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English abstract 

 

Wastewater treatment plants are moving towards energy and nutrients recovery facilities. 

Simultaneously, they are submitted to stricter regulation with respect to environment and human 

health. Facing the great challenge of reducing operational costs along with the reduction of 

environmental impacts and the guaranty of plants robustness, tools might be developed in order to 

provide an integrated assessment. The goal of this work is to develop a reliable and predictive 

framework containing rigorous dynamic wide-plant modelling, extended boundaries life cycle 

assessment for scenarios evaluation and an efficient multi-objective optimization tool. The developed 

framework for environmental evaluation coupled to dynamic modelling was initially applied to several 

case studies including urine source separation, enhanced primary clarification and urine treatment by 

nitritation/ anaerobic ammonium oxidation, offering both performance results and environmental 

hotspots. Given the important benefits of the urine source separation provided by the previous results, 

a flexible and dynamic phenomenological influent generator was adapted in order to provide realistic 

dynamic data concerning urine and wastewater streams in different urine retention scenarios. Finally, 

as the complex combination of biological, chemical and physical processes leads to a computational 

expensive problem, a feasibility study (computational time and reliability) on the multi-objective 

optimization was conducted. Obtaining a set of solutions that avoids any prior discrimination among 

costs, environment and performance allowed thus the discussion of the involved trade-offs. Finally, 

the complete framework was applied to several case studies lightening on operational aspects of more 

sustainable options on wastewater management and treatment. 

  

Keywords: Wastewater; Modelling; Life Cycle Assessment; Multi-Objective Optimization; Urine 

Source Separation 
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Résumé en Français 

 

Les stations d’épuration se tournent actuellement vers des installations de récupération d'énergie et des 

nutriments. Dans le même temps, elles sont soumises à une réglementation de plus en plus stricte en ce 

qui concerne l'environnement et la santé humaine. Face au défi ambitieux de réduire les coûts 

d'exploitation et les impacts environnementaux tout en garantissant la robustesse du procédé, il est 

nécessaire de développer des outils capables de fournir une évaluation intégrée du procédé. L’objectif 

de ce travail est de développer une plateforme réaliste et prédictive contenant trois aspects: la 

modélisation rigoureuse et dynamique de l’ensemble de la station d’épuration; l'analyse de cycle de 

vie aux frontières étendues pour l'évaluation des scénarios et enfin un outil d'optimisation multi-

objectif efficace. La plateforme développée pour l'évaluation environnementale couplée à la 

modélisation dynamique a d'abord été appliquée à plusieurs cas d’étude. Ainsi des résultats de 

performance et d’impacts environnementaux ont été obtenus pour la séparation de l’urine à la source, 

la décantation primaire avancée et le traitement de l'urine par nitritation/ oxydation anaérobie de 

l’ammonium, et d’autres filières. Compte tenu des importants avantages de la séparation de l’urine 

établis par les résultats précédents, un générateur d’influents phénoménologique, flexible et 

dynamique a été adapté afin de fournir des données dynamiques réalistes concernant les flux d'urine et 

des eaux usées dans les différents scénarios de rétention d'urine. Enfin, comme la combinaison 

complexe de processus biologiques, chimiques et physiques conduit à un problème lourd en calcul, 

une étude de faisabilité (temps de calcul et fiabilité) a été réalisée sur l'optimisation multi-objectif. 

L'obtention d'un ensemble de solutions qui évite toute discrimination préalable entre les coûts, 

l'environnement et les performances ont permis la discussion des enjeux impliqués. Finalement, la 

plateforme complète a été appliquée à plusieurs cas d’étude et clarifie les aspects opérationnels des 

options plus durables en matière de gestion et de traitement des eaux usées. 

 

Mots-clés: Eaux usées; Modélisation; Analyse de Cycle de Vie; Optimisation Multi-Objectif; 

Separation de l’Urine à la Source 





v 
 

Graphical abstract 

 

 





vii 
 

Scientific production 

 

Scientific papers published in international and peer reviewed journals 

 

Bisinella de Faria, A.B., Spérandio, M., Ahmadi, A., Tiruta-Barna, L., 2015. Evaluation of new 

alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment 

(DM-LCA). Water Research. 84, 99-111. 

 

Bisinella de Faria, A.B., Ahmadi, A., Tiruta-Barna, L., Spérandio, M., 2016. Feasibility of rigorous 

multi-objective optimization of wastewater management and treatment plants. Chemical Engineering 

Research and Design. (accepted – under publication) 

 

Bisinella de Faria, A.B., Besson, M., Ahmadi, A., Udert, K.M., Spérandio, M., 2016. A dynamic 

influent generator to account for alternative wastewater management: the case of urine source 

separation. (in preparation) 

 

Bisinella de Faria, A.B., Ahmadi, A., Spérandio, M., Tiruta-Barna, L., 2016. LCA based multi-

objective optimization of conventional and innovative wastewater management and treatment 

scenarios. (in preparation) 

 

Conferences with full text and proceedings 

 

de Faria, A.B. B., Spérandio, M., Ahmadi, A., Tiruta-Barna, L., 2014. A dynamic modelling-LCA 

integrated approach to evaluate new alternatives in WWTPs. IWA Specialized Conference “Global 

Challenges: Sustainable Wastewater Treatment and Resource Recovery”, October 26th – 30th, 2014. 

Kathmandu – Nepal (Oral presentation). 

 

 



viii 

 

Bisinella de Faria, A.B., Tiruta-Barna, L., Ahmadi, A., Spérandio, M., 2015. Life cycle analysis of 

scenarios coupling urine separation, struvite recovery and anammox process. IWA Specialized 

Conference “Nutrient Removal and Recovery. Moving Innovations into Practice”, May 18th – 21st, 

2015. Gdańsk – Poland (Oral presentation). 

 

Conferences with abstract 

 

Bisinella de Faria, A.B., Tiruta-Barna, L., Ahmadi, A., Spérandio, M., 2015. Efficient multi-objective 

optimization on some promising alternatives to conventional wastewater treatment plants. 10th 

European Congress of Chemical Engineering, September 27th – October 1st, 2015. Nice – France 

(Oral presentation). 

 

Bisinella de Faria, A.B., Spérandio, M., Ahmadi, A., Tiruta-Barna, L., 2015. A dynamic modelling-

life cycle assessment (DM-LCA) platform for the evaluation of alternative wastewater treatment 

plants. 7th International Conference on Life Cycle Management, August 30th – September 2nd, 2015. 

Bordeaux – France (Poster). 

 

Bisinella de Faria, A.B., Tiruta-Barna, L., Ahmadi, A., Spérandio, M., 2015. Mass and energy 

recovery versus environmental evaluation in conventional and alternative WWTPs. International 

Conference Recycling 2015, March 16th – 18th, 2015. Metz – France (Poster). 

 

Seminars 

 

Bisinella de Faria, A. B., Tiruta-Barna, L., Ahmadi, A., Spérandio, M., 2016. Efficient multi-objective 

optimization on some promising alternatives to conventional wastewater treatment plants. OASIS 

Intermediate Workshop. January, 2016. Luxembourg (Oral presentation) 

  



ix 
 

Acknowledgments – Remerciements - Agradecimentos 

 

This PhD thesis is a result of three years of work and a good souvenir that I will always keep in my mind. 

To all of you that have contributed to this work: thank you! Without you, this would never have been 

possible (even if there is not enough space to list you all, be sure that you have a special place in my heart). 

I would like to express my gratitude to the members of the reviewing committee: Mrs. Aurora Seco, Mr. 

Jean-Philippe Steyer, Mrs. Hélène Hauduc and Mr. Kai Udert. The time and the attention you have 

dedicated to read and comment this work significantly improve the quality of this PhD thesis. Also, a 

special acknowledgment to Dynamita team who helped me a lot, especially when starting with Sumo. 

Un merci à mes trois directeurs de thèse : Mathieu Spérandio, Aras Ahmadi et Ligia Tiruta-Barna. Cela a 

été un énorme plaisir de travailler avec vous. Merci de m’avoir guidé et de m’avoir aidé à tisser les liens 

entre 3 sujets extrêmement riches : la modélisation, l’ACV et l’optimisation ! Je vous remercie aussi 

énormément pour toutes les discussions pendant ces trois années de thèse et principalement de m’avoir 

donné l’exemple de l’écoute avec un énorme respect de l’autre. Ensemble vous vous êtes complétés et je ne 

peux que vous remercier de m’avoir permis, à la fois, de m’éloigner de mon sujet « classique » vers une 

curiosité scientifique (merci Mathieu !) tout en me rappelant, avec un grand sourire, aux points essentiels 

(merci Ligia ! ) et toujours avec une patiente et un sens critique indescriptibles (merci Aras ! ). 

Je tiens à remercier aussi à tous mes collègues du LISBP. Un merci tout particulier à mes collègues 

doctorants : les histoires et les fous rires partagés m’ont énormément aidée pendant ces trois années et 

resteront toujours dans ma mémoire ! Un énorme merci à mes collègues du bureau B4, les melting potes : 

Claire, Mathias et Allan! En plus d’avoir partagé le bureau, avec vous j’ai aussi partagé des très bons 

moments. Un merci spécial aussi à Mathilde pour tout ton aide qui m’a permis de finir ce travail. 

Un obrigada muito especial à todos da minha familia que, de longe ou perto, estiveram torcendo pela 

realização desse trabalho. Um obrigada especial aos meus pais, Elizete e Messias e à minha irmã Joana pelo 

carinho e a paciência sempre! Um pensamento e um agradecimento muito especial também ao meu 

padrinho Silvar: as palavras que você me deixou antes de partir, ficaram e ficarão sempre em minha 

memória me lembrando carinhosamente que, mesmo quando as dificuldades aparecem, vale a pena correr 

atrás dos sonhos. Obrigada e fique em paz! 

Por fim, obrigada novamente Allan, por ter sido muito mais que um companheiro de bureau. Obrigada por 

toda a força e paciência nos momentos onde o pôr-do-sol me lembrava dos prazos a serem cumpridos e 

quão dificil era essa etapa. Com você eu dividi esses últimos anos e é com você que eu quero continuar a 

dividir todos os novos desafios que virão. 

Thank you all! Merci à tous! Obrigada à todos!





xi 
 

Summary 
 

English abstract .................................................................................................................................... i 

Résumé en Français ........................................................................................................................... iii 

Graphical abstract ............................................................................................................................... v 

Scientific production.......................................................................................................................... vii 

Scientific papers published in international and peer reviewed journals ...................................... vii 

Conferences with full text and proceedings .................................................................................. vii 

Conferences with abstract ............................................................................................................ viii 

Seminars ....................................................................................................................................... viii 

Acknoledgments – Remerciements - Agradecimento .......................................................................... ix 

List of figures ...................................................................................................................................... xv 

List of tables ..................................................................................................................................... xvii 

List of abbreviations .......................................................................................................................... xix 

Chapter I. General Introduction .......................................................................................................... 1 

I.1. Wastewater as a pollution stream ........................................................................................ 4 

I.2. Wastewater as a resource recovery opportunity .................................................................. 6 

I.2.1. Extracting resources from wastewater ............................................................................. 6 

I.2.2. Urine source separation ................................................................................................... 8 

I.3. Quantifying benefits: Wastewater treatment modelling and simulation ........................... 10 

I.3.1. Obtaining data: Influent generation ............................................................................... 11 

I.4. Evaluating benefits: Life Cycle Assessment (LCA) .......................................................... 12 

I.5. Improving systems: Multi-objective optimization ............................................................ 14 

I.6. Research objectives and tasks ........................................................................................... 16 

I.6.1. Thesis outline ................................................................................................................ 18 

Chapter II. Coupling Dynamic Modelling and LCA ....................................................................... 21 

Entitled of the paper: Evaluation of new alternatives in wastewater treatment plants based on 

Dynamic Modelling and Life Cycle Assessment (DM-LCA) ............................................................. 27 

Abstract ......................................................................................................................................... 27 

II.1. Introduction ....................................................................................................................... 28 

II.2. Materials and methods ....................................................................................................... 30 

II.2.1. The integrated DM-LCA methodology ..................................................................... 30 

II.2.2. Plant layout and scenarios ......................................................................................... 32 

II.2.3. LCA ........................................................................................................................... 35 

II.2.3.1. Goal & scope ......................................................................................................... 35 

II.2.3.2. Life cycle inventory ............................................................................................... 37 

II.2.3.3. LCIA ...................................................................................................................... 39 

II.3. Results and discussion ....................................................................................................... 39 

II.3.1. Reference scenario .................................................................................................... 39 

II.3.2. Results of alternative scenarios: nutrient recovery, efficiency and energy 

consumption .............................................................................................................................. 42 



xii 

 

II.3.3. Results of alternative scenarios: environmental impacts ........................................... 46 

II.3.3.1. Endpoint impacts ................................................................................................... 46 

II.3.3.2. Midpoint results ..................................................................................................... 48 

II.4. Conclusion ......................................................................................................................... 52 

Chapter III. Influent Generator ......................................................................................................... 55 

Entitled of the paper: A dynamic influent generator to account for alternative wastewater 

management: the case of urine source separation ............................................................................ 59 

Abstract ......................................................................................................................................... 59 

III.1. Introduction ....................................................................................................................... 59 

III.2. General overview .............................................................................................................. 62 

III.3. Flow generation ................................................................................................................. 65 

III.4. Pollutants generation ......................................................................................................... 68 

III.4.1. General aspects .......................................................................................................... 68 

III.4.2. Composite variables .................................................................................................. 68 

III.4.3. Fractionation into state variables ............................................................................... 69 

III.5. Noise addition .................................................................................................................... 77 

III.6. Example of simulations obtained with the generated influent........................................... 78 

III.7. Discussion ......................................................................................................................... 79 

III.7.1. Average results .......................................................................................................... 79 

III.7.2. Daily and weekly profiles .......................................................................................... 81 

III.8. Use of the generated influent for process simulation ........................................................ 83 

III.8.1. Comparison between different models ...................................................................... 83 

III.8.2. Effect of urine retention levels .................................................................................. 85 

III.9. Conclusions ....................................................................................................................... 87 

Chapter IV. Feasibility of Multi-Objective Optimization ............................................................... 89 

Entitled of the paper: Feasibility of rigorous multi-objective optimization of wastewater 

management and treatment plants .................................................................................................... 93 

Abstract ......................................................................................................................................... 93 

IV.1. Introduction ....................................................................................................................... 94 

IV.2. Materials and methods ....................................................................................................... 98 

IV.2.1. Dynamic Modelling (DM) approach ......................................................................... 98 

IV.2.2. Life Cycle Assessment (LCA) approach ................................................................. 101 

IV.2.3. Efficient Multi-Objective Optimization (EMOO) ................................................... 102 

IV.2.3.1. Problem formulation: objective functions, constraints and range of decision 

variables 102 

IV.2.3.2. Expensive optimization algorithm and general settings ...................................... 107 

IV.2.4. Integrated framework: DM-LCA-EMOO ............................................................... 108 

IV.3. Results and discussion ..................................................................................................... 111 

IV.3.1. WWTP optimization and objectives’ dependencies ................................................ 111 

IV.3.2. Drivers for an optimal treatment ............................................................................. 115 

IV.3.3. Problem formulation and computational feasibility of multi-objective optimization

 118 

IV.4. Conclusion ....................................................................................................................... 120 



xiii 
 

Chapter V. Case Studies on Multi-Objective Optimization .......................................................... 121 

Entitled of the paper: LCA based multi-objective optimization of conventional and innovative 

wastewater management and treatment scenarios .......................................................................... 125 

Abstract ....................................................................................................................................... 125 

V.1. Introduction ..................................................................................................................... 126 

V.2. Materials and methods ..................................................................................................... 131 

V.2.1. Dynamic Modelling – Life Cycle Assessment – Efficient Multi-Objective 

Optimization (DM-LCA-EMOO) coupling approach ............................................................. 131 

V.2.1.1. Dynamic modelling (DM) ................................................................................... 132 

V.2.1.2. Life Cycle Assessment (LCA) ............................................................................. 133 

V.2.1.3. Efficient Multi-Objective Optimization (EMOO) ............................................... 134 

V.2.2. WWTP scenarios (conventional vs. innovative) ..................................................... 135 

V.2.3. Optimization problem formulation .......................................................................... 137 

V.2.3.1. Objective function ............................................................................................... 137 

V.2.3.2. Decision variables and constraints handling ....................................................... 140 

V.2.3.3. Recall on optimization problem formulation ....................................................... 141 

V.3. Results and discussion ..................................................................................................... 142 

V.3.1. Reference scenario .................................................................................................. 142 

V.3.1.1. General results ..................................................................................................... 142 

V.3.1.2. Analysis on decision variables ............................................................................ 147 

V.3.1.3. Steady state versus dynamic modelling approach ............................................... 149 

V.3.1.4. Total Endpoint versus Midpoint Global Warming Potential ............................... 151 

V.3.2. Alternative scenario (ANA) .................................................................................... 153 

V.3.3. Consequences on energy autarky ............................................................................ 155 

V.3.4. Benefits achieved from REF and ANA scenarios ................................................... 157 

V.4. Conclusions ..................................................................................................................... 159 

Chapter VI. Conclusions and perspectives ..................................................................................... 161 

Résumé long en français ................................................................................................................... 169 

References .......................................................................................................................................... 185 

Supplementary Information ............................................................................................................. 193 

A. Supplementary Information for chapter II ........................................................................... 195 

A.1. Emissions calculation .................................................................................................. 195 

A.2. Inventory ..................................................................................................................... 201 

A.3. Energy parameters ....................................................................................................... 209 

A.4. Effluent and ambient temperature ............................................................................... 216 

A.5. Agricultural spreading ................................................................................................. 219 

A.6. Other midpoint and endpoint results ........................................................................... 220 

A.6.1 Environmental impact results for steady state and dynamic results ........................ 220 

A.6.2 Environmental impact results for alternative scenarios ........................................... 235 

A.6.3 Cumulative energy demand for reference and alternative scenarios ....................... 251 

A.7. General information .................................................................................................... 252 

A.7.1 Potable water avoidance .......................................................................................... 252 

A.7.2 Gas emission calculations........................................................................................ 252 



xiv 

 

A.7.3 Urine influent calculation ........................................................................................ 252 

A.7.4 General tables .......................................................................................................... 253 

B. Supplementary Information for chapter III ......................................................................... 257 

B.1 Adapted Influent Generator Matlab code .................................................................... 257 

C. Supplementary Information for chapters IV and V ............................................................. 274 

C.1. Adapted Sumo2 Gujer matrix ...................................................................................... 274 

 



xv 
 

List of figures 

  

Figure I.1. General overview of original BSM2 .................................................................................... 11 

Figure I.2. Simplified scheme of the combined platform DM-LCA-EMOO ........................................ 17 

Figure II.1. DM-LCA framework developed with connections between Dynamic Modelling, LCA and 

Python
TM

 interface ................................................................................................................................. 32 

Figure II.2. Plant configuration used in this study. ............................................................................... 33 

Figure II.3. Expanded system boundaries for LCA ............................................................................... 36 

Figure II.4. Comparisons between steady state and dynamic simulations ............................................ 41 

