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Introduction

Ce mémoire se situe à l’interface entre géométrie algébrique complexe et systèmes dynamiques.
Dans la suite M désignera une variété complexe lisse projective (ou, plus généralement, compacte
kählerienne), et f : M → M une application holomorphe (ou, plus généralement, méromorphe)
dominante ; on note Aut(M) (resp. Bir(M)) le groupe d’automorphismes biholomorphes (resp.
de transformations biméromorphes) de M .

Les questions autour de f auxquelles je tente de répondre sont de nature dynamique : existence
et densité des points périodiques, densité (ou Zariski-densité) de l’orbite d’un point très général,
calcul de l’entropie topologique, existence de structures invariantes par f (fibrations, feuilletages,
structures symplectiques etc.). Nous verrons que certaines de ces questions peuvent être étudiées
par des méthodes de géométrie algébrique (calculs en cohomologie, notions de positivité, sché-
mas de Hilbert des sous-variétés ...), d’analyse complexe (géométrie kählerienne, courants positifs
fermés, résolution des singularités ...) et d’analyse p-adique. Des outils de systèmes dynamiques
(théorie de Pesin sur les variétés stables/instables, développements récents liés à la construction
de points périodiques hyperboliques...) et de géométrie différentielle (notamment la théorie des
(G,X)-structures et des structures géométrique au sens de Gromov) jouent également un rôle
important.

L’étude ci-présente se concentre sur les variétés compactes kähleriennes dont la première
classe de Chern est nulle, et plus particulièrement sur les variétés symplectiques holomorphes
irréductibles (voir la Définition 2.2).

0.1 Définitions, motivation et résultats connus

0.1.1 Entropie topologique, degrés dynamiques

Pour décrire la géométrie d’une variétéM il faut passer par la compréhension de ses sous-variétés,
et donc par l’analyse de ses espaces de (co)homologie. Il se trouve que l’action induite par une
application holomorphe f : M → M sur la cohomologie de M fournit des informations sur sa
dynamique.
Pour la définition suivante on renvoie à [DS04, CCLG10].

Définition 1.7. Soit M une variété compacte kählerienne et f : M → M une application holo-
morphe. Le degré dynamique d’ordre p de f est le rayon spectral (i.e. le maximum des modules
des valeurs propres) de l’application linéaire induite

f∗p,p : Hp,p(M,R)→ Hp,p(M,R).

Plus généralement, si f : M 99KM est une application méromorphe dominante, on définit

λp(f) = lim
n→+∞

log ||(fn)∗p,p||
n

,

où || · || est une norme sur l’espace EndR(Hp,p(M,R)).

9



10 INTRODUCTION

Le nombre λp(f) est un réel ≥ 1 qui (au moins dans le cas où M est projective) décrit la
croissance exponentielle des volumes des sous-variétés de M "génériques" de codimension p par
image inverse des itérés de f (voir [Gue04]). Par exemple, si d = dimM , λd(f) est le degré
topologique de f .
Les degrés dynamiques sont des invariants birationnels [DS05c, DS04]. De plus, les inégalités de
Teissier et Khovanskii (voir [Gro90]) permettent de montrer que l’application p 7→ log λp(f) est
concave sur l’ensemble {0, 1, . . . ,dimM} ; en particulier, il existe un λp(f) > 1 si et seulement
si λ1(f) > 1 si et seulement si tous les λp(f) sauf au plus λ0(f) et λdimX(f) sont > 1.

A une application continue f : M →M d’un espace compact M dans lui-même on peut asso-
cier son entropie topologique htop(f), un nombre positif ou nul, éventuellement infini, qui donne
une mesure du chaos créé par f ; plus précisément, htop(f) mesure à quelle vitesse exponentielle
deux point proches sont éloignés par les itérés de f (voir [AKM65] pour la définition originale,
[Bow71] pour une définition métrique plus simple à calculer). Dans beaucoup de cas, les proprié-
tés dynamiques des transformations changent drastiquement selon que l’entropie est nulle ou non.
Le calcul de l’entropie topologique est compliqué même pour des applications très simples, et né-
cessite souvent des arguments ad hoc. Cependant, grâce au théorème fondateur suivant dû à Gro-
mov et Yomdin [Gro90], le calcul s’avère simple dans le cadre de transformations holomorphes de
variétés compactes kähleriennes.

Théorème 1.10. Si f : M → M est une application holomorphe dominante d’une variété com-
pacte kählerienne M de dimension d dans elle-même, alors

htop(f) = max{log(λp(f)); p = 0, . . . , d}.

En particulier, par concavité on a htop(f) > 0 si et seulement si λ1(f) > 1.
Dans le cas d’une application méromorphe on peut adapter la définition d’entropie topolo-

gique, mais dans le Théorème 1.10 seule l’inégalité ≤ reste valable [DS05c].

0.1.2 Automorphismes des surfaces

On restreint maintenant notre attention aux automorphismes (ou plus généralement aux applica-
tions birationnelles) de variétés compactes kähleriennes.
Le cas des courbes n’est pas dynamiquement intéressant : en effet dans ce cas les applications
birationnelles sont des automorphismes, et les seuls automorphismes d’ordre infini apparaissent
sur P1 et sur les courbes elliptiques, et sont bien compris.
En revanche sur les surfaces on dispose de beaucoup d’exemples dynamiquement intéressants, et
dans ce contexte le lien entre action en cohomologie et dynamique est particulièrement profond.

Soit f : S → S un automorphisme d’une surface compacte kählerienne. D’abord, on a des
restrictions sur l’action en cohomologie de f qui découlent directement de l’invariance du produit
d’intersection sur H1,1(S,R) = H1,1(X) ∩H2(X,R) (qui est de signature (1, h1,1(S) − 1) par
le théorème de l’indice de Hodge) :

• si le degré dynamique λ1(f) est 6= 1, alors il est soit un nombre quadratique soit un nombre
de Salem et la norme de (fn)∗ croît exponentiellement vite ;

• si λ1(f) = 1, alors soit un itéré de f est isotope à l’identité (et en particulier f∗ est d’ordre
fini), soit ||(fn)∗|| croît quadratiquement en n.

On appelle loxodromique, parabolique ou elliptique un automorphisme f telle que la norme de
(fn)∗ a croissance exponentielle, quadratique ou bornée respectivement.
De plus, le fait que l’entropie soit nulle ou non gouverne la propriété suivante de décomposabilité
de la dynamique :
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Définition 5.1. Soit f : M 99K M une transformation biméromorphe d’une variété compacte
kählerienne M . On dit que f est primitive si elle n’admet pas de fibration méromorphe invariante
non-triviale, i.e. s’il n’existe pas de carré commutatif

M

π
��

f
//M

π
��

B
g
// B

où π : M 99K B est une application méromorphe dominante à fibres connexes et 0 < dimB <
dimM .

L’étude de la dynamique d’une transformation non primitive peut se décomposer en l’étude
de l’action g sur la base (de dimension plus petite) et de l’action sur les fibres ; du coup elle est à
priori qualitativement plus simple que celle d’une transformation primitive.
Cette intuition est confirmée, au moins dans le cas des surfaces, par le résultat suivant, énoncé par
Cantat [Can14] dans cette version, mais essentiellement dû à Gizatullin, voir [Giz80, Gri16].

Théorème 1.30 (Cantat). Soit f : S → S un automorphisme d’une surface compacte kählerienne
dont l’action en cohomologie est d’ordre infini ; f est primitif si et seulement si htop(f) > 0 (si et
seulement si λ1(f) > 1).

En fait l’énoncé est plus précis : si λ1(f) = 1 (i.e. f est parabolique), alors il existe une
fibration holomorphe π : S → C sur une courbe C et un automorphisme g : C → C tels que
g ◦ π = π ◦ f ; de plus, la fibre au-dessus d’un point général de C est une courbe elliptique. Pour
une transformation birationnelle d’une surface on a un énoncé similaire [DF01].

0.1.3 Feuilletages stables et instables

Une notion localement analogue à celle de fibration mais bien plus générale est celle de feuille-
tage. Informellement, un feuilletage C∞ (resp. holomorphe) lisse sur une variété différentielle
(resp. complexe) M est donné par une décomposition locale de petits ouverts de M en l’union
disjointe de sous-variétés (les feuilles locales), donnant une structure de produit local qui varie de
manière lisse (resp. holomorphe) ; localement on peut penser aux feuilles comme aux fibres d’une
fibration, mais la structure globale d’une feuille peut être bien plus compliquée (par exemple, elle
peut être dense dansM ). Plus généralement, on peut considérer des feuilletages singuliers, où l’on
ne voit pas partout de structure de produit local (penser au feuilletage radial dans C2).
La notion de feuilletage est devenue centrale dans le cadre des systèmes dynamiques puisqu’elle
apparaît naturellement dans l’étude qualitative des solutions d’équations différentielles, des dif-
fémorphismes et des flots de type Anosov1, et devient de plus en plus importante en géométrie
algébrique.

Example 0.1. L’exemple fondamental d’un difféomorphisme Anosov est le suivant. Soit T =
R2/Z2 le tore réel de dimension 2. Une matrice A ∈ SL2(Z) induit un difféomorphisme f : T →
T . On suppose que A est diagonalisable avec deux valeurs propres λ, λ−1 où |λ| 6= 1, et on
note v+, v− des vecteur propres pour la valeur propre λ, λ−1 respectivement. Alors f préserve les
feuilletages linéaires Fu,Fs définis par les direction v+, v−, et Fu (resp. Fs) est uniformément
dilaté (resp. contracté) par f . Comme λ est irrationnel, les feuilles de Fu et Fs sont denses dans
T .

1Un difféomorphisme d’une variété différentielle compacte est dit Anosov s’il préserve deux feuilletages transverses
Fs,Fu de classe C0 (les feuilletages stable et instable respectivement), et s’il agit en contractant (resp. dilatant) uni-
formément Fs (resp. Fu) par rapport à une certaine métrique sur la variété. On définit de manière analogue un flot
Anosov.
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Dans le cadre complexe, on peut répéter la construction sur un produit de deux courbes elliptiques
isomorphes :

S = C2
�Λ× Λ

∼= C�Λ×
C�Λ,

où Λ = 〈1, τ〉 est un réseau de C. On appelle encore les feuilletages holomorphes définis par les
directions v+ et v− les feuilletages instable et stable respectivement.

Soient S une surface complexe compacte et f : S → S un automorphisme d’entropie positive ;
un point périodique p de période k est dit hyperbolique si Dfkp agit en contractant une direction et
en en dilatant une autre. En appliquant le itérés de f (resp. de f−1) à un disque le long de la direc-
tion contractée (resp. dilatée), on arrive à définir une courbe entière immérgée c : C ↪→ S, qu’on
appelle la variété stable (resp. instable) passant par p, et qui en général est d’image Zariski-dense ;
cette variété peut également être définie comme l’ensemble des points q ∈ M tels que fNk(q)
(resp. f−Nk(q)) converge vers p lorsque N → +∞. Plus généralement, si f : M → M est un
difféomorphisme d’une variété différentiable M et µ est une mesure de probabilité (ergodique et
hyperbolique) invariante par f , la théorie de Pesin (voir [Pes76]) permet de définir des variétés
stables et instables en µ-presque tout point ; dans le cas où f est un biholomorphisme d’une va-
riété complexe, les variétés (in)stables sont des copies immergées de Ck pour un k ∈ N [JV02].
On peut se demander si les variétés stables/instables s’organisent en deux feuilletages holomorphes.
Avec l’hypothèse additionnelle que la contraction/dilatation le long des feuilles stables/instables
soit uniforme, on aurait un analogue purement holomorphe d’un difféomorphisme Anosov d’une
variété différentielle compacte.

Un principe général est que, lorsqu’on impose qu’un objet issu de la théorie des systèmes dy-
namiques est holomorphe/algébrique, la situation devient suffisamment rigide pour qu’on puisse
espérer classer tous les exemples. Par exemple, Cantat et Favre ont donné dans [CF03] une classi-
fication complète des triplets (S,F , f), où S est une surface projective complexe, F un feuilletage
singulier sur S et f : S → S une transformation birationnelle avec λ1(f) > 1 préservant F : à
équivalence birationnelle et revêtement fini près, S = C2/Λ est un tore complexe, f est une appli-
cation linéaire et F est un feuilletage linéaire dans la direction de l’une des deux valeurs propres
de f .

0.2 Variétés dont la première classe de Chern est nulle

Dans la suite on se concentre sur les variétés compactes kähleriennes M dont la première classe
de Chern c1(KM ) est nulle ; voir [Bea83, GHJ03]. L’importance de cette classe de variétés du
point de vue de la dynamique des transformations birationnelles est justifiée par les remarques
suivantes :

1. Si f : M 99K M est une transformation méromorphe dominante d’une variété compacte
kählerienne, alors un itéré de f préserve une à une les fibres de la fibration de Kodaira

π : M 99K B ⊂ PH0(M,mKM )∨,

qui sont des variétés de dimension de Kodaira nulle ; voir [Uen75, NZ09]. Il convient donc
d’étudier d’abord les variétés de type général et celles avec dimension de Kodaira 0 ou−∞.

2. Le groupe de transformations birationnelles d’une variété de type général est fini (voir
[Uen75]).

3. On dit que M est rationnellement connexe si deux points de M peuvent être joints par une
chaîne de courbes rationnelles. Lorsque M n’est pas rationnellement connexe, on dispose
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d’une fibration méromorphe ρ : M 99K Rat(M), le quotient rationnellement connexe de
M (voir [Deb01, Chapter 5]), dont les fibres très générales sont rationnellement connexes
et maximales pour cette propriété. Cette fibration est invariante par toute transformation
méromorphe de M .

4. La fibration d’Albanese, la réduction algébrique [Uen75] et le coeur de Campana [Cam03]
sont d’autres fibrations invariantes par toute transformation méromorphe dominante.

En conclusion, les variétés M dont il convient d’étudier la dynamique en premier sont celles dont
la dimension de Kodaira est négative ou nulle et qui satisfont dimRat(M) = dimM (rationnelle-
ment connexes) ou 0. Parmi les variétés de dimension de Kodaira 0, celles dont la première classe
de Chern est nulle occupent une position privilégiée ; par ailleurs, leur groupe d’automorphismes
joue un rôle particulièrement important dans l’étude de leur géométrie (penser par exemple à la
conjecture du cône de Kawamata-Morrison, voir [LOP16, Conjecture 3.3]).

0.2.1 Le théorème de décomposition de Beauville-Bogomolov

Grâce au théorème de structure suivant, l’étude des variétés dont la première classe de Chern
est nulle se réduit en un premier temps à trois grandes classes (voir [GHJ03, Theorem 5.4 and
Theorem 14.15]).

Théorème 2.6 (Beauville-Bogomolov). Soit M une variété compacte kählerienne avec c1(M) =
0. Alors M admet un revêtement fini non-ramifié de la forme

M ′ ∼= T ×
n∏
i=1

Xi ×
m∏
j=1

Yj ,

où

• T = Ck/Λ est un tore complexe (Λ ∼= Z2k est un réseau de Ck) ;

• les Xi sont des variétés symplectiques holomorphes irréductibles ;

• les Yj sont des variétés de Calabi-Yau au sens strict, i.e. π1(Yj) = 0, KYj
∼= OYj et

H0(Yj ,Ω
p
Yj

) = 0 pour 0 < p < dimYj .

Définition 2.2. Une variété compacte kählerienne X est dite symplectique holomorphe s’il existe
une 2-forme holomorphe fermée nulle part dégénérée σ (i.e. σ induit un isomorphisme TX ∼= Ω1

X ) ;
X est dite irréductible si de plus π1(X) = 0 et H0(X,Ω2

X) = Cσ.
Les variétés symplectiques holomorphes irréductibles sont aussi appelées hyperkähleriennes.

On remarque qu’en dimension deux les variétés symplectiques irréductibles et les variétés de
Calabi-Yau coïncident avec les surfaces K3.

Dans la suite on va se concentrer en particulier sur les variétés symplectiques holomorphes
irréductibles.

0.2.2 Variétés symplectiques holomorphes irréductibles

Ici on verra certaines propriétés fondamentales des variétés symplectiques irréductibles. On ren-
voie à [GHJ03, Part III] pour une introduction détaillée.

Soit X une variété hyperkählerienne ; d’abord, la condition de non-dégénérescence sur la
forme symplectique σ implique que la dimension complexe de X est paire.
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Exemples

À la différence des variétés de Calabi-Yau, on dispose de relativement peu d’exemples de variétés
hyperkähleriennes. En effet, tous les exemples actuellement connus sont équivalent à déformation
près à l’un des exemples suivants :

1. Schéma de Hilbert de n points sur une surface K3 : si S est une surface K3, le schéma
de Hilbert de n points sur S, Hilbn(S) = S[n], est une résolution minimale du produit
symétrique Symn S qui paramètre les sous-schémas de S de dimension 0 et longueur n.

2. Variété de Kummer généralisée : si T = C2/Λ est un tore complexe, la variété de Kummer
généralisée de dimension 2n est le noyau Kn(T ) de la composition

Hilbn+1(T )→ Symn+1(T )→ T,

où la deuxième flèche est le morphisme somme de n+ 1 points.

3. Deux exemples sporadiques en dimension 6 et 10 dûs à O’Grady [O’G99, O’G03].

À partir de l’Exemple 0.1 on peut produire des exemples dynamiquement intéressants d’auto-
morphismes de variétés hyperkähleriennes.

Example 0.2 (Exemples de type Kummer). Soit E une courbe elliptique et T = E × E ; une
matrice A ∈ SL2(Z) induit un automorphisme f de T . Supposons que A ait deux valeurs propres
réelles λ > 1, λ−1 < 1, et notons v+, v− deux vecteurs propres non nuls.
On peut voir que λ1(f) = λ2 > 1 ; f préserve les feuilletages linéaires F+

T ,F
−
T définis par les

directions v+, v− respectivement, et agit en dilatant le premier et en contractant le deuxième (voir
l’Exemple 0.1).
On notera S la surface de Kummer associée à T , i.e. la surface K3 obtenue comme résolution
minimale de T/± idT ; f induit un automorphisme fS : S → S, avec λ1(fS) = λ1(f), préservant
deux feuilletages singuliers induits par F+,F−.

1. Soit Xn = S[n] le schéma de Hilbert de n points sur S ; alors f induit un automorphisme
fX de Xn avec λ1(fX) = λ1(f) > 1 ; F+

T et F− induisent deux feuilletages singuliers
fX -invariants F±X de dimension n sur Xn.

2. Soit Yn = Kn(T ) la variété de Kummer généralisée de dimension 2n ; f induit un automor-
phisme de Hilbn+1(T ) préservant Kn(T ), et donc induit un automorphisme fY de Yn ; on
peut calculer que λ1(fY ) = λ1(f) > 1 ; comme au cas précédent F+ et F− induisent deux
feuilletages singuliers fY -invariants F±Y de dimension n sur Yn.

On renvoie au Chapitre 3 pour une analyse détaillée de ces deux exemples.

Forme de Beauville-Bogomolov et classification des transformations birationnelles

À l’aide de la forme symplectique on peut définir une forme bilinéaire non-dégénérée qX sur
H2(X,Z), la forme de Beauville-Bogomolov, dont la restriction à H1,1(X,R) est non-dégénérée
de signature (1, h1,1(X)− 1). Cette propriété fournit un lien formel entre la cohomologie des sur-
faces et celle des variétés hyperkähleriennes ; on peut alors se demander les automorphismes des
variétés hyperkähleriennes possèdent des propriétés dynamiques analogues à celles des automor-
phismes des surfaces.

Une autre propriété remarquable des variétés hyperkähleriennes (et, plus généralement, des
variétés compacte kähleriennes dont le fibré canonique est nef) est que les applications biration-
nelles X 99K X ′ entre deux variétés de ce type induisent des isomorphismes entre deux ou-
verts U ⊂ X,U ′ ⊂ X ′ dont les complémentaires sont de codimension ≥ 2 ; en particulier, les
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transformations birationnelles de X sont des pseudo-automorphismes (i.e. des transformations bi-
rationnelles qui ne contractent aucun diviseur). De plus on peut montrer qu’une transformation
birationnelle de X induit un automorphisme linéaire de H2(X,Z) préservant la forme bilinéaire
q. Grâce au résultat de signature énoncé plus haut, ceci donne une représentation

Bir(X)→ O(H1,1(X), qX) ∼= O(1, h1,1(X)− 1);

comme pour les automorphismes des surfaces (voir le paragraphe 0.1.2) ; on dira alors que f ∈
Bir(X) est

• loxodromique si λ1(f) > 1 ; dans ce cas λ1(f) est un nombre quadratique ou de Salem, et
la norme de (fn)∗ est à croissance exponentielle ;

• parabolique si f∗ est d’ordre infini et λ1(f) = 1 ; dans ce cas la norme de (fn)∗ est à
croissance quadratique ;

• elliptique si f∗ est d’ordre fini ; dans ce cas, un itéré de f est isotope à l’identité, et comme
X ne possède pas de champ de vecteurs holomorphe non trivial, f est d’ordre fini.

En essayant de pousser l’analogie avec les surfaces, une question naturelle est alors la suivante :

Question 0.1. Soit f : X 99K X une transformation birationnelle d’une variété symplectique
holomorphe irréductible X ; supposons que f est d’ordre infini. Est-ce que f est primitive si et
seulement si elle est loxodromique (i.e. λ1(f) > 1) ?

Example 0.3. Si on répète les deux constructions de l’Exemple 0.2 en utilisant une matrice A

unipotente non triviale, e.g. A =

(
1 1
0 1

)
, on peut construire des exemples d’automorphismes

paraboliques de variétés hyperkähleriennes préservant une fibration méromorphe lagrangienne.

Dans [HKZ15], Hu, Keum et Zhang ont appliqué les résultats de [BM14] pour donner une
réponse positive à une direction de la Question 0.1 dans le cas de variétés hyperkähleriennes équi-
valentes par déformation à S[n] (S une surface K3) ou à Kn(T ) (où T est un tore complexe de
dimension 2).

Théorème 2.15 (Hu, Keum, Zhang). Soit X une variété symplectique irréductible de dimension
2n de type K3[n] ou Kummer généralisée et soit f : X 99K X une transformation birationnelle
d’ordre infini ; f est parabolique si et seulement s’il existe une fibration rationnelle lagrangienne
π : X 99K Pn et un automorphisme g ∈ Aut(Pn) = PGLn+1(C) tels que π ◦ f = g ◦ π.

Action en cohomologie et points périodiques hyperboliques d’un automorphisme

La cohomologie des variétés symplectiques irréductibles est encore assez mal comprise ; cepen-
dant, la sous-algèbre SH2(X,C) de H∗(X,C) engendrée par H2(X,C) a été décrite par Ver-
bitsky : si dimX = 2n, alors

SH2(X,C) ∼= Sym∗H2(X,C)�〈αn+1 | qX(α) = 0〉.

Ici, on quotiente par l’idéal de H∗(X,C) engendré par les αn+1 ∈ H2n+2(X,C), où α ∈
H2(X,C) est tel que qX(α) = 0. En particulier, pour p = 0, . . . , n, on a une injection
SympH2(X,C) ↪→ H2p(X,C).
Oguiso a remarqué que ceci permet de montrer, en utilisant la log-concavité des degrés dyna-
miques, que si f : X → X est un automorphisme d’une variété symplectique irréductible de
dimension 2n, alors pour tout 0 ≤ p ≤ n on a

λp(f) = λ2n−p(f) = λ1(f)p.
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En fait on peut décrire encore mieux la situation : le premier degré dynamique détermine toutes
les modules des valeurs propres de f∗.

Théorème 4.4 (Bogomolov, Kamenova, Lu, Verbitsky). Soit f un automorphisme d’une variété
symplectique irréductible X , et soit λ = λ1(f). Alors

• toutes les valeurs propres de f∗ : H∗(X,R) → H∗(X,R) sont de module λk/2 pour un
k ∈ Z ;

• la somme des multiplicités des valeurs propres de

f∗p+q : Hp+q(X,R)→ Hp+q(X,R)

ayant module λ
p−q

2 est dimHp,q(X).

Un point périodique hyperbolique pour un automorphisme g : M → M d’une variété com-
plexe M est un point p f -périodique de période k tel que la Jacobienne de gk au point p est un
automorphisme linéaire de TMp dont tous les valeurs propres sont de module 6= 1.

Le Théorème 4.4 permet d’appliquer des résultats récents de systèmes dynamiques pour mon-
trer l’énoncé suivant.

Théorème 4.2. Soit f : X → X un automorphisme loxodromique d’une variété symplectique
holomorphe irréductible. Alors les points périodiques hyperboliques forment un sous-ensemble
Zariski-dense de X .

La démarche de la preuve, qu’on verra en détail dans le Chapitre 4, est la suivante. Dans [DS10,
Theorem 4.2.1 et 4.4.2], Dinh et Sibony construisent une mesure de probabilité f -invariante µ, qui
est ergodique, et qui ne peut pas être supportée par un diviseur. Pour appliquer ces théorèmes, il
faut vérifier que

• λp(f) 6= λp+1(f) pour p = 0, . . .dimX − 1 ;

• le degré dynamique maximal λq(f) est une valeur propre simple de f∗q,q ;

Ces deux points suivent du Théorème 4.4.
Un résultat de de Thélin [dT08] s’applique à la mesure µ construite par Dinh et Sibony, et montre
qu’elle est hyperbolique, c’est-à-dire que les exposants de Lyapunov pour µ sont tous non-nuls.
Les exposants de Lyapunov sont un équivalent global des (logarithmes des) valeurs propres de la
matrice Jacobienne de f aux point fixes ; considérons pour p ∈ X

β(p) = lim
n→+∞

log ||(Dfn)p||
n

,

où (Dfn)p est la matrice Jacobienne de fn au point p. La fonction β est bien définie sur un
ensemble de mesure totale par le théorème ergodique multiplicatif d’Oseledec [Ose68], et elle
est f -invariante, donc elle est presque partout égale à une constante β. On définit l’exposant de
Lyapunov maximal comme β ; pour les exposants suivants, il faut considérer l’action de la matrice
Jacobienne sur les espaces

∧k TXp.
Par un résultat de Katok [Kat80, Lemma 4.2], les points périodiques hyperboliques sont denses

dans le support de µ, donc Zariski-denses.
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0.3 Primitivité des transformations loxodromiques des variétés sym-
plectiques irréductibles

Mon premier résultat établit la direction manquante dans la Question 0.1.

Théorème A. Soit X une variété symplectique holomorphe irréductible, et f : X 99K X une
transformation birationnelle loxodromique (i.e. λ1(f) > 1). Alors f est primitive.

Ce résultat donne des conséquences intéressantes sur la dynamique de f .

0.3.1 Sous-variétés périodiques

On dit qu’une sous-variété fermée V ⊂ X est f -périodique si elle n’est contenue dans le lieu
d’indétermination d’aucun itéré de f et si sa transformée stricte par un certain itéré fN est égale à
V .
Un résultat de Cantat [Can10, Theorem B] implique que, si M est une variété complexe compacte
et si le nombre d’hypersurfaces invariantes pour un pseudo-automorphisme f : M 99KM est supé-
rieur à la constante c(M) = dim(M)+h1(M,Ω1

M ), alors f préserve une fonction méromorphe (et
donc, par factorisation de Stein, une fibration méromorphe sur une courbe). Le résultat de Cantat
est un analogue en dynamique discrète d’un théorème de Krasnov [Kra75], qui borne le nombre
d’hypersufaces sur une variété n’admettant aucune fonction méromorphe, et d’un théorème de
Jouanolou [Jou78] et Ghys [Ghy00], qui affirme qu’un feuilletage de codimension 1 admettant
une infinité de feuilles compactes admet une intégrale première.
Dans le situation du Théorème A, on obtient :

Corollaire 0.4. Si f : X 99K X est une transformation birationnelle loxodromique d’une variété
symplectique holomorphe irréductible, alors f admet au plus dimX + b2(X) − 2 hypersurfaces
périodiques.

On remarque qu’un résultat analogue ne peut pas être vrai pour les sous-variétés de codimen-
sion supérieure. Un contre-exemple est donné par le point (1) de
l’Exemple 0.2 ; si p ∈ S est un point périodique pour fS , alors les (images dans S[n] des) produits
{p}× . . .×{p}×S× . . .×S sont des sous-variétés f -périodiques de codimension paire arbitraire,
et comme il y a une infinité de points fS-périodiques, on produit une infinité de sous-variétés pé-
riodique de n’importe quelle codimension paire. Pour retrouver les codimensions impaires, on peut
remarquer que les 16 (−2)-courbes de S (les diviseurs exceptionnels de la résolution de T/± id)
sont périodiques ; il suffit alors de prendre les produits {p}× . . .×{p}×C×S× . . .×S, où C est
une courbe périodique, pour trouver une infinité de sous-variétés périodiques en toute codimension
impaire > 1.

0.3.2 Zariski-densité des orbites

Une question dynamique naturelle est celle de décrire les adhérences des orbites génériques d’un
automorphisme ou d’une application birationnelle.
Dans le cadre algébrique ou analytique, on peut également considérer la topologie de Zariski,
et se demander si l’orbite typique est Zariski-dense ou pas ; dans le cas contraire, toute orbite
est contenue dans une certaine sous-variété analytique. Dans [AC08, Theorem 4.1], Amérik et
Campana montrent que ces sous-variétés peuvent être vues comme les fibres d’une application
méromorphe dominante :

Théorème 5.8 (Amerik, Campana). Soit M une variété compacte kählerienne et f : M 99K M
un endomorphisme méromorphe dominant. Alors il existe une application méromorphe dominante



18 INTRODUCTION

g : X 99K B sur une variété compacte kählerienne B telle que la fibre Xb au-dessus d’un point
très général b ∈ B est l’adhérence de Zariski de l’orbite d’un point très général de Xb.

Ici, "très général" signifie "en dehors d’une réunion dénombrable de sous-variétés analytiques
de codimension positive".

En particulier, en combinant ce résultat avec le Théorème A on obtient :

Corollaire 0.5. Si f : X 99K X est une application birationnelle loxodromique d’une variété
symplectique holomorphe irréductible, l’orbite d’un point très général est Zariski-dense.

En fait, dans la preuve du Théorème A je montre le Corollaire 0.5 comme lemme.

0.3.3 Éléments de la preuve du Théorème A

Les techniques de la preuve sont inspirées principalement par [AC08].
On procède par l’absurde en supposant qu’une transformation birationnelle loxodromique

f : X 99K X d’une variété symplectique holomorphe irréductible préserve une fibration méro-
morphe non-triviale π : X 99K B. Dans ce cas, on montre facilement que B et X sont des variétés
projectives.

Le lemme clé est que la fibre F au-dessus d’un point général de B est une variété de type
général (i.e. telle que κ(F ) = dimF ). Une modification mineure des preuves dans [AC08] permet
de se ramener à montrer que la restriction de la forme de Beauville-Bogomolov qX à π∗NS(B)
(où NS(B) dénote le groupe de Néron-Severi de B) n’est pas identiquement nulle ; ceci dćoule
des informations sur l’action de f en cohomologie, à savoir le fait que f ne préserve aucune droite
qX -isotrope définie sur Z.

Une fois montré que la fibre au-dessus d’un point général de B est de type général, on résout
le lieu d’indétermination de π (on notera encore X le nouveau modèle birationnel de X) et on
considère la fibration de Iitaka relative (voir [Tsu10, Uen75])

Φ: X 99K Y ;

informellement, cela permet de mettre les fibrations d’Iitaka des fibres de π en famille. Ici, comme
les fibres générales de π sont de type général, Φ est birationnelle sur son image.
À l’aide de cet outil technique on arrive à montrer que les fibres au-dessus d’un ouvert de Zariski
dense de B sont birationnellement équivalentes ; comme le groupe de transformations biration-
nelles d’une variété de type général est fini, l’identification birationnelle entre fibres proche est
unique, et ceci permet de définir des "multi-sections méromorphes" de π, qui sont f -invariantes.
Ceci contredit la Zariski-densité des orbites, et conclut la preuve.

0.4 Transformations birationnelles préservant une fibration

Soit M une variété projective lisse et soit f : M 99K M une transformation birationnelle. On
suppose ici que f n’est pas primitive, c’est-à-dire qu’il existe une fibration méromorphe non-
triviale π : M 99K B et une transformation birationnelle g : B 99K B telles que π ◦ f = g ◦ π. On
a vu que c’est le cas pour f un automorphisme (resp. une transformation birationnelle) parabolique
d’une surface (resp. d’une variété symplectique holomorphe irréductible de typeK3[n] ou Kummer
généralisée).
La dynamique de f est alors à priori plus simple que dans le cas primitif ; pour la comprendre il
faut d’abord étudier la dynamique de g, et ensuite l’action de f sur les fibres de g.

Le théorème suivant a été motivé par le Théorème 2.15 dans le cas de X variété hyperkähle-
rienne ; il se trouve que la preuve fonctionne avec des hypothèses plus faibles.
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Théorème B. Soit X une variété projective lisse dont le fibré canonique est trivial ou effectif, et
soit f : X 99K X une transformation birationnelle. S’il existe une fibration méromorphe π : X 99K
Pn et un automorphisme g ∈ PGLn+1(C) tels que π ◦ f = g ◦ π, alors g est d’ordre fini.

On peut alors combiner les Théorèmes 2.15, A et B pour caractériser les transformations bira-
tionnelles avec des orbites Zariski-denses :

Corollaire 6.1. SoitX une variété symplectique holomorphe irréductible projective de typeK3[n]

ou Kummer généralisée. Une transformation birationnelle f : X 99K X admet des orbites Zariski-
denses si et seulement si λ1(f) > 1.

Les arguments de la preuve peuvent être facilement réadaptés pour affaiblir les hypothèse du
Théorème B : il suffit de supposer que la dimension de Kodaira de X est non-négative et que
f : X 99K X est une transformation birationnelle préservant une fibration méromorphe π : X 99K
B telle que l’action g : B 99K B sur la base est un pseudo-automorphisme préservant un fibré en
droites grand (big en anglais) ; voir la Remarque 6.2.

0.4.1 Éléments de la preuve

L’hypothèse sur l’effectivité du fibré canonique permet de définir une forme volume ω = Ω ∧ Ω
(où Ω est une section canonique) f -invariante sur X ; par push-forward on peut alors trouver une
mesure sur B qui est g-invariante. En considérant une forme de Jordan de g, on montre facilement
à l’aide de la mesure invariante qu’il existe des coordonnées homogènes Yo, . . . Yn de Pn telles
que

g[Y0 : Y1 : . . . : Yn] = [Y0 : α1Y1 : . . . : αnYn],

où les αi sont de module 1.
L’idée de la preuve est de changer de corps de base pour pouvoir réappliquer le même argument

de mesure invariante, en s’inspirant de la stratégie adoptée par Tits pour montrer l’alternative de
Tits dans le cas des groupes linéaires (voir [Tit72]). Pour cela, on définit d’abord le "corps des
coefficients" k : une extension finiment engendrée (mais peut-être transcendante) deQ qui contient
tous les coefficients des équations définissant X, f, π, ω et g.

Le lemme fondamental est le suivant :

Lemme 6.18 (Tits). Soit k une extension de type fini de Q et soit α ∈ k un élément qui n’est
pas une racine de l’unité. Alors il existe un corps local K et un plongement ρ : k ↪→ K tels que
|ρ(α)|K 6= 1.

On rappelle qu’un corps local est un corps muni d’une norme multiplicative telle que la topo-
logie induite est localement compacte. Les corps locaux en caractéristique 0 sont R, C et les corps
p-adiques (i.e. les extensions finies de Qp).
Supposons que l’un des αi, disons α1, ne soit pas une racine de l’unité, et appliquons le Lemme
6.18 à k et α1 : il existe un plongement ρ : k ↪→ K dans un corps local K tel que |ρ(α1)| 6= 1.
En appliquant ρ à toutes les équations concernées (i.e. en changeant de corps de base au sens de la
géométrie algébrique) on retrouve une application birationnelle fρ : Xρ 99K Xρ, préservant une
fibration πρ : Xρ 99K Pn et une forme volume ωρ ; l’action induite par fρ sur Pn est donnée par
gρ[Y0 : Y1 : . . . : Yn] = [Y0 : αρ1Y1 : . . . : αρnYn]. Or, si K = R ou C, le même argument de
théorie de la mesure donne une contradiction ; l’existence d’une théorie de l’intégration p-adique
permet de conclure de la même façon dans le cas des corps p-adiques.
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0.4.2 Fibrations sur les variétés de Calabi-Yau de dimension 3

Les Théorèmes 1.30 et 2.15 motivent la conjecture suivante (très optimiste).

Question 0.2. Soit f un automorphisme d’une variété projective (ou compacte kählerienne) M
dont l’action sur H2(M,Z) est d’ordre infini et tel que λ1(f) = 1. Est-ce que f préserve une
fibration (méromorphe) non-triviale π : M 99K B ?

Le premier cas à tester est celui de la dimension 3, et parmi les variétés de dimension 3, l’une
des classes les mieux étudiées dans cette direction est celle des variétés de Calabi-Yau.

D’un côté Oguiso a classifié les fibrations holomorphes sur ces variétés dans [Ogu93] : si X
est une variété de Calabi-Yau de dimension 3 et π : X → B est une fibration holomorphe, alors

1. ou bien B = P1 et les fibres générales sont des surfaces K3 ;

2. ou bien B = P1 et les fibres générales sont des surfaces abéliennes ;

3. ou bien B est une surface et les fibres générales sont des courbes elliptiques.

De l’autre côté, les travaux de Wilson [Wil89, Wil98] permettent de construire des fibrations
elliptiques sur une variété de Calabi-Yau à partir d’un diviseurD nef satisfaisant certaines proprié-
tés numériques.

J’ai essayé d’analyser le cas où f préserve une fibration holomorphe. On a deux résultats très
partiels dans cette direction :

• si f préserve une fibration, alors f préserve une fibration en tores de dimension 1 ou 2 ;

• par contre, il existe effectivement des exemples d’autormorphismes qui préservent une fi-
bration en tores de dimension 2 mais aucune fibration en tores de dimension 1.

0.5 Autres structures invariantes

Soit X une variété symplectique irréductible et f : X 99K X une transformation loxodromique.
Le Théorème A assure que f ne peut pas préserver de fibration méromorphe ; cependant, on voit
dans les exemples que d’autres structures moins rigides peuvent être préservées.

Dans ce qui suit on verra quelles limitations existent sur les possibles structures préservées, et
on posera les bases pour une étude systématique de telles structures.

0.5.1 Paires de feuilletages préservés

Comme on l’a dit, la notion de feuilletage généralise celle de fibration ; on peut alors se demander
si une transformation loxodromique f : X 99K X d’une variété hyperkählerienne peut préser-
ver un feuilletage. Un sous-espace tangent à X V ⊂ TpX est dit isotrope (resp. Lagrangien) si
σp|V = 0 (resp. si dimV = dimX/2 et V est isotrope).
Rappelons que, dans les deux exemples fondamentaux (schéma des points de Hilbert d’une sur-
face de Kummer et variété de Kummer généralisée), on construit deux feuilletages de dimension
dimX/2, génériquement transverses et Lagrangiens. Le théorème suivant montre que c’est la
seule situation possible pour deux feuilletages (ou même distributions de sous-espace du tangent)
f -invariants.

Théorème C. Soit f : X 99K X une transformation birationnelle loxodromique d’une variété
symplectique holomorphe irréductible projective de dimension 2n. On suppose que f préserve
deux distributions génériquement transverses non-trivialesF1,F2 (i.e. en un point général p ∈ X ,
TpX = TpF1 ⊕ TpF2) ; alors F1 et F2 sont des distributions de dimension n Lagrangiennes.
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L’idée de la preuve est assez simple : on remarque d’abord qu’il suffit de montrer que les deux
feuilletages sont isotropes. Supposons par l’absurde que ce n’est pas le cas, par exemple que F1

n’est pas isotrope ; à partir d’une forme symplectique σ, on construit par projection une nouvelle
2-forme :

σ′p(v, w) := σp(π1(v), π1(w)),

où σ est une forme symplectique et π1 : TpX → TpF1 est la projection par rapport à la décom-
position TpX = TpF1 ⊕ TpF2. A priori la forme σ′ est définie seulement sur l’ouvert de Zariski
U = X \ E ⊂ X où F1 et F2 sont transverses.
La forme σ′ ∈ H0(U,Ω2

U ) n’est pas symplectique car (σ′)n = 0, et elle est non-triviale car F1

n’est pas isotrope. Il ne reste qu’à montrer que σ′ s’étend en une forme sur X tout entier pour
trouver une contradiction avec l’irréductibilité de X .
Soit

E = E1 ∪ . . . ∪ Ek

la décomposition du diviseur E = X \ U . Par le principe d’Hartogs, il suffit de montrer que σ′

s’étend aux points généraux de chaque Ei.

Contraction du lieu exceptionnel

Fixons une composante irréductible Ei de E. Le premier pas pour étendre σ′ est de contracter Ei
sur une sous-variété de codimension supérieure.

Lemme 7.3. Soit D ⊂ X un diviseur irréductible préservé par une transformation birationnelle
loxodromique f : X 99K X d’une variété symplectique irréductible projective. Alors il existe une
variété symplectique irréductible projective (lisse)X ′, une application birationnelle φ : X 99K X ′

(qui est donc un automorphisme en codimension 1) et un morphisme birationnel π : X ′ → Y sur
une variété projective normale Y tel que le lieu exceptionnel de π est la transformée stricte φ∗D.

Ce lemme suit facilement d’un résultat de Druel [Dru11, Proposition 1.4] et des informations
sur l’action de f sur H1,1(X,R). La preuve de Druel est basée sur le programme des modèles
minimaux : si D est un diviseur négatif (au sens de la décomposition de Zariski divisorielle, voir
[Bou04]), alors on peut changer de modèle birationnel et le contracter.
Par [Bou04, Theorem 4.5, Proposition 3.11], D est négatif si et seulement si
qX(D) < 0, où qX dénote la forme de Beauville-Bogomolov sur H1,1(X,R) ; dans notre cas,
qX(D) < 0 suit de la structure des transformations loxodromiques.

Singularités symplectiques

Pour ce paragraphe on renvoie au survey [Fu06]. Quitte à remplacer f par un itéré, on peut suppo-
ser que toutes les composantes de E sont préservées par f ; on applique alors le Lemme 7.3 à une
composante Ei de E, et on obtient une contraction de (la transformée stricte de) Ei sur un modèle
birationnel X ′ de X :

π : X ′ → Y.

Les singularités de Y sont particulièrement gentilles :

Définition 7.8. Une variété normale Y est dite symplectique singulière s’il existe une 2-forme
symplectique σ sur la partie lisse de Y telle que, si π : Z → Y est une résolution des singularités,
π∗σ s’étend en une 2-forme sur Z.
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Les singularités symplectiques des surfaces ne sont rien d’autre que les singularités ration-
nelles (ou "du Val") : localement, elles sont biholomorphes à C2/G où G est un sous-groupe fini
de SL2(C).

Or, le π construit au Lemme 7.3 est ce qui s’appelle une résolution symplectique : le pull-
back de la forme symplectique sur la partie lisse de Y s’étend en une forme symplectique de
X ′ (a priori l’extension pourrait être dégénérée le long du diviseur exceptionnel). Dans ce cadre,
Kaledin a montré dans [Kal06] que π est semi-petite : pour toute sous-variété F ⊂ X ′, on a
2 · codimF ≥ codimπ(F ). En particulier, codim(π(φ∗Ei)) = 2.

Les singularités symplectiques sont canoniques ; donc, on peut appliquer le résultat suivant
(voir [Rei80, Corollary 1.14]).

Proposition 7.11 (Reid). Soit Y une variété projective normale de dimension d dont les singula-
rités sont canoniques, et soit Z une composante de codimension 2 dans SingY. Alors au voisinage
d’un point général de Z, Y est biholomorphe à

Cd−2 × C
2
�G,

où G ⊂ SL2(C) est un groupe fini.

Ceci permet de montrer que toute forme holomorphe définie en dehors de Ei s’étend au point
général de Ei, donc, par Hartogs, à Ei tout entier.

La preuve du Théorème C est alors complète : on a montré que, pour toute composante Ei de
E, σ′ s’étend à Ei, donc σ′ définit une forme globale sur X , ce qui contredit l’irréductibilité de X .

Le résultat d’extension des formes permet aussi de donner des contraintes aux feuilletages
préservés par une transformation loxodromique.

0.5.2 (G,X)-structures

Le concept de "structure géométrique" est très général, et il existe plusieurs façon de le rendre
rigoureux. Un premier exemple est celui des (G,X)-structures.

Définition 9.3. SoitG un groupe agissant sur une variété différentielleX ; on suppose que l’action
de G est analytique, i.e. que si deux éléments de G coincident sur un ouvert non vide, alors ils
coincident.
Une (G,X)-structure sur une variété différentielle M est la donné d’un atlas sur M à valeurs
dans X tel que les changements de carte soient des restrictions d’éléments de G.

On peut penser par exemple aux métriques à courbure sectionnelle constante (structure eucli-
dienne, sphérique ou hyperbolique), et aux structures affines ou projectives. En remplaçant "diffé-
rentielle" par "holomorphe" on obtient la définition de (G,X)-structure holomorphe.

Si M est une (G,X)-variété et M̃ est son revêtement universel, à l’aide de l’atlas à valeurs
dans X on peut construire une application développante

dev : M̃ → X

et une représentation d’holonomie
hol : π1(M)→ G

qui satisfont hol(γ)(dev(m)) = dev(γ ·m) pour tout γ ∈ π1(M), m ∈M .
Remarque 0.6. Dans le cadre des structures holomorphes, on remarque que, si X est une variété
complexe affine et M est une variété complexe compacte simplement connexe, alors M n’admet
pas de (G,X)-structure. En effet, si c’était le cas, l’application développante serait constante par
principe du maximum, ce qui est absurde.
En particulier, une structure affine sur une variété symplectique irréductible doit dégénérer le long
d’un diviseur.
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(G,X)-orbifolds

Un orbifold est une variété singulière qui est localement modelée sur des voisinage de l’origine
dans Rn/Γ, où Γ ⊂ SLn(R) est un groupe fini ; de façon analogue, un orbifold complexe est une
variété complexe singulière qui est localement modelée sur des voisinages de l’origine dansCn/Γ,
où Γ ⊂ SLn(C) est un groupe fini.
Comme on l’a vu dans la Proposition 7.11, les singularités symplectiques de codimension 2 sont
des singularités orbifoldes au point général.

Un (G,X)-orbifold est un orbifold muni d’un atlas à valeurs dans X/Γ, où Γ ⊂ G est un
sous-groupe fini. On peut généraliser la notion d’application développante et de représentation
d’holonomie au cadre des (G,X)-orbifolds.

Une application : structures affines sur les surfaces K3

Soit X une variété symplectique holomorphe projective, et supposons qu’une transformation bira-
tionnelle loxodromique f : X 99K X préserve une (G,X )-structure holomorphe sur X , où X est
une variété affine. Comme on a vu, la structure doit forcément dégénérer le long d’un diviseur E,
qui est donc f -invariant.
Quitte à changer de modèle birationnel, on peut alors contracter E sur une variété symplectique
singulière Y ; au point général de SingY, Y est naturellement munie d’une structure de (G,X )-
orbifold. Dans le cas des surfaces, SingY est une union finie de points isolés, ce qui permet de
montrer l’énoncé suivant :

Théorème 9.11. Soit f : X → X un automorphisme loxodromique d’une surface K3 et suppo-
sons que f préserve une structure affine définie sur un ouvert de Zariski U ⊂ X non vide. Alors
X = K(T ) est la surface de Kummer associée à un tore complexe T de dimension 2, et f est
construit à partir d’un automorphisme loxodromique linéaire de T .

Ceci complète la classification des structures géométriques naturelles invariantes sur les sur-
faces K3.

0.5.3 Structures géométriques rigides au sens de Gromov

Une possible généralisation des (G,X)-structures vient des structures géométriques au sens de
Gromov. Pour donner une définition précise, on notera Rr(M) → M le fibré des r-jets de cartes
de la variété M ; il s’agit d’un fibré principal dont le groupe de structure Dr(Rn) (n étant la
dimension deM ) est le groupe des r-jets de difféomorphismes deRn fixant l’origine ; voir [Ehr53,
Ehr54, Ben97, KMS93].
La définition suivante coïncide avec le concept de A-structure introduit par Gromov (voir [Gro88,
DG91, Ben97]).

Définition 9.14. Soit Z une variété quasi-projective sur R munie d’une action algébrique de
Dr(Rn) ; une structure géométrique de type Z sur la variété M est une application lisse équiva-
riante φ : Rr(M)→ Z, i.e. φ(s · g) = g−1 · φ(s), ∀s ∈ Rr(M) et ∀g ∈ Dr(Rn).
On note Isloc(φ) le pseudo-groupe des isométries locales de φ, c’est-à-dire les germes de difféo-
morphismes entre voisinages de deux points de M préservant la structure.

