we take
the minimum depth among the four intersections (cf. Figure B.4 case d).

• If no intersection is found, the triangle fully covers the texel area. In this
case, the minimum depth is found at texel border using Equation B.3.

Implementation

The generation of our conservative shadow map is implemented using a ge-
ometry shader for the computation of triangle conservative expansion and a
fragment shader for the triangle encoding and minimum depth computation.

117



B.4. Proposed Solution

Figure B.5: Conservative shadow map generation process.

B.4.3 Classi�cation at Shadow Edges

Previous solutions (Hertel et al. [2009] and Lauterbach et al. [2009]) do not
provide a proper classi�cation of pixels lying at shadow edges. They either
consider them as uncertain or potentially perform erroneous classi�cation.

To overcome these problems we propose to query the eight pixels in the
neighborhood and retrieve the surrounding triangles recorded in the shadow
map. Because these triangles may potentially cover the pixel at projection
location we perform direct shadow ray intersection on this triangle set. If an
intersection is found, the pixel is classi�ed as shadowed avoiding the need of a
full ray traced operation.

Figure B.6: Lookup pixel neighborhood to enforce pixel classi�cation and avoid
ray tracing operations.

B.4.4 Full Classi�cation

According to the previous sections, the complete pixel classi�cation works as
follows:

1. Query pixel of shadow map at view sample p projection.

2. Compute the minimum depth or retrieve it directly from the depth bu�er.

118 Arthur Dufay



B. Hybrid Rendering of Shadows

3. If the minimum depth stored in the pixel is greater or nearly equal to
the depth of the view sample in light space, then the view sample (or
pixel) is classi�ed as lit.

4. If not, we test the intersection with the triangle stored in the texels as
described in Section B.4.2.

5. If an intersection is found, the view sample is classi�ed as shadowed.

6. If not, we test the intersection with the triangles stored in the eight
surrounding pixels.

7. If an intersection is found, the pixel is classi�ed as shadowed.

8. Otherwise the pixel is classi�ed as uncertain.

The full classi�cation can be implemented in a fragment shader at rendering
time or in a computing kernel (OpenCL, CUDA or Compute Shader) in image
space using a G-Bu�er.

Figure B.7: Our improved classi�cation drastically reduces the number of ray
traced shadows (red pixels).

B.4.5 GPU Ray Tracing of Shadow Rays

For areas where the lit status of view samples remains uncertain, we spawn a
shadow ray toward the light source and look for an intersection. If an inter-
section is found, the pixel is considered in shadow otherwise it is considered as
lit.

The shadow ray intersection relies on a GPU ray tracer and spatial acceler-
ation structures for faster intersection determination. Basically a ray traverses
a tree of sub-spaces (e.g., octree, kd-tree, LBVH, . . . ) until reaching a leaf
that contains geometry. Intersection test is done on each triangle contained in
the leaf.

Hertel et al. [2009] propose to limit the length of the ray to prevent visiting
empty sub-spaces during the ray traversal and thus improve e�ciency of the
GPU ray tracer. This length is determined by the smallest value stored in

119



B.5. Advantages of the Invention

the depth bu�er. Thanks to the conservative rasterization we are sure that no
other geometry is present between beyond the ray.

Figure B.8: GPU ray traced shadow using the minimum depth shadow map.

As illustrated in Figure B.8 using our minimum depth computation we
further reduce the ray length compared to [Hertel et al., 2009] by giving higher
chance to discard more sub-space.

B.5 Advantages of the Invention

• Renders high quality shadows at real-time or interactive framerates.

• Does not produce any artifact compared to previous solutions.

• Performs faster than previous solutions.

• Compatible with any ray tracing or deferred rendering pipelines.

• Easy to implement on graphics hardware.

• Easy to implement on production renderers.

120 Arthur Dufay



Bibliography

Aila, Timo and Laine, Samuli, 2009. Understanding the e�ciency of ray
traversal on gpus. In Proceedings of the Conference on High Performance
Graphics 2009, HPG '09, pages 145�149. ACM, New York, NY, USA. ISBN
978-1-60558-603-8. doi:10.1145/1572769.1572792.
URL http://doi.acm.org/10.1145/1572769.1572792

Autodesk, 2017-04-18. Autodesk, maya.
URL http://www.autodesk.fr/products/maya/overview

Bentley, Jon Louis, 1975. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509�517. doi:10.1145/361002.
361007.
URL http://doi.acm.org/10.1145/361002.361007

blender.org, 2017-02-24. Blender cycles.
URL https://www.blender.org/features/cycles/

Brown, Pat, Dodd, Chris, Kilgard, Mark andWerness, Eric, 2017-02-07.
NV_shader_bu�er_load.
URL https://www.khronos.org/registry/OpenGL/extensions/NV/NV_

shader_buffer_load.txt

Chaos Group, 2017-04-18. Chaos group, v-ray.
URL https://www.chaosgroup.com/

Cline, David, 2005. A practical introduction to metropolis light transport.
Technical report, Brigham Young University.