Figure II.5. Energy distribution by consumption item .......................................................................... 46 

Figure II.6. Endpoint impacts for studied scenarios .............................................................................. 47 

Figure II.7.  Contribution analysis for climate change (GWP100) using ReCiPe Midpoint (H) .......... 48 

Figure II.8. Contribution of each species to greenhouse gases emitted ................................................ 49 

Figure II.9.  Contribution analysis for marine (A) and freshwater (B) eutrophication using ReCiPe 

Midpoint (H) ......................................................................................................................................... 50 

Figure II.10. Contribution analysis for fossil fuel depletion using ReCiPe Midpoint (H) .................... 52 

Figure III.1. General overview of the urine source separation influent generator ................................ 64 

Figure III.2. Profiles for US and WW streams. ..................................................................................... 67 

Figure III.3. Detail of fractionation block (E) ....................................................................................... 72 

Figure III.4. Sankey diagram for COD fractions in urine versus COD in total wastewater .................. 74 

Figure III.5. Sankey diagram for nitrogen fractions in urine versus nitrogen in total wastewater ........ 75 

Figure III.6. Sankey diagram for phosphorus fractions in urine versus phosphorus in total wastewater

 ............................................................................................................................................................... 76 

Figure III.7. Reduction of WW input variables when considering 50% urine source separation ......... 80 

Figure III.8. Weekly profile of flowrate; Daily variation of SVFA and SNHx .......................................... 82 

Figure III.9. Performance (Effluent ammonia and effluent nitrate and nitrite) and operational (Air 

flowrate) results for Sumo1 and ASM1 models .................................................................................... 84 

Figure III.10. Comparison of different urine retention levels considering performance (Effluent 

ammonia; Effluent nitrate and nitrite) and operational (Air flowrate) results ....................................... 86 

Figure IV.1. WWTP configuration ...................................................................................................... 100 



xvi 

 

Figure IV.2. Structure of AMOEA-MAP framework used in this WWTP problem optimization...... 108 

Figure IV.3. Structure of the integrated framework (Dynamic Modelling - Life Cycle Assessment - 

Efficient Multi-Objective Optimization) ............................................................................................. 110 

Figure IV.4. Pareto optimal curves for constrained and unconstrained optimization of WWTP ........ 113 

Figure IV.5. Zoom on optimal zones with water quality beyond the legally-imposed limits ............. 114 

Figure IV.6. Level of methanol addition - driver for N treatment - for all solutions belonging to the 

Pareto optimal front ............................................................................................................................. 115 

Figure IV.7. Level of iron chloride addition – driver for P removal – for all solutions in the Pareto 

optimal front ........................................................................................................................................ 116 

Figure IV.8. Correlation scatterplots for decision variables and objective functions ......................... 118 

Figure IV.9. Optimization improvement based on hypervolume distance indicator (IH
-
) calculations 119 

Figure V.1. Simplified structure of the integrated framework (Dynamic Modelling - Life Cycle 

Assessment - Efficient Multi-Objective Optimization) ....................................................................... 132 

Figure V.2. Simplified flowsheet for the two WWTP scenarios studied in the present work ............. 136 

Figure V.3. Detailed configuration of the proposed WWTP scenarios in SUMO .............................. 137 

Figure V.4. Pareto-optimal curves for constrained and unconstrained optimization of the reference 

WWTP ................................................................................................................................................. 143 

Figure V.5. Box-and-whisker plots for total nitrogen, ammonium ion and total phosphorus 

concentrations in effluent for the optimized reference scenario (REF) ............................................... 145 

Figure V.6. Box-and-whisker plots for the main cost contributors in Operational Cost Index (OCI) 

function for the optimized reference scenario (REF) .......................................................................... 146 

Figure V.7. Correlation scatterplots on decision variables and objective functions (optimized REF 

scenario) .............................................................................................................................................. 150 

Figure V.8: Pareto-optimal fronts resulting from steady state versus dynamic simulations (REF 

scenario) .............................................................................................................................................. 151 

Figure V.9. Pearson product-moment correlations between different impact categories in LCIA ..... 152 

Figure V.10: Comparative optimal Pareto fronts on the reference scenario (REF) versus the urine 

treatment by nitritation/ anaerobic deammonification (ANA) ............................................................ 155 

Figure V.11. Box-and-whisker plots on total nitrogen, ammonium ion and total phosphorus 

concentrations in effluent of the optimized ANA scenario ................................................................. 155 

Figure V.12: EROI (Energy return on investment) calculations for all solutions belonging to the 

optimal Pareto front (REF and ANA scenarios) .................................................................................. 156 

 

  



xvii 
 

List of tables 

 

Table II.1. Comparison of scenarios...................................................................................................... 35 

Table II.2. Comparison between this study and the literature for BNR processes ................................ 40 

Table II.3. Main simulation results for the reference (steady state and dynamic simulations) and the 

alternative scenarios (dynamic simulations) ......................................................................................... 43 

Table III.1. Input and calculated values for composite variables (case study of 50% urine retention) . 66 

Table III.2. Considered initial values for total urine stream (TUS), separated urine stream (US), total 

wastewater without urine retention (TWW) and wastewater with urine retention (WW) .................... 71 

Table III.3. Ionic species molar ratio to ammonium for total wastewater and total urine stream ......... 77 

Table III.4. Noise factors considered in this study ................................................................................ 78 

Table III.5. Adapted inputs for ASM1 simulation ................................................................................ 79 

Table IV.1. Average influent characteristics ....................................................................................... 101 

Table IV.2. Proposed α values for OCI function ................................................................................. 103 

Table IV.3. Proposed β values for EQI function ................................................................................. 104 

Table IV.4. Decision variables considered in this study ..................................................................... 106 

Table IV.5. Decision variables values for chosen optimal points ....................................................... 116 

Table V.1. Influent characteristics ...................................................................................................... 137 

Table V.2. Proposed α values for OCI function .................................................................................. 138 

Table V.3. Proposed β values for EQI function .................................................................................. 139 

Table V.4. Decision variables chosen for REF and ANA scenarios ................................................... 140 

Table V.5. List of comparative studies on different problem formulations and innovative scenarios in 

the field of WWTP optimization ......................................................................................................... 141 

Table V.6. Benefits derived from ANA scenario when compared with REF scenario ....................... 158 

 





xix 
 

List of abbreviations 

 

ADM  Anaerobic Digestion Model 

AMOEA Archive-based Multi-Objective Evolutionary Algorithm 

ANAMMOX Anaerobic Ammonium Oxidation 

AS  Activated Sludge 

ASM  Activated Sludge Model 

ASP  Activated Sludge Process 

ASDM  Activated Sludge Digestion Model 

BSM1  Benchmark Simulation Model N°1 

BSM2  Benchmark Simulation Model N°2 

CED  Cumulative Energy Demand 

COD  Chemical Oxygen Demand 

DM  Dynamic Modelling 

DO  Dissolved Oxygen 

EA  Evolutionary Algorithm 

EMOO  Efficient Multi-Objective Optimization 

EPC  Enhanced Primary Clarification 

EQI  Effluent Quality Index 

EROI  Energy Return On Investment 

FU  Functional Unit 

GHG  Greenhouse Gas 

HFO  Hydrous Ferric Oxides 

IAMO  Importance Adaptive Mutation Operator 

IPCC  Intergovernmental Panel on Climate Change 

ISO  International Organization for Standardization 

ISS  Inorganic Suspended Solids 

LCA  Life Cycle Assessment 

LCI  Life Cycle Inventory 

LCIA  Life Cycle Impact Assessment 

MAP  Memory-based Adaptive Partitioning of search space 

MDG   Millennium Development Goals 

MOO  Multi-Objective Optimization 

NSGA  Non-Sorting Genetic Algorithm 

OCI  Operational Cost Index 



xx 

 

PE  Person equivalent 

RER  Europe 

SI  Supplementary Information 

SRT  Sludge Retention Time 

TKN  Total Kjeldahl nitrogen 

TN  Total Nitrogen 

TOC  Total Organic Carbon 

TP  Total Phosphorus 

TSS  Total Suspended Solids 

USS  Urine Source Separation 

VSS  Volatile Suspended Solids 

WRRF  Water Resource Recovery Facility 

WWTP  Wastewater Treatment Plant 



 

1 

 

 

 

 

 

 

 

 

 

 

Chapter I. General Introduction 
 





Chapter I. General Introduction 

3 

 

According to the United Nations, worldwide, 40% of people suffer from water scarcity and this 

number is projected to increase. In 2011, 41 countries experienced water stress and by 2050, it is 

expected that at least one in four people would be affected by recurring water shortages. Globally, still 

2.4 billion people use unimproved sanitation facilities and at least 1.8 billion people use a source of 

drinking water that is fecally contaminated. As a consequence, approximately 1,000 children die each 

day due to water and sanitation-related diseases that might be prevented. 

The Millennium Development Goals (MDGs) proposed in 2000 by the United Nations Development 

Program that comprised among the 8 main goals, the achievement of environmental sustainability 

arrived to its completion in 2015. As discussed in the final report of MDGs (United Nations, 2015), 

progress was achieved such as that 1.9 billion people have gained access to piped drinking water since 

1990, 2.1 billion people have now access to improved sanitation and 98% of ozone-depleting 

substances have been eliminated since 1990. 

However, much progress is still to be achieved and some gap points were left behind. As discussed in 

the final report, climate change and environmental degradation is worsening. Numbers concerning 

direct environmental impacts are alarming: Global emissions of carbon dioxide (CO2) have increased 

by over 50% since 1990 and the growth rate of emissions between 2000 and 2010 were more 

important than in each of the three previous decades; Emissions of methane (CH4) and dinitrogen 

monoxide (N2O), potent greenhouse gases, could rise by 50% and 25% respectively between 1990 and 

2020 and the average global temperature increased by 0.85°C from 1880 to 2012; Further, the global 

average sea level rose by 19 cm from 1901 to 2010 and about 40% of the oceans are currently heavily 

affected by human activities; Finally, it is estimated that 90% of wastewater in developing countries is 

discharged into water bodies without treatment (United Nations, 2016). 

Nonetheless, not only numbers are alarming. Changes in the worldwide context are becoming more 

and more evident when considering population growth together with the urbanization and the 

industrialisation, the increasing food demand, the changes in the land use and in the standards of living 

(UN-Water, 2015). Accordingly, with the increasing pressure on existing sewage collection and 

treatment systems, wastewater is being discharged without treatment and thus water quality is 

decreasing. This lack of treatment leads to direct impacts on the equilibrium of aquatic ecosystems and 

finishes by changing also anthropogenic activities, from urban development to food production and 

industry. As a consequence, environment is pressured and threatened and human health is also being 

degraded. 

Therefore, it is becoming clearer that wastewater, as a pollution stream produced by anthropogenic 

activity that needs to use natural resources, has to return to the environment in a safe way. This is 

essential to cease the degradation generated by this non-ecological cycle which leads to all depletion 
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of essential resources, degradation of ecosystems and finally the exposition of the human health to an 

imminent danger. It is thus mandatory to find a more conscientious wastewater management and 

treatment to achieve higher levels of treatment together with robustness of the system in order to lead 

this ecosystem-human health-resources nexus to evolve together. In this sense, instead of being a 

source of problems, well-managed wastewater should play a positive role in the environment leading 

to improved food security, health and economy. However, it can only be done if wastewater 

management is considered as part of an integrated, full life cycle and ecosystem-based management 

system that comprises social, economic, environmental and geographical aspects (Corcoran et al., 

2010). 

 

I.1. Wastewater as a pollution stream 

 

As a result of a dynamic anthropogenic activity, wastewater is highly variable in function of more or 

less ecological lifestyle, geographical location, water availability, etc. Also, sewer collection system 

characteristics and the industry contribution in the municipal wastewater might influence the 

composition of the wastewater entering a wastewater treatment plant (WWTP). In this context, total 

wastewater, which is mainly of water, might contain a changeable composition that includes 

pathogens, organic compounds, synthetic chemicals (such as pharmaceutical and personal care 

products), nutrients (especially nitrogen and phosphorus), organic matter, heavy metals, etc. Those 

pollutants might be in solution, as particulate matter or as colloidal species. Also, biodegradable or 

inert species are present having sometimes cumulative, persistent and synergistic characteristics that 

might affect the ecosystem if not correctly managed (Henze and Comeau, 2003; Corcoran et al., 

2010). 

When output water quality after treatment is not acceptable, some impacts are well known to happen 

and efforts have to be done in order to avoid them. According to Corcoran et al. (2010), eutrophication 

is one of the most prevalent problems. It is defined as the process where water bodies (such as lakes, 

rivers, and coastal waters) become increasingly rich in plant biomass, as a result of the abundance of 

nutrients (mainly nitrogen and phosphorus) leading to toxic algal blooms, changes in biodiversity and 

consequently hypoxic events. 

Another environmental impact that is gaining more interest last years is the climate change as, instead 

of only influencing ecosystems, it started influencing directly human health as it can have an impact 

on water scarcity, rainfalls and water quality. According to Corcoran et al. (2010), the relationship 

between wastewater and climate change can be seen from different perspectives. Considering human 
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activity, water usage practices are directly influenced by climate change as both volumes and quality 

of available water are changing. However, also technically, wastewater has to be managed differently 

and emitted greenhouse gases from wastewater treatment should be mitigated. This concerns 

particularly CO2, CH4 (25-fold global warming potential of CO2; IPCC, 2006) and N2O (298-fold 

global warming potential of CO2; IPCC, 2006). Thus, there is a pressing need to investigate and 

implement alternatives to conventional wastewater treatment, which minimize the direct production of 

greenhouse gases and the indirect ones (for instance from power consumption). 

A zoom in energy consumption shows that, for instance, water and wastewater treatment plants 

account for 3 to 4% of total electricity in United States and this energy consumption is in similar range 

for other developed countries. Therefore, reducing energy consumption for wastewater treatment 

might avoid environmental degradation linked to energy production. In this sense, the energy autarky 

of the wastewater treatment systems might, not only improve economics but also decrease air 

pollution and greenhouse gas emissions, enhance energy and water security and protect public health 

and environment (Gude, 2015). 

Historically, wastewater has been treated by conventional Activated Sludge Process (ASP). In this 

system, organic matter and nutrients are treated by combining biological, chemical, physical and 

mechanical processes and this is done with a microbial biomass that is aerated and kept in suspension. 

Basically, an ASP consists of an aerated reactor where biological reactions take place. Following the 

biological reactor, a clarifier is responsible for retaining biomass in order to ensure a sludge retention 

time (SRT) that allows the efficiency of the treatment. Non recirculating biomass is purged to ensure 

stability. The flowsheet of ASPs might also contain a primary clarifier where particulate matter is 

retained, non aerated reactors where denitrification takes place, internal recycles to transport nitrate 

from the aerobic to the anoxic zone, anaerobic digestion of produced sludge and post-denitrification 

zone to achieve lower reject levels. 

However, nowadays, ASPs have been identified as energy intensive and chemical consuming with 

also an excess sludge disposal issue (Gude, 2015; Lackner et al., 2014). In order to increase 

sustainability in wastewater treatment, several approaches have been described in the literature. One of 

the promising ones is the partial nitritation coupled to the anaerobic ammonium oxidation 

(Anammox). In this process, nitrite is firstly produced from ammonium by ammonia oxidizing 

bacteria (AOB); following, ammonium (as electron donor) and nitrite (as electron acceptor) are 

converted anaerobically into nitrogen gas and nitrate by anammox bacteria (Lackner et al., 2014). 

When applied to a full-scale installation, the process allows up to 70–90% of total nitrogen removal 

with a 65% reduction in aeration energy, a 100% reduction in carbon addition and approximately 50% 

reduction in alkalinity requirements when comparing to traditional processes (Gude, 2015; Jetten et 

al., 1997; Kartal et al., 2010) 
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I.2. Wastewater as a resource recovery opportunity 

 

I.2.1. Extracting resources from wastewater 

 

Wastewater has been described nowadays as both a resource and a problem by several authors. Since 

2013, publications from Water Environment Federation (WEF) started using the term Water Resource 

Recovery Facility (WRRF) instead of WWTP, in order “to better focus on the products and benefits of 

treatment rather than the waste coming into such facilities” (WE&T, 2013). 

In the past, the main idea behind wastewater treatment was the accomplishment of permitted reject 

limits. Nowadays, the goals are moving towards the maximization of recovery of valuable resources 

although water quality is maintained and robustness in process is achieved. 

When conducting a balance across the potential energy that might be recovered from wastewater, 

Shizas and Bagley (2004) estimated that wastewater contains 9.3 times the energy required to treat it. 

However, this value might vary between 3.6 (when considering recoverable energy with recovery 

from organics and nutrients) and 13 (when including heat recovery) times higher than the energy 

required for treating it (Gude, 2015).  

When considering nutrients, the most important part comes from urine. For instance, as discussed by 

Tidaker et al. (2007), the urine from Swedish population contains approximately 36 kilotons of 

nitrogen and 3.3 kilotons of phosphorus while 170 kilotons of nitrogen and 15 kilotons of phosphorus 

were consumed from mineral fertilizers in Sweden in 2001. Therefore, if nitrogen, phosphorus and 

even potassium in urine were utilised in substitution of synthetic fertilizers, the industrial production 

of those might be decreased and the discharge of those nutrients in water bodies would also be reduced 

(Johansson et al., 2000).  

However, extracting resources from wastewater is not new. Some alternatives such as the production 

of fit-for-purpose water, the biosolids used in lands and the energy generation from anaerobic 

digestion are already common in WWTPs. Nowadays, new processes are starting to be studied in 

order to produce/recover specific compounds from wastewater such as precipitated struvite to be used 

as a slow-release fertilizer, the production of biologically-deriving polyhydroxyalkanoates from sludge 

and the use of digester gas to produce methanol or ammonia (WERF, 2011). 

Also, the use of biosolids and the wastewater itself in farmlands is gaining more acceptances by 

population. While in developing countries the wastewater reuse is driven among others by the limited 

capacity to treat wastewater and the lack of other acceptable water sources for agriculture, in 
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developed countries water reuse and recycling are increasingly seen as a means to respond to physical 

water scarcity and water reallocations from agriculture to other uses. Also, nowadays, all the strict 

environmental standards lead to land application of wastewater and sludge to be unavoidable and 

economically feasible (Drechsel et al., 2010). 

Anaerobic digestion nowadays is a currently valorisation process in several WWTPs. In this process, 

as the redox potential is low, microbial fermentation takes place and converts organic material to 

biogas (mainly CH4 and CO2) that can thus be used to produce energy in cogeneration systems.  