Par exemple, pour définir un champ de vecteurs on prend r = 1 et Z = Rn avec l’action
linéaire de D1(Rn) = GLn(R). D’autres exemples sont les formes différentielles, les feuilletages,
les métriques riemanniennes (ou holomorphes), les connexions, les structures projectives...
On définit de manière analogue une structure géométrique holomorphe ou méromorphe.
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Par rapport aux (G,X)-structures, les structures géométriques au sens de Gromov permettent
de se débarasser de toute hypothèse de symétrie à priori de la structure ; en revanche, on perd
l’application développante, qui est susceptible de fournir des informations sur la variété de départ,
et la possibilité d’étendre la structure aux singularités orbifoldes (qui, dans le cadre symplectique
irréductible, apparaissent après avoir contracté le diviseur exceptionnel).
Dans certains cas, il est possible de montrer qu’une structure au sens de Gromov définit en fait une
(G,X)-structure.

Rigidité et théorème de l’orbite ouverte-dense de Gromov

Une structure géométrique est dite rigide s’il existe un entier r0 ≥ 0 tel que, pour tout r ≥ r0, les r-
jets de difféomorphismes qui préservent la structure sont déterminés par leur r0-jet ; en particulier,
si φ est rigide, ses isométries locales sont déterminées par un jet fini. Par exemple, l’existence de
coordonnées exponentielles pour une métrique (pseudo)riemannienne (resp. holomorphe) montre
qu’elle définit une structure rigide (les isométries locales sont déterminées par leur différentielle) ;
par contre, un feuilletage lisee (resp. holomorphe) définit une structure non-rigide.

Le théorème suivant est un analogue méromorphe du Théorème de l’orbite ouverte-dense de
Gromov [Gro88, Theorem 3.3] :

Théorème 9.21 (Dumitrescu [Dum11]). SoitM une variété complexe connexe et soit φ une struc-
ture géométrique méromorphe presque-rigide (i.e. rigide en dehors d’une sous-variété stricte).
Alors il existe un sous-ensemble analytique nulle part dense S ⊂ M tel que M \ S est Isloc(φ)-
invariant et les Isloc(φ)-orbites de M \S sont les fibres d’une fibration holomorphe π : M \S →
B.
En particulier, si Isloc(φ) admet une orbite Zariski-dense, alors φ est localement homogène sur
un ouvert de Zariski non-vide.

Comme les transformations loxodromiques des variétés symplectiques irréductibles possèdent
des orbites denses, on obtient le corollaire suivant.

Corollaire 9.22. Soit f : X 99K X une transformation birationnelle loxodromique d’une variété
symplectique irréductible. Si f préserve une structure géométrique méromorphe rigide φ, alors φ
est localement homogène sur un ouvert de Zariski dense U ⊂ X .

Application : deux feuilletages Lagrangiens préservés

Voyons comment appliquer ces notions à l’étude des transformations loxodromiques d’une variété
symplectique holomorphe X préservant deux feuilletages (ou distributions) Lagrangiens généri-
quement transverse F1,F2.

D’abord, la donnée de F1 et F2 permet de définir une métrique méromorphe par

q(v) := σ(v1, v2), v ∈ TpX

où v = v1 + v2 est la décomposition de v le par rapport à la décomposition TpX = TpF1 ⊕ TpF2

(aux points p où F1 et F2 sont transverses). Comme f∗σ = ξσ pour un ξ ∈ C∗, f préserve
la métrique q à un facteur multiplicatif près ; autrement dit, f agit par isométrie de la structure
conforme (holomorphe) donnée par q. Or, les structures conformes sont rigides, ce qui permet de
montrer le résultat suivant.

Théorème 9.1. SoitX une variété symplectique irréductible, avec forme symplectique σ, et soient
F1,F2 deux distributions Lagrangiennes génériquement transverses. Soit f : X 99K X une trans-
formation loxodromique préservant F1 et F2.
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Alors la structure donnée par F1,F2 et σ modulo un facteur multiplicatif est rigide et localement
homogène sur un ouvert de Zariski dense de X .

Si on suppose que X soit projective, on peut montrer qu’un itéré de f préserve σ ; dans la
proposition précédente on peut alors enlever la partie "modulo un facteur multiplicatif".

Recherche de modèles locaux

Le Théorème 9.1 suggère que la structure donnée par F1,F2 et σ modulo C∗ pourrait en fait être
décrite comme (G,X )-structure. On verra qu’il existe en effet un candidat naturel pour le modèle
(G,X ), mais qu’il reste quelque chose à vérifier pour obtenir une (G,X )-structure.

Pour une structure rigide φ sur une variété M et p ∈ M , on dénote Gp l’algèbre de Lie des
germes de champs de Killing pour φ ; autrement dit, un champs de vecteurs local v autour de p
est dans Gp si et seulement si les flots le long de v agissent par isométries locales de φ. Comme la
structure est rigide, Gp est de dimension finie : en effet, un champ de Killing est déterminé par un
jet fini.
On note Ip ⊂ Gp le sous-espace des champs de Killing s’annulant en p, et par Gp (resp. Ip)
l’unique groupe de Lie connexe et simplement connexe ayant pour algèbre de Lie Gp (resp. Ip).

Supposons maintenant que φ soit localement homogène. Alors Gp = G et Ip = I sont indé-
pendants du point choisi, et le candidat naturel de modèle local pour la structure φ est la variété
homogène G/I avec l’action de G.

Il reste à montrer que I est un sous-groupe de Lie fermé de G ; ceci est toujours vrai en dimen-
sion ≤ 4 (mais pas en général). On obtient donc :

Corollaire 0.7. SoitX une variété symplectique holomorphe de dimension 2 ou 4 et soit f : X 99K
X une transformation birationnelle loxodromique.
Alors toute structure géométrique méromorphe rigide préservée par f est décrite par une certaine
(G,X )-structure sur un ouvert de Zariski dense U ⊂ X .

Ces énoncés ne permettent donc pas pour l’instant de classer toutes les structures de Gromov
rigides invariantes par une transformation birationnelle loxodromique, mais ils contraignent forte-
ment les structures possibles.
La stratégie pour attaquer le problème est maintenant en place : il faut d’abord décrire les possibles
modèles (G/I,G) ; la partie divisorielle du diviseur exceptionnel E = X \U peut être contractée
à l’aide du Lemme 7.3 ; dans les cas où la variété modèle G/I est affine, ceci permet d’appliquer
la théorie des (G,X )-orbifolds comme on l’a fait pour les structures affines sur les surfaces K3.
La conjecture suivante semble accessible.

Conjecture 0.3. SoitX une variété symplectique holomorphe irréductible projective de dimension
4, et soit f : X 99K X une transformation birationnelle loxodromique. Si f préserve une paire de
feuilletage Lagrangiens génériquement transverses ou une structure affine (définie sur un ouvert
de Zariski dense), alors (X, f) est de type Kummer (voir l’Exemple 0.2).
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In Part I I set the fundamental notions which will be used in the rest of the thesis, and I give a
survey of the known results.

In Chapter 1 I talk about dynamical degrees and topological entropy, holomorphic (singular)
foliations and the dynamics of automorphisms of surfaces.
The part about entropy just is a motivation to introduce the dynamical degrees, but is not necessary
for what follows; on the contrary, dynamical degrees (and their relative counterpart) will play a
central role throughout the rest of the thesis.
Then I introduce holomorphic foliations; the material of this section is quite classical, except
maybe the description of foliations in terms of pluri-forms (§1.2.2), which plays a (minor) role in
Chapter 4.
Finally, the dynamics of automorphisms of surfaces is explicitly used only in Chapter 8 and §9.1.3;
however, because of the close relationship between surfaces and irreducible symplectic manifolds,
the results on the first are natural candidates to be extended to the latter.

In Chapter 2 I introduce the main object of my research: irreducible symplectic manifolds.
I first introduce the definitions and classical results: the Beauville-Bogomolov decomposition the-
orem, the Beauville-Bogomolov quadratic form (which establishes a link with surfaces), and the
known examples.
Then, I move on to a more dynamical point of view, classifying the birational transformations of
such a manifold as elliptic, parabolic or loxodromic as in the surface case. Finally, I state some rel-
atively recent results about the non-primitivity of parabolic transformations and the computation
of the dynamical degrees of an automorphism.

In Chapter 3 I describe in detail two fundamental examples of loxodromic automorphisms on
irreducible symplectic manifolds.
In the first two sections I recall some basic results about the construction of Kummer surfaces and
the Hilbert scheme of n points on a surface.
Then I move on to the two examples: the Hilbert scheme of n points on a Kummer surface, and the
generalized Kummer variety of a two-dimensional torus. In both cases, loxodromic linear auto-
morphisms of the torus induce loxodromic automorphisms of the irreducible symplectic manifold.
Furthermore, the stable and unstable foliations on the torus induce invariant foliations on the sym-
plectic manifolds, which will be analyzed in detail.
As for the part about automorphisms of surfaces, this chapter is not essential to understand the rest
of the thesis, although it provides a good understanding of the situation in two concrete cases.

Finally, in Chapter 4 I prove the Zariski-density of hyperbolic periodic points of a loxodromic
automorphism of an irreducible symplectic manifold.
The first step of the proof is to understand the action in cohomology of such an automorphism f :
a recent result of Bogomolov, Kamenova, Lu and Verbitsky, of which we give a detailed proof,
gives the complete description of the (moduli of) eigenvalues of f∗.
Then one can apply recent results in dynamical systems to construct an invariant probability mea-
sure µ, which is ergodic and doesn’t charge positive codimensional subvarieties; to conclude, one
shows that µ is hyperbolic (i.e. the Lyapounov exponents are all different from zero), and conclude
by a result of Katok that the hyperbolic periodic points are Zariski-dense in the support of µ, hence
in the manifold.
This result is not needed in the following chapters.
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Chapter 1

Dynamics of endomorphisms of
compact complex manifolds

1.1 Dynamical degrees and topological entropy

1.1.1 Topological and measure-theoretic entropy

For this section we refer to [HK02, §I.2.5 and §I.3.7]. Let M be a compact topological space, and
let f : M →M be a continuous map.

The topological entropy of f is a non-negative number, possibly infinite, which gives a measure
of the chaos created by f and its iterates. More accurately, it measures the exponential growth
of orbit segments p, f(p), . . . , fN (p) which can be distinguished with arbitrarily fine but finite
precision.

A strictly related concept is the one of measure-theoretic entropy, which depends on the choice
of an f -invariant measure µ on M . Intuitively, the entropy of f with respect to a probability
measure µmeasures how much the dynamics of f are deterministic; in other words, how much the
knowledge of the past trajectory of a point (with arbitrarily fine but finite precision) determines its
future trajectory.

One key difference between the two definitions is the behavior with respect to the disjoint
union of two dynamical systems: the topological entropy is then the maximum of the topologi-
cal entropies of the two systems, whereas the measure-theoretic entropy is the average of the two
measure-theoretic entropies, weighted by their measures (see [HK02, §I.4.4]. Therefore, topo-
logical entropy measures the maximal dynamical complexity, whereas measure-theoretic entropy
gives the average dynamical complexity.

Topological entropy: original definition

Let us first describe the original definition of topological entropy, due to Adler, Konheim, and
McAndrew; see[AKM65].

If U = {Ui}i∈I and V = {Vj}j∈J are covers of M by open sets, we will denote by

U ∨ V = {Ui ∩ Vj}i∈I,j∈J

their minimal common refinement.
Furthermore, if f : M →M is a continuous map, denote by

f−1U = {f−1(Ui)}i∈I

the pull-back of the cover U .

31



32 CHAPTER 1. DYNAMICS OF ENDOMORPHISMS OF COMPLEX MANIFOLDS

The topological entropy H(U) of an open cover U is the logarithm of the minimal cardinality
of a sub-cover of U ; it is a finite number because M is compact.
By using the fact that H(U ∨ V) ≤ H(U) + H(V), one shows that the following limit exists for
every open cover U of M :

h(f,U) = lim
n→+∞

1

n
H
(
U ∨ f−1U ∨ . . . ∨ f−(n−1)U

)
Definition 1.1. The topological entropy of f is

htop(f) := sup
U
h(f,U),

where the supremum is taken among all open covers of M .

This definition requires very little assumptions about the dynamical system, but since one
needs to consider all possible open covers at once it is often very complicated to use it to compute
the topological entropy, even for simple dynamical systems.

Topological entropy: metric definition

In the case where M is a compact metrizable space, Bowen and Dinaburg proposed an equivalent
definition of topological entropy, which is much easier to compute in practice; see [Bow71]. Let
us fix a metric d on M which induces the topology of M .

Define
dk(p, q) = max

i=0,...,k−1
d(f i(p), f i(q)),

measuring the distance between two orbit segments of length k; for ε > 0 and k ∈ N, let

N(f, ε, k) = max{N | ∃p1, . . . , pN ∈M, dk(pi, pj) > ε for i, j = 1, . . . , N}

be the maximal number of k-segments of orbits which can be distinguished at the scale ε.
Then, the topological entropy of f is equal to the limit

lim
ε→0+

lim sup
k→+∞

1

k
logN(f, ε, k).

In particular, the limit is independent on the chosen metric.

Example 1.2. Let us see some concrete computations of topological entropy.

• Let T = RN/ZN be theN -dimensional real torus and let f : t 7→ t+α be a translation. The
topology on the torus is induced by the euclidean distance; since such distance is preserved
by f , the number of ε-separated k-orbits does not depend on k. Therefore, htop(f) = 0.

• Let A = {1, . . . ,m} be a finite alphabet endowed with the discrete topology, M = AN be
the set of infinite words with letters in A with the product topology, and let

f : M →M

(ai)i∈N 7→ (a′i = ai+1)i∈N

be the (one-sided) shift map. The topology on M is induced by the distance

d(a,b) = m−n where n = min{i ∈ N | ai 6= bi}.
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Picking ε = m−n, n ∈ N, two k-segments of orbits a, f(a), . . . , fk−1(a) and
b, f(b), . . . , fk−1(b) are ε-separated if and only if bi 6= ai for some 0 ≤ i ≤ n + k − 1;
hence

N(f,m−n, k) = mn+k,

and
htop(f) = lim

n→+∞
lim sup
k→+∞

1

k
logmn+k = logm.

• Let M = S1 = R/Z be the circle and let f : α 7→ d · α be the multiplication by d. If

α = 0, a1a2 . . . ai ∈ {0, 1, . . . , d− 1}

is the representation of α ∈ [0, 1) in base d (with the convention that infinite sequences of
digits d− 1 should not appear), then the representation of d · α in base d is

d · α = a1, a2a3 . . . ≡ 0, a2a3 . . . mod Z.

Therefore f : S1 → S1 can be interpreted as an invariant subset of the shift on the alphabet
A = {0, . . . , d − 1}; reasoning as in the previous example, one can show that htop(f) =
log d.

• Let

f : P1(C)→ P1(C)

z 7→ zd

Then S1 = {z | |z| = 1} is an f -invariant set, and all orbits except those of 0 and∞ tend to
the set S1. Therefore, intuitively, the number of ε-separated orbits of f is not significantly
different from the number of ε-separated orbits of f |S1 ; this can made be precise, and shows
that

htop(f) = log d.

• Let A ∈ SLN (Z); then A induces an automorphism f of the N -dimensional real torus
RN/ZN . One can show that, if λ1, . . . , λN ∈ C∗ are the eigenvalues of A and

|λ1| ≥ |λ2| ≥ . . . ≥ |λk| > 1 ≥ |λk+1| ≥ . . . ≥ |λN |,

then htop(f) = log |λ1|+ . . .+ log |λk|.
Using dynamical degrees, we will show an analogous result for the automorphism defined
by A on the product EN of N elliptic curves E = C/Λ (see Example 1.11).

Measure-theoretic entropy

Now suppose that f preserves a Borel probability measure µ; one can always find such a measure
by considering the sequence of discrete measures

µn =
1

n

n−1∑
i=0

δf i(p)

for some p ∈ M , and then taking an accumulation point for the weak-* topology on the set of
Borel measures; see [KB37].
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If ξ = {Ci}i∈I is a measurable partition of M , we define the entropy of ξ as

Hµ(ξ) := −
∑
i∈I

µ(C) logµ(C) ≥ 0,

with the convention 0 log 0 = 0.
The entropy of f with respect to the partition ξ is

hµ(f, ξ) := lim
n→+∞

1

n
Hµ

(
ξ ∨ f−1ξ ∨ . . . ∨ f−(n−1)ξ

)
,

where ξ ∨ ξ′ denotes the joint partition, i.e. the partition whose elements are the C ∩ C ′, C ∈ ξ,
C ′ ∈ ξ′.

The Kolmogorov entropy (sometimes called the Kolmogorov-Sinai entropy) of f is defined as

hµ(f) := sup
ξ
hµ(f, ξ),

where the supremum is taken over all the measurable partitions of M satisfying Hµ(ξ) < +∞.
However, in most cases the supremum is actually a maximum, and it is attained by ξ if it is a
generator (see [HK02, Corollary 3.7.10]): roughly said, this means that the smallest σ-algebra
containing ξ, f−1ξ, f−2ξ, . . . gives arbitrarily fine approximations of any measurable set.

The following theorem establishes a link between the concepts of topological entropy and
measure-theoretic entropy; see [HK02, Theorem 4.4].

Theorem 1.3. LetM(f) be the set of f -invariant Borel probability measures on M . Then

htop(f) = sup
µ∈M(f)

hµ(f).

We call measure of maximal entropy for f an f -preserved probability measure µ such that
hµ(f) = htop(f).

Ergodicity

Roughly speaking, a dynamical system is ergodic if it is minimal with respect to some invariant
probability measure.

Definition 1.4. Let f : M → M be a continuous map of a topological space, and let µ be an
f -invariant Borel probability measure. We say that µ is ergodic if every f -invariant measurable
set has measure 0 or 1.

Equivalently, µ is ergodic if every f -invariant measurable function φ : M → R is µ-almost
everywhere equal to a constant.

Proposition 1.5. Let M be a compact topological space and let f : M → M be a continuous
map. If f admits a unique measure µ of maximal entropy, then µ is ergodic.

For a proof, see Proposition 4.3.16(ii) in [HK02]. �
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1.1.2 The calculus of currents

Before giving the complete definition of dynamical degrees, we need some background on the
calculus of current; we refer to the review of Demailly [Dem97].

Let M be a manifold of dimension n; we denote by Dp(M) the space of smooth differential
forms of degree p on M . We define a topology on Dp(M): let Ω ⊂ X be a coordinate open set,
so that locally a form α ∈ Dp(X) can be written as α =

∑
|I|=p αIdxI . For every s ∈ N and for

every compact K ⊂ Ω, we define the seminorm

|α|Ω,K,s = sup
x∈K

max
|I|=p,|J |≤s

|DJαI |,

where we denote by DJ the differential operator

DJ =

(
∂

∂x1

)J1

◦ . . . ◦
(

∂

∂x1

)J1

.

On Dp(M) we fix the topology defined by the seminorms | · |Ω,K,s as Ω,K and s vary.
Roughly said, a current is a form with distribution coefficients: if X is a complex manifold

of dimension d, a current T of bidegree (s, s) is a continuous linear form on Dd−s,d−s(X) (the
space of smooth differential forms of bidegree (d − s, d − s) endowed with the restriction of the
topology of D2d−2s(X)).

A (d− s, d− s)-form α is weakly positive if at every point p ∈ X

α ∧ iβ1 ∧ β1 ∧ . . . ∧ iβs ∧ βs ≥ 0

for every choice of holomorphic one-forms βj ∈ Ω1
X,p at the point p. The current T is called

(strongly) positive if 〈T, α〉 ≥ 0 for every weakly positive (d− s, d− s)-form α.
The current T is closed (resp. exact) if 〈T, α〉 = 0 for every exact (resp. closed) (d−s, d−s)-form
α.

Example 1.6. • A differential form is a special case of a current.

• If Z ⊂ X is an analytic subvariety of codimension p, the integration current along Z,
denoted [Z], is a positive closed current of bidegree (p, p).

Some aspects of the calculus on differential forms (exterior differential, direct image, inverse
image by a submersion, tensor product of currents on two manifolds, wedge product of a current
with a form) extend naturally to currents; the most delicate operations are the pull-back of a current
by holomorphic maps which are not submersions and the definition of the wedge product of two
currents.

1.1.3 Definition of dynamical degrees and theorem of Gromov-Yomdin

Let f : X 99K Y be a dominant meromorphic map between compact Kähler manifolds; the map
f is then holomorphic outside its indeterminacy locus I ⊂ X , which has codimension at least 2.
The closure Γ of its graph over X \ I is an irreducible analytic subset of dimension d = dimX
in X × Y . Let πX , πY denote the restrictions to Γ of the projections from X × Y to X and to Y
respectively; then πX induces a biholomorphism π−1

X (X \ I) ∼= X \ I and we can identify f with
πY ◦ π−1

X .
Let α be a smooth (p, q)-form on Y ; we define the pull-back of α by f as the (p, q)-current on X

f∗α := (πX)∗(π
∗
Y α).
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It is not difficult to see that if α is closed (resp. positive), then so is f∗α, so that f induces a linear
morphism between the Hodge cohomology groups. This definition of pull-back coincides with the
usual one when f is holomorphic.

From now on, let M denote a d-dimensional compact Kähler manifold. Recall the Hodge
decomposition for the cohomology of M :

Hk(M,C) =
⊕
p+q=k

Hp,q(M), Hp,q(M) = Hq,p(M),

where Hp,q(M) is the set of classes of forms of bidegree (p, q) on M . The space Hp,p(M) has a
real structure, i.e. Hp,p(M,R) := Hp,p(M) ∩H2p(M,R) satisfies

Hp,p(M) ∼= Hp,p(M,R)⊗R C.

By the above discussion, a dominant meromorphic map f : M 99KM induces linear maps

f∗p,q : Hp,q(M)→ Hp,q(M).

If p = q, f∗p,p preserves the real structure of Hp,p(M).

Definition 1.7. The p-th dynamical degree of a dominant meromorphic map f : M 99K M is
defined as

λp(f) = lim sup
n→+∞

‖ (fn)∗p,p ‖
1
n ,

where ‖ · ‖ is any matrix norm on the space L(Hp,p(M,R)) of linear maps of Hp,p(M,R) into
itself.

Using to the above definition of pull-back, one can prove that

λp(f) = lim
n→+∞

(∫
M

(fn)∗ωp ∧ ωd−p
) 1
n

(1.1)

for any Kähler form ω; see [DS04], [CCLG10] for details.
The p-th dynamical degree measures the exponential growth of the volume of f−n(V ) for

subvarieties V ⊂M of codimension p [Gue04].

Remark 1.8. By definition λ0(f) = 1; λd(f) coincides with the topological degree of f : it is equal
to the number of points in a generic fibre of f .

Remark 1.9. Let f be holomorphic automorphism. Then we have (fn)∗ = (f∗)n, so that λp(f)
is the maximal modulus of eigenvalues of the linear map f∗p,p; since f∗ also preserves the positive
cone Kp ⊂ Hp,p(M,R), a theorem of Birkhoff [Bir67] implies that λp(f) is a positive real eigen-
value of f∗p . In particular, λp(f) is an algebraic integer.
Furthermore, it can be showed that λp(f) is the spectral radius of f∗2p : H2p(M,R)→ H2p(M,R)
(see for example [LB14b, Lemma 2.2.4]); therefore, all the conjugates of λp(f) over Q have
modulus ≤ λp(f).

It should be noted however that in the meromorphic setting we have in general (fn)∗ 6= (f∗)n.

The main interest in the definition of dynamical degrees lies in the following theorem by
Yomdin [Yom87] and Gromov [Gro90].

Theorem 1.10 (Yomdin-Gromov). Let f : M →M be a dominant self-map of a compact Kähler
manifold of dimension d; then the topological entropy of f is given by

htop(f) = max
p=0,...,d

log λp(f).
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It is also possible to give a definition of topological entropy in the meromorphic context (see
[DS08]), but in this situation we only have

htop(f) ≤ max
p=0,...,d

log λp(f).

Example 1.11. Let us see some examples of computations of topological entropy by dynamical
degrees.

• Let p ∈ C[X] be a polynomial of degree d and let

f : P1(C)→ P1(C)

z 7→ p(z)

Then λ0(f) = 1 and λ1(f) is the topological degree of f , hence λ1(f) = d. Therefore, by
Theorem 1.10 htop(f) = log d; in particular, as we already showed by a direct computation
in Example 1.2, this is true for p(X) = Xd.

• Let f ∈ PGLn+1(C) = Aut(Pn(C)) be an automorphism of Pn(C); then, since f sends
hyperplanes to hyperplanes, f preserves a Kähler class ω = c1(OPn(1)), thus λ1(f) = 1.
Analogously, λp(f) = 1 for all p = 0, . . . , n (this also follows from log-concavity, see
Proposition 1.14), thus htop(f) = 0.
More generally, if a projective manifold has Picard number ρ(X) = 1, then all automor-
phisms of X have zero entropy.

• Let X = E × E, where E = C/Λ is an elliptic curve; a matrix A ∈ SL2(Z) defines an
automorphism of C2 which induces an automorphism f : X → X . Fixing global linear
coordinates x, y on the two factors, we have

H1,0(X) = Span(dx, dy), H0,1 = Span(dx̄, dȳ),

and f∗ acts on H1,0(X,C) with basis dx, dy (resp. on H0,1(X,C) with basis dx̄, dȳ) as the
matrix At (resp. At = At). In particular, the eigenvalues of f∗1,0 and f∗0,1 are exactly the
same as A, say λ1, λ2.
Since

H1,1(X) = Span(dx ∧ dx̄, dx ∧ dȳ, dy ∧ dx̄, dy ∧ dȳ) ∼= H1,0(X)⊗H0,1(X),

f∗ acts onH1,1(X) with the above basis as the matrixAt⊗At; in particular, the eigenvalues
of f∗1,1 are exactly λ2

1, λ1λ2 (with multiplicity 2) and λ2
2. Therefore, λ1(f) = λ2 where λ is

the spectral radius of A, and htop(f) = log λ1(f) = 2 log λ.

This example can be generalized to any dimension. See also §1.3.3 for more details.

1.1.4 Properties of dynamical degrees

We give here some fundamental properties of dynamical degrees.

Invariance by bimeromorphic or generically finite maps

One of the central properties of dynamical degrees, which allows to define them in the meromor-
phic case, is the fact that they are bimeromorphic invariants: if φ : X 99K Y is a bimeromorphic
map and f : X 99K X , g : Y 99K Y are dominant meromorphic maps such that φ◦f = g ◦φ, then
λp(f) = λp(g) for p = 0, . . . ,dimX = dimY ; see [DS04].
More generally, one can show the following result:



38 CHAPTER 1. DYNAMICS OF ENDOMORPHISMS OF COMPLEX MANIFOLDS

Proposition 1.12. Let φ : X 99K Y be a generically finite dominant meromorphic map between
compact Kähler manifolds and let f : X 99K X , g : Y 99K Y be dominant meromorphic maps
such that φ ◦ f = g ◦ φ. Then

λp(f) = λp(g) for p = 0, . . . ,dimX = dimY.

One can show the result directly using the characterization 1.1 of dynamical degrees by the
pull-back of a Kähler form; the result follows as well as an easy corollary of Theorem 1.16. �

Dynamical degrees of the inverse

For bimeromorphic maps, one can deduce the dynamical degrees of the inverse from the ones of
the original map.

Lemma 1.13. If f : M 99KM is bimeromorphic and d = dimM , we have

λp(f) = λd−p(f
−1).

Proof. Let ω be a Kähler form on M . For f biregular we have∫
M

(fn)∗ωp ∧ ωd−p =

∫
M

(f−n)∗(fn)∗ωp ∧ (f−n)∗ωd−p =

∫
M
ωp ∧ (f−n)∗ωd−p,

which proves the equality by taking the limit.
If f is only bimeromorphic, for all n we can find two dense open subsets Un, Vn ⊂ M such that
fn induces an isomorphism Un ∼= Vn; by the definition of pull-back the measures (fn)∗ωp∧ωd−p
and ωp ∧ (f−n)∗ωd−p have no mass on any proper closed analytic subset, so that∫

M
(fn)∗ωp ∧ ωd−p =

∫
Un

(fn)∗ωp ∧ ωd−p =

∫
Vn

ωp ∧ (f−n)∗ωd−p =

∫
M
ωp ∧ (f−n)∗ωd−p,

which proves the equality in the bimeromorphic case as well.

Log-concavity

Dynamical degrees enjoy a log-concavity property (see [Kho79],[Tei79], [Gro90], [CCLG10]).

Proposition 1.14. If f : M 99KM is a meromorphic dominant map, the sequence p 7→ log λp(f)
is concave on the set {0, 1, . . . , d}; in other words

λp(f)2 ≥ λp−1(f)λp+1(f) for p = 1, . . . , d− 1.

As a consequence we have λp ≥ 1 for all p = 0, . . . , d; furthermore, there exist 0 ≤ p ≤
p+ q ≤ d such that

1 = λ0(f) < · · · < λp(f) = λp+1(f) = · · · = λp+q(f) > · · · > λd(f). (1.2)

In particular, the following are equivalent:

• λ1(f) > 1;

• there exists 0 ≤ p ≤ dimM such that λp(f) > 1;

• for f holomorphic, the topological entropy of f is strictly positive (see Theorem 1.10).
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1.1.5 Relative setting

Dinh, Nguyên and Truong have studied the behaviour of dynamical degrees in the relative setting
([DN11] and [DNT12]). Throughout this paragraph we denote by f : M 99K M a meromorphic
transformation of a compact Kähler manifold M of dimension d, by π : M 99K B a meromorphic
fibration onto a compact Kähler manifold B of dimension k and by g : B 99K B a meromorphic
transformation such that

g ◦ π = π ◦ f.

The p-th relative dynamical degree of f is defined as

λp(f |π) = lim sup
n→+∞

(∫
M

(fn)∗ωpM ∧ π
∗ωkB ∧ ω

d−p−k
M

) 1
n

,

where ωM and ωB are arbitrary Kähler forms on M and B respectively. In particular λp(f |π) = 0
for p > d− k.

Roughly speaking, λp(f |π) gives the exponential growth of (fn)∗ acting on the subspace of
classes inHp+k,p+k(M,R) that can be supported on a generic fibre of π; ifM is projective, it also
represents the growth of the volume of fn(V ) for subvarieties V ⊂ π−1(b) of a general fibre of π
having codimension p in the fibre.

Remark 1.15. If F = g−1(b) is a regular, f -invariant, non-multiple fibre, then λp(f |π) = λp(f|F )
for all p (see [DN11]).

The following theorem is due to Dinh, Nguyên and Truong [DN11].

Theorem 1.16. Let M be a compact Kähler manifold, f : M 99K M a dominant meromorphic
endomorphism, π : M 99K B a meromorphic fibration and g : B 99K B a dominant meromorphic
endomorphism such that π ◦ f = g ◦ π. Then for all p = 0, . . .dim(M)

λp(f) = max
q+r=p

λq(f |π)λr(g).

Properties

Many of the properties of absolute dynamical degrees have natural analogues in the relative case.

Proposition 1.17. Let M be a compact Kähler manifold, f : M 99K M a meromorphic transfor-
mation, π : M 99K B a meromorphic fibration and g : B 99K B a meromorphic transformation
such that π ◦ f = g ◦π; let d = dimM −dimB be the dimension of the general fibres of π. Then

1. the λp(f |π) are bimeromorphic invariants: if φ : M 99KM ′ and ψ : B 99K B′ are bimero-
morphic maps, then

λp(φ ◦ f ◦ φ−1|ψ ◦ π ◦ φ−1) = λp(f |π) for p = 0, . . . , d;

2. if f is invertible, λp(f |π) = λd−p(f
−1|π);

3. the map p 7→ log λp(f |π) is concave on the set {0, . . . , d}.

The proof of (2) is analogous to the proof of Lemma 1.13; for point (1) and (3) see [DN11]
and [DNT12].
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1.2 Holomorphic foliations

Informally, a holomorphic (smooth) foliation F of dimension p on a complex manifold M of
dimension n is a local decomposition of M into disjoint submanifolds of dimension p. More
accurately, it is the data of local charts Ui on M isomorphic to Vi × Wi, with Vi ⊂ Cp and
Wi ⊂ Cn−p, and such that the horizontal slices Vi × {wi} (the plaques of F) are compatible with
the changes of coordinates: if φi : Ui

∼−→ Vi ×Wi and φj : Uj
∼−→ Vj ×Wj are two such charts,

then the change of coordinates

φij = φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is of the form
φij(v, w) = (fij(v, w), gij(w)).

The plaques glue together from chart to chart to form the leaves of F , which in general are not
closed in M .

We will be generally interested in singular foliations: informally, we will allow a singular
locus SingF where the local decomposition is not defined. We will only consider foliations in
normal form, so that codim SingF ≥ 2.

Example 1.18. • The trivial examples are the ones where F has dimension or codimension
equal to 0: in the first case every point is a leaf of F , in the second case F has a unique leaf
which coincides with the ambient manifold.

• The radial foliation on C2, whose leaves are

L[v] = C∗v [v] ∈ P1(C)

is a holomorphic one-dimensional foliation with a singularity at the origin.
More generally, a vector field X determines a one-dimensional foliation whose leaves are
the orbits of the flow ΦX , and whose singularities are the zeros of X .

• Let T = C2/Γ be a two-dimensional complex torus, and let π : C2 → T be the universal
cover. For any fixed direction [v] ∈ P1(C) = P(C2), the images of the affine lines with
direction [v] decompose T into the leaves of a one-dimensional smooth foliation F ; the
leaves of F are either all compact (if the direction [v] is rational with respect to the lattice
Λ) or all Zariski-dense.
More generally, a linear foliation on a torus T = Cn/Λ with universal cover π : Cn → T is
given by the decomposition of T into the images of all affine subspaces of Cn obtained as
translations of a fixed linear subspace V ⊂ Cn.

• Let M be a compact complex manifold and let π : M → B be a submersion. Then there
exists a foliation F whose leaves are the fibres of π.
More generally, let π : M 99K B be a meromorphic fibration, i.e. a dominant meromorphic
map with connected fibres; then there exists a foliation F such that, in the open set U ⊂M
such that π|U is a submersion, its leaves coincide with the fibres of π. The leaves of F are
locally closed.

Conversely, if F is a foliation all of whose leaves are algebraic (i.e. the dimension of their
Zariski-closure is equal to the dimension of F), then F is a meromorphic fibration in the
sense we just explained (see for example [AD13, Lemma 3.2]).

• Let π : X 99K Y be a dominant meromorphic map, and let F be a foliation on Y ; then the
pull-back of leaves of F induce a foliation π∗F on X , which has the same codimension as
F .
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• If F1,F2 are two foliations on X , the intersection F1 ∩ F2 is a foliation; the local plaques
are defined as the intersection of plaques of F1 and plaques of F2.
The span ofF1,F2, associating to each point p ∈ X the span of the tangent spaces ofF1 and
F2, is a (meromorphic) distribution of tangent subspaces, which in general is not a foliation.

• If F1, F2 are foliations on X1, X2 respectively, the product of leaves defines a foliation
F1 ×F2 on X1 ×X2.

1.2.1 Foliations as subsheaves of the tangent sheaf

A foliation is determined by its tangent space at each point. The formal definition is as follows: a
(singular) foliation F on a complex manifold M is determined by a coherent subsheaf TF of TM
(the tangent sheaf of F) such that

1. TF is involutive (closed under the Lie bracket); and

2. the quotient TM/TF is torsion free.

The dimension of F is the generic rank of TF , and the singular set of F is the singular set of the
sheaf TM/TF . A foliation F is smooth if, and only if, both TF and TM/TF are locally free
sheaves.

1.2.2 Foliations and differential forms

Let F be a foliation of codimension q and define the normal sheaf of F as

NF :=
(
TM�TF

)∗∗
.

Denote by N∗F := (NF)∗ the conormal sheaf of F . From the inclusion N∗F ↪→ Ω1
M we

deduce a morphism detN∗F → Ωq
M . If we set

L = (detN∗F)∗ = det(NF),

where the determinant of a coherent sheaf S of generic rank r is defined as the line bundle detS :=
(
∧r S)∗∗, we get a q-form

ω ∈ H0(M,Ωq
M ⊗ L)

which defines the foliation F in the sense that TF can be recovered as the kernel of the sheaf
morphism

TM −→ Ωq−1
M ⊗ L

v 7−→ ivω .

The singular locus of F is exactly the zero locus of ω.
This abstract construction has a clear interpretation: locally, the foliation is defined as the

kernel of a local q-form ωi, which is well-defined up to multiplication by a holomorphic function
without zeros. We pick an atlas of open sets Ui where F is defined by ωi, so that, on Ui ∩ Uj ,

ωi = hijωj

for some holomorphic function hij without zeros. The line bundle L is then defined by the transi-
tion functions hij .
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Foliations and meromorphic differential forms

Now, let s be any non-trivial meromorphic section of L; then α := ω/s is a meromorphic q-form
which defines F in the sense that, away from its zeros and poles, TF is exactly the kernel of the
contraction

TM −→ Ωq−1
M

v 7−→ ivα .

The zeros in codimension one (resp. the poles) of α are exactly the poles (resp. the zeros) of s.
Conversely, suppose that a meromorphic q-form α defines a foliation F as above, and let

D = div(α) be the divisor of zeros in codimension one minus poles of α. Denoting by s the
meromorphic section of L := OM (−D) having −D as divisor of zeros minus poles, the form

ω := s · α ∈ H0(M,Ωq
M ⊗ L)

is holomorphic and has no zeros in codimension one; furthermore, as it is a multiple of α, it still
defines the foliation F . This shows that

L = det(NF).

Foliations and pluri-forms

The above construction allows to express any foliation in terms of a meromorphic differential form.
It can be desirable for such a form α not to have zeros in codimension one; this is possible if and
only if the line bundle L = det(NF) admits non-trivial holomorphic sections. However, if some
multiple mL = L⊗m of L admits non-trivial sections, we can bypass the problem as follows.

A pluri-form is a section of the bundle (Ωq)⊗m for some q ≥ 0,m ≥ 1; let ω ∈ H0(M,Ωq
M ⊗

L) be a form defining F , and let

ω⊗m ∈ H0(M, (Ωq
M )⊗m ⊗mL).

We can recover ω modulo m-th roots of unity, hence F , from ω⊗m; we will say that ω⊗m is a
pluri-form with values in mL which defines F .
Now, if mL admits a non-trivial holomorphic section s, the meromorphic pluri-form α := ω⊗m/s
has no zeros in codimension one and defines F (in the sense that, outside the poles of α, TF is
the kernel of the contraction morphism TM → (Ωq

M )⊗(m−1) ⊗ Ωq−1
M ).

1.3 Dynamics of automorphisms of surfaces

From now on, we will focus on the dynamics of automorphisms (or birational transformations)
of compact Kähler manifolds. In this section, we will summarize the known results for automor-
phisms of surfaces; we refer to [Can14].

Throughout this section, we will denote by

f : S → S

an automorphism of a compact Kähler surface S.

Remark 1.19. The one-dimensional case is not dynamically interesting. In this case, birational
transformations coincide with automorphisms. If C is a curve of genus g ≥ 2, then by Hurwitz’s
automorphisms theorem (see [Mir95, Theorem 3.9]) the group Aut(C) has cardinality at most
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84(g− 1); therefore, the only interesting dynamics appear on P1(C) and on elliptic curves. These
two cases can be studied explicitly: in particular, Aut(P1) = PGL2(C); and if E is an elliptic
curve, the group of translations has finite index in Aut(E).
Summarizing, if f : C → C is an automorphism of a curve C, then there exists an iterate fN of f
such that

fN =


homography if C = P1(C)
translation if C is an elliptic curve
idC if g(C) ≥ 2

1.3.1 Hodge index theorem

By Theorem 1.10, the topological entropy of an automorphism is uniquely determined by its action
on the cohomology; therefore, it is natural to classify automorphisms of surfaces by their action
on cohomology.

Recall that the intersection product is the pairing

qS : H1,1(S,R)×H1,1(S,R)→ R

(α, β) 7→
∫
S
α ∧ β

The Neron-Severi group of S is defined as

NS(S) = H1,1(X,R) ∩H2(S,Z)/torsion;

by Lefschetz’s theorem on (1, 1) classes, it coincides with the group of numerical classes of di-
visors. The restriction of qS to NSR(S) = NS(S) ⊗Z R has a clear geometric interpretation: if
D,D′ are effective divisors without common components, then qS(c1(D), c1(D′)) is the number
of points of D ∩D′ (counted with multiplicities).

An automorphism f : S → S induces by pull-back linear automorphisms

f∗1,1 : H1,1(S,R)→ H1,1(S,R), f∗NS : NSR(S)→ NSR(S).

It is clear by the definition that qS is f∗-invariant, i.e.

qS(f∗α, f∗β) = qS(α, β) ∀α, β ∈ H1,1(S,R).

A hyperbolic vector space is a real vector space V of dimension N + 1 endowed with a non-
degenerate quadratic form q of signature (1, N): in other words, there exists an orthogonal basis
e0, e1, . . . , eN of V such that

qS(e0) = 1, qS(ei) = −1 i = 1, . . . N.

Theorem 1.20 (Hodge index theorem). Let S be a compact Kähler surface; then the two vector
spaces H1,1(S,R) and NSR(S), endowed with the intersection product, are hyperbolic.

Therefore, after choosing a good basis for H1,1(S,R) we obtain a group morphism

Aut(S)→ O(1, N),

where N = h1,1(S) − 1 and O(1, N) denotes the group of linear automorphisms of RN+1 pre-
serving the standard quadratic form of signature (1, N):

q(x0, x1, . . . , xN ) = x2
0 − (x2

1 + . . .+ x2
N ).

Analogously, the choice of a good basis of NSR(S) induces a group morphism

Aut(S)→ O(1, ρ(S)− 1),

where ρ(S) = dim NSR(S) denotes the Picard number.
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1.3.2 Automorphisms of hyperbolic spaces

In this paragraph we classify the automorphisms of a hyperbolic vector space (V, q) of dimension
d which preserve q. Fix any norm ‖ · ‖ on the space L(V ) of linear endomorphisms of V .

Definition 1.21. Let φ ∈ O(V, q). We say that φ is

• loxodromic (or hyperbolic) if it admits an eigenvalue of modulus strictly greater than 1;

• parabolic if all its eigenvalues have modulus 1 and ‖ φn ‖ is not bounded as n→ +∞;

• elliptic if all its eigenvalues have modulus 1 and ‖ φn ‖ is bounded as n→ +∞.

In each of the cases above, simple linear algebra arguments allow to further describe the situ-
ation.
Let

C≥0 = {v ∈ V | q(v) ≥ 0},

C0 = {v ∈ V | q(v) = 0}.

C0 is called the isotropic cone for q.
Remark that an automorphism φ ∈ O(V, q) preserves the cone C≥0, hence acts on the set of lines
PC≥0; as this set is homeomorphic to the (d−1)-dimensional closed ball, by Brouwer’s fixed point
theorem φ preserves at least one line contained in C≥0.
We denote by O+(V, q) ⊂ O(V, q) the index two subgroup of automorphisms preserving the two
connected components of C≥0 \ {0}. If φ ∈ O(V, q), then φ2 ∈ O+(V, q).

For the following result see fo example [Gri16].

Theorem 1.22. Let φ ∈ O+(V, q).

• If φ is loxodromic, then it has exactly one eigenvalue λ with modulus > 1 and exactly one
eigenvalue with modulus < 1; these eigenvalues are real, simple and they are the inverse
of each another; their eigenspaces Rv+,Rv− are contained in C0 and they are the only φ-
invariant lines in C≥0; φ is semi-simple, and in particular the norm of iterates of φ grows
exponentially.
If furthermore φ preserves a lattice Γ ⊂ V , then Rv+ and Rv− are irrational with respect
to Γ; in this case λ is an algebraic integer whose conjugates over Q are λ−1 and complex
numbers of modulus 1, i.e. λ is a quadratic or Salem number.

• If φ is parabolic, then it fixes exactly one line Rv of C≥0, which is contained in C0; the norm
of iterates of φ grows quadratically.
If furthermore φ preserves a lattice Γ ⊂ V , then Rv is rational with respect to Γ; all the
eigenvalues of φ are roots of unity, and some iterate of φ has Jordan form

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 Id−3

 .

• If φ is elliptic, then it fixes exactly one line Rv in the interior of C≥0; since q is negative
definite on v⊥, φ acts as a rotation on v⊥.
If furthermore φ preserves a lattice, then it has finite order.
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Application to automorphisms of surfaces

An automorphism f : S → S of a compact Kähler surface S is called loxodromic, parabolic or
elliptic if f∗1,1 is loxodromic, parabolic or elliptic respectively; using the fact that f∗NS preserves
the lattice NS(S)/{torsion}, one can show that f is loxodromic/parabolic/elliptic if and only if
f∗NS is.

Denote again by C0, C≥0 the isotropic and positive cones for the intersection form onH1,1(S,R).
Remark that, since f∗ sends Kähler classes to Kähler classes, if preserves the two components of
C≥0 \ {0}.
The component of the interior of C≥0 containing the ample cone coincides with the big cone, as
defined in [Bou04].

From Theorem 1.22, we deduce the following properties.

Corollary 1.23. Let f : S → S be an automorphism of a compact Kähler surface S.

• If f is loxodromic (or, equivalently, λ1(f) > 1), then f∗1,1 is semi-simple has exactly one
eigenvalue with modulus > 1 and exactly one eigenvalue with modulus < 1; these eigen-
values are equal to λ := λ1(f) and λ−1, and they are simple; the norm of (fn)∗1,1 grows
as c λn. The eigenspaces Rv+,Rv− of λ and λ−1 are contained in C0 and they are the only
f∗1,1-invariant lines in C≥0; they are not defined over Q. The dynamical degree λ1(f) is a
quadratic or Salem number (i.e. an algebraic integer λ which is not a quadratic integer and
whose only conjugates over Q are λ−1 and complex numbers with modulus 1).

• If f is parabolic, then f∗1,1 fixes exactly one line Rv of C≥0, which is contained in C0 and
defined over Q; the norm of iterates of f∗1,1 grows quadratically. All the eigenvalues of f∗1,1
are roots of unity, and some iterate of f∗1,1 has Jordan form

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 IN−3

 N = dimH1,1(S);

in particular, the norm of (fn)∗ grows like n2 as n→ +∞.

• If f is elliptic, then f∗1,1 fixes exactly one line Rv in the interior of C≥0; since q is negative
definite on v⊥, f∗1,1 acts as a rotation on v⊥. Furthermore, f∗1,1 has finite order.

Remark that, if f is homotopic to the identity, then its action on cohomology is trivial. Con-
versely, if f acts trivially on cohomology, then some of its iterates is homotopic to the identity.
More precisely:

Theorem 1.24 (Fujiki, Liebermann [Fuj78, Lie78]). Let M be a compact Kähler manifold. If [κ]
is a Kähler class on M , the connected component of the identity Aut(X)0 has finite index in the
group of automorphisms of M fixing [κ].

This implies that a surface automorphism is elliptic if and only if one of its iterates is homo-
topic to the identity.

1.3.3 Linear dynamics on two-dimensional tori

One of the fundamental examples of dynamics on surfaces is provided by linear automorphisms of
two-dimensional complex tori: on the one hand, the description of automorphisms is particularly
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explicit; on the other hand, many of the general phenomena can be observed in this case. Further-
more, one can construct manifolds with interesting dynamics starting from an automorphism of a
torus (see for example Chapter 3); some results also allow to describe a dynamical system in terms
of such a linear automorphism (see Corollary 1.32).

Let T = Cn/Λ be an n-dimensional complex torus; any affine automorphism f̃ of Cn such
that f̃(Λ) = Λ induces an automorphism f : T → T .

Lemma 1.25. Let f : T 99K T be a birational transformation of an n-dimensional complex torus
T ; then f is an automorphism, and it is induced by an affine automorphism of Cn.

Proof. If f were not biregular, then by [KM98, Corollary 1.4] T would contain a rational curve.
But a torus does not contain any rational curve: otherwise we would have a non-constant map
P1 → T , which would lift to a non-constant map P1 → Cn, a contradiction. Therefore f is an
automorphism.

The tangent bundle of T is trivial; fixing a trivialization, one can see the Jacobian of f at a
point p ∈ T as a matrix in GLn(C) ⊂Mn×n(C) ∼= Cn2

. Since T is compact, the map p 7→ Dfp
is constant; this means exactly that f is induced by an affine automorphism of Cn.

From now on, assume that dimT = 2 and that T = E ×E for some elliptic curve E = C/Λ.
Any matrix A ∈ SL2(Z) preserves Λ× Λ, hence induces an automorphism f = fA : T → T .

As we have seen in Example 1.11, if α is the spectral radius of A, then λ1(fA) = α2.

Parabolic case

Take

A =

(
1 1
0 1

)
∈ SL2(Z),

which induces the automorphism of T

f = fA : (x, y) 7→ (x+ y, y).

Since A has infinite order, none of the iterates of f is homotopic to the identity (i.e. a translation);
furthermore λ1(f) = 1. Thus f is parabolic.