Cook, R. L. and Torrance, K. E., 1982. A re�ectance model for computer
graphics. ACM Trans. Graph., 1(1):7�24. doi:10.1145/357290.357293.
URL http://doi.acm.org/10.1145/357290.357293

Cranley, R. and Patterson, T., 1976. Randomization of number theoretic
methods for multiple integration. SIAM Journal on Numerical Analysis,
13(6).

121

http://doi.acm.org/10.1145/1572769.1572792
http://www.autodesk.fr/products/maya/overview
http://doi.acm.org/10.1145/361002.361007
https://www.blender.org/features/cycles/
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_buffer_load.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_buffer_load.txt
https://www.chaosgroup.com/
http://doi.acm.org/10.1145/357290.357293


BIBLIOGRAPHY

Dachsbacher, Carsten, K°ivánek, Jaroslav, Ha²an, Milo², Arbree,
Adam,Walter, Bruce and Novák, Jan, 2014a. Scalable realistic rendering
with many-light methods. Computer Graphics Forum, 33(1):88�104.

Dachsbacher, Carsten, K°ivánek, Jaroslav, Ha²an, Milo², Arbree,
Adam, Walter, Bruce and Novák, Jan, 2014b. Scalable realistic ren-
dering with many-light methods. Comput. Graph. Forum, 33(1):88�104.
doi:10.1111/cgf.12256.
URL http://dx.doi.org/10.1111/cgf.12256

Dachsbacher, Carsten and Stamminger, Marc, 2005. Re�ective shadow
maps. In Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games, I3D '05, pages 203�231. ACM, New York, NY, USA. ISBN
1-59593-013-2. doi:10.1145/1053427.1053460.
URL http://doi.acm.org/10.1145/1053427.1053460

Davidovi£, Tomá², K°ivánek, Jaroslav, Ha²an, Milo² and Slusallek,
Philipp, 2014. Progressive light transport simulation on the gpu: Survey and
improvements. ACM Trans. Graph., 33(3):29:1�29:19. doi:10.1145/2602144.
URL http://doi.acm.org/10.1145/2602144

Delalandre, Cyril, Gautron, Pascal, Marvie, Jean-Eudes and
François, Guillaume, 2011. Transmittance function mapping. In Sym-
posium on Interactive 3D Graphics and Games, I3D '11, pages 31�38.
ACM, New York, NY, USA. ISBN 978-1-4503-0565-5. doi:10.1145/1944745.
1944751.
URL http://doi.acm.org/10.1145/1944745.1944751

Dufay, Arthur, Lecocq, Pascal, Pacanowski, Romain, Marvie, Jean-
Eudes and Granier, Xavier, 2016. Cache-friendly micro-jittered sam-
pling. In ACM SIGGRAPH 2016 Talks, SIGGRAPH '16, pages 36:1�36:2.
ACM, New York, NY, USA. ISBN 978-1-4503-4282-7. doi:10.1145/2897839.
2927392.
URL http://doi.acm.org/10.1145/2897839.2927392

Durand, Frédo, Drettakis, George and Puech, Claude, 1997. The visibility
skeleton: A powerful and e�cient multi-purpose global visibility tool. In
Video Proceedings of ACM SIGGRAPH.
URL http://www-sop.inria.fr/reves/Basilic/1997/DDP97c

Dutré, Philip, Heckbert, Paul, Ma, Vincent, Pellacini, Fabio,
Porschka, Robert, Ramasubramanian, Mahesh, Soler, Cyril and
Ward, Greg, 2001. Global illumination compendium.

122 Arthur Dufay

http://dx.doi.org/10.1111/cgf.12256
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/2602144
http://doi.acm.org/10.1145/1944745.1944751
http://doi.acm.org/10.1145/2897839.2927392
http://www-sop.inria.fr/reves/Basilic/1997/DDP97c


BIBLIOGRAPHY

Eisemann, Elmar, Schwarz, Michael, Assarsson, Ulf and Wimmer,
Michael, 2011. Real-Time Shadows. A. K. Peters, Ltd., Natick, MA, USA,
1st edition. ISBN 1568814380, 9781568814384.