Another consequence of anaerobic digestion is the mineralisation of biodegradable organic 

compounds that leads to high concentration of NH4
+
 and PO4

3-
 in solution and the stabilisation of the 

sludge (van Lier et al., 2008). Several studies have been conducted in order to improve biogas 

production aiming to invert the energy balance and lead WWTPs to be in energy autarky 

(Schaubroeck et al., 2015; Aichinger et al., 2015). Considering that biogas production is fully 

dependent of volatile suspended solids (VSS) entering the digester that will be degraded, one 

possibility of increasing biogas production is forcing the input of more organic matter into the 

digester. This can be done by recovering the organic matter entering the WWTP by an enhanced 

primary clarification (with an addition of chemicals to achieve better flocculation), previously to its 

degradation in the water line by the microbial oxidation. Another advantage of recovering organic 

matter at this point is that less bacterial growth to treat carbon will take place in the aerated basins and 

thus less energy will be required to aerate the activated sludge (Flores-Alsina et al., 2014). More 

recent research have been also developed for high rate activated sludge process (HRAS) – Jimenez et 

al., 2015 - working at low SRT and also for partial nitritation and anammox process on the mainstream 

(Laureni et al., 2016). If the coupling of the two previously mentioned approaches succeeded, this 

innovative plant would allow minimising the aerobic degradation of organic matter and producing 

more fermentable sludge for AD (Xu et al., 2015). 

One of the promising opportunities in the phosphorus recovery is the struvite precipitation from 

wastewaters. Struvite (ammonium magnesium phosphate hexahydrate - MgNH4PO4 · 6 H2O) is a slow 

release fertilizer that might substitute conventional industrial fertilizers. The recovery of struvite from 

wastewater would allow not only a decrease in mineral fertilizers production and depletion of natural 

phosphorus resources but also a decrease in rejected phosphorus in water bodies together with the 

necessary production of crops to respond to population growth. However, in order to be feasible and 

present real advantages, struvite precipitation should be conducted in nutrient-rich wastewaters 

containing mainly phosphate and ammonium. Several studies have been conducted for the struvite 

precipitation using, among others, digester supernatant, landfill leachate and urine. However, as 

discussed by Maurer et al. (2006) without addition of phosphate, only 3% of nitrogen in urine might 
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be eliminated in struvite precipitation (with an efficient precipitation of 98% of phosphorus). 

Therefore, more research on new processes for nitrogen recovery is still necessary. 

As discussed previously, several recovery opportunities are available and well applied in WWTPs. 

However, currently, one of the bottlenecks to fully benefit from resource recovery in wastewater is 

that, in municipal wastewater, nutrient-rich streams (e.g.: urine and faeces) should not be diluted (e.g.: 

by greywater) and thus, source-separation should be encouraged. At the same time, the choice of 

centralized or decentralized systems is not evident: Among others, the management approach depends 

on the area (urban or rural), the size and density of the population, the development level, the technical 

feasibility, the treatment quality required, the education and culture of the population, being necessary 

to evaluate case-by-case (Corcoran et al., 2010; Libralato et al., 2012). 

Many aspects in centralized and decentralized systems have being discussed in literature. According to 

Libralato et al. (2012), when considering centralized systems, it should be highlighted the competitive 

costs of existing plants, the potential eutrophication phenomena and rainwater overload problems. In 

the other hand, decentralized systems may respond to diverse situations, diminishes or stop the 

reduction of water quality and allow treated wastewater recovery and reuse such as in the case of urine 

separation. 

Also, some disadvantages have also been experienced in decentralized pilot systems such as 

precipitation with consequently clogging of pipes and odour as well as the difficulties when changes in 

centralized system are required and storage and transport have to be added to the new management 

structure (Maurer et al. 2006; Udert et al., 2003). Considering impacts, some studies showed greater 

impacts for acidification when analysing environmental footprint of source-separated systems. 

However, it has also being pointed out that, in contrast with conventional systems, that are already 

optimized, alternative systems has to be well assessed in order to achieve optimal results in terms of 

effluent quality and energy/chemicals consumption (Remy, 2010).  

 

I.2.2. Urine source separation 

 

By the 1990s, various groups began working on the idea that separating urine at source could increase 

sustainability in wastewater treatment. Those approaches are based on urine composition which 

represents only 1% of the total volume in domestic influents and 14% of total organic carbon but is the 

main contributor of some nutrients with 85% of total N, 50% of the total P, and 55% of total K 

(Maurer et al., 2006; Larsen and Gujer, 1996).  
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Besides the recovery of substantial nutrients, urine separation also avoids advanced nitrogen removal 

(which is the most important energy consumer in a WWTP) and phosphorus elimination (which 

consumes important quantities of chemicals). Moreover, urine separation at source allows achieving 

robustness in the WWTP as ammonia peaks input are avoided or might be distributed along the time 

having immediate advantages in nitrification. Following consequences are thus the increased stability 

and reliability of the process and the reduction of the plant size (Rossi et al., 2009; Rauch et al., 2003). 

Currently, a range of treatment possibilities (with/ without nutrients recovery) are available for the 

collected urine stream. As proposed by Maurer et al. (2006), the urine collected in source-separating 

toilets can be used for example for N-recovery (e.g. by ion-exchange, ammonia stripping or 

isobutylaldehyde-diurea precipitation), P-recovery (e.g. by struvite formation), nutrient removal (e.g. 

by anammox treatment) and micropollutants elimination. Also, as discussed by authors, nowadays it is 

not possible to find a process that answers to all nutrients recovery needs; thus a combination of 

processes is required. For instance, previous struvite precipitation triggered by magnesium that is able 

to precipitate most of the phosphorus might be followed by a biological treatment that is capable of 

eliminating organics and nitrogen. For complete urine valorisation the combination of a biological 

nitrification (in a biofilm system) and a vacuum evaporation has been proposed in the last years (Udert 

and Wächter, 2012). It allows converting half the ammonium into nitrate and then to produce a 

concentrated solution of ammonium-nitrate which can be used as a fertiliser. This is now technically 

feasible but the global environmental evaluation is still necessary to assess the global gain as, for 

instance, the energy demand is relatively high. 

Finally, when urine is separated at source and aimed to be treated specifically, it is important to 

understand the complex composition of this fluid as well as the possible interactions between present 

substances. As showed by Udert et al. (2006), three main processes take place after urine collection: 

First, microbial hydrolysis of urea leads to ammonia and bicarbonate; Following, with the pH increase, 

one can notice the appearance of mineral precipitates such as struvite, hydroxyapatite (Ca5(PO4)3OH) 

and calcite (CaCO3); Additionally, with the pH increase, ammonia volatilisation takes place (Udert et 

al., 2006). Considering the previously described processes, a distinction between substance species has 

to be made between fresh and stored urine. 
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I.3. Quantifying benefits: Wastewater treatment modelling and simulation 

 

When one wants to understand and compare the functioning of both conventional and alternative 

wastewater management and treatment options, there is a need in obtaining realistic results. However, 

this is neither easy nor feasible when considering alternative scenarios that are currently only available 

at laboratory scale or unexplored experimentally. Modelling is thus an inexpensive and elegant way of 

comparing those alternative options. 

Traditionally, simulation has been used to understand the interaction between the involved processes 

in a WWTP together with performance evaluation, control strategies, design and optimization. From 

this perspective, activated sludge systems, which are the most applied biological wastewater treatment 

method, are also consequently the most advanced considering modelling and simulation. 

The simulation of activated sludge systems includes many processes and variables to guarantee the 

modelling of different steps of the treatment such as the carbon oxidation, nitrification and 

denitrification. These processes have to be mathematically tractable and representative of the reactions 

occurring in the reactors. Besides biological reactions, physical, chemical and mechanical reactions 

also take place. Moreover, when modelling a full plant (i.e. whole plant modelling), the set of state 

variables might not be the same for every part of the system (e.g. water line and sludge train). Two 

approaches are then available to handle this issue. The first one is the supermodel approach where all 

state variables are available for all units; the second one is the interface approach where relations 

between each compound should be established in the model when changing from one type of unit to 

another – e.g. between water and sludge line (Nopens et al., 2009).  

Efforts have been made to achieve standardisation in WWTP modelling and simulation when one is 

willing to compare different strategies. Among them, the Benchmark Simulation Model no. 1 (BSM1) 

and no.2 (BSM2) should be mentioned, that are protocols for implementation and impact and 

performance evaluation of existing and new control strategies in WTTPs. They comprise plant layout, 

simulation model, influent loads, test procedures and evaluation criteria (Alex et al., 2008; Jeppsson et 

al., 2007). The general overview of the original BSM2 flowsheet is given in figure I.1. 

The main BSM2 flowsheet components are the primary clarification, the five activated sludge reactors 

for nitrogen removal that are modelled using ASM1, the secondary clarification, the gravity 

thickening, the anaerobic digestion (based on ADM1), the dewatering and the storage tank. It includes 

also, AD/AS model interfaces to deal with input and output of the anaerobic digester and dynamic 

influent characteristics from Gernaey et al. (2005). It has also to be noticed that respected reject limits 

for this benchmark are total nitrogen inferior to 18 gN.m
-3

, COD inferior to 100 gCOD.m-3, 
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ammonium inferior to 4 gN.m
-3

, TSS inferior to 30 gTSS.m
-3

 and BOD5 inferior to 10 gBOD.m
-3

. 

Moreover, phosphorus elimination (and consequently its quantification) is not available in the original 

BSM2 configuration (Alex et al., 2008). 

In the general protocol study of BSM2 proposed by Jepsson et al. (2007), some main points are 

highlighted such as the importance of integrating the full plant (water and sludge line) in order to lead 

the WWTP to be thought as one completely integrated system that accounts for all possible benefits 

and disadvantages. In this case, more reliable results would be achieved. Additionally, the control of 

all units and sub-process should be integrated. Accordingly, the extended evaluation period considers 

more realistic aspects such as seasonal variations (including temperature during the year) and the slow 

dynamics of anaerobic digestion processes (Jeppsson et al., 2006). 

 

Figure I.1. General overview of original BSM2 

(Alex et al., 2008) 

 

I.3.1. Obtaining data: Influent generation 

 

As discussed previously, wastewater composition is highly variable according to human’s life style. 

Therefore, when trying to understand the complex interaction between all the parameters involved in 
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the wastewater management and treatment systems, it is essential to consider this dynamic condition, 

as the system is not well represented by a steady state one.  

Although, powerful and rigorous models are available for the simulation of systems, if a dynamic and 

realistic representation of influents is not provided, results might be misleading. For instance, when 

considering fluctuations in the WWTP influent, robustness in the plant might only be ensured if the 

system is capable of treating peaks of flows and nutrients (Alex et al., 2008). 

The influent of a municipal WWTP is a mixture of several contributing streams such as domestic 

wastewater (including toilet, kitchen and bath/laundry wastewater), industrial wastewater, stormwater, 

sewer infiltration, etc (Henze and Comeau, 2003).  

Martin and Vanrolleghem (2014) published a critical review on generating influent data for WWTPs. 

According to the authors, three different types of influent generators are described in the literature: i.) 

When one needs to complete data about quantity and quality of the wastewater; ii.) When composite 

variables need to be translated into state variables (ASM family ones, for instance); iii.) When one 

needs to know the uncertainty present in the influent data. Also, according to authors, one of the 

promising approaches in this field is the phenomenological generation of influents as it allows the user 

to adapt the model to obtain data for instance according to geographical location and catchment size. 

 

I.4. Evaluating benefits: Life Cycle Assessment (LCA) 

 

Even when having data to evaluate conventional and new technologies, one could claim that 

depending on the methodology used to assess the process, results would be different. There is thus a 

need for a standardized methodology to evaluate the whole process and its requirements. Currently, 

different assessment tools are available to evaluate the sustainability of systems such exergy analysis, 

economic analysis and Life Cycle Assessment (LCA) (Balkema et al., 2002). 

Aiming to analyse environmental footprint of WWTPs, several studies have been suggesting the use of 

LCA. It is a methodological framework for assessing the environmental impacts attributable to the life 

cycle of a process or a product. The idea of using LCA in WWTPs is to account for all background 

process (e.g. energy consumption, chemicals production and transport utilization) besides the 

foreground process which has his own environmental emissions. 

According to ISO 14044 (2006), LCA is defined as the “compilation and evaluation of the inputs, 

outputs and potential environmental impacts of a product system throughout its life cycle”. 

Considering this, when analysing conventional and alternative WWTPs for long-term environmental 
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sustainability, effluent quality discharge impact has to be considered (end-of-pipe approach) but also 

all the processes associated to the main treatment such as the sludge treatment and disposal, energy 

consumption and production of ancillary materials (background processes).  

Also, the four main steps that are recommended by the ISO 14044 (2006) are to be followed: i.) the 

goal and scope definition; ii.) the inventory definition; iii) the impact assessment phase and iv.) the 

interpretation.  

The first step, the goal and scope definition, allows the description of the system in terms of the 

system boundaries, function and functional unit (FU), and allocation methods. It is important as the 

correct definition of the FU allows the latter comparison between alternatives. The second step, the 

Life Cycle Inventory (LCI) is the compilation of all estimated consumption of resources from the 

environment and emitted substances to the environment during the process/product life cycle. By the 

end of this step, an inventory of the system is obtained based on a well-defined functional unit. 

Following, the third step, Life Cycle Impact Assessment (LCIA) provides the correlation between 

emitted substances and indicators of impacts on the environment. Finally, the last step, the life cycle 

interpretation occurs naturally as when conducting the LCA one wants to take decisions after 

comparing options (Rebitze et al., 2004) and identifying the hot spots of the system. 

In the field of water and wastewater treatment, LCA has already been used in several studies to 

evaluate the environmental performances of proposed technologies. Different LCA applications have 

been published so far (Corominas et al., 2013a) for different WWTPs configurations as well as for 

sewage sludge management technologies (Yoshida et al., 2013) and for the full urban water system 

(Loubet et al., 2014). However, as results are usually obtained by site collected data, it can neither be 

used to automatically analyse general trends nor to process optimization. Therefore, the consideration 

of an LCA together with WWTP modelling and simulation tools is be a powerful approach to allow 

the modification of operational and design parameter when aiming to conceive more sustainable 

systems.    

However, it has to be highlight that, in order to be realistic and to provide a fair comparison against 

studied scenarios, LCA have to be conducted considering the appropriate boundaries and the proper 

allocation methodology. For instance, when analysing WRRFs, the conventional WWTP Life Cycle 

Assessment has to be adapted to account for all avoided impacts generated by the production of by-

products. Similarly, the new functions of the system have to be added as it will not deliver the same 

functional unit anymore. 

Another important feature of the LCA that allows it to be applied to the quantification of impacts and 

the evaluation of scenarios in WWTPs considers the main emissions of the plant. Even if nowadays, 

life cycle impact assessment methodologies are not capable of integrating all substances leaving a 
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WWTP, such as personal care products and medicaments residues, the main burdens of the 

implementation of a wastewater treatment (for instance, the reject of non-treated pollutants, the 

greenhouse gases emitted and the high consumption of energy and chemicals) can be correctly 

quantified and evaluated by the currently available impact categories (for instance, marine and 

freshwater eutrophication, human toxicity, climate change and resources depletion).  

 

I.5. Improving systems: Multi-objective optimization 

 

When a novel technology is able to be evaluated considering sustainability but also technical and 

economic aspects, an optimization can be conducted. Additionally, it may consider not only one 

optimal functioning point; it is possible to compromise between all trade-offs without any preliminary 

judgement. 

As described by Deb (2011), multi-objective optimization (MOO) consists of optimizing more than 

one objective simultaneously. As opposed to the single objective optimization, the multi-objective 

optimization minimizes all usually conflicting objective functions simultaneously without using 

expressions of weight between objectives. Hence, a set of solutions, called Pareto-optimal solutions, is 

usually obtained by the end of a multi-objective optimization. The concept of domination is generally 

used in the context of multi-objective optimization to discriminate between solutions and to locate the 

globally non-dominated (minimum) solutions, while maintaining the diversity in a given Pareto-front 

(Deb, 2001). A further processing step, the decision making process, will be therefore required in 

order to comprise between the trade-offs and to find one optimal functioning point, when needed. 

Additionally, as conflicting objectives are most often involved, none of the optimal solutions found 

can be improved without worsening at least one of the other objectives (Hakanen et al., 2011) and 

thus, solutions cannot be easily sorted only on their objective value. 

There exist different ways to solve a multi-objective optimization problem among which evolutionary 

algorithms (EA), widely known due to their robustness. According to EAs, the optimization is carried 

out by using a population of solutions, usually created randomly and therefore robustness is ensured 

independently from the quality of initialization. Thereafter, the algorithm provides a generation-based 

(iterative) operation updating the current population to create new populations based on genetic 

operations such as genetic selection, crossover, mutation and migration. This generation-based 

operation is pursued until one or more pre-specified termination criteria are met (Deb, 2011).  
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From the application point of view, the optimization of WWTP design and operation has been applied 

since 1990s. However, commonly, the optimization strategies, described in the literature, are most 

often aggregation-based, which is to say that the optimization is conducted by aggregating several 

objectives into a unique objective function through weight factors representing the importance of each 

objective (Hakanen et al., 2011; 2013). 

However, as described by Hreiz et al. (2015) in a review of ASPs optimization, several objectives 

have not the same units (and sometimes also contradictory) and cannot be instinctively combined in 

order to form a single objective function. 

From a practical point of view, even if highly non-linear processes are present in a WWTP due, for 

instance, to the rigorous consideration of biochemical reactions, it is important to avoid the 

aggregation of objectives and preserve the intrinsically multi-objective structure of optimization 

problem. For instance, the quality of treated wastewater and the operational costs are two conflicting 

objectives as, reaching low organic matter, ammonium or phosphate concentrations in effluent leads to 

high consumption of energy and chemicals in the plant. Also, operating a plant with short SRT risks 

the stability of nitrification and may produce an excess of sludge; however, suspended solids quality 

and BOD is ensured (Hakanen et al., 2013) and thus only the operator expertise might compromise 

between different conflicting outcomes that are sometimes non quantifiable or highly dependent. 

Multi-objective optimization is recognized to be more suitable to deal with WWTPs due to the 

conflicting nature of objectives taken into account. Additionally, the use of derivative-free algorithms 

such as EAs is favoured to avoid uncertainties due to the numerical approximation of gradients in 

highly-linear systems, and to ensure the robustness of  the algorithm. Nevertheless, regarding the EAs, 

the main drawback is the considerable numerical budget required. However, the full WWTP case 

study is an example of an expensive optimization problem, where the resolution without an efficient 

optimization tool would be practically impossible.  

Aiming to fix a computational budget that allows obtaining the optimal Pareto-front, Ahmadi et al. 

(2016) proposed a new Archive-based Multi-Objective Evolutionary Algorithm with Memory-based 

Adaptive Partitioning of search space (AMOEA-MAP) to deal with expensive simulation-based 

problems and reduce the computational budget of the optimization to about 300 function evaluations. 

The adaptation relies mainly on the adaptive reticulation of the search space, to accelerate the search 

with no loss of accuracy and on a bi-population approach (Ahmadi et al., 2016). 
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I.6. Research objectives and tasks  

 

Envisaging novel and more sustainable wastewater management and treatment systems requires a 

multi-criteria decision support that is capable of considering all technical, economic and 

environmental aspects. Therefore, in order to perform alternative scenarios evaluation, decision 

making based on scenarios comparison, ecodesign or process optimization, it is necessary to have a 

tool capable of predicting in a reliable and interconnected way the benefits and drawbacks when 

applying a specific technology. 