Since

An =

(
1 n
0 1

)
,

by the computations in Example 1.11 we have

‖ (fn)∗1,1 ‖=‖ An ‖2∼ n2,

as stated in Theorem 1.22.
The fibre of the projection π : T → E on the second factor are f -equivariant, and f acts by

translations on the fibres of π. As the translations on fibres depend on the base point, it can be
shown that the points e ∈ E such that the restriction of f to π−1(e) has infinite (resp. finite) order
is a full-measure (resp. dense) subset of E. In particular, f -periodic points are dense in T .
Remark 1.26. f does not preserve any other foliation beside the one whose leaves are the fibres of
π; in particular π is the only equivariant fibration.
Indeed, for every periodic point p, of period n, the line L ⊂ TpF which is tangent to the foliation
must be invariant by Dpf

n. This differential is given by the matrix An, and preserves a unique
line, which is tangent to the fibration. Thus, F must be tangent to the fibration at all periodic
points. Since these points are Zariski dense, F coincides with the invariant fibration.
Remark 1.27. We will see in Theorem 1.30 that all parabolic automorphisms of surfaces admit
exactly one equivariant fibration, and that its general fibres are elliptic curves.
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Loxodromic case

Take

A =

(
2 1
1 1

)
∈ SL2(Z),

which induces the automorphism of T

f = fA : (x, y) 7→ (2x+ y, x+ y).

Since the spectral radius ofA is equal to α = (3+
√

5)/2, λ1(f) = α2 > 1. Thus f is loxodromic.
Since

‖ An ‖∼ cαn,

by the computations in Example 1.11 we have

‖ (fn)∗1,1 ‖=‖ An ‖2∼ cλ1(f)n,

as stated in Theorem 1.22.
Let v+, v− be the eigenvectors of A with eigenvalue α, α−1 respectively, and let F+,F−

be the linear foliations on T defined by the directions of v+ and v− (see Example 1.18). The
foliationsF+,F− are preserved by f , and are called the unstable and stable foliation respectively,
in analogy with the case of Anosov diffeomorphisms of (real) compact surfaces (see [HK02]); f
acts by expanding (respectively contracting) the leaves of F+ (resp. F−) by a constant factor α
(resp. α−1). Remark that the leaves of F+ and F− are dense in T .
The same proof as in Remark 1.26 shows that F+ and F− are the only f -invariant foliations; in
particular, f doesn’t admit any equivariant fibration.

It can be shown that, for p in a full-measure subset of T , the f -orbit of p is dense in T , and
that periodic points are dense in T .

Remark 1.28. We will see in Theorem 1.30 and Theorem 1.31 that loxodromic automorphisms of
surfaces never admit equivariant fibrations and that their periodic points are Zariski-dense; how-
ever, the existence of invariant foliations is specific to tori and surfaces constructed starting from
tori (see Corollary 1.32).

1.3.4 Invariant fibrations

As we have seen, the action on cohomology of a dominant endomorphism f : M → M of a
compact Kähler manifold M determines its topological entropy. In the case of surfaces, one
can deduce even more dynamical properties from the cohomological action; as we will see, the
dynamical behavior changes drastically depending on the entropy being zero or strictly positive.

Definition 1.29. Let f : M →M be an endomorphism of a compact Kähler manifold; we say that
a fibration π : M → B (i.e. a surjective map with connected fibres) is f -equivariant if there exists
an endomorphism g : B → B such that π ◦ f = g ◦ π, i.e. the following diagram commutes:

M M

B B

f

π π

g

.

The dynamics of an automorphism admitting a non-trivial equivariant fibration can be analyzed
by studying the action g on the base first, and then the action of f on fibres; intuitively, this means
that the dynamics of f is not very chaotic.
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An elliptic fibration is a fibration whose general fibres are elliptic curves.
The following theorem was stated and proved in the present form by Cantat [Can01], and

follows from a result of Gizatullin (see [Giz80], or [Gri16] for a survey); see also [DF01] for the
birational case.

Theorem 1.30. Let S be a compact Kähler surface and let f be an automorphism of S.

1. If f is parabolic, there is an f -equivariant elliptic fibration π : S → C. If F is a fibre of
the fibration, its class [F ] is contained in the unique isotropic line which is fixed by f∗1,1; in
particular, this line intersects NS(S) \ {0}, and f admits exactly one equivariant fibration.
Moreover, if the induced automorphism g : C → C does not have finite order, then S is
isomorphic to a torus C2/Λ.

2. Conversely, if a non-elliptic automorphism of a surface f : S → S admits an equivariant
non-trivial fibration π : S → C, then f is parabolic. In particular, the fibration π is elliptic,
and is the only equivariant fibration.

In other words, a non-elliptic automorphism of a surface admits an equivariant fibration if and
only if its topological entropy is zero.

1.3.5 The loxodromic case: periodic points and invariant foliations

Let f : S → S be an automorphism of a compact Kähler surface S. In Theorem 1.30 we have
seen that, if f is loxodromic (if and only if λ1(f) > 1, if and only if htop(f) > 0), then the
dynamics of f is too chaotic for f to admit an equivariant fibration. Let us see more results in this
direction; throughout this section, f : S → S denotes a loxodromic automorphism of a compact
Kähler surface.

Zariski-density of hyperbolic periodic points

Let p be a periodic point of the automorphism f and let k be its period. One says that p is a
hyperbolic (or saddle) periodic point if one eigenvalue of the Jacobian matrixD(fk)p has modulus
> 1 and the other has modulus < 1.
Since f has topological entropy log(λ1(f)) and S has dimension 2, one can apply a result due to
Katok [Kat80] (stated for real surfaces, but still valid for complex surfaces) to prove the following
result.

Theorem 1.31 (Cantat [Can14]). Let f be a loxodromic automorphism of a compact Kähler sur-
face. The set of saddle periodic points of f is Zariski dense in S.
Furthermore, the number N(f, k) of saddle periodic points of f of period at most k grows like
λ1(f)k.

The same result holds for isolated periodic points in place of saddle periodic points. In Chapter
4, we will present all the elements which are necessary for the proof in the case of surfaces, and
we will prove an analogous result for automorphisms of irreducible symplectic manifolds (see
Theorem 4.2).

Classification of invariant foliations

The property of preserving a foliation is weaker than admitting an equivariant fibration, but nonethe-
less it forces some rigidity on the dynamics of f . It turns out that, if a loxodromic automorphism
of a projective surface preserves a foliation, then it is induced by a loxodromic automorphism of a
two-dimensional torus.
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Theorem 1.32 (Cantat, Favre [CF03]). Let f : S → S be a loxodromic automorphism of a pro-
jective surface S which preserves a (singular) foliation F . Then there exist a birational morphism
π : S → Ŝ onto a singular surface Ŝ, an automorphism f̂ of Ŝ, a finite map η : T → Ŝ from a
two-dimensional complex torus onto Ŝ, and a loxodromic automorphism fT : T → T such that

π ◦ f = f̂ ◦ π, η ◦ fT = f̂ ◦ η.

In other words, the following diagram commutes

S T

Ŝ

f

π η

fT

f̂

.

The foliation F is induced by pull-back of the stable or unstable foliation of fT ; in particular, f
preserves an additional foliation which is generically transverse to F .

Theorem 1.32 has a particularly neat interpretation when S is a projective K3 surface, see
§3.1.1.
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Chapter 2

Holomorphic irreducible symplectic
manifolds

2.1 Definition and examples

We give here the basic notions and properties of irreducible holomorphic symplectic manifolds
(see [GHJ03, Part III], [Mar11] for details).

Definition 2.1. AK3 surface is a compact Kähler surface such thatKS
∼= OS andH1(S,Q) = 0.

K3 surfaces play an important role in the classification theory of compact surfaces: together
with two-dimensional complex tori, they are the only surfaces with trivial canonical bundle.
Irreducible symplectic manifolds are one of the possible generalizations in higher dimension of
K3 surfaces.

Definition 2.2. A compact Kähler manifold X is called symplectic if it admits a symplectic form
σ; irreducible symplectic (or hyperkähler) if furthermore it is simply connected and the space of
holomorphic two-forms on X is spanned by σ.

Here, a two-form σ ∈ H0(X,Ω2
X) is called symplectic if it is nowhere degenerate, i.e. the

contraction v 7→ ivσ = σ(v, ·) induces an isomorphism TX
∼−→ Ω1

X .

Remark 2.3. Because of the non-degeneracy of σ, one can easily prove that a holomorphic sym-
plectic manifold has even complex dimension 2n, and that σn is nowhere zero.

Caution! Some authors refer to possibly reducible symplectic manifolds as hyperkähler mani-
folds. Her I stick to the terminology of [GHJ03].

Throughout this section X denotes an irreducible holomorphic symplectic manifold of dimen-
sion 2n and σ a non-degenerate holomorphic two-form on X .

Darboux’s theorem

It is not hard to see that, if σ is a symplectic form on X and dimX = 2n, then for all p ∈ X there
exist linear coordinates x1, y1, . . . , xn, yn of TpX such that, in these coordinates,

σp =
n∑
i=1

dxi ∧ dyi.

This representation can be actually made local thanks to the following theorem.

51



52 CHAPTER 2. IRREDUCIBLE SYMPLECTIC MANIFOLDS

Theorem 2.4 (Darboux, see [AG01]). A symplectic form has locally the form

σ =

n∑
i=1

dxi ∧ dyi

for a suitable choice of local coordinates x1, y1, . . . , xn, yn.

A submanifold V ⊂ X of an irreducible symplectic manifold is called isotropic if, denoting
by i : V ↪→ X the embedding morphism, i∗σ = 0; by non-degeneracy, this implies that dimV ≤
dimX/2. An isotropic submanifold is called Lagrangian if its dimension is dimX/2.
Here is a relative version of Darboux theorem.

Theorem 2.5. Let V ⊂ X be a Lagrangian submanifold of a symplectic manifold (X,σ); then
around every point of V there exist local coordinates x1, y1, . . . , xn, yn such that, in these coordi-
nates,

σ =

n∑
i=1

dxi ∧ dyi, V = {x1 = . . . = xn = 0}.

Examples

Here is a list of the known examples of such manifolds which are not deformation equivalent; see
Chapter 3 for a detailed discussion on the first two families.

1. Let S be a K3 surface. Then the Hilbert scheme S[n] = Hilbn(S) (or the Douady space),
parametrizing 0-dimensional subschemes of S of length n, is a 2n-dimensional irreducible
holomorphic symplectic manifold.

2. Let T be a complex torus of dimension 2, let φ : Hilbn+1(T )→ Symn+1(T ) be the natural
morphism and let s : Symn+1(T ) → T be the sum morphism. Then the kernel Kn(T ) of
the composition s ◦ φ is an irreducible holomorphic symplectic manifold of dimension 2n,
which is called a generalized Kummer variety.

3. O’Grady has found two sporadic examples of irreducible holomorphic symplectic manifolds
of dimension 6 and 10 [O’G99, O’G03].

An irreducible holomorphic symplectic manifold is said of type K3[n] (respectively of type
generalized Kummer) if it is deformation equivalent to Hilbn(S) for some K3 surface S (respec-
tively to Kn−1(T ) for some two-dimensional complex torus T ).

2.2 The Beauville-Bogomolov decomposition theorem

Irreducible symplectic manifolds play a central role in the classification of compact Kähler mani-
folds with trivial Chern class; for the next theorem see [GHJ03, Theorem I.5.4, II.14.15].

Theorem 2.6 (Beauville-Bogomolov). Let X be a compact Kähler manifold with trivial Chern
class. Then there exists a finite étale cover X ′ → X such that

X ′ ∼= T ×
k∏
i=1

Yi ×
h∏
j=1

Zj ,

where
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• T is a complex torus;

• the Yi are Calabi-Yau manifolds in the strict sense: π1(Yi) = 0, KYi
∼= OYi and h0(Ωp

Yi
) =

0 for 0 < p < dimYi;

• the Zj are irreducible symplectic manifolds.

2.3 The Beauville-Bogomolov form

We can define a natural quadratic form on the second cohomologyH2(X,R) which enjoys similar
properties to the intersection form on compact surfaces; for details and proofs see [GHJ03, Part
III].

Definition 2.7. Let σ be a holomorphic two-form such that
∫

(σσ̄)n = 1. The Beauville-Bogomolov
quadratic form qX on H2(X,R) is defined by

qX(α) =
n

2

∫
X
α2(σσ̄)n−1 + (1− n)

(∫
X
ασnσ̄n−1

)(∫
X
ασn−1σ̄n

)
.

Proposition 2.8. [GHJ03, Proposition III.23.14] There exists a positive multiple of qX which is
defined over Z and primitive.

In what follows, we will denote by qX the positive multiple of the Beauville-Bogomolov form
which is defined over Z and primitive.

The Beauville-Bogomolov form satisfies two important properties: first the Beauville relation,
saying that there exists a constant c > 0 such that

qX(α)n = c

∫
X
α2n for all α ∈ H2(X,R).

Second, the next Proposition describes completely the signature of the form.

Proposition 2.9. The Beauville-Bogomolov form has signature (3, b2(X)− 3) on H2(X,R).
More precisely, the decomposition H2(X,R) = H1,1(X,R) ⊕

(
H2,0(X)⊕H0,2(X)

)
R is or-

thogonal with respect to qX , and qX has signature (1, h1,1(X)− 1) on H1,1(X,R) and is positive
definite on

(
H2,0(X)⊕H0,2(X)

)
R.

We denote by

C≥0 = {v ∈ H1,1(X,R) | qX(v) ≥ 0} ⊂ H1,1(X,R),

C0 = {v ∈ H1,1(X,R) | qX(v) = 0} ⊂ H1,1(X,R)

the positive cone and the isotropic cone of qX .

Remark 2.10. For a divisor D ∈ Div(X), we define qX(D) := qX(c1(OX(D))).
If D is effective and the complete linear system |D| does not have any fixed component, then
qX(D) ≥ 0. Indeed, letD′ be an effective divisor linearly equivalent toD and with no components
in common with D. Up to a positive constant,

qX(D) =

∫
D∩D′

(σσ̄)n−1,

where each irreducible component of the intersection D ∩D′ is counted with its multiplicity. The
integral on the right hand side is non-negative because σ is a holomorphic form.
If furthermore D is ample, then by the Beauville relation qX(D) > 0.



54 CHAPTER 2. IRREDUCIBLE SYMPLECTIC MANIFOLDS

2.4 Bimeromorphic maps between irreducible holomorphic symplec-
tic manifolds

A bimeromorphic map f : M 99KM ′ between complex manifolds is an isomorphism in codimen-
sion 1 if there exist dense open subsets U ⊂M and U ′ ⊂M ′ such that

1. codim(M \ U) ≥ 2, codim(M ′ \ U ′) ≥ 2;

2. f induces an isomorphism U ∼= U ′.

A pseudo-automorphism of a complex manifold is a bimeromorphic transformation which is an
isomorphism in codimension 1.

Proposition 2.11 (Proposition III.21.6 and III.25.14 in [GHJ03]). Let f : X 99K X ′ be a bimero-
morphic map between irreducible holomorphic symplectic manifolds. Then f is an isomorphism
in codimension 1 and induces a linear isomorphism

f∗ : H2(X ′,Z)
∼−→ H2(X,Z)

which preserves the Beauville-Bogomolov form.
In particular, the group of birational transformations of an irreducible holomorphic symplec-
tic manifold X coincides with its group of pseudo-automorphisms and acts by isometries on
H2(X,Z).

Remark 2.12 ([GHJ03], §III.21.3). In fact the proposition holds in a greater generality: if f : X 99K
X ′ is a birational map between manifolds X,X ′ with nef canonical bundle, then f is an isomor-
phism in codimension 1. In this case one can show that for a resolution of the indeterminacy locus
of f (see §5.1) X ← Z → X ′ the set of exceptional divisors is the same for both projections; in
particular, f induces an isomorphism H2(X,Z) ∼= H2(X ′,Z).

Classification of birational transformations

Let f : X 99K X be a birational transformation of an irreducible symplectic manifold. By
Proposition 2.11, f∗1,1 : H1,1(X,R) → H1,1(X,R) is a linear automorphism which preserves
the Beauville-Bogomolov form. Therefore, we obtain a group homomorphism

Bir(X)→ O(H1,1(X,R), qX) ∼= O(1, h1,1(X)− 1),

and we can classify birational transformations of X as loxodromic, parabolic or elliptic depending
on their action on H1,1(X,R) (see §1.3.2): f ∈ Bir(X) is

• loxodromic (or hyperbolic) if f∗1,1 admits an eigenvalue of modulus strictly greater than 1
(i.e. λ1(f) > 1);

• parabolic if all the eigenvalues of f∗1,1 have modulus 1 and ‖ (fn)∗1,1 ‖ is not bounded as
n→ +∞;

• elliptic if all the eigenvalues of f∗1,1 have modulus 1 and ‖ (fn)∗1,1 ‖ is bounded as n→ +∞.

Remark 2.13. Since H0,2(X) has dimension 1, f∗σ = ξσ for some ξ ∈ C∗; furthermore, f
preserves the total volume

vol(X) :=

∫
X

(σ ∧ σ̄)n,

so that |ξ| = 1.
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The action of f on cohomology preserves the latticeH2(X,Z)/torsion ofH2(X,R); although
H2(X,R) is not a hyperbolic space, thanks to the above Remark one can prove that the properties
stated in Theorem 1.22 under the assumption that φ ∈ O(V, q) preserves a lattice are true for f∗1,1.

Proposition 2.14. Let f : X 99K X be a birational transformation of an irreducible symplectic
manifold X .

• If f is loxodromic (or, equivalently, λ1(f) > 1), then f∗1,1 is semi-simple has exactly one
eigenvalue with modulus > 1 and exactly one eigenvalue with modulus < 1; these eigen-
values are equal to λ = λ1(f) and λ−1 respectively and they are simple; in particular the
norm of (fn)∗1,1 grow as cλn. The eigenspaces Rv+,Rv− of λ and λ−1 are contained in
C0 and they are the only f∗1,1-invariant lines in C≥0; they are not defined over Q. The first
dynamical degree λ1(f) is a quadratic or Salem number.

• If f is parabolic, then f∗1,1 fixes exactly one line Rv of C≥0, which is contained in C0 and
defined over Q; the norm of iterates of f∗1,1 grows quadratically. All the eigenvalues of f∗1,1
are roots of unity, and some iterate of f∗1,1 has Jordan form

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 IN−3

 N = dimH1,1(X)

• If f is elliptic, then f∗1,1 fixes exactly one line Rv in the interior of C≥0; since q is negative
definite on v⊥, f∗1,1 acts as a rotation on v⊥. Furthermore, f has finite order.

2.5 The parabolic case

Recall that, in the case of surfaces, an automorphism with action of infinite order on the cohomol-
ogy is parabolic if and only if it preserves an elliptic fibration (Theorem 1.30).

We could expect the situation to be similar in the irreducible holomorphic symplectic con-
text; indeed, inTheorem A ( Chapter 5) I prove that loxodromic transformation s of irreducible
symplectic manifolds do not preserve any meromorphic fibration.

Hu, Keum and Zhang have proved a partial analogue of the other direction of Theorem 1.30:

Theorem 2.15 ([HKZ15]). Let X be a 2n-dimensional projective irreducible holomorphic sym-
plectic manifold of type K3[n] or of type generalized Kummer and let f ∈ Bir(X) be a bimero-
morphic transformation which is not elliptic; f is parabolic if and only if it admits a rational
Lagrangian equivariant fibration π : X 99K Pn such that the induced transformation on Pn is
biregular, i.e. there exists g ∈ Aut(Pn) such that π ◦ f = g ◦π. More accurately, there exists a bi-
rational irreducible symplectic model X ′ of X and a holomorphic Lagrangian fibration X ′ → Pn
whose fibres are preserved by the induced transformation f ′ ∈ Bir(X ′).

The hard direction is to exhibit an equivariant fibration for a parabolic transformation; this is
a consequence of the Lagrangian conjecture (or SYZ conjecture), which is a hyperkähler version
of the abundance conjecture. It was proved in the case of manifolds of type K3[n] or generalized
Kummer by Bayer and Macrì in [BM14]; see also [Mat13, Corollary 1.1].

Conjecture 2.1 (Lagrangian conjecture). Let X be a projective irreducible symplectic manifold
and let L be a line bundle on X such that qX(L) = 0. Then, after replacing X by an irreducible
symplectic birational model, ±L is semi-ample (i.e. some multiple L⊗m of L is base-point-free).
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If the conjecture is verified for some pair (X,L), then, after replacing X by an irreducible
symplectic birational model, some multiple of L defines a regular fibration π : X → B and 0 <
dimB < dimX . Then, by Matsushita’s results [Mat01, Mat00] all fibres are Lagrangian (possibly
singular), and the smooth fibres are complex tori of dimension n = dimX/2; furthermore, if B is
smooth then B = Pn [Hwa08]. See [LOP16] for a survey about the abundance conjecture in its
different versions.

2.6 Cohomology of irreducible symplectic manifolds

Although the second cohomology group of irreducible symplectic manifolds is fairly well-understood,
the rest of the cohomology is still quite mysterious. We will list here some of the results in this
direction.

2.6.1 Holomorphic forms

Proposition 2.16 ([Bea83], Proposition 4.3). The only holomorphic forms on an irreducible sym-
plectic manifold are the multiple of the symplectic forms and of its powers. In other words, if σ is
the symplectic form on X ,

H0(X,Ωp
X) =

{
Cσp/2 if p is even
0 if p is odd

Example 2.17. Let us study the Hodge diamond of an irreducible symplectic fourfold. By Propo-
sition 2.16, the Hodge numbers hp,0 are 0 for p odd and 1 for p even. Poincaré duality and the
relation hp,q = hq,p imply that the Hodge diamond is of the form

1
0 0

1 a 1
0 b b 0

1 c d c 1
0 b b 0

1 a 1
0 0

1

.

Corollary 2.18. Let F be a non-trivial foliation on an irreducible symplectic manifold X . Then
detNF � OX .

Proof. If detNF were trivial, F would be defined by a global holomorphic form ω. By Propo-
sition 2.16, ω = cσk for some 0 ≤ k ≤ dimX/2; but such a form does not define a 2k-
codimensional foliation because it has no kernel, which is a contradiction.

Some additional restrictions on Betti and Hodge numbers of irreducible symplectic manifolds
are listed in Example 4.7.

2.6.2 Dynamical degrees of automorphisms

The following Proposition by Verbitsky [Ver96] completely describes the part of cohomology
which is generated by H2(X,C).



2.6. COHOMOLOGY OF IRREDUCIBLE SYMPLECTIC MANIFOLDS 57

Proposition 2.19. Let X be an irreducible holomorphic symplectic manifold of dimension 2n
and let SH2(X,C) ⊂ H∗(X,C) be the subalgebra generated by H2(X,C). Then we have an
isomorphism

SH2(X,C) ∼= Sym∗H2(X,C)/〈αn+1|qX(α) = 0〉

.

As a corollary, one can describe all the dynamical degrees (and thus the topological entropy)
of an automorphism in terms of its first dynamical degree.

Corollary 2.20 (Oguiso [Ogu09]). Let f : X → X be an automorphism of an irreducible sym-
plectic manifold of dimension 2n. Then for p = 0, 1, . . . , n

λp(f) = λ2n−p(f) = λ1(f)p.

In particular f has topological entropy

htop(f) = n log λ1(f).

Proof. By Proposition 2.19 the cup-product induces an injection

SympH2(X,C) ↪→ H2p(X,C)

for p = 1, . . . , n.
Let v1 ∈ H1,1(X,R) be an eigenvector for the eigenvalue λ = λ1(f). Then, because of the
injection SympH2(X,C) ↪→ H2p(X,C), vp := vp1 ∈ Hp,p(X,R) is a non-zero class for p =
1, . . . , n and f∗vp = (f∗v1)p = λpvp. This implies that λp(f) ≥ λ1(f)p, and we must have
equality by log-concavity (Proposition 1.14). This proves the result for p = 0, 1, . . . , n.
Now by Lemma 1.13 we have λ2n−p(f) = λp(f

−1). Applying what we have just proved to f−1

we obtain
λ2n−1(f) = λ1(f−1) = λn(f−1)1/n = λn(f)1/n = λ1(f)

and thus, for p = 0, . . . , n,

λ2n−p(f) = λp(f
−1) = λ1(f−1)p = λ1(f)p,

which concludes the proof.

A more precise description of the action on cohomology of an automorphism has been later
proven by Verbitsky (see Theorem 4.4).
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Chapter 3

Examples of loxodromic automorphisms

In this chapter we will describe the fundamental examples of loxodromic automorphisms of irre-
ducible symplectic manifolds; we refer to [Bea83] for more details. We expect that if a loxodromic
transformation preserves some "rigid enough" algebraic or holomorphic structure, then it automat-
ically belongs to one of the two fundamental examples.

For both constructions, the starting point is a loxodromic linear automorphism fT : T → T of
a two-dimensional torus T ; for instance we can take T = E × E where E = C/Λ is an elliptic
curve, and fT : T → T given in linear coordinates by an invertible matrix with integer coefficients
M ∈ SL2(Z) and such that |TrM | > 2 (see §1.3.3 and [Can14]).
In general T = C2/Λ for a lattice Λ of C2, and fT is described by a matrix M preserving Λ and
whose eigenvalues α, β satisfy

|α| > 1 > |β| = 1

|α|
.

Recall that

• λ1(fT ) = |α|2;

• fT preserves two linear transverse foliations corresponding to the two eigenvalues of M :
the stable foliation F−T (corresponding to β) and the unstable foliation F+

T (corresponding
to α);

• there exists a measurable subset T0 ⊂ T of total Lebesgue measure such that the fT -orbits
of points of T0 are dense in T for the euclidean topology (hence in particular for the Zariski
topology);

• the fT -periodic points are dense in T for the euclidean topology (hence in particular for the
Zariski topology).

The following lemma will be used later.

Lemma 3.1. Let T be a two-dimensional torus and let fT : T → T be a loxodromic automor-
phism. Denote by f = (fT , . . . , fT ) : Tn → Tn the induced automorphism of A := Tn, and
suppose that f preserves a singular distribution F on A; then F is a linear foliation. Further-
more, denoting

F+ = F+
T × . . .×F

+
T , F− = F−T × . . .×F

−
T ,

the tangent bundle F decomposes as TF = (TF ∩ TF+)⊕ (TF ∩ TF−).

59
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Proof. Fix global linear coordinates xi, yi on the i-th factor T such that in such coordinates fT is
given by the matrix

A =

(
α 0
0 β

)
, |α| =

√
λ1(fT )

Let F+ = F+
T × . . .×F

+
T , F− = F−T × . . .×F

−
T ; F+ and F− are f -invariant linear foliations,

and

TF+ = Span

(
∂

∂x1
, . . . ,

∂

∂xn

)
, TF− = Span

(
∂

∂y1
, . . . ,

∂

∂yn

)
.

Then
TF = (TF ∩ TF+)⊕ (TF ∩ TF−);

indeed, if p ∈ Tn is anN -periodic point, then the differentialDfNp acts on TpF+ (resp. on TpF−)
as αN id (resp. as βN id). Therefore,

TpF = (TpF ∩ TpF+)⊕ (TpF ∩ TpF−),

and by density of f -periodic points the decomposition holds at every point of Tn.
If we show that F ∩ F+ and F ∩ F− are both linear, then F is also linear. Thus from now on we
will assume that F ⊂ F+.

Since the tangent sheaf of X is trivial, we may choose an identification TpX ∼= C2n not
depending on the point; the foliation F+ being linear, the tangent spaces TpF+ are identified with
some subspace Cn ⊂ C2n not depending on p.
A singular sub-distribution F of dimension k of F+ is then given by a meromorphic function

Φ: X 99K Gr(k, TpF+) ⊂ Gr(k, TpX),

where Gr(k, V ) is the Grassmannian variety of k-planes in a vector space V . Remark that

Φ ◦ f(p) = Dfp ◦ Φ,

where Dfp is the linear action of the differential of f at p on Gr(k, TpX); since Dfp|TpF+ =
α idTpF+ , we have

Φ ◦ f = Φ.

The automorphism f admits dense orbits, therefore Φ is constant, which proves the claim.

Before describing the examples, we will need some background about Kummer surfaces and
the Hilbert scheme of points on a variety.

3.1 Kummer surfaces

Let T be a two dimensional complex torus and let

θ : T → T

x 7→ −x

be the involution sending an element x ∈ T to its inverse with respect to the group law on T . The
fixed points of θ are the 16 points of order two of T (i.e. x ∈ T satisfying 2x = 0).
The quotient

Ŝ = T�〈θ〉
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is a singular variety whose singularities are exactly the images of the fixed points for θ. Locally
around these points, θ acts as − idC2 : C2 → C2; therefore the resulting singularity is locally
biholomorphic to the cone

{x2 + y2 + z2 = 0} ⊂ C3,

and can be resolved with a single blow-up (see for example [BPVdV84]). This is the simplest
example of du Val (or rational Gorenstein) surface singularities.

Definition 3.2. The Kummer surface S = K(T ) associated to T is the minimal resolution of Ŝ.

In order to construct such a resolution, consider the blow-up π : T̃ → T of T at the sixteen
two-torsion points p1, . . . , p16. Since θ fixes the set {p1, . . . , p16} and has invertible differential at
every point, it induces an involution θ̃ which is locally conjugated to (x, y) 7→ (−x, y); the quotient
map T̃ → T̃ /〈θ̃〉 is then locally conjugated to (x, y) 7→ (x2, y) (see the proof of Proposition 3.4
for more details). Therefore the quotient T̃ /〈θ̃〉 is smooth and fits into a commutative diagram

T̃ T

S = T̃�〈θ̃〉 Ŝ = T�〈θ〉

π

ν̃ ν

πS

.

The surface S is the Kummer surface associated to T .
Remark 3.3. In some contexts, the singular surface Ŝ is still called a Kummer surface; we prefer
to restrict our attention to smooth varieties.

Proposition 3.4. A Kummer surface S = K(T ) is a K3 surface.

This result is well-known, but we give the idea of the proof in order to introduce the notation
and the kind of computations which will be used in the rest of the chapter.

Proof. Let x, y be global linear coordinates on T and let ωT = dx∧ dy be a section of KT . Then,
keeping the same notation as above, the blow-up π can be expressed in local coordinates x1, z on
T̃ as

π : (x1, z) 7→ (x1, x1z),

where {x = 0} corresponds to the (local) π-exceptional divisor. Hence, in such local coordinates,

π∗dx ∧ dy = dx1 ∧ d(x1z) = x1dx1 ∧ dz;

the involution θ̃ becomes
θ̃(x1, z) = (−x1, z),

thus the quotient map ν̃ can be locally written as

ν̃(x1, z) = (x2
1, z)

for some local coordinates x2, y2 on S. Remark that

x1dx1 ∧ dz =
1

2
ν̃∗(dx2 ∧ dy2),

so that ωT induces a canonical section without zeros on S. Hence KS
∼= OS .

In order to show that H1(S,Q) = 0, remark that H1(T̃ ,Q) = π∗H1(T,Q), and that the only
θ-invariant element of H1(T,Q) is 0; hence H1(S,Q) = 0. This concludes the proof.

Since KS
∼= OS , by adjunction the exceptional rational curves E1, . . . , E16 arising from the

resolution of singularities of Ŝ are (−2)-curves. This can also be proven directly using the same
computations in local coordinates as in the proof of Proposition 3.4.
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3.1.1 Linear automorphisms and invariant foliations

A linear automorphism fT : T → T commutes to θ and in particular fixes the set of two-torsion
points; therefore, fT induces an automorphism fS : S → S.
Since the rational map

π̂ = ν̃ ◦ π−1 : T 99K S

is generically finite and fS ◦ π̂ = π̂ ◦ fT , by Proposition 1.12 we have

λ1(fS) = λ1(fT ).

Now, suppose that fT is loxodromic (hence so is fS). The (linear) vector fields v+, v− which
define the unstable and stable foliation for fT on T are not θ-invariant; however, the directions
they define are, so that fS preserves two foliations F±S induced by F±T . A simple computation in
local coordinates shows that, once we put F±S in reduced form, the exceptional divisors are the
closure of a leaf for both foliations; F+

S (resp. F−S ) has exactly one singular point along each Ei,
corresponding to the direction of F+

T (resp. F−T ).
The linear foliations F±T are defined by global (linear) forms, say dx, dy, on T ; these forms

are not θ-invariant, but the pluri-forms

(dx)2, (dy)2 ∈ H0(T, (Ω1
T )⊗2)

are, and therefore define meromorphic pluri-forms on S. More accurately, choosing local coordi-
nates as in the proof of Proposition 3.4, we have

π∗(dx)2 = (dx1)2 =
1

4
ν̃∗
(

1

x2
(dx2)2

)
.

Remark that the simple pole {x2 = 0} corresponds to the exceptional divisor E = E1∪ . . .∪E16.

Proposition 3.5. Let S = K(T ) be the Kummer surface associated to a torus T and let E =
E1 ∪ . . . ∪ E16 ∈ Div(S) be the exceptional divisor of the map S → T/ ± idT . The stable and
unstable foliation F±S are defined by global pluri-forms with values in E

ω± ∈ H0(S, (Ω1
S)⊗2 ⊗ E).

In other words, NF±S = E
2 = 1

2(E1 + . . .+ E16) as Q-line bundles.

Proof. By the above discussion, the foliation F+
S is defined by a meromorphic pluri-form α which

in local coordinates as above is written

α =
1

4x2
(dx2)2.

Thus α has simple poles along E; let s be a section of O(E) with simple zeros along E. Then
β = sα is a regular pluri-form with values in E defining F+

S as claimed.
The foliation F+

S can as well be defined by a holomorphic form

ω ∈ H0(S,Ω1
S ⊗ L),

where L = NF+
S ; therefore,β and (ω)2 must be proportional to one another at each point: there

exists a meromorphic function ξ : S 99K C such that

(ω)2 = ξ · β.

Since the poles of ξ are contained in the zeros of β, which are in codimension 2, ξ is holomorphic,
thus constant. Thus, (ω)2 = ξβ, whence NF+

S = E/2.
The proof for F−S is identical.
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The dynamics of automorphisms of K3 surfaces has been studied in [Can01]. In the case of
K3 surfaces, Theorem 1.32 implies the following corollary.

Corollary 3.6 (Cantat, Favre [CF03]). Let f : S → S be a loxodromic automorphism of a pro-
jective K3 surface S which preserves a (singular) foliation F . Then S = K(T ) is the Kummer
surface associated to a two-dimensional complex torus T , f comes from a linear automorphism
fT of T , and F is either the stable or the unstable foliation of f .

3.1.2 Affine structure outside the exceptional divisor

Let S = K(T ) be a Kummer surface, let E = E1 ∪ . . . ∪ E16 be the exceptional divisor of
S → T/ ± idT and let p ∈ S \ E. We can fix local coordinates x, y at a neighborhood U of p,
induced by linear coordinates on the torus T ; if V ⊂ S \E is another open set and x′, y′ are other
local coordinates induced by the same linear coordinates on T , then the change of coordinates is
an affine transformation.

We have thus defined an affine structure on S \ E: that is, an atlas of charts with values in C2

and affine changes of coordinates. More precisely, the change of coordinates are affine, and their
linear parts are matrices of type (

α 0
0 β

)
α, β ∈ C∗.

Let fT : T → T be a loxodromic automorphism, with stable/unstable foliations F±T , and let
fS : S → S be the induced loxodromic automorphism of S, with stable/unstable foliations F±S . In
the above construction, one can pick linear coordinates x, y on T in the directions of F+

T and F−T ;
therefore, the resulting affine coordinates on S \ E are such that the stable/unstable foliations are
exactly the coordinate foliations.

3.2 The Hilbert scheme of points on a surface

Let S be a surface and let
π : Sn → S(n) = Sn�Sn

be the natural projection from Sn onto the n-th symmetric product of S; the smooth locus of S(n)

parametrizes subsets of n points of S, but as two or more of these points tend to coincide, the
variety becomes singular. The Douady space or Hilbert scheme of n points on S

Hilbn(S) = S[n]

is a smooth variety which parametrizes zero-dimensional (possibly non-reduced) analytic sub-
spaces of S of length n; therefore, one has a natural morphism, called the Hilbert-Chow morphism,

ρ : S[n] → S(n)

which associates to a subscheme the associated 0-cycle. At least in the projective case, the
construction of the Hilbert scheme of points is a special case of a much more general scheme
parametrizing the subschemes of a given variety; see [Gro95].

For 1 ≤ i < j ≤ n let

∆ij = {(x1, . . . , xn) ∈ Sn |xi = xj} ⊂ Sn,
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and let

∆ = ∆(Sn) =
⋃

1≤i<j≤n
∆ij , D = π(∆) ⊂ S(n), E = ρ∗D ⊂ S[n].

Also let

∆0 = ∆ \

 ⋃
i,j,k,l

∆ij ∩∆kl

 , D0 = π(∆0), E0 = ρ∗D0,

Sn0 = (Sn \∆) ∪∆0, S
(n)
0 = (S(n) \D) ∪D0, S

[n]
0 = (S[n] \ E) ∪ E0.

We summarize here some of the properties of the Hilbert scheme of n points on a surface (see
[Bea83]).

1. S[n] is smooth (this is specific to the surface case: in general Hilbert schemes of points are
not smooth);

2. ρ is a birational morphism: hence S[n] is a resolution of singularities of S(n);

3. S[n] \ S[n]
0 has codimension at least 2 in S[n];

4. the restriction ρ : S
[n]
0 → S

(n)
0 identifies with the blow-up of S(n)

0 along D0;

5. Sn acts naturally on the blow-up S̃n0 of Sn0 along ∆0, and S[n]
0 identifies naturally with the

quotient Sn0 /Sn.

6. we have therefore a commutative diagram

S̃n0 S
[n]
0

Sn0 S
(n)
0

η̃

ρ̃=Bl∆0
ρ=BlD0

η

,

where Bl• denotes the blow-up along a subvariety and η, η̃ are quotients with respect to the
actions of Sn.

Let
fS : S → S

be an automorphism of S; then the natural action of fS on zero-dimensional subspaces of S of
length n induces an automorphism

f
[n]
S : S[n] → S[n].

Suppose that S is compact Kähler and let fn = (f, . . . , f) : Sn → Sn be the automorphism of
Sn induced by f . By picking a Kähler form ω on S and π∗1ω + . . . + π∗nω on Sn, one shows that
λ1(fn) = λ1(f); hence, since the meromorphic map Sn 99K S[n] induced by the quotient by Sn

is generically finite and induces f [n], by Proposition 1.12

λ1(f [n]) = λ1(f).
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3.3 First example: the Hilbert scheme of points on a Kummer sur-
face

Let S be a K3 surface, and let X = S[n] be the Hilbert scheme of n points on S; then X is an
irreducible symplectic manifold (see [Bea83]). The symplectic structure is induced by

π∗1σS + . . .+ π∗nσS ∈ H0(Sn,Ω2
Sn),

where πi : Sn → S is the projection onto the i-th factor and σS is a symplectic form on S.
As we have seen in §3.2, if

fS : S → S

is an automorphism of S, then the induced automorphism

fX = f
[n]
S : X → X

satisfies λ1(fX) = λ1(fS).
Suppose that fS is loxodromic and preserves a foliation; if S is projective, by Corollary 3.6, S

is the Kummer surface associated to a complex torus T and fS comes from a linear automorphism
fT : T → T . From now on, we assume that S is the Kummer surface associated to a torus T , and
that fS comes from a linear loxodromic automorphism fT : T → T .

Denoting by F±S the stable/unstable foliation for fS , the product foliations

F+
Sn = F+

S × . . .×F
+
S , F−Sn = F−S × . . .×F

−
S

are Sn-invariant, and therefore define two (singular) foliations F±X on X , which we will call the
stable/unstable foliation for fX .
We will take F+

X ,F
−
X in reduced form, so that

codim Sing(F±X ) ≥ 2.

Lemma 3.7. The foliations F+
X and F−X are generically transverse n-dimensional Lagrangian

foliations which are fX -invariant.

Proof. We can check the statement at a general point ofX; in this case,X is locally biholomorphic
to S(n), thus to Sn; therefore we can check the claims by replacing F±X by F±Sn and fX by fn. By
construction, the foliations F±Sn are generically transverse n-dimensional foliations, and they are
fn-invariant; furthermore, they are Lagrangian with respect to the symplectic form π∗1σS + . . . +
π∗nσS , which induces the symplectic structure on S[n].

3.3.1 Structure of F±X
In this paragraph we give a more detailed description of the stable/unstable foliations F±X .

Singular locus

Let us try to explicitly describe the singular locus of F±X . First of all, it is clear that the strict
transform of

Sing(F+
S )× S× . . .× S ⊂ Sn

by the natural map Sn 99K S[n] = X is contained in the singular locus of F+
X . These are the only

singularities of F+
X outside the exceptional divisor EX (which was denoted as E in §3.2).

Now let us deal with the exceptional divisor EX ; recall that we have defined E0 ⊂ EX such
that codimX(EX \ E0) ≥ 2, and that X0 = X \ (EX \ E0) identifies with the quotient S̃n0 /Sn,
where S̃n0 → Sn0 is the blow-up of Sn0 = Sn \ (∆ \∆0) along ∆0.
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Lemma 3.8. The exceptional divisor E0 ⊂ X contains the leaves of F±X which pass through its
points. Furthermore, each exceptional fibre of the birational map

X0 → S
(n)
0

intersects the singular locus of F+
X (resp. of F−X ) in exactly one point.

Proof. Consider linear coordinates x, y on T along the stable/unstable foliations. Take a point
p = (p1, . . . , pn) of ∆0 ⊂ Sn; the coordinates x, y induce local coordinates x1, y1, . . . , xn, yn on
a neighborhood U ⊂ Sn of p such that the foliations F±Sn are locally defined by the forms

ω+ = dx1 ∧ . . . ∧ dxn, ω− = dy1 ∧ . . . ∧ dyn

respectively; assuming by symmetry that p ∈ ∆12, locally we have

∆ = ∆12 = {x1 = x2, y1 = y2}.

Let us apply the linear change of coordinates

(x1, y1, x2, y2, . . . , xn, yn) 7→ (x1 − x2, y1 − y2, x1 + x2, y1 + y2, x3, y3, . . . , xn, yn)

so that, in the new coordinates (which we still denote x1, y1, . . . xn, yn),

ω+ = dx1 ∧ . . . ∧ dxn, ω− = dy1 ∧ . . . ∧ dyn,

∆ = {x1 = y1 = 0}.
Now, the blow-up Bl of U along ∆ ∩ U can be trivialized by two charts; in each of them, one

can write Bl in coordinates as

Bl: (x, z, x2, y2, . . . xn, yn) 7→ (x, zx, x2, y2, . . . , xn, yn),

Bl: (t, y, x2, y2, . . . xn, yn) 7→ (ty, y, x2, y2, . . . , xn, yn)

respectively, with change of coordinates t = 1/z, y = zx. In these two charts, one can write
Bl∗ ω+ as

Bl∗ ω+ = dx ∧ dx2 ∧ . . . ∧ dxn = d(ty) ∧ dx2 ∧ . . . ∧ dxn.
Remark that the exceptional divisor ∆̃0 = Bl−1(∆0) is expressed in local coordinates by {x = 0}
({y = 0} respectively). This shows that

• the exceptional divisor ∆̃ contains the leaves of Bl∗F+
Sn which pass through its points;

• the singular locus {t = y = 0} of Bl∗F+
Sn intersects each exceptional fibre of Bl in exactly

one point.

Now, since ∆0 locally coincides with ∆12, the action of Sn is locally just the involution
swapping the first two factors of Sn; in coordinates, this is the involution

θ : (x1, y1, x2, y2 . . . , xn, yn) 7→ (−x1,−y1, x2, y2, . . . , xn, yn),

so that the induced action on S̃n0 is, in coordinates,

θ̃ : (x, z, x2, y2, . . . xn, yn) 7→ (−x, z, x2, y2, . . . , xn, yn).

Therefore, the quotient of S̃n0 by the action of Sn (which locally coincides with X) can be locally
written as

ρ̃ : (x, z, x2, y2, . . . xn, yn) 7→ (x2, z, x2, y2, . . . , xn, yn).

for some local coordinates x′, z′, x′2, . . . on S[n]
0 .

In particular, θ̃ acts as the identity on the exceptional divisor ∆̃0, therefore the claim about F+
X

follows from the analysis of Bl∗F+
Sn .
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Computation of detNF±X
As we have seen in §1.2.2, finding a meromorphic (multi-)form defining a foliationF is equivalent
to finding the line bundle L = detNF . We can find such a form (resp. pluri-form) without zeros
in codimension one if and only ifL (resp. a multiple ofL) admits non-trivial holomorphic sections.

Let ES = E1 + . . . + E16 ⊂ S be the exceptional divisor over the singularities of T/ ± idT ,
and consider the divisor

ESn = π∗1E + . . .+ π∗nE.

Such divisor is clearly Sn-invariant, and thus defines a divisor ES(n) ⊂ S(n); denote by E′ ⊂ X
its strict transform through the resolution X → S(n).

Proposition 3.9. Let EX ⊂ X be the exceptional divisor of the natural map X = S[n] → S(n);
then

det(NF+
X) = det(NF−X) =

1

2
(EX + E′).

Proof. We will deal with the unstable foliation F+
X , but the same reasoning can be applied to the

stable foliation.
Recall that, by Proposition 3.5, the unstable foliation F+

S is defined by a global pluri-form
with values in E

βS ∈ H0(S, (Ω1
S)⊗2 ⊗ ES).

In other words, NF+
S = ES

2 = 1
2(E1 + . . .+E16). By dividing βS by a section of ES , we obtain

a meromorphic pluri-form αS with simple a pole along ES .
Now take the meromorphic pluri-form on Sn defining F+

Sn

αSn = π∗1αS ∧ . . . ∧ π∗nαS ;

this pluri-form has simple poles alongESn := π∗1ES∪. . .∪π∗nES and is holomorphic and different
from zero elsewhere.
Furthermore, αSn is Sn-invariant; thus it defines a pluri-form α on the smooth locus of S(n),
which is isomorphic to X \ EX . The only poles of α are along E′, and α defines F+

X .
In order to conclude, we only need to show that α extends to a meromorphic form to the whole

X , and that the extension has a simple pole along EX . This can be checked along the open subset
E0 ⊂ EX .
Let p be a point in ∆0 ⊂ Sn; recall that, at a neighborhood of p, one can suppose that ∆ = ∆0 =
∆12. Using the same notation as in the proof of Lemma 3.8, we have

Bl∗ αSn = (dx ∧ . . . ∧ dxn)2 = ρ̃∗
(

1

4x′
(dx′ ∧ dx′2 ∧ . . . ∧ dx′n)2

)
.

This means that α locally extends to the meromorphic pluri-form on X

1

4x′
(dx′ ∧ dx′2 ∧ . . . ∧ dx′n)2,

which has a simple pole along ρ̃(Bl−1(E)) = EX . This concludes the proof.

3.3.2 Uniqueness of the invariant foliations

Proposition 3.10. Let T be a two-dimensional complex torus, S = K(T ) the associated Kummer
surface, X = S[n] the Hilbert scheme of n points on S, and fX : X → X a loxodromic automor-
phism of X induced by a linear automorphism fT of the torus T .
Then the stable and unstable foliations F±X are the only non-trivial fX -invariant singular distri-
butions on X .
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Proof. Suppose that fX preserves a non-trivial singular distribution GX . The natural dominant
meromorphic map T 99K S induces a dominant meromorphic map Tn 99K Sn; let π denote the
composition

π : Tn 99K Sn 99K S[n],

where Sn 99K S[n] is the natural (dominant) meromorphic map. Then the pull-back G := π∗GX is
a distribution on Tn which is invariant under the action of

1. the involutions θi : Tn → Tn acting as − idT on the i-th factors and as idT on the other
factors;

2. the symmetric group Sn acting by permutation of the factors of Tn;

3. the linear automorphism fTn = (fT , . . . , fT ) : Tn → Tn.

Condition 1 (resp. 2) is needed to ensure that G passes to the quotient Tn → Ŝn ∼= Tn/〈θ1, . . . , θn〉
(resp. Sn → S(n) ∼= Sn/Sn); condition 3 ensures that GX is fX -invariant.

Fix global linear coordinates xi, yi on each factor of Tn such that the unstable/stable foliations
on Tn have tangent space (independent of the point)

TF+
Tn = Span

(
∂

∂x1
, . . . ,

∂

∂xn

)
, TF−Tn = Span

(
∂

∂y1
, . . . ,

∂

∂yn

)
.

By condition 3 and Lemma 3.1, G is a linear foliation; in other words, identifying the tangent
bundle of Tn with Tn ×C2n, the foliation G corresponds to a linear subspace W ⊂ C2n indepen-
dent of the point. Denoting again by θi (resp. s ∈ Sn) the action of θi (resp. s) on the tangent
space C2n, we have

1. θi(W ) = W for i = 1, . . . , n;

2. s(W ) = W for all s ∈ Sn.

Since the θi commute with one another, condition 1 implies that

W = Span

(
∂

∂xi1
, . . . ,

∂

∂xim
,

∂

∂yim+1

, . . . ,
∂

∂yik

)
for some i1, . . . , ik ∈ {1, . . . , n}.

By condition 2, we then have that either all or none of the xi appear, and the same for the yi. Since
G is non-trivial, either G = F+

Tn or G = F−Tn ; hence either GX = F+
X or GX = F−X .

