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English abstract

Wastewater treatment plants are moving towards energy and nutrients recovery facilities.
Simultaneously, they are submitted to stricter regulation with respect to environment and human
health. Facing the great challenge of reducing operational costs along with the reduction of
environmental impacts and the guaranty of plants robustness, tools might be developed in order to
provide an integrated assessment. The goal of this work is to develop a reliable and predictive
framework containing rigorous dynamic wide-plant modelling, extended boundaries life cycle
assessment for scenarios evaluation and an efficient multi-objective optimization tool. The developed
framework for environmental evaluation coupled to dynamic modelling was initially applied to several
case studies including urine source separation, enhanced primary clarification and urine treatment by
nitritation/ anaerobic ammonium oxidation, offering both performance results and environmental
hotspots. Given the important benefits of the urine source separation provided by the previous results,
a flexible and dynamic phenomenological influent generator was adapted in order to provide realistic
dynamic data concerning urine and wastewater streams in different urine retention scenarios. Finally,
as the complex combination of biological, chemical and physical processes leads to a computational
expensive problem, a feasibility study (computational time and reliability) on the multi-objective
optimization was conducted. Obtaining a set of solutions that avoids any prior discrimination among
costs, environment and performance allowed thus the discussion of the involved trade-offs. Finally,
the complete framework was applied to several case studies lightening on operational aspects of more

sustainable options on wastewater management and treatment.

Keywords: Wastewater; Modelling; Life Cycle Assessment; Multi-Objective Optimization; Urine

Source Separation






Résumé en Francais

Les stations d’épuration se tournent actuellement vers des installations de récupération d'énergie et des
nutriments. Dans le méme temps, elles sont soumises & une réglementation de plus en plus stricte en ce
qui concerne l'environnement et la santé humaine. Face au défi ambitieux de réduire les colts
d'exploitation et les impacts environnementaux tout en garantissant la robustesse du procédé, il est
nécessaire de développer des outils capables de fournir une évaluation intégrée du procédé. L’objectif
de ce travail est de développer une plateforme réaliste et prédictive contenant trois aspects: la
modélisation rigoureuse et dynamique de 1’ensemble de la station d’épuration; 1'analyse de cycle de
vie aux frontiéres étendues pour I'évaluation des scénarios et enfin un outil d'optimisation multi-
objectif efficace. La plateforme développée pour I'évaluation environnementale couplée a la
modélisation dynamique a d'abord été appliquée a plusieurs cas d’étude. Ainsi des résultats de
performance et d’impacts environnementaux ont été obtenus pour la séparation de ['urine a la source,
la décantation primaire avancée et le traitement de l'urine par nitritation/ oxydation anaérobie de
I’ammonium, et d’autres filieres. Compte tenu des importants avantages de la séparation de 1’urine
établis par les résultats précédents, un générateur d’influents phénoménologique, flexible et
dynamique a été adapté afin de fournir des données dynamiques réalistes concernant les flux d'urine et
des eaux usées dans les différents scénarios de rétention durine. Enfin, comme la combinaison
complexe de processus biologiques, chimiques et physiques conduit a un probleme lourd en calcul,
une étude de faisabilité (temps de calcul et fiabilité) a été réalisée sur l'optimisation multi-objectif.
L'obtention d'un ensemble de solutions qui évite toute discrimination préalable entre les co(ts,
I'environnement et les performances ont permis la discussion des enjeux impliqués. Finalement, la
plateforme compléte a été appliquée a plusieurs cas d’étude et clarifie les aspects opérationnels des

options plus durables en matiére de gestion et de traitement des eaux usées.

Mots-clés: Eaux usées; Modélisation; Analyse de Cycle de Vie; Optimisation Multi-Objectif;

Separation de [’Urine a la Source
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According to the United Nations, worldwide, 40% of people suffer from water scarcity and this
number is projected to increase. In 2011, 41 countries experienced water stress and by 2050, it is
expected that at least one in four people would be affected by recurring water shortages. Globally, still
2.4 billion people use unimproved sanitation facilities and at least 1.8 billion people use a source of
drinking water that is fecally contaminated. As a consequence, approximately 1,000 children die each
day due to water and sanitation-related diseases that might be prevented.

The Millennium Development Goals (MDGSs) proposed in 2000 by the United Nations Development
Program that comprised among the 8 main goals, the achievement of environmental sustainability
arrived to its completion in 2015. As discussed in the final report of MDGs (United Nations, 2015),
progress was achieved such as that 1.9 billion people have gained access to piped drinking water since
1990, 2.1 billion people have now access to improved sanitation and 98% of ozone-depleting
substances have been eliminated since 1990.

However, much progress is still to be achieved and some gap points were left behind. As discussed in
the final report, climate change and environmental degradation is worsening. Numbers concerning
direct environmental impacts are alarming: Global emissions of carbon dioxide (CO,) have increased
by over 50% since 1990 and the growth rate of emissions between 2000 and 2010 were more
important than in each of the three previous decades; Emissions of methane (CH4) and dinitrogen
monoxide (N,O), potent greenhouse gases, could rise by 50% and 25% respectively between 1990 and
2020 and the average global temperature increased by 0.85°C from 1880 to 2012; Further, the global
average sea level rose by 19 cm from 1901 to 2010 and about 40% of the oceans are currently heavily
affected by human activities; Finally, it is estimated that 90% of wastewater in developing countries is

discharged into water bodies without treatment (United Nations, 2016).

Nonetheless, not only numbers are alarming. Changes in the worldwide context are becoming more
and more evident when considering population growth together with the urbanization and the
industrialisation, the increasing food demand, the changes in the land use and in the standards of living
(UN-Water, 2015). Accordingly, with the increasing pressure on existing sewage collection and
treatment systems, wastewater is being discharged without treatment and thus water quality is
decreasing. This lack of treatment leads to direct impacts on the equilibrium of aquatic ecosystems and
finishes by changing also anthropogenic activities, from urban development to food production and
industry. As a consequence, environment is pressured and threatened and human health is also being

degraded.

Therefore, it is becoming clearer that wastewater, as a pollution stream produced by anthropogenic
activity that needs to use natural resources, has to return to the environment in a safe way. This is

essential to cease the degradation generated by this non-ecological cycle which leads to all depletion
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of essential resources, degradation of ecosystems and finally the exposition of the human health to an
imminent danger. It is thus mandatory to find a more conscientious wastewater management and
treatment to achieve higher levels of treatment together with robustness of the system in order to lead
this ecosystem-human health-resources nexus to evolve together. In this sense, instead of being a
source of problems, well-managed wastewater should play a positive role in the environment leading
to improved food security, health and economy. However, it can only be done if wastewater
management is considered as part of an integrated, full life cycle and ecosystem-based management
system that comprises social, economic, environmental and geographical aspects (Corcoran et al.,
2010).

I.1. Wastewater as a pollution stream

As a result of a dynamic anthropogenic activity, wastewater is highly variable in function of more or
less ecological lifestyle, geographical location, water availability, etc. Also, sewer collection system
characteristics and the industry contribution in the municipal wastewater might influence the
composition of the wastewater entering a wastewater treatment plant (WWTP). In this context, total
wastewater, which is mainly of water, might contain a changeable composition that includes
pathogens, organic compounds, synthetic chemicals (such as pharmaceutical and personal care
products), nutrients (especially nitrogen and phosphorus), organic matter, heavy metals, etc. Those
pollutants might be in solution, as particulate matter or as colloidal species. Also, biodegradable or
inert species are present having sometimes cumulative, persistent and synergistic characteristics that
might affect the ecosystem if not correctly managed (Henze and Comeau, 2003; Corcoran et al.,
2010).

When output water quality after treatment is not acceptable, some impacts are well known to happen
and efforts have to be done in order to avoid them. According to Corcoran et al. (2010), eutrophication
is one of the most prevalent problems. It is defined as the process where water bodies (such as lakes,
rivers, and coastal waters) become increasingly rich in plant biomass, as a result of the abundance of
nutrients (mainly nitrogen and phosphorus) leading to toxic algal blooms, changes in biodiversity and

consequently hypoxic events.

Another environmental impact that is gaining more interest last years is the climate change as, instead
of only influencing ecosystems, it started influencing directly human health as it can have an impact
on water scarcity, rainfalls and water quality. According to Corcoran et al. (2010), the relationship

between wastewater and climate change can be seen from different perspectives. Considering human
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activity, water usage practices are directly influenced by climate change as both volumes and quality
of available water are changing. However, also technically, wastewater has to be managed differently
and emitted greenhouse gases from wastewater treatment should be mitigated. This concerns
particularly CO,, CH, (25-fold global warming potential of CO,; IPCC, 2006) and N,O (298-fold
global warming potential of CO,; IPCC, 2006). Thus, there is a pressing need to investigate and
implement alternatives to conventional wastewater treatment, which minimize the direct production of

greenhouse gases and the indirect ones (for instance from power consumption).

A zoom in energy consumption shows that, for instance, water and wastewater treatment plants
account for 3 to 4% of total electricity in United States and this energy consumption is in similar range
for other developed countries. Therefore, reducing energy consumption for wastewater treatment
might avoid environmental degradation linked to energy production. In this sense, the energy autarky
of the wastewater treatment systems might, not only improve economics but also decrease air
pollution and greenhouse gas emissions, enhance energy and water security and protect public health
and environment (Gude, 2015).

Historically, wastewater has been treated by conventional Activated Sludge Process (ASP). In this
system, organic matter and nutrients are treated by combining biological, chemical, physical and
mechanical processes and this is done with a microbial biomass that is aerated and kept in suspension.
Basically, an ASP consists of an aerated reactor where biological reactions take place. Following the
biological reactor, a clarifier is responsible for retaining biomass in order to ensure a sludge retention
time (SRT) that allows the efficiency of the treatment. Non recirculating biomass is purged to ensure
stability. The flowsheet of ASPs might also contain a primary clarifier where particulate matter is
retained, non aerated reactors where denitrification takes place, internal recycles to transport nitrate
from the aerobic to the anoxic zone, anaerobic digestion of produced sludge and post-denitrification

zone to achieve lower reject levels.

However, nowadays, ASPs have been identified as energy intensive and chemical consuming with
also an excess sludge disposal issue (Gude, 2015; Lackner et al., 2014). In order to increase
sustainability in wastewater treatment, several approaches have been described in the literature. One of
the promising ones is the partial nitritation coupled to the anaerobic ammonium oxidation
(Anammox). In this process, nitrite is firstly produced from ammonium by ammonia oxidizing
bacteria (AOB); following, ammonium (as electron donor) and nitrite (as electron acceptor) are
converted anaerobically into nitrogen gas and nitrate by anammox bacteria (Lackner et al., 2014).
When applied to a full-scale installation, the process allows up to 70-90% of total nitrogen removal
with a 65% reduction in aeration energy, a 100% reduction in carbon addition and approximately 50%
reduction in alkalinity requirements when comparing to traditional processes (Gude, 2015; Jetten et
al., 1997; Kartal et al., 2010)



Chapter I. General Introduction

1.2.  Wastewater as a resource recovery opportunity

1.2.1. Extracting resources from wastewater

Wastewater has been described nowadays as both a resource and a problem by several authors. Since
2013, publications from Water Environment Federation (WEF) started using the term Water Resource
Recovery Facility (WRRF) instead of WWTP, in order “to better focus on the products and benefits of
treatment rather than the waste coming into such facilities” (WE&T, 2013).

In the past, the main idea behind wastewater treatment was the accomplishment of permitted reject
limits. Nowadays, the goals are moving towards the maximization of recovery of valuable resources

although water quality is maintained and robustness in process is achieved.

When conducting a balance across the potential energy that might be recovered from wastewater,
Shizas and Bagley (2004) estimated that wastewater contains 9.3 times the energy required to treat it.
However, this value might vary between 3.6 (when considering recoverable energy with recovery
from organics and nutrients) and 13 (when including heat recovery) times higher than the energy
required for treating it (Gude, 2015).

When considering nutrients, the most important part comes from urine. For instance, as discussed by
Tidaker et al. (2007), the urine from Swedish population contains approximately 36 kilotons of
nitrogen and 3.3 kilotons of phosphorus while 170 kilotons of nitrogen and 15 kilotons of phosphorus
were consumed from mineral fertilizers in Sweden in 2001. Therefore, if nitrogen, phosphorus and
even potassium in urine were utilised in substitution of synthetic fertilizers, the industrial production
of those might be decreased and the discharge of those nutrients in water bodies would also be reduced
(Johansson et al., 2000).

However, extracting resources from wastewater is not new. Some alternatives such as the production
of fit-for-purpose water, the biosolids used in lands and the energy generation from anaerobic
digestion are already common in WWTPs. Nowadays, new processes are starting to be studied in
order to produce/recover specific compounds from wastewater such as precipitated struvite to be used
as a slow-release fertilizer, the production of biologically-deriving polyhydroxyalkanoates from sludge

and the use of digester gas to produce methanol or ammonia (WERF, 2011).

Also, the use of biosolids and the wastewater itself in farmlands is gaining more acceptances by
population. While in developing countries the wastewater reuse is driven among others by the limited

capacity to treat wastewater and the lack of other acceptable water sources for agriculture, in
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developed countries water reuse and recycling are increasingly seen as a means to respond to physical
water scarcity and water reallocations from agriculture to other uses. Also, nowadays, all the strict
environmental standards lead to land application of wastewater and sludge to be unavoidable and
economically feasible (Drechsel et al., 2010).

Anaerobic digestion nowadays is a currently valorisation process in several WWTPs. In this process,
as the redox potential is low, microbial fermentation takes place and converts organic material to
biogas (mainly CH; and CO,) that can thus be used to produce energy in cogeneration systems.
Another consequence of anaerobic digestion is the mineralisation of biodegradable organic
compounds that leads to high concentration of NH," and PO, in solution and the stabilisation of the
sludge (van Lier et al., 2008). Several studies have been conducted in order to improve biogas
production aiming to invert the energy balance and lead WWTPs to be in energy autarky
(Schaubroeck et al., 2015; Aichinger et al., 2015). Considering that biogas production is fully
dependent of volatile suspended solids (VSS) entering the digester that will be degraded, one
possibility of increasing biogas production is forcing the input of more organic matter into the
digester. This can be done by recovering the organic matter entering the WWTP by an enhanced
primary clarification (with an addition of chemicals to achieve better flocculation), previously to its
degradation in the water line by the microbial oxidation. Another advantage of recovering organic
matter at this point is that less bacterial growth to treat carbon will take place in the aerated basins and
thus less energy will be required to aerate the activated sludge (Flores-Alsina et al., 2014). More
recent research have been also developed for high rate activated sludge process (HRAS) — Jimenez et
al., 2015 - working at low SRT and also for partial nitritation and anammox process on the mainstream
(Laureni et al., 2016). If the coupling of the two previously mentioned approaches succeeded, this
innovative plant would allow minimising the aerobic degradation of organic matter and producing
more fermentable sludge for AD (Xu et al., 2015).

One of the promising opportunities in the phosphorus recovery is the struvite precipitation from
wastewaters. Struvite (ammonium magnesium phosphate hexahydrate - MgNH,4PO, - 6 H,0) is a slow
release fertilizer that might substitute conventional industrial fertilizers. The recovery of struvite from
wastewater would allow not only a decrease in mineral fertilizers production and depletion of natural
phosphorus resources but also a decrease in rejected phosphorus in water bodies together with the
necessary production of crops to respond to population growth. However, in order to be feasible and
present real advantages, struvite precipitation should be conducted in nutrient-rich wastewaters
containing mainly phosphate and ammonium. Several studies have been conducted for the struvite
precipitation using, among others, digester supernatant, landfill leachate and urine. However, as

discussed by Maurer et al. (2006) without addition of phosphate, only 3% of nitrogen in urine might
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be eliminated in struvite precipitation (with an efficient precipitation of 98% of phosphorus).

Therefore, more research on new processes for nitrogen recovery is still necessary.

As discussed previously, several recovery opportunities are available and well applied in WWTPs.
However, currently, one of the bottlenecks to fully benefit from resource recovery in wastewater is
that, in municipal wastewater, nutrient-rich streams (e.g.: urine and faeces) should not be diluted (e.g.:
by greywater) and thus, source-separation should be encouraged. At the same time, the choice of
centralized or decentralized systems is not evident: Among others, the management approach depends
on the area (urban or rural), the size and density of the population, the development level, the technical
feasibility, the treatment quality required, the education and culture of the population, being necessary
to evaluate case-by-case (Corcoran et al., 2010; Libralato et al., 2012).

Many aspects in centralized and decentralized systems have being discussed in literature. According to
Libralato et al. (2012), when considering centralized systems, it should be highlighted the competitive
costs of existing plants, the potential eutrophication phenomena and rainwater overload problems. In
the other hand, decentralized systems may respond to diverse situations, diminishes or stop the
reduction of water quality and allow treated wastewater recovery and reuse such as in the case of urine

separation.

Also, some disadvantages have also been experienced in decentralized pilot systems such as
precipitation with consequently clogging of pipes and odour as well as the difficulties when changes in
centralized system are required and storage and transport have to be added to the new management
structure (Maurer et al. 2006; Udert et al., 2003). Considering impacts, some studies showed greater
impacts for acidification when analysing environmental footprint of source-separated systems.
However, it has also being pointed out that, in contrast with conventional systems, that are already
optimized, alternative systems has to be well assessed in order to achieve optimal results in terms of

effluent quality and energy/chemicals consumption (Remy, 2010).

1.2.2.  Urine source separation

By the 1990s, various groups began working on the idea that separating urine at source could increase
sustainability in wastewater treatment. Those approaches are based on urine composition which
represents only 1% of the total volume in domestic influents and 14% of total organic carbon but is the
main contributor of some nutrients with 85% of total N, 50% of the total P, and 55% of total K

(Maurer et al., 2006; Larsen and Gujer, 1996).
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Besides the recovery of substantial nutrients, urine separation also avoids advanced nitrogen removal
(which is the most important energy consumer in a WWTP) and phosphorus elimination (which
consumes important quantities of chemicals). Moreover, urine separation at source allows achieving
robustness in the WWTP as ammonia peaks input are avoided or might be distributed along the time
having immediate advantages in nitrification. Following consequences are thus the increased stability
and reliability of the process and the reduction of the plant size (Rossi et al., 2009; Rauch et al., 2003).

Currently, a range of treatment possibilities (with/ without nutrients recovery) are available for the
collected urine stream. As proposed by Maurer et al. (2006), the urine collected in source-separating
toilets can be used for example for N-recovery (e.g. by ion-exchange, ammonia stripping or
isobutylaldehyde-diurea precipitation), P-recovery (e.g. by struvite formation), nutrient removal (e.g.
by anammox treatment) and micropollutants elimination. Also, as discussed by authors, nowadays it is
not possible to find a process that answers to all nutrients recovery needs; thus a combination of
processes is required. For instance, previous struvite precipitation triggered by magnesium that is able
to precipitate most of the phosphorus might be followed by a biological treatment that is capable of
eliminating organics and nitrogen. For complete urine valorisation the combination of a biological
nitrification (in a biofilm system) and a vacuum evaporation has been proposed in the last years (Udert
and Wachter, 2012). It allows converting half the ammonium into nitrate and then to produce a
concentrated solution of ammonium-nitrate which can be used as a fertiliser. This is now technically
feasible but the global environmental evaluation is still necessary to assess the global gain as, for

instance, the energy demand is relatively high.

Finally, when urine is separated at source and aimed to be treated specifically, it is important to
understand the complex composition of this fluid as well as the possible interactions between present
substances. As showed by Udert et al. (2006), three main processes take place after urine collection:
First, microbial hydrolysis of urea leads to ammonia and bicarbonate; Following, with the pH increase,
one can notice the appearance of mineral precipitates such as struvite, hydroxyapatite (Cas(PO4);0H)
and calcite (CaCQO,); Additionally, with the pH increase, ammonia volatilisation takes place (Udert et
al., 2006). Considering the previously described processes, a distinction between substance species has

to be made between fresh and stored urine.
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1.3.  Quantifying benefits: Wastewater treatment modelling and simulation

When one wants to understand and compare the functioning of both conventional and alternative
wastewater management and treatment options, there is a need in obtaining realistic results. However,
this is neither easy nor feasible when considering alternative scenarios that are currently only available
at laboratory scale or unexplored experimentally. Modelling is thus an inexpensive and elegant way of
comparing those alternative options.

Traditionally, simulation has been used to understand the interaction between the involved processes
in a WWTP together with performance evaluation, control strategies, design and optimization. From
this perspective, activated sludge systems, which are the most applied biological wastewater treatment
method, are also consequently the most advanced considering modelling and simulation.

The simulation of activated sludge systems includes many processes and variables to guarantee the
modelling of different steps of the treatment such as the carbon oxidation, nitrification and
denitrification. These processes have to be mathematically tractable and representative of the reactions
occurring in the reactors. Besides biological reactions, physical, chemical and mechanical reactions
also take place. Moreover, when modelling a full plant (i.e. whole plant modelling), the set of state
variables might not be the same for every part of the system (e.g. water line and sludge train). Two
approaches are then available to handle this issue. The first one is the supermodel approach where all
state variables are available for all units; the second one is the interface approach where relations
between each compound should be established in the model when changing from one type of unit to

another — e.g. between water and sludge line (Nopens et al., 2009).

Efforts have been made to achieve standardisation in WWTP modelling and simulation when one is
willing to compare different strategies. Among them, the Benchmark Simulation Model no. 1 (BSM1)
and no.2 (BSM2) should be mentioned, that are protocols for implementation and impact and
performance evaluation of existing and new control strategies in WTTPs. They comprise plant layout,
simulation model, influent loads, test procedures and evaluation criteria (Alex et al., 2008; Jeppsson et

al., 2007). The general overview of the original BSM2 flowsheet is given in figure I.1.

The main BSM2 flowsheet components are the primary clarification, the five activated sludge reactors
for nitrogen removal that are modelled using ASM1, the secondary clarification, the gravity
thickening, the anaerobic digestion (based on ADM1), the dewatering and the storage tank. It includes
also, AD/AS model interfaces to deal with input and output of the anaerobic digester and dynamic
influent characteristics from Gernaey et al. (2005). It has also to be noticed that respected reject limits

for this benchmark are total nitrogen inferior to 18 gN.m® COD inferior to 100 gCOD.m-3,
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ammonium inferior to 4 gN.m™, TSS inferior to 30 gTSS.m™ and BODs inferior to 10 gBOD.m™.
Moreover, phosphorus elimination (and consequently its quantification) is not available in the original
BSM2 configuration (Alex et al., 2008).

In the general protocol study of BSM2 proposed by Jepsson et al. (2007), some main points are
highlighted such as the importance of integrating the full plant (water and sludge line) in order to lead
the WWTP to be thought as one completely integrated system that accounts for all possible benefits
and disadvantages. In this case, more reliable results would be achieved. Additionally, the control of
all units and sub-process should be integrated. Accordingly, the extended evaluation period considers
more realistic aspects such as seasonal variations (including temperature during the year) and the slow
dynamics of anaerobic digestion processes (Jeppsson et al., 2006).
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Figure 1.1. General overview of original BSM2

(Alex et al., 2008)

1.3.1. Obtaining data: Influent generation

As discussed previously, wastewater composition is highly variable according to human’s life style.

Therefore, when trying to understand the complex interaction between all the parameters involved in

11
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the wastewater management and treatment systems, it is essential to consider this dynamic condition,

as the system is not well represented by a steady state one.

Although, powerful and rigorous models are available for the simulation of systems, if a dynamic and
realistic representation of influents is not provided, results might be misleading. For instance, when
considering fluctuations in the WWTP influent, robustness in the plant might only be ensured if the

system is capable of treating peaks of flows and nutrients (Alex et al., 2008).

The influent of a municipal WWTP is a mixture of several contributing streams such as domestic
wastewater (including toilet, kitchen and bath/laundry wastewater), industrial wastewater, stormwater,

sewer infiltration, etc (Henze and Comeau, 2003).

Martin and Vanrolleghem (2014) published a critical review on generating influent data for WWTPs.
According to the authors, three different types of influent generators are described in the literature: i.)
When one needs to complete data about quantity and quality of the wastewater; ii.) When composite
variables need to be translated into state variables (ASM family ones, for instance); iii.) When one
needs to know the uncertainty present in the influent data. Also, according to authors, one of the
promising approaches in this field is the phenomenological generation of influents as it allows the user
to adapt the model to obtain data for instance according to geographical location and catchment size.

I.4. Evaluating benefits: Life Cycle Assessment (LCA)

Even when having data to evaluate conventional and new technologies, one could claim that
depending on the methodology used to assess the process, results would be different. There is thus a
need for a standardized methodology to evaluate the whole process and its requirements. Currently,
different assessment tools are available to evaluate the sustainability of systems such exergy analysis,

economic analysis and Life Cycle Assessment (LCA) (Balkema et al., 2002).

Aiming to analyse environmental footprint of WWTPs, several studies have been suggesting the use of
LCA. It is a methodological framework for assessing the environmental impacts attributable to the life
cycle of a process or a product. The idea of using LCA in WWTPs is to account for all background
process (e.g. energy consumption, chemicals production and transport utilization) besides the

foreground process which has his own environmental emissions.

According to ISO 14044 (2006), LCA is defined as the “compilation and evaluation of the inputs,
outputs and potential environmental impacts of a product system throughout its life cycle”.

Considering this, when analysing conventional and alternative WWTPs for long-term environmental

12
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sustainability, effluent quality discharge impact has to be considered (end-of-pipe approach) but also
all the processes associated to the main treatment such as the sludge treatment and disposal, energy
consumption and production of ancillary materials (background processes).

Also, the four main steps that are recommended by the 1SO 14044 (2006) are to be followed: i.) the
goal and scope definition; ii.) the inventory definition; iii) the impact assessment phase and iv.) the

interpretation.

The first step, the goal and scope definition, allows the description of the system in terms of the
system boundaries, function and functional unit (FU), and allocation methods. It is important as the
correct definition of the FU allows the latter comparison between alternatives. The second step, the
Life Cycle Inventory (LCI) is the compilation of all estimated consumption of resources from the
environment and emitted substances to the environment during the process/product life cycle. By the
end of this step, an inventory of the system is obtained based on a well-defined functional unit.
Following, the third step, Life Cycle Impact Assessment (LCIA) provides the correlation between
emitted substances and indicators of impacts on the environment. Finally, the last step, the life cycle
interpretation occurs naturally as when conducting the LCA one wants to take decisions after

comparing options (Rebitze et al., 2004) and identifying the hot spots of the system.

In the field of water and wastewater treatment, LCA has already been used in several studies to
evaluate the environmental performances of proposed technologies. Different LCA applications have
been published so far (Corominas et al., 2013a) for different WWTPs configurations as well as for
sewage sludge management technologies (Yoshida et al., 2013) and for the full urban water system
(Loubet et al., 2014). However, as results are usually obtained by site collected data, it can neither be
used to automatically analyse general trends nor to process optimization. Therefore, the consideration
of an LCA together with WWTP modelling and simulation tools is be a powerful approach to allow
the modification of operational and design parameter when aiming to conceive more sustainable

systems.

However, it has to be highlight that, in order to be realistic and to provide a fair comparison against
studied scenarios, LCA have to be conducted considering the appropriate boundaries and the proper
allocation methodology. For instance, when analysing WRRFs, the conventional WWTP Life Cycle
Assessment has to be adapted to account for all avoided impacts generated by the production of by-
products. Similarly, the new functions of the system have to be added as it will not deliver the same

functional unit anymore.

Another important feature of the LCA that allows it to be applied to the quantification of impacts and
the evaluation of scenarios in WWTPs considers the main emissions of the plant. Even if nowadays,

life cycle impact assessment methodologies are not capable of integrating all substances leaving a
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WWTP, such as personal care products and medicaments residues, the main burdens of the
implementation of a wastewater treatment (for instance, the reject of non-treated pollutants, the
greenhouse gases emitted and the high consumption of energy and chemicals) can be correctly
quantified and evaluated by the currently available impact categories (for instance, marine and
freshwater eutrophication, human toxicity, climate change and resources depletion).

I.5.  Improving systems: Multi-objective optimization

When a novel technology is able to be evaluated considering sustainability but also technical and
economic aspects, an optimization can be conducted. Additionally, it may consider not only one
optimal functioning point; it is possible to compromise between all trade-offs without any preliminary

judgement.

As described by Deb (2011), multi-objective optimization (MOO) consists of optimizing more than
one objective simultaneously. As opposed to the single objective optimization, the multi-objective
optimization minimizes all usually conflicting objective functions simultaneously without using
expressions of weight between objectives. Hence, a set of solutions, called Pareto-optimal solutions, is
usually obtained by the end of a multi-objective optimization. The concept of domination is generally
used in the context of multi-objective optimization to discriminate between solutions and to locate the
globally non-dominated (minimum) solutions, while maintaining the diversity in a given Pareto-front
(Deb, 2001). A further processing step, the decision making process, will be therefore required in

order to comprise between the trade-offs and to find one optimal functioning point, when needed.

Additionally, as conflicting objectives are most often involved, none of the optimal solutions found
can be improved without worsening at least one of the other objectives (Hakanen et al., 2011) and

thus, solutions cannot be easily sorted only on their objective value.

There exist different ways to solve a multi-objective optimization problem among which evolutionary
algorithms (EA), widely known due to their robustness. According to EAs, the optimization is carried
out by using a population of solutions, usually created randomly and therefore robustness is ensured
independently from the quality of initialization. Thereafter, the algorithm provides a generation-based
(iterative) operation updating the current population to create new populations based on genetic
operations such as genetic selection, crossover, mutation and migration. This generation-based

operation is pursued until one or more pre-specified termination criteria are met (Deb, 2011).
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From the application point of view, the optimization of WWTP design and operation has been applied
since 1990s. However, commonly, the optimization strategies, described in the literature, are most
often aggregation-based, which is to say that the optimization is conducted by aggregating several
objectives into a unique objective function through weight factors representing the importance of each
objective (Hakanen et al., 2011; 2013).

However, as described by Hreiz et al. (2015) in a review of ASPs optimization, several objectives
have not the same units (and sometimes also contradictory) and cannot be instinctively combined in

order to form a single objective function.

From a practical point of view, even if highly non-linear processes are present in a WWTP due, for
instance, to the rigorous consideration of biochemical reactions, it is important to avoid the
aggregation of objectives and preserve the intrinsically multi-objective structure of optimization
problem. For instance, the quality of treated wastewater and the operational costs are two conflicting
objectives as, reaching low organic matter, ammonium or phosphate concentrations in effluent leads to
high consumption of energy and chemicals in the plant. Also, operating a plant with short SRT risks
the stability of nitrification and may produce an excess of sludge; however, suspended solids quality
and BOD is ensured (Hakanen et al., 2013) and thus only the operator expertise might compromise

between different conflicting outcomes that are sometimes non quantifiable or highly dependent.

Multi-objective optimization is recognized to be more suitable to deal with WWTPs due to the
conflicting nature of objectives taken into account. Additionally, the use of derivative-free algorithms
such as EAs is favoured to avoid uncertainties due to the numerical approximation of gradients in
highly-linear systems, and to ensure the robustness of the algorithm. Nevertheless, regarding the EAs,
the main drawback is the considerable numerical budget required. However, the full WWTP case
study is an example of an expensive optimization problem, where the resolution without an efficient

optimization tool would be practically impossible.

Aiming to fix a computational budget that allows obtaining the optimal Pareto-front, Ahmadi et al.
(2016) proposed a new Archive-based Multi-Objective Evolutionary Algorithm with Memory-based
Adaptive Partitioning of search space (AMOEA-MAP) to deal with expensive simulation-based
problems and reduce the computational budget of the optimization to about 300 function evaluations.
The adaptation relies mainly on the adaptive reticulation of the search space, to accelerate the search

with no loss of accuracy and on a bi-population approach (Ahmadi et al., 2016).
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.6. Research objectives and tasks

Envisaging novel and more sustainable wastewater management and treatment systems requires a
multi-criteria decision support that is capable of considering all technical, economic and
environmental aspects. Therefore, in order to perform alternative scenarios evaluation, decision
making based on scenarios comparison, ecodesign or process optimization, it is necessary to have a
tool capable of predicting in a reliable and interconnected way the benefits and drawbacks when
applying a specific technology.

This thesis is in pursuit of a concluded thesis at “Laboratoire d'Ingénierie des Systémes Biologiques et
des Procédés” (LISBP) by Méry (2012). In this previous work, an integrated tool for process
modelling and life cycle assessment applied to the environmental analysis of drinking water treatment
plants was successfully developed. Moreover, the main focus of the previous cited work was to
develop modelling and simulation of unit processes in steady state conditions (considered as

satisfactory for this kind of processes) and on the application to an existing plant.

Following the idea of this former approach coupling process modelling and life cycle assessment
studied by Méry (2012), it seemed evident that the same approach could be applied to other process
fields such as a wastewater treatment plant. However, as the physico-chemical and biological
processes involved in wastewater treatment are complex and highly dependent on wastewater inputs
(composition, flow variation), it is extremely important to adopt a rigorous and dynamic modelling.
Another interest sought in the present work is the building of perspective scenarios meaning that the
tool should have a predictive aspect and eco-design capability. Multi-objective optimization approach

should then be integrated to tackle the involved conflicting objectives.

The major objective of this study is to obtain a platform coupling rigorous and wide-plant
Dynamic Modelling (DM), extended boundaries Life Cycle Assessment (LCA) and an Efficient
Multi-Objective Optimization (EMOO) tool.

The developed platform, DM-LCA-EMOQ, has to be flexible in order to allow different scenarios to

be tested, as well as multi-criteria as different decision parameters might be present.

In order to achieve the objectives, the involved tools in the platform have to be interconnected with
their process parameters and results. Initially, it is necessary to automatically control, run simulations
and recover results from existing commercial WWTP simulators. When results are recovered, they

have to be converted into the correct substances and modules for the LCA in order to allow the
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consideration of foreground and background processes together with mass and energy balances.
Examples of important recovered values are the violation of reject limits, the amount of energy
produced on the amount of energy consumed (EROI), the average output concentrations, etc. By the
end of the evaluation of a range of scenarios, general results about environmental impacts are to be
obtained as well as a detailed contribution analysis in order to identify the most important hotspots of
each scenario to be latter optimized. Finally, to allow the multi-objective optimization of scenarios, the
platform has to be connected to an efficient multi-objective optimization algorithm that allows the
optimization of WWTP as an expensive black-box problem. Figure 1.2 presents in a simple way the

main coupled tools in the combined platform together with its main expected outputs.

Performance results —

1

: | Energy and nutrients
i ——=>{ recovery; Operational |—
: costs

I —>{ Environmental impacts  —

Optimal Pareto front

Figure 1.2. Simplified scheme of the combined platform DM-LCA-EMOO

The developed platform should be able to evaluate and compare conventional and several alternative
wastewater management and treatment options. Among the proposed alternatives, it is aimed to study
the urine source separation with specific treatment (struvite production and nitritation/ anaerobic
ammonium oxidation) and/or valorisation in agriculture and the enhanced primary clarification to

increase biogas production in the plant and to achieve energy autarky.

The interest of such a combined and rigorous platform can be understood from two points of view.
First, it is a tool for benchmark validation, which is to evaluate and compare conventional and
alternative scenarios (DM-LCA approach — chapter 2). Secondly, when coupled to the expensive
optimization tool, the platform is capable of optimizing both operational and design variables together

(DM-LCA-EMOOQO approach - chapter 4 and 5), in the next phase, in order to validate a novel
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configuration with an accurate readjustment of operation conditions due to the eventual modifications
in the plant structure and operating conditions. Additionally, in order to fulfil the modelling and
simulation objectives, a dynamic phenomenological influent generator must be adapted to take into
account realistic inputs in the wastewater treatment plant and in the urine system treatment (chapter 3).

1.6.1. Thesis outline

This thesis is structured in 6 chapters.

The previously presented chapter | introduces the thesis background and goals by presenting the main
challenges to be addressed considering the existing approaches in the literature. In this context, the
research objectives, the corresponding tasks and the relevant applications are defined.

Following, chapter Il describes the initial development of the platform that couple dynamic modelling
and life cycle assessment with extended boundaries. Moreover, the developed platform is used to
evaluate conventional and alternative scenarios. Additionally, focusing on screening alternative
scenarios for the future, attention was paid to the modelling and the analysis of hotspots of each

scenario aiming to further optimize them.

Latter, chapter Il presents the adaptation of a phenomenological and dynamic influent generator
which is required to obtain more realistic influent data (and consequently simulation results) for

scenarios having urine source separation together with the resulting wastewater stream.

Chapter IV is a preliminary study on the multi-objective optimization of WWTP that aims to
understand the feasibility of such expensive optimization, from both computational and reliability
points of view. Special attention is paid in this chapter to the problem formulation considering
decisional variables, objective functions and constraints. The choice of an efficient optimization
algorithm is also discussed and justified, while dealing with complex simulation-based optimization

problems.

Succeeding, chapter V presents the application of the previous developed DM-LCA-EMOO approach
to a reference and alternative WWTP scenarios. Also, different problem formulations are studied

together with its impacts on Pareto front results.

Lastly, chapter VI presents the conclusion and the main findings of this work as well as perspectives

following this thesis.

Additionally, several modifications and verifications over the original wide-plant modelling, which are

not described along the following chapters, were conducted during this work. All the information
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considering the adaptation and the corrections in the modelling are showed in the Supplementary

Information document.

Note to the reader: The goal of this chapter is not to conduct a state-of-the-art on the thesis subject. As
this thesis corresponds well to the contents proposed by either accepted or “in preparation” peer-
reviewed articles, it was decided to structure this thesis report by including the original papers for each
related chapter. Accordingly, the reader will find detailed literature information concerning each

subject on the following chapters.
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“Meeting the wastewater challenge is thus not a luxury but a prudent, practical and transformative
act, able to boost public health, secure the sustainability of natural resources and trigger employment

in better, more intelligent water management.” (Steiner and Tibaijuka, in Corcoran et al., 2010)

This chapter is published in Water Research, 84 (99-111), doi:10.1016/j.watres.2015.06.048. It is the
result of the coupling of rigorous Dynamic Modelling (DM) and Life Cycle Assessment (LCA) with
the corresponding application to several scenarios. The studied scenarios include i.) a reference
scenario (REF: conventional influent input and plant layout); ii) an enhanced primary clarification
scenario (EPC: addition of coagulant before primary clarification with 80% retention of total
suspended solids); iii.) an urine source-separation scenario (USS: conventional plant layout receiving a
modified influent without 50% of urine; yellow water treatment by precipitation with magnesium
oxide to recover struvite and the residual nitrogen flow being reinjected in headworks); iv.) a scenario
combining alternatives ii and iii (USS+EPC); v.) a scenario adapted from scenario iv where nitrogen
rich stream from struvite precipitation is spread on farmland and valorised as fertilizer
(USS+EPC+AGRI); vi.) an adapted scenario from iv where nitrogen rich stream is treated by
nitritation/ deammonification together with the dewatering effluent from anaerobic digestion
(USS+EPC+ANA).

The choice of scenarios reflects what was previously discussed in the introduction and is unavoidable
nowadays: Wastewater treatment plants should move towards water resource recovery facilities in
order to achieve more sustainable wastewater management and treatment systems. However, this eco-
friendly perspective can only be achieved and well evaluated when having an integrated view on the
whole process and considering the full pathway of wastewater, from the source generation to the
treated water re-entrance into the environment and recovery of valuable products from wastewater.
Accordingly, energy management, both consumption and production, has to move towards energy

positive balances.

Several questions are to be answered when modelling those systems and concerning what has to be
considered in order to be the most realistic as possible. In order to respond to this comparative
approach that allows lightening on sustainable systems, the platform was developed considering the
extended boundaries of the life cycle assessment, meaning that all direct and background emissions

where considered as well as avoided emissions when nutrients and energy valorisations take place.

When considering the available studies on literature, it should be noted that they include mostly
collected data and, therefore a specific site inventory is stablished. There are thus, two main
consequences: Firstly, the study would logically be case specific and would not allow the

consideration of more general scenarios; Secondly, as results are obtained from site inventories, they
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would not allow analysing trends when changing parameters of the system and consequently
optimization might not be feasible.

A review of LCA studies on wastewater is proposed by Corominas et al. (2013a). According to the
authors, the integration of LCA in WWTPs has started since the 90s and up to now more than forty
studies have been published in peer-reviewed journals. Moreover, the authors indicated that several
works have found important benefits when considering source separation scenarios (including urine
source separation) from both nutrients recovery and avoidance of pollutants points of view. In their
review, different challenges were addressed such as the inclusion of new pollutants, different time
horizons in the impact analysis and finally, the standardization of guidelines of LCA applied to
wastewater. For instance, nowadays even though LCA is standardized by ISO 14000, different
functional units, system boundaries, impact assessment methodologies and interpretation are still
applied in the field of wastewater.

More globally, Loubet et al. (2014) proposed a review on life cycle assessment of urban water systems
in order to complete the available review considering only parts of the system. Authors showed that
when considering the contribution of drinking water production, drinking water distribution,
wastewater collection and wastewater treatment, regardless the category, impacts came mainly from
wastewater treatment representing for instance, on average, 44% of climate change impact, 78% of
eutrophication impact and 39% of electricity consumption.

Considering the sewage sludge management, Yoshida et al. (2013) proposed a review of several
studies and arrived to the conclusion that the most important challenges to be addressed are the
guantification of fugitive gas emissions as well as the fate of emerging pollutants and the modelling of

disposal practices in order to decrease uncertainty in LCA.

Foley et al. (2010) proposed an approach that is similar to the one developed in this study. Authors
conducted a LCA from steady state modelling results of ten WWTP scenarios. The results showed
that, in general, when a better water output quality is required (less nitrogen and phosphorus are to be
rejected), infrastructure, operational energy, direct GHG emissions and chemical consumption impacts
increase, which demonstrate the importance of background processes in a WWTP assessment. Authors
also highlighted the importance of nutrient consideration, especially phosphorus recovery, to be

further valorised as fertilizers.

Similarly, Corominas et al. (2013b) emphasized the inclusion of LCA in the decision-making of
nutrient removal systems. Authors analysed nitrogen and phosphorus removal in several systems and
showed that, for N&P and P-deficient scenarios, the strategies that are able to increase nutrient

removal and/or energy savings present an environmental benefit. However, when considering N-
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deficient scenarios, as more chemicals are required in the treatment, environmental benefits are not

systematically provided.

Another remarkable study on WWTP modelling and LCA was proposed by Schaubroeck et al. (2015)
considering the energy-positive WWTP in Strass, Austria. The study considered wastewater treatment
as well as the supply chain and the utilization of the produced electricity from sludge digestion and the
digestate  (as  fertilizer). = Comparisons  between the conventional scenario  (using
nitritiation/denitritation) and a one-stage partial nitritation/anammox coupled to a codigestion showed
a considerable benefit in natural resources depletion (by lowering the energy consumption and
increasing the electricity production). Moreover, according to authors, N,O emission still represent an
important contribution to impacts and have thus to be optimized afterwards.

The present study aims to provide a coupled LCA-dynamic modelling platform capable of being
properly adapted to several treatment benchmarks as well as providing comprehensive results on the
performance and sustainability of each wastewater management and treatment scenario. Moreover, the
developed platform is capable of identifying the main hotspots for a given configuration, which
requires a rigorous modelling of the dynamic process. In this sense, important efforts have been made

to operate with a full plant modelling despite the considerable requirements in computational time.

Modelling some emissions such as the dinitrogen monoxide, have not yet found a consensus between
scientific and industrial communities. Therefore, regarding the N,O emissions, a general approach was
used by considering only an emission factor according to the ammonia uptake rate. The later can be
subsequently integrated into the platform when a validated and widely-approved consensus is
available in the literature, in order to achieve more realistic results (for instance to consider low

dissolved oxygen concentration and high nitrite concentration in nitritation).
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Abstract

With a view to quantifying the energy and environmental advantages of Urine Source-Separation
(USS) combined with different treatment processes, five wastewater treatment plant (WWTP)
scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle
Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations
were carried out in BioWin® in order to obtain a realistic evaluation of the dynamic behaviour and
performance of plants under perturbation. LCA calculations were performed within Umberto® using
the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to
introduce them into Umberto® to achieve a complete LCA evaluation comprising foreground and
background processes. Comparisons between steady-state and dynamic simulations revealed the
importance of considering dynamic aspects such as nutrient and flow peaks. The results of the
evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced
Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased
aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed
increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In
this context, USS and EPC results demonstrated that the coupled USS+EPC scenario and its
combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic
deammonification could present an energy-positive balance with respectively 27% and 33% lower
energy requirements and an increase in biogas production of 23%, compared to the reference scenario.
The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total
endpoint impacts) along with effluent quality well within the specified limits. The marked

environmental performance (reduction of global warming) when nitrogen is used in agriculture shows

27



Chapter Il. Coupling Dynamic Modelling and LCA

the importance of future research on sustainable solutions for nitrogen recovery. The contribution
analysis of midpoint impacts also showed hotspots that it will be important to optimize further, such as
plant infrastructure and direct N,O emissions.

Keywords: WWTP; dynamic modelling; integrated LCA; urine separation; enhanced primary

clarification; struvite.

11.1. Introduction

Nowadays, Wastewater Treatment Plants (WWTPs) are facing ever stricter regulations with respect to
the environment and human health, and are also beginning to be considered as sources of material
and/or energy, obtained by recovering nutrients such as nitrogen (N) and phosphorus (P), and through

biogas production.

The collection of separate wastewater flows (e.g. urine, faeces, kitchen and bathroom wastewater) at
their source could allow the recovery of nutrients thanks to the distinct composition of these flows. In
this sense, there is a particular interest in urine, which represents less than 1% of the total volume and
only 14% of total organic carbon (TOC) but 88% of total Kjehldahl nitrogen (TKN) and 57% of total
phosphorus (Larsen and Gujer, 1996).

Urine can be treated with magnesium in order to form struvite (MgNH4PO, . 6H,0), a slow-release
fertilizer (Maurer et al., 2006). In addition to the possibilities of recovery, urine separation can
decrease the energy consumption in WWTPs through a reduction in the needs for N-removal besides
the decrease in consumption of chemicals used for P-elimination. Another important feature of urine
separation is the avoidance of ammonia peaks, which increases operating stability and allows plant
size to be reduced (Rauch et al., 2003).

Additionally, if less organic matter is needed for denitrification, more organic matter can be dedicated
to anaerobic digestion, which helps to turn the energy balance of WWTPs into a net positive energy
(production of surplus of energy). Accordingly, Flores-Alsina et al. (2014) proposed the enhancement
of total suspended solids (TSS) removal in the primary clarifier, which led to a higher chemical

oxygen demand (COD) for the digestion and consequently more biogas production.

The negative feature of WWTPs is the generation of various (direct) forms of pollution through gas
emissions, and effluent and sludge discharge into the environment. Moreover, the utilization of energy

and chemicals by the plant is responsible for indirect environmental burdens due to the production of
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these utilities. The environmental performance of different WWTP configurations can be evaluated by
the Life Cycle Assessment (LCA) method (ISO 14040/44, 2006). While the Life Cycle Inventory
(LCI) of background processes can be obtained from databases, the foreground process inventory is
usually obtained by data collection at the plant. An alternative to data collection is modelling and
simulation — a very useful tool when predictive results or ecodesign proposals are sought (Méry et al.,
2013).

Numerous LCA applications have been published for different WWTP configurations and a state of
the art has been drawn up by Corominas et al., (2013a). Yoshida et al. (2013) have published an LCA
review of sewage sludge management and the environmental performance of WWTPs with nutrient
recovery. However, the studies reviewed, mostly based on site data collection for LCI, cannot be used
for outlining general trends or for process optimization, because of the great number of parameters,
possible scenarios and treatment objectives.

Foley et al. (2010) used steady state simulation results obtained with Biowin® for a systematic
evaluation of the life cycle inventories of ten scenarios in 6 WWTP configurations. The results showed
that the quantity of infrastructure materials needed and the consumption of chemicals increased when
lower N and P concentrations were imposed in the effluent, as did energy consumption and GHG
emissions in N-limiting effluent scenarios. Flores-Alsina et al. (2014) used dynamic simulation
applied to an extended version of BSM2 (Benchmark Simulation Model N°2) to calculate the
greenhouse gases (GHGs) emitted on site and the amounts of energy and chemicals produced, with the
aim of evaluating control/operating strategies. These authors also showed the importance of
considering both water and sludge lines when analysing GHG emissions and pointed out the

considerable environmental impact of N,O emission.

Rémy (2010) analysed eight impact categories when comparing alternative systems using pilot
projects and literature data. The study showed that separation systems presented important benefits,
although eutrophication and acidification were more increased by agricultural disposal of liquid
fertilizers. The study also highlighted the importance of optimizing alternative treatment systems.
Tillman et al. (1998) studied the impact of possible source separation systems in two regions in
Sweden compared to existing conventional treatment systems. Their results showed that the urine
separation scenario presented the lowest environmental impact (e.g. nitrogen emissions to surface
water were reduced). Bjorklund et al. (2000) studied several treatment options and concluded that
nutrient recycling could reduce the net impact, even though nutrient spreading could raise the
acidification impact. They also highlighted the importance of ancillary systems for the environmental

analysis.
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To the best of our knowledge, none of these studies proposed an effective integration of process
dynamic modelling and complete LCA. Such integration requires adapted modelling and evaluation
tools, able to capture the influence of process parameters and dynamics in the impact calculation
results. In this sense, some elaboration complexities and limitations involved are related to the fact
that, as WWTPs are constantly subjected to flow and load perturbations, dynamic aspects should be
taken into account in the aim of achieving relative robustness in operational conditions in any
situation, ensuring stability and the correct operation of the plant. Also, as LCA is traditionally a non-
dynamic methodology, an interface between dynamic modelling results and inventory flows in LCA is
required, together with the conversion of specific inventory items (in order to obtain compatible units

for inventory flows).

Lastly, considering the whole WWTP system means taking account not only of the benefits and
drawbacks of coupled water and sludge lines but also of all background processes such as disposal of
by-products, consumption of energy and chemicals, and transport.

Until now, the benefit of alternative wastewater management with urine separation has been estimated
by a few studies with emphasis on the agricultural utilization of urine. However, a urine separation
scenario has never been evaluated through whole plant modelling coupled with urine treatment (such
as struvite precipitation and nitritation/deammonification with Anammoxidans bacteria) by a DM-LCA

analysis.

So, the goal of the present study is to obtain reliable, predictive LCA results (mutually interconnected
with the process parameters and dynamics) for reference and alternative scenarios in WWTPs. The
alternative scenarios consider urine source-separation followed by urine treatment, and enhanced
precipitation in the primary clarifier. This study also aims to identify possible benefits and drawbacks
of alternative systems so that they can be further optimized as conventional systems have already
been. To achieve this, a DM-LCA framework was developed for the predictive evaluation of global

performances, coupling dynamic simulation results and environmental evaluation.

11.2. Materials and methods

I1.2.1. The integrated DM-LCA methodology

As mentioned above, the integration of the dynamic modelling approach and LCA tools is a

prerequisite when trying to analyse the total environmental footprint of a WWTP system.
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The DM-LCA approach developed here used three different platforms, interconnected as shown in
Figure I1.1. WWTP scenarios were simulated with BiowWin®v4.0.0.976, a Windows-based wastewater
treatment process simulator that includes biological, chemical, and physical processes (Envirosim,
2014). The interface between WWTP dynamic modelling and LCA calculations were performed
through Python™ scripts.

To achieve the study objectives, model parameters were fixed initially and dynamic influent data was
provided to the simulator (Fig. 1 data flow 1). Dynamic simulations were also designed to reach
effluent quality limits (e.g. 10 g.m™ of total N, 1 g.m™ of total P, 35 g.m™ of total suspended solids,
100 g.m™ of total COD and 4 g.m™ of ammonium ion). As a result of the dynamic simulation, process
inventories (Fig. 1 data flow 2) were generated with their own inputs and outputs. After the dynamic
simulations, Python™ scripts (Fig. 1 data flow 3) integrated the results over the simulation time. All
parameter values and examples of calculations can be found in the Supplementary Information

document (SI, Section 1).

The results were then converted to an Umberto®-compatible input file for foreground and background
processes. Python™ scripts also performed complementary calculations, based on the literature (e.g.
calculation of cogeneration and energy requirements) and adjusted assignments between the output
flows resulting from the BioWin® simulation and Umberto® input flows (Fig. 1 data flows 4, 5, 6 and
7).

LCA calculations were then performed with Umberto® (Fig. 1 data flow 8) using the Ecoinvent
database (Fig. 1 data flows 9 and 12). This last step completed the LCI by adding the contribution of
background processes to WWTP ones (inventory details in section 2.4.2), and calculated the LCI (Fig.
1 data flow 10) then the environmental impacts (Fig. 1 data flow 11). Three main types of results were
generated: effluent concentrations and quality violations (Fig. 1 data flow A), energy parameters and

nutrient recovery (Fig. 1 data flow B), and environmental impact results (Fig. 1 data flow C).
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Figure 11.1. DM-LCA framework developed with connections between Dynamic Modelling, LCA and
Python™ interface

11.2.2. Plant layout and scenarios

The reference WWTP scenario considered in this study was the biological nutrient treatment plant
performing both nitrogen and phosphorus removal. The plant layout (Figure 11.2) under study was
similar to that proposed in BSM2 (Jeppsson et al., 2006). The kinetic model was a general full plant
model (BioWin® ASDM - integrated activated sludge/anaerobic digestion model) coupling activated
sludge processes and anaerobic digestion. A cogeneration unit based on the biogas produced was also

considered to approach an energy self-sufficient system.

The system was simulated with an influent characteristic file generated by Gernaey et al. (2011) (dry
and rainy periods were included). More details about considered influent can be found in SI (Section
7). Effluent and ambient temperature were modelled as proposed by the same authors using sinusoidal
waves with characteristic bias, amplitude, frequency and phase for daily and seasonal aspects

(Detailed correlations can be found in Section 4).

32



Chapter Il. Coupling Dynamic Modelling and LCA

Coagulant addition
(EPC)

»

>
Qsvrass REQUIRED

ENERGY FOR 4———+
WWTP

MeOH Qcarson
addition

Coagulant GAS EMISSIONS GAS EMISSIONS GAS EMISSIONS  GAS EMISSIONS

addition Q- T ‘ A ‘
Qunr
N ANOX2 H AER2

Q. ¥ » DISCHARGED
INFLUENT PT ANOX1 AER1
*t 'I% QIM T EFFLUENT
SOLIDS TO .
INCINERATION GAS EMISSIONS oo Electricity
a ELECTRICITY network

........ BIOGAS |
‘ 4L—H§g—LH§’3H COGEN
— :
' AD

ow e HET |,

=

SLUDGE TO DISPOSAL
IN AGRICULTURE

HEAT -
b Natural gas boiler
SEWER

REINJECTION

'

HEAT

Y NITRITATION!
ANAMMOX
(ANA)

4
4

URINE —# PPTSTRUV

'

STRUVITE

NITRITATION ANAMMOX

v
v

»
N-RICH EFFLUENT

»
»

AGRICULTURE SPREADING (AGRI)

Figure 11.2. Plant configuration used in this study.