Flynn, Michael J., 1972. Some computer organizations and their e�ectiveness.
IEEE Trans. Comput., 21(9):948�960. doi:10.1109/TC.1972.5009071.
URL http://dx.doi.org/10.1109/TC.1972.5009071

Fujimoto, Akira and Iwata, Kansei, 1985. Accelerated ray tracing. Com-
puter Graphics: Visual Technology and Art: Proceedings of Computer
Graphics Tokyo, pages 41�65.

Garanzha, Kirill and Loop, Charles, 2010. Fast ray sorting and breadth-�rst
packet traversal for gpu ray tracing. Computer Graphics Forum, 29(2):289�
298. doi:10.1111/j.1467-8659.2009.01598.x.
URL http://dx.doi.org/10.1111/j.1467-8659.2009.01598.x

Gautron, Pascal, Delalandre, Cyril, Marvie, Jean-Eudes and Lecocq,
Pascal, 2013. Boundary-Aware Extinction Mapping. Computer Graphics
Forum. doi:10.1111/cgf.12238.

Georgiev, Iliyan, K°ivánek, Jaroslav, Davidovi£, Tomá² and Slusallek,
Philipp, 2012a. Light transport simulation with vertex connection and merg-
ing. ACM Trans. Graph., 31(6):192:1�192:10. doi:10.1145/2366145.2366211.
URL http://doi.acm.org/10.1145/2366145.2366211

Georgiev, Iliyan, K°ivánek, Jaroslav, Davidovi£, Tomá² and Slusallek,
Philipp, 2012b. Light transport simulation with vertex connection and merg-
ing. ACM Trans. Graph., 31(6):192:1�192:10. doi:10.1145/2366145.2366211.
URL http://doi.acm.org/10.1145/2366145.2366211

Goral, Cindy M., Torrance, Kenneth E., Greenberg, Donald P. and
Battaile, Bennett, 1984. Modeling the interaction of light between di�use
surfaces. SIGGRAPH Comput. Graph., 18(3):213�222. doi:10.1145/964965.
808601.
URL http://doi.acm.org/10.1145/964965.808601

Hachisuka, Toshiya and Jensen, Henrik Wann, 2009. Stochastic progressive
photon mapping. In ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia
'09, pages 141:1�141:8. ACM, New York, NY, USA. ISBN 978-1-60558-858-
2. doi:10.1145/1661412.1618487.
URL http://doi.acm.org/10.1145/1661412.1618487

Hachisuka, Toshiya, Kaplanyan, Anton S. and Dachsbacher, Carsten,
2014. Multiplexed metropolis light transport. ACM Trans. Graph.,
33(4):100:1�100:10. doi:10.1145/2601097.2601138.
URL http://doi.acm.org/10.1145/2601097.2601138

123

http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1111/j.1467-8659.2009.01598.x
http://doi.acm.org/10.1145/2366145.2366211
http://doi.acm.org/10.1145/2366145.2366211
http://doi.acm.org/10.1145/964965.808601
http://doi.acm.org/10.1145/1661412.1618487
http://doi.acm.org/10.1145/2601097.2601138


BIBLIOGRAPHY

Hachisuka, Toshiya, Ogaki, Shinji and Jensen, Henrik Wann, 2008. Pro-
gressive photon mapping. ACM Trans. Graph., 27(5):130:1�130:8. doi:
10.1145/1409060.1409083.
URL http://doi.acm.org/10.1145/1409060.1409083

Halton, J. H., 1960. On the e�ciency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numer. Math., 2(1):84�90.
doi:10.1007/BF01386213.
URL http://dx.doi.org/10.1007/BF01386213

Hammersley, J. M., 1959. Monte carlo methods for solving multivariable
problems. Conference on Numerical Properties of Functions of More than
One Independent Variable.

Hasselgren, Jon, Akenine-Möller, Tomas and Ohlsson, Lennart, 2005.
Conservative Rasterization, pages 677�690. GPU Gems 2. Addison-Wesley.

Ha²an, Milo², Pellacini, Fabio and Bala, Kavita, 2007. Matrix row-column
sampling for the many-light problem. ACM Trans. Graph., 26(3). doi:
10.1145/1276377.1276410.
URL http://doi.acm.org/10.1145/1276377.1276410

Heckbert, Paul S., 1990. Adaptive radiosity textures for bidirectional ray
tracing. SIGGRAPH Comput. Graph., 24(4):145�154. doi:10.1145/97880.
97895.
URL http://doi.acm.org/10.1145/97880.97895

Heitz, Eric, Dupuy, Jonathan, Hill, Stephen and Neubelt, David, 2016.
Real-time polygonal-light shading with linearly transformed cosines. ACM
Trans. Graph., 35(4):41:1�41:8. doi:10.1145/2897824.2925895.
URL http://doi.acm.org/10.1145/2897824.2925895

Helmholtz, H. von, 1856. The Helmholtz reciprocity principle, tome 1.