This thesis is in pursuit of a concluded thesis at “Laboratoire d'Ingénierie des Systèmes Biologiques et 

des Procédés” (LISBP) by Méry (2012). In this previous work, an integrated tool for process 

modelling and life cycle assessment applied to the environmental analysis of drinking water treatment 

plants was successfully developed. Moreover, the main focus of the previous cited work was to 

develop modelling and simulation of unit processes in steady state conditions (considered as 

satisfactory for this kind of processes) and on the application to an existing plant. 

Following the idea of this former approach coupling process modelling and life cycle assessment 

studied by Méry (2012), it seemed evident that the same approach could be applied to other process 

fields such as a wastewater treatment plant. However, as the physico-chemical and biological 

processes involved in wastewater treatment are complex and highly dependent on wastewater inputs 

(composition, flow variation), it is extremely important to adopt a rigorous and dynamic modelling. 

Another interest sought in the present work is the building of perspective scenarios meaning that the 

tool should have a predictive aspect and eco-design capability. Multi-objective optimization approach 

should then be integrated to tackle the involved conflicting objectives. 

 

The major objective of this study is to obtain a platform coupling rigorous and wide-plant 

Dynamic Modelling (DM), extended boundaries Life Cycle Assessment (LCA) and an Efficient 

Multi-Objective Optimization (EMOO) tool.  

 

The developed platform, DM-LCA-EMOO, has to be flexible in order to allow different scenarios to 

be tested, as well as multi-criteria as different decision parameters might be present. 

In order to achieve the objectives, the involved tools in the platform have to be interconnected with 

their process parameters and results. Initially, it is necessary to automatically control, run simulations 

and recover results from existing commercial WWTP simulators. When results are recovered, they 

have to be converted into the correct substances and modules for the LCA in order to allow the 
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consideration of foreground and background processes together with mass and energy balances. 

Examples of important recovered values are the violation of reject limits, the amount of energy 

produced on the amount of energy consumed (EROI), the average output concentrations, etc. By the 

end of the evaluation of a range of scenarios, general results about environmental impacts are to be 

obtained as well as a detailed contribution analysis in order to identify the most important hotspots of 

each scenario to be latter optimized. Finally, to allow the multi-objective optimization of scenarios, the 

platform has to be connected to an efficient multi-objective optimization algorithm that allows the 

optimization of WWTP as an expensive black-box problem. Figure I.2 presents in a simple way the 

main coupled tools in the combined platform together with its main expected outputs. 

 

 

Figure I.2. Simplified scheme of the combined platform DM-LCA-EMOO 

 

The developed platform should be able to evaluate and compare conventional and several alternative 

wastewater management and treatment options. Among the proposed alternatives, it is aimed to study 

the urine source separation with specific treatment (struvite production and nitritation/ anaerobic 

ammonium oxidation) and/or valorisation in agriculture and the enhanced primary clarification to 

increase biogas production in the plant and to achieve energy autarky. 

The interest of such a combined and rigorous platform can be understood from two points of view. 

First, it is a tool for benchmark validation, which is to evaluate and compare conventional and 

alternative scenarios (DM-LCA approach – chapter 2). Secondly, when coupled to the expensive 

optimization tool, the platform is capable of optimizing both operational and design variables together 

(DM-LCA-EMOO approach - chapter 4 and 5), in the next phase, in order to validate a novel 
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configuration with an accurate readjustment of operation conditions due to the eventual modifications 

in the plant structure and operating conditions. Additionally, in order to fulfil the modelling and 

simulation objectives, a dynamic phenomenological influent generator must be adapted to take into 

account realistic inputs in the wastewater treatment plant and in the urine system treatment (chapter 3).  

 

I.6.1. Thesis outline 

 

This thesis is structured in 6 chapters. 

The previously presented chapter I introduces the thesis background and goals by presenting the main 

challenges to be addressed considering the existing approaches in the literature. In this context, the 

research objectives, the corresponding tasks and the relevant applications are defined. 

Following, chapter II describes the initial development of the platform that couple dynamic modelling 

and life cycle assessment with extended boundaries. Moreover, the developed platform is used to 

evaluate conventional and alternative scenarios. Additionally, focusing on screening alternative 

scenarios for the future, attention was paid to the modelling and the analysis of hotspots of each 

scenario aiming to further optimize them. 

Latter, chapter III presents the adaptation of a phenomenological and dynamic influent generator 

which is required to obtain more realistic influent data (and consequently simulation results) for 

scenarios having urine source separation together with the resulting wastewater stream. 

Chapter IV is a preliminary study on the multi-objective optimization of WWTP that aims to 

understand the feasibility of such expensive optimization, from both computational and reliability 

points of view. Special attention is paid in this chapter to the problem formulation considering 

decisional variables, objective functions and constraints. The choice of an efficient optimization 

algorithm is also discussed and justified, while dealing with complex simulation-based optimization 

problems.  

Succeeding, chapter V presents the application of the previous developed DM-LCA-EMOO approach 

to a reference and alternative WWTP scenarios. Also, different problem formulations are studied 

together with its impacts on Pareto front results. 

Lastly, chapter VI presents the conclusion and the main findings of this work as well as perspectives 

following this thesis. 

Additionally, several modifications and verifications over the original wide-plant modelling, which are 

not described along the following chapters, were conducted during this work. All the information 
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considering the adaptation and the corrections in the modelling are showed in the Supplementary 

Information document.  

 

Note to the reader: The goal of this chapter is not to conduct a state-of-the-art on the thesis subject. As 

this thesis corresponds well to the contents proposed by either accepted or “in preparation” peer-

reviewed articles, it was decided to structure this thesis report by including the original papers for each 

related chapter. Accordingly, the reader will find detailed literature information concerning each 

subject on the following chapters. 
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“Meeting the wastewater challenge is thus not a luxury but a prudent, practical and transformative 

act, able to boost public health, secure the sustainability of natural resources and trigger employment 

in better, more intelligent water management.” (Steiner and Tibaijuka, in Corcoran et al., 2010) 

 

This chapter is published in Water Research, 84 (99-111), doi:10.1016/j.watres.2015.06.048. It is the 

result of the coupling of rigorous Dynamic Modelling (DM) and Life Cycle Assessment (LCA) with 

the corresponding application to several scenarios. The studied scenarios include i.) a reference 

scenario (REF: conventional influent input and plant layout); ii) an enhanced primary clarification 

scenario (EPC: addition of coagulant before primary clarification with 80% retention of total 

suspended solids); iii.) an urine source-separation scenario (USS: conventional plant layout receiving a 

modified influent without 50% of urine; yellow water treatment by precipitation with magnesium 

oxide to recover struvite and the residual nitrogen flow being reinjected in headworks); iv.) a scenario 

combining alternatives ii and iii (USS+EPC); v.) a scenario adapted from scenario iv where nitrogen 

rich stream from struvite precipitation is spread on farmland and valorised as fertilizer 

(USS+EPC+AGRI); vi.) an adapted scenario from iv where nitrogen rich stream is treated by 

nitritation/ deammonification together with the dewatering effluent from anaerobic digestion 

(USS+EPC+ANA). 

The choice of scenarios reflects what was previously discussed in the introduction and is unavoidable 

nowadays: Wastewater treatment plants should move towards water resource recovery facilities in 

order to achieve more sustainable wastewater management and treatment systems. However, this eco-

friendly perspective can only be achieved and well evaluated when having an integrated view on the 

whole process and considering the full pathway of wastewater, from the source generation to the 

treated water re-entrance into the environment and recovery of valuable products from wastewater. 

Accordingly, energy management, both consumption and production, has to move towards energy 

positive balances. 

Several questions are to be answered when modelling those systems and concerning what has to be 

considered in order to be the most realistic as possible. In order to respond to this comparative 

approach that allows lightening on sustainable systems, the platform was developed considering the 

extended boundaries of the life cycle assessment, meaning that all direct and background emissions 

where considered as well as avoided emissions when nutrients and energy valorisations take place. 

When considering the available studies on literature, it should be noted that they include mostly 

collected data and, therefore a specific site inventory is stablished. There are thus, two main 

consequences: Firstly, the study would logically be case specific and would not allow the 

consideration of more general scenarios; Secondly, as results are obtained from site inventories, they 
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would not allow analysing trends when changing parameters of the system and consequently 

optimization might not be feasible. 

A review of LCA studies on wastewater is proposed by Corominas et al. (2013a). According to the 

authors, the integration of LCA in WWTPs has started since the 90s and up to now more than forty 

studies have been published in peer-reviewed journals. Moreover, the authors indicated that several 

works have found important benefits when considering source separation scenarios (including urine 

source separation) from both nutrients recovery and avoidance of pollutants points of view. In their 

review, different challenges were addressed such as the inclusion of new pollutants, different time 

horizons in the impact analysis and finally, the standardization of guidelines of LCA applied to 

wastewater. For instance, nowadays even though LCA is standardized by ISO 14000, different 

functional units, system boundaries, impact assessment methodologies and interpretation are still 

applied in the field of wastewater.  

More globally, Loubet et al. (2014) proposed a review on life cycle assessment of urban water systems 

in order to complete the available review considering only parts of the system. Authors showed that 

when considering the contribution of drinking water production, drinking water distribution, 

wastewater collection and wastewater treatment, regardless the category, impacts came mainly from 

wastewater treatment representing for instance, on average, 44% of climate change impact, 78% of 

eutrophication impact and 39% of electricity consumption. 

Considering the sewage sludge management, Yoshida et al. (2013) proposed a review of several 

studies and arrived to the conclusion that the most important challenges to be addressed are the 

quantification of fugitive gas emissions as well as the fate of emerging pollutants and the modelling of 

disposal practices in order to decrease uncertainty in LCA. 

Foley et al. (2010) proposed an approach that is similar to the one developed in this study. Authors 

conducted a LCA from steady state modelling results of ten WWTP scenarios. The results showed 

that, in general, when a better water output quality is required (less nitrogen and phosphorus are to be 

rejected), infrastructure, operational energy, direct GHG emissions and chemical consumption impacts 

increase, which demonstrate the importance of background processes in a WWTP assessment. Authors 

also highlighted the importance of nutrient consideration, especially phosphorus recovery, to be 

further valorised as fertilizers. 

Similarly, Corominas et al. (2013b) emphasized the inclusion of LCA in the decision-making of 

nutrient removal systems. Authors analysed nitrogen and phosphorus removal in several systems and 

showed that, for N&P and P-deficient scenarios, the strategies that are able to increase nutrient 

removal and/or energy savings present an environmental benefit. However, when considering N-
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deficient scenarios, as more chemicals are required in the treatment, environmental benefits are not 

systematically provided. 

Another remarkable study on WWTP modelling and LCA was proposed by Schaubroeck et al. (2015) 

considering the energy-positive WWTP in Strass, Austria. The study considered wastewater treatment 

as well as the supply chain and the utilization of the produced electricity from sludge digestion and the 

digestate (as fertilizer). Comparisons between the conventional scenario (using 

nitritiation/denitritation) and a one-stage partial nitritation/anammox coupled to a codigestion showed 

a considerable benefit in natural resources depletion (by lowering the energy consumption and 

increasing the electricity production). Moreover, according to authors, N2O emission still represent an 

important contribution to impacts and have thus to be optimized afterwards. 

The present study aims to provide a coupled LCA-dynamic modelling platform capable of being 

properly adapted to several treatment benchmarks as well as providing comprehensive results on the 

performance and sustainability of each wastewater management and treatment scenario. Moreover, the 

developed platform is capable of identifying the main hotspots for a given configuration, which 

requires a rigorous modelling of the dynamic process. In this sense, important efforts have been made 

to operate with a full plant modelling despite the considerable requirements in computational time.  

Modelling some emissions such as the dinitrogen monoxide, have not yet found a consensus between 

scientific and industrial communities. Therefore, regarding the N2O emissions, a general approach was 

used by considering only an emission factor according to the ammonia uptake rate. The later can be 

subsequently integrated into the platform when a validated and widely-approved consensus is 

available in the literature, in order to achieve more realistic results (for instance to consider low 

dissolved oxygen concentration and high nitrite concentration in nitritation).  
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Abstract 

With a view to quantifying the energy and environmental advantages of Urine Source-Separation 

(USS) combined with different treatment processes, five wastewater treatment plant (WWTP) 

scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle 

Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations 

were carried out in BioWin® in order to obtain a realistic evaluation of the dynamic behaviour and 

performance of plants under perturbation. LCA calculations were performed within Umberto
®
 using 

the Ecoinvent database. A Python
TM

 interface was used to integrate and convert simulation data and to 

introduce them into Umberto
®
 to achieve a complete LCA evaluation comprising foreground and 

background processes. Comparisons between steady-state and dynamic simulations revealed the 

importance of considering dynamic aspects such as nutrient and flow peaks. The results of the 

evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced 

Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased 

aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed 

increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In 

this context, USS and EPC results demonstrated that the coupled USS+EPC scenario and its 

combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic 

deammonification could present an energy-positive balance with respectively 27% and 33% lower 

energy requirements and an increase in biogas production of 23%, compared to the reference scenario. 

The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total 

endpoint impacts) along with effluent quality well within the specified limits. The marked 

environmental performance (reduction of global warming) when nitrogen is used in agriculture shows 
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the importance of future research on sustainable solutions for nitrogen recovery. The contribution 

analysis of midpoint impacts also showed hotspots that it will be important to optimize further, such as 

plant infrastructure and direct N2O emissions. 

 

Keywords: WWTP; dynamic modelling; integrated LCA; urine separation; enhanced primary 

clarification; struvite. 

 

II.1. Introduction 

 

Nowadays, Wastewater Treatment Plants (WWTPs) are facing ever stricter regulations with respect to 

the environment and human health, and are also beginning to be considered as sources of material 

and/or energy, obtained by recovering nutrients such as nitrogen (N) and phosphorus (P), and through 

biogas production. 

The collection of separate wastewater flows (e.g. urine, faeces, kitchen and bathroom wastewater) at 

their source could allow the recovery of nutrients thanks to the distinct composition of these flows. In 

this sense, there is a particular interest in urine, which represents less than 1% of the total volume and 

only 14% of total organic carbon (TOC) but 88% of total Kjehldahl nitrogen (TKN) and 57% of total 

phosphorus (Larsen and Gujer, 1996).  

Urine can be treated with magnesium in order to form struvite (MgNH4PO4 . 6H2O), a slow-release 

fertilizer (Maurer et al., 2006). In addition to the possibilities of recovery, urine separation can 

decrease the energy consumption in WWTPs through a reduction in the needs for N-removal besides 

the decrease in consumption of chemicals used for P-elimination. Another important feature of urine 

separation is the avoidance of ammonia peaks, which increases operating stability and allows plant 

size to be reduced (Rauch et al., 2003). 

Additionally, if less organic matter is needed for denitrification, more organic matter can be dedicated 

to anaerobic digestion, which helps to turn the energy balance of WWTPs into a net positive energy 

(production of surplus of energy). Accordingly, Flores-Alsina et al. (2014) proposed the enhancement 

of total suspended solids (TSS) removal in the primary clarifier, which led to a higher chemical 

oxygen demand (COD) for the digestion and consequently more biogas production. 

The negative feature of WWTPs is the generation of various (direct) forms of pollution through gas 

emissions, and effluent and sludge discharge into the environment. Moreover, the utilization of energy 

and chemicals by the plant is responsible for indirect environmental burdens due to the production of 
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these utilities. The environmental performance of different WWTP configurations can be evaluated by 

the Life Cycle Assessment (LCA) method (ISO 14040/44, 2006). While the Life Cycle Inventory 

(LCI) of background processes can be obtained from databases, the foreground process inventory is 

usually obtained by data collection at the plant. An alternative to data collection is modelling and 

simulation – a very useful tool when predictive results or ecodesign proposals are sought (Méry et al., 

2013).  

Numerous LCA applications have been published for different WWTP configurations and a state of 

the art has been drawn up by Corominas et al., (2013a). Yoshida et al. (2013) have published an LCA 

review of sewage sludge management and the environmental performance of WWTPs with nutrient 

recovery. However, the studies reviewed, mostly based on site data collection for LCI, cannot be used 

for outlining general trends or for process optimization, because of the great number of parameters, 

possible scenarios and treatment objectives.  

Foley et al. (2010) used steady state simulation results obtained with Biowin
®
 for a systematic 

evaluation of the life cycle inventories of ten scenarios in 6 WWTP configurations. The results showed 

that the quantity of infrastructure materials needed and the consumption of chemicals increased when 

lower N and P concentrations were imposed in the effluent, as did energy consumption and GHG 

emissions in N-limiting effluent scenarios. Flores-Alsina et al. (2014) used dynamic simulation 

applied to an extended version of BSM2 (Benchmark Simulation Model N°2) to calculate the 

greenhouse gases (GHGs) emitted on site and the amounts of energy and chemicals produced, with the 

aim of evaluating control/operating strategies. These authors also showed the importance of 

considering both water and sludge lines when analysing GHG emissions and pointed out the 

considerable environmental impact of N2O emission. 

Rémy (2010) analysed eight impact categories when comparing alternative systems using pilot 

projects and literature data. The study showed that separation systems presented important benefits, 

although eutrophication and acidification were more increased by agricultural disposal of liquid 

fertilizers. The study also highlighted the importance of optimizing alternative treatment systems. 

Tillman et al. (1998) studied the impact of possible source separation systems in two regions in 

Sweden compared to existing conventional treatment systems. Their results showed that the urine 

separation scenario presented the lowest environmental impact (e.g. nitrogen emissions to surface 

water were reduced). Björklund et al. (2000) studied several treatment options and concluded that 

nutrient recycling could reduce the net impact, even though nutrient spreading could raise the 

acidification impact. They also highlighted the importance of ancillary systems for the environmental 

analysis.  
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To the best of our knowledge, none of these studies proposed an effective integration of process 

dynamic modelling and complete LCA. Such integration requires adapted modelling and evaluation 

tools, able to capture the influence of process parameters and dynamics in the impact calculation 

results. In this sense, some elaboration complexities and limitations involved are related to the fact 

that, as WWTPs are constantly subjected to flow and load perturbations, dynamic aspects should be 

taken into account in the aim of achieving relative robustness in operational conditions in any 

situation, ensuring stability and the correct operation of the plant. Also, as LCA is traditionally a non-

dynamic methodology, an interface between dynamic modelling results and inventory flows in LCA is 

required, together with the conversion of specific inventory items (in order to obtain compatible units 

for inventory flows). 

Lastly, considering the whole WWTP system means taking account not only of the benefits and 

drawbacks of coupled water and sludge lines but also of all background processes such as disposal of 

by-products, consumption of energy and chemicals, and transport. 

Until now, the benefit of alternative wastewater management with urine separation has been estimated 

by a few studies with emphasis on the agricultural utilization of urine. However, a urine separation 

scenario has never been evaluated through whole plant modelling coupled with urine treatment (such 

as struvite precipitation and nitritation/deammonification with Anammoxidans bacteria) by a DM-LCA 

analysis. 