Modifications due to urine source separation and enhanced primary clarification are shown in grey
boxes. Solid lines: liquid and solid flows, dashed lines: energy flows, dotted lines: gas flows)

The WWTP is feed with a flow Q,. The treatment comprised a pre-treatment (PT) unit for grit removal
followed by a primary treatment unit (PRIM: volume = 900 m?, height = 3 m, Nremovar = 50-80%), 2
anoxic tanks (ANOX1: 2 successive tanks of 1500 m? volume each) and 3 aerobic tanks (AER1: 3
successive tanks of 3000 m® each, dissolved oxygen controlled at 1.5-2.0-0.5g0,.m™). A post
denitrification zone (ANOX2: volume = 3000 m®, AER2: volume = 500 m® dissolved oxygen
controlled at 1gO,.m™ to release nitrogen bubbles) was also added to achieve acceptable effluent
limits. Nitrate was recycled from the aerobic to the anoxic zone (Qunt: 100-300% of Q, to achieve
denitrification in the first zone without external COD). The sludge was separated in a secondary
clarifier (SEC: volume = 6000 m® height = 4 m), which was also partly a wastage flow (Qy: 300-400
m>.d™) redirected to a thickener (THK: Nremova = 98%), and partly recycled in the anoxic zone (Qexr:
100% of Q). The primary clarifier and thickener underflows were redirected to an anaerobic digester
(AD: cylindrical tank with conical floor, total volume = 3500 m?® liquid volume = 3400 m?
temperature = 35°C) after being heated in heat exchangers (HE1 and HE2). Finally, biogas from
anaerobic digestion was used in a cogeneration unit for electricity and heat production (COGEN:

Nelectrical = 35%0; Nneating = 48.5%). The inlet flows of external carbon (Qcarson: Methanol) and coagulant
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(QmeTaL: iron chloride) were also dynamic and followed a constant daily profile. For the alternative
scenarios, the flowsheet also comprised a struvite precipitation tank (PPTSTRUV: volume = 5 m®), a
nitritation tank (NITRITATION: volume = 500 m?; dissolved oxygen controlled at 1.0 gO,.m™) and an
anaerobic deammonification tank (ANAMMOX: volume = 1500 m®) with external alkalinity input.
Finally, a bypass (Qgypass) Was added in case of input flows higher than 60000 m*.d™.

The evaluation period was extended (364 days) to take seasonal variations and the slow dynamics of
anaerobic digestion processes into account (Jeppsson et al., 2006). It is important to consider dynamic
influents when modelling WWTPs as they can reproduce the real inputs and their effects in effluent
and sludge characteristics. The initial conditions for dynamic simulations were set after a steady state

simulation.

For each scenario, operational parameters were adjusted in order to comply with the legal discharge
requirements as followed: dosage of chemicals (iron, methanol) was imposed (in a steady state
simulation) such that N and P in effluent were below the accepted limit. The set-points for dissolved
oxygen in reactors were unchanged in all scenarios. Consequently the calculated air flow rate

automatically adapted to the oxygen needs and organic load.
Six scenarios were compared in this study (Table 11.1):
1) Reference case (REF) used the conventional influent input and plant layout as described above.

2) Enhanced primary clarification (EPC) was foreseen for the conventional influent input, the plant
layout being slightly modified to add coagulant before primary clarification and thus achieve

efficiencies of 80% of total suspended solids retention (Tchobanoglous et al., 2003).

3) The Urine Source-Separation (USS) scenario was supplied with an adapted influent (with reduction
in TKN, total P and total COD). Urine was treated by precipitation with magnesium oxide (MgO) to
recover P (and a small proportion of N) while producing struvite. In that scenario (scenario 3), the N-
rich effluent resulting from precipitation returned to the WWTP to be treated. The residence time
considered for urine in the storage tank was 14 days (after which time urea was considered to be fully
hydrolysed). Urine separation efficiency was taken to be 50%. Also, during storage of urine, urea is

hydrolysed to NH; but losses of NHj; in pipes and storage are considered to be negligible.

4) The scenario combining both alternative treatments (USS+EPC), which used USS and EPC

operational conditions.

5) Urine Source-Separation coupled with enhanced primary clarification and agricultural spreading
(USS+EPC+AGRI) used the same parameters as the EPC and USS scenarios except for N-rich

effluent, which was spread on farmland by a vacuum tanker.
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6) Urine Source-Separation coupled with enhanced primary clarification and nitritation/
deammonification of nitrogen-rich and dewatering effluents (USS+EPC+ANA).

Table 11.1. Comparison of scenarios

No Scenario name Collection type WWTP Urine post-treatment

configuration

1 REF Conventional Conventional -
sewer (AS+AD)

2 EPC Conventional Enhanced primary -
sewer clarification

3 USS Urine Conventional Struvite precipitation + Reinjection
Separated (AS+AD)

4  USS+EPC Urine Enhanced primary  Struvite precipitation + Reinjection
Separated clarification

5 USS+EPC+AGRI Urine Enhanced primary  Struvite precipitation + Agricultural
Separated clarification application

6 USS+EPC+ANA  Urine Enhanced primary  Struvite precipitation +
Separated clarification Nitritation/deammonification

11.2.3. LCA

11.2.3.1. Goal & scope

On the DM-LCA platform developed in this study, LCA was aimed at evaluating the environmental

performances of different treatment scenarios, so as to compare them and identify hot spots.

The boundaries of the system were taken to be as broad as possible (Figure 11.3) and included process
operation and infrastructure (when data were available). However, sewer construction, operation and
maintenance were excluded as they were similar for all scenarios, and were not considered to be part

of the treatment itself.

The functional unit used was “Im® of raw wastewater to be treated”. However, as different treatment
types can deliver different efficiencies, limits for effluent discharge were also imposed as specified in

section 2.1.
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Boundaries expansion was considered to include the secondary function of fertilizers i.e. sludge, N-
rich effluent and struvite (all used in agriculture) and the production of an excess of electricity when
appropriate.

As sludge was not considered as a commercially valuable fertilizer, emissions connected with its
spreading were allocated to the wastewater treatment process (Doka, 2009). In the case of struvite
production from urine, even though it is a valuable product, emissions from its application were
allocated to the wastewater treatment, as urine is a fraction of the wastewater and the chosen treatment
must be responsible for all residues generated. For the N-rich effluent, as it was also a residue from the
WWTP, the impacts and benefits of its agricultural application were considered. Avoidance of
conventional fertilizers, i.e. triple super phosphate and ammonium nitrate (production and application)
was taken into account when considering expanded boundaries, on the basis of the quantity of N and P
that were bioavailable.

Plant was considered to be based on west European region. For the scenarios where an excess of

electricity was produced, a conventional European electricity production grid was taken as the avoided
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Nowadays, there are also rising concerns about residues of drugs and personal care products but, as
there is a lack of precise information in this area, these substances were not considered in the treatment

simulations, nor in the inventory. As described by Udert et al. (2006), the majority of these substances
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are present in urine and thus previous treatment may be necessary but, since available information is

scarce, these treatments were not considered.

11.2.3.2. Life cycle inventory

The inventory took account of all flow types proposed by the reference study included in the
Ecoinvent 2.2. database (Doka, 2009) and also some others judged sensible in our case, such as a
cogeneration system with electricity and heat production, external carbon source addition and

production, fertilizer production from urine and its utilization.

For the direct gas emissions of carbon, it is important to emphasize that, in order to be consistent with
IPCC (2006) guidelines, all organic carbon in sewage was considered to be biogenic. However, to
achieve complete denitrification, it was necessary to use methanol (produced from natural gas) in
some scenarios. Thus, there was a percentage of produced carbon dioxide (CO,) that originated from a
fossil source. Emissions of N,O from WWTPs are considered to be 0.5% of ammonia nitrified flows
in dynamic conditions (Czepiel et al., 1995). The volume and composition of offgas were calculated
(from Biowin® software) based on gas/liquid transfer models. Calculations were based on transfer
coefficients and concentration gradients with atmosphere. For anoxic reactors the volume of gas
emitted was mainly related to the dinitrogen produced by denitrification which was calculated with the
transfer surface. Heavy metal concentrations are not taken into account by Biowin as they are
considered to be inert for biological processes. Their input concentrations in WWTPs were therefore
taken from Doka (2009) and Henze and Ledin (2001) and allocated to effluent and sludge in specific

quantities, using their specific transfer coefficients proposed by the same authors.

The amounts of chemicals consumed (FeCl; for P precipitation (coagulant), methanol, MgO, NaOH)
that would consequently need to be produced in background processes were calculated according to
simulation demands. The total amount of FeCl; required was calculated considering it to be used for
both P precipitation and biogas purification (to avoid H,S formation). Grit removal in pre-treatment
was also included in LCA, considering 31g of grit to be present in 1 m® of raw sewage (50% as

plastics and 50% as paper to be disposed of in a municipal waste incinerator; Doka, 2009).

The electricity consumption was calculated by taking the sum of all electricity requirements (aeration
of AER and NITRITATION tanks and THK, mechanical mixing of ANOX, ANAMMOX and AD
tanks, pumping of main lines - influent input, dosing of chemicals, sludge outputs, recirculation lines,
and effluent output - scrapping and dewatering unit) and subtracting the electricity produced in the

cogeneration unit. Electricity that was produced was consumed by the WWTP itself and, when more
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electricity was produced than consumed, it was considered to be injected into the network and the
avoidance of electricity production was calculated. Heat production was calculated in a similar manner
to electricity and it was used to heat sludge to be digested and to compensate for heat losses by AD
walls. Process sludge was firstly preheated in countercurrent flow against digested sludge and the heat
transfer was complemented by heat generated in the cogeneration unit (HE2). Details on the energy
balance are given in Sl Section 3.

Transports were based on Doka (2009) and were considered for grits collected (10 km by lorry),
sludge to be disposed of (20 km by lorry), chemicals used (600 km by train and 50 km by lorry) and
conventional fertilizers in extended boundaries (900 km by barge for N fertilizers, 400 km for P
fertilizers, 100 km by lorry and 100 km by train). Transport of urine from houses to the WWTP (10
km by lorry) and struvite to the spreading site (20 km by lorry) were also considered.

Impacts of the agricultural application of sludge, struvite and classical fertilizers (from system
expansion) took account of N gas-emissions in the form of NH,4, N,O and NO,, P emissions to surface
and ground water, and heavy metals to agricultural soil. The process of spreading sludge and N-rich
effluent was considered by including a slurry spreading vacuum tank module and by a generic
fertilizing process for other fertilizers and struvite. Detailed information about spreading is given in SI
Section 5. In these calculations, a sludge bioavailability factor of 70% for P and 40% for N was
applied (as recommended by Lundin et al., 2004). For the conventional fertilizers, struvite and N-rich
effluent, 100% of N and P were considered to be bioavailable.

WWTP basic infrastructure (comprising a water line and a sludge line, see figure 11.3) was included
using a class 2 capacity data set from Ecoinvent (which includes dismantling). An annual sewage
volume of approximately 1.4x10" m® was considered, and the plant lifetime was taken as 30 years. The
basic infrastructure was the same for all scenarios and no modification of the size was considered (e.g.
variation of reactor volumes). In scenarios with urine separation, urine flow was collected in storage
tanks (fibreglass tanks) and later transported by truck to the treatment plant (no infrastructure changes
were foreseen for the transportation of other flows). Struvite and nitritation/ANAMMOX

infrastructure was not considered as tank volumes represented only a minor fraction of the WWTP.

The cogeneration unit was considered to have separate infrastructure (dataset from Ecoinvent) from

the rest of the WWTP, which was calculated as a function of biogas input.

All inventory results are presented in SI Section 2 along with the Ecoinvent reference of each flow.
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11.2.3.3. LCIA

The environmental impacts were calculated in Umberto® v5.6 software using the LCA Ecoinvent
database v2.2 and ReCiPe 2008 (Goedkoop et al., 2009) with endpoint (H,A) and midpoint (H) as in
the LCIA method.

11.3. Results and discussion

11.3.1. Reference scenario

The simulation results obtained for the reference scenario were compared with available data from the

literature (Table 11.2), collected from both measurements on site and calculation approaches.

Energy requirements were similar to those reported in the literature, especially considering the
reference LCA study in Ecoinvent. Biogas production was also in accordance with reference studies
(Table 11.2). Other parameters are difficult to compare given the variability of output effluent quality,

process configuration and influent composition found in literature.

In terms of performance, the process was able to respect the limits (Section 2.1) on average. A number
of violation days were observed during load peaks due to rain events, but these days corresponded to
less than 9% of the simulation period for the reference scenario and less than 3% for other scenarios
(Table 11.3).

The LCA results were compared to literature studies. Although the WWTP configurations were not
exactly identical, environmental impacts were expected to show similar trends. Considering the
Ecoinvent process for WWTP (“treatment, sewage, to wastewater treatment, class 2, CH, [m°]”),
infrastructure impacts were shown to make a contribution of approximately 30% to climate change,
fossil fuel depletion and human toxicity. Ortiz et al. (2007) reported that approximately 43% of total

impacts could be traced to the infrastructure for a conventional activated sludge plant.

Inventory for directly emitted substances can be found in SI (Section 2 — Effluent discharge, operation
emissions and post-emissions). Considering the impacts generated by the direct emissions,
comparisons with the Ecoinvent process (details in Sl Section 7 Table 11.2) presented similar results.
Yoshida et al. (2014) also obtained a contribution of approximately 20% of direct gas emissions in the

climate change impact category as well as a major contribution of effluent discharge to the marine
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eutrophication impact category (data also presented by Renou et al. (2008)). Yoshida et al. (2014) also
emphasize that background processes such as energy requirements and production from biogas have
greater impacts than the foreground process (direct impacts) for all categories analysed, showing the
importance of data collection. Finally, this study also agrees with previous ones that showed
environmental burdens with the use of sludge in agricultural soil due to the presence of heavy metals
(Foley et al. (2010); Lundin et al. (2004)), responsible for human toxicity impact.

Table 11.2. Comparison between this study and the literature for BNR processes

Parameter Unit Ecoinvent  Tchobanoglous Corominas et This study
221 (2003) al. (2013b) (Dynamic
REF)
Electricity kWh.m®  0.28 0.39 0.18-0.24 0.31
consumed by the  sewage
WWTP
Biogas produced  Nm®m?®  0.068 0.053 0.069-0.076  0.058
sewage

1 Results from site measurements

2 Results obtained by calculation/simulation

Globally, the results obtained for the reference scenario are in agreement with reported data,

supporting the reliability of the DM-LCA approach and platform developed in this work.

The effect of dynamic versus steady state conditions on the simulation results are shown in Table I1.3.
Important underestimations are embedded in the steady state: violations of water quality limits do not
exist and EROI is overestimated by 15%. Total effluent N is also shown in Figure 11.4, together with
total endpoint impacts and midpoint impacts for marine eutrophication, which is underestimated by
23% in the steady state. Results for all impact categories are shown in SI Section 6. The simulation
results are strongly influenced by influent perturbations and the use of steady state results would lead
to an underestimation of all impacts, which justifies the use of dynamic simulation in this study. These
results also agree with those of Guo et al. (2012) where a large fluctuation of N,O emissions was
observed between steady state and dynamic simulations (with steady state again being
underestimated). N,O peaks are naturally observed during the daily nitrogen peaks in correlation with

nitrification.
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11.3.2. Results of alternative scenarios: nutrient recovery, efficiency and energy consumption

Simulation results for alternative scenarios are shown in Table 11.3. In comparison with the reference,
alternative scenarios had a positive effect on the ability of the Activated Sludge Process (ASP) to
match the nitrogen and phosphorus removal objectives. Enhanced primary clarification allowed the
organic load entering into the ASP to be reduced, which reduced the oxygen needs and slightly
facilitated the nitrification (lowering ammonia). On the other hand a little more methanol was
necessary to maintain the denitrification efficiency. Urine separation reduced both phosphate and
ammonia in the influent. As the P fraction from urine was crystallized into struvite, the FeCl; needs
were minimized in the USS scenario. In case of N removal from urine by either agricultural spreading
or a deammonification process, the oxygen and methanol needs were also significantly reduced
(scenarios USS+EPC+AGRI and USS+EPC+ANA).

Stability in effluent quality is also important when considering the long-term running of a WWTP.
Regarding N limit violation, all alternative scenarios presented better results than the REF scenario.
For USS+EPC+ANA, nitrogen removal was more stable due to less N entering WWTP (and lower
ammonia peak load). However, slightly higher average nitrogen concentration was noticed.
Concerning P limit violations, scenarios without enhanced primary clarification presented problems in
stability since EPC allows direct removal of P from the water line (redirected to sludge). Total
suspended solids and ammonia violations were also fewer in all alternative scenarios than in REF.

COD results were not strongly influenced and were always within the regulation limits.
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Concerning energy, scenarios with enhanced primary clarification produced more energy by
cogeneration. Urine source-separation helped to decrease energy consumption at plants, thus giving a
positive energy balance in coupled scenarios (represented by EROI values above 1). This made
scenarios USS+EPC+AGRI and USS+EPC+ANA the most interesting from the energy balance
standpoint (with EROIs of 1.19 and 1.10 respectively). Total energy consumption over the life cycle of
the plant was estimated through Cumulative Energy Demand (CED) indicator. The main energy
resources used by the life cycle system are fossil and nuclear ones (results are presented in SI Section
6.3). EROI ¢ (defined as the electricity produced at plant divided by CED) of the six scenarios

presented the same profile as EROI.

Regarding the energy consumption, aeration was the most important requirement, varying between
40% (in USS+EPC+ANA) and 55% (in REF) of total consumption, which is in agreement with full-
scale studies (Tchobanoglous et al., 2003). The EPC and USS scenarios reduced aeration energy
requirements by 26% in USS+EPC, 46% in USS+EPC+ANA and 48% in USS+EPC+AGRI, while the
reduction in total electricity consumption varied from 20% to 33%. The second consumption
requirement was represented by the mixing of different devices (figure 11.5).

Compared to the reference scenario, biogas production was increased by 27% with the implementation

of enhanced primary clarification (USS+EPC) in the plant.

Considering material recovery, USS scenarios allowed the source separation of valuable nutrients N
and P. The greatest recovery of N was related to scenario USS+EPC+AGRI, where all remaining
nitrogen, after struvite precipitation, could still be used in agriculture by means of direct liquid
spreading. However, this method of N valorisation is still debatable because of its poor acceptance by
the general public, the infrastructure modifications it requires, and high volatilization emissions
depending on the spreading method. Regarding P recovery, USS+EPC and USS+EPC+AGRI
scenarios showed the highest performance. In all scenarios, P was precipitated in sludge or as struvite,
and losses of P only occurred with the effluent outputs. In this sense, USS+EPC and USS+EPC+AGRI
scenarios not only presented the highest P recovery, but were also the most stable in P effluent, with

respectively zero and one violation day during a period of one year.

Finally, external carbon addition (methanol) could be avoided in the nitritation/Anammox scenario
and decreased significantly in the AGRI scenario. In both cases, less N had to be treated by activated
sludge. Moreover, the dewatering effluent was also treated by nitritation/deammonification instead of

the traditional treatment.

FeCl; consumption was strongly influenced by the coupled treatments, a smaller quantity being used
in USS+EPC+ANA. However, the stability of P concentration in the effluent was ensured, with only 6

days of violations in one year and a maximum daily average of P not far from 1 g.m?.
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Figure 11.5. Energy distribution by consumption item

11.3.3. Results of alternative scenarios: environmental impacts

11.3.3.1. Endpoint impacts

Figure 11.6 synthesizes the ReCiPe endpoint results for all categories (ecosystem quality, human
health, resources and total impacts, including the impacts generated and avoided) and as a percentage
of impacts compared to REF (100%). Following these criteria, the performance of the scenarios
decreases in the order USS+EPC+AGRI > USS+EPC+ANA > USS+EPC > EPC > USS > REF (i.e.
REF has the highest impact score expressed in points). However, considering socio-cultural aspects
and feasibility, USS+EPC+ANA and USS+EPC are the most conceivable as discussed previously. As
shown in Figure 11.6, implementation of USS or EPC strategies decreased all impact scores compared
to the reference scenario. However, significant decreases in endpoint scores were only observed for

the coupled scenarios, in particular when N-rich effluent was treated by nitritation/Anammox or
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recycled in agriculture, achieving a reduction in resource depletion of 62.6%. Overall, the results agree
with previous studies in the literature (Bjorklund et al., 2000; Rémy, 2010; Tillman et al., 1998) where
separation systems also show a potential for more sustainable systems with less impact on the
environment. Additionally, our study clearly shows that urine separation would bring the greatest
advantages when a dedicated strategy was proposed for nitrogen removal or recovery, whereas only
limited benefits would be obtained if only phosphorus was recovered.

Contribution in Endpoint impact compared to REF

100

% of impact in relation to REF

20+

Ecosystem quality Human health Resources Total

[ REF HEE EPC W USS [ USS+EPC [ USS+EPC+AGRI I USS+EPC+ANA

Figure 11.6. Endpoint impacts for studied scenarios

In the ecosystem quality group, the main contribution was observed for both generated and avoided
impacts on climate change. Climate change was also the main contributor in the human health group.
However, in this case, particulate matter formation and human toxicity also became significant. As
previously discussed for the reference scenario, for alternative scenarios, direct emissions of heavy
metals in water and soil (sludge spreading) were responsible for human toxicity. For resources, metal
depletion was negligible relative to fossil fuel consumption. We emphasize that scenarios with USS
allow P to be recovered in the form of struvite (which is 100% bioavailable for plants) and so avoid
natural resource consumption. However, the P resource is not considered in ReCiPe, despite its
importance and scarcity. Complementary evaluation with other LCIA methods gave similar results
(see SI Section 6).
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11.3.3.2. Midpoint results

The analysis results for contributions to climate change, freshwater and marine eutrophication, and
fossil fuel depletion are discussed below, since WWTPs are known to affect these categories (Figures

11.7-11.10). Results for other categories are given in SI Section 6.
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Figure 11.7. Contribution analysis for climate change (GWP100) using ReCiPe Midpoint (H)

Considering the midpoint analysis of climate change, direct emissions decreased strongly with
alternative scenarios because the emissions of N,O decrease when less N enters WWTP to be
conventionally nitrified and denitrified. For nitritation/Anammox scenarios, all emitted CO, was
biogenic as no methanol was added (cogeneration emissions were also not significant as CO, is
biogenic). Details of WWTP gas emissions for each substance are given in Figure 11.8. N,O was the

main contributor for all scenarios, emphasizing the importance of decreasing its emission with
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alternative strategies. The infrastructure still made the highest contribution to global warming potential
(GWP) in all scenarios. Spreading of by-products (sludge, struvite and N-rich effluent) were also
responsible for a large fraction of GWP, especially because of N,O post spreading and CO, emitted in
the spreading process itself. Finally, GWP due to electricity consumption was also noticeable in the
scenarios that were not self-sufficient. Considerable avoidance of conventional electricity production
is to be noted in USS+EPC+AGRI and USS+EPC+ANA (on negative axis).

Contribution of each species to GHGs directly emitted in each scenario
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Figure 11.8. Contribution of each species to greenhouse gases emitted
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Midpoint Contribution Analysis - marine eutrophication
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Figure 11.9. Contribution analysis for marine (A) and freshwater (B) eutrophication using ReCiPe
Midpoint (H)
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Freshwater eutrophication (linked only to P emissions in ReCiPe) depended mainly on the direct
emissions of phosphorus, which varied slightly for the different scenarios. All alternative scenarios
had a lower impact than the reference because the amounts of P discharged were lower. Scenarios
containing enhanced primary clarification presented the most efficient phosphorus removal (effluent P
concentration was also more stable in these scenarios). Also, there was a remarkable avoidance of
freshwater eutrophication linked to P fertilizer production. Emissions in sludge and struvite spreading
were linked to phosphate leaching to ground water and the run-off of P to surface water. (For details,
see Sl Section 5.) For marine eutrophication (for which only N emissions are considered in ReCiPe),

direct emissions were the most impacting contribution, as was expected a priori.

For fossil fuel depletion (reduction of resources containing hydrocarbons), infrastructure and methanol
production were the biggest contributors, leading to low impacts for USS+EPC+ANA (which did not
use external carbon addition) and USS+EPC+AGRI (where a lower flow of methanol was used).
Large impacts were also linked to energy production by the supply mix for non-self-sufficient
scenarios and coagulant production. Marked impacts were also avoided when all N was recovered for
agriculture (USS+EPC+AGRI).

Finally, regarding particulate matter formation, sludge spreading showed large impacts in all scenarios
(due to NHj; volatilization). However, the impacts of N-rich spreading were compensated by the
amount of conventional fertilizer spreading avoided. The same profile was also observed for
photochemical oxidant formation and terrestrial acidification. However, unlike the available literature,
this study did not show increases in acidification potential due to urine separation as urine was
incorporated directly into the soil and low NH; emissions were expected (Rodhe et al., 2004). Impacts
of ionizing radiation were much influenced by FeCl; production and electricity provision by the
conventional European mix, so all scenarios containing EPC were less impacting for this category.
Natural land transformation impacts were strongly influenced by avoidance of conventional N
fertilizers (production), which gave the USS+EPC+AGRI scenario a low score (results can be found in
Sl Section 6).

The results presented above clearly show the importance of nitrogen recovery on the overall
performance. This supports the idea that recent research on alternative economical solutions for N
recovery, such as nitrification followed by distillation, electrolysis of urine and low-cost precipitation
of struvite, proposed by several authors (Etter et al., 2011; Hug et al., 2013; Maurer et al., 2006; Udert
and Wachter, 2012) should be included in future evaluations. Furthermore, coupled scenarios would
also lead to a more sustainable design for WWTPs and the opportunity to recover nitrogen as well as
phosphorus in sewage in order to avoid conventional fertilizer production and N,O emissions when N

is treated in the plant.
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Midpoint Contribution Analysis - fossil depletion
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Figure 11.10. Contribution analysis for fossil fuel depletion using ReCiPe Midpoint (H)

11.4. Conclusion

Decision making when evaluating WWTP scenarios is a difficult task as there are several
interconnected parameters and variables that influence results at different levels. Environmental
assessment would help in the ecodesign of these processes when low impacts are sought for specific

impact categories.

In this context, a modelling platform was developed by combining dynamic modelling of wastewater
treatment and LCA, in the aim of evaluating the environmental performances of different treatment

scenarios. In this work, the approach was applied to six WWTP scenarios.

A major original aspect of this study was the use of dynamic simulations coupled with LCA
calculations to build up the system’s life cycle inventory and provide complete impact evaluations,

which gave more realistic information than steady state assessments when the system was perturbed.
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Alternative scenarios not so far evaluated by LCA, such as nitritation/deammonification were also
studied.

Concerning scenario analysis, urine source-separation (USS) was shown to have a positive effect on
the effluent quality and to decrease the energy consumption in WWTP. On the other hand, enhanced
primary clarification (EPC) led to important energy savings, as more energy was recovered in the
sludge line and also less energy was consumed in the WWTP. When these two options are combined,
WWTP can achieve a positive energy balance while respecting effluent quality limits more easily. For
urine treatments after source-separation, agricultural spreading proved to be the scenario with the least
environmental impact for most categories. However, the socio-cultural acceptability and feasibility of
this type of scenario should be further analysed, including different technical methods for nitrogen
recovery. Among the different scenarios, nitritation coupled with Anammox for nitrogen removal from

urine proved to be an interesting option from the environmental, energy and feasibility points of view.

Finally, contribution analysis identified hot spots needing further optimization, such as infrastructure
(which could be optimized in alternative treatments with, for instance, decrease in the anoxic zone or
even skipping the post-denitrification zone), N,O direct emissions, which could be decreased by
diminishing N input in WWTPs, and heavy metals in sludge, which could lead to toxicity problems
(and possible avoidance of these problems when using source-separated flow products — such as
struvite and N-rich effluents - in agricultural soil).
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“Show me your wastewater and I will tell you who you are” (Henze and Comeau, 2003)

Nowadays, one might cite an important quantity of problems linked to environmental and human
health that comes directly from water and wastewater management (or from the lack of it). It is
essential thus to tackle the problem from two different points of view: Firstly, it is important to
understand and work on the immediate consequences; however, having a view on the long term is
essential as rapid global changes are taking place and communities will have to plan wastewater
management against future scenarios. Moreover, solutions for smart wastewater management must be
socially and culturally appropriate, as well as economically and environmentally viable into the future.
Also, population education is essential when considering both wastewater management solutions and
the reduction of wastewater produced (volumes and fate). Further, it is necessary to change
populations mind in the sense of considering separation systems as not only provisional alternatives
(Corcoran et al., 2010).

In this sense and when considering smarter and more sustainable ways of managing wastewater, urine
source separation appears as one of the most promising alternatives. The interest is mainly focused on
the important concentration of nutrients which are present in urine. These nutrients might be used to
close the nitrogen and phosphorus cycles: from food production which needs fertilizers, to the human
waste production. According to Larsen and Gujer (1996), urine represents a contribution of 88% of
total nitrogen and 57% of total phosphorus in a small volume. Also, a wide range of processes for
urine treatment are available nowadays (Maurer et al.,, 2006) including stabilisation (e.g.: by
acidification or nitrification), phosphorus recovery (e.g.: by struvite formation), nitrogen recovery

(e.g.: by ammonia stripping) and nutrient removal (e.g.: by anammox).

The recovery of nutrients, especially nitrogen and phosphorus, might be thus envisaged if yellow
water is recovered separately and non-diluted. However, nutrient recovery presents a difference when
considering nitrogen and phosphorus. Nitrogen is abundant in the atmosphere even if, to be obtained,
N fertilizers require energy intense processes. Further, given the human interferences in nitrogen
cycle, several environmental impacts might occur such as eutrophication, effects on human health and
consequences from greenhouse gas emissions. However, when considering phosphorus, artificial
fertilisers are obtained by mined phosphorus and the lifetime of economic reserves of phosphate rock

is nowadays estimated to deplete between the next 30 to 370 years (Balkema, 2003).

Regarding experiences on urine source separation, several pilot studies or even ecological villages
have been implemented nowadays. However, not many modelling and simulation studies have been
found on the literature considering urine source separation. To the authors’ knowledge, it is mainly

due to the fact that urine has a highly variable concentration and its generation is not constant as it
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depends on human behaviour and thus it is difficult to dynamically characterize urine in a realistic
way. Accordingly, the mixture of the other streams from households will change as well as the influent
in the WWTP. Therefore, it is essential to have a tool to generate realistic, dynamic and standardized

urine stream as well as the other wastewater streams.

As discussed in a review proposed by Martin and Vanrolleghem (2014) on completion, analysis and
generation of influents, several approaches are nowadays available to tackle the lack of information on
influents. However, there is still an important need in implementing more realistic and case study

influent generators in order to consequently obtain more predictive plant simulation results.

Accordingly, the objective of this study is to propose a flexible, dynamic and phenomenological
influent generator to consider both yellow water and wastewater streams. This chapter is in
preparation for submission in partnership with the Eawag institute in order to ensure realistic aspects
in urine generation. The influent generator hereafter described was adapted from the dynamic and
phenomenological influent generator from Gernaey et al. (2011). Urine and wastewater composition
data was obtained from a literature compilation to respect real data; however, the model is flexible and
allows the simulation of specific case studies (when the user wants to consider, for instance, other
source separation systems, other generation dynamics or other geographical/catchment conditions) as
well as the utilization of generated influents in different modelling platforms (ASM family models and
wide plant model results are showed).
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Abstract

The simulation of wastewater treatment plants allows obtaining predictive results when one needs to
understand, evaluate, optimize or design a plant. However, one of the bottlenecks of the simulation
feasibility is to obtain reliable and dynamic influent data. This difficulty is even more important when
alternative scenarios are considered, such as source separated streams. The present paper offers an
influent generator for the case where urine is separated at source and at a user-specified level of
retention. The proposed tool contains several blocks to include different contribution and, due to its
flexibility, allows the easily modification of parameters by the user in order to fit other case studies.
The tool showed to be able to generate dynamic, long-term and predictive date for both urine and
wastewater streams. Also, the extensive set of state variables allowed the generation of influents for

different modelling platforms.

Keywords: Urine source-separation; Influent generator; Phenomenological model; Dynamic influent

I11.1. Introduction

Wastewater treatment plants (WWTPs) are a complex combination of biological, chemical and
physical processes that shall be able to removal pollutants from wastewaters. Given the complexity of
the system and the interaction between a large set of parameters, modelling and simulation allows,
together with the understanding of involved processes, the performance evaluation and test of control
strategies, the design verification of new treatment approaches and the optimization. However, a
predictive and robust model might offer not realistic results if input data is not complete or if it is

inaccurate.
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In this sense, one of the limitations when considering the use of modelling is the scarce datasets
available as it is a costly and a laborious task to obtain experimental data for long-term dynamic
influent entering WWTPs (Martin and Vanrolleghem, 2014; Rieger et al., 2010). This difficulty is
mostly present when measuring only flowrate is not enough: if pollutants data are required as
dynamic, reliable and long-term inputs, on-line measurements might be necessary for instance
(Gernaey et al., 2011). Therefore, if an influent generator is available and able to generate predictive
data, hypothetical situations such as temperature changes, population growth in a catchment area,
storm events, unconventional wastewater management options and so forth might be easily and

reliably simulated.

Further, wastewater generation is by nature, a dynamic problem and thus WWTPs will be influenced
by all daily, weekly and seasonally perturbations. Therefore, when considering simulation of dynamic
WWTPs, there is an increasing need in reliability of influent data as considering steady state influent
may lead to underestimated results considering real world effluent concentration and chemicals and

energy consumption in plants.

Several model-based approaches for dynamic influent generation are available in the literature. An
extensive review is proposed by Martin and Vanrolleghem (2014) and three main situations where
influent shall be generated were identified by the authors: 1) the available dataset is not complete and
should be better characterized with expected wastewater quality and quantities; ii) one already has the
main characteristics of the influent but efforts should be made in order to characterize flows into state
variables (such as ASM family components); iii) the dataset has to be characterized considering

uncertainty in order to be used later in the generation of other derived datasets.

To respond to the first situation, three approaches are proposed. The first one consists in the
construction of databases based on experimental data that is used to complete or generate similar
influent pollutant loads and flows. The second approach consists of using harmonic functions to
describe the dynamic profile of wastewater streams. Following this idea, Langergraber et al. (2008)
used a 2™ order Fourier series to propose realistic pattern for flow and composite variables (COD,
TKN and TP) based on the sum of the main wastewater streams (infiltration water, urine with flush
water and domestic wastewater without urine). The influent generated was compared to measured data

and parameter set for model tuning was provided.

The third approach is based on phenomenological modelling and, as showed by Martin and
Vanrolleghem (2014), is a promising research area as they can integrate knowledge about generating
mechanisms and they should be improved in order to take into account both catchment area

information and stochastic influence on inputs. Gernaey et al. (2011) proposed a dynamic influent
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generator considering such an approach and taking into account all flow rate generation model,

pollutants generation model, temperature generation model, first flush and transport in sewer model.

Following the actual switch from the conventional WWTPs (where pollutants are only treated) to
recovery facilities (where wastewater is regarded as a resource) and from the centralized management
and treatment option to the decentralized one, influent generation tools has also to be adapted in order

to consider, for instance, source separation in households, vacuum toilets, usage of rainwater, etc.

Between the non-conventional wastewater management strategies that are nowadays gaining more
interest as they may lead to a more sustainable approach one can cite urine source separation. The high
interest is due to urine’s high concentration in nitrogen and phosphorus. In average, 80% of nitrogen
and 50% of phosphorus entering domestic WWTPs come from urine (Larsen and Gujer, 1996). When
not separated at the source, these pollutants need to be treated in the plant and thus are responsible for
important consumption of energy (for nitrification) and chemicals (coagulants for chemical

precipitation of phosphorus and COD addition for denitrification).

The effect of combining urine separation and waste design was presented by Rauch et al. (2003).
Authors provided a stochastic model that was applied to a virtual case study in order to understand the
gains on WWTP load with peak shaving and in the aquatic environment with the reduction of
combined sewer overflow. As presented by the authors, an interesting approach when urine is
separated and stored is to release it into the sewer following an integrated strategy in order to adjust
the pollutants input into the WWTP. The advantages of the application of this strategy would be not
only the control of nitrogen level into the plant but also the avoidance of sewer overflow with urine
which might have a harmful effect on water bodies. Also, as WWTPs are usually designed to deal with
ammonia peak loads, shaving peaks would increase nitrogen treatment stability of existing plant and

allow the reduction of new designed plants.

Stored urine might also be treated and several options are available on literature. Maurer et al. (2006)
proposed a review on these methods showing that there are mainly purposes in treating urine:
hygienisation, volume reduction, stabilization, recovery of N and P, nutrient removal and treatment of

micropollutants.

However, when evaluating any of these treatment options it is necessary to well characterize this flow
in order to correctly assess benefits and drawbacks of the innovative technology. Once again, one
might consider data collection; however, important sources of noise and variation are present in the
system varying from source separated toilet operation and efficiency to dietary of toilet users and thus

recovery of these data can contain several assumptive conditions.
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Moreover, urine is a complex fluid composed of several substances presenting a high variance and
several spontaneous processes might occur during storage and transport. During storage, all urea is
degraded and almost all nitrogen is available as ammonia, the pH rapidly increases, almost all calcium
and magnesium are precipitated and there is an important concentration of biodegradable organic in
urine that can be used by microorganisms during storage, even if most of them will not resist to

storage (Udert et al., 2006).

The present paper aims to propose a dynamic influent generator (based on Gernaey et al., 2005; 2011)
that takes into account urine source separation in households with a urine retention percentage that is
easily modifiable by the user. The model generation allows obtaining two different flows: (i) the urine
dynamically produced in households and (ii) the mainstream influent for WWTPs that is directly
influenced by urine separation according to a more or less important urine retention. The proposed
influent generator also aims to obtain not only composite variables, but also a detailed characterization

of the flows into several state variables.

The remaining of this paper will be organized as follows: First, each model block (flowrate and
pollutants) will be presented with its inputs and hypothesis as well as the fractionation model adopted.
Following, results covering flowrate and variables for a fixed retention percentage (50%) will be
presented and discussed. Latter, considered dynamics of the two obtained streams as well as noise
addition will be showed and discussed. Finally, two types of comparisons are provided: (i) the case of
using the generated dynamic influent data to fulfil a simulator which uses a plant-wide model versus
the use of an interface approach model; (ii) the simulation of different urine retention percentages

(from no retention to 100% retention).

I11.2. General overview

As discussed previously, this study is based on the original phenomenological influent generator from
Gernaey et al. (1005; 2011). This influent generator has the advantage of being a flexible tool that can
be easily modified and that it is implemented as open-source freely available. The tool was developed
using the Matlab® 7.0 Simulink toolbox and model blocks that has not been changed in this modified
version will not be detailed here. Moreover, the proposed modifications in the code keeps the

flexibility idea originally proposed in order to fit other case studies.

Figure II1.1 presents a general overview of the modified influent generator. Four main streams have to
be defined here: (i) TWW stream corresponds to the total wastewater stream (household and other

contributors) without any urine separation; (ii) TUS stream consists of total urine produced by the

62



Chapter I11. Influent Generator

specified population (the same as a retention of 100% of non-diluted urine); (iii) US stream
corresponds to the user-specified separated urine and diluted in the new specified flush; (iv) WW
stream represents the influent entering the wastewater treatment plant (contribution from industry,
rainfall, infiltration and the household) without the urine retained (previously specified). This last
stream (WW) is basically created from the difference of a conventional total wastewater stream

(TWW) that is well defined in the literature and the separated urine stream (US).

As showed in figure III.1, the influent generator is structured in three main sections: The general
settings (user input), the WW Generator and the US Generator. First, the user has to set the general
parameters in order to fit his/her case study. Between those settings, the most important are the urine
retention percentage and the size of the catchment. Other parameters (Old and new flushwater
volumes, TWW and TUS composite variables and TWW and TUS fractionation) are pre-calibrated by

the authors using the available literature and only have to be changed in very specific scenarios.

The WW generation is composed of five main parts: (i) Flowrate generation in households (without
retained part of urine), flowrate generation in industries, seasonal infiltration (due to changes in
groundwater level during the year) and rain generation (block A in figure III.1); (ii) Pollutants
generation in households (without retained part of urine) and industries (block C in figure III.1); (iii)
WW influent fractionation into a complete set of state variables (comprising also temperature profile
generation) (block E in figure III.1); (iv) Application of a first flush effect in sewer (surface runoff
following a storm event) (block G in figure III.1) and (v) Transport in sewers (responsible for

smoothing concentration peaks depending on the size of the sewer) (block H in figure II1.1).

On the other hand, the US generation is composed of only three main parts: (i) Urine flowrate
generation (block B in figure III.1); (ii) Urine pollutants generation (block D in figure III.1) and (iii)
Urine fractionation into a complete set of state variables (block F in figure III.1). First flush and
transport in sewer blocks are not present in urine generation section as it is considered to be stored

after generation and transported by trucks.
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Details of each block will be given in the subsections below together with its main hypothesis. Blocks
after fractionation (first flush effect and sewer transport) will not be discussed as they were not
modified from the original version. Temperature for urine generated was considered to be the same as
for conventional influent generated as a relatively long period of storage (and transport to the WWTP)
is proposed. Finally, in order to easily explain the calculations done by the influent generator, a case
study will be applied as an example in this study with the following characteristics: Urine is retained at
a percentage of 50% and the catchment size is of 80,000 person equivalent (PE) for domestic
contribution and industry represents approximately the contribution of 20,000 PE without urine
retention. However, as discussed previously, the flexibility of the generator is preserved by using

specific user setting parameters.

111.3. Flow generation

Dynamics in flow generation considers all daily, weekly and yearly profiles. The chosen normalized
profiles for flows generated in households are showed in figure II1.2A for both wastewater and urine
retained. This choice of using similar flowrate profiles for the US and WW is similar to the approach
of Langergraber et al. (2008) that used a profile from a Fourier series for both domestic influent

without urine and for the urine flow.

As showed in figure II1.2A, both US and WW profiles followed a similar profile with comparable
maximum and minimum values. However, a slightly delay is present in WW stream compared to US
as normally flow peaks for the non-urine flowrates will arrive after pollutants (and consequently after
urine generation) in a household. It has also to be noticed that the peaks arrives by the human activity

hours (morning peak by 7-8am and afternoon peak by 4-6pm).

Considering weekly and holiday effects, those were considered to be the same for WW and US
streams as they represent the “non-generation” of total wastewater in the household during these

periods (reduction of 8% on Saturdays, 12% on Sundays and from 12-25% on holidays).

The considered total flowrate (TWW) from households is 150 .PE'.d". The urine flowrate is
considered to be 1.36 LPE".d" according to a review on the published literature realized by authors
(data not published). Moreover, in conventional toilets (without urine separation), the volume of water
used per flush was considered to be of 5 1 and of 0.15 | in urine diverting toilets per flush. Further, it is

considered that each PE flushes toilet after urinating 5 times a day (STOWA, 2002). A summary of
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input and calculated values for average flowrates are given in table III.1 with the proposed case study

as example.

Finally, as showed in figure III.1, the total flow entering the wastewater treatment plant is composed
not only of the household and the industry contributions; rain and seasonal variation of groundwater
level are also comprised. The total flowrate entering the WWTP (WW) is thus obtained by the sum of
previously described contributors and urine flowrate is obtained directly from urine model block. In

average, household flowrate is supposed to represent 62% of the total flowrate entering the WWTP.

Table 111.1. Input and calculated values for composite variables (case study of 50% urine retention)

Initialization Calculated values based on the

Variables  Description Units specified retention of 50%
TWW TUS WW us
Q* Flowrate |.PE™*.d? 150 1.36  136.82 1.055
CODsol  Soluble COD load gCOD.PE*d* 42 104 36.8 5.2
CODpart  Particulate COD load gCOD.PE™.d* 78 0.78 7761 0.39
TKN Total Kjeldahl gN.PE1.d* 13.33 978 8.44 4.89
nitrogen load
SNH Ammonium load gN.PE1.d* 10 88 56 4.4
TP Total phosphorus load gP.PE™.d™* 222 074 185 0.37
SPO4 Orthophosphate load  gP.PE™.d™ 1.2 07 085 0.35
SNOx Nitrite and nitrate gN.PE1.d* - - - -
load

* The flowrate for TUS comprises only pure urine (without flush water) while the other streams
already include flush water (a bigger flowrate that is present in TWW and is thus subtracted in WW; a
small one that is added for US).
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Figure 111.2. Profiles for US and WW streams.

A) Daily flow rate profile; B) Daily ammonia mass flow profile

67



Chapter I11. Influent Generator

I11.4. Pollutants generation

I11.4.1. General aspects

When considering the urine source separation in households, the most reliable way to determine the
resulting load of pollutants present in each stream is to consider the total quantity of pollutants
produced per PE (including urine and other contributors) as the average (non-dynamic) value is well
characterized in literature as well as the values for pure urine. Therefore, the generation of pollutants
followed some main steps: First, composite variables were specified for the total wastewater (TWW
stream) and for the total urine stream (TUS) considering the total load of pollutants contained in the
produced urine (retention of 100%). Following, according to the specified urine retention, new loads
(of composite variables) are calculated for the domestic wastewater without urine — WW - and for the
urine retained — US (Figure II1.1, blocks C and D). Finally, fractionation was applied to final streams
(WW and US, Figure III.1, blocks E and F) considering the total well known ratios for the
fractionation of TWW and TUS in the recalculation of the new fractionation. However, considering
that urine is only diluted when retained at source, fractionation values of TUS and US are the same;

the same assumption is not valid for TWW and WW.

Finally, industry contribution is not extensively described as only slight modifications were done
considering the original influent generator (pollutants are still calculated on a 20,000 PE basis;
however it considers now the new values of pollutants per PE and profiles for phosphorus were also

added).

[11.4.2. Composite variables

The considered initial composite variables (soluble COD (CODsol), particulate COD (CODpart),
TKN, Ammonium (SNHx), TP and Phosphate (SPO4)) are predefined in the generator from the

literature being therefore adaptable for other case studies.

Considering the total wastewater without any urine retention, TWW, it was decided to base all
calculations on the load of total COD, which was fixed to 120 gCOD.PE™.d"". This value is variable
considering geographical location and more or less ecological lifestyles; however, this value is in the
proposed range of 25-200 (Henze and Comeau, 2003). Further, ratios that are well known in the
literature (Pons et al., 2004; Tchobanoglous et al., 2004; Henze and Comeau, 2003) were applied:
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Total nitrogen/Total phosphorus = 6, Total COD/Total nitrogen = 9 and consequently Total COD/Total
phosphorus = 54. Furthermore, other ratios were defined such 35% of soluble COD from the total
COD, 75% of ammonium nitrogen in TKN, 54% of soluble phosphate in total phosphorus and no

presence of nitrite and nitrate.

Accordingly, for a separation of 100% of urine, values were compiled from the literature and the
model was fulfilled directly with loads per PE per day as, unlike TWW, TUS seemed to be less

sensible to total loads than to ratios between variables.

Latter, composite variables were calculated for the specified urine retention as described previously. A

summary of input values as well as calculated ones for a 50% urine retention are given in table III.1.

Considering dynamics, pollutants profile followed similar assumptions of flowrate profile variation.
As the most important part of human pollutants generation are expected to happen more or less by the
same time of morning and afternoon urine peaks, the same profile for WW and US in the generation of
pollutants was applied. Accordingly, weekend effect and holyday effect were considered (reduction of

12% on Saturdays, 16% on Sundays and from 12-25% on holidays).

Figure II1.2B shows the profile for ammonium flux profile. Dynamic profiles for other pollutants
(composite variables) followed a similar profile and can be found in Supplementary Information.
Finally, profiles for total phosphorus and phosphate (that are not originally used on ASM1 influent

generator) were generated following the same profile of TKN and ammonium respectively.

After all, it has also to be noticed that urine has the exactly profile for flowrate and ammonium flux
(peaks are superposed). This choice is mainly linked to the fact that urine is well represented by
ammonium flux and that, as it is a human pollutant stream, it is expected to have variable flows with a

more constant concentration in pollutants.

111.4.3. Fractionation into state variables

Figure II1.3 details the fractionation block which is fulfilled with composite variables and generate
state variables. As discussed previously, the modified version of the influent generator considers an
extensive list of state variables: in general, variables are considered to be divided into soluble (S),
colloidal (C) and particulate (X); also, biodegradable (subscript B) and unbiodegradable (subscript U)
conditions are distinguished. A complete list of considered state variables is given in table IIL.2

together with its description, origin from composite variable and initialization values for the total
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streams (TWW and TUS) and the specific urine retention case (50% retention — represented by WW
and US) that will be discussed below.

In this study it was chosen to use a refined fractionation in order to achieve flexibility between the
several platforms and models available nowadays. Following, a complete list is provided by the end
and, in the case of a simulation using simpler state variables (such as when using ASM family
models), state variables only have to be regrouped by the user in function of the model variables. Also,
as it can be noticed in Table III.2, ions are also taken into account into the fractionation. This is
especially important when source separation is considered as urine can be treated by several
physicochemical processes and adding ionic species might add a realistic aspect to the process

modelling.

The fractionation values for the total wastewater (TWW) and total urine (TUS) are illustrated in the
Sankey graphics in figures II1.4 (for COD), IIL.5 (for nitrogen) and II.6 (for phosphorus). For
instance, starting from a total value of 100, variables are divided considering its chemical state
(organic or mineral), physical state (soluble, colloidal or particulate) and biological state
(biodegradable or inert). As previously discussed, fractionation values are stablished for total
wastewater (TWW) and total urine (TUS) from the available literature and thus calculated for the two

output streams (WW and US).

For instance, considering the COD fractionation, the composite variables already considered total
soluble and particulate COD. Accordingly, in order to start the fractionation, a total inert part was
defined and a colloidal part. Following, for the particulate part, ratios were applied to Xono, Xg and
Xy. Thus, Xp can be calculated by difference between the total particulate COD and the previously
calculated particular species. Similarly, for the soluble and colloidal part, well defined ratios were
applied to Syga, SmeorL, Cp and Cy. Following, considering the total inert part in total COD previously
described, Sy was obtained by difference with Xy and Cy (previously calculated). Finally, Sg is
calculated by the different to the total soluble COD.

Similar assumptions were done for nitrogen and phosphorus (Syy and Spy were obtained by difference

of inert N and P; Syp and Spp by difference of total organic N and P respectively).
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Table 111.2. Considered initial values for total urine stream (TUS), separated urine stream (US), total

wastewater without urine retention (TWW) and wastewater with urine retention (WW)

50% urine
Variable Description Unit TWW  TUS retention
'wWww Us
_ | Svea Volatile fatty acids gCoOD.m™ [32.8 4359 22.1 2810
§ Sg Readily biodegradable substrate gcob.m® |[63.2 2630 59.2 1696
O [sy Soluble unbiodegradable substrate gcob.m® |[30.0 657.8 29.8 4240
§ Cg  Colloidal biodegradable substrate gCoOD.m™ [96.2 122.7 101.2 79.1
I Xg  Particulate biodegradable substrate gCoOD.m™ [288.0 368.7 3029 237.7
= g Cy  Colloidal unbiodegradable substrate gcob.m® [19.2 20.6 20.2 13.3
8 Xy  Particulate unbiodegradable substrate gcoD.m® [58.8 61.4 61.9 39.6
© Xono Ordinary heterotrophs gcob.m® [11.9 - 125 -
< | Snux  Total ammonia gN.m'3 50.0 6471 34.2 4171
Sne  Soluble biodegradable organic N gN.m™ 7.0 504.9 5.9 325.4
Cng  Colloidal biodegradable organic N gN.m* 2.0 36.0 2.0 23.2
§ z Xng  Particulate biodegradable organic N gN.m* 6.0 107.9 6.1 69.5
- % Sawu  Soluble unbiodegradable organic N gN.m* 13 71.9 1.2 46.4
© Cnu  Colloidal unbiodegradable organic N gN.m* 0.1 - 0.1 -
Xnu  Particulate unbiodegradable organic N gN.m 0.2 - 0.2 -
~ | Spos Orthophosphate gP.m” 6.0 514.7 4.9 331.8
Spe  Soluble biodegradable organic P gP.m” 25 23.4 2.6 15.1
Ces  Colloidal biodegradable organic P gP.m? 0.6 1.4 0.7 0.9
lﬂ_- % Xpg  Particulate biodegradable organic P gP.m? 1.9 4.1 2.0 2.6
% Spu  Soluble unbiodegradable organic P gP.m? 0.1 0.5 0.1 0.4
© Cru Colloidal unbiodegradable organic P gP.m? 0.004 - 0.005 -
Xpy  Particulate unbiodegradable organicP  gP.m? 0.01 - 0.01 -
Sco2 Total inorganic carbon gCO,.m 210.0 1.016°+4 [192.5 6548
§ Sca  Calcium gCa.m_ 475 168.2 49.7  108.4
:,!)- Smg  Magnesium gMg.m_; 11.5 142.4 11.7 91.8
§ Sna  Sodium (strong cations) gNa.m_; 86.5 2536 84.0 1635
B Sci Chloride (strong anion) gCl.m 180.0 3656 179.5 2356

1: Ammonium

2: Soluble phosphate

Variables having a zero value were not included in the table (Endogenous products, other biomasses, nitrate and

nitrite)
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In order to define the fractionation values (especially for urine), some hypothesis were made based on

literature and are listed as follows:

For urine 7% of the total COD is particulate (and colloidal) and thus 93% is considered to be soluble
(Udert et al., 2013);

57% of soluble COD in urine is considered as VFAs (Udert et al., 2013) as urine is considered to be

stored;

85% of COD in urine is considered to be easily biodegradable (Udert et al., 2006); An inert fraction of

9% is considered;

The ratio between particulate in colloidal and particulate is 75% and the hypothesis of 85% of

biodegradable is applied to colloidal and particulate for both urine stream and wastewater.

Ammonium in urine is considered to be 90% of total nitrogen which is in accordance with values

proposed by Udert et al. (2006) and STOWA (2002);

Soluble phosphate is considered to be 95% of total phosphorus in urine (Udert et al., 2006) ;

A fraction of 80% of soluble was applied to organic nitrogen and phosphorus for the urine stream;
Colloidal and particulate inert nitrogen and phosphorus are negligible in urine and thus not considered;

Even if stored urine is considered, precipitation was not included as it will be considered separately

with its corresponding kinetics in a simulator when using the influent generated.

Regarding ionic variables, total inorganic carbon, calcium, magnesium, strong cations and strong
anions (represented respectively by Scoz, Sca, Sme, Snas Sci as showed in table II1.2) were considered
following a ratio to Sy, (table I11.3) and latter checked by electro neutrality in a simulator to verify if
pH and alkalinity were consistent to real world values (US: pH=9.16, Alkalinity=0.289 eq.L""; WW:
pH=7.65, Alkalinity=0.0045 eq.L™"). The choice of using ammonium ion concentration profile in order
to determine alkalinity and ions concentration profiles comes mainly from the fact that in the case of
urine, bicarbonate will be generated by urea hydrolysis (that will also generate Sypy). It has to be
noticed that even if in some models ionic species will not be used, it is important to calculate them as

the most part of urine treatment techniques are dependent of pH or specific ionic species.

Other general setting parameters consider the assumption from BSM2 that total suspended solids
(TSS) are equal to 75% of the particulate COD and the conventional ratios between COD and Volatile
Suspended Solids (VSS) for biomass (1.42), for Xp (1.8) and for Xy (1.3). Following the last
assumptions, inorganic suspended solids (ISS) can be calculated (in the end, after sewer), by the

difference between TSS and VSS.
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Figure I11.4. Sankey diagram for COD fractions in urine versus COD in total wastewater
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Figure 111.5. Sankey diagram for nitrogen fractions in urine versus nitrogen in total wastewater
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TUS — P fractions
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Table 111.3. lonic species molar ratio to ammonium for total wastewater and total urine stream

Ratio to SNHx
Variable

TWW TuUS
Scoz 4.2 1.6
Sca 1.2 0.026
Smg 0.23 0.022
Sna 1.7 0.39
Sci 3.8 0.56

I11.5. Noise addition

In order to add realistic conditions to the generated flows and avoid correlation between variables,
noise was added to flowrates (domestic, industrial and rain flowrates) as well as to composite and state
variables. This was done following the approach of Gernaey et al. (2011): a zero mean white noise is
added using the random number block of Simulink that outputs a Gaussian distributed random signal.
Attention was paid in order to select different seeds for each noise added and variance was calculated
using a variation factor specified by the user that is multiplied to the average value and squared. Thus,
this specified factor might be comparable to the percentage standard deviation. Also, the considered
sampling time is of 15 min. Considered values for noise factors are given in table II1.4 and can be

easily modified in the influent generator code in order to represent other case studies.