3.4 Second example: generalized Kummer variety

Let T be a two-dimensional torus, and let T [n+1] be the Hilbert scheme of n+ 1 points on T ; then
T [n+1] is a symplectic manifold, with symplectic structure induced by

σn+1 := π∗1σT + . . .+ π∗n+1σT ∈ H0(Tn+1,Ω2
Tn+1),

where πi : Tn+1 → T is the projection onto the i-th factor and σT is a symplectic form on T .
However, T [n+1] is not simply connected, therefore the symplectic structure is not unique. In
order to overcome this problem, we consider the composition

Σ : T [n+1] ρ−→ T (n+1) s−→ T,

where ρ is the natural morphism and s is the sum morphism, associating to a set of n + 1 points
on T their sum (with respect to the abelian group law on T ).

We define Y = Kn(T ), the generalized Kummer variety of T , as the fibre of Σ over 0 ∈ T .
Then Y is an irreducible symplectic manifold, with symplectic structure induced by σn+1 (see
[Bea83]).
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Remark 3.11. The morphism Σ is an isotrivial fibration (i.e. all its fibres are isomorphic). Indeed,
if we denote by µn+1 : T → T the morphism t 7→ (n+ 1)t, we have a commutative diagram

T ×T T [n+1] ∼= T ×Kn(T ) T [n+1]

T T

Σ

µn+1

Now let us add an automorphism to the picture: as we have seen in §3.2, if

fT : T → T

is an automorphism of T , then the induced automorphism

f
[n+1]
T : T [n+1] → T [n+1]

satisfies λ1(f
[n+1]
T ) = λ1(fT ). Since Kn(T ) is f [n+1]-invariant, we can define an automorphism

fY = f
[n+1]
T |Y : Y → Y.

Assume that fT is loxodromic and denote by F±T the stable/unstable foliation for fT .

Lemma 3.12. There exists a generically finite meromorphic map

π : Tn 99K Y

such that

1. π ◦ fn = fY ◦ π, where fn = (fT , . . . , fT ) : Tn → Tn; in particular λ1(fY ) = λ1(fT );

2. π is birationally equivalent to the quotient map

q : Tn → Tn�Sn+1
,

where the action of Sn+1 on Tn is the restriction of the action by permutation of coordinates
on Tn+1 to

{(t1, . . . , tn+1) | t1 + . . .+ tn+1 = 0} ∼= Tn ⊂ Tn+1;

more accurately, the restrictions of π and q to the Zariski-open subset Tn \ ∆(Tn+1) are
biregularly conjugate;

3. the product foliationsF+
Tn = F+

T ×. . .×F
+
T andF−Tn = F−T ×. . .×F

−
T induce fY -invariant

foliations F+
Y and F−Y on Y ;

4. the foliations F±Y are generically transverse fY -invariant Lagrangian foliations.

Proof. The sum morphism

Σ0 : Tn+1 → T

(t1, . . . , tn+1) 7→ t1 + . . .+ tn+1

is equal to the composition

Tn+1 → Tn+1
�Sn+1

= T (n+1) ρ−1

99K T [n+1] Σ−→ T.
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Therefore, Y = Kn(T ) is the strict transform of Σ−1
0 (0) through the natural map

η : Tn+1 99K T [n+1];

let η0 = η|Σ−1(0).
Denote by fn+1 : Tn+1 → Tn+1 the morphism (f, f, . . . , f) acting as f on each coordinate; since
fn+1 ◦ η = η ◦ f [n+1],

(η ◦ fn+1)|Σ−1
0 (0) = fY ◦ η0.

Now, let ν : Tn+1 → Tn be the projection on the first n coordinates. The restriction ν0 = ν|Σ−1
0 (0)

is an isomorphism, and fn ◦ ν0 = ν0 ◦ fn+1; this means that the composition

π : Tn Σ−1(0) Y
ν−1
0 η0

is generically finite.

(1) We have

π ◦ fn = η0 ◦ ν−1
0 ◦ fn = η0 ◦ fn+1 ◦ ν−1

0 = (η ◦ fn+1)|Σ−1(0) ◦ ν−1
0 =

fY ◦ η0 ◦ ν−1
0 = fY ◦ π.

In particular, λ1(fY ) = λ1(fn) by Proposition 1.12; since λ1(fn) = λ1(fT ), this concludes the
proof of the first statement.

(2) We have π = η0◦ν−1
0 ; since ν0 is an isomorphism, π is birationally equivalent to η0. Since

η : Tn+1 99K T [n+1] is birationally equivalent to the quotient morphism Tn+1 → Tn+1/Sn+1, η0

(hence π) is birationally equivalent to the restriction

q : Σ−1(0) ∼= Tn → Tn�Sn+1
.

Furthermore, all the involved meromorphic maps (and their inverses if they are bimeromorphic)
become holomorphic once we restrict to the Zariski-open subset Σ−1(0) ∩ ∆(Tn+1); therefore,
the restrictions of q and π to this subset are biregularly conjugate. This proves the second claim.

(3) By (2), the meromorphic map π is birationally equivalent to the quotient map

q : Tn → Tn�Sn+1
,

where the action of Sn+1 on Tn ∼= {Σ0 = 0} ⊂ Tn+1 is the restriction of the action on Tn+1 by
permutation of coordinates.
Let us prove that the foliations F±Tn are Sn+1-invariant: we can check this for transpositions in
Sn+1. Take θ = (12) ∈ Sn+1, and fix global (linear) coordinates xi, yi on the i-th factor in
the direction of F+

T ,F
−
T . Then the restriction of the coordinates x1, y1, . . . , xn, yn to Tn defines

global linear coordinates on Tn = Σ−1
0 (0) ⊂ Tn+1 such that the linear foliations F±Tn are defined

by

TF+
Tn = Span

(
∂

∂x1
, . . . ,

∂

∂xn

)
, TF−Tn = Span

(
∂

∂y1
, . . . ,

∂

∂yn

)
.

Both spaces are clearly θ-invariant, thus F+
Tn and F−Tn are Sn+1-invariant; this implies that the

projection q defines foliations on the smooth locus of Tn/Sn+1, hence on Y . This proves the third
claim.

(4) Since π ◦ fn = fY ◦ π, the foliations F±Y are fY -invariant.
The other other claims can be checked locally around generic points: transversality follows form
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transversality ofF±Tn ; and sinceF±Tn are Lagrangian with respect to the symplectic form σn+1|Σ−1
0 (0)

inducing the symplectic structure on Y ,F±Y are Lagrangian with respect to the symplectic structure
on Y . This concludes the proof.

We will call F±Y the stable/unstable foliation of fY . We will take F+
Y ,F

−
Y in reduced form, so

that
codim Sing(F±Y ) ≥ 2.

3.4.1 Structure of F±Y
In this paragraph we give a more detailed description of the stable/unstable foliations F±Y .

Singular locus

Let us try to explicitly describe the singular locus of F±Y . Let

∆ = ∆(Tn+1) ⊂ Tn+1, D ⊂ T (n+1) En+1 = E(T [n+1]) ⊂ T [n+1]

be defined as in §3.2. Denote by EY ⊂ Y the divisor defined by the scheme-theoretic intersection

EY = En+1 ∩ Y.

By Lemma 3.12, the natural map T [n+1] 99K T (n+1) induces an isomorphism

Y \ EY ∼= (Σ−1
0 (0) \∆)�Sn+1

⊂ T
n
�Sn+1

,

where as usual we have identified Σ−1
0 (0) with Tn. Furthermore, the restriction to Y \ EY of the

foliations F±Y are induced by the linear foliations F±Tn on Tn, and therefore are smooth.
Now let us deal with the divisor EY . Let

Y0 = Y ∩ T [n+1]
0 ,

where T [n+1]
0 is defined as in §3.2; then Y0 is naturally identified with the blow-up

Bls−1(0)∩D0

(
s−1(0) ∩ T (n+1)

0

)
.

Remark 3.13. With the notation of §3.2, the action of T on T [n+1] by translations on factors
preserves the open set T [n+1]

0 . Let

Y0 := Y \
(
E(T [n+1]) \ E0(T [n+1])

)
= Y ∩ T [n+1]

0 ;

then
codimY (Y \ Y0) ≥ 2.

Indeed, the action of T on T [n+1] is transitive on the set of fibres of Σ: T [n+1] → T ; if we had
codimY (Y \ Y0) ≤ 1, then also codimT [n+1](T [n+1] \ T [n+1]

0 ) ≤ 1, a contradiction.

At this point, the proof of the following lemma is completely analogous to that of Lemma 3.8.

Lemma 3.14. The exceptional locusEY ∩Y0 contains all the leaves which pass through its points.
Furthermore, each exceptional fibre of the birational map

Y0 → Tn�Sn+1

intersects the singular locus of F+
Y (resp. of F−Y ) in exactly one point.

�
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Computation of detNF±Y
Proposition 3.15. Let EY ⊂ Y be the exceptional divisor of the natural map Y = Σ−1(0) →
s−1(0) ⊂ T (n+1); then

det(NF+
Y ) = det(NF−Y ) =

1

2
EY .

Proof. We will deal with the unstable foliation F+
Y , but the same reasoning can be applied to the

stable foliation.
Fix the same notation as in the proof of Lemma 3.8: consider coordinates xi, yi on each T

factor of Tn+1 along the stable/unstable foliations. On Tn ∼= {t1 + . . .+ tn+1 = 0} ⊂ Tn+1, the
unstable foliation is defined by the restriction of (for example) dx1 ∧ . . . ∧ dxn. Such form is not
Sn+1-invariant, but the pluri-form

(dx1 ∧ . . . ∧ dxn)2 ∈ H0(Tn, (Ωn
Tn)⊗2)

is, and therefore defines a pluri-form α on the smooth locus of Σ−1
0 (0) ⊂ T (n+1). This form has

no zeros and no poles.
In order to conclude, we need to show that α extends meromorphically to the whole Y , and that

the extension has simple poles along EY . By Remark 3.13, we only need to check this statement
along Y0; now we conclude exactly as the proof of Proposition 3.9.

3.4.2 Uniqueness of the invariant foliations

Proposition 3.16. Let T be a two-dimensional complex torus, Y = Kn(T ) the generalized Kum-
mer variety of dimension 2n of T , and fY : Y → Y a loxodromic automorphism of Y induced by
a loxodromic linear automorphism fT of the torus T .
Then the stable and unstable foliations F±Y are the only non-trivial fY -invariant singular distri-
butions on Y .

Proof. Suppose that fY preserves a non-trivial singular distribution GY . Let

π : Tn 99K Y

be a generically finite map as in Lemma 3.12. Then the pull-back G := π∗GY is a foliation on Tn

which is invariant under the action of

1. the symmetric group Sn+1 acting by restricting the permutation of factors of Tn+1 to {t1 +
. . .+ tn+1} ∼= Tn;

2. the linear automorphism fTn = (fT , . . . , fT ) : Tn → Tn.

Condition 1 is needed to ensure that G passes to the quotient Tn → Tn/Sn+1 (recall that by
Lemma 3.12 such quotient is birationally equivalent to π : Tn 99K Y ); condition 2 ensures that
GY is fY -invariant.

Fix global linear coordinates xi, yi on each factor of Tn such that the unstable/stable foliations
on Tn have tangent space (independent of the point)

TF+
Tn = Span

(
∂

∂x1
, . . . ,

∂

∂xn

)
, TF−Tn = Span

(
∂

∂y1
, . . . ,

∂

∂yn

)
.

By condition 2 and Lemma 3.1, G is a linear foliation; in other words, identifying the tan-
gent bundle of Tn with Tn × C2n, the foliation G corresponds to a linear subspace W ⊂ C2n

independent of the point. Denoting again by s ∈ Sn the action of s on C2n, we have

s(W ) = W for all s ∈ Sn.
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Remark that the action of Sn+1 on C2n is the direct sum of the action on TF+
Tn and on TF−Tn ;

both these linear representations of Sn+1 are isomorphic to the "standard representation", i.e.
the restriction of the action by permutation of coordinates on Cn+1 to the invariant subspace
{(x1, . . . , xn+1) ∈ Cn+1 |x1 + . . . + xn+1 = 0}. This representation of Sn+1 is irreducible
(i.e. Sn+1 does not preserve any proper subspace): in order to show this, we may compute ex-
plicitly that the space EndSn+1(Cn+1) of endomorphisms of Cn+1 commuting with the action of
Sn+1 is equal to the set of matrices

{(aij)i,j=1,...,n+1 | aii = ajj ∀i, j = 1, . . . n+ 1 and aij = akl for all i 6= j, k 6= l}

and thus has dimension 2; hence the representation onCn+1 decomposes in exactly two irreducible
representations by Schur’s lemma, namely the one-dimensional representation Span(e1 + . . . +
en+1) and the standard representation.
Therefore, since G is non-trivial, it is either equal to TF+

Tn or to TF−Tn ; upon passing to quotient,
this concludes the proof.

3.5 Further examples

The following examples show that not all interesting dynamics come from linear maps on tori.

Example 3.17. In [Ogu16a] the author gives an explicit example of a K3 surface S such that
Aut(S) is finite and such that X = S[2] admits a loxodromic automorphism F : X → X . Since
the group of automorphisms of S is finite, F cannot be written as f [2] for some f ∈ Aut(S).

Example 3.18. Amerik and Verbitsky have proved in [AV16] that, as long as b2(X) ≥ 5 (a condi-
tion which is respected by all known families of irreducible holomorphic symplectic manifolds),
there exists a deformation of X admitting a loxodromic automorphism.
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Chapter 4

Hyperbolic points for loxodromic
automorphisms

Definition 4.1. LetM be a manifold and g : M →M a diffeomorphism; a g-periodic point p ∈M
of period k is said to be hyperbolic (or saddle) if the Jacobian (Dfk)p is a linear automorphism
of TpM all of whose eigenvalues have modulus 6= 1.

The goal of this section is to prove the following theorem:

Theorem 4.2. Let X be an irreducible symplectic manifold and let f : X → X be a loxodromic
automorphism of X . Then the hyperbolic periodic points of f are Zariski-dense in X .

The result follows from Theorem 4.4 by Bogomolov, Kamenova, Lu and Verbitsky and recent
results in dynamical systems [Kat80, dT08, DS10] by Dinh and Sibony and de Thélin. The proof
shows something stronger: the hyperbolic periodic points are dense in a non-pluripolar subset of
X .

Example 4.3. Let f : S → S be a loxodromic automorhism of a K3 surface, let X = S[n] be
the Hilbert scheme of n points on S and let f [n] : X → X be the induced automorphism on the
Hilbert scheme of n points of S. Since the hyperbolic periodic points of f are Zariski-dense in
S, the hyperbolic periodic points of f [n] are Zariski-dense in X: indeed, if p1, . . . , pn ∈ S are
distinct hyperbolic points for f , then the reduced scheme p1 + . . .+ pn ∈ X is a hyperbolic point
for f [n].

In [McM02], MacMullen gives an example of a loxodromic automorphism f of a (non-
projective) K3 surface S which admits a Siegel disk, i.e. an embedded complex disk on which f
acts by an irrational rotation; in particular the periodic points of f are not dense in the Euclidean
topology, and therefore neither are the periodic points of f [n].

4.1 Action on cohomology of loxodromic automorphisms

We are going to need a precise description of the action on cohomology of an automorphism of an
irreducible symplectic manifold. The following result is proven in [BKLV]; however, the statement
in the original article is slightly different, and the proof is quite hermetic, which is why I chose to
rewrite it in the rest of this Section.

Theorem 4.4 ([BKLV], Theorem 6.3). Let f : X → X be a loxodromic automorphism of an
irreducible symplectic manifold X of dimension 2n. For 0 ≤ p ≤ 2n let λp(f) be the dynamical
degrees of f . Then, denoting λ = λ1(f),

75
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• all the eigenvalues of f∗ : H∗(X,R)→ H∗(X,R) have modulus λk/2 for some k ∈ Z;

• the sum of the multiplicities of eigenvalues of

f∗p+q : Hp+q(X,R)→ Hp+q(X,R)

having modulus λ
p−q

2 is dimHp,q(X).

As a consequence

1. for p = 1, . . . , n, the maximal eigenvalue of f∗ on H2p(X,R) (resp. on H2p−1(X,R)) is
equal to λp (resp. has modulus < λ

2p−1
2 );

2. for p = 0, 1, . . . , n,
λp(f) = λ2n−p(f) = λp;

3. λp(f) is a simple eigenvalue of f∗p,p : Hp,p(X)→ Hp,p(X);

4. if α is an eigenvalue of f∗|H2p(X,R) which is distinct from λp(f), then

|α| ≤ λp(f)

λ
.

We have already seen the proof of the statement about dynamical degrees (Corollary 2.20); in
the rest of the section we will prove the rest of the statement.

Remark 4.5. The second main statement of Theorem 4.4 could be slightly misleading: although the
sum of multiplicities of eigenvectors of f∗p+q having modulus λ(p−q)/2 is equal to dimHp,q(X),
such eigenvalues do not necessarily appear as eigenvalues of f∗p,q : Hp,q(X) → Hp,q(X). For
example, λ1(f) and λ1(f)−1 are the only eigenvalues of f∗2 having modulus different from 1, but
they appear as eigenvalues of the restriction f∗1,1 = f∗|H1,1(X), and not as eigenvectors of f∗2,0 or
f∗0,2.

Remark 4.6. The assumption that f is loxodromic is actually useless: indeed, if an automorphism
f satisfies λ1(f) = 1, all the eigenvalues of f∗ have modulus 1 (see [LB14b, Lemma 2.2.4]).

Example 4.7. Let X be an irreducible symplectic fourfold. Then the Hodge diamond of X is of
the form

1
0 0

1 a 1
0 b b 0

1 c d c 1
0 b b 0

1 a 1
0 0

1

Hence, for example, f∗4 : H4(X,R)→ H4(X,R) has exactly 1 (resp. c, d, c, 1) eigenvalue(s) with
modulus λ2 (resp. λ, 1, λ−1, λ−2), taking multiplicities into account. Moreover, λ2 and λ−2 are
eigenvalues of f∗|H2,2(X); thus, λ±2 is not an eigenvalue of f∗|H3,1(X) .
Furthermore, the Betti numbers of irreducible symplectic manifolds must respect some constraints.

• Wakakuwa [Wak58]: the odd Betti numbers must be divisible by four, so that, with the
above notation, b is even.
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• Salamon [Sal96]: if dimX = 2n, then

2
2n∑
i=1

(−1)i(3i2 − n)b2n−i(X) = nb2n(X);

in dimension 4, this leads to b3 + b4 = 10b2 + 46, i.e. 2b+ 2c+ d = 10a+ 64.

• Guan [Gua01]: if dimX = 4, then either 3 ≤ b2(X) ≤ 8 or b2(X) = 23; thus, either
1 ≤ a ≤ 6 or a = 21. Guan also gives restrictions to b3(X) depending on b2(X).

4.1.1 The orthogonal group O(p, q)

Real algebraic groups and their lattices

Let us recall some properties of real algebraic groups and their lattices; we refer to [Hum75, Bor91,
Rag07].

By an algebraic group we mean a smooth algebraic variety over a field k (in our case k =
R or Q) with a group structure such that the group multiplication and the inverse are algebraic
morphisms .
We will be mostly interested in linear algebraic groups, i.e. algebraic groups which are isomorphic
to a subgroup of some GLN defined by polynomial equations. In the case we will be interested
in, the base field is either R or Q, and by an abuse of notation we will often identify an algebraic
group G with its real points G(R).
Let G be a linear algebraic group defined over Q; in other words, G can be realized as a subgroup
of GLN (R) defined by equations with rational coefficients. Then, the set G(Q) of matrices of G
with rational coefficients forms a subgroup of G; an arithmetic subgroup is a subgroup Γ ≤ G(Q)
which is commensurable with the subgroup G(Z) := G(Q) ∩ GLN (Z) (i.e. G(Z) ∩ Γ has finite
index in both G(Z) and Γ). Although the set G(Z) depends on the chosen embedding G(R) ↪→
GLN (R), the definition of an arithmetic subgroup doesn’t.

A real algebraic group determines a real Lie group, i.e. a manifold with a group structure
such that the group multiplication and the inverse are diffeomorphisms. If G is a Lie group, its
Lie algebra is the tangent space at the origin g = TeG endowed with the Lie bracket [·, ·] (see
[Hum75, Chapter III]); in the case of a linear algebraic group G ⊂ GLN (R), the Lie bracket of
two elements of g ⊂ TIdGLN (R) =Mn(R) is simply the matrix commutator:

[x, y] = xy − yx.

A lattice of a Lie group G is a discrete subgroup Γ ≤ G such that the quotient space G/Γ has
a G-invariant finite Borel measure.

A real Lie group G is called simple (resp. semisimple) if its Lie algebra g is simple (resp.
semisimple), i.e. if it has no non-trivial ideals (resp. if it is isomorphic to a direct sum of simple Lie
algebras). Equivalently, a Lie group is simple if it has no non-trivial connected normal immersed
subgroup.

A connected (real) algebraic group is semisimple if it has no Zariski-connected normal com-
mutative subgroup other than the identity; here, "Zariski-connected" means "connected for the
Zariski topology" (a connected algebraic set is Zariski-connected, but the converse might not be
true, see Example 4.10). By [Mil06, Theorem 14.1], a real algebraic group G is semisimple if and
only if it is semisimple as a Lie group.

The following theorem links the notion of lattice with that of arithmetic group; see [Rag07,
Theorem 13.28].
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Theorem 4.8. Let G be a semisimple algebraic group defined over Q and let Γ < G be an
arithmetic subgroup. Then Γ is a lattice.

We say that a real semisimple algebraic group G does not have compact factors if there is no
surjective morphism G � K onto a compact (in the euclidean topology) real algebraic group K
of positive dimension.

Theorem 4.9 (Borel density theorem, [Bor60]). Let G be a connected semisimple real algebraic
group without compact factors and let Γ ≤ G be a lattice. Then Γ is Zariski-dense in G.

Example 4.10. For p, q ≥ 0, let G = O(p, q) be the subgroup of element of GLp+q(R) preserving
a fixed quadratic form b of signature (p, q); the Zariski-connected component of the identity is

SO(p, q) = O(p, q) ∩ SLp+q(R).

The Lie algebra so(p, q) of G is simple (see [FH91], or [Hel01] for a proof); in particular,
SO(p, q) is semisimple as a real algebraic group, and the only surjective algebraic group mor-
phisms SO(p, q)� G over R onto a positive-dimensional group G are quotients by finite groups.

From the point of view of euclidean topology, we have two separate cases:

• if p = 0 or q = 0, then SO(p, q) ∼= SOp+q(R) is a connected and compact Lie group;

• if p and q are both strictly positive, G has exactly four connected components, which are
non-compact. More accurately, SO(p, q) has two connected components: assuming that
p ≤ q, a component of SO(p, q) fixes the two connected components of the hyperboloid
{v ∈ Rp+q | b(v) = 1}, whereas the other one swaps them. The connected component of
the identity is usually denoted by SO+(p, q).

In particular, if p and q are both strictly positive, then SO(p, q) does not have compact factors;
therefore, by Theorem 4.8 and Theorem 4.9, the subgroup of integral points SO(p, q)∩GLp+q(Z)
is a lattice of, and is Zariski-dense in, SO(p, q).

Application to irreducible symplectic manifolds

We are going to apply these results in the context of irreducible symplectic manifolds. LetX be an
irreducible symplectic manifold and let qX denote the Beauville-Bogomolov form on H2(X,R);
recall that H2(X,R) has an integral structure determined by the isomorphism

H2(X,R) ∼= H2(X,Z)⊗Z R.

By Proposition 2.9, the group

G := O(H2(X,R), qX) ≤ GL(H2(X,R))

of linear automorphisms of H2(X,R) preserving qX is a linear algebraic group isomorphic to the
orthogonal group O(3, b2(X)− 3); furthermore, since qX is defined over Z, G is defined over Q.
Denote by

G0 = SO(H2(X,R), qX)

the Zariski-connected component of the identity ofG, and by SO(H2(X,Z), qX) the setG0(Z) =
G0 ∩ SL(H2(X,Z)) of integral points of G0.

Proposition 4.11. LetX be an irreducible symplectic manifold with b2(X) > 3. Then SO(H2(X,Z), qX)
is a lattice of SO(H2(X,R), qX), and it is a Zariski-dense subset.
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Proof. By Theorem 4.8 the subgroup G0(Z) = G0 ∩ SLb2(X)(Z) is a lattice.
The semisimple group G0 is its own only factor because it is simple; furthermore, G0 is non-
compact because b2 > 3 (see Example 4.10). Hence, by Theorem 4.9, G0(Z) is Zariski-dense in
G0.

Remark 4.12. If an irreducible symplectic manifold X admits a loxodromic birational transfor-
mation f : X 99K X , then b2(X) > 3. Indeed, λ1(f) and λ1(f)−1 are distinct eigenvalues of
f∗1,1 : H1,1(X)→ H1,1(X); thus b2(X) = h1,1(X) + 2 ≥ 4.

4.1.2 Proof of Theorem 4.4

In this section we prove Theorem 4.4. Let f : X → X be an automorphism of an irreducible
symplectic manifold X of dimension 2n; let λ = λ1(f) > 1.

The Hodge decomposition defines a standard multiplicative action ofC∗ onH∗(X,C): t ∈ C∗
acts on Hp,q(X) by tp−q. The idea is to compare this action to the action of f∗.

The strategy of the proof in [BKLV] goes as follows:

1. first we define a linear algebraic subgroup G of GL(H∗(X,R)) which contains f∗ and such
that the complexificationGC contains the standard multiplicative action ofC∗ onH∗(X,C);

2. then we replace f∗ by γ ∈ G whose eigenvalues on H2(X,R) are
λ1(f), λ1(f)−1, 1, . . . , 1, and prove that the absolute values of eigenvalues of f∗ and γ
on H∗(X,C) are the same;

3. finally we prove that γ and
√
λ ∈ C∗ are conjugated in GC, and in particular have the same

eigenvalues on H∗(X,C).

The main ingredient of the proof is a theorem of Verbitsky on the structure of the cohomology
algebra H∗(X,C) ([Ver13, Theorem 3.5]).

Remark that if we prove the claim for an iterate of f , the claim for f follows immediately;
therefore, from now on we will allow ourselves to replace f by one of its iterates.

Step 1

Let G denote the group of automorphisms of the graded R-algebra H∗(X,R) preserving the even
Chern classes c2k(X); in other words, a linear automorphism g ∈ GL(H∗(X,R)) is in G if and
only if

• g(c2k(X)) = c2k(X) for k = 0, . . . n;

• g preserves the subspaces Hp(X,R) for p = 0, . . . , 4n;

• g(α ∧ β) = g(α) ∧ g(β) for all α, β ∈ H∗(X,R).

Lemma 4.13. The group G defined above is an algebraic subgroup of
GL(H∗(X,R)) which is defined over Q.

Proof. All the conditions are imposed by polynomials equations on the coefficients of elements of
GL(H∗(X,R)), therefore G is an algebraic subgroup of GL(H∗(X,R)).
The condition g(c2k(X)) = c2k(X) for k = 0, . . . n is expressed by equations with integer coeffi-
cients because c2k(X) ∈ H4k(X,Z).
The same is true for the two other conditions, as the subspaces Hp(X,R) ⊂ H∗(X,R) and the
wedge-product are defined over Q.
Therefore G is defined over Q as claimed.
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For every automorphism f : X → X , f∗ ∈ G: indeed, the Chern classes are f∗-invariant, f∗

preserves the degree of forms, and f∗(α ∧ β) = f∗α ∧ f∗β; thus

f∗ ∈ G(Z).

Now consider the standard multiplicative action of C∗ on H∗(X,C), with t ∈ C∗ acting on
Hp,q(X) as tp−q; t preserves the Chern classes (because c2k(X) ∈ H2k,2k(X)) and the degree of
cohomology classes, and t(α∧ β) = tα∧ tβ for all α, β ∈ H∗(X,C). Therefore, this realizes C∗
as a one-parameter subgroup of the complexification GC ⊂ GL(H∗(X,C))

ρ : C∗ → GC.

Now let
φ : G→ GL(H2(X,R))

be the restriction to H2(X,R), and let G2 := Imφ. Let Γ = G(Z) = G ∩ GL(H∗(X,Z)) and
Γ2 = G2(Z) = G2 ∩GL(H2(X,Z)); Γ (resp. Γ2) is a discrete subgroup of G (resp. of G2).

By [Ver13, Theorem 3.5], we have

• G2 ⊂ O(H2(X,R), qX), where qX denotes, as usual, the Beauville-Bogomolov form;

• φ has finite kernel;

• Γ2 is an arithmetic subgroup of O(H2(X,R), qX); in other words, Γ2 has finite index in
O(H2(X,Z), qX).

Let SO(H2(X,R), qX) be the Zariski-connected component of the identity of O(H2(X,R), qX);
by Proposition 4.11 and Remark 4.12, SO(H2(X,Z), qX) is a lattice of, and is Zariski-dense in,
SO(H2(X,R), qX). Hence, the Zariski-closure of Γ2 in G2 contains SO(H2(X,R), qX), and a
fortiori so does G2.
Furthermore, since φ has finite kernel, G has the same Lie algebra as

O(H2(X,R), qX) ∼= O(3, b2(X)− 3);

in particular, φ(G) contains the connected component of the identity of
O(H2(X,R), qX).

Step 2

Proposition 2.9 and 2.14 imply that, if N = b2(X)− 4 and σ is the class of a symplectic form on
X , there exists a base

B = {v+, v−,Reσ, Imσ, v1, . . . vN}

of H2(X,R) such that

• the decomposition

H2(X,R) = (Rv+ ⊕ Rv−)⊕ RReσ ⊕ R Imσ ⊕ Rv1 ⊕ . . .⊕ RvN

is qX -orthogonal; more precisely, the matrix of qX with respect to B is

QX =


0 1 0 0
1 0 0 0
0 0 I2 0
0 0 0 −IN+2

 ;
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• possibly after replacing f by f2, the matrix of f∗2 : H2(X,R)→ H2(X,R) with respect to
B is

A =



λ
λ−1

Rθ1 0
Rθ2

0
. . .

Rθk
Ih


,

where the Rθi are 2× 2 rotation matrices.

Denoting

D =

 λ
λ−1

IN+2

 , R =



1
1

Rθ1 0
Rθ2

0
. . .

Rθk
Ih


,

we have
A = D ·R = R ·D.

Furthermore,D preserves the bilinear form qX , so that it defines an element γ2 ∈ O(H2(X,R), qX);
by replacing λ with λ(s) and making it converge to 1, one shows that γ2 belongs to the connected
component of the identity of
O(H2(X,R), qX), therefore to φ(G). We choose an element γ of G such that γ|H2(X,R) = γ2;
we can choose such a γ in the connected component of the identity.

Now let us prove that the absolute values of the eigenvalues of γ and f∗ are the same. First,
remark that f∗ and γ commute: indeed, after possibly replacing f by an iterate, they both belong
to the connected component of the identity of the real Lie group G, thus we can write f∗ =
expX1, γ = expX2 for some X1, X2 ∈ g. Since the Lie algebra g2 of G2 is isomorphic to g,
and since f∗2 and γ2 commute, we have [X1, X2] = 0, which implies that f∗ and γ commute as
claimed.
Now let β = f∗ ◦ γ−1, so that φ(β) = β2 acts as the matrix R on the basis B of H2(X,R); β2

belongs to the subgroup

H2 = {idR2} × SO2(R)× . . .× SO2(R)× {idRh} ⊂ G2,

where each SO2(R) acts by rotations on the corresponding pair of coordinates in the basis B; H2

is compact, hence H = φ−1(H2) is compact too. Therefore the eigenvalues of elements of H
have modulus 1, thus so does β; since f∗, γ and β commute, this implies that the eigenvalues of
f∗ and γ have the same moduli.

Step 3

Now we show that ρ(
√
λ) is conjugate to the complexification γC of γ in GC. Taking y ∈ gC such

that ρ(
√
λ) = exp y, this is the same as showing that x = adz(y) for some z ∈ gC.

The following two bases of H2(X,C) diagonalize γC and ρ(
√
λ) respectively:

B = {v+, v−,Reσ, Imσ, v1, . . . vN} as in Step 2,
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B′ = {cσ, c′σ̄, u, u′, w1, . . . , wN},

where c, c′ are constants such that qX(cσ, c′σ̄) = 1 and {u, u′, w1, . . . , wN} is a qX -orthogonal
base of H1,1(X) such that

qX(u) = qX(u′) = 1, qX(w1) = qX(w2) = . . . = qX(wN ) = −1;

recall that, as we are now working with the complexification of qX , the signature does no longer
mean anything.
Let g ∈ GL(H2(X,C) be the basis change from B to B′. Since the matrix defining qX in both
bases is

QX =


0 1 0 0
1 0 0 0
0 0 I2 0
0 0 0 −IN+2

 ,

g is an element of O(H2(X,C)); up to changing the sign of an element of B′, we can suppose that
g ∈ SO(H2(X,C)).
Furthermore, g conjugates γC and ρ(

√
λ). We have seen that the Lie algebra gC of GC is isomor-

phic to soC(3, b2(X) − 3) ∼= soC(b2(X)); therefore, at the level of Lie algebras this says exactly
that x and y are conjugated by adjoint action of an element of gC.

Now, if ϕ : G → Aut(V ) is a finite dimensional representation and g, h ∈ G, then ϕ(g) and
ϕ(hgh−1) have the same eigenvalues; therefore, the (absolute values of the) eigenvalues of f∗ are
the same as ρ(

√
λ). This shows that

• as all the eigenvalues of ρ(
√
λ) are powers of

√
λ, the same is true for the moduli of eigen-

values of f∗;

• more accurately, the moduli of eigenvectors of f∗k are exactly the eigenvectors of ρ(
√
λ) on

Hk(X,C), i.e. λk/2 (with multiplicity dimHk,0(X)), λ(k−2)/2 (with multiplicity dimHk−1,1(X))
etc.

This concludes the proof of the two main assertions of Theorem 4.4.
Remark that the dominant eigenvalues λp/2 of ρ(

√
λ) on Hp(X,C) appear only in Hp,0(X)

(if this space is non-trivial); to conclude, one just needs to recall (see Proposition 2.16) that for an
irreducible symplectic manifold

dimHp,0(X) = dimH0(X,Ωp
X) =

{
1 if p is even
0 if p is odd

This completes the proof.

4.2 Lyapounov exponents

In this section we define the Lyapounov exponents, which are a global equivalent of the logarithms
of the eigenvalues of the Jacobian matrix at a fixed point; see [Kat80].

Let g : M →M be a diffeomorphism of a compact d-dimensional manifold. Fix a Riemannian
metric on M . One defines the first Lyapounov exponent at a point p ∈M as the limit (if it exists)

χ1(g, p) = lim
n→+∞

log ‖ (Dgn)p ‖
n

,
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where (Dgn)p : TpM → Tgn(p)M denotes the differential of gn at the point p and ‖ · ‖ is the
norm on L(TpM,Tgn(p)M) induced by the Riemannian metric. Then one defines recursively

χk(g, p) = lim
n→+∞

log ‖
∧k(Dgn)p ‖
n

− (χ1(g, p) + . . .+ χk−1(g, p)),

where
∧k(Dgn)p :

∧k TpM →
∧k Tgn(p)M denotes the transformation induced by (Dgn)p be-

tween the k-th exterior powers of the tangent spaces and ‖ · ‖ is a norm onL(
∧k TpM,

∧k Tg(p)M)
induced by the Riemannian metric. We then have

χ1(g, p) ≥ χ2(g, p) ≥ . . . ≥ χd(g, p).

This definition is independent of the chosen Riemannian metric.

Example 4.14. • If p is a fixed point for g, then the Lyapounov exponents are just the loga-
rithms of the eigenvalues of Dgp.

• Let Tn = Rn/Zn be the n-dimensional real torus, and let g : Tn → Tn be the linear auto-
morphism induced by a matrix A ∈ SLN (Z). Then, if we consider the Lebesgue measure,
the Lyapounov exponents are the logarithms of the eigenvalues of A.

If µ is a g-invariant probability measure on M , then Oseledets theorem [Ose68] implies that
the limit above exists for µ-almost every p ∈ M . If furthermore µ is ergodic, the g-invariant
functions p 7→ χk(g, p) are µ-almost everywhere equal to some constants χk(g); we can then give
the following definition:

Definition 4.15. Let g : M → M be a diffeomorphism of a compact manifold M of dimension
d and let µ be a g-invariant ergodic probability measure; the Lyapounov exponents of g are the
constants χ1(g), . . . , χd(g).

Remark 4.16. The Lyapounov exponents depend on the chosen measure: for example, if p is a
fixed (respectively,N -periodic) point of g, the Lyapounov exponents for the Dirac measure µ = δp
(resp. µ = (δp + δg(p) + . . . + δgN−1(p))/N ) are the logarithms of the eigenvalues of Dgp (resp.
1/N times the eigenvalues of DgNp ).

Definition 4.17. Let g : M → M be a diffeomorphism of a compact variety M ; a g-invariant
ergodic probability measure is said to be hyperbolic if all the Lyapounov exponents with respect
to µ are non-zero.

4.3 Construction of an invariant measure of maximal entropy

In this subsection we summarize Dinh and Sibony’s results about the construction of Green cur-
rents and Green measures; in what follows (X,ω) denotes a compact Kähler manifold of dimen-
sion d.

The goal is to construct an ergodic f -invariant measure µ of maximal entropy satisfying some
regularity condition (namely that µ doesn’t charge any positive codimensional analytic subset).

4.3.1 Green currents and Dinh-Sibony measure

Let (X,ω) be a compact Kähler manifold and let f : X → X be a positive entropy automorphism
of X . Recall that, by log-concavity (Proposition 1.14), there exist 0 ≤ m ≤ m′ ≤ d such that the
dynamical degrees λi of f satisfy
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1 = λ0 < λ1 < . . . < λm−1 < λm = λm+1 = . . . = λm′ > λm′+1 > . . . > λd = 1.

In [DS05b], Dinh and Sibony construct positive closed currents Ts = Ts(f) of bidegree (s, s)
for s ≤ m, called the Green currents for f , satisfying

f∗Ts = λs(f)Ts.

This generalizes the results for Hénon maps of C2 and for algebraically stable meromorphic self-
maps of Pk (see [DS05a]).

Now assume that all the consecutive dynamical degrees are distinct, i.e. that m = m′; we
denote by T+ the Green current Tm(f). Recall that, by Lemma 1.13, λp(f−1) = λd−p(f), thus
repeating the construction for f−1 produces a Green current Td−m(f−1), which we denote by
T−. One can try constructing an f -invariant measure by taking the wedge-product Dinh-Sibony
measure

µ = T+ ∧ T−.

One needs to check that

• the wedge-product actually exists: this is a consequence of T+ and T− having continuous
super-potentials (denoted "PC" in [DS05b]; see also [DS10, Section 3]);

• the construction doesn’t lead to a trivial measure: this is the content of the following theo-
rem.

Theorem 4.18 ([DS10]). Let f : X → X be an automorphism of a compact Kähler manifold X .
Assume that

• all the consecutive dynamical degrees of f are distinct (i.e., with the above notations, m =
m′);

• λm(f) is a simple eigenvalue of Hm,m(X,R).

Then one can choose Green currents T+, T− such that µ := T+∧T− is an f -invariant probability
measure; µ is ergodic and of maximal entropy. All quasi-p.s.h. functions are µ-integrable; in par-
ticular, µ does not charge any positive-codimensional analytic subvariety (i.e. such subvarieties
have measure zero). If furthermore all the dominant eigenvalues of f∗p,p are equal to λp(f), then
µ is mixing (see [HK02]).

Definition 4.19. We call a measure as in Theorem 4.18 a Dinh-Sibony measure for f .

The following theorem, which is a special case of [dT08, Corollary 3], shows that a Dinh-
Sibony measure is hyperbolic.

Theorem 4.20. Let f : X → X be a dominant holomorphic endomorphism of a d-dimensional
compact Kähler manifold preserving an ergodic probability measure µ; if µ is a measure of maxi-
mal entropy and the dynamical degrees λi of f satisfy

1 = λ0 < λ1 < . . . < λm−1 < λm > λm+1 > . . . > λd,

then µ is hyperbolic. More precisely, the Lyapounov exponents χi of f satisfy

χ1 ≥ . . . ≥ χm ≥
1

2
log

λm
λm−1

> 0 >
1

2
log

λm+1

λm
≥ χm+1 ≥ . . . ≥ χd.
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Example 4.21. If X is an irreducible symplectic manifold of dimension 2n and f : X → X is
an automorphism, then by Theorem 4.4, f satisfies the hypothesis of Theorem 4.18 and 4.20;
hence we can construct a Dinh-Sibony measure µ for f which is hyperbolic. More precisely, since
λm(f) = λn(f) = λ1(f)n and λm−1(f) = λm+1(f) = λ1(f)n−1, the Lyapounov exponents of
f with respect to µ satisfy

χ1 ≥ . . . ≥ χn ≥
1

2
log λ1(f) > 0 > −1

2
log λ1(f) ≥ χn+1 ≥ . . . ≥ χ2n.

4.3.2 Proof of Theorem 4.2

Let f : X → X be a loxodromic automorphism of an irreducible symplectic manifold X of di-
mension 2n. By Theorem 4.4, the dynamical degrees λi of f satisfy

1 = λ0 < λ1 < . . . < λn−1 < λn > λn+1 > . . . > λ2n = 1.

By Theorem 4.18 and 4.20, we can then construct a Dinh-Sibony measure µ, which is an f -
invariant, ergodic and hyperbolic probablity measure with maximal entropy. By a result of Katok
[Kat80, Lemma 4.2], the closure of the set of hyperbolic periodic points contains Supp(µ); by
Theorem 4.18 µ cannot charge a divisor, hence a fortiori it cannot be supported on a divisor. This
implies that hyperbolic periodic points are Zariski dense in X , which concludes the proof.
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Part II

Invariant fibrations
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Part II constitutes the bulk of this work: therein, I analyse the existence of equivariant fibra-
tions, and give some constraints on the induced action on the base when one exists.

In Chapter 5 I prove that loxodromic transformations of irreducible symplectic manifolds are
primitive, i.e. they do not preserve any meromorphic fibration; as a corollary, I obtain a bound
on the number of periodic hypersurfaces and I show that the orbits of very general points are
Zariski-dense. The proof uses the definition of dynamical degrees and all the content of Chapter
2.

In Chapter 6 I prove that, if a transformation of a projective manifold whose canonical bundle
admits sections preserves a fibration onto Pn and induces an automorphism on the base, then the
action on the base has finite order. The main ingredient of the proof is an argument of p-adic
integration, and this part is self-contained.
In the final part of the chapter, I give some partial results about automorphisms of Calabi-Yau
threefolds preserving a fibration; again, no preliminaries are needed, except for the notion of
dynamical degrees.
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Chapter 5

Primitivity of loxodromic
transformations of irreducible
symplectic manifolds

The material of this chapter constitutes the bulk of an Arxiv preprint [LB], to appear in Interna-
tional Research Mathematical Notices in summer 2017.

As discussed in §1.3.4, if an automorphism admits an equivariant fibration, its dynamics can
be studied on smaller dimensional varieties (the base and the fibres of the fibration), which is a
priori simpler than the general case.
We work in the meromorphic setting (see [HKZ15]):

Definition 5.1. Let g : M 99KM be a bimeromorphic transformation of a compact Kähler mani-
fold. A meromorphic fibration π : M 99K B (i.e. a dominant meormorphic map with connected
fibres) onto a compact Kähler manifold B such that 0 < dimB < dimX is called g-equivariant
if there exists a bimeromorphic transformation h : B 99K B such that π ◦ g = h ◦ π, i.e. if the
following diagram commutes:

M M

B B

g

π π

h

The transformation g is said to be primitive if it admits no equivariant fibration.

Theorem A. Let X be an irreducible holomorphic symplectic manifold and let f : X 99K X be a
loxodromic bimeromorphic transformation. Then

1. f is primitive;

2. f admits at most dim(X) + b2(X)− 2 periodic hypersurfaces;

3. the f -orbits of very general points of X are Zariski-dense.

Here a hypersurface H ⊂ X is said to be f -periodic if its strict transform (fn)∗H by some
iterate of f is equal to H .

Remark 5.2. Assertion (2) follows from assertion (1) and [Can10, Theorem B]; assertion (3)
follows from assertion (1) and [AC08, Theorem 4.1], but is proven here as a lemma (Lemma
5.10).

Theorem A has been applied by Oguiso to construct primitive automorphisms of irreducible
holomorphic symplectic manifolds (see [Ogu16b] and §3.5).

91
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Remark 5.3. As discussed above, the primitivity of automorphisms with first dynamical degree
> 1 is known for surfaces. Theorem A extends the reults to irreducible holomorphic symplectic
manifolds (which bear a formal resemblance to surfaces through the Beauville-Bogomolov form
(see §2.3).
To the best of my knowledge, these are the only big classes for which the question has been
completely answered (apart from complex tori, where the dynamics becomes essentially linear).
The first open case is that of threefolds (see [Les15] for some partial results); Calabi-Yau threefolds
should be the most approachable case (see [OT15, Ogu16b] for existence results).

The proof of Theorem A is by contradiction: throughout this chapter, f : X 99K X denotes
a loxodromic bimeromorphic transformation of an irreducible holomorphic symplectic manifold
X , π : X 99K B a meromorphic equivariant fibration onto a Kähler manifold B such that 0 <
dimB < dimX and g : B 99K B the induced transformation of the base.

X X

B B

f

π π

g

Throughout this chapter we denote by NS(·) ⊂ H1,1(·,R) the Neron-Severi group with real
coefficients. We will adopt the usual vocabulary of algebraic geometry: "general" means "in a
Zariski-open dense set"; "very general" means "in a countable intersection of Zariski-open dense
subsets".

5.1 Meromorphic fibrations on irreducible holomorphic symplectic
manifolds

We collect here some useful facts about the fibration π. The results and proofs in this Section are
largely inspired by Amerik and Campana [AC08].

Remark 5.4. Let π : X 99K B be a dominant meromorphic map. If B is Kähler, then it is projec-
tive.
Indeed, if B weren’t projective, by Kodaira’s projectivity criterion and Hodge decomposition

H2(B,C) = H2,0(B)⊕H1,1(B)⊕H0,2(B),

we would have H2,0(B) 6= {0}, meaning that B carries a non-trivial holomorphic 2-form σB .
Since the indeterminacy locus of π has codimension at least 2, the pull-back π∗σB could then
be extended to a global non-trivial 2-form on X which is not a multiple of σ, contradicting the
irreducibility of X .

Here we use the same conventions as in [AC08]: let η : X̃ → X be a resolution of the indeter-
minacy locus of π (see [Uen75]), and let ν : X̃ → B be the induced holomorphic fibration, whose
general fibres are bimeromorphic to those of π.

X̃

η

��

ν

��

X
π // B

The pull-back π∗D of an effective divisor D ∈ Div(B) is defined as

π∗D = η∗ν
∗D,
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where η∗ is the pushforward as cycles. The pull-back induces linear morphisms Pic(B) →
Pic(X) and NS(B) → NS(X), and is compatible with the pull-back of smooth forms defined
in §1.1.3.

Remark 5.5. Let π : X 99K B be a dominant meromorphic map onto a projective manifold, and
letL = π∗H where H ∈ Pic(B) is an ample class; then L is not numerically trivial and qX(L) ≥
0.
Indeed, since X is simply connected, it bears no holomorphic 1-forms, so that the numerical class
of a divisor determines its linear class. The pull-back of the complete linear system |H| is a linear
system U ⊂ |L|, whose associated Iitaka map is exactly π. In particular, L is effective, hence
not numerically trivial; furthermore L has no fixed component, and by Remark 2.10 we have
qX(L) ≥ 0.

The following Lemma is essentially proven in [AC08].

Lemma 5.6. The restriction of the Beauville-Bogomolov form to the pull-back π∗NS(B) is not
identically zero if and only if general fibres of ν are of general type. If this is the case, then X is
projective.

Proof. Remark first that, by [Moi67] if there exists a big line bundle on a compact Kähler manifold
X , then X is projective.

Suppose that general fibres of ν are of general type. Let H be an ample divisor on B and
let L = π∗H . By [AC08, Theorem 2.3] we have κ(X,L) = dim(B) + κ(F ), where F is a
general fibre of ν; we conclude that L is big (and in particular X is projective). We can thus
write L = A + E for an ample divisor A and an effective divisor E on X . Now, if q denotes the
Beauville-Bogomolov form, we have

q(L) = q(L,A) + q(L,E) ≥ q(L,A) = q(A,A) + q(A,E) ≥ q(A,A) > 0,

where the first and second inequalities are consequences of L and A being without fixed compo-
nents and the last one follows directly from Remark 5.5. This proves the "if" direction.

Now assume that the restriction of qX to π∗NS(B) is not identically zero. Since ample classes
generate NS(B), there exists an ample line bundle H ∈ Pic(B) such that, denoting L = π∗H ,
q(L) 6= 0; furthermore, L is without fixed components, so that q(L) > 0 by Remark 5.5. It
follows by [Bou04][Theorem 4.3.i] that L is big (thus X is projective), and so is η∗L since η is
a birational morphism. Therefore, the restriction η∗L|F to a generic fibre of ν is also big (see
[Laz04][Corollary 2.2.11]).