Hertel, Stefan, Hormann, Kai andWestermann, Rüdiger, 2009. A hybrid
gpu rendering pipeline for alias-free hard shadows.

Hunter, G.M., 1978. E�cient computation and data structures for graphics.
PhD Thesis.

Jakob, Wenzel, 2010. Mitsuba renderer. Http://www.mitsuba-renderer.org.

Jensen, Henrik Wann, 1996. Global illumination using photon maps. In Pro-
ceedings of the Eurographics Workshop on Rendering Techniques '96, pages
21�30. Springer-Verlag, London, UK, UK. ISBN 3-211-82883-4.
URL http://dl.acm.org/citation.cfm?id=275458.275461

124 Arthur Dufay

http://doi.acm.org/10.1145/1409060.1409083
http://dx.doi.org/10.1007/BF01386213
http://doi.acm.org/10.1145/1276377.1276410
http://doi.acm.org/10.1145/97880.97895
http://doi.acm.org/10.1145/2897824.2925895
http://dl.acm.org/citation.cfm?id=275458.275461


BIBLIOGRAPHY

Kajiya, James T., 1986. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143�150. doi:10.1145/15886.15902.
URL http://doi.acm.org/10.1145/15886.15902

Kalos, Malvin H. and Whitlock, Paula A., 2009. A Bit of Probability,
pages 7�34. Wiley-VCH Verlag GmbH & Co. KGaA. ISBN 9783527626212.
doi:10.1002/9783527626212.ch2.
URL http://dx.doi.org/10.1002/9783527626212.ch2

Keller, Alexander, 1997. Instant radiosity. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
'97, pages 49�56. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA. ISBN 0-89791-896-7. doi:10.1145/258734.258769.
URL http://dx.doi.org/10.1145/258734.258769

Kirk, David B. andHwu, Wen-mei W., 2010. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition. ISBN 0123814723, 9780123814722.

Kollig, Thomas and Keller, Alexander, 2002. E�cient multidimen-
sional sampling. Computer Graphics Forum, 21(3):557�563. doi:10.1111/
1467-8659.00706.
URL http://dx.doi.org/10.1111/1467-8659.00706

Lafortune, Eric P. and Willems, Yves D., 1994. Using the modi�ed
phong re�ectance model for physically based rendering. Report CW 197,
Departement Computerwetenschappen, KU Leuven, Celestijnenlaan 200A,
3001 Heverlee, Belgium.

Laine, Samuli, Karras, Tero and Aila, Timo, 2013. Megakernels considered
harmful: Wavefront path tracing on gpus. In Proceedings of the 5th High-
Performance Graphics Conference, HPG '13, pages 137�143. ACM, New
York, NY, USA. ISBN 978-1-4503-2135-8. doi:10.1145/2492045.2492060.
URL http://doi.acm.org/10.1145/2492045.2492060

Lauterbach, Christian, Mo, Qi and Manocha, Dinesh, 2009. Fast hard
and soft shadow generation on complex models using selective ray tracing.

Lecocq, Pascal, Dufay, Arthur, Sourimant, Gaël and Marvie, Jean-
Eudes, 2016. Accurate analytic approximations for real-time specular area
lighting. In Proceedings of the 20th Meeting of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, I3D '16. ACM, New York,
NY, USA. ISBN 978-1-4503-4043-4/16/03. doi:http://dx.doi.org/10.1145/
2856400.2856403.

125

http://doi.acm.org/10.1145/15886.15902
http://dx.doi.org/10.1002/9783527626212.ch2
http://dx.doi.org/10.1145/258734.258769
http://dx.doi.org/10.1111/1467-8659.00706
http://doi.acm.org/10.1145/2492045.2492060


BIBLIOGRAPHY

Lerbour, Raphael,Marvie, Jean-Eudes andGautron, pascal, 2010. Adap-
tive real-time rendering of planetary terrains. In The 18th International Con-
ference in Central Europe on Computer Graphics, Visualization and Com-
puter Vision 2010. Vaclav Skala. ISBN 978-80-86943-93-0.
URL http://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_J_WSCG_No_

1-3.zip

MacDonald, David J. and Booth, Kellogg S., 1990. Heuristics for ray
tracing using space subdivision. Vis. Comput., 6(3):153�166. doi:10.1007/
BF01911006.
URL http://dx.doi.org/10.1007/BF01911006

Marvie, Jean-Eudes, Sourimant, Gael and Dufay, A., 2016. Contact Vi-
sualization. In M. Christie, Q. Galvane, A. Jhala and R. Ronfard, editors,
Eurographics Workshop on Intelligent Cinematography and Editing. The Eu-
rographics Association. ISBN 2411-9733. doi:10.2312/wiced.20161095.