Furthermore, following the addition of noise values, saturation blocks were maintained in order to

limit the range of obtained values by fixing a lower and upper bound.

It has to be noticed that the chosen values for noise are related to the fact that flowrate, composite
variables (flux) and state variables (concentration) from household are supposed to be more influenced
by noise variation than urine and industry (this variation is not anymore linked to daily, weekly or
yearly profile; however it represents the noisy variation of values). However, it has to be noticed that
when considering the transport by truck to the plant, the user might add a storage tank and thus, daily

dynamic is not any more important.

77



Chapter I11. Influent Generator

Table 111.4. Noise factors considered in this study

Parameter Noise factor
Domestic WW flowrate 0.15
Industry flowrate 0.05
Urine flowrate 0.05

Domestic WW composite variables 0.1

Industry composite variables 0.1
Urine composite variables 0.05
WW state variables 0.1
Urine state variables 0.01

111.6. Example of simulations obtained with the generated influent

The use of the obtained dynamic influent was analysed in two different ways. The first simulation
consists of using two different models, ASM1 and the wide-plant model Sumol from SUMO
(Dynamita, 2015). The case of 50% of urine retention was considered for both models. The second
simulation consists in the comparison of different urine retention percentages. For this comparison,
influents were dynamically generated and following fulfilled to the simulator (using the Sumo1 wide-
plant model). For both case studies, the water line was simulated in order to obtain the impact on the

most important WWTP parameters that might be influenced by the urine separation.

The simulated WWTP consists of a MLE (Modified Ludzack-Ettinger) process with 2 anoxic tanks
(total volume of 3000m’) and 3 aerobic ones (Total volume of 9000 m’ with fixed DO of 2 g.m™)
similarly to BSM1. Also, a secondary clarifier with fixed solids removal efficiency was simulated, the
internal recycle was set to approximately 300% of influent flowrate and the SRT was fixed to

approximately 15 days.

The simulation was conducted dynamically during 2 weeks with an initialization on steady state for

each case study with the corresponding non-dynamic influent.

It has to be noticed that as ASM1 model does not consider either inert nitrogen or phosphorus species,
those were not added to the adapted ASM1 influent. In order to obtain ASM1 correspondent influents,
state variables were adapted as showed in Table II1.5. Additionally, in order to be comparable, kinetic
and stoichiometric Sumol parameters were modified to be in accordance with those from ASM1

(Henze et al., 1987).
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Finally, when considering different levels of urine retention, percentages of 0% (no urine separation),

20%, 50%, 80% and 100% (all urine is retained in households) were studied.

Table 111.5. Adapted inputs for ASM1 simulation

ASM1 state variables Influent generator state variables

S Su

Ss SveatSe+SmeoL
X, Xut+Cy

Xs Xpt+Cg
XsH Xoro

Xea Xpos+Xnos
Xp Xe

Sno Sno2tSno3
SnH SNHx

Snp Sne

XnD XnetCns
I11.7. Discussion

I11.7.1. Average results

Initially, as expected, the effect of recovering urine does not influence mainly the new flowrate
entering the WWTP. However, the effect in state variables is markedly present. As an example, the
effect of 50% of urine retention in the wastewater inputs (considering the concentration of state
variables in average) is presented in Figure 111.7. The most important reductions are to be considered,
especially regarding soluble COD (mainly VFA - 36%), total nitrogen (29%) and total phosphorus
(13%). Considering N reduced species, important abatements are obtained in ammonia (35%), as urine
is the main contributor of this pollutant entering the WWTP. However, the biodegradable and the inert
soluble organic forms of nitrogen are also well reduced (by 20% and 15% respectively). Following,

phosphorus species reductions are mainly due to soluble phosphate (23%).
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It has to be noticed that values of major species present in urine, ammonia and phosphate, were
initially expected (according to the literature) to decrease more than the previously showed values as,
according to Larsen and Gujer (1996), urine contributes to 88% of TKN and 57% of TP in wastewater.
This effect is due to the fact that industry represents a contribution of 20% (and thus when separating
50% of urine in households, in reality, only 40% of a urine corresponding stream is separated) and
values for a non-ecological life style (important quantities of N and P in households comes from other
sources rather than urine) were adopted and thus the total urine contribution is less important to the
total wastewater pollutants than the described in some case theoretical case studies in literature (in this
study: 73% of TKN, 88% of ammonia, 34% of TP and 58% of phosphate comes from urine — cf. table
1.1).

[11.7.2. Daily and weekly profiles

The obtained dynamic profiles for both wastewater input (WW) and urine stream (US) for the
simulated case of 50% of urine retention are showed in figure I11.8 (Weekly profile of flowrate as well
as daily variation of Sygs and Syuy). Also, the average value of each variable is showed in coloured

boxes together with its coefficient of variation (percentage).

When comparing any of the presented profiles for US and WW it can be seen that the variance of WW
flowrate is smoothened in relation to urine stream. This is due to the addition of the sewer effect in the
WW stream that is not applied to urine stream. Also, as discussed previously, a small delay is present
in WW flowrate in relation to USS flowrate profile and to the pollutants profiles in order to account

correctly for the generation of a mass of pollutants against a latter volume of diluted wastewater.

Also, when analysing pollutants, the dynamic profile (with the morning and afternoon peak for daily
dynamics and the weekend effect for the last two days of the week) is markedly present for all
pollutants in WW stream. However, this effect is less evident in urine concentration. This is in
accordance to the assumption described previously that urine pollutants concentration are not assumed
to vary importantly during the day (this assumption can also be checked by the coefficient of variation

that is more than two times less important for the urine stream).

Finally, the addition of noise achieved the effect of decreasing the correlation between variables and

thus the generated influent represents better real life influent streams.
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Figure 111.8. Weekly profile of flowrate; Daily variation of Syra and Sy
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I11.8. Use of the generated influent for process simulation

In order to verify the applicability of the generated influent to a simulation platform, two different case
studies comparison were done. The first consists of evaluating the feasibility of using the generated
influent with 50% of urine retention to fulfil two different types of model (wide-plant models versus
ASM family models). The second comparison case study is based on different urine retention
percentages that are evaluated according to different performance parameters and operational

requirements.

111.8.1. Comparison between different models

According to the flexibility idea of the influent generator, general results for the simulation using the

wide-plant model Sumol are proposed in figure I11.9 together with the ones generated by using ASM1.

Results for the considered operational parameter, airflow input, showed to be very similar for both
models. Even when calibrated, effluent outputs present a small difference that is explained by the
different model approach itself. As it can be noticed in figure I11.9, peaks are smoothened in Sumol;
however, the average result is similar. Furthermore, results showed that the generated influent might
be used for both platforms. In the case of ASM1 model, a sum of the originally proposed state

variables in the influent generator is required in order to obtain the correct input variables.

Finally, none of the discussed simulations were sensitive to either phosphorus treatment or ionic
species. Indeed ASM1 does not consider those species and the processes which could be sensitive to
those species were not considered in simulations with sumol model as well. Basically the addition of
phosphorus removal modelling would be more sensitive to ionic species and this could be the case of

future extended simulations.
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flowrate) results for Sumol and ASM1 models
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111.8.2. Effect of urine retention levels

Comparison results between different urine retention percentages are showed in figure IIL.10.
Scenarios consisting of no urine retention, 20%, 50%, 80% and the total urine retention in households

were compared.

Results showed that even the retention of only 20% of urine is already capable of shaving the
ammonia peaks importantly. When increasing the urine retention and achieving 80%-100% of
separation the distribution of ammonia output in the WWTP is almost smoothened without any more
peaks. An important reduction in air flowrate due to reduction of oxygen needs for nitrification was
also noticed as a consequence of reducing the ammonia input peaks. Finally, NOx (nitrate and nitrite)
output is also markedly reduced and the difference between the minimum and the peak value is also
importantly reduced. This leads to two major consequences: more stable outputs in the plant could be

achieved and potentially, the size of the WWTP can be reduced.
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111.9. Conclusions

Influent generators are a non-expensive and a low time consuming way to obtain input data for
modelling and simulation instead of traditional sampling campaigns. This is especially true when non-
conventional modifications are aimed to be evaluated and thus there is a no real world installation
where measurements can be done neither it is a laborious task. However, considering dynamics and

predictive data is a bottleneck of this kind of approach.

The proposed modified phenomenological influent generator for the case of urine source separation
allows the evaluation of this alternative scenario of wastewater management and treatment at different
urine retention levels in a reliable way and considering a wide view as both urine and wastewater

streams are considered.

Moreover, due to its flexibility, if other alternatives in wastewater management are envisaged such as
different retention levels or even other separation scenarios (e.g.: ammonia releasing in the sewer
during the night, black water separation, unconventional greywater treatment) the tool is flexible
enough and it is easy to modify the hypothesis to generate other streams. Following on the flexibility
of the influent generator, the use of an extensive set of state variables allows simulating with different

models such as the compared ASM1 model against the Sumo1 wide-plant model.

The important benefit of urine separation is demonstrated by dynamic simulation of a typical WWTP,
reducing the daily nutrients peak load, improving the quality of rejected water, and reducing the
energy needs for aeration. Finally, results showed that the tool is able to generate dynamic, long-term
and predictive data for both urine and wastewater streams. The tool is now available for future
simulations including innovative wastewater and urine management scenarios and optimization of

plant design and operation depending on source separation level.

87






Chapter 1V. Feasibility of Multi-
Objective Optimization

89
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“The formulation of the problem is often more essential than its solution, which may be merely a

matter of mathematical or experimental skill.” (Albert Einstein)

When considering the high environmental restrictions on the discharge of polluted waters and the
strengthening of regulation laws, the process optimization becomes a potential solution, both to
compromise between different treatment technologies (conventional and innovated) and to readjust the
operating conditions of plants up to their optimal functioning level.

When an automated tool is available for the quantification of performance, costs and environmental
impacts such as the previously described platform, one might want to analyse a wide range of
available scenarios and operational alternatives. However, given the rigorous and time-consuming
aspect of dynamic simulators, the problem might easily become expensive and complex to solve, with
considerable requirement in terms of computational budget and calculation time. As function
simplifications were avoided in order to provide realistic and predictive WWTP model, the
optimization approach has now to deal with an expensive simulation-based problems. Therefore,
efficient algorithmic techniques must be used to obtain the optimal results with markedly reduced
number of simulation runs (or what we call the computational budget in the present thesis).

In the context of optimization, the quality of optimal results is expected to depend directly on the
relevance of problem formulation. A wide review on optimization of activated sludge systems in
WWTPs was provided by Hreiz et al. (2015) through which the problem formulation has been
recognized as one of the major element to ensure the quality of optimal solutions. The same authors
(Hreiz et al., 2015) stressed the main challenges when conducting a WWTP optimization. According
to the authors, besides tackling the mismatches between the modelling and the real world results and
the unpredictable variations in wastewater inputs, it is important to consider the slow dynamics of the
plant and the correct formulation (flowsheet, decision variables, objective functions, constraints and

flowsheet) of the problem to achieve reliable results.

The study of feasibility was conducted considering 3 objective functions: operational cost (represented
by OCI), effluent quality (represented as the quantity of rejected pollutants by EQI) and environmental
impacts (LCIA). EQI were based on standardized correlations proposed by the Benchmark Simulation
Model N°2 Group and represent an effort of considering also ecological aspects as, for instance,
rejected TKN and ammonium ions have different weights in order to move towards non ammonium
species. OCI was based on plant expertise from industrials and literature in order to reflect the real
world conditions. Finally, LCIA results consider, as previously described in chapter 2, the whole life
cycle of the system (foreground and background emissions as well as avoided ones). Moreover, the

impact of adding constraints is analysed on the basis of European reject limits. Moreover, the
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feasibility study was conducted using an alternative scenario (with urine source separation and its
treatment by struvite precipitation and nitritation/ anammox) to ensure the optimization of a more

complex problem than the conventional WWTP by ASP.

Once an optimization problem is properly structured and formulated, the second critical step is the
choice of resolution method. Rigorous modelling allows a better understanding of the interactions
between decision variables and therefore, the results are more realistic and represents the real efforts to
be made in order to improve the system and its functioning. However, the consideration of highly non-
linear dynamic models that represents processes operating at considerably different rates - for instance,
the biological and chemical reactions - makes the resolution of the whole system a stiff task.

Additionally, a crucial condition has to be fulfilled, that is to ensure the global optimality of obtained
solutions. In this case, genetic algorithms are a good option as, besides ensuring the global optimality,
they do not require derivative information to optimize a function, due to their stochastic mechanism of
search. Moreover, they are adapted for black-box or simulation-based systems with noise. In
simulation-based systems, noises are mainly due the use of a fixed tolerance to approve the

convergence of each simulation run.

However, the use of genetic algorithms in their original form to solve expensive optimization
problems is completely irrelevant, due to their considerable requirements in terms of computational
budget. That’s the reason why in the present work a novel hybrid evolutionary algorithm, called
AMOEA-MAP and developed by Ahmadi et al. (2016), was used to deal with expensive optimization

problem.

This chapter provides, in fact, a feasibility study - from computational time and reliability perspectives
- of an efficient multi-objective approach to optimize alternative wastewater management and
treatment plants with integrated LCA and rigorous dynamic modelling. This chapter has been recently

accepted for publication in the journal of Chemical Engineering Research and Design.
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Entitled of the paper: Feasibility of rigorous multi-objective optimization of

wastewater management and treatment plants

Ana Barbara Bisinella de Faria, Aras Ahmadi, Ligia Tiruta-Barna, Mathieu Spérandio

LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France

Abstract

The present paper describes a study on the feasibility of coupling rigorous dynamic modelling (DM)
and its extended boundaries through life cycle assessment (LCA) with an efficient multi-objective
optimization (EMOO) tool. The combined framework (DM-LCA-EMOO) was then applied to a real-
world dynamic system: the wastewater treatment. To give a global view of all environmental,
economic and technological performance, three objectives were considered: Effluent Quality Index
(EQI), Operational Cost Index (OCI) and environmental impacts quantified through Life Cycle Impact
Assessment (LCIA). Legally imposed constraints, including total nitrogen, total phosphorus, total
chemical oxygen demand, total suspended solids and ammonium ion were also taken into account.
Given the contradictory nature of objectives, the presence of constraints and the time-consuming
simulation-based calculations, an efficient multi-objective optimization framework, namely Archive-
based Multi-Objective Evolutionary Algorithm with Memory-based Adaptive Partitioning of search
space (AMOEA-MAP) was used. The practicality of such a combined DM-LCA-EMOO tool for the
evaluation of wastewater management and treatment was then addressed and demonstrated through a

case application.

Keywords: LCA-integrated dynamic modelling, expensive multi-objective optimization, WWTP
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IV.1. Introduction

Wastewater treatment plants (WWTPs) are a complex combination of biological, chemical and
physical processes aiming to minimize damages caused by sewage discharge. Besides the variety of
compounds to be treated (soluble, colloidal and particulate compounds that might be biodegradable or
not), current directives are nowadays imposing stricter reject limits especially for nitrogen and
phosphorus. Additionally, the conventional wastewater management, where several streams of
wastewater are mixed, do not lead to an integrated solution as pollutants are diluted and nutrients
recovery is complicated to accomplish (Balkema et al., 2002). To achieve an adequate performance
together with minimum costs, there is an important need for optimal integration of these unit

processes.

However, WWTPs have traditionally been optimized considering only cost and quality performance
aspects. The inclusion of sustainable criteria in the choice of plant operation has some challenging
points such as the inclusion of the background processes by extending the life cycle boundaries of the
system, the assessment of all economic, environmental and social spheres and the choice of the
appropriate indicators to quantify the achievement of objectives targeted (Azapagic et al., 2006).

Following the increasing interest for more sustainable processes, one should consider the
guantification of the gains and the drawbacks of each alternative considered. Among the available
methodologies to assess the sustainability of processes, Life Cycle Assessment (LCA) presents the
advantage of taking into account the full process lifetime and thus the cumulative effect of emissions

from foreground and background processes.

When conducting a complete LCA, it is fundamental to evaluate the inventory emissions during the
whole process lifetime. While background data can be obtained from databases, foreground data
inventory is usually obtained by data collection at the plant. However, given the interaction between a
great number of parameters, possible scenarios and treatment objectives, data collection cannot be
used for outlining general trends or for process optimization. Modelling and simulation is thus an
interesting alternative that can be very useful when predictive results or eco-design proposals are
sought (Mery et al., 2013).

Numerous LCA-integrated modelling have been published so far in several fields, comprising the
water field. In the wastewater field, for instance, Corominas et al. (2013b) evaluated the environmental
impact of strategies for nutrient removal in WWTPs by considering LCA, while Flores-Alsina et al.
(2010) conducted a study of control strategies in a plant where environmental impacts through LCA

were evaluated together with economic, technical and legal criteria. With a view to LCA-based

94



Chapter IV. Feasibility of Multi-Objective Optimization

process evaluation, Foley et al. (2010) used steady state simulation results obtained from Biowin® for
a systematic evaluation of several WWTP scenarios using LCA,; Further, Mery et al. (2013) developed
a LCA-integrated process modelling tool, named EVALEAU dedicated to the environmental
evaluation of drinking water treatment processes and Loubet et al. (2016) proposed a framework for
the modelling of urban water systems coupled to LCA for assessing its environmental impacts
according to the services provided.

In a previous study, Bisinella de Faria et al. (2015) developed a LCA-integrated dynamic modelling
applied to WWTP scenarios in order to obtain reliable and predictive LCA results. The framework
allowed evaluating the environmental performances of different treatment scenarios together with its
performance in an automated way, leaving the possibility to be subsequently used for other case
studies. Accordingly, two main research streams - one generic to eco-design independently of the
application, and the second specific to the field of wastewater management — remain to be further
explored: (1) a practical integration of LCA calculation and dynamic process modelling with an
efficient Multi-Objective Optimization (MOOQ) framework for appropriate process evaluations within a
reasonable calculation time, (2) the achievement of reliable globally optimized performance in

wastewater management with reduced costs.

With a view to the first stream, efforts have been made in the most diverse fields to consider
environmental aspects in the multi-objective optimization of process and specifically, using LCA to
quantify these impacts. Ahmadi and Tiruta-Barna (2015) presented an approach to combine process
modelling, LCA and MOO applied to potable water resulting in a set of alternative solutions. Carreras
et al. (2015) applied a MOO in order to optimize the building insulation thickness considering
economic and environmental impacts using the evolutionary algorithms. Guillen-Gosalbez and
Grossman (2010) proposed a modelling and computational framework in the MOO of sustainable
chemical supply chains and the effect of uncertainty in the environmental evaluation. Zhang et al
(2015) presented the optimal design of microgrids using g-constraint and weighted sum method for
both environmental (using LCA) and economic concerns. Tascione et al (2016) proposed a coupled
approach of LCA and linear programming to identify the optimal scenario for integrated waste
management. Khoshnevisan et al (2015) studied the combined LCA and genetic algorithm applied to
crop systems. Miret et al. (2016) proposed an approach that integrates, besides economic and
environmental aspects, the social context in the MOO and the goal programming to solve the problem
applied to bioethanol supply chain. In all works mentioned, the mathematical programming and the
complexity related to its resolution as well as the calculation time can be seen as the most critical

limitations.

Considering the second stream, Hreiz et al. (2015b) proposed a review of the available literature on

optimal design and operation of Activated Sludge Processes (ASP). Authors highlighted that the

95



Chapter IV. Feasibility of Multi-Objective Optimization

optimality of results depends on the problem formulation. Unfortunately, there is no standardisation
either on cost functions or on constraint selection (in order to respect feasibility along with physically
relevant operations and on the uncertainty of models). Process dynamics is also an important aspect to
be taken into account for the achievement of a sustainable functioning and for an appropriate

consideration of units with slow dynamics.

In the field of wastewater treatment, some interesting approaches in MOO can be mentioned. Hakanen
et al. (2011, 2013) proposed an interactive optimization tool for the wastewater treatment plant design
where decision-maker can express his preferences for the optimal solution while better understanding
the problem. Igbal and Guria (2009) presented the optimization of a WWTP from both single and
multi-objective points of view (using thus SGA-II and NSGA-II) being the first authors to apply this
MOO technique to this field. Three objective functions were considered in their study: maximization
of influent flow rate, minimization of exit BOD and minimization of operational costs. Egea and
Garcia (2012) have proposed to use advanced metaheuristics in order to tackle the optimization of a
benchmark WWTP showing that this approach is capable of overcoming the multimodality and noise
problems that appeared when a dynamic operation is supposed. Similar approaches on the
optimization of WWTP have been widely discussed in the literature (Beraud et al., 2008; Costa et al.,
2011; Hreiz et al., 2015a; Guerrero et al., 2012; Fu et al., 2008), nevertheless to the best of authors'
knowledge, there has usually been lack of information on non-conventional treatment scenarios and on
the multi-objective optimization of full plants with regard to the time consuming issues of such
computation (long time is necessary due to units with slow dynamics). Moreover, there is also no
information available on optimization by considering environmental impacts together with water
quality and operational costs. As showed in a previous study, background processes and recovery
strategies (for instance, avoided raw material requirement when nutrient recovery takes place) present
high impact values for several impacts categories (Bisinella de Faria et al, 2015) and should thus be

considered for a further improvement of functioning conditions.

When adding up different - usually conflicting - objectives in an optimization, it is recommended to
handle it through a multi-objective optimization (MOQ) approach rather than aggregating objectives
into a single composite objective to be optimized. This is because a MOO context primarily allows the
decision-maker to obtain more than only one possibility as scenario, and additionally when a single
composite objective is used, the quality of optimal result is directly proportional to weighting factors
used for the aggregation of objectives. A MOO approach is especially interesting in the case of
WWTPs as the objectives are conflicting by nature and the optimal solution for a given context may
be different in another future context. However, traditionally, WWTPs have been optimized using
single objective optimization in view of minimising for example a total cost function. As discussed by

Hakanen et al. (2013), this approach may lead to loss of information and interdependencies between
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functions. Moreover, obtaining a non-dominated Pareto front (composed of a set of non-inferior
solutions) allows the decision making process to be independent.

Even if ASP is well studied, given the stricter limitations for reject water, the complex interactions
between system variables and the non-conventional alternatives available nowadays, it is a difficult
task to decide between several sets of operations and design parameters. The predictive modelling of
WWTPs represents, in this context an interesting tool in order to give insights in decisions for future
eco-design and implementations. However, computationally speaking, these simulation-based
problems are to be seen as black-box systems, usually with expensive calculation-time requirements,
where several variables interact in a complex and non-linear way. However, in the knowledge that
these problems are often treated as simulation-based modules, the numerical approximation of
gradient would be unreliable, which highlights the importance of using gradient-free optimization
techniques. Thus, the two most challenging aspects in the optimization of such systems are to provide
an appropriate problem formulation and to use suited optimization methods that allow relevant
convergence accuracy and speed: the achievement of globally optimal results under multiple legally-

imposed constraints and within a reasonable calculation-time.

Genetic algorithms have proven to be powerful tools for multi-objective optimization of real world
problems such as in wastewater field (Fu et al., 2008). The use of a genetic algorithm present some
advantages, for instance they are derivative-free therefore suited for non-linear black-box problems,
and they are capable of ensuring the global optimality of results. Additionally, because they are
population-based, they promote a diverse set of optimal solutions, called the non-dominated Pareto
front. However, genetic algorithms as well as other evolutionary methods are extremely time-taking
and it is quite impractical to apply them, in their original structure, to expensive optimization

problems.

When considering the optimization of computationally expensive problems - usually simulation-based
where, mathematical programming of processes cannot be directly applied - the availability of suited
meta-heuristics and acceleration techniques is markedly reduced. Ahmadi et al. (2016) have given an
extensive literature survey on the enhancement of convergence speed in multi-objective optimization
of expensive problems. For these specific problems, some promising improvements have been
reported in the literature, for instance the hybrid and memetic Multi-Objective Evolutionary
Algorithms (Kim and Liou, 2014; Lara et al., 2010), the interactive and surrogate problem
construction (Ojalehto et al., 2015; Capitanescu et al., 2015) and the Gaussian stochastic process
modelling (Knowles, 2006). Regarding the first two approaches, despite the multiple advantages in
improving the convergence issues, their main limitation is either a still impractical computation budget
or a lack of accuracy. In Gaussian stochastic process modelling, the computation budget can be set to a

very low value; however, the complexity of the algorithm itself can become a limitation.
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The present study aims to trigger and discuss the feasibility of optimizing a full alternative WWTP -
simulated via rigorous LCA- integrated dynamic models - through an efficient multi-objective
optimization (EMOO) algorithm. Therefore, here the attention is paid solely to the practicality of such
an optimization for expensive rigorous WWTP problems, and to the analysis of the 3D Pareto optimal
front yielded by comprising outlet water quality, costs and environmental impacts as three main
process objectives, helpful for the understanding of objectives’ dependencies and for the identification

of main treatment drivers.

The remaining of this paper is organized as follows: First, the structure of dynamic modelling with
integrated LCA for the alternative WWTP is presented. Then, the efficient multi-objective approach is
described. This work uses the Archive-based Multi-Objective Evolutionary Algorithm with Memory-
based Adaptive Partitioning of search space (AMOEA-MAP) framework, to deal with the
optimization of expensive systems (Ahmadi et al., 2016). At the end, important issues, related to the
formulation of optimization problem (interactions between objectives in the optimal region, and
constraints), the general guidelines for future design of innovative WWTPs, and the question of
practicality and computational feasibility are addressed and discussed.

IV.2. Materials and methods

IV.2.1. Dynamic Modelling (DM) approach

The plant under study is based on Benchmark Simulation Model N°2 (BSM2) with several
modifications: Enhanced Primary Clarification (EPC) was added to enforce biogas production, post-
anoxic denitrification dedicated to achieve effluent quality limitations and a cogeneration module for
the sake of energy sustainability (heat and electricity). Following the idea of an integrated wastewater
management, an alternative collection of 50% of urine was applied. The urine is treated by struvite
precipitation for the sake of nutriments recovery and nitritation coupled to anaerobic

deammonification in order to treat the N-rich effluent from the precipitation.

Configuration details are showed in figure IV.1. The considered WWTP comprises in the mainstream
a pre-treatment (PT) unit for grit removal followed by a primary treatment unit (PRIM: 1semoval = 80%),
2 anoxic tanks (ANOX1 and ANOX2) and 3 aerobic ones (AER1, AER2 and AER3 with oxygen
controlled at 1.5, 2.0 and 0.5 gO2.m™ respectively for the reference case). A post denitrification zone
was also added to achieve acceptable effluent limits. Nitrate was recycled (Qnr: ~35500 m3.d™* for the

reference case) from the aerobic to the anoxic zone and the sludge was separated in a secondary
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clarifier (SEC), which was also partly a wastage flow (Qw. ~300 m®.d™ for the reference case)
redirected to a thickener (THK), and partly recycled in the anoxic zone. The primary clarifier and
thickener underflows were redirected to an anaerobic digester (AD). Finally, biogas from anaerobic
digestion was used in a cogeneration unit for electricity and heat production (COGEN: Nejectricat = 35%;
Nheating = 48.5%). The inlet flows of external carbon (Qcarson: Methanol to improve denitrification;
0.75 m*.d* in the reference case) and coagulant (Quera: and Querarz: iron chloride for chemical
precipitation of phosphorus; 2 m®.d™ and 1 m®.d" respectively in the reference case) were also
dynamic and followed a constant daily profile. Sidestream comprises a storage tank (ST), struvite
precipitation tank (PPTSTRUV), a nitritation tank (NITRITATION: dissolved oxygen controlled at
2.0 gO2.m™ for the reference case) and an anaerobic deammonification tank (ANAMMOX) with

external alkalinity input.

Plant was dynamically simulated using SUMO (Dynamita, 2015). The used model is an adapted
version of original Sumo2 and includes more than 70 equations including biological growth and decay
of 8 microbial populations, hydrolysis and flocculation reactions, chemical precipitation of phosphorus
with several species of hydrous ferric oxides (HFO), struvite and vivianite precipitation, gas transfer
reactions and pH modelling resulting in more than 60 state variables.

The dynamic influent comes from the simulation of an adapted version of influent generator from
Gernaey et al. (2011) including dry and rainy periods. This influent generator was modified by authors
in order to consider urine source separation. Flows are generated by households (with separation of
urine and flush water) and a minor contribution of the industry. Infiltration due to rain and
groundwater is also considered. Pollutant values are based on European average per person equivalent
(PE) with also a minor contribution of industry. First flush effects and sewer transport was also
considered for the influent (without urine separated part, which is collected and transported by lorry).
Finally, simulation is conducted for 100000 PE. Average values for the WWTP influent are given in
table 1V.1.
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Table IV.1. Average influent characteristics

Composite variable Unit Mainstream input Sidestream input (Urine)
Q m°.d? 17692 82

TCOD gCoD.m™ 607.4 5232.3

TKN gN.m?® 500 4597.4

NHx gN.m® 334 4135.3

TP gP.m® 104 347.0

PO, gp.m® 48 328.4

Previously to all dynamic simulations a standard steady-state (using reference values in order to start
from the same initialization) was applied and simulations were run during 21 days (7 days of process
stabilization followed by 14 days of dynamic simulation which were integrated to be used in

optimization).

Reject limits were imposed to 10 mgN.L-1 for total nitrogen, 1 mgP.L-1 for total phosphorus, 100
mgCOD.L-1 for total chemical oxygen demand, 35 mgTSS.L-1 for total suspended solids and 4
mgN.L-1 for ammonium ion. Therefore, the process performance will be evaluated through
technological, environmental and economic criteria, formulated as described later in section 2.3.2, and

under the legally imposed restrictions in terms of reject limits mentioned above.

IV.2.2. Life Cycle Assessment (LCA) approach

LCA was conducted considering 1m® of treated wastewater as functional unit. When defining
boundaries, which were considered to be as broad as possible, background processes were separated
from foreground ones. More, the source of data for each type of process was different, being specific

simulation results for foreground processes and from Ecoinvent v2.2 for background processes.

As discussed previously, considering the whole WWTP system means taking account not only of the
benefits and drawbacks of coupled water and sludge lines but also of all background processes such as
disposal of by-products, consumption of energy and chemicals, and transport and the avoided impacts
when valuable by-products can be obtained. In this sense, boundaries expansion was considered to
include the secondary function of fertilizers (sludge and struvite were all used in agriculture and
therefore substitute triple super phosphate and ammonium nitrate) and the production of an excess of

electricity when appropriate (which is reinjected in the network).
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The inventory took into account all flow types proposed by the reference study included in the
Ecoinvent 2.2. database (Doka, 2009) and also some others judged sensible in our case, such as a
cogeneration system with electricity and heat production, external carbon source addition and

production, fertilizer production from urine and its utilization.

As emphasized by several authors, WWTPs are important producers of greenhouse gases (GHG) and
thus gas transfer of carbon dioxide (CO,), which is 100% biogenic, was considered as well as methane
(CH,) and dinitrogen monoxide (N,O) with a ratio of 0.5% of ammonia nitrified flows in dynamic

conditions.

The amounts of chemicals consumed (FeCl; for P precipitation (coagulant), methanol, MgO, NaOH)
that would consequently need to be produced in background processes were calculated according to
simulation demands and the electricity consumption was calculated by taking the sum of all electricity
requirements (aeration, mechanical mixing, pumping, scrapping and dewatering). Transports were also
considered for grits collected, sludge to be disposed, chemicals used, conventional fertilizers in

extended boundaries, urine from houses to the WWTP and struvite to the spreading site.

It should be noted that this study does not consider the modification of the basic infrastructure as only

operation parameters are studied in an existing WWTP.

The environmental impacts were calculated in Umberto® v5.6 software using the LCA Ecoinvent
database v2.2 and ReCiPe 2008 (Goedkoop et al., 2009) with endpoint (H,A) as in the LCIA method.

Further details of LCA approach can be found in Bisinella de Faria et al., 2015.

IV.2.3. Efficient Multi-Objective Optimization (EMOOQ)

IvV.2.3.1. Problem formulation: objective functions, constraints and range of decision

variables

As previously discussed, 3 objective functions were taken into account: (1) Operational Cost Index
(OCI) to minimize (Eqg. 1); (2) Effluent Quality Index (EQI) to minimize (as this index represents the
amount of pollutants being reject to nature after treatment — Eq. 2) and (3) Life Cycle Impact
Assessment (LCIA) to minimize (Eq. 3).

Equation 1 was taken from the original OCI formulation in BSM2 (Alex et al., 2008) and adapted to

this case study. The constants are given in table IV.2. To provide a realistic approximation of the net
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operational cost of the plant, nutrients recovery and electricity production from biogas cogeneration
were also taken into account together with costs related to the consumption of raw materials and
energy (In equation 1, C stands for consumed and P for produced and all values are obtained from
energy and mass balances that follow process simulation).

0oCl = ay Celectricity + a; Cmethanol + as CFeCl3 + a4CMgO + s CNaOH + a6Cheat - a7Pelectricity

- aSPstruvite

Equation 1

Where, Celecrricity represents the amount of consumed electricity, Cpetanoi represents the amount of
methanol added for post-denitrification, Crecjz represents the total amount of iron chloride added for
phosphorus precipitation, Cygo represents the amount of magnesium oxide added for struvite
precipitation, Cyaon represents the amount added for alkalinity required for nitritation process, Cpeq
represents the amount of additional heat required for the plant, Peeciciy represents the amount of
electricity produced by anaerobic digestion in the plant and Pgite represents the amount of produced

struvite.

Table 1V.2. Proposed o values for OCI function

Unit  Value
a; Consumed electricity €/KWh 0.07
a, Methanol €kg 0412
az FeCly €kg 04
a; MgO €kg  0.188
o5 NaOH €/kg 0.35
ag Consumed heat €/MJ  0.008

o; Produced electricity €/kWh 0.175
ag Produced struvite €/kg 0

Equation 2 (EQI) also was initially taken from the original BSM2 (Alex et al., 2008). The reference set
of equations to describe the physico-chemical interactions as well as the complete set of chemical

reactions taken into consideration were previously provided in Bisinella de Faria et al. (2015), in
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accordance with the original BSM2 following several relevant improvements. However, it was
completed by including a new pollutant index (TP) designating the total phosphorus released in
effluent, as this reject must respect specific regulation law. Coefficients used in Equation 2 are given
in table 1V.3.

EQI = B,NO, + B,BOD + B3COD + B,TKN + BsTSS + BsTP

Equation 2

Where, NO, stands for the sum of rejected nitrate and nitrite amount, BOD stands for the rejected
Biochemical Organic Demand amount, COD stands for the rejected Chemical Oxygen Demand
amount, TKN stands for the sum of rejected Kjeldahl forms of nitrogen amount, TSS stands for the

rejected total suspended solids amount and TP stands for the rejected total phosphorus amount.

Table 1V.3. Proposed B values for EQI function

Value
B Nitrate + Nitrite 10
B2 BOD 2
B3 COD 1
B4 TKN 30
Bs TSS 2
Bs TP 100

In the present work, current cost coefficients (a;) and pollutant indexes for effluent quality (j3;) have
been precisely suited for the current global scenario in Europe. However, considering the structure of
the developed framework, these values can be easily modified for other case studies in order to fit, for
example, geographical market prices (e.g.: when consumed and produced electricity prices have a
higher or lower ratio) or specific reject areas (e.g.. where the reject of important quantities of

phosphorus may lead to significant problems).

Equation 3 (LCIA) represents the calculation of the environmental impacts using ReCiPe Endpoint

2008 where m; is the magnitude of intervention i, Q; is the characterisation factor that connects the
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intervention i with the respective endpoint impact category e and I is the indicator result for endpoint
impact category e (Goedkoop et al., 2009).

lp = z Qeim;
i

Equation 3

As described in section 2.1, legally imposed reject limits should be respected. To impose the respect of
the average legislative compliance, constraints on the integrated value during the last 14 days were
explicitly added and formulated in problem. However, as system is simulated dynamically, it is also
important to count the number of violation days in order to ensure that, for example, there are no
extremely high pollutant peaks. It should be noted that above the reject constraints defined explicitly,
all balance equations and chemical equilibriums are to be seen as implicit hard constraints, from a
mathematical point of view. Accordingly, the main problem is in fact highly constrained both
explicitly and implicitly: (1) explicitly, due to the few soft reject constraints and (2) implicitly, due to
the large number of hard balance and chemical equilibrium equations.

As discussed by Hreiz et al. (2015b), problem formulation is one of the major influencing elements in
generating optimized solutions. The 9 decision variables chosen in this study, listed in table 1V.4, are
the most influencing parameters following expert decision. Aeration is well known to represent about
70% of electricity consumption in WWTPs and has high influence on nitrogen performance. Carbon
flow can have an interesting impact when COD available is not enough for denitrification. Coagulant
addition influences on both enhanced clarification and phosphorus precipitation in order to achieve
low P concentration in effluent. Finally, recycling ratios may influence WWTP performance as
internal recycle ratio allows nitrate to be recycled to denitrification zone and external ratio allows
more or less biogas production as well as modifying the sludge retention time that influences plant

performance.
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Table 1V.4. Decision variables considered in this study

o ) Reference Lower Higher
Parameter Description Unit
value level level

Dissolved oxygen concentration in 5
AER1 DO ] g O,.m 1.50 0.25 4.00
the first aerated reactor

Dissolved oxygen concentration in s
AER2 DO gO,.m 2.00 0.25 4.00
the second aerated reactor

Dissolved oxygen concentration in 5
AER3 DO ) g O,.m’ 0.50 0.25 4.00
the third aerated reactor

NITRITATION Dissolved oxygen concentration in 5
o g Op.m’ 2.00 1.00 4.00
DO the nitritation reactor

Methanol addition in the post -
CARBON Q o m>.d’ 0.75 0.00 6.00
denitrification zone

Iron chloride addition in headworks

METAL Q1 m3.d* 2.00 0.50 6.00
(EPC)
Iron chloride addition for polishing . |

METAL Q2 o m°.d" 1.00 0.00 4.00
(post denitrification zone)
Internal recycle ratio to )

TP1 pumped o Ratio

) denitrification (recycled 0.50 0.05 0.76

flow ratio ] (0-1)

output/input)

TP2 pumped  External output ratio to thickener  Ratio
] ) 0.0165 0.0042 0.0370
flow ratio (output/input) (0-1)

In this sense, decision variables reference values and boundaries were chosen in order to respect the
desired plant functioning. Aeration (by means of dissolved oxygen set point) was fixed in the
reference to achieve a correct ammonium decrease; for the first three reactors, dissolved oxygen was
initially based on BSM1 open-loop dry weather scenario and then tuned to achieve the desired
performance; also, the minimum value was set to achieve non anoxic conditions; however, in the case
of nitritation reactor it was fixed to a higher level as high nitrogen concentrations are expected and
thus, low oxygen concentration might lead to high N20 emissions. Carbon and the two metal addition
were set to 0.75, 2.0 and 1.0 respectively in order to achieve the legal reject limits specified by the
constraints for, respectively, nitrogen after the post-denitrification and phosphorus in effluent. Also,
considering phosphorus, it might be noticed that for the first addition, the lower boundary was not

fixed to zero as at least some iron chloride is required in order to achieve enhanced primary

106



Chapter V. Feasibility of Multi-Objective Optimization

clarification. Finally, internal recycle ratio was fixed to be less than 3 times of the influent (pumping
limitation) and the reference value was set to 0.5 to be sufficient for the denitrification of available
nitrate; external ratio recycle reference value and boundaries were fixed to maintain correct and

feasible sludge retention time (SRT).

IvV.2.3.2. Expensive optimization algorithm and general settings

The dynamic rigorous modelling of the alternative plant together with the LCA calculation on its
extended boundaries is time consuming and therefore the global problem has to be treated as an
expensive black-box system. In this sense, Archive-based Multi-Objective Evolutionary Algorithm
with Memory-based Adaptive Partitioning of search space (AMOEA-MAP) was used here (Ahmadi et
al., 2016).

Figure 1V.2 illustrates the structure of the algorithm. The left side in Figure 1V.2, represents the
Archive-based MOEA (AMOEA), while the Memory-based Adaptive Partitioning of search space
(MAP) corresponds the bloc highlighted in grey on the right side.

As described in detail in Ahmadi et al. (2016) and Ahmadi (2016), this algorithm is hybrid
(evolutionary and metaheuristics) and presents two main modifications from the original structure of
the state-of-the-art fast and elitist non-sorting genetic algorithm (NSGAII) of Deb et al. (2002):

i.  the use of two populations that are evolved simultaneously: a large archive population to stare
the best optimal solutions previously achieved, and a small operational population to intervene

genetic operations with lower computation budget,

ii.  the use of an adaptive partitioning algorithm for a dynamic reticulation of the search space in
order to markedly decrease the number of required evaluations. As a result, the optimal Pareto
front can be yielded within a fixed computation budget of 300 function evaluations only, for a

tri-objective optimization problem.

Further, following the idea of the adaptive partitioning of the search space, a new mutation operator,
dubbed Importance-based Mutation Operator (IAMO), was included in order to balance exploration
and exploitation tendency of the search algorithm while the small population is submitted to the

genetic operations.

As illustrated in figure 1V.2, through AMOEA, the best optimal solutions previously evaluated are
stored in an archive matrix and therefore only the operational population will intervene in the genetic

operations with fewer function evaluations. On the other side, MAP offers a dynamic and realistic
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partitioning of the search space, with the discretization being dynamically refined in an adaptive and
probabilistic fashion, from coarse to finer partitioning when the need to attain better accuracy arises
(Ahmadi et al., 2016; Ahmadi, 2016).

For constraint handling, the concept of constraint domination was used at the level of genetic
selection. Three criteria are therefore used to discriminate between solutions of a population:

dominancy, diversity and constraint violation.

General settings for AMOEA-MAP algorithm were set as follows. The population size was set at 36,
four times the number of decision variables; to be large enough compared to the total number of
variables and the size of the small operational population was set equal to the number of decision
variables. As AMOEA-MAP is dedicated to expensive problems, the stopping criteria is the
computation budget, which is here set to 300 function evaluations for the tri-objective optimization
problems, described in Section 2.3.1. According to the crossover operation, the simulated binary
crossover (SBX) was chosen with the original parameter settings as in NSGAII, (n.=15 and p.=1), set
by Deb and Agrawal (1995). The mutation operator — the Importance Adaptive Mutation Operator

(IAMO) - is self-tuned internally in accordance with the information coming from the MAP algorithm.

Archive-based Multi-Objective

Evolutionary Alg(;rlthm (AMOEA) Initilization
[ | l
Operational Genetic operations: New
. crossover: SBX B .
population mutation: TAMO offsprings
Il
Memory-based
Adaptive
Partitioning of the
Archive search space
population (MAP)
updated
Fast non- Insertion into | New restricted
dominated sorting Archive solutions evaluated

Figure 1V.2. Structure of AMOEA-MAP framework used in this WWTP problem optimization

IV.2.4. Integrated framework: DM-LCA-EMOO

The combined/integrated framework comprises the three tools presented previously as well as the

connections between those tools, performed via Python interfacing. Figure 1V.3 details the combined
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framework. Initially, model parameters were fixed and dynamic influent data was provided to the
simulator (Fig. 2, data flows 1, 2, 3). Following the dynamic simulation, process inventories were
generated with their own inputs and outputs (data flow 4). After the dynamic simulations, data are
passed through a Python interface (data flow 5) and the results are integrated over the simulation time.
Python scripts also perform complementary calculations (e.g. calculation of cogeneration and energy
requirements) and adjust assignments between the output flows resulting from the SUMO simulation
and Umberto® input flows (data flows 6-9). The results are then converted to an Umberto®-

compatible input file for foreground and background processes (data flow 10).

LCA calculations are then performed within Umberto® using the Ecoinvent database (data flows 11
and 13). This last step completes the LCI (data flow 12) by adding the contribution of background
processes to WWTP ones. Following, the environmental impacts (data flow 14) are calculated using
the chosen Life Cycle Impact Assessment valuation system. Further, the modules mentioned above,
are connected to the Efficient Multi-Objective Optimization tool. EMOO is carried out through the
AMOEA-MAP algorithm, where the results are received from the simulation and LCA blocks (data
flows 15-20) and decision variables are steered via data flows 19-20 to the corresponding blocks.
Regarding DM, Python interface and LCA modules, four main types of results are generated as output:
effluent concentrations and quality violations (data flow A), operational cost along with energy
parameters and nutrient recovery (data flow B), environmental impact results (data flow C). Finally,

the non-dominated Pareto front serves as the final result, suited for decision making (data flow 21).
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IVV.3. Results and discussion

IV.3.1. WWTP optimization and objectives’ dependencies

In this section, results of the optimization of alternative wastewater management and treatment (DM-
LCA-EMOO) are illustrated, where both the feasibility and practicability of the optimization approach
and the importance of problem formulation on the quality of results are emphasized and discussed.
Graphical representations were all carried out within the Matplotlib (Hunter, 2007) under Python.

Figure 1V.4 presents the 3D Pareto optimal curve (black dotted line) obtained with a low computation
budget of 300 function evaluations. These results have been achieved by minimizing the three
objective functions (Eg. 1-3), previously discussed, without additional reject limit constraints in order
to give an overall view of the shape of Pareto front and to better illustrate the correlation between
different objective functions all over the objective space. In this figure, axes present operational cost
represented by OCI, quality index (pollutants being rejected) represented by EQI and environmental
impacts represented by LCIA. Additionally, a 3D surfacing fitting was conducted to better illustrate
the shape of Pareto optimal curve on the tri-dimensional objective space (Figure IV.4).

The correlation between objective functions can be directly drawn from figure 1V.4. Over the whole
Pareto curve, OCI and LCIA showed to be positively correlated meaning that when one increases the
other increases also. In contrast, EQI and LCIA showed to be negatively correlated, which is to say
that when EQI is reduced (outlet water quality increases), environmental impacts increase. Following
the previous discussion, OCI and EQI are also negatively correlated (an increase in operational costs is

required in order to deliver a better quality of the outlet water).

If reject limit constraints are also included explicitly (constrained optimization), a reduced Pareto
curve will be achieved (red dotted line showed in figure 1V.4). Therefore, in figure 1V.4 three zones
can be distinguished over the overall Pareto optimal curve (represented by grey arrows): zone I, Il and
I1l. Zone | corresponds to a region where quality is not acceptable as constraints are violated
(EQI>0.22). However, in this zone it is relatively easy to obtain a substantial gain in water quality
(EQI decreases) without significant increase in costs (OCI) and in environmental impacts (LCIA) as
the system is not really forced to deliver the best treatment performance. On the other side, in Zone 1l
and 111, operating conditions are forced to respect the legally imposed reject constraints. Nevertheless,
Zone 1l and 111 are distinguished by the amount of operational efforts required to attain better quality
of outlet water. In Zone Il, a moderated increase (relative to Zone I11) in OCI and LCIA results in a

satisfactory improvement in EQI (water quality). At this level, operator reaches the optimum quality of
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treated water for the alternative wastewater treatment plant studied in the present study (EQI = [0.19-
0.22]). Beyond this quality (EQI<0.19), a small improvement in the quality of treated water induces an
important increase in costs (OCI) and environmental impacts (LCIA). Hence, based on the
configuration of wastewater treatment process proposed in the present study, it is industrially
impractical to operate at the conditions belonging to Zone III.

With the aim of detailing each zone, a zoom is provided for Zone | (figure 1V.5a) and Zones Il and 111
(figure 1V.5b). With regards to Zone I, the practical optimal zone from the decision making point of
view, the most sensitive parameters/variables to provide a reasonable improvement in the quality of
treated water can be identified. For this purpose, a zoom on Zone Il and Il was provided in figure
IV.5b where all reject constraints and the legally imposed quality of treated water are respected.

It should be noted that running a minimization on EQI (maximizing the quality of treated water)
instead of considering water quality as constraint is helpful when evaluating technological limits
related to innovative wastewater treatment processes. By minimizing EQI, Zone 111 will also appear on
the Pareto curve, where the limit of a reasonable (economic and environmental) treatment for a chosen
wastewater management technology can be identified. This is to say that independently of the legally
imposed quality for treated water, it is impractical to yield EQI below 0.19. As can be seen in figure
IV.5Db, in Zone 11, EQI remains practically constant where both costs and environmental impacts are
markedly increased. This zone is thus not an optimal operational zone; nevertheless, it offers the
possibility to explore the limits of the chosen wastewater management technology. Additionally, the
previous explanation suggests that to attain higher outlet water qualities (EQI<0.19), new treatment

technologies shall be brought out.

Moreover, according to figure 1V.5a-b, EQI and LCIA are significant different by looking into their
Pearson product-moment correlation coefficients (Figure 5a-b, bottom illustrations on the correlation
between objective functions), as there are negatively and significantly correlated. However, based on
the present definition of OCI function, OCI and LCIA seem to be correlated positively (correlation
coefficient > +0.97). The conclusion is that for the present case-study and based on the improved OCI
function used in this work, LCIA and OCI are not significantly different. It should be noted that a tri-
dimensional optimization with the simultaneous integration of the three objective functions is the only
way to check such a positive correlation between economic and environmental functions for a given
case-study. Nevertheless, this result cannot provide any generic suggestion on the exclusive use of
either OCI or LCIA function in the context of multi-objective optimization. The reason is that the
correlated behaviour between OCI and LCIA functions in the present work may be purely case

specific and may also depend on the relevance of OCI definition.
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Figure 1V.4. Pareto optimal curves for constrained and unconstrained optimization of WWTP
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IV.3.2. Drivers for an optimal treatment

Given the Pareto optimal front for a WWTP where reject limits as well as the outlet water quality suit
the legally imposed thresholds (constrained formulation); it is subsequently important to identify the

main drivers (sensitive variables on the Pareto front) to the optimization.
For instance, driver variables in Zone Il indicate where a design modification should be conducted.

Figures IV.6 and IV.7 presents the dependencies between objective functions and the main optimal
process drivers: carbon addition and metal addition in the WWTP studied. Given the first optimal zone
in figures 1.6 and V.7, related to Zone Il on the Pareto optimal curve (figure 1V.5b), methanol added
must remain the same at its optimum value while an increase in water quality up to EQI=0.19 can be
yielded by increasing the amount of iron chloride added. Therefore, metal addition is the main
treatment driver in this zone (Zone I1) due to its effect on phosphorus removal.
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Figure 1V.6. Level of methanol addition - driver for N treatment - for all solutions belonging to the
Pareto optimal front
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Figure I\V.7. Level of iron chloride addition — driver for P removal — for all solutions in the Pareto
optimal front

Table IV.5. Decision variables values for chosen optimal points

Parameter Unit A B C D
AER1 DO g0,,m*® 0.25 0.625 0.625 0.625
AER2 DO gO,m® 025 025 10 1.0
AER3 DO gO,m® 025 1.0 10 1.0
NITRITATIONDO ¢gO,m® 16 16 16 16
CARBON Q m*.d™ 00 12 15 15
METAL Q1 m*.d™ 05 2125 24 24
METAL Q2 m*.d™ 00 08 08 08

TP1 pumped flow ratio Ratio (0-1) 0.121 0.334 0.334 0.405
TP2 pumped flow ratio Ratio (0-1) 0.017 0.021 0.024 0.031

In contrast, the increasing dose of methanol is responsible for a great increase in costs and
environmental impacts in Zone |11 without any sensitive impact on the water quality (figure 1V.6). As

discussed previously, if water qualities beyond EQI ~ 0.19 (Zone Ill) are targeted, the technology
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chosen in the management and/or treatment train has to be changed. As methanol addition plays an
important role in denitrification, two design improvements could thus be carried out: i) managing
differently the nitrogen input in the WWTP considering, for instance, the increase in urine source
separation, and ii) treating more efficiently the nitrogen (using other process combination, for
instance) in the sidestream and in the mainstream line. Both alternatives would allow thus the

reduction in the addition of methanol at post denitrification level.

Additionally, aiming to better identify the weight of decision variables to differentiate the optimal
solutions over the Pareto front, table IV.5 was provided which compiles the decision variables values
for 4 chosen points A, B, C and D on the boundaries of Zone I, Il and Il (Figure IV.4): the point A
and B to restrict Zone | (minimum OCI value in relative to Zone | and I, respectively), the point C to
separate Zone Il and 111, and the point D as the highest treated water quality obtained (minimum EQI
value in Zone I11). As showed in table IV.5, all the variables increase with the decrease of EQI (better
wastewater treatment); however, the most influencing decision variables (drivers) providing a change
from one functioning zone to a new one, are the carbon and iron chloride addition. This result is also
confirmed by Figure IV.8 which presents the correlation between variables and objective functions
with the scatterplots in the upper triangle, Pearson product-moment correlation coefficients in the

lower triangle, and the corresponding variable or function name on the main diagonal.
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Figure 1V.8. Correlation scatterplots for decision variables and objective functions

IV.3.3. Problem formulation and computational feasibility of multi-objective optimization

As discussed in section 2.3.2, important computation time is usually required when optimizing
expensive simulation-based problems. In the present study, computations were performed on an Intel
2.60 GHz processor where each function evaluation (a complete simulation of dynamic WWTP with
extra LCA calculations) took about 15 minutes. The choice of AMOEA-MAP algorithm was therefore
relevant, due to the very expensive nature of the optimization problem. Additionally, the algorithm
showed to manage well the difficulties imposed by both constrained and non-constrained
formulations, obtaining thus the 3D optimal Pareto front within a very low computation budget of 300

function evaluations. Figure IV.9 shows the convergence speed; by plotting Pareto front improvement
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through normalized hypervolume difference indicator (ly) as a function of computation budget
(number of function evaluations already made). The efficient multi-objective optimization method was
therefore necessary to make the optimization of rigorous DM-LCA system computationally feasible
with no loss of accuracy.

The optimization results, for both a constrained and an unconstrained formulation, were provided in
figure IV.4. The unconstrained optimization (black disconnected line in figure 1V.4) provided a wider
distribution of optimal solutions, and clearly illustrated the contrast between three optimal zones (Zone
I, 11 and I11). The two Pareto optimal fronts (constrained and unconstrained) are superposed with the
sole difference that the results based on a constrained problem formulation provide EQI below 0.22.
This proves that in case the reject limits are explicitly defined as constraints, optimal results can be
attained more quickly (less computation effort), with the same level of accuracy and with no additional
constraint-related complexities. EROI (energy return on investment) for all solutions belonging to the
Pareto optimal front, remain practically constant at 1.2, which shows that the suggested cost
formulation in terms of OCI, allowed additionally a proper optimization of energy recovery
throughout the treatment process.

Pareto front evolution
1‘0 T T T T T T T T T

0.8} R

H

0.6 | R

0.4t R

Mormalized I

0.2} .

