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CHAPTER 1

Chapter 1: Introduction

Sommaire
1.1 Motivations and Context . . . . . . . . . .. ittt 1
1.1.1 Computed tomography . . . . .. . ... ..o 2
1.1.2 Clinical interest . . . . . . . . . . . e 2
1.2 Previous work . . . . . . . . e e e e e e e e e 3
1.2.1 Analytical approach . . . . . . . ... o 3
1.2.2  Algebraic approach . . . . . . .. ..o o 3
1.2.3 Regularization in iterative image reconstruction . . . . . . . . .. .. ... 5
1.3 Contributions . . . . . . . . . . L e e e e e e e e e e e 6

1.1 Motivations and Context

This work was financially suppoted by France CIFRE! convention Number 2013/0971 and
TED? Moirans, and follows a seminal work conducted by Han Wang (CIFRE 220/2008), see
[wang2011methodes].

The main idea of the project is to exploit the latest advances in the field of applied math-
ematics and computer sciences in order to study, design and implement algorithms dedicated
to 3D cone beam reconstruction from X-Ray flat panel detectors targeting clinically relevant
usecases.

Among the most iconic breakthrough that motivated this work, we can cite the birth of
the compressed sensing theory in 2006, see [candes2006robust| and the first release of the
CUDA? devlopment kit, a proprietary DSL* from NVidia, dedicated to GPGPU? in 2007.

Those breakthrough, although not directly related to each other, resulted in numerous
subsequent discoveries or new applications in the field of randomized linear algebra, graph

! Conventions Industrielles de Formation par la REcherche
2TED Thales Electron Devices SAS

3 Compute Unified Device Architecture

*Domain Specific Language

5 General Purpose Computing on Graphics Processing Units



2 Chapter 1. Chapter 1: Introduction

theory, large scale optimization, computer vision, machine learning and found applications in
many other fast growing fields of the digital industry.

In this study, we will restrict ourselves to the problem of CBCT® reconstruction, and we
will try to make some links with the aforementioned fields when needed.

1.1.1 Computed tomography

Computed tomography is a technique that aims to provide a measure of a given property of
the interior of a physical object, given a set of exterior projection measurement.

Although multiple types of tomography exists, based on positron emission, fluoresence,
electron beam, seismic imaging, we will restrict our attention to the most widely used modality
which is the X-Ray transmission tomography for density reconstruction. CT is a mature
technology, and examples of the use of such techniques in the everyday life arise in industry,
for NDT7 but also fo security check in aiports, or dental and angiograpic imaging in hospitals.

We can summarize this modality as a two step method:

e Acquisition: the system acquire a set of X-Ray transmission images along a trajectory,
either dictated by the movment of the X-Ray source, the detector, the object or a specific
combination of the three elements.

e Reconstruction: For every point of the space, that can lie over a predefined grid, or an
adapted representation system, an attenuation coeflicient is derived such that those data
must be consistent with the acquisition data, the physical and geometrical property of
the acquisition model, and eventually some apriori.

In this thesis, we will mostly restrict our attention to the second point.

1.1.2 Clinical interest

This PhD project was carried out in the framework of the ANR® Voxelo, see [ANRVoxelo], in
collaboration with the CEA® List'?, which aimed at providing CBCT reconstruction algorithm,
exploiting few views for the diagnosis of osteoarthritis.

Cone beam tomography, when performed using C-Arm or dedicated extremity imaging
systems [carrino2013dedicated|, is potentially less expensive than helical CT, and may
allow a generalization of 3D imaging to annual screening of degenerative bone disease like

6 Cone Beam Computed Tomography

"Non Destructive Testing

8 Agence Nationale de la Recherche

® Commissariat & ’énergie atomique et auz énergies alternatives
10 Laboratoire d’Intégration de Systémes et des Technologies



1.2. Previous work 3

osteoporosis or osteoarthritis. Frequent assessment of anatomical metrics over bones and
joints motivates the design of reconstruction algorithms capable of accurate retrieval of bone
microstructure from low dose acquisitions.

1.2 Previous work

1.2.1 Analytical approach

The mathematics of analytical tomography are known for a long time, the first work on this
topic dates back to 1917, when Johann Radon introduced the 2D Radon transfom, along with
its inversion formula. In this work, the solution for the inversion of the Radon transform, and
subsequent analysis heavily relies on the pojection-slice theorem. It is worth noting that the
discretization of the Radon transform in 2D for parallel and fan beam geometry gave bith to
the practical FBP'! algorithm.

Extensions of this work to higher dimensional spaces led to interesting results in the field of
integral geometry, in particular the study of the reconstruction of 3D functions led to multiple
devlopment related to our problem.

Among these, we can mention the work of Tuy in [tuy1983inversion| that estab-
lished an inversion formula related to a model of acquisition trajectory in 3D, in addition
to a set of condition over this trajectory to ensure proper reconstruction. Grangeat in
[grangeat1991mathematical] also exposed an exact reconstruction formula based on the
derivative of the Radon transform. But one of the most widely used method, compatible with
an easy and fast implementation was the FDK!?, which is an appoximate formula, exposed in
|feldkamp1984practical|.

1.2.2 Algebraic approach
1.2.2.1 Analytical approach limitations

Although analytical methods are generally robust, rely on very few filtering parameters, and
support extremely fast implementations, able to reconstruct volumes in the matter of seconds,
they suffer some limitations.

The first limitation is related to the management of missing data: the analytical method
does not provide a clear framework to handle incomplete dataset: in the case where there
are some invalid pixels in the detector, there does not seem to be a simple image filter, or
weighting function allowing to handle such inconsistency in the acquisition model.

1 Filtered Back Projection
12 Feldkamyp, Davis and Kress method
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One annoying limitation is related to the modelization of the X-Ray transmission image
formation process: they are generally unable to account for informations known a piori, like
the size of the X-Ray source focal spot, its emission spectrum, or the spectral sensitivity of
the detector, the statistical property of the X-Ray flux, or the detector noise.

Another important features that analytical approaches lack, is the ability to incorporate a-
priori infomations about the reconstructed volume, often expressed as mathematical property,
like regularity, spatial or spectral support, or compressibility.

All the previous features can be incorporated when the tomographic reconstruction prob-
lem is recasted as a linear inverse problem, whose resolution rely on tools arising from the
field of linear algebra and more generally from the world of convex optimization.

1.2.2.2 First use of algebraic methods in tomography

The use of algebraic method in tomographic reconstruction is relatively new regarding to the
devlopment of the algorithm for solving linear problems. This is in part, due to the fact that
the discretization of the projection operator, and its transpose, the backprojection operator,
cannot be easily written down in their matrix form. The size of such matrices could often
exceed 10'2 to 106 in 3D, even if their sparsity lead to record only 10° to 10'° non zero terms,
such problem remained numerically intractable for a long time without the use of dedicated
methods.

The fact that projection and backprojection linear operators can be computed on the
fly, however, allowed researchers to experiments with some algorithms known for their fast
convergence, since 1970.

One of the first algebraic resolution method that have been applied to the prob-
lem of tomographic reconstruction was ART!?, see [gordon1970algebraic| latter fol-
lowed by SIRT' [gilbert1972iterative] and, a few years later, the famous SART', see
|[andersen1984simultaneous].

The ART method was actually an instance of the Kaczmarz method applied to tomography,
which itself is an instance of a more general method called POCS!6, SART and SIRT can be
view as relaxed versions of the Kaczmarz.

As every pixel of the projection data defines a linear equality constraint, the solution of the
problem should be seen as a point in a high dimensional space, lying on the interesection of
all hyperplans defined by the equality constraints. As hyperplans are simple convex sets, ART
and its variant can be seen as geometric method projecting a current solution over successive
hyperplans, or moving in the direction of the barycenter of multiple hyperplans projections.

13 Algebraic Reconstruction Technique

Y Simultaneous Tterative Reconstruction Technique
15 Simultaneous Algebraic Reconstruction Technique
16 Projection Onto Conver Sets
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1.2.2.3 Statistical methods

Although SART, the subset variant of ART met an important success in the tomography
community, providing a relatively fast convergence, hence allowing to deal more elegantly
with missing or inconsistent data, it was not able to handle physical model of X-Ray images
formation properly as is.

This gave rise to a new paradigm in the tomography community, known as SIR!'7 or
someteimes as model-based reconstruction although the later is more general. One of the first
statistical reconstruction method was designed in the framework of PET'® imaging, and was
simply an instance of the well known EM!? algorithm, see [lange1984reconstruction]. It
aimed at maximizing the likelihood of the projection data, or equivalent minimizing their KL.20-
divergence, using the a-priori Poisson statistics of radionuclide decay over a set of unobserved
data.

Using this paradigm, many other likelihood formulation were derived, and solved using
either EM or gradient ascent like algorithms, we can cite for instance the use of noise statistics
for X-Ray transmission tomography [erdogan1999ordered|, and even the derivations of a
statistical flavour of reconstructed volume regularity based on a Gibbs prior over a RMF?!,
see [bouman1993generalized).

1.2.3 Regularization in iterative image reconstruction

Statistical apriori regarding projection noise, X-Rays spectrum, and other physical property
has been refined along the years, but a large number of studies and innovations arose from
the more general class of regularized iterative reconstruction. Regularized tomographic recon-
struction method are based on the algebraic formulation, they usually consist in optimizing a
composite objective function, preferably convex, which embeds informations about projection
data fidelity, and a metric measuring discrepancy with an apriori model of the data to be
reconstructed.

The litterature about tomographic reconstruction regularization is vast, and a lot
of models have been proposed, for instance we can cite the total variation model
[rudin1992nonlinear|, the heuristic of patch based redundancy [xu2009performance],
wavelet sparsity [yazdanpanah2016sparse|, dictionary based sparsity [zhang2016low|, and
more recently non local total variation [kim2016non]|, adaptive graph based total variation
[mahmood2016compressed|, and low rank approximation [ongie2016giraf].

It is interesting to see that sparsity priors attracted a lot of attention from the tomographic
reconstruction community, this success is probably a related to the discovery of the uncertainty

17 Statistical Iterative Reconstruction
18 positron Emission Tomography

19 Bxpectation Mazimization

20 Kullback Leibler

21 Random Markov Field
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principle exposed by Donoho in [donoho2001uncertainty]|, and later exploited by Candes
in its Compressive sensing theory [candes2006robust)].

1.3 Contributions

In this work, we propose to study multiple approach for leveraging GPU computing and
sparsity promoting priors in CBCT.

Signal processing considerations regarding the acquisition system modelization, and the
spatial discretization model will be adressed in chapter 2. Challenges related to tomographic
operator modelization, and implementation, along with geometric framework will be intro-
duced in chapter 3.

In the chapter 2, we propose to study how the X-Ray acquisition process can be modeled,
in particular we will focus on how data can be discretized, and analyze various solutions from
a signal processing point of view.

In chapter 3, we will study how tomographic operators can be modeled and implemented
using high performance hardware, and propose a simple framework allowing to project smooth
radially symmetric volume elements called blobs.

The next chapter 4 is dedicated to the study of the interaction of tomographic models
with various first order optimization methods to solve the algebraic formulation of the CBCT
problem.

In the last chapter 5, we will focus on the use of sparse priors for CBCT reconstruction,
and develop a new reconstruction method based on 3D complex directional wavelets.



CHAPTER 2

Chapter 2: Problem definition, and
object of the study

Sommaire
2.1 X-ray image formation modelization . . . . .. ... ... 000 L. 7
2.1.1 Basics of X-ray generator . . . . . . ... ... o 7
2.1.2  Deriving photon count from attenuation . . . . ... ... ... ... ... 8
2.1.3 Noise modeling in image formation . . . . . ... ... ... .. ... ... 9
2.1.4 A simple linear model . . . . .. . ... L L o 10
2.2 Signal processing tools for problem discretization . . . . ... ... .. 12
2.2.1 Detector discretization . . . . . . . ..o o o o 12
2.2.2  Fourier theory in 3 dimensions . . . . . . . ... ... .. oo 12
2.2.3 Sampling and Nyquist-Shannon frequency . . . . . .. ... ... .. ... 17
2.2.4 Efficient sampling for bandlimited function in a sphere . . . . . . . . . .. 22
2.2.5 Cartesian Sampling in 3D . . . . .. ... oL oL oo 27
2.2.6 Integral sampling process . . . . . . .. ... L oo 28
2.2.7 Spherically symmetric volume elements . . . . . ... ... ... .. ... 31
2.3 Conclusion . . . . .. .o i i i e e e e e e e e e e e e e e e 34

2.1 X-ray image formation modelization

2.1.1 Basics of X-ray generator

Most of the medical CT system use a X-Ray generator containing an X-Ray tube. Those
devices are actually vacuum tube containing two electrod, connected to a high voltage power
source, usually between 50 kV'! and 150 kV that generates a large electric potential difference.

The cathode often contains a coil, heated to high temperatures (700 — 800°) by a high
intensity electric current such that a flux of electrons is emitted due to thermionic effect. The
electrons expelled from the cathode are then accelerated to relativistic speeds towards the

Ykilo Volts
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anode due to the high electric potential difference. The point where the high energy electrons
beam collides with the anode is the place where the emission of the X-Ray take place, and is
called the focal spot.

The X-Ray spectrum depends on the anode material, and the electric potential difference
that accelerated the electrons, usually, one would seek for the smallest possible focal spot, as
in a convergent optical system, such that the image will not suffer from blur at the detector
spot, we illustrated this issue on figure 2.1.

The derivation of accurate X-Ray projection model, accounting for the focal spot blur is
an active topic of research, see for instance [tilley:16:msv].

It is also worth noting that, for a given electron flux, the thinner the focal spot is, the
higher the temperature of the anode material is, at this point. And high temparature often
result in a broader X-Ray spectrum, which is something we would like to avoid, as we will see
in the next section.

Focal Spot
Blur

XRay

Beam, Volume

element

X-Ray generator

Cathode +

Electron
beam,

Anode -

Figure 2.1: Simplified schematic of a X-Ray generator

2.1.2 Deriving photon count from attenuation

In order to model the image formation in X-Ray transmission imaging, it is important to
understand at a very basic level, how the X-Ray beam propagates and interact with matter
before hitting the detector, so that we will be able to recover information about the target
object.

We will first assume that, given a time slice of duration 7', our source S is able to generate
ngi(E) photons, of energy E, whose trajectory, assumed straight, will cross the surface of the
it" detector bin .

Now, during the experiment, those photons will travel through a 3D space, whose linear
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attenuation coefficient at position x, will be equal to u(z, E). Following the model presented
in [langel984reconstruction|, we can imagine that our ngi(F) independant photons expe-
rience a Bernouilli process, with two posible outcomes:

e The photon travels through the medium, along a straight line L; without interacting,
and reach the detector with a probability p;(E) =e Ji, waB)d

e The photon interacted with the medium, somewhere along its path, and did not reached
the detector with a probability 1 — p;(E)

The formula used for p;(F) was simply derived from the well known Lambert’s law.

Let Y;(E) be the random variable describing the number of photons hitting the i detector
bin, it is given by a sum of Bernouilli’s process :

ngi(E)—1

ViE)= > Yy(E) (2.1)

J=0

with Y;;(E) the binary random variable desribing the fact that the 4" photon reached the
ith detector bin, and

Le Cam showed that the probability density functions of sums of Bernouilli’s variable
such that the one described in equation 2.1 converges toward the following Poisson law of
parameter A > O:

AR

P(Yi(E) =) = e

(2.5)

Where A = E[Y;(E)] = ngi(E)p;(E)

2.1.3 Noise modeling in image formation

The statistical model seen in section 2.1.2, can be further refined, if we take into account a
random noise model for the detector. The most common noise model used in digital imaging
with flat panel detectors, can be derived from the physic of semiconductor and often relates
to an additive centered gaussian noise, with standard deviation o.
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In this case, we have a new random variable Z;(F) which is equivalent to the number of
photons actually detected by detector bin ¢. Its statistical model actually depends on the
value of Y;(F), which for the record, is the number of photons hitting the detector surface :

_(—k)?

P(Z(E) = KY(E) = 1) = ¢~ 2 (2.6)

the probability that the i** detector bin actually reports a photon count equal to k can be
expressed using the following marginal distribution:

+00
P(Z(E) = k) =Y _ P(Z(E) = k|Y:(E) = )P(Y;(E) = 1) (2.7)
=0
X1 e
:lza\/%e = e A (2.8)

Of course, in this case where gaussian and poissonian statistics are mixed, it may be
hard to retrieve the noise parameters. In particular, applying VST?, in order to be able to use
reconstruction method suited for homoscedastic data may be hazardous. Some studies showed
how to assess FPD? noise statistics in such challenging cases, see [hsieh2015compound].

It can be noticed that more accurate statistical model can be derived for non photon count-
ing detector using apriori knowledge about scintillator physical behaviour, and quantization
error of the digital to analog converters. Unfortunately infering all these model parameters,
need specific experiments that are beyond the scope of this work.

2.1.4 A simple linear model

In this thesis, we will mostly restrict ourselves to algebraic formulation without statistical
priors, it means that we will not consider the Poisson statistics of the input data, nor we will
consider the gaussian noise degrading the image, as seen in the model presented in section
2.1.3.

Instead, our study will only consider that each event realization was the most probable
case for the random variables Y;(F) and Z;(FE). Although we drop here some informations
about the physical system, our calculation will be simplified, and the methodological bias will
not be too important, as, for both statistical model, the most probable event coincide with
the expectation of the random variable.

Our ultra simplified estimator for the number of photons detected by the sensor i : y;(E)
then reads

2Variance Stabilizing Transformation
3Flat Panel Detector
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yi(E) = ngi(E)e” i #@E)d (2.9)

Where ngi(E) will be estimated from an acquisition with the exact same system, same
geometry, but without object, having X-Rays going through a medium with negligible atten-
uation, air for instance.

It should be noticed, that in real cases, for detectors that are not photon counting capable,
we will assume that the sensors are calibrated such that their output value is equal to the
number of detected photons up to a multiplicative ratio, accounting for the gain G; and the
quantum efficiency @Q;(F) that are assumed to be known priors.

In practice, the more the DQE* of the sensor is close to an ideal detector, the more our
simplified estimator will be suited for accurate reconstruction.

We can then derive a linear relationship between the attenuation of the medium, and the
signal of the detector:

ngi(B)e Jr @B _ gy (2.10)
7fLi w(x,E)dx _ yz(E)
e i(E) (2.11)

(2.12)

pi(E) > (2.13)

/ wu(z, E)dx = —log
L;

/ w(z, E)dx = —log
L;

Where p;(E) and p0;(E) are respectively the digital detector value for pixel ¢ while imaging
object and while imaging air.

In this work, we did not focused on spectral reconstruction of the target, which is a
specific topic that requires aprioi knowledges about the spectrum of the X-Ray generator,
and the quantum efficiency of the detector, we will then even simplify our model towards a
monochromatic imaging model:

/Li (z)dz = —log <;’5) (2.14)

4 Detective Quantum Efficiency
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2.2 Signal processing tools for problem discretization

2.2.1 Detector discretization

Most of the digital detectors used in X-Ray imaging have a rectangular shape, and, their
sensitive area is made of a set of square picture elements, called pixels. If we neglect the
quantization noise, the digital imaging process can be modeled as a two step sampling method
in the signal processing framework:

e The continuous image projection function p(z) over R?, is convolved with the function
Xpiz (%), which is the pixel indicator function of pixel (0, 0) centered over the coordinates

0
0
e The result is multiplied in direct space with the detector grid sampling operator

SMyeroetor (T) = Zk,l (M getector (?) — ). With § the Dirac distribution, and k, the

number of pixels respecticely in x and y direction.

Where Mgetector 18 a diagonal matrix that account for the pixel size. Here, the image
sampling model may be subject to aliasing, because the Fourier transform of the pixel indi-
cator is a tensor product of cardinal sine, which is not a good lowpass filter that cancels out
frequencies outside of the Shanon limit. Unfortunately, this issue is inherent to the detector,
and cannot be corrected by the use of another mathematical model during the reconstruction
process.

In the following pages, we will only be talking about the volume discretization, because
there is no real physical constraint behind the model choice, we will be able to study the
various possible solutions.

2.2.2 Fourier theory in 3 dimensions

Although radon transform inversion has been first derived in the framework of continuous
functions, we should keep in mind that we would like to be able to model our volume into a
set of small volume elements called voxels, lying over the nodes of a regular grid.

In order to understand the importance of the sampling grid in 3D volume discretization,
one has to first look at how Fourier series and Shannon theorem reads in higher dimensions.
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2.2.2.1 Multidimensional Fourier series
2.2.2.2 Simple orthogonal periodicity

In this section, we will consider a function x in the space of periodic and square integrable
functions of n variables:

H“QP(TLTQv"':TTL) (215)

such that x, is defined as:

z: R' = R (2.16)
(tl,tz,...,tn) — .Z’(tl,tg,...,tn)

where T1,T,...,T, € R are the period along each variables of coordinate of R", for
which the following periodicity property holds:

t1 n 0 ... 0 k1 ty
to 0 T2 .. 0 ]{32 to
N N I == (2.17)
or, using another notation:
e(F+ Dry 1y, 1 k) = 2(F) with k € Z" (2.18)

D, 1,,... 1, being the matrix of periodicity that describe the behaviour of the function. In
order to use Fourier theory tools in the common functional spaces, we impose that functions
of L?D(Tl, Ts,...,T),) are square integrable over one "‘hyper period "*:

/OTl /OTQ.../OT" (D)2 dF (2.19)

We also define Ey, p, . &, € LZP(Tl,TQ, .o T) as:

Ekl,kQ,,,,,kn (tl, to, ... ,tn) = E;;(E) (2.20)

(2.21)
= 2™ D1y 1y (2.22)
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We can now prove easily that Ej, x, .k, can be used to form an orthonormal basis of
]L%D(Tl, Ts,...,T,) using the classical dot product definition in complex functional spaces (her-
mitian form):

T1,13,....,T _
B By gy = [ B0 EAD di (229
T T Th X — . —
_ / ! 2. N / 6—227rt1 lllel e—217rt2 lQT:Q o efintnLannkn dtydty . .. dt,
0 0 0
(2.24)
T . 11—k
:/ e—2z7rt1 1T1 1 dtl (225)
0
T . ly—k
% / 6—2Z7Tt2 2T2 2 dtQ (226)
0
(2.27)
T ity Intn
X / e " T dt,, (2.28)
0
B T, ifk,=1,
0 otherwise

So we can see that the family \/ﬁEh,kz,...,kn forms an orthonormal basis of

L%(Ty,T%,...,T,) Now we can derive the multidimensional expression of the Fourier serie
of x:

x(tl) t27 v 7tn) = Z Ckliaijv--wknl (x)Ekli’kQJ"""k”l (tl’ t27 e 7tn) (229>
(kli,kgj,...,knl)EZ"

with

Chy ko eonsbin (T) = T T, (@, By koo JL2 (T T, ... Th) (2.30)
1 Ty T T
= T/ / / x(tlatZa---atn)Ekl,kQ,...,kzn dtldtg...dtn (231)
c4dn JO 0 0

1 T T> Th _2m<m+@++kntn>
- - ot to. ... .t e Ty T Th Tn ) dtydty . ..dt
TlTQTn/O /0 /0 ( 1,02, ) n) 16682 n

(2.32)
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2.2.2.3 Non orthogonal periodicity

Let’s now define a more subtle approach of periodicity, for a function x:

x: R" — R (2.33)
(t1,t2yeestn) = x(t1,t2,0stn)
such that
n
x <f+ Z /m&’z> = z(1) (2.34)
i=1
with W = (&1, Ws, ... ,wy) a rank-n matrix, hence non singular and forming a basis of R":

w=|la]|la]]|:]]|w (2.35)

It is interesting to notice that each column vectors from the matrix W corresponds to one
of the primitive translation vectors of a lattice. Using a linear combination of these vectors,
we can define an hyper-parallelogram Py, called primitive cell in the framework of lattices,
see figure 2.2 for an illustration in dimension 2.

Py =& € R, & = Wi with @ € [0, 1[" (2.36)

Py

Figure 2.2: Exemple of a primitive cell
defined by 2 lattice vectors in 2D
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This expression leads to a more general definition of periodicity:
We can say that = is W-periodic if Vk € Z™ and Yt € R™ we have

z(t+ Wk) = x(t) (2.37)

Then the space of square integrable functions over a non orthogonal period is defined as:

L% (W) = 2 W-periodic such that / |l2(t)]? dt < +o0 (2.38)

Py

Using a simple vector variable change in the integral over the hyperparallelogram Py, the
inner products for L% (W) reads:

@ pon = [ al@yBaf (2.39)

Py

= / c(Wid)y(Wad) |det(W)| da (2.40)
we[0,1[™

1 1 1
:/0 /O /0 a(Wit)y(Wa) |det(W)| durdus . ... duy, (2.41)

We can also define a new expression for the trigonometric polynomial used in the Fourier
series:

Bt eaooon (L1 2, - 1) = Ez(1) (2.42)
_ 2in(Frw 1) — 2imWR)TE (2.43)

The change of variable £ — W used to define the inner product of }L%;(W) in 2.2.2.3, can
be used to find a nice separable expression of (Er, Ef)]LfD(W):
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(Bg. Eauyn = [ Be® BAD df (2.41)
w
:/ 2T ETW WD) =2in (W IWD) | gos (W) dig (2.45)
[0,1]
— |det(W)] e~2m(-K)'T 45 (2.46)
we0,1[™
|d6t |/ / / —2imug (L1 —k1) —2z7ru2(l2 kg) ) 6—2i7run(ln—kn) duydus . .
(2.47)
1
— |det(W)] / e=2imunlli=k) 4y (2.48)
0
1 .
X/O e—217ru2(l2—k2)dt2 (249)
(2.50)
1
X/ e—2i7run(ln—kn)dtn (251)
0
1 ik, =1n
0 otherwise

(2.52)

We can conclude that the family WE forms an orthonormal basis of L% (W) From

there, we can see that the multidimensional expression of the Fourier serie of x exposed in
equation 2.2.2.2; is still valid, assuming that the Fourier coefficients now reads:

%) = T Eson (253)

2.2.3 Sampling and Nyquist-Shannon frequency
2.2.3.1 From discrete to continuous

For this part, we will consider a specific bandlimited, square integrable, function space called
PW for Paley-Wiener:

PWg, =x € L*(R) such that &(f) = 0Vf ¢ [~ Fy, Fy] (2.54)

Z(f) being the Fourier transform of x.

.duy,
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As PWp, represent a set of continuous function over R, we will be able to define a sampling
operator E in conjunction with a sampling frequency 7 such as:

E(x), =x <Z> ,n € Z,x € PWg, (2.55)

The following part will help us to deduce interesting properties on the sampling frequency:
let’s define

+oo
K= a(f— k) (2.56)
k=—o00
" is the n-periodic version of Z(f) , ie
+oo
T(f)=2(f)* > 6(f—kn) (2.57)
k=—o0

* denoting the convolution operator and ¢ the dirac distribution. It is interesting to notice
that this convolution with a Dirac comb in Fourier space is equivalent to the sampling operator
in the initial space, ie its inverse Fourier transform -~ is given by:

1 = 1
v(t) = 5a;(t) Yoo <t — k:n> (2.58)

k=—o00

whose equivalent definition is given by:

1P(), ift="12
t)y=<" n 2.59
() {O elsewhere ( )

As I' is n periodic, we can express it as a Fourier serie:

—+00

P()= Y D) (2.60)

n=-—00
—+00

= > ¢_n(T)e 2" (2.61)

n=—oo

Its Fourier coefficients are given by
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e () =2 /_2 T(f)eX™m% df (2.62)

1

SIS

We can see that, if 3 < Fy, T'(f) on [—Z, 2] will be polluted by its adjacent copies by

convolution, ie Z(f) * 6(f —n) or &(f) * 6(f + n) This problem is called aliasing, and it does
not allow for the following developments.

In the case where, Vf € [—2,2],T'(f) = &(f), ie in the case where 2 > Fy , we have :

=3

We recognize here the inverse Fourier transform of & calculated in ¢ = m ie:

NS

B(f)em I df (2.63)

(SIS

e n(T) = 22 <”> (2.64)

rh=Y (") 2ming (2.65)

We established a link between a discrete set of samples E(z),,n € Z and a periodized
version of Z(f), f € R expressed with its Fourier coefficients ¢,,n € Z under the condition
that 2 > Fy .

Now let’s see how z(t) can be recovered from Z(f):

+o00 .
2(t) = /_ B(f)e*miIt df (2.66)
:/2 L(f)e*mftaf (2.67)
n +oo
e
_LNS () [P e
o £ x(n)/_ge v 20
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The integral part of the previous expression is equivalent to the inverse Fourier transform
of a rectangular function, with a scale of , whose expression can be derived as follows:

2(t) = 717 f . (:;) sine (n (t _ Z)) (2.70)

n=—oo
with sinc,(x) = w To summarize what have been said, if 3 > Fp, we can reconstruct
perfectly both z(¢) and &(f) with:

+o00
x(t) = Z x (n) SINCry (t — n) (2.71)
n=—00 n N
+o00 1 n 27"jni :
s = | ZZee e (3) 7 o1 <
0 elsewhere

(2.72)

2.2.3.2 Shannon sampling in multidimensional spaces

Now we will try to apply Shannon theorem, to multidimensional periodic signals in the general
case.

Let 2 a continuous function of IL2(R™) such that the support of the Fourier transform of =
is finite: Supp £ C K C R™ with K a bounded subset of R”.