So, the goal of the present study is to obtain reliable, predictive LCA results (mutually interconnected 

with the process parameters and dynamics) for reference and alternative scenarios in WWTPs. The 

alternative scenarios consider urine source-separation followed by urine treatment, and enhanced 

precipitation in the primary clarifier. This study also aims to identify possible benefits and drawbacks 

of alternative systems so that they can be further optimized as conventional systems have already 

been. To achieve this, a DM-LCA framework was developed for the predictive evaluation of global 

performances, coupling dynamic simulation results and environmental evaluation. 

 

II.2. Materials and methods 

 

II.2.1. The integrated DM-LCA methodology 

 

As mentioned above, the integration of the dynamic modelling approach and LCA tools is a 

prerequisite when trying to analyse the total environmental footprint of a WWTP system. 
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The DM-LCA approach developed here used three different platforms, interconnected as shown in 

Figure II.1. WWTP scenarios were simulated with BioWin
® 

v4.0.0.976, a Windows-based wastewater 

treatment process simulator that includes biological, chemical, and physical processes (Envirosim, 

2014). The interface between WWTP dynamic modelling and LCA calculations were performed 

through Python™ scripts. 

To achieve the study objectives, model parameters were fixed initially and dynamic influent data was 

provided to the simulator (Fig. 1 data flow 1). Dynamic simulations were also designed to reach 

effluent quality limits (e.g. 10 g.m
-3

 of total N, 1 g.m
-3

 of total P, 35 g.m
-3

 of total suspended solids, 

100 g.m
-3

 of total COD and 4 g.m
-3

 of ammonium ion). As a result of the dynamic simulation, process 

inventories (Fig. 1 data flow 2) were generated with their own inputs and outputs. After the dynamic 

simulations, Python™ scripts (Fig. 1 data flow 3) integrated the results over the simulation time. All 

parameter values and examples of calculations can be found in the Supplementary Information 

document (SI, Section 1). 

The results were then converted to an Umberto
®
-compatible input file for foreground and background 

processes. Python™ scripts also performed complementary calculations, based on the literature (e.g. 

calculation of cogeneration and energy requirements) and adjusted assignments between the output 

flows resulting from the BioWin
®
 simulation and Umberto

®
 input flows (Fig. 1 data flows 4, 5, 6 and 

7). 

LCA calculations were then performed with Umberto
®
 (Fig. 1 data flow 8) using the Ecoinvent 

database (Fig. 1 data flows 9 and 12). This last step completed the LCI by adding the contribution of 

background processes to WWTP ones (inventory details in section 2.4.2), and calculated the LCI (Fig. 

1 data flow 10) then the environmental impacts (Fig. 1 data flow 11). Three main types of results were 

generated: effluent concentrations and quality violations (Fig. 1 data flow A), energy parameters and 

nutrient recovery (Fig. 1 data flow B), and environmental impact results (Fig. 1 data flow C). 
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Figure II.1. DM-LCA framework developed with connections between Dynamic Modelling, LCA and 

Python
TM

 interface 

 

II.2.2. Plant layout and scenarios 

 

The reference WWTP scenario considered in this study was the biological nutrient treatment plant 

performing both nitrogen and phosphorus removal. The plant layout (Figure II.2) under study was 

similar to that proposed in BSM2 (Jeppsson et al., 2006). The kinetic model was a general full plant 

model (BioWin
®
 ASDM - integrated activated sludge/anaerobic digestion model) coupling activated 

sludge processes and anaerobic digestion. A cogeneration unit based on the biogas produced was also 

considered to approach an energy self-sufficient system. 

The system was simulated with an influent characteristic file generated by Gernaey et al. (2011) (dry 

and rainy periods were included). More details about considered influent can be found in SI (Section 

7). Effluent and ambient temperature were modelled as proposed by the same authors using sinusoidal 

waves with characteristic bias, amplitude, frequency and phase for daily and seasonal aspects 

(Detailed correlations can be found in Section 4). 
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Figure II.2. Plant configuration used in this study. 

Modifications due to urine source separation and enhanced primary clarification are shown in grey 

boxes. Solid lines: liquid and solid flows, dashed lines: energy flows, dotted lines: gas flows) 

 

The WWTP is feed with a flow QI. The treatment comprised a pre-treatment (PT) unit for grit removal 

followed by a primary treatment unit (PRIM: volume = 900 m
3
, height = 3 m, ηremoval = 50-80%), 2 

anoxic tanks (ANOX1: 2 successive tanks of 1500 m
3
 volume each) and 3 aerobic tanks (AER1: 3 

successive tanks of 3000 m
3
 each, dissolved oxygen controlled at 1.5-2.0-0.5gO2.m

-3
). A post 

denitrification zone (ANOX2: volume = 3000 m
3
, AER2: volume = 500 m

3
, dissolved oxygen 

controlled at 1gO2.m
-3 

to release nitrogen bubbles) was also added to achieve acceptable effluent 

limits. Nitrate was recycled from the aerobic to the anoxic zone (QINT: 100-300% of QI to achieve 

denitrification in the first zone without external COD). The sludge was separated in a secondary 

clarifier (SEC: volume = 6000 m
3
 height = 4 m), which was also partly a wastage flow (QW: 300-400 

m
3
.d

-1
) redirected to a thickener (THK: ηremoval = 98%), and partly recycled in the anoxic zone (QEXT: 

100% of QI). The primary clarifier and thickener underflows were redirected to an anaerobic digester 

(AD: cylindrical tank with conical floor, total volume = 3500 m
3
, liquid volume = 3400 m

3
; 

temperature = 35°C) after being heated in heat exchangers (HE1 and HE2). Finally, biogas from 

anaerobic digestion was used in a cogeneration unit for electricity and heat production (COGEN: 

ηelectrical = 35%; ηheating = 48.5%). The inlet flows of external carbon (QCARBON: methanol) and coagulant 
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(QMETAL: iron chloride) were also dynamic and followed a constant daily profile. For the alternative 

scenarios, the flowsheet also comprised a struvite precipitation tank (PPTSTRUV: volume = 5 m
3
), a 

nitritation tank (NITRITATION: volume = 500 m
3
; dissolved oxygen controlled at 1.0 gO2.m

-3
) and an 

anaerobic deammonification tank (ANAMMOX: volume = 1500 m
3
) with external alkalinity input. 

Finally, a bypass (QBYPASS) was added in case of input flows higher than 60000 m
3
.d

-1
. 

The evaluation period was extended (364 days) to take seasonal variations and the slow dynamics of 

anaerobic digestion processes into account (Jeppsson et al., 2006). It is important to consider dynamic 

influents when modelling WWTPs as they can reproduce the real inputs and their effects in effluent 

and sludge characteristics. The initial conditions for dynamic simulations were set after a steady state 

simulation. 

For each scenario, operational parameters were adjusted in order to comply with the legal discharge 

requirements as followed: dosage of chemicals (iron, methanol) was imposed (in a steady state 

simulation) such that N and P in effluent were below the accepted limit. The set-points for dissolved 

oxygen in reactors were unchanged in all scenarios. Consequently the calculated air flow rate 

automatically adapted to the oxygen needs and organic load. 

Six scenarios were compared in this study (Table II.1):  

1) Reference case (REF) used the conventional influent input and plant layout as described above. 

2) Enhanced primary clarification (EPC) was foreseen for the conventional influent input, the plant 

layout being slightly modified to add coagulant before primary clarification and thus achieve 

efficiencies of 80% of total suspended solids retention (Tchobanoglous et al., 2003). 

3) The Urine Source-Separation (USS) scenario was supplied with an adapted influent (with reduction 

in TKN, total P and total COD). Urine was treated by precipitation with magnesium oxide (MgO) to 

recover P (and a small proportion of N) while producing struvite. In that scenario (scenario 3), the N-

rich effluent resulting from precipitation returned to the WWTP to be treated. The residence time 

considered for urine in the storage tank was 14 days (after which time urea was considered to be fully 

hydrolysed). Urine separation efficiency was taken to be 50%. Also, during storage of urine, urea is 

hydrolysed to NH3 but losses of NH3 in pipes and storage are considered to be negligible.  

4) The scenario combining both alternative treatments (USS+EPC), which used USS and EPC 

operational conditions. 

5) Urine Source-Separation coupled with enhanced primary clarification and agricultural spreading 

(USS+EPC+AGRI) used the same parameters as the EPC and USS scenarios except for N-rich 

effluent, which was spread on farmland by a vacuum tanker. 
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6) Urine Source-Separation coupled with enhanced primary clarification and nitritation/ 

deammonification of nitrogen-rich and dewatering effluents (USS+EPC+ANA).  

 

Table II.1. Comparison of scenarios  

No Scenario name Collection type WWTP 

configuration 

Urine post-treatment 

1 REF Conventional 

sewer 

Conventional 

(AS+AD) 

- 

2 EPC Conventional 

sewer 

Enhanced primary 

clarification 

- 

3 USS Urine 

Separated 

Conventional 

(AS+AD) 

Struvite precipitation + Reinjection 

4 USS+EPC Urine 

Separated 

Enhanced primary 

clarification 

Struvite precipitation + Reinjection 

5 USS+EPC+AGRI Urine 

Separated 

Enhanced primary 

clarification 

Struvite precipitation + Agricultural 

application 

6 USS+EPC+ANA Urine 

Separated 

Enhanced primary 

clarification 

Struvite precipitation + 

Nitritation/deammonification 

 

II.2.3. LCA 

 

II.2.3.1. Goal & scope 

 

On the DM-LCA platform developed in this study, LCA was aimed at evaluating the environmental 

performances of different treatment scenarios, so as to compare them and identify hot spots.  

The boundaries of the system were taken to be as broad as possible (Figure II.3) and included process 

operation and infrastructure (when data were available). However, sewer construction, operation and 

maintenance were excluded as they were similar for all scenarios, and were not considered to be part 

of the treatment itself. 

The functional unit used was “1m
3
 of raw wastewater to be treated”. However, as different treatment 

types can deliver different efficiencies, limits for effluent discharge were also imposed as specified in 

section 2.1. 
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Boundaries expansion was considered to include the secondary function of fertilizers i.e. sludge, N-

rich effluent and struvite (all used in agriculture) and the production of an excess of electricity when 

appropriate.  

As sludge was not considered as a commercially valuable fertilizer, emissions connected with its 

spreading were allocated to the wastewater treatment process (Doka, 2009). In the case of struvite 

production from urine, even though it is a valuable product, emissions from its application were 

allocated to the wastewater treatment, as urine is a fraction of the wastewater and the chosen treatment 

must be responsible for all residues generated. For the N-rich effluent, as it was also a residue from the 

WWTP, the impacts and benefits of its agricultural application were considered. Avoidance of 

conventional fertilizers, i.e. triple super phosphate and ammonium nitrate (production and application) 

was taken into account when considering expanded boundaries, on the basis of the quantity of N and P 

that were bioavailable.  

Plant was considered to be based on west European region. For the scenarios where an excess of 

electricity was produced, a conventional European electricity production grid was taken as the avoided 

process. 

 

 

Figure II.3. Expanded system boundaries for LCA 

 

Nowadays, there are also rising concerns about residues of drugs and personal care products but, as 

there is a lack of precise information in this area, these substances were not considered in the treatment 

simulations, nor in the inventory. As described by Udert et al. (2006), the majority of these substances 



Chapter II. Coupling Dynamic Modelling and LCA 

37 

 

are present in urine and thus previous treatment may be necessary but, since available information is 

scarce, these treatments were not considered. 

 

II.2.3.2. Life cycle inventory 

 

The inventory took account of all flow types proposed by the reference study included in the 

Ecoinvent 2.2. database (Doka, 2009) and also some others judged sensible in our case, such as a 

cogeneration system with electricity and heat production, external carbon source addition and 

production, fertilizer production from urine and its utilization. 

For the direct gas emissions of carbon, it is important to emphasize that, in order to be consistent with 

IPCC (2006) guidelines, all organic carbon in sewage was considered to be biogenic. However, to 

achieve complete denitrification, it was necessary to use methanol (produced from natural gas) in 

some scenarios. Thus, there was a percentage of produced carbon dioxide (CO2) that originated from a 

fossil source. Emissions of N2O from WWTPs are considered to be 0.5% of ammonia nitrified flows 

in dynamic conditions (Czepiel et al., 1995). The volume and composition of offgas were calculated 

(from Biowin
®
 software) based on gas/liquid transfer models. Calculations were based on transfer 

coefficients and concentration gradients with atmosphere. For anoxic reactors the volume of gas 

emitted was mainly related to the dinitrogen produced by denitrification which was calculated with the  

transfer surface. Heavy metal concentrations are not taken into account by Biowin as they are 

considered to be inert for biological processes. Their input concentrations in WWTPs were therefore 

taken from Doka (2009) and Henze and Ledin (2001) and allocated to effluent and sludge in specific 

quantities, using their specific transfer coefficients proposed by the same authors. 

The amounts of chemicals consumed (FeCl3 for P precipitation (coagulant), methanol, MgO, NaOH) 

that would consequently need to be produced in background processes were calculated according to 

simulation demands. The total amount of FeCl3 required was calculated considering it to be used for 

both P precipitation and biogas purification (to avoid H2S formation). Grit removal in pre-treatment 

was also included in LCA, considering 31g of grit to be present in 1 m
3
 of raw sewage (50% as 

plastics and 50% as paper to be disposed of in a municipal waste incinerator; Doka, 2009). 

The electricity consumption was calculated by taking the sum of all electricity requirements (aeration 

of AER and NITRITATION tanks and THK, mechanical mixing of ANOX, ANAMMOX and AD 

tanks, pumping of main lines - influent input, dosing of chemicals, sludge outputs, recirculation lines, 

and effluent output - scrapping and dewatering unit) and subtracting the electricity produced in the 

cogeneration unit. Electricity that was produced was consumed by the WWTP itself and, when more 
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electricity was produced than consumed, it was considered to be injected into the network and the 

avoidance of electricity production was calculated. Heat production was calculated in a similar manner 

to electricity and it was used to heat sludge to be digested and to compensate for heat losses by AD 

walls. Process sludge was firstly preheated in countercurrent flow against digested sludge and the heat 

transfer was complemented by heat generated in the cogeneration unit (HE2). Details on the energy 

balance are given in SI Section 3. 

Transports were based on Doka (2009) and were considered for grits collected (10 km by lorry), 

sludge to be disposed of (20 km by lorry), chemicals used (600 km by train and 50 km by lorry) and 

conventional fertilizers in extended boundaries (900 km by barge for N fertilizers, 400 km for P 

fertilizers, 100 km by lorry and 100 km by train). Transport of urine from houses to the WWTP (10 

km by lorry) and struvite to the spreading site (20 km by lorry) were also considered. 

Impacts of the agricultural application of sludge, struvite and classical fertilizers (from system 

expansion) took account of N gas-emissions in the form of NH4, N2O and NOx, P emissions to surface 

and ground water, and heavy metals to agricultural soil. The process of spreading sludge and N-rich 

effluent was considered by including a slurry spreading vacuum tank module and by a generic 

fertilizing process for other fertilizers and struvite. Detailed information about spreading is given in SI 

Section 5. In these calculations, a sludge bioavailability factor of 70% for P and 40% for N was 

applied (as recommended by Lundin et al., 2004). For the conventional fertilizers, struvite and N-rich 

effluent, 100% of N and P were considered to be bioavailable. 

WWTP basic infrastructure (comprising a water line and a sludge line, see figure II.3) was included 

using a class 2 capacity data set from Ecoinvent (which includes dismantling). An annual sewage 

volume of approximately 1.4x10
7
 m

3
 was considered, and the plant lifetime was taken as 30 years. The 

basic infrastructure was the same for all scenarios and no modification of the size was considered (e.g. 

variation of reactor volumes). In scenarios with urine separation, urine flow was collected in storage 

tanks (fibreglass tanks) and later transported by truck to the treatment plant (no infrastructure changes 

were foreseen for the transportation of other flows). Struvite and nitritation/ANAMMOX 

infrastructure was not considered as tank volumes represented only a minor fraction of the WWTP. 

The cogeneration unit was considered to have separate infrastructure (dataset from Ecoinvent) from 

the rest of the WWTP, which was calculated as a function of biogas input. 

All inventory results are presented in SI Section 2 along with the Ecoinvent reference of each flow. 
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II.2.3.3. LCIA 

 

The environmental impacts were calculated in Umberto
®
 v5.6 software using the LCA Ecoinvent 

database v2.2 and ReCiPe 2008 (Goedkoop et al., 2009) with endpoint (H,A) and midpoint (H) as in 

the LCIA method. 

 

II.3. Results and discussion 

 

II.3.1. Reference scenario  

 

The simulation results obtained for the reference scenario were compared with available data from the 

literature (Table II.2), collected from both measurements on site and calculation approaches.  

Energy requirements were similar to those reported in the literature, especially considering the 

reference LCA study in Ecoinvent. Biogas production was also in accordance with reference studies 

(Table II.2). Other parameters are difficult to compare given the variability of output effluent quality, 

process configuration and influent composition found in literature. 

In terms of performance, the process was able to respect the limits (Section 2.1) on average. A number 

of violation days were observed during load peaks due to rain events, but these days corresponded to 

less than 9% of the simulation period for the reference scenario and less than 3% for other scenarios 

(Table II.3). 

The LCA results were compared to literature studies. Although the WWTP configurations were not 

exactly identical, environmental impacts were expected to show similar trends. Considering the 

Ecoinvent process for WWTP (“treatment, sewage, to wastewater treatment, class 2, CH, [m
3
]”), 

infrastructure impacts were shown to make a contribution of approximately 30% to climate change, 

fossil fuel depletion and human toxicity. Ortiz et al. (2007) reported that approximately 43% of total 

impacts could be traced to the infrastructure for a conventional activated sludge plant. 

Inventory for directly emitted substances can be found in SI (Section 2 – Effluent discharge, operation 

emissions and post-emissions). Considering the impacts generated by the direct emissions, 

comparisons with the Ecoinvent process (details in SI Section 7 Table II.2) presented similar results. 

Yoshida et al. (2014) also obtained a contribution of approximately 20% of direct gas emissions in the 

climate change impact category as well as a major contribution of effluent discharge to the marine 
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eutrophication impact category (data also presented by Renou et al. (2008)). Yoshida et al. (2014) also 

emphasize that background processes such as energy requirements and production from biogas have 

greater impacts than the foreground process (direct impacts) for all categories analysed, showing the 

importance of data collection. Finally, this study also agrees with previous ones that showed 

environmental burdens with the use of sludge in agricultural soil due to the presence of heavy metals 

(Foley et al. (2010); Lundin et al. (2004)), responsible for human toxicity impact. 

 

Table II.2. Comparison between this study and the literature for BNR processes 

Parameter Unit Ecoinvent 

2.2 
1
 

Tchobanoglous 

(2003) 
2
 

Corominas et 

al. (2013b) 
2
 

This study 

(Dynamic 

REF) 

Electricity 

consumed by the 

WWTP 

kWh.m
-3

 

sewage 

0.28 0.39 0.18 – 0.24 0.31 

Biogas produced Nm
3
.m

-3
 

sewage 

0.068 0.053 0.069 – 0.076 0.058 

1 Results from site measurements 

2 Results obtained by calculation/simulation 

 

Globally, the results obtained for the reference scenario are in agreement with reported data, 

supporting the reliability of the DM-LCA approach and platform developed in this work. 