0.0 1 1 1 1 1 1 1 =T A
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Function calls

Figure 1V.9. Optimization improvement based on hypervolume distance indicator (") calculations

(computation budget of 300 function evaluations for constrained problem)

119



Chapter V. Feasibility of Multi-Objective Optimization

IV.4. Conclusion

The present study fulfils the current concerns for more eco-friendly and sustainable processes and the
wide range of available combination of alternatives in the wastewater management field. Given the
interconnected objectives and parameters as well as the great quantity of data that can be yielded using
a predictive modelling, it becomes a difficult task for decision makers to visualize all options and
choose among multiple optimal scenarios. Thus, the integrated DM-LCA-EMOQO framework helps to
compromise between technological aspects (process performance), operational costs and
environmental impacts. However, when optimizing time-consuming simulation-based systems, efforts
have to be made in order to reduce the number of function evaluations required, for the optimization to
be practical and computationally feasible. The practicability of such an integrated framework (DM-
LCA-EMOQ) was demonstrated when a relevant optimization approach, suited for expensive
problems (AMOEA-MAP), is used. Conducting optimization with and without legally imposed
constraints on reject limits, allowed a deeper analysis on the technological limits of a given treatment
process. When applied to a real world case study in the wastewater treatment field, OCI showed
globally to be positively correlated with LCIA as both costs and environmental impacts are mainly
generated by background processes (supply chain). In contrast, OCI (and also LCIA) showed to be
negatively correlated with EQI, as improvements in quality require increasing operational costs and
environmental impacts. Throughout the Pareto optimal curve with acceptable water quality (Zone Il
and 11), two situations were discussed: i) a water quality (EQI) belonging to [0.19-0.22], where an
improvement in treatment can be achieved by increasing the amount of metal added, which is to say
that the water quality can be improved with less requirement in costs and less environmental damages;
and ii) a EQI below 0.19 (extremely good water quality), where the treatment has already arrived to its
limitation, which is to say that a slight improvement in water quality by increasing the amount of
methanol added with result in an excessive increase in costs and environmental damages. The latter
shows that to attain higher water qualities (EQI<0.19), the technology itself has to be improved or
changed.
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“Climate change, demographics, water, food, energy, global health, women's empowerment — these
issues are all intertwined. We cannot look at one strand in isolation. Instead, we must examine how

these strands are woven together.” (Ban Ki-moon)

As previously described in chapter IV, when rigorous modelling of WTTPs and WRRFs together with
its extended life cycle boundaries is considered for the optimization of economic, environmental and
performance aspects, the problem becomes easily complex from the optimization point of view, and
therefore requires an efficient optimization tool. However, such a multi-criteria approach is
unavoidable, as WWTP problems involve usually conflicting objectives with somehow unpredictable

interconnections between them.

When a rigorous and integrated tool is available and the feasibility of the approach has been
previously validated, the appropriate analysis of different real-world case studies can be carried out, in
order to understand, for instance, how process objectives, constraints or dynamics are influenced by a
functioning point of the plant. Moreover, comparative optimization-based studies on different
alternative scenarios against the conventional ones are thereafter practical and reliable to bring about.
Indeed, in this case, the optimization becomes a powerful tool to help learning about system

interactions and objectives interdependencies.

The role of a wastewater treatment plant (WWTP) is to avoid the contamination caused by wastewater
discharge. Whereas, WWTPs are constantly facing perturbations in influent flow rate and nutrient
loads; therefore, they shall be systematically subject to the regulations. The nutrient limitations of the
receiving water body, that are getting tighter due to the ever increasing environmental concerns,
involves especially nitrogen and phosphorus. However, achieving low levels of pollutants demands
high energy (notably regarding the aeration for nitrification) and chemicals consumption (e.g. in
phosphorus removal). It is thus important to find a way to compromise between ensuing advantages
and drawbacks arising out of a new alternative scenario. Moreover, whatever the scenario
(conventional or alternative), the decision-making is a difficult task, as parameters are often
interconnected and the problem is highly non-linear. As a consequence of this interaction, results

might be influenced at different levels and at all objective functions.

The system optimization for the sake of performance and sustainability is receiving more and more
attention, nowadays. Nevertheless, restricted comparisons against conventional facilities, when the
new optimal operating conditions were not necessarily provided, are often inaccurate. The reason is
that alternative systems might sometimes generate irrelevant environmental impacts due often to an
underestimation of benefits arising from the recovery of certain valuable by-products. Therefore, when

assessing these alternative scenarios based on comparative studies, it is fundamental to adopt rigorous
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predictive models together with the quantification of involved benefits and drawbacks through the

whole process life cycle.

A review on single and multi-objective optimization of WWTPs was conducted by Hreiz et al. (2015).
Authors showed that MOO approaches are still scarce and problem formulation remains as one of the
most important issues to be addressed. Moreover, not many optimization studies based on wide-plant
modelling were found in the literature, with an appropriate multi-objective approach to preserve the
true interactions between the conflicting objectives involved. Also, to the best of the author
knowledge, for the moment, there are no alternative scenarios optimization studies available on

literature.

Accordingly, one aim in this chapter is to study different problem formulations together with their
consequences on optimal results, when applied to the reference or alternative scenarios. Then, based
on a reference conventional scenario, comparative studies on dynamic versus steady-state simulation
are provided. Moreover, the impact of constraint formulation on the quality of optimal solutions is
discussed. The difference between the ReCiPe Endpoint method and the ReCiPe Midpoint for
environmental analysis is also brought about as an independent comparative study. Finally, a through
comparison between the reference and an alternative scenario (urine source separation followed by

nitrogen treatment by nitritation/ anaerobic deammonification, dubbed ANA) is provided.

This chapter is thought to be submitted for publication in the journal Water Research.
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LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France

Abstract

A comparison has been made between a conventional wastewater treatment plant (WWTP) and an
alternative water resource recovery facility (WRRF) by using a plant-wide efficient multi-objective
optimization tool, with the objectives being the effluent quality (expressed as a sum of rejected
pollutants, EQI), the operational cost (OCI) and the environmental impacts (LCIA) through Life Cycle
Assessment (LCA). The alternative scenario included the Enhanced Primary Clarification (EPC) and
the Urine Source Separation (USS). In the latter, urine is treated afterwards by struvite precipitation (P
recovery) and by partial nitritation coupled with anaerobic deammonification (to treat residual
nitrogen). For the multi-objective optimization, an efficient Archive-based Multi-Objective
Evolutionary Algorithm with Memory-based Adaptive Partitioning of search space (AMOEA-MAP),
tailored to deal with expensive simulation-based problems was used. The analysis proved the
efficiency of the innovative scenario studied and demonstrated that the results of such an analysis
would be reliable when, (i) the optimal results are achieved with no pre-defined aggregation of
objectives in problem formulation, (ii) the life cycle inventories are appropriately integrated through
LCA, and (iii) the plant dynamics together with the main operating parameters are taken into
consideration via predictive models. The optimization-based approach allowed, additionally, the
achievement of fruitful conclusions on several critical issues: the importance of problem formulation
and constraint definition in WWTP optimization, the actual interdependencies between objective
functions through Pearson product-moment correlations on optimal results, the choice of suited
environmental impact categories, and the identification of the main process drivers with regards solely

to optimal operating conditions.

Keywords: Expensive multi-objective optimization; alternative wastewater treatments; LCA-integrated

dynamic modelling; water resource recovery facility
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V.1. Introduction

Wastewater treatment plants (WWTPs) are, by definition, facilities aiming to treat wastewater before
their discharge into the environment. However, the treatment process itself as well as ancillary
materials and energy requirements would become responsible for additional environmental footprints,
as new pollutants would appear if a proper environmental analysis based on the whole process life
cycle is established. Especially for the assessment of innovative alternative scenarios in wastewater

treatment and management, it is fundamental to account for these newly generated impacts

Activated sludge process (ASP) is the most widely used technigue for sewage treatment. However,
this conventional wastewater treatment is being more and more criticized nowadays, because of its
high consumption of energy and chemicals and the substantial amounts of sludge that it produces (that
is considered sometimes as a waste). Therefore, scientific and industrial communities are moving
towards a more sustainable way of wastewater treatment where more attention in paid to the recovery
of valuable products. This might be conceived by applying some alternative processes to the existing
WWTPs that uses a conventional ASP with extra process units, resulting in water resource recovery
facilities (WRRFs).

The importance of a rigorous modelling as a powerful tool can be understood, when dealing with
complex interactions generated due to the related modifications brought in the plant’s configuration.
However, the unit processes involved are highly influenced by dynamic inputs as the flows and
nutrient fluxes in influent can vary depending on daily, weekly, seasonally and even yearly
fluctuations. Moreover, interactions between the mechanical, biological, chemical and physical aspects
of the processes involved leads to a highly non-linear modelling system. The resulting system is

indeed computationally expensive, requiring specific calculation strategies for its resolution.

Since the publication of Azapagic and Clift (1999), the literature reviews have been depicting the
importance of considering environmental aspects when assessing and evaluating processes. However,
technical and economic aspects might not be forgotten or underestimated. In this sense, when making
an effort to find the optimal operating conditions for a given system, it is fundamental to compromise
between all genuine criteria, including the process performance, cost and environmental footprints.
Specifically in the field of wastewater, Flores-Alsina et al. (2011; 2014) presented a complementary
approach to the traditional cost and performance analysis, where greenhouse gases are also taken into
account. By applying the proposed approach, authors arrived to the conclusion that, in order to have an
overall assessment of the plant and to achieve the optimal conditions of operation in a more
sustainable way, it is necessary to compromise harmoniously between the three criteria mentioned

above.
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Given the presence of several conflicting objectives in WWTPs and WRRFs optimization, multi-
objective optimization (MOO) is an interesting tool to address the optimization of the problem with no
pre-defined aggregation or weighting. Hreiz et al. (2015a) proposed a review on the use of single and
multi-objective optimization in the context of WWTPs. According to authors, there are important
challenges to be addressed when conducting an optimization, among which the problem formulation
was recognized to be the most determining. Somehow, the problem formulation accounts for the
unpredictable interactions between the objective functions, decision variables — whose sensitivity may
change from one problem to another - and legally or environmentally imposed constraints. The
problem formulation shapes indeed the quality of optimal solutions. Additionally, authors highlighted
that, as the real optimality depends on the problem formulation, there is an important challenge, for
instance, in the standardisation of cost functions and constraint selection (in order to respect feasibility
along with physically relevant operating conditions). The process dynamics was also mentioned by
authors as an important aspect to be integrated, to achieve sustainability based on reliable predictions
of process behaviour as both slow and rapid dynamics are present in some treatment units. The
importance of using multi-objective optimization when real-word wastewater problems are thought
was thoroughly highlighted by Hreiz et al. (2015a), as the use of single objective optimization might
be misleading or restricted by the weighting strategies imposed to aggregate different process
objectives. The aggregation might hide the contradictory interactions between the objectives and avoid
the achievement of common-sense conclusions on the real efficiency of a given treatment strategy and

on its efficiency change over the adjacent operating conditions.

Another interesting aspect regarding the MOO is that instead of one single optimal solution, a set of
optimal points, namely the non-dominated Pareto front, can be achieved. The Pareto front allows for
further discussions on outcomes generated (both benefits and drawbacks) and decision-making.
Therefore, other sensitive aspects that are sometimes not quantifiable (thus usually not included in the
optimization) or that are known for their influence on the robustness of plant such as the use of a short
sludge retention time (SRT), the presence of filamentous bacteria and the dysfunctioning in the
secondary clarifier, could be taken into account for further analysis. Moreover, as described earlier, the
decision-making can be carried out afterwards based on the generated optimal solutions and the expert
of the field suggestions (Hreiz et al, 2015a; Azapagic, 1999; Hakanen et al., 2008).

To the authors’ knowledge, only a few studies on the literature, that are discussed hereafter, have
tackled properly the problem from a multi-objective point of view. Sweetapple et al. (2014) studied
the optimization of a modified version of the Benchmark Simulation Model N°2 (BSM2) - without
sludge line - and obtained Pareto sets by targeting the minimisation of greenhouse gas (GHG)
emissions, operational costs and effluent pollutant concentrations. A modified version of BSM2 was

chosen in order to make the problem feasible, as otherwise the complexity could not allow the
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achievement of optimal solutions within a reasonable calculation time. Authors have indicated the
importance of taking into account GHG emissions as only decreasing costs and pollutants in output
water may lead to inadvertent increases in GHGs emissions. Hreiz et al. (2015b) proposed a multi-
objective optimization of a small-size WWTP, by considering water line and sludge incineration. The
study used rigorous modelling and was based on cost and nitrogen discharge as the objective functions
to minimize. Authors indicated that incineration of sludge might present important benefits, especially
when the discharge amount of nitrogen is high; however, the plant did not achieve energy autarky.
Another study on the field was proposed by Beraud (2009) where multi-objective optimization was
conducted over the Benchmark Simulation Model N°1 (BSM1) scenario considering effluent quality
and energy consumption. Authors highlighted the important gains that might be achieved at the
optimal operating conditions compared to the conventional control strategies applied to BSM1. Also,
according to authors, in order for the optimization to be feasible, it has to be performed within a

limited time horizon.

Moreover, there is no available information in the literature on optimization when considering
environmental impacts together with water quality and operational cost. However, it has already been
shown that background processes present important levels for several environmental impact categories
(Bisinella de Faria et al, 2015; Foley et al., 2010; Yoshida et al., 2014).

Several studies in the literature brought about the question of problem formulation, even though in
these studies, only cost and performance are commonly considered as objective functions. Igbal and
Guria (2009) presented a first work where the elitist non-dominated sorting genetic algorithm
(NSGAII) was used in the field of wastewater. Different problem formulation were proposed by
authors (single, two and three objectives) with the consideration of performance and economic criteria.
According to authors, the optimal Pareto front could be achieved after 2500 generation. Such an
approach is quite impractical when rigorous dynamic modelling is involved, as the average calculation

time for a dynamic simulation run exceeds several minutes.

Guerrero et al. (2012) proposed a multi-criteria function optimization to take into account
microbiology-related failures in the plant functioning. In a more global approach, Fu et al. (2008)
proposed a study on a MOO platform applied for the control of an integrated urban wastewater
system. Authors showed through a case study that including the discharging water body as a decision
variable provides more information for the decision maker to compromise between objectives.
Important improvements compared to the non-optimal case were found in both performance and cost
objectives. Authors showed that NSGAII is a powerful and effective algorithm to be used in this type
of problem. However, modelling was conducted through BSM1 scenario and using ASM1 modelling

approach.
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As opposed to the above-mentioned works, Kim et al. (2015) considered not only the water line but
also sludge train. When modelling the plant, authors used a modified version of ASMN model that
includes the GHG emissions and the Anaerobic Digestion Model (ADM) to simulate the anaerobic
digestion. However, when solving the optimization problem, targeting the minimization of GHG
emissions, cost and discharged pollution, an integrated performance index was calculated by
normalizing the objectives and applying a weighted aggregated sum. Results were thus obtained
between 300 and 2000 simulation runs and it was claimed that even in already tuned facilities, new
optimal points can be achieved (with the optimal system reducing 31% of GHG emissions, 11% of
cost and 2% of discharged pollutants). Nevertheless, the results were achieved based on a single
objective reformulation of the problem, and therefore no solid conclusion can be drawn on the real

sensitivity of original objective functions towards the decision variables.

Finally, an interesting approach from Hakanen et al. (2011; 2013) proposed the use of an interactive
tool to consider decision makers’ preferences during the optimization of WWTPs. The tool was meant
to be used for the design of new plants or for the optimization of existing ones. According to authors,
there is no need in converting evaluation criteria into specific functions that might lead to loss of
information. Also, it was claimed that, as the decision maker can express her/his own preferences, it is
possible to learn reciprocally about the interdependencies in the problem. However, authors indicated
that further research is still necessary when the consideration of process dynamics and rigorous

modelling is targeted.

Having in mind the available approaches in the literature and, to the best of authors' knowledge, there
is still a lack of comprehensive information on the interest in an appropriate multi-objective approach
for the optimization and the understanding of WWTPs when dynamics and rigorous predictive
modelling are involved. The rigorous modelling and simulation being time consuming, more efficient
algorithms have to be developed and used. Moreover, nowadays, multi-objective optimization is
almost applied to reference treatment systems, only. However, there exists an increasing interest in
sustainable systems in order to reduce the environmental damages resulting from a WWTP plant,

while ensuring the optimal conditions of the plant (minimal cost and maximal performance).

Currently, several alternatives to conventional ASP have been proposed in order to achieve flexibility
and stability during the treatment and to maximize the resource recovery. Among the proposed
options, urine source separation has been highlighted as one of the promising alternatives to promote
sustainability in the wastewater management (Maurer et al., 2006). A great interest in this type of
collection is that when the urine is collected separately, it allows also the recovery of certain nutrients,
notably nitrogen (N) and phosphorus (P), thanks to its high composition (Larsen and Gujer, 1996).
Subsequently, urine can be treated with magnesium in order to form struvite (MgNH4PO, . 6H,0), a

slow-release fertilizer (Maurer et al., 2006). In addition to the recovery possibilities, the urine source
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separation leads to the avoidance of ammonia peaks in the plant which will logically result in a more
stable plant and therefore a redesign would be feasible when new infrastructures are envisaged (Rauch
et al., 2003). Urine separation can also decrease the consumption of chemicals used for P-elimination
and reduce the consumption of energy and external carbon sources in WWTPs through a reduction in
advanced N-removal requirements. There is also treatment options proposed nowadays for nitrogen

rich streams such as nitritation/ deammonification by Anammoxidans bacteria.

Another feature with a view to enhanced sustainability in WWTP plants is to achieve energy autarky.
The energy autarky is gaining interest from both economic and environmental points of view. When
the anaerobic digestion is implemented, one way to improve biogas production is to accentuate the
enhanced primary clarification where, with the addition of chemicals, a more efficient flocculation
takes place and thus more organic matter can be dedicated to anaerobic digestion. This strategy helps
to turn the energy balance of WWTPs into a net positive energy. Accordingly, Flores-Alsina et al.
(2014) proposed the enhancement of total suspended solids (TSS) removal in the primary clarifier,
which led to a higher chemical oxygen demand (COD) for the digestion and consequently more biogas
production was produced. Additionally, if coupled with a less rich nitrogen influent (when
considering, for instance, a fraction of urine that is separated at the source), enhanced primary

clarification represents an important benefit, as less organic matter is required for N-removal.

Accordingly, beyond the predictable advantages that can easily be raised, the imposed changes in the
wastewater management and treatment may require important efforts and thus, it is fundamental to
provide complete life cycle assessment for any further evaluation or validation of a given alternative
treatment strategy. Among the alternative scenarios for WWTPs, proposed in the literature, Remy et
al. (2008) showed that the new scenarios might sometimes generate higher environmental impacts
when compared to a conventional treatment scenario. In this case, it should be noticed that
conventional scenarios are provided with already optimized operating conditions. Therefore, with
regards to alternative scenarios, a parallel optimization of design and operating conditions must be

carried out to provide a fair comparison with the conventional plants.

In order to shed light on new options of wastewater management and treatment, the goal in the present
study is to apply a previously validated optimization platform — an efficient multi-objective
optimization tool coupled with a rigorous dynamic modelling and life cycle assessment (Bisinella de
Faria et al., 2016a) - to the reference and alternative scenarios in the field of wastewater. The
practicality of such an expensive optimization and the reliability of results have been previously
demonstrated for a WWTP. In the present study, the conventional WWTP and an alternative WRRFs
are compared when optimized, by accounting also the operating conditions as complementary decision
variables to provide a fair comparison. The proposed alternative scenario allows thus giving insights

on new options of wastewater management and treatment.
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V.2. Materials and methods

V.2.1. Dynamic Modelling — Life Cycle Assessment — Efficient Multi-Objective Optimization
(DM-LCA-EMOO) coupling approach

The multi-objective optimization approach used in this study, which is extensively described in
Bisinella de Faria et al. (2016a) together with its feasibility study, might be globally divided into 3
calculation blocks interconnected via Python™. The first part represents the Dynamic Modelling
(DM) where a rigorous dynamic simulator for WWTPs - in this study, SUMO v.15 beta 69.1 from
Dynamita (2016) using an adapted version of Sumo2 model - is integrated (Dynamic modelling block
in figure V.1). The simulation results are then converted into a Life Cycle Assessment (LCA)
compatible process inventory by integrating dynamic output results over the time. The complementary
calculations, mainly related to energetic and background aspects, are also conducted in this
intermediate block and managed through Python™ scripts (Python™ interface block in figure V.1).
As illustrated in LCA block (figure V.1), Life Cycle Impact Assessment (LCIA) is performed within
Umberto® software v.5.6 by using the Ecoinvent database v.2.2, and is fed by the Life Cycle
Inventories (LCI) previously provided. Finally, the above-mentioned tools and results are connected to
an Efficient Multi-Objective Optimization tool (EMOO block in figure V.1). Details on each
calculation step have been provided previously in Bisinella de Faria et al. (2016a), where the whole
combined platform was subject to a feasibility study based on a full WWTP configuration. In the
present work, however, brief instructions will be provided through the following subsections to clarify

the specificity of each modelling or calculation block.
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Figure V.1. Simplified structure of the integrated framework (Dynamic Modelling - Life Cycle
Assessment - Efficient Multi-Objective Optimization)

V.2.1.1. Dynamic modelling (DM)

Dynamic modelling and simulation was conducted within SUMO software (Dynamita, 2015). The
chosen model is an adapted version of original Sumo2 and holds for more than 70 equations including
biological growth and decay of 8 microbial populations, hydrolysis and flocculation reactions,
chemical precipitation of phosphorus with several species of hydrous ferric oxides (HFO), struvite and
vivianite precipitation, gas transfer reactions and pH modelling. It should be noted that the resulting

system deals with more than 60 state variables.

Previously to all dynamic simulations, the initialization was conducted by the consideration of a
reference steady-state condition that contains reference parameter values. The simulation was
thereafter carried out, in dynamic regime for 3 weeks, whereas only the simulation results of the last 2
weeks were employed for further calculations (the first week is considered as a stabilization period

between the steady-state and the dynamic period).

Details on each scenario flowsheet will be provided in section 2.2.
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V.2.1.2. Life Cycle Assessment (LCA)

Aiming to estimate the environmental impact calculation over the whole wastewater management and
treatment system, an LCA was conducted based on the WWTP present in Ecoinvent 2.2. database
(Doka, 2009) with relevant adaptations for the considered case studies. The considered functional unit
was 1m® of treated wastewater. The system’s boundaries were defined to be as broad as possible in

order to consider detailed foreground and background emissions.

In this sense, boundaries included as the foreground process the coupled water and sludge lines with
their direct emissions (e.g.: pollutants rejected to the river after the treatment; GHG emissions during
treatment such as CO, — considered as biogenic if coming from the input wastewater -, CH4 and N,O —
estimated as 0.5% of ammonia nitrified flows); Similarly, background processes included plant
infrastructure, the disposal of by-products (grits from pre-treatment and sludge), the supply chain of
raw materials (iron chloride for P precipitation (coagulant), methanol for post-denitrification, MgO for
struvite precipitation and NaOH for alkalinity addition), energy consumption (from aeration,
mechanical mixing, pumping, scrapping and dewatering) and the transport (collected grits for disposal,
sludge to be disposed, chemicals coming from production, conventional fertilizers in extended
boundaries, urine from houses to the WWTP and struvite to the spreading site in the alternative
scenario). Moreover, modification of the WWTP infrastructure was not considered, neither for the

conventional nor for the alternative scenario, as only operation parameters were included in this study.

In an effort to take into account all foreground and background processes, benefits and drawbacks
were considered, beyond the calculation of direct and indirect impacts, by the addition of avoided
impacts in case of by-product recovery (such as fertilizer recovery from sludge and struvite when
urine is source separated that can substitute triple super phosphate and ammonium nitrate) and by the

excess of produced electricity (reinjected in the network).

Moreover, considering the obtained Life Cycle Inventory, background processes were separated from
the foreground. This was done as source of data for each type of process was different: specific
simulation results were used for foreground processes, while Ecoinvent v2.2 modules were used for
background processes calculation (modules were fulfilled with required quantities from process

simulation).

Finally, the environmental impacts were calculated via Umberto® v5.6 software using the LCA
Ecoinvent database v2.2 and ReCiPe 2008 (Goedkoop et al., 2009) with endpoint (H,A) and midpoint
(H) as in the LCIA method. Further details on LCA approach can be found in Bisinella de Faria et al.
(2015).
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V.2.1.3. Efficient Multi-Objective Optimization (EMOO)

Broadly, multi-objective optimization is the process of optimizing simultaneously two or several
objectives with or without constraints. Among the several proposed optimization methodologies in the
literature, evolutionary algorithms are particularly sought to highlight because of their capability of
ensuring the global optimality of results and their derivative-free search strategy due to the use of
stochastic operators (e.g. probabilistic selection, genetic crossover, mutation and migration) (Deb,
2011).

However, in the field of eco-design and intensive process optimization, the choice of a search
algorithm shall also follow the computational complexity of problem. As the dynamic modelling
coupled with the LCA calculations is time consuming (20 minutes per simulation run, in average), the
present WWTP optimization problem has to be treated as an expensive simulation-based system. Here,
the expensive aspect refers to the computational time required for the achievement of optimal results,
which is directly proportional to the computational budget (number of simulation runs needed) for a
satisfactory optimization of WWTP.

An efficient multi-objective approach is thus required in order to deal with expensive simulation-based
problems. To this end, Archive-based Multi-Objective Evolutionary Algorithm with Memory-based
Adaptive Partitioning of search space (AMOEA-MAP) was used in this work. As described in Ahmadi
et al. (2016) and Ahmadi (2016), AMOEA-MAP is a hybrid algorithm, result of the combination of
multi-objective evolutionary algorithms with new metaheuristics to reduce the number of simulation
runs required and to provide a rapid and accurate convergence to optimal Pareto front. The algorithm
presents two main modifications from the original structure of the state-of-the-art NSGAII (Deb et al.,
2002): (i) the use of a bi-population search strategy involving simultaneously a large archive
population to stare the best optimal solutions previously achieved, and a small operational population
to intervene genetic operations with lower computation budget; (ii) the use of a memory-based
adaptive partitioning algorithm for a dynamic self-adaptive reticulation of the search space in order to
efficiently identify the zones susceptible of providing optimal solution with fewer number of function

evaluations.

For constraint handling, the concept of constraint domination was used (Deb et al., 2002). Three
criteria are therefore used to discriminate between solutions in a population: dominancy, diversity and
constraint violation. The latter operates by integrating the constraint satisfaction as the third selection
criteria within the evolutionary selection procedure, and therefore prevents a parallel handling of

optimization and constraint satisfaction as two independent search strategies.
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As general settings for AMOEA-MAP, the population size was set to four times the number of
decision variables to be large enough compared to the total number of variables and the size of the
small operational population was set equal to the number of decision variables. The stopping criteria
was set to the computation budget, which is here set to 300 function evaluations. According to the
crossover operation, the simulated binary crossover (SBX) was chosen with the original parameter
settings as in NSGAII, (n.=15 and p.=1), set by Deb and Agrawal (1995). The mutation operator — the
Importance Adaptive Mutation Operator (IAMO) - is self-tuned internally in accordance with the

information coming from the MAP algorithm.

V.2.2. WWTP scenarios (conventional vs. innovative)

The plant under study is based on Benchmark Simulation Model N°2 (BSM2). Two scenarios are
accordingly proposed in this study:

i) the reference scenario (REF);

ii) the urine source separation scenario coupled with the sidestream recovery of phosphorus by
struvite precipitation and nitrogen treatment in urine by nitritation coupled with anaerobic

deammonification (ANA);

A set of brief and comprehensive flowsheets for the two above-mentioned scenarios is given in figure

V.2. Further, the main detailed configuration is illustrated in figure V.3.

Starting from BSM2 configuration, some adaptations were proposed. For the ANA scenario, where
less nitrogen is to be treated in the water line, Enhanced Primary Clarification (EPC) was introduced
for the enforcement of biogas production (figure V.2). Also, in both scenarios, a post-anoxic
denitrification zone was included which is dedicated to achieve effluent quality limitations (figure
V.3). Additionally, a cogeneration module was integrated for the sake of energy sustainability (heat

and electricity).

As shown in figure V.2, REF scenario does not involve the sidestream line, depicted in figure V.2 as a
yellow box, and EPC (green box) is also included only in ANA scenario. Moreover, for the alternative

scenario, urine source separation was considered in a proportion of 50%.
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Figure V.2. Simplified flowsheet for the two WWTP scenarios studied in the present work

Basically, the considered WWTP comprises in the mainstream, a pre-treatment (PT) unit for grit
removal (not showed in figure V.3) followed by a primary treatment unit (PRIM: Nsoligs removal = 50%
for REF and nsoligs removal = 80% for ANA), 2 anoxic tanks (ANOX1 and ANOX2) and 3 aerobic ones
(AER1, AER2 and AER3 with oxygen set to DO, = 1.5, DO, = 2.0 and DO; = 0.5 gOz.m'S,
respectively) followed by a post denitrification zone (figure V.3). Nitrate was recycled from the
aerobic to the anoxic zone (Q,) and the sludge was separated in a secondary clarifier (SEC), which was
also partly a wastage flow (Qw) redirected to a thickener (THK), and partly recycled in the anoxic
zone. The primary clarifier and thickener underflows were redirected to an anaerobic digester — AD
(figure V.3). Finally, biogas from anaerobic digestion was sent to a cogeneration unit for electricity
and heat production (Cogeneration module: Neiectricat = 35%; Mneating = 48.5%). Also, at this level, an
input flow of external carbon (Qcareon: Methanol to improve denitrification) and coagulant (Querac:
and Querarz: iron chloride for chemical precipitation of phosphorus) were considered. Sidestream
comprises a storage tank (ST), struvite precipitation tank (PPTSTRUV), a nitritation tank
(NITRITATION: dissolved oxygen controlled at DOyrritation = 2.0 gO..m™) and an anaerobic
deammonification tank (ANAMMOX) with external alkalinity input (figure V.3).
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Figure V.3. Detailed configuration of the proposed WWTP scenarios in SUMO

Given the importance of dynamics on the operation of the plant, dynamic influents were considered in
the simulation. Dynamic influents were generated by using an adapted dynamic and phenomenological
influent generator proposed by Bisinella de Faria et al. (2016b) that considers wastewater and urine
streams (in the case of urine source separation). Main characteristics of influent streams are given in
table V.1.

Table V.1. Influent characteristics

Variable Unit REF ANA
CONVENTIONAL WW | WW w/o 50% URINE | URINE
Q m3.d™ 18019.6 16991.7 82.1
SolubleCOD  gCOD.m? 130.0 114.4 4869.8
Particulate COD gCOD.m* 478.1 505.3 365.3
Ammonium gN.m? 51.5 34.8 4121.0
Organic N gN.m? 17.2 15.9 458.3
Phosphate gP.m? 6.2 5.0 328.2
Organic P gP.m? 5.4 5.5 18.8

V.2.3. Optimization problem formulation

V.2.3.1. Obijective function

In order to account for all technical, economic and environmental aspects involved in the improvement

of WWTP, 3 objective functions were subject to minimization: (1) Operational Cost Index (OCI) (Eqg.
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1); (2) Effluent Quality Index (EQI) (as this index represents the amount of pollutants being rejected to
the environment after the treatment — Eq. 2) and (3) Life Cycle Impact Assessment (LCIA) (Eg. 3).

Equation 1 was taken from the original OCI formulation in BSM2 (Alex et al., 2008) and was adapted
to this case study in order to account for the real market prices provided by the field experts. The
corresponding constants are given in table V.2. Additionally, in order to provide a realistic
approximation of the net operational cost of the plant, nutrient recovery and electricity production
from biogas cogeneration were also taken into account, together with the costs related to the
consumption of raw materials and energy. It should be noted that, in equation 1, C stands for
consumed and P for produced.

OCIl = a1 Ceectricity + @2Cmethanot + @3 CFeC13 + a4Crgo + @5Cnaon + A6 Chear — A7 Petectricity

— Qg Pstruvite

Equation 1

Table V.2. Proposed a values for OCI function

Unit  Value
a; Consumed electricity €/KWh 0.07
a, Methanol €kg 0412
0s FeCly €kg 04
as MgO €/kg 0.188
os NaOH €/kg 0.35
o Consumed heat €/MJ  0.008

o; Produced electricity €/kWh 0.175
ag Produced struvite €kg O

Equation 2 (EQI) was initially taken from the original BSM2 (Alex et al., 2008). However, it was
completed by including a new pollutant index (TP) designating the total phosphorus released in
effluent, as this reject must respect specific regulation laws. The coefficients used in Equation 2 are
provided in table V.3.

EQI = ByNO, + B,BOD + [(3COD + [,TKN + B5TSS + S5TP
Equation 2
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Table V.3. Proposed B values for EQI function

Value
By Nitrate + Nitrite 10
B2 BOD 2
B COD 1
B4 TKN 30
Bs TSS 2
Bs TP 100

In the present work, current cost coefficients (o;) and pollutant indexes for effluent quality (f;) have
been precisely suited for the global scenario in present Europe. However, when considering the
structure of the developed framework, these values can be easily readjusted for other benchmarks in
order to fit, for instance, geographical market prices and problematic reject areas where, for instance,
important quantities of phosphorus are to be avoided. Moreover, it should be noticed that, a zero
market price is attributed to struvite, even in case it is valorised in agriculture. This reason is to be
capable of accounting for the eventual situation through which the recovery and use of this fertilizer is
not well accepted. Similarly, nitrogen and phosphorus in sludge were not financially valorised.

Additionally, other operational costs such as the cost of labour were not included.

Equation 3 (LCIA) represents the calculation of the environmental impacts using ReCiPe Endpoint
2008 (H, A) considering the aggregated sum that considers human health (HH), ecosystem diversity
(ED) and resources availability (RA).

lp = z Qeim;
i

Equation 3

Where m; is the magnitude of intervention i, Qe is the characterisation factor that connects the
intervention i to the respective endpoint impact category e, and I, is the indicator result for the
endpoint impact category e (Goedkoop et al., 2009). The ReCiPe Endpoint indicator resulted from the
aggregation of normalized and weighted endpoint impacts and was used in this study as an

environmental objective to be minimized.

Moreover, in an effort to respond to different decision makers’ requirements, on a complementary
problem formulation, environmental impact was also optimized based on the ReCiPe Midpoint 2008
(H) Global Warming Potential (GWP) indicator.
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V.2.3.2. Decision variables and constraints handling

The set of chosen decision variables in the present work depends on the choice of scenario studied.
The decision variables in REF and ANA scenario are listed in table V.4. The choice of decision
variables was made based on their sensitivity through expert analysis and was previously justified in

Bisinella de Faria et al. (2016a).

Table V.4. Decision variables chosen for REF and ANA scenarios

REF ANA )
o ) Lower Higher
Parameter Description Unit reference reference
level level
value value

Dissolved oxygen concentration in s
DO, ) g O,.m 1.50 1.50 0.25 4.00
the first aerated reactor

Dissolved oxygen concentration in s
DO2 g O,.m 2.00 2.00 0.25 4.00
the second aerated reactor

Dissolved oxygen concentration in s
DO; ] g O,.m’ 0.50 0.50 0.25 4.00
the third aerated reactor

Dissolved oxygen concentration in s
DONITRITATION oo A g Oz.m- - 200 100 400
the nitritation reactor

Methanol addition in the post -
Qcarson o m°.d’ 0.80 0.80 0.00 6.00
denitrification zone

Iron chloride addition in

3 4-1
QmeTALL headworks (EPC) m>.d - 2.00 050  6.00
Iron chloride addition for
QmETAL? polishing (post denitrification m®.d* 4.00 0.80 0.00  4.00
zone)

Internal recycle flowrate to _—
Qi e m’.d° 50,000 40,000 1,000 55,000
denitrification

Qw Sludge wastage m3.d™ 400 300 50 500

DOnitriTation 1S not included as variable in case of REF scenario as sidestream does not exists;

QueTaLs Variable is also excluded for REF scenario as no EPC is envisaged in this scenario.

Finally, in the context of WWTP optimization, the legally imposed limits on rejects shall be, in

average, respected. For the problem formulation under constraints, the reject limits were set to 10
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gN.m for total nitrogen, 1 gP.m™ for total phosphorus, 100 gCOD.m™ for total COD, 35 gTSS.m™ for
total suspended solids and 4 gN.L" for ammonium ion.

To satisfy these conditions, constraints were explicitly included in the problem formulation to check
their violations during the last 14 days of simulation. However, as system is simulated dynamically, it
is also important to check the number of daily violations in order to ensure, for instance, the absence

of high pollutant peaks in daily rejects.

V.2.3.3. Recall on optimization problem formulation

Several combinations of scenarios and problem formulations are hereafter proposed (table V.5). The
first aim in this regard is formerly to observe the relevance of different problem formulations and
assumptions in case of WWTP optimization (case studies A to D in table V.5). At this level, the
following comparisons have been carried out: constrained versus unconstrained problem formulations,
dynamics versus steady-state (with averaged influent) simulations and total Endpoint versus the
Midpoint GWP as the choice of environmental impacts assessment method. Given the first set of
comparative studies, the second goal is to evaluate the consistency of an innovative WRRF scenario
(case study E in table V.5) while a suited problem formulation is used, under the most realistic

conditions of simulation.

Table V.5. List of comparative studies on different problem formulations and innovative scenarios in
the field of WWTP optimization

Case study Scenario Dynamics Constraints LCIA

A REF Yes No Endpoint
B REF Yes Yes Endpoint
C REF No No Endpoint
D REF Yes No Midpoint GWP
E ANA Yes Both Endpoint
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V.3. Results and discussion

In this section, results of the conducted optimization will be presented together with the corresponding
interdependencies between objective functions. The optimal decision variables together with the main
drivers of the proposed configurations as well as the consequences of different problem formulations
will be pointed out. Here, the graphical representations were all carried out through the Matplotlib
(Hunter, 2007) under Python.

V.3.1. Reference scenario

V.3.1.1. General results

Before the analysis of the alternative optimization scenario, results over the reference scenario were
presented. Figure V.4 presents the 3D Pareto optimal curve achieved for the reference scenario. As
previously highlighted, this curve was obtained with a low computation budget of 300 function
evaluations (simulation runs). The complexity of objective functions as well as their interdependencies
resulted in a tri-dimensional curve instead of a tri-dimensional surface. A tri-dimensional curve is
usually attained where the adjacent solutions are dominated, from a multi-objective optimization point
of view, and therefore, the condition of global optimality is hard to achieve. This is another proof on
the importance of choosing evolutionary algorithms for optimization instead of conventional local

search methods.

In figure V.4, axes present the operational cost represented by OCI, the quality index (pollutants
rejected) represented by EQI and the total environmental impacts calculated by the total aggregated
ReCiPe Endpoint approach via LCIA. Two sets of points, obtained from two different problem
formulations were presented in figure V.4. The first problem formulation, namely the case study A
(table V.5) was illustrated by yellow and green points in figure V.4 (Zone la and Ib). This formulation
represents an unconstrained problem for the reference scenario. The second problem formulation,
namely the case study B in table V.5 was shown in figure V.4 through blue and rose points (Zone Il
and I1). The latter corresponds to a constrained problem formulation where better output water quality

is expected to be obtained.
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Figure V.4. Pareto-optimal curves for constrained and unconstrained optimization of the reference
WWTP

[bottom illustrations are the box-and-whisker plots on decision variables]
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Box-and-whisker plots were given on each decision variables and for each zone, through
complementary illustrations (bottom graphics in figure V.4). In each box, the small red square
represents the average value and the red line represents the median. The 25™ and the 75" quartile were
represented by the edges of the box and the whiskers were extended to the most extreme data that are
not considered as outliers (represented by ‘+’ sign beyond the whiskers). Also, in order to represent
the distribution of decision variables over the lower and higher boundaries, ranges through the x-axis
of the plot were set to the same boundary values fixed for the optimization.

From figure V.4, a direct correlation between objective functions can be seen. In general, OCI and
LCIA showed to be positively correlated, as both have the same direction of increase. However, EQI
and LCIA showed to be negatively correlated. Moreover, when EQI is reduced (less pollutants
rejected) the global environmental impact increases. This behaviour might be justified by the
important impact of background processes, already described in the literature, which influence both
costs and environmental impacts. Consequently, OCI and EQI were negatively correlated, where an
increase in quality — reduction of EQIl — lead to more energy and chemicals consumption and
consequently to higher operational costs.

As a result of individual efforts made by each objective function to achieve its own condition of
optimality despite the contradictory effects between the objectives, four main zones, namely Zone la,
Ib, 11 and 111, appeared on the overall Pareto optimal front. The constrained zone (Zone Il and 1)
represents the legal compliance imposed to more than 100,000 person equivalent WWTPs (TN <
10gN.m™ and TP < 1gP.m'®). However, in order to give insights on plants functioning with less strict
constraints, discussion will be also provided for Zones la and Ib concerning pollutants concentration.
Nevertheless, it has to be noted here that no comparison over objective function results between
different zones might be done as reject limits are different and thus the function of the system is not
anymore the same (functional unit defined in this study: 1m® of treated water respecting 10 gN.m™ for
total nitrogen, 1 gP.m™ for total phosphorus, 100 gCOD.m™ for total COD, 35 gTSS.m™ for total

suspended solids and 4 gN.m™ for ammonium ion).

Initially, it should be noticed that Zone | (points that do not respect the strict reject limits) was divided
into la and Ib depending on the level of cost required to achieve a better quality (the shape of cost
increase in each zone was represented by the average slope of the curve). Globally, Zone la and Ib
correspond to a region where quality is not acceptable and the strict constraints are not respected.
However, in these zones, important gains can easily be achieved without important increase in costs
and environmental impacts. Actually, in zone la, TN objective for less strict constraints in WWTPs
was reached (TN < 15gN.m™); however, phosphorus elimination was not satisfactory (TP > 3.5gP.m’

%). When considering Zone Ib, the constraints were all respected for the less strict regulation limits
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(TN < 15gN.m™, TP < 2gN.m®); in contrast, they were not respected for this study constraints. Details

on each effluent concentration were given in figure V.5.

Zone |1 represents the real-world optimal operating zone for the considered plant in this study, as in
this region, operating conditions are pushed to respect the legally imposed European reject limits
(especially TN < 10gN.m?®, TP < 1gP.m? figure V.5) with reasonable efforts regarding the
environmental impacts and cost. Finally, Zone Il was represented by extremely low quantities of
pollutants rejected and thus by a great effluent quality (TN < 5 gN.m® and TP < 1gP.m?).
Nevertheless, despite achieving the highest quality in this zone, a slight increase in quality resulted in

considerable increase in environmental impacts and operational costs, which is not necessarily desired.

These results are in accordance with the previous ones proposed by authors (Bisinella de Faria et al.,
2016a) throughout a feasibility study of the WWTP optimization platform. One of the major
conclusions that might be drawn here is that, even in the case of a well stablished technology, such as
a conventional wastewater activated sludge treatment process, there is a limit point up to which the
treatment is still reasonable and practical. Beyond this limit point, if one wishes to still improve the

quality (decreasing EQI above the Zone I1), a new technology should be conceived.

TN effluent Ammonium effluent i TP effluent
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Figure V.5. Box-and-whisker plots for total nitrogen, ammonium ion and total phosphorus
concentrations in effluent for the optimized reference scenario (REF)

Moreover, in order to better understand the limitation of the technology, disaggregation of the total
Effluent Quality Index was presented in figure V.5 for total nitrogen, total phosphorus and ammonium
in effluent. Also, even if Total Suspended Solids (TSS) and Chemical Oxygen Demand (COD) are
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included in the quality index and as constraints, they were not given in figure V.5 as they respect reject
limits all along the Pareto front.

It has been previously indicated that, strict constraints were respected only in Zone Il and IlI.
However, the total nitrogen started already having a reasonable level in Zone Ib, while for phosphorus
the acceptable level was only achieved in Zone Il and Ill. This might represent the great difficulty of
achieving low phosphorus concentration in effluent without adaptations in plant (as only chemical
precipitation is applied in this WWTP). Instead, the nitrogen treatment had more important operation
flexibility, as more variables are involved with their own interactions (DOs, carbon addition, internal
recirculation). Accordingly, there was no increase in quality from Zone 11 to Il1, due to the decrease in
phosphorus reject concentration (figure V.5).

Also, when considering the nitrogen conversion from ammonium ion to nitrite/nitrate and finally to
N, it might be concluded that the shift from Zone Il to Zone 11l (where low EQI is achieved with more
important cost) represent an advanced post-denitrification, where ammonium cannot be further
reduced and thus nitrite/nitrate are tackled (figure V.5). This behaviour might also be explained from
two points of view. Firstly, the weights were attributed differently in the EQI function, for instance,
TKN presented a greater weight (30) than NOx species (10), and therefore, in order to minimize EQI,
it is preferable to minimize TKN before the NOx minimization. Similarly, when minimizing OCI,
electricity contribution seemed to increase slightly from Zone Il to Il while carbon addition
contribution increased markedly (figure V.6)
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Figure V.6. Box-and-whisker plots for the main cost contributors in Operational Cost Index (OCI)
function for the optimized reference scenario (REF)
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The constraint violation for ammonium happened only in Zone | and when low DO was fixed. This is
the case, when all three DOs where set to 0.25g0,.m>.

Further, when comparing the constrained versus the unconstrained Pareto fronts, it should be noted
that given the fixed population size for the optimization, the same number of points will be used to
describe the diversity in Pareto fronts. Consequently, for an unconstrained problem formulation (case
studies A, C and D), the Pareto fronts were mainly concentrated around the Zone I, and were not
necessarily intended to provide more details (optimal solutions) over the zones where the strict reject
limits were satisfied. The identification of Zone | is important due the minimum operational cost
associated to this zone. However, an unconstrained optimization formulation, where no reject
constraint is explicitly imposed to problem, might result in a set of optimal solutions, as in Zone 1.
Such a formulation is quite impractical to use, due to the unacceptable level of effluent quality in

results.

V.3.1.2. Analysis on decision variables

In order to analyse the influence of decision variables over the 4 zones in the Pareto front, as
previously illustrated in figure V.4, box-and-whisker plots were provided. These plots (bottom plots in
figure V.4) allowed studying the variability of decision variables per Pareto optimal zone. Globally,
when considering average values of dissolved oxygen set points, a correlation with EQI can be
observed, as the increase in DO values leads to a shift from one zone to another. Moreover, a
markedly increase, passing from zone Ib to Il, was observed for all the three DO set points (figure
V.4). This DO increase was responsible for the great conversion of ammonium nitrogen through other
forms of nitrogen, nitrite and nitrate, which have a lower weight than the ammonium ion in the EQI
function. Deeply on DOy, in Zone la, Il and Ill, variations in the interquartile range was almost
inexistent and thus variable values were almost punctual. Consequently, there was no flexibility over
its set point leading to one fixed operational set point. When considering the dissolved oxygen set
point for the secondary basin (DQ), all zones in figure V.4 presented an important variability in the
interquartile range, and some outliers showed possible alternative functioning points. Finally, DOs
presented a similar behaviour as DO,. Overall, there was not a large range for dissolved oxygen

operation and, in general, DO values could be suitably set for each zone.

When considering carbon addition, an almost linear increase was noticed among the represented
zones. A relatively small addition of carbon lead to a shift from one zone to another and, globally, the
choice of the variable set point do not present much flexibility. Also, as previously discussed, the shift

from Zone Il (good quality with acceptable cost) to Zone Il (good quality with exaggerated cost)
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seemed to be governed by the carbon addition (leading to an advanced post denitrification). Therefore,
it is possible, from a technological point of view, to obtain a very high water quality in terms of
nitrogen rejects. However, the latter would lead to inadvertent increases in cost and environmental
impacts and therefore, new ways of managing nitrogen in the plant (or avoiding its entrance in the
plant) are required.

The amount of metal addition had also an important influence on the shift between different zones
over the Pareto optimal front (figure V.4). This was especially the case when going from Zone la to
Zone Ib, as when a great amount of phosphate is available, in the beginning of the treatment, it is quite
easy to eliminate it. Therefore, in this case, the plant required an increase in the amount of iron
chloride added in order to markedly decrease phosphorus concentration in effluent. However, from
Zone 1l to Zone IlI, there was almost no increase in metal addition. This might be justified, as
previously discussed, by the limitation of P-elimination technology in the reference case - P is mainly
eliminated by chemical precipitation of phosphate, whereas residual P is also organic. Thus, in Zone
I1, constraints were already respected and almost no more phosphorus was eliminated in Zone Ill. It is
also important to notice the variation of metal addition along its fixed boundaries (the molar ratio of
Fe/Prq Varies from 0.5 to 2.3). Globally, lower and higher averages were quite far from the extreme
boundaries, which validate the choice of wide ranges for variables during the optimization of the
WWTP.

The only variable presenting an opposite trend compared to all others was the internal recycle, Q,. This
is mainly explained by the increase in carbon addition that was required to achieve good treatment. Q,
must indeed decrease as denitrification will take place afterwards in the post-anoxic zone. However,
there is still a flexibility in the operation of the internal recycle, represented by boxes boundaries,
except for Zone la, where treatment is really poor (together with the low DOs and the low carbon

addition) and thus high recirculation is required to achieve the best, however not sufficient, treatment.

Finally, the wastage, represented by Q, presented a dispersed behaviour with lower values for Zone
la and Ib and, with higher values for Zone 1l and Il1I. Globally, higher sludge wastage was allowed in
Zone Il and 111, as more organic matter was available and thus more biomass was expected in the
reactors allowing more sludge wastage in order to increase biogas production and to compensate the

increase in electricity consumption.

Complementary to figure V.4, the correlation between decision variables and objective functions is
provided in figure V.7. Results, which are represented through scatterplots in the upper triangle,
Pearson product-moment correlation coefficients in the lower triangle, and the corresponding variable
or function name on the main diagonal, are in accordance with the previously discussed correlations

among objective functions and decision variables. Furthermore the Pearson product-moment
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correlation coefficients over the whole Pareto (lower triangle in figure V.7, without distinction on
zones), showed that OCI and EQI were mostly driven by carbon and metal addition, followed by DOs
set points. This behaviour was also confirmed by the chosen gradient of Qcareon and QmeraL2,
presented through the bottom illustrations in figure V.7.

V.3.1.3. Steady state versus dynamic modelling approach

Aiming to reinforce the reliability of results, a comparative study was conducted by considering
dynamics of the plant, as opposed to a steady state condition of run. This problem formulation is
justified by the importance of understanding the trends of objectives and decision variables when

steady state conditions are considered.

In figure V.8, a comparison of the optimal Pareto front resulting from problem formulation A and C
(table V.5) is presented. Accordingly, it can be observed that for high EQI values (poor treatment), the
optimal results for the steady state conditions seemed to be close to the Pareto front obtained by the
consideration of plant’s dynamics and followed similar trends. However, an important gap can be
noticed when EQI starts decreasing (where treatment started to effectively take place). The gap was
followed in the region where constraints become stricter. From the authors’ point of view, this trend is
mainly related to the fact that, when constraints are stricter and thus, treatment is intensified to further
improve the quality, steady state regime underestimates significantly costs and environmental impacts,
as the influent flow and concentration peaks are not taken into account. Therefore, fictive water
qualities would be obtained for the same operational cost. Moreover, when considering the distribution
of decision variables over the optimal Pareto front, they seemed similarly to be underestimated. It was
especially observed for the dissolved oxygen in the third basin DO, the metal addition and the internal
recycle. Additionally, it should be noted that simulation runs based on steady state conditions do not

allow the identification of daily violations of constraints.
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Figure V.7. Correlation scatterplots on decision variables and objective functions (optimized REF
scenario)

[bottom illustrations represent the gradient of carbon and metal addition over the whole Pareto optimal
front]
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Figure V.8: Pareto-optimal fronts resulting from steady state versus dynamic simulations (REF
scenario)

V.3.1.4. Total Endpoint versus Midpoint Global Warming Potential

As previously discussed, decision-making might become a difficult task in complex problems such as
in WWTPs where not only several operational parameters (represented by decision variables) are
involved, but also several conflicting objectives have to be optimized simultaneously. To provide
comprehensive and visually descriptive results for decision-making, it is recommended to limit the
number of objectives to 3 objective functions maximum. Nowadays, in the field of WWTPs, GHG
emissions are one of the major issues to be minimized together with cost and performance. In order to
show the contrast between an aggregated ReCiPe total Endpoint impact and the original endpoint
categories of impact, a correlation against the most influencing impact categories in human health
(HH), ecosystem diversity (ED) and resources availability (RA) was provided in Figure V.9. In this
figure, the upper triangle represents the scatterplots, while the Pearson product-moment correlation
coefficients were given in the lower triangle. The name of corresponding impact categories can be

found on the main diagonal.

Pearson product-moment correlation coefficients in figure V.9 demonstrate that several endpoint
impact categories are well represented by the aggregated ReCiPe total Endpoint impact. Actually, only
one category, freshwater eutrophication (FEP ED), is negatively correlated to the aggregated index.
However, as this impact is by nature linked to the discharge emissions, it was expected that their
values would be correlated to the Effluent Quality Index, instead of the total environmental impact. As

a result, it can be concluded that all main endpoint impacts presented a positive correlation to LCIA
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(and consequently OCI), and a negative correlation to EQI. The latter indicates that the chosen
aggregated ReCiPe total Endpoint impact category represents correctly the majority of the impacts
categories. Finally, the strongest correlation was found between the aggregated ReCiPe total Endpoint
impact and the Global Warming Potential (GWP) indicator for both human health (HH) and ecosystem
diversity (ED). This might be explained by the important influence of GHG emissions in a WWTP’s
Life Cycle Analysis, as already shown by several authors in the literature.
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Figure V.9. Pearson product-moment correlations between different impact categories in LCIA

e
o
Ve
\\
.
A
-

AR RS (32 B P 32 RE
. A : . -

* i

c.‘\'
L T

=

YN
.

*\-
Ly
-
N
—r—
N
"
"
b
L
x
At
%,
N
!,’
i
,
-
R
1

s5
o

e P
¥
s
N
“\
Y
.
A\
¥
e

at )
.
L
3
0
s
H
H
i.
3
3

i

[HH - Human Health; ED - Ecosystem diversity; RA - Resources availability; GWP - Global Warming
Potential; HTP - Human Toxicity Potential; PMFP - Particulate Matter Formation Potential; FEP -
Freshwater Eutrophication Potential; ALOP - Agricultural Land Occupation Potential; FDP - Fossil
Depletion Potential]

By following the same idea of providing decision makers with complete and comprehensive
information on each case study, it is important to verify for the present case study if the optimal
solutions depend on the choice of impact categories or not. For this aim, a comparative study was
carried out based on the use of the aggregated total ReCiPe Endpoint impact and the ReCiPe Midpoint

GWP (scenarios A versus D in table V.5). Results, which consider also the two other common
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objectives - OCI and EQI - showed Pareto fronts well fitted, which is to say that both impact
categories resulted in almost the same optimal solutions. When comparing the 3D Pareto fronts, in
general, similar trends on the curve were found and thus, the total endpoint represents a good
approximation of the total GHG minimization (including direct and indirect emissions). This
observation, however, is case specific, and might not be generalized. According to the scenarios
studied in the present work, it should be noted that in order for the midpoint GWP impacts to fit the
same trends as in total ReCiPe endpoint impact, all relevant emissions through the life cycle in

foreground and background processes must be accurately taken into account.

V.3.2. Alternative scenario (ANA)

The final part of this study is dedicated to the comparison of the conventional wastewater management
and treatment (REF scenario) against an alternative WRRF (ANA scenario). The comparative results
on these scenarios were provided in figure V.10. Regarding the ANA scenario, two optimization runs
were carried out, one unconstrained (Zone la and Ib) and one with strict constraints (Zone 1l and III).
The same distinction of 4 zones over the optimal Pareto front was done for this alternative scenario.

The bottom graphics in figure V.10 represent the box-whisker plots over the decision variables.