Let W be a non-singular periodicity matrix, as seen in the section 2.2.2.3. Let’s apply
the same strategy used by Shannon, and defined a W~ !-periodized version of the Fourier
transform of x:

L= a(f—-wk) (2.73)

This new expression follows a W~ periodic scheme in R” then it can be approximated by
a Fourier serie in n dimension, as defined in the section 2.2.2.3:

P(f) =3 cn(D)e2m W7 RTT (2.74)

=3 (D)2 WRTT (2.75)

with
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p(T) = Mm E,;>L§3<W4> (276)

—

in(WE)Tf
- / (2.77)

Under the condition that Py,—: is a tiling of R", and K C Py,—+ we have:

Cc

(D) = | det(W)|z(WE) (2.78)

Then, as seen in the 1-D version, we can derive the expression of the continuous fourier
transform of x, from a discrete set of elements of x:

r(f)y=Y &(f-w k) (2.79)

= [det(W)| S a(WE)e2inWRTS (2.80)

The Shannon condition here, as seen previously correspond to K C Py,—+, or in other
words, we must have

With xp,,_, respectively xx the characteristic function of Py,—+ an respectively K

Now we can rewrite continuous expression of  and its inverse fourier transform x expressed
from a discrete set of elements:

#(f) =xpy0 D =W E) (2.83)
kezn
() = [det(W)| > a(Wk)xe,, ., (Wk —1) (2.84)
kezn

Where X[[D‘:Vi . ~1 is the inverse Fourier transform of the regular tile characteristic function.
Actually, we can notice that when we have K C Py, there is an infinity of interpolation
function that give perfect estimation of x in any point of R", of the form 7}, for the Fourier
transform of the characteristic function of any bounded set L that verify K C L C Py-«
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2.2.4 Efficient sampling for bandlimited function in a sphere

Let’s now imagine that we have x a continuous function of L?(R") such that its Fourier
transform has a finite support: Supp # C K C R™ with K a L? ball of radius b in R". Now
that we have defined a function bandlimited in an hypersphere of R"™, we will try to find the
best possible sampling scheme, that will allow us to retrieve the whole function thanks to a
discrete set of its samples.

This exercise is of interest in CBCT, because there is no physical apriori that tends to
prove that signal of interest in reconstruction have anisotropic profiles in Fourier domain,
hence the choice of a isotropic “friendly” sampling grid.

First, we know that we are looking for W a non-singular periodicity matrix such that we
have:

K C Pyt (2.85)

Although it is not sufficient, we can translate this inclusion into a constraint over the
hypervolume of the hyper-parallelogram Py,—+ that must be at superior or equal of that of
the L? ball K of radius b: We can also say that if we want an efficient sampling, we want to
maximise the sampling steps in the direct space, in order to reduce the sampling effort. In the
fourier space, this is equivalent to reduce the distance between nodes, and we can translate
this problem into a minimisation of the sampling lattice’s primitive cell hypervolume, see
[middle1962sampling| for a more exhaustive presentation of the problem. Here is one
expression of the problem we want to solve for efficient sampling scheme:

Wng'n |det(W )| st |det(W™)|>V,(b) and K C Py (2.86)
E nxn

Where V;,(b) is the expression of the volume of the L? ball of radius b in R", that can be
expressed separately, between even and odd dimensional cases:

Var(b) = 7::62"3 (2.87)
k
Varr1(b) = Zmﬁ’f“ (2.88)

There are many existing proof of this formula, see [wang2005volumes| for more in-
formations. We used this approach in order to help understanding the link between the
sampling problem for n-dimensional bandlimited function, and the sphere packing problem,
however, solving this problem in the general case, appeared to be a difficult task. Fortunately,
[middle1962sampling]| recall in his work that [coxeter1951lextreme]| gave quadratic form
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that aimed to describe lattices vectors of optimal sphere packing lattices up to eight dimen-
sions. Although these packings were not proved to be optimal at that time, these vectors will
be sufficient for our work in 3 dimensions.

2.2.4.1 The Body Centered Cubic grid

In R3, Kepler conjectured in 1610 that the densest packing in 3D yielded a density of ﬁ R

74.05% .
This conjecture was only proved in 1998, in [hales1998kepler].

Many different matrix can be derived for the same solution. The one we choose in the
Fourier space could be described with the following periodicity matrix W~¢ in the Fourier
domain :

V2b =20 /2b
Wree =W = | V2b 0 —/2b (2.89)
0 V2o 0

with | det(W )| = 4,/(2)b3, the volume of the parallelotope that represent the primitive
cell of the periodic lattice. The packing density in this case reads:

sphere volume

TR 2.
density primitive cell volume (2.90)
4,13
§7Tb
= 2.91
44/203 (299)
~ 74.05% (2.92)

It is interesting to derive the packing density for the cartesian lattice for comparison:

26 0 0
Wee=10 26 0 (2.93)
0 0 2b

Where Wgé is the lattice matrix in Fourier space for spectrum periodization and
|det(WS5)| = 8b? is the volume of the corresponding cube.

sphere volume

density = 2.94
ety primitive cell surface (2.94)
413
gﬂ'b
TR 2.95
8b3 (2.95)

~ 52.36% (2.96)
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The density ratio of CC versus FCC is equal to % ~ 1,41 which imply that samples in
fourier space will be packed 1.41 times more densely.
The primitive cell related to the grid described by the matrix presented here generates the
so-called Face Centered Cubic lattice (FCC), whose Voronofi cell is the rhombic dodecahedron.
The name “Face Centered” is easily understood looking at the figure 2.3, where we can see

that the lattice nodes lies on the vertices and the center of the faces of a cube in R3.

Its reciprocal lattice can be expressed as:

1 0 _1
Q%Qb 2X?b
WBCC’ =W = m (1) @ (2.97)

Which generates the so-called Body Centered Cubic lattice (BCC), whose Voronoi cell is
the truncated octahedron. Here again, the name “Body Centered” is easily understood looking
at the figure 2.3, where we can see that the lattice nodes lies on the vertices and the center
of the body of a cube in R>.

Its volume is equal to |det(W)| = |det(llxv—t)| = 4\/1%3. It is interesting to derive the relative

sampling density for the cartesian lattice for comparison:

% 0 0
Wee=|[0 3 0 (2.98)
0 0 %

Where and Wge is the matrix lattice in direct space, with a primitive cell of volume

—t _ 1 _ 1
detWee)l = Taawzny| = o

WA ~0.71
g3 M
resulting in approximately 30% less samples on the direct grid keeping the same aliasing-free

In direct space, the samples will be distributed more sparsely, with a ratio of

property in fourier space, thus allowing for a perfect Shannon reconstruction

Reconstruction /Interpolation in R?® As seen in the previous section, the function

A -1
XPyy ¢
backs arising in sinc based interpolation applies in 3D, for instance the infinite support of this

can be used in a convolution for interpolation in 3D, unfortunately the same draw-

interpolation kernel.

Numerous approaches have been derived in order to provide better interpolation kernels
using those regular grids. Among the most successfull ones, we can cite the spline based
interpolation, whose optimality property, even for non sphere-bandlimited signals have been
studied in 2D in [condat2005hexagonal].
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(a) FCC lattice: Fourier space (b) FCC Voronoi cell: rhombic dodecahedron

(0]
(¢) BCC lattice: direct space (d) BCC Voronoi cell: truncated octahedron

Figure 2.3: Sampling lattices features in 3D

Concerning the spline based reconstruction, we have not found evidences that results
obtained by Condat & Al on non sphere bandlimited signals apply to 3D box splines but
some extension of those spline based interpolation to 3D for BCC and FCC grids have been
investigated in [entezari2008practical|, [entezari2009quasi|, [finkbeiner2010efficient],
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[moren2012efficient| and even more recently in [schold2015image]|.

2.2.4.2 Some properties of the body centered cubic lattice

Isotropy of the BCC Voronoi cell An interesting study on the use of the BCC for
3D tomographic reconstruction in [mueller2009optimal| previously highlighted the better
isotropy of BCC Voronoi cell, regarding the cube for CC and the rhombic dodecaedron for the
FCC. We decided here to give a more explicit comparison of the surface of various geometric
parallelotope, including the cube, where all volume are normalized to 1:

e Cube:
Surface = 6 X a
volume = a® with a the length of an edge

=6 x ( 3113)2 (2.99)
=6 (2.100)

2

Surface of the unit volume:

e Rhombic dodecahedron:
Surface = 8v/2a2
volume = 19—6\/§a3 with a the length of an edge
Surface of the unit volume:

1
3/16
3 5\/3
—5.34 (2.102)

=8v2

(2.101)

e Truncated octaedron:
Surface = (6 + 12v/3)a>
volume = 8v/2a® with a the length of an edge
Surface of the unit volume:

2
1
= (6 +12V/3) <W§> (2.103)

=5.31 (2.104)

e Sphere:
Surface = 47r?
volume = %wrg with r the radius of the sphere
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Surface of the unit volume:

1
= 41 (2.105)
3 %ﬂ.
=4.83 (2.106)

We can see that the truncated octahedron can pack more volume with less surface, and
then has a form closer to a sphere, yielding a better isotropy.

Neighborhood in the BCC |lattice and interpolation As stated in
|[entezari2008practical|, and as presented previously, the Voronoi cell of the BCC
lattice is a truncated octahedron. We can also consider the parallelotope where each vertex
correspond to one of the first immediate neighbors of a lattice point. This structure can be
found by Delaunay tetrahedralization, where each point q is a first neighbor of p if their
respective Voronoi cell share a non-degenerate face.

Using this definition, we can find 14 first neighbors that generates a rhombic dodecahedron:

Figure 2.4: BCC lattice:
rhombic dodecahedron using 14 first neighbors

Entezari & al, in |[entezari2008practical| and [entezari2009quasi| exploited this geo-
metrical structure in order to form advanced interpolation kernel based on 3D Box-Splines
that we will be using in the section 3.3.

2.2.5 Cartesian Sampling in 3D

Although it does not feature optimality property for functions bandlimited in a sphere, the
most common grid used in engineering for CT reconstruction is the cartesian grid, and is
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mathematically defined through a simple diagonal 3 x 3 matrix M., called, as seen earlier,
the lattice matrix, where each column defines a periodization vector.

tr 0 O
Megre = (U, 0,W)= | 0 ty O (2.107)
0 0 ¢tz

In this case, the nodes of the grid are defined by all possible integer linear combination of

the periodization vectors, this topic has already been studied in depth in section 2.2.2 along
with alternative regular grids.

The volume elements in this case, are the Voronoi cells of this grid: which are axis aligned
rectangular cuboid. We will use this model throughout this work, unless stated otherwise.
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Figure 2.5: Volume discretization using a Cartesian grid

2.2.6 Integral sampling process

In the case of integral measurments that arise in transmission tomography, the discretized
attenuation map g4, can be seen as a continuous attenuation function s (t), undergoing a
two step transformation, that has the following definition:

e A convolution of the function pu(f) over R3, by the function xo(#), which is the voxel
0
indicator, or voxel function related to the grid node of index 0 of coordinates | 0

0
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e Multiplication in direct space with the grid sampling operator Sy, d(t—) =
ZEezn ) (f - MgridE) With ¢ the Dirac distribution.

Following the definition of sampling given in equation 2.2.6, we can see 3 potential draw-
backs, that will guide our discretization strategy:

2.2.6.1 Spectral point of view

The convolution with a non isotropic volume element indicator that occurs during the sampling
scheme, can be analysed from a spectral point of view. Using the convolution theorem, this
convolution can be seen as a multiplication with the Fourier transform of the voxel indicator
function in Fourier space.

Figure 2.6: Rendering of the 3D DFT of a voxel indicator function

Unfortunately, as seen on figure 2.6, the Fourier transform of the cartesian grid canonical
voxel function, which is a tensor product of cardinal sine functions, has an anistotropic profile,
which tends to exhibit more high frequencies along axis.

The sampling step, that comes after the convolution, can be analysed using Shannon the-
orem. The multidimensional Shannon theory exposed in section 2.2.3, explains how aliasing
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cancellation property, in the case of general grids, rely on geometrical intersections between
spectral support.

In the case of cartesian grid, Shannon condition holds when considering spectral cubes of

data, such that any signal whose spectrum lies inside the Voronoi cell of the dual grid, here, the

1 1 1
2tx? 2ty 2tz

does not feature a perfect frequency cutoff behaviour, the previous convolution process does

cube of size is aliasing free. Unfortunately, as seen previously, as voxel indicator
not ensures that the aliasing property holds independently of the function u(x), especially for
axis aligned signals. Aliasing-free sampling condition then reduces to Shannong conditions
over ,u(f), hence relying on physical apriori about the spectrum support of the attenuation
function pu(z).

We can retain that aliasing can be reduced using 2 strategies:

e Increasing the grid resolution, or equivalently minimizing the determinant of the cor-
responding lattice matrix, so that the dual grid Voronoi cell match the physical signal
spectral support

e Replace the voxel function, from the direct grid Voronoi cell indicator function to a
smoother function exhibiting a proper antialiasing behaviour through high frequency
cutoff filtering.

2.2.6.2 Physical point of view

From a physical point of view, the discretization of the space leads to the so-called partial-
volume effects. The fact that voxels samples may account for a mixture of material with
different density restrain the definition of small structures, and hinder interpretation of CT
data, although some strategy based on apriori knowledge can be used to derive simple super-
resolution reconstruction, see for instance [wellington1987x].

The previous remark also tends to favor discretization based on high resolution grids.

2.2.6.3 Algebraic point of view

Independently of the method used to formalize the reconstruction problem, the input data will
be the X-ray detector pixels intensity, and, the expected output will be the correct attenuation
value for each voxel, that fit the projection data using the current model.

Unfortunately, the higher is the grid resolution, the worst the known/unknown ratio get,
because no additional information is added about the projection data. We will elaborate more
on this topic in chapter 4.
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2.2.7 Spherically symmetric volume elements

As seen in , Voronoi cell indicator functions of most of the regular grids in the direct domain
does not exhibit a good aliasing filtering due to their lack of regularity.

One can however think about replacing such functions, by smoother functions with higher
regularity defined for each grid node. Defining such functions amounts to extend the field of
filter design to the multi-dimensional case, where the difficulty is increased because regular
grids are not as isotropic as in 1 dimension. Plus, in order to be used in tomographic imaging
models, one should be able to compute integrals along lines through these 3D filters.

One of the best tradeoff that has been found is the use of low pass spherically or radially
symmetric functions, whose Abel transform is known. The fact that those spherically symmet-
ric functions have a spherically symmetric spectral profile, decreasing in a radially symmetric
manner also allows to use even more efficiently the BCC and FCC grids presented earlier.

Let’s review some of the most reknown radial basis functions in use in tomography

2.2.7.1 Kaiser-Bessel blob

Prolate spheroidal wave function Prolate spheroidal wave function are a set of func-
tions defined from a specific combinaison of windowing functions. Assuming we want to
window a signal in direct space such that its support is [—%, %], we can define the rectangular
windowing operator Ry such that, for every square integrable function z € L?(R) we have
suppRr x € [—%, %] This linear windowing operator in direct space, is then followed by
another windowing operator L, which aims at performing a rectangular windowing function
in the Fourier domain, equivalent to a perfect low pass filter, defined as suppLp & € [—F, F]
with & the Fourier transform of x. Lastly, the direct space windowing operator is applied to
the output of the low pass filter, which result in the composite operator RpLpRp which has

the nice property of being bounded, and self-adjoint.

Using a general version of the spectral theorem to bounded symmetric operators, we can
derive a non-empty set of orthogonal eigenfunctions v, such that Ry LpRri, = A)y,.

The family of functions 1), that have a finite support in direct space are called the PSWF?,
they have been studied in [slepian1961prolate|, along with the uncertainty principle in the
framework of signal processing.

Kaiser-Bessel windowing function In [harris1978use|, the author studied the prob-
lem of optimal windowing along with the concept of uncertainty, that intrinsically forbid a
perfect selectivity in both time and frequency. The author study multiple metrics, like the
optimal time-bandwidth product, the finite support function that minimize the the main lobe
width for a given sidelobe level, and the finite support function that maximizes the energy

5 Prolate Spheroidal Wave Functions
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in the band of frequencies [—F, F|. He recall that the later criteria was optimized by the
PSWF of order 0, which where parametrized by the time-bandwidth product, and that Kaiser
in |kaiser1966system| gave a simple approximation of these function using the zero-order
modified Bessel function of the first kind.

This function has one parameter « that allows to tune for the regularity/selectivity tradeof
between direct and Fourier space, and is defined as follows:

Iofray/1-(2)7] .
K(a,a,r) = Io(ma) f0<r<a (2.108)
0 otherwise

Where we have:

e [j stands for the modified Bessel function of the first kind order 0
e ¢ is the radius of the support of the function

e 7 is half of the time-bandwidth product. It can be understood as a spatial selectivity
parameter, or the inverse of a smoothness parameter, the higher it gets, the better is the
spatial selectivity, but the widest is the corresponding spectral window, hence lowering
the spectral selectivity and the lowpass filtering efficiency.

e 7 is the distance from the origin, where the function is evaluated

Generalized Kaiser-Bessel function for CT Kaiser-Bessel windowing function
has been studied in the specific framework of multidimensional CT imaging in
[lewitt1990multidimensional|, and the author gave a generalized version of the expres-
sion of its profile:

WD e 1)) e ey

Pxp(m,a,a,r) = Im(a) (2.109)
0 otherwise
along with the expression of its Fourier transform:
n nom 2_ (27 2
(27r)I /zz)a 1"/2+2m[\/ o 2(2n ‘21:) L i omar <«
Pxp(m,n,a,a,r) = " /o2~ (2mar)2]"/2 (2.110)
T (2m)"2ama™ Jnjaymly/ (2mar)?—a?]

Im(@) — [\/(2rar)2—a2]"/2+m if 2mar 2 o

Where n is the dimension of the euclidean space we are working in, which is 3 in our the
framework of our study.

The autho also derived a closed form expression of the Abel transform of K:
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o 2T T 2m 1 r 2 .
Agp(m,a,a,r) = Im(a)\/;{ L= ()1 P hnploy/1 - (3)7] if0<r<a (2.111)

0 otherwise

Kaiser-Bessel function is the most widely used RBFS for CT, its use has been reported in
[lewitt1992alternatives|, [matejl1995efficient| and [ziegler2006efficient|

2.2.7.2 (Gaussian blob

Heisenberg-Pauli-Weyl inequality The Heisenberg-Pauli-Weyl inequality reads:

(/Rn \ﬂ?!x(ﬂ!?df) </}R |ﬂ2@(ﬂ‘2df’> > !Z}"E (2.112)

Where x is a square integrable function: = € L*(R), and C is a constant from R. The
history of this inequality as well as its generalization to various power of || and |f| and other
L* spaces has been studied in [folland1997uncertainty].

This remarkable inequality establish a theoretical bound regarding the product of the
spread of a signal in time domain, and its spread in Fourier domain, where the spread is mea-
sured in terms of the order 2 moment. A simple conclusion we can drive from this inequality,
is that, we cannot design a filter that features a short support and a good frequency selectivity
in the mean time. Moreover, it is easy to show that a particular function reach the optimal
tradeof, namely the Gaussian function.

Gaussian blob for CT The use of Gaussian blob remained more confidential in CT re-
construction, we can cite the work of Hanson and Wecksung [hanson1985local| and more
recently Wang & Al in [wang2011limage|.

Let’s define this radial volume element, such that its integral over R? is normalized to 1:

e aZ (2.113)

PG (Ta Oé) =
And its Abel transform reads

Ac(a,r) = e~ a7 (2.114)

% Radial Basis Function



34 Chapter 2. Chapter 2: Problem definition, and object of the study

Unfortunately, although gaussian family functions are part of the Schwartz space, ie, it is
a rapidly decreasing function, its support is infinite. Regardless of how gaussian blob-based
will be implemented, it should always be analysed as a truncated gaussian, hence loosing
its appealing theoretical optimality properties. The radial truncation in direct space can
be analysed as a multiplication with a radially symmetric analog of the rectangle function,
sometimes called circ and its Fourier transform that is a radially symmetric analog of the
cardinal sine, based on Bessel functions, sometimes called jinc, but this topic is beyond the
scope of our study.

2.2.7.3 Mexican Hat

To our knowledge, the use of bandpass blobs for CT reconstruction have only been described
in [wang2011methodes|. In this work, the author describe a multiple band and multiscale
approach to image representation based on smooth RBF.

Among the multiple bandpass functions that have been described in this work, we found
the Mexican Hat blob to be one of the most interesting due to its simplicity, and numerical
efficiency. The mexican hat function encountered a large success in the field of computer
vision, geosciences, it has been used to define the Ricker wavelets, and is simply defined as
the second derivative of a gaussian.

This volume elements reads

1 1 2
Pyp(r,a) = ——= (7"2 - 2a2> e a2 (2.115)

And its Abel transform reads:

2
Appg(r,a) = rle”

DM‘ 3

(2.116)

As this volume element, when considered in 1D has two vanishing moments, and is
known to be a base component of a multiscale wavelet system, see [daubechies1992ten],
it could potentially allow for a composite representation model, see the work of Han in
[wang2011methodes| for more relevant informations about this topic.

2.3 Conclusion

In this chapter, we introduced the topic of image formation in X-Ray transmission tomography,
presented the simplified model we choose in this thesis, and justified our choice with simple
statistical consideration. We also introduced various discretization scheme, and the related
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issues, from a signal processing perspective. In the next chapter, we will see how those models
can be used in the framework of CBCT imaging, from a practical point of view.






CHAPTER 3

Chapter 3: High performance
implementation of tomographic

operators
Sommaire
3.1 Introduction . . ... .. .. ... i ittt 38
3.2 High performance computing with GPUs . . . . ... ... ....... 38
321 Abitofhistory . . . . ... 38
3.2.2  Specific hardware capability . . . . . ... ... oo oo 39
3.2.3 Programmability . . . . ... ..o 42
3.2.4 GPU in iterative tomographic reconstruction . . . . .. ... ... .. .. 46
3.3 Imaging models for CBCT tomography ... ... ............ 54
3.3.1 Algebraic formulation . . .. ... ... ... o Lo 54
3.3.2 Geometric consideration on the CBCT geometry . . ... ... ... ... 55
3.3.3 CBCT geometry and projection matrices . . . . ... ... .. ... ... 56
3.4 Classical tomographic operators. . . . .. ... ... ........... 65
3.4.1 Introduction . . . . . . . . ..o 65
3.4.2 Siddon projector . . . . . ...l 65
3.4.3 Ray traversal with trilinear interpolation . . . .. ... ... .. ... .. 65
3.4.4 Voxel based operator with interpolation . . . . . ... ... ... ..... 67
3.4.5 Other approaches . . . . . . . . . . . L 68
3.5 Blob based operator in CBCT geometry . . . . ...+ttt oo 70
3.5.1 From sphere projection to Conic equations . . . . ... ... ... .... 70
3.5.2 Computing sphere projection from arbitrary projection matrices . . . . . 70
3.5.3 Bounding box of the blob footprint . . . . . . ... ... 0L 79
3.5.4 Splatting theblob . . . . .. ... 82
3.6 Conclusion . .. ... .. ... ittt 87

37



Chapter 3. Chapter 3: High performance implementation of tomographic
38 operators

3.1 Introduction

In this chapter, we propose to study the design of tomographic operators in 3D cone beam
geometry with flat panel detector, and give some elements related to their implementation in
the framework of high performance computing with GPU.

The study will also recall some elements of projective geometry, that will be used through-
out the chapter in order to derive generic tomographic operators that should be valid for
arbitrary cone beam geometry, whithout any axis alignment apriori.

Then we will propose a simple framework to study and implement a blob based projector,
compliant with arbitrary cone beam geometry, and arbitrary volume discretization scheme.

3.2 High performance computing with GPUs

3.2.1 A bit of history

GPU is the acronym that stands for graphics processing unit, refers to a computing hardware
that was historically designed to execute in an efficient way the classical rendering pipeline,
outputing images to a frame buffer, that inteded to be printed out on a screen.

Although we can date the first use of GPU with the design of arcade system boards to the
1970’s, the first real chip that were able to execute a set of instructions dedicated to graphical
rendering of 2D or 3D geometric objects were designed in the 1980’s.

Since then, GPU became a one of the key element of the video gaming industry, allowing
developers to design increasingly more realistic rendering engines. Although, our tomographic
model can be interpreted as a specific case of rendering operation, in this thesis, we wil not
be interested in the prebuilt libraries dedicated to this task, instead, we will focus on GPGPU
for General-purpose computing on graphics processing units.

3.2.1.1 General-purpose computing on GPUs

Until the mid 1980’s, the architecture of GPU, conversely to the one of x86 processors only
allowed a small set of instructions often including low precision fixed point arithmetic for
texture mapping, and simple memory manipulation. However, it is interesting to see that, even
in this challenging envirronment, the first reported use of GPGPU for scientific computing
in [larsen2001fast| used texture maps, limited to 8-bit precision for their matrix-matrix
multiplication.

According to [du2012cudal, the first GPU to feature floating point unit did not arrived
until 2003, but since then, the success of 3D video game engines, and their increasing demand
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in computing power and memory bandwidth for rendering, illumination, texture mapping
drove the high end GPU market.

Although GPUs started to become powerful floating point coprocessors on personal com-
puters, their programmability remained poor, and mainly restricted to the interaction with
classical graphical rendering libraries like OpenGL or DirectX.

The first devlopment kit, fully compatible with GPGPU programming was released by
NVidia in the beginning of 2007, and it was the beginning of a new era for scientific computing.

3.2.2 Specific hardware capability

Although there are various GPU chip architectures, we will focus in this thesis on a class
of CUDA-capable architectures, proposed by NVidia, including Kepler, Maxwell, and Pascal,
with compute capability ranging from 3.0 to 6.0. An overview of the architecture of the GP100
Chip can be found on the figure 3.1.
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Figure 3.1: GP100 Chip architecture, Courtesy: NVidia

On the figure 3.1, we can see some specific hardware capabilities that we will be interested
in the framework of high performance tomographic reconstruction:

e The HBM2 memory: in 2016, this recent evolution of the GDDR5 memory offers a
extremely high bandwidth when coupled to a large memory bus of 4096 links: up to
732 GB/s (data: NVidia). This value represents approximately a ten fold improvment



40

Chapter 3. Chapter 3: High performance implementation of tomographic
operators

over the 76.8 GB/s of theoretical bandwidh the intel E5-2699V4 processor offers when
equipped with DDR4 SDRAM (data: Intel).

The L2 Cache: This element is of central importance in the memory hierarchy model of
modern computers. The GP100 has 4096 KB of unified L2 Cache, meaning that plays the
role of data cache, as well as instruction cache. This value compares less favorably with
the architecture of most modern CPU, like the Intel E5-2699V4, this later one having a
L2-L3 hybrid caching policy called smart-cache, based on a total memory capability of
55 MB.

The Giga-Thread Engine: Aside from its tremendous memory bandwidth, the
CUDA-capable architectures offers a hardware-based thread engine. It means that
thread context creation, ordonnancing, and instruction dispatch, that are managed in
blocks at this level, and by warp at the SM' level, can be handled in an extremely fast
manner, by a hardware component. Actually, the definition of thread in the world of
GPU computing differs greatly from the software defined thread managed by operating
systems. It can be seen as a single instance of kernel code execution in the framework
of GPU computing, but we will give more details about this model later.

The Streaming Multiprocessors: The blocks of threads managed by the Giga-
Thread Engine are dispatched to the multiprocessors, to be executed. One block of
thread can be attached to only one SM, but one SM can host up to 32 blocks simulta-
neously, within a limit dictated by resource consumption per thread (like register and
shared memory). The more SM there is per chip, the more parallel thread can be run
in parallel. The GP100 counts 56 SM, and blocks are limited to 1024 threads, it could
be tempting to deduce that the maximum number of thread that can be run in parallel
is 56 x 32 x 1024 = 1,835,008 but of course, it is very unlikely that a SM is able to
execute 32 full blocks of 1024 threads.

We have seen that the SM are hardware components of significant importance in the

architecture of NVidia GPUs, let’s now take a closer look at their structure, presented in
figure 3.2.

Here again, we will highlight some architecure specificity that we will try to leverage while

implementing reconstruction algorithms :

e Shared memory,Texture,L1 cache: After the registers, these storage banks are the

most efficient ones, both in terms of bandwidth and latency. Although, registers/L1 and
L2 cache memory hierarchy are nearly transparents for the programmer, unless specific
compilation flags are used, shared memory and texture cache capabilities must be used
explicitly in order to be leveraged. Shared memory can be dynamically allocated in
the cuda programming language, and its interest lies in the fact that all thread from
one block can read and write from it, allowing for fast communication, in the case of

! Streaming Multiprocessor
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Figure 3.2: Streaming Multiprocessor for the Pascal architecture, Courtesy: NVidia

reduction for instance. The interested reader can refer to the surface and texture object
API, as well as the shared memory in the NVidia documentation.

e Texture units: When using specific types of memory layouts called cuda arrays, it is
possible to specify the intrinsic dimension of the data in order to favor data locality aware
caching policies. One of the role of texture units is to manage memory transactions with
the texture cache, this task include addressing, and filtering. The hardware acceleration
of texture filtering, in particular linear, bilinear and trilinear texture filtering represents
an important asset for multiple signal processing related softwares.

e Warp scheduler and dispatch unit: Inside the SMs, thread can only be run in a
SIMD? manner that is somehow similar to the concept of vectorization for CPUs. The
group of threads that will be working in parallel on one vector is called a warp, and its
cardinality is equal to 32 on current NVidia GPUs. Warp scheduler and dispatch unit
are in charge of managing the warp execution workflow, so that the processing pipeline
utilization is optimized, and the occupancy of the SM is maximized. It should be noticed
that in the framework of CUDA computing, the occupancy stands for the ratio between
the actual number of warps running simultaneously and the maximum number of warps
that can theoretically run in parallel onto one SM.

e CUDA Cores: Cuda cores can be basically understood as being equivalents of ALU?
/ FPU* on modern CPUs, so that it would be wrong to compare one CUDA core from
NVidia architecture, to one Intel CPU core, that can be far more complex. As per 2016,
the latest Pascal architecture SMs embed 64 cuda cores, which adds up to 3584 cores for
a single card. A high end server CPU like the Intel E5-2699V4 embeds 22 cores, that can

2 Single Instruction Multiple Data
3 Arithmetic Logic Unit
* Floating Point Unit
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use the hyperthreading technology to run 44 threads in parallel, at a faster rate: 3.60
GHz versus 1480 MHz for the GP100. The large discrepancy between these numbers
indicates that one of the architecture will probably be more efficient at performing a
massive amount of floating point computations

e DP unit, SFU: The double precision units are simply FPUs dedicated to double preci-
sion floating point operand. Special function units are hardware component that offers
accelerated implementation of specific mathematical function like cosinus, exponential,
etc...