By the definition of L we have

η∗L = ν∗H +
∑

aiEi for some ai ∈ Z,

where the sum runs over all the irreducible components of the exceptional divisor of η. The
adjunction formula leads to

KF = KX̃ |F + detN∗
F/X̃

= KX̃ |F

since the conormal bundle N∗
F/X̃

is trivial. Since η is a sequence of blow-ups, we have

KX̃ =
∑

eiEi|F for some ei > 0.

This implies that, for somem > 0, the divisormKF −η∗L|F is effective because ν∗H|F is trivial.
Thus

κ(F ) ≥ κ(F, η∗L|F ) = dim(F ),

meaning that F is of general type. This proves the "only if" direction.
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Corollary 5.7. If a generic fibre of ν is not of general type, then π∗NS(B) ⊂ H1,1(X,R) is a
line contained in the isotropic cone C0.

Proof. By Lemma 5.6, π∗NS(B) is contained in the isotropic cone. The pull-back L of an ample
line bundle on B is effective and non-trivial, so that its numerical class is also non-trivial; thus
π∗NS(B) cannot be trivial. To conclude it suffices to remark that π∗NS(B) is a linear subspace
of H1,1(X,R), and the only non-trivial subspaces contained in the isotropic cone are lines.

5.2 Density of orbits

The following theorem was proven in [AC08].

Theorem 5.8. LetX be a compact Kähler manifold and let f : X 99K X be a dominant meromor-
phic endomorphism. Then there exists a dominant meromorphic map π : X 99K B onto a compact
Kähler manifold B such that

1. π ◦ f = π;

2. the Zariski-closure of a very general fibre Xb of π is the Zariski closure of the f -orbit of a
very general point of Xb.

Lemma 5.9. Let φ : X 99K Y , ψ : Y 99K Z be meromorphic maps between compact complex
manifolds. If φ is an isomorphism in codimension 1, then for all D ∈ Div(Z)

(ψ ◦ φ)∗D = φ∗ψ∗D.

Proof. In order to prove the result, we give a characterization of the pull-back of a divisor by a
rational map which is equivalent to the one defined in §5.1. Let f : X1 99K X2 be a rational map
between projective manifolds and let U ⊂ X1 be the maximal open subset of X1 such that f is
well-defined on U ; in particular codimX1 \ U ≥ 2. Then for all divisors D ∈ Div(X2)

f∗D = f |∗UD.

Indeed, we can construct a resolution of indeterminacies of f

X̃

η

��

f̃

!!

X1
f
// X2

by successive blow-ups of smooth subvarieties of X1 \ U ; in particular the exceptional locus of η
is contained in η−1(X1 \ U), and since f is identified with f̃ on U ∼= η−1U the claim follows.

Now let U ⊂ X , V ⊂ Y two open sets such that φ induces an isomorphism U ∼= V and
such that codim(X \ U) ≥ 2, codim(Y \ V ) ≥ 2.Up to shrinking V to some other open subset
whose complement has codimension at least 2, we can suppose that ψ is regular on V ; therefore
the composition ψ ◦φ is regular on U , and since the complement of U has codimension ≥ 2 in X ,
for all D ∈ Div(Z) we have

(ψ ◦ φ)∗D = (ψ ◦ φ)|∗UD = φ|∗U (ψ|∗VD) = φ|∗U (ψ∗D) = φ∗ψ∗D,

where the third equality follows again from the fact that the complement of V has codimension at
least 2 in Y . This proves the claim.
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Let us prove point (3) of Theorem A.

Lemma 5.10. Let f : X 99K X be a bimeromorphic loxodromic transformation of an irreducible
holomorphic symplectic manifold. Then the very general orbit of f is Zariski-dense.

Proof. Suppose by contradiction that the very general orbits of f are not Zariski-dense; then by
Theorem 5.8 we can construct a commutative diagram

X

π
��

f
// X

π
��

B
idB // B

where π is a meromorphic map whose very general fibre Xb coincides with the Zariski-closure of
the f -orbit of a very general point of Xb, and dimB > 0. Remark 5.4 applies in the case where
the fibres are not connected; therefore the base B is projective.

Let V = π∗NSR(B) ⊂ H1,1(X,R); then f∗|V = idV : indeed, for v ∈ NS(B),

f∗π∗v = (π ◦ f)∗v = (idB ◦π)∗v = π∗v,

where the first equality follows from Lemma 5.9.
By Theorem 2.14, no non-zero vector of C≥0 (the positive cone for the Beauville-Bogomolov

form) is preserved by f∗; hence V ∩ C≥0 = {0}, i.e. the Beauville-Bogomolov form is negative
definite on V .

Now, let v ∈ NS(B) be an ample class and let w = π∗v ∈ V . By Remark 5.5 w 6= 0 and
qX(w) ≥ 0. This proves the claim by contradiction.

5.3 A key lemma

The following key lemma, together with Proposition 5.14, implies Theorem A.

Lemma 5.11 (Key lemma). Let X be an irreducible holomorphic symplectic manifold, f : X 99K
X a loxodromic bimeromorphic transformation and π : X 99K B a meromorphic f -equivariant
fibration onto a compact Kähler manifold. Then X is projective and the general fibre of π is of
general type.

Proof. Let g : B 99K B be a bimeromorphic transformation such that g ◦ π = π ◦ f .
Let us define

V := Span {(h ◦ π)∗NSR(B) |h ∈ Bir(B)} ⊂ NSR(X).

The linear subspace V is clearly defined over Q. Since the pull-back by π of an ample class is
numerically non-trivial, we also have V 6= {0}.
Furthermore, V is f∗-invariant: if v = (h ◦ π)∗w for some w ∈ NS(B) and for some birational
transformation h : B 99K B, then

f∗v = f∗(h ◦ π)∗w = (h ◦ π ◦ f)∗w = (h ◦ g ◦ π)∗w = (h̃ ◦ π)∗w,

where h̃ = h ◦ g : B 99K B is a birational transformation and the second equality follows from
Lemma 5.9.

Now suppose that the general fibre of π is not of general type; we are first going to show that
V is contained in the isotropic cone C0 = {v ∈ H1,1(X,R)|qX(v) = 0}. The general fibre of
the meromorphic fibration h ◦ π is bimeromorphic to that of π. By Lemma 5.6 we know that
(h ◦ π)∗NSR(B) is contained in the isotropic cone for all birational transformations h : B 99K B.
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We just need to show that for all birational transformations of B onto itself hi, hj and for all
wi, wj ∈ NSR(B) we have

qX((hi ◦ π)∗wi, (hj ◦ π)∗wj) = 0.

Let h = hj ◦ h−1
i , and let ρ : B̃ → B be a resolution of the indeterminacy locus of h; denote by

h̃ : B̃ → B the induced holomorphic transformation, and let π̃ = ρ−1 ◦ hi ◦ π : X 99K B̃; π̃ is a
meromorphic fibration onto the birational model B̃, whose general fibre is bimeromorphic to that
of π. Finally, let η : X̃ → X be a resolution of singularities of π̃ and let ν : X̃ → B be the induced
holomorphic map.

X̃

η

��

ν

��

B̃

ρ

��

h̃

��

X
hi◦π //

π̃

??

B
h // B

Now it is clear that η : X̃ → X is a resolution of indeterminacies of both hi ◦ π and hj ◦ π =
h ◦ hi ◦ π. Therefore

(hi ◦ π)∗wi = η∗ν
∗ρ∗wi = π̃∗ρ∗wi ∈ π̃∗NS(B̃)

and
(hj ◦ π)∗wj = η∗ν

∗h̃∗wj = π̃∗h̃∗wj ∈ π̃∗NS(B̃).

Since the fibres of π̃ are not of general type, it suffices to apply Lemma 5.6 to the fibration
π̃ : X 99K B̃ to conclude that qX((hi ◦ π)∗wi, (hj ◦ π)∗wj) = 0. This proves that V is con-
tained in the isotropic cone.

Now the only non trivial vector subspaces of NSR(X) contained in the isotropic cone are
lines; by Theorem 2.14, V is then an f∗-invariant line contained in the isotropic cone and not
defined overQ. But this contradicts the definition of V . We have thus proved that the general fibre
of π is of general type.

In order to prove that X is projective it suffices to apply the last part of Lemma 5.6.

By [Uen75, Corollary 14.3] we know that the group of birational transformations of a variety
of general type is finite. Therefore, we expect the dynamics of f on the fibres to be simple.

5.4 Relative Iitaka fibration

Before giving the proof of Theorem A, let us recall the basic results about the relative Iitaka
fibration. We will follow the approach of [Tsu10] with some elements from [Uen75]. See also
[GD71], [Gro61].

Let X be a smooth projective variety, and suppose that some multiple of KX has a non trivial
section. Recall that, for m > 0 divisible enough, the rational map

φ|mKX | : X 99K PH
0(X,mKX)∗

p 7→ {s ∈ PH0(X,mKX)|s(p) = 0}

has connected fibres. Moreover the rational maps φ|mKX | eventually stabilize to a rational fibration
onto its image, which we call canonical fibration of X . See for example [Laz04].
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Remark 5.12. If f : X 99K X is a bimeromorphic transformation of X , the pull-back of forms
induces a linear automorphism f∗ : H0(X,mKX) → H0(X,mKX). For example, for m = 1
a section σ ∈ H0(X,KX) is a holomorphic d-form (d = dimX); f is defined on an open set
U ⊂ X such that X \ U has codimension at least 2. Therefore by Hartogs theorem the pull-back
f |∗Uσ can be extended to X . It is easy to see that the construction is invertible and induces a linear
automorphism of PH0(X,mKX)∗ which commutes with the Iitaka fibration:

X
f

//

φ|mKX |
��

X

φ|mKX |
��

PH0(X,mKX)∗
f̃
// PH0(X,mKX)∗

The above construction can be generalized to the relative setting: let π : X → B be a regular
fibration onto a smooth projective variety B, and let KX/B = KX ⊗ π∗K−1

B be the relative
canonical bundle.
For some fixed positive integer m > 0 (divisible enough), let S = π∗(mKX/B)∗. S is a coherent
sheaf over B; therefore one can construct (generalizing the construction of the projective bundle
associated to a vector bundle, see [Uen75] for details) the algebraic projective fibre space

η : P(S)→ B

associated to S, which is a projective scheme (a priori neither reduced nor irreducible) over B;
denote by Y = P(S)red → B the reduced structure of P(S). Its fibre Yb over a general point
b ∈ B is canonically isomorphic to PH0(Xb,mKXb)

∗. The Iitaka morphisms

φb : Xb 99K PH0(Xb,mKXb)
∗

induce a rational map φ : X 99K Y over B.
The relative Iitaka fibration of X with respect to π is

φ : X 99K Y

x ∈ Xb 7→
[
{s ∈ H0(Xb;mKXb)|s(x) = 0}

]
∈ Yb.

It can be shown that, for m divisible enough:

• the fibres of φ are connected;

• the image by φ of a generic fibre Xb = π−1(b) of π is contained inside the fibre η−1(b) of
the natural projection η : Y → B;

• the restriction of φ to a generic fibre Xb is birationally equivalent to the canonical fibration
of Xb.

Remark 5.13. The construction in Remark 5.12 can also be generalized to the relative setting: let
f : X 99K X and g : B 99K B be birational transformations such that π ◦ f = g ◦ π. For a generic
b ∈ B define

f̃ |Yb : PH0(Xb,mKXb)
∗ 99K PH0(Xg(b),mKXg(b))

∗

[s∗] 7→
{

[s] ∈ PH0(Xg(b),mKXg(b))|s
∗(f∗s) = 0

}
.

These are well defined linear automorphisms because, for a fibre Xb of π not contained in the
indeterminacy locus of f , the restriction f : Xb 99K Xg(b) is a birational map, and thus induces a
linear isomorphism

f∗ : H0(Xg(b),mKXg(b))→ H0(Xb,mKXb).

Furthermore the f̃Xb can be glued to a birational transformation f̃ : Y 99K Y such that η◦f̃ = g◦η.
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Now suppose general fibres of π are of general type. Since the restriction of φ to a generic fibre
of g is birational onto its image and the images of fibres are disjoint, φ itself must be birational
onto its image; denote by Z the closure of the image of φ and let fZ = φ ◦ f ◦ φ−1 : Z 99K Z be
the birational transformation induced by f .
By the above Remark, fZ is the restriction of the birational transformation f̃ : Y 99K Y . In
particular fZ induces an isomorphism between generic fibres of η|Z .

X

π
��

φ
//

f
��

Z

fZ
��
� � //

~~

Y

f̃
��

η
ww

Bg
''

5.5 Proof of Theorem A

Proposition 5.14. Let X,B be projective manifolds, f : X 99K X and g : B 99K B birational
transformations and π : X → B a holomorphic fibration such that π ◦ f = g ◦ π.

X

π
��

f
// X

π
��

B
g
// B

Assume that a smooth fibre of π is of general type (if and only if general fibres are of general type)
and that g has a Zariski-dense orbit. Then

1. all the fibres over a non-empty Zariski open subset of B are birationally equivalent;

2. the orbits of f are not Zariski-dense; more precisely, the Zariski-closures of very general
orbits have dimension dimB.

Proof. Denote as before
φ : X 99K Y

the relative Iitaka fibration. Since we are only interested in the birational type of fibres of π : X →
B and in the Zariski-density of orbits of the birational transformation f , we can and will identify
X with its birational model φ(X). Let F = π−1(b0) be the fibre of π over a point b0 whose orbit
is Zariski-dense in B; let us fix a dense open subset U ⊂ B such that the restriction π : XU =
π−1(U)→ U is smooth.

(1) Consider the relative isomorphism functor IsomU (XU , F × U): for any U -scheme S,
IsomU (XU , F × U)(S) is by definition the set of isomorphisms over S between XU ×U S and
(F × U)×U S = F × S.

Since π : XU → U is flat, the functor IsomU (XU , F × U) can be represented by a U -scheme

I = IsomU (XU , F × U);

see [ACG11, §9.7], [Gro95, §4]. In other words, for every U -scheme S, there is a canonical
bijection between IsomU (XU , F × U)(S) and the set HomU (S, I) of morphisms of U -schemes
between S and I; in particular, for every closed point b ∈ U , the closed points of the fibre Ib
parametrize the set of isomorphisms Xb

∼= F . We are going to prove that the image of the natural
morphism φ : I→ U contains a dense open set U ′ ⊂ U , so that all the fibres of π : XU ′ → U ′ are
isomorphic.
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One can realize I as an open subset of the Hilbert scheme HilbU (XU ×U (U × F )) by identi-
fying a morphism Xb → F with its graph in Xb × F . Therefore,

I =
∐

P∈Q[λ]

IP ,

where the fibre IPb is the (a priori non irreducible and non reduced) quasi-projective scheme of
(graphs of) isomorphisms Xb

∼−→ F having fixed Hilbert polynomial P (λ); such polynomials
are calculated with respect to the restriction to the fibre Xb × F of a fixed line bundle L on
XU ×U (U × F ) relatively very ample over U . We shall fix

L = HY |XU �U HF ,

where HY is a very ample line bundle on Y and HF is a very ample line bundle on F .
Now, the pull-back of forms by f induces a linear isomorphism

f̃b : PH0(Xb,mKXb)
∗ ∼−→ PH0(Xg(b),mKXg(b))

∗

between fibres of η : Y
∼−→ B, which restricts to an isomorphismXb → Xg(b); under the canonical

identification of fibres of η with PN ,HY |Yb ∼= OPN (d) (meaning that the sectionHY |Yb has degree
d) for some d > 0 independent of the fibre. Under the identification, the action of f̃b is linear, so
that f̃∗b (HY |Yg(b)) also has degree d on PN . In particular we have

f̃∗b (HY |Xg(b)) = HY |Xb .

Now take any isomorphism Xb0
∼−→ F , which we identify with its graph Γ ⊂ Xb0 × F ; the image

of Γ by the isomorphism f̃b0 × idF : Xb0 × F
∼−→ Xg(b0) × F is the graph Γ′ of an isomorphism

Xg(b0)
∼−→ F . Furthermore, since (f̃b0 × idF )∗(L|Xg(b0)×F ) = L|Xb0×F , Γ′ has the same Hilbert

polynomial as Γ. Iterating this reasoning we find that for some P ∈ Q[λ] the image of the natural
morphism ψ : IP → B is Zariski-dense.

By Chevalley’s theorem [Har95, Theorem 3.16], we also know that ψ(IP ) is constructible;
since every constructible Zariski-dense subset of an irreducible scheme contains a dense open set
[Har95, Proof of Theorem 3.16], we have Xb

∼= F for all b in an open dense subset of B. This
concludes the proof of the first assertion.

(2) As all the fibres over a dense open subset U ⊂ B are birationally equivalent to a fixed
manifold F of general type, by [BBGvB16, Theorem 1.1], after maybe shrinking U , there exists a
finite cover ν : U ′ → U such that the fibre product U ′ ×U XU is birationally equivalent to U ′ × F
over U .
Denote by ψ the composition

ψ : U ′ × F
∼bir
99K U ′ ×U XU → XU ↪→ X,

which is a rational map over U . Let G = Bir(F ); then G is a finite group, and thus for every
y ∈ F the subvariety

U ′ ×G · y ⊂ U ′ × F

has dimension dimB.
We claim that the subvarieties

Wy = ψ(U ′ ×G · y)
Zar ⊂ X

are f -invariant. Indeed, for a general b ∈ B (such that the fibre Xb is not contained in the inde-
terminacy locus of f ) the transformation f induces a birational map fb : Xb 99K Xg(b). After the
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(non-unique) birational identifications Xb ∼bir F and Xg(b) ∼bir F , fb corresponds to an element
of Bir(F ), which is only well-defined up to composition with another element of Bir(F ); for a
general x ∈ Xb, corresponding to y ∈ F ∼ Xb, the image f(x) corresponds to an element of
G · y ⊂ F ∼ Xg(b).
This shows that the varieties Wy are f -invariant.

Remark that the irreducible components of the Wy passing through general points of X have
dimension dimB. Since the very general orbits of g are Zariski-dense, the Wy are finite unions of
Zariski-closures of orbits of f ; furthermore, Theorem 5.8 implies that the general Wy are smooth
and have constant dimension. This proves that the Zariski-closure of a very general orbit of f has
dimension dimB, which concludes the proof.

5.6 Invariant subvarieties

LetX be a compact complex manifold. If f : X → X is an automorphism, we say that a subvariety
W ⊂ X is invariant if f(W ) = W , or, equivalently, if f−1(W ) = W . We say that W ⊂ X is
periodic if it is invariant for some positive iterate fn of f .
Now let f : X 99K X be a pseudo-automorphism of X (i.e. a bimeromorphic transformation
which is an isomorphism in codimension 1, see §2.4). We say that a hypersurface W ⊂ X is
invariant if the strict transform f∗W of W is equal to W (as a set); since f and f−1 don’t contract
any hypersurface, this is equivalent to f(W ) = W (here f(W ) denotes the analytic closure of
f |U (W ∩ U), where U ⊂ X is the maximal open set where f is well defined). We say that a
hypersurface is periodic if it is invariant for some positive iterate of f .

The following Theorem is a special case of [Can10, Theorem B].

Theorem 5.15. Let f : X 99K X be a pseudo-automorphism of a compact complex manifold X .
If f admits at least dim(X)+ b2(X)−1 invariant hypersurfaces, then it preserves a non-constant
meromorphic function.

Proof of Theorem A, point (2). Let f : X 99K X be a loxodromic bimeromorphic transformation
of an irreducible holomorphic symplectic manifoldX (which is a pseudo-automorphism by Propo-
sition 2.11).
Suppose that f admits more than dim(X) + b2(X)− 2 periodic hypersurfaces; then some iterate
fN of f satisfies the hypothesis of Theorem 5.15. Therefore fN preserves a non-constant mero-
morphic function π : X 99K P1, and, up to considering the Stein factorization of (a resolution of
indeterminacies of) π, we can assume that π is an fN -equivariant fibration onto a curve. As fN is
loxodromic, this contradicts point (1) of Theorem A.

The following example shows that we cannot hope to obtain an analogue of point (2) of The-
orem A for higher codimensional subvarieties.

Example 5.16. Let f : S → S be a loxodromic automorphism of a K3 surface S, and let X =
Hilbn(S). ThenX is an irreducible holomorphic symplectic manifold and f induces a loxodromic
automorphism fn of X . By point (2) of Theorem A, fn admits only a finite number of invariant
hypersurfaces. However f admits infinitely many periodic points by Theorem 1.31; if x is a
periodic point in S, then (the image in X of) {x}p×Sn−p is a periodic subvariety of codimension
2p.
If furthermore f admits an invariant curve C (it is the case for the automorphisms of Kummer
surfaces induced by automorphisms of tori, which fix the sixteen exceptional (−2)-curves, see
§3.1), then (the image in X of) C × {x}p × Sn−p−1 is a periodic subvariety of codimension
2p+ 1.

Thus we have showed the following Proposition.
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Proposition 5.17. For all integers 1 < p ≤ 2n, there exist a 2n-dimensional projective irreducible
holomorphic symplectic manifold X and a loxodromic automorphism f : X → X admitting in-
finitely many periodic subvarieties of codimension p.

5.7 Appendix: An alternative approach to Theorem A

In this section we describe a different approach to the proof of Theorem A which doesn’t require
Proposition 5.14. The result we obtain is actually slightly weaker than Theorem A; however this
approach allows to prove point (2) and (3), as well as point (1) for automorphisms.

Lemma 5.18. Let X be a smooth projective variety, f : X 99K X a birational transformation of
X , π : X 99K B a rational f -equivariant fibration onto a smooth projective variety B. If a fibre
of π is of general type (if and only if general fibres of π are of general type), then all the relative
dynamical degrees λp(f |π) are equal to 1 (for p = 0, . . . ,dim(X)− dim(B)).

Proof. Since the Kodaira dimension and the relative dynamical degrees are bimeromorphic invari-
ants (Proposition 1.17), up to considering a resolution of the indeterminacy locus of π, we can
suppose that π is regular.
Let

φ : X

π

��

// Y := P(π∗K
⊗m
X/B)

η

ww
B

be the relative Iitaka fibration. Since general fibres of π are of general type, φ is birational onto its
image; therefore, denoting Z ⊂ Y the closure of φ(X), the claim is equivalent to λp(fZ |ηZ) = 1,
where ηZ denotes the restriction of η to Z and fZ = φ ◦ f ◦ φ−1 : Z 99K Z.
The construction of Remark 5.13 provides a birational transformation f̃ : Y 99K Y extending fZ .

X Z Y

B

φ

π

f fZ f̃

η

g

Now we will prove that if λp(f̃ |η) = 1 then λp(fZ |ηZ) = 1. LetHY ∈ Pic(Y ) andHB ∈ Pic(B)
be ample classes; therefore HY |Z is an ample class on Z. Recall that 2n = dim(X), and let
K2n ⊂ H2n,2n(Y,R) be the closure of the cone of classes of positive (2n, 2n)-currents; then the
map

H2n,2n(Y,R)→ R

α 7→
∫
Y
α ∧ c1(HY )dim(Y )−dim(X) = α ·Hdim(Y )−dim(X)

Y

is linear and strictly positive (except on 0) on the closed positive cone K2n. Since α 7→ α · [Z] is
linear too, we can define

M = max
α∈K2n\{0}

α · [Z]

α ·Hdim(Y )−dim(X)
Y

≥ 0.
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Now

λp(fZ |ηZ) = lim
n→+∞

(
(f̃n)∗Hp

Y · η
∗H

dim(B)
B ·H2n−p−dim(B)

Y · [Z]
) 1
n ≤

lim
n→+∞

(
M(f̃n)∗Hp

Y · η
∗H

dim(B)
B ·Hdim(Y )−p−dim(B)

Y

) 1
n

=

lim
n→+∞

(
(f̃n)∗Hp

Y · η
∗H

dim(B)
B ·Hdim(Y )−p−dim(B)

Y

) 1
n

= λp(f̃ |η) = 1,

and since all relative dynamical degrees are ≥ 1 we have λp(fZ |ηZ) = 1.
Now all is left to prove is that λp(f̃ |η) = 1. There exists k > 0 such that η∗Hdim(B)

B ≡num
k[F ], where [F ] is the numerical class of a fibre F of η. We have

λp(f̃ |η) = lim
n→+∞

(
(f̃n)∗Hp

Y · η
∗H

dim(B)
B ·Hdim(Y )−p−dim(B)

Y

) 1
n

=

lim
n→+∞

(
(f̃n)∗Hp

Y · k[F ] ·Hdim(Y )−p−dim(B)
Y

) 1
n

=

lim
n→+∞

((
(f̃n)∗HY

)
|pF ·HY |dim(Y )−p−dim(B)

F

) 1
n
.

For each fibre we have a canonical identification F ∼= PN , and by this identification HY |F ∼=
OPN (d), meaning that the hyperplane section HY |F is defined by an equation of degree d. Under
the identification, the action of f̃ from one fibre to another is linear, so that

(
(f̃n)∗HY

)
|F is also

defined by an equation of degree d on PN . This means that

λp(f̃ |η) = lim
n→+∞

(ddim(F ))
1
n = 1

as we wanted to show. This concludes the proof.

The following Proposition is a weaker version of point (1) of Theorem A.

Proposition 5.19. Let f : X 99K X be a loxodromic transformation of an irreducible holomorphic
symplectic manifold X of dimension 2n, and let

1 = λ0(f) < · · · < λp0(f) = · · · = λp0+k(f) > · · · > λ2n(f) = 1

be its dynamical degrees.
If π : X 99K B is an f -equivariant meromorphic fibration, then dim(B) ≥ 2n− k. In particular,
if f is an automorphism (or, more generally, if all the consecutive dynamical degrees of f are
distinct), then it is primitive.

Proof. Let g : B 99K B be a birational transformation such that g ◦ π = π ◦ f .

X

π
��

f
// X

π
��

B
g
// B

We know by Lemma 5.11 that a generic fibre of π is of general type; by Lemma 5.18 this implies
that all the relative dynamical degrees λp(f |π) are equal to 1. By Theorem 1.16 we then have

λp(f) = max
p−dim(F )≤q≤p

λq(g),
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where dim(F ) = dim(X)− dim(B) is the dimension of a generic fibre.
Let q ∈ {0, 1, . . . ,dim(B)} be such that λq(g) is maximal. Then

λq(f) = λq+1(f) = · · · = λq+dim(F )(f) = λq(g),

meaning that k ≥ dim(F ) = 2n− dim(B). This concludes the proof.

Remark 5.20. Since in the Theorem we have k ≤ 2n − 1, the base of an equivariant fibration
cannot be a curve. Therefore Proposition 5.19 implies point (2) of Theorem A.
Furthermore, we have g 6= idB , otherwise λ1(f) = 1 by Theorem 1.16; thus, thanks to Theorem
5.8, Proposition 5.19 implies point (3) of Theorem A.
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Chapter 6

Preserved fibrations: action on the base

In this chapter we deal with imprimitive birational transformations (see Definition 5.1). In other
words, we consider transformations f : X 99K X such that there exists a meromorphic fibration
π : X 99K B and a birational transformation g : B 99K B such that π ◦ f = g ◦ π.
By Theorem 2.15, this is the case when X is an irreducible symplectic manifold of type K3[n]

or generalized Kummer and f is a parabolic transformation; in this case, B = Pn and g is an
automorphism.

As we have seen, the study of the dynamics of an imprimitive transformation reduces to the
study of the dynamics on the base and of the action on the fibres. The following result describes
the action on the base in a slightly more general setting than Theorem 2.15.

Theorem B. Let X be a projective manifold with trivial or effective canonical bundle and let
f : X 99K X be a birational transformation. Suppose that there exist a meromorphic fibration
π : X 99K Pn and an element g ∈ Aut(Pn) = PGLn+1(C) such that g ◦ π = π ◦ f . Then g has
finite order.

In the context of Theorem 2.15, we get a characterization of transformations with Zariski-dense
orbits:

Corollary 6.1. Let f be a birational transformation of an irreducible symplectic manifold X
of type K3[n] or generalized Kummer; then f admits a Zariski-dense orbit if and only if f is
loxodromic (i.e. the first dynamical degree λ1(f) is > 1).

Proof. By Theorem A, if f is loxodromic then the very general orbit of f is Zariski-dense.
Now, suppose that f is not loxodromic. If f is elliptic, then it has finite order by Proposition

2.14, and in particular its orbits are not Zariski-dense.
If f is parabolic, then by Theorem 2.15 f preserves a fibration π onto Pn, and the induced action
on the base is biregular; by Theorem B, the action on the base has finite order, thus any orbit is
contained in a finite number of fibres of π, and in particular is not Zariski-dense.

Remark 6.2. As it was also remarked by one of the referees, the assumption of Theorem B on
KX being trivial or effective can be weakened to the Kodaira dimension κ(X) of X being non-
negative. Indeed, if this is the case, some positive multiple mKX of the canonical bundle admits
a non-zero section Ω; to such a section one can associate a volume form ω by taking the m-th root
of a well-chosen multiple of Ω ∧ Ω̄. Analogously, if X is defined over a p-adic field, then we can
define a measure m

√
|Ω|. The proof goes exactly as the one of Theorem B.

Furthermore, one can weaken the assumptions on the base of the preserved fibration: it is
enough to suppose that f preserves a fibration π : X 99K B and that the action g : B 99K B on the
base is a pseudo-automorphism which preserves a big line bundle L. Indeed, after applying the

105
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Iitaka map Φ: B ↪→ PN with respect to L, which is birational onto its image, g is identified with
the restriction to Φ(B) of some linear automorphism h ∈ PGLN+1(C), and the same measure-
theoretic argument as in the proof of Theorem B applies.

Hence, we have following:

Theorem 6.3. Let X be a projective manifold and let f : X 99K X be a birational transformation.
Suppose that there exist a meromorphic fibration π : X 99K B onto a projective manifold B and a
pseudo-automorphism fB : B 99K B such that fB ◦ π = π ◦ f . Assume that

1. the Kodaira dimension κ(X) is non-negative;

2. fB preserves a big line bundle L.

Then fB has finite order.

The complete proof of this result will appear in a later article.

6.1 Elements of p-adic integration

In this section we give an introduction to p-adic integration; see [CLNS14], [Pop11, Chapter 3]
and [Igu00].

6.1.1 p-adic and local fields

We remind that, for a prime number p, the p-adic norm on Q is defined as∣∣∣pn · a
b

∣∣∣ = p−n p - a, p - b.

We denote Qp the metric completion of (Q, | · |p); every element of Qp can be uniquely written as
a Laurent series

a =

+∞∑
n=n0

anp
n ai ∈ {0, 1, . . . , p− 1}.

Denote by Zp the closed unit ball inQp; it is an integrally closed local subring ofQp with maximal
ideal pZp and residue field Fp; its field of fractions is Qp, and it is a compact, closed and open
subset of Qp.

A p-adic field is a finite extension K of Qp for some prime p; on K there exists a unique
absolute value | · |K extending | · |p. We denote by OK the integral closure of Zp in K.

A local field is a field K with a absolute value | · | : K → R≥0 such that K with the induced
topology is locally compact; we say that two local fields (K1, | · |1), (K2, | · |2) are equivalent if
there exists a field isomorphism φ : K1 → K2 such that |φ(x)|2 = |x|α1 for some α ∈ R>0.

Theorem 6.4. Up to equivalence, local fields of characteristic 0 are R and C endowed with the
usual absolute values (archimedean case) and p-adic fields (non-archimedean case).

In what follows, K denotes a p-adic field.

Remark 6.5. OK is a local ring, with maximal ideal mK ; the residue field is

OK�mK
∼= Fq q = pr for some r > 0.

In fact r = [K : Qp]/vK(p), where vK denotes the valuation onQp such thatOK = {vK(x) ≤ 1}
is equal to the closed unit ball in K.
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6.1.2 Measure on K

On a locally compact topological group G there exists a positive measure µ, unique up to scalar
multiplication, called the Haar measure of G such that:

• any continuous function f : G → C with compact support is µ-integrable (i.e. µ is locally
finite);

• µ is G-invariant to the left.

Other important properties of the Haar measure are as follows: every Borel subset of G is measur-
able; µ(A) > 0 for every nonempty open subset of G.

We consider G = (Qp,+), and take on it the Haar measure µ normalized so that

µ(Zp) = 1.

Example 6.6. For m ≥ 0, µ(pmZp) = p−m.
Indeed, we have

Zp =

pm−1∐
i=0

(pmZp + i)

and by translation invariance µ(pmZp + i) = µ(pmZp). Therefore

1 = µ(Zp) = pmµ(pmZp),

which proves the claim.
Example 6.7. Since Z∗p = Zp \ pZp, µ(Z∗p) = 1− 1

p .
A useful observation for calculating integrals is that, as in every measured space, if f : Zp → C

has its image contained in a countable set {ai}i∈N, then∫
Zp
f(x)dµ(x) =

∑
i∈N

aiµ{f(x) = ai}.

Example 6.8. Let s ∈ R≥0, d ∈ N; then

I =

∫
Zp
|xd|sdµ(x) =

p− 1

p− p−ds
.

Indeed,

|xd|s =
1

pkds
for x ∈ pkZp \ pk+1Zp,

so that

I =

+∞∑
k=0

1

pkds
µ(pkZp \ pk+1Zp) =

+∞∑
k=0

1

pkds

(
1

pk
− 1

pk+1

)
=

p− 1

p

+∞∑
k=0

1

pk(ds+1)
=

p− 1

p− p−ds

More generally, on a p-adic field K we consider the Haar measure µ such that

µ(OK) = 1.

Remark 6.9. As in the examples above, one can show that

• µ(mk
K) = q−k;

• µ(O∗K) = 1− 1
q ;

• ∫
OK
|xd|sdµ =

q − 1

q − q−ds
.
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6.1.3 Integration on K-analytic manifolds

K-analytic manifolds

Let K be a p-adic field with norm | · |. For any open subset U ⊂ Kn, a function f : U → K is said
to be K-analytic if locally around each point it is given by a convergent power series. Similarly,
we call f = (f1, . . . , fm) : U → Km a K-analytic map if all the fi are analytic.

As in the real and complex context, we define a K-analytic manifold of dimension n as a
Hausdorff topological space locally modelled on open subsets of Kn and with K-analytic change
of charts.

Example 6.10. 1. Every open subset U ⊂ Kn is a K-analytic manifold of dimension n; in
particular, the set OnK ⊂ Kn is a K-analytic manifold.

2. The projective space PnK over K is a K-analytic manifold.

3. The set of K-points of every smooth algebraic variety over K is a K-analytic manifold;
in order to see this one needs a K-analytic version of the implicit function theorem (see
[CLNS14, §1.6.4]).

4. The blow-up of a K-analytic manifold along a submanifold of codimension ≥ 2 is a K-
analytic manifold.
Let us describe explicitly the blow-up π : X → K2 of K2 at the origin. As in the complex
case, one can cover X with two charts isomorphic to K2, in which π is written as

π : (x, z) 7→ (x, xz) ∈ K2, π : (w, y) 7→ (yw, y) ∈ K2,

and with change of coordinates w = 1/z, y = xz.
SinceK is totally discontinuous, we can cover Y := π−1(O2

K) with two disjoint open charts

U = {(x, z) | |x| ≤ 1, |z| ≤ 1} V = {(w, y) | |w| < 1, |y| ≤ 1},

by remarking that

π(U) = {(s, t) ∈ K2 | |t| ≤ |s| ≤ 1}, π(V ) = {(s, t) ∈ K2 | |s| < |t| ≤ 1}.

Compact K-analytic manifolds are completely classified.

Proposition 6.11 (Serre 1965). Let X be a K-analytic compact manifold, and let q be the cardi-
nality of the residue field OK/mK . Then there exists a unique m ∈ {1, . . . , q − 1} such that X is
K-diffeomorphic to a disjoint union of m unit polydisks.

Differential forms and integration

Differential forms are defined in the usual way via charts: on a chart with coordinates x1, . . . , xn,
a differential form of degree k can be written as

α =
∑
|I|=k

fI(x1, . . . , xn)dxi1 ∧ . . . ∧ dxik

with fI : U → K functions on U ; if the fI are K-analytic we say that the form is analytic.
Now take a maximal degree analytic differential form ω; let φ : U → Kn be a local chart, defining
local coordinates x1, . . . , xn. In these coordinates we can write

φ∗ω = f(x1, . . . , xn)dx1 ∧ . . . ∧ dxn.
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Then one can define a Borel measure |ω| on U as follows: for any open subset A ⊂ U , we set

|ω|(A) =

∫
φ(A)
|f(x)|K dµ,

where µ is the usual normalized Haar measure on φ(U) ⊂ Kn.
To define a Borel measure |ω| on the whole manifold X , one uses partitions of unity exactly as in
the real case. The only thing to check is that |ω| transforms precisely like differential forms when
changing coordinates, which is a consequence of the following K-analytic version of the change
of variables formula.

Theorem 6.12 (Change of variables formula). Let U be an open subset ofKn and let φ : U → Kn

be an injective K-analytic map whose Jacobian matrix Jφ is invertible on U . Then for every
measurable positive (resp. integrable) function f : φ(U)→ R∫

φ(U)
f(y)dµ(y) =

∫
U
f(φ(x)) |det Jφ(x)|K dµ(x).

Example 6.13. Integration of differential forms on K-analytic manifolds sometimes allows to
simplify the computation of integrals on open subsets of Kn. For example, consider

I =

∫
O2
K

|f(x, y)|s|dx ∧ dy|, where f(x, y) = xayb(x− y)c.

Let π : X → O2
K be the blow-up of O2

K at the origin; then

I =

∫
X
|π∗f |s|π∗(dx ∧ dy)|,

and we can decompose the integral over X into the integral over U plus the integral over V , as
defined in Example 6.10. It turns out that, by using theK-analytic version of Fubini’s theorem, the
integrals over U and V can be computed separately in the two variables, thus allowing to obtain
the value of I; see [Pop11, Pages 12-13].

Relationship with rational points over finite fields

The theory of p-adic integration is linked to the computation of the number of rational points of
a scheme over a finite field; the content of this paragraph will not be needed in the following
sections.

As a first result, we can state the following lemma (see [Pop11, Lemma 4.6]).

Lemma 6.14. LetK be a p-adic field with residue fieldOK/mK
∼= Fq and let f ∈ OK [X1, . . . , Xn].

Then, for any integer m ≥ 0,

|{x ∈ (OK/mm
K)n | f(x) ≡ 0 (modmm

K)}| = qmn · µ
{
x ∈ OnK | |f(x)| ≤ 1

qm

}
A global analogue of Lemma 6.14 is the following result.

Theorem 6.15 (Weil [Wei82]). Let X be a smooth scheme of dimension n defined over S =
SpecOK , and let ω ∈ Γ(X,Ωn

X/S) be a nowhere vanishing n-form on X defined over S. Then
X(OK) is a K-analytic manifold and∫

X(OK)
|ω| = |X(Fq)|

qn
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6.2 Proof of Theorem B

In this section we give the proof of Theorem B. The strategy of the proof goes as follows:

1. Find an f -invariant volume form ω on X (for X irreducible symplectic, ω = (σ ∧ σ̄)n,
where 2n = dimX and σ is a symplectic form).

2. The push-forward of ω by π defines a g-invariant measure vol on Pn not charging positive
codimensional subvarieties; using this it is not hard to put g ∈ PGLn+1(C) in diagonal
form with only complex numbers of modulus 1 on the diagonal.

3. Define the field of coefficients k: roughly speaking, a finitely generated (but not necessarily
finite) extension of Q over which X , f , the volume form and all the relevant maps are
defined.

4. Apply a key lemma: if one of the coefficients α of g is not a root of unity, there exists an
embedding k ↪→ K into a local field K such that |ρ(α)| 6= 1. Then the same integration
argument as in point (2) leads to a contradiction.
A similar idea appears in the proof of Tits alternative for linear groups, see [Tit72].

6.2.1 Invariant volume on X

Remark that, given a holomorphic n-form Ω (n being the dimension of X), the pull-back f∗Ω is
defined outside the indeterminacy locus of f ; the latter being of codimension ≥ 2, by Hartogs
principle we can extend f∗Ω to an n-form on the whole X . This action determines a linear
automorphism

f∗ : H0(X,KX)→ H0(X,KX).

The complex vector space H0(X,KX) has finite dimension, thus there exists an eigenvector Ω ∈
H0(X,KX) \ {0}:

f∗Ω = ξΩ. (6.1)

Furthermore, since the integration measure Ω ∧ Ω doesn’t charge positive codimensional analytic
subvarieties and since f is birational, f preserves the (finite) total measure:∫

X
f∗(Ω ∧ Ω) =

∫
X

Ω ∧ Ω;

thus |ξ| = 1, and in particular the volume form ω = Ω ∧ Ω is f -invariant.
The push-forward by π induces a measure vol on Pn:

vol(A) :=

∫
π−1(A)

ω,

where π−1(A) denotes the inverse image of A by the restriction of π to the maximal open subset
U ⊂ X where π is well-defined; the measure vol is g-invariant.

6.2.2 A first reduction of g

In a given system of homogeneous coordinates on Pn, an automorphism g ∈ Aut(Pn) = PGLn+1(C)
is represented by a matrix M acting linearly on such coordinates; M is well-defined up to scalar
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multiplication. We will say that g is semi-simple if M is; in this case there exist homogeneous
coordinates Y0, . . . , Yn such that the action of g on these coordinates can be written

g([Y0 : . . . : Yn]) =


1

α1

. . .
αn

Y = [Y0 : α1Y1 : . . . : αnYn].

By an abuse of terminology, we will call the αi the eigenvalues of g; they are not well-defined, but
the property that they are all of modulus 1 is.

Lemma 6.16. Let g be an automorphism of Pn which preserves a finite measure vol which doesn’t
charge positive-codimensional subvarieties; then g is semi-simple and its eigenvalues have all
modulus 1.

Proof. Let us prove first that g is semi-simple. If this were not the case, the Jordan form of g (which
is well-defined up to scalar multiplication) would have a non-trivial Jordan block, say of dimension
k ≥ 2. It turns out that the computations are clearer if we consider the lower triangular Jordan
form. In some good homogeneous coordinates Y0, . . . Yn of Pn, after rescaling the coefficients of
g we can write

g(Y ) =



1 0
1 1

. . . . . . 0
0 1 1

αk 0

0
. . .

F αn


Y .

Take the affine chart {Y0 6= 0} ∼= Cn with the induced affine coordinates yi = Yi/Y0. In these
coordinates we can write

g(y1, . . . , yn) = (y1 + 1, y2 + y1, . . .)

and thus
gN (y1, . . . , yn) = (y1 +N, . . .).

Let A = {(y1, . . . , yn) ∈ Cn | 0 ≤ Re(y1) < 1}; then we have

Cn =
∐
N∈Z

gN (A)

and
vol(Pn) = vol(Cn) =

∑
N∈Z

vol(gN (A)) =
∑
N∈Z

vol(A) = 0 or +∞,

which is a contradiction with the finiteness of vol.
This shows that g is diagonalizable.

Next we show that, up to rescaling, in good homogeneous coordinates one can write

g(Y ) =


1

α1

. . .
αn

Y = [Y0 : α1Y1 : . . . : αnYn]
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with |αi| = 1. Suppose by contradiction that |α1| 6= 1 (for example |α1| > 1), and define

A = {(y1, . . . , yn) | 1 ≤ |y1| < |α1|} ⊂ {Y0 6= 0} ∼= Cn.

The same argument as above leads to a contradiction.

6.2.3 The field of coefficients

A key idea of the proof will be to define the "smallest" extension k of Q over which X and all
the relevant applications are defined, and to embed k in a local field in such a way as to obtain a
contradiction.

Let us fix a cover of X by affine charts U1, . . . , Um trivializing the canonical bundle. Each
of these Ui is isomorphic to the zero locus of some polynomials pi,1, . . . , pi,ni in an affine space
CNi ; fix some rational functions gi,j : CNi 99K CNj giving the changes of coordinates from Ui to
Uj . Denote φi,j : Ui ∩ Uj → C∗ the change of charts for the canonical bundle; such functions are
algebraic, therefore they are given by some rational functions hi,j on CNi (or, equivalently, CNj ).
Let f : CNi 99K CNj (resp. Ωi : CNi 99K C,) be some rational functions defining f (resp. Ω).
Finally, fix homogeneous coordinates on Pn diagonalizing g (see §6.2.2), and some rational maps
πi : CNi 99K Cn+1 defining πUi upon passing to quotient.
We define the field of coefficients k = kΩ as the extension of Q generated by all the coefficients
appearing in the pi,k, fi,j , gi,j , hi,j ,Ωi, πi and by α1, . . . , αn; this is a finitely generated (but not
necessarily finite) extension of Q over which X is defined.

Change of base field

Let ρ : k ↪→ K be an embedding of k into a local field K; since R is naturally embedded in C,
we may and will assume that K is either C or a p-adic field. We can now apply a base change in
the sense of algebraic geometry to recover a smooth projective scheme over K and all the relevant
functions.

Here are the details of the construction: the polynomials pρi,k = ρ(pi,k) define affine varieties
Xρ
i of KNi ; the rational functions gρi,j allow to glue the Xρ

i -s into an algebraic variety Xρ over
K. This variety is actually smooth since smoothness is a local condition which is algebraic in the
coefficients of the pi,k. Furthermore, by applying ρ to all the relevant rational functions, we can
recover a birational transformation fρ : Xρ 99K Xρ and a canonical section Ωρ ∈ H0(Xρ,KXρ).
Remark that we can suppose that Xρ is projective: indeed, X ⊂ PN (C) is the zero locus of
some homogeneous polynomials P1, . . . , Pk ∈ C[Y0, . . . , YN ], and, up to adding the affine open
subsets Xi = X ∩ {Yi 6= 0} to the above constructions, it is easy to see that Xρ ⊂ PN (K) is the
zero locus of P ρ1 , . . . , P

ρ
k . Furthermore, applying ρ to the equations of π defines a meromorphic

fibration πρ : Xρ 99K PnK , and, denoting gρ : PnK → PnK the automorphism given by gρ[Y0 : . . . :
Yn] = [Y0 : αρ1Y1 : . . . : αρnYn], we have πρ ◦ fρ = gρ ◦ πρ:

Xρ

πρ

��

fρ
// Xρ

πρ

��

PnK
gρ
// PnK

We will denote by |Ωρ| the measure on X associated to Ωρ: this has been defined in Section
6.1.3 in the non-archimedean case, while if K = C it is defined as the measure of integration of
ωρ = Ωρ ∧ Ωρ. In both cases, |Ωρ| doesn’t charge positive codimensional analytic subvarieties.
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Remark 6.17. At this stage we can already prove that the αi are algebraic numbers all of whose
conjugates over Q have modulus 1. Indeed suppose that this is not the case, say for α1; by a
standard argument in Galois theory (see for example [Lan02]), one can find an embedding ρ : k ↪→
C such that |ρ(α1)| 6= 1. Now, gρ preserves the measure volρ induced on Pn by ωρ

volρ(A) :=

∫
(πρ)−1(A)

ωρ,

and Lemma 6.16 leads to a contradiction.
If we somehow knew that the αi are algebraic integers, we could conclude by a lemma of

Kronecker (see [Kro57]) that they are roots of unity. However, this is in general not true for
algebraic numbers: for example,

α =
3 + 4i

5

has only ᾱ as a conjugate over Q, and they both have modulus 1, but they are not roots of unity. In
order to exclude this case we will have to use the p-adic argument.

6.2.4 Key lemma and conclusion

In his original proof of the Tits alternative for linear groups [Tit72], Tits proved and used (much
like we do in this context) the following simple but crucial lemma:

Lemma 6.18 (Key lemma). Let k be a finitely generated extension of Q and let α ∈ k be an
element which is not a root of unity. Then there exist a local field K (with norm | · |) and an
embedding ρ : k ↪→ K such that |ρ(α)| > 1.

Example 6.19. Take

α =
3 + 4i

5
,

and define k = Q(α). Then there exists ρ : k ↪→ Q5 such that |ρ(α)| = 5.
This can be seen directly by picking a root β ∈ Z5 of X2 + 1 with β̄ = 2 ∈ Z/5Z (such a β exists
by Hensel’s lemma), and then sending α to (3 + 4β)/5 ∈ Qp. Since 3 + 4β = 1 ∈ Z/5Z, one
finds ∣∣∣∣3 + 4β

5

∣∣∣∣ =

∣∣∣∣15
∣∣∣∣ = 5.

We can now show that the factor ξ appearing in 6.1 is actually a root of unity; this follows from
the classical result that f induces a linear map on cohomology preserving the integral structure (see
for example [NU73]) and from the fact that all the conjugates of ξ over Q also have modulus 1
(the method for the proof being the same as the one explained in Remark 6.17), but to the best of
my knowledge the present proof using Lemma 6.18 is original.

Lemma 6.20. Let f : X 99K X be a birational transformation of a projective manifold X and let
Ω ∈ H0(X,KX) be a canonical form such that

f∗Ω = ξΩ for some ξ ∈ C∗.

Then some iterate fN of f preserves Ω.

Proof. We need to show that ξ is a root of unity. Suppose by contradiction that this is not the case,
and define the field of coefficients k = kΩ; since f∗Ω = ξΩ, ξ ∈ k. Applying Lemma 6.18, one
finds an embedding ρ : k ↪→ K into a local field K such that |ρ(ξ)| 6= 1.
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The measure |Ωρ| onXρ doesn’t charge positive codimensional analytic subvarieties and fρ : Xρ 99K
Xρ is a birational map, therefore the (finite) total measure is preserved by fρ:

|(fρ)∗Ωρ|(Xρ) = |Ωρ|(Xρ).