Globally, the alternative scenario showed to offer an interesting gain in the functioning of the
wastewater treatment in terms of performance, operational cost and environmental impacts. For
instance, for a fixed water output quality, fewer costs were achieved together with less environmental

impacts through ANA scenario.

Also, from figure V.10, it is important to indicate that in both technologies, a high water quality can be
attained (lowest EQI equal to 0.18 in Zone I11), and if the decision maker wishes still to decrease EQI
bellow 0.18, compromises have to be made, as cost and environmental impacts would exaggeratedly

increase through both technologies.

Similarly to the reference scenario, OCI showed to be positively correlated to LCIA while EQI is
negatively correlated to the previous. By following the trends in decision variables, the metal and
carbon addition presented a similar behaviour, with a limited flexibility in the variable operation. Also,
similarly to the trend observed in REF scenario, there was no increase in metal addition between Zone
Il and I11; however, the carbon addition increased aiming to eliminate the residual nitrite and nitrate.
Regarding the metal addition, the presence of a quite fixed optimal point for the distribution of metal
in headworks (for the enhanced primary clarification) and by the end of the mainstream (for polishing

of phosphorus treatment) was observed.
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Figure V.10: Comparative optimal Pareto fronts on the reference scenario (REF) versus the urine
treatment by nitritation/ anaerobic deammonification (ANA)
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Figure V.11. Box-and-whisker plots on total nitrogen, ammonium ion and total phosphorus
concentrations in effluent of the optimized ANA scenario

Considering the dissolved oxygen values for the first three basins, results followed the expected
trends, with fewer requirements in aeration as less nitrogen was present. However, DO values seemed
to be extremely low for some optimal points bringing in the question of plant redesign when urine

source separation is envisaged at a proportion of 50% coupled to enhanced primary clarification.

When considering DOyrrirations Values seemed to be stable around 2g0O,.m™ for all zones (figure
V.10); however, even if an unexpected large range in Zone la and Ib was noticed, it did not seem to
considerably influence the performance and energy consumption in the plant. Finally, the optimal

solutions were not recognized as being sensitive to internal recycle (Q,) and wastage (Qw).

Regarding the effluent concentrations over the optimal zones in figure V.11, it should be noticed that
in Zone la, neither nitrogen nor phosphorus reject limits were respected. However, in the following
zone (Zone Ib), less strict reject limits (TN < 15gN.m™ and TP < 2 gP.m™) were fully satisfied. In
addition, Zone 11 and 111 respected the strict constraint limits imposed in this study (TN < 10gN.m™

and TP < 1 gP.m™®) with an extremely low amount of nitrogen reject in Zone 111 (TN around 3gN.m®).

V.3.3. Consequences on energy autarky

With a view to energy autarky in wastewater treatment plants, one might propose the addition to the
optimization problem of a supplementary objective function or constraint based, for instance, on the

ratio between the recovered amount of energy and the consumed one. This parameter is hereafter
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called as Energy Return On Investment (EROI). However, given the results provided earlier, it was
found that EROI is fully driven and optimized via the previously chosen objectives. Figure V.12
presents the improvement in EROI (by colour gradient) along with the Pareto-optimal front in the
reference case. Box-and-whisker plots were presented for electricity consumption and production in
both REF and ANA scenarios through the bottom illustrations in figure V.12. As it might be noted,
even without considering EROI explicitly among the objective functions for the REF scenario, it was
optimized implicitly as followed the changes in three other functions. There is thus no need for a
systematic integration of EROI in the problem formulation, unless the cost and LCIA were not

genuinely approximated.
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Figure V.12: EROI (Energy return on investment) calculations for all solutions belonging to the
optimal Pareto front (REF and ANA scenarios)

[bottom graphics are box-whisker plots on consumed and produced electricity for REF and ANA
scenarios]

Moreover, it is important to state that, for the reference scenario, the optimal values did not allow the
energy autarky to be achieved (EROI ranging from 0.65 to 0.81) and more specifically, EROI faced a
decrease in Zone Il and 111, as a consequence of consuming more energy to provide better qualities. In
reality, regarding the reference scenario, to achieve a relevant treatment, EROI cannot attain high
values as the electricity consumption increases rapidly whereas its production encounters a slight

increase only. From Zone la to Zone 111, the electricity consumption rose from 0.43 to 0.53 kwh.m™
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while the produced electricity faced a slight increase from 0.34 to 0.36 kWh.m™, which is to say an
increase of 19% and 6%, respectively.

As opposed to REF scenario, the alternative ANA scenario did not present a strong correlation of
EROI with quality over the optimal Pareto front (figure V.12), as DOs were not highly correlated with
objective functions. The problem drivers were indeed identified to be mainly the methanol and iron

chloride addition.

However, with a view to box-whisker plots (bottom figure V.12), it might be noted that, similarly to
REF scenario, the shift from one zone to another (in the sense of decreasing EQI), increased the
energy consumption; however, the produced electricity did not face any significant change during the
shift. Moreover, ANA scenario allowed, for all zones, the energy autarky with EROIs evolving from

1.48 to 1.82 due to an important increase in energy production compared to REF scenario.

V.3.4. Benefits achieved from REF and ANA scenarios

Table V.6 summarizes the main differences found when comparing REF and ANA scenarios with the
objective functions being the effluent quality index, the operational cost and the environmental
impacts, and by accounting for the amount of produced and consumed electricity, the addition of
chemicals (iron chloride and methanol), the main reject concentrations (Total Nitrogen and Total
Phosphorus) and GHG emissions by the endpoint category climate change for human health and
ecosystem diversity. Also, general gains, which were presented in table V.6 (% gain is represented by
(ANA-REF)/REF) passing from REF scenario to ANA scenario were shown throughout Zone Il and
11 (figure V.10).

As previously discussed, comparison might not be established for Zones la and Ib as the functional
unit of the system is not the same considering the respected constraints. Throughout this study, it has
been demonstrated that for Zone Il and Ill, which represent the most relevant operating zones, all
process parameters and objective functions were improved. Among the main gains, it is important to
highlight the improvement in OCI by approximately 100% (due to the “negative cost” of electricity
production), in quality by 10% and in environmental impacts (using the total aggregated ReCiPe
Endpoint indicator) by 30%.

Both consumed and produced electricity presented important gains. Considering the consumption, it
was decrease by 28% and an increased of more than 70% was observed for produced electricity.
Moreover, chemical addition decreased by more than 20% for methanol and 21% for iron chloride

due, respectively, to less nitrogen and less phosphorus entering the plant to be conventionally treated.

157



Chapter V. Case Studies on Multi-Objective Optimization

When considering reject limits, even if in both scenarios constraints were respected for Zones Il and
I11, ANA scenario allowed a decrease of 12% in rejected total nitrogen and of approximately 15% in
total phosphorus.

Finally, for the GHG emitted over the total life cycle (foreground and background together with
avoided impacts), an important decrease of approximately 30% in climate change impact was noted

for both human health and ecosystem diversity category.

Table V.6. Benefits derived from ANA scenario when compared with REF scenario

REF ANA

Average value for each zone I Il I 1l

OClI

€m) 0.056 0.071 | -0.009 | -116% | 0.006 -91%
.m

EQI

(k ILE _3) 0.207 0.179 0.189 -9% 0.165 -8%
g poll-Eq.m

LCIA

(points) 0.073 0.081 0.051 -31% 0.058 -28%
points

Consummed electricity

s 0.52 0.53 0.37 -28% 0.38 -28%
(kWh.m™)

Produced electricity

) 035 | 036 | 061 | +74% | 062 | +72%
(kKWh.m?)

Methanol addition
( 3d'1) 1.46 2.19 1.07 -27% 1.73 -21%
m°.

Iron chloride addition
3.87 4.06 3.04 -21% 3.19 -21%

(m.d™h
TN effluent

5 6.29 3.72 5.52 -12% 3.29 -12%
(gN.m™)
TP effluent

s 0.88 0.76 0.74 -16% 0.66 -13%
(gP.m™)

Climate change — Human health 0.022 0.024 0.015 3006 | 0.017 0%

(points)

Climate change — Ecosystem diversity 0.015 0.016 0.010 3306 | 0.011 31%

(points)
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V.4. Conclusions

When evaluating WWTP scenarios, the decision-making is at the same time a crucial and difficult
task. Commonly, there are several interconnected parameters and variables as well as multiple
conflicting objectives. In this sense, the multi-objective optimization allows for a harmonious
optimization of each objective despite their intrinsic contradictions, and therefore, provides a diverse
set of optimal solutions. Throughout this study, it has been demonstrated that a coupled Dynamic
Modelling - Life Cycle Assessment - Efficient Multi-Objective Optimization (DM-LCA-EMOO)
platform is truly needed to provide a proper evaluation and comparison between different conventional
and innovative WWTP scenarios, to allow further discussions on functions interdependencies, and to

construct a reliable basis for decision-making.

With regards to optimal wastewater treatment and management scenarios, the main process drivers
were identified to be carbon and metal addition followed by dissolved oxygen set points. Throughout
the optimal solutions, four main zones were particularly highlighted over the Pareto-optimal front
where treatment performance depended on the achievement of more or less strict constraints. Energy
aspects were also discussed by means of the consumed and produced electricity and the energy return
on investment (EROI). It was proved that the alternative scenario ANA is capable of achieving energy
autarky by decreasing electricity consumption and increasing its production.

Moreover, the consequences resulting from the problem formulation, the simulation conditions (steady
state versus dynamic) and the choice of environmental impact category throughout LCIA (ReCiPe
Midpoint GWP versus the aggregated total ReCiPe Endpoint) were discussed and clarified.
Accordingly, the major outcomes were that steady state importantly underestimates all the three
objectives and the use of the aggregated total ReCiPe Endpoint is capable of representing almost all
impact categories, except eutrophication which is linked to the discharge of pollutants.

The benefits in case of an alternative scenario, at optimal conditions, which considers the urine source
separation coupled with nitrogen treatment by nitritation and anaerobic deammonification (ANA),
were compared with the conventional reference scenario (REF). The comparison showed that when
managing nitrogen differently, significant gains might be achieved: approximately 100% in
operational cost (OCI), 10% in water quality (EQI) and 30% in environmental impacts through the
LCIA. Finally, presented results provided insights on a requirement for redesigning the plant when an
alternative scenario is aimed as, for instance, really low dissolved oxygen set points were found for

ANA scenario.
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Finally, an important aspect of this work to be emphasized is that the developed platform was
conceived to be flexible to other case studies. Therefore, the consistency of other conventional or
alternative wastewater treatment plants can be evaluated with few modifications in framework’s

flowsheet.
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Chapter V1. Conclusion and perspectives

“Everything we think about regarding sustainability - from energy to agriculture to manufacturing to
population - has a water footprint. Almost all of the water on Earth is salt water, and the remaining
freshwater supplies are split between agricultural use and human use - as well as maintaining the

existing natural environment.” (Jamais Cascio)

Nowadays, wastewater might be considered as both a problem and an opportunity for recovery of
nutrients and energy. When considered as a problem, in order to ensure the quality of water bodies and
avoid other indirect environmental problems, wastewater is required to be correctly treated. This
treatment requires the use of an important quantity of energy (especially for nitrogen treatment) and
chemicals. When considering the environmental burden of the treatment, it is important thus to
consider all the involved processes, from the entrance of the wastewater in the WWTP to the output of
treated water and passing by the production of required raw materials and the disposal/ utilization of

by-products.

However, when considering wastewater as a source of valuable nutrients and energy, it is a promising
alternative and thus WWTPs are nowadays being considered mainly as water resource recovery
facilities. The recovery might include different and more or less innovative options such as energy
recovery by biogas production and urine source separation with recovery/ treatment of nutrients

(mainly nitrogen and phosphorus).

Additionally, considering the whole urban water management as an anthropogenic activity that already
allows the reutilisation of water in a cycle, it seems logical to think about nutrients recycling,
especially when having in mind the future (or in some current cases) scenario of resources depletion

and the need of achieving less intensified and more sustainable processes.

The presented work is a result of a coupling approach including rigorous dynamic modelling, life
cycle assessment with extended boundaries and efficient multi-objective optimization. When tackling
comparisons between scenarios aiming to clarify the benefits and drawbacks of each scenario, realistic
aspects were considered and the proposed alternative scenarios, that include mainly enhancement of
biogas production and management of source separated urine, globally showed to be more sustainable

than conventional ones.

Globally, the main achievements through this study are described as follows. Concerning LCA, this
work included the definition of a relevant approach according to the 1ISO methodology together with
the correspondence between simulation results and LCA inputs. The coupling platform was developed
and a range of conventional and alternative scenarios were analysed. With regards to influents, more

reliability was obtained as this study considered the dynamic characterisation of urine and wastewater
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followed by its inclusion in an adapted influent generator. Concerning the last part of this work - the
multi-objective optimization - different problem formulations and case studies were proposed together
with the application of the platform to conventional and alternative treatment scenarios. A detailed

conclusion on each chapter’s achievement is provided hereafter.

In chapter Il, the importance of considering the environmental aspects when the eco-design of
WWTPs is aimed was highlighted. A coupled platform integrating a wide-plant dynamic modelling
and LCA was fully developed with data treatment by Python™. The approach was successfully
applied to six WWTP scenarios. Scenarios with urine source-separation (USS) presented a positive
effect on the effluent quality and decreased the energy consumption in WWTP while the enhanced
primary clarification (EPC) led to important energy savings (with more energy recovery and less
energy use). The coupling of these two approaches, led to energy autarky together with a better respect
of reject limits. The most interesting scenarios showed to be the USS+EPC coupled to urine treatment
by nitritation/deammonification (considering also feasibility and acceptability) and the agricultural
valorisation as fertilizer. By the contribution analysis, hotspots were identified such as the
infrastructures (which might be optimized if alternative scenarios are targeted), N,O direct emissions
(which depend, among others, on the nitrogen concentration in WWTP input) and heavy metals in
sludge.

Following, chapter 111 presented the adaptation of a dynamic and phenomenological influent generator
to take into account the urine source separation at a user specified level and its impact on total
wastewater stream. The use of the influent generator, allowed in a non expensive way to obtain
reliable influents that might be used later for simulation of alternative scenarios. Given its flexibility, it
is also possible to envisage other alternative scenarios, and the generated variables might be easily
used for different modelling approaches such as wide-plant modelling and ASM family models. By
the end, the benefits from the urine separation were demonstrated by the dynamic simulation of a
typical plant, where daily nutrient peak load were avoided and the reject quality was improved. The
developed tool is thus available for future simulations including innovative wastewater and urine

management scenarios and for their optimization.

Chapter IV studied the feasibility of coupling the previously developed DM-LCA platform with an
efficient multi-objective optimization (EMOQO) approach dedicated to expensive black-box problems.
The coupled DM-LCA-EMOOQO platform was capable of generating an optimal Pareto front that
compromises between technological aspects (process performance), operational cost and
environmental impacts. Also, the analysis of the differences between constrained and unconstrained
optimization results allowed for a deeper view to the technological limitation of a given treatment
process. Finally, relations between objectives were better understood: OCI and LCIA were positively

correlated thanks to supply chain impacts and costs, while EQI showed to be negatively correlated
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with them. Three main zones were also identified: (1) a zone with a unacceptable water quality easy to
attain, (2) an intermediate zone where reject limits are respected with no exaggeration in costs and
environmental impacts, (3) a zone of technological limitation where, further treatments may imply

exaggerated costs and environmental impacts.

Finally, chapter V promoted the application of the previously developed platform to an alternative
scenario considering the urine source separation and the nitrogen treatment by nitritation and
anaerobic ammonium oxidation. Together with the major gains identified, reaching approximately
100% for operational costs, 10% for effluent quality and 30% for environmental impacts, the
application of the platform also allowed identifying the differences between results when different
problem formulations are available. Additionally, the platform provided also results concerning

functions’ interdependencies and correlations between decision variables for different case studies.

Furthermore, it is important to indicate that the major difference between this study and others found
in the literature is the reliability of the framework when using dynamic simulations and a reliable
dynamic input for WWTP and urine streams. Further, this study is the first one that comprises multi-
objective optimization of alternative scenarios, coupling wide-plant modelling and dynamic aspects,
together with a relevant integration of LCA. Also, the alternative scenarios related to the urine source
separation such as nitritation/deammonification and agricultural spreading - not so far evaluated in the

literature through LCA - were also studied.

In an effort to disseminate and encourage the inclusion of environmental aspects when assessing
WRRFs as well as the multi-objective optimization approach to tackle wastewater management and
treatment problems, this work resulted in 4 peer-reviewed papers that were already accepted or under
preparation for submission. It was also communicated in 6 different conferences and seminars
focusing each time on different aspects of the study, i.e. nutrient recovery and recycling,
environmental assessment methodology and multi-objective optimization in order to ensure an

enriching exchange between authors and the most involved researchers in each field.

The perspectives might be divided into the three main aspects of the platform: wide-plant modelling,
LCA and multi-objective optimization. Before, it should be noted that the flexibility is one of the main
characteristics in the DM-LCA-EMOQ platform. This characteristic was particularly pursued
throughout this work. Special efforts were made during the construction of the platform in order to

ensure its applicability to other benchmarks or other case studies that might become relevant.

Considering modelling and simulation, the flexibility is especially important as WWTP flowsheets are

frequently changing to achieve, for instance, lower required reject limits. One might also want to
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evaluate a different and innovative process by comparing it with a reference one. Also, the modelling
of specific parts of the process are evolving rapidly nowadays such as nitrous oxide emissions
modelling that have not yet achieved a consensus in scientific and industrial communities. The latter,
however, might completely revolve the choice of functioning parameters when sustainable scenarios

are targeted.

According to inputs in WWTP, it is also important to increase efforts to provide more realistic
information at different level (time dependency, geographical and catchment characteristics).
However, this is also highly dependent on real-world data collection that would allow the
comprehension of dynamics, mainly for urine generation that is not deeply studied, especially
according to aspects related to the time dependency and the fate of some components. Another
interesting perspective that might be considered is the generation of other streams from a household

when considering other source separation scenarios.

Improving proposals in the field of LCA includes mainly the addition of dynamic aspects in the
environmental assessment as well as the addition of more details — such as emerging substances -
when the system is case specific. It should be noted that, currently, as LCA relies on steady state
conditions, the dynamic results of WWTP operation are integrated and calculated in average.
However, certain improvements in LCA would allow the consideration of the time dependency in
background processes according to the operational functioning of the plant as well as long term
changes in catchment and concentration changes in the wastewater input due to, for instance,

population growth or water scarcity conditions.

Another important effort to be made when considering environmental analysis coupled to WWTP
scenarios concerns the infrastructure involvement, as evaluations based on alternative scenarios might
also include infrastructure modifications in order to reflect their real gains. However, nowadays, a
great uncertainty is involved in environmental analysis and thus, slight modifications in infrastructure
might not be quantified correctly. In this sense, efforts have to be made in order to consider the
infrastructure modelling in a rigorous way or at least to validate the uncertainties linked to a plant size
range to allow the redesign of new alternative scenarios. Accordingly, one might think of an
exhaustive list of perspective scenarios (with infrastructure changes) to be evaluated and optimized
such as the inclusion of anaerobic ammonium oxidation in the mainstream as well as a multitude of

processes for the treatment and valorisation of urine source separated.

Considering the optimization aspects, methodology is evolving rapidly and recent advances on
machine learning have been helpful in the field of expensive optimization. From the best of our
knowledge, the utilisation of these tools, especially the Support Vector Machine (SVM) for efficient

function recognition and approximation might represent an important gain in case of expensive
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optimization such as in WWTPs, but also when the optimization is subject to multiple stiff constraints.
Finally, as the optimization platform is mixed-integer, there is also the possibility of including a
superstructure in the optimization problem by using binary variables, the pathway to follow in the
treatment, for instance in the case of urine source separation and especially when more complex
problems such as full household waste managements or elevated retention percentages of urine are
envisaged.

As a final conclusion, the developed DM-LCA-EMOO tool is how available for both evaluation and
optimization of any desired scenario in the field of WWTPs and WRRFs, under realistic assumptions
and operational conditions. The tool is indeed flexible enough to be adapted to any related case studies
and might be integrated to any existing modelling platform.
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Selon les Nations Unies, dans le monde, 40% des personnes souffrent d’une pénurie d'eau et
ce nombre risque d’augmenter. En 2011, 41 pays ont connu un stress hydrique et, d'ici 2050, au moins
une personne sur quatre serait touchée par des pénuries d'eau récurrentes. Globalement, encore 2,4
milliards de personnes utilisent des installations d'assainissement précaires et au moins 1,8 milliard de
personnes utilisent une source d'eau potable qui est contaminée par des feces. En conséquence, environ

1000 enfants meurent chaque jour en raison de maladies liées a I'eau et au manque d'assainissement.

Les Objectifs du Millénaire pour le Développement (en anglais, Millennium Development
Goals, MDGs) proposés en 2000 par le Programme des Nations Unies pour le développement, qui
comptent parmi les huit principaux objectifs, la durabilité environnementale est arrivée a son terme en
2015. Comme indiqué dans le rapport final (Nations Unies, 2015), des progres ont été réalisés : 1,9
milliard de personnes ont acces a I'eau potable depuis 1990 ; 2,1 milliards de personnes ont maintenant
acces a un assainissement amélioré et 98% de substances appauvrissant la couche d'ozone ont été

éliminées depuis 1990.

Toutefois, de nombreux progrés restent a faire et certains points ont été laissés de coté.
Comme indiqué dans le rapport final, le changement climatique et I'environnement se détériorent. Les
chiffres relatifs aux impacts environnementaux directs sont alarmants: les émissions mondiales de
dioxyde de carbone (CO,) ont augmenté de plus de 50% depuis 1990 et le taux de croissance des
émissions entre 2000 et 2010 a été plus important que dans chacune des trois décennies précédentes;
Les émissions de méthane (CH,) et de protoxyde d’azote (N,O), puissants gaz a effet de serre,
pourraient augmenter de 50% et 25% entre 1990 et 2020 ainsi que la température moyenne mondiale
qui a augmenté de 0,85 °C entre 1880 et 2012; En outre, le niveau moyen de la mer a augmenté de 19
cm entre 1901 et 2010 et environ 40% des océans sont actuellement fortement touchés par les activités
humaines; Enfin, on estime que 90% des eaux usées dans les pays en développement sont rejetées sans
traitement (Nations Unies, 2016).

Néanmoins, non seulement les chiffres sont alarmants. Les changements dans le contexte
mondial deviennent de plus en plus évidents quand on considere la croissance de la population avec
l'urbanisation et I'industrialisation, la demande alimentaire croissante, les changements de l'utilisation
des terres et dans les niveaux de vie (UN-Water, 2015). Par conséquent, compte tenu de la pression
croissante exercée sur les systémes existants de collecte et de traitement des eaux usees, celles-ci sont
évacuées sans traitement et la qualité de I'eau ou elles sont déversées, diminue. Ce manque de
traitement conduit & des impacts directs sur I'équilibre des écosystemes aquatiques et finit en modifiant

également les activités anthropiques, du développement urbain a la production alimentaire et a
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I'industrie. En conséquence, I'environnement est menacé et soumis a des pressions ; également, la

santé humaine est en voie de dégradation.

Par conséquent, il est de plus en plus clair que les eaux usées, en tant que flux de pollution
produit par l'activité anthropique qui a besoin d'utiliser les ressources naturelles, doivent retourner a
I'environnement de maniere sdre. Ceci est essentiel pour mettre fin a la dégradation engendrée par ce
cycle non écologique et qui entraine I'épuisement des ressources, la dégradation des écosystémes et
enfin I'exposition de la santé humaine & un danger imminent. Il est donc impératif de trouver une
gestion et un traitement des eaux usées plus consciencieux pour atteindre des niveaux de traitement
plus élevés et une robustesse afin de faire évoluer ensemble le lien écosysteme - santé humaine. Dans
ce sens, au lieu d'étre une source de problemes, les eaux usées bien gérées devraient jouer un role
positif dans I'environnement, ce qui améliore la sécurité alimentaire, la santé et I'économie. Cependant,
cela ne peut étre fait que si la gestion des eaux usées est considérée comme faisant partie intégrante
d'un cycle intégré et d'un systeme de gestion écosystémique comprenant des aspects sociaux,

économiques, environnementaux et géographiques (Corcoran et al., 2010).

Les eaux usées sont aujourd'hui décrites comme une ressource et un probléme par plusieurs
auteurs. Depuis 2013, des publications de la Water Environment Federation (WEF) ont commencé a
utiliser le terme « WRRF — Water Resource Recovery Facility » plutét que « WWTP — Wastewater
Treatment Plant » pour « mieux cibler les produits et les avantages du traitement, plutdt que les
déchets qui entrent dans ces installations » (WE & T, 2013). Dans le passe, l'objectif principal du
traitement des eaux usées était d'atteindre les limites de rejet autorisées. De nos jours, les objectifs
visent a maximiser la récupération des ressources précieuses bien que la qualité de I'eau soit maintenue

et que la robustesse des processus soit atteinte.

Lorsque I'on considére les éléments nutritifs, la partie la plus importante vient de l'urine. Par
exemple, comme discuté par Tidaker et al. (2007), I'urine de la population suédoise contient environ
36 kilotonnes d'azote et 3,3 kilotonnes de phosphore tandis que 170 kilotonnes d'azote et 15 kilotonnes
de phosphore ont été consommeées a partir d'engrais minéraux en Suéde en 2001. Par conséquent, si
l'azote, le phosphore et méme le potassium de 1’urine avaient €t¢ utilisés en remplacement des engrais
synthétiques, la production industrielle de ceux-ci pourrait étre diminuée et la décharge de ces

nutriments serait également réduite (Johansson et al., 2000).

Aussi, I'extraction des ressources des eaux usées n'est pas nouvelle. Certaines solutions telles
que la production d'eau adapté a l'usage a posteriori (fit-for-purpose), les biosolides utilisés dans les
terres agricoles et la production d'énergie provenant de la digestion anaérobie sont déja courantes dans

les stations d'épuration. De nos jours, on commence a étudier de nouveaux procédés pour produire /
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récupérer des composés spécifiques des eaux usées comme la struvite précipitée (a utiliser comme
engrais), les polyhydroxyalcanoates a partir des boues et a utiliser le gaz issu de la digestion pour
produire du méthanol ou de I'ammoniac (WERF, 2011).

En outre, l'utilisation des biosolides et des eaux usées elles-mémes dans les terres agricoles est
de plus en plus acceptée par la population. Dans les pays en développement, la réutilisation des eaux
usées est due notamment a la capacité limitée de traiter les eaux usees et a I'absence d'autres sources
d'eau acceptables pour I'agriculture. Dans les pays développés, la réutilisation et le recyclage de I'eau
sont de plus en plus considérés comme un moyen de répondre a la pénurie sur place d’eau et a la
réaffectation de l’eau dédie a l'agriculture a d'autres usages. En outre, toutes les normes
environnementales strictes conduisent a une utilisation agricole inévitable et économiquement faisable

des eaux usées et des boues (Drechsel et al., 2010).

La digestion anaérobie est aujourd'hui un processus de valorisation dans plusieurs stations
d’épurations. Dans ce procédé, la fermentation microbienne a lieu et convertit la matiére organique en
biogaz (principalement CH, et CO,) qui peut ainsi étre utilisé pour produire de I'énergie dans les
systémes de cogénération. Une autre conséquence de la digestion anaérobie est la minéralisation des
composés organiques biodégradables qui conduit & une concentration élevée de NH," et PO,> en
solution et a la stabilisation des boues (van Lier et al., 2008). Plusieurs études ont été menées afin
d'améliorer la production de biogaz visant a inverser le bilan énergétique et a conduire les stations
d'épuration a étre en autarcie énergétique (Schaubroeck et al., 2015; Aichinger et al., 2015). Etant
donné que la production de biogaz dépend des solides en suspension volatils entrant dans le digesteur
qui seront dégradés, une possibilité d'augmenter la production de biogaz est de forcer I'entrée de plus
de matiére organique dans le digesteur. Ceci peut étre fait en récupérant la matiere organique entrant
dans la station par une clarification primaire renforcée (avec une addition de produits chimiques pour
obtenir une meilleure floculation), précédemment a sa dégradation dans la ligne d'eau par I'oxydation
microbienne. Un autre avantage de la récupération de la matiére organique a ce point est qu’il aura
moins de croissance bactérienne pour traiter le carbone dans les bassins aérés et donc moins d'énergie
sera nécessaire pour aérer la boue activée (Flores-Alsina et al., 2014). Des recherches plus récentes ont
également été développées pour le procédé a forte teneur en boues activées (HRAS) - Jimenez et al.,
2015 - travaillant a faible temps de rétention de la boue et également pour le processus de nitritation
partielle et anammox sur la ligne principale (Laureni et al., 2016). Si le couplage des deux approches
précitées réussissait, cette approche innovante permettrait de minimiser la dégradation aérobie de la
matiere organique et de produire des boues plus fermentescibles pour la digestion anaérobie (Xu et al.,
2015).
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Une des possibilités prometteuses de la récupération du phosphore est la précipitation de la
struvite provenant des eaux usées. La struvite (phosphate d'ammonium et de magnésium hexahydraté -
MgNH4PO, - 6H,0) est un engrais a libération lente qui pourrait remplacer les engrais industriels
conventionnels. La récupération de la struvite a partir des eaux usées permettrait non seulement une
diminution de la production d'engrais minéraux et I'épuisement des ressources naturelles de phosphore,
mais aussi une diminution du phosphore rejeté. Cependant, pour étre réalisables et présenter des
avantages reels, la précipitation de la struvite doit étre conduite dans des eaux usées riches en
nutriments, contenant principalement du phosphate et de I'ammonium. Plusieurs études ont été menées
pour la précipitation de la struvite en utilisant, entre autres, le surnageant de digesteur, le lixiviat de
décharge et l'urine. Cependant, comme l'ont discuté Maurer et al. (2006), sans ajout de phosphate,
seulement 3% de l'azote dans l'urine pourraient étre éliminés dans la précipitation de la struvite (avec
une précipitation efficace de 98% de phosphore). Par conséquent, davantage de recherches sur les

nouveaux procédés de récupération de I'azote sont encore nécessaires.

Comme précédemment mentionné, plusieurs possibilités de valorisation sont disponibles et
bien appliquées dans les stations d'épuration. Cependant, I'un des freins pour tirer pleinement parti de
la récupération des ressources dans les eaux usées est que dans les eaux usées municipales, les flux
riches en éléments nutritifs (par exemple 1’urine et les féces) ne doivent pas étre dilués (par exemple
par les eaux grises) et donc la séparation a la source devrait étre encouragée. Dans le méme temps, le
choix des systemes centralisés ou décentralisés n'est pas évident: entre autres, I'approche de gestion
dépend de la zone (urbaine ou rurale), de la taille et de la densité de la population, du niveau de
développement, de la faisabilité technique, de la qualité de I’eau requise et de 1'éducation et de la
culture de la population, étant nécessaire de I’évaluer au cas par cas (Corcoran et al., 2010, Libralato et

al., 2012).

De nombreux aspects des systemes centralisés et décentralisés font I'objet de discussions dans
la littérature. Selon Libralato et al. (2012), quelques aspects importants a prendre en compte pour les
systémes centralisés sont les colts concurrentiels des installations existantes, les phénomenes
potentiels d'eutrophisation et les problémes de surcharge en eau de pluie. D'autre part, les systémes
décentralisés peuvent répondre a des situations diverses, a la diminution ou a I’arrét de la réduction de
la qualité de I'eau dans les bassins versants et permettre la récupération et le recyclage des nutriments a

partir des eaux usées comme dans le cas de la separation de l'urine & la source.

De plus, certains inconvénients ont également été présentés dans les systémes pilotes
décentralisés tels que les précipitations et, par conséquent, le colmatage des tuyaux et les odeurs ainsi
que les difficultés lors que des changements dans le systeme centralisé sont nécessaires et le stockage

et le transport doivent étre ajoutés a la nouvelle structure de gestion (Maurer et Udert et al., 2003). En
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ce qui concerne les impacts, certaines études ont montré des impacts plus importants pour
I'acidification lors de l'analyse de I'empreinte écologique des systemes séparés a la source. Cependant,
il est également souligné que, contrairement aux systemes conventionnels déja optimisés, les systemes
alternatifs doivent étre bien évalués afin d'obtenir des résultats optimaux en termes de qualité des
effluents et de consommation d'énergie et de produits chimiques (Remy, 2010).

Méme lorsque l'on dispose de données pour évaluer les technologies classiques et les
nouvelles technologies, on pourrait prétendre que, selon la méthodologie utilisée pour évaluer le
processus, les résultats seraient différents. Il est donc nécessaire d'avoir une méthodologie normalisée
pour évaluer I'ensemble du processus et de ses besoins. Actuellement, différents outils d'évaluation
sont disponibles pour évaluer la durabilité des systémes tels que l'analyse de I'exergie, I'analyse
économique et I'Analyse de Cycle de Vie (ACV) (Balkema et al., 2002).

Dans le but danalyser I'empreinte écologique des stations d'épuration, plusieurs études
suggerent l'utilisation de 'ACV. Cette méthodologie permet d’évaluer les impacts environnementaux
attribués au cycle de vie d'un processus ou d'un produit. Selon I'ISO 14044 (2006), I'ACV est définie
comme la compilation et I'évaluation des intrants, des sortants et des impacts environnementaux
potentiels d'un systéme ou d’un produit tout au long de son cycle de vie. Dans ce contexte, il convient
de tenir compte de I'impact de la décharge des effluents (approche de fin de cycle), mais également de
I'ensemble des processus associés au traitement principal, tels que le traitement et I'élimination des

boues, la consommation d'énergie et la production de matériaux auxiliaires.

Lors de I’application d’une ACV sur un procédé, les quatre étapes principales recommandées
par I'ISO 14044 (2006) doivent étre suivies: i.) La définition de l'objectif et du scope de 1’étude; ii) la
définition de I'inventaire; iii) la phase d'analyse d'impact et iv.) L'interprétation. La premiére étape, la
définition de I'objectif et du scope, permet de décrire le systeme en fonction des limites du méme, de
I'unité fonctionnelle et des méthodes d'allocation. Aussi, la bonne définition de 1’unité fonctionnelle
permet la comparaison entre différentes alternatives. La deuxiéme étape, l'inventaire du cycle de vie,
est la compilation des toutes les consommations estimées de ressources de l'environnement et des
substances émises a I'environnement pendant le cycle de vie. A la fin de cette étape, un inventaire du
systeme est obtenu sur la base d'une unité fonctionnelle bien définie. La troisieme étape, 1’évaluation
de I'impact sur le cycle de vie, fournit la corrélation entre les substances émises et les indicateurs
d'impacts sur l'environnement. Enfin, la derniére étape, c’est-a-dire, l'interprétation de 1’analyse du
cycle de vie, apparait naturellement lors de 1’étape de décision, apres la comparaison des scénarios

(Rebitze et al., 2004) et de I’identification des hotspots dans le systéme étudié.
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Dans le domaine du traitement de l'eau et des eaux usées, 'ACV a déja été utilisée dans
plusieurs études pour évaluer les performances environnementales des technologies proposées. Les
différentes applications de I'ACV dans ce domaine publiées jusqu'a présent ont été recensés
(Corominas et al., 2013a) pour différentes configurations de stations d'épuration ainsi que pour les
technologies de gestion des boues d'épuration (Yoshida et al., 2013) et pour le systéme complet d’eau
urbain (Loubet et al. ). Cependant, comme les résultats sont généralement obtenus par les données
collectées sur site, les études ne peuvent pas étre utilisés pour analyser automatiquement les tendances
générales ni pour optimiser les processus. Par conséquent, la prise en compte d'une ACV avec les
outils de modélisation et de simulation est une approche puissante pour permettre la modification des
parameétres opérationnels et de 1’écoconception. Cependant, il faut souligner que, pour étre réaliste et
pour fournir une comparaison équitable par rapport aux scénarios étudiés, I’ACV doit étre conduite en
tenant compte des limites appropriées et d’une méthodologie d'allocation pertinente. Par exemple, lors
de I'analyse de la récupération des nutriments, I'évaluation du cycle de vie doit étre adaptée pour tenir
compte de tous les impacts évités via les sous-produits. De méme, les nouvelles fonctions du systéme

doivent étre ajoutées car les nouveaux scénarios ne fourniront plus la méme unité fonctionnelle.

Une autre caractéristique importante de I'ACV qui permet de I'appliquer a la quantification des
impacts et a I'évaluation des scénarios dans le traitement des eaux usées apparait quand on considére
les émissions directes de la station d’épuration. Méme si aujourd'hui, les méthodologies d'évaluation
de I'impact sur le cycle de vie ne sont pas capables d'intégrer toutes les substances sortant d'une station
d'épuration, comme les résidus des produits de soins et les résidus de médicaments, les principales
émissions résultantes de la mise en ceuvre d'un traitement des eaux usées (tels que le rejet de polluants
non traités, le rejet des gaz a effet de serre et la forte consommation d'énergie et de produits
chimiques) peuvent étre correctement quantifiés et évalués par les catégories d'impact actuellement
disponibles (par exemple l'eutrophisation marine et d'eau douce, la toxicité humaine, le changement

climatique et I'épuisement des ressources).

Cependant, lorsqu'une nouvelle technologie doit étre évaluée en tenant compte de la durabilité
mais aussi des aspects techniques et économiques, il est important de conduire une optimisation. De
plus, cette optimisation doit considérer, non seulement un point de fonctionnement optimal; Il

nécessaire de faire des compromis entre les différents résultats sans aucun jugement préliminaire.

Comme l'explique Deb (2011), [l'optimisation multi-objectif consiste a optimiser
simultanément plus d'un objectif. Contrairement a l'optimisation mono-objectif, I'optimisation multi-
objectifs minimise toutes les fonctions objectives, généralement contradictoires, simultanément et sans
utiliser une équivalence entre les objectifs via des poids. Par conséquent, un ensemble de solutions,

appelé un front de Pareto, est généralement obtenu & la fin d'une optimisation multi-objectif. Ensuite,
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une étape supplémentaire, le processus décisionnel, est nécessaire pour comprendre les compromis et
pour trouver le point de fonctionnement optimal, si besoin. En outre, étant donné que les objectifs
contradictoires sont le plus souvent impliqués, aucune des solutions optimales trouvées ne peut étre
améliorée sans aggraver au moins un des autres objectifs (Hakanen et al., 2011) et ainsi les solutions

ne peuvent pas étre facilement triées seulement sur la base de leur valeur objective.

Il existe différentes fagons de résoudre un probléme d'optimisation multi-objectif parmi
lesquels les algorithmes génétiques, largement connus en raison de leur robustesse. Dans cette
méthode, l'optimisation est réalisée en utilisant une population de solutions, habituellement créées au
hasard et donc la robustesse est assurée indépendamment de la qualité de l'initialisation. Ensuite,
I'algorithme fournit une opération de génération (itérative) mettant a jour la population actuelle pour
créer de nouvelles populations basées sur des opérations génétiques telles que la sélection génétique,
le croisement, la mutation et la migration. Cette opération, basée sur la génération, est poursuivie

jusqu'a ce qu'un ou plusieurs criteres de terminaison prédéterminés soient satisfaits (Deb, 2011).

Du point de vue de l'application, l'optimisation de la conception et de l'exploitation des
stations d'épuration a été appliquée depuis les années 1990. En général, les stratégies d'optimisation
décrites dans la littérature sont basées sur lI'agrégation, c'est-a-dire que l'optimisation est réalisée en
agrégeant plusieurs objectifs en une fonction objective unique a travers des facteurs de poids
représentant l'importance de chaque objectif (Hakanen et al., 2011; 2013).

Cependant, comme décrit par Hreiz et al. (2015) dans un état de 1’art de l'optimisation des
stations d’épuration, plusieurs objectifs n'ont pas les mémes unités (et parfois ils sont méme
contradictoires) et ne peuvent donc pas étre combinés instinctivement pour former une seule fonction
objective. D'un point de vue pratique, méme si des procédés hautement non linéaires sont présents
dans une station d’épuration, par exemple en raison d’une modélisation rigoureuse des réactions
biochimiques, il est important d'éviter I'agrégation des objectifs et de préserver la structure
intrinsequement multi-objective du probléme d'optimisation. Par exemple, la qualité des eaux usées
traitées et les colts opérationnels sont deux objectifs contradictoires car, pour atteindre des
concentrations faibles de matiére organique, d’ammonium ou de phosphate dans les effluents, la

consommation d'énergie et de produits chimiques dans 1’usine doit étre élevée.

L'optimisation multi-objectif est reconnue comme étant plus appropriée pour traiter les
problémes dans les stations d’épuration en raison de la nature conflictuelle des objectifs pris en
compte. De plus, l'utilisation d'algorithmes d’optimisation qui n’utilisent pas un gradient tels que les
algorithmes génétiques peut étre priorisé pour éviter les incertitudes dues a I'approximation numérique

des gradients dans les systemes hautement non-linéaires et pour assurer la robustesse de I'algorithme.
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Néanmoins, en ce qui concerne ces algorithmes, le principal inconvénient est le budget numérique
requis. Aussi, I'étude d’une station d’épuration compléte est un exemple d'un probléme d'optimisation

coQteux, ou la résolution sans un outil d'optimisation efficace serait pratiquement impossible.

Dans le but de fixer un budget de calcul qui permet d'obtenir un front de Pareto optimal,
Ahmadi et al. (2016) ont proposé un nouvel algorithme appelé AMOEA-MAP pour traiter les
problémes colteux de simulation et réduire le budget informatique de I'optimisation a environ 300
évaluations de la fonction objective. Les modifications proposés dans cet algorithme reposent
principalement sur le maillage adaptatif de I'espace de recherche, pour accélérer la recherche sans

perte de précision et sur une approche bi-population (Ahmadi et al., 2016).

Finalement, le choix des systemes innovants et plus durables de gestion et de traitement des
eaux usées nécessite un soutien décisionnel multicritére capable de prendre en compte tous les aspects
techniques, économiques et environnementaux. Par conséquent, il est nécessaire d'avoir un outil
capable de prédire de maniere fiable et interconnectée les avantages et les inconvénients lors de

I'application d'une technologie nouvelle.

Les travaux présentés dans ce manuscrit poursuivent une thése conclue au Laboratoire
d'Ingénierie des Systémes Biologiques et des Procédés (LISBP) de Méry (2012). Dans le travail
précédemment cité, un outil intégré pour la modélisation et I'évaluation du cycle de vie appliqué a
l'analyse environnementale des stations de potabilisation de I’eau a été mis au point avec succes. En
revanche, ce travail été axé sur le développement de la modélisation et de la simulation des processus
unitaires en régime stationnaire (considérées comme satisfaisantes pour ce type de processus) et sur
I'application & une installation existante. Suite a I'idée de cette approche antérieure, il semblait évident
que la méme approche pourrait étre appliquée a d'autres champs d’étude comme le traitement des eaux
usées. Cependant, comme les processus physico-chimiques et biologiques impliqués dans ce type de
procédé sont complexes et dépendent fortement des entrants (composition, variation de débit), il est
extrémement important d'adopter une modélisation rigoureuse et dynamique. Un autre intérét
recherché dans le présent travail est la construction de scénarios de perspective, ce qui signifie que
I'outil devrait avoir un aspect prédictif et une capacité d'écoconception. Une approche d'optimisation

multi-objectif devrait alors étre intégrée pour aborder les objectifs contradictoires impliqués.

L'objectif principal de cette étude est donc d'obtenir une plateforme couplant la
modélisation dynamique rigoureuse, I'analyse de cycle de vie et un outil d'optimisation multi-

objectif efficace.
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La plateforme développée, DM-LCA-EMOO, doit étre flexible afin de permettre la mise en
ceuvre des différents scénarios ainsi que des multiples critéres en fonction des différents parametres de
décision. Aussi, pour atteindre les objectifs, les outils impliqués dans la plateforme doivent étre
interconnectés avec leurs paramétres de processus et leurs résultats. Initialement il est donc nécessaire
de contréler automatiquement les simulateurs commerciaux existant ainsi que d'exécuter des
simulations et de récupérer les résultats. Lorsque les résultats sont récupérés, ils doivent étre convertis
en substances et modules corrects pour I'ACV afin de permettre la prise en compte des processus de
premier plan et de fond avec les bilans de masse et d'énergie. Des exemples de valeurs importantes
récupérées sont la violation des limites de rejet, la quantité d'énergie produite sur la quantité d'énergie
consommée, les concentrations moyennes en sortie de la STEP, entre autres. Aussi, les impacts
doivent étre obtenus d’une sorte a ce qu’a la fin de 1'évaluation d'une gamme de scénarios, une analyse
de contribution détaillée puisse identifier les hotspots les plus importants de chaque scénario a
optimiser ultérieurement. Enfin, pour permettre l'optimisation multi objectif des scénarios, la
plateforme doit étre reliée & un algorithme d’optimisation multi-objectif efficace qui permet

I'optimisation de la station d'épuration.

La plateforme développée doit étre en mesure d'évaluer et de comparer les options de gestion
et de traitement des eaux usées classiques et alternatives. Parmi les alternatives envisagées, on cherche
a étudier la séparation a la source de 1’urine avec un traitement spécifique (production de la struvite et
nitritation / oxydation anaérobie d'ammonium) et / ou la valorisation en agriculture et la clarification
primaire renforcée pour augmenter la production de biogaz dans la station d’épuration afin d’atteindre

une autarcie énergétique.

L'intérét d'une telle plateforme combinée peut étre compris sous deux angles. Premiérement, il
s'agit d'un outil de validation de benchmark, qui consiste donc a évaluer et a comparer des scénarios
conventionnels et alternatifs (approche DM-LCA - chapitre 2). Deuxiemement, lorsqu'elle est couplée
a [loutil d'optimisation, la plateforme est capable d'optimiser simultanément les variables
opérationnelles et de conception (approche DM-LCA-EMOQ - chapitres 4 et 5), pouvant aussi valider
des nouvelles configurations avec un réajustement des conditions de fonctionnement en raison des
modifications éventuelles de la structure de l'installation et des conditions de fonctionnement. De plus,
afin de satisfaire aux objectifs de modélisation et de simulation, un générateur d'influents
phénoménologique et dynamique doit étre adapté pour tenir compte des intrants réalistes dans la

station d'épuration et dans le traitement de 1’urine (chapitre 3).

Ce manuscrit est structuré en 6 chapitres. Le chapitre | présente le contexte et les objectifs de
la these en présentant les principaux défis a relever en tenant compte des approches existantes dans la

littérature. Dans ce contexte, les objectifs de recherche et les tches correspondantes sont définis.
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Le chapitre Il décrit le développement initial de la plateforme qui couple la modélisation
dynamique et I'évaluation du cycle de vie avec des limites étendues. De plus, la plateforme développée
est utilisée pour évaluer des scénarios conventionnels et alternatifs. En mettant I'accent sur le choix de
scénarios alternatifs pour l'avenir, I'attention a été portée a la modélisation et a I'analyse des hotspots
de chaque scénario visant a les optimiser davantage.

Le chapitre Il présente I'adaptation d'un générateur influent phénoménologique et dynamique
qui est nécessaire pour obtenir des données d’influents plus réalistes (et par conséquent des résultats
de simulation plus précis) pour des scénarios de séparation a la source de I'urine avec le flux d'eaux

usées résultant.

Le chapitre IV est une étude préliminaire sur l'optimisation multi-objectif de la station
d'épuration qui vise a comprendre la faisabilité d'une telle optimisation, tant du point de vue du calcul
que de la fiabilité. Une attention particuliére est portée dans ce chapitre a la formulation du probleme
en tenant compte des variables de décision, des fonctions objectives et des contraintes. Le choix d'un

algorithme d'optimisation efficace est également discuté et justifié.

Finalement, le chapitre V présente l'application de la plateforme DM-LCA-EMOQO élaborée
précédemment a un scénario de référence et a des scénarios alternatifs. De plus, différentes
formulations de problémes sont étudiées en méme temps que ses effets sur les résultats du front de

Pareto.

Enfin, le chapitre VI présente les principales conclusions de ce travail ainsi que les

perspectives qui suivent cette theése.

Chapitre 11

Ce chapitre est publié dans Water Research, 84 (99-111), doi: 10.1016 / j.watres.2015.06.048.
Il est le résultat du couplage de la modélisation dynamique et de 1’analyse de cycle de vie (ACV) avec
I'application correspondante a plusieurs scénarios. Les scénarios étudiés comprennent i.) Un scénario
de référence; ii) un scénario de clarification primaire renforcée; iii) un scénario de séparation d'urine a
la source; iv) un scénario combinant les variantes ii et iii (USS + EPC); v.) Un scénario adapté du
scénario iv ou le flux résiduel riche en azote issu de la précipitation de la struvite est épandu sur les
terres agricoles et valorisé comme engrais (USS + EPC + AGRI); vi.) Un scénario adapté de iv ou le
flux riche en azote est traité par nitritation / oxydation anaérobie d'ammonium conjointement avec

I'effluent de déshydratation provenant de la digestion anaérobie (USS + EPC + ANA).
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Le choix des scénarios refléete ce qui a été discuté précédemment dans l'introduction et est
inévitable aujourd'hui: Les stations d'épuration devraient se diriger vers les installations de
récupération d’énergie et nutriments afin d'obtenir des systémes de gestion et de traitement des eaux
usées plus durables. Toutefois, cette perspective respectueuse de I'environnement ne peut étre atteinte
et bien évaluée qu'en ayant une vision intégrée de I'ensemble du processus et en considérant la voie
compléte des eaux usées, de la source a la réutilisation de l'eau traitée dans I'environnement et a la

récupération des sous-produits.

Plusieurs questions doivent étre adressées lors de la modélisation de ces systémes. Afin de
répondre a cette approche comparative qui permet d’aller vers les systémes plus durables, la
plateforme a été développée en tenant compte des frontiéres étendues de I'évaluation du cycle de vie,
c'est-a-dire que toutes les émissions (directes et indirectes), ainsi que les émissions évitées ont été

prises en compte.

Chapitre 11

La récupération des nutriments, en particulier de l'azote et du phosphore, pourrait étre
envisagée si |’urine était récupérée séparément et non diluée. En ce qui concerne les expériences de
séparation de l'urine a la source, plusieurs études pilotes ou méme des villages écologiques ont été mis
en ceuvre de nos jours. Cependant, peu de études de modélisation et de simulation ont été trouvées sur
la littérature concernant cette séparation. A la connaissance des auteurs, il s’agit d’une conséquence de
la variabilité de la concentration et de la génération de 1’urine qui n'est pas constante car elle dépend
du comportement humain et il est donc difficile de caractériser dynamiquement l'urine de maniére
réaliste. Par conséquent, il est essentiel d'avoir un outil pour générer un flux d’urine réaliste,
dynamique et standardisé ainsi que les autres flux d'eaux usées. Comme montré dans une revue
proposée par Martin et Vanrolleghem (2014) sur l'analyse et la génération d'influents, plusieurs
approches sont actuellement disponibles pour pallier au manque d'information sur les influents.
Cependant, il existe encore un besoin important de mettre en ceuvre des générateurs d'influent plus

réalistes.

En conséquence, l'objectif de ce chapitre est de proposer un générateur d'influent flexible,
dynamique et phénoménologique pour considérer a la fois I’urine et les eaux usées. Ce chapitre est en
préparation pour étre soumis a une revue en partenariat avec I'Institut Eawag afin d'assurer des aspects
réalistes dans la génération d'urine. Ce générateur d'influent a été adapté a partir du générateur
d'influent dynamique et phénomeénologique de Gernaey et al. (2011). Les données sur la composition

des urines et des eaux usées ont été obtenues a partir d'une compilation de la littérature pour respecter

179



Résumé long en francgais

les données réelles. Aussi, le modele est flexible et permet de simuler des études de cas spécifiques
(lorsque I'utilisateur veut considérer, par exemple, d'autres systémes de séparation a la source, d'autres
dynamiques de génération ou d'autres conditions géographiques ou de collecte) ainsi que l'utilisation a
posteriori des influents dans les modeles de la famille ASM et les super-modéles.

Chapitre IV

Lorsqu'un outil automatisé est disponible pour la quantification des performances, des co(ts et
des impacts environnementaux tels que la plateforme précédemment décrite, on pourrait vouloir
analyser un large éventail de scénarios disponibles et d'alternatives opérationnelles. Cependant, étant
donné l'aspect rigoureux des simulateurs dynamiques, le probléme pourrait facilement devenir colteux

et complexe a résoudre, avec des exigences considérables en termes de temps de calcul.

Une étude de faisabilité de 1’optimisation - du point de vue du temps de calcul et des
perspectives de fiabilité - a donc été menée dans ce chapitre (récemment accepté pour publication dans
Chemical Engineering Research and Design) en tenant compte de trois fonctions objectives: le colt
opérationnel, la qualité des effluents et les impacts environnementaux. De plus, lI'impact de I'addition
de contraintes a été analysé sur la base des limites de rejet européennes. Aussi, I'étude de faisabilité a
été menée a l'aide d'un scénario alternatif (séparation de la source d'urine et traitement par struvite et
nitritation / anammox) pour assurer I'optimisation d'un probléme plus complexe que celui de la station

d’épuration classique.

Chapitre V

Lorsqu'un outil rigoureux et intégré est disponible et que la faisabilité de I'approche a déja été
validée, une analyse appropriée des différentes études de cas du monde réel peut étre réalisée afin de
comprendre, par exemple, comment les objectifs, les contraintes ou la dynamique du processus sont
influencés par un point de fonctionnement de la station d’épuration. Par ailleurs, pour la suite, des
études comparatives basées sur l'optimisation sur différents scénarios alternatifs par rapport aux
procédés conventionnels sont pratiques et fiables a réaliser. En effet, dans ce cas, l'optimisation
devient un outil puissant pour aider a I'apprentissage des interactions entre les systemes et des objectifs

interdépendants.

Par conséquent, un des objectifs de ce chapitre est d'étudier les différentes formulations de

problémes ainsi que leurs conséquences sur les résultats optimaux, lorsqu'ils sont appliqués aux
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scenarios de référence ou aux scénarios alternatifs. Ensuite, sur la base d'un scénario conventionnel de
référence, des études comparatives sur la simulation dynamique par rapport a I'état stationnaire sont
fournies. De plus, I'impact de la formulation de contraintes sur la qualité des solutions optimales est
discuté. La différence entre la méthode ReCiPe Endpoint et le ReCiPe Midpoint pour l'analyse
environnementale est également réalisée en tant qu'étude comparative. Enfin, une comparaison entre la
référence et un scénario alternatif (séparation de 1’urine a la source suivie d'un traitement de 1’azote)

est fournie. Ce chapitre sera soumis pour publication dans la revue Water Research.

Conclusions et perspectives

De nos jours, les eaux usées peuvent étre considérées a la fois comme un probléme et comme
une occasion de récupération des nutriments et de I'énergie. Si considérée comme un probléme, vu
qu’on doit assurer la qualit¢ de I’ecau dans les bassins versants et éviter d'autres problemes
environnementaux indirects, les eaux usées doivent étre correctement traitées. Ce traitement nécessite
l'utilisation d'une quantité importante d'énergie (en particulier pour le traitement de l'azote) et de

produits chimiques.

Cependant, si I'on considére les eaux usées comme source d'éléments nutritifs et d'énergie,
elles sont une alternative prometteuse et, par conséquent, les stations d'épuration sont aujourd'hui
considérées principalement comme des installations de récupération des ressources. La récupération
pourrait inclure des options différentes et plus ou moins innovantes telles que la récupération d'énergie
par la production de biogaz et la séparation a la source de I'urine avec la récupération / traitement de

nutriments (principalement 1’azote et le phosphore).