3.2.2.1 Exploring the memory hierarchy in CUDA

When profiling a CUDA code, it may be interesting to measure metrics related to the comput-
ing architecture presented in the beginning of section 3.2.2. For instance harvesting metrics
on the number of load/store and fp32 operations may allow to derive the arithmetic intensity
of a kernel. Similarly, knowing the ratio of cache-hit may allow to check if data locality or
the use of texture is relevant. We figured a simplified model of cuda memory hierarchy, along
with their nvprof debugger keywords, on figure 3.3.

3.2.3 Programmability

Most of the code developed during this thesis was written in C++, which is a multi-paradigm
language.

3.2.3.1 Modern C++ in gpu computing

There are many DSL that have been developed in order to leverage the computational power
of GPUs but most of them rely on two languages/APIs: OpenCL, which is an open standard,
and CUDA, a proprietary solution.

Although both language have their strenght and weaknesses, we found that CUDA pro-
vided a better expressivity, and most importantly, a better compatibility with modern stan-
dards of C++, like C+-+11, and probably c++14 in the future. For instance, the fact that
CUDA kernels can be templated, and do support variadic templates helps to build more
generic code and leverage compiler optimization capabilities.

During this thesis, we also extensively used a template-only library called Thrust, part of
the cuda toolkit, that we found very powerful because of its ability to enable writing code
following the functional paradigm.

Here is a summary of the functional concept that we used in cuda, or in c++ only code,
with examples:
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Figure 3.3: Memory hierarchy on NVidia GPUs, along with their profiler keywords

e closure A closure is a function that is able to embed some variables from the local con-
text where it has been defined. The introduction of lambda functions in C++11 allowed
to simulate a closure by using the concept of variable capture, that lowers the barriers
imposed by differentiated host and device scope. The fact that cuda supports ¢+-+11
lambda functions allows to ease programming by limiting explicit kernels parameters
definition.

e higher order functions Although at the time those lines are written, cuda 8 toolkit
does not support officially C++14, it is worth mentionning that this C++ standard
made the design of higher order functions easier. We figured an example in table 3.2.3.1
with a composition function. In this famous example, we can see that one can define
recursively a “comp” function with a variadic template that allows an arbitrary large
number of parameters, which are themselves functions. The comp function returns a
function, which represents the composition of all functions passed as parameters, without
making any apriori on their signature, all compliance checks are actually performed by
the compiler at compile-time.
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#include <iostream >

template<typename TO, typename... Tn>
auto comp( TO fO, Tn... fn) {
return [f0 ,fn...](auto a){ return fO(comp(fn...)(a)); };

}

template<typename TO0>
auto comp( TO f0 ) {
return [f0](auto a){ return fO0(a); };

}

auto square = [|(auto n) { return n*n; };

int main(int argc, charx argv[]) {

int t = 3;

auto square2 = comp(square ,square);

std ::cout << "Square_of_square_of_"<<t<<"_is_"<<square2 (t)<<
std :: endl;

return EXIT SUCCESS;

e Map Operator mapping over a range is a very common concept in functional program-

ming lanquages. The critical importance of this concept in the mapreduce pattern, pop-
ularized by Hadoop and Apache Spark technologies recently attracted a lot of attention,
hence it is increasingly used by software developers from many fields. Thrust imple-
ments multiple flavours of operator mapping, among which the most generic is probably
thrust::transform, that was designed to map any kind of unary or binary operator over
1 or 2 input range, and one output range.

Reduce Reduction based on associative operator is also a very iconic pattern in func-
tional programming, and has been extensively studied in the litterature of parallel com-
puting. However, although implementing this pattern in C++ using thrust may seem
straightforward, one must be warned about the common pitfall encountered in data re-
duction. When dealing with floating point operand, it should be noticed that most of the
classical arithmetic operators are generally not associative. The non-associativity result
in part from the fact that floating point operations may overflow, which can usually be
detected at runtime, but the other aspect is more insidious: due to the finite size of their
significand, arithmetic operator may silently convert small operands to zero, resulting
in large errors in the final reduction. The interested reader may refer to |ieee2008754|
and [whitehead2011precision] for detailed informations about floating point standard.
To our knowledge, there is no cuda library that features error compensation method,
like Kahan summation algorithm, see [robey2011search|, however, the thrust::reduce
function should allow one to define its custom reduction operator, and setup the Kahan
summation algorithm by hand. It should also be noticed that Thrust library assumes
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that all reduction operators are commutative. Non-commutative reduction operator
should be used through thrust::inclusive scan.

e Lazy evaluation This concept is also related to functional programming models, it al-
lows to define objects of interest as a specific combination of functions, without requiring
any evaluation unless a side effect demands it. This concept is not a builtin feature of
C++, nor cuda, but it can be set up relatively easily to a limited extent by the mean
of thrust::make transform_iterator. Objects of this class can be simply constructed
by using an input iterator, and an arbitrary operator, consistent with the input itera-
tor. In this framework, we can define a composition of transform iterators of arbitrary
depth, without requiring any calculation unless the transform iterator is dereferenced
at runtime, hence the concept of lazy evaluation. We present on table 3.2.3.1 a simple
exemple of this concept, that allows to compute any arbitrary long sum, of the sequence
uy = 2n + 1, while using counting iterator, which are “virtual” iterators that does not
require storage space.

#include <thrust/iterator/transform iterator.h>
#include <thrust/iterator/counting iterator.h>
#include <thrust/reduce.h>

#include <iostream >

int main(void) {

thrust :: counting iterator<int> beg(l);

auto doublelterator = thrust::make transform iterator( beg,
[] __host  device (decltype(xbeg) a){return 2xa;});
auto doublePlusOnelterator = thrust:: make transform iterator(
doublelterator ,
[] __host  device (decltype(xdoublelterator) a){return a
+15}) 5

std :: cout << "Sum_of_the_first_10_elements_of_the_sequence_is
"

—

<< thrust :: reduce(doublelterator ,doublelterator+10) <<std ::
endl ;

return (EXIT SUCCESS) ;

}

More generally this kind of design, based on the concept of lazy evaluation is of critical
importance in cuda, because operator to data mapping on the GPU implies a lot of
interaction between the host and the GPU through cuda API, some synchronization,
and more important, each kernel instance will require memory load and store operation.



Chapter 3. Chapter 3: High performance implementation of tomographic
46 operators

Compile-time operator fusion through the use of transform iterators allows the compiler
to refactor the various functors defined in the transform iterator into a single kernel,
which is equivalent to operator composition, with a minimum of actual load and store
operations, while keeping a loosely coupled design for the functors.

e zip Although it is not a critical concept in functional programming, the use of zip
operator, through thrust::make_zip iterator, can be used to design virtual structures
of arrays (SOA) very easily. Under the hood, thrust::make_zip iterator actually uses
tuples of reference, that can be dereferenced for reading or writing operations. Zip
iterators allows to extend all the previous concepts to a large range of applications.

3.2.4 GPU in iterative tomographic reconstruction

3.2.4.1 The matrix-vector product

As seen in the section 3.3.1, most of the iterative renconstruction technics are based on a
set of linear equation. However, in typical real experiments settings in CBCT, where one
image pixel account for one measurment, the number of measurments can vary from 5.107
(200 projections of size 500 x 500 pixels) to 5.10% (360 projections of 1200 x 1200 pixels). In
the mean time, a classical reconstruction grid can count from 256 ~ 2.107 to 1536° ~ 4.10°
volume elements. Representing the tomographic model, which takes into account every voxel
contribution to every single acquisition pixel would require a matrix of size 10 to 10'8, the
storage of such matrix in single precision floating point format would require up to 10 exabytes,
which is completely unfeasible in practice.

Fortunately, in most of the models, voxels in projective geometry have a relatively small
footprint, overlapping a few pixels on every view, so that the resulting matrix has a high
sparsity.

Sparsity of such matrices in parallel geometry has been studied in [flores2014parallel],
and, for small reconstruction size, the author were able to use a on the shelf sparse solver. In
[iborra2016development], the author did used an explicit matrix for the CBCT operators,
and exploited it in order to assess condition number of the matrix, along various discretization
parameters, and even used a QR based decomposition method to solve the problem. However,
this work is based on a previous study: [mora2008new|, where a specific geometry is assumed,
in order to exploit numerous symmetries in the matrix.

In our case, we did performed a short study on the matrix sparsity, and concluded that
an explicit matrix expression would not have been possible, even with the Siddon rendering
method for an arbitrary geometry, see figure 3.4.
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Size and density of the tomographic operator in CBCT geometry. ~Total number
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Figure 3.4: Matrix sparsity for the siddon projection model, using 40 views of 5.10° pixels.

3.2.4.2 GPU or CPU implementation

A large amount of litterature demonstrated that GPUs architecture was particularly well
suited for accelerating tomographic operators. One of the most iconic publication being
[rohkohl2009technical|, where the authors provided, through a website, and an opensource
benchmark platform, a way to compare the implementation of a voxel based backprojection
operator in CBCT geometry. As of today (Nov. 2016), the best CPU implementation in the
RabbitCT rankings is ranked 11th, and features only 3.56% of the performances of the best
implementation.

However, it must be noticed that some advanced tomographic operators, cannot easily
be implemented on GPUs, in the case they involve dynamic allocation for instance, see
[iborra2016development], or researcher have been able to provide fast implementation by
exploiting SIMD vectoization efficiently, see [sampson:16:imt]| for instance.

We conducted a short study in order to assess the relevance of GPU versus CPU imple-
mentation of a simple matrix-projection model, using two compilers: gcc, and icc, and two
parallelization libraries: OpenMP with its basic opensource runtime for gec, and intel runtime
for icc, as well as TBB?.

In the next section, we will see the various possible way to define the matrix vector product
Pu, seen in equation 3.2, and how they can be efficiently implemented on GPUs.

5 Thread Building Block
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SART per-iteration reconstruction runtime for various implementations

350
300
w 250 --OpenMP
£ ——OpenMP - ICC
o TBB
£ 200 BB - ICC
5 -~GPU_CUDA
= ——0penMP
150 ~—OpenMP - ICC
100
50
0

32 64 128 256 512
Number of voxel elements per direction

Figure 3.5: Per iteration runtime of the SART algorithm using Siddon projector, 40 views of
5.10° pixels. GPU:GTX680. CPU:Intel 17 3970X

3.2.4.3 Software architecture and data model for multi-GPU reconstruction

Although we have seen in section 3.2.4.2 that GPUs are particularly well suited to accelerate
tomogaphic operators because of their ability to execute code in parallel, one may be inter-
ested in parallelizing tomographic operator execution on multiple GPUs. Designing an efficient
software architecture that can parallelize various types of tomographics operators implemen-
tation over multiple GPUs is a challenging task, the authors of the book in |[jia2015graphics]
proposed an interesting set of tools to guide the design of such software.

Here, we will focus on the memory model we chose in order implement multiGPU recon-
struction. Our aim was to design a robust software architecture, as much as possible compliant
with the open-close principle, loosely coupled, that should allow us to perform any combina-
tion of GPU based tomographic operator for forward and back projection. In addition, one
of the constraint was that the software should not rely on strong apriori on the number of
accelerators, PCle network configuration, homogeneity of the hardware, nor on the available
memory on each of the GPUs, precluding from using peer-to-peer communication for instance.
The use of unified virtual addressing, and later unified memory, that was introduced in cuda
6, was also impractical in our case because of the fact that managed allocations needed as
much memory on the host, as on the device.

The enhancement of “cudaManagedMemory”, towards a completely transparent memory
management system, using on the fly page migration, etc... is very interesting. Unfortunately,
this features came with the most recent release of cuda 8, and its support is very limited
for hardware older than the current generation. In addition unified memory does not free the
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developer from managing the specific 2D /3D memory layout that make tomographic operators
very efficients, like texture memory.

In this framework, we designed a homemade multi-GPU memory management system,
whose purpose was to allow for streaming both volume and projection data into each GPU,
for further processing.

We figured the basic idea of this memory management system on the figure 3.6.

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Figure 3.6: Simplified memory model

To set-up this idea, we used a simple software pattern, presented on figure 3.7.

CudaTypedVector On the figure 3.7, we can see that the top class is CudaTypedVector,
this class acts like an interface that defines all operations that a vector should implement:
elementwise operations, as well as reduction operators, and binary operators (addition, mul-
tiplications, ...).

CudaStreamingCapable Vector Right under the top class, we define the CudaStreaming-
Capable Vector which is the one that implements at a high level, the streaming semantic, for
wich we spotted 4 main patterns, that we will describe in section 3.2.4.4. Those 4 patterns have
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Managing the streaming semantic for multiGPU
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Figure 3.7: Simple software architecture to handle streaming semantic

been implemented in different methods, each defining a generic way to broadcast operators to
independants chunks of memory, by launching asynchronously a preprocessing/computing/ac-
cumulating /postprocessing routine on all GPU recorded in the m_ vCudaGPUMemoryChunks
list. Although this does not figure on the UML diagram, this class is templated by the types of
the memory chunks, so that it can be used in multiple context, for instance the daughter class
can make access to the chunk vector and use the contained objects with their full capabilities.

One of the most important responsibility of CudaStreamingCapable Vector is also to keep
a reference on the main host memory buffer. In our case, this later is stored as a std::vector
using a thrust::pinned_ allocator to ensure maximal performance, and asynchronous behaviour
for host-device related memory copy. If there is no GPU, or if some operations can be executed
faster on the host, the class can decide to use its parent implementation on the full host vector
range, otherwise, it uses one of the 4 parallelization method.
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CudaVolumeContainer and CudaProjectionsContainer These two classes inherit
from CudaStreamingCapable Vector. They are used to handle the streaming semantic prop-
erly, based on the dimensionality of the data, and the access method. One should notice that
the CudaVolumeContainer manage 3D volumes, that may need to be accessed using read-only
trilinear filtering texture access. CudaProjectionsContainer also has some specific capabilities,
as it manages stack of 2D projections. These objects are responsible for constructing the N
memory chunks that will be stored in their parent list: m_vCudaGPUMemoryChunks, where
N stands for the number of cuda-compatible GPUs detected by the system.

CudaProjectionsStack CudaVozxelStack Those two classes stands for streaming buffers
on individual GPUs: either regular chunks of memory, or layout-specific arrays, with specific
textures API handles.

3.2.4.4 GPU for vector-vector operations

GPU implementation of simple linear algebra operators One question that may arise
while designing a GPU or multi-GPU based reconstruction application is wether or not it is
interesting to perform vector-vector operations on the GPU. To answer this question, one
has to define and characterize what are vector-vector operations. In our case, we derived 4
different patterns that covers most of the classical linear algebra operators on vectors:

Pattern | Unary transformation Binary transforma- | Reduction Binary Re-
tion duction
Examples| scalar ~ multiplication, | addition, substrac- | Lg, L1, Lo ...| Dot Prod-
soft thresholding, filling | tion, element wise | Lo, norm uct

with sequence or ran- | multiplication,
dom values, any unary | saxpy, any binary
operator... operator...

In order to allow for a multi-GPU parallelization of all these operations, we designed simple
code skeleton for each of these patterns, implemented in the CudaStreamingCapable Vector
class as:

e PerformAsyncUnaryStreamedCallOnAllGPU() : manages Unary transformation
o _ PerformCumaulative UnaryCallOnAllGPU() : manages Reduction

e PerformAsyncBinaryStreamedCallOnAllGPU() : manages Binary transformation
e _ PerformCumulativeBinaryCallOnAllGPU() : manages Binary Reduction

All those method are in charge of copying chunks of input data to the GPU memory,
launch the computation or reduction kernel, and then copy the result back to host if needed.
The work-item list is defined during construction in the subclass, either CudaProjectionsStack
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or CudaVozelStack, and the actual scheduling of those work items over each GPU relies on
OpenMP, such that heterogeneous systems can be addressed efficiently.

Experiments In order to assess the performance of our multiGPU parallelization model
regarding a multithreaded CPU approach, we designed 4 benchmarks challenging each of the
four pattern seen in the previous paragraph.

In all cases, the input data size was 10243 single precision floating point elements, the
hardware platform featured PCle Gen 3, 16x for each GPU, a part from the 3-GPU configu-
ration, where the GTX 750 Ti was connected in PCle Gen 2. The Core i7 3970X is a high-end
CPU, featuring 6 core, with hyperthreading technology (12 threads).

In each experiment, we challenged the minimal size of the atomic data chunk to be sent
to the GPUs, and reported the runtime. The CPU code was also based on the thrust library,
but compiled with the OpenMP backend, instead of the Cuda Backend.

Mapping performance for unary operator: multiplies
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Figure 3.8: UnaryOperator

In all our experiments, it appeared that the GPU parallelization of the operators was less
efficient than executing a parallel processing on the host through OpenMP. The main reason
that explains those results is the PCle bottleneck. On the unary operator, the host to device
plus device to host copy duration was up to 50x longer than the processing time on the GPU.
However, it can be seen on figure 3.10 that parallel reduction of a single vector on multiple
GPUs was one of the most promising method. In this case, memory chunk size should be
chosen carefully so that the overhead induced by API call, and the reduced performance of
the GPU reduction over small data chunks would not be too penalizing. and the only one
where our multi-GPU implementation was able to beat the CPU version.
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Mapping performance for binary operator: multiplies
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Figure 3.9: BinaryOperator

Reduction performance for single vector: sum
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Figure 3.10: UnaryReduction

Future work will include a redesign of the individual GPU parallelization code to feature
more fine-grained workload, able to overlap each other copy and computations process.
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Binary transformed reduction performance for vectors:
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Figure 3.11: BinaryReduction
3.3 Imaging models for CBCT tomography

3.3.1 Algebraic formulation

The idea of algebraic reconstruction method, is to discretize the tomographic problem using
the tools seen previously, it means that we will model the integral relation exposed in section
2.1.4 as a weighted sum of voxels attenuation coefficient times the geometrical contribution of
this voxel to the set of X-Ray beams hitting the detector bin under consideration.

The projection equation now reads

S ey = log () (3.1)

=0

Where

e Ny is the total number of grid nodes, or equivalently, the number of voxels
e u[j] is the attenuation value of the j** voxel

e c;; is the geometrical contribution of the 4% voxel, to the attenuation measured on the
it" detector bin
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If we arrange all NV volume elements into a vector V, and do the same for all K detector bin
attenuation values so that we have another vector P, we can write the tomographic problem
in a matrix form:

P =RV (3.2)

Where R is a K x N matrix, called the projection operator, we figured a simple schematic
in order to illustrate this model, see figure 3.12
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Figure 3.12: Algebraic formulation of the tomographic reconstruction problem

3.3.2 Geometric consideration on the CBCT geometry

Now that the scope of our study regarding the modelization of the problem has been defined,
we will give a short insight about the specific topic of CBCT system geometry. A good
introduction on the topic of CBCT geometry can be found in [galigekere2003cone|, in this
section, we will show how the basics of projective geometry can be used to define tomographic
operators.

First, we must recall, that any CBCT imaging system, with a flat panel detector, with no
specific source or electro-magnetic field induced distortion can be modeled using the pinhole
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camera model. Using this well known model, the X-Ray source can be identified as the pinhole,
and the flat panel detector as the image plane. The 3D object is in general located between
the source, and the image plane.

The geometrical projection operation in this case, amounts to apply an affine transfor-
mation, from a 3D coordinates point in a fixed world coordinate system, to a 2D projection
coordinates, standing for the coordinates of the pixels.

3.3.3 CBCT geometry and projection matrices

For the sake of simplicity, a simple trick can be used to change the affine transformation defined

above into a linear transform by adding a virtual coordinate to the 3D world coordinate system,
x

that will always equal to 1 :

—= N

In a second time, as we will use the framework of projective geometry, the output coordi-
nates of a projection point will be expressed in homogeneous coordinates, hence any projection
u

point onto the flat panel detector will be defined using 3 coordinates, as | v | instead of only

w
2.

In our context, those 3 coordinates will actually define a ray, that passes through the
X-Ray source, and also throug the flat panel, where the last coordinate will be respectively
equal to w = 0, and w = 1. For all points defined in projective geometry using this system,
the 2D projections coordinates over the flat panel detectors pixels will be obtained as follows:

()= (¢) 39

Now that we have defined the framework that will be used to handle geometric modeling of
our system, we can see that the actual transformation from the 3+1D to the 2+1D coordinate
system, can be written as a 3 X 4 matrix P

3.3.3.1 Projection matrices

Let P be our projection matrix, as defined in the introduction of section 3.3.3, in this case,
the projection of a point x, , . from the 3D world, onto a the flat panel detector, at pixel py 4
can be expressed as
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Pz, = puy (3.4)
P(O) P(1) P(2) P@E)\ [
P(4) P(5) P@6) P(7) T1=1v (3.5)
P(8) P(9) P(10) P(11) i

P(3)
as the vector | P(7) | stands for a position invariant translation in the projective space
P(11)
we will call it T', we may actually be interested in dropping it later, to switch from a linear
back to an affine transformation. To do so, we define the 3 X 3 matrix Py :

P(0) P(1) P(2)
Puy = | P(4) P(5) P(6) (3.6)
P(8) P(9) P(10)

The matrix P, can be seen as the product of 4 matrices P = DIEG, each defining a
specific physical transformation, successively in 5 coordinate systems or space C'y where:

G : Ctized grid 3D — Ctized orth 3D 18 4 X 4 equivalent to a 3D grid to grid transfor-
mation matrix.

E : Ctiged orth 3D — Crotated orth 3D stands for a 3 x 4 extrinsic matrix.
o I:Crotated orth 3D — Corth 2p stands for a 3 x 3 intrinsic matrix.

® D : Corthyp — Caet gria 2p i also a 3 X 3 matrix, equivalent to a 2D grid to grid
transformation matrix

G matrix It allows to transform a 4-uplet of coordinates from an arbitrary regular grid
coordinate system in 3D into its 4-uplet equivalent in the proper orthogonal coordinate system
with the same origin:

Dsp gria 0
G = gt 3.7
(P 9 57)

This 4 x 4 matrix contains the non-singular 3D grid matrix D3p 4riq, which is made of
3 vectors, where each column defines one of the periodization vector of the regular grid that
has been chosen to discretize data, as defined in section 2.2.4.
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E matrix The extrinsic matrix E can be thought of as the concatenation of a 3 x 3 unitary
matrix representing a rotation in R3, and a vector representing a translation:

rg T T2 T

FE = T3S T4 T T, (3.8)
re T7 T8 T,

- (R T;yz) (3.9)

R is a rotation matrix from the SO(3) group, and as such it can be factorized as a product
of 3 simple rotation matrices, of angles ¢, 0, ¢ along each axis of the coordinate system. It
allows to change from an arbitrary fixed cartesian world coordinates system C'ized orth 3Ds
to a detector axis aligned coordinate system Chotated orth 3D centered- 1N this intermediate
coordinate system, the x and y axis are colinear, respectively with the @ and v vectors of the
orthonormal coordinate system of the detector plan: Cy.4p, op. In this framework, z axis is
normal to the surface of the FPD. Before the application of the translation T;yz, the origin
of both coordinate systems coincides in one point called the isocenter.

-

The vector —T%,. corresponds to the coordinates of the source in Cyrotated orth 3D centereds
such that the coordinate system Ciotated orth 3p Origin coincides with the X-Ray source.

I matrix The intrisic matrix I is a 3 x 3 triangular matrix, with the following form:

(3.10)

~
I

o O =
O = O
=5 &

Where we can give the following interpretation:

e ug and vy stands for the coordinates of the projection of the source onto the projection
plane.

e f stands for the source-detector distance, in the 3D fixed world coordinate system.

D matrix The matrix D presented earlier accounts for the detector pixel grid, it allows a
linear transformation, from a 2D orthonormal coordinate system, to a pixel based detector
grid coordinate system.

Dyl o0
D:< ZdOgmd 1) (311)
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Where Dyg 4r4q is the non-singular 2 X 2 matrix, that contains the pixel grid periodization
column vector, following the regular grid definition we provided in 2.2.4. This definition
allows for any regularly sampled version of the 2D data coming from the detector.

We figured those coordinate systems on the figure 3.13.
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Figure 3.13: Simplified schematic of a CBCT system geometry

3.3.3.2 Calibration of projection matrices

Although the calibration of a tomographic system is a topic that goes beyond the scope
of this thesis, we must highlight the fact that this aspect is of crucial importance to allow
for a proper reconstruction. Most of the algebraic reconstruction models can handle various
inconsistency in the data, related to photon noise, detector noise, physical apriori on the X-Ray
spectrum, photon scattering, etc ... But assume a perfect modelization of the system geometry,
obtained through an anterior calibration process, see for instance [rougeel1993geometrical],
[cho2005accurate|.

Recent advances in integral geometry and computer vision allowed to estimate and cor-
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rect for geometrical inconsistencies in CBCT systems, based on ECCS for instance, see
[aichert2015epipolar]|.

In the general case, most of the calibration procedures use a physical phantom containing
radiopaque elements, generally beads, of known coordinates in the coordinate system of the
object, sometimes called fiducial points. Each of the elements should be designed such that
detection and estimation of the projection coordinate of their center can be easily performed
on the projection image. The pattern should be such that there is no ambiguity in pairing 2D
points coordinates with each of the 3D point.

Using a calibration phantom, and an adapted detection, and identification algorithm, we
should be given for each view a set of n pairs of coordinates:

e the 3+1D coordinates of a pattern element in the arbitrary object based coordinate
system, expressed as:

ro 1 ... Tp-1
20 21 ... Rp—1
1 1 ... 1

e the 2+1D coordinates of the previous element projection, expressed in terms of detector
pixel coordinates, that were arbitrarily chosen so that their last coordinate is normalized.

ug Uy ... Up-—1
Cn = Vo V1 ... Up-1 (313)
1 1 ... 1

Next, there are least 2 optimization problems that can be casted in order to recover the
system geometry:

Implicit calibration The implicit linear formulation: simply amounts to find the P matrix
that make the B,, and C,, to be consistent with each other such that we have:

PB, = C, (3.14)
BIPT =CT (3.15)

For the sake of simplicity, the matrix PT can be linearized as a vector P,:

Pin=| . (3.16)

S Epipolar Constistency Conditions
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And the B, and C),, matrices, resized accordingly:

o Yo 2 1 0 0 0 0
0 0 0 0 =z 1 0 0
0O 0 0 0 O 0 =z 1
r1 y1 -1 1 0 --- 0 O 0
Biin = 0 0 0 0 z 1 0 0 (3.17)
0O 0 0 0 O 0 = 1
Tn-1 Yn—-1 Zn-1 1 0 0 0 0
0 0 0 0 xp—1 -+ 1 0 0
0 0 0 0 O 0 xp_1 1
UuQ
0
1
Uy
U1
Up—1
Un—1
1
In this case, one has to solve the linear set of equation By Plin = Chiin. Alternatively,

a more realistic optimization problem is the least square version of the previous equality:
sz;nHBnlmHm = Cyinl|3 where we are looking for the minimal reprojection error in the least

square sense.

Explicit calibration The previous method is pretty easy to implement, unfortunately, it
is not truly consistent with the physical reality of the geometry model. Indeed, it may looks
like there are 12 DOF7 in our system geometry, however it is not the case, looking at the
description of our geometry model in 3.3.3.1, we see that we have actually 3 angles v, 8, ¢,
and 3 coordinates T3, T, T, to retrieve in the E matrix, and 3 distances ug, v, f to retrieve
in the I matrix, which makes a total of 9 DOF.

Taking all the geometrical relationships described in the section 3.3.3.1, we can setup a
non-linear calibration optimization problem, that can be casted using a least square approach
too, this is called explicit calibration. However this problem is far more complicated to solve,
and, as we will show in the next sections, we will be able to define tomographic operators
without having access to the explicit geometric system parameters.

"Degree Of Freedom
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3.3.3.3 Factorization of projection matrices

From what we have seen in section 3.3.3.2, performing an implicit geometric calibration with
a dedicated phantom may not be an extremely challenging task, assuming that fiducial point
extraction and identification are given. However, performing the full matrix factorization of
the form DIEG seen in section 3.3.3.1 may not be as trivial.

In practice, the D~ and G~! matrices are known, so that the problem amounts to solve
the I'E factorization. The fact that we can find the source coordinates using a simple method
exposed in  3.3.3.4, allows us to focus on factorizing IR, the product between I and the
rotation matrix R. The fact that one of this matrix is from SO(3), and the other is triangular
superior can be leveraged by using a generic QR factorization method, on (IR)™! (in order
to obtain an equivalent R() decomposition. This approach has been used for instance in
[fusiello2000compact]. However in practice, it appeared that small inconsistencies in the
projection matrices obtained from the calibration process yielded RQ factorization where the
intrisic matrix had a nonzero detector skewness.

Instead of using a re-orthogonalization process, we decided to focus in this chapter on
tomographic projectors that were only based on projection matrices, ignoring any other geo-
metric informations.

3.3.3.4 Finding the source coordinates

For any point x in 3D, that projects onto the point p when multiplied by the matrix P, it
is easy to see that any displacement of x in the direction of the source s will not change the
projection coordinates. We also recall that, if the homogeneous coordinates of a point p are
multiplied by a non-zero coefficient k € R*, then the resulting coordinates represents the same
point. We can summarize the above property as:

Viz € RxR3 3N eR* st Plz+As—uz)) = X\ Pz (3.19)
(1 =X)Px+ A\Ps = A\ Pz (3.20)
(1 =X —=X)Pz+ APs = (3.21)
(1=X—=Xo)Px = —\Ps (3.22)

There are multiple cases:

e \=0and 2 =0, in this case, the property holds for any value of s and o
e A=0and x # 6, in this case, there are two other option to consider:

x € ker(P) : in this case, the property holds for any value of s and Ao
x ¢ ker(P) : in this case, the property holds for any value of s if Ay =1 — A
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e A #0and z = 0, in this case, the property holds only if s € ker(P)
e \#£0and x # 0, in this case, there are two other option to consider:

x € ker(P) : in this case, the property holds only if s € ker(P)

x ¢ ker(P) : in this case, the property holds only if s € ker(P) and Ao =1 — A

We can conclude that the above definition for the source coordinates s holds only when
s € ker(P). For the sake of simplicity, we will look for the subspace of the null space of matrix

0
P, that intersect the hyperplan zT 8 = 1. This will give us the coordinates of the source
1
Sx
. s
in the form sy
1
We also define the matrix M as M = Ps_ull77 that we will be using in the next sections:
Pz =0 (3.23)
P(0) P(1) P2)\ [P(©3) zx 0
P(4) P(5) P(6) P(7) : sy =10 (3.24)
P(8) P(9) P(10) P(11) f 0
P(0) P(1) P(2) S P(3) 0
P4) P(B) P®6) |- |sy |+ PT)|=10 (3.25)
P8) P(9) P(10) Sz P(11) 0
Psubsm,y,z + f =0 (326)
Suys = Py - =T (3.27)
Spye = M - =T (3.28)
(3.29)

In the following developments, we assume that the 3D coordinates of the source, named

Sz, Sy , Sz, are known, as well as the matrix M.
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3.3.3.5 Defining a ray in CBCT geometry

Using the same strategy presented in section 3.3.3.4, we will now try to find the unitary
dy
dy
d;
0

- - d . -
direction vector d of the form d = = < %yz>, from z(t) = §+ td that describes the

U
path between the source point s and the projection p of known coordinates | v

1
Vte R*,INeR* st P(s+td) =Ap (3.30)
tPd =A\p (3.31)
A
Psubdxyz = )\2p with Ao = ; >0 (3.32)
dyy- =X Mp (3.33)
We just need to set Ao = m in order to ensure that dmz,,z is a unitary vector. Lets write
it down
= Mp

dpyr = — 3.34
v = il (334

1 MO)u+ M(1)v+ M(2)
dpyr = I M@3)u+ M(4)v + M(5) (3.35)

M(6)u+ M(T)v+ M(8)

M- o]l
1

For simplification, we will express the normalization factor as K, so we can rewrite d.
as:

| (%
oy = 2= | dy (3.36)
d.