On the other hand |(fρ)∗Ωρ| = |ξρΩρ| = |ξρ| · |Ωρ| and |ξρ| 6= 1, a contradiction.

Proof of Theorem B. Suppose by contradiction that one of the eigenvalues, say α1, is not a root of
unity.

We replace f by an iterate fN preserving Ω, and define the field of coefficients k. Now, since
f∗Ω = Ω, we have (fρ)∗(Ωρ) = Ωρ, and in particular gρ preserves the measure volρ on PnK
induced by the push-forward of |Ω|:

volρ(A) := |Ωρ|
(
(πρ)−1(A)

)
.

The measure volρ is non-trivial, finite, and doesn’t charge positive codimensional analytic subva-
rieties of PnK , thus we can conclude just as in the proof of Lemma 6.16.

Denote A := {[1 : Y1 : . . . : Yn] ∈ Kn | 1 ≤ |Y1| < |α1|} ⊂ {Y0 6= 0} ∼= Kn if |ρ(α1)| > 1
(respectively A := {[1 : Y1 : . . . : Yn] ∈ Kn | |αρ1| ≤ |Y1| < 1} ⊂ {Y0 6= 0} ∼= Kn if
|ρ(α1)| < 1); then, since volρ doesn’t charge positive codimension analytic subsets, we have

|ωρ|(Xρ) = volρ(PnK) = volρ(Kn) =∑
N∈Z

volρ((gρ)N (A)) =
∑
N∈Z

volρ(A) = 0 or +∞,

a contradiction.

6.3 On automorphisms of Calabi-Yau threefolds preserving a fibra-
tion

In this section we treat the case of automorphisms of Calabi-Yau threefolds preserving a holomor-
phic fibration.

Here a compact Kähler manifold X is called a Calabi-Yau manifold if X is simply connected,
KX = OX and H0(X,Ωp

X) = 0 for 0 < p < dimX . Remark that, since H2(X,C) coincides
with H1,1(X), X is automatically projective by Kodaira’s criterion.

As usual, a (non-trivial) holomorphic (resp. meromorphic) fibration on X is a surjective mor-
phism X → B (resp. dominant meromorphic map X 99K B) with connected fibres and such that
0 < dimB < dimX .

Proposition 6.21 (Oguiso [Ogu93]). Non-trivial holomorphic fibrations π : X → B on a Calabi-
Yau threefold X are of the following types:

1. B = P1, a general fibre is a K3 surface;

2. B = P1, a general fibre is an abelian surface;

3. B is a rational surface, a general fibre is an elliptic curve.

In analogy with the case of surfaces (see Theorem 1.30), we may wonder if every zero entropy
automorphism of a Calabi-Yau threefold whose action in cohomology has infinite order (i.e. f∗ is
virtually unipotent of infinite order) preserves an elliptic fibration.
In Theorem 6.22 we show that such a conjecture is too optimistic, and that, at least in the case of
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birational transformations, we must at least allow fibrations in abelian surfaces to hope to obtain a
positive answer.
However, in Theorem 6.25 we show that in some cases such an equivariant elliptic fibration can
be produced from other existing equivariant fibrations.

The question remains: does every automorphism of a Calabi-Yau threefold with virtually
unipotent action in cohomology preserves a fibration whose general fibres are either elliptic curves
or abelian surfaces? This question is linked to the abundance conjecture for Calabi Yau threefolds,
see [LOP16]; see also Conjecture 2.1 for the hyperkähler version.

Conjecture 6.1 (Abundance conjecture for Calabi-Yau threefolds). Let L be a nef line bundle on
a Calabi-Yau threefold X; then κ(X,L) ≥ 0 (i.e. some multiple of L admits non-trivial sections).

If the conjecture is true, then by [Miy87, Miy88] one also obtains that L is semi-ample (i.e.
some multiple of L is base-point free, and thus defines a fibration X → B).

6.3.1 Automorphisms not admitting equivariant elliptic fibrations

Theorem 6.22. Let X be a Calabi-Yau threefold, and let f : X 99K X be a birational trans-
formation of infinite order with λ1(f) = 1. Suppose that there exists an f -equivariant fibration
π : X → P1 whose general fibres are simple abelian surfaces. Then f doesn’t preserve any other
meromorphic fibration; in particular f doesn’t preserve an elliptic fibration.

Lemma 6.23. Let A be an abelian surface.

1. If π : A → C is a holomorphic fibration onto a curve, then C is an elliptic curve and A is
isogenous to C × F , where F is any fibre of π.

2. If π : A 99K C is a meromorphic fibration onto a curve which is equivariant with respect
to a translation τ : A → A with infinite order, then π is holomorphic; therefore, C is an
elliptic curve and A is isogenous to C × F where F is any fibre of π.

Proof. (1) First let π : A → C be a holomorphic fibration onto a curve; for a ∈ A, denote by Fa
the fibre of π passing through a. We will show first that

Fa+b = Fa + b. (6.1)

Since a+ b ∈ Fa+b ∩ (Fa + b), if Fa+b and Fa + b had no common components we would have

0 < Fa+b · (Fa + b) = Fa+b · Fb = f2 = 0,

where f denotes the numerical class of a general fibre of π, a contradiction. This shows that for
general a, b ∈ A (so that the fibres Fa, Fb are irreducible), 6.1 holds. Now let

F = D1 ∪ . . . ∪Dk

be the decomposition of a fibre F into its irreducible components and for i = 1, . . . , k let ai ∈
Di \

⋃
j 6=iDj . Then the above computation show that, for a general a, Fa + (ai − a) = Di; in

other words, the irreducible components of F are all translations of Fa, hence they are all disjoint.
This show that k = 1 and thus 6.1 holds for any a, b ∈ A.
Therefore, the abelian group law on A induces an abelian group law on C which makes π into a
morphism of abelian varieties. In particular C is an elliptic curve, A is isogenous to C×ker(π) =
C × F0, and π identifies with the projection onto the first factor. This shows the first claim.

(2) Now let τ : A → A be a translation with infinite order, and suppose that τ admits an
equivariant meromorphic fibration π : A 99K C onto a curve. The indeterminacy locus I = I(π)
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is a τ -invariant finite set (because I is algebraic and codim I ≥ 2); if I 6= 0, then some iterate
of τ would fix a point p ∈ I. But non-trivial translations do not fix any point, thus τN = idA for
some N > 1, contradicting the fact that τ has infinite order.
This shows that the indeterminacy locus of π is empty, i.e. π is holomorphic; thus, by point 1, C
is an elliptic curve, A ∼= C × F , and π identifies with the projection onto the first factor. This
concludes the proof of the second claim.

Proof of Theorem 6.22. Let f : X 99K X be an infinite order birational transformation of a Calabi-
Yau threefold, and suppose that there exists an f -equivariant fibration π : X → P1 whose fibre
A = π−1(t) over a general point t ∈ P1 is a simple abelian surface. By Theorem B, the action
of f on P1 has finite order; therefore, after replacing f by an iterate, we may suppose that the
following diagram commutes

X X

P1 P1

f

π π

idP1

Let us prove first that some iterate of f acts as a translation on general fibres of π. Since
λ1(f) = 1, λ2(f) = 1 by log-concavity; therefore, by Theorem 1.16 the relative dynamical degree
λ1(f |π) is equal to 1. By Remark 1.15, λ1(f |π) = λ1(f |A). This means that fA := f |A is either
elliptic or parabolic; if fA were parabolic, by Theorem 1.30 fA would preserve an elliptic fibration
on A, contradicting its simplicity. This shows that fA is elliptic; therefore one of its iterates is
isotopic to the identity, thus a translation. Therefore, some iterate of f acts as a translation on
general fibres of π, and from now on we will replace f by such an iterate.
Remark that, for a very general fibre, such a translation has infinite order: if this were not the case,
then P1 would be the union of the Zariski-closed sets

YN = {p ∈ P1 | fN |π−1(p) = idπ−1(p)};

thus YN = P1 for some N , i.e. f has finite order, contradicting the hypothesis.
Remark also that, if fA : A → A is a translation of infinite order and A is simple, then all of
its orbits are Zariski-dense: otherwise by Theorem 5.8 the closures of orbits would induce an
fA-invariant meromorphic map A 99K C, hence, after Stein factorization, an fA-invariant mero-
morphic fibration. By Lemma 6.23, this would imply that A is isogenous to a product of elliptic
curves, contradicting its simplicity.

Now suppose by contradiction that f admits another equivariant fibration
η : X 99K B, i.e. that the following diagram commutes

X X

B B

f

η η

g

Up to replacing B by a resolution of singularities, we may assume that B is a smooth projective
variety.

If dimB = 1, then the general fibres of η are of dimension 2; the restriction of η to a general
fibreA of π defines (maybe after Stein factorization) an fA-equivariant meromorphic fibration. By
Lemma 6.23, if A = π−1(t) for very general t ∈ P1 (so that fA has infinite order), such a fibration
induces an isomorphism A ∼= E×F for some elliptic curves E,F , contradicting the simplicity of
A.

Suppose then that dimB = 2, so that general fibres of η have dimension 1. If the fibres of
η are contained in the fibres of π, then the restriction of η to a very general fibre A of π would
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give an f -equivariant meromorphic fibration, and we would find a contradiction as in the case of
dimB = 1.
Thus we can assume that the fibres of π and η are generically transverse: this means that, if p ∈ X
is a general point and Ap and Fp denote the fibres of π and η respectively passing through p, then

TpX = TpAp ⊕ TpFp.

In particular, for a general fibre A of π, the restriction of η to A is dominant.
Since λ1(f) = 1, by Theorem 1.16 λ1(g) = 1 too; therefore, according to [DF01, Theorem

0.2], two cases are possible:

• either g admits an equivariant meromorphic fibration ν : B 99K C onto a curve C;

• or, up to a change of birational model, g is an automorphism one of whose iterates is isotopic
to the identity (i.e. gN ∈ Aut0(B) for some N > 0).

In the first case, the restriction of ν ◦ η to a general fibre A of π would produce (after Stein
factorization) an fA-invariant fibration, contradicting the simplicity of A.
Therefore, after replacing f by an iterate, we may assume that g is isotopic to the identity.

Assume first that g = idB; denoting by A a very general fibre of π (so that fA has infinite
order) and by F a general fibre of η, this implies that fA preserves the finite set A ∩ F . Hence,
some iterate of fA fixes a point of A, contradicting the fact that fA is a translation of infinite order.

Now suppose that g 6= idB; since g is isotopic to the identity, this implies that there exists a
non-trivial holomorphic vector field v on B. Now, if A = π−1(t) is a very general fibre of π,
the restriction ηA = η|A : A 99K B is a dominant meromorphic map, and the following diagram
commutes

A A

B B

fA

ηA ηA

g

In particular, the g-orbit of general points of B are Zariski-dense.
Remark that ηA is actually holomorphic: indeed, the indeterminacy locus is an fA-invariant
Zariski-closed proper subset of A, thus it is empty. The same is true for the exceptional locus
of ηA (i.e. the locus of points where ηA is not a local diffeomorphism onto its image); therefore,
ηA is an étale cover, and in particular B is an abelian variety.
Let α ∈ H0(B,Ω1

B) be a non-trivial holomorphic 1-form on B; the pull-back π∗α extends by
Hartogs principle to a non-trivial holomorphic 1-form on X; but, since X is simply connected,
H0(X,Ω1) ∼= H1,0(X) = 0, which leads to a contradiction. This concludes the proof of the
claim.

Example 6.24. We can construct an example of such a situation using the results of Schoen in
[Sch86]. The author constructs explicitly a Calabi-Yau threefold X as a well-chosen small resolu-
tion of the singular quintic

X̂ = {x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5x0x1x2x3x4 = 0} ⊂ P5,

and shows that there exists a holomorphic fibration π : X → P1 such that

1. the fibre of π over a general point of P1 is a simple abelian surface;

2. the Mordell-Weil group of π has rank at least two.
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Let π : Y → B be a fibration whose general fibres are abelian surfaces and which adimits a section
s0 : B → Y . The Mordell-Weil group Y (B) of π is defined formally as the set ofB-rational points
of Y (considered as a B-scheme); it is a group as it coincides with the C(B)-points of the generic
fibre.
Concretely, it is the group of birational trasformations of Y which fix every fibre of π and act on
smooth simple fibres as a translation: fixing the section s0 as the zero for the group law, a section
s : B → Y acts on a fibre A = π−1(b) as the translation by s(b) − s0(b). By Mordell-Weil
theorem, the Mordell-Weil group is always a finitely generated abelian group.
Property 2 means that we can embed Z2 in X(P1); take an element of infinite order in X(P1),
and consider it as a birational transformation f : X 99K X with infinite order. The fibration π is
f -equivariant by construction; therefore, f doesn’t admit other equivariant meromorphic fibrations
(and in particular it doesn’t preserve any elliptic fibration).

6.3.2 Existence of equivariant elliptic fibrations

Theorem 6.25. Let X be a Calabi-Yau threefold and let f : X → X be an automorphism with
zero topological entropy (i.e. λ1(f) = 1) and infinite action on cohomology. If one of the following
conditions is satisfied

1. f preserves at least two distinct holomorphic fibrations;

2. or f preserves a fibration whose general fibres are K3 surfaces;

then f preserves an elliptic fibration.

Before giving the proof, it is useful to recall that, sinceH1(X,OX) = 0 andH2(X,OX) = 0,
the exponential sequence induces an isomorphism

Pic(X)
∼−→ H2(X,Z).

In other words, the isomorphism class of a line bundle is uniquely determined by its numerical
class; conversely, every cohomology class α ∈ H2(X,Z) is equal to c1(L) for some line bundle
L.

Proof. 1) Let π1 : X → B1, π2 : X → B2 be two f -equivariant fibrations. By Proposition 6.21,
we may assume that B1 = B2 = P1, otherwise one of the two fibrations is already elliptic.
Consider the product map

(π1, π2) : X → P1 × P1.

Let F1, F2 be the fibres of π1, π2 respectively passing through a general point p ∈ X; since
F1 ∩ F2 is a curve, denoting by [F1], [F2] ∈ H2(X,Z) the numerical classes of general fibres
of π1 and π2 respectively, [F1] · [F2] 6= 0 ∈ H4(X,Z). This means that generic fibres of π1

and generic fibres of π2 have non-empty intersection, therefore (π1, π2) is surjective; thus, after
Stein factorization, (π1, π2) defines a fibration π : X → B onto a surface, which is then an elliptic
fibration by Proposition 6.21. This concludes the proof of point 1.

2) Since λ1(f) = 1, the eigenvalues of f∗2 : H2(X,Z)→ H2(X,Z) have modulus 1; further-
more, they are algebraic integers and their conjugates over Q are also eigenvalues of f∗2 because
f∗2 preserves the integral structure of H2(X,Z). By a lemma of Kronecker (see [Kro57]), an alge-
braic integers all of whose conjugates have modulus 1 is a root of unity. Thus, up to replacing f
by an iterate, we may suppose that 1 is the only eigenvalue of f∗2 .

We use now [LB14a, Theorem 2.1]: if X is a compact Kähler threefold and f : X → X is
an automorphism such that the only eigenvalue of f∗2 is 1, then f∗2 admits a unique non-trivial
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Jordan block, whose dimension is either 3 or 5. In other words, in a suitable basis of H2(X,R) =
H1,1(X,R) (which we may pick in H2(X,Z)),

f∗2 =


J 0 . . . 0
0 J1 . . . 0
...

...
. . .

...
0 0 . . . Jh

 ,

where

J =

 1 1 0
0 1 1
0 0 1

 or


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1


and the Ji are Jordan blocks of smaller dimension.
Let k + 1 (k = 2 or 4) be the dimension of the maximal Jordan block, and let vk, vk−1, . . . , v0 be
a basis as above. Then vk ∧ vk = 0 ∈ H4(X,Z): if this were not the case, since

(fn)∗(v0) = ckn
kvk + ck−1n

k−1 + . . .

for explicit constants ci > 0, we would have

(fn)∗(v0 ∧ v0) = (fn)∗v0 ∧ (fn)∗v0 ∼ c2
kn

2kvk ∧ vk,

so that ‖ (fn)∗4 ‖ would grow at least like n2k as n tends to +∞. On the other hand, by Poincaré
duality we obtain

‖ (fn)∗4 ‖∼‖ (f−n)∗2 ‖∼ cnk as n→ +∞,

a contradiction.
Similarly,

vk ∧ c2(X) = 0 ∈ H6(X,Z);

indeed, if vk ∧ c2(X) ∈ H6(X,Z) \ {0}, then

(fn)∗(v0 ∧ c2(X)) = (fn)∗v0 ∧ (fn)∗c2(X) = (fn)∗v0 ∧ c2(X) ∼ cnk(vk · c2(X)),

contradicting the fact that (fn)∗6 = idH6(X,R).
Now let π : X → P1 be an f -equivariant fibration whose general fibres are K3 surfaces; let F

be a general fibre of π, and let

v = c1(OX(F )) ∈ H2(X,Z), w = v + vk ∈ H2(X,Z).

Then v ∧ c2(X) = c2(F ) = 24 > 0, so that

w ∧ c2(X) > 0.

Since v ∧ v = [F ] · [F ] = 0 ∈ H4(X,Z) and vk ∧ vk = 0,

w3 := w ∧ w ∧ w = 0 ∈ H6(X,Z).

Finally, if H ∩ X is a generic hyperplane section of X ⊂ PN , by Hodge index theorem the
quadratic form

(α, β) ∈ H1,1(X,R)×H1,1(X,R) 7→
∫
H∩X

α ∧ β
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has signature (1, h1,1(X) − 1); in particular if α and β are isotropic, then either they are propor-
tional or α ∧ β 6= 0. Applying this to α = v, β = vk we obtain that

w ∧ w = 2v ∧ vk 6= 0 ∈ H4(X,Z).

Summarizing, we have shown that

w2 6= 0, w3 = 0, w ∧ c2(X) 6= 0; (6.2)

furthermore, since for any ample class H ∈ Pic(X) ∼= H2(X,Z) we have

lim
n→+∞

(fn)∗H

nk
= cvk for some c ∈ Q,

vk is a nef class. Since v is the pull-back of an ample class, it is also nef, which implies that w is
nef too.

By [Wil89, Proposition 3.2], a nef class w satisfying 6.2 is (the numerical class of) a semi-
ample line bundle L, and the complete linear system |L| induces an elliptic fibration η : X → S.
Since w is f -invariant, so is L, thus the fibration η′ is f -equivariant. This concludes the proof of
point 2.

Using Oguiso’s classification of fibrations, we obtain the following corollary.

Corollary 6.26. Let X be a Calabi-Yau threefold and let f : X → X be an automorphism with
zero topological entropy and infinite action on cohomology. If f admits an equivariant fibration,
then it admits an equivariant fibration whose general fibres are elliptic curves or abelian surfaces.
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In Part III I analyze further examples of preserved structures (mainly foliations/distributions
and affine structures) on symplectic manifolds, and I give the elements for the possible future
developments of my research.

In Chapter 7 I deal with pairs of generically transverse foliations (or distributions) on a pro-
jective irreducible symplectic manifold. The main result in this direction is that, if such a pair is
preserved by a loxodromic automorphism, then both foliations are Lagrangian.
The proof consists of two steps: first, using results coming from the Minimal Model Program,
we manage to contract the exceptional divisor (on which the foliations are not transverse) onto a
normal projective variety; then I introduce the notion of symplectic singularity, and I use a known
result about the local form of such a singularity to show that holomorphic forms defined outside
the exceptional divisor extend to it holomorphically.
In the last part of the chapter, I give some additional constraints on foliations which are preserved
by a loxodromic transformation.
This chapter requires the notion of dynamical degrees and the content of Chapter 2.

In Chapter 8 I classify foliations on projective reducible symplectic fourfolds which are in-
variant by "doubly loxodromic" birational transformations (see Theorem 8.8. The classification
is rather zoologic, and the interest of it is mainly to show that one can avoid the assumption on
irreducibility. The proof uses heavily the known results on surfaces summarized in Chapter 1.

In Chapter 9 I give a frame to treat more general geometric structures which are preserved by
a loxodromic transformation.
First I introduce (G,X)-manifolds and their singular counterpart, (G,X)-orbifolds. As an ap-
plication, I classify (degenerate) affine structures on K3 surfaces which are preserved by a loxo-
dromic automorphism.
Then, in order to include structures which a priori do not enjoy the symmetry assumptions of
(G,X)-structures, I speak about Gromov’sA-structures: this frame allows to treat e.g. riemannian
or holomorphic metrics, forms, foliations, affine structures, conformal structures etc. in a unified
way. We will restrict in general to rigid structures in order to apply the result on the Zariski-density
of orbits: as a consequence, I show that invariant rigid structures are locally homogeneous on a
Zariski-open dense subset.
As I explain in the last Section, the hope is then to find a local model for the rigid structure, so that
we go back to the theory of (G,X)-manifolds; this would allow to use the notion of developing
map, and to extend structures to the singularities appearing upon contraction of the exceptional
locus. Finding a local model is always possible in low dimension, and this should allow, for exam-
ple, to extend the classification of invariant affine structures to the case of irreducible symplectic
fourfolds.
This chapter is mostly self-contained, although I repeatedly make use of the main result of Chapter
5 and of the contraction result of Chapter 7.

In Chapter 10 I give a summary of the main results of Chapter 5, 6, 7 and 9, and I list the open
questions and conjectures which are still to be answered.
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Chapter 7

Pairs of invariant foliations

In this chapter we analyse the geometric structures that can be preserved by a loxodromic birational
transformation f : X 99K X of an irreducible symplectic manifold. As we have seen in Theorem
A, f cannot preserve any (meromorphic) fibration. However, the exemples coming from tori
(see Chapter 3) show that f could preserve other structures, like a pair of generically transverse
foliations.

The main result of this chapter is the following:

Theorem C. Let f : X 99K X be a loxodromic birational transformation of a projective irre-
ducible symplectic manifold X of dimension 2n. Suppose that f preserves two generically trans-
verse non-trivial distributions F1,F2 (i.e. at a general point p ∈ X , TpX = TpF1 ⊕ TpF2); then
F1 and F2 are both n-dimensional Lagrangian distributions.

Remark 7.1. Two generically transverse distributionsF1,F2 in an irreducible symplectic manifold
(e.g. two generically transverse foliations) cannot be everywhere transverse.
Indeed, it this were the case, they would define a decomposition of the tangent bundle

TX = TF1 ⊕ TF2. (7.1)

As c1(X) = 0, by the proof of Yau of the Calabi conjecture we deduce that X admits a Kähler-
Einstein metric (see [GHJ03, §I.5]); by [Bea00a, Theorem A], since X is simply connected, the
decomposition 7.1 induces then a decomposition of X: X ∼= X1 ×X2.
But sinceX is irreducible symplectic, it doesn’t admit a non-trivial product decomposition: indeed
the pull-back of forms induces an isomorphism

H0(X,Ω2
X) = H2,0(X) ∼=

⊕
i=0,1,2

H i,0(X1)⊗H2−i,0(X2).

Since the form σ generating H0(X,Ω2
X) is non-degenerate, if X1 and X2 are both non-trivial

then σ = π∗1α1 ∧ π∗α2 for some 1-forms αi ∈ H0(Xi,Ω
1
Xi

). By the Beauville-Bogomolov
decomposition theorem (Theorem 2.6) this implies that X1 and X2 have a non-trivial torus factor,
and in particular they are not simply connected. This shows that X is not simply connected either,
which is a contradiction.

The idea of the proof is to consider, at a general point p ∈ X , one of the two-forms induced by
the symplectic form σ and the decomposition of TpX along the two distributions. Such a form σ′ is
not defined along the tangency divisor E of the two distributions; a result of Druel [Dru11] allows,
after a change of (irreducible symplectic) birational model of X , to contract a component Ei of E.
Then, by analyzing the singularities that appear upon contraction, one shows that σ′ extends to a
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general point of Ei, then by Hartogs principle on the whole X . Since σ′ is not symplectic, it must
be zero; thus both distributions are σ-isotropic, hence Lagrangian.

As a corollary, we manage to exclude that some more rigid structures are preserved:

Corollary 7.2. A loxodromic birational transformation of a projective irreducible symplectic ma-
nifold X cannot preserve k ≥ 3 generically transverse singular distributions F1, . . . ,Fk (i.e. at a
general point p ∈ X , TpX = TpF1 ⊕ . . .⊕ TpFk).

Proof. Let 2n = dimX . By a simple combinatorial argument, there exists a partition of {1, . . . , k}
into two non-empty sets A1, A2 such that∑

i∈A1

dimFi 6= n;

let G1 (resp. G2) the singular distribution obtained as the span of the TFi for i ∈ A1 (resp. i ∈ A2).
Then G1,G2 are f -invariant generically transverse non-trivial distributions, and since they do not
have dimension n they are not Lagrangian; this contradicts Theorem C.

7.1 Contraction of exceptional divisors

The goal of this section is to prove the following lemma:

Lemma 7.3. Let f : X 99K X be a loxodromic birational transformation of a projective irre-
ducible symplectic manifold preserving a prime divisor E. Then there exists an irreducible sym-
plectic manifold X ′, a birational map φ : X 99K X ′ and a birational morphism π : X ′ → Y onto
a normal projective variety Y such that the exceptional locus of π is the strict transform φ∗E of
E.

This proof is essentially an application of a result of Druel (see Proposition 7.7). In what
follows, we will explain how he combined results in the Minimal Model Program with a general-
ization in higher dimension of the Zariski decomposition of divisors on surfaces (see [Nak04] and
[Bou04]), in order to show that a prime divisor which is "negative" (in the sense of the Zariski de-
composition) is contractible, up to change of birational model; since in the irreducible symplectic
case negativity can be checked via the Beauville-Bogomolov form, the conclusion follows from
the informations about the action on cohomology of f .

7.1.1 Divisorial Zariski decomposition

In his pioneering work [Zar62], Zariski shows that an effective Q-divisor D on a surface can be
uniquely decomposed into a sum

D = P +N,

where P (the positive part) is a nef Q-divisor and N =
∑
ajDj (the negative part) is an effective

Q-divisor such that the Gram matrix (Di ·Dj) is negative definite, and P ·N = 0.
Extending algebro-geometric concepts of positivity to currents and using currents with mini-

mal singularities, Boucksom describes in [Bou04] a similar decomposition of real pseudo-effective
(1, 1)-cohomology class α on a compact complex manifold X:

α = Z(α) +N(α);

the positive part is in general not nef, but just "nef in codimension 1". In the case of surfaces, one
recovers the usual Zariski decomposition.
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Boucksom then proceeds giving a detailed description of the situation on irreducible symplectic
manifolds, which, as one might suspect from the formal resemblance with surfaces, is particularly
easy to describe. In particular, as in the surface case, negativity of a divisor can be checked from
the Gram matrix with respect to the Beauville-Bogomolov form.

Theorem 7.4. A family E1, . . . , Ek of prime divisors on an irreducible symplectic manifold is
exceptional in the sense of Boucksom (see [Bou04, Definition 3.10]) if and only if the Gram matrix
(qX(Ei, Ej))i,j=1,...,k is negative definite (where qX denotes the Beauville-Bogomolov form).

Proposition 7.5. If an effective divisor E =
∑
Ei is exceptional (i.e. the Ei form an exceptional

family), then N(E) = E.

7.1.2 The Minimal Model Program on irreducible symplectic manifolds

For this subsection we refer to [Dru11] and the references therein.

Singularities of pairs

Let X be a normal projective variety over C and let ∆ be a Weil R-divisor such that KX + ∆ is
R-Cartier. A resolution of singularities of the pair (X,∆) is a birational morphism π : X̃ → X
such that X̃ is smooth and the strict transform ∆̃ of ∆ union the exceptional locus of π has normal
crossings. Then

K
X̃

+ ∆̃ = π∗(KX + ∆) +
∑
F

aF (X,∆)F

where one sums over the set of π-exceptional prime divisors. The pair (X,∆) is said to be klt
(Kawamata log-terminal) if aF (X,∆) > −1. See [Kol97] for more details.

Directed log-MMP

For this paragraph, we refer to [BCHM10, Kal06].
Given a klt pair (X,∆), a nef (resp. minimal) model of (X,∆) is a klt pair (X ′,∆′) with a

birational map φ : X 99K X ′ such that

1. ∆′ is the strict transform of φ∗∆;

2. φ is (KX + ∆)-negative (resp. (KX + ∆)-strictly negative);

3. KX′ + ∆′ is nef.

The MMP algorithm goes like this:

1. we contract some (KX + ∆)-negative curves using the (log-)contraction theorem by a mor-
phism c : X → X ′ onto a projective normal variety X ′;

2. if dimX ′ < dimX , then c is a Mori fibration, and the algorithm terminates;

3. if X ′ has good singularities (if and only if the exceptional locus of c has codimension 1, i.e.
c is a divisorial contraction), we replace X by X ′ and we start again;

4. if X ′ has bad singularities (if and only if the exceptional locus of c has codimension > 1,
i.e. c is a small contraction), then we build the flip c+ : X+ 99K X ′, and we replace X by
X+.
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Remark that if X is Q-factorial and φ : X → X ′ is a divisorial contraction, then the Picard
numbers of X and X ′ satisfy ρ(X ′) < ρ(X); therefore one can have only a finite number of
divisorial contraction. In particular, in order to show that the algorithm always terminates, one has
to show that there is no infinite sequence of flips.

There exists a directed version of the MMP algorithm, where the contractions at point (1) are
not chosen randomly. We fix a klt pair (X,∆) = (X0,∆0) with X Q-factorial and H an effective
R-divisor such that KX + ∆ +H is nef and (X,∆ +H) is klt; fix t0 = 1.
The MMP for the pair (X,∆) directed by H produces birational maps

φi : (Xi,∆i, Hi) 99K (Xi+1,∆i+1, Hi+1)

and a decreasing sequence of real numbers 0 ≤ ti ≤ 1 such that KXi + ∆i + tiHi and (Xi,∆i +
tiHi) is klt.

Link with the Zariski decomposition

Even if we don’t know if the directed MMP terminates, the existence of contractions and flips
allows to prove a number of useful results. Using an almost termination result contained in
[BCHM10], Druel proved the following:

Theorem 7.6 ([Dru11], Theorem 3.3). Let (X,∆) be a klt pair, with X Q-factorial, and let H be
an ampleQ-divisor onX such that (X,∆+H) is klt. We suppose thatKX+∆ is pseudo-effective.
Consider an MMP directed by H for the pair (X,∆):

X = X0 99K X1 99K X2 99K X3 99K . . .

where each φi : Xi 99K Xi+1 is a birational map.
Then, for i >> 0, KXi + ∆i ∈Mob(Xi) (the closure of the mobile cone of Xi). Furthermore the
prime divisors contracted by φi−1 ◦ . . . ◦ φ0 are the irreducible components of the negative part
N(KX + ∆).

As a Corollary, Druel show the following result:

Proposition 7.7 ([Dru11], Proposition 1.4). Let E ⊂ X be a prime divisor on an irreducible
symplectic manifold X such that N(E) = E (i.e. q(E) > 0); then there exists an irreducible
symplectic manifold X ′, a birational map φ : X 99K X ′ and a birational morphism π : X ′ → Y
onto a normal projective variety Y such that the exceptional locus of π is the strict transform φ∗E.

Proof. For ε > 0 small enough, the pair (X, εE) is klt; let H be an ample effective Q-divisor on
X such that the pair (X, εE +H) is still klt.

Now we run an MMP for the pair (X, εE) directed byH; with the same notations as paragraph
7.1.2, we know by Theorem 7.6 that, for i >> 0, the only prime divisor contracted by φi−1 ◦ . . . ◦
φ1 : X 99K Xi is the negative part N(KX + εE) = N(εE) = εE. Let i0 be the (unique) index
such that φi0 = ci0 is the divisorial contraction of (the strict transform of) E.
We set φ := φ0 ◦ · · · ◦ φi0−1 : X 99K X ′ = Xi0 , Y = Xi0+1, π = φi0 = ci0 : X ′ → Y . By
definition, π is a birational morphism whose exceptional locus is the strict transform φ∗E. For i ≤
i0 − 1, φi is a flip; therefore, the singularities of Xi+1 are terminal, therefore, thanks to [Nam06,
Corollary 1], Xi+1 is smooth. This shows that X ′ is a manifold; since φ is an isomorphism in
codimension 1, a symplectic form on X induces a symplectic form on X ′, which concludes the
proof.
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Proof of Lemma 7.3. Let X be an irreducible symplectic manifold, and let f : X 99K X be a
loxodromic birational transformation. By Proposition 7.7, we just need to show that a prime
divisor E which is preserved by f∗ is negative, in the sense that N(E) = E. By Proposition 7.5,
it is enough to show that qX(E) < 0, where qX is the Beauville-Bogomolov form on H2(X,Z).

Since E is effective and non-trivial, c1(E) 6= 0. As we have seen in Proposition 2.14, the only
integral non-negative class preserved by f∗ : H1,1(X,R) → H1,1(X,R) is the null class, hence
qX(E) < 0. This concludes the proof.

7.2 Singular symplectic varieties

As we have seen in Lemma 7.3, a prime divisor E ∈ Div(X) which is preserved by a birational
loxodromic transformation of an irreducible symplectic manifold can be contracted, after possibly
replacing X by another birationally equivalent irreducible symplectic manifold X ′, giving a bira-
tional morphism π : X ′ → Y onto a normal variety Y .
The singularities of Y are particularly well-behaved: Y is called a symplectic variety, and π is a
symplectic resolution. In this section we recall the definition and some fundamental properties of
symplectic varieties and symplectic resolutions; we refer to the survey [Fu06].

The definition of symplectic singularity was introduced by Beauville in [Bea00b].

Definition 7.8. Let Y be a normal variety; we say that Y is a symplectic variety (or that the
singularities of Y are symplectic) if there exists a holomorphic symplectic form σsm on the smooth
locus of Y such that for every resolution of singularities π : Ỹ → Y the pull-back of σsm extends
to a holomorphic form σ on Ỹ .
If furthermore the induced form on Ỹ is everywhere symplectic, π : Ỹ → Y is called a symplectic
resolution.

Remark 7.9. It is enough to check that σsm extends to a global holomorphic form on some res-
olution of singularities: indeed, if π : X1 → X2 is a birational morphism between smooth va-
rieties, a meromorphic form α on X2 is holomorphic if and only if π∗α is holomorphic (see
[Fu06, Nam01]).

7.2.1 Local structure

As shown in [Bea00b], symplectic singularities are automatically rational Gorenstein (see [Ish14,
Chapter 6] for definitions); in dimension two, such singularities coincide with du Val singularities
(or "rational double points"): they are locally biholomorphic to C2/G, where G is a finite sub-
group of SL2(C) (see [Ish14, §7.5] or [BPVdV84]).
For normal Gorenstein varieties, having rational singularities is the same as having canonical sin-
gularities [Ish14, Corollary 6.2.15]. In this case, one can use the following theorem to describe the
local structure of singularities:

Theorem 7.10 ([Rei80], Theorem 1.13). Let Y be a normal projective variety; if Y has canonical
singularities, then so does its general hyperplane section.

This leads to the following corollary, see [Rei80, Corollary 1.14]; see also [GKKP11, Propo-
sition 9.4] for a more general and rigorous proof.

Corollary 7.11. Let Y be an n-dimensional normal projective variety with canonical singularities
(e.g. a projective symplectic variety), and letZ ⊂ Y be a codimension 2 component of the singular
locus SingY. Then around general points of Z, Y is locally biholomorphic to

Cn−2 × C
2
�G,
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where G ⊂ SL2(C) is a finite group, so that C2/G is the germ of a surface with du Val singulari-
ties.

Proof. Let Y ⊂ PN be an embedding and let S be the intersection of Y with n − 2 general
hyperplanesH1, . . . Hn−2; by Theorem 7.10, S is a surface with du Val singularities. Furthermore,
S ∩ Z 6= ∅ and around a point p ∈ S ∩ Z, S is locally biholomorphic to C2/G for some finite
G ≤ SL2(C).

Now let the hyperplanes Hi vary holomorphically; du Val singularities have no moduli, mean-
ing that small deformations of germs of du Val singularities are trivial. Hence, varying the hyper-
planes holomorphically leads to a local product structure as claimed.

7.2.2 Semi-smallness and stratification

We say that a (birational) morphism π : X → Y is semi-small if

codim{y ∈ Y, dimπ−1(y) ≥ k} ≥ 2k,

or, equivalently, for every subvariety V ⊂ X ,

codim(π(V )) ≤ 2 · codim(V ).

The semi-smallness of symplectic resolutions was proven partially by Wierzba [Wie03], Namikawa
[Nam01] and Hu-Yau [BHL03], then in full generality by Kaledin [Kal06, Lemma 2.11]:

Theorem 7.12. Symplectic resolutions are semi-small.

This implies for example that, if π : X → Y is a symplectic resolution and E ⊂ X is a π-
exceptional divisor, then codimπ(E) = 2; in particular, at a general point of π(E), Y is locally
biholomorphic to C2n−2 × C2/G, where 2n = dimX and G ⊂ SL2(C) is a finite group, so that
C2/G is the germ of a du Val singularity.

Concerning the global structure of the singular locus of a symplectic variety, Kaledin proved
that symplectic singularities appear with a natural stratification, such that (roughly said) each stra-
tum is also a symplectic variety:

Theorem 7.13 ([Kal06], Theorem 2.3). Let Y be a symplectic variety. Then there exists a stratifi-
cation

Y = Y0 ⊃ Y1 ⊃ . . .

such that

1. Yi (resp. Yi+1) is the smooth (resp. singular) locus of Yi;

2. the normalization of every irreducible component of Yi is a symplectic variety (and in par-
ticular has even dimension).

Example 7.14. If dimY = 4, then we can write

Y = Y0 t Y1 t Y2,

where Y0 is the smooth locus of Y , Y1 is the smooth locus of Sing(Y), and Y2 is the singular locus
of Y1; the irreducible components of Y1 are either isolated points or surfaces whose normalization
is symplectic, i.e. normal with du Val singularities, whereas the irreducible components of Y2 (if
there are any) are isolated points.
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Suppose furthermore that Y is obtained by contracting some prime divisor E on an irreducible
symplectic manifold (see Lemma 7.3)

π : X → Y.

Then, π is a symplectic resolution, and by semi-smallness, codimπ(E) = 2, so that codimY1 =
2. Locally around general points of Y1, Y is biholomorphic to C2 × S for some germ of singular
symplectic surface S ∼= C2/G for some finite subgroup G ⊂ SL2(C); Y1 corresponds to {0}×S.

7.2.3 Extension of forms

Symplectic resolutions enjoy a good property of extension of differential forms. The following
proposition is actually true in a much greater generality: Y can be replaced by a normal variety
with klt singularities and X by any resolution of singularities of Y (see [Nam01] for the case of
2-forms and symplectic singularities, [GKKP11] for the general result).

Proposition 7.15. Let Y be a singular symplectic variety and let π : X → Y be a symplectic
resolution. Then every holomorphic differential p-form α defined on the smooth locus of Y induces
a holomorphic differential form on the whole X .

Proof. Remark first that, by Hartogs principle, π∗α extends automatically across every component
of the exceptional locus of π which has codimension ≥ 2; therefore, we may assume that π
contracts a divisor E. Denote by β ∈ H0(X \ E,Ωp

X) the pull-back of α by π|X\E ; we need to
show that β extends to a form on X .

By Hartogs principle, it is enough to check that β extends to a general point ofE. Furthermore,
by semi-smallness of π (Theorem 7.12), the image of each component of E has codimension 2;
hence, by Corollary 7.11, around a general point p of π(E), Y is locally biholomorphic to

C2
�G× C

2n−2,

where 2n = dimX and G ≤ SL2(C) is a finite group. Locally, the singular locus corresponds to
{0} × C2n−2.

There are two natural notions of desingularization of the germ of singularity (Y, p): on the one
hand the universal orbifold cover (see §9.1.2), i.e. the natural projection

η : Cn → C2
�G× C

2n−2;

on the other hand, the algebro-geometric minimal resolution

π0 : X0 = S × C2n−2 → C2
�G× C

2n−2,

where πS : S → C2/G is the minimal resolution of the singularity C2/G, which can be realized
as a sequence of blow-ups of points.

The resolution π0 is minimal in the sense that every resolution of the singularity (Y, p) factors
through π0; in particular so does the germ of π around π−1(p). If we show that α induces a global
form β0 on X0, then one can extend β by pull-back of β0, which shows the result. Thus, from now
on we will suppose that π = π0 is a (local) minimal resolution of the singularity (Y, p).
Also, from now on we will denote again by Y the germ of Y at p, by η : Ỹ → Y the germ of
universal orbifold cover, and by π : X → Y the algebro-geometric minimal resolution.
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Consider the fibre product

X̃ = Ỹ ×Y X X

Ỹ ∼= Cn Y ∼= C2
�G× C

n−2

η̃

π̃ π

η

.

Concretely, π : X → Y is a composition

X = Yk
πk−→ Yk−1

πk−1−−−→ . . .
π2−→ Y1

π1−→ Y0 = Y,

where Yi ∼= Si × C2n−2 and πi : Si × C2n−2 → Si−1 × C2n−2 is the blow-up of Yi−1 along
{pi−1} × C2n−2 for some pi ∈ Si−1.
Then π̃ : X̃ → Ỹ can be obtained as the composition

X̃ = Ỹk
π̃k−→ Ỹk−1

π̃k−1−−−→ . . .
π̃2−→ Ỹ1

π̃1−→ Ỹ0 = Ỹ ,

where each π̃i is the blow up of Ỹi−1
∼= S̃i×C2n−2 along {p̃i−1}×C2n−2, where p̃i−1 is the only

point of the cover S̃i−1 → Si−1 over pi−1.
Then X̃ is a germ of manifold; furthermore, since G preserves the centers of blow-ups, X̃ inherits
an action of G, and X identifies with X̃/G via η̃.

Now, η∗α is a G-invariant form on Ỹ \ η−1(SingY) ∼= (C2 \ {0}) × C2n−2; by Hartogs
principle, it can be extended to a G-invariant form on the whole Ỹ . The pull-back π̃∗(η∗α) is then
a G-invariant form on X̃ , and thus it defines a form η∗π̃

∗(η∗α) on the whole X . It is easy to check
that η∗π̃∗(η∗α) agrees with β outside E, so that β can be holomorphically extended to general
points of E. By the above discussion, this concludes the proof.

Proposition 7.16. Let f : X 99K X be a loxodromic bimeromorphic transformation of an irre-
ducible symplectic manifold X of dimension 2n.
Let α be a holomorphic differential form defined on the complement of a divisor E, and suppose
that E is f -invariant. Then α extends to the whole X .

Proof. Remark that, by Hartogs principle, we just need to show that α extends to a general point
of E. Let

E = E1 ∪ . . . ∪ Ek

be the decomposition of E into irreducible components. Up to replacing f by some iterate, we can
suppose that f∗Ei = Ei for i = 1, . . . , k.

Fix i ∈ {1, . . . , k}; by Proposition 7.7, there exists an irreducible symplectic manifold X ′,
a birational map φ : X 99K X ′ and a birational morphism π : X ′ → Y onto a normal pro-
jective variety Y such that the exceptional locus of π is the strict transform E′i = φ∗Ei; set
EY := π(φ∗(E1 ∪ . . . ∪ Ei−1 ∪ Ei+1 ∪ . . . ∪ Ek)).
Since φ is an isomorphism in codimension 1, (φ−1)∗α can be extended to X ′ \ φ∗(E); let V be a
dense affine subset of Y \ EY such that V ∩ φ∗(Ei) 6= ∅, and let U := π−1(V ).
By Proposition 7.16, the form (φ−1)∗α extends to φ∗(Ei) ∩ U ; thus (again because φ is an iso-
morphism in codimension 1), α extends to the general point of Ei.

As this construction can be realized for every component Ei, α can be extended at every point
of X but at most an analytic subset of codimension 2, hence on all X by Hartogs principle. This
concludes the proof.



7.3. PROOF OF THEOREM C 133

7.3 Proof of Theorem C

Suppose by contradiction that f : X 99K X is a loxodromic birational transformations of a pro-
jective irreducible symplectic manifold of dimension 2n preserving two generically transverse
distributions F1,F2 which are not both Lagrangian.

Remark that, if F1,F2 are both isotropic for σ at a general point p ∈ X (i.e. the restriction
of σp to F1(p) or F2(p) is identically zero), then they are both Lagrangian by a dimensional
argument; therefore we can suppose that F1 is not isotropic for σ.

At a general point of X , F1 and F2 are transverse; therefore, at such a point p we can define a
holomorphic two-form σ′ by

σ′(v, w) := σ(π1v, π1w) ∀v, w ∈ TpX,

where π1 : TpX → TpF1 denotes the projection with respect to the decomposition TpX = TpF1⊕
TpF2. More explicitly, if x1, . . . , xp, yp+1, . . . y2n are linear coordinates of TpX such that TpF1

(resp. TpF2) is defined by {yp+1 = . . . = y2n = 0} (resp. by {x1 = . . . = xp = 0}), and if
σp =

∑
aii′dxi ∧ dx′i +

∑
bijdxi ∧ dyj +

∑
cjj′dyj ∧ dyj′ , then σ′p =

∑
aii′dxi ∧ dxi′ .

Since the decomposition TpX = TpF1⊕ TpF2 depends holomorphically on p, we define this way
a holomorphic two-form on X \E, where E = E1 ∪ . . . ∪Ek denotes the tangency divisor of the
pair (F1,F2).
Since E is f -invariant, by Proposition 7.16, σ′ extends to a holomorphic form on X .

Now, since dimF1 < 2n, we have (σ′)n−1 = 0; on the other hand by construction σ′ 6= 0, so
that σ′ cannot be a multiple of σ, contradicting the minimality of X . This concludes the proof. �

7.4 Further results

Let f : X 99K X be a loxodromic transformation of an irreducible symplectic manifold and sup-
pose that f preserves a foliation F of codimension p.

Recall that F is defined by a holomorphic p-form

ω ∈ H0(X,Ωp
X ⊗ L), L := detNF

with zeros in codimension at least 2. If s is a meromorphic section ofL, then ω/s is a meromorphic
p-form which defines F . One could wonder if f might preserve a meromorphic form defining an
invariant foliation. The answer is no, because of the following corollary of Proposition 7.16.

Corollary 7.17. Let f : X 99K X be a loxodromic bimeromorphic transformation of an irre-
ducible symplectic manifold X of dimension 2n.
Suppose that there exists a meromorphic p-form α on X such that f∗α = λα for some λ ∈ C∗.
Then α is a holomorphic form; in other words

α =

{
cσp/2 for some c ∈ C∗ if p is even
0 if p is odd

In particular, α does not define a non-trivial foliation.

Proof. The divisor D of poles of α is f -invariant; suppose by contradiction that D 6= ∅. Then by
Proposition 7.16, α extends holomorphically to D, which contradicts the definition. This shows
that α is a holomorphic form, hence a power of the symplectic form σ by Proposition 2.16.

Since σ is non-degenerate, for k = 1, . . . , n and for any local vector field v on X ,

ivσ
k 6= 0.

This means that powers of σ do not define non-trivial foliations.
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This results applies for example in the case where L has some holomorphic section.

Corollary 7.18. Let f : X 99K X be a loxodromic bimeromorphic transformation of an irre-
ducible symplectic manifold X of dimension 2n.
If f preserves a foliation F , then L = det(NF) does not have any non-trivial holomorphic sec-
tion.

Proof. Suppose by contradiction that H0(X,L) 6= {0}. Since F is f -invariant, f acts linearly by
pull-back on the finite dimensional vector space H0(X,L). This is clear if f is an automorphism;
if f is only birational, let U be the definition set of f . Then codim(X \U) ≥ 2; the pull-back f∗s
of a section s ∈ H0(X,L) is well-defined on U , and can then be extended by Hartogs principle to
the whole X . Pick an eigenvector s of the linear automorphism

f∗ : H0(X,L)→ H0(X,L).

Next, let

V = {ω ∈ H0(X,Ωp
X ⊗ L) | for all local vector fields v ∈ TF , ivω = 0}.

Then V is a linear subspace of the finite dimensional vector space H0(X,Ωp
X ⊗ L), hence it is

finite dimensional itself. Again, f acts linearly by pull-back on V ; pick any eigenvector ω ∈ V .
Now, the meromorphic form ω/s defines F and is almost f -invariant:

f∗
(ω
s

)
= λ

ω

s
for some λ ∈ C∗.

This contradicts Corollary 7.17.



Chapter 8

Invariant foliations on reducible
symplectic fourfolds

In this chapter we deal with the dynamics of birational transformations of projective reducible
symplectic manifolds in dimension 4. As we will see, after taking a finite étale cover, such varieties
are isomorphic to the product of two surfaces (Lemma 8.2), and their birational transformations
are actually automorphisms, which come from automorphisms of the two factors (Lemma 8.3):

f = (f1, f2) : S1 × S2 → S1 × S2.

In Theorem 8.8 we assume that both the automorphisms f1, f2 are loxodromic, and we give
a complete description of invariant foliations: non-trivial example arise from linear dynamics on
tori, in the following sense.