Le travail présenté dans ce manuscrit est le résultat d'une approche de couplage comprenant
une modélisation dynamique rigoureuse, une évaluation du cycle de vie avec des limites étendues et
une optimisation multi-objectif efficace. En ce qui concerne les influents, une plus grande fiabilité a
été obtenue puisque cette étude a examiné la caractérisation dynamique de I'urine et des eaux usées
suivie de son inclusion dans un générateur d'influents adapté. En ce qui concerne la derniére partie de
ce travail - I'optimisation multi-objectifs - différentes formulations de problemes et études de cas ont
été proposées avec l'application de la plateforme aux scénarios de traitement conventionnels et

alternatifs.

En outre, il est important d'indiquer que la principale différence entre cette étude et d'autres
trouvés dans la littérature est la fiabilité de la plateforme lors de l'utilisation de simulations

dynamiques et d’une entrée dynamique plus fiable pour les flux, notamment d'urine. De plus, cette
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étude est la premiere qui comprend I'optimisation multi-objectif de scénarios alternatifs, couplant la
modélisation de la totalité de la station et les aspects dynamiques, ainsi qu'une intégration pertinente
de I'ACV. On a également étudié les scénarios alternatifs liés a la séparation de I’urine a la source et
I’épandage agricole pas encore largement évalués dans la littérature par I’ACV.

Les perspectives pour la suite de cette étude pourraient étre divisées en trois principaux
aspects de la plateforme: la modélisation de la station d’épuration, I'ACV et l'optimisation multi-
objectif. Aussi, il convient de noter que la flexibilité est l'une des principales caractéristiques de la
plateforme DM-LCA-EMOO et que cette caractéristique a été particuliérement envisagée tout au long
de ce travail. Des efforts particuliers ont été déployés pendant la construction de la plateforme afin

d'en assurer l'applicabilité a d'autres cas d’études qui pourraient devenir pertinentes dans le futur.

En ce qui concerne la modélisation et la simulation, la souplesse est particulierement
importante, car les technologies et les configurations changent fréqguemment pour atteindre, par
exemple, des limites de rejet plus faibles. En outre, la modélisation de certaines parties du processus
évolue rapidement de nos jours, comme la modélisation des émissions de N,O qui n'ont pas encore
atteint un consensus dans les communautés scientifiques et industrielles. Ces derniers, cependant,
pourraient changer complétement le choix des paramétres de fonctionnement lorsque des scénarios

durables sont ciblés.

Selon les intrants de la station d'épuration, il est également important d'intensifier les efforts
pour fournir des informations plus réalistes a différents niveaux (dépendance temporelle,
caractéristiques géographiques et de collecte). Cependant, cela dépend aussi fortement de la collecte
de données qui permettrait la compréhension de la dynamique, principalement pour la génération de
I’urine qui n'est pas profondément étudiée, en particulier en fonction des aspects liés a la dépendance
de la concentration de certains composants. Aussi, une perspective intéressante qui pourrait étre
considérée est la génération d'autres flux d'un ménage lors de I'examen d'autres scénarios de séparation

de source.

L'amélioration des propositions dans le domaine de I'ACV comprend principalement I'ajout
d'aspects dynamiques dans I'évaluation environnementale ainsi que I'ajout de plus de détails - comme
les substances émergentes telles que les micropolluants. Il convient de noter que, actuellement, comme
I'ACV repose sur des conditions statiques, les résultats dynamiques de I'exploitation de la station
d’épuration sont intégrés et calculés en moyenne. Cependant, certaines améliorations de I'ACV
permettraient de tenir compte de la dépendance temporelle des processus de background en fonction

de I’opération de I'installation ainsi que des changements a long terme des systemes de collecte.
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Un autre effort important a réaliser lorsque I'on considére I'analyse environnementale couplée
aux différents scénarios de gestion et de traitement des eaux usées concerne l'infrastructure, car les
évaluations basées sur des scénarios alternatifs devraient également inclure des modifications
d'infrastructure afin de refléter leurs gains réels. Cependant, de nos jours, une grande incertitude est
impliquée dans l'analyse environnementale et par conséquent, de légéres modifications dans
l'infrastructure peuvent ne pas étre quantifiées correctement. Dans ce sens, des efforts doivent étre
déployés pour considérer la modélisation des infrastructures de maniére rigoureuse ou du moins pour
valider les incertitudes liées a la taille d'une installation afin de permettre des conclusions plus réalistes
pour les scénarios alternatifs. Par conséquent, on pourrait penser a une liste exhaustive de scénarios de
perspective (avec des changements d'infrastructure) a évaluer et optimiser tels que l'inclusion de
I'oxydation anaérobique de I'ammonium dans la filiere principale d’une station d’épuration ainsi

qu'une multitude de procédés pour le traitement et la valorisation de I’urine séparée a la source.

Considérant les aspects d'optimisation, la méthodologie évolue rapidement et les progres
récents sur l'apprentissage automatique sont actuellement utilisés dans le domaine de l'optimisation
col(teuse. A notre connaissance, l'utilisation de ces outils pour une reconnaissance et une
approximation efficace des fonctions objectives, pourrait représenter un gain important dans
I’optimisation des stations d'épuration, mais aussi lorsque l'optimisation est sujette a des contraintes
rigides multiples. Enfin, il est également possible d'inclure une superstructure dans le probleme
d'optimisation en utilisant des variables binaires afin de définir les voies a suivre dans le traitement de
I’eau, par exemple dans le cas de la séparation a la source de l'urine et surtout quand les problémes
plus complexes, tels que la gestion compléte des déchets ménagers ou des pourcentages plus élevés de

rétention d'urine sont envisagés.

En conclusion, I'outil DM-LCA-EMOO développé est désormais disponible pour I'évaluation
et I'optimisation de tout scénario souhaité dans le domaine du traitement des eaux usées. L'outil est en
effet assez souple pour étre adapté a toutes les études de cas connexes et peut étre intégré a différentes

plateformes de modélisation existantes.
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A. Supplementary Information for chapter Il

A.1. Emissions calculation

Dynamic simulation results integration and conversion
tr
Tiz Qlclﬁdt

t=0
Where:

T; is the total mass of species i in kg (required for LCA calculation)

c;i is the concentration of species i in concentration units

Q; is the flow related to species i in m*®. d* (depending on the species I it can be a specific flow or influent/effluent flow)
f; is the conversion factor used for species i (unit is function of species concentration)

Effluent discharged

COD:
m3 gCcoD1 1 r1kgCOD
QerrLUENT [7] -Ccop “md | 103 [g COD]
BOD:
m3 gBOD1 1 kg BOD
QerrLUENT [7] -Cgop [T ‘103 [g BOD ]
Nitrate
m3 gN 1 mol N mol NO, g NO; 1 1kg NO,
Cerriusnt [7] N0 W] '14.007 L gN I~ [ mol N ] 62004 [mol N03] 103 [gN03]
Nitrite
m3 gN 1 [molN mol NO, g NO, 1 1kg NO,
Cerrioswt [7] N0y W] '14.007 | g N '1[ mol N ] '46'005[mol NOZ] 103 [gNOZ]
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Ammonium;
m mol N mol NH,

3
QerrLUENT [7] CNH, W] "14.007 [ gN 1 mol N

m3 gN gN gN 1 [kgN
QerrLUENT a4 '(CXU,N [W] T G [W] T Cop ] ) 103 [g N

g NH, 1 [kg NH4]

.18.039 [-Z—2| — |=—2
] [mol NH,| 103 | g NH,

Nitrogen, organic bound:

Nitrogen:
kg N
QEFFLUENT[ ] -Csyn ] ‘103 [
N in Biomass
m3 g COD g COD g COD g COD g COD g COD g COD g COD
QsLupce [7] '(COHO [?] + CmEoLo [T] Ca00 [ ]+CN00 [T] + Camo [T] Cpro [ ] Caco [ ] Cumo [ ]
g COD g COD gN 1 1 [kgN
+CPA0[ m3 ]+ E[ m ]) 7[gC0D '1_()3[g_N
Phosphorus:
m3 mol P mol PO, g PO, 1 rkg PO,
QrrLoenT [7] [ ] 30.974 mol P '94'97[mol po,l 103 [ gP04]
Magnesium:
gMgy 1 rkgMg
QerrLUENT [7] 'CMg[ ] 103 [g Mg
Calcium:

m3 gCay 1 f[kgCa
QerrLUENT a4 Cc [ ‘103 [g Ca]
TOC



m3 g COD g COD g COD g COD gC
Qerriuent d | (CS" [ m3 ] T exy [ m3 ]) 0.553 [g coD + (CSB'COM”EX [ m3 ] T Cxp [ m3 ]) +0.594 [g CcoD
g COD g COD g COD g COD g COD g COD g COD g COD
* (( [+ eusono [+ cuoo [S5] + enoo S| + emno [ eono S5 oo S|+ e [

m3
coD coD Cc 1 1kgC
oo [2E92 4 ¢, [£592)). 0531 -2 ) L[l

g COD 103 lgcC
DOC

m3 g COD g COD gC 1 1kgC
e 5] (o P22 0552851 (e 252 o250 o 2

Carbon dioxide (total):

5 3

m h ) ) -
ZanS_i [7] .24 [E] . Copco,,i[dimensionless] . 1.830.10
i=1

Where i represents each reactor of the process (aerobic and anoxic ones) and Co,cop;i IS between 0-100.
Total carbon dioxide is then divided between biogenic (from influent) and fossil (from methanol added) by the ratio of biogenic/fossil carbon:

DCO biogenic:
m3 g COD g COD g CODT\  29.160 1 kg C
Quwrruent [7] (CXB[ ] CSBCOMPLEX[ ]+ CCB[ m3 ]) 93.440 gCOD 100 lgc
DCO fossil:
m3 g CoD 1 1kgC
Qcarson [7] -CCARBON " 48 g COD " 103 g—C
Methane:

5

m3 h . , s
z Qgas,i o .24 [E] - Copcn, ildimensionless] . 6.669 .10
i=1

Where i represents each reactor of the process (aerobic and anoxic ones) and Co,cpa,i iS between 0-100.
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Ammonia:
m3 h ) ] L
Zans'i W .24 [E] . CounH,,i[dimensionless] . 7.079 .10
Where i represents each reactor of the process (aerobic and anoxic ones) and Conna,; IS between 0-100.
Hydrogen:
5
m3 h ] . .
ZanS'i s .24 [E] - Cop, i [dimensionless] . 8.380.10
i=1
Where i represents each reactor of the process (aerobic and anoxic ones) and Cypi is between 0-100.

For details in gas calculations please refer to Section 7
Dinitrogen monoxide:

mg N,0

1 [mmol N1 1 rmmol N,0
14.007

Where i represents each reactor of the process (aerobic and anoxic ones) and Vjqig,; is the liquid volume.

1 ngzo]

L h
] 44013[ ] 1000[ 3] .24 [E] Viquiaalm*] - 755 —y

mgN | 2| mmolN

5
Z dNit; g N] — [di less] .
- l 100 imensionless mmol N2

Sludge to agriculture
Total N:
m3 gN1 1 [kgN
QsiLupce [7] -CrN W] W [g—N
Ammonia:

kg N kg NH; — N1 17.0311 kg NH;
i [S4) g a5 [F0 08 =)
d kg N 14.007 Lkg NH; — N

Dinitrogen monoxide:
kg N,O — N1 44.0131 kg N,0
kg N "14.007 lkg N,O — N

kg N
TN [T] .0.0118[
Total P:
m3 gP1 1 [kgP
Qsamer || e[| 157 [y 7



Phosphate to ground water:

kg P kg PO, —P1 9497 [ kg PO,
TP [—] .0.0057 [ . [
d kg P 30.974 lkg PO, — P
Phosphate to surface water:
kg PO, —P1 9497 [ kg PO,

kgP |30974lkg Po, — P

kg P
TP [T] .0.02005 [
Total C:

m?3 g COD g COD g COD g COD gC
Qswupe | 77| (CS”[ m3 ] CXU[ ]) 0553[9 conl | * (CSB'COMPLEX [W]HXB [m—D 0594[ coD

g COD g COD g COD g COD g COD g COD g COD g COD
(o 2220+ o (2522 (2902 222 o (2502 [2900) s [1220) o, 2220

m3 m3

g CcoD g CcoD molC03‘ mol C
+CPA0[ m3 ]+CE[ ms ]) 0531[g cop] )+ | ot Yot coz| 1% 011[ ol C

mol HCO3 mol C kg C
+<C”CO5 [ ] [mol HCO;] 12. Oll[molc) 103 [
Magnesium:
m3 gMgy 1 (kg Mg
QSLUDGE[d] CMg[ ] ‘103 [gMg
Calcium:

m3 g Cal 1 rkgCa
Qswoper |~ 103 [ gCa]

Effluent and sludge (divided in function):
Chloride
From coagulant:

mmol Fe3+] mmol Cl~

mg Cl™ 1 kgCl']
L

| 3sass| L]

m3 S [ L
QueraL d 10 [ﬁ] +CMETALION mmol Cl=] "106 lmg Cl-

mmol Fe3*
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From H,S treatment:

m?3 gFeCl3 mol FeCl, mol Cl~ gcl~ 1 tkgCl”
Quveruent [7] ‘CFeC’3[ ] 162. 206[ g FeCl, ] [mol FeCl3] 35453 [mol Cl‘] 103 [ g cz—]
Iron
From coagulant:
m3 S [L mg Fe3* kg Fe3*
QumeTaL [7] .10 [ﬁ] - CMETAL [7] "106 W]

From H,S treatment:

m?3 [g FeCl3] mol FeCl3] mol Fe3* 55 847 g Fe3* 1 [kg Fe3*
Cnevvent || - Crects 162.206 L g FeCly mol FeCl, mol Fe3*| "10% | g Fe3*
Background processes

Infrastructure:
1[unit]

m3
triant lifetime [y] . Qaverage annual sewage in 7
FeCl,
From coagulant:

m?3 103 [ L ] mg Fe3*t 1 [mmol Fe3* L mmol FeCl3] 162 206[ mg FeCl, ] kg FeCl3]
Qmera d|’ m3| - CMETAL L '55.847| mg Fe3* | " lmmol Fe3+] = mmol FeCl;1 106 lmg FeCl,
From H,S treatment:

gFeCl3 1 [kg FeCl;
QINFLUENT a -Crecly [ [7]

"103 | g FeCl,
Methanol
3 gDCO1 32.0421g MeOH1 1 rkg MeOH
Qearzon [7] 'CCARBON[ m3 ] 48 | gDbco | 10° [gMeOH
NaOH

mol NaOH g NaOH 1 [kg NaOH

39997 |———| .=
] [mol NaOH] 103 | g NaOH

3
QALKALINITY [ d ] - CSTRONG BASES[



Struvite production and emissions

Magnesium oxide:
3

m gMg 1 mol Mg mol MgO gMgO 1 (kg MgO
QURINE -1 - Mg[ 3 ] . [ . [ ]. 40.304‘ [— ._3 [—
d m 243051 g Mg mol Mg mol Mg0O] 103 [ g MgO
Struvite production:
0 3 [g Struvite] 1 [kg Struvite]
— .c —— = |
STRUVITE | g Tss m3 103 | g Struvite
A.2. Inventory
UF: 1 m® of raw wastewater to be treated
USS+E USS+E | USS+
Process Operational data Ecoinvent process Unit REF EPC uss PC+AG | EPC+
PC
RI ANA
wastewater treatment plant, class 2, CH, [unit] .
Infrastructure unit 4.42E-9 | 442E-9 | 4.42E-9 | 442E-9 | 442E-9 | 4.42E9
(#2284)
NH, Ammonium, ion, water, river, [kg] (#4259) kg 1.21E-3 6.10E-4 8.14E-4 4.43E-4 9.15E-4 | 1.33E-3
NO, Nitrite, water, river, [kg] (#5075) kg 6.08E-4 2.56E-4 3.69E-4 1.86E-4 4.24E-4 | 852E-4
NO; Nitrate, water, river, [kg] (#5067) kg 1.91E-2 1.35E-2 1.53E-2 1.46E-2 133E-2 | 1.35E-2
Norg Nitrogen, organic bound, water, river, [kg] kg 163E-3 | 173E-3 | 163E-3 | 171E-3 | 159E-3 | 154E-3
(#5091)
WWTP Effluent PO, Phosphate, water, river, [kg] (#5139) kg 2.05E-3 1.33E-3 1.79E-3 1.15E-3 1.16E-3 | 1.52E-3
discharge iologi i
g BOD5 BODS, Biological Oxygen Demand, water, river, kg 447E-3 | 6.31E-3 | 4.62E-3 | 583E-3 | 4.32E-3 | 3.78E-3
[ka] (#4371)
COD, Chemical Oxygen Demand, water, river,
D 409E-2 | 441E-2 | 4.15E-2 | 4.36E-2 79E-2 | 4.05E-2
CcoO [kg] (#4603) kg 09 5 36 3.79 05
TOC TOC, Total Organic Carbon, water, river, [kg] kg 2.18E-2 2.32E-2 2.20E-2 2.30E-2 2.02E-2 | 2.16E-2
(#5563)
DOC DOC, Dissolved Organic Carbon, water, river, kg 1.53E-2 1.55E-2 1.55E-2 1.56E-2 1.35E-2 | 1.52E-2
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[kg] (#4659)

COg> Carbonate, water, river, [kg] (#4443) kg 2.37E-1 2.52E-1 2.65E-1 2.72E-1 2.70E-1 | 2.95E-1
NH; Ammonia, air, hig(h#ggs;;ation density, [kg] kg 3.67E-5 3.09E-5 3.36E-5 2.73E-5 1.45E-5 1.03E-5
N,O DinitrOgendr::sr;?;i?lfé]ai(;zhsigz)popuIation kg 3.79E-4 3.35E-4 3.67E-4 3.20E-4 2.07E-4 2.42E-4
CH, Methane, biogeni([:l,(g]ir,(:;?zgf)opulation density, kg 2.32E-4 1.40E-4 2.35E-4 1.38E-4 1.31E-4 1.44E-4
COz_biogenic Carbon dIOXIc?eer;stl)tl)(:,gﬁi(’]gl?(;g(’ig:lg)h population kg 4.42E-1 3.55E-1 4.37E-1 3.51E-1 3.04E-1 2.65E-1
CO3 fossil Carbon dloc)j:iz’it;c?s[i;]a(l;zggg) population kg 6.78E-2 | 6.36E-2 | 6.72E-2 | 5.39E-2 | 1.81E-2 -

H, Hydrogen, air, hig?#gggg;aﬁon density, [kg] kg 3.97E-4 4.7T7E-4 4.63E-4 4.64E-4 3.66E-4 3.42E-4
Ca Calcium, ion, water, river, [kg] (#4427) kg 1.50E-2 1.50E-2 1.55E-2 1.55E-2 155E-2 | 1.54E-2
Mg Magnesium, water, river, [kg] (#4947) kg 7.99E-2 7.96E-2 8.23E-2 8.21E-2 8.21E-2 | 8.17E-2
Fe Iron, ion, water, river, [kg] (#4899) kg 4.99E-4 4.99E-4 4.99E-4 4.99E-4 4.99E-4 | 4.99E-4
As Arsenic, ion, water, river, [kg] (#4307) kg 2.34E-6 2.34E-6 2.34E-6 2.34E-6 2.34E-6 | 2.34E-6
Cd Cadmium, ion, water, river, [kg] (#4411) kg 9.99E-7 9.99E-7 9.99E-7 9.99E-7 9.99E-7 | 9.99E-7
Co Cobalt, water, river, [kg] (#4571) kg 499E-7 | 499E-7 | 4.99E-7 | 499E-7 | 4.99E-7 | 4.99E-7
Cr Chromium VI, water, river, [kg] (#4547) kg 1.25E-5 1.25E-5 1.25E-5 1.25E-5 1.25E-5 | 1.25E-5
Cu Copper, ion, water, river, [kg] (#4611) kg 1.75E-5 1.75E-5 1.75E-5 1.75E-5 1.75E-5 | 1.75E-5
Hg Mercury, water, river, [kg] (#4979) kg 5.99E-7 5.99E-7 5.99E-7 5.99E-7 5.99E-7 | 5.99E-7
Mn Manganese, water, river, [Kg] (#4955) kg 4.99E-5 4.99E-5 4.99E-5 4.99E-5 4.99E-5 | 4.99E-5
Mo Molybdenum, water, river, [kg] (#5019) kg 4.78E-7 4.78E-7 4.78E-7 4.78E-7 4.78E-7 | 4.78E-7
Ni Nickel, ion, water, river, [kg] (#5051) kg 1.50E-5 1.50E-5 1.50E-5 1.50E-5 150E-5 | 1.50E-5
Pb Lead, water, river, [kg] (#4931) kg 6.49E-6 6.49E-6 6.49E-6 6.49E-6 6.49E-6 | 6.49E-6
Ag Silver, ion, water, river, [kg] (#5347) kg 1.75E-6 1.75E-6 1.75E-6 1.75E-6 1.75E-6 | 1.75E-6
Sn Tin, ion, water, river, [kg] (#5547) kg 1.39E-6 1.39E-6 1.39E-6 1.39E-6 1.39E-6 | 1.39E-6




Zn Zinc, ion, water, river, [kg] (#5667) kg 5.99E-5 5.99E-5 5.99E-5 5.99E-5 5.99E-5 | 5.99E-5
Si Silicon, water, river, [kg] (#5339) kg 156E-4 | 156E-4 | 156E-4 | 156E-4 | 1.56E-4 | 1.56E-4
Al Aluminium, water, river, [kg] (#4243) kg 3.25E-5 3.25E-5 3.25E-5 3.25E-5 3.25E-5 | 3.25E-5
SO, Sulfate, water, river, [kg] (#5427) kg 440E-4 | 4.40E-4 | 4.40E-4 | 440E-4 | 4.40E-2 | 4.40E-2
cl Chloride, water, river, [kg] (#4515) kg 5.09E-2 | 4.36E-2 | 4.24E-2 | 3.73E-2 | 3.98E-2 | 3.48E-2
F Fluoride, water, river, [kg] (#4731) kg 3.27E-5 3.27E-5 3.27E-5 3.27E-5 3.27E-5 | 3.27E-5
K Potassium, ion, water, river, [kg] (#5211) kg 3.98E-4 3.98E-4 3.98E-4 | 3.98E-4 3.98E-4 | 3.98E-4
Na Sodium, ion, water, river, [kg] (#5363) kg 2.18E-3 2.18E-3 2.18E-3 2.18E-3 2.18E-3 | 2.18E-3
- electricity, production mix RER, RER, [kWh]
1.08E-1 3.42-3 1.02E-1 - - -
Electricity (#7209) 1 kWh
heat, natural gas, at boiler modulating >100kW,
Heat MJ - - - - - -
RER, [MJ] (#1350) *
ransport, lorry 20-28t, fl ver H, [tkm
Transport transport, lorry 20-28t, fleet average, CH, [tkm] tkm 3.10E-4 | 3.10E-4 | 3.10E-4 | 3.10E-4 | 3.10E-4 | 3.10E-4
(#1942)
Grits disposal, paper, 11.2% water, to municipal K 15562 15562 155E-0 155E-2 15562 | 15562
collection Disposal incineration, CH, [kg] (#2108) g ' ' ' ' ' '
P disposal, plastics, mixture, 15.3% water, to K 15562 15562 15562 155E.2 15562 | 15562
municipal incineration, CH, [kg] (#2112) g ' ' ' ' ' '
Infrastructure cogen unit lGOk.We' common c_omponents for unit 1.04E-8 1.32E-8 1.08E-8 1.37E-8 1.32E-8 1.32E-8
heat+electricity, RER, [unit] (#1201)
Oil for Production lubricating oil, at plant, RER, [kg] (#416) kg 6.25E-5 7.93E-5 6.47E-5 8.20E-5 7.91E-5 | 7.90E-5
; . disposal, used mineral oil, 10% water, to
maintenance Disposal ’ ' ' ki 6.25E-5 | 7.93E-5 | 6.47E-5 | 8.20E-5 | 7.91E-5 | 7.90E-5
P hazardous waste incineration, CH, [kg] (#2064) g
Cogeneration biogas, burned in cogen with gas engine, CH, MJ 2.08E0 2.64E0 2.16E0 2.73E0 2.64E0 2.63E0
unit [MJ] (#135)
electricity, at cogen with biogas engine,
. kWh 2.03E-1 2.57E-1 2.10E-1 2.66E-1 2.56E-1 2.56E-1
. L, allocation exergy, CH, [KWh] (#6221)
Operation emissions heat, at cogen with biogas engine, allocation
' ! MJ 1.01E0 1.28E0 1.05E0 1.33E0 1.28E0 1.28E0
exergy, CH, [MJ] (#6219)
Dinitrogen monoxide, air, high population kg 5 21E-6 6 61E-6 5 39E-6 6.83E-6 659E-6 | 6.59E-6

density, [kg] (#2814)
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Methane, biogenic, air, high population density,

[kg] (#3149) kg 4.79E-5 6.08-5 496E-5 | 6.29E-5 | 6.06E-5 | 6.06E-5
Carbon dioxide, biogenic, air, high population
density, [kg] (#2694) kg 151E-1 | 1.87E-1 | 156E-1 | 1.98E-1 | 2.08E-1 | 2.20E-1
Carbon dioxide, fossil, air, high population
density, [kg] (#2699) kg 2.32E-2 3.35E-2 2.40E-2 3.04E-2 1.24E-2 -
Carbon monog;dnes,itt; o[glfg]l(&;%g;gh population kg 8.67E-5 | 108E-4 | 8.98E-5 | 1.14E-4 | 119E-4 | 126E-4
Carbon mo”g:r'gﬁ'y fo[fé;' ;gﬁ'f)h population kg | 13385 | 193E-5 | 138E-5 | L7565 | 7.10E-6 -
NMVOC, non-methane volatile organic
compounds, unspecified origin, air, high kg 4.17E-6 5.29E-6 4.32E-6 5.47E-6 5.27E-6 | 5.27E-6
population density, [kg] (#3274)
Nitrogen Ox'des'[i'gr]' ?;ggé’%p”'a"o” density, kg | 31265 | 397E-5 | 324E-5 | 410E5 | 3.95E-5 | 3.95E-5
Sulfur dioxide, air, h(lggsp;%r))ulatlon density, [kl | g | 438E5 | 555E5 | 453E5 | 574E5 | 554E5 | 553ES
Heat, waste, air, hlg(zng%)latlon density, [MJ] MJ 3.44E-1 | 436E-1 | 356E-1 | 451E-1 | 4.35E-1 | 4.35E-1
Production methanol, at plant, GLO, [kg] (#422) kg 527E-2 | 6.15E-2 | 5.44E-2 | 5.44E-2 | 199E-2 -
Methanol transport, freight, rail, RER, [tkm] (#1983) tkm 3.16E-2 3.69E-2 3.26E-2 3.26E-2 1.20E-2 -
Transport N
transport, lorry 20 2?;’1:;13;; average, CH, [tkm] tkm 2.64E-3 | 3.07E-3 | 272E-3 | 2.72E-3 | 9.96E-4 -
Chemicals i i % i
Production iron (11f) Chlonde[’k;(]) (;'22;;20 at plant, CH, kg 7.78E-2 | 6.66E-2 | 6.47E-2 | 570E-2 | 6.08E-2 | 531E-2
FeCls; transport, freight, rail, RER, [tkm] (#1983) tkm 1.17E-1 9.98E-2 9.70E-2 8.55E-2 9.13E-2 | 7.97E-2
Transport transport, lorry 20-28t, fleet average, CH, [tkm]
(#1942) tkm 9.72E-3 | 832E-3 | 8.08E-3 | 7.12E-3 | 7.60E-3 | 6.64E-3
Urine Storage glass fibre, at plant, RER, [kg] (#808) kg - - 8.40E-5 8.40E-5 8.40E-5 | 8.40E-5
separation Transport transport, lorry 20'2?;’15233 average, CH, [tkm] tkm - - 156E-2 | 156E-2 | 1.56E-2 | 1.56E-2
Struvite Production magnesium oxide, at plant, RER, [kg] (#296) kg - - 2.12E-3 2.12E-3 2.12E-3 | 2.12E-3
precipitati | ol MgO transport, freight, rail, RER, [tkm] (#1983) tkm - - 127E-3 | 127E-3 | 127E-3 | 1.27E-3
on and Transport lorrv 20-28t 1l
- H, [tk
utilization transport, lorry 20-281, fleet average, CH, [tkm] tkm - - 1.06E-4 | 106E-4 | 1.06E-4 | 1.06E-4

(#1942)




sodium hydroxide, 50% in H20, production mix,

Production at plant, RER, [kg] (#336) kg - - - - - 1.19E-2
NaOH transport, freight, rail, RER, [tkm] (#1983) tkm - - - - - 1.43E-2
Transport transport, lorry 20-28t, fleet average, CH, [tkm]
(#1942) tkm - - - - - 1.19E-3
Transport transport, lorry 20-28t, fleet average, CH, [tkm] tm ) ) 11464 114E-4 11464 | 114E-4
(#1942)
Spreading fertilising, by broadcaster, CH, [ha] (#156) ha - - 3.26E-6 3.26E-6 3.26E-6 | 3.26E-6
Ammonia, air, high population density, [kg]
NH; (#2579) kg - - 2.38E-5 2.38E-5 2.38E-5 2.38E-5
Dinitrogen monoxide, air, high population
N,O . - - 23E- 23E- .23E- .23E-
2 density, [kg] (#2814) kg 9.23E-6 9.23E-6 9.23E-6 9.23E-6
Nitrogen oxides, air, high population density,
N - - .39E- 39E- .39E- .39E-
Oy [kg] (#3269) kg 8.39E-6 8.39E-6 8.39E-6 8.39E-6
Phosphate, water, river, [kg] (#5139) kg - - 1.19E-4 1.19E-4 1.19E-4 | 1.19E-4
PO,
Post Phosphate, water, ground-, [kg] (#5135) kg - - 4.34E-5 4.34E-5 434E-5 | 4.34E-5
emissions Cd Cadmium, soil, agricultural, [kg] (#3951) kg - - 7.42E-8 7.42E-8 7.42E-8 | 7.42E-8
Cu Copper, soil, agricultural, [kg] (#3991) kg - - 1.85E-7 1.85E-7 1.85E-7 | 1.85E-7
Zn Zinc, soil, agricultural, [kg] (#4186) kg - - 1.16E-6 1.16E-6 1.16E-6 | 1.16E-6
Pb Lead, soil, agricultural, [kg] (#4047) kg - - 7.49E-8 7.49E-8 7.49E-8 | 7.49E-8
Ni Nickel, soil, agricultural, [kg] (#4088) kg - - 1.56E-7 1.56E-7 156E-7 | 1.56E-7
Cr Chromium, soil, agricultural, [kg] (#3976) kg - - 8.56E-7 8.56E-7 8.56E-7 | 8.56E-7
Transport transport, lorry 20-281, fleet average, CH, [tkm] tkm 2.17E-2 2.32E-2 2.19E-2 2.29E-2 2.24E-2 2.11E-2
(#1942)
Spreading slurry spreading, by(\ﬁ(;uel;m tanker, CH, [m3] m? 1.06E-3 | 114E-3 | 1.07E-3 | 1.12E-3 1.10E-3 | 1.04E-3
utilization NH; mmonia, air, 'g(#gggg)a“on density, [kal kg 3.58E-3 | 4.62E-3 | 3.69E-3 | 4.66E-3 | 4.38E-3 | 4.19E-3
Post — P :
Dinitrogen monoxide, air, high population
issi N . 212E-4 | 273E-4 | 218E-4 | 275E-4 | 259E-4 | 2.48E-4
emissions 0 density, [kg] (#2814) kg 3 8 > > 8
C Carbon, soil, agricultural, [kg] (#3962) kg 1.04E-1 1.25E-1 1.06E-1 1.27E-1 1.21E-1 | 1.16E-1
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Phosphate, water, river, [kg] (#5139) kg 6.80E-4 6.99E-4 6.21E-4 6.38E-4 6.36E-4 | 5.82E-4

PO Phosphate, water, ground-, [kg] (#5135) kg 1.93E-4 1.99E-4 1.76E-4 1.81E-4 1.81E-4 | 1.65E-4
Ca Calcium, soil, agricultural, [kg] (#3955) kg 1.59E-5 1.71E-5 1.66E-5 1.73E-5 1.70E-5 | 1.65E-5
Mg Magnesium, soil, agricultural, [kg] (#4053) kg 7.95E-5 1.34E-5 6.54E-5 9.87E-6 2.63E-5 | 4.54E-6
Fe Iron, soil, agricultural, [kg] (#4041) kg 2.73E-2 2.34E-2 2.28E-2 2.01E-2 2.14E-2 | 1.88E-2
As Avrsenic, soil, agricultural, [kg] (#3924) kg 6.62E-7 6.63E-7 6.63E-7 6.63E-7 6.63E-7 | 6.62E-7
Cd Cadmium, soil, agricultural, [kg] (#3951) kg 1.00E-6 1.00E-6 1.00E-6 1.00E-6 1.00E-6 | 1.00E-6
Co Cobalt, soil, agricultural, [kg] (#3987) kg 501E-7 | 501E-7 | 5.01E-7 | 5.01E-7 | 501E-7 | 5.01E-7
Cr Chromium, soil, agricultural, [kg] (#3976) kg 125E-5 | 1.25E-5 | 1256-5 | 1.25E-5 | 1.25E-5 | 1.25E-5
Cu Copper, soil, agricultural, [kg] (#3991) kg 5.25E-5 5.25E-5 5.25E-5 5.25E-5 5.25E-5 | 5.25E-5
Hg Mercury, soil, agricultural, [kg] (#4068) kg 1.40E-6 1.40E-6 1.40E-6 1.40E-6 1.40E-6 | 1.40E-6
Mn Manganese, soil, agricultural, [kg] (#4059) kg 5.01E-5 5.01E-5 5.01E-5 5.01E-5 5.01E-5 | 5.01E-5
Mo Molybdenum, soil, agricultural, [kg] (#4082) kg 479E-7 | A4T79E-7 | 4.79E-7 4.79E-7 4.79E-7 | 4.79E-7
Ni Nickel, soil, agricultural, [kg] (#4088) kg 1.00E-5 1.00E-5 1.00E-5 1.00E-5 1.00E-5 | 1.00E-5
Pb Lead, soil, agricultural, [kg] (#4047) kg 5.85E-5 5.85E-5 5.85E-5 5.85E-5 5.85E-5 | 5.85E-5
Ag Silver, ion, water, river, [kg] (#5347) kg 5.25E-6 5.25E-6 5.25E-6 5.25E-6 5.25E-6 | 5.25E-6
Sn Tin, soil, agricultural, [kg] (#4165) kg 2.01E-6 2.01E-6 2.01E-6 2.01E-6 2.01E-6 | 2.01E-6
Zn Zinc, soil, agricultural, [kg] (#4186) kg 1.40E-4 1.40E-4 1.40E-4 1.40E-4 1.40E-4 | 1.40E-4
Si Silicon, soil, agricultural, [kg] (#4133) kg 2.97E-3 2.97E-3 2.97E-3 2.97E-3 2.97E-3 | 2.97E-3

Al Aluminium, soil, agricultural, [kg] (#3915) kg 6.18E-4 6.18E-4 6.18E-4 6.18E-4 6.18E-4 | 6.18E-4
S Sulfur, soil, agricultural, [kg] (#4151) kg 2.00E-3 2.00E-3 2.00E-3 2.00E-3 2.00E-3 | 2.00E-3

SO, Sulfate, water, ground-, [kg] (#5423) kg 4.68E-5 5.01E-5 4.72E-5 4.94E-5 4.84E-5 | 4.56E-5
Cl Chloride, soil, agricultural, [kg] (#3967) kg 5.43E-5 4.97E-5 4.55E-5 4.19E-5 439E-5 | 3.61E-5

F Fluoride, soil, agricultural, [kg] (#4021) kg 3.49E-8 3.73E-8 3.52E-8 3.68E-8 3.61E-8 | 3.39E-8

K Potassium, soil, agricultural, [kg] (#4114) kg 424E-7 | AB4E-7 | 4.28E-7 | 44TE-7 | 439E-7 | 4.13E-7




Na Sodium, soil, agricultural, [kg] (#4142) kg 2.33E-6 2.49E-6 2.34E-6 2.45E-6 2.41E-6 | 2.26E-6
transport, lorry 20-28t, fleet average, CH, [tkm]
T t - - - - 1.32E-2 -
ranspor (#1942) tkm
Spreading fertilising, by broadcaster, CH, [ha] (#156) ha - - - - 1.32E-3 -
Ammonia, air, high population density, [kg]
NH; (#2579) kg - - - - 4.37E-4 -
N-rich o ; o ;
Dinitrogen monoxide, air, high population
oy - N o A - - - - . - -
utilization Post 2 density, [kg] (#2814) kg 2.26E-4
. Nitrogen oxides, air, high population density,
emissions NO - - - - 2.15E-4 -
x [kg] (#3269) kg
o Phosphate, water, river, [kg] (#5139) kg - - - - 2.77E-6 -
PO,
Phosphate, water, ground-, [kg] (#5135) kg - - - - 1.01E-6 -
P-fertilizer triple superphosphate, as P20, at regional kg 1.77E-2 1.82E-2 1.95E-2 2.00E-2 2.00E-2 1.85E-2
. storehouse, RER, [kg] (#57)
Production ammonium nitrate, as N, at regional storehouse
N-fertili et '
ertilizer RER, [kg] (#40) kg 4.57E-3 5.89E-3 5.36E-3 6.59E-3 2.06E-2 | 6.00E-3
transport, freight, rail, RER, [tkm] (#1983) tkm 2.23E-3 2.41E-3 2.49E-3 2.65E-3 4.06E-3 | 2.45E-3
Transport transport, lorry 20-28t, fleet average, CH, [tkm] tkm 223E-3 | 241E-3 | 249E-3 | 2.65E-3 | 4.06E-3 | 2.45E-3
(#1942)
transport, barge, RER, [tkm] (#1966) tkm 1.12E-2 1.26E-2 1.26E-2 1.39E-2 2.65E-2 1.28E-2
Spreading fertilising, by broadcaster, CH, [ha] (#156) ha 2.28E-5 2.94E-5 2.68E-5 3.29E-5 1.03E-4 | 3.00E-5
Fertilizers P ; F
avoided NH; Ammonia, air, h|g(h#225;;atlon density, k] kg 9.14E-5 | 118E-4 | 107E-4 | 1.32E-4 | 4.12E-4 | 1.20E-4
N,O Dinitrogen monoxide, air, high population k 3.66E-5 | 4.71E-5 | 4.29E-5 | 527E-5 | 1.65E-4 | 4.80E-5
2 density, [kg] (#2814) g ' ' ' ' ' '
Nitrogen oxides, air, high population density,
I_Dos_t Oy [kg] (#3269) kg 2.74E-5 3.53E-5 3.22E-5 3.95E-5 1.24E-4 3.60E-5
emissions Phosphate, water, river, [kg] (#5139) kg 1.04E-4 | 107E-4 | 114E-4 | 1.17E-4 | 117E-4 | 1.08E-4
PO,
Phosphate, water, ground-, [kg] (#5135) kg 3.79E-5 3.90E-5 4.17E-5 4.26E-5 427E-5 | 3.95E-5
As Arsenic, soil, agricultural, [kg] (#3924) kg 3.00E-7 3.19E-7 3.33E-7 3.51E-7 4.81E-7 | 3.24E-7
Cd Cadmium, soil, agricultural, [kg] (#3951) kg 7.28-7 756E-7 | 8.03E-7 | 828E-7 | 9.12E-7 | 7.66E-7
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Cu Copper, soil, agricultural, [kg] (#3991) kg 1.72E-6 1.80E-6 1.90E-6 1.98E-6 2.34E-5 | 1.83E-6
Zn Zinc, soil, agricultural, [kg] (#4186) kg 1.58E-5 1.65E-5 1.75E-5 1.81E-5 2.09E-5 | 1.67E-5
Pb Lead, soil, agricultural, [kg] (#4047) kg 1.44E-6 1.54E-6 1.60E-6 1.70E-6 247E-6 | 1.57E-6
Ni Nickel, soil, agricultural, [kg] (#4088) kg 1.66E-6 1.73E-6 1.83E-6 1.90E-6 2.19E-6 | 1.76E-6
Hg Mercury, soil, agricultural, [kg] (#4068) kg 5.64E-9 5.88E-9 6.23E-9 6.44E-9 7.43E-9 | 5.97E-9
Cr Chromium, soil, agricultural, [kg] (#3976) kg 9.99E-6 1.04E-5 1.10E-5 1.14E-5 1.25E-5 | 1.05E-5
E;i‘:igzgy Electricity electricity, prOdUCﬂ((;r;g;x) RER, RER, [kWh] kWh - - - 8.22E-3 | 4.11E-2 | 2.22E-2

! In the case of no auto-sufficiency

2 Modified with efficiencies of 35% electrical and 48.5% thermal (16.5% losses).



A3.

Energy parameters

Aeration

Where:

Paeration -

Wqir RTy

My ne

D2

Gy

P1

) 1]

P2 = Paem + hy +H
fLTQair)
PD

h, =9.82x 1078 (

Peration N the power requirement of the blower used for aeration (kW)

Wair is the mass flow of air (kg . s™)
T, is the inlet temperature (°C)

p> is the outlet pressure (atm)
p; is the inlet pressure (atm)

h, is the head loss due to air friction

Symbol Parameter Unit Value Reference
Cair Air density kg. m?3 1.2 Tchobanoglous et al. (2004)
R Gas constante R kJ . (kmol K)* 8.314 Tchobanoglous et al. (2004)
My Molecular mass of air g . mol 29.7 Tchobanoglous et al. (2004)
n (k-1)/k dimensionless 0.283 Tchobanoglous et al. (2004)
e efficiency dimensionless 0.7 Tchobanoglous et al. (2004)
Patm Atmosferic pression atm 1 Tchobanoglous et al. (2004)
Owater Water density kg.m'3 1000 Tchobanoglous et al. (2004)
g Standart gravity m.s? 9.80665 Tchobanoglous et al. (2004)
D Pipe diameter m 0.4 [Estimation]
L Length of pipe m 100 [Estimation]
H Height of the reactor m 4 [BSM2]
f Friction factor dimensionless 0.016 Tchobanoglous et al. (2004)
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DAmMp Daily amplitude of sin function for ambient temperature dimensionless 9 [Estimation]
DFreq Daily frequency of sin function for ambient temperature dimensionless 6.2832 [Estimation]
DBiais Daily biais of sin function for ambient temperature dimensionless 0 [Estimation]
DPhase Daily phase of sin function for ambient temperature dimensionless 47124 [Estimation]
SAmp Seasonal amplitude of sin function for ambient temperature dimensionless 14 [Estimation]
SFreq Seasonal frequency of sin function for ambient temperature dimensionless 0.0172615 [Estimation]
SBiais Seasonal biais of sin function for ambient temperature dimensionless 55 [Estimation]
SPhase Seasonal phase of sin function for ambient temperature dimensionless 1.1126474 [Estimation]
Pumping

Py qumped Ah

Ppumping = e
Ahy = f (5) <u—2>
D/ \2g
Where:
Ppumping 1S the required power for pumping
Qpumped IS the flow (dynamic variable) to be pumped
Symbol Parameter Unit Value Reference

g Standard gravity m.s? 9.80665 Tchobanoglous et al. (2004)
p1 AER3 to ANOX1 density kg.m* 1000 Tchobanoglous et al. (2004)
P2 SEC to ANOX1 density kg. m?3 1005 Tchobanoglous et al. (2004)
P2 SEC to THK density kg.m* 1005 Tchobanoglous et al. (2004)
P4 PRIM to AD density kg.m?® 1020 Tchobanoglous et al. (2004)
Ps THK to AD density kg. m?3 1020 Tchobanoglous et al. (2004)
Pe DW to PRIM density kg. m?3 1000 Tchobanoglous et al. (2004)
p7 INFLUENT density kg.m?® 1000 [Estimated]



Ps
P
P10
P11
P12

Pwater
D:
D2
Ds
D,
Ds
Ds
D,

EFFLUENT density
CARBON density
METAL density
URINE density
ALKALINITY density
water density
AER3 to ANOX1 pipe diameter
SEC to ANOX1 pipe diameter
SEC to THK pipe diameter
PRIM to AD pipe diameter
THK to AD pipe diameter
DW to PRIM pipe diameter
INFLUENT input pipe diameter
EFFLUENT output pipe diameter
CARBON pipe diameter
METAL pipe diameter
URINE pipe diameter
ALKALINITY pipe diameter
AER3 to ANOX1 pipe length
SEC to ANOX1 pipe length
SEC to THK pipe length
PRIM to AD pipe length
THK to AD pipe length
DW to PRIM pipe length
INFLUENT input length
EFFLUENT output length
CARBON input length

kg .
kg .
kg .
kg .
kg .
kg .

w w w w w

3 3 3 3 3 3

3 333 3333333333333 33 3 3

1000
1000
1000
1000
1000
1000
1.2
0.6
0.1
0.1
0.1
0.1
0.6
0.6
0.1
0.1
0.1
0.1
100
100
100
200
100
200
100
100
50

Supplementary Information

211

[Estimated]
[Estimated]
[Estimated]
[Estimated]
[Estimated]

Tchobanoglous et al. (2004)

Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
[Estimated]
[Estimated]
[Estimated]
[Estimated]
[Estimated]
[Estimated]
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
[Estimated]
[Estimated]
[Estimated]



METAL input length
URINE length
ALKALINITY length
AER3 to ANOX1 friction factor
SEC to ANOX1 friction factor
SEC to THK friction factor
PRIM to AD friction factor
THK to AD friction factor
DW to PRIM friction factor
INFLUENT input friction factor
EFFLUENT output friction factor
CARBON friction factor
METAL friction factor
URINE friction factor
ALKALINITY friction factor
AER3 to ANOX1 liquid velocity
SEC to ANOX1 liquid velocity
SEC to THK liquid velocity
PRIM to AD liquid velocity
THK to AD liquid velocity
DW to PRIM liquid velocity
INFLUENT input velocity
EFFLUENT output velocity
CARBON velocity
METAL velocity
URINE velocity
ALKALINITY velocity
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m

m

m
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless

m.s

3 3 33 3 3 3 3 3 3 3
w

50
50
50
0.03
0.03
0.03
0.06
0.1
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.98
0.98
0.44
0.23
0.06
0.35
0.98
0.98
0.98
0.98
0.98
0.98

[Estimated]
[Estimated]
[Estimated]
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
[Based on Tchobanoglous et al. (2004)]
[Based on Tchobanoglous et al. (2004)]
Gernaey et al., 2005
[Based on Tchobanoglous et al. (2004)]
[Based on Tchobanoglous et al. (2004)]
[Based on Tchobanoglous et al. (2004)]
[Based on Tchobanoglous et al. (2004)]
[Based on Tchobanoglous et al. (2004)]
[Based on Tchobanoglous et al. (2004)]
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
Gernaey et al., 2005
[Estimated]
[Estimated]
[Estimated]
[Estimated]
[Estimated]
[Estimated]



Z; AER3 to ANOX1 height m Gernaey et al., 2005
Z, SEC to ANOX1 height m Gernaey et al., 2005
Z3 SEC to THK height m Gernaey et al., 2005
Z, PRIM to AD height m 21 Gernaey et al., 2005
Zs THK to AD height m 17 Gernaey et al., 2005
Zs DW to PRIM height m 0 Gernaey et al., 2005
Z; INFLUENT input height m 0 [Estimated]
Zsg EFFLUEN output height m 0 [Estimated]
Zg CARBON height m 4 [Estimated]
Zo METAL height m 4 [Estimated]
Z1 URINE height m 0 [Estimated]
Z1) ALKALINITY height m 4 [Estimated]
e Efficiency dimensionless 0.65 Descoins et al., 2012
Mixing
Pmixing =P.V
Where:
Prmixing IS the power consumed for mixing
V is the volume of liquid in the reactor to be mixed
Symbol Parameter Unit Value Reference
P anox Mix power for anaerobic reactors kW . m? 0.008 Tchobanoglous et al. (2004)
Pap Mix power for anaerobic digester kw . m? 0.005 Tchobanoglous et al. (2004)
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Cogeneration

ELECTRICITY  GAS EMISSIONS

. .
cs2 cs3 | :
o w| <PERLT cogen F
co2 c01| L ________
« | HEI |
hs2 hsl

Energy balance: Z moutputhoutput - Z minputhinput =0

HE | (Heat exchanger 1): m g hesy + MpspRngy — MesiRes1 — Mpsihns: = 0

As g = s , they are called g . The same for g and g, Which become i

mcs (hcsz - hcsl ) + mhs (hhsz - hhsl) =0

s, My, hes; @and hyg; are known by simulation results and he, and hps, are still unknown

The hypothesis is that there is a gradient of temperature of 10°C in HEI and then hys, become known. The balance is solved for h,.



HE Il (Heat exchanger I1): thogshess + MegzPeoz — MesaPesz

- mcolhcol =0

As g = s, they are called thes and thegoheos - hgeiheos IS the heat provided by cogeneration unit which need to be used in HEII and so is called qcocen, Herr-

Mes(hess — hesz ) + qcocen,uen = 0

s, Nes3 @are known by simulation results and heg, is known by HE | energy balance. HE Il balance is then solved for qcocen, Hen-

Requirements for sludge heating and heat loss by digester walls:

qsludge = Wsludgecp,sludgeATsludge

Qdigester

= wallAwallATwall + UroofAroofATroof + UfloorAfloorATfloor

With A being the surface to be heated.

COGEN:  qcogenrorar = YGcocen,nen + 9ap * qpirr

Where gAD is the sum of all requirements for sludge heating and heat loss by digester walls

Symbol Parameter Unit Value References
Owater Water density kg.m? 1000 Tchobanoglous et al. (2004)
LHV vethane Biogas lower heating value (20°C; 1 atm) MJ.m? 35.8 Tchobanoglous et al. (2004)
sudge Sludge (digester input) density kg.m? 1020 Tchobanoglous et al. (2004)
Usior Heat transfer coefficient for digester floor W. (m?.°C)* 0.85 Tchobanoglous et al. (2004)
U oof Heat transfer coefficient for digester floor W. (m?.°C)* 0.91 Tchobanoglous et al. (2004)
Uwan Heat transfer coefficient for digester floor W. (m?.°C)* 0.68 Tchobanoglous et al. (2004)

D Digester diameter m 25 [Estimated]

H; Digester side depth m 7 [Estimated]
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H, Digester middepth m 9 [Estimated]
heat Heat efficiency of cogeneration dimensionless 0.485 [Adapted from Doka (2009)]
Grady Temperature gradient in HEI °C 10 [Estimated]

Ambient temperature considerations for AD are the same as for aeration calculation.

Finally, if gprr is positive there is a surplus of heat production. Otherwise, energy should be provided by another source.

A.4. Effluent and ambient temperature

Influent temperature was obtained from influent data (Gernaey et al., 2011) and ambient temperature was modelled considering regional characteristics to achieve
reliable energy results (used in aeration and cogeneration modelling).
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Figure 1: Influent and ambient temperature: General overview of 1 year; Summer overview; Winter overview.



A.5.  Agricultural spreading

Post-spreading emissions based on Doka (2009), Bouwman et al. (1997), Bouwman et al. (2002) and Nemecek and Kéagi (2007)

N and P sources N,O-N (% of N NO,-N (% of N NH3z-N (% of N PO,4-P to ground water (% of P PO,-P to surface water (% of P
content) content) content) content) content)

Sludge 1.2 NA 25.6 0.6 2.0

Struvite 0.9 0.6 3.0 1.0 2.7

N-rich effluent 1.0 0.7 2.5 1.0 2.7

Mineral 0.8 0.6 2.0 1.0 2.7

fertilizers

Supplementary Information

219



220

Supplementary Information
A.6.  Other midpoint and endpoint results

A.6.1 Environmental impact results for steady state and dynamic results

A.6.1.1 ReCiPe Endpoint(H,A)

Endpoint - Totals Endpoint - Ecosystem quality Endpoint - Human health Endpoint - Resources
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points

Endpoint categories - Ecosystem quality
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Process emissions - climate change, ecosystems
Process emissions - terrestrial acidification
Process emissions - freshwater eutrophication
Process emissions - terrestrial ecotoxicity
Process emissions - freshwater ecotoxicity
Process emissions - marine ecotoxicity

Process emissions - agricultural land occupation
Process emissions - urban land occupation
Process emissions - natural land transformation

Fertilizers avoided - climate change, ecosystems
Fertilizers avoided - terrestrial acidification
Fertilizers avoided - freshwater eutrophication
Fertilizers avoided - terrestrial ecotoxicity
Fertilizers avoided - freshwater ecotoxicity
Fertilizers avoided - marine ecotoxicity
Fertilizers avoided - agricultural land occupation
Fertilizers avoided - urban land occupation
Fertilizers avoided - natural land transformation

Electricity avoided - climate change, ecosystems
Electricity avoided - terrestrial acidification
Electricity avoided - freshwater eutrophication
Electricity avoided - terrestrial ecotoxicity
Electricity avoided - freshwater ecotoxicity
Electricity avoided - marine ecotoxicity
Electricity avoided - agricultural land occupation
Electricity avoided - urban land occupation
Electricity avoided - natural land transformation
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points

Endpoint categories - Human health
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Process emissions - climate change, human health
Process emissions - ozone depletion

Process emissions - human toxicity

Process emissions - photochem. oxidant form.
Process emissions - particulate matter formation
Process emissions - ionising radiation
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Fertilizers avoided - climate change, human health
Fertilizers avoided - ozone depletion

Fertilizers avoided - human toxicity

Fertilizers avoided - photochem. oxidant form.
Fertilizers avoided - particulate matter formation
Fertilizers avoided - ionising radiation

HAERNE

Electricity avoided - climate change, human health
Electricity avoided - ozone depletion

Electricity avoided - human toxicity

Electricity avoided - photochem. oxidant form.
Electricity avoided - particulate matter formation
Electricity avoided - ionising radiation



points

Endpoint categories - Resources

0.020

0.015}

0.010}

0.005}

—0.005
@ O
g &
3 &
e 3
<@ &
& N
<

L™") Process emissions - metal depletion
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B Fertilizers avoided - metal depletion =7 Electricity avoided - metal depletion
B Fertilizers avoided - fossil depletion Electricity avoided - fossil depletion
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A.6.1.2 ReCiPe Midpoint (H)

Midpoint Contribution Analysis - agricultural land occupation
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Metals (water and sludge)

TSP avoided Production

AN avoided production

Mineral fertilizers avoided spreading
Mineral fertilizers avoided transport
Avoided electricity
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Midpoint Contribution Analysis - climate change
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kg oil-Eq

Midpoint Contribution Analysis - fossil depletion
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kg P-Eq

Midpoint Contribution Analysis - freshwater eutrophication
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Midpoint Contribution Analysis - human toxicity
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Midpoint Contribution Analysis - ionising radiation
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Midpoint Contribution Analysis - marine ecotoxicity
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Midpoint Contribution Analysis - marine eutrophication
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Midpoint Contribution Analysis - metal depletion
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Midpoint Contribution Analysis - natural land transformation
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Midpoint Contribution Analysis - particulate matter formation
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Midpoint Contribution Analysis - photochem. oxidant form.
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Midpoint Contribution Analysis - terrestrial acidification
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Midpoint Contribution Analysis - water depletion

Midpoint Contribution Analysis - urban land occupation
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A.6.1.3 CML 2001

Midpoint Contribution Analysis - depletion of abiotic resources
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A.6.1.4 Energy distribution

Energy distribution
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A.6.2 Environmental impact results for alternative scenarios

A.6.2.1 ReCiPe Endpoint (H,A)
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Endpoint - Human health
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Endpoint - Resources
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Endpoint categories - Human health
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6.2.2

m2a

ReCiPe Midpoint (H)

Midpoint Contribution Analysis - agricultural land occupation
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Midpoint Contribution Analysis - climate change
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Midpoint Contribution Analysis - human toxicity
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Midpoint Contribution Analysis - photochem. oxidant form.