=[ =

(
M(3)u+ M(4)v + M(5) (3.37)
(
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3.4 Classical tomographic operators

3.4.1 Introduction

Modeling the ray imaging process is a topic that can be viewed from multiple perspectives.
The interaction between matter and high energy electromagnetic wave such as X-Rays, at
a microscopic level has been tackled by physicists, and will not be discussed here. In the
framework of tomography, we will mostly be interested in designing fast and accurate linear
models of X-Ray images rendering, and their adjoints.

3.4.2 Siddon projector

One of the first model of projection was designed by Siddon in [siddon1985fast|. This model
assume an infinitely narrow beam, traveling from a source to the center of a detector bin, and
intersecting the various polygons representing the volume elements. This methods allows for
computing each source - detector bin trajectory independantly, hence it is called a ray-based
approach. The actual contribution of each voxel to the current detector bin is calculated as
the length of their geometrical intersection, as figured on the figure 3.14.

The strength of ray-based approach for projector, is that their implementation generally
imply a redundant access to read-only memory for the volume, and independant write access
to the projection memory accumulator. These advantages obviously becomes drawback for
the backprojection scheme, where one should make independant and non redundant acces to
read only projection memory, and redudant and concurrent writes to volume memory.

The ray based approach can be efficiently parallellized on both CPU and GPU hard-
ware, and open-source software featuring this projector has been released, see for instance
[ga02012fast|.

From a signal processing point of view however, we can see that this model of infinitely
narrow sampling beam will generate a non uniform sampling pattern across the volume in
divergent geometry. In practice, for each view, the sampling frequency will be higher in the
volume area closest to the source, and lower toward the detector. In practice this property

can lead to aliasing artifact, if the “virtual”, detector resolution is not well chosen, as studied
in ?7.

3.4.3 Ray traversal with trilinear interpolation

Although some variation of Siddon’s model have been proposed to optimize the rendering
complexity, one of the most widely used projector was designed by Kohler, Turbell and Grass
in [kohler2000efficient|. They proposed a model where the ray integration process was
computed by traveling along the source-detector trajectory, and sampling the volume using a
trilinear interpolation method, using step by step approach, as figured on figure 3.15.
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Figure 3.14
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: Siddon ray-based projector

" Source

The trilinear sampling operator S(z,y, z), in a voxel based grid, centered at the corner of

the [0, 0, 0]-indexed voxel reads as follows:

S(z,y,z)

Where:

o i = floor(zgis), o = frac(zgs) and xgs = x — 0.5

(
(
(
(

1—a)(1=B)(A =y)Tli, g, k] + a(l = B) (1 =T + 1,5, k]+

5(1 - 7)T[Za.] + 17k] + Ck,B(l - V)T[Z + 17j + 17k]+

o j = floor(yiis), B = frac(yais) and ygs =y — 0.5

o k= floor(zais), 7 = frac(zgis) and zgis = z — 0.5

)
1—a)
1—a)1=)Tli, g,k + 1]+ a(l = B)NTli+ 1,4, k+ 1]+
1—a)pyTli,j+ L, k+ 1)+ afyTi+ 1,5+ 1,k + 1]
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This method had the advantage of greatly reducing the aliasing artifacts caused by the

infinitely narrow beam model of Siddon, while keeping the ray-based approach.
Another advantage of this method, is that it maps very efficiently to GPU computing

hardware, that generally features a hardware based trilinear filtering texture access, with a

specific texture cache.
One of the drawback however, is that computing the adjoint of this tomographic operator,
and in particular the adjoint of the trilinear sampling operator, called splatting, is far less
friendly, which motivated the use of unmatched pair of projector and backprojector, see for

instance [zeng2000unmatched| regading this type of design.
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Figure 3.15: Ray casting based projector

3.4.4 Voxel based operator with interpolation

A completely different approach is to compute independantly the projection of every voxels
of the volume onto the pixel detectors it contributes to. This approach is called voxel based

projection. One advantage of this method is that, as the volume contains generally more
voxels that there are pixels on each view, the problem is embarassingly parallel, and can be

very easily mapped to parallel computing architectures.
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Computing the projection of the center of a voxel onto the detector plane is easy, as
seen in section 3.3.3.1. However, splatting the voxel value onto multiple neighbouring pixels
can be computationally inefficient, as this operation generates multiple concurrent write to
neighboring pixels.

The formula for the 2D splatting operator is as follows:

P[ivj]+ =(1-a)- B)szz
Pli+1,j]+ = a(l — 5)Vay:

P[Z,j + 1]+ = (1 - a)ﬁvxyz

P[Z +1,7+ 1]+ = a/Bnyz

Where V. is the voxel value to be splatted, and 4, j are defined using the the coordinates

( P TOJ) of the projection of the center of the current voxel:
Yproj

o i = floor(zg4s), o = frac(xgs) and gis = Tproj — 0.5

o j = floor(yais), B = frac(yais) and Ygis = Yproj — 0.5

From a signal processing perspective, this approach has some inconvenience: in this model,
it is assumed that a voxel, no matter its size, and no matter the projective geometry context,
will always be projected onto 4 pixels. This model even disregards the resolution of the
detector. This approach can lead to severe aliasing artifacts when the voxel footprint occupy
far more than 2 x 2 pixels on the detector.

However, the corresponding backprojector can be very efficiently mapped to GPU hard-
ware, as there are multiple redundant read-only memory access on the projection memory,
and independant access to the volume memory.

3.4.5 Other approaches

Numerous strategy have been designed in order to overcome common limitations of tomo-
graphic projectors. One of the most successfull projector, which is used by many researchers
is the distance driven projector, see [de2004distance|, which is a voxel based approach that
takes into account the voxel footprint, and propose a particularly elegant implementation.
This approach was later extended with the separable footprint model, see [long20103d|, that
propose a very precise evaluation of a voxel footprint based on trapezoid. More recently, this
approach has even been refined in [ha:16:eab|, using a set of lookup tables. However, it is
important to notice that these approaches make the assumption that the volume grid axis vec-
tors are colinear with the detector grid axis, which is a strong assumption for people targeting
arbitrary geometry.
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Figure 3.16: Voxel based projector with bilinear interpolation

Perfect evaluation of pyramid-voxel intersection in projective geometry, using the con-
cept of LoR (line of response) has been derived in [iborra201l6development]|. However
this approach imply dynamic memory allocation, and cannot be implemented in GPU for
acceleration, plus it is also based on multiple non-trivial symmetry apriori explained in
[mora2008new].

Among the voxel based methods that assume a radially symmetric volume element (blob),
two advanced projectors were described in [ziegler2006efficient| and [momey2013spline].
The first method offers an extremely appealing tradeof between accuracy and computational
cost, through the use of lookup tables. Unfortunately, the model is only valid for cylindrical
detectors that have their main axis aligned with the volume grid axis. The second method
was driven by a recent theory of efficient sampling, based on spline interpolation functions,
and has been proposed by Fabien Momey: the spline driven projector. This method was able
to provide a good approximation of the footprint of a spline RBF, with a separable function.

A completely different approach was derived for projecting objects based on an adap-
tive tetrahedralization of the scene. This mesh-based approach has been described in
[quinto2013tetrahedral| and [cazasnoves2015adapted].
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3.5 Blob based operator in CBCT geometry

In this section, we will develop a blob base projector, that will allow us to use more exotic vol-
ume discretization model, like the spherically symmetric elements seen in 2.2.7, in conjunction
with the BCC?® grid seen in 2.2.4.

3.5.1 From sphere projection to Conic equations

A generic framework for projecting an ellipsoid from a 3D world onto a 2D plane can be
found in [eberly1999perspective]|. According to this work, it is clear that, the cone beam
projection shadow of a sphere, such as a truncated spherically symmetric volume element is a
conic, and that it should be easy to derive the equation of its intersection with a plane, as a
simple conic section.

In this section, we will be using the framework of ellipsoid, conic section and projective
geometry to derive the footprint of our truncated blob model on the X-Ray flat panel projection
plane.

—

To do so, we recall that we derived the definition of a ray z(t) in section 3.3.3.5 , which has
the following expression:

a(t) =5+td (3.43)

e 5 being the coordinates of the source point

o d being a unit length vector standing for the direction

e ¢ > (0 being the distance between the source and the tip of the ray

The projection of a quadric defined in 3D, onto a 2D plane can be simply defined by

adding a set of constraints to the ellipsoid equation. The set of constraint simply restricts the
ellipsoid to the set of points that also belong to a plan of equation nTx = A.

In the next part, we will show why how to set up those two equations for any arbitrary
cone beam geometry, in order to project our spherically symmetric volume elements.

3.5.2 Computing sphere projection from arbitrary projection matrices
3.5.2.1 Ray-sphere intersection

Given a projection matrix P, we have seen in section 3.3.3.5 how to define a ray z(t) that
intersect the detector plane at coordinate p, and in particular, we derived its expression in

8 Body Centered Cubic Lattice
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equation 3.3.3.5, which will be used in this section.

In order to project a truncated radial blob function, we will be first interested in defining
the set of all rays touching the surface of the sphere of center ¢ and radius r, which is one of

the most simple ellipsoid.

3t € Ry st |jz(t) — ]| — r?

(F+td—@) - (F+td—@&) —r?

Sz + td$norm —Cz Sz + tdﬂ?norm
Sy + tdy,pm — Cy Sy + tdy, o,
Sz + tdznorm —Cz Sz + tdznorm
tdwno'rm - (Cm - Sm) tdmnorm
tdynorm - (Cy - Sy) tdynov'm
tdznorm - (CZ - SZ) tdzno'rm
(tdwnorm (Cw - sm))z + (tdyno'rm - (C
(di‘norm + dznorm + dznor'm) t2+
a
_2((Cm - Sm)dfﬂnorm + (cy -

Sy)dynn'rm + (CZ -

_CZL‘
_Cy
_CZ

— (cz — 82)
— (cy — sy)
—(cz — s2)

Yy Sy))Q + (tdznorm -

—-Tr

2

sz)dznorm, ) t+

((ez — 31)2 + (cy — sy)

b

+ (¢, — s.)2 —1?)

-~

(3.44)

(3.45)

(3.49)

The previous expression is a simple second order polynomial, this means that there are 3

ray-sphere intersection scheme that can occur:

e polynomial has 0 real root: the ray x does not intersect the sphere at all

e polynomial has 1 real root to: the ray x only touches the surface of the sphere at
coordinates x(tg), without going through

e polynomial has 2 real roots ¢y and ¢;: the ray enters the sphere, pass through and then
exits at another disctinct point, denoted by x(tg) or x(¢1) depending on their sign
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We must notice that, as we are looking for the sphere footprint, the only rays we will be
interested in, will be the rays that intersect the sphere only once, without going through, which
corresponds to a polynomial with (0 valued determinant. In addition to that, as we imposed
that the sphere should lie between the source and the detector, not behind the source, we
should check that the solution is positive.

The second order polynomial determinant, that we will later equate to zero reads:

Aconic = b* — dac (3.50)
22((C$ - Sx)dxnorm + (Cy - Sy)dyno'rm + (CZ - Sz)dznorm)2_
= 4x (dgnorm + dZZJnorm + dznorm) <351)

((cx — 596)2 + (ey — Sy)2 + (ez — 32)2 - 742)

We can see that this expression can be factored by 4 and also by where K is the

constant presentend in section 3.3.3.5 if we consider now that:

1
"2

dy
.. 52
d norm K (3 D )
d
d =Y 3.93
Ynorm K ( )
d;
Znorm K (354>

We can then simplify the expression of the discrimant, in order to get the following conic,
and replacing the ray direction term by the linear combination of u and v detector coordinate
found earlier thanks to the projection matrix:

A ((cg — sz)dy + (cy — 5y)dy + (¢ — s.)d,)?—
Aconic = ﬁ X (de + dy2 + dZQ)X (355)
((cx — Sx)2 + (ey — Sy)2 + (2 — 52)2 —7?)

Where each of the d;,d,,d. can be developed using the members of the matrix M presented
in section 3.3.3.4 :



3.5. Blob based operator in CBCT geometry 73

[(ce = 52) (M (0)u+ M(L)v + M(2))+
(g — 5) (M(3)u+ M(4)o + M(5))+
4 (cz = 52) (M (6)u+ M(T)v + M(8))]*~
Aconic = =5 % [(M(0)u+ M(1)v + M(2))*+ (3.56)
(M (3)u + M(4)v + M(5))*+
(M (6)u + M(7)v + M(8))% x
[(cz — Sx) + (¢y — Sy)2 + (c: — SZ)2 - 7’2]

o

Next, the terms u and v, which are the main unknowns of our 2D conic equation can be

factored:
W«%—&JM®%+@y—%Mﬂ$+%@—sJM®D+
v((cm-sx)A4(1)4-(cy-s:;A4(4)4-(cz-sz)A4(7))+-
«ap—snA4@>+«q,—s;34w>+«cz—89A4@»P—-
[ﬁmﬂm?+M@F+Aﬂ%%+
ﬁmﬂn?+MZ¥+Aﬂm%+
Aeonic = 3 e (3.57)

K27 (M(2)2 + M(5)2 + M(8)%)+

2uv(M (0)M (1) + M (3)M(4) + M (6)M (7)) +

2u(M(0)M(2) + M (3)M(5) + M(6)M(8))+

20(M(1)M(2) + M(4)M(5) + M(7)M(8))]

The identification process yields the following expression:
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u2a% + vzag + a%—i—
4 2uvaras + 2uagas + 2vasag—
Aconic = 792 X 2 2 (358)
K (u oo + v asaig + agaio+
2uvarag + 2uagang + 2vagap)
Which gives, with a proper factorization:
u2(a% — agaqp) + 1;2(04% — o)+
A B
4 2 — 2 —
Ao = —5 % u( (Oélasv asaig)) +v(2(azas — agang) )+ (3.59)
D E

wv(2(aran — arang)) + (@i — agaig)

C F

3.5.2.2 Establishing conic section equation

We recognize in the previous equation the expression of a conic section. This can be seen

more clearly by factoring all term using u?, v?

together, while equating the determinant, up to its scaling factor to O:

, cross term uwv and u,v and constant terms

Aconic = AU2 + BU2 +Cuv+Du+FEv+F =0 (360)

That can be rewritten using a symmetric matrix :

Au? + Bv? + Cuv + Du+ Ev+ F =0 (3.61)
u\' [ A C/2 D\ [u
o] e B B2l |v]=0 (3.62)

1 Dfy E/2 F 1

or, equivalently :

O DO o

x0T Aoxg + BoTaxg +Cop =0 (3.64)
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We have now, a fully developed conic expression, and we will be able to derive its
properties from very well known technics.

3.5.2.3 [Ellipse characterization

First of all, to identify, the type of the conic section, and, in the relevant case of an ellipse,
determine its center, axis direction and vertices, we will be interested in factoring it in the
normal form.

A simple rule will help us to know wether the conic is an ellipse, or if the angle between
the projection plane normal, and the rays coming from the source is too important, hence
generating an unbounded footprint. This property can simply be checked by computing the
determinant of the Ay matrix shown earlier:

1
AAozAxB—ZxCQ (3.65)

If Ay, > 0 we have an ellipse, otherwise the projection of the sphere is more likely a
parabola.

To go further on determining the two axis of the ellipse, we need a more simple conic
expression, without cross terms in wwv, this could be obtained using the following expression:

21TA121 + B1T21 +C1 =0 (3.66)

where 1 = < 1) a rotated version (isometry) of the original u and v pixel detector
U1

coordinates such that A; a diagonal matrix.
A simple diagonalisation of Ag will help us to achieve this goal:

x0T Aogzo + BoTxg +Cyp =0 (367)
mOTPdiagAdiagPdmgil'TO + BOTCUO + C(0 =0 (368)

The previous equation is useful in our case because we know that Ag is a real symmetric
matrix, hence diagonalizable with real eigenvalues, and that its eigenvectors form an orthonor-
mal basis.

As a direct consequence here, assuming we have normalized eigenvectors, we can write

PCEQ = Pyiag"- Let’s see how this property is useful in our problem:
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20" Piiag Adiag Pjiag0 + BoTwo + Co = 0 (3.69)

(Pliag0)" Adiag(Pjiqs0) + BoTzo + Co =0 (3.70)

(Pc{iagwo)TAdiag(PngxO) + BOTPdiag(Pngxo) +Co=0 (3.71)

(3.72)

21TA121 +B1Tz21 +C1 =0 3.72

This expression, with A1 a diagonal matrix, B; = Pgmg

By, and C7 = Cy holds for the

following variable change: z1 = Py, - Zo.

Fortunately, finding the eigenvalues A\; and Az and the corresponding eigen vectors V; and
A C
V5 of a 2 x 2 matrix of the form < /2

C/2 B
method exposed in [kronenburg2013method].

> is easy, see for instance the fast diagonalization

Let’s define the following variables:

o trace of Ag: Try, =A+ B
o difference of diagonal terms: Tdy, = A — B

o determinant of Agis Ay, =T d?% + C?

The eigenvalues are simply the roots of the quadratic form derived from the Ay — A matrix:

e Tra, + sign(Tda,)\/Aa,

1 5 (3.73)
Tray — sign(Tday) /A
Ny = A0 = "(2 40) VAo (3.74)

There are actually two equivalent solutions that allow to find the corresponding eigenvec-
tors V1% and V5, the implementation performance will depend on the computer architecture.
The implementation choice will rely on the availability of specific function units computing
arctan, cos and sin, as well as the ability to handle branch efficiently in the code:

Solution 1: Without trigonometric functions In this case, we can use the closed form
solution of the eigen vector problem to get:

Pliag = (VZO@) (3.75)
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where

( C o
Vi = (Al fQA> VP = C#0
) (3.76)
VP = <0 , otherwise
( C o
Von = <)\2 £2A> V=i MO A0
0 (3.77)
VY = <1> , otherwise

Solution 2: Using trigonometric functions In this case, we can use a simple identifica-
tion technique, based on the fact that all 2 x 2 unitary matrix can be written as:

Piiag = (VIOV;O) - (E?:LEZ; ;Zl?éi)) (3.78)

The members of the matrix can be obtained by identifying 6:

arctan| zr—
o — g”Ao) if Tda, #0
arctan? ((Vlo)1 ) (VIO)O) , with V’obtained using previous solution otherwise
(3.79)

We have now found the rotation matrix that allows us to express our conic section without

. _ (A(0) 0 _ (B1(0) .
cross terms, using A; = < 0 A1(3)> and B = (31(1) , We can now write:

21TA121 + B1T21 +C1 =0 (380)
A1(0)ur2 4+ A1(3)v12 4 B1(0)uy + Bi(1)vy + C1 =0 (3.81)

3.5.2.4 Ellipse expression in normal form

In order to study the ellipse properties, like its center, its semi-axis direction, length, area,
eccentricity,... it is interesting to derive the normal form of the ellipse. To do so, we have to
complete the square of its equation, this simple process here leads to (first step):
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Ay (O)u12 + A4 (3)7)12 + B1(0)u; + B1()v1 +C1 =0 (3.82)
—B;(0) ~B1(0) \?
¢ —2ab +b2
—Bi1(1) -Bi(1) V| B (0)? Bi(1)?
Ai(3) &1;4_2 <2><A1(3)>v +<2><A1(3)> __Cl+4><A1(0) 4x Ai(3) (3.84)
¢ —2ab +b2
(3.85)
Which, after proper factorization gives:
A,(0) (u =) )2 b AL (3) (U _ —Bu() )2 — Oy Bi(0)* Bi(1)*
! LT 2% A1(0) ! "ok A3)) 0 TN T ax 41(0) T4 x A(3)
(3.86)

We can now make the parallel with the simple “normal” ellipse equation using the following

scheme:

a(x —b)* +c(y—d)? =e
@b w-d?
e/a e/c

(3.87)

(3.88)

where we have u; and v represented as x and y, and the following constant identities:

a = Al(O)

_ —Bi(0)

- 2 X Al(O)
Cc = A1(3)

_ —Bi(1)

- 2 X A1<3)
B1(0)*

By(1)

e:_Cl+4><A1(O)

4 % A1(3)

(3.89)
(3.90)
(3.91)

(3.92)

(3.93)

(3.94)
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Using the equation 3.5.2.4, and the derivation exposed in 3.5.2.3 it is now easy to compute:

e The center of the ellipse: Applying the inverse of the diagonalizing rotation, we get

(ZC> = Pliag <Z> It should be noticed that the projection of the center of the sphere

does not necessarily lines up with the center of the ellipse

e The direction of the ellipse axis: They are the vectors directly readable from the
column vector of the unitary matrix Pyjqq: VP, which is the unit vector, associated with
the greatest eigenvalue of the ellipse matrix, hence the smallest semi-axis. V;O being the
unit vector standing for the largest semi-axis.

e The length of the ellipse semi-axis: They can be found thanks to the factorization
step presented in equation 3.5.2.4, the one corresponding to the smallest axisis lp = y/¢/a
and the other corresponding to the largest axis in the Py;qq matrix is 1 = y/¢/c

e The focal length: The distance between the two foci can be easily obtained using the
length of the ellipse semi axis as f = /I3 — I3

e Eccentricity: The eccentricity simply reads %

e Area: The area of the ellipse reads wlgly

3.5.3 Bounding box of the blob footprint

At this point, we have perfectly characterized the semi-major axis, and the semi-minor axis
of the ellipse. From this we can easily derive the bounding box of the ellipse on the detector,
i.e the rectangle A,B,C,D in pixel based coordinates. We figured this bounding box in green,
on the figure 3.17.

It is also interesting to notice on the figure 3.17 that there are 2 other enclosing boxes that
can be derived: the axis aligned bounding box of the ellipse, that will be derived in the next
section 3.5.3.1, and the axis aligned bounding box of the ABC D rectangle itself. The later
is easy to compute with a set of min and max operator over the coordinates of the ABCD
vertices, but it has the inconvenient of overestimating the total blob projection area, hence
leading to an unnecessary high computational burden.

Another completely different approach would be to compute the AABB? of the three
dimensional AABB of the truncated blob function itself. This process would simply amount
to project 8 points onto the detector, and then find the minimum bounding box of those
points. This approach also lead to an overestimation of the AABB of the blob projection, but

9 Azis Aligned Bounding Box
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Axis Alipned
Bounding Baox

Bounding Box

semi-major,

semi-minor
axis

Figure 3.17: Various Bounding Boxes that can be used to enclose an ellipse

its simplicity may be of interest if the important amount of overlap between blob footprint is
not an issue.

3.5.3.1 Axis Aligned Bounding Box of an ellipse

It can be seen from figure 3.17, that iterating over each pixel that is part of the bounding
box of the projected sphere will not be an easy task, because its profile can be skewed, hence
requiring multiple box intersection calculation. The AABB however provides a simple way to
perform a loop over the 2-dimensional set of pixels that intersect the sphere footprint.

Finding the AABB of an ellipse is fortunately also a simple task, considering that the locus
of an ellipse can be defined using a parametric equation of 1 variable ¢, based on its normal
definition seen in equation 3.5.2.4:

<x1l0_ b>2 + (ylzl_ d)2 —1 (3.95)

cos(t)? + sin(t)? =1 (3.96)

Where we have made the variable change z1 — b = lycos(t) and y; — d = lysin(t).
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We also recall that we have made a first change of variable x1 = Pl. -z, in equation

diag
3.5.2.3, where Py, was a unitary matrix. This allow us to rewrite the parametric equation
in function of the initial variables:

EI(t) = Paiag <<Z> + <§?§f§§2>) .
= (1) (st ) (et -
= (1) (o ) a0

As the ellipse is bounded, and is a convex geometrical object, we will be able to find for

each coordinate, the parameter t for wich the partial derivative aEé(tt)“ and aEé(tt)” along both
axis vanish:
Axis u Lets derive the optimal coordinates for the u direction on the detector
OEI(t)y
= 101
0 BT (3.101)
= —lpcos(0)sin(t) — lysin(0)cos(t) (3.102)
—lpcos(0)sin(t) = l1sin(0)cos(t) (3.103)
sin(t) _ ~lisin(6) (3.104)
cos(t) locos(6)
tu1 = arctan (—%tan(@))
St= 0 (3.105)

tuz = T+ arctan (—%tun(@))

Reinjecting those solutions into the parametric model gives us the following optimal values
for the w axis:

optur = uc + locos(0)cos(tyr) — lisin(8)sin(ty) (3.106)
optuz = uc + locos(0)cos(tyz) — lisin(8)sin(ty2) (3.107)

hence
ming, = min(opty1, optys) (3.108)

maz, = max(opty1, opty2) (3.109)
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Axis v Lets derive the optimal coordinates for the v direction on the detector

0= 8Eéit)” (3.110)
= —lpsin(8)sin(t) + licos(0)cos(t) (3.111)
—lpsin(0)sin(t) = —licos(0)cos(t) (3.112)
sin(t)  —licos(0)
cos(t)  —lpsin(0) (3.113)
L 1
= - 114
tan(t) lo tan(0) (3.114)
ty =T .
{t ! 3/j if tan(f) =0
v2 = 972
eh= t = arctan (l—l L ) (3.115)
T fo mnl(e) otherwise
ty2 =+ arctan (ﬁimr}(e))

Reinjecting those solution into the parametric model gives us the following optimal values
for the u axis:

opty1 = ve + losin(0)cos(ty1) + l1cos(0)sin(tyr) (3.116)
optya = ve + losin(0)cos(ty2) + licos(8)sin(ty2) (3.117)
hence
min, = min(opty1, optys) (3.118)
maz, = max(opty1, optys) (3.119)

3.5.4 Splatting the blob
3.5.4.1 Abel transform of a blob over its footprint

Thanks to the previous section, we know exactly how to compute the AABB of a sphere in an
arbitrary projective geometry, our only remaining task is now to compute the Abel transform,
exposed in section 2.2.7, for every ray hitting the detector bins inside the AABB. To do so,
the only thing we need is the distance between the blob center, and its orthogonal projection
onto the ray under consideration, as figured on the scheme 3.18

As stated earlier, spherically symmetric functions value only depends on the distance r to
the center ¢, and so do their Abel transform. In the framework of CBCT projective geometry,
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ClCT— Det.
~ N bin (u,v)

Detector

Figure 3.18: Profile of a blob volume element crossed by a ray

we have shown in section 3.3.3.5 how to derive the ray direction vector H%\ that hit the

detector bin at coordinates (u,v).

Deriving the distance r for any ray will be an easy task using simple geometry, given that
we have, following the pythagore theorem: r? = ||H||?> — ||d||?, and the following relationship
between d and H:

- d -
]| = WH (3.120)
(3.121)
Reinjecting this expression inside the pythagorean relationship gives
r? = | H|” — |ld||? (3.122)
o (d
=||H|* - ﬁ -H (3.123)

o=, |||H|?- ,ﬁ) (3.124)
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3.5.4.2 Experiments

Blob bounding box estimation We implemented our blob based projector, in order to
validate our model on a simple geometrical setting, that we figured on scheme 3.19 :

Figure 3.19: Geometrical setting for our blob footprint evaluation test

This geometrical setting voluntarily features an extremely important cone angle, in order
to highlight the eccentricity of the ellipse, and the role of the bounding box. It also features
axis aligned, as well as non axis aligned blobs footprints, in order to check for the robustness
of our method when rotation angles have a remarkable value, ie 0,7/2,7,...

We used this geometric setup to project various radially symmetric functions defined in
the section 2.2.7, and exposed the results on figure 3.20

Ellipse characterization in a realistic geometry In order to assess the relevance of
our model in the framework of a realistic geometric model, we used a simple model similar
to the default geometry defined in RTK!, see [rit2014reconstruction]. The flat panel is
modeled as a 256 x 256 mm detector with a resolution of 512 x 512 pixels, with a pixel size
of 500 x 500um. The image plane, where the sphere to be projected will be located, is at
minimum 1 meter away from the X-Ray source. The detector is 1.536m away from the source,
resulting in a moderate magnification ratio of about 1.5. We figured this simple geometry on
the figure 3.21. In order to quantify some metrics about the footprint, we decided to choose
a sphere of radius 1 mm to model the “blob” that will be projected.

We were interested in quantifying the minimum and maximum eccentricity of the ellipsis
resulting from the sphere projection, according to their position on the detector. We reported
the eccentricity map on figure 3.22 as well as a drawing of a unit ellipse with the minimum
and maximum eccentricity, found for the geometry exposed in figure 3.21.