Let f : S → S be an automorphism of a surface S; we will say that the pair (S, f) is of
Kummer type if

• either S is a torus and f is a linear automorphism;

• or S is a (smooth) Kummer surface equipped with an automorphism induced by a linear one
on a torus (see §3.1).

These are the only examples of loxodromic automorphisms of projective surfaces with trivial
Chern class preserving a foliation (see Corollary 3.6).

Remark 8.1. Let f = (f1, f2) : S1 × S2 → S1 × S2 be the product of two automorphisms as
above. Then, by Theorem 1.16, λ1(f) = max{λ1(f1), λ1(f2)} ; therefore, the natural dynamical
hypothesis would be that at least one of the fi is loxodromic. In this case, it should be possible to
classify invariant foliations using the same methods as in the proof of Theorem 8.8.

8.1 Classification of reducible symplectic fourfolds

Let X0 be a projective symplectic manifold; in other words, there exists a symplectic two-form
σ0 ∈ H0(X0,Ω

2
X0

), but a priori there could exist other holomorphic two-forms on X0.
Remark that, if dimX0 = 2n, then σn0 trivializes the canonical bundle KX0; hence, by the
Beauville-Bogomolov decomposition theorem (Theorem 2.6), there exists an étale finite cover of
η : X → X0 of the form

X = T ×
k∏
i=1

Yi ×
h∏
j=1

Zj ,

135
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where T is a torus, the Yi are Calabi-Yau manifolds in the strict sense, and the Zj are irreducible
symplectic manifolds. The pull-back η∗σ of a symplectic form on X0 defines a symplectic form
on X .

From now on, we will suppose that dimX0 = 4 and that X0 is not irreducible symplectic.
Remarking that in dimension two Calabi-Yau manifolds and irreducible symplectic manifolds co-
incide with K3 surfaces, the following four cases are a priori possible:

1. X ∼= C4/Λ is a complex torus;

2. X = T × S, where T is a two-dimensional complex torus and S is a K3 surface;

3. X = S1 × S2, where S1 and S2 are K3 surfaces;

4. X = E×Y , whereE is an elliptic curve and Y is a three dimensional Calabi-Yau manifold.

Lemma 8.2. A reducible symplectic fourfold is a finite étale quotient of a torus or of a product
S1 × S2, where S1 is a K3 surface and S2 is either a two-dimensional torus or a K3 surface.

Proof. Let X be a finite étale cover as in Beauville-Bogomolov decomposition theorem. By the
above discussion, we only need to exclude the case X = E × Y , where E is an elliptic curve and
Y is a three-dimensional Calabi-Yau manifold.
Suppose by contradiction that such a product E×Y is symplectic, and let σ be a symplectic form;
also denote by v0 a vector field on E trivializing TE and by v the induced vector field on E × Y .
The contraction ivσ = σ(v, ·) is then a 1-form on X; we will prove that ivσ = 0, contradicting
symplecticity.

Remark that, if j : {e} × Y ↪→ E × Y is the embedding of a fibre of the first projection
πE : X → E, then j∗(ivσ) is a 1-form on Y , hence it is equal to 0 because H1,0(Y ) = 0.

Now, if u ∈ TpX is any vector at a point p = (p1, p2) ∈ X , one can decompose u along the
two projections:

u = uE + uY uE ∈ Tp1E, uY ∈ Tp2Y.

Then
ivσ(u) = ivσ(uE + uY ) = σ(v, uE) + j∗(ivσ)(uY ) = 0

because v and uE are proportional.

Now let f0 : X0 99K X0 be a birational transformation; by Remark 2.12, f0 is an isomorphism
in codimension one: there exist Zariski-open sets U, V ⊂ X0 such that

• codim(X0 \ U), codim(X0 \ V ) ≥ 2; in particular the fundamental groups π1(X, p),
π1(U, p) and π1(V, p) are canonically isomorphic for p ∈ U ∩ V ;

• f0 induces an isomorphism U
∼−→ V .

Lemma 8.3. Let f0 : X0 99K X0 be a birational transformation of a reducible symplectic manifold
X0, and let X be a finite étale cover as in Beauville-Bogomolov decomposition theorem.
Then, after possibly replacing X by a finite étale cover and f0 by its iterate f2

0 , f0 induces an
automorphism f : X → X . Furthermore, ifX = S1×S2, where S1 and S2 are eitherK3 surfaces
or two-dimensional tori, then f = (f1, f2) for some automorphisms f1 ∈ Aut(S1), f2 ∈ Aut(S2).

Proof. Since f0 is a pseudo-automorphism, by Lemma 11.2, there exists a finite étale cover X ′ →
X such that f0 lifts to a pseudo-automorphism f : X ′ 99K X ′; since K3 surfaces are simply
connected, the finite cover X ′ → X is either a finite étale cover of a four-dimensional torus, or
X ′ = T ′ × S → T × S, where T ′ → T is a finite étale cover of a torus and S is a K3 surface. In
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particular, X ′ is still a four-dimensional torus or a product of tori and K3 surfaces. From now on,
assume that X = X ′.

Now let us prove that f is an automorphism. If X is a four-dimensional torus, then by Lemma
1.25 all birational transformations of X are automorphisms; thus we can suppose that

X = S1 × S2

where S1 is a K3 surface and S2 is either a K3 surface or a two-dimensional torus.
By Kunneth formula

H2(X,C) ∼=
2⊕
i=0

H i(S1,C)⊗H2−i(S2,C) ∼= H2(S1,C)⊕H2(S2,C)

because H1(S1,C) = 0. By writing the terms of the Hodge decomposition and identifying
Hp,0(Y ) with H0(Y,Ωp

Y ) for Y = X,S1, S2, we obtain

H0(X,Ω2
X) ∼= H0(S1,Ω

2
S1

)⊕H0(S2,Ω
2
S2

).

In other words, if σ1 (resp. σ2) is a symplectic form on S1 (resp. S2), then

H0(X,Ω2
X) = Cσ1 ⊕ Cσ2;

here, by abuse of notation, we denote again by σi the pull-back π∗i σi by the canonical projection
πi : X → Si.

Now f∗σ1 can be extended to a holomorphic two-form aσ1 + bσ2 on X; since (f∗σ1)2 =
2ab σ1 ∧ σ2 = 0, we must have f∗σ1 ∈ Cσi for i = 1 or 2. After replacing f by f2, we can
suppose that f∗σ1 ∈ Cσ1; then, f∗σ2 ∈ Cσ2.

Pick local coordinates x1, y1 on S1 (resp. x2, y2 on S2) such that σi = dxi ∧ dyi for i = 1, 2;
such coordinates exist by Darboux theorem (Theorem 2.4). In such coordinates, we can write

f(x1, y1, x2, y2) = (g1(x,y), h1(x,y), g2(x,y), h2(x,y)).

Now
f∗σ1 = f∗(dx1 ∧ dy1) = dg1 ∧ dh1 = c dx1 ∧ dy1,

thus g1 and h1 only depend on x1, y1; in the same way one shows that g2 and h2 only depend on
x2, y2. This means that

f = (f1, f2) for some f1 ∈ Bir(S1), f2 ∈ Bir(S2).

We conclude by recalling that, since S1, S2 are K3 surfaces or two-dimensional tori, Bir(Si) =
Aut(Si)

From now on we will suppose that X = S1×S2, where S1 and S2 are either a K3 surfaces or
two-dimensional tori, and that

f = (f1, f2) : X → X

is an automorphism such that f1 : S1 → S1, f2 : S2 → S2 are both loxodromic.
Recall that, by Corollary 3.6, if fi preserves a foliation on Si and Si is projective, then Si is a torus
(resp. a Kummer surface) and fi is (resp. is induced by) a loxodromic linear automorphism. Also
recall that the hyperbolic periodic points for fi are Zariski-dense in Si.

Lemma 8.4. Let f : X → X be as above and let φ : X 99K C be a meromorphic function such
that φ ◦ f = cφ for some c ∈ C∗. Then φ is constant.
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Proof. Suppose by contradiction that φ is not constant; the connected components of the fibres of
φ are then the leaves of an f -invariant codimension one foliation F . Let p ∈ S1 be a periodic
point; then the intersection of leaves of F with {p}×S2 defines an f2-periodic foliation F2 on S2.
Furthermore, since the leaves of F are compact, then so are the leaves of F2; therefore, by Ghys-
Jouanolou’s Theorem (see [Jou78, Ghy00]), the leaves of F2 are the fibres of an f2-equivariant
fibration π : S2 99K C. By Theorem 1.30 π is trivial; in other words, {p} × S2 is contained in a
leaf of F2, i.e. φ is constantly equal to α on {p} × S2.

In the same way one shows that φ is constantly equal to αq on each S1×{q} for all f1-periodic
points q ∈ S1; since for (p, q) ∈ S1 × {q} ∩ {p} × S2, the constant αq does not actually depend
on q. Therefore φ is constant on the subset {f1− periodic points}×S2, which is Zarsiki-dense by
Theorem 1.30. Hence φ is constant as claimed.

8.2 Invariant foliations: general case and special examples

From now on assume that X is projective. By Lemma 8.2 and 8.3, the dynamics of birational
transformations of reducible symplectic fourfolds can be reduced to linear dynamics on a torus or
to the dynamics of a product automorphism

f = (f1, f2) : S1 × S2 → S1 × S2,

where Si is either a K3 surface or a complex torus and fi ∈ Aut(Si) for i = 1, 2. In what follows
we will restrict to the case where f1 and f2 are both loxodromic, and we will give a complete
classification of foliations preserved by such an automorphism. Remark that the foliations whose
leaves are the fibres of one of the two natural projections πi : S1 × S2 → Si, i = 1, 2, are
automatically f -invariant.

Let us first describe some easy examples coming from invariant foliations on one of the factors
Si.
Example 8.5. Let f = (f1, f2) : S1 × S2 → S1 × S2 be as above. Suppose that f1, f2 are both
loxodromic, and that f1 preserves a foliation on S1; in this case, by Corollary 3.6, (S1, f1) is of
Kummer type and f1 preserves exactly two foliations F+

1 and F−1 .
Then the following are f -invariant foliations on X:

• the one-dimensional foliations F = F±1 ×P2, where P2 denotes the foliations by points on
S2;

• if (S2, f2) is also of Kummer type, the two-dimensional foliations F = F ε11 × F
ε2
2 , where

εi ∈ {+,−} and F±2 are the stable/unstable foliations for f2;

• the three-dimensional foliations F = F±1 ×{S2}, where {S2} denotes the single leaf folia-
tion on S2.

Before describing some additional examples, let us fix a notation which we will use in the rest
of this chapter.
Remark 8.6. Kummer examples admit affine structures at the general point such that the invariant
foliations locally correspond to coordinate foliations: such a structure is actually global for a torus,
and is described in §3.1 for Kummer surfaces.
If g : S → S is a Kummer example, then in affine local coordinates f is linear and, after maybe
replacing it by f2, it is given by the matrix(

λ 0
0 λ−1

)
,

where λ = ±
√
λ1(f).
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In the special case where both factors admit invariant foliations and λ1(f1) = λ1(f2), we get
some additional examples.

Example 8.7. Let f = (f1, f2) : S1 × S2 → S1 × S2 be as above. Suppose that f1, f2 are both
loxodromic, and that both fi preserve a foliation on Si; in this case, by Corollary 3.6, (Si, fi) is of
Kummer type and fi preserves exactly two foliations F+

i and F−i .
Assume that λ1(f1) = λ1(f2) = λ2. We will describe some families of f -invariant foliations.
Consider affine structures at the general point of each factor Si, as described in Remark 8.6:

there exist local coordinates xi, yi of Si ∼= C2/Λi around the general point for which f is linear
and, up to replacing f by f2,

f(x1, y1, x2, y2) =


λ 0 0 0
0 λ−1 0 0
0 0 λ 0
0 0 0 λ−1




x1

y1

x2

y2

 .

Then the following families of foliations are f -invariant:

• in dimension 1:

TFxt = Span

(
t1

∂

∂x1
+ t2

∂

∂x2

)
, TFyt = Span

(
t1

∂

∂y1
+ t2

∂

∂y2

)
,

t = [t1 : t2] ∈ P1.

• in dimension 2:

TFt,s = Span

(
t1

∂

∂x1
+ t2

∂

∂x2
; s1

∂

∂y1
+ s2

∂

∂y2

)
,

(t, s) = ([t1 : t2], [s1 : s2]) ∈ P1 × P1.

• in dimension 3:

F̂xt = {t1x1 + t2x2 = 0}, F̂yt = {t1y1 + t2y2 = 0},

t = [t1 : t2] ∈ P1.

Theorem 8.8. Let X0 be a reducible symplectic manifold of dimension 4 which is not a torus, and
let

X = S1 × S2 → X0

be a finite cover as in Beauville-Bogomolov decomposition theorem; then, by Lemma 8.2, we can
suppose that S1 and S2 are either K3 surfaces of two-dimensional complex tori (and at least one
of them is a K3 surface).
Let f0 : X0 99K X0 be a birational transformation; by Lemma 8.3, up to replacing X by a finite
étale cover and f by f2, we can suppose that there exist f1 ∈ Aut(S1), f2 ∈ Aut(S2) such that

f = (f1, f2) : S1 × S2 → S1 × S2.

Suppose that f1 and f2 are both loxodromic and that f0 preserves a singular foliation F0 on X0;
denote by F the induced foliation on X and suppose that its leaves don’t coincide with the fibres
of one of the two natural projections π1 : X → S1, π2 : X → S2.

Then
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1. (S1, f1) or (S2, f2) is of Kummer type;

2. if furthermore one supposes that the two dynamical degrees λ1(f1), λ1(f2) are distinct or
that (S1, f1) and (S2, f2) are not both of Kummer type, then the foliation comes from the
stable or unstable foliation of either f1 or f2, as described in Example 8.5;

3. If both factors are of Kummer type and λ1(f1) = λ2(f2), then either F is as above or F
belongs to one of the families described in Example 8.7.

We will split the proof as follows: the case of foliations of dimension 1 or 3 is treated in
Lemma 8.9 and Lemma 8.10; the case of foliations of dimension 2 is treated in Proposition 8.11.

Recall that, by Theorem 1.31, the hyperbolic periodic points of fi are Zariski-dense in Si;
therefore, the hyperbolic periodic points of f are Zariski-dense in X .

8.3 Invariant foliations of dimension 1 and 3

Throughout this section, let X = S1×S2, where S1 is a K3 surface and S2 is either a K3 surface
or a two-dimensional torus. Let

f = (f1, f2) : X → X

be an automorphism such that f1 : S1 → S1, f2 : S2 → S2 are both loxodromic.

Lemma 8.9. Suppose that f preserves a foliation F of dimension 1 (resp. 3); then

1. (S1, f1) or (S2, f2) is of Kummer type;

2. the projection of F on (resp. the intersection of F with) the fibres of the two canonical
projections is either trivial or the stable/unstable foliation; furthermore, if one is stable,
then the other cannot be unstable and vice-versa;

3. if only one of the two factors is of Kummer type or if λ1(f1) 6= λ1(f2), then F comes from
the stable or unstable foliation of a Kummer or torus factor, as described in Exaxmple 8.5.

Proof. Suppose first that dimF = 1. Let p ∈ S1 be a hyperbolic periodic point for f1 such
that {p} × S2 is not contained in the singular locus of F (such a point exists by Zariski-density).
Consider the projection F2,p of F on {p} × S2 with respect to the decomposition

TX = π∗1TS1 ⊕ π∗2TS2;

in other words, for q ∈ S2 define

TF2,p(q) = (Dπ1)(p,q)TF(p, q).

We have two cases:

• Either F2,p is a non-trivial foliation, which is preserved by some iterate of f2; then (S2, f2)
is of Kummer type;

• or F2,p is the foliation by points; if this happens for all hyperbolic periodic points of f1, then
the leaves of F are contained in the fibres of π2. We can then repeat this construction with
hyperbolic points for f2 without obtaining trivial foliations, so that (S1, f1) is of Kummer
type.
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This shows that, if dimF = 1, then one of the two factors is of Kummer type.
Now let dimF = 3. Again, let p ∈ S1 be a hyperbolic periodic point for f1 such that {p}×S2

is not contained in the singular locus of F . Consider the intersection F2,p of F with {p}×S2; we
have two cases.

• Either F2,p is a non-trivial foliation, which is preserved by some iterate of f2; then (S2, f2)
is of Kummer type.

• Or F2,p is the single leaf foliation; if this happens for all hyperbolic periodic points for f1,
then the leaves of F are unions of fibres of π1. We can then repeat the construction with
hyperbolic points for f2 without obtaining trivial foliations, so that (S1, f1) is of Kummer
type.

This shows that, if dimF = 3, then one of the two factors is of Kummer type.
Now suppose that only one of the two factors, say (S1, f1), is of Kummer type; then the

above constructions involving periodic points for f2 lead to trivial foliations on the fibres of π1 (if
dimF = 1) or π2 (if dimF = 3). This means that only the cases described in Theorem 8.8 can
occur.

Finally, suppose that both factors are of Kummer type and that λ1(f1) 6= λ1(f2). Consider on
both factors an affine structure at the general point as in Remark 8.6: there exist local coordinates
xi, yi of Si such that in these coordinates f is linear and, up to replacing f by f2,

f(x1, y1, x2, y2) =


α1 0 0 0

0 α−1
1 0 0

0 0 α2 0

0 0 0 α−1
2




x1

y1

x2

y2

 ,

where αi = λ1(fi).
Let p = (p1, p2) ∈ S1 × S2 be a hyperbolic N -periodic point for f . Such points are dense thanks
to the density of hyperbolic points for f1 and f2. The linear space TpF is DfNp -invariant; but
since all the eigenvalues of DfNp are distinct, the only invariant one-dimensional (resp. three-
dimensional) subspaces of TpX are Span(∂/∂xi), Span(∂/∂yi) (resp. {xi = 0}, {yi = 0}). By
density, F is then a linear foliation on the torus S1 × S2 coming from a foliation on one of the
factors (as in Example 8.5); this concludes the proof.

Lemma 8.10. Suppose that (S1, f1) and (S2, f2) are both of Kummer type and that λ1(f1) =
λ2(f2) = λ. Then the foliations of dimension one and three preserved by f are exactly the four
families described in Example 8.7.

Proof. If a factor Si is a Kummer surface, we replace it by the torus which defines it; then we
can suppose that both factors are complex tori, and that f1 and f2 are loxodromic linear automor-
phisms. Let us fix global coordinates x1, y1, x2, y2 that diagonalize f = (f1, f2).

Suppose first that dimF = 1; then TF is locally generated by a vector field

v = a1(x, y)
∂

∂x1
+ b1(x, y)

∂

∂y1
+ a2(x, y)

∂

∂x2
+ b2(x, y)

∂

∂y2
.

By Lemma 8.9, the projection of F on the fibres of the two canonical projections is either trivial
or the stable/unstable foliation; furthermore, if one is stable, then the other cannot be unstable and
vice-versa. This implies that either a1 ≡ a2 ≡ 0 or b1 ≡ b2 ≡ 0; by symmetry, suppose that
b1 ≡ b2 ≡ 0, so that F projects to the unstable or trivial foliation on each fibre of the natural
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projections. The vector field v is only well-defined modulo multiplication by (local) invertible
functions, but the ratio a1/a2 is well defined and induces a meromorphic function

φ : X 99K P1

p = (p1, p2) 7→ P(TpF) ⊂ P(Tp1F+
1 ⊕ Tp2F+

2 ) ∼= P1

which is f -invariant. By Lemma 8.4, φ is constant; thus we can suppose that v is globally defined
and linear, which concludes the proof for the case dimF = 1.

Now let dimF = 3; the proof is essentially the same as for dimF = 1, replacing the language
of vector fields with the one of forms: F is locally defined as the kernel of a one-form

ω = a1(x, y)dx1 + b1(x, y)dy1 + a2(x, y)dx2 + b2(x, y)dy2.

By Lemma 8.9, the intersection of F with the fibres of the two canonical projections is either
trivial or the stable/unstable foliation; furthermore, if the intersection with the fibres of a projection
is stable, (resp. unstable), then the intersection with the fibres of the other is trivial or stable (resp.
trivial or unstable). This implies that either a1 ≡ a2 ≡ 0 or b1 ≡ b2 ≡ 0; by symmetry, suppose
that b1 ≡ b2 ≡ 0. The form ω is only well-defined modulo multiplication by (local) invertible
functions, but the ratio a1/a2 is well defined and induces a meromorphic function

φ : X 99K P1,

which is f -invariant. By Lemma 8.4, φ is constant; thus we can suppose that ω is globally defined
and linear, which concludes the proof for the case dimF = 3.

8.4 Invariant foliations of dimension 2

Throughout this section, let X = S1 × S2, where each Si is either a K3 surface or a two-
dimensional torus (but not both are tori), and let

f = (f1, f2) : X → X

be an automorphism such that f1 : S1 → S1, f2 : S2 → S2 are both loxodromic.
We suppose that

(∗) f preserves a foliation F of dimension 2 whose leaves do not coincide with the fibres of one
of the two natural fibrations π1 : X → S1, π2 : X → S2.

The goal of this section is to prove the following result.

Proposition 8.11. Both factors (S1, f1) and (S2, f2) are of Kummer type, andF comes essentially
from a linear foliation on a torus. More accurately:

• if λ1(f1) 6= λ1(f2), then F is the product of the stable or unstable foliation on S1 by the
stable or unstable foliation on S2;

• if λ1(f1) = λ1(f2), then F belongs to the family {Ft,s}t,s∈P1 described in Example 8.7.

We say that F is transverse to π1 (resp. π2) if TpF + TpS2 = TpX (resp. if TpF + TpS1 =
TpX).

Lemma 8.12. Suppose thatF is nowhere transverse to π1 or π2. Then both factors are of Kummer
type, and F = F ε11 × F

ε2
2 , where F±i denotes the stable and unstable foliations for fi on Si and

εi ∈ {+,−}.
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Proof. Let p1 ∈ S1 be a general N -periodic point for f1; since the leaves of F do not coincide
with the fibres of π1, the intersection of F with the fibre {p1} × S2

∼= S2 defines an f2-periodic
foliation on S2. Therefore, S2 is of Kummer type and F ∩ ({p1} × S2) is either the stable or the
unstable foliation for f2; symmetrically, one shows that also S1 is of Kummer type.

Thus, F ∩ ({p1} × S2) is equal to the stable (or unstable) foliation for f2 for all general f1-
periodic points p1, thus for all p1 ∈ S1 by density; by symmetry, F ∩ (S1 × {p2}) is equal to the
stable (or unstable) foliation for all p2 ∈ S2. This shows that F is a product of stable or unstable
foliations, which concludes the proof.

Linear maps defined by F

From now on we suppose that F is transverse to one of the two fibrations, say π1, at general points
of X .

If p = (p1, p2) ∈ X is such that F is transverse to π1, then TpF can be interpreted as the
graph of a linear map

φp : Tp1S1 → Tp2S2;

more explicitly, φp = ηp◦νp, where νp : Tp1S1 → TpF is the restriction to Tp1S1 of the projection
with respect to the decomposition TpX = TpF1 ⊕ Tp2S2 and ηp : TpF → Tp2S2 is the restriction
to TpF of the projection with respect to the decomposition TpX = Tp1S1 ⊕ Tp2S2. Remark that
φp is an isomorphism if and only if F is also transverse to π2.
Of course, the same construction can be carried out if F is transverse to π2 at p; we obtain then a
linear map

ψp : Tp2S2 → Tp1S1,

which coincides with φ−1
p if F is transverse to both π1 and π2.

Let σ1 (resp. σ2) be a symplectic form on S1 (resp. S2); the isomorphisms φp act on forms
by pull-back, and thus we can define a two-form φ∗p(σ2(p2)) ∈

∧2 T ∗p1
S1 = Ω2

S1,p1
. Since

dim Ω2
S1,p1

= 1, there exists a constant ξ(p) ∈ C (the "determinant" of φp) such that

φ∗p(σ2(p2)) = ξ(p)σ1(p1).

Lemma 8.13. Suppose that F is transverse to π1 at some point ofX . Then p 7→ ξ(p) is a constant
function; in particular,

• if ξ ≡ 0, then F is nowhere transverse to π2;

• if ξ ≡ c 6= 0, then F is transverse to both π1 and π2 outside a hypersurface D, and to
neither π1 or π2 along D.

Proof. Since the foliation F is holomorphic, the function

p 7→ ξ(p)

is meromorphic on X . Let χ1, χ2 ∈ C∗ such that f∗1σ1 = χ1σ1, f∗2σ2 = χ2σ2. Then a linear
algebra computation shows that

ξ ◦ f =
χ2

χ1
ξ.

Thus, by Lemma 8.4, ξ is constant.
Assume that ξ ≡ 0. IfF and π2 were transverse at some point, then they would be transverse at

the general point of X . Since F and π1 are transverse at the general point of X , that would imply
that F is transverse to both natural projections at some point p; hence ξ(p) 6= 0, contradicting
ξ ≡ 0.
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Now suppose that ξ ≡ c 6= 0. If F were transverse to exactly one of the two projections πi
at a point p ∈ X , then exactly one among φp and ψp would be well-defined at p, implying that
ξ(p) = 0 or ξ(p) =∞. This contradicts the assumption ξ ≡ c 6= 0.
In order to conclude, we only need to prove that the tangency locus between F and π1 (which
coincides with the tangency locus between F and π2) is a hypersurface. This can be seen easily in
local coordinates: in a small enough neighborhood of each point of X , the fibres of π1 (resp. the
leaves of F) are defined by the kernel of a 2-form ω1 (resp. ωF ); the tangency locus is then

D = {p ∈ X | (ω1 ∧ ωF )(p) = 0},

which is the zero locus of a differential form of maximal degree. Hence, D is a hypersurface; this
concludes the proof.

First case: ξ = 0

Suppose that ξ = 0; then F is nowhere transverse to π2.

Lemma 8.14. If ξ = 0, then both factors are of Kummer type.

Proof. Let p = (p1, p2) be a point where F is transverse to π1; since F is nowhere transverse to
π2, the image of φp : Tp1S1 → Tp2S2 has dimension 0 or 1. If dim Imφp = 0 for general p, then
the leaves of F coincide with the fibres of π2, a contradiction. Therefore, for general p, Imφp
has dimension 1. Fix a general N -periodic point p1 ∈ S1 for f1 (recall that hyperbolic periodic
points are Zariski-dense in S1); then the meromorphic distribution of lines p2 7→ Imφ(p1,p2) on
{p1} × S2, which is automatically integrable, defines an f2-periodic foliation on S2. Thus, by
Corollary 3.6, the factor (S2, f2) is of Kummer type.

Now let p2 ∈ S2 be a general N -periodic point for f2. Since φp has rank 1 at the general point
of X , the map

p1 ∈ S1 7→ ker(φ(p1,p2)) ⊂ Tp1S1

defines a foliation on S1 which is invariant by some iterate of f1. Hence, by Corollary 3.6, the
factor (S1, f1) is also of Kummer type.

Second case: ξ 6= 0

Suppose that ξ 6= 0; by Lemma 8.13, F is transverse to π1 at p if and only if it is transverse to π2

at p. Let
D = {p = (p1, p2) ∈ X | dim(TpF + Tp2S2) ≤ 3}

be the divisor of tangency between F and π1; by the above discussion, D is also equal to the
divisor of tangency between F and π2:

D = {p = (p1, p2) ∈ X | dim(TpF + Tp1S1) ≤ 3}.

Let us deal with the case where D = ∅ first.

Definition 8.15. Let F be a smooth foliation on a manifold M ; the intrinsic topology on a leaf L
of F is the one induced by the distance

dL(x, y) = inf{l(γ) | γ : [0, 1]→ L continuous , γ(0) = x, γ(1) = y},

where l is the length of γ with respect to any fixed Riemannian metric on M .

Corollary 8.16. If ξ 6= 0, then the tangency divisor D is non-trivial.



8.4. INVARIANT FOLIATIONS OF DIMENSION 2 145

Proof. Assume without loss of generality that S1 is a K3 surface, and suppose by contradiction
that D = ∅. Then the natural composition

TF ↪→ TX → π∗1TS1

is a sheaf isomorphism. Now

Hom(TF , TX) ∼= Hom(π∗1TS1, TX) ∼=

Hom(π∗1TS1, π
∗
1TS1)⊕Hom(π∗1TS1, π

∗
2TS2)

and
Hom(π∗1TS1, π

∗
2TS2)|S1×{p}

∼= HomS1(TS1,O⊕2
S1

) ∼= H0(S1,Ω
⊕2
S1

) = 0

because S1 is a K3 surface. Therefore TF ∼= TX/S2
, meaning that the leaves of F coincide with

the fibres of π2. This however contradicts the assumption that F is non-trivial.

Lemma 8.17. If ξ 6= 0, then both factors are of Kummer type.

Proof. By Corollary 8.16, the tangency divisor D is nonempty; remark that D is f -invariant.
Consider the intersection D ∩ ({p1}×S2) as p1 runs through all the periodic points for f1 (which
are Zariski-dense in S1). If {p1} × S2 ⊂ D for all f1-periodic points p1 ∈ S1, then D would be
Zariski-dense in X , a contradiction. Therefore, some {p1}×S2 is not contained in D. In this case
({p1} × S2) ∩ D defines an f2-periodic divisor D2 on S2; since there is a finite number of such
divisors, by Zariski-density of the f1-periodic points we get that there is an f2-periodic (possibly
empty) divisor D2 ⊂ S2 such that

({p1} × S2) ∩D = {p1} ×D2 ∀p1 ∈ S1 such that {p1} × S2 * D.

By symmetry, there exists an f1-periodic divisor D1 on S1 such that

(S1 × {p2}) ∩D = D1 × {p2} ∀p2 ∈ S2 such that S1 × {p2} * D.

In other words
D = (D1 × S2) ∪ (S1 ×D2).

Since D is nonempty, we can suppose without loss of generality that D1 6= ∅; also, after
replacing f by some iterate, we can suppose that every component of D1 is f1-invariant. Now,
loxodromic transformations of tori do not admit invariant divisors; hence, S1 is a K3 surface,
and D1 is a disjoint union of smooth rational curves: indeed, each component of D has negative
self-intersection by Corollary 1.23, and by adjunction formula negative curves on a K3 surface
are smooth rational curves with self-intersection −2. Since all automorphisms of P1 admit a fixed
point, there exists a point p1 ∈ D1 which is fixed by f1.
Consider the intersection F2,p1 = ({p1}×S2)∩F : since {p1}×S2 ⊂ D, F2,p1 is not the foliation
by points; however, if F2,p1 were the single leaf foliation, then {p1} × S2 would be a leaf of F ,
hence it would be transverse to π2, again contradicting the fact that {p1}×S2 ⊂ D. Thus F2,p1 is
a one-dimensional foliation on {p1} × S2

∼= S2, which is f2-invariant. This shows that the factor
(S2, f2) is of Kummer type.

Now fix an f2-hyperbolic periodic point p2 such that S1 × {p2} * D, and let v+ ∈ Tp2S2 be
a non-zero vector in the unstable direction; at a general point p ∈ S1 × {p2} the linear map

φp : Tp1S1 → Tp2S2

is well-defined and invertible. Thus the map

p1 ∈ S1 7→ φ−1
p (v+) ∈ Tp1S1

defines a meromorphic vector field v′ on S1 which is f1-invariant. The trajectories along v′ define
an f1-invariant foliation on S1; thus the factor (S1, f1) is also of Kummer type.



146 CHAPTER 8. REDUCIBLE SYMPLECTIC FOURFOLDS

Proof of Proposition 8.11

We prove here Proposition 8.11. Let X = S1 × S2, where S1 and S2 are either K3 surfaces or
two-dimensional tori (but at least one of them is a K3 surface). Let

f = (f1, f2) : X → X

be an automorphism such that f1 : S1 → S1 and f2 : S2 → S2 are both loxodromic.
We suppose that f preserves a foliation F of dimension 2 whose leaves do not coincide with the
fibres of one of the two natural fibrations π1 : X → S1, π2 : X → S2.

By Lemma 8.12, if F is never transverse to π1 or π2, then both factors are linear and F is the
product of the stable or unstable foliation on each factor.

Let us suppose now that F is transverse to π1 or π2 at a general point of X (suppose by
symmetry that F is transverse to π1). Then we can define the determinant function ξ : X 99K C
as in §8.4, which is a meromorphic f -equivariant function, hence constant by Lemma 8.4. By
Lemma 8.14 and 8.17, in any case both factors are of Kummer type.

Now, by replacing a Kummer surface by the torus which defines it, we can suppose that both
factors are tori and that each fi is a linear automorphism of a torus. Therefore, there exist global
(linear) coordinates x1, y1 on S1 and x2, y2 on S2 such that in these coordinates f is given by the
matrix

A =


α1 0 0 0

0 α−1
1 0 0

0 0 α2 0

0 0 0 α−1
2

 ,

where αi = λ1(fi).
If α1 6= α2, then for all p ∈ X

TpF = Span

(
∂

∂z1
,
∂

∂w2

)
for some z, w ∈ {x, y} :

indeed, if p is a periodic point, TpF is AN -invariant for some N > 0, hence TpF is the span of
some vectors of the basis; by density of periodic points, this is true for all points of p, and the
vectors of the basis spanning TpF cannot depend on the chosen point. Since leaves of F do not
coincide with the fibres of one of the two natural projections, one must choose a vector from the
basis of Tp1S1 and one from the basis of Tp2S2. This means that

F = F ε11 ×F
ε2
2 , ε1, ε2 ∈ {+,−}.

Now suppose that α1 = α2; then, since TX is trivial, the correspondence p 7→ TpF ⊂ TpX
defines a meromorphic map

Φ: X 99K Gr(2, 4),

where Gr(2, 4) denotes the Grassmannian of two-planes in C4. If p is a periodic point, then

TpF = Span

(
t1

∂

∂x1
+ t2

∂

∂x2
, s1

∂

∂y1
+ s2

∂

∂y2

)
for some t1, t2, s1, s2 ∈ C;

since such points are dense in X , the same is true for all points of X where Φ is defined. In other
words

Im Φ ⊂ Gr(1, 2)x ×Gr(1, 2)y ∼= P1 × P1,

where Gr(1, 2)x (resp. Gr(1, 2)y) is the Grassmannian of lines in Span(∂x1 , ∂x2) (resp. in
Span(∂y1 , ∂y2)).
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Furthermore, Φ is f -equivariant, with f acting on Gr(2, 4) as the differential Df (which does
not depend on the point). Since Df acts as the identity on Gr(1, 2)x × Gr(1, 2)y, by projection
on either of the two factors we obtain an f -invariant meromorphic function X 99K P1, which is
constant by Lemma 8.4.
Therefore, there exist global constants t = [t1 : t2] ∈ P1, s = [s1 : s2] ∈ P1 such that

TpF = Span

(
t1

∂

∂x1
+ t2

∂

∂x2
, s1

∂

∂y1
+ s2

∂

∂y2

)
∀p ∈ X;

thus F = Ft,s as described in Example 8.7.
This concludes the proof of the Proposition. �
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Chapter 9

Invariant geometric structures

Informally, a geometric structure on a differential variety M is an additional geometric informa-
tion attached to M ; one can for example think about vector fields, differential forms, foliations,
Riemannian metrics, connections, projective structures...
Around this vague idea, several rigorous and fruitful mathematical theories have been developed.
Here we will restrict our attention to (G,X)-manifolds in the sense of Ehresmann and to a gener-
alization of this concept provided by Gromov’s definition of A-structures.

The goal of this section is to introduce the vocabulary and the precise definition of a geometric
structure, and to prove the following homogeneity result.

Theorem 9.1. Let (X,σ) be an irreducible symplectic manifold and let f : X 99K X be a loxo-
dromic birational transformation preserving two generically transverse Lagrangian distributions
F1,F2; let Φ (resp. [Φ]) be the geometric structure defined by the symplectic form σ (resp. by the
symplectic form σ modulo multiplication by an element of C∗) and the two distributions F1,F2.
Then there exists a closed subvariety S′ ⊂ X with positive codimension (the "exceptional locus"
of [Φ]) such that

• [Φ] is locally homogeneous on X \ S′;

• the local isometries of [Φ] on X \ S′ are uniquely determined by their Jacobian and their
second order partial derivatives.

If furthermore X is projective, there exists a closed subvariety S ⊂ X with positive codimension
(the "exceptional locus" of Φ) such that

• Φ is locally homogeneous on X \ S;

• the local isometries of Φ on X \ S are uniquely determined by their Jacobian.

Remark 9.2. We will see that the structures Φ and [Φ] degenerate along a non-empty divisor;
therefore, the exceptional loci of Theorem 9.1 satisfy codimS = codimS′ = 1.

Furthermore, as an application of (G,X)-orbifolds, we will classify loxodromic automor-
phisms of K3 surfaces which preserve a (degenerate) affine structure; see Theorem 9.11.

9.1 (G,X)-manifolds and (G,X)-orbifolds

For this paragraph we refer to [Thu97, Chapter 3], [Rat06, Chapter 8].
According to Klein’s Erlangen program, geometry is the study of the properties of a space

which are invariant under a group of transformations. Hence, a geometry in Klein’s sense is a
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pair (G,X) where X is a manifold and G is a (Lie) group acting transitively on X; for example,
euclidean geometry is defined by the pair (Rn, Isom(Rn)), where Isom(Rn) denotes the group of
isometries of Rn, whereas spherical geometry is defined by (Sn, SOn+1).

The study of manifolds which are locally modelled on such a geometry was started by Ehres-
mann [Ehr36]; see the introduction of [Gol88] and [Rat06, §8.7] for more historical remarks.

Definition 9.3. Let X be a manifold and let G ≤ Diff(X) be a group acting analytically, i.e. if
two elements of G coincide on a non-empty open subset, they are the same.
A (G,X)-manifold is a manifold admitting an atlas with values in X and change of charts in G:
more explicitly, M is a (X,G)-manifold if and only if there exists an open cover {Ui}i∈I of M
and homeomorphisms φi : Ui → Vi ⊂ X such that (φj ◦ φ−1

i ) : φi(Ui ∩Uj)→ φj(Ui ∩Uj) is the
restriction of an element of G for all i, j ∈ I .

Example 9.4. The following are all examples of (G,X)-structures.

• A euclidean (resp. spherical, resp. hyperbolic) structure is a (Isom(Rn),Rn) (resp. (SOn+1(R),Sn),
resp. (SO(1, n),Hn)) structure.

• An affine structure is a (Aff(Rn),Rn)-structure; a projective structure is a (PGLn+1(R),PnR)-
structure.

As Example 9.4 shows, in most cases we will require G to act transitively on X , which forces
the structure to be locally homogeneous(see §9.2.2 for a precise definition). Structures which are
not a priori locally homogeneous do not fit well in the theory of (G,X)-structures: it is the case
for general Riemannian or holomorphic metrics.
Even if the structure we consider is locally homogeneous, it may occur that the changes of charts
do not naturally sit in a global group acting on a model manifoldX . For this reason, it is sometimes
more convenient to allowG to be a pseudo-group of germs of diffeomorphisms ofX (see [Thu97]).
This weaker definition allows to construct more interesting examples; however, some of the key
features of the theory of (G,X)-manifolds, namely the construction of a developing map and of a
holonomy representation, do not generalize to this case.

Example 9.5. If we allow G to be a pseudo-group of germs of diffeomorphims, we obtain the
following additional examples.

• A manifold with a smooth (real) foliation of dimension k is a (G,Rn)-manifold, where G
is the pseudo-group of local diffeomorphisms of Rn = Rk × Rn−k of the form (x,y) 7→
(f(x,y), g(y)).

• A vector field without zeros is a (G,Rn)-structure, where G is the pseudo-group of germs
of diffeomorphisms of Rn preserving the vector field ∂/∂x1.

• A manifold with a volume form is a (G,Rn)-manifold, where G is the pseudo-group of
germs of diffeomorphisms preserving the Lebesgue measure on Rn.

• A complex structure on a manifold M is a (G,Cn)-structure (n = dimRM/2), where G is
the pseudo-group of germs of biholomorphic maps between open sets of Cn.

• Recall that, by Darboux Theorem (Theorem 2.4), if σ is a holomorphic symplectic form on a
complex manifoldM , locally at each point there are local coordinates p1, . . . , pn, q1, . . . , qn
such that, in these coordinates

σ =
n∑
i=1

dpi ∧ dqi;
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hence, a holomorphic symplectic structure is a (G,C2n)-structure, where G is the pseudo-
group of local biholomorphisms of open subsets of C2n preserving the standard symplectic
form.

9.1.1 Developing map and holonomy

In this section, denote by M a (G,X)-manifold; let π : M̃ → M be the universal cover of M .
Remark that on M̃ one can define a (G,X)-structure induced by that of M .

Intuitively, the developing map "unrolls" M̃ over X using the local charts. The local construc-
tion goes as follows: let φi : Ui → X and φj : Uj → X be two local charts of M̃ with Ui∩Uj 6= ∅
and Ui ∩ Uj connected, and let g be the element of G whose restriction to φi(Ui ∩ Uj) is equal to
φj ◦φ−1

i . Then the two maps φi and g−1 ◦φj glue together to a map Ui ∪Uj → X . The construc-
tion can be iterated; one can check (see [Rat06, §8.4]) that the only inconsistencies that can arise
come from the fundamental group of M̃ , which is trivial. We define in this way a developing map

dev : M̃ → X.

Remark 9.6. A developing map only depends on the choice of a coordinate chart as "base point"
(Ui in the local construction above); hence, two developing maps only differ by composition with
an element of G. With this in mind, by abuse of notation we will often talk about the developing
map.

Fix a base point p ∈M and one of his lifts q ∈ M̃ . An element γ of π1(M,p) defines a cover
isomorphism γ : M̃ → M̃ ; as dev ◦γ is another developing map, there is a unique element gγ ∈ G
such that dev ◦γ = gγ ◦ dev. The resulting holonomy representation

hol : π1(M,p)→ G

is a group homomorphism such that dev ◦γ = hol(γ) ◦ dev for all γ ∈ π1(M,p).

Application to holomorphic (G,X)-structures

Let X be a holomorphic manifold and G a group acting by biholomorphic maps on X; a holomor-
phic (G,X) structure on a complex manifold M is a holomorphic atlas on M with values in X
such that the changes of charts are restrictions of elements of G.

Proposition 9.7. Let M be a compact simply connected complex manifold; then M doesn’t admit
any globally defined holomorphic (G,X) structure such that X is a Stein (i.e. closed complex
affine) manifold.

Proof. Suppose by contradiction that such a structure exists. Then, since M is simply connected,
we get a developing map

dev : M → X,

which is holomorphic.
Since M is compact and X ⊂ CN is affine, by the maximum principle dev is constant. However,
dev is defined to be a local biholomorphism, which leads to a contradiction.

The most important example of a (G,X)-structure with X affine is probably that of an affine
structure. We obtain the following corollary.

Corollary 9.8. Let M be a simply connected compact complex manifold; then M does not admit
any globally defined affine structure.
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9.1.2 (G,X)-orbifolds

The definition of (G,X)-structure, developing map and holonomy can be extended to orbifolds;
for what follows we refer to [TM79, Chapter 13] and [Rat06].

An orbifold O is a Hausdorff topological space which is locally modelled on open sets of Rn
modulo the action of a finite group; similarly, a (G,X)-orbifold is an orbifold which is locally
modelled on open sets of X modulo finite subgroups of G.

An orbifold cover is a map between orbifoldsO1 → O which locally looks like a quotient map
U/H ′ → U/H with U ⊂ Rn and H ′ ≤ H . For an orbifold O, one defines the universal orbifold
cover π : Õ → O as the unique connected orbifold cover of O such that any other connected
orbifold cover π′ : O′ → O factors π (see [TM79, Proposition 13.2.4] for more details). The
universal orbifold cover always exists, but it need not be a manifold; it coincides with the usual
universal cover in the case of manifolds.
Example 9.9. If Γ is a group acting properly discontinuously on a manifold M , then M/Γ has a
natural orbifold structure (see [TM79, Proposition 13.2.1]); the universal orbifold cover of M/Γ
is the usual universal cover of M .

The orbifold fundamental group πorb1 (O) is by definition the group of deck transformations of
Õ.

Theorem 9.10 ([TM79], Proposition 13.3.2). If O is a (G,X)-orbifold, then

• the universal orbifold cover Õ is a simply connected (G,X)-manifold;

• there exists a developing map
dev : Õ → X;

• there exists a holonomy representation

hol : πorb1 (O)→ G

such that dev ◦γ = hol(γ) ◦ dev for all γ ∈ πorb1 (O).

The proof is essentially the construction of the developing map as in the manifold case; while
doing so, one also recovers an orbifold cover which is a manifold, and this implies that the univer-
sal orbifold cover is also a manifold.

9.1.3 Application: preserved affine structures on K3 surfaces

Recall that, by Corollary 9.8, a K3 surface X does not admit any globally defined affine structure.
However, we have shown in §3.1.2 that a Kummer surface X = K(T ) admits an affine structure
on the complement U of the 16 exceptional curves appearing from resolution of T/± idT ; if fT is
a loxodromic automorphism of the torus T , the induced automorphism of X preserves U and the
affine structure.

Now let X be any K3 surface, and suppose that there exists an affine structure on a Zariski-
open dense subset U ⊂ X; let E = X \U . Remark that, by Hartogs principle, the affine structure
can be extended to components of E having codimension ≥ 2 (i.e. isolated points); therefore E is
a divisor of X .
We say that an automorphism f : X → X preserves the above affine structure if f(U) = U and
f |U acts locally on affine coordinate charts as an affine transformation.

Theorem 9.11. Let f : X → X be a loxodromic automorphism of a K3 surface and suppose that
f preserves an affine structure defined on a maximal Zariski-open dense subset U ⊂ X . Then
X = K(T ) is the Kummer surface associated to a two-dimensional complex torus T , and f is
constructed from a loxodromic linear automorphism fT : T → T (see §3.1.1).
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Proof. Since f(U) = U , f preserves the divisor E; after maybe replacing f by an iterate, we may
suppose that every irreducible component Ei of E is f -invariant.
Since f is loxodromic, by Theorem 1.22 the restriction of the intersection form to the subspace of
H1,1(X,R) generated by the classes of the Ei is negative definite. Remark that, as H1(X,OX) =
0, the linear equivalence class of a divisor D ∈ Div(X) is uniquely determined by its numerical
class in H1,1(X,R); in particular the intersection matrix (qX(Ei, Ej)) is negative definite: if this
were not the case, some linear combination D =

∑
i aiEi of the Ei (which we may take with

integer coefficients) would have trivial numerical class, implying that OX(D) = 0. Therefore,
there would exist a meromorphic function φ : X 99K C such that the divisor div(φ) of zeros
minus poles is exactly D. Since D is f -invariant, φ ◦ f = ξφ for some ξ ∈ C∗; after taking the
Stein factorization of φ, we get an f -equivariant meromorphic fibration, contradicting the fact that
f is loxodromic (for example by Theorem A, or Theorem 1.16).

By Grauert-Mumford theorem (see [BPVdV84, Theorem III.2.1]), there exists a birational
morphism

π : X → Y

whose exceptional set is exactly E. More explicitly, π|X\E is an isomorphism onto its image, and
every connected component of E is mapped onto a single point.

The singular (complex analytic) variety Y is a two-dimensional symplectic variety, and π is a
symplectic resolution (see §7.2); thus we may apply Corollary 7.11 to describe the singular locus
of Y . The situation on surfaces is actually a classical subject and can be treated more explicitly:
since X is a K3 surface, all irreducible components Ei of E are smooth rational (−2)-curves by
adjunction; therefore, by [BPVdV84, §III.2.ii], the dual graph of each connected component of E
is a Dynkin An (n ≥ 1), Dn (n ≥ 4), E6, E7 or E8. In particular, the image of each connected
component is a du Val singularity: around the images of connected components of E, Y is locally
biholomorphic to

C2
�G G ⊂ SL2(C) finite subgroup.

In particular Y admits an orbifold structure; let us show that the affine structure on X \ E
induces an affine orbifold structure on Y . Let U be a simply connected neighborhood of a singular
point p ∈ Y which is biholomorphic to a neighborhood V of 0 in C2/G, and let {Ui} be an atlas
of U \ {p} by affine charts. The orbifold universal cover Ũ → U of U can be identified with the
restriction of the quotient map ρ : C2 → C2/G to Ṽ = ρ−1(V ). The affine charts Ui define by
pull-back affine charts on Ṽ \ {0}; since Ṽ \ {0} is simply connected, these affine charts glue
together to a global affine chart Ṽ \ {0} → C2 (the local developing map). By Hartogs principle,
such chart extends to {0}, defining an orbifold affine structure at p. This proves that on Y we can
define an affine orbifold structure.

Therefore, if we denote by ρ : Ỹ → Y the universal orbifold cover of Y , by Theorem 9.10 Ỹ
is a manifold and we can define a developing map

dev : Ỹ → C2

and a holonomy representation

hol : Γ := πorb1 (Y )→ Aff(C2).