0.0015

0.0010

0.0005

kg NMVOC

-0.0005

-0.0010 < S > S Y -
& & ¢ ¢ &S
& o Qo
N3 %33 e"“'
N N
Metals (water and sludge) Infrastructure B8 MgO production Sludge spreading
TSP avoided Production =>> Direct emissions E=3 NaOH production [ Struvite spreading
AN avoided production Electricity w72 Chemicals transport ~ EEEE N-rich spreading
Mineral fertilizers avoided spreading [N Heat T Grits disposal E== Sludge transport
Mineral fertilizers avoided transport Cogeneration E=8 Urine storage [ Struvite transport
Avoided electricity Methanol production [ Urine transport B N-rich transport
B%58 FeCl3 production

JHIR

Metals (water and sludge)

TSP avoided Production

AN avoided production

Mineral fertilizers avoided spreading
Mineral fertilizers avoided transport
Avoided electricity



Midpoint Contribution Analysis - terrestrial ecotoxici
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Midpoint Contribution Analysis - urban land occupation
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A.6.2.3 CML 2001

Midpoint Contribution Analysis - depletion of abiotic resources
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A.6.2.4 Energy distribution

Energy distribution
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A.6.3 Cumulative energy demand for reference and alternative scenarios
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A.7. General information

A.7.1 Potable water avoidance

The present study also considers an over production of potable water in scenarios 1 and 2 (scenarios without urine separation). For urine source separation scenarios,
low flushing toilets are used. According to STOWA (2002), to flush urine in separation toilets 0.12-0.15 L of water is used in comparison to 6L used for conventional
systems. The impacts of the avoidance of this overproduction are not considered, as the activity of “producing wastewater” is not included. However, it should be emphasized
that approximately 600 m>.d™ are avoided (which represents approximately 3% of total produced wastewater).

A.7.2 Gas emission calculations

PV =nRT
PV m
n= ﬁz M_W
P.V.M,

M="RT

101325 [%] -%9aS; Vorsgas: [’%3] M, -] .ﬁ [%g] .24 [g]

N.m
83144 [-T0| .293.15 [K]

mi; =

Where i represents each reactor and j each considered gas.

A.7.3 Urine influent calculation

Urine influent was based on original file proposed by Gernaey et al. (2011). A few steps were accomplished in order to separate urine from other flows: 1) Ammonia
and soluble biodegradable N were considered to completely come from urine so decreases in volume of used water was calculated based on these flows. 2) With volume
reduction, new concentrations were calculated for the effluent without urine (calculated considering 50% of urine separation). 3) For P calculations, a ratio of N/P = 12 was
considered and all P is in the form of phosphate. 4) For COD calculations, it was considered the ratio COD/TKN = 1.49 and COD is 85% readily biodegradable and 15%



soluble inert.5) Finally, for alkalinity in urine, a ratio of total CO, in relation to total N was calculated based on Udert et al. (2006) and applied to influent calculation. 6)
Additionally, magnesium addition for struvite precipitation was calculated considering a molar excess of 10%.

A.7.4 General tables

Table 1: Initial concentration and transfer coefficients for metals

Concentration in sewage Transfer Coefficients®
Ecoinvent notation  Short name Concentration (kg.m?) Tosludge’ To effluent® Source
Arsenic, ion As 3E-06 0.22 0.78 Henze and Ledin (2001)
Cadmium, ion Cd 2E-06 0.50 0.50 Henze and Ledin (2001)
Cobalt Co 1E-06 0.50 0.50 Henze and Ledin (2001)
Copper, ion Cu 7E-05 0.75 0.25 Henze and Ledin (2001)
Lead Pb 6.5E-05 0.90 0.10 Henze and Ledin (2001)
Manganese Mn 1E-04 0.50 0.50 Henze and Ledin (2001)
Mercury Hg 2E-06 0.70 0.30 Henze and Ledin (2001)
Nickel, ion Ni 2.5E-05 0.40 0.60 Henze and Ledin (2001)
Silver, ion Ag 7E-06 0.75 0.25 Henze and Ledin (2001)
Tin, ion Sn 3.4E-06 0.59 0.41 Doka (2009)
Zinc, ion Zn 2E-04 0.70 0.30 Henze and Ledin (2001)
Silicon Si 3.1E-03 0.95 0.05 Doka (2009)
Fluoride F 3.3E-05 0.00 1.00 Doka (2009)
Potassium, ion K 4E-04 0.00 1.00 Doka (2009)
Sodium, ion Na 2.2E-03 0.00 1.00 Doka (2009)
Molybdenum Mo 9.6E-07 0.50 0.50 Doka (2009)
Chromium VI Cr 2.5E-05 0.50 0.50 Henze and Ledin (2001)
S particulate S 2E-03 1.00 0.00 Doka (2009)
Magnesium Mg 5.7E-03 0.10 0.90 Doka (2009)
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Calcium, ion Ca 5.1E-02

Aluminum Al 6.5E-04

Sulfate (dissolved) SO, 4.4E-02
Iron, ion Fe 1E-03
Chloride Cl 3E-02

254

Supplementary Information

0.10 0.90
0.95 0.05
0.00 1.00
0.50 0.50
0.00 1.00

Doka (2009)

Henze and Ledin (2001)

Doka (2009)

Henze and Ledin (2001)

Doka (2009)

T Doka (2009)
2 Share in particulate matter
® Dissolved share

Table 2: Direct emissions impacts contribution for ReCiPe Midpoint (H) for Ecoinvent module “treatment, sewage, to wastewater treatment, class 2, CH, [m3] (#2276)”

compared to this study.

% Contribution

Category This study ReCiPe Midpoint (H)
Climate change 33.93% 12.26%
Freshwater ecotoxicity 33.40% 18.84%
Freshwater eutrophication 83.18% 90.08%
Human toxicity 56.11% 33.60%
Marine ecotoxicity 30.53% 17.48%
Marine eutrophication 94.19% 98.57%
Particulate matter formation 59.97% 44.47%
Terrestrial acidification 85.90% 70.31%
Terrestrial ecotoxicity 99.28% 82.17%

! For the comparison, direct emissions in this study are here, considered to be all emissions from WWTP (both directly to water body and from sludge)

Table 3: Endpoint impacts for alternative scenarios.

Ecosystem quality Human health Resources Total
Scenarios Impact (points) Reduction in Impact Reduction in Impacts Reduction in Impacts Reduction in
impact % (points) impact % (points) impact % (points) impact %
REF 1.41E-02 - 3.54E-02 - 1.44E-02 - 6.39E-02 -
uss 1.37E-02 3.00% 3.46E-02 2.10% 1.40E-02 3.10% 6.23E-02 2.50%
EPC 1.30E-02 8.20% 3.43E-02 3.10% 1.30E-02 9.90% 6.02E-02 5.80%



USS+EPC 1.21E-02 13.90%  3.29E-02 7.10% 1.17E-02 19.20% 5.67E-02 11.40%
XESF: IEPC+ 8.06E-03 42.90%  2.56E-02 27.80% 5.41E-03 62.60% 3.90E-02 39.00%
XES/: EPC+ 9.48E-03 32.80%  2.82E-02 20.30% 6.20E-03 57.10% 4.38E-02 31.40%
Table 4: Contribution of each species to Greenhouse Gases (GHGSs) directly emitted in each scenario.
Fossil CO, N,O CH, Biogenic CO,
er kg CO,-Eq 0.068 0.113 0.006 0.442
% Contribution 36.40% 60.50% 3.10%
coc kg CO,-Eq 0.064 01 0.004 0.355
% Contribution 38.10% 59.80% 2.10%
Uss kg CO,-Eq 0.067 0.109 0.006 0.437
% Contribution 36.80% 59.90% 3.20%
kg CO,-Eq 0.054 0.095 0.003 0.351
USS+EPC o
% Contribution 35.30% 62.40% 2.30%
kg CO,-Eq 0.018 0.062 0.003 0.304
USS+EPC+AGRI -
% Contribution 21.80% 74.30% 4.00%
kg CO,-Eq 0 0.072 0.004 0.265
USS+EPC+ANA o
% Contribution 0.00% 95.25% 4.75%
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Table 5: Characteristics of considered influent.
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Average Min Max

Q (mdd?) Influent flow

S, (gCOD.m™)  Soluble inert

Ss (9gCOD.m™)  Readily biodegradable

X, (gCOD.m™)  Particulate inert

Xs (gCOD.m™)  Slowly biodegradable

Xgn (gCOD.m™®)  Heterotrophic biomass

Xga (COD.m™)  Autotrophic biomass

Xp (gCOD.m™®)  Particulate products from biomass decay
So (gCOD.m™®)  Soluble oxygen

Sno (QCOD.m™)  Nitrate and nitrite

Snn (QCOD.m™)  Soluble ammonia

Sno (gCOD.m™®)  Soluble biodegradable organic nitrogen
Xno (gCOD.m™®) Particulate biodegradable organic nitrogen

20668.44 5146.12 76944.07
27.21 1.99 42.18
58.15 0.93 141.56
92.46 1.75 199.53

363.77  16.08  770.23
50.66 2.46 106.39

0 0 0
0 0 0
0 0 0
0 0 0

27.91 1.75 64.01
6.66 0.21 17.01
19.35 0.91 41.87




B. Supplementary Information for chapter 111

B.1  Adapted Influent Generator Matlab code

% This is an adapted file from the original BSM2 influent generation model
% from Xavier Flores-Alsina, IEA, LTH, Sweden, June 2010

% Adapted in order to include urine source separation (2016)

% Bisinella de Faria et al., 2016. LISBP, INSA Toulouse

% Loading total profiles (without urine separation)

% These profiles will be used latter to recalculate new profiles in
% function of urine retention in households

% Industry profiles were not changed in this version

% Load influent flow rate data files, households (HH)
load Q_day HS

load Q_week HS

load Q_year HS

% Load influent flow rate data files, Industry (IndS)
load Q_week_IndS
load Q_year_IndS

% Load influent pollution load, households (HH)
load CODsol_day HS

load CODpart_day_ HS

load SNH_day HS

load TKN_day_HS

load TP_day HS

load PO4_day HS

load pol_week HS

% Load influent pollution load, Industry (IndS)
load CODsol_week_IndS

load CODpart_week_IndS
load SNH_week_IndS
load TKN_week_IndS
load TP_week_IndS

load PO4_week_IndS

all_noises = 1;
%% 1.Households model block (flow rate)

% in L/d
% Number of urine flushes per PE and per day
% in L/flush
% in L/flush
% Percentage of urine source separated

QperPE_Urine = 1.36;
NFlushes = 5;
QOIldFlush = 5;
QNewFlush = 0.15;
UrineRetention = 0.5;

Contrib_Ind =0.2;
PE = 100000;
Including HH and Ind
sampling = 24*4; % Sampling should be set in order to have the
number of points needed per day (e.g: 24h per day * 4 points per hour = sampling
each 15 minutes)

% Number of PE connected to the WWTP -

QperPE_Household = 150;
water

% This flow only include total domestic

QperPE_WoUrine = (QperPE_Household - (UrineRetention * (QperPE_Urine +
(NFlushes * QOIdFlush))))*(1-Contrib_Ind);

QperPE_SeparatedUrine = UrineRetention * (QperPE_Urine + (NFlushes *
QNewFlush))*(1-Contrib_Ind);
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QHHsatmin = 1E-50;

QHHsatmax = QperPE_WoUrine*50;
QHHsatmin_Urine = 1E-50;

QHHsatmax_Urine = QperPE_SeparatedUrine*50;

factor_Q = 0.15;
factor_Q_Urine = 0.05;

Q _HH_ns = 3800; % Seed for noise
Q_HH_nv = (factor_Q*QperPE_WoUrine)"2; % Variance
for noise

Q_HH_st = 1/sampling; % Sampling time
Q_HH_ns_Urine = 3801;

Q_HH_nv_Urine = (factor_Q_Urine*QperPE_SeparatedUrine)"2;
Q_HH_st_Urine = 1/sampling;
HHpopswitch = 100; % Switch the household contribution on
(100%) or off (0%)

HHnoiseswitch = all_noises;
household flow rate on (1) or off (0)

% Switch the noise term in

%% 2.Industry model block (flow rate)

QInd_weekday = QperPE_Household*PE*Contrib_Ind/1000; %
Average wastewater production industry, for normal week-days (m3)
QIndsatmin=0.001;

QIndsatmax=QInd_weekday*10;

factor_Q_Ind =0.05;

Q_Ind_ns=2000;
Q_Ind_nv=(QInd_weekday*factor_Q_Ind)"2;
Q_Ind_st=1/sampling;

Indpopswitch = 100;
Indnoiseswitch = all_noises;

%% 3. Seasonal correction factor (flow rate)

InfAmp = 1200;
InfBias = 7100;
infiltration flow rate)
InfFreq = 2*pi/364;

% Sine wave amplitude (m3/d)
% Sine wave bias (m3/d) (= average

% Sine wave frequency (rad/d)

InfPhase = -pi*15/24; % Sine wave phase shift

Infcst = 7100; % Constant flow rate (m3/d), used when the
sine wave is not selected (manual selection possible in 'Groundwater' model block

QSClsatmin=0.0;
QSClsatmax=2*(InfBias+InfAmp);

Q_SCI_ns=1000;
Q_SCI_nv=0.1*InfBias;
Q_SCI_st=1;

SClpopswitch=100;
SClInoiseswitch=0;

%% 4. rain generation model block (flow-rate)

LLrain=3.5; % Limit for rain (this value is subtracted from
the values generated by the random number generator)

Qpermm=1500; % Flow rate due to rain (m3/mm)
aHpercent=75; % Assumed percentage of the extra flow due
to rain that originates from impervious areas, where water is directly collected in
the sewer system. In the model, the conversion aH = aHpercent/100 is made.
rainmax = 1000; % Max signal after the transfer function

rainmin = 0; % Min signal after the transfer function
rain_ns=3000;

rain_nm=1;

rain_nv=800; % Originally 400

rain_st=1/sampling;
rainpopswitch=100;
%% 5 soil model accumulation block (flow rate)

XINITSOIL=2.2; % Initial h1 value.



subareas = 4; % Subareas the catchment is divided
HINV=2; % Invert level in tank, i.e. water level
corresponding to bottom of sewer pipes

HMAX=HINV+0.8;
A=36000;

K=1.0;

penetration
Kinf=2500.0*subareas;
the quality of the sewer system pipes
Kdown=1000.0;

downstream aquifer

% Maximum water level in tank
% Surface area
% Parameter, permeability of soil for water
% Infiltration gain, can be an indication of
% Gain to adjust for flow rate to

PARS_SOIL=[HMAX HINV A K Kinf Kdown];
input to the unisoilmodel.c S-function

% Parameter vector, an

%% 6.Households model block (pollutants)

% Ratios between soluble and particulate considers that sewers will not consider
hydrolysis

% Total domestic (WITH urine)
Total_COD = 120;

TN_TP =6;

TCOD_TN=09;
TCOD_TP=TCOD_TN * TN_TP;

% in g/(PE.d)
% Ratio between TN and TP

% Ratio between TCOD and TN

% Ratio between TCOD and TP

CODsol_TCOD =0.21; % Ratio between soluble COD and
total COD
SNH_TKN =0.75;
nitrogen
PO4_TP =0.54;
phosphorus
NOx_TKN = 1E-50;
nitrogen

% Ratio between ammonium and total
% Ratio between PO4 and total
% Ratio between NOx and total
TotalCOD_HH = Total_COD*(1-Contrib_Ind);

CODsol_gperPEperd = Total_COD * CODsol_TCOD * (1-Contrib_Ind); %
Soluble COD load in g COD/d per PE

CODpart_gperPEperd = Total_ COD * (1-CODsol_TCOD) * (1-Contrib_Ind); %
Particulate COD load in g COD/d per (includes also colloidal part)
TKN_gperPEperd = Total COD / TCOD_TN * (1-Contrib_Ind);
load in g N/d per PE

SNH_gperPEperd = SNH_TKN * TKN_gperPEperd;
g N/d per PE

NOx_gperPEperd = NOx_TKN * TKN_gperPEperd;
TP_gperPEperd = Total_COD / TCOD_TP * (1-Contrib_Ind);
in g P/d per PE

PO4_gperPEperd = PO4_TP * TP_gperPEperd;
PE

% TKN

% Ammonium load in

% TP load

% PO4 load in g P/d per

% Total urine (100% retention)

% Directly excreted values per PE per day are used for urine (instead of ratios) -
concentration and values are well know
CODsol_gperPEperd_Urine = 10.40;
COD/d per PE in Urine
CODpart_gperPEperd_Urine = 0.78;
COD/d per PE in Urine
Total_COD_Urine = CODsol_gperPEperd_Urine + CODpart_gperPEperd_Urine;
TKN_gperPEperd_Urine = 9.78; % TKN load in g N/d per PE in

% Soluble COD load ing

% Particulate COD load in g

Urine

SNH_gperPEperd_Urine = 8.80; % Ammonium load in g N/d per
PE in Urine

NOx_gperPEperd_Urine = 1E-50; % NOx load in g N/d per PE in
Urine

TP_gperPEperd_Urine = 0.74;
per PE in Urine
PO4_gperPEperd_Urine = 0.70;
Urine

% Total phosphorus load in g P/d

% PO4 load in g P/d per PE in

% Urine separated

CODsol_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(CODsol_gperPEperd_Urine);
CODpart_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(CODpart_gperPEperd_Urine);
Total_COD_SepUrine = CODsol_gperPEperd_SepUrine +
CODpart_gperPEperd_SepUrine;
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TKN_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(TKN_gperPEperd_Urine);
SNH_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(SNH_gperPEperd_Urine);
NOx_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(NOx_gperPEperd_Uringe);
TP_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(TP_gperPEperd_Urine);
PO4_gperPEperd_SepUrine = UrineRetention*(1-
Contrib_Ind)*(PO4_gperPEperd_Uringe);

% Domestic without urine

CODsol_gperPEperd_woUrine = CODsol_gperPEperd -
CODsol_gperPEperd_SepUrine;
CODpart_gperPEperd_woUrine = CODpart_gperPEperd -
CODpart_gperPEperd_SepUrine;

Total_ COD_woUrine = CODsol_gperPEperd_woUrine +
CODpart_gperPEperd_woUrine;

TKN_gperPEperd_woUrine = TKN_gperPEperd - TKN_gperPEperd_SepUrine;

SNH_gperPEperd_woUrine = SNH_gperPEperd - SNH_gperPEperd_SepUrine;
NOx_gperPEperd_woUrine = NOx_gperPEperd - NOx_gperPEperd_SepUrine;
TP_gperPEperd_woUrine = TP_gperPEperd - TP_gperPEperd_SepUring;
PO4_gperPEperd_woUrine = PO4_gperPEperd - PO4_gperPEperd_SepUring;

CODsol_HH_min = 0.001*CODsol_gperPEperd_woUrine*PE/1000;
CODsol_HH_max = 20*CODsol_gperPEperd_woUrine*PE/1000;
CODpart_ HH_min = 0.001*CODpart_gperPEperd_woUrine*PE/1000;
CODpart_HH_max = 20*CODpart_gperPEperd_woUrine*PE/1000;
SNH_HH_min = 0.001*SNH_gperPEperd_woUrine*PE/1000;
SNH_HH_max = 20*SNH_gperPEperd_woUrine*PE/1000;
TKN_HH_min = 0.001*TKN_gperPEperd_woUrine*PE/1000;
TKN_HH_max = 20*TKN_gperPEperd_woUrine*PE/1000;
TP_HH_min = 0.001*TP_gperPEperd_woUrine*PE/1000;
TP_HH_max = 20*TP_gperPEperd_woUrine*PE/1000;
PO4_HH_min = 0.001*P0O4_gperPEperd_woUrine*PE/1000;
PO4_HH_max = 20*PO4_gperPEperd_woUrine*PE/1000;

CODsol_HH_min_Urine = 0.001*CODsol_gperPEperd_SepUrine*PE/1000;
CODsol_HH_max_Urine = 20*CODsol_gperPEperd_SepUrine*PE/1000;

CODpart_HH_min_Urine = 0.001*CODpart_gperPEperd_SepUrine*PE/1000;
CODpart_HH_max_Urine = 20*CODpart_gperPEperd_SepUrine*PE/1000;
SNH_HH_min_Urine = 0.001*SNH_gperPEperd_SepUrine*PE/1000;
SNH_HH_max_Urine = 20*SNH_gperPEperd_SepUrine*PE/1000;
TKN_HH_min_Urine = 0.001*TKN_gperPEperd_SepUrine*PE/1000;
TKN_HH_max_Urine = 20*TKN_gperPEperd_SepUrine*PE/1000;
TP_HH_min_Urine = 0.001*TP_gperPEperd_SepUrine*PE/1000;
TP_HH_max_Urine = 20*TP_gperPEperd_SepUrine*PE/1000;
PO4_HH_min_Urine = 0.001*PO4_gperPEperd_SepUrine*PE/1000;
PO4_HH_max_Urine = 20*PO4_gperPEperd_SepUrine*PE/1000;

factorl = 0.1;
generators
factorl_Urine = 0.05;

% Proportionality factor random noise

CODsol_HH_ns = 25000;

CODsol_HH_nv = (factor1*CODsol_gperPEperd_woUrine*PE/1000)"2;
CODsol_HH_st = 1/sampling;

CODpart_HH_ns = 35000;

CODpart_HH_nv = (factor1*CODpart_gperPEperd_woUrine*PE/1000)"2;
CODpart_HH_st = 1/sampling;

SNH_HH_ns = 45000;

SNH_HH_nv = (factorl*SNH_gperPEperd_woUrine*PE/1000)"2;
SNH_HH_st = 1/sampling;

TKN_HH_ns = 55000;

TKN_HH_nv = (factor1*TKN_gperPEperd_woUrine*PE/1000)"2;
TKN_HH_st = 1/sampling;

TP_HH_ns = 65000;

TP_HH_nv = (factor1*TP_gperPEperd_woUrine*PE/1000)"2;
TP_HH_st = 1/sampling;

PO4_HH_ns = 75000;

PO4_HH_nv = (factor1*PO4_gperPEperd_woUrine*PE/1000)"2;
PO4_HH_st = 1/sampling;

CODsol_HH_ns_Urine = 26000;

CODsol_HH_nv_Urine =
(factorl_Urine*CODsol_gperPEperd_SepUrine*PE/1000)"2;
CODsol_HH_st_Urine = 1/sampling;
CODpart_HH_ns_Urine = 36000;



CODpart_HH_nv_Urine =
(factorl_Urine*CODpart_gperPEperd_SepUrine*PE/1000)"2;
CODpart_HH_st_Urine = 1/sampling;

SNH_HH_ns_Urine = 46000;

SNH_HH_nv_Urine = (factorl Urine*SNH_gperPEperd_SepUrine*PE/1000)"2;
SNH_HH_st Urine = 1/sampling;

TKN_HH_ns_Urine = 56000;

TKN_HH_nv_Urine = (factorl_Urine*TKN_gperPEperd_SepUrine*PE/1000)"2;
TKN_HH_st_Urine = 1/sampling;

TP_HH_ns_Urine = 66000;

TP_HH_nv_Urine = (factorl_Urine*TP_gperPEperd_SepUrine*PE/1000)"2;
TP_HH_st_Urine = 1/sampling;

PO4_HH_ns_Urine = 76000;

PO4_HH_nv_Urine = (factorl_Urine*PO4_gperPEperd_SepUrine*PE/1000)"2;
PO4 _HH_st_Urine = 1/sampling;

HHpolnoiseswitch = all_noises;
%% 7. Industry model block (pollutants)

CODsol_Ind_kgperd = CODsol_gperPEperd*Contrib_Ind/(1-
Contrib_Ind)*PE/1000; % Soluble COD load in kg COD/d
CODpart_Ind_kgperd = CODpart_gperPEperd*Contrib_Ind/(1-
Contrib_Ind)*PE/1000; % Particulate COD load in kg COD/d
TKN_Ind_kgperd = TKN_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;
% TKN load in kg N/d

SNH_Ind_kgperd = SNH_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;
% SNH load in kg N/d

TP_Ind_kgperd = TP_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;

% TP load in kg P/d

PO4_Ind_kgperd = PO4_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;
% PO4 load in kg P/d

NOx_Ind_kgperd = NOx_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;

CODsol_gperPEperd_Ind = CODsol_Ind_kgperd*1000/PE; %
Soluble COD load in kg COD/d
CODpart_gperPEperd_Ind = CODpart_Ind_kgperd*1000/PE; %

Particulate COD load in kg COD/d

TKN_gperPEperd_Ind = TKN_Ind_kgperd*1000/PE; % TKN
load in kg N/d

SNH_gperPEperd_Ind = SNH_Ind_kgperd*1000/PE; % SNH
load in kg N/d

TP_gperPEperd_Ind = TP_Ind_kgperd*1000/PE; % TP load in
kg P/d

PO4_gperPEperd_Ind = PO4_Ind_kgperd*1000/PE; % PO4 load
in kg P/d

TotalCOD_Ind = CODsol_gperPEperd_Ind + CODpart_gperPEperd_Ind;
NOx_gperPEperd_Ind = NOx_Ind_kgperd*1000/PE;

CODsol_Ind_max = 20*CODsol_Ind_kgperd;
CODsol_Ind_min =0.1;

CODpart_Ind_max = 20*CODpart_Ind_kgperd,;
CODpart_Ind_min=10.1;

SNH_Ind_max = 20*SNH_Ind_kgperd,;
SNH_Ind_min=0.1;

TKN_Ind_max = 20*TKN_Ind_kgperd;
TKN_Ind_min =0.1;

TP_Ind_max = 20*TP_Ind_kgperd;
TP_Ind_min =0.1;

PO4_Ind_max = 20*PO4_Ind_kgperd,;
PO4_Ind_min =0.1;

factor2 = 0.1;

CODsol_Ind_ns =11000;

CODsol_Ind_nv = (factor2*CODsol_Ind_kgperd)"2;
CODsol_Ind_st = 1/sampling;

CODpart_Ind_ns = 21000;

CODpart_Ind_nv = (factor2*CODpart_Ind_kgperd)"2;
CODpart_Ind_st = 1/sampling;

SNH_Ind_ns = 31000;

SNH_Ind_nv = (factor2*SNH_Ind_kgperd)"2;
SNH_Ind_st = 1/sampling;

TKN_Ind_ns = 41000;

TKN_Ind_nv = (factor2*TKN_Ind_kgperd)"2;
TKN_Ind_st = 1/sampling;

TP_Ind_ns = 51000;
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TP_Ind_nv = (factor2*TP_Ind_kgperd)"2;
TP_Ind_st = 1/sampling;

PO4_Ind_ns = 61000;

PO4_Ind_nv = (factor2*PO4_Ind_kgperd)"2;
PO4_Ind_st = 1/sampling;

Indpolnoiseswitch=all_noises;
%% 8. Influent fractionation model

% General parameters
COD_TSS =0.75;

Biomass_COD_VSS =1.42;
XU_COD_VSS=13;
XB_COD_VSS =1.8;
XE_COD_VSS =1.42;

% Parameters for total influent
Total_XU_CODpart = 0.124;

Total_ XOHO_CODpart = 0.025;
Total_XOtherBiomass_CODpart = 1E-50;
Total_XE_CODpart = 1E-50;
Total_SVFA_CODsol = 0.26;

Total CB_CODpart =0.203;

Total CU_CODpart = 0.0405;
Total_SMEOL_CODsol = 1E-50;

Total_ TCODinert TCOD =0.18;

Total_TKNinert TKN =0.0245;
Total_Organic_TKN =1 - (SNH_TKN);
Total_ XNU_TKN = 0.0034;
Total_XNB_TKN =0.0904;

Total CNU_TKN = 0.0011;

Total_ CNB_TKN =0.0301;

Total SNO3_NOx =0.5;

Total_TPinert_TP = 0.0075;
Total_Organic_TP =1 - (PO4_TP);
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Total_XPU_TP =0.0011;
Total_XPB_TP =0.1714;
Total_CPU_TP = 0.0004;
Total_CPB_TP =0.0571;

Total_Ca_SNHx = 0.95;
Total_Mg_SNHx =0.23;
Total Na SNHx =1.73;
Total_Cl_SNHXx = 3.6;

Total TIC_SNHx =4.2;

% Parameters for urine
XU_CODpart_Urine = 0.1071;
XOHO_CODpart_Urine = 1E-50;
XOtherBiomass_CODpart_Urine = 1E-50;
XE_CODpart_Urine = 1E-50;
SVFA_CODsol_Urine = 0.57;
CB_CODpart_Urine = 0.214;
CU_CODpart_Urine = 0.036;
SMEOL_CODsol_Urine = 1E-50;
TCODinert_TCOD_Urine = 0.09;

TKNinert_TKN_Urine = 0.01;

Organic_TKN_Urine =1 - (SNH_gperPEperd_Urine/TKN_gperPEperd_Urine);
XNU_TKN_Urine = 1E-50;

XNB_TKN_Urine = 0.015;

CNU_TKN_Urine = 1E-50;

CNB_TKN_Urine = 0.005;

SNO3_NOx_Urine = 0.5;

TPinert_TP_Urine = 0.001;

Organic_TP_Urine = 1 - (PO4_gperPEperd_Urine/TP_gperPEperd_Urine);
XPU_TP_Urine = 1E-50;

XPB_TP_Urine = 0.0075;

CPU_TP_Urine = 1E-50;

CPB_TP_Urine = 0.0025;

Ca_SNHx_Urine = 0.026;
Mg_SNHx_Urine = 0.022;




Na_SNHXx_Urine = 0.392;
CI_SNHx_Urine = 0.565;
TIC_SNHx_Urine = 1.57;

% Calculating new parameters for HH without urine source separated
XU_CODpart =
((Total_XU_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) -
(XU_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_
woUrine+CODpart_gperPEperd_Ind);

XOHO_CODpart =
((Total_XOHO_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) -
(XOHO_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEpe
rd_woUrine+CODpart_gperPEperd_Ind);

XOtherBiomass_CODpart =
((Total_XOtherBiomass_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd
_Ind)) -
(XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_
gperPEperd_woUrine+CODpart_gperPEperd_Ind);

XE_CODpart =
((Total_XE_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) -
(XE_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_
woUrine+CODpart_gperPEperd_Ind);

SVFA_CODsol =
((Total_SVFA_CODsol*(CODsol_gperPEperd+CODsol_gperPEperd_Ind)) -
(SVFA_CODsol_Urine*CODsol_gperPEperd_SepUrine))/(CODsol_gperPEperd_
woUrine+CODsol_gperPEperd_Ind);

CB_CODpart =
((Total_CB_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) -
(CB_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_
woUrine+CODpart_gperPEperd_Ind);

CU_CODpart =
((Total_CU_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) -
(CU_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_
woUrine+CODpart_gperPEperd_Ind);

SMEOL_CODsol =
((Total_SMEOL_CODsol*(CODsol_gperPEperd+CODsol_gperPEperd_Ind)) -
(SMEOL_CODsol_Urine*CODsol_gperPEperd_SepUrine))/(CODsol_gperPEper
d_woUrine+CODsol_gperPEperd_Ind);

TCODinert_TCOD =

((Total_TCODinert TCOD*(TotalCOD_HH+TotalCOD_Ind)) -
(TCODinert_TCOD_Urine*Total COD_SepUrine))/(Total COD_woUrine+Total
COD_lInd);

TKNinert_ TKN =
((Total_TKNinert_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) -
(TKNinert_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUri
ne+TKN_gperPEperd_Ind);

Organic_TKN =
((Total_Organic_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) -
(Organic_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrin
e+TKN_gperPEperd_Ind);

XNU_TKN = ((Total _XNU_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) -
(XNU_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+
TKN_gperPEperd_Ind);

XNB_TKN = ((Total_ XNB_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) -
(XNB_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+
TKN_gperPEperd_Ind);

CNU_TKN = ((Total_CNU_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) -
(CNU_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+
TKN_gperPEperd_Ind);

CNB_TKN = ((Total_CNB_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) -
(CNB_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+
TKN_gperPEperd_Ind);

SNO3_NOx = ((Total_SNO3_NOx*(NOx_gperPEperd+NOx_gperPEperd_Ind)) -
(SNO3_NOx_Urine*NOx_gperPEperd_SepUrine))/(NOx_gperPEperd_woUrine+
NOXx_gperPEperd_Ind);

TPinert_TP = ((Total_TPinert_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) -
(TPinert_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_
gperPEperd_Ind);

Organic_TP = ((Total_Organic_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) -
(Organic_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_
gperPEperd_Ind);

XPU_TP = ((Total_XPU_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) -
(XPU_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gp
erPEperd_Ind);
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XPB_TP = ((Total_XPB_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) -
(XPB_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd woUrine+TP_gpe
rPEperd_Ind);

CPU_TP = ((Total_CPU_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) -
(CPU_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gpe
rPEperd_Ind);

CPB_TP = ((Total_CPB_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) -
(CPB_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gpe
rPEperd_Ind);

Ca_SNHx = ((Total_Ca_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) -
(Ca_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S
NH_gperPEperd_Ind);

Mg_SNHx = ((Total_Mg_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) -
(Mg_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S
NH_gperPEperd_Ind);

Na_SNHx = ((Total_Na_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) -
(Na_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S
NH_gperPEperd_Ind);

Cl_SNHx = ((Total_CI_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) -
(CI_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S
NH_gperPEperd_Ind);

TIC_SNHXx = ((Total_TIC_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) -
(TIC_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+
SNH_gperPEperd_Ind);

% Initial values

% Urine

SVFA_in_Urine =
SVFA_CODsol_Urine*CODsol_gperPEperd_SepUrine/QperPE_SeparatedUrine*
1000;

SMEOL_in_Urine =
SMEOL_CODsol_Urine*CODsol_gperPEperd_SepUrine/QperPE_SeparatedUrin
€*1000;

CB_in_Urine =
CB_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1
000;

CU_in_Urine =
CU_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1
000;

XU_in_Urine =
XU_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1
000;

XE_in_Urine =
XE_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1
000;

XOHO_in_Urine =
XOHO_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrin
€*1000;

XPAO_in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XMEOLQ _in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XAOB_in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XNOB_in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XAMX _in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XAMETO_in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XHMETO_in_Urine =
XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa
ratedUrine*1000;

XB_in_Urine = (CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000)
- CB_in_Urine - CU_in_Urine - XU_in_Urine - XE_in_Urine - XOHO _in_Urine -
XPAO_in_Urine - XMEOLO _in_Urine - XAOB_in_Urine - XNOB_in_Urine -
XAMX in_Urine - XAMETO _in_Urine - XHMETO _in_Urine;



SU_in_Urine = (Total_COD_SepUrine *
TCODinert_TCOD_Urine/QperPE_SeparatedUrine*1000) - XU_in_Urine -
CU_in_Urineg;

SB_in_Urine = (CODsol_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) -
SVFA in_Urine - SMEOL _in_Urine - SU_in_Urine;

SNHx_in_Urine = SNH_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
SNO3_in_Urine =
SNO3_NOx_Urine*NOx_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
SNO2_in_Urine = (NOx_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000)
SNO3 _in_Uring;

CNB_in_Urine =
CNB_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
XNB_in_Urine =
XNB_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
CNU_in_Urine =
CNU_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
XNU_in_Urine =
XNU_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
SNU_in_Urine = (TKN_gperPEperd_SepUrine *
TKNinert_TKN_Urine/QperPE_SeparatedUrine*1000) - XNU_in_Urine -
CNU_in_Urine;

SNB_in_Urine = (TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) -
SNHXx_in_Urine - SNO2_in_Urine - SNO3_in_Urine - CNB_in_Urine -
CNU_in_Urine - XNB_in_Urine - XNU_in_Urine - SNU_in_Urine;

SPO4_in_Urine = PO4_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
CPB_in_Urine =
CPB_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
XPB_in_Urine =
XPB_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
CPU_in_Urine =
CPU_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
XPU_in_Urine =
XPU_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000;
SPU_in_Urine = (TP_gperPEperd_SepUrine *
TPinert_TP_Urine/QperPE_SeparatedUrine*1000) - XPU_in_Urine -
CPU_in_Uring;

SPB_in_Urine = (TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) -
SPO4 _in_Urine - CPB_in_Urine - CPU_in_Urine - XPB_in_Urine -
XPU_in_Urine - SPU_in_Urine;

TIC_in_Urine = TIC_SNHx_Urine*SNHXx _in_Urine;
Ca_in_Urine = Ca_SNHx_Urine*SNHXx_in_Urine;
Mg_in_Urine = Mg_SNHx_Urine*SNHx_in_Urine;
Na_in_Urine = Na_SNHx_Urine*SNHx_in_Urine;
Cl_in_Urine = CI_SNHx_Urine*SNHx_in_Urine;

%0thers

Contrib_Other_Q =0.25;

QperPE_av = (QperPE_WoUrine + ((QInd_weekday*1000)/PE)) +
(Contrib_Other_Q*QperPE_Household/(1-Contrib_Other_Q));

SVFA_ in=
SVFA_CODsol*(CODsol_gperPEperd_woUrine+CODsol_gperPEperd_Ind)/(Qpe
rPE_av)*1000;

SMEOL _in =
SMEOL_CODsol*(CODsol_gperPEperd_woUrine+CODsol_gperPEperd_Ind)/(Q
perPE_av)*1000;

CB_in=
CB_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe
rPE_av)*1000;

CU_in=
CU_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe
rPE_av)*1000;

XU _in=
XU_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe
rPE_av)*1000;

XE_in=
XE_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe
rPE_av)*1000;

XOHO_in=
XOHO_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(
QperPE_av)*1000;

XPAO_in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;
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XMEOLO_in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;

XAOB_in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;

XNOB_in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;

XAMX in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;

XAMETO_in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;

XHMETO_ in=
XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe
rd_Ind)/(QperPE_av)*1000;

XB_in=
((CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(QperPE_av)*1000
) - CB_in - CU_in - XU_in - XE_in - XOHO_in - XPAO_in - XMEOLO_in -
XAOB_in - XNOB_in - XAMX_in - XAMETO _in - XHMETO _in;

SU_in = ((Total_COD_woUrine + TotalCOD_Ind) *
TCODinert_TCOD/(QperPE_av)*1000) - XU_in - CU_in;

SB_in=
((CODsol_gperPEperd_woUrine+CODsol_gperPEperd_Ind)/(QperPE_av)*1000)
- SVFA_in - SMEOL_in - SU_in;

SNHx_in =
(SNH_gperPEperd_woUrine+SNH_gperPEperd_Ind)/(QperPE_av)*1000;
SNO3_in=
SNO3_NOx*(NOx_gperPEperd_woUrine+NOx_gperPEperd_Ind)/(QperPE_av)*
1000;

SNO2_in=
((NOx_gperPEperd_woUrine+NOx_gperPEperd_Ind)/(QperPE_av)*1000) -
SNO3 _in;

CNB_in =
CNB_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*
1000;

XNB_in =
XNB_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*
1000;

CNU_in=
CNU_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*
1000;

XNU_in=
XNU_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*
1000;

SNU_in = ((TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind) *

TKNinert_ TKN/(QperPE_av)*1000) - XNU_in - CNU_in;

SNB_in=
((TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*1000) -
SNHx_in - SNO2_in - SNO3_in - CNB_in - CNU_in - XNB_in - XNU_in -
SNU_in;

SPO4_in=
(PO4_gperPEperd_woUrine+P0O4_gperPEperd_Ind)/(QperPE_av)*1000;
CPB_in=
CPB_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000;
XPB_in=
XPB_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000;
CPU_in=
CPU_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000;
XPU_in=
XPU_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000;
SPU _in = ((TP_gperPEperd_woUrine+TP_gperPEperd_Ind) *
TPinert_TP/(QperPE_av)*1000) - XPU_in - CPU_in;

SPB_in = ((TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000)
- SPO4_in - CPB_in - CPU_in - XPB_in - XPU_in - SPU_in;

TIC_in = TIC_SNHx*SNHx_in;
Ca_in = Ca_SNHx*SNHx_in;
Mg_in = Mg_SNHx*SNHx_in;
Na_in = Na_SNHX*SNHx_in;
Cl_in = Cl_SNHx*SNHXx _in;

TSS_in = COD_TSS * (XB_in + XU_in + XOHO_in + XPAO_in + XMEOLO _in
+ XAOB_in + XNOB_in + XAMX_in + XAMETO_in + XHMETO_in + XE_in);



% Noise Others
factorVariables = 0.1;

SVFA_ns = 13122;

SVFA nv = (factorVariables*(SVFA _in))"2;
SVFA_st = 1/sampling;

SVFA_max = 100*SVFA in;

SVFA_min = 1E-50;

SB_ns =13123;

SB_nv = (factorVariables*(SB_in))"2;
SB_st = 1/sampling;

SB_max = 100*SB_in;

SB_min = 1E-50;

SMEOL_ns = 13124;

SMEOL_nv = (factorVariables*(SMEOL_in))"2;
SMEOL_st = 1/sampling;

SMEOL_max = 100*SMEOL _in;

SMEOL_min = 1E-50;

CB_ns = 13125;

CB_nv = (factorVariables*(CB_in))"2;
CB_st = 1/sampling;

CB_max = 100*CB_in;

CB_min = 1E-50;

XB_ns = 13126;

XB_nv = (factorVariables*(XB_in))"2;
XB_st = 1/sampling;

XB_max = 100*XB_in;

XB_min = 1E-50;

SU_ns =13127;

SU_nv = (factorVariables*(SU_in))"2;
SU_st = 1/sampling;

SU_max = 100*SU _in;

SU_min = 1E-50;

CU_ns =13128;

CU_nv = (factorVariables*(CU_in))"2;
CU_st = 1/sampling;

CU_max = 100*CU_in;

CU_min = 1E-50;

XU_ns = 13129;

XU_nv = (factorVariables*(XU_in))"2;
XU_st = 1/sampling;

XU_max = 100*XU _in;

XU_min = 1E-50;

XE_ns = 13130;

XE_nv = (factorVariables*(XE_in))"2;
XE_st = 1/sampling;

XE_max = 100*XE_in;

XE_min = 1E-50;

XOHO_ns =13131;

XOHO_nv = (factorVariables*(XOHO_in))"2;
XOHO_st = 1/sampling;

XOHO_max = 100*XOHO _in;

XOHO_min = 1E-50;

XPAQO_ns =13132;

XPAO_nv = (factorVariables*(XPAO_in))"2;
XPAOQO_st = 1/sampling;

XPAO_max = 100*XPAO_in;

XPAO_min = 1E-50;

XMEOLO_ns = 13133;

XMEOLO_nv = (factorVariables*(XMEOLO_in))"2;

XMEOLOQ_st = 1/sampling;
XMEOLO_max = 100*XMEOLO _in;
XMEOLO_min = 1E-50;

XAOB_ns = 13134;
XAOB_nv = (factorVariables*(XAOB_in))"2;
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XAOB _st = 1/sampling;
XAOB_max = 100*XAO0B_in;
XAOB_min = 1E-50;

XNOB_ns = 13135;

XNOB_nv = (factorVariables*(XNOB _in))"2;
XNOB_st = 1/sampling;

XNOB_max = 100*XNOB _in;

XNOB_min = 1E-50;

XAMX_ns = 13136;

XAMX _nv = (factorVariables*(XAMX_in))"2;
XAMX st = 1/sampling;

XAMX_max = 100*XAMX_in;

XAMX_min = 1E-50;

XAMETO_ns = 13137;

XAMETO_nv = (factorVariables*(XAMETO_in))"2;
XAMETO_st = 1/sampling;

XAMETO_max = 100*XAMETO _in;
XAMETO_min = 1E-50;

XHMETO_ns = 13138;

XHMETO_nv = (factorVariables*(XHMETOQO_in))"2;
XHMETO_st = 1/sampling;

XHMETO_max = 100*XHMETO _in;
XHMETO_min = 1E-50;

SNHx_ns = 13139;

SNHx_nv = (factorVariables*(SNHx_in))"2;
SNHx_st = 1/sampling;

SNHx_max = 100*SNHXx_in;

SNHx_min = 1E-50;

SNO2_ns = 13140;

SNO2_nv = (factorVariables*(SNO2_in))"2;
SNO2_st = 1/sampling;

SNO2_max = 100*SNO2_in;

SNO2_min = 1E-50;
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SNO3_ns = 13141;
SNO3_nv = (factorVariables*(SNO3_in))"2;
SNO3_st = 1/sampling;
SNO3_max = 100*SNO3_in;
SNO3_min = 1E-50;

SNB_ns = 13142;

SNB_nv = (factorVariables*(SNB_in))"2;
SNB_st = 1/sampling;

SNB_max = 100*SNB_in;

SNB_min = 1E-50;

CNB_ns = 13143;

CNB_nv = (factorVariables*(CNB_in))"2;
CNB_st = 1/sampling;

CNB_max = 100*CNB_in;

CNB_min = 1E-50;

XNB_ns = 13144,

XNB_nv = (factorVariables*(XNB_in))"2;
XNB_st = 1/sampling;

XNB_max = 100*XNB_in;

XNB_min = 1E-50;

SNU_ns = 13145;

SNU_nv = (factorVariables*(SNU _in))"2;
SNU_st = 1/sampling;

SNU_max = 100*SNU _in;

SNU_min = 1E-50;

CNU_ns = 13146;

CNU_nv = (factorVariables*(CNU_in))"2;
CNU_st = 1/sampling;

CNU_max = 100*CNU _in;

CNU_min = 1E-50;

XNU_ns = 13147;
XNU_nv = (factorVariables*(XNU_in))"2;



XNU_st = 1/sampling;
XNU_max = 100*XNU _in;
XNU_min = 1E-50;

SPO4_ns = 13148;

SPO4_nv = (factorVariables*(SPO4_in))"2;

SPO4_st = 1/sampling;
SPO4_max = 100*SPO4_in;
SPO4_min = 1E-50;

SPB_ns = 13149;

SPB_nv = (factorVariables*(SPB_in))"2;
SPB_st = 1/sampling;

SPB_max = 100*SPB_in;

SPB_min = 1E-50;

CPB_ns = 13150;

CPB_nv = (factorVariables*(CPB_in))"2;
CPB_st = 1/sampling;

CPB_max = 100*CPB_in;

CPB_min = 1E-50;

XPB_ns = 13151;

XPB_nv = (factorVariables*(XPB_in))"2;
XPB_st = 1/sampling;

XPB_max = 100*XPB_in;

XPB_min = 1E-50;

SPU_ns = 13152;

SPU_nv = (factorVariables*(SPU _in))"2;
SPU_st = 1/sampling;

SPU_max = 100*SPU _in;

SPU_min = 1E-50;

CPU_ns = 13153;

CPU_nv = (factorVariables*(CPU_in))"2;
CPU_st = 1/sampling;

CPU_max = 100*CPU _in;

CPU_min = 1E-50;

XPU_ns = 13154;

XPU_nv = (factorVariables*(XPU_in))"2;
XPU_st = 1/sampling;

XPU_max = 100*XPU_in;

XPU_min = 1E-50;

TIC _ns =13155;

TIC_nv = (factorVariables*(TIC_in))"2;
TIC_st = 1/sampling;

TIC_max = 100*TIC_in;

TIC_min = 1E-50;

Ca_ns = 13156;

Ca_nv = (factorVariables*(Ca_in))"2;
Ca_st = 1/sampling;

Ca_max = 100*Ca_in;

Ca_min = 1E-50;

Mg_ns = 13157,

Mg_nv = (factorVariables*(Mg_in))"2;
Mg_st = 1/sampling;

Mg_max = 100*Mg_in;

Mg_min = 1E-50;

Na_ns = 13158;

Na_nv = (factorVariables*(Na_in))"2;
Na_st = 1/sampling;

Na_max = 100*Na_in;

Na_min = 1E-50;

Cl_ns = 13159;

Cl_nv = (factorVariables*(Cl_in))"2;
Cl_st = 1/sampling;

Cl_max = 100*Cl_in;

Cl_min = 1E-50;

polnoiseswitch = all_noises;
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% Noise Urine
factorVariables_Urine = 0.01;

SVFA ns_Urine = 13222;

SVFA nv_Urine = (factorVariables_Urine*(SVFA _in_Urine))"2;
SVFA st _Urine = 1/sampling;

SVFA_max_Urine = 100*SVFA_in_Uring;

SVFA_min_Urine = 1E-50;

SB_ns_Urine = 13223;

SB_nv_Urine = (factorVariables_Urine*(SB_in_Urine))"2;
SB_st_Urine = 1/sampling;

SB_max_Urine = 100*SB_in_Urine;

SB_min_Urine = 1E-50;

SMEOL_ns_Urine = 13224;

SMEOL_nv_Urine = (factorVariables_Urine*(SMEOL_in_Urine))"2;
SMEOL_st_Urine = 1/sampling;

SMEOL_max_Urine = 100*SMEOL_in_Urine;

SMEOL_min_Urine = 1E-50;

CB_ns_Urine = 13225;

CB_nv_Urine = (factorVariables_Urine*(CB_in_Urine))"2;
CB_st_Urine = 1/sampling;

CB_max_Urine = 100*CB_in_Urine;

CB_min_Urine = 1E-50;

XB_ns_Urine = 13226;

XB_nv_Urine = (factorVariables_Urine*(XB_in_Urine))"2;
XB_st_Urine = 1/sampling;

XB_max_Urine = 100*XB_in_Urine;

XB_min_Urine = 1E-50;

SU_ns_Urine = 13227,

SU_nv_Urine = (factorVariables_Urine*(SU_in_Urine))"2;
SU_st_Urine = 1/sampling;

SU_max_Urine = 100*SU_in_Uring;

SU_min_Urine = 1E-50;
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CU_ns_Urine = 13228;

CU_nv_Urine = (factorVariables_Urine*(CU_in_Urine))"2;
CU_st_Urine = 1/sampling;

CU_max_Urine = 100*CU_in_Urine;

CU_min_Urine = 1E-50;

XU _ns_Urine = 13229;

XU_nv_Urine = (factorVariables_Urine*(XU_in_Urine))"2;
XU_st_Urine = 1/sampling;

XU_max_Urine = 100*XU_in_Urine;

XU_min_Urine = 1E-50;

XE_ns_Urine = 13230;

XE_nv_Urine = (factorVariables_Urine*(XE_in_Urine))"2;
XE_st_Urine = 1/sampling;

XE_max_Urine = 100*XE_in_Urine;

XE_min_Urine = 1E-50;

XOHO_ns_Urine = 13231,

XOHO_nv_Urine = (factorVariables_Urine*(XOHO_in_Urine))"2;
XOHO_st_Urine = 1/sampling;

XOHO_max_Urine = 100*XOHO_in_Urine;

XOHO_min_Urine = 1E-50;

XPAO_ns_Urine = 13232;

XPAO_nv_Urine = (factorVariables_Urine*(XPAO_in_Urine))"2;
XPAO_st Urine = 1/sampling;

XPAO_max_Urine = 100*XPAO_in_Urine;

XPAO_min_Urine = 1E-50;

XMEOLO_ns_Urine = 13233;

XMEOLO_nv_Urine = (factorVariables_Urine*(XMEOLO_in_Urine))"2;
XMEOLO_st_Urine = 1/sampling;

XMEOLO_max_Urine = 100*XMEOLO_in_Urine;
XMEOLQO_min_Urine = 1E-50;

XAOB_ns_Urine = 13234;
XAOB_nv_Urine = (factorVariables_Urine*(XAOB_in_Urine))"2;
XAOB_st_Urine = 1/sampling;



XAOB_max_Urine = 100*XAO0B_in_Uring;
XAOB_min_Urine = 1E-50;

XNOB_ns_Urine = 13235;

XNOB_nv_Urine = (factorVariables_Urine*(XNOB_in_Urine))"2;
XNOB_st_Urine = 1/sampling;

XNOB_max_Urine = 100*XNOB_in_Uring;

XNOB_min_Urine = 1E-50;

XAMX_ns_Urine = 13236;

XAMX_nv_Urine = (factorVariables_Urine*(XAMX_in_Urine))"2;
XAMX st _Urine = 1/sampling;

XAMX_max_Urine = 100*XAMX_in_Uring;

XAMX_min_Urine = 1E-50;

XAMETO_ns_Urine = 13237,

XAMETO_nv_Urine = (factorVariables_Urine*(XAMETO_in_Urine))"2;
XAMETO_st_Urine = 1/sampling;

XAMETO_max_Urine = 100*XAMETO_in_Urine;
XAMETO_min_Urine = 1E-50;

XHMETO_ns_Urine = 13238;

XHMETO_nv_Urine = (factorVariables_Urine*(XHMETO_in_Urine))"2;
XHMETO_st_Urine = 1/sampling;

XHMETO_max_Urine = 100*XHMETO_in_Urine;
XHMETO_min_Urine = 1E-50;

SNHXx_ns_Urine = 13239;

SNHXx_nv_Urine = (factorVariables_Urine*(SNHx_in_Urine))"2;
SNHx_st_Urine = 1/sampling;

SNHx_max_Urine = 100*SNHx_in_Urine;

SNHx_min_Urine = 1E-50;

SNO2_ns_Urine = 13240;

SNO2_nv_Urine = (factorVariables_Urine*(SNO2_in_Urine))"2;
SNO2_st_Urine = 1/sampling;

SNO2_max_Urine = 100*SNO2_in_Urine;

SNO2_min_Urine = 1E-50;

SNO3_ns_Urine = 13241,

SNO3_nv_Urine = (factorVariables_Urine*(SNO3_in_Urine))"2;
SNO3_st_Urine = 1/sampling;

SNO3_max_Urine = 100*SNO3 _in_Uring;

SNO3_min_Urine = 1E-50;

SNB_ns_Urine = 13242;

SNB_nv_Urine = (factorVariables_Urine*(SNB_in_Urine))"2;
SNB_st_Urine = 1/sampling;

SNB_max_Urine = 100*SNB_in_Urine;

SNB_min_Urine = 1E-50;

CNB_ns_Urine = 13243;

CNB_nv_Urine = (factorVariables_Urine*(CNB_in_Urine))"2;
CNB_st_Urine = 1/sampling;

CNB_max_Urine = 100*CNB_in_Urine;

CNB_min_Urine = 1E-50;

XNB_ns_Urine = 13244;

XNB_nv_Urine = (factorVariables_Urine*(XNB_in_Urine))"2;
XNB_st_Urine = 1/sampling;

XNB_max_Urine = 100*XNB_in_Urine;

XNB_min_Urine = 1E-50;

SNU_ns_Urine = 13245;

SNU_nv_Urine = (factorVariables_Urine*(SNU_in_Urine))"2;
SNU_st_Urine = 1/sampling;

SNU_max_Urine = 100*SNU _in_Urine;

SNU_min_Urine = 1E-50;

CNU_ns_Urine = 13246;

CNU_nv_Urine = (factorVariables_Urine*(CNU_in_Urine))"2;
CNU_st_Urine = 1/sampling;

CNU_max_Urine = 100*CNU_in_Urine;

CNU_min_Urine = 1E-50;

XNU_ns_Urine = 13247,
XNU_nv_Urine = (factorVariables_Urine*(XNU_in_Urine))"2;
XNU_st_Urine = 1/sampling;
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XNU_max_Urine = 100*XNU _in_Urine;
XNU_min_Urine = 1E-50;

SPO4 _ns_Urine = 13248;

SPO4_nv_Urine = (factorVariables_Urine*(SPO4_in_Urine))"2;
SPO4_st_Urine = 1/sampling;