Matsumoto, Makoto and Nishimura, Takuji, 1998. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random number genera-
tor. ACM Trans. Model. Comput. Simul., 8(1):3�30. doi:10.1145/272991.
272995.
URL http://doi.acm.org/10.1145/272991.272995

MaxwellRender, 2017-04-18. Maxwellrender, maxwell.
URL http://www.maxwellrender.fr/

Morton, G. M., 1966. A computer oriented geodetic data base and a new
technique in �le sequencing. Technical Report.

Ng, Ren, Ramamoorthi, Ravi and Hanrahan, Pat, 2003. All-frequency
shadows using non-linear wavelet lighting approximation. In ACM SIG-
GRAPH 2003 Papers, SIGGRAPH '03, pages 376�381. ACM, New York,
NY, USA. ISBN 1-58113-709-5. doi:10.1145/1201775.882280.
URL http://doi.acm.org/10.1145/1201775.882280

Nicodemus, Fred E., 1965. Directional re�ectance and emissivity of an opaque
surface. Appl. Opt., 4(7):767�775. doi:10.1364/AO.4.000767.
URL http://ao.osa.org/abstract.cfm?URI=ao-4-7-767

Niederreiter, H., 1992. Random Number Generation and Quasi-Monte
Carlo Methods. doi:10.1137/1.9781611970081.fm.
URL http://epubs.siam.org/doi/abs/10.1137/1.9781611970081.fm

Novák, Jan, Havran, Vlastimil and Daschbacher, Carsten, 2010. Path
regeneration for interactive path tracing. pages 61�64. Eurographics Asso-
ciation.

126 Arthur Dufay

http://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_J_WSCG_No_1-3.zip
http://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_J_WSCG_No_1-3.zip
http://dx.doi.org/10.1007/BF01911006
http://doi.acm.org/10.1145/272991.272995
http://www.maxwellrender.fr/
http://doi.acm.org/10.1145/1201775.882280
http://ao.osa.org/abstract.cfm?URI=ao-4-7-767
http://epubs.siam.org/doi/abs/10.1137/1.9781611970081.fm


BIBLIOGRAPHY

NVIDIA, 2012a. Kepler gk110 whitepaper.
URL http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

NVIDIA, 2012b. Nvidia geforce gtx 680 whitepaper.
URL https://la.nvidia.com/content/PDF/product-specifications/

GeForce_GTX_680_Whitepaper_FINAL.pdf

NVIDIA, 2017-04-20a. Cuda occupancy calculator.
URL http://developer.download.nvidia.com/compute/cuda/CUDA_

Occupancy_calculator.xls

NVIDIA, 2017-04-18b. Nvidia, mental ray.
URL http://www.nvidia.fr/object/nvidia-mental-ray-fr.html

Parker, Steven G., Bigler, James, Dietrich, Andreas, Friedrich, Heiko,
Hoberock, Jared, Luebke, David,McAllister, David,McGuire, Mor-
gan, Morley, Keith, Robison, Austin and Stich, Martin, 2010. Optix:
A general purpose ray tracing engine. In ACM SIGGRAPH 2010 Papers,
SIGGRAPH '10, pages 66:1�66:13. ACM, New York, NY, USA. ISBN 978-
1-4503-0210-4. doi:10.1145/1833349.1778803.
URL http://doi.acm.org/10.1145/1833349.1778803

Pixar, 2017-04-18. Pixar, renderman.
URL https://renderman.pixar.com/view/renderman

Popov, Stefan, Günther, Johannes, Seidel, Hans-Peter and Slusallek,
Philipp, 2007. Stackless kd-tree traversal for high performance gpu ray
tracing. Computer Graphics Forum, 26(3):415�424. doi:10.1111/j.1467-8659.
2007.01064.x.
URL http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x

Ramamoorthi, Ravi, 2009. Precomputation-based rendering. Foundations
and Trends R© in Computer Graphics and Vision, 3(4):281�369. doi:10.1561/
0600000021.
URL http://dx.doi.org/10.1561/0600000021

Reddy, D.R. and Rubin, S., 1978. Representation of three-dimensional ob-
jects.