The effect of dynamic versus steady state conditions on the simulation results are shown in Table II.3. 

Important underestimations are embedded in the steady state: violations of water quality limits do not 

exist and EROI is overestimated by 15%. Total effluent N is also shown in Figure II.4, together with 

total endpoint impacts and midpoint impacts for marine eutrophication, which is underestimated by 

23% in the steady state. Results for all impact categories are shown in SI Section 6. The simulation 

results are strongly influenced by influent perturbations and the use of steady state results would lead 

to an underestimation of all impacts, which justifies the use of dynamic simulation in this study. These 

results also agree with those of Guo et al. (2012) where a large fluctuation of N2O emissions was 

observed between steady state and dynamic simulations (with steady state again being 

underestimated). N2O peaks are naturally observed during the daily nitrogen peaks in correlation with 

nitrification. 
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Figure II.4. Comparisons between steady state and dynamic simulations 

(A) Effluent total N; (B) Endpoint total impact; (C) Midpoint marine eutrophication impact 
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II.3.2. Results of alternative scenarios: nutrient recovery, efficiency and energy consumption 

 

Simulation results for alternative scenarios are shown in Table II.3. In comparison with the reference, 

alternative scenarios had a positive effect on the ability of the Activated Sludge Process (ASP) to 

match the nitrogen and phosphorus removal objectives. Enhanced primary clarification allowed the 

organic load entering into the ASP to be reduced, which reduced the oxygen needs and slightly 

facilitated the nitrification (lowering ammonia). On the other hand a little more methanol was 

necessary to maintain the denitrification efficiency. Urine separation reduced both phosphate and 

ammonia in the influent. As the P fraction from urine was crystallized into struvite, the FeCl3 needs 

were minimized in the USS scenario. In case of N removal from urine by either agricultural spreading 

or a deammonification process, the oxygen and methanol needs were also significantly reduced 

(scenarios USS+EPC+AGRI and USS+EPC+ANA). 

Stability in effluent quality is also important when considering the long-term running of a WWTP. 

Regarding N limit violation, all alternative scenarios presented better results than the REF scenario. 

For USS+EPC+ANA, nitrogen removal was more stable due to less N entering WWTP (and lower 

ammonia peak load). However, slightly higher average nitrogen concentration was noticed. 

Concerning P limit violations, scenarios without enhanced primary clarification presented problems in 

stability since EPC allows direct removal of P from the water line (redirected to sludge). Total 

suspended solids and ammonia violations were also fewer in all alternative scenarios than in REF. 

COD results were not strongly influenced and were always within the regulation limits. 
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Concerning energy, scenarios with enhanced primary clarification produced more energy by 

cogeneration. Urine source-separation helped to decrease energy consumption at plants, thus giving a 

positive energy balance in coupled scenarios (represented by EROI values above 1). This made 

scenarios USS+EPC+AGRI and USS+EPC+ANA the most interesting from the energy balance 

standpoint (with EROIs of 1.19 and 1.10 respectively). Total energy consumption over the life cycle of 

the plant was estimated through Cumulative Energy Demand (CED) indicator. The main energy 

resources used by the life cycle system are fossil and nuclear ones (results are presented in SI Section 

6.3). EROILC (defined as the electricity produced at plant divided by CED) of the six scenarios 

presented the same profile as EROI. 

Regarding the energy consumption, aeration was the most important requirement, varying between 

40% (in USS+EPC+ANA) and 55% (in REF) of total consumption, which is in agreement with full-

scale studies (Tchobanoglous et al., 2003). The EPC and USS scenarios reduced aeration energy 

requirements by 26% in USS+EPC, 46% in USS+EPC+ANA and 48% in USS+EPC+AGRI, while the 

reduction in total electricity consumption varied from 20% to 33%. The second consumption 

requirement was represented by the mixing of different devices (figure II.5). 

Compared to the reference scenario, biogas production was increased by 27% with the implementation 

of enhanced primary clarification (USS+EPC) in the plant. 

Considering material recovery, USS scenarios allowed the source separation of valuable nutrients N 

and P. The greatest recovery of N was related to scenario USS+EPC+AGRI, where all remaining 

nitrogen, after struvite precipitation, could still be used in agriculture by means of direct liquid 

spreading. However, this method of N valorisation is still debatable because of its poor acceptance by 

the general public, the infrastructure modifications it requires, and high volatilization emissions 

depending on the spreading method. Regarding P recovery, USS+EPC and USS+EPC+AGRI 

scenarios showed the highest performance. In all scenarios, P was precipitated in sludge or as struvite, 

and losses of P only occurred with the effluent outputs. In this sense, USS+EPC and USS+EPC+AGRI 

scenarios not only presented the highest P recovery, but were also the most stable in P effluent, with 

respectively zero and one violation day during a period of one year. 

Finally, external carbon addition (methanol) could be avoided in the nitritation/Anammox scenario 

and decreased significantly in the AGRI scenario.  In both cases, less N had to be treated by activated 

sludge. Moreover, the dewatering effluent was also treated by nitritation/deammonification instead of 

the traditional treatment.  

FeCl3 consumption was strongly influenced by the coupled treatments, a smaller quantity being used 

in USS+EPC+ANA. However, the stability of P concentration in the effluent was ensured, with only 6 

days of violations in one year and a maximum daily average of P not far from 1 g.m
-3

. 
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Figure II.5. Energy distribution by consumption item 

 

II.3.3. Results of alternative scenarios: environmental impacts 

 

II.3.3.1. Endpoint impacts 

 

Figure II.6 synthesizes the ReCiPe endpoint results for all categories (ecosystem quality, human 

health, resources and total impacts, including the impacts generated and avoided) and as a percentage 

of impacts compared to REF (100%). Following these criteria, the performance of the scenarios 

decreases in the order USS+EPC+AGRI > USS+EPC+ANA > USS+EPC > EPC > USS > REF (i.e. 

REF has the highest impact score expressed in points). However, considering socio-cultural aspects 

and feasibility, USS+EPC+ANA and USS+EPC are the most conceivable as discussed previously. As 

shown in Figure II.6, implementation of USS or EPC strategies decreased all impact scores compared 

to the reference scenario. However, significant decreases in endpoint scores were only observed for 

the coupled scenarios, in particular when N-rich effluent was treated by nitritation/Anammox or 
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recycled in agriculture, achieving a reduction in resource depletion of 62.6%. Overall, the results agree 

with previous studies in the literature (Björklund et al., 2000; Rémy, 2010; Tillman et al., 1998) where 

separation systems also show a potential for more sustainable systems with less impact on the 

environment. Additionally, our study clearly shows that urine separation would bring the greatest 

advantages when a dedicated strategy was proposed for nitrogen removal or recovery, whereas only 

limited benefits would be obtained if only phosphorus was recovered. 

 

 

Figure II.6. Endpoint impacts for studied scenarios 

 

In the ecosystem quality group, the main contribution was observed for both generated and avoided 

impacts on climate change. Climate change was also the main contributor in the human health group. 

However, in this case, particulate matter formation and human toxicity also became significant. As 

previously discussed for the reference scenario, for alternative scenarios, direct emissions of heavy 

metals in water and soil (sludge spreading) were responsible for human toxicity. For resources, metal 

depletion was negligible relative to fossil fuel consumption. We emphasize that scenarios with USS 

allow P to be recovered in the form of struvite (which is 100% bioavailable for plants) and so avoid 

natural resource consumption. However, the P resource is not considered in ReCiPe, despite its 

importance and scarcity. Complementary evaluation with other LCIA methods gave similar results 

(see SI Section 6).  
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II.3.3.2. Midpoint results 

 

The analysis results for contributions to climate change, freshwater and marine eutrophication, and 

fossil fuel depletion are discussed below, since WWTPs are known to affect these categories (Figures 

II.7-II.10). Results for other categories are given in SI Section 6. 

 

 

Figure II.7.  Contribution analysis for climate change (GWP100) using ReCiPe Midpoint (H) 

 

Considering the midpoint analysis of climate change, direct emissions decreased strongly with 

alternative scenarios because the emissions of N2O decrease when less N enters WWTP to be 

conventionally nitrified and denitrified. For nitritation/Anammox scenarios, all emitted CO2 was 

biogenic as no methanol was added (cogeneration emissions were also not significant as CO2 is 

biogenic). Details of WWTP gas emissions for each substance are given in Figure II.8. N2O was the 

main contributor for all scenarios, emphasizing the importance of decreasing its emission with 
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alternative strategies. The infrastructure still made the highest contribution to global warming potential 

(GWP) in all scenarios. Spreading of by-products (sludge, struvite and N-rich effluent) were also 

responsible for a large fraction of GWP, especially because of N2O post spreading and CO2 emitted in 

the spreading process itself. Finally, GWP due to electricity consumption was also noticeable in the 

scenarios that were not self-sufficient. Considerable avoidance of conventional electricity production 

is to be noted in USS+EPC+AGRI and USS+EPC+ANA (on negative axis). 

 

 

Figure II.8. Contribution of each species to greenhouse gases emitted 
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Figure II.9.  Contribution analysis for marine (A) and freshwater (B) eutrophication using ReCiPe 

Midpoint (H) 
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Freshwater eutrophication (linked only to P emissions in ReCiPe) depended mainly on the direct 

emissions of phosphorus, which varied slightly for the different scenarios. All alternative scenarios 

had a lower impact than the reference because the amounts of P discharged were lower. Scenarios 

containing enhanced primary clarification presented the most efficient phosphorus removal (effluent P 

concentration was also more stable in these scenarios). Also, there was a remarkable avoidance of 

freshwater eutrophication linked to P fertilizer production. Emissions in sludge and struvite spreading 

were linked to phosphate leaching to ground water and the run-off of P to surface water. (For details, 

see SI Section 5.) For marine eutrophication (for which only N emissions are considered in ReCiPe), 

direct emissions were the most impacting contribution, as was expected a priori.  

For fossil fuel depletion (reduction of resources containing hydrocarbons), infrastructure and methanol 

production were the biggest contributors, leading to low impacts for USS+EPC+ANA (which did not 

use external carbon addition) and USS+EPC+AGRI (where a lower flow of methanol was used). 

Large impacts were also linked to energy production by the supply mix for non-self-sufficient 

scenarios and coagulant production. Marked impacts were also avoided when all N was recovered for 

agriculture (USS+EPC+AGRI). 

Finally, regarding particulate matter formation, sludge spreading showed large impacts in all scenarios 

(due to NH3 volatilization). However, the impacts of N-rich spreading were compensated by the 

amount of conventional fertilizer spreading avoided. The same profile was also observed for 

photochemical oxidant formation and terrestrial acidification. However, unlike the available literature, 

this study did not show increases in acidification potential due to urine separation as urine was 

incorporated directly into the soil and low NH3 emissions were expected (Rodhe et al., 2004). Impacts 

of ionizing radiation were much influenced by FeCl3 production and electricity provision by the 

conventional European mix, so all scenarios containing EPC were less impacting for this category. 

Natural land transformation impacts were strongly influenced by avoidance of conventional N 

fertilizers (production), which gave the USS+EPC+AGRI scenario a low score (results can be found in 

SI Section 6).  

The results presented above clearly show the importance of nitrogen recovery on the overall 

performance. This supports the idea that recent research on alternative economical solutions for N 

recovery, such as nitrification followed by distillation, electrolysis of urine and low-cost precipitation 

of struvite, proposed by several authors (Etter et al., 2011; Hug et al., 2013; Maurer et al., 2006; Udert 

and Wächter, 2012) should be included in future evaluations. Furthermore, coupled scenarios would 

also lead to a more sustainable design for WWTPs and the opportunity to recover nitrogen as well as 

phosphorus in sewage in order to avoid conventional fertilizer production and N2O emissions when N 

is treated in the plant. 
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Figure II.10. Contribution analysis for fossil fuel depletion using ReCiPe Midpoint (H) 

 

II.4. Conclusion 

 

Decision making when evaluating WWTP scenarios is a difficult task as there are several 

interconnected parameters and variables that influence results at different levels. Environmental 

assessment would help in the ecodesign of these processes when low impacts are sought for specific 

impact categories. 

In this context, a modelling platform was developed by combining dynamic modelling of wastewater 

treatment and LCA, in the aim of evaluating the environmental performances of different treatment 

scenarios. In this work, the approach was applied to six WWTP scenarios. 

A major original aspect of this study was the use of dynamic simulations coupled with LCA 

calculations to build up the system’s life cycle inventory and provide complete impact evaluations, 

which gave more realistic information than steady state assessments when the system was perturbed. 
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Alternative scenarios not so far evaluated by LCA, such as nitritation/deammonification were also 

studied.  

Concerning scenario analysis, urine source-separation (USS) was shown to have a positive effect on 

the effluent quality and to decrease the energy consumption in WWTP. On the other hand, enhanced 

primary clarification (EPC) led to important energy savings, as more energy was recovered in the 

sludge line and also less energy was consumed in the WWTP. When these two options are combined, 

WWTP can achieve a positive energy balance while respecting  effluent quality limits more easily. For 

urine treatments after source-separation, agricultural spreading proved to be the scenario with the least 

environmental impact for most categories. However, the socio-cultural acceptability and feasibility of 

this type of scenario should be further analysed, including different technical methods for nitrogen 

recovery. Among the different scenarios, nitritation coupled with Anammox for nitrogen removal from 

urine proved to be an interesting option from the environmental, energy and feasibility points of view. 

Finally, contribution analysis identified hot spots needing further optimization, such as infrastructure 

(which could be optimized in alternative treatments with, for instance, decrease in the anoxic zone or 

even skipping the post-denitrification zone), N2O direct emissions, which could be decreased by 

diminishing N input in WWTPs, and heavy metals in sludge, which could lead to toxicity problems 

(and possible avoidance of these problems when using source-separated flow products – such as 

struvite and N-rich effluents - in agricultural soil). 
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“Show me your wastewater and I will tell you who you are” (Henze and Comeau, 2003) 

 

Nowadays, one might cite an important quantity of problems linked to environmental and human 

health that comes directly from water and wastewater management (or from the lack of it). It is 

essential thus to tackle the problem from two different points of view: Firstly, it is important to 

understand and work on the immediate consequences; however, having a view on the long term is 

essential as rapid global changes are taking place and communities will have to plan wastewater 

management against future scenarios. Moreover, solutions for smart wastewater management must be 

socially and culturally appropriate, as well as economically and environmentally viable into the future. 

Also, population education is essential when considering both wastewater management solutions and 

the reduction of wastewater produced (volumes and fate). Further, it is necessary to change 

populations mind in the sense of considering separation systems as not only provisional alternatives 

(Corcoran et al., 2010). 

In this sense and when considering smarter and more sustainable ways of managing wastewater, urine 

source separation appears as one of the most promising alternatives. The interest is mainly focused on 

the important concentration of nutrients which are present in urine. These nutrients might be used to 

close the nitrogen and phosphorus cycles: from food production which needs fertilizers, to the human 

waste production. According to Larsen and Gujer (1996), urine represents a contribution of 88% of 

total nitrogen and 57% of total phosphorus in a small volume. Also, a wide range of processes for 

urine treatment are available nowadays (Maurer et al., 2006) including stabilisation (e.g.: by 

acidification or nitrification), phosphorus recovery (e.g.: by struvite formation), nitrogen recovery 

(e.g.: by ammonia stripping) and nutrient removal (e.g.: by anammox). 

The recovery of nutrients, especially nitrogen and phosphorus, might be thus envisaged if yellow 

water is recovered separately and non-diluted. However, nutrient recovery presents a difference when 

considering nitrogen and phosphorus. Nitrogen is abundant in the atmosphere even if, to be obtained, 

N fertilizers require energy intense processes. Further, given the human interferences in nitrogen 

cycle, several environmental impacts might occur such as eutrophication, effects on human health and 

consequences from greenhouse gas emissions. However, when considering phosphorus, artificial 

fertilisers are obtained by mined phosphorus and the lifetime of economic reserves of phosphate rock 

is nowadays estimated to deplete between the next 30 to 370 years (Balkema, 2003). 

Regarding experiences on urine source separation, several pilot studies or even ecological villages 

have been implemented nowadays. However, not many modelling and simulation studies have been 

found on the literature considering urine source separation. To the authors’ knowledge, it is mainly 

due to the fact that urine has a highly variable concentration and its generation is not constant as it 
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depends on human behaviour and thus it is difficult to dynamically characterize urine in a realistic 

way. Accordingly, the mixture of the other streams from households will change as well as the influent 

in the WWTP. Therefore, it is essential to have a tool to generate realistic, dynamic and standardized 

urine stream as well as the other wastewater streams. 

As discussed in a review proposed by Martin and Vanrolleghem (2014) on completion, analysis and 

generation of influents, several approaches are nowadays available to tackle the lack of information on 

influents. However, there is still an important need in implementing more realistic and case study 

influent generators in order to consequently obtain more predictive plant simulation results. 

Accordingly, the objective of this study is to propose a flexible, dynamic and phenomenological 

influent generator to consider both yellow water and wastewater streams. This chapter is in 

preparation for submission in partnership with the Eawag institute in order to ensure realistic aspects 

in urine generation. The influent generator hereafter described was adapted from the dynamic and 

phenomenological influent generator from Gernaey et al. (2011). Urine and wastewater composition 

data was obtained from a literature compilation to respect real data; however, the model is flexible and 

allows the simulation of specific case studies (when the user wants to consider, for instance, other 

source separation systems, other generation dynamics or other geographical/catchment conditions) as 

well as the utilization of generated influents in different modelling platforms (ASM family models and 

wide plant model results are showed). 

  



Chapter III. Influent Generator 

59 

 

Entitled of the paper: A dynamic influent generator to account for 

alternative wastewater management: the case of urine source separation 

 

Ana Barbara Bisinella de Faria
a
, Mathilde Besson

a
, Aras Ahmadi

a
, Kai Markus Udert

b
, Mathieu 

Spérandio
a
 

a
LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France 

b
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland 

 

Abstract 

The simulation of wastewater treatment plants allows obtaining predictive results when one needs to 

understand, evaluate, optimize or design a plant. However, one of the bottlenecks of the simulation 

feasibility is to obtain reliable and dynamic influent data. This difficulty is even more important when 

alternative scenarios are considered, such as source separated streams. The present paper offers an 

influent generator for the case where urine is separated at source and at a user-specified level of 

retention. The proposed tool contains several blocks to include different contribution and, due to its 

flexibility, allows the easily modification of parameters by the user in order to fit other case studies. 

The tool showed to be able to generate dynamic, long-term and predictive date for both urine and 

wastewater streams. Also, the extensive set of state variables allowed the generation of influents for 

different modelling platforms. 