SPO4_max_Urine = 100*SPO4_in_Urine;

SPO4_min_Urine = 1E-50;

SPB_ns_Urine = 13249;

SPB_nv_Urine = (factorVariables_Urine*(SPB_in_Urine))"2;
SPB_st_Urine = 1/sampling;

SPB_max_Urine = 100*SPB_in_Urine;

SPB_min_Urine = 1E-50;

CPB_ns_Urine = 13250;

CPB_nv_Urine = (factorVariables_Urine*(CPB_in_Urine))"2;
CPB_st_Urine = 1/sampling;

CPB_max_Urine = 100*CPB_in_Urine;

CPB_min_Urine = 1E-50;

XPB_ns_Urine = 13251,

XPB_nv_Urine = (factorVariables_Urine*(XPB_in_Urine))"2;
XPB_st_Urine = 1/sampling;

XPB_max_Urine = 100*XPB_in_Urine;

XPB_min_Urine = 1E-50;

SPU_ns_Urine = 13252;

SPU_nv_Urine = (factorVariables_Urine*(SPU_in_Urine))"2;
SPU_st_Urine = 1/sampling;

SPU_max_Urine = 100*SPU_in_Urine;

SPU_min_Urine = 1E-50;

CPU_ns_Urine = 13253;

CPU_nv_Urine = (factorVariables_Urine*(CPU_in_Urine))"2;
CPU_st_Urine = 1/sampling;

CPU_max_Urine = 100*CPU_in_Urine;

CPU_min_Urine = 1E-50;
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XPU_ns_Urine = 13254;

XPU_nv_Urine = (factorVariables_Urine*(XPU _in_Urine))"2;
XPU_st_Urine = 1/sampling;

XPU_max_Urine = 100*XPU_in_Urine;

XPU_min_Urine = 1E-50;

TIC ns_Urine = 13255;

TIC_nv_Urine = (factorVariables_Urine*(TIC_in_Urine))"2;
TIC_st_Urine = 1/sampling;

TIC_max_Urine = 100*TIC_in_Urine;

TIC_min_Urine = 1E-50;

Ca_ns_Urine = 13256;

Ca_nv_Urine = (factorVariables_Urine*(Ca_in_Urine))"2;
Ca_st_Urine = 1/sampling;

Ca_max_Urine = 100*Ca_in_Urine;

Ca_min_Urine = 1E-50;

Mg_ns_Urine = 13257,

Mg_nv_Urine = (factorVariables_Urine*(Mg_in_Urine))"2;
Mg_st_Urine = 1/sampling;

Mg_max_Urine = 100*Mg_in_Urine;

Mg_min_Urine = 1E-50;

Na_ns_Urine = 13258;

Na_nv_Urine = (factorVariables_Urine*(Na_in_Urine))"2;
Na_st_Urine = 1/sampling;

Na_max_Urine = 100*Na_in_Urine;

Na_min_Urine = 1E-50;

Cl_ns_Urine = 13259;

Cl_nv_Urine = (factorVariables_Urine*(Cl_in_Urine))"2;
Cl_st_Urine = 1/sampling;

Cl_max_Urine = 100*Cl_in_Urine;

Cl_min_Urine = 1E-50;

polnoiseswitch_Urine = all_noises;
%% 9. First flush effect



FFfraction = 0.25;
in the sewers

% State values

FF_XINIT=[TSS_in XB_in XU_in XE_in XOHO_in XPAO_in XMEOLO_in
XAOB_in XNOB_in XAMX_in XAMETO_in XHMETO_in XNB_in XNU_in
XPB_in XPU_in]; % Initital conditions (7 states) XINIT=[TSS XI XS
XBH XBA XP XND]

% Parameters

M_Max = 1000; % kg SS

Q_lim = 70000; % m3/d

n =15 % Dimensionless

Ff =500; % Dimensionless, gain

SSPARS=[M_Max Q_lim n Ff];
%% 10. Sewer model
subarea = 4;

% Initialisation of the individual sewer model blocks
VARS_SEWERINIT =[zeros(1,39) 0.001];

% Parameters for individual sewer model block S-functions

A=1100; % Area (m2)
C=150000; % Tuning constant
Hmin=0.00; % Minimum water level in tank

SPAR =[A C Hmin];
%% 11 Parameters temperature model block

TAmp =5; % Sine wave amplitude (deg. C)
TBias = 15; % Sine wave bias (m3/d) (= average
infiltration flow rate)
TFreq = 2*pi/364;
TPhase = pi*8.5/24;

% Sine wave frequency (rad/d)
% Sine wave phase shift

TdAmp =0.5;
TdBias = 0;
infiltration flow rate)

% Sine wave amplitude (deg. C)
% Sine wave bias (m3/d) (= average

% Fraction of the TSS that is able to settle

TdFreq = 2*pi;
TdPhase = pi*0.8;

% Sine wave frequency (rad/d)
% Sine wave phase shift

%% 12 Profiles

QdayHS_SeparatedUrine = struct('signals’

,struct(‘values',(SNH_day HS.signals.values - 1) * 0.4 + 1), 'time', []);
QdayHS_woUrine = struct('signals' ,struct(‘'values',Q_day_HS.signals.values),
time', [1);

CODsoldayHS_SeparatedUrine = struct(‘signals’
,struct(‘values',(CODsol_day HS.signals.values - 1) * 0.4 + 1), 'time’, []);
CODsoldayHS_woUrine = struct('signals’
,struct('values',CODsol_day_HS.signals.values), ‘time’, []);

CODpartdayHS_SeparatedUrine = struct('signals’
,struct('values',(CODpart_day_HS.signals.values - 1) * 0.4 + 1), 'time’, []);
CODpartdayHS_woUrine = struct('signals’
,struct(‘values',CODpart_day_HS.signals.values), 'time', []);

TKNdayHS_SeparatedUrine = struct('signals'
,struct(‘values',(TKN_day HS.signals.values - 1) * 0.4 + 1), 'time', []);
TKNdayHS_woUrine = struct('signals'

,struct(‘values', TKN_day_HS.signals.values), 'time’, []);

SNHdayHS_SeparatedUrine = struct(‘signals'
,struct('values',(SNH_day_HS.signals.values - 1) * 0.4 + 1), 'time', []);
SNHdayHS_woUrine = struct('signals’
,struct('values',SNH_day_HS.signals.values), 'time’, [1);

TPdayHS_SeparatedUrine = struct('signals’
,struct(‘values',(TP_day_HS.signals.values - 1) * 0.4 + 1), 'time', [1);
TPdayHS_woUrine = struct(‘signals’ ,struct(‘values', TP_day_HS.signals.values),
'time’, []);

PO4dayHS_SeparatedUrine = struct('signals'
,struct(‘values',(PO4_day HS.signals.values - 1) * 0.4 + 1), 'time’, []);
PO4dayHS_woUrine = struct(‘signals’

,struct(‘values',PO4_day_ HS.signals.values), 'time’, []);
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C.1. Adapted Sumo2 Gujer matrix

274

Supplementary Information
C.  Supplementary Information for chapters IV and V

The original Sumo2 Gujer matrix was developed by Dynamita. For more details, please refer to www.dynamita.com/the-sumo/

Name Unit

Svra VFAs g coD.m*
Sg Readily biodegradable substrate (non-VFA) g coD.m*
SmEoL Methanol g coD.m*
Cs Colloidal biodegradable substrate g coD.m*
Xg Slowly biodegradable substrate gcob.m?®
Su Soluble unbiodegradable organics gcob.m?®
Cu Colloidal unbiodegradable organics gcob.m*®
Xu Particulate unbiodegradable organics gcob.m?®
XpHa Stored PHA gcob.m?®
Xe Endogenous decay products gcob.m?®
XoHo Ordinary heterotrophs g coD.m*
Xpao Phosphorus accumulating organisms g coD.m*
XmEeoLo Anoxic methanol utilizers g cob.m®
XaoB Aerobic ammonia oxidizers g cob.m®
Xnos Nitrite oxidizers gcob.m?®
Xamx Anammox organisms g cob.m®
XaMETO Acidoclastic methanogens (VFA) g coD.m*

XHMETO Hydrogenotrophic methanogens g CoOD.m™
Snhx Total ammonia gN.m?
Sno2 Nitrite gN.m?
Snos Nitrate gN.m?
Sno Dissolved Nitrogen gN.m?
Sn.B Soluble biodegradable organic N (from Sg) gN.m?3
Cne Colloidal biodegradable organic N gN.m?3
Xng Particulate biodegradable organic N gN.m?3
Snu Soluble unbiodegradable organic N g N.m?
Cnu Colloidal unbiodegradable organic N g N.m?3
Xnu Particulate unbiodegradable organic N gN.m?3
Sros Orthophosphate gP.m?

Xpp.LO Releasable stored polyphosphate gP.m?

XppHi Non-releasable stored polyphosphate gP.m?
Ses Soluble biodegradable organic P (from Sg) gP.m?
Ces Colloidal biodegradable organic P gP.m?®
XpB Particulate biodegradable organic P gP.m?®
Spu Soluble unbiodegradable organic P content gP.m?




gP.m?

Cru Colloidal unbiodegradable organic P content
Xpu Particulate unbiodegradable organic P content gP.m?®
Soz Dissolved oxygen g O,.m?
Scha Dissolved methane gcob.m®
Sk Dissolved hydrogen gcob.m®
Scoz Total inorganic carbon g co2.m?
XINORG Inorganic suspended solids g TSS.m?
Smg Magnesium g Mg.m*®
SC. Calcium gCam?
Scat Sodium (strong cation) g.m?
SAN Chloride (strong anion) g.m?
Sre Soluble Fe g Fem?
XuroL | Active, unused hydrous ferric oxide with low surface area | g Fe.m?
Xuron | Active, unused hydrous ferric oxide with high surface area | g Fe.m?
XuroLp | Inactive, used hydrous ferric oxide with low surface area | g Fe.m?
Xuronp | Inactive, used hydrous ferric oxide with high surface area | g Fe.m?
XHFO,H.P.old Inert used HFO with high surface area g Fe.m®
XHFO,LP.old Inert used HFO with low surface area g Fe.m®
XHFo,old Aged HFO from other four hydrous ferric oxide states g Fe.m®
Xstr Struvite g TSS.m*
Geoe Carbon dioxide gas ppm
Gcha Methane gas ppm
Gh2 Hydrogen gas ppm
Gos Oxygen gas ppm
Gn2 Nitrogen gas ppm
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Ordinary heterotrophs organisms

Name Svra Sg SmeoL Xs Xe XoHo XmeoLo SniHx Snoz Snos Snz Xnp Spos Xpp So2 Sz Scoz Xinore Scat San
1= 1.375%(1-
rl | OHO growth on VFAs, O; | -1/YoHovrao2 1 -ingio -ip 810 Yoro,vra02)/ Yoro,vra02)/ i -iig*fna -i16*(1-fna)
Y oHo,vEA 02 Y oHo,vEA 02
-a- -
1.375%(1-
r2 OHO growth on VFAS, o 1 -ingio Yorovranox)/ Yoroveanox)/ -ip.BI0 Yoro,vranox)/ iic -iig*fy -ii6*(1-fina)
NO, Y oHo VFANOX ‘ (EEQn2No2™* (EEQn2no2* ' Yoo v i\ . .
Y oHo,vFANOX) Y oHo,vEANOK) OHOVFANOX
- -(1- 1.375%(1-
r3 OHO growth on VFAS, o 1 -ingio Yoroveanox)/ | Yoroveanod/ -ip 810 Yoro,vranox)/ i -iig*fy -i16*(1-fna)
NO; Y oHo VFANOX ‘ (EEQno2nos™ | (EEQnoznos™ ' Yoo i\ . -
Yonovranox) | YorovraNox) OHOVFANOX
1= 1.375%(1-
r4 OHO growth on Sg, O, -1/YorosB.02 1 -ingio -ip 810 Yoro s ,02)/ Yoro,ss,02)/ i -iig*fna -i16*(1-fna)
YoHo,s8.02 YohosB.02
. YOHo(er; nox)/ YOHO(:.B Nox)/ ; 1.375+(1- ; ; ;
r5 OHO growth on Sg, NO, -1/Y oHo,sB.NOX 1 -ingio (EEQ N (EEQ N -ipgI0 Y ono,s8,nox)/ i -iig*fna -ii6*(1-fa)
N2,NO2 N2,NO2 v,
Y oHo.5B.NOX) Y oHo,sB.NOX) OHOSBNOX
. Vopossnodl | Yoosamod! . 1375 : . :
ré OHO growth on Sg, NO; -1/Y oHo,sB.NOX 1 -Ingio EEQV N (EEQV N -lpBIO Y ono,se,Nox)! lic -iig*fna -iig*(1-fa)
NO2,NO3 NO2,NO3 Y
Yorosenox) | Yoro.senox) OHO,5B,NOX
fromes*1.375%
. ( 1- , YOHO,E:oz,ANA*
Sg fermentation (OHO Y oHO,5B,ANA" . . Y oHo,H2, ANAY 1- . C -
r7 growth, anaerobic) Yororoma) -1/YonosB.ANA 1 -InBIo -lpgio Yoro.sB.anA Y oHo.s8.ANA- lic -iig*fna -i16*(1-fina)
YoHo sB.ANA Y oro Ha,ana)/
YorosB.ANA
0 1= 1.375%(1-
rg | OHO growth on Syeor, Oz Y 1 -ingio -ip 810 Y oHo,sMEOL,02) Y oHo,sMEoL,02) i -iig*fna -i16*(1-fina)
OHO,SMEOL,02 N N
OHO.SMEOL,02 OHO.SMEOL,02
r9 OHO decay 1-fe fe -1 (1-fe)*insio (1-fe)*ip Bi0 -lie iic*fna ii6*(1-fra)
-(1-YwmeoLo)/ (1-Yweoro)/ 1.375%(1-
rio MEOLO growth, NO; -1/YwveoLo 1 -ingio (EEQn2No2* (EEQnzn02* -ip 810 YwmeoLo)/ Y Meo i -iig*fna -i16*(1-fina)
Y meoLo) YwmeoLo) Lo
(1-Ymeoro) | -(1-Ymeoro)/ 1.375%(1-
ril MEOLO growth, NO; -1/Y meoLo 1 -in,10 (EEQnoz2nos™* | (EEQnoznos™ -ipgi0 YmeoLo)/Y veo i -iig*fna -iig*(1-fa)
YwmeoLo) YwmeoLo) Lo
ri2 MEOLO decay 1-fe fe -1 (1-fe)*inBio (1-fe)*ipBi0 -iie iic*fNa i16*(1-a)

Rate expression (rj)

Horo T*Msatsvea kvra*Xoro*Msatsos koz,0Ho *MSatsix, knx 810 *MSatspos kpos sio *Msatscat kear *Msatsan kan *BellinhpHoro

HoHo, 7*Nanox,ono *Msatsyra kvra*XoHo*Msatsnoz knoz,oHo*MinNsoz koz, 00 *MSatsnix knrx B0 *MSatspos, kpos,si0*Msatscar kear *Msatsan kan*BellinhpHoro

HoHo, 7*Nanox,oHo *Msatsvra kvra*Xono*Msatsnos knos,oHo*MinNsoz koz 010 *Minhsnozknoz oo *MSatsnix knkx sio *MSatspos kpos Bio * MSatscar kcar*Msatsan kan*BellinhpHowo

Horo 1*Msatsg kse*XoHo*MinNsyea kvra*Msatsoz, koz.0no *MSsatsnix knx 810 *MSatspos kpos sio *Msatscar kcar *Msatsan kan *BellinhpHoro

HoHo, 7 *Nanox,ono *Msatsp kse+Xoro *Minhsyea kvea*Msatsnoz knoz,oHo*MinNsos ko2, oHo* MSatsnix, knx B0 *MSatspos kpos,si0 *MSatscar kear *Msatsan kan*BellinhpHoro

HoHo,T*Nanox,oHo *Msatsp kse+Xoro *Minhsyea kvra*Msatsnos knos,oHo*MinNsoz koz, 010 *Minhsnozkno2, oro *MSatsnix knkix sio *MSatspos kpos o *Msatscar kear*Msatsan, kan*BellinhpHowo

Hrerm,oHo,T*Msatsg kse ana*XoHo*M inhSOZ‘KOZ‘OHO*M inhSNOx,km‘KNOS,OHO*MsatSNHx‘KNHx‘BIO*MSatSPOA,KPOA,BIO*MSatSCAT,KCAT*MsatSAN,KAN*BeI linhpHono

Horo T*MsatsveoL kmeoL, oHo™ Xoro *MSatsoz koz,oHo*MSatsnix knix si10*MSatspos kpos sio*Msatscat kear *Msatsan kan*BellinhpHoro

boro 7 Xoro*(Msatsoz koz,0Ho+HNanox b *MSatsnox kin knox,0Ho*MiNNso2 ko2, 0Ho T Mana b *Minhsnox knox oHo*MiNhsoz ko2 0Ho)

HmeoLo T*Msatsveor kmeoL *XmeoLo*Msatsnoz knoz meoLo *MinNsos koz meoLo*MSatsnix knix si10*MSatspos kpos,sio *Msatscar kear*Msatsan kan*BellinhpHyieo o

HmeoLo T*Msatsveol kmeoL *XmeoLo*Msatsnos knos meoLo *MinNsoz koz meoLo*MinNsnoz knoz meoLo*MSatsix, knix B0 *MSatspos kpos sio *Msatscat kcar *Msatsan kan*BellinhpHyvieoLo

bmeoLo 7 XmeoLo™(Msatsoz ko2 meoLoNanox n ¥ MSatsnox kin knox MeoLo*MiNNsoz ko2 MEoLoMana b MiNNsnox kin knox MeoLo*MiNNsoz oz MeoLo)
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Phosphorus accumulating organisms

Name Svra Xs Xpra Xe Xpao SnHx Snoz Snos Snz Xnp Spos XppLo Xpp i Xpp So2 Scoz Xinore Scat San
- YepLo™ (1-YepLo)* -(1- 1.375%(1-
ri3 | PAO growthon PHA, O, -1/YppopHac2 1 -ingio forapp02/ Yeao, (forapr.02/ (ferapp02/ Yeao,pHa02)/ YrpopHa02)! iic -iig*fna -ii6*(1-fina)
PHA,027IP 81O YpaopHA02) YpaopHA02) YpaopHAO? YpporHa0?
; YPAo-P(:A- Nox)/ Yrao gi; Nox)/ . YorLo® (1-YeeL0)” L.375+(1- ; ; ;
ri4 | PAO growth on PHA, NO, -1/Y pao,pHANOX 1 -In,BIO (EEQNQ ‘NO:* (EEQNZ 'NO:* fPHA,PP,NOx_/YPA (ferapp nox/ (forapp.Nox! Yeaopranox)! e -iic*fna -iig*(1-fna)
' ' opHANox-ipBio | YPAoPHANOX) Ypa0,PHANOX) Y pAOPHANOX
YpaoPHANOX) YpaoPHANOK)
T -
_ Yoo o | Yoo fonsenod | Yoot | (1Vewo)* L375%(1- _ _ _
ri5 | PAO growth on PHA, NOs -1/Ypp0,pHANOX 1 -inpio (EEQnon Noxa* (EEQnos Noxa* Y pa0 PHANOX" (foriapr.nox (forappnox/ Ypao,pHANOX)! iic -iig*fna -ii6*(1-fina)
' ' ipgIO YeaopHanox) | YpaopHANOX) Y a0 PHANOX
YpaoPHANOX) YpaoPHANOX)
N 1.375%(1-
PAO growth on PHA, Oy; . . ( . . .
rié ‘ PO, limited ’ UYenoprace 1 “Ingio -lp.BI0 Ypao,pHa02)! YpaopHa02)! g -iic*fna -ii*(1-fra)
YpaopHAO? YpaopHAG?
. - - 1.375*(1-
r17 | PAO growth on PHA, NO; AN ppoprano 1 singio YpaopHaNox)/ Ypao,pHaNox)/ -ippio Yoaorrancd! i Sty S (L-Fre)
PO, limited PRARDX ) (EEQnzno2* (EEQn2 noz* ' YPA(; PH/:\ N; ) '
YpaoPHANOX) YpaoPHANOK) T
. B - 1375%(1-
r18 PAOQ growth (_)n _PHA, NOjs; 1Y pa0 PHANG 1 -ingio YpaopHaNOx) YpaopHaNOK) -ipBIO Yraopranox)! i -iig*fx -iie*(1-faa)
PO, limited PHANOX ' (EEQnoznos™ | (EEQno2nos® ' Y paoPHA N; ’ )
YpaoPHANOX) YpaoPHANOX) PRATE
rl9 PHA storage from VFAs -1 1 fovra -fovra
1- . . . .
r20 PAO decay 1-fepao fepao -1 £ pAo()*iN . (1-fe pac)*ip 810 -l ii6*fna i16*(1-a)
r21 | PHA release on PAO decay 1 -1
22 PPlow release on PAO 1 1
decay
123 PPhigh release on PAO 1 -1
decay
24 PPlow cleavage for 1 1
anaerobic maintenance

Rate expression (rj)

Hpao, T *MRSatxpHa xpa0,kPHA* Xpao*MSatsoz ko2 pa0 *MSatsniix knHx, 810 *MSatspos,kpos pac*Msatsc at kcar *Msats an kan*BellinhpHpao

Hpao, T Nanox pa0 *MRSatxpra xpao, kpHAY Xp a0 *MSatsnoz, knoz,pa0 *MiNhsoz ko2 pa0 *MSatsnix knix 810 *MSatspos,kpos,pac *MSatsc at kcat *Msats an kan*BellinhpHpao

Hpao,T*Nanox, pa0 *MRSatxpra xpao,kpHA™ Xpao *MSatsnos knos pao *MiNNsos koz pac*MSatsnix, knkx B10 *MSatspos kpos pac*Msatscar kcar*Msatsan kan*BellinhpHp a0

Hpao,Lim T*MRSatxpra xpao kpHA*Xpao *MSatsoz koz,pa0*MSsatsnix knix,810 *MiNhspos kpos,im*MSatxer, Lo kep,im*Msatscat kcar *Msats an kan*BellinhpHp a0

Hpao,LiM T *Nanox pa0 *MRSalxpra xpao kpHA™ Xpao *MSatsnoz knoz pao *MSatsnix knix 810 *MiNNspos kpos lim*MSatxer Lo ke im*Msatscar kcar*Msatsan kan*BellinhpHp ao

Hpao,LiM.T*Nanox pa0 *MRSalxpra xpao,kpHA™ Xpao *MSatsnos knos pac *MinNsnoz knoz pao *MSsatsniix knkix 810 *Minhspos kpoa im*MSatxer Lo ke lim *Msatscat kcar *Msatsan kan*BellinhpHpao

Qpao,pHA T Xpao*Msatsvra kstore via *MRSatxpp Lo xPA0 KPP, LO

bpao 7 Xpa0™ (Msatsoz ko2, pao+Nanox b *“MSatsnox kin knox,pa0 *MiNNsos ko2 pactManab *MiNhsnox kin knox a0 *MinNsoz ko2 pac)

r20*Xpra/Xpao

120*Xpp Lo/ Xpao

120*Xpp,iiXppa0

bPPLO,ANA,T*XPAO*M inhSOZ,KOZ‘PAO*M inhSNox‘km,KNO3,PAO*MsatXPP,LO‘ KPO4,PAO

Supplementary Information

279







Aerobic ammonia oxidizers, Nitrite oxidizers and Anammox organisms

Name Svra Xs Xe Xnos Xnos Xamx XameTo XnmeTo SniHx Snoz Snos Snz Xnp Spos Xpp So2 Scha Sz Scoz Xinore Scat San
i ; -(EEQnoz- . - .
r25 AOB growth 1 -1/ Yaos-insio 1/Y aoB -lp,BIO -1.375 iic -iic*fna -ii*(1-fra)
Yaoe)/Y aos
r26 AOB decay 1-fe fe -1 (1-fe)*ingio (1-fe)*ipgi0 -ie i16*Fa ii6*(1-fra)
r27 | NOB growth 1 -insio -1¥os 1/¥os -ip g0 “(EEQuoznos- 1375 i et | i)
YNOB)/YNOB
r28 NOB decay 1-fe fe -1 (1-fe)*ingio (1-fe)*ipgi0 -ie i1 *fa ii6*(1-fra)
2.%(Y nos amx*
AMy-1.*AMy-
-Ynozamx! | Yoz amx/(5. 1.*Y Noz amMx™
(5*Ynozamx | *Ynos amx+3 AMy+4.*
-(3*ingI0*AMo+ 2*AMy)/ +3.- - Y nos,amx *in sio™
r29 | Anammox growth 1 (5*Yno3 Amx+3- 3.%Ynozamx) | 3-*Ynoz.amx) AMo- -ip IO -1.375 i -ii6*fna -ii*(1-fna)
3*Y noz,amx)/AMo *(3*inpio* | *(3-*insI0* 3.%Y noz.amx*
AMo+2.* AMo+2.*A iN,BIO*AMO)/
AMy)/AMo My)/AMgo AMo/
(3-*YNnoz.amx-
5.*Yno3 amx-3.)
r30 Anammox decay 1-fe fe -1 (1-fe)*insio (1-fe)*ip g10 -ie i16*fa ii6*(1-fra)
- MMcoo/
. . MMeoconi* . . .
r3l | AMETO growth -1/Y ameto 1 -inBio -ipBIO Y ameto)/ a-y ! ) iic -iic*fna -ii*(1-fna)
YAMETO AMETO,
YAMETO
r32 AMETO decay 1-fe fe -1 (1-fe)*insio (1-f2)*ip 10 -iis i16*fa ii6*(1-fra)
(1- -MMcoy/
r33 | HMETO growth 1 -ingio -ip10 Yiwero) | -UYuwero | (MMeggro® e dic*fha | iie*(1-fa)
YHMETO 4)*1/YHMETO
r34 HMETO decay 1-fe fe -1 (1-f2)*insio (1-fe)*ip gi0 -iiG i16*fa ii6*(1-fra)

Rate expression (r;j)

Haos T*Msatsnrx knrx,a08* X aos *L0gsatpHcoz aos *Msatsoz ko2 08 *MSatspos kpos sio *Msatscar kear*Msatsan kan*BellinhpHaos*MinhpHinoz acs

baos, 7*X aos™ (Msatsoz, ko2 A08 ™ Manox b *MSatsnox kin knox,08 “MiNhsoz ko2 Aos Mana,bMiNNsnox kin knox,a0s *MiNhsoz Koz A08)

Hnog, T*Msatsnoz,kno2,nos*Xnos*LogsatpHeoz nos *MSsatsos koznos *MSatsnix knrx,s10 *MSatspos, kpos sio *Msatscat kcar*Msatsan kan*BellinhpHyos*MinhpHywz nos

bnos 7*Xnoe*(Msatsoz, ko208 Manoxs *MSatsnox kinknox,nos *MiNNsoz ko2 NosTNanab*MinNhsnox kin knox,nos *MiNhsos koz.nos)

Hamx, X amx *Msatsnix kntx, amx *Msatsnoz, knozamx*M inhSOZ,K02‘AMX*LogsatpHCOZ,AMX*MSatSPOA,KPOA,BIO*MsatSCAT,KCAT*MsatSAN‘KAN*Bel linhpHamx*MinhpHinoz,amx

bAMX‘T*XAMX*(MsatSOZ,KOQ‘AMXJrT]anox,b*MsatSNOx,kin,KNOx‘AMX*MinhSOQ‘KOZ,AMX+nana‘b*M inhSNOx‘kin,KNOx‘AMX*MinhSOZ,KOZ,AMX)

UameTo,T*MSatsyea kvra aveTo * X ameTo*M inhSOZ,KOQ‘AMETO*M inhSNOx‘kin‘KNOx,AMETO*MSatSNHx‘KNHx‘BIO*MsatSPO&KP04‘BIO*MsatSCAT,KCAT*MsatSAN,KAN*BeI linhpHamero

bAMETO‘T*XAMETO*(MsatSOZ,KOQ‘AMET0+Tlano><,b*MsatSNox‘kin‘KNOx‘AMETO*M inhSOQ‘KOZ,AMETOJrT]ana,b*M inhSNOx,kin‘KNOX,AMETO*M inhsoz,Koz,AMETo)

HemeTo, T*Msatscos kcoz HveTo *MSatsuz k2 HmeTo* XrumeTo*Minhsoz ko2 veTo*Minhisnox kin knox HMETO *MSatsnix knrx 810 *MSatspos kpos si0*MSatscat kcar*Msatsan kan *BellinhpHuvero

brmero T XnmeTo* (MSatsos koz HmEToManox b *MSatsnox kin knox HMETO *MiNNso2 ko2 HMETOMana b *MiNhsnox kin knox HMETO *MiNhsoz ko2 HMETO)
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Acidoclastic methanogens (VFA) and Hydrogenotrophic methanogens

Name Svra Xg | Xe | XameTo | XumeTo | Snkx Xng Spos Xpg Scha Sh2 Sco2 Xinorg | Scat San
31 AMETO - 1 - - (1- MMco2/MMeg cena*(1- i - -iig*(1-
growth 1/Y avero inBIO ipBIO Y amero)/ Y amero Y amero)/ Y amero 6 iic*fna fna)
1- (1- (1- . . s .
r32 | AMETO decay . fe -1 fo) insio ) i si0 -iie ic*fNna | Tic*(1-fna)
HMETO - - (1- - ) . . - -lig*(1-
rss growth ! inBI0 ipBI0 Yumero)/ Yevero | 1/Yrmero MMeoz/(MMeg oz *4)*1/Y wero e iic*fna fna)
r34 | HMETO decay 1- fE -1 ,El- £l- 'i|(3 i|G*fNa i|G*(1'fNa)
fe fe)*ingio fe)*ipgi0

Rate expression (r;)

Hawmero,r*Msatsvra kvraamero* Xamero*Minhsos koz,amero™ Minhsnox kinknox, ameto * MSatsniix knx 810 *MSatspos kpos Bio *MSatscar kcar*Msatsan kan*BellinhpHamero

bamero,T* X ameTo™ (MSsatsoz ko2, AMETOManox,b*MSatsnox kin knox.ameTo *MiNhsos ko2, ameToHMana b * Minhsnox kin knox.ameTo *Minhsos Koz, ameTo)

Hrmero,*MSatscoz kcoz Hmeto *MSatsiz k2 HveTo * Xrmeto *Minhsos koz HveTo *Minhsnox kin knox HvETo *MSatsniix knx 810 * MSatspos kpos B0 * MSatscat kcat*Msatsan kan* BellinhpHuviero

brmeTo,T* Xhmero* (MSatsoz ko2 HMETOManox,b™* MSatsnox kin knox, HveETo *MiNNsos ko2 HvETOH Nana b * MiNhsnox kin knox HMETO *MiNhsos ko2 HMETO)
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Flocculation, hydrolysis and other conversion reactions

S
S S
Name Svea | Se | SmeoL | Cs | Xe | Cu | Xu | Xe Xowo SiHx ’;O N ;’ Cng | Xng | Chu | Xnu Spos See | Cre | Xep | Cru | Xpu Scoz Scar
o3

r35 Cs flocculation 1)1
r36 Cy flocculation 1)1
r37 | Cng flocculation -1 1
r38 | Cyy flocculation -1 1
r39 | Cpp flocculation -1 1
r40 | Cpy flocculation -1 1
r41 Xg hydrolysis 1 -1
r42 | Xyg hydrolysis 1 -1
r43 | Xpg hydrolysis 1 -1
ra4 Sue ! -1

ammonification

Sp g CONVersion to .
r45 PB PO, 1 -1 IcaTp
r46 | X conversion 1 -1 insio ipBI0

Anaerobic
r47 methanol 1 -1
conversion

NO; assimilative . .
r48 Zreduction -EEQnoz | 1+EEQnoz*insio | -1 EEQno2*ip 810 1.375*EEQno2

NOj; assimilative . .
r49 sreduction -EEQuos | 1+EEQnos*ingio -1 EEQnos*ipsi0 1.375*EEQnos




Rate expression (r;)

grLoc T Xei0*MRsatcs xsi0 kin kFLOC

grLoc T Xei0*MRsatcy xsio kinkFLoC

CN,B/CB*r35

CN,U/CU*I’36

CPVB/CB*IGS

vaulCU*r36

Qrvp,7*Xai0 kin*MRSatxg xg10,kin,kHyd™* (MSatsoz, k02,010 Manox hya ™ MSatsnox kin knox,orHo ™ MiNhsoz koz,0ro Nananya™MiNNsnox kin knox,oHo*Minhsoz koz,0Ho)

XN‘B/XB*r41

Xp_B/XB*I'41

gamMON, TSN 8% X810 kin

Qroaconv.T*Sp,8* X8I0 kin

QetoB. T XE

O*SMEOL

* .
Qassim T *Msatsnoz knoz.assim*Minhsnx knx assim*MSatxono koro assiv* Xeio kin

*| * i i
Qassim T *Msatsnos knos.assim*Minhsnoz knoz.assim™* Minhgnx kkx,assim™* MSatxorio, koHo.assim™* Xeio kin
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Phosphorus precipitation
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X X
Name SnNHx Spos Smg Xhro,L XurFoH Xuro.Lp XHFoHP XHFOHP.old HFZ‘LP XHFo,old ST
ol
r52 Aging of active HFO_H 1 -1
r53 Aging of active HFO_L -1 1
154 Fast binding of P to active 1 -1/(ASF*(AMp/ L/(ASF*(AMg/
HFO_H (EQ) AMe) AMe))
55 Slow sorption of P to active 1 -1/(ASF_*(AMg/ L/(ASFL*(AMg/
HFO_L AMe) AMe))

r56 Aging of Xuronp 1 1
r57 Aging of Xyro,Lp 1 1
158 Dissolution of Xyron and (ASFy*(AMp/ 1 1

release of P AMk))
159 Dissolution of Xyro, and (ASF_*(AMp/ 1 1

release of P AME))
160 P precipitation in digester 1 L/(ASF*(AMp/ -1/(ASF*(AMp/

(vivianite) AME)) AMeg)

. -AM/ -AMy/
Struvit -AMp/MM 9 1

r66 ruvite MMsra p STR MMsra




Rate expression (r;)

QagingH *XHFoH

CagingL *Xnro,L

choprecip * SPOAI(KP+SP04) *XHFO,H

Opbinding * SPOAI(KP+SP04) *XHFO,L

QagingH *XHFo Hp

Qaging.L *XHFo,Lp

Qaiss,H * Kopgiss/ (Kp,disstSpoa)* Xnro,Hp

qdiss,L * Kp,diss/(Kp,diss+SPO4)*XHF0,L,P

Qprec*Minhsoz koz,prec*Minhsnos knos prec *MiNhsnoz knoz prec* MSatspos kspos prec *BellinhpHprec* MSatxiro old, kxHro,old prec

gstr*DrivingForcesrr*MMstr*1000* Xstr/(Kp strtXsTR)
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Name

SNZ

SOZ

Scha

SH2

SCOZ

GCOZ

GCH4

Gh2

GOZ

GNZ

rel

Carbon
dioxide gas
transfer

'1*Cppm,Vconc/MMEQ,GCOZ*R*TnuII/
pSt *fvolume‘L‘G

r62

Methane
gas transfer

- 1*Cppm,Vccnc/M M EQ,GCHA* R*Tnulll
pSt *fvolume,L,G

re3

Hydrogen
gas transfer

l*cppm,Vconc/M MEQ,GHZ*R*TnuII/
pSt *fvolume,L,G

re4

Oxygen gas
transfer

'1*Cppm,Vconc/MMEQ,GOZ*R*
TnuII/pS! *fvolume,L,G

re5

Nitrogen
gas transfer

1*Cppm,VconJM MEQ,GNZ*R
*TnuII/pSt *fvolume,L‘G

Rate expression (r;)

ktransfer‘GCOZ

ktransfer‘ GCH4

kiransfer‘ GH2

kiransfer‘ G02

kiransfer‘ GN2




Functions

Symbol

Name

Expression

Msat(var; k)

Monod saturation

var / (k + var)

MsatpH (var;k;varpH;kpH)

Monod saturation with check for pH

If(Sumo__pHEffects; varpH/(kpH+varpH); var/(k+var))

availability

Minh(var; k) Monod inhibition k/(k + var)

MinhpH(var;k;varpH;kpH) Monod inhibition with check for pH If(Sumo__ pHEffects; kpH/(kpH+varpH); k/(k+var))
availability

MRsat(s;x;k) Monod ratio saturation (s/x)/(s/x+k)

MRinh(s;x;K) Monod ratio inhibition (K)/(s/x+k)

Bellinh(var; Klo; Khi)

Bell-shaped inhibition

(1 + 2 * 10M0.5 * (Klo - Khi))) / (1 + 10"(var - Khi) + 10~(Klo - var))

BellinhpH(var; Klo; Khi)

Bell-shaped inhibition with check for
pH availability

If(Sumo__ pHEffects; (1 + 2 * 107(0.5 * (Klo - Khi))) / (1 + 10”(var - Khi) +
107 (Klo - var)); 1)

Logsat(var; slope; halfval)

Logistic saturation

1/ (1 + Exp((halfval - var) * slope))

LogsatpH(var; halfval; slope; varpH;
halfvalpH; slopepH)

Logistic saturation with check for pH

availability

If( Sumo__ pHEffects; 1 / (1 + Exp((halfvalpH - varpH) * slopepH)); 1/((1 +
Exp((halfval - var) * slope))))

Loginh(var; slope; halfval)

Logistic inhibition

1/ (1 + Exp((var - halfval) * slope))

LoginhpH(var; halfval; slope; varpH;
halfvalpH; slopepH)

Logistic inhibition with check for pH

availability

If( Sumo__pHEffects; 1/ (1 + Exp((varpH - halfvalpH) * slopepH)); 1/((1 +
Exp((var - halfval) * slope))))
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Parameters
Heterotrophic kinetics
Symbol Name Default Unit
Mono Maximum specific growth rate of OHOs 4.0 d*
Kss Substrate half saturation for OHOs 5.0 g coD.m*
Kvea VFA half saturation for OHOs 1.0 g coD.m*
KmeoL oHo Methanol half saturation for OHOs (aerobic) 0.5 g cob.m®
Koz.0Ho 02 half saturation for OHOs 0.05 g 0,.m*
KnosoHo NO; half saturation for OHOs 0.10 gN.m?
Knoz,0Ho NO, half saturation for OHOs 0.05 g N.m?
TNanox,0HO Anoxic growth reduction for OHOs 0.60 -
bono Aerobic decay rate coefficient for OHOs 0.62 d!
MrerM,0HO Fermentation rate coefficient 0.4 d!
Ksg.ana Substrate half saturation during fermentation 5.0 g COD.m 3
pHIooHo pH inhibition - low value 3.5 pH unit
pHhiono pH inhibition - high value 10.0 pH unit
AOB kinetics
Symbol Name Default Unit
Maos Maximum specific growth rate of AOBs 0.85 d*
KNHx A0B Ammonia half saturation for AOBs 0.7 gN.m*
Kcoz.a08 CO2 half saturation for AOBs 10.000 g CO,.m*
Kco2,408,pH HCOj half saturation for AOBs 0.0001 mol[HCO3]/L




Koz.a08 Oxygen half saturation for AOBs 0.25 g 0,.m*
Knox.a0B Half saturation for anoxic conditions for AOBs 0.03 gN.m?
baos Aerobic decay rate coefficient for AOBs 0.17 d*!
Ksnoz,A08 SNO?2 half saturation for AOBs 9999.00 gN.m?
Krinoz,A08,pH HNO?2 half saturation for AOBs 0.00 mol/L
pHIoa0s pH inhibition - low value 5.50 pH unit
pHhiaog pH inhibition - high value 9.50 pH unit
NOB kinetics
Symbol Name Default Unit
HMnos Maximum specific growth rate of NOBs 0.65 d*
Knoz,nos Nitrite half saturation for NOBs 0.10 g N.m?3
KcoznoB CO2 half saturation for NOBs 1.00 g CO,.m*
Kcoz,noB pH HCO; half saturation for NOBs 1.00E-10 mol[HCO3)/L
Koznos Oxygen half saturation for NOBs 0.25 g 0,.m*
KnoxnoB Half saturation for anoxic conditions for NOBs 0.03 g N.m?
bnos Aerobic decay rate coefficient for NOBs 0.15 d!
KNHz NOB SNHXx half saturation for NOBs 9999.00000 g N.m?
KnH3,NoB,pH [NH3] half saturation for NOBs 0.00008 mol/L
pHIonos pH inhibition - low value 5.50 pH unit
pHhinos pH inhibition - high value 9.50 pH unit
Anammox Kinetics
Symbol Name Default Unit
Hamx Maximum specific growth rate of Anammox 0.1 d?!
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KNHx AMX Ammonia half saturation for Anammox 2 g N.m*
Knoz.amx Nitrite half saturation for Anammox 1 gN.m?
Kcozamx CO2 half saturation for Anammox 10 g CO,.m*
Kcoz,amx pH HCOj™ half saturation for Anammox 0.0001 mol[HCO3]/L
Koz.amx Oxygen half saturation for Anammox 0.4 g 0,.m*
Knox.AMX Half saturation for anoxic conditions for Anammox 0.1 gN.m*
bamx Aerobic decay rate coefficient for Anammox 0.019 d*
Ksnoz.amx SNO, half saturaion for Anammox 1 mol/L
Khino2,AMX pH HNO, half saturaion for Anammox 1 mol/L
pHI0AMmx pH inhibition - low value 5.5 pH unit
pHNiapx pH inhibition - high value 9.5 pH unit
Methylotroph kinetics
Symbol Name Default Unit
MmeoLo Methylotroph maximum specific growth rate 1.30 d*
KmeoL Methanol half saturation coefficient 0.50 g cob.m®
KozmEoLo 02 half saturation for MEOLOs 0.05 g 0,.m*
KnozMeoLo NO2 half saturation for MEOLOs 0.02 g N.m?3
KnosMmeoLo NO3 half saturation for MEOLOs 0.05 g N.m?3
bmeoLo Aerobic decay rate coefficient for methylotrophs 0.05 d!
pHIomeoLo pH inhibition - low value 4 pH unit
pHhiveoLo pH inhibition - high value 9.5 pH unit

PAO kinetics




Symbol Name Default Unit
Hpa0 Maximum specific growth rate of PAOs 0.95 d*!
Hpao,Lim Maximum specific growth rate of PAQs, P limited 0.42 d*!
Kpua PHA half saturation coefficient 0.05 -
Kozpao Oxygen half saturation for PAQOs 0.05 g 0,.m*
Knoz,pao NO2 half saturation for PAOs 0.05 g N.m*
Knos,pao NO3 half saturation for PAOs 0.1 g N.m*
TNanox,PAO PAO anoxic growth factor 0.33 -
bpao Aerobic decay rate coefficient for PAOs 0.20 d*
brpLo.ANA Anaerobic maintenance PP cleavage 0.03 d!
0PAO,PHA PHA storage rate 6.0 d!
Kstorevra VFA half saturation for storage 5.0 g COD.m 3
Kep.Lo PP-low half saturation for storage 0.01 g P.m?
Kpoa pao PO4 half saturation for PAOs 0.10 gP.m?
Kep jim PP limitation as nutrient 0.001 gP.m?
Keoa lim PO, limitation as nutrient 0.001 gP.m?
pHIopa0 pH inhibition - low value 4 pH unit
pHhipao pH inhibition - high value 9.5 pH unit
VFA (Acido)clastic methanogen kinetics
Symbol Name Default Unit
HameTto Maximum specific growth rate of AMETO 0.50 d!
Kyvea AMETO VFA half saturation for AMETO 100 g coD.m*
Koz.amETO Oxygen half saturation for AMETO 0.05 g 0,.m*
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Knox AMETO NOXx half saturation for AMETO 0.05 g N.m*
bameTo Decay rate for AMETO (aerobic) 0.52 d*!
pHloameTo pH inhibition - low value 5.5 pH unit
pHhiameTo pH inhibition - high value 9.5 pH unit

Hydrogenotrophic methanogen Kinetics

Symbol Name Default Unit

HumeTo Maximum specific growth rate of HMETO 1.50 d*
Koz HMETO CO2 half saturation for HMETO 1.0 g.m?
Kz HveTo H2 half saturation for HMETO 0.1 gcob.m®
Koz HMmETO Oxygen half saturation for HMETO 0.05 g 0,.m3
KNox HMETO NOx half saturation for HMETO 0.05 gN.m?3

bumeto Decay rate for HMETO (aerobic) 0.52 d!
pHIoxmETO pH inhibition - low value 5.5 pH unit
pHhigmeTo pH inhibition - high value 9.5 pH unit

Common switches

Symbol Name Default Unit
KnhxB10 NHXx half saturation for biomasses 0.005 g N.m?3
Kpossio PO4 half saturation for biomasses 0.002 g P.m3
Nanox.b Anoxic reduction of decay 0.50 -
Nanab Anaerobic reduction of decay 0.25 -
TNanox,hyd Anoxic reduction of hydrolysis 0.50 -
MNana,hyd Anaerobic reduction of hydrolysis 0.50 -




Kb.cHa Methane switch (to indicate anaerobic conditions) 10.00 g.m
Keat Sodium half saturation for synthesis inorganics 0.1 g.m?
Kan Choride half saturation for synthesis inorganics 0.1 g.m?

Conversion Kinetics
Symbol Name Default Unit

JrLoc Flocculation rate coefficient 50.0 d*

KeLoc Flocculation half saturation coefficient 0.001 g COD.m 3
OHYD Hydrolysis rate coefficient 2.0 d*
Khyp Hydrolysis half saturation coefficient 0.05 -

JamMON Ammonification rate coefficient 0.05 d!
Jproaconv Phosphate release rate coefficient 0.05 d!
OEtoB Endogenous residue conversion rate coefficient 0.007 d*
Jassim Assimilative NHx production rate coefficient 1.0 d*
KNHx,ASSIM Assimilative NHx half saturation 0.0005 g N.m?3
Knoz,assiv Assimilative NO2 half saturation 0.001 g N.m?3
Knosassiv Assimilative NO3 half saturation 0.001 g N.m?3
Koo AssIM Assimilative OHO half saturation 0.001 gcob.m?®
Operational inputs
Symbol Name Default Unit
T Temperature 15.0 c°
Thase Arrhenius base temperature 20.0 c°

Temperature dependency
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Symbol Name Default Unit
Oy.0H0 Arrhenius coefficient 1.04 -
OrerM,0HO Arrhenius coefficient 1.04 -
0010 Arrhenius coefficient 1.03 -
B MEOLO Arrhenius coefficient 1.06 -
Ob,MEOLO Arrhenius coefficient 1.03 -
Oypa0 Arrhenius coefficient 1.04 -
B pao,LiM Arrhenius coefficient 1.04 -
0g,pA0,PHA Arrhenius coefficient 1.04 -
Ob,pa0 Arrhenius coefficient 1.03 -
Ob,PPLO.ANA Arrhenius coefficient 1.03 -
0y.a08 Arrhenius coefficient 1.072 -
Op.A0B Arrhenius coefficient 1.03 -
O.NoB Arrhenius coefficient 1.06 -
Bb.noB Arrhenius coefficient 1.03 -
Oy amx Arrhenius coefficient 1.01 -
Op,.AMX Arrhenius coefficient 1.03 -
0, aMETO Arrhenius coefficient 1.03 -
Op,AMETO Arrhenius coefficient 1.03 -
0y HvETO Arrhenius coefficient 1.03 -
Op,HmETO Arrhenius coefficient 1.03 -
Bq,rLoc Arrhenius coefficient 1.0 -
Bq,HvD Arrhenius coefficient 1.029 -




Bq,AMMON Arrhenius coefficient 1 -
Bq,p04conv Arrhenius coefficient 1 -
04,108 Arrhenius coefficient 1 -
Bg,Ass1M Arrhenius coefficient 1 -
Heterotrophic stoichiometry
Symbol Name Default Unit
Y oHo VFA02 Aerobic yield of OHOs on VFA 0.60
Y 0HO,VFANOX Anoxic yield of OHOs on VFA 0.45
Y oHo.5B.02 Aerobic yield of OHOs on substrate 0.67
Y 0HO.5B,NOX Anoxic yield of OHOs on substrate 0.54
Y 0HO.SB. ANA Anaerobic yield of OHOs on substrate 0.1
Y 0HO H2.ANA Anaerobic yield of H, production in fermentation 0.35
Y 0HO.CO2,ANA Anaerobic yield of CO, production in fermentation 0.35
fremse Carbohydrate fraction in Sg 1
Y 0HO.SMEOL.02 Aerobic yield of OHOs on methanol 0.4
Methylotroph stoichiometry
Symbol Name Default Unit
YmeoLo MEOLO vyield 04
Ammonia oxidizer stoichiometry
Symbol Name Default Unit
Y aoB AOB vyield 0.15
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Nitrite oxidizer stoichiometry

Symbol Name Default Unit
Ynos NOB yield 0.09
Phosphorus accumulating stoichiometry
Symbol Name Default Unit
Y pao,PHA.O2 Aerobic yield of PAOs on PHA 0.639
Y pAO PHANOX Anoxic yield of PAOs on PHA 0.52
YepLo PPlow yield on PP storage (rest goes to PPhigh) 0.94
feHa P02 PHA to PP ratio, aerobic 0.95
TpHA PP.NOX PHA to PP ratio, anoxic 0.35
fovea P release to VFA ratio 0.49
iTsspp TSS content of PP 3.5
Methanogenic stoichiometry
Symbol Name Default Unit
Y umETO HMETO vyield 0.1
Y AMETO AMETO vield 0.1
General stoichiometry
Symbol Name Default Unit
fe Endogenous fraction (death-regeneration) 0.08
fepao Endogenous fraction (death-regeneration) for PAO 0.25
inBIO N content of biomasses 0.070




ipBIO P content of biomasses 0.020
icv.gio Biomass XCOD/VSS ratio 1.42 gCOD/gVSS
icve Xb XCOD/VSS ratio 1.80 gCOD /g VSS
icv.u Xu XCOD/VSS ratio 1.30 gCOD /g VSSs
Ygob,u Yield on ultimate BOD 0.95 -
feops,Bobu BODS5 to ultimate BOD ratio 0.66 -
icvpHA PHA XCOD/VSS ratio 1.67 g COD /g VSS
icvE Xe XCOD/VSS ratio 1.42 gCOD/gVSS
G Synthesis inorganics in active biomass 0.11 gTSS/gCOD
ip xsTR Phosphorus content of struvite 0.13 gP / gTSS
icaTp Cation content of Sp g 0.00 mg CAT/mg P
fna Sodium mass fraction in NaCl 0.393 mg CAT/mg
Anammox stoichiometry
Symbol Name Default Unit
YNOZ,AMX YNOZ,AMX 1.32
YNOS;,AMX YNO3,AMX 026
P precipitation kinetics
Symbol Name Default Unit
Qaging,H Aging coefficient for Xyro n 200
aging,L Aging coefficient for Xyro 30
Opcoprecip Maximum precipitation rate of Xyron 238
0sTR precip Struvite precipitation rate 30000000000 d-1
OsTRdissolve Struvite dissolution rate 3E+11 d-1
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Kpstr Struvite half saturation 1 g TSS.m-3
pbinding Maximum binding rate of Xpro 8.8
Qdiss,H Redissolution rate coefficient - Xpro np 36
Qiss, L Redissolution rate coefficient - Xueo L p 36
Kp,diss Inhibition coefficient for Spo, for redissolution 0.03
Kp Half saturation coefficient for Spo, 0.5
Qprec Precipitation rate under anaerobic conditions (in digester) 40
Koz prec O, half saturation for P precipitation in digester 0.01
Knos,prec Snos half saturation for P precipitation in digester 0.01
Knoz,prec Snoe half saturation for P precipitation in digester 0.01
Kspos,prec Sros half saturation for P precipitation in digester 60
PHIOgrec pH inhibition - low value 4
PHhigrec pH inhibition - high value 8
KxHro,old,prec Half saturation coefficient for HFO old 80
Stoichiometric parameters of P precipitation
Symbol Name Default Unit
ASF4 Active site factor for HFOy 1.2 molP/molFe
ASF_ Active site factor for HFO_ 0.2 molP/molFe







Wastewater treatment plants are moving towards energy and nutrients recovery facilities. Simultaneously, they are
submitted to stricter regulation with respect to environment and human health. Facing the great challenge of reducing
operational costs along with the reduction of environmental impacts and the guaranty of plants robustness, tools might
be developed in order to provide an integrated assessment. The goal of this work is to develop a reliable and predictive
framework containing rigorous dynamic wide-plant modelling, extended boundaries life cycle assessment for scenarios
evaluation and an efficient multi-objective optimization tool. The developed framework for environmental evaluation
coupled to dynamic modelling was initially applied to several case studies including urine source separation, enhanced
primary clarification and urine treatment by nitritation/ anaerobic ammonium oxidation, offering both performance
results and environmental hotspots. Given the important benefits of the urine source separation provided by the
previous results, a flexible and dynamic phenomenological influent generator was adapted in order to provide realistic
dynamic data concerning urine and wastewater streams in different urine retention scenarios. Finally, as the complex
combination of biological, chemical and physical processes leads to a computational expensive problem, a feasibility
study (computational time and reliability) on the multi-objective optimization was conducted. Obtaining a set of
solutions that avoids any prior discrimination among costs, environment and performance allowed thus the discussion
of the involved trade-offs. Finally, the complete framework was applied to several case studies lightening on

operational aspects of more sustainable options on wastewater management and treatment.

Keywords: Wastewater; Modelling; Life Cycle Assessment; Multi-Objective Optimization; Urine Source Separation

Les stations d’épuration se tournent actuellement vers des installations de récupération d'énergie et des nutriments.
Dans le méme temps, elles sont soumises & une réglementation de plus en plus stricte en ce qui concerne
I'environnement et la santé humaine. Face au défi ambitieux de réduire les colts d'exploitation et les impacts
environnementaux tout en garantissant la robustesse du procédé, il est nécessaire de développer des outils capables de
fournir une évaluation intégrée du procédé. L’objectif de ce travail est de développer une plateforme réaliste et
prédictive contenant trois aspects: la modélisation rigoureuse et dynamique de I’ensemble de la station d’épuration;
I'analyse de cycle de vie aux frontiéres étendues pour I'évaluation des scénarios et enfin un outil d'optimisation multi-
objectif efficace. La plateforme développée pour I'évaluation environnementale couplée a la modélisation dynamique a
d'abord été appliquée a plusieurs cas d’étude. Ainsi des résultats de performance et d’impacts environnementaux ont
été obtenus pour la séparation de 1’urine a la source, la décantation primaire avancée et le traitement de I'urine par
nitritation/ oxydation anaérobie de I’ammonium, et d’autres filieres. Compte tenu des importants avantages de la
séparation de ’urine établis par les résultats précédents, un générateur d’influents phénoménologique, flexible et
dynamique a été adapté afin de fournir des données dynamiques réalistes concernant les flux d'urine et des eaux usées
dans les différents scénarios de rétention d'urine. Enfin, comme la combinaison complexe de processus biologiques,
chimiques et physiques conduit & un probléme lourd en calcul, une étude de faisabilité (temps de calcul et fiabilité) a
été réalisée sur l'optimisation multi-objectif. L'obtention d'un ensemble de solutions qui évite toute discrimination
préalable entre les codts, I'environnement et les performances ont permis la discussion des enjeux impliqués.
Finalement, la plateforme compléte a été appliquée a plusieurs cas d’étude et clarifie les aspects opérationnels des

options plus durables en matiére de gestion et de traitement des eaux usées.

Mots-clés: Eaux usées; Modélisation; Analyse de Cycle de Vie; Optimisation Multi-Objectif; Separation de I’Urine a
la Source