19 Open Reconstruction ToolKit
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(a) Kaiser-Bessel blob (b) Gaussian blob

(c) Mexican Hat blob (d) Plain sphere indicator

Figure 3.20: Projection of various volume elements in projective geometry

In order to get an idea of the computational burden of the projection of a “blob” onto a
detector, and the difference between footprint size for various position onto the detector, we

reported the total ellipse area in number of pixels for every position on the detector on figure
29

Ellipse characterization in a more divergent geometry We decided to assess the
behaviour of the blob footprint, in a geometry where the cone angle is larger, and the mag-
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Source-isocenter
distance|: 1000mm

(a)

Figure 3.21: Realistic geometry for a CBCT system

nification ratio in higher, close to 3 in this case. The radius of the sphere however were kept
identical in this experiment (1lmm). We figured the geometry on figure 3.23

We also assessed the eccentricity map in this geometry, as well as the ellipse size, in terms
of number of pixels, on figure 3.24

Discussion Is is really interesting to see that the form of the projected ellipse, denoted by
its eccentricity does not experience large variations in our two test cases presented on figure
3.22 3.24 from 0.23 to 0.44. In practice, the ellipse generated is visually very close to a
circle. Althoug we did not figured the Abel transform for these profile, one can infer that the
profiles won’t experience a large deviation from the axis aligned case. Those observations led
us to consider that the separable blob projection model exposed in [ziegler2006efficient],
that assumed a cylindrical axis aligned detector would probably map nicely to the case of a
flat panel detector. This observation also comfort the relevance of the separable spline driven
model proposed in [momey2013spline]|, that used a slightly different geometrical framework
to derive the ellipse parameters.

The blob projection framework presented here has the advantage of being drawn directly
from the projection matrix elements, thus being adaptable to arbitrary volume discretization
scheme, whithout any modifications. Unfortunately, we did not had enough time to implement
this method in a proper reconstruction framework to challenge its performances on practical
reconstruction tasks.
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Ellipse area map in pixels for the projected sphere

Ellipse eccentricity map for the projected sphere
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(¢) Minimum and maximum eccentricity featured in the projection

Figure 3.22: Sphere footprint eccentricity

3.6 Conclusion

In this chapter, we have seen that multiple strategies have been derived to model the tomo-
graphic operator, related to data discretization scheme, interpolation models, and implemen-
tation target.

One of the most successful approach for fast tomographic operators implementation in the
recent years was the GPU based implementation. However, apart from the matrix-vector case,
we have shown that a host-based memory model was not, as is a simple strategy to set-up,
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operators

\ i Detector

: ; i
> Ifage plane ;

Source-ispeenter
distancel: 250min

(a)

Figure 3.23: Cone Beam geometry with a wider angle

in order to obtain good performances. However, we also gave an insight about the increasing
programmability of GPUs, through the use of some modern C++ features, that may in a near

future, along with new interconnection technology, allow for more complex operation to take
place on the GPU as well.

We developped a blob bagsed projection model, natively compliant with flat panel detec-
tors and CBCT geometry described as projection matrices. However we found-out that the
discrepancy between, our simple discrete model, and the separable model presented in a pre-

vious work [ziegler2006efficient|, was not really significant: ellipse eccentricity of 0.435 in
the worst case scenario.
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Ellipse eccentricity map for the projected sphere

r
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Ellipse area map in pixels for the projected sphere
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(a) Ellipse eccentricity map (b) Sphere footprint size, in number of pixels
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Figure 3.24: Sphere footprint eccentricity
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4.1 Introduction

As seen in the previous chapter, many aspects of signal processing, especially those related
to tomography, or challenging signal retrieval, amounts to solve a linear system or optimize a
cost function over a high dimensional space.

Throughout this chapter, we will only consider the category of convex objective functions
to be optimized over convex sets like R, and we will restrict our study only to a small subset
of the large number of existing optimization methods, in order to concentrate on the simple
ones that can be easily applied on large problems.

We propose here to study those well known algorithms in the context of cone beam to-
mography, which practically differs from the context of a generic linear problem in the sense
that in this case linear operators are generally computed on the fly, which basically limits the
available operations to matrix vector (forward projection), or adjoint matrix vector product
(backprojection). It is also worth noting that the design of tomographic linear operators is
intrinsically linked to the physical acquisition process and the data discretization model which
we have seen in chapter 2, as well as the choices made towards a computationally efficient
implementation, as seen in chapter 3.

In particular, in many cases in cone beam tomography, forward and backward projection
operator may not be adjoints of each other, and feature slightly different properties from a
signal procesing point of view, regarding aliasing for instance. This discrepancy may actually
result in new derivations of known algorithms having slightly different behaviour, depending
on the tomographic operators properties in the framework of linear algebra, weither some of
these discrepancies can be interpreted as implicit preconditioning or not.

In a first section, we will address tomogaphic reconstruction as a linear problem, and recall
when such problems can be considered as easy or difficult to solve, from a theoretical point of
view. We will also make a few remarks and recall a few results from the compressive sensing
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theory, in order to highlight the fact that this sampling theory mainly relies on properties
from the field of linear algebra, instead of functional analysis.

In the next section, we will mostly focus on the linear least square, which is a quadratic
problem that have been extensively studied for centuries, and is still an active area of research,
and in particular we will give an insight about first order methods used to solve this problem.

Finally, we will use a simple proximal splitting framework, in order to explain how a
primal/dual based optimality certificate can be derived for the least square.

4.2 Linear equality constraints - Solving M¥ — ¢ =0

4.2.1 Definitions

Here we have:

e 7 € R¥ an unknown vector
e iy € R" a data vector

e M € R™F g matrix

4.2.2 What are linear equalities

Let’s begin with one of the first historically studied problem in linear algebra, solving the
equality MZ — ¢ = 0. Although being of a moderate interest in engineering, this formulation
has been used to model the problem of tomographic algebraic reconstruction problem during
the 70’s , see for instance [gordon1970algebraic|.

But this equality also arise in other fields, its role might reduce to define a convex set. A
very good introduction about this topic can be found in chapter 1 of [boyd2004convex|. A
solution of a set of linear equality, called an "‘affine set"’ indeed provide a stable space where
any kind of affine combinations amounts to a feasible solution of the the initial linear equality.

Another way of seeing a linear equality, that allows reasoning on geometry, is to say that
the set of solutions of each linear equality defines an hyperplane in R*, and that the set that
satisfies all equalities is the intersections of all hyperplanes.

4.2.3 Is the problem hard ?

Simple linear algebra gives us some hints about the difficulty of the problem: first, simply by
studying the shape of M, and using some simple algebra properties like equality of row and
column rank, and rank nullity theorem:



94 Chapter 4. Chapter 4: First Order Methods applied to Tomography

o If k > n, there is more unknown than known data, following the rank nullity theorem,
the solution is an affine set of dimension k& — rank(M) which cannot be zero because
rank(M) < n < k. In this case, solving the problem would lead to an infinite set of
solution which is not always useful for common numerical problems.

o If £ < n the problem is said to be overdetermined, there are more constraints than
unknown, this time the solution is an affine set of dimension k — rank(M) with
rank(M) < k < n. The solution may be unique if there are exactly n — k + 1 equivalent
constraints in the problem, if more constraints are equivalents, we return to the infinite
set of solution, and otherwise the system is inconsistent and has no solutions. In real
cases, if there are smalls numerical errors on the system model M or if i comes from a
noisy measurement process, the probability that multiple rows are perfect multiples of
each other is extremely low, and the problem is more likely to be inconsistent.

We can now try to analyze what happen for a square problem, when n = k, we will use
the determinant to give a more geometric interpretation of the simple rank nullity theorem, :

If the matrix M is square, we can theoretically derive its determinant. As seen in section
2.2.4, a nice geometric interpretation of the determinant helped us to link its value with
the volume of the hyper-parallelogram in R defined by the k columns vectors of M. If
the family formed by those vectors is not free, then the hyper-parallelogram collapses into
an only rank(M) dimensional figure and then its hyper-volume in dimension k amounts to zero.

In the case the determinant in non-zero, M is invertible, then there is a unique 7 that
verify Mz — 4§ =0

In the case of a null determinant, M is said to be singular, and there are two cases
that can be diagnosed using the rank of M, exactly as seen previously, and giving a more
geometrical interpretation to the value of -

e iy ¢ Im(M) then it means that the set of hyperplanes may contains parallel and non
coincident elements making the matrix and its corresponding system respectively under
determined and non consistent. As all hyperplans never cross in a single point, the
system has no solution.

e i € Im(M) then underlying system of equation is also under-determined because of
parallel hyperplans, but admits in fact a set of solutions of the from xp + ¥, ¥ € ker(M)
where 2{ can be any solution point in R¥ and ¥ is any vector of R¥ such that M7 = Ogn
i.e that would not influence the property of zp being a solution, because it will be
sent to 0 in R™ by M. Following the rank nullity theorem, the solution has dimension
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k — rank(M).

It is important to notice here the role of ¢, that can change the possible set of solution
from a void set to an infinite set, and possibly high dimensional linear space, we will talk
about this specific aspect a bit later.

Unfortunately, in signal processing, ¢/ is often a noisy data vector, and M is a large scale
matrix, with possibly millions of entry that precludes us from using any determinant based
method for inverting M or even assessing feasibility of the problem, that would anyway
probably be inconsistent.

4.2.4 'What happen in real numerical cases ?

As seen previously, data inconsistency may lead to a problem without solution in many cases,
but it is important to understand why those inconsistency arise, how their effect can be
smoothed using some block/iterative algorithm.

Let’s review a simple study case, illustrated on figure 4.1 and 4.2.

For instance some of the row vectors dg, a1, da defined by M could be nearly collinear,
but the hyperplanes by, b1, by defined by the a; and especially their corresponding values in
7/, by adding a bias in the codimension could make them to cross a third hyperplane at two
points P and @ far away from each other.

Through these example we can see that a measurement matrix M with a maximum of
nearly orthogonal measurment row vectors, having similar norms will yield somehow more
manageable linear systems, where we can, for instance relax some constraints if the problem
is overdetermined, or have the guarantee to make small errors in the solution if the system is
full rank, but has “noise” in the measure 7.

4.2.5 How hard is the problem ?

This simple observation made in the previous section has been formalized through the notion
of “Condition Number” Cj; which quantifies how much the solution will vary in the worst
case if we make an error € in the measurement ¢ in R”, for a given matrix M.

A local approximation of the relative error norm in the solution reported to the relative
norm of the error in the measure space, for a given norm |||, is given by:
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Figure 4.1: The case where row vectors of M: ap, di, as are not really colinear and yield
manageable inconsistency
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Figure 4.2: The case where row vectors of M: ap, ai, a2 are nearly colinear and yield important
inconsistency
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M= el /|| =g
Crv =
M EP
M. (7]l

= 1% e _ Nlu (4.2)
el 1M1l

(4.1)

This error depends on the coordinates of ¢/ in R™, and of the direction of the error €, wich
will respond differently according to the geometry of M. We can bound the expression in
eq 4.1 in the worst case. To do so, we should consider the case where the measure vector ¥,
when projected by M will experience a scaling that will reduce its norm to the minimum, and
simultaneously the error € will experience the maximum possible scaling for a vector in R™:

M~'e J
Cy = maa:iH - i 7||‘7i’1’u_, (4.3)
20 el Mgz [ M7y
In the following steps, we will be using u = 2 as the Iy norm for expressing the condition
number. We also recall the definition of the operator norm, for a non-singular matrix M:

M
M| = maz 1M (4.4)
220 |zl
= mazx ||Mz|| (4.5)
lel=1

and we will also be interested in using M to express the operator norm of |[AM~!|| that cannot
always be computed easily.

M7 =maxz — 4.6
2 = mar S (46)
= max iyl with y = M~ 'z (4.7)
My#0 || My]|
1 My
— =min — (4.8)
M w20yl
= min  [[My] (4.9)
llyll=1
which helps to express condition number directly in terms of operator norm
O = M| M]] (4.10)

Moreover, it is interesting to see that both operator bounds can be derived easily for the
case of the [? norm, whithout having to compute the inverse of M: maximizing the squared
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lo norm of the M-projection under the constraint that x should be a unit vector, yields the
following lagrangian optimization problem:

1M]]* = min 1Mz (4.11)
= mazx 7}\1>Z(T)L TM'Mz — X1 —27x) (4.12)
z -

Which, differentiated in the variable = gives the following critical point:

M'Mz = Mz (4.13)

Where we can clearly identify the lagrangian multiplier A as an eigenvalue of MM, that
should be the largest one : Apstpr ez if We want to satisfy the optimality condition. The

exact same scheme can be derived for the squared matrix norm ||M~1|? :
1 Myl (4.19)
= min y .
IMH - yl=1
=min max yTM'My—\1—1yTy) (4.15)

Y A>0
When differentiated in g, the critical point also verifies M!My = )y, where )\ is an
eigenvalue of M*M, but this time, the optimality holds when it is the lowest : Apstas min-

The condition number for M can then be easily derived from the eigendecomposition of

MM -
A max
Coy = || M mew (4.16)
)\MtM min

The first remark we can make is that the optimal condition number is 1 and it is ob-
tained for all isometries. In practical point of view, one can notice that maximum and
minimum eigenvalues can be computed through the use of power methods, as stated in
[zeng2000unmatched|.

Link with Hadamard definition of well posed problems In the case where one consider
solving MZ—¢ = 0 with M a square matrix, it is interesting to take a look at how the condition
number Cjs of M gives an insight about wether the problem is well posed according to the
definition given by Jacques Hadamard, based on 3 properties :

o A solution exists: Use the determinant to prove that the solution exists
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o The solution is unique: Here again, a non-zero determinant is sufficient to prove that
the solution is unique

o A least square solution exists: the condition number must exist, ie, M*M should
not feature zero valued eigenvalues

e The least square solution is unique : nullspace of M, should be of dimension 0,
hence M should be of rank k hence it should not feature zero eigenvalues as in the
previous point.

e The solution’s behavior changes continuously with the initial conditions: the
condition number tells us how an error €in the dataset ¢/ will affect relatively the solution
in the worst case. [chretien2014perturbation] Weyl’s inequality.

4.2.6 'What problems should be considered as easy ?

Introduction According to what we have seen, isometry are the linear transform that yields
the more stable inverses, and it can be proved that in common Hilbert spaces of finite dimen-
sion, any linear isometry is an orthogonal transformation: Let’s take 2,y € R*, and (.,.) be
the common dot product in RF

2+ ylI* = lz =yl = [M(z + y)|I” = |M(z —y)|]” (4.17)
(x+y,z+y) —(x—y,z—y) = (Mx+ My, Mz + My) — (Mz — My, Mx — My) ( )
4xTy = 42TMT My (4.19)

<xay> - (.%',MTMy> ( )

(4.21)

Using this equality assigning to = successively all the vector of the basis of our hilbert space
give use that MTM = Identity, so M is an unitary matrix, which by definition is orthogonal.

Relaxation of isometry and orthogonality property : RIP It is interesting to notice
that a famous relaxation of the isometry property has been defined in [candes2005decoding]
: the restricted isometry property, which helped to derive a lot of recovery guarantees in the
field of compressive sensing.

It characterize the n x k matrices M, which can be considered as a collection of column
vectors (vj)jes=01,.. k-1 € R" for which all n x |T'| submatrices M, formed by a subset T' C J
of the columns of M of cardinality |T'| < s, with 1 < s < k are close to an isometry, for the
real coefficients (y;) et relatively to a constant d, :

(1= 8:)llyll3 < [IMryll3 < (1 +35)llyll3 (4.22)
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Where the minimum value of §, for which this inequality holds is called the restricted
isometric constant

Similarly, the S, S’-restricted orthogonality constant 6g g for S+ 5" < |J| is defined as he
smallest quantity such that:

[{(Mry, Mry')| < Os,s0-yll[ly/| (4.23)

holds for all disjoints sets T, 7" C J of cardinality |T'| < S and |T'] < S’

In [james2014eigenvalues|, the author recall various results that arose from the com-
pressive sensing framework, such that the sufficient d5 for which convex or greedy relaxation
of the [0 sparsity promoting algorithms can achieve perfect recovery.

Although verifying the RIP property over a given matrix is a NP-Hard problem, it as been
shown that independant identically gaussian, Bernouilli and partial fourier matrices features
the RIP property with exponentially high probability.

The case of Gaussian matrices In the framework of random matrices theory, a very
interesting study of the condition number of the specific case of Wishart matrices G(n,n) =
X X* where X is a n x m ii.d gaussian matrix with mean 0 and finite variance have been
performed in |edelman1988eigenvalues|. The author has proved, that the distribution of
their condition number, relatively to the size n of the matrix, #/n converges pointwise to the
following probability distribution function:

2z —‘" 4 672/172/12

3

(4.24)

More precisely, when the distribution of the i.i.d gaussian is of mean p and variance o, the
expression %Fm?’/ 2 also convergespointwise towards 4.24

And the expectation of the log condition number for these matrices is

E(logk) = log(n) + ¢+ o(1) (4.25)

with ¢~ 1.537

More recently, in the framework of compressive sensing and restricted isometry property,
it has been, recalled in [candes2005decoding| and [james2014eigenvalues| that, given a
n x k gaussian matrix with mean zero and variance 1/p, and a subset T' of its columns, we
have, for large values of n and fixed T

1= 6(M7) < Amin(MIM7) < Apaa (MIMp) < 1+ 6(Mrp) (4.26)
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where 5(MT) ~ 24/ |T‘/n -+ ‘T‘/n

This inequality has been generalized in a probabilistic manner for all subsets T° where
|T| < s as follows:

F(r) = ¥V + 2H (1)) (4.27)

P(1+0,> 1+ (14 e)f(r)]?) < 2. FH0)2 (4.28)

With H the entropy function : H(q) = —qlog(q) — (1 — q)log(1 — q), with0 < ¢ < 1.

Probability Density Function of Condition number for Wishart matrices
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Figure 4.3: Probability distribution function of the condition number of a Wishart matrix of
size m, with mean 0 and finite variance

Mutual coherence Although RIP emphasize on the isometry property for the subset of
sparse vectors and is very difficult to prove, the recent concept of mutual coherence provides
a somehow more geometric intuition, related to the independance of the variables in the
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measurment vectors. In our understanding, this concept allows to extend the notion of rank
in a more practical way. Indeed, in the field of numerical analysis, the cases where numerically
colinear vectors are found in a matrix does not occurs very often, hence leading to some cases
where rank and condition number can be counterintuitively correlated (high rank matrices
with extremely large condition number). This is not intrinsically a problem, but mutual
coherence concept filled a gap in linear algebra tools in order to derive recovery results for
instance in [donoho2006stable|.

The mutual coherence of a matrix M is defined as the maximum absolute value of the cross-
correlations between the columns of M: let (vj)jecj—o.1,..k—1 € R" be the column vectors of
M, normalized such that (v;,v;) = 1, the mutual coherence of M reads:

maz (i, vj)] (4.29)

This concept was mainly developped in [donoho2001uncertainty| for studying the un-
certainty principle stating that “if two bases are mutually incoherent, no nonzero signal can
have a sparse representation in both bases simultaneously”.

4.2.7 Algorithms
4.2.7.1 Introduction

There are numerous methods used to solve the problem Mz = y. Many of them adress the
problem where M is a square matrix. We may however refer to the problem Mz = y in all
cases, because we can use the surrogate problem M!Mx = M'y as a square matrix problem.

Given the size of the matrix in our case, and the fact that we assumed that we will never
write down the entire projection matrix, we will be forced to discard nearly all methods that
does not only rely on matrix vector product of the form Mv or Mtv:

Cofactors method The inverse of the square matrix M can be directly expressed as the
adjoint matrix of the cofactors weighted by the inverse of the determinant. However, as seen
earlier, we won't be able to get the value of the determinant, and it will probably be equal
to zero in many cases. Anyway we will consider that we are not necessarily interested in
computing the matrix inverse for any point, but we would like to get the inverse for one single
point at a time.

Gauss Jordan Elimination As we do not have a full expression of the matrix in memory,
we won’t be able to triangularize our system matrix, and perform backsubstitution.
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LU, QR factorization For the same reason stated for the Gauss-Jordan elimination, we
won’t be able to use any forward /backward substitution method due to physical constraints
of memory storage.

4.2.7.2 Fixed point iteration methods

Fixed point iteration method stand for a very large class of algorithm that aims at iteratively
solving a fixed point problem of the form AX = X with A a linear operator in ou case. This
class of method may be of interest, because they allow to iteratively refine a solution from one
iteration to the next. In the general case where our matrix M may have a bad conditionning,
an iterative approach may be the right strategy

Jacobi method Jacobi method assumes that one can decompose the n x n matrix M into
a sum of matrices M = G + H where G is full rank, and easily invertible, for instance it is set
to a diagonal matrix in the Jacobi method.

This decomposition leads us to a fixed point search in the high dimensional space R™:

Mz —y=0 (4.30)
Gr+Hx=1y (4.31)
Gr=—-Hx+y (4.32)
t=—-G 'Hr+ Gy (4.33)
x=Mz+y (4.34)
Where M’ = —G~'H and y/ = G~ 1§
This fixed point search can be carried out using a simple iterative scheme
gkt = Mok 4 (4.35)

According to the Picard fixed point theorem, this class of algorithm converges if the oper-
ator T : & — M'Z + ¢/ is a strict contraction, i.e if there exists p € [0, 1] such that
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V(z,2) eR" xR x # 2’ : ||Tax —Ta'| < p|lx — 2/
IM'z 4y = M'a’ — | < pllz — 2|
Mz — M| < pllz — 2|
M (2 = 2')|| < pllz — 2
M| (z = )| < pllz — 2]
M < p

This condition can be interpreted as a [0, 1[-Lipshitz continuity property of the linear
application M’, which is equivalent to a constraint over the operator norm of M’, that reduces
to a constraint over its largest singular value: 0 < o(M')00 < 1.

Preconditionning interpretation The generic matrix decomposition scheme M = G+ H
presented in the previous paragraph can also be viewed as a preconditionning problem:

MZ—§=0 4.42
Gi+Hi=1j 4.43
Gi=—HZ+7 4.44

4.45
4.46
4.47
4.48

(
(
(
(
(
(
(
(4.49

)
)
)
)
)
)
)
)

The action of casting the equivalent problem G~'Mz = G~1jj instead of M = §/ is called
preconditionning. This method is actually useful when the condition number of G='M is
lower than the condition number of M, and of course when G is easily invertible.

Other approaches The Gauss-Seidel method can be view as an extension of Jacobi method,
with a different matrix decomposition of the form M = D+ (L+U) where, L is a strictly lower
triangular matrix, D is a non singular diagonal matrix, and U is a stricly upper triangular
matrix. Both Jacobi and Gauss-Seidel iterates can be modified in order to ensure and/or
accelerate convergence, in the case where the matrix iterate have a poor Lipshitz constant.
Among those methods we can cite the weighted Jacobi iterations, and the famous succes-
sive over-relaxation based methods (SOR, SSOR) which introduced the more general idea
of overrelaxtion to iterative methods. Those kind of approach has seen promising develope-
ment recently, known as Scheduled Relaxation Jacobi method see [adsuara2016scheduled],
however Jacobi method basically relies on a decomposition that will not be suitable for our
problem, again, due to practical issues.
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4.2.8 Projection onto convex sets

As seen in the section 4.2.2; we recall that the non-empty set of solution solution of a set of
linear equality Mz = y, is a convex set Cir,y.

4.2.8.1 Convex set and proximal mapping

In the following developements, we will be using the framework of monotone operator theory in
Hilbert spaces, the interested reader may refer to [bauschke2011convex]|. In the framework
of convex analysis, we can provide a convex, lower semi continuous cost function d¢,, =~ that
stands for the solutions of the linear equality Mx = y, using the indicator function of the
convex set Cpry :x € R" st Mz =y:

0 ifzeCuy (4.50)

+o00 otherwise

5CAI,y (x) = {

In the framework of proximal mapping operators, we also recall that we can define the
proximity operator of the function d¢,, () as:

) 1
protase,, | (2) = arg:un 3 |z — 2|3 + YOCyy., (T) (4.51)

= Projc,, ,(2) (4.52)

Where Projc,,,, (z) is the operator that stands for the projection onto the convex set Chy,y,
but we will elaborate more on this topic in the next chapter 5.

Once the projection operator is defined for the convex set, one can simply apply the most
simple proximal algorithm, see [parikh2014proximall|: the proximal point method, that
reads:

ZF = proa:(;CMy(:I:k) (4.53)
For Cury a non-void set, the algorithm is trivial and only one iteration is needed. We

conclude that all the whole method will rely on the projection operator that we will derive in
the next section : 4.2.8.2.

4.2.8.2 Kaczmarz and POCS method

Geometric methods for solving linear system of equations encountered a limited success despite
there fast convergence rate. Among those methods, we can cite the Kaczmarz approach, that
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was used for tomography in the 70’s, under the name ART.

The idea of the method is really simple, it aims at sequentially projecting a solution
estimate over all n hyperplans defined by the n x k matrix M. More formally, the atomic
update that has to be repeated reads as follows:

M)

Mo (4.54)
| M ;.0 113

e ((M(z‘7*),$k_1> )

Where

o M. € R* is the i" row of the matrix M

e y; is the i*" element of the vector y

This extremely simple update is indeed a projection, onto the convex set defined by
<M(i7*)’ xF~1) = g;, and as long as there is no rank deficiency in the matrix M, the sequential
execution of all n projection defined in the matrix M for multiple iteration should make z*
to converge to a solution of Mz = y, hence yielding a proper POCS method.

Unfortunately, although this method is simple, all our remarks from section 4.2.4 still
apply, and if the problem is hard, for instance it contains inconstistencies, the problem has no
solution, and the method will not converge toward a good approximation satisfying most of
the constraints.

It is also interesting to notice that the condition number value for the matrix M will
play a role in this algorithm convergence. Indeed, if the condition number k(M) = 1, M is
an isometry, the method converges in only one iteration, yelding a perfect n-step projections
method.

However, the more the hyperangle between the row vectors of the matrix M will be close
to zero (collinearity), the slower the projection method will get, we give a simple illustration
of this geometrical intuition on figure 4.4.

This problem is well known from the tomography community, which noticed that radio-
graphic projections acquired physically close to each other, i.e whose gantry acquisition angu-
lar displacement was close to 0, usually featured sets of measurment vector whose hyperangle
was also close to zero. To overcome this problem, various pojection ordering strategy have
been studied, see [hamaker1978angles|, [herman1993algebraic|, [guan1994projection],
[mueller1997weighted|, [kong2012evaluation| and even more recently for the few view
case : [zheng2011lidentifying].
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by + bors =

Figure 4.4: Alternative projections onto two convex sets in R?

4.2.8.3 Variation of the Kaczmarz method

Two major drawbacks of the Kaczmarz method, that preclude from using it in practical cases
are:

e [t is essentially a sequential method, that cannot be easily parallelized, which is prob-
lematic for large systems of equations.

e The method appeared to be quite sensible to inconsistencies in the data, especially when
M has a large condition number.

In order to overcome this problems, many “smooth” variations of Kaczmarz method have
been derived:

e smooth the individual hyperplan projection operation by using a relaxation factor 0 <
A<lorl<\<2 (symmetry).

e Compute the coordinates of the projection of the current solution on all hyperplans, and
then assign the barycenter of this set of coordinates to the be the new solution estimate:
this is the basic idea of Cimmino method, although it initially also involved a notion of
symmetry.

e Only use a subset of the hyperplans, and apply the same strategy

e mix multiple of the above strategies

The basic idea of using the hyperplan projections barycenter can be formalized using the
following iterates definition:
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1 n—1 7\[( )
k k—1 k—1 2,%
== — (M, — ) 4,
at = 2 T (M), 2" 77) — yi) P (4.55)
n—1
1 M,
_ k=1 1 Z , E—1\ . (3,%)

It is clearly visible that all hyperplan projections and the volume correction can be com-
puted in parallel, and that this operations involve two simple matrix-vector operation, so that
this method has a simple matrix expression:

1
gk =ght - EMtW(Mx —v) (4.57)

Where W is a diagonal weighting matriw, where each M;; contains the inverse of the
squared Lo norm of the ith row of M : Wii= m

i,%) 112

It is interesting to see that this formulation can be seen as a variant of gradient descent,
with an original preconditioner.

4.2.8.4 Simultaneous algebraic technic

We consider SIRT, see [gilbert1972iterative| and SART ([andersen1984simultaneous])
related methods to be slightly different from the hyperplan projection method seen in 4.2.8.3,
as they do not account for a Ly normalization of the measurment vectors M.

Instead, SART like algorithm update equation for a single voxel z; of index j, and a subset
of equation ranging from gpeg t0 icng < n (excluded) reads:

iena—1 . Mo 7w
_ i=ipeg i T Mol
ok =gkt — = ) (4.58)
J J Zlend—l M .
i:ibeg 2y

The SART update in equation 4.58, has to be performed for any arbitrary union of subsets
that covers the whole set of equations in order to complete one iteration. It should be noticed
that the previous update equation imply first a projection step, that can be carried out in
parallel for every y;, and then a backprojection step, that can be carried out in parallel for every
xj, making this algorithm particularly well suited for a parallel implementation, depending on
the size of the chosen subset of equation. In the case where ipey = 0 and i.,q = n, there is only
one subset, and the SART amounts to SIRT, its maximally parallel version, which however,
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tends to feature a slower convergence. In his case, the update equation can be rewritten in
matrix form:

2 =P W MWh(Mx — ) (4.59)
71 ..
Mol 9 0
0 mram 0
Where W7 is the matrix of the form: W7 = ( )
: : 1
0 0 Ter Tt

Whose role is to make W1 M! a matrix whose rows sums to 1, assuming that M is non-negative.

1 ..
1M 0,41 0 0
| | 0 Mo 0
And Wj is the matrix of the form: Wy = A
1
0 0 [E——F

Whose role is to make Wy M a matrix whose rows sums to 1, assuming that M is non-negative.

Understanding the role of the Wi relatively to the back projection operator M' and the
role of Ws relatively to the projection operator M is fundamental in order to design a generic
software able to handle all flavours of projection/backprojection operators, for the SART-like
algorithms.

For instance, one can notice that in case the back-projection operator M?! features a simple
interpolation sampling on the detector, then its equivalent matrix operator has a builtin row-
wise normalization, such that W is an identity matrix, and one save some computation and/or
memory space.

Convergence analysis of the SART algorithm, as described in this section has been studied
in [jiang2003convergence).