Reed, Nathan, 2017-02-19. Quick and easy gpu random numbers in d3d11.
URL http://www.reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/

Reinhard, Erik, Khan, Erum Arif, Akyz, Ahmet Oguz and Johnson, Gar-
rett M., 2008. Color Imaging: Fundamentals and Applications. A. K. Peters,
Ltd., Natick, MA, USA. ISBN 1568813449, 9781568813448.

127

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://la.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
https://la.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.nvidia.fr/object/nvidia-mental-ray-fr.html
http://doi.acm.org/10.1145/1833349.1778803
https://renderman.pixar.com/view/renderman
http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x
http://dx.doi.org/10.1561/0600000021
http://www.reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/


BIBLIOGRAPHY

Ritschel, Tobias, Dachsbacher, Carsten, Grosch, Thorsten and Kautz,
Jan, 2012. The state of the art in interactive global illumination. Comput.
Graph. Forum, 31(1):160�188. doi:10.1111/j.1467-8659.2012.02093.x.
URL http://dx.doi.org/10.1111/j.1467-8659.2012.02093.x

Ritschel, Tobias, Grosch, Thorsten, Kim, Min H., Seidel, Hans-Peter,
Dachsbacher, Carsten and Kautz, Jan, 2008. Imperfect Shadow Maps
for E�cient Computation of Indirect Illumination. ACM Trans. Graph.
(Proc. of SIGGRAPH ASIA 2008), 27(5).

Sadeghi, Iman, Chen, Bin and Jensen, Henrik Wann, 2009. Coherent path
tracing.
URL http://graphics.ucsd.edu/~henrik/papers/coherent_path_

tracing.pdf

Schlick, Christophe, 1994. An inexpensive brdf model for physically-
based rendering. Computer Graphics Forum, 13(3):233�246. doi:10.1111/
1467-8659.1330233.
URL http://dx.doi.org/10.1111/1467-8659.1330233

Sloan, Peter-Pike, Kautz, Jan and Snyder, John, 2002. Precomputed
radiance transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Trans. Graph., 21(3):527�536. doi:10.1145/566654.
566612.
URL http://doi.acm.org/10.1145/566654.566612

Sobol, I. M., 1967. On the distribution of points in a cube and the approxi-
mate evaluation of integrals. Computational Mathematics and mathematical
physics, 7(4):86+.

Solid Angle, 2017-04-18. Solid angle, arnold.
URL https://www.solidangle.com/arnold/

Stanford University, Computer Graphics Laboratory, 2016-01-31. The
stanford 3d scanning repository.
URL https://graphics.stanford.edu/data/3Dscanrep/

Stich, Martin, Friedrich, Heiko and Dietrich, Andreas, 2009. Spatial
splits in bounding volume hierarchies. In Proc. High-Performance Graphics
2009.

Stokes, G.G., 1849. On the perfect blackness of the central spot in Newton's
rings, and on the veri�cation of Fresnel's formulae for the intensities of
re�ected and refracted rays, tome 4.

128 Arthur Dufay

http://dx.doi.org/10.1111/j.1467-8659.2012.02093.x
http://graphics.ucsd.edu/~henrik/papers/coherent_path_tracing.pdf
http://graphics.ucsd.edu/~henrik/papers/coherent_path_tracing.pdf
http://dx.doi.org/10.1111/1467-8659.1330233
http://doi.acm.org/10.1145/566654.566612
https://www.solidangle.com/arnold/
https://graphics.stanford.edu/data/3Dscanrep/


BIBLIOGRAPHY

Thiedemann, Sinje, Henrich, Niklas, Grosch, Thorsten andMüller, Ste-
fan, 2011. Voxel-based global illumination. In Symposium on Interactive 3D
Graphics and Games, I3D '11, pages 103�110. ACM, New York, NY, USA.
ISBN 978-1-4503-0565-5. doi:10.1145/1944745.1944763.
URL http://doi.acm.org/10.1145/1944745.1944763

Torres, Roberto, Martín, Pedro J. and Gavilanes, Antonio, 2009. Ray
casting using a roped bvh with cuda. In Proceedings of the 25th Spring
Conference on Computer Graphics, SCCG '09, pages 95�102. ACM, New
York, NY, USA. ISBN 978-1-4503-0769-7. doi:10.1145/1980462.1980483.
URL http://doi.acm.org/10.1145/1980462.1980483

van Antwerpen, Dietger, 2011. Improving simd e�ciency for parallel
monte carlo light transport on the gpu. In Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics, HPG '11, pages 41�50.
ACM, New York, NY, USA. ISBN 978-1-4503-0896-0. doi:10.1145/2018323.
2018330.
URL http://doi.acm.org/10.1145/2018323.2018330

van der Corput, J.G., 1935. Verteilungsfunktionen. I. Mitt. Proc. Akad.
Wet. Amsterdam, 38:813�821.