 

Keywords: Urine source-separation; Influent generator; Phenomenological model; Dynamic influent 

 

III.1. Introduction 

 

Wastewater treatment plants (WWTPs) are a complex combination of biological, chemical and 

physical processes that shall be able to removal pollutants from wastewaters. Given the complexity of 

the system and the interaction between a large set of parameters, modelling and simulation allows, 

together with the understanding of involved processes, the performance evaluation and test of control 

strategies, the design verification of new treatment approaches and the optimization. However, a 

predictive and robust model might offer not realistic results if input data is not complete or if it is 

inaccurate. 
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In this sense, one of the limitations when considering the use of modelling is the scarce datasets 

available as it is a costly and a laborious task to obtain experimental data for long-term dynamic 

influent entering WWTPs (Martin and Vanrolleghem, 2014; Rieger et al., 2010). This difficulty is 

mostly present when measuring only flowrate is not enough: if pollutants data are required as 

dynamic, reliable and long-term inputs, on-line measurements might be necessary for instance 

(Gernaey et al., 2011). Therefore, if an influent generator is available and able to generate predictive 

data, hypothetical situations such as temperature changes, population growth in a catchment area, 

storm events, unconventional wastewater management options and so forth might be easily and 

reliably simulated. 

Further, wastewater generation is by nature, a dynamic problem and thus WWTPs will be influenced 

by all daily, weekly and seasonally perturbations. Therefore, when considering simulation of dynamic 

WWTPs, there is an increasing need in reliability of influent data as considering steady state influent 

may lead to underestimated results considering real world effluent concentration and chemicals and 

energy consumption in plants. 

Several model-based approaches for dynamic influent generation are available in the literature. An 

extensive review is proposed by Martin and Vanrolleghem (2014) and three main situations where 

influent shall be generated were identified by the authors: i) the available dataset is not complete and 

should be better characterized with expected wastewater quality and quantities; ii) one already has the 

main characteristics of the influent but efforts should be made in order to characterize flows into state 

variables (such as ASM family components); iii) the dataset has to be characterized considering 

uncertainty in order to be used later in the generation of other derived datasets. 

To respond to the first situation, three approaches are proposed. The first one consists in the 

construction of databases based on experimental data that is used to complete or generate similar 

influent pollutant loads and flows. The second approach consists of using harmonic functions to 

describe the dynamic profile of wastewater streams. Following this idea, Langergraber et al. (2008) 

used a 2
nd

 order Fourier series to propose realistic pattern for flow and composite variables (COD, 

TKN and TP) based on the sum of the main wastewater streams (infiltration water, urine with flush 

water and domestic wastewater without urine). The influent generated was compared to measured data 

and parameter set for model tuning was provided. 

The third approach is based on phenomenological modelling and, as showed by Martin and 

Vanrolleghem (2014), is a promising research area as they can integrate knowledge about generating 

mechanisms and they should be improved in order to take into account both catchment area 

information and stochastic influence on inputs. Gernaey et al. (2011) proposed a dynamic influent 
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generator considering such an approach and taking into account all flow rate generation model, 

pollutants generation model, temperature generation model, first flush and transport in sewer model.  

Following the actual switch from the conventional WWTPs (where pollutants are only treated) to 

recovery facilities (where wastewater is regarded as a resource) and from the centralized management 

and treatment option to the decentralized one, influent generation tools has also to be adapted in order 

to consider, for instance, source separation in households, vacuum toilets, usage of rainwater, etc. 

Between the non-conventional wastewater management strategies that are nowadays gaining more 

interest as they may lead to a more sustainable approach one can cite urine source separation. The high 

interest is due to urine’s high concentration in nitrogen and phosphorus. In average, 80% of nitrogen 

and 50% of phosphorus entering domestic WWTPs come from urine (Larsen and Gujer, 1996). When 

not separated at the source, these pollutants need to be treated in the plant and thus are responsible for 

important consumption of energy (for nitrification) and chemicals (coagulants for chemical 

precipitation of phosphorus and COD addition for denitrification). 

The effect of combining urine separation and waste design was presented by Rauch et al. (2003). 

Authors provided a stochastic model that was applied to a virtual case study in order to understand the 

gains on WWTP load with peak shaving and in the aquatic environment with the reduction of 

combined sewer overflow. As presented by the authors, an interesting approach when urine is 

separated and stored is to release it into the sewer following an integrated strategy in order to adjust 

the pollutants input into the WWTP. The advantages of the application of this strategy would be not 

only the control of nitrogen level into the plant but also the avoidance of sewer overflow with urine 

which might have a harmful effect on water bodies. Also, as WWTPs are usually designed to deal with 

ammonia peak loads, shaving peaks would increase nitrogen treatment stability of existing plant and 

allow the reduction of new designed plants. 

Stored urine might also be treated and several options are available on literature. Maurer et al. (2006) 

proposed a review on these methods showing that there are mainly purposes in treating urine: 

hygienisation, volume reduction, stabilization, recovery of N and P, nutrient removal and treatment of 

micropollutants. 

However, when evaluating any of these treatment options it is necessary to well characterize this flow 

in order to correctly assess benefits and drawbacks of the innovative technology. Once again, one 

might consider data collection; however, important sources of noise and variation are present in the 

system varying from source separated toilet operation and efficiency to dietary of toilet users and thus 

recovery of these data can contain several assumptive conditions. 
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Moreover, urine is a complex fluid composed of several substances presenting a high variance and 

several spontaneous processes might occur during storage and transport. During storage, all urea is 

degraded and almost all nitrogen is available as ammonia, the pH rapidly increases, almost all calcium 

and magnesium are precipitated and there is an important concentration of biodegradable organic in 

urine that can be used by microorganisms during storage, even if most of them will not resist to 

storage (Udert et al., 2006). 

The present paper aims to propose a dynamic influent generator (based on Gernaey et al., 2005; 2011) 

that takes into account urine source separation in households with a urine retention percentage that is 

easily modifiable by the user. The model generation allows obtaining two different flows: (i) the urine 

dynamically produced in households and (ii) the mainstream influent for WWTPs that is directly 

influenced by urine separation according to a more or less important urine retention. The proposed 

influent generator also aims to obtain not only composite variables, but also a detailed characterization 

of the flows into several state variables. 

The remaining of this paper will be organized as follows: First, each model block (flowrate and 

pollutants) will be presented with its inputs and hypothesis as well as the fractionation model adopted. 

Following, results covering flowrate and variables for a fixed retention percentage (50%) will be 

presented and discussed. Latter, considered dynamics of the two obtained streams as well as noise 

addition will be showed and discussed. Finally, two types of comparisons are provided: (i) the case of 

using the generated dynamic influent data to fulfil a simulator which uses a plant-wide model versus 

the use of an interface approach model; (ii) the simulation of different urine retention percentages 

(from no retention to 100% retention). 

 

III.2. General overview 

 

As discussed previously, this study is based on the original phenomenological influent generator from 

Gernaey et al. (1005; 2011). This influent generator has the advantage of being a flexible tool that can 

be easily modified and that it is implemented as open-source freely available. The tool was developed 

using the Matlab
®
 7.0 Simulink toolbox and model blocks that has not been changed in this modified 

version will not be detailed here. Moreover, the proposed modifications in the code keeps the 

flexibility idea originally proposed in order to fit other case studies. 

Figure III.1 presents a general overview of the modified influent generator. Four main streams have to 

be defined here: (i) TWW stream corresponds to the total wastewater stream (household and other 

contributors) without any urine separation; (ii) TUS stream consists of total urine produced by the 
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specified population (the same as a retention of 100% of non-diluted urine); (iii) US stream 

corresponds to the user-specified separated urine and diluted in the new specified flush; (iv) WW 

stream represents the influent entering the wastewater treatment plant (contribution from industry, 

rainfall, infiltration and the household) without the urine retained (previously specified). This last 

stream (WW) is basically created from the difference of a conventional total wastewater stream 

(TWW) that is well defined in the literature and the separated urine stream (US). 

As showed in figure III.1, the influent generator is structured in three main sections: The general 

settings (user input), the WW Generator and the US Generator. First, the user has to set the general 

parameters in order to fit his/her case study. Between those settings, the most important are the urine 

retention percentage and the size of the catchment. Other parameters (Old and new flushwater 

volumes, TWW and TUS composite variables and TWW and TUS fractionation) are pre-calibrated by 

the authors using the available literature and only have to be changed in very specific scenarios. 

The WW generation is composed of five main parts: (i) Flowrate generation in households (without 

retained part of urine), flowrate generation in industries, seasonal infiltration (due to changes in 

groundwater level during the year) and rain generation (block A in figure III.1); (ii) Pollutants 

generation in households (without retained part of urine) and industries (block C in figure III.1); (iii) 

WW influent fractionation into a complete set of state variables (comprising also temperature profile 

generation) (block E in figure III.1); (iv) Application of a first flush effect in sewer (surface runoff 

following a storm event) (block G in figure III.1)  and (v) Transport in sewers (responsible for 

smoothing concentration peaks depending on the size of the sewer) (block H in figure III.1). 

On the other hand, the US generation is composed of only three main parts: (i) Urine flowrate 

generation (block B in figure III.1); (ii) Urine pollutants generation (block D in figure III.1) and (iii) 

Urine fractionation into a complete set of state variables (block F in figure III.1). First flush and 

transport in sewer blocks are not present in urine generation section as it is considered to be stored 

after generation and transported by trucks. 
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Details of each block will be given in the subsections below together with its main hypothesis. Blocks 

after fractionation (first flush effect and sewer transport) will not be discussed as they were not 

modified from the original version. Temperature for urine generated was considered to be the same as 

for conventional influent generated as a relatively long period of storage (and transport to the WWTP) 

is proposed. Finally, in order to easily explain the calculations done by the influent generator, a case 

study will be applied as an example in this study with the following characteristics: Urine is retained at 

a percentage of 50% and the catchment size is of 80,000 person equivalent (PE) for domestic 

contribution and industry represents approximately the contribution of 20,000 PE without urine 

retention. However, as discussed previously, the flexibility of the generator is preserved by using 

specific user setting parameters. 

 

III.3. Flow generation 

 

Dynamics in flow generation considers all daily, weekly and yearly profiles. The chosen normalized 

profiles for flows generated in households are showed in figure III.2A for both wastewater and urine 

retained. This choice of using similar flowrate profiles for the US and WW is similar to the approach 

of Langergraber et al. (2008) that used a profile from a Fourier series for both domestic influent 

without urine and for the urine flow. 

As showed in figure III.2A, both US and WW profiles followed a similar profile with comparable 

maximum and minimum values. However, a slightly delay is present in WW stream compared to US 

as normally flow peaks for the non-urine flowrates will arrive after pollutants (and consequently after 

urine generation) in a household. It has also to be noticed that the peaks arrives by the human activity 

hours (morning peak by 7-8am and afternoon peak by 4-6pm). 

Considering weekly and holiday effects, those were considered to be the same for WW and US 

streams as they represent the “non-generation” of total wastewater in the household during these 

periods (reduction of 8% on Saturdays, 12% on Sundays and from 12-25% on holidays). 

The considered total flowrate (TWW) from households is 150 l.PE
-1

.d
-1

. The urine flowrate is 

considered to be 1.36 l.PE
-1

.d
-1

 according to a review on the published literature realized by authors 

(data not published). Moreover, in conventional toilets (without urine separation), the volume of water 

used per flush was considered to be of 5 l and of 0.15 l in urine diverting toilets per flush. Further, it is 

considered that each PE flushes toilet after urinating 5 times a day (STOWA, 2002). A summary of 
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input and calculated values for average flowrates are given in table III.1 with the proposed case study 

as example. 

Finally, as showed in figure III.1, the total flow entering the wastewater treatment plant is composed 

not only of the household and the industry contributions; rain and seasonal variation of groundwater 

level are also comprised. The total flowrate entering the WWTP (WW) is thus obtained by the sum of 

previously described contributors and urine flowrate is obtained directly from urine model block. In 

average, household flowrate is supposed to represent 62% of the total flowrate entering the WWTP.  

 

Table III.1. Input and calculated values for composite variables (case study of 50% urine retention) 

Variables Description Units 

Initialization Calculated values based on the 

specified retention of 50% 

TWW TUS WW US 

Q* Flowrate l.PE
-1

.d
-1

 150 1.36 136.82 1.055 

CODsol Soluble COD load gCOD.PE
-1

.d
-1

 42 10.4 36.8 5.2 

CODpart Particulate COD load gCOD.PE
-1

.d
-1

 78 0.78 77.61 0.39 

TKN Total Kjeldahl 

nitrogen load 

gN.PE
-1

.d
-1

 13.33 9.78 8.44 4.89 

SNH Ammonium load gN.PE
-1

.d
-1

 10 8.8 5.6 4.4 

TP Total phosphorus load gP.PE
-1

.d
-1

 2.22 0.74 1.85 0.37 

SPO4 Orthophosphate load gP.PE
-1

.d
-1

 1.2 0.7 0.85 0.35 

SNOx Nitrite and nitrate 

load 

gN.PE
-1

.d
-1

 - - - - 

* The flowrate for TUS comprises only pure urine (without flush water) while the other streams 

already include flush water (a bigger flowrate that is present in TWW and is thus subtracted in WW; a 

small one that is added for US). 
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Figure III.2. Profiles for US and WW streams. 

A) Daily flow rate profile; B) Daily ammonia mass flow profile 
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III.4. Pollutants generation 

 

III.4.1. General aspects 

 

When considering the urine source separation in households, the most reliable way to determine the 

resulting load of pollutants present in each stream is to consider the total quantity of pollutants 

produced per PE (including urine and other contributors) as the average (non-dynamic) value is well 

characterized in literature as well as the values for pure urine. Therefore, the generation of pollutants 

followed some main steps: First, composite variables were specified for the total wastewater (TWW 

stream) and for the total urine stream (TUS) considering the total load of pollutants contained in the 

produced urine (retention of 100%). Following, according to the specified urine retention, new loads 

(of composite variables) are calculated for the domestic wastewater without urine – WW - and for the 

urine retained – US (Figure III.1, blocks C and D). Finally, fractionation was applied to final streams 

(WW and US, Figure III.1, blocks E and F) considering the total well known ratios for the 

fractionation of TWW and TUS in the recalculation of the new fractionation. However, considering 

that urine is only diluted when retained at source, fractionation values of TUS and US are the same; 

the same assumption is not valid for TWW and WW. 

Finally, industry contribution is not extensively described as only slight modifications were done 

considering the original influent generator (pollutants are still calculated on a 20,000 PE basis; 

however it considers now the new values of pollutants per PE and profiles for phosphorus were also 

added). 

 

III.4.2. Composite variables 

 

The considered initial composite variables (soluble COD (CODsol), particulate COD (CODpart), 

TKN, Ammonium (SNHx), TP and Phosphate (SPO4)) are predefined in the generator from the 

literature being therefore adaptable for other case studies. 

Considering the total wastewater without any urine retention, TWW, it was decided to base all 

calculations on the load of total COD, which was fixed to 120 gCOD.PE
-1

.d
-1

. This value is variable 

considering geographical location and more or less ecological lifestyles; however, this value is in the 

proposed range of 25-200 (Henze and Comeau, 2003). Further, ratios that are well known in the 

literature (Pons et al., 2004; Tchobanoglous et al., 2004; Henze and Comeau, 2003) were applied: 
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Total nitrogen/Total phosphorus = 6, Total COD/Total nitrogen = 9 and consequently Total COD/Total 

phosphorus = 54. Furthermore, other ratios were defined such 35% of soluble COD from the total 

COD, 75% of ammonium nitrogen in TKN, 54% of soluble phosphate in total phosphorus and no 

presence of nitrite and nitrate. 

Accordingly, for a separation of 100% of urine, values were compiled from the literature and the 

model was fulfilled directly with loads per PE per day as, unlike TWW, TUS seemed to be less 

sensible to total loads than to ratios between variables. 

Latter, composite variables were calculated for the specified urine retention as described previously. A 

summary of input values as well as calculated ones for a 50% urine retention are given in table III.1. 

Considering dynamics, pollutants profile followed similar assumptions of flowrate profile variation. 

As the most important part of human pollutants generation are expected to happen more or less by the 

same time of morning and afternoon urine peaks, the same profile for WW and US in the generation of 

pollutants was applied. Accordingly, weekend effect and holyday effect were considered (reduction of 

12% on Saturdays, 16% on Sundays and from 12-25% on holidays). 

Figure III.2B shows the profile for ammonium flux profile. Dynamic profiles for other pollutants 

(composite variables) followed a similar profile and can be found in Supplementary Information. 

Finally, profiles for total phosphorus and phosphate (that are not originally used on ASM1 influent 

generator) were generated following the same profile of TKN and ammonium respectively. 

After all, it has also to be noticed that urine has the exactly profile for flowrate and ammonium flux 

(peaks are superposed). This choice is mainly linked to the fact that urine is well represented by 

ammonium flux and that, as it is a human pollutant stream, it is expected to have variable flows with a 

more constant concentration in pollutants. 

 

III.4.3. Fractionation into state variables 

 

Figure III.3 details the fractionation block which is fulfilled with composite variables and generate 

state variables. As discussed previously, the modified version of the influent generator considers an 

extensive list of state variables: in general, variables are considered to be divided into soluble (S), 

colloidal (C) and particulate (X); also, biodegradable (subscript B) and unbiodegradable (subscript U) 

conditions are distinguished. A complete list of considered state variables is given in table III.2 

together with its description, origin from composite variable and initialization values for the total 
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streams (TWW and TUS) and the specific urine retention case (50% retention – represented by WW 

and US) that will be discussed below.  

In this study it was chosen to use a refined fractionation in order to achieve flexibility between the 

several platforms and models available nowadays. Following, a complete list is provided by the end 

and, in the case of a simulation using simpler state variables (such as when using ASM family 

models), state variables only have to be regrouped by the user in function of the model variables. Also, 

as it can be noticed in Table III.2, ions are also taken into account into the fractionation. This is 

especially important when source separation is considered as urine can be treated by several 

physicochemical processes and adding ionic species might add a realistic aspect to the process 

modelling. 

The fractionation values for the total wastewater (TWW) and total urine (TUS) are illustrated in the 

Sankey graphics in figures III.4 (for COD), III.5 (for nitrogen) and III.6 (for phosphorus). For 

instance, starting from a total value of 100, variables are divided considering its chemical state 

(organic or mineral), physical state (soluble, colloidal or particulate) and biological state 

(biodegradable or inert). As previously discussed, fractionation values are stablished for total 

wastewater (TWW) and total urine (TUS) from the available literature and thus calculated for the two 

output streams (WW and US). 

For instance, considering the COD fractionation, the composite variables already considered total 

soluble and particulate COD. Accordingly, in order to start the fractionation, a total inert part was 

defined and a colloidal part. Following, for the particulate part, ratios were applied to XOHO, XE and 

XU. Thus, XB can be calculated by difference between the total particulate COD and the previously 

calculated particular species. Similarly, for the soluble and colloidal part, well defined ratios were 

applied to SVFA, SMEOL, CB and CU. Following, considering the total inert part in total COD previously 

described, SU was obtained by difference with XU and CU (previously calculated). Finally, SB is 

calculated by the different to the total soluble COD. 