As Aff(C2) can be embedded in GL3(C), by Selberg’s lemma (see [Rat06, §7.6 Corollary 4])
the image H := hol(Γ) admits a finite index subgroup H0 ⊂ H without torsion. Let Γ0 =
hol−1(H0) ⊂ Γ.
Let us prove that Γ0 acts without fixed points on Ỹ . Suppose by contradiction that p̃ ∈ ρ−1(p) ⊂ Ỹ
is a fixed point for some non-trivial γ ∈ Γ0; let us fix an affine orbifold chart U at a neighborhood
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of p which identifies with a neighborhood of 0 in C2/G, and let Ũ be the connected component
of ρ−1(U) which contains p̃; then the restriction ρ|

Ũ
: Ũ → U identifies with the restriction of the

natural projection C2 → C2/G. Since Y ∼= Ỹ /Γ and γ(p̃) = p̃, the action of γ on Ũ identifies
with an element of the finite group G ⊂ SL2(C). In particular γ|

Ũ
has finite order, and so does

hol(γ) ∈ H0, contradicting the definition of H0.
Now consider the quotient Y0 := Ỹ /Γ0; since Γ0 acts without fixed points, Y0 is a manifold.

Furthermore, since Γ0 has finite index in Γ, the natural map

ρ0 : Y0 = Ỹ�Γ0
→ Y ∼= Ỹ�Γ

∼= Y0�(Γ�Γ0

)
has finite fibres; in particular, Y0 is compact.

Since the automorphism f fixes E, it induces an automorphism fY : Y → Y . Let U be
the smooth locus of Y (which is in natural bijection with X \ E), and let U0 = ρ−1

0 (U). By
Proposition 11.2, there exists a finite étale cover ν : U1 → U0 such that the restriction f |U lifts
to an automorphism f1 : U1 → U1. The finite cover ν corresponds to a finite index subgroup Γ1

of π1(U0); since Y0 is smooth and codim(Y0 \ U0) = 2, π1(U0) is canonically isomorphic to
π1(Y0) = Γ0, and the group Γ1 ⊂ Γ0 defines a finite étale cover

ν : Y1 → Y0

which extends ν : U1 → U0. Then f1 is a pseudo-automorphism of the surface Y1, thus an au-
tomorphism (because f1 and f−1

1 do not contract any curve). Therefore, we have a commutative
diagram

Y1 Y1

Y Y

f1

ρ1 ρ1

fY

, φ1 := ρ0 ◦ ν

The fundamental group of Y1 is infinite: indeed, otherwise Γ would be finite, thus Ỹ would be
compact and the developing map would be constant, a contradiction.
Furthermore, since f has positive entropy, so does fY and, by the properties of topological entropy
(see [HK02, Page 36]), so does f1.

By [Can99, Proposition 1], the only surfaces with infinite fundamental group admitting posi-
tive entropy automorphisms are two-dimensional complex tori and their blow-ups. If Y1 contained
a rational curve C ∼= P1, then its universal cover Ỹ would also contain a P1; its image by dev
would be a point of C2, contradicting the fact that dev is a local diffeomorphism. This shows that
Y1 is a minimal surface, thus a torus.

This shows that the pair (X, f) is of "generalized Kummer type": X is obtained as a resolution
of Y1/G, where Y1 is a torus and G ⊂ Aut(Y1) is a finite group, and f : X → X comes from a
loxodromic automorphism of Y1. As shown in [CF03] (see also [CF05]), if (X, f) is of generalized
Kummer type, f is loxodromic and X is a K3 surface, then X is a Kummer surface (in the usual
sense). This concludes the proof.

9.2 Gromov’s A-structures

As we have seen, the notion of (G,X)-manifold often presumes a property of local homogeneity
for the structure one is trying to describe. In order to allow more general geometric structures, we
are going to introduce the notion of Gromov’s A-structures (which we will simply call geometric
structures). We refer to the reviews [Ben97, DG91, Dum14] or to the original article of Gromov
[Gro88].
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9.2.1 Jets and principal frame bundles

If M,N are two manifolds, the r-jet at p of the germ at p of a C∞ map f : (M,p) → (N, q),
which we will denote by Jrpf , is its class of equivalence modulo the relation "having the same
Taylor development up to the r-th order". We denote by Dr(Rn) (or simply Dr if the dimension
is clear from the context) the group of r-jets of local diffeomorphisms (Rn, 0) → (Rn, 0); it is a
real algebraic group (see §4.1.1). Remark that for all r ≥ 1, there exists a canonical surjection

Dr(Rn)� Dr−1(Rn).

Example 9.12. • D1(Rn) = GLn(R);

• Dr(R) is the group of r-jets of local diffeomorphisms (R, 0) → (R, 0); hence, Dr(R) ∼=
{
∑

i≥1 aix
i | a1 6= 0}/(xr+1), with group law given by the composition;

• more generally, the elements of Dr(Rn) are given by n-tuples of polynomials in n variables
modulo terms of total degree ≥ r + 1; the local invertibility condition is det(Df0) 6= 0 for
all f ∈ Dr(Rn) (where Df0 denotes the Jacobian matrix of f at 0).

For p ∈M and n, r ∈ N, denote by Jn,rMp the set of r-jets of germs of C∞ maps (Rn, 0)→
(M,p). The disjoint union of the Jn,r(M)p for all p ∈ M can be given the structure of a bundle
Jn,rM →M ; the group Dr(Rn) acts on Jn,rM by right multiplication. For example, the bundle
J1,1M is just the tangent bundle TM .
A C∞ map f : M → N induces a map between the jet bundles Jn,rf : Jn,rM → Jn,rN given
by Jn,rf(ψ) = Jrf ◦ ψ.
There exists a canonical injection

ir,s : Jn,r+sM → Jn,r(Jn,sM)

which is defined as follows: an element ψ ∈ Jn,r+sM is the (r + s)-jet at 0 of the germ of a
map ψ̃(Rn, 0)→ (M,p). Then the image of ψ is defined as the s-jet of the map (Rn, 0)→ JrM
which sends x ∈ Rn to the r-th jet at 0 of the map y 7→ ψ̃(x+ y). This definition does not depend
on the choice of ψ̃.

Now take n = dimM ; the r-th principal frame bundle Rr(M) is the open subset Jn,r corre-
sponding to jets of germs of diffeomorphisms (Rn, 0)→ (M,p). The action ofDr(Rn) on Jn,rM
preservesRr(M) and acts simply transitively on its fibres. In other words, the r-th principal frame
bundle is a principal bundle with structure group Rr(Rn).

Example 9.13. • R0(M) is just the trivial bundle of dimension 0 on M .

• Recall that D1(Rn) = GLn(R); hence, the first principal frame bundle is what is usually
called the frame bundle:

R1(M) = {(p, φ) | p ∈M, φ linear isomorphism : Rn ∼−→ TpM}

with the natural projection onto M .

9.2.2 Geometric structures in the Gromov sense

The following definition coincides with the concept of A-structure introduced by Gromov (where
A stands for "algebraic"; see[Gro88, DG91, Ben97]).

Definition 9.14. Let Z be a smooth quasi-projective variety over R equipped with an algebraic
action of the algebraic group Dr(Rn); a geometric structure of type Z and order r on a manifold
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M of dimension n is a smooth equivariant map g : Rr(M)→ Z, i.e. g(ψf) = f−1 · g(ψ), ∀ψ ∈
Rr(M) and ∀f ∈ Dr(Rn).
If M and Z are complex manifolds, we define in a similar way a holomorphic (or meromorphic)
geometric structure.

Remark 9.15. If φi : Ui ⊂ M
∼−→ Vi ⊂ Rn is a chart of M , the r-jet of φi defines a local

trivialization of the principal frame bundle Rr(M)|Ui ∼= Vi × Dr(Rn); a geometric structure of
type Z is defined by smooth maps gi : Vi → Z such that, denoting φij = φi ◦φ−1

j : φj(Ui∩Uj)→
φi(Ui ∩ Uj) the change of chart,

gi(φijx) = (Jrxφij) · gj(x) ∀x ∈ φj(Ui ∩ Uj).

Example 9.16. • Pseudo-Riemannian structures: take

r = 1, Z = {non-degenerate quadratic forms q on Rn};

Z is a Zariski-open subset of the set of symmetric matrices, with the action of D1(Rn) ∼=
GLn(R) given by φ · q = q ◦ φ−1. A geometric structure of type Z on a manifold M is
then a pseudo-Riemannian metric on M (Riemannian if the image of g is included in the
connected component of Z corresponding to positive definite quadratic forms). To see this,
take a point of (p, φ) ∈ R1(M); then φ is a linear isomorphism between the tangent space
TpM and Rn, which corresponds to the choice of a basis B of TpX . The image g(p, φ) ∈ Z
gives then the pseudo-Riemannian metric with respect to B; the equivariancy of g ensures
that the definition of the metric does not depend on the chosen basis.
If we take instead ZC = {non-degenerate quadratic forms q on Cn}, then a holomorphic
structure of type ZC on a complex manifold M is a holomorphic metric (remark that in the
complex case the signature is not defined).

• Conformal structures: intuitively, a conformal structure at a point p ∈ M is a measure of
angles in TpM . More accurately, a conformal structure on M is the datum at each point
of M of a Riemannian (or pseudo-Riemannian) metric modulo multiplication by strictly
positive real numbers. Therefore, it can be expressed as a structure with

r = 1, Z = {non-degenerate quadratic forms q on Rn}/R+

with the action of GLn(R) given by φ · [q] = [q ◦ φ−1]. Replacing Z by

ZC = {non-degenerate quadratic forms q on Cn}/C∗,

one obtains holomorphic conformal structures.

• Tensors: take

r = 1, Z = Rn with the natural action of GLn(R).

Then a structure of type Z is a vector field; in a similar way one can define a structure
corresponding to a differential form (or more generally a tensor).
One can impose additional conditions to a form: for example, a closed k-form is a structure

r = 2, Z = {1-jets at 0 of closed k-forms on Rn}.

Since the differential of a form only involves the first derivatives of its coefficients, it makes
sense to talk about a closed 1-jet, and for the same reason D2(Rn) acts naturally on Z.
Since the conditions on the coefficients are polynomial, Z is an algebraic subvariety of
{1-jets at 0 of k-forms on Rn}.
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• Distributions: take

r = 1, Z = Gr(k,Rn) = {V ⊂ Rn linear subspace of dimension k}

with the natural action of GLn(R); then a Z-structure on a manifold M is a distribution of
k-planes, i.e. a sub-vector bundle TF ⊂ TM of dimension k. Alternatively, one can adopt
the dual point of view and describe a distribution by its kernel (modulo the multiplicative
action of R∗):

r = 1, Z ′ = P{α = α1 ∧ . . . ∧ αn−k |αi ∈ (Rn)∗}

with the adjoint action of GLn(R).

• Foliations: a foliation is a distribution TF satisfying the integrability condition [X1, X2] ∈
TF for all local vector fields X1, X2 ∈ TF ;

r = 2, Z = {1-jets at 0 of integrable distributions of k-planes in Rn}.

By this we mean the following: a distribution of k-planes on Rn is a differentiable map
φ : Rn → Gr(k,Rn), and we take its 1-jet. The integrability condition only involves the
1-jets of two vector fields contained in TF , hence it makes sense to say that the 1-jet of a
distribution is integrable; one can check it on vector fields whose value at 0 forms a base
of TF0, therefore the conditions imposed on the coefficients are polynomial and Z is an
algebraic subvariety of {1-jets at 0 of distributions of k-planes in Rn}. Again since the Lie
brackets only depend on the 1-jet of vector fields, one can show that D2(Rn) acts alge-
braically on Z.
Adopting the dual point of view, a foliation is locally given by (the class modulo R∗ of)
a (n − k)-form ω such that ker(ω) has dimension k and which satisfies the integrability
condition dω ∈ ω ∧ Ω1

M ; thus a foliation can also be given by a structure

r = 2, Z ′ = P{1-jets at 0 of integrable (n− k)-forms on Rn};

as before, since the integrability condition only involves first derivatives, it makes sense to
talk about an integrable 1-jet; for the same reason, D2(Rn) acts on Z ′.

• A structure g of order r defines a structure gs of order r+ s for any s ≥ 0: it is the structure
of type Jn,sZ given by the composition

Rr+sM → Js(RrM)
Jn,sg−−−→ Jn,sZ

where the first map is the restriction of is,r : Jn,r+sM → Jn,s(Jn,r(M)) to Rr+sM .

• Superposition of structures: if g1, g2 are two structures of order r1, r2 and type Z1, Z2 re-
spectively, then the structure g1 × g2 is a structure of order max{r1, r2} and type Z1 × Z2,
which, roughly said, is the union of the two structures g1, g2.

9.2.3 Isometries and rigidity

Given a structure g : Rr(M)→ Z, a local isometry of g is a germ of diffeomorphism f : (U1, p1)→
(U2, p2) between neighborhoods of p1, p2 ∈M which preserves g, i.e. such that

g ◦ Jrp1
f = g on RrU1.
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We denote by Islocp1,p2
(g) (or simply by Islocp1,p2

when there is no risk of confusion) the set of germs
of local isometries between (neighborhoods of) p1 and p2; we then have a composition law

Islocp2,p3
× Islocp1,p2

→ Islocp1,p3

which defines a pseudo group structure on the disjoint union of all the Islocp,q; we call the resulting
subgroup Isloc(g) the pseudo-group of local isometries of g.
If Isloc(g) acts transitively on M , we say that the structure g is locally homogeneous.

For a given point p ∈M , the local isometries of g fixing p form a group, the isotropy group of
g at p.

For s ≥ 0, an isometric (r + s)-jet of g is the (r + s)-jet of the germ of a diffeomorphism
f : (U1, p1)→ (U2, p2) which preserves g at order s, i.e. such that

gs ◦ Jr+sf = gs on Rr+sp1
M.

Denote by Isr+sp1,p2
(g) (or Isr+sp1,p2

) the set of isometric (r + s)-jets from p1 to p2. Remark that the
jets of local isometries are always isometric jets; however, an isometric jet does not necessarily
extends to a local isometry.
The (r+ s)-jet of an isometric (r+ s+ 1)-jet is automatically isometric; thus we can define maps

Isr+s+1
p1,p2

(g)→ Isr+sp1,p2
(g).

Definition 9.17. A geometric structure g of order r is rigid at the order r + s0 (or (r + s0)-rigid)
if for all s ≥ s0 and for all x ∈M , the natural maps

Isr+s+1
x,x (g)→ Isr+sx,x (g).

are injective.
A meromorphic geometric structure is almost rigid if it is rigid on a Zariski-open dense subset of
M .

Example 9.18. • Thanks to the local bijectivity of the exponential map, isometric r-jets for
(pseudo-)Riemannian structures are uniquely determined by their Jacobian; in other words,
pseudo-Riemannian structures are rigid at the order 1; the same is true for holomorphic
metrics.

• Conformal structures are rigid at the order 2; this is essentially a consequence of Liouville
Theorem describing conformal automorphisms ofRm. See [DG91, Kob95]; see also [Bal00]
for a complete proof and [Fra03] for a shorter proof in the analytic case.

Proposition 9.19. Let X be a symplectic 2n-fold.

1. Let Φ be the meromorphic structure given by a symplectic form σ and two generically trans-
verse singular Lagrangian distributions (resp. foliations) F1,F2.
Then Φ is a meromorphic geometric structure of order 1 (resp. 2) which is almost rigid
at order 1; in other words, on a non-empty Zariski open subset of X local isometries are
uniquely determined by their Jacobian.

2. Let [Φ] be the meromorphic structure given by the class of a symplectic form σ modulo
multiplication by elements of C∗ and two generically transverse singular Lagrangian distri-
butions (resp. foliations) F1,F2.
Then [Φ] is a meromorphic geometric structure of order 1 (resp. 2) which is almost rigid
at order 2; in other words, on a non-empty Zariski open subset of X local isometries are
uniquely determined by their first and second partial derivatives.
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Proof. Let us prove the first assertion. Remark first that forms and distributions are structures of
order 1, whereas foliations are structures of order 2; therefore Φ is of order 1 or 2 accordingly.

For a general p ∈ X , consider the map

q : v ∈ TpX 7→ σ(v1, v2),

where v = v1 + v2 is the decomposition of v with respect to the direct sum TpX = TpF1⊕ TpF2.
Then q defines a holomorphic metric on a neighborhood of p, thus on the Zariski-open subset
U ⊂ X where the two foliations are transverse: indeed, for p ∈ U , there exist linear coordinates
p1, . . . pn, q1, . . . , qn on TpX such that, in these coordinates,

σp =

n∑
i=1

dpi ∧ dqi,

TpF1 = {q1 = . . . = qn = 0}, TpF2 = {p1 = . . . = pn = 0},

whence

q =
n∑
i=1

dpi.dqi.

Any local isometry of Φ|U has to preserve q, thus it is uniquely determined by its Jacobian (see
Example 9.18). This concludes the proof of the first assertion.

Now let us prove the second assertion. First, the class of a form modulo C∗ is a structure of
order 1 (with Z = P(

∧2(Cn)∗) and dual action of GLn(C)); hence, as before, the superposition
[Φ] has order 1 (for distributions) or 2 (for foliations).
We can repeat the above construction to obtain a holomorphic metric q, which is well-defined
modulo multiplication by elements of C∗; in other words, [Φ] induces a conformal structure on
a Zariski-open dense subset U ⊂ X . Since conformal structures are rigid at the order 2 (see
Example 9.18), so is [Φ]. This concludes the proof of the second claim.

9.2.4 Gromov’s open-dense orbit theorem

One of the main consequences of rigidity is that the analysis of the orbits of the pseudo-group of
local isometries is more handy than the general case. In the C∞ context, this is a consequence of
Gromov’s celebrated open-dense orbit theorem (see [Gro88, 3.1,3.3,3.4]):

Theorem 9.20 (Gromov’s open-dense orbit theorem). Let g be a rigid geometric structure on a
differentiable manifold M ; then, there exists a dense open set U ⊂ M such that the orbits of the
pseudogroup Isloc(g) are closed subvarieties.
In particular, if Isloc(g) has a dense orbit, then g is locally homogeneous on a dense open subset.

In the case of meromorphic structures, Dumitrescu has proven the following analogue, see
[Dum11, Theorem 2.1]:

Theorem 9.21. Let M be a connected complex manifold and let g be an almost rigid geometric
structure on M . Then there exists a positive codimensional analytic subset S ⊂ M and fibration
π : M \ S → B with differential of constant rank and such that M \ S is Isloc-invariant and the
fibres of π are exactly the orbits of the action of Isloc on M \ S.
In particular, if Isloc has a Zariski-dense orbit, then g is locally homogeneous outside of a nowhere
dense analytic subset.

In the case of loxodromic transformations of irreducible symplectic manifolds we obtain the
following:
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Corollary 9.22. Let f : X 99K X be a loxodromic birational transformation of an irreducible
symplectic manifold X and let g be an almost rigid geometric structure which is preserved by f
(i.e. f acts by local isometries on the points where it is defined). Then g is homogeneous on a
Zariski-open dense subset U ⊂ X .

Proof. By Theorem A, the f -orbits of very general points of X are Zariski-dense; hence Isloc(g)
has a Zariski-dense orbit. The claim follows from Theorem 9.21.

We are ready to prove Theorem 9.1.

Proof of Theorem 9.1. Let X be an irreducible symplectic manifold, and let
f : X 99K X be a loxodromic birational transformation preserving two generically transverse
Lagrangian distributions F1,F2.

Then f∗σ = ξσ for some ξ ∈ C∗, so that f preserves the structure [Φ]. If furthermore X is
projective, by Lemma 6.20, some iterate of f preserves Ω = σn; since f∗σ = ξσ by irreducibility,
some iterate of f preserves the structure Φ.

The structures Φ and [Φ] are rigid by Proposition 9.19; thus the claim follows from Corollary
9.22.

9.2.5 Research of local models

We close this Section with a discussion on the general strategy to analyse invariant structures for
loxodomic transformations.

As we have seen, geometric structures in the sense of Gromov are the natural frame to discuss
locally defined structures; take such a structure g on an irreducible symplectic manifold M . We
will suppose that g is rigid and preserved by a loxodromic transformation f : M 99K M ; then,
by Theorem A and Theorem 9.21, g is locally homogeneous on a non-empty Zariski-open subset
U ⊂ M . What one hopes in this situation is to describe one or more possible local models for g,
i.e. that g is actually a (G,X )-structure as in Section 9.1.

Although this is not always the case, one can try and find such models as follows. A Killing
field is a (local) vector field v preserving the structure g, i.e. such that the flows along v are local
isometries for g. We will denote by Gp (resp. Ip) the Lie algebra of germs of Killing fields at p
(resp. of germs of Killing fields vanishing at p). As g is rigid, Gp and Ip are finite-dimensional:
indeed, since local isometries are uniquely determined by a finite jet, then so are Killing fields.
Furthermore, if the structure is locally homogeneous on U , Gp and Ip do not actually depend on
the chosen point p ∈ U ; from now on we will assume local homogeneity and drop the p in the
notation.

Denote by G (resp. I) the simply connected Lie group having Lie algebra G (resp. I). Then I
is isomorphic to (the connected component of) the isotropy group Islocp,p for any p ∈ U .

The candidate for a local model is the homogeneous space G/I; however, in order for G/I to
be a manifold, one needs to check that I is a closed subgroup of G. If this is the case, g is actually
described by a (G,G/I)-structure.

Example 9.23. Let g be a meromorphic metric on a compact complex manifold M ; for exam-
ple, if σ is a holomorphic symplectic form and F1,F2 are two generically transverse Lagrangian
distributions, for p ∈M where F1 and F2 are transverse we may define

gp(v) = σp(π1v, π2v) v ∈ TpM,

where, for i = 1, 2, πi : TpM → TpFi is the projection with respect to the decomposition

TpM = TpF1 ⊕ TpF2;
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see the proof of Proposition 9.19 for more details.
Suppose that the structure g is rigid on a Zariski-open dense subset U ⊂M (e.g., M is irreducible
symplectic and g is preserved by a loxodromic transformation f : M 99KM ); in this case, the Lie
groups Gp and Ip defined above do no depend on the point p ∈ U .
Remark that the elements of Ip fix p and act as orthogonal transformations on TpM ; in particular
dim Ip ≤ dimO(n,C) = n(n − 1)/2, where n = dimM . In the case of maximal dimension
dim Ip = n(n− 2)/2, g has constant sectional curvature; up to rescaling, two cases are possible:

• zero sectional curvature, i.e. flat metric. In this case

G/I ∼= Isom(Cn)/SOn(C) ∼= Cn,

where Isom(Cn)GLn(C) denotes the group of affine automorphisms of Cn preserving the
standard metric; g corresponds then to a holomorphic euclidean structure, i.e. a (Isom(Cn),Cn)-
structure.

• sectional curvature = 1. In this case

G/I ∼= On+1(C)/On(C),

the "holomorphic n-sphere"; g corresponds then to a holomorphic spherical structure, i.e. a
(On+1(C)/On(C), On+1(C))-structure.

See [DZ09, Thu97] for more details about the models with constant sectional curvature; in [DZ09]
one can find explicit computations of G and I in dimension 3 and without assumptions on the
sectional curvature of g. In particular, (M, g) is locally biholomorphic to a G-invariant geometric
structure on X .

By a result of Mostow [Mos50], if Ip has codimension at most 4 in Gp, then it is closed. In
particular we obtain the following result (see [Dum14, Theorem 5]).

Theorem 9.24. Let M be a complex manifold of dimension ≤ 4, and let g be a locally homoge-
neous rigid geometric structure on M ; then g induces a (G,G/I)-structure on M , where G and
I are defined as above. Furthermore, (M, g) is locally isomorphic to a G-invariant geometric
structure on G/I .

Let us see how this applies to the symplectic case. Let f : X 99K X is a loxodromic transfor-
mation of an irreducible symplectic fourfold; suppose that f preserves two generically transverse
Lagrangian foliations. Then, the structure given by the symplectic structure plus the two foliations
(resp. a fixed symplectic form plus the two foliations if X is projective) is rigid, and defines a
(G,X)-structure on a Zariski-open dense subset of X .

Example 9.25. Let X be a symplectic fourfold, and let F1,F2,F3,F4 be four generically trans-
verse one-codimensional foliations; assume that the structure Φ given by the Fi and a symplectic
form is rigid and locally homogeneous on a Zariski-open dense subset U ⊂ X . This would hap-
pen for example if X were irreducible and Φ were preserved by a loxodromic transformation of
X (although by Corollary 7.2 this cannot happen).
Then, since Φ is locally homogeneous,

dimG = dim I + 4;

one can show that dim I ≤ 2, and find all the possible local models by a case by case analysis on
dim I and dim I(1) (the isometric 1-jets of local automorphisms of (X, p) fixing p).
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For example, letting Q = P1 × P1 \ diag ∼= PSL2(C) × PSL2(C)/C∗ (where C∗ acts
diagonally on PSL2(C)× PSL2(C)), one of the possible models is

(G,X ) = (Isom(C2)× C∗,C2 ×Q)

endowed with the symplectic form

σ = a12 dx1 ∧ dx2 + a34
dx3 ∧ dx4

(x3 − x4)2
,

where a12, a34 ∈ C∗, and coordinate foliations (the leaves of Fi are given by xi = const.).
An example of such a situation is a product S1×S2 of two-dimensional complex tori or Kum-

mer surfaces equipped with a pair of linear foliations.
If instead of considering four foliations one takes a 4-tissue of dimension 1 (i.e., roughly speak-
ing, the local data of four one-dimensional foliations), the same considerations are still true; this
situation appears on the two standard examples of dimension 4 (see Chapter 3).



Chapter 10

Conclusion and open questions

The aim of this thesis project was to describe the interaction between the geometry of compact
Kähler manifolds with trivial Chern class (more specifically irreducible symplectic manifolds)
and the dynamics of automorphisms/birational transformations acting on such a manifold; the
main focus was a description of invariant structures (fibrations, foliations, distributions, affine
structures...).

As we have seen, the birational transformations of an irreducible symplectic manifold can be
classified as loxodromic, parabolic or elliptic, the first having a priori a more complicated dynam-
ics; indeed, Theorem A shows that a loxodromic transformation is imprimitive (and in particular
the orbits of its very general points are Zariski-dense).
Additionally, I gave some restrictions on the foliations or distributions which can be preserved
by such a transformation f : by Theorem C and Corollary 7.2, if f preserves k > 1 generically
transverse distributions, then k = 2 and the two distributions are Lagrangian; preserved foliations
must satisfy some additional conditions (see Corollary 7.17 and 7.18).
Concerning more general structures, by Corollary 9.22 and Theorem 9.24 almost rigid meromor-
phic geometric structures preserved by f are automatically locally homogeneous on a Zariski-open
dense subset, and in dimension 2 or 4 they admit a local model in the sense of (G,X)-structures.
By Proposition 9.19, the structure defined by two generically transverse Lagrangian distributions
plus the symplectic structure is almost rigid, hence locally homogeneous.

In Chapter 6, I investigated birational transformations preserving a fibration: Theorem B treats
the case of transformations of a manifold with trivial or effective canonical bundle preserving a
fibration onto Pn and acting by an automorphism on it; in Theorem 6.22 and 6.25 I give some
results on preserved fibrations on Calabi-Yau threefolds.

10.1 More on structures preserved by loxodromic transformations

LetX be an irreducible symplectic manifold and let f : X 99K X be a loxodromic transformation.

• A first natural development of my work would be to classify loxodromic transformations
preserving a pair of Lagrangian distributions.

Conjecture 10.1. The only instances of a loxodromic transformation of an irreducible sym-
plectic manifold preserving a pair of Lagrangian distributions/foliations are the two exam-
ples of Kummer type of Chapter 3.

The machinery to attack the problem is already in place, at least for the case of X projective
of dimension 4: in this case we know that the structure defined by the two foliations and
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the symplectic form is locally homogeneous and modelled on some model manifold X on a
Zariski-open dense subset U ⊂ X . To manage (the divisorial part of) the exceptional locus
E = X \ U , we can contract its irreducible components using Lemma 7.3; then, at least if
X is affine, we get a structure of (G,X )-orbifold at the general points of the singularities
which appear upon contraction. This should help to describe E, and possibly to detect the
two-dimensional torus from which the transformation is constructed.

• More generally, the above strategy can be applied to try and classify rigid structures pre-
served by f .

• Generalizing Theorem 9.11 one can try and classify loxodromic transformations which pre-
serve an affine structure on a Zariski-open dense subset; again, the first step would be to
contract the components of the exceptional set and to analyze the resulting affine orbifold.

Conjecture 10.2. The only instances of a loxodromic transformation of an irreducible sym-
plectic manifold preserving an affine structure (defined on a Zariski-dense open set) are the
two examples of Kummer type of Chapter 3.

• In Corollary 7.17 and 7.18, I gave some restrictions on the foliations which can be preserved
by a loxodromic transformation: such a foliation cannot be defined by a global meromorphic
form without zeros in codimension 1, nor can f act by multiplication by a constant on a
meromorphic form defining the foliation.
In the two standard examples, we see that the preserved foliations are defined by pluri-
forms (more accurately squares of forms) without zeros in codimension 1, and that f acts
by multiplication by a constant on such forms.

Question 10.3. Are the standard examples the only instances of such a situation?

10.2 More on imprimitive transformations

Let f : X 99K X be an imprimitive transformation of a projective (or compact Kähler) manifold
X .

• It should be possible to weaken the assumptions of Theorem B; in particular, we hope that
the assumptions ρ(B) = b2(B) = 1 and K∗B ample are enough to conclude. The interest of
such assumption is explained by what follows: if X is an irreducible symplectic manifold
and π : X → B is a holomorphic fibration onto a Kähler manifold, Huybrechts showed,
following Matsushita, that dimB = dimX/2, ρ(B) = b2(B) = 1 and K∗B is ample.
The main motivation for studying fibrations onto Pn was Theorem 2.15, which allows to
construct equivariant fibrations for parabolic transformations of special classes of irreducible
symplectic manifolds; hoping that a similar result holds for general irreducible symplectic
manifolds (see Conjecture 2.1), it is natural to ask for the minimal assumptions that are
verified for the base of an equivariant holomorphic fibration.
Remark that, by [AC08, Theorem 3.6], if dimX = 4 and π : X 99K B is a meromorphic
fibration whose general fibres have Kodaira dimension 0, then there exists an irreducible
symplectic birational model of X on which the fibration becomes holomorphic.

• In the context of Theorem B, even knowing the action on the base, we still need to describe
the action on the fibres in order to completely grasp the dynamics of the automorphism;
motivated by Theorem 2.15, we may want to add the assumption that the fibres are abelian
varieties over which f acts by translations. The intuition is that, as happens for surfaces, the
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polynomial growth of ‖ (fn)∗ ‖ arises, roughly said, from a huge variation of the translation
vector1.

Conjecture 10.4. Let f : X → X be a parabolic transformation of a projective irreducible
symplectic manifold preserving the fibres of a Lagrangian fibration π : M 99K B (whose
smooth fibres are then abelian varieties); then f acts as a periodic translation on the fibres
over a dense subset of B with zero Lebesgue measure, and as a dense orbit translation on
the fibres over a full Lebesgue measure subset of B.

• We can try generalizing Theorem 1.30 to Calabi-Yau threefolds.

Conjecture 10.5. Let f : X → X be an automorphism of a Calabi-Yau threefold whose
action on cohomology is virtually unipotent and non-trivial. Then f admits an equivariant
non-trivial fibration.

In [Wil89, Wil98], Wilson has given some criteria to construct (elliptic) fibrations on X;
see Conjecture 6.1. His results together with the bounds on the action of the automorphism
in cohomology which I found in [LB14a] do not allow to conclude directly; however, I be-
lieve that with a deeper understanding of Wilson’s proof, depending heavily on the Minimal
Model Program, and possibly by using some dynamical systems machinery, one can prove
the result.

1The fibration being not a priori isotrivial, one has to consider at once the variation of fibres in the moduli space of
abelian varieties and the translation vector.
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Chapter 11

Appendix: lift of
pseudo-automorphisms to étale covers

Lemma 11.1. Let G be a finitely generated group, H ≤ G a finite index subgroup and φ : G→ G
an automorphism. Then there exists a finite index subgroup H ′ ≤ H such that φ(H ′) = H ′.

Proof. LetK =
⋂
g∈G gHg

−1 be the normal core ofH . ThenK is a normal, finite index subgroup
of H , and we are going to show that φN (K) = K for some N > 0.
The subgroups K,φ(K), φ2(K), . . . ≤ G are all normal subgroups of same index i; therefore,
each of them is the kernel of a surjective group morphism ψj : G → Gj , where the Gj-s are
groups of order i. The number of possible Gj-s is finite, and since G is finitely generated, for a
fixed Gj the number of morphisms G→ Gj is also finite. This implies that φm(K) = φn(K) for
some 0 ≤ n < m, thus φm−n(K) = K. Now let

H ′ =

m−n−1⋂
j=0

φj(K).

The subgroup H ′ has finite index in K, hence in H; furthermore, by the above discussion it is
clear that φ(H ′) ⊂ H ′. SinceH ′ and φ(H ′) have the same index inG, we must have equality.

As a consequence, we will show a property of lifting of pseudo-automorphisms to finite étale
covers.

Lemma 11.2. Let X be a complex manifold, ν : X ′ → X be a finite étale cover, and f : X 99K X
be a pseudo-automorphism (see §2.4).
Then there exists a finite étale cover η : X ′′ → X ′ ofX ′ such that f induces a pseudo-automorphism
f ′′ : X ′′ 99K X ′′.

Proof. Without loss of generality we may suppose that X ′ is connected. Since f is a pseudo-
automorphism, there exist open sets U, V ⊂ X such that

1. codim(X \ U), codim(X \ V ) ≥ 2;

2. f induces an isomorphism U ∼= V .

Denoting by U ′ = ν−1(U), V ′ = ν−1(V ) the inverse images of U and V , we want to show that,
up to replacing X ′ by a finite étale cover, f : U → V lifts to a map U ′ → V ′, i.e. there exists
f ′ : U ′ → V ′ such that ν ◦ f ′ = f ◦ ν.
Remark that, as ν is an étale cover, codim(X ′ \U ′) = codim(X \U) ≥ 2 and codim(X ′ \V ′) =
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codim(X \ V ) ≥ 2; furthermore, f ′ : U ′ → V ′ is automatically an isomorphism. In other words,
if a lift f ′ : U ′ → V ′ exists, then it defines a pseudo-automorphism f ′ : X ′ 99K X ′.

Fix some base point p ∈ U ∩ V , let q = f(p) ∈ U ∩ V , and fix p′ ∈ ν−1(p), q′ ∈ ν−1(q). By
a classical topological lemma, in order to check that f : U → V lifts to a morphism f ′ : U ′ → V ′,
one has to check that

f∗(ν∗(π1(U ′, p′))) ⊂ ν∗(π1(V ′, q′)),

where f∗ : π1(U, p)→ π1(V, q) and ν∗ : π1(U ′, p′)→ π1(U, p) (resp. ν∗ : π1(V ′, q′)→ π1(V, q))
denote the maps induced by f and ν.

Remark that, if W ⊂ Y is an analytic subset of a complex manifold Y whose complement
Y \W has codimension ≥ 2, then π1(Y ) ∼= π1(W ). More accurately, if q ∈ W , the inclusion
i : W ↪→ Y induces an isomorphism of fundamental groups

i∗ : π1(W, q)
∼−→ π1(Y, q).

In our situation, we get canonical isomorphisms

π1(X, p) ∼= π1(U, p) ∼= π1(V, p), π1(X ′, p′) ∼= π1(U ′, p′) ∼= π1(V ′, p′),

π1(X, q) ∼= π1(U, q) ∼= π1(V, q), π1(X ′, q′) ∼= π1(U ′, q′) ∼= π1(V ′, q′)

which commute with f∗ and ν∗. Therefore, we may rephrase the condition to lift f as

f∗(ν∗(π1(X ′, p′))) ⊂ ν∗(π1(X ′, q′)).

Let γ : [0, 1] → X ′ be a path relying p′ to q′; conjugation of loops by γ (resp. π ◦ γ) in-
duces a (non-canonical) isomorphism π1(X ′, p′) : π1(X ′, q′) (resp. π1(X, p) ∼= π1(X, q)); these
automorphisms commute with ν∗. Define, using these automorphisms,

G := π1(X, p) = π1(X, q), H = ν∗(π1(X ′, p′)) = ν∗(π1(X ′, q′)),

φ = f∗ : G→ G.

Now, G is finitely generated and H ⊂ G is a finite index subgroup; therefore, by Lemma
11.1, some finite index subgroup H ′ of H is f∗-invariant. Considering the finite cover X ′′ of X
corresponding to H ′ (which factors through ν), this means exactly that f lifts to f ′′ : X ′′ 99K X ′′.
We have showed that such a lift is automatically a pseudo-automorphism, so this concludes the
proof.
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[LOP16] Vladimir Lazić, Keiji Oguiso, and Thomas Peternell. The morrison-kawamata cone
conjecture and abundance on ricci flat manifolds. arXiv preprint arXiv:1611.00556,
2016.

[Mar11] Eyal Markman. A survey of Torelli and monodromy results for holomorphic-
symplectic varieties. In Complex and differential geometry, volume 8 of Springer
Proceedings in Mathematics, pages 257–322. Springer, Heidelberg, 2011.

[Mat00] Daisuke Matsushita. Equidimensionality of Lagrangian fibrations on holomorphic
symplectic manifolds. Math. Res. Lett., 7(4):389–391, 2000.

[Mat01] Daisuke Matsushita. Addendum: “On fibre space structures of a projective ir-
reducible symplectic manifold” [Topology 38 (1999), no. 1, 79–83; MR1644091
(99f:14054)]. Topology. An International Journal of Mathematics, 40(2):431–432,
2001.

[Mat13] Daisuke Matsushita. On isotropic divisors on irreducible symplectic manifolds. arXiv
preprint arXiv:1310.0896, 2013.

[McM02] Curtis T. McMullen. Dynamics on K3 surfaces: Salem numbers and Siegel disks.
Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal], 545:201–
233, 2002.

[Mil06] JS Milne. Algebraic groups and arithmetic groups. JS Milne, pages 1–219, 2006.

[Mir95] Rick Miranda. Algebraic curves and Riemann surfaces, volume 5 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, 1995.

[Miy87] Yoichi Miyaoka. The Chern classes and Kodaira dimension of a minimal variety.
In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages
449–476. North-Holland, Amsterdam, 1987.

[Miy88] Yoichi Miyaoka. On the Kodaira dimension of minimal threefolds. Math. Ann.,
281(2):325–332, 1988.

[Moi67] BG Moishezon. A criterion for projectivity of complete algebraic abstract varieties.
Amer. Math. Soc. Translations, 63:1–50, 1967.



176 BIBLIOGRAPHY

[Mos50] George Daniel Mostow. The extensibility of local Lie groups of transformations and
groups on surfaces. Annals of Mathematics. Second Series, 52:606–636, 1950.

[Nak04] Noboru Nakayama. Zariski-decomposition and abundance, volume 14 of MSJ Mem-
oirs. Mathematical Society of Japan, Tokyo, 2004.

[Nam01] Yoshinori Namikawa. Extension of 2-forms and symplectic varieties. Journal für die
Reine und Angewandte Mathematik. [Crelle’s Journal], 539:123–147, 2001.

[Nam06] Yoshinori Namikawa. On deformations of Q-factorial symplectic varieties. Journal
für die Reine und Angewandte Mathematik. [Crelle’s Journal], 599:97–110, 2006.

[NU73] Iku Nakamura and Kenji Ueno. An addition formula for Kodaira dimensions of ana-
lytic fibre bundles whose fibre are Moišezon manifolds. Journal of the Mathematical
Society of Japan, 25:363–371, 1973.

[NZ09] Noboru Nakayama and De-Qi Zhang. Building blocks of étale endomorphisms of
complex projective manifolds. Proceedings of the London Mathematical Society.
Third Series, 99(3):725–756, 2009.

[O’G99] Kieran G. O’Grady. Desingularized moduli spaces of sheaves on a K3. J. Reine
Angew. Math., 512:49–117, 1999.

[O’G03] Kieran G. O’Grady. A new six-dimensional irreducible symplectic variety. J. Alge-
braic Geom., 12(3):435–505, 2003.

[Ogu93] Keiji Oguiso. On algebraic fiber space structures on a Calabi-Yau 3-fold. Interna-
tional Journal of Mathematics, 4(3):439–465, 1993. With an appendix by Noboru
Nakayama.

[Ogu09] Keiji Oguiso. A remark on dynamical degrees of automorphisms of hyperkähler
manifolds. Manuscripta Mathematica, 130(1):101–111, 2009.

[Ogu16a] Keiji Oguiso. On automorphisms of the punctual Hilbert schemes of K3 surfaces.
European Journal of Mathematics, 2(1):246–261, 2016.

[Ogu16b] Keiji Oguiso. Pisot units, salem numbers and higher dimensional projective
manifolds with primitive automorphisms of positive entropy. arXiv preprint
arXiv:1608.03122, 2016.

[Ose68] Valery Iustinovich Oseledec. A multiplicative ergodic theorem. lyapunov charac-
teristic numbers for dynamical systems. Trans. Moscow Math. Soc, 19(2):197–231,
1968.

[OT15] Keiji Oguiso and Tuyen Trung Truong. Explicit examples of rational and Calabi-
Yau threefolds with primitive automorphisms of positive entropy. The University of
Tokyo. Journal of Mathematical Sciences, 22(1):361–385, 2015.

[Pes76] Ja. B. Pesin. Families of invariant manifolds that correspond to nonzero characteristic
exponents. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 40(6):1332–
1379, 1440, 1976.

[Pop11] M Popa. Modern aspects of the cohomological study of varieties. Lecture notes,
2011.



BIBLIOGRAPHY 177

[Rag07] M. S. Raghunathan. Discrete subgroups of Lie groups. The Mathematics Student,
(Special Centenary Volume):59–70 (2008), 2007.

[Rat06] John G. Ratcliffe. Foundations of hyperbolic manifolds, volume 149 of Graduate
Texts in Mathematics. Springer, New York, second edition, 2006.

[Rei80] Miles Reid. Canonical 3-folds. In Journées de Géometrie Algébrique d’Angers, Juil-
let 1979/Algebraic Geometry, Angers, 1979, pages 273–310. Sijthoff & Noordhoff,
Alphen aan den Rijn—Germantown, Md., 1980.

[Sal96] S. M. Salamon. On the cohomology of Kähler and hyper-Kähler manifolds. Topol-
ogy. An International Journal of Mathematics, 35(1):137–155, 1996.

[Sch86] Chad Schoen. On the geometry of a special determinantal hypersurface associated
to the Mumford-Horrocks vector bundle. Journal für die Reine und Angewandte
Mathematik. [Crelle’s Journal], 364:85–111, 1986.

[Tei79] Bernard Teissier. Du théorème de l’index de Hodge aux inégalités isopérimétriques.
Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A
et B, 288(4):A287–A289, 1979.

[Thu97] William P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35
of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1997.
Edited by Silvio Levy.

[Tit72] J. Tits. Free subgroups in linear groups. Journal of Algebra, 20:250–270, 1972.

[TM79] William P Thurston and John Willard Milnor. The geometry and topology of three-
manifolds. Princeton University Princeton, 1979.

[Tsu10] Hajime Tsuji. Global generation of the direct images of relative pluricanonical sys-
tems. arXiv preprint arXiv:1012.0884, 2010.

[Uen75] Kenji Ueno. Classification theory of algebraic varieties and compact complex
spaces. Lecture Notes in Mathematics, Vol. 439. Springer-Verlag, Berlin-New York,
1975. Notes written in collaboration with P. Cherenack.

[Ver96] M. Verbitsky. Cohomology of compact hyper-Kähler manifolds and its applications.
Geometric and Functional Analysis, 6(4):601–611, 1996.

[Ver13] Misha Verbitsky. Mapping class group and a global Torelli theorem for hyperkähler
manifolds. Duke Mathematical Journal, 162(15):2929–2986, 2013. Appendix A by
Eyal Markman.

[Wak58] Hidekiyo Wakakuwa. On Riemannian manifolds with homogeneous holonomy
group Sp(n). The Tohoku Mathematical Journal. Second Series, 10:274–303, 1958.

[Wei82] André Weil. Adeles and algebraic groups, volume 23 of Progress in Mathematics.
Birkhäuser, Boston, Mass., 1982. With appendices by M. Demazure and Takashi
Ono.

[Wie03] Jan Wierzba. Contractions of symplectic varieties. Journal of Algebraic Geometry,
12(3):507–534, 2003.



178 BIBLIOGRAPHY

[Wil89] P. M. H. Wilson. Calabi-Yau manifolds with large Picard number. Inventiones Math-
ematicae, 98(1):139–155, 1989.

[Wil98] P. M. H. Wilson. The existence of elliptic fibre space structures on Calabi-Yau
threefolds. II. Mathematical Proceedings of the Cambridge Philosophical Society,
123(2):259–262, 1998.

[Yom87] Y. Yomdin. Volume growth and entropy. Israel Journal of Mathematics, 57(3):285–
300, 1987.

[Zar62] Oscar Zariski. The theorem of Riemann-Roch for high multiples of an effective
divisor on an algebraic surface. Annals of Mathematics. Second Series, 76:560–615,
1962.


	Introduction
	Définitions, motivation et résultats connus
	Entropie topologique, degrés dynamiques
	Automorphismes des surfaces
	Feuilletages stables et instables

	Variétés dont la première classe de Chern est nulle
	Le théorème de décomposition de Beauville-Bogomolov
	Variétés symplectiques holomorphes irréductibles

	Primitivité des transformations loxodromiques
	Sous-variétés périodiques
	Zariski-densité des orbites
	Éléments de la preuve du Théorème A

	Transformations préservant une fibration
	Éléments de la preuve
	Fibrations sur les variétés de Calabi-Yau de dimension 3

	Autres structures invariantes
	Paires de feuilletages préservés
	(G,X)-structures
	Structures géométriques rigides au sens de Gromov


	I Preliminaries
	Dynamics of endomorphisms of complex manifolds
	Dynamical degrees and topological entropy
	Topological and measure-theoretic entropy
	The calculus of currents
	Definition of dynamical degrees and theorem of Gromov-Yomdin
	Properties of dynamical degrees
	Relative setting

	Holomorphic foliations
	Foliations as subsheaves of the tangent sheaf
	Foliations and differential forms

	Dynamics of automorphisms of surfaces
	Hodge index theorem
	Automorphisms of hyperbolic spaces
	Linear dynamics on two-dimensional tori
	Invariant fibrations
	The loxodromic case: periodic points and invariant foliations


	Irreducible symplectic manifolds
	Definition and examples
	The Beauville-Bogomolov decomposition theorem
	The Beauville-Bogomolov form
	Bimeromorphic maps between irreducible holomorphic symplectic manifolds
	The parabolic case
	Cohomology of irreducible symplectic manifolds
	Holomorphic forms
	Dynamical degrees of automorphisms


	Examples of loxodromic automorphisms
	Kummer surfaces
	Linear automorphisms and invariant foliations
	Affine structure outside the exceptional divisor

	The Hilbert scheme of points on a surface
	The Hilbert scheme of points on a Kummer surface
	Structure of FX
	Uniqueness of the invariant foliations

	Generalized Kummer variety
	Structure of FY
	Uniqueness of the invariant foliations

	Further examples

	Hyperbolic points for loxodromic automorphisms
	Action on cohomology of loxodromic automorphisms
	The orthogonal group O(p,q)
	Proof of Theorem 4.4

	Lyapounov exponents
	Construction of an invariant measure of maximal entropy
	Green currents and Dinh-Sibony measure
	Proof of Theorem 4.2



	II Invariant fibrations
	Primitivity of loxodromic transformations
	Meromorphic fibrations
	Density of orbits
	A key lemma
	Relative Iitaka fibration
	Proof of Theorem A
	Invariant subvarieties
	An alternative approach to Theorem A

	Preserved fibrations: action on the base
	Elements of p-adic integration
	p-adic and local fields
	Measure on K
	Integration on K-analytic manifolds

	Proof of Theorem B
	Invariant volume on X
	A first reduction of g
	The field of coefficients
	Key lemma and conclusion

	Automorphisms of Calabi-Yau 3-folds preserving a fibration
	Automorphisms not admitting equivariant elliptic fibrations
	Existence of equivariant elliptic fibrations



	III Other invariant structures
	Pairs of invariant foliations
	Contraction of exceptional divisors
	Divisorial Zariski decomposition
	The Minimal Model Program on irreducible symplectic manifolds

	Singular symplectic varieties
	Local structure
	Semi-smallness and stratification
	Extension of forms

	Proof of Theorem C
	Further results

	Reducible symplectic fourfolds
	Classification of reducible symplectic fourfolds
	Invariant foliations: general case and special examples
	Invariant foliations of dimension 1 and 3
	Invariant foliations of dimension 2

	Invariant geometric structures
	(G,X)-manifolds and (G,X)-orbifolds
	Developing map and holonomy
	(G,X)-orbifolds
	Application: preserved affine structures on K3 surfaces

	Gromov's A-structures
	Jets and principal frame bundles
	Geometric structures in the Gromov sense
	Isometries and rigidity
	Gromov's open-dense orbit theorem
	Research of local models


	Conclusion and open questions
	More on structures preserved by loxodromic transformations
	More on imprimitive transformations

	Appendix: lift of pseudo-automorphisms to étale covers