4.2.8.5 Going further with the randomized Kaczmarz method

It is interesting to observe that, driven by the need for fast optimization algorithm, capa-
ble of handling extremely large datasets, single sample or batch based optimization meth-
ods, like the one initially derived by Kaczmarz, recently regained the interest of mathe-
maticians in the framework of stochastic optimization. Among the recent work derived
from Kaczmarz/Cimmino methods, we can cite the randomized Kaczmarz method, see
[strohmer2009comments|, and the more general stochastic optimization method from
Gower and Richtarik analyzed in [gower2015randomized].
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4.3 Linear least square

In the following developments, as we will use less 2D geometry analogy, we will drop the ~
superscript to denotes vectors. All lower case variables should be considered as vector, unless
stated otherwise.

4.3.1 Introduction

We will now talk about one of the most common problem that arise in many fields of engi-
neering : the least square problem, whose objective reads:

1
argmin  ~||Mx — y||3 (4.60)
zERF 2

In the field of signal processing it can be seen as a signal retrieval problem where we have:

e 2 € R¥ the k dimensional unknown signal to be retrievied

e y € R™ the n dimensional samples, generally equivalent to the following model of noisy
measurements y = Max* + € , where the model of the noise, € is random centered

2

gaussian distribution with finite variance o<, a condition for the least square estimate

to be efficient.

ns

o M € R™F a linear measurements matrix, projecting the "‘reality"’ of the signal to
be retrieved * in k dimensions, to a measurement space of dimension n, following a

measurement model we wish to be as close as possible to the truth.

4.3.2 Least Square and Bayesian framework

This objective is very important in science because it has a simple interpretation in the
Bayesian framework:

Let’s recall that y = Mz* + € and that € is a random process that follows an homoscedastic
multivariate normal law: € ~ N(0,02) and we can write y ~ N (Mz*, 0?).

Now the Bayes theorem can be used to assess the probability of a candidate solution «x,
given a measure y:

ple) X plyl) o)

p(zly) = o)

Where we have y the observation vector, whose probability p(y) for which we have no
statistical apriori, is supposed equiprobable, and, as such will be considered as a constant ay.
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Our current candidate solution x, for which we currently have no statistical a-priori, which
equiprobability p(x) over R* can be modeled as a constant a;. It can be noticed that re-
searchers have used graph based statistical apriori, based on Random Markov Field model
(RMF), to setup maximum a posteriori (MAP) strategy along with the Expectation Maxi-
mization (EM) algorithm in the past, see [green1990bayesian|

In our simple case, we can first establish a marginal version of the conditional probability
p(y;|x), which, as seen in section 4.3.1 amounts to the following normal distribution:

1 (M) —y;)?

p(yilz) = N (4.62)

Using the fact that all y; are independants with the same distribution, we can write

plylz) = [ [ p(vilz) (4.63)

i=1

Which, using the property of exponential, can be written in a vectorial fashion:

1 _IMz—yl3

p(ylz) = Nora 202 (4.64)

The likelihood of z then reads:

o _ |\Mz—2yu§
Var? P
plaly) = 2 - (4.65)

If we now consider the logarithm of this likelihood, and get rid of all the constants but %,
the log-likelihood maximization problem amounts to:

1
max — =||Mz — y||3 (4.66)
zERk 2
1
& min  =||Mz -yl 4.67
min S|Ma gl (4.67)

4.3.3 Weighted Least Square for heteroscedastic data
4.3.3.1 Limits of the least square model for tomography

The Bayesian framework developed in the previous section provides an interesting tool to
study the solution of the linear least square. For instance, in some cases, the solution of the



112 Chapter 4. Chapter 4: First Order Methods applied to Tomography

least square may not be satisfying in part because of the discrepancy between the underlying
statistical model, and the implicit homoscedatic gaussian assumption of the least square. Here
are some of the discrepancies that should be considered:

e The noise or measurment error may not follow a centered gaussian distribution

e The statistics of the vector y may not be homoscedastic.

It appears that both cases are actually relevant for tomographic reconstruction. As stated
in section 2.1.2, the vector y is the outcome of multiple stochastic processes, mainly the
X-Ray photon statistics that follows a poisson law, and the detector readout noise, which is
often modeled as an additive gaussian noise.

The fact that both Poisson, and Gaussian distributions considered for the tomographic
model are centered is a good point because expectation and maximum likelihood are equals
in both cases, we already exploited this property in order to simplify our tomographic recon-
struction model. However, due to the physical nature of photon statistics, that depends on
the imaged object itself, we have also seen that each pixel value is a random variable that
has its own variance. In this case, one cannot expect for the implicit homoscedastic model
performs well for real tomographic experiments.

4.3.3.2 Generalizing least square

When looking at the Bayesian framework exposed in the section 4.3.2; one can notice that
the gaussian assumption can be modified in favor of a truly multidimensional heteroscedastic
model, assuming that the underlying multivariate gaussian parameters are known in advance.
Using the Central-limit theorem, or some apriori on the physical system, on can even extend
the gaussian model to approximate more complex statistical distributions with known variance.

Assuming that we know the expectation y, and the covariance matrix of our dataset X,
we recall that the loglikelihood of a point Mx where Mz € R™ can be computed using the
following formula

QN

L(y) = —— L~ 3(a—y) 2 (M) (4.68)

(4.69)

As a covariance matrix, is, by definition symmetric and positive semi definite, it can be
diagonalized in an orthogonal basis. In our case, we will focus on positive definite covariance
matrices, so that the multidimensional gaussian probability distribution function expressed
earlier is valid.
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In this framework, the covariance matrix can be written ¥ = Q'DQ, such that its inverse
reads Q'D~1(Q, and the following maximum likelihood problem can be casted:

1
max — ~(Mz —y)'S™H Mz —y) (4.70)
zERF 2
1
& min =(Mz—y)'Q'D'Q(Mx —y) (4.71)
z€RF 2
1
& min o(Mz— NIQIDTPDPQ(Mx — v) (4.72)
zeR
1
& min Z||D7PQMax — DT?Qy|3 (4.73)
zeRk 2
. 1 ! /112
& min o[|Mz—yl; (4.74)

Where M’ = D™/?)QM and y = D~2Qy

The heteroscedastic case can be treated just like another least square problem, so that all
following developments will be valid. In the practical cases, due to the lack of informations
regarding the dataset covariance, we will generally assume that ¥ is diagonal, and each element
will denote the estimated pixel variance. If a poisson/gaussian mixture estimator is available,
one can derive an estimate of the actual pixel variance after the Beer-Lambert transformation,
otherwise, one has to guess which component dominates the variance, and choose between the
homo or heteroscedastic model. A comprehensive study on variance weighted methods has
been conducted in [zeng:16:nww].

4.3.4 Smoothness and convexity of least square

In the following developments, we will assume that the projector P - backprojector B pair
verifies the positive spectral condition studied in [zeng2000unmatched]|, this ensure that
the BP operator is positive definite. Although we mainly focused in the chapter 2 and 3
on the quality of the projection operator from a signal processing point of view, we will recall
here some of the results that highlight the fact that the properties of the BP matrix are of
critical importance in the fromulation of the least square problem.

4.3.4.1 Smoothness

We recall that a l-Lipschitz smooth differentiable function f : R¥ — R, has its gradient
lipshitz-continuous:

IVf(@) = VIl < Uz —yll,¥(z,y) € R x RF (4.75)
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If f is a quadratic functional, like the least square, it is easy to show that this amounts to a
condition on the operator norm of the Hessian H: ||H|| < [. The more ||H|| is small, the more
the functional is smooth, so that one would usually wish for a small maximum eigenvalue for
H in order to get a functional as smooth as possible. Checking this property for an unmatched
pair of projector-backprojector can be done easily using the power method.

4.3.4.2 Convexity

The f function defined earlier is convex if the following condition holds:

FOz+ (1 =Ny) <A(z)+ (1 =Nfy),Y(zy) e RE xRF A e[0,1] (4.76)

Assuming g(\) = f(Az + (1 — N)y)

When f is differentiable in every point y, there is an equivalent definition: the hyperplan
defined by Vf(y),z — y) = 0 actually defines a supporting hyperplan of the graph of f, and
it allows us to define a linear lower bound for f:

f@) > fy)+ (Viy),z —y),Y(z,y) € RF x R (4.77)

When f is twice differentiable, there is another equivalent definition that follows from
Taylor expansion (see [boyd2004convex|), based on the positive definiteness of the Hessian
of f: H:

H >0 (4.78)

In our linear least square, this amounts to the condition derived in [zeng2000unmatched]
stated earlier. One would usually wish for a large minimum eigenvalue for H in order to get
a functional as convex as possible.

4.3.4.3 Strong convexity

For f a differentiable function (but this property can be extended to other functions with the
subgradient), we say that f is « strongly convex if:

f@) = fly) < (Vf(z),x —y) - %va —yl3,¥(z,y) € R* x R (4.79)

fy) = flx) + (Vf(2),y —x) + %HI —yl3,¥(z,y) € R* x R (4.80)
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It can be seen on the second line that this property imply that for any strongly convex
function, at any point x € R¥, we can find a quadratic lower bound of f. It can also be shown
that the Hessian of a strongly convex function must satisfy H — ald > 0.

Again, we see that in the linear least square relies on the property of BP, and is also linked
to the smallest eigen value of the BP matrix. Unfortunately, in practice, retrieving this value
with the power method, as presented in [zeng2000unmatched| is extremely challenging,
because the power method convergence rate depends on the ratio between the norm of the
eigenvalues, and that those values tends to be clustered close to zero for ill conditioned systems.

4.4 Krylov based methods

An excellent introduction to Krylov methods, and their role in high performance computing
can be found in [magoulesparallelization|. In this section, we will try to recall some of the
most important features of this algorithm, and how they can help in analyse what tomographic
reconstruction.

In this section, we will assume that we want to solve a square problem of the form MMz —
MU'y = 0, which describes the vanishining point of the derivative of the least square.

4.4.1 Taylor expansion: from scalar to matrices

Taylor expansion can easily be applied over differentiable scalar functions of one variables,
this leads for instance to the following expansion, for = close to 0:

—14az4+2’+23+. .. (4.81)

_ i " (4.82)
n=0

1—=x

It is interesting to notice that the right part of this equality can also be interpreted as the
sum of all terms of a geometric series with a common ratio of z, which is valid when |z| < 1.

For the sake of our argument, we will assume that, M can be diagonalized in an orthogonal
eigenspace (symmetry), so that all its power can be simultaneously diagonalised in the same
eigen space, hence provinding an easy way to extrapolate from the scalar case to each diagonal
elements. The previous expansion extended to the symmetric matrices case over a real field
then reads:
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(Id— M) ' =Td+ M+ M*+ M? + ... (4.83)

= i M (4.84)
n=0

This expansion is valid for matrices whose operator norm ||M|| = [A(M)maz| < 1, and of
course apply for nilpotent matrices, which have all their eigenvalues identically equal to zero,
their characteristic polynomial being z™.

Using [A(M)maz| = ¢ # 0, excluding the already handled case of nilpotent matrices, we
can extend the previous power series to all symmetric matrices M:

(1= (%)) =t
(cId—M)_lzi(Id+]\c4+<]\f>2+<]\f>3+...) (4.86)

_ ino (f)n (4.87)

Withou loss of generality, a variable change M = cId — P, where P is also symmetric,

(4.85)

I
~
QL
+
|
_|_
N
|
N———
+
7 N
IS
N———
_|_

gives us

P t= ii (CMC_PV (4.88)

n=0

We will see how this Taylor expansion is linked to preconditionned iterations in the next
section

4.4.2 Preconditionned iterations

The approach seen in the section 4.2.7.2, with a-priori decomposition of the matrix M that
lead to a fixed point iterations can also be generalized as follows:

Mx—y=0 (4.89)
(P—(P—-M))zx)—y=0 (4.90)
Pr=(P—-M)x+y (4.91)

PPz =P Y (P-M)xz+ Py (4.92)

z=x+ Py - Mz) (4.93)
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This problem can simply be recasted as a fixed point search problem, that can be solved
using the following iterations:

M =gk 4 Py — M) (4.94)
aF = oF 4 piph (4.95)

Where 7% = y — Mz¥ is called the residual and P is called the preconditionner.

The preconditionner could feature some useful properties, like the fact that P~! is easy
to compute, and eventually P has a low condition number, or P may even carry some a-
priori informations over the problem. In the case of tomography, researcher have experienced
interesting convergence speedup from using the filtering stage of the filtered backprojection,
see the analysis of the iterative FDK and iterative FBP from [mory2014tomographie| and
|zeng2000unmatched].

We can notice that, if we choose the preconditionner such that P~ = W}\%MT we

get an instance of the gradient descent algorithm.

4.4.3 Krylov subspaces

Let reconsider the equation of preconditionned iterations, where we will incorporate the pre-
conditionner P directly to M and y such that we have our new M equivalent to P~'M and
our new y equivalent to P~'y. The preconditionned iterations now reads

okt = (Id — M)ak +y (4.96)

assuming 20 = y, we can write

20 =y (4.97)
ol = (Id— M)y+y (4.98)
22 = (Id— M)y + (Id— M)y +y (4.99)

(4.100)

Now, using the matrix version of the Taylor expansion exposed in the previous section, we
can give another proof of the convergence of the z* series:



118 Chapter 4. Chapter 4: First Order Methods applied to Tomography

k
oh =Y "(Id— M)"y (4.101)
n=0
lim ok = (Id — (Id — M) Yy (4.102)
—00
lim z* = M1y (4.103)
k—o0

(4.104)

The fact that the inverse of M in y can be expressed in a basis made of vectors of the form
M"y,n €0,1,... was first discovered by Krylov, using a more general approach based on the
Cayley-Hamilton theorem, which do not impose condition over the spectral radius, and where
the polynomial in M was the characteristic polynomial of the matrix M.

In the general case, the space IC, spanned by the r first vectors : M"y,n € 0,1,...,r—11s
known as the order-r Krylov subspace, and it can be shown that its basis, made of the vectors
M"™y,n€0,1,...,r—11is free while r < rpqz, With 76 < k

4.4.4 Practical considerations on krylov subspaces

From the previous section presenting a polynomial expression in M™, on can think about
deriving the Krylov matrix K:

(y My M?y ... M"1y) (4.105)

Unfortunately, in many cases, this basis cannot be used as is to express the solution
for numerical reasons: assuming M can be diagonalized and has n different eigenvalues
AM)o, A(M)1, ... A\(M),—1 associated with the eigenvectors vg, 01, ...v,21 we can write

n—1
y=>_ o (4.106)
=0
n—1
MMy =" g MM)}; (4.107)
=0

y n
When the ratio <°‘glz‘”> <’\(/\]¥]A)f)mr> where maxz stands for the index of the maximum
eigenvalue, exceeds 2", the accuracy of any krylov subspace method would collapse. n being

the number of significand bits in the floating point representation of a computer.

To overcome this problem, Arnoldi used the simple principle or Gram-Schmidt orthogo-
nalization process for each new multiple of My in order, not only to obtain a basis of the
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Krylov space, but an orthogonal basis. Later, Lanczos found out that, in the case of sym-
metric matrices, the upper Hessenberg matrix used for the Gram-Schmidt process of Arnoldi
method was actually also symmetric, hence leading to a tridiagonal matrix. This observation
has a huge impact on algorithm complexity, because it offers a method to build iteratively
an orthonormal basis where each new vector is orthogonalized using a fixed number of steps
(actually 2 orthogonalization and one normalization).

Lanczos method can be seen as a matrix factorization method, that has two levels of
decomposition. The first level is basically the tridiagonal Gram-Schmidt process that yield
VoH,pV,y = M, with V,, a unitary matrix. The second level allows to compute the diagonal-
ization of Hp, as a Choleski decomposition of the form L,D,L}. Although there does not
seem to be much litterature about the use of Lanczos method for computing eigenvalues of
tomographic systems more efficiently than with the power method, this topic goes beyond the
scope of our work.

4.4.5 Krylov basis and practical resolution of linear equalities

As seen earlier, the solution M 'y of Mz = y can be expressed in terms of MPy,p =
0,1,...,r — 1, which led us to define the order-r Krylov basis.

We have then seen that Arnoldi and Lanczos provided a way to express the p-order Krylov
basis V), in a numerically stable way . We can now define ,, the approximation of the solution
of Mz —y = 0 in the order-p Arnoldi basis:

Zp = Vpsp (4.108)

From this can be defined common error metrics over this approximate solution, using :

e The error vector: €, = x — @

e The residual vector: v, =y — Ma,

Krylov subspace related methods aims at minimizing €, or r, under appropriate norms.
One of the most reknown method, first derived by Lanczos aims at minimizing Lez(z)) the
scalar product of those two error vector, that can be also interpreted as the squared norm of
the error vector using the scalar product defined by the matrix M:
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Lex(3) = 1613 (4.109)
— o — a3 (4.110)

= (x —2p)TM(z — ) (4.111)
=e,.(Mx — May) (4.112)

=€, .(y — May) (4.113)
=€, (4.114)

(4.115)

The Lanczos method can be viewed as the task of finding the vector z;, € K, such that its
distance to x is minimum in the inner product space M" defined by M from R", for this
method, we need M to be symmetric and positive definite. The vector x; that satisfies this
definition is the orthogonal projection of x over K, using the inner product (.,.)ys. Following
the definition of the inner product (.,.)as and the definition of the orthogonal projection
operator,

Pc,: M" > K, (4.116)
T — Tp (4.117)

in the space M" we have that the range IC, and the nullspace M™\ K, are orthogonal subspaces
in direct sum, which means for us that M" =K, @,; M" \ K, and :

V(a,b) € M™ x M"\ Kp, (a,b)pr =0 (4.118)

By construction, it is obvious that €, = ¢ — 2, € M™ \ K, so we have:

(Zp,x —ap)mr =0 Vi, € Ky, and x € R"” (4.119)
ZpyM(x —2,) =0 (4.120)
Zp.(y — Mzp) =0 (4.121)

Zprp =0 (4.122)

So we have that, in R", the residual 7, is always orthogonal to all vectors in K, which is a
key feature of the conjugate gradient we will describe in the next section.

4.4.6 Conjugate Gradient approach

Although the previous algorithm features some interesting properties, we can notice that it is
not, exactly a method that iteratively builds a solution vector. Instead, it iteratively builds
a new problem, where s,, the M-projection of the solution & in the Krylov sub-space )
expressed in the basis V), can be solved whithout too much effort, thanks to the triangular/-
diagonal structure of the LDLT Choleski factorization.

An alternative formulation where the current solution z; would be iteratively constructed
in the Krylov subspace K, using sequential vectors vz, k = 0,1,...,p — 1 from the basis V),
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would allow us to save the computation needed to solve the full projection problem at each
iteration, and the main update would look like:

Tpi1 = Tp + 0pUp (4.123)

4.4.7 General Idea of Conjugate Gradient in the framework of Krylov
methods

We must recall that the solution vector s, at each step is the orthogonal projection of the
general solution & over the Arnoldi basis V,,. But it is orthogonal with respect to a specific
inner product definition that uses M € S, , although the Arnoldi basis V}, column vectors are
orthogonal with respect to the canonical inner product based on the identity matrix. So there
is no guarantee that the p first coordinates of s, in V}, will remain the same in s, expressed
in the new basis V,41. This is why, at each iteration of the previous algorithm, the linear
combination of vectors from V), had to be fully recomputed by solving a structured linear set
of equations.

To overcome this problem, let’s first recall that the problem to solve at each iteration as
seen previously, reads:

Hppsp = Vjy =0 (4.124)
Hppsp = V,Jy (4.125)
Hppsp = p (4.126)

As 9, and y,11 only differs in the last coordinate that have been added to y,i1, as seen
earlier, if we want to have a coordinate-wise resolution of the problem in the basis V,,, the
same property should apply to H,,s,, which could be translated in:

1 0 0
0 - -
Hyp1prisptr = Hppsp (4.127)
1 0
0 0 0
(4.128)

Which imply that Hp, should be constructed iteratively so that Hy, and Hj, 1,41 only
differs from the last line and the last column, but also that H,, should be diagonal for every

p-

To achieve this simple construction scheme, it is obvious that Hp, should be diagonal. To
do so, we have to find a new Krylov basis W), such that our new Hp, is diagonal:
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Hyy = WIMW, (4.129)

Fortunately, we don’t need to take the Krylov basis design problem from the beginning to
handle this constraint. We have already seen that the residue 7, is orthogonal to k), and by
construction, 7, € Kpt1 :

rp =Mz, —y (4.130)

with y € K1, 2, € K, so Mz, € Kyr1. We conclude that 7}, lies in the orthogonal
complement of ICp, in Ky, that we can write K1 \ ) which is of dimension 1 and has an
orthonormal basis v,. So every 7, can be written aw,,.

4.4.8 Construction of a new Krylov space basis

The last remark in the previous part can be directly translated into a matrix equality, let R,
be the matrix of all ordered p first residual vectors ri, k € 0,1,...,p — 1, we can write:

R, =V,A, (4.131)

Where A, is a diagonal matrix, and we can now extend properties valid for the decompo-
sition of H,, :

RIMR, (4.132)
=ATVIMV,A, (4.133)
=ATHy A (4.134)
=H,, (4.135)

(4.136)

Where the matrix ﬁpp that is equivalent to the projection of the linear operator M over
Kp expressed in the basis R, is still tridiagonal and positive definite, and admits an alternative
Choleski decomposition of the form Hy, = L,D, L}, such that we can write

RIMR, = L,DpL] (4.137)
SATVIMV,A, = L,D,L] (4.138)
&L ATVIMV,AL LT =D, (4.139)
W, = R,L,T (4.140)
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Column vectors from W), are derived from residual vectors, they form a basis of K, and
they features the desired property stated in the previous section: they are all orthogonal to
each other with respect to the inner product (.,.)ps in M™.

Knowing that I~/p is bidiagonal inferior by construction, as seen in the Choleski factoriza-

tion, we can also derive a short recurrence pattern over wy, w1, ..., w,-1 the column vector of
Wy, assuming that 70,71, ...,7p—1 are the subdiagonal elements of L,:
Ft
WpL, = Ry (4.141)
0 1 m :
wWo w1 wp_'_ 1 i ’ 0 = ) 71 Tp—1
1 Tp—2
0 0 1

(4.142)

This formulation may give us a way to construct w;y1 with a simple iterative scheme,
assuming that 2y = 0:

W, L =R, (4.143)
=70 =uwy=y— Mzy and (4.144)
Tit1 = Wj1 + VW (4.145)
Swiit = Tj11 — YjW; (4.146)
(4.147)

This relationship between wj}1 and w}; can be further exploited, if we use the fact that all
vectors from W), are pairwise orthogonal with respect to the inner product defined by M:

<wj11, ’LU}')]M =0 (4.148)
(it — v, W) M =0 (4.149)
St My — w5 Mw; =0 (4.150)

ri1 M
&5 =0 4.151

We now need to see if ;71 can be found using a simple recursion. To do so, we have to
use the coordinate-wise construction of w;1 exposed previously :
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Tjt1 = Tj + ;]
ijJrl -y = M$j —l—ajij -y

rit1 =7+ Oéjij

Here, we can use the fact that 7, is orthogonal to K,, and especially 7} is orthogonal to
w;_1 so that we can write:

(rjt1, wj) =0 (4.156)
(7 + o M, wj) =0 (4.157)
(75, wj) + aj (M, wj) (4.158)
&7 T + ot M) =0 (4.159)

_T_J’,T,uj’j
“a; =12 4.160
@ &7 M, (4.160)

4.4.9 Conjugate Gradient algorithm in practice

The force of the Conjugate gradient algorithm lies in the fact that it iteratively builds a
diagonal problem which can be solved one coordinate per iteration, without "forgetting" about
the previous iterations. More interestingly, it is not solved in the canonical coordinate system
of R™ but instead in a basis of pairwise orthogonal vectors with respect to the matrix M,
called conjugate vectors, which are iteratively built using the gradient of the function f(x) we

want to minimize at the current solution estimate : f(z) = £ (z — ) (Mz — ).

By design, these vectors are able to catch a large part of the error at every iteration, and
especially, if the matrix M defines an ellipsoid with an important anisotropy, the conjugate
strategy helps to avoid the drawback of descent methods that are often “stuck” in valleys.

The algorithm reads:

4.4.10 Going further with the Krylov methods

Although conjugate gradient is one of the most simple Krylov method, which makes it a good
choice for large scale optimization, it does not enjoy the nice property of monotically decreas-
ing residual cost, because it is designed to reduce de Lez() cost function seen earlier, however,
it is generally extremely fast in practice when the problem is not too ill conditionned. There
are other Krylov methods, based on other objective functions, such as GMRES, Biconjugate
gradient, or SYMMLQ. GMRES for instance can handle non symmetric matrices, which could
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Algorithm 1 Solve Mz —y =10

Require: M € S, the positive definite cone
Initialization
=Y
wo =70

Jj=1

Iterations

while j <n do
Tilewiil

wiilTMw{’,l

T = Ti—1 + 01 W51

Qi1 =

7 =121 — i1 Mw;q
if 7; # 0 then
i _ T‘_%T]V[wf_l

’Y_Zfl T witi T Muwity

Wi =T — Yi—1Wj-1
else

End iterations
end if

end while

be interesting in tomography when the product of forward and backward operators yield a ma-
trix that differs too much from a symmetric matrix, see the work in [coban2014regularised|
where the author instanciated the GMRES algorithm for X-Ray CT reconstruction.

4.5 Gradient descent

4.5.1 A low cost second order method

As seen in 4.4, there are multiple ways to interpret the gradient descent algorithm. An
interesting interpretation consist in looking at gradient descent as a second order optimization
method, with a poor estimate of the Hessian. To understand this concept, let’s first take a
look at how most of the second order methods have been derived:

4.5.1.1 Newton method

Newton method is a really simple method originally designed in order to find iteratively the
root of a function (where it is zero valued), we will see later some conditions that must be
met in order to ensure the algorithm convergence.

One of the first condition is simply to be sure that the function under consideration, for
instance f : 2 — f(z), crosses the X axis of the graph at some point.
" R
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The basic idea of newton method is to linearize the function at the current estimate,
find the root of the linear approximation, and assign its value to the current estimate before
starting a new iteration.

The linear estimation fj;, at point a, using Taylor serie gives:

frina(x) = f(a) + (x —a, Vf(a)) (4.161)

Where we recall that Vf(a) =

= ~f(@)

This simple linear equality defines an hyperplan onto which the current solution can be
projected in order to get the next iterate.

Here is a simple overview of the process for a 1D case, see figure 4.5:

4.5.1.2 Extending Newton method for convex optimization

We are generally not really interested in finding the root of an objective function, plus, there
is very few chances that we would ever be able to prove it exists. However, when manipulating
functions that are convex and twice differentiable, we know, thanks to Fermat theorem, that its
derivative vanishes at the optimal point. So finding the root of the derivative of our objective
seems to be a much more interesting challenge.

We will replace f(z) by Vf(z) in our previous equations to obtain the desired equation
update:

V fiina(x) = 0 (4.166)
Vf(a)+ Hf(a),(x —a)=0 (4.167)
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Overview of newton method

a0}

30 -

Y axis
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Figure 4.5: Simple instance of Newton algorithm for a 1D quadratic function

Here we recall that Hy(a) the Hessian of f in a can be defined as

of(a) 0f(a) . 0f(a)
O0xg0xg Ox10xg Oxpn_10x0
0f(a) 0f(a) . of(a)
Hf(a) _ VVf(a) _ 83:0.8:101 83:1.8:101 . axnilaxl (4.168)
of@  _oft@ .. _ o))
0x00Tn—1 0110Tyn_1 O0Tp_10Tn_1

The equation becomes:

Vf(a)+ Hg(a)r — Hy(a)a =0 (4.169)
Hy¢(a)xr = Hy(a)a — V f(a) (4.170)

v = H; ' (Hf(a)a — Vf(a)) (4.171)

v =a—H'Vf(a) (1172

We can notice that we have to compute Hf_l, the inverse of Hy. Although Hy is a sym-
metric matrix, this should be considered as a very difficult task in the general case, especially
when dealing with high dimensional problems.
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4.5.1.3 Second order method in the linear case

For a simple quadratic problem such as the least square minimization, it is very simple to
prove that the Newton method converges in only one step, and is equivalent to compute the
pseudo inverse. Let’s define the following problem:

o f(z) =Mz —yl3
o Vf(x)= MMz — Mty
o Hy(z) = M'M

The newton method can be used on the gradient, because the probem is convex, and twice
differentiable. Assuming an initial solution vector zg, the first iterate reads:

T = T9 — Hf_IVf(:ro) (4.173)
=xg— (M'M)" Y (M'Mzq — M'y) (4.174)
= xg — (M'M)" M Maxy+ (MIM)™ Mty (4.175)
= (M'M)~1 Mty (4.176)
=Mt (4.177)

4.5.1.4 Low cost Hessian estimation

Newton method is then useless for our least square estimate problem, because it amounts to
the pseudo inverse, however, it is interesting to notice that one can use a "low cost" estimation
of Hf_1 instead of computing the full inverse. Let’s take a closer look at the algorithm update:

ol =gk — H}TIVf(xk) (4.178)

We can reformulate this update as a fixed point method:
ok =k — H;1Vf(xk) (4.179)
ab = Ta" (4.180)

We recall that, from the Picard fixed point theorem, this class of algorithm converges if
the operator T : * — x — H]?1Vf(a:) is a strict contraction. In our least square case, this
reduces to an operator norm condition:
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The method converges if it exists p € [0, 1] such that

4.181
4.182

4.183
4.184
4.185
4.186

V(z,2') e R" x R",z £ 2’ . ||[Tx —Ta'|| < pllz — 2|
e — H IV f() — 2/ + HF 'V F()] < plla — |
lz — 2’ + H; 'V (2 —2)|| < pllz — /|
I(Id — Hy 'V f)(@ —a")[| < pllz — 2|
I(Zd = H 'V )l (@ = 2)]| < pllz — 2|

(
(
(
(
(
|1d— H7'VF] < p (

)
)
)
)
)
)

An extremely simple approximation A H; of H;l that is easily invertible, and satisfies

ml d. This method is a simple instance of the gradient

the above condition is AH;1 =
descent, but it must be noticed that, although it ensure convergence from any starting point,
taking the inverse of the upper bound of the Hessian norm has a great chance to be an
understimated value of the optimal step size in many cases. The pathologic cases includes the
ill conditionned matrices, that tends to exhibit large anisotropy in the corresponding ellipsoid,
resulting in deep “valleys” in the function graph, where the descent step size is usually very

short to ensure monotonnic convergence.