Veach, Eric, 1997. Robust Monte-Carlo Methods for Light Transport Simula-
tion. PhD Thesis.

Veach, Eric and Guibas, Leonidas J., 1997. Metropolis light transport.
In Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH '97, pages 65�76. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA. ISBN 0-89791-896-7. doi:
10.1145/258734.258775.
URL http://dx.doi.org/10.1145/258734.258775

Vinkler, Marek, Havran, Vlastimil and Bittner, Ji°í, 2016. Performance
comparison of bounding volume hierarchies and kd-trees for gpu ray tracing.
Computer Graphics Forum, 35(8):68�79. doi:10.1111/cgf.12776.
URL http://dx.doi.org/10.1111/cgf.12776

Wald, Ingo and Havran, Vlastimil, 2006. On building fast kd-trees for ray
tracing, and on doing that in o(n log n). In IN PROCEEDINGS OF THE
2006 IEEE SYMPOSIUM ON INTERACTIVE RAY TRACING, tome 0,
pages 61�69. doi:10.1109/RT.2006.280216.

Walter, Bruce, Fernandez, Sebastian, Arbree, Adam, Bala, Kavita,
Donikian, Michael and Greenberg, Donald P., 2005. Lightcuts: A scal-
able approach to illumination. ACM Trans. Graph., 24(3):1098�1107. doi:

129

http://doi.acm.org/10.1145/1944745.1944763
http://doi.acm.org/10.1145/1980462.1980483
http://doi.acm.org/10.1145/2018323.2018330
http://dx.doi.org/10.1145/258734.258775
http://dx.doi.org/10.1111/cgf.12776


BIBLIOGRAPHY

10.1145/1073204.1073318.
URL http://doi.acm.org/10.1145/1073204.1073318

Walter, Bruce, Khungurn, Pramook and Bala, Kavita, 2012. Bidi-
rectional lightcuts. ACM Trans. Graph., 31(4):59:1�59:11. doi:10.1145/
2185520.2185555.
URL http://doi.acm.org/10.1145/2185520.2185555

Wang, Jiaping, Ren, Peiran, Gong, Minmin, Snyder, John andGuo, Bain-
ing, 2009a. All-frequency rendering of dynamic, spatially-varying re�ectance.
ACM Trans. Graph., 28(5):133:1�133:10. doi:10.1145/1618452.1618479.
URL http://doi.acm.org/10.1145/1618452.1618479

Wang, Rui,Wang, Rui, Zhou, Kun, Pan, Minghao and Bao, Hujun, 2009b.
An e�cient gpu-based approach for interactive global illumination. ACM
Trans. Graph., 28(3):91:1�91:8. doi:10.1145/1531326.1531397.
URL http://doi.acm.org/10.1145/1531326.1531397

Wang, Thomas, 2017-02-19. Integer hash function.
URL http://web.archive.org/web/20071223173210/http://www.

concentric.net/~Ttwang/tech/inthash.htm

Wu, Zhefeng, Zhao, Fukai and Liu, Xinguo, 2011. Sah kd-tree construction
on gpu. In Proceedings of the ACM SIGGRAPH Symposium on High Perfor-
mance Graphics, HPG '11, pages 71�78. ACM, New York, NY, USA. ISBN
978-1-4503-0896-0. doi:10.1145/2018323.2018335.
URL http://doi.acm.org/10.1145/2018323.2018335

Wyman, Chris, 2005a. An approximate image-space approach for interac-
tive refraction. ACM Trans. Graph., 24(3):1050�1053. doi:10.1145/1073204.
1073310.
URL http://doi.acm.org/10.1145/1073204.1073310

Wyman, Chris, 2005b. Interactive image-space refraction of nearby geometry.
In Proceedings of the 3rd International Conference on Computer Graphics
and Interactive Techniques in Australasia and South East Asia, GRAPHITE
'05, pages 205�211. ACM, New York, NY, USA. ISBN 1-59593-201-1. doi:
10.1145/1101389.1101431.
URL http://doi.acm.org/10.1145/1101389.1101431