4.5.1.5 Secant equation and quasi Newton method

The fact that inverting H is a challenging task, gave rise to a variety of optimization meth-
ods, where Hf_1 or H]?1Vf(xk) is approximated. Those method are known as quasi-Newton
methods.

In the general case, we recall that the second order Taylor expansion of a function f as
defined above reads

f(zF + Az) = f(2F) + (Vf(z¥), Az) + %Athfo (4.187)

Which derivative with respect to Ax gives

Vf(a* + Az) = Vf(2*) + HiAz (4.188)

When looking for a Az such that this expression vanishes, we have the Quasi Newton
relationship or secant equation as seen previously:
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0=Vf(") + HiAz (4.189)
HiAx = —Vf(2") (4.190)
Az = —H;'Vf(a") (4.191)

4.5.1.6 Barzilai-Borwein and quasi Newton method

In 1988, in "Two-Point Steap Size Gradient Methods" [barzilail988two|, Barzilai and Bor-
wein derived a two point approximation for the secant equation seen earlier that reads

Hy(zF — 2%y = Vf(a®) — V() (4.192)
P — b = —H NV f(F) - Vi) (4.193)
Az = —H; AV f(x) (4.194)

Where Az = 2*+1 — 2% and AV f(2) = Vf(aF) — Vf(aF1).

Barzilai-Borwein idea is simply to assume that Hf_1 writes Ald, like in the gradient de-
scent method, and then looks for the A that is close to satisfy their two point Quasi Newton
relationship in the least square sense:

N = argmin ||Axz + MdAV f(z)|3 (4.195)
AER

The minimum of this simple one dimensional objective is attained in:
AV f(z), Ax)
A= — < : 4.196
AV /(). AVF(@) 199

The newton method updates, that previously read

2 =2k 4 Az (4.197)
gt = g — Hf_IVf(xk) (4.198)

Now reads

N S (AVf(z), Ax) F
= T AV @), AV @) ) (4.199)

It can be noticed that the equation 4.195, can also be rewritten, symmetrically with

N =argmin  ||A\Az 4+ AV f(2)|3 (4.200)
AER
And another algorithm can be drawn from there with
N (Az, Ax)
AN= 4.201
(e, AV @) 200

But then the interpretation in this cas is less intuitive.
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4.5.1.7 Going further with Barzilai-Borwein acceleration

Although it result in a non-monotonic algorithm, the BB! is still a good choice for gradient
descent step size regarding other approaches like the classical Lipschitz coefficient based step
size, which has been reported to provide a slow convergence speed, see [wright2009sparse].
Computing the BB step could also be considered as a fast operation, because it only requires
one dot product, and one || - |3 norm operator, which are reduction operation that can be
carried out efficiently in parallel. It is even less costly than the conjugate gradient method
exposed in 4.4, because it potentially allows to save the computation of one or two matrix-
vector product (depending on wether the forward and backward operators are adjoints of each
other).

In 2009, Wright, Nowak and Figueiredo published the Sparse Reconstruction by Separa-
ble Approximation method (SpaRSA, see [wright2009sparse|) which enjoyed a tremendous
success from the machine learning and signal processing community. One of the instance of
this algorithm used the BB strategy to derive a non monotic but fast algorithm to perform
sparse regression.

4.5.2 Cauchy step size or the steepest descent

If we take a look back to the design of the BB method, we can see that the authors have
designed a step-size according to a cost function exposed in 4.195. Although we won’t provide
the proof here, Cauchy used a similar method, but with a more intuitive cost function, that
is chosen to ensure monotonic convergence at every step, but in an adaptive fashion:

M= argmin  f(zF — AV f(2F)) (4.202)
AER

This simple one dimensional objective being differentiable and convex, a minimum can easily
be found for the point where the gradient vanishes. Hopefully there is a closed form solution
for the least square formulation f(x) = ||Mx—y||3, whose gradient reads V f(2*) = M!Mx* —
Mty:

c(A) = [ M(z" = AV f(z")) - yl3 (4.203)
= (2 — AV (") MM (2% — AV f(2F)) + y'y — 2yM (2% — AV f(2*)) (4.204)
=A2(Vf (") MM (V f(*))

— NV f (&) MM a® + 20y MV f () (4.205)
+ (MMM 2F + yty — 2yM2®

! Barzilai Borwein
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This simple second order polynomial can be differentiated, and equated to zero:

0= ag(;) (4.206)
= AV (@) MM (V f(2F)) — 2(V f(2®) M M2 4+ 2y MV f (%) (4.207)
_ (VFEM) M Ma* — "' MV f(z)
A T AR MM (Y ) 209
_(M'Maz* — My M Ma* — ' M (M Mk — Mly) (4.209)
a (Vf(@F) MMV f(zF) '
(MM aR) (MM k) — 2y M(M'Ma¥) + y' M My) 1210
- (V@) MM (V] (@) (4:210)
_(M'Maz* — My) (M Mak — Mly)
= (V) MOV ) 21y
(4.212)
This last expression of A, evaluated for each new iterate k then reads:
Ak IV £ (M)]3 (4.213)

MV R

This solution is also interesting in the sense it chooses the optimal step-size at each iterate
of the gradient descent, in the least square metric. This way, one can evaluate the best
“local” step size at each iteration, with a simple calculation: a few matrix-vector products and
dot products at each step. Technically this solution should offer a better convergence speed
than the lipschitz-based step-size, which is computed only once, while providing a monotonic
decrease of the cost function, that Barzilai-Borwein step-size cannot ensure.

4.5.3 Gradient descent as a proximity operator

Another framework can be used to provide an interesting interpretation of the gradient step
size : proximal mappings. Indeed, a single step of gradient descent for the objective function f
can be viewed as a proximal mapping for the objective g,«, the first order taylor development

of fin z*, as seen in 4.5.1.1:

gor(x) = f(a*) + (& — 2", V[ (2")) (4.214)
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Let’s check that the proximity operator of g, in ¥ amounts to a gradient descent step:
. 1
prozy, , (z¥) = argmin  f(z¥) +  (z— 2" V@) +llz — 253 (4.215)
x TERM N—— 2\

constant  minimized for z=x%—vV f(z*)

— min(z® — 4V () — 2 V() + = [F — 4V fh) —2bE (4.216)
veR 2\

2
T NI k2
= min MVFED2 + 51 IV )2 (4.217)
i B2 a2
—%{}va(fv Na(557" =) (4.218)

1 2
=min—~vy° — 4.219
(Y o

The last expression is a simple convex quadratic form whose derivative can be equated to
Zero:

VR (4.220)
v = (4.221)

This simple demonstration allows us to give a new interpretation of gradient descent al-
gorithm as proximal point methods over linearized versions of the original functional. It also
gives us a new point of view to interpret the meaning of the step size of the gradient descent:
it mitigates the locality term weight with the linearized estimate fidelity term in the min-
imization problem. In the framework of a linear least square, this stepwise proximal point
methods will yied good results if the objective ressemble its local linear estimate, hence is not
too convex.

4.6 Optimality certificate for least square

4.6.1 Introduction

Assuming M is a linear operator whose matrix is of size n x k, we recall that the linear least
square reads:

1
argmin || Mz — y||3 (4.222)
zERF 2

It is really interesting to notice that, using the Chambolle-Pocke proximal splitting frame-
work exposed in [chambolle2011first| and popularized in the field of tomography by Sidky
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et Al in [sidky2012convex]| the author introduced an algorithm that allows to compute a
solution to both the primal and the dual problem. As strong duality holds in such case, mon-
itoring the primal objective, and the dual objective value, allows to compute the primal-dual
gap. A PD gap numerically close to zero provides what we can consider as an optimality
certificate, which is a very interesting methodology tool in order to compare various imaging
model for instance.

In order to apply this method on the simple linear, least square, we will have first to
identify the various elements in order to set up our Chambolle Pock framework.

4.6.2 Proximal splitting framework
First, we will use the following formulation for the Chambolle Pock proximal splitting method:
argmin  f(z) + g(Ax) (4.223)
z€Rk

Where f and g should be convex functionals. In our case, we identify f as a trivial function:
f(z) =0, and g as g(z) = 3|z — y[|3 In this case, the Fenchel-Rockafellar theorem shows that
one can solve the following dual problem:

argmax — f*(—L"u) — g*(u) (4.224)
ueR”
< argmin  f*(—L*u) + g*(u) (4.225)
ueR”™

4.6.3 Chambolle Pock algorithm

In order to solve the problem exposed earlier, we will use the Chambolle-Pock strategy which
reads:

Take an initial estimates 20 and u® of the primal and dual solutions, a parameter 7 > 0,
a second parameter o > 0 such that o7||A|? < 1, and a relaxation parameter 0 < p < 2, and
iterates, for k=1,2,...

ub = prox

w4 o L(EF Y 4.226
4.227
4.228

4.229

Ug*(
ok = profo(ack_1 — rL*u")

F = 2 4 p(ak — 2k

,_\,_\,_\,_\
~— O~ e ~—
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Where, zF converges to a primal solution z* and u* converges to a dual solution u*.

4.6.4 Deriving the convex Conjugate
4.6.4.1 Convex conjugate of f

We recall that we would like to instanciate the Chambolle-Pock scheme for f a trivial function:
f(x) = 0. The convex conjugate of f reads:

fr(u) =maz  (u, 2)gn (4.230)

z

This function has a non finite value (+00) for every non zero value of w. Such function
reduces to the constraint v = 0 that translate into the indicator function of the 0 vector :

0o (u)

4.6.4.2 Convex conjugate of ¢

We recall that we would like to instanciate the Chambolle-Pock scheme for g as g(x) = ||z—y||3.
The convex conjugate of g reads:

. 1
9" (u) = maz (u, 2)en — 5[z = yl3 (4.231)
(4.232)

Where ¢(z) = (u,z)rn — 3|z — y[|3 is a nice concave function that is differentiable, let’s
see where its derivative vanishes:

Oc

Z =0 (4.233)
0z
Nu,z) 1 (0(z,2) Oyy) 0(zy)\ _
0z _2< 0z * 0z —2 0z =0 (4.234)
u—z+y=0 (4.235)
z=u+y (4.236)

Now that we have found the optimum, we can express the convex conjugate g*(u):
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9" (p) = clu+y) (4.237)
= (wut )~ 5ty -yl (4.233)
= Jull3 + {u,9) — 5l (4.239)
= el + {u, e (4.240)

4.6.5 Deriving the proximity operator of ¢*

The proximity operator of g reads:
: 1 o L o
prozg-(u) = argmin gHu -zl + inH + (2, ¥)rn (4.241)

Where d(z) = % |lu—z|3+(31|1z]1? + (2, y)rn) is a nice convex function that is differentiable,
let’s see where its derivative vanishes:

od
— =0 4.242
% (4.242)
1 [(O(u,u) Oz, z) Ou, z) 10(z,z)  0(z,y)
— -2 - =0 4.243
27( Ox " Ox Ox +2 Ox + Ox ( )
iy =0 (4.244)
1 1
<7+>z—u+y:0 (4.245)
Y Y
u =y
— 4.246
: v+1 ( )
Now, we have the following proximity operator:
u—y
Proxyg(u) = P (4.247)

4.6.6 Wrapping up

We are now able to give the dual problem of the original least square problem:
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maxr — f*(—A"u) — g*(u) (4.248)
u€R”™
* 1 2
mar — do(—A") — L ul® ~ {u, )z (4.249)
1
maz — ~|jul|® = (u,y)gn  such that A*u =0 (4.250)
u€R” 2

(4.251)

A really interesting property for the meticulous scientist, is that we can now actually
measure the primal-dual gap for the current set of primal-dual solution:

1
PD(z,u) = lle—y\\§+§||U|!2+ (u, y)rr (4.252)

A primal-dual gap numerically close to zero can be considered as an optimality certificate
for the current set of primal/dual solution.

This methodological tool is interesting from a theoretical point of view, because it actually
allows to properly benchmark different objective functions for their ability to recover a signal,
although in many case, one usually compares two methods with the same metric, but with
non certified solutions.

Unfortunately, we implemented and tested this method, but even on our low dimensional
inverse problems, the primal dual gap never attained a value numerically close to the machine
precision, precluding us from generalizing the use of this tool for our studies.

4.7 Conclusion

We saw that there is a large variety of first order methods able to address linear equalities prob-
lems, as well as least square problems. Many variations of these algorithms have been recently
updated with new expected convergence results in the framework of stochastic optimization.

Unfortunately Assessing the behaviour of all these methods for all combinations of for-
ward /backward projectors models, while varying the reconstructed volume resolution, and
the acquisition process (dose, resolution, number of view) would result in a combinatorially
complex problem.

In a future work, it would be interesting to setup those various algorithm with all projector
combinations, in order to assess their stability, and their convergence speed, as an implicit
surrogate for assessing the relative underlying linear system condition number.

It would also be interesting to derive a primal-dual forward-backward scheme in order to
setup an optimality certification method for he least square that would probably converge
faster in practice.
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5.1 Introduction

Although previous chapters where dedicated to study the basics of tomography, such as to-
mographic system model, and optimization for model fitting, we did not used really advanced

139



140 Chapter 5. Chapter 5: A Sparse Model for Tomographic Reconstruction

apriori on the solution. However, in the framework of ill-posed problem, or linear problems
with a high dimensinal nullspace, one needs to exploit prior information in order to regularize
the inverse problem, and find an interesting solution.

One of the most generic prior that have been designed was the Tickonov minimum norm
solution regularizer, but in the recent years, with the advent of versatile proximal splitting
framework for non-smooth optimization, and high performance parallel computers, more and
more sophisticated priors have been successfully exploited.

In this chapter, we will mostly restrict our attention to the class of sparse priors. Sparse
priors have been extensively used, for the past few decades as a regularizing tool for common
inverse problems in imaging. The literature about design of efficient sparsifying transform
and sparsity promoting algorithm is huge, and it would be difficult to establish an exhaustive
list of all approaches that have been applied to the problem of CT reconstruction. Instead we
will focus on one specific tool, arising from the field of harmonic analysis, known as dual-tree
complex wavelet transform (DTCWT).

Our aim here, is to try to overcome some limitations of well-known sparsifying transform,
like the loss of texture informations often attributed to the total variation model or the lack
of directionality of some wavelet with high order vanishing moments like Daubechies’.

A previous study with a similar approach has been conducted in
[vandeghinste2013iterative|, and showed that shearlet transform yielded better re-
sults that TV, but only in a 2D setting. Although extensions of ridgelet, curvelets, shearlets,

to 3D have been studied, for instance in |[kutyniok2012optimally|, and provides
optimal sparsity properties for some class of functions, to our knowledge, frame based sparsity
prior in CT reconstruction were mostly restricted to 2D structural informations.

It should be noticed that, in the framework of 3D imaging, lack of directionality of common
real wavelets and computational cost of non separable wavelets become increasingly challenging
obstacles to practical use.

As a consequence, the extension of the frame based sparsity prior to 3D, although com-
putationally demanding, seems to be an interesting lead, in this work, we will address the
DTCWT as a numerically efficient 3D separable transform.

More precisely, we will challenge the the DTCW'T transform in the framework of a sim-
ple CBCT reconstruction algorithm, in order to see if the directionality and shift invariance
features can be efficiently leveraged despite of the inherent redundancy.
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5.2 Sparsity in signal processing

5.2.1 Terminology
5.2.1.1 Frames and dictionaries

Based on [vetterlil995wavelets| and [starck2010sparse| we provide the following defini-
tions, that will be used throughout this chapter :

Frames or Riesz Basis
A frame of a vector space V with an inner product can be seen as a generalization of a basis
to sets which may be linearly dependent. A very good introduction on this topic can be
found in chapter 5 of [vetterlil995wavelets|.

The definition states that a sequence pg in a Hilbert space H is a frame if there exist
numbers p, 0 > 0 such that

Vo € Hpllz]? <Y [z pi)* < ol (5.1)
k

The numbers u, o are called frame bounds. The frame is tight is ¢ = o, and in case all the
vectors pg are of unit length, p gives the redundancy factor of the frame, and the following
expansion holds:

y=p""> (v, ) (5.2)

k

As the family of pr may not be linearly independant, this expansion may not be unique,
but is the one that has the minimal norm, the p~'p, family is also called the minimal dual
synthesis frame, this minimal norm property can be easily shown using Moore-Penrose pseudo
inverse property, see chap 8.2 of [starck2010sparse|.

If the frame is tight and @ = 2 in the case of unit vectors, we can say that the sequence
of vectors py contains 2 times more vectors that necessary to span V.

It can be noticed, that a union of orthogonal basis of V' automatically forms a tight frame,
but in the more general case, proving that a frame is tight, or proving that it is numerically
close to a tight frame, requires to show that all its nonzero singular values are equal, or
respectively close to each other, see [eldar2002optimal].

Analysis and Synthesis for a frame
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Assuming G and H are Hilbert spaces, we define the analysis operator as T : G — H
given by T'(z) = (z, pi)k-
The fact that T'(xz) € H is a bounded linear operator follows from the frame inequality.
The synthesis operator, being the adjoint of T', will be denoted by T* : H — G and is given
by o = 3k kP
A corollary of the previous statements is that, in the case of a tight frame, we have TT* = uld

Atom
An atom is a general concept that refer to an elementary waveform which can be used as
building blocks, to construct more complex signals by linear superposition.

Dictionary
A dictionary ® is an indexed collection of atoms (¢x)k=1,.. a In the framework of discrete-
time, finite-length signal processing, a dictionary could be viewed as an N % M matrix whose
columns are discrete atoms of size V.
When the dictionary has more columns than rows, M > N, it is called overcomplete or
redundant, but there is no requirement related to the operator norm of ® or the distribution
of its singular values like in the frame basis.

Analysis and Synthesis for a Dictionary
Analysis is the operation that associates with each signal x a vector of coefficients « such
that: a = ®Tx.
Synthesis is the operation of reconstructing as signal x by superimposing atoms through the
matrix vector operation: Pa.

In the overcomplete case, inverting the synthesis operator for a known signal x amounts
to the resolution of x = ®a which could potentially lead to an underdetermined system of
linear equations, i.e, finding a could possibly yield an infinite number of solution.

5.2.1.2 Sparsity

Strictly Sparse Signals

A signal x, considered as a vector in a finite dimensional subspace of R, z = [z[1],...,2[N]]
is strictly or exactly sparse if most of its entries are equal to zero, ie, if its support
A(z) =1 <i < N|z[i] # 0 is of cardinality k < N

A k-sparse signal is a signal for which exactly k samples have nonzero value. If a signal is
not sparse, it may be sparsified in an appropiate transform domain.
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Compressible Signals
Signals of practical interest are rarely strictly sparse, but they may be compressible or weakly
sparse if the sorted magnitude | ;)| of the representation coefficients x = }_; ai¢; decays
rapidly according to the power law

| < RiTpi=1,...,n—1 (5.3)

The previous expression helps to define the weak [P norm: the smallest R such that this
inequality holds, which is also the radius of the weak [P ball that contains the vector z.

In [candes2006compressive]| it is also recalled that compressible signals can also be
caracterized by the approximation error defined as the [2 norm of the difference between a
signal z and its best k-term approximation using k coefficients (denoted xj) in the basis @
which decays as :

3=

|z — zxlls < C.RE?™ (5.4)

In a previous work [notargiacomo:16:sro|, using this best k-term approximation method
empirically, we showed that DTCW'T with a sufficiently high number of scales provided a good
approximation of the weak [P ball model for a CT medical image.

5.2.1.3 Synthesis and Analysis formulation of sparse coding

In [selesnick2009signal|, the authors performed an interesting comparison between two for-
mulations of the I; relaxation of the sparse regression problem: the synthesis version, with S
a synthesis operator:

min ||y — HSw|3 + Alwl (5.5)

and the analysis version, with A an analysis operator:

min ||y — Hz|[3 + Al Az| (5.6)

In their work, the authors used classical proximal splitting framework to study both for-
mulations. They suggested that analysis prior may be the most appropriate one to tackle
the problem of signal retrieval, based on arguments related to the lack of sparsity of the low
frequency elements in wavelet basis, and interpreting the success of total variation.
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More recently, in [pustelnik2012relaxing| the authors developed an elegant proximal
splitting framework able to handle both analysis and synthesis formulation while relaxing
the tight frame condition. This approach addresses the problem of prefiltered wavelet tree
that are no more fully orthogonal, like the one we will use in this paper. Although a bit less
general than the Chambolle-Pock method [chambolle2011first|, the authors claim that their
method, dedicated to ’quasi’ tight frame has a faster convergence.

5.2.2 Sparsity and compressive sensing in CT

Although exactly sparse signals are of limited interest in real cases, good approximation of
k-sparse signals can be derived from weakly sparse signals.

The concept of best k-term approximation in particular has been used in the framework
of compressed sensing in [cohen2009compressed|, where theoretical bounds have been
proposed regarding the performance of compressed sensing systems.

The author addresses the following problem:
For a given norm ||.||x and k& < N, what is the minimal number of measurements n to be
made, for which exists a pair of encoder/decoder (®,A) such that

[l = A(®x)]lx < Coor(x)x (5.7)

for all x € RV, with Cy a constant independent of k and N, and or(x)x being the best
k-term approximation of  in the norm |.||x.
Unfortunately, those bounds rely on restricted isometry property constant of the sampling
matrix ®, which are very difficult to retrieve for a given physical acquisition process model.

In [joergensen2011toward|, the authors have made an interesting work about the com-
pressive sensing approach in the field of X-Ray Computed Tomography. They tried to infer
the best number of views for a given X-Ray flux using the CS framework under the total
variation sparsity model.

They suggested that the number of samples predicted by CS theory, originally designed
for specific sampling matrices, was far too low for a perfect recovery, and that the same
dose of X-Ray used to generates more line integrals measurements resulted in more accurate
reconstructions.

More recently in [jorgensen2014testable|, noiseless recovery condition in fan beam
CT case have been studied experimentally on a set of simulated images with a rigorous
methodology. Both uniqueness and recoverability have been tested for direct space [1 norm,
anisotropic and isotropic total variation sparsity model, and a sharp phase transition diagram
has been obtained in every case.
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This study, as well as a previous one, including poisson-like noise robustness
[jorgensen2012empirical|, showed that some of the results of CS, namely phase transition
and uniqueness of recovery where applicable to fan beam CT for sparse signals in the direct
space. These results are quite promising considering that, to our knowledge, neither restricted
isometry, nor incoherence or isotropy properties [candes2011probabilistic| have ever been
proved to be met by the sampling/encoding scheme imposed by any CT acquisition system.

Still, the role of weakly sparse signal for CT acquisitions in the CS framework remains
unclear, and current results suggest that in real world acquisition systems, compressive sensing
may not be for now, the best way to improve the tradeoff between X-Ray dose and image
quality.

Hence the success of numerous statistical approaches that seems to handle noise inconsis-
tency in addition to sparsity as regularizing prior, for instance [ramani2012splitting| and
[mcgaffin2015fast].

Although it seems difficult to give a clear interpretation to the success of sparse prior
in CT reconstruction using the Compressive Sensing framework, it seems that some work
still remains for assessing the relevance of various sparsifying transform and morphological
diversity concepts to the field of CT image reconstruction, see [pan2009commercial]

5.2.3 Dual-Tree Complex Wavelet transform

Among all existing sparsifying transform, that have already been successfully used in various
field of imaging, we propose here to study the dual-tree complex wavelet transform. The
idea of this work is, as exposed in [vandeghinste2013iterative|, to try to overcome some
limitations of the total variation model, like the loss of texture informations, or the lack of
directionality of some wavelet with higher order vanishing moments like Daubechies’.

Although extensions of curvelets and shearlets [kutyniok2012optimally| to 3D have been
studied, and provide very interesting optimality properties for the class of smooth objects with
discontinuities along C? curves, we will restrict our study to the DTCWT here.

5.2.3.1 Interesting properties of the DTCWT

The rational behind the design of DTCWT transform is to overcome some drawbacks
of real and separable wavelets. Here is a short summary of the main points exposed in
[selesnick2005dual]:
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Oscillations
Singularities of signals in direct space may not lead to large coefficients in the wavelet domain
but instead to oscillating patterns which may have to interfere in order to recreate the initial
discontinuity.

Shift Variance
Small shift in direct space may have dramatic consequences over the oscillating patterns
generated in the wavelet domain.

Aliasing
The down-sampling of signals and subsequent filtering during the analysis process may
generate aliasing during synthesis if coefficients have been slightly modified, this is also why
undecimated wavelets and ’a trou’ algorithm have been designed, although they also comes
with an important redundancy factor.

Lack of directionality
The separability of real filters used in n-dimensional wavelets generates checkerboard pat-
terns that preclude from efficiently discriminating ridge in 2D-3D imaging. This is also
why anisotropic and non-separable wavelets has been designed ([candes1999ridgelets],
[starck2002curvelet]).

We may add that in the framework of 3D imaging, lack of directionality of common
real wavelets and computational cost of non separable wavelets became an increasingly
annoying obstacle to their use. The DTCWT do offers a good tradeoff between its inter-
esting properties, and computational cost which make it a transform of great practical interest.

Practical use of 3D DTCWT for video denoising has been studied in
[selesnick2003video|, and outperformed classical separable wavelet although it ap-
peared that 2D directionality was more relevant for modeling 2D signal than its extension
to 3D was for 2D+time signals. Successfull use of 2D DTCWT has also been reported in
fingerprint reconstruction tasks [rameshkumar20122d|, whose visual appearance resemble
microstructures observed inside human bones along various orientations.
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5.3 Proposed approach for sparse regression

5.3.1 Instanciating our sparse regression algorithm
5.3.1.1 The analysis formulation

Authors in [selesnick2009signal| propose to use the Chambolle-Pock algorithm for solving
the analysis formulation, which is a very good choice in a general dictionary framework, but we
decided in a first approach to develop our method using the simple forward-backward splitting
scheme.

The forward-backward splitting technic and its accelerated version for sparse regression:
Fista, see [beck2009fast|, is generally used to solve the synthesis formulation, but it is easy
to set up in both formulations when the terms ||wl|[; and ||Az|; have a simple proximity
operator. Assuming that our complex wavelet basis is a tight frame, we will see that the
proximity operator of ||Az|; can be easily computed.

5.3.1.2 Proximity operators involving tight frames and complex valued coeffi-
cients

As seen in  5.3.1.1, we are interested in computing the proximity operator proxj.r of an
operator f composed with the analysis operator T" of a tight frame. In our analysis formulation,
we have f(y) = |ly||1 which is the {; norm, and, for convenience, we write T'(x) = Tz, where
T is a redundant wavelet tranform, that forms a tight frame.

Proximal calculus rules gives us the following equivalence: Given H and G two Hilbert
spaces, f is a convex, lower semi continuous, and proper function from G to R and T a bounded
linear operator from H to G such that T*T = TT* = pld with p €]0, +o00], then

prozjor = Id — = 'T* o (Id — proz,s) o T (5.8)

In order to use that property in the framework of complex sparsity that arise with complex
wavelets, we must recall the expression of the /1 norm for complex-valued vector:

N-1
lzlls = Y V/Re(:)? + Im(a;)? (5.9)
=0

And the related proximity operator, which can simply be derived from the real case, see
[maleki2013asymptotic] :
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prox.y = n(x,T) (5.10)
19
with 77((1+ib, 7') = <a—|—ib— 7\}%) Jf}éa2+b2>72 (5.11)

5.3.1.3 Forward Backward splitting instance

The complex wavelet framework developed in [selesnick2005dual] let some room for inter-
preting the data in the wavelet domain, either as complex valued coefficients multiplying real
wavelets, or pair of real coefficients multiplying real and imaginary wavelets. In our proximal
splitting framework, we chose the proximity operator over complex valued coefficients but
an equivalent derivation can be made in the framework of a 2-group-sparsity for real valued
coefficients.

Let recall the expression of the sparse analysis problem:

min g(z) + h(z) (5.12)
min |y — Hz[3 + A|T|x (5.13)

The high level forward backward splitting iterations reads:

25 = prozy, (ﬂf(k) - VVQ(x(k))> (5.14)

and we can derive the expression of the proximity operator of h(z) = f o T'(z), in case it
is a composition of two operators:

Prox = Proxrfor (5.15)
=1Id— p 'T* o (Id — prox,zs) o T (5.16)
=1Id - Y(T*T — T* oproz,rsoT) (5.17)

As we know that T*T = pld, expression simplifies

proxyfor = 1 T* o prox,npo T (5.18)

Let’s now imagine that we define T”, a scaled version our operator T' with scaling factor
1
1~ 2 such that
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T'T* =y 2Ty =T* (5.19)
= p 7T (5.20)
= p tuld (5.21)
= Id (5.22)

The expression simplifies even more because the new y’ frame bound is equal to 1, and we
get :

proxforr =T o proxys o T” (5.23)

Our forward-backward splitting instance then reads:

25D = T™proxyy, (T’ (x(k) - WVg(:C(k))>) (5.24)

Where X is the regularization weighting parameter, v is chosen as the spectral radius of
H'H in equation 5.12, and proxyy, is simply the complex soft thresholding operator defined
in equation 5.3.1.2.

5.3.2 Choice of the 3D-DTCWT

Instantiating and implementing a separable complex wavelet transform requires first a basic
understanding of the relation between multiresolution analysis and filterbanks, that has been
first exposed by Mallat in [mallat1989theory]|.

The specific case of filterbank design for complex wavelets has been tackled in
[selesnick2005dual|, especially the method to obtain nearly analytic wavelets (without
negative frequencies), which is the key feature for high directionality.

According to this work, we used the pair of Q-shift filters based solution to generate the
half sample delay as a Hilbert transform. This methods mimics the 90° phase shift applied in
single sideband modulation, and has the nice property of perfect reconstruction, short support
(6tap) and orthogonality.

In the framework of convex optimization, fully orthogonal wavelet trees at every stage are
desirable, in order to form a tight frame of the image space (usually RY), so that we can use
the tools described in 5.3.1.3.

In practice we decided to give up on the first scale orthogonality in order to favor wavelet
analycity, by using the (9,7) bi-orthogonal Antonini filter at the first stage as described in
[selesnick2005dual|, without significant convergence problem.
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do | ¥1 [ o | W3 [a] s | 06| W7
7-Axis Un Jg
Y-Axis Yn J¥qg Yn, J¥qg
XAxis | n [ 30 | Un | 30y | On | Jg | ¥n | j¥g
Real Part +1 1] 0 0 -1 0 -1 -1 0

Imaginary Part | 0 | +1 | +1 | O 1 0 0 -1

Table 5.1: Table of 3D complex wavelet octree components

It should be noticed that directionality given by the nearly analytic behaviour of CWT
comes with a redundancy ratio of greater importance with the growth of the number of spatial
dimension D as 2P, which gives the 3D DTCWT a redundancy factor of 8.