Xu, Kun, Cao, Yan-Pei, Ma, Li-Qian, Dong, Zhao, Wang, Rui and Hu,
Shi-Min, 2014. A practical algorithm for rendering interre�ections with
all-frequency brdfs. ACM Trans. Graph., 33(1):10:1�10:16. doi:10.1145/
2533687.
URL http://doi.acm.org/10.1145/2533687

130 Arthur Dufay

http://doi.acm.org/10.1145/1073204.1073318
http://doi.acm.org/10.1145/2185520.2185555
http://doi.acm.org/10.1145/1618452.1618479
http://doi.acm.org/10.1145/1531326.1531397
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://doi.acm.org/10.1145/2018323.2018335
http://doi.acm.org/10.1145/1073204.1073310
http://doi.acm.org/10.1145/1101389.1101431
http://doi.acm.org/10.1145/2533687


BIBLIOGRAPHY

Zhou, Kun, Hou, Qiming, Wang, Rui and Guo, Baining, 2008. Real-time
kd-tree construction on graphics hardware. In ACM SIGGRAPH Asia 2008
Papers, SIGGRAPH Asia '08, pages 126:1�126:11. ACM, New York, NY,
USA. ISBN 978-1-4503-1831-0. doi:10.1145/1457515.1409079.
URL http://doi.acm.org/10.1145/1457515.1409079

131

http://doi.acm.org/10.1145/1457515.1409079

	Contents
	Introduction
	Motivations
	Thesis Manuscript Organization

	Theoretical Background
	Rendering
	Final Render and Previsualization

	Global Illumination
	Path Classification
	Radiometric Units
	BRDF
	The Rendering Equation

	Monte-Carlo Integration
	Stochastic Ray Tracing
	Path Tracing
	Light Tracing
	Explicit Light Source Connection
	Bidirectionnal Path Tracing

	Rasterization
	Fast Removal of Invisible Geometry
	Rasterization Pipeline and Shading
	Forward vs Deferred Shading
	Shading Limitations

	Global Illumination Algorithms
	Finite Element Methods
	Precomputed Radiance Transfer (PRT)
	Photon Mapping
	Many Lights
	Monte-Carlo Ray Tracing
	Bidirectional Hybrid Algorithms

	Conclusion

	Proposed Path Tracing Architecture in 3DCast
	3DCast
	Path Tracing in 3DCast
	GPGPU
	Materials
	Light Sources
	3DCast Path Tracer - Architecture Overview

	Conclusion

	Kernel Implementation of Path Tracing on GPU
	Introduction
	GPU Architecture
	GPU Cores Hierarchical Structure
	GPU Memory Layout

	GPU Limitations
	Memory Access Bottleneck
	Register Size Limitation
	Kernel Branching

	Path Tracing Implementation on the GPU
	Path Regeneration
	First Implementation - Single Kernel Path Tracing
	Multiple Kernels

	Benchmark
	Reverse Shadow Ray
	Technical Problem Solved by the Invention
	Proposed Solution
	Reverse Shadow Rays
	Clustered Shadow Rays
	Clustering Algorithm
	Advantages of the Method

	Conclusion

	Analysis for an Adequate Spatial Acceleration Data Structure
	Overview of Spatial Acceleration Data Structures
	Uniform Grid
	Octree
	KD-Tree
	BSP-Tree
	BVH

	Performance Comparison Between KD-Trees and BVH
	BVH Intersection on GPU
	A Stackless BVH Intersection Algorithm on GPU
	Faster Intersection: Roped-BVH
	Roped-BVH Memory Layout on the GPU

	Conclusion and Research Perspectives

	Random Number Generation on the GPU
	Discrepancy
	Random Number Generation on the GPU
	Fast Pixel-based Techniques
	Low Discrepancy Sequences

	Decorrelation
	Introduction
	Decorrelation Techniques

	A GPU Cache Friendly Decorrelation Technique - Micro Jitter
	Motivation
	Method Description
	Results
	Application to Screen Space Sampling
	Limitations

	Conclusion and Future Work

	Conclusion
	Contributions Summary
	Future Work

	Software Tools
	HDR Viewer
	Sampling Software

	Hybrid Rendering of Shadows
	Technical Domain of the Invention
	State of the Art
	Hybrid GPU Pipeline for Alias Free Shadows
	Selective Ray Tracing

	Technical Problem Solved by the Invention
	Proposed Solution
	Overview
	Conservative Shadow Maps with Explicit Triangle Storage
	Classification at Shadow Edges
	Full Classification
	GPU Ray Tracing of Shadow Rays

	Advantages of the Invention

	Bibliography