5.3.3 Implementation of the 3D-DTCWT

In order to take advantage of recent advances in high performance computing, we implemented
our own GPU version of the n-D DTCWT using Cuda. But in order to understand the various
computational and memory requirements this wavelet transform relies on, one must get back
to its definition.

In the framework of complex wavelet transform that has been developed in
[selesnick2005dual|, the author basically defines a complex function in the direct space
as follows:

f(@) = ¥n(x) + jiy () (5.25)

This expression stands for either a wavelet or a scaling element, although in both cases,
the real function v, should be the best possible approximation of the Hilbert transform of
¥y (x), for the purpose of negative frequencies cancellation.

This 1-dimensional scheme can be extended to the 3D case, where we want to define a
separable function from three 1D functions as defined in eq 5.25. The separability property
allows us to derive a scalar value in every point of a 3D domain from the tensor product of
three 1D function. For the sake of our argument here, we will consider that those three 1D
functions are virtually extended to 3D although their value only varies along one axis, here
denoted by z,y or z, in order to be able to use the simple product:

f(xy,2) = [Un(@) + g (@)][Un(y) + J1bg (9)][1on(2) + 1y (2)] (5.26)

We can develop and rearrange this product into the sum of 8 terms g, ¥1, ..., ¥7, that
we present on Table 5.1.
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The successive dual-filtering steps along each direction that led to this construction was
explicited on the figure 5.1, where hg and hy stands respectively for the low pass projection

(scaling) and high pass projection (wavelets).

Initial 3D Volume

Y Filtering

Z Filtering

X Filtering
FO(2) 3V (y) ()

(U)W () L)
block : ¥, .

B (2)5 %, () e ()
block : ¥,

@) (2) W (y) P
block : ¥,

Ty(2)0y,
block ; ¥y

Figure 5.1: The multiple filtering steps of the dual tree complex wavelet transform analysis

operator

Now, we can notice that the eight 3D elements in table 5.1 can now be grouped in two
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Real part Imaginary part
V(@) py)P(2) | o — b3 — s — e | 1 + b2 +1ba — iy
Y(x)p(y)Y(2) | Yo — Y3+ b5 + e | Y1 + P2 — Py + 7
Y(@)Y(y)Y(2) | Yo+ s — s + b6 | 1 — Yo+ s + 7
Y(x)p(y)Y(2) | Yo + Y3 +1Ps — e | Y1 — o — 1Py — Py

Table 5.2: Table of separable mixture of complex wavelet which covers all 4 octants of the
positive x-axis frequencies orthant

categories:

e The real elements:

o — Y3 — s — s (5.27)

e The imaginary elements:

Y1+ o+ 1hy — A7 (5.28)

Adding all real elements of the octree together, and all imaginary elements together to get
only one complex function won’t enable us to exploit the interesting directionality property
we are looking for. Indeed, canceling the negative part of the spectrum in every direction
x,y,z will only allow us to select the fully positive octant in the 3D spectrum.

Instead, we recall that we are interested in alternating the negative frequency cancellation
property using:

V() = Pn(x) + jibg(x) (5.29)

and the positive frequency cancellation property using:

V- (x) = Py () = Yn(x) — jiby(z) (5.30)

Using this scheme alternatively over various directions in a 3D setting allows us to define 4
complex and somehow analytic wavelets, that will be covering 4 octants of the frequency space.
In our case, those four octant are arbitrarily chosen to be in the positive x-axis frequencies
orthant. That way, by central symmetry, all 8 octants of the frequency would be reachable by
setting the real or imaginary coefficients accordingly.

The combination that allows for a proper 4-octant partitioning of the positive x-axis fre-
quencies orthant are presented in 5.2, from this Table, we can derive the transformation, that
will help us to generate the real and imaginary parts of the 4 octants described earlier, from
the "‘raw filtered octants"” ¢;,7 € 0,1,...7 :
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Re(¢(x)dy)(2)) Yo
Im(yp(2)y)y(2)) Y1
Re(¢(x)(y)y(2)) P2
Im( ()P (y)(z)) Vs
= MOC oCpx 5.31
Re((2)0y)(2) rochs |y, (531)
Im(y(x)(y)h(2)) Vs
Re(¢(x)p(y)y(2)) Ve
Im(y(x)(y)p(2)) vr
Where MociTocps reads:
1
MOctTOCpx = mMnnOctTonz (532)
10 0 -1 0 -1 -1 0
01 1 0 1T 0 0 -1
10 0 -1 0 1 1 0
1 01 1 0 -1 0 0 1
4210 0 1 0 -1 1 0 (5:33)
01 -1 0 1 0 0 1
10 0 1 1 -1 0
01 -1 0 -1 0 0 -1
The normalization factor ﬁ is actually equal to the product of M_% X S.
We recall that /f% = % = ﬁ is the DTCWT 8-redudant tight frame normalization
factor presented in 5.3.1.3.
And s = ﬁ = % is the ratio used to make the matrix sM,,0ctToCpe, @ Unitary matrix.
The inverse mapping is then simply:
MCPCL"TOOCt = M(;cltTonm = M(BctTonm (534)

5.3.4 MultiGPU implementation of the DTCWT

In order to accelerate the successive filtering steps, we worked on the software definition of
filtering workloads, that can be distributed in parallel over multiple GPUs. Using a host-
centralized memory model was mandatory in our case, indeed simple calculations shows that
the expression of the DTCWT coefficients of a 10243 image in single precision floating point
requires 32GB of memory, precluding for in-memory GPU implementation. Our filtering
workloads were basically structures defining a source host address to be copied, a memory
layout, related to the filtering direction, and a number of slices to be processed. The workload
distribution among GPU relied on openMP library, so that our only task was to tune the size,
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in number of slices, of the atomic memory chunk to be processed at the first analysis step,
handling full resolution images. Subsequent filtering steps had their chunk size automatically
computed in their filtering workloads, so that memory requirements for every step was not
higher than memory requirements for the first step.

5.3.5 Textured phantom design

In order to assess the ability of various reconstruction methods to retrieve textured images,
we needed a 3D numerical model. In order not to be dependent on the image resolution, and
the dataset arbitrariness, we selected our reference volume to be a discrete sampling of the
analytically defined Marschner-Lobb function, first presented in [marschner1994evaluation|
which reads:

p(z,y,2) = 1 — sin(0.572) ;(f‘f:(j) pr(vVa® +y?)) (5.35)

Where
pr(r) = cos(2m frrcos(0.57r)) (5.36)

This function has been extensively used by the computer graphics and visualization com-
munity as a benchmark for various 3D interpolation or rendering algorithms. One should
notice that this function features adjustable frequency directional pattern, which differs from
the piecewise constant regions features in the Shepp-Logan phantom.

We postulate that this model exhibit some of the pattern that can be observed in medium
resolution pathologic bone micro-structures images, for instance bone density gradients, in the
whole experiment, we used the following parameters o = 0.25 and fy; = 12.

In order not to favor axis aligned structures in the image, we applied a linear transformation
to our coordinate system so that the initial coordinate system undergo a counterclockwise
rotation about the vector (0.5,0.5,1) by £ radians.

A 3D rendering of a binarized version (arbitrary threshold) of the volume we generated
using this method is presented on figure 5.2.

5.4 Results

5.4.1 Numerical experiments on synthetic data
5.4.1.1 The noisy recovery usecase

To perform our experiments comparing multiple reconstruction algorithms, we used the ML
phantom, sampled over a 3D grid of 2563 voxels which was then masked using a binary
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Figure 5.2: 3D rendering of a thresholded version of our Marschner-Lobb numerical phantom

cylinder. We used the reconstruction framework provide e open software package
ylinder. W d th truction f k ided by th RTK soft kag
: [rit2014reconstruction]| and its various tools to generate and reconstruct the data.

Using the GPU implementation of ray casting projector provided by RTK, and the cone
beam geometry module, we generated 200 projections of resolution 2562, regularly distributed
across a circular source-detector trajectory covering 200°.

We then added to those attenuation images, a centered gaussian noise with standard
deviation equal to 1% of the mean of the attenuation image stack. We extracted one of the
projection image for visualization in 5.3.

5.4.1.2 Comparing sparsity models for CBCT regularization

Our aim in this experiment was to compare our algorithm performance in the context of chal-
lenging data inconsistency related to noisy measurements, with two other iterative algorithm
exploiting another sparsity a-priori. We chose two different instances of the L1 regularized
ADMM algorithm provided by openRTK, the first using the total variation linear operator,
and the second, orthogonal Daubechies wavelets transform with 5 levels. 5 decomposition
levels where also used for the DTCWT.

In order to get the less possible biased overview of the robustness of each algorithm, we
performed a logarithmic (base 10) regularization parameter sweep over the best decade for each
algorithm. It should be noticed that, the consistency parameter 8 for the ADMM instances
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was arbitrarily set to 200, but we explicitly used 100 iterations for each algorithm in order to
minimize the effect of convergence speed not directly related to the main hyper-parameter.

Figure 5.3: Example of a noisy cone beam projection from our Marschner-Lobb numerical
dataset

For each reconstruction, we measured the peak signal to noise ratio (PSNR), and the mean
3D structural similarity index (SSIM) computed over 53 voxels patches, results are presented
on figure 5.4.

We extracted the same axial slice for all reconstruction that got the maximum ssim value
along the regularization path, and reported the images on figure 5.5.

In order to analyze qualitatively the behaviour of the 3 algorithms in the case where
sparsity was overestimated, we also extracted the same axial slice for reconstruction that
where beyond the optimal regularization coefficient value, and reported the images on figure
5.6.

5.4.2 Numerical experiments on real data
5.4.2.1 CBCT reconstruction of a human knee specimen

In an attempt to leverage DTCWT interesting properties for regularizing real CBCT dataset,
we designed a simple experiment that was conducted on a homemade rotating platform using
a Thales 2630S flat panel detector and a IAE RTC 600 HS 0.6/1.2 X-Ray source. 200 images,
binned in 780 x 720 (368um equivalent pixels) were acquired at 70 kVp and 8mA over a
200° angular range (circular trajectory), no denoising filter was applied nor beam hardening
correction and attenuation maps were obtained using a constant [y estimation.
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PSNR of Marschner-Lobb regularized reconstruction
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Figure 5.4: Reconstruction quality metrics along regularization parameter

We figured a picture of our setup on figure 5.7

Reconstruction of 5123 voxels of size 244 x 244 x 488um, was performed using a sin-
gle NVidia GTX Titan X, with 100 Fista iterations and a manually chosen regulariza-
tion parameter. The reconstruction resolution here, was one of the key parameter, as
bone microstructure size is usually comprised between 70 and a few hundred of pm, see
|[parkinson2013characterisation|, reconstruction with a resolution lower than a few tens of
pm tends to suffer from partial volume effect.

For this reason, bone microstructure recovery was a challenging task, although we are
looking forward to perform all reconstructions in a higher resolution, we found that 5123 was
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Reference SART - 5 iterations

L1-ADMM-TV

L1-Fista-DTCWT

Figure 5.5: Visual overview of an axial slice with 4 different reconstruction methods

a reasonnable tradeoff to start a comparison with multiple methods.

Other methods used here are the same used in 5.4.1.2, 100 iterations were performed each
time, but we did not performed an exhaustive regularization parameter sweep due to the size
of the dataset and the inherent runtime. We restricted ourselves to manually choosing one set
of parameters per algorithm, that used to give visually interesting results in other experiments
with the same setup.
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L1-ADMM-TV L1-ADMM-Daub

L1-Fista-DTCWT

Figure 5.6: Visual overview of the effect of sparsity overestimation for 3 different regularized
reconstruction methods

The total run time in our setting was about 18 minutes for DTCW'T based Fista Algorithm,
which was approximately 2 to 3 times faster than the ADMM algorithms on the same computer
using the same number of iterations.

The data presented in figure 5.8 shows a small ROTI of 192 x 192 x 1 voxels taken in an
axial slice of the volume that exhibits microstructures, the exact same floating point to 8-bit
grayscale image conversion was applied in every case.

The yellow line present on every image from figure 5.8 marks the line along which we
extracted the linear profile presented on figure 5.9, in order to highlight the contrast /resolution
enhancement enabled by our algorithm.

5.4.2.2 Undersampling strategy

Using the setup presented in the beginning of section 5.4.2.1, we also made acquisition with
real frozen human knee, kindly provided by Christine Chappard from Bioingenierie et Bioim-
agerie Osteo-Articulaire (B20A) laboratory. This time 360 projections where acquired over
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Figure 5.7: Rotating platform equipped with a Thales 2630S FPD, and a TAE RTC 600 HS
0.6/1.2 X-Ray source, with a plastinated knee specimen

360° in order to get a reference reconstruction with a quality dataset, reconstructed with the
SART algorithm. This reference dataset was used to compute both PSNR and SSIM metrics
for our various scenarii. The same detector, and the same X-Ray generator as in section
5.4.2.1 were used, and the acquisition parameters were this time set to 120kV and 10mA.

We designed two distinct virtual acquisition scenarii for this experiment:

IAS - Increased Angular Step, which corresponds to a set of quasi equidistant projections
covering a total angular range close to 360 degrees, resulting in a regular undersampling
along the gantry rotation axis.

DAR - Decreased Angular Range, which corresponds to a contiguous set of projection, which
were acquired with an angular step of 1°, where the whole set covers an angular range
inferior to 360°, this strategy being also known as limited angle tomography.

Those two scenarii were derived for various number of projection taken from the original
dataset, and we compared reconstruction results based on ssim and psnr for our DTCWT
based algorithm using a set of parameters derived from a previous set of experiments where
we performed a regularization parameter sweep. The results of this experiments are presented
on figure 5.10.
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Short-scan FDK L1-ADMM-Daub

Figure 5.8: Visual overview of the reconstruction of a real human knee specimen using 4
different methods

5.4.2.3 Dose monitoring and acquisition strategy

The conscientious physicist, may argue that noise statistical properties may vary according to
detector sensitivity, human tissues properties, and obviously X-Rays characteristics. Although
it was physically impossible to challenge all these parameters, we designed a simple experiment,
were we tested multiple X-Ray source features (kV and mA) while monitoring the total dose
sent during the acquisition process, using a radiation dosimeter, kindly provided by Ronan
Guillamet, from CEA.

Here the reference used to compute PSNR and SSIM score was acquired at the maximum
dose, ie 100kV, 24mA. In all cases, we chose the DAR protocol, with a 190° total angular
range, and the reconstruction algorithm was our DTCWT, with the very same parameters
obtained as stated in section 5.4.2.2. One can argue that different level of noise, may require
different data fidely weighting term. Unfortunately, performing a full parameter sweep for
each experiment was too time consuming.

The results of this experiment are presented on figure 5.11
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Intensity profile over a line for 4 reconstructions methods
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Figure 5.9: Yellow line profile from the 4 images presented in 5.8

5.4.3 DTCWT Implementation performances

As stated in 5.3.4, we also studied the DTCWT from a practical point of view, and derived
a moderately optimized multiGPU implementation.

We reported the performances results we obtained, in terms of run time on various multi-
GPU platform, challenging the workload size everytime. Our medium resolution dataset
(5123) containing a human knee CT medical image, yielded the results in 5.12. We also used
a challenging dataset, with a high resolution volume of 10243 voxels, see 5.13.

5.5 Discussion

5.5.1 DTCWT as a regularizing tool for CBCT reconstruction

The numerical experiments we performed on the synthetic dataset designed in 5.3.5 clearly
showed the superiority of our proposed algorithm for the accurate retrieval of textured direc-
tional patterns in 3D. The fact that the total variation model was not the best signal sparsity
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Reconstruction perfermance for various number of projections
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Figure 5.10: PSNR and SSIM for two acquisition scenarii (Decreasing angular range, and
increasing angular step)

model for retrieving the Marschner-Lobb phantom is not surprising, given that our phantom
is no more piecewise constant. As the signal to be recovered had bounded variation, we could
have used a Sobolev pseudo-norm (I instead of [; norm of the gradient module image) to
regularize the problem, however, as our final target was the reconstruction of real CT-images,
we chose the TV model as it is known to perform well in a wide range of imaging modalities
[pan2009commercial]. The superiority of the DTCWT model over the Daubechies wavelet
model for inverse problem regularizatin in imaging, is also known for a long time, but its use
in the framework of Cone Beam CT is rather new. Indeed, the CBCT images noise, and linear
projection model is in practice different from the one used in the denoising / inpainting / de-
convolution and its singular values distribution may differ greatly from those of these classical
task, hence the possibility that it could have resulted in a correct but impractical optimisation
method. Fortunately, we found that our approximately orthogonal wavelet tree based sparsi-
fying operator performed quite well in practice, and allowed for a fast optimization algorithm
implementation, capable of performing 100 iterations in about 18 minutes, for a 5122 volume.

Another interesting aspect we discovered when performing our experiments was the par-
ticular behaviour of our algorithm when overestimating the sparsity of our image in the prior,
see images in  5.6. Most of the sparse regularizer in real settings tend to oversmooth the
resulting images, giving them a cartoon appearance, like the total variation model, or even
adding aliasing artifacts for non redundant wavelet decomposition. When challenging noise
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levels are being investigated, like the one used in our experiments, it can be seen that the TV
and Daubechies model, does not seem to remove completely the “noisy” patterns in the image,
although they do remove most of the high frequency signals in the image. To the contrary, it
appeared that our algorithm was able to recover visually pleasing images, even in the case of
sparsity overestimation: most of the noise is removed, and although part of the high frequency
signal disappear, there does not seem to be unnatural pattern arising in the image.

This latter observation suggests that the coherence between the DTCWT basis and the
patterns arising from noise inconsitency in the data is low compared to the other invastigated
models. The concept of uncertainty and mutual coherence, and their role in the framework of
inverse problem in signal processing has been described in [donoho2001uncertainty|. The
authors in this paper summarizes the role of mutual coherence in the uncertainty principle
as follows: “If two basis are mutually incoherent, then no signal can have a highly sparse
representation in both basis simultaneously.” hence our earlier remark.

5.5.2 Real dataset experiments

Due to the lack of ground truth, we were not able to give PSNR and SSIM measurements
for our real dataset. What we can say however from the results on figure 5.8, is that we are
probably observing the same behaviour experienced in the previous synthetic data experiments
regarding the ability of the algorithm to resolve small oriented structures while reducing the
noisy pattern on the image.

One can see, by looking at the figure 5.9, that our algorithm was able to recover highly
contrasted bone microstructures, even in the presence of linear system inconstistency due to
modeling error, like beam hardening and noise in the data.

5.5.3 Undersampling strategy

Although theoretical results for optimal acquisition trajectory have been derived in the frame-
work of analytical reconstruction, see for instance [tuy1983inversion], it is always interesting
to take a look at empirical results obtained with iterative reconstruction technics provided on
figure 5.10. In our case, it can be noticed that the PSNR of reconstructed images in case of
limited angle, experiences a sharp increase between 150° and 180°, which can be explained
easily using Tuy’s conditions in our setup. PSNR being a logarithmic scale, one can notice that
a linear increase in PSNR yield an exponential increase in [2 discrepancy, which is undeniably
better than the square root increase in SNR predicted in the case of a Gaussian additive noise
model. However the SSIM metrics, probably due to the fact that it is calculated as a mean,
exhibit a more subtle difference for the DAR protocol between the < 190° angular range and
the > 190° angular range: although the increase in SSIM with the number of view seems
linear in both case, it appears that the slope in slightly higher when Tuy’s conditions does not
hold for the very short scan (< 190°) trajectories.
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When using DAR protocol with more than a short scan trajectory, one can notice that the
increase in number of views yields increasingly large return in PSNR, which clearly goes against
the usual additive gaussian noise model. This unusual behaviour is still not well understood,
and can arise from the fact that the actual noise model in the image is not dominated by
gaussian noise, but can also be interpreted in terms of linear algebra. An increasing number
of view can yield a linear problem with a decreasing condition number, and, as most first order
method have an exponential convergence rate depending on the condition number, the fact
that we experience such profile with a finite number of iteration seems more reasonnable.

The TAS protocol yielded curves that did not exhibited remarkable values, in both PSNR
and SSIM, although the same remark we made for the DAR PSNR curve for the more than a
short scan trajectories also holds.

When considering the practical interest of short scan trajectories for low cost equipments,
we decided to use the DAR protocol with a total range of 190° in subsequent experiments.

5.5.4 Dose monitoring and acquisition strategy

When designing a practical acquisition protocol, one may be interested in assessing the influ-
ence of photon energy for a given X-Ray dose. This is exactly why we designed the experiment
presented in section 5.4.2.3, whose results were reported on figure 5.11.

It must be noticed that comparing reconstruction from acquisition made at different pho-
ton wavelength is theoretically a nonsense, because it amounts to compare physically different
attenuation properties. Unfortunately, we experienced this issue when comparing PSNR of
images computed using a reference obtained at a different wavelength: PSNR of images ac-
quired at 70kV were always approximately 5dB lower than PSNR of images acquired at 100
kV, like the reference image, independantly of the total dose.

However, material properties are generally not completely uncorrelated from one wave-
length to another, so it can make sens to compare visual informations from images acquired
at different wavelength, which is what we tried to do by computing the SSIM.

Our experiment showed that increasing dose linearly at 70kV and 100kV yielded decreasing
returns in terms of SSIM, allowing to choose a reasonnable trade-off between 100kV-7mA and
70kV-25mA. However, for a given dose in mGray, increasing the X-Ray voltage to 120kV
yielded images differing too much from our reference image (around 0.2 in SSIM), whose low
quality was validated by visual inspection.

5.5.5 Implementing DTCWT on multiple GPU

The results presented on figure 5.12 and 5.13 suggest that a relatively fast implemen-
tation of the DTCWT transform can be obtained using GPUs. Our fastest setup was
able to perform sequentially analysis and synthesis operation in less than 6 seconds for
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the 5123 dataset. Comparatively, peforming the same operation, with the same data, and
same filters using the python/numpy implementation provided by the opensource package
[DTCWTOpenSourcelmplem]| on a Intel core i7 3970X, with 64GB Ram took about 200
seconds.

Although the 33 times speedup regarding a possibly non-optimized CPU implementation
was an interesting result, the scalability of our solution along with the number of GPU was
rather poor. The speedup obtained while getting from one GTX970 to two GTX970 for
instance, was only 12.5 % on the fastest instances for both datasets. Investigating this issue
revealed that a lot of time was spent in copying data between host and devices, the ratio
between compute time and host-device copy time prevented us from parallelizing computations
efficiently.

5.6 Conclusion and Future work

The results of the present study shows practical feasibility of sparse regularization of CBCT
reconstruction using a directional and separable complex wavelet transform. In our specific
synthetic use case, exploiting sparsity prior in the DTCWT domain outperformed significantly
(> 1dB in PNSR) two other algorithm based on total variation and Daubechies wavelets spar-
sity models. In the real dataset experiments, the DTCWT yielded visually better results
than the other methods, especially in the task of reconstructing human knee bone microstruc-
tures. Our study showed that the DTCWT was also well suited for a GPU implementation,
our moderately optimised implementation of the transform allowed for a total reconstruction
runtime of about 18 minutes for 100 iterations over a 5123 volume. Although we did not expe-
rienced convergence problem in both synthetic and real dataset, we will probably use a more
relevant optimisation framework in the future, in order to properly address the quasi tight
frame featured by our DTCW tree, using work developed in [pustelnik2012relaxing], or
other framework for analysis formulation, as in [chai2007deconvolution]|, [li2008iterative|,
[cai2009linearized]| and [cai2010framelet|. Another aspect that clearly needs to be stud-
ied in the framework of 3D CT imaging, is the role of structured sparsity models, like those
presented in [rao2011lconvex|, in the recovery of human body structures under noisy of
incomplete measurements. We will probably try to address this issue in a future work.
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(b) Peak signal to noise ratio for various dose

Figure 5.11: PSNR and SSIM for various acquisition scenarii (X-Ray generator settings)
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Figure 5.12: Runtime for the 3D DTCWT transform, on a 5123 dataset
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Figure 5.13: Runtime for the 3D DTCWT transform, on a 1024 dataset



Conclusion

Computerized tomography is a very broad topic of research, ranging from physics, with the
study of X-Ray interactions with matter, to duality theory and monotone operators framework
for convex optimization. CT has benefitted from advances from many of the fields of science
and engineering in the past few years. Regarding reconstruction algorithm in particular,
most of the recent advances were made possible thanks to the advent of algebraic methods,
providing a versatile framework to experiment high fidelity tomographic projection models,
noise models, allowing to take into account multiple energy, photon scattering, ...

In this thesis, we tried to explore a few discretization models based on regular grids, and
various smooth and non-smooth volume elements. Although the theoretical properties offered
by non standard grid like the Body Centered Cubic grid were appealing, the fact that work
in this field generally remains almost unnoticed discouraged us to investigate further. Indeed,
there does not seem to be any available software able to handle 3D image data on BCC grids,
such that comparing images reconstructed with CC grid and BCC grid is almost impossible
without introducing a methodology bias related to grid to grid interpolation process.

It must also be noticed that defining interpolation methods with a reasonable quality, ie
for instance spline of order >1 is nontrivial, and requires implementing a BCC grid based
discrete Fourier transform and its inverse.

Another argument that discouraged us to investigate further on non standard grids and
volume elements is that, they are generally not compliant with advanced frame based analysis
operations. For instance, one must notice that their are currently no dilation matrices that
allow to build a proper multiscale decomposition in the same fashion wavelets has been built
on cartesian grids.

A second aspect explored in this thesis was related to first order methods for tomography.
It is interesting to notice that the batch based approach derived in the early 80’s fort OSEM
and SART in tomography met a great success in the field of large scale optimization. Of
course, recent advances are mostly targeting differentiable objective like the least square, and
are based on theoretical analysis of expected cost in the framework of stochastic optimization.
However, it is not clear if stochastic optimization may benefit to CT reconstruction, because
input datasets, at least in CBCT are not expected to grow at the same rate as the learning
datasets in machine learning in the years to come.

Regarding the choice of tomographic operators, there seems to be different approaches
wether one is targeting a good methodology, or a fast method for routine experiments. The
conscientious scientist that wants to monitor convergence speed of a given algorithm, or the
primal dual objective gap, in order to deliver optimality certificate will probably be interested
in using proper adjoint operators for the backward projection when instanciating optimization
algorithms. Otherwise, one can use some tricks in order to obtain the fastest algorithm, like
fast but aliasing prone back projector, and FBP or FDK algorithm in place of backprojection,
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... These tricks are not always backed by a strong theoretical background, but may result in
valuable accelerations in practice.

Finally, regarding the use of sparse priors in regularized iterative tomography, we proposed
a simple but efficient algorithm in our last chapter, that appeared to outperform two regular
methods from a well known open source software package. The fact that redudant frames,
with shift invariant properties provides a good model for sparse regression is not new, however
setting up such methods for high dimensional dataset in a reasonnable amount of time was
not a trivial task. We provided a multi-GPU implementation of the 3D dual-tree complex
wavelet transform, able to run on heterogeneous set of GPUs, although this implementation
suffered from severe host to GPU copy overhead, and could benefit from a proper optimization
process.

In the near future, we postulate that analysis formulation of sparse regression problem
will benefit from more complex sparsity models, eventually mixing non local total variation,
dictionaries, redundant and anisotropic wavelets trees for instance. Extension of supervised
methods from dictionary learning to adaptive filtering may also be an interesting lead, for
instance, recently, nonconvex objectives, based on filters-like neural networks were designed
in order to regularize tomographic reconstruction, see [kang2016deep].

One recent advance in tomography that attracted our attention during this thesis is the
Differential Phase Contrast Cone-beam CT (DPC-CBCT, see [fu20153d|), although this
method seems promising, it appeared that the phase grating shifting process rely on precise
mechanical movement (less than a few pm) that precludes this method to be available on low
cost equipments in a near future.

However, recent advances in on-line CBCT system calibration, based on epipolar consis-
tency conditions seems promising, and easy to implement in low cost CBCT systems, which
may allow for a wider availability of CBCT systems, equiped with analytical and algebraic
reconstruction software, such as the one designed in the framework of this thesis.



Résumé La tomographie est une technique permettant de reconstruire une carte des
propriétés physiques de I'intérieur d’un objet, & partir d’un ensemble de mesures extérieures.
Bien que la tomogaphie soit une technologie mature, la plupart des algorithmes utilisés dans
les produits commerciaux sont basés sur des méthodes analytiques telles que la rétroprojection
filtrée. L’idée principale de cette thése est d’exploiter les derniéres avancées dans le domaine
de l'informatique et des mathématiques appliqués en vue d’étudier, concevoir et implémenter
de nouveaux algorithmes dédiés & la reconstruction 3D en géométrie conique. Nos travaux
ciblent des scenarii d’intérét clinique tels que les acquisitions faible dose ou faible nombre
de vues provenants de détecteurs plats. Nous avons étudié différents modéles d’opérateurs
tomographiques, leurs implémentations sur serveur multi-GPU, et avons proposé l'utilisation
d’une transformée en ondelettes complexes 3D pour régulariser le probléme inverse.

Mots clés : Tomographie, GPGPU, probléme inverse, parcimonie.

Abstract

X-Ray computed tomography (CT) is a technique that aims to provide a measure of a
given property of a physical object interior, given a set of exterior projection measurement.
Although CT is a mature technology, most of the algorithm used for image reconstruction in
commercial applications are based on analytical methods such as the filtered back-projection.
The main idea of this thesis is to exploit the latest advances in the field of applied mathematics
and computer sciences in order to study, design and implement algorithms dedicated to
3D cone beam reconstruction from X-Ray flat panel detectors targeting clinically relevant
usecases, including low doses and few view acquisitions. In this work, we studied various
strategies to model the tomographic operators, and how they can be implemented on a
multi-GPU platform. Then we proposed to use the 3D complex wavelet transform in order
to regularize the reconstruction problem.

Keywords: Tomography, GPGPU, Inverse problem, Parcimony
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