Similar assumptions were done for nitrogen and phosphorus (SNU and SPU were obtained by difference 

of inert N and P; SNB and SPB by difference of total organic N and P respectively). 
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Table III.2. Considered initial values for total urine stream (TUS), separated urine stream (US), total 

wastewater without urine retention (TWW) and wastewater with urine retention (WW) 

Variable Description Unit TWW TUS 

50% urine 

retention 

WW US 

T
o

ta
l 

C
O

D
 

C
O

D
so

l SVFA Volatile fatty acids gCOD.m
-3

 32.8 4359 22.1 2810 

SB Readily biodegradable substrate gCOD.m
-3

 63.2 2630 59.2 1696 

SU Soluble unbiodegradable substrate gCOD.m
-3

 30.0 657.8 29.8 424.0 

 CB Colloidal biodegradable substrate gCOD.m
-3

 96.2 122.7 101.2 79.1 

C
O

D
p

a
rt

 

XB Particulate biodegradable substrate gCOD.m
-3

 288.0 368.7 302.9 237.7 

CU Colloidal unbiodegradable substrate gCOD.m
-3

 19.2 20.6 20.2 13.3 

XU Particulate unbiodegradable substrate gCOD.m
-3

 58.8 61.4 61.9 39.6 

XOHO Ordinary heterotrophs gCOD.m
-3

 11.9 - 12.5 - 

T
K

N
 

1
 SNHx Total ammonia gN.m

-3
 50.0 6471 34.2 4171 

O
rg

a
n

ic
 N

 

SNB Soluble biodegradable organic N gN.m
-3

 7.0 504.9 5.9 325.4 

CNB Colloidal biodegradable organic N gN.m
-3

 2.0 36.0 2.0 23.2 

XNB Particulate biodegradable organic N gN.m
-3

 6.0 107.9 6.1 69.5 

SNU Soluble unbiodegradable organic N gN.m
-3

 1.3 71.9 1.2 46.4 

CNU Colloidal unbiodegradable organic N gN.m
-3

 0.1 - 0.1 - 

XNU Particulate unbiodegradable organic N gN.m
-3

 0.2 - 0.2 - 

T
P

 

2
 SPO4 Orthophosphate gP.m

-3
 6.0 514.7 4.9 331.8 

O
rg

a
n

ic
 P

 

SPB Soluble biodegradable organic P gP.m
-3

 2.5 23.4 2.6 15.1 

CPB Colloidal biodegradable organic P gP.m
-3

 0.6 1.4 0.7 0.9 

XPB Particulate biodegradable organic P gP.m
-3

 1.9 4.1 2.0 2.6 

SPU Soluble unbiodegradable organic P gP.m
-3

 0.1 0.5 0.1 0.4 

CPU Colloidal unbiodegradable organic P gP.m
-3

 0.004 - 0.005 - 

XPU Particulate unbiodegradable organic P gP.m
-3

 0.01 - 0.01 - 

Io
n

ic
 s

p
ec

ie
s 

SCO2 Total inorganic carbon gCO2.m-3 210.0 1.016
E
+4 192.5 6548 

SCa Calcium gCa.m-3 47.5 168.2 49.7 108.4 

SMg Magnesium gMg.m-3 11.5 142.4 11.7 91.8 

SNa Sodium (strong cations) gNa.m-3 86.5 2536 84.0 1635 

SCl Chloride (strong anion) gCl.m-3 180.0 3656 179.5 2356 

1: Ammonium 

2: Soluble phosphate 

Variables having a zero value were not included in the table (Endogenous products, other biomasses, nitrate and 

nitrite) 
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In order to define the fractionation values (especially for urine), some hypothesis were made based on 

literature and are listed as follows: 

For urine 7% of the total COD is particulate (and colloidal) and thus 93% is considered to be soluble 

(Udert et al., 2013); 

57% of soluble COD in urine is considered as VFAs (Udert et al., 2013) as urine is considered to be 

stored; 

85% of COD in urine is considered to be easily biodegradable (Udert et al., 2006); An inert fraction of 

9% is considered; 

The ratio between particulate in colloidal and particulate is 75% and the hypothesis of 85% of 

biodegradable is applied to colloidal and particulate for both urine stream and wastewater. 

Ammonium in urine is considered to be 90% of total nitrogen which is in accordance with values 

proposed by Udert et al. (2006) and STOWA (2002); 

Soluble phosphate is considered to be 95% of total phosphorus in urine (Udert et al., 2006) ; 

A fraction of 80% of soluble was applied to organic nitrogen and phosphorus for the urine stream; 

Colloidal and particulate inert nitrogen and phosphorus are negligible in urine and thus not considered; 

Even if stored urine is considered, precipitation was not included as it will be considered separately 

with its corresponding kinetics in a simulator when using the influent generated. 

Regarding ionic variables, total inorganic carbon, calcium, magnesium, strong cations and strong 

anions (represented respectively by SCO2, SCa, SMg, SNa, SCl as showed in table III.2) were considered 

following a ratio to SNHx (table III.3) and latter checked by electro neutrality in a simulator to verify if 

pH and alkalinity were consistent to real world values (US: pH=9.16, Alkalinity=0.289 eq.L
-1

; WW: 

pH=7.65, Alkalinity=0.0045 eq.L
-1

). The choice of using ammonium ion concentration profile in order 

to determine alkalinity and ions concentration profiles comes mainly from the fact that in the case of 

urine, bicarbonate will be generated by urea hydrolysis (that will also generate SNHx). It has to be 

noticed that even if in some models ionic species will not be used, it is important to calculate them as 

the most part of urine treatment techniques are dependent of pH or specific ionic species. 

Other general setting parameters consider the assumption from BSM2 that total suspended solids 

(TSS) are equal to 75% of the particulate COD and the conventional ratios between COD and Volatile 

Suspended Solids (VSS) for biomass (1.42), for XB (1.8) and for XU (1.3). Following the last 

assumptions, inorganic suspended solids (ISS) can be calculated (in the end, after sewer), by the 

difference between TSS and VSS. 
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 Figure III.4. Sankey diagram for COD fractions in urine versus COD in total wastewater 
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Figure III.5. Sankey diagram for nitrogen fractions in urine versus nitrogen in total wastewater 
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Figure III.6. Sankey diagram for phosphorus fractions in urine versus phosphorus in total wastewater 
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Table III.3. Ionic species molar ratio to ammonium for total wastewater and total urine stream 

Variable 
Ratio to SNHx 

TWW TUS 

SCO2 4.2 1.6 

SCa 1.2 0.026 

SMg 0.23 0.022 

SNa 1.7 0.39 

SCl 3.8 0.56 

 

III.5. Noise addition 

 

In order to add realistic conditions to the generated flows and avoid correlation between variables, 

noise was added to flowrates (domestic, industrial and rain flowrates) as well as to composite and state 

variables. This was done following the approach of Gernaey et al. (2011): a zero mean white noise is 

added using the random number block of Simulink that outputs a Gaussian distributed random signal. 

Attention was paid in order to select different seeds for each noise added and variance was calculated 

using a variation factor specified by the user that is multiplied to the average value and squared. Thus, 

this specified factor might be comparable to the percentage standard deviation. Also, the considered 

sampling time is of 15 min. Considered values for noise factors are given in table III.4 and can be 

easily modified in the influent generator code in order to represent other case studies. 

Furthermore, following the addition of noise values, saturation blocks were maintained in order to 

limit the range of obtained values by fixing a lower and upper bound. 

It has to be noticed that the chosen values for noise are related to the fact that flowrate, composite 

variables (flux) and state variables (concentration) from household are supposed to be more influenced 

by noise variation than urine and industry (this variation is not anymore linked to daily, weekly or 

yearly profile; however it represents the noisy variation of values). However, it has to be noticed that 

when considering the transport by truck to the plant, the user might add a storage tank and thus, daily 

dynamic is not any more important. 
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Table III.4. Noise factors considered in this study 

Parameter Noise factor 

Domestic WW flowrate 0.15 

Industry flowrate 0.05 

Urine flowrate 0.05 

Domestic WW composite variables 0.1 

Industry composite variables 0.1 

Urine composite variables 0.05 

WW state variables 0.1 

Urine state variables 0.01 

 

III.6. Example of simulations obtained with the generated influent 

 

The use of the obtained dynamic influent was analysed in two different ways. The first simulation 

consists of using two different models, ASM1 and the wide-plant model Sumo1 from SUMO 

(Dynamita, 2015). The case of 50% of urine retention was considered for both models. The second 

simulation consists in the comparison of different urine retention percentages. For this comparison, 

influents were dynamically generated and following fulfilled to the simulator (using the Sumo1 wide-

plant model). For both case studies, the water line was simulated in order to obtain the impact on the 

most important WWTP parameters that might be influenced by the urine separation. 

The simulated WWTP consists of a MLE (Modified Ludzack-Ettinger) process with 2 anoxic tanks 

(total volume of 3000m
3
) and 3 aerobic ones (Total volume of 9000 m

3
 with fixed DO of 2 g.m

-3
) 

similarly to BSM1. Also, a secondary clarifier with fixed solids removal efficiency was simulated, the 

internal recycle was set to approximately 300% of influent flowrate and the SRT was fixed to 

approximately 15 days. 

The simulation was conducted dynamically during 2 weeks with an initialization on steady state for 

each case study with the corresponding non-dynamic influent. 

It has to be noticed that as ASM1 model does not consider either inert nitrogen or phosphorus species, 

those were not added to the adapted ASM1 influent. In order to obtain ASM1 correspondent influents, 

state variables were adapted as showed in Table III.5. Additionally, in order to be comparable, kinetic 

and stoichiometric Sumo1 parameters were modified to be in accordance with those from ASM1 

(Henze et al., 1987).  
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Finally, when considering different levels of urine retention, percentages of 0% (no urine separation), 

20%, 50%, 80% and 100% (all urine is retained in households) were studied. 

 

Table III.5. Adapted inputs for ASM1 simulation 

ASM1 state variables  Influent generator state variables  

SI SU 

SS SVFA+SB+SMEOL 

XI XU+CU 

XS XB+CB 

XB,H XOHO 

XB,A XAOB+XNOB 

XP XE 

SNO SNO2+SNO3 

SNH SNHx 

SND SNB 

XND XNB+CNB 

 

III.7. Discussion 

 

III.7.1. Average results 

 

Initially, as expected, the effect of recovering urine does not influence mainly the new flowrate 

entering the WWTP. However, the effect in state variables is markedly present. As an example, the 

effect of 50% of urine retention in the wastewater inputs (considering the concentration of state 

variables in average) is presented in Figure III.7. The most important reductions are to be considered, 

especially regarding soluble COD (mainly VFA - 36%), total nitrogen (29%) and total phosphorus 

(13%). Considering N reduced species, important abatements are obtained in ammonia (35%), as urine 

is the main contributor of this pollutant entering the WWTP. However, the biodegradable and the inert 

soluble organic forms of nitrogen are also well reduced (by 20% and 15% respectively). Following, 

phosphorus species reductions are mainly due to soluble phosphate (23%). 
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It has to be noticed that values of major species present in urine, ammonia and phosphate, were 

initially expected (according to the literature) to decrease more than the previously showed values as, 

according to Larsen and Gujer (1996), urine contributes to 88% of TKN and 57% of TP in wastewater. 

This effect is due to the fact that industry represents a contribution of 20% (and thus when separating 

50% of urine in households, in reality, only 40% of a urine corresponding stream is separated) and 

values for a non-ecological life style (important quantities of N and P in households comes from other 

sources rather than urine) were adopted and thus the total urine contribution is less important to the 

total wastewater pollutants than the described in some case theoretical case studies in literature (in this 

study: 73% of TKN, 88% of ammonia, 34% of TP and 58% of phosphate comes from urine – cf. table 

III.1). 

 

III.7.2. Daily and weekly profiles 

 

The obtained dynamic profiles for both wastewater input (WW) and urine stream (US) for the 

simulated case of 50% of urine retention are showed in figure III.8 (Weekly profile of flowrate as well 

as daily variation of SVFA and SNHx). Also, the average value of each variable is showed in coloured 

boxes together with its coefficient of variation (percentage). 

When comparing any of the presented profiles for US and WW it can be seen that the variance of WW 

flowrate is smoothened in relation to urine stream. This is due to the addition of the sewer effect in the 

WW stream that is not applied to urine stream. Also, as discussed previously, a small delay is present 

in WW flowrate in relation to USS flowrate profile and to the pollutants profiles in order to account 

correctly for the generation of a mass of pollutants against a latter volume of diluted wastewater. 

Also, when analysing pollutants, the dynamic profile (with the morning and afternoon peak for daily 

dynamics and the weekend effect for the last two days of the week) is markedly present for all 

pollutants in WW stream. However, this effect is less evident in urine concentration. This is in 

accordance to the assumption described previously that urine pollutants concentration are not assumed 

to vary importantly during the day (this assumption can also be checked by the coefficient of variation 

that is more than two times less important for the urine stream). 

Finally, the addition of noise achieved the effect of decreasing the correlation between variables and 

thus the generated influent represents better real life influent streams. 
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Figure III.8. Weekly profile of flowrate; Daily variation of SVFA and SNHx 
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III.8. Use of the generated influent for process simulation 

 

In order to verify the applicability of the generated influent to a simulation platform, two different case 

studies comparison were done. The first consists of evaluating the feasibility of using the generated 

influent with 50% of urine retention to fulfil two different types of model (wide-plant models versus 

ASM family models). The second comparison case study is based on different urine retention 

percentages that are evaluated according to different performance parameters and operational 

requirements. 

 

III.8.1. Comparison between different models 

 

According to the flexibility idea of the influent generator, general results for the simulation using the 

wide-plant model Sumo1 are proposed in figure III.9 together with the ones generated by using ASM1. 

Results for the considered operational parameter, airflow input, showed to be very similar for both 

models. Even when calibrated, effluent outputs present a small difference that is explained by the 

different model approach itself. As it can be noticed in figure III.9, peaks are smoothened in Sumo1; 

however, the average result is similar. Furthermore, results showed that the generated influent might 

be used for both platforms. In the case of ASM1 model, a sum of the originally proposed state 

variables in the influent generator is required in order to obtain the correct input variables. 

Finally, none of the discussed simulations were sensitive to either phosphorus treatment or ionic 

species. Indeed ASM1 does not consider those species and the processes which could be sensitive to 

those species were not considered in simulations with sumo1 model as well. Basically the addition of 

phosphorus removal modelling would be more sensitive to ionic species and this could be the case of 

future extended simulations.  
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Figure III.9. Performance (Effluent ammonia and effluent nitrate and nitrite) and operational (Air 

flowrate) results for Sumo1 and ASM1 models 
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III.8.2. Effect of urine retention levels 

 

Comparison results between different urine retention percentages are showed in figure III.10. 

Scenarios consisting of no urine retention, 20%, 50%, 80% and the total urine retention in households 

were compared.  

Results showed that even the retention of only 20% of urine is already capable of shaving the 

ammonia peaks importantly. When increasing the urine retention and achieving 80%-100% of 

separation the distribution of ammonia output in the WWTP is almost smoothened without any more 

peaks. An important reduction in air flowrate due to reduction of oxygen needs for nitrification was 

also noticed as a consequence of reducing the ammonia input peaks. Finally, NOx (nitrate and nitrite) 

output is also markedly reduced and the difference between the minimum and the peak value is also 

importantly reduced. This leads to two major consequences: more stable outputs in the plant could be 

achieved and potentially, the size of the WWTP can be reduced.  
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Figure III.10. Comparison of different urine retention levels considering performance (Effluent 

ammonia; Effluent nitrate and nitrite) and operational (Air flowrate) results 
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III.9. Conclusions 

 

Influent generators are a non-expensive and a low time consuming way to obtain input data for 

modelling and simulation instead of traditional sampling campaigns. This is especially true when non-

conventional modifications are aimed to be evaluated and thus there is a no real world installation 

where measurements can be done neither it is a laborious task. However, considering dynamics and 

predictive data is a bottleneck of this kind of approach. 

The proposed modified phenomenological influent generator for the case of urine source separation 

allows the evaluation of this alternative scenario of wastewater management and treatment at different 

urine retention levels in a reliable way and considering a wide view as both urine and wastewater 

streams are considered. 

Moreover, due to its flexibility, if other alternatives in wastewater management are envisaged such as 

different retention levels or even other separation scenarios (e.g.: ammonia releasing in the sewer 

during the night, black water separation, unconventional greywater treatment) the tool is flexible 

enough and it is easy to modify the hypothesis to generate other streams. Following on the flexibility 

of the influent generator, the use of an extensive set of state variables allows simulating with different 

models such as the compared ASM1 model against the Sumo1 wide-plant model.  

The important benefit of urine separation is demonstrated by dynamic simulation of a typical WWTP, 

reducing the daily nutrients peak load, improving the quality of rejected water, and reducing the 

energy needs for aeration. Finally, results showed that the tool is able to generate dynamic, long-term 

and predictive data for both urine and wastewater streams. The tool is now available for future 

simulations including innovative wastewater and urine management scenarios and optimization of 

plant design and operation depending on source separation level.   
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“The formulation of the problem is often more essential than its solution, which may be merely a 

matter of mathematical or experimental skill.” (Albert Einstein) 

 

When considering the high environmental restrictions on the discharge of polluted waters and the 

strengthening of regulation laws, the process optimization becomes a potential solution, both to 

compromise between different treatment technologies (conventional and innovated) and to readjust the 

operating conditions of plants up to their optimal functioning level.  

When an automated tool is available for the quantification of performance, costs and environmental 

impacts such as the previously described platform, one might want to analyse a wide range of 

available scenarios and operational alternatives. However, given the rigorous and time-consuming 

aspect of dynamic simulators, the problem might easily become expensive and complex to solve, with 

considerable requirement in terms of computational budget and calculation time. As function 

simplifications were avoided in order to provide realistic and predictive WWTP model, the 

optimization approach has now to deal with an expensive simulation-based problems. Therefore, 

efficient algorithmic techniques must be used to obtain the optimal results with markedly reduced 

number of simulation runs (or what we call the computational budget in the present thesis). 

In the context of optimization, the quality of optimal results is expected to depend directly on the 

relevance of problem formulation. A wide review on optimization of activated sludge systems in 

WWTPs was provided by Hreiz et al. (2015) through which the problem formulation has been 

recognized as one of the major element to ensure the quality of optimal solutions.  The same authors 

(Hreiz et al., 2015) stressed the main challenges when conducting a WWTP optimization. According 

to the authors, besides tackling the mismatches between the modelling and the real world results and 

the unpredictable variations in wastewater inputs, it is important to consider the slow dynamics of the 

plant and the correct formulation (flowsheet, decision variables, objective functions, constraints and 

flowsheet) of the problem to achieve reliable results. 

The study of feasibility was conducted considering 3 objective functions: operational cost (represented 

by OCI), effluent quality (represented as the quantity of rejected pollutants by EQI) and environmental 

impacts (LCIA). EQI were based on standardized correlations proposed by the Benchmark Simulation 

Model N°2 Group and represent an effort of considering also ecological aspects as, for instance, 

rejected TKN and ammonium ions have different weights in order to move towards non ammonium 

species. OCI was based on plant expertise from industrials and literature in order to reflect the real 

world conditions. Finally, LCIA results consider, as previously described in chapter 2, the whole life 

cycle of the system (foreground and background emissions as well as avoided ones). Moreover, the 

impact of adding constraints is analysed on the basis of European reject limits. Moreover, the 
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feasibility study was conducted using an alternative scenario (with urine source separation and its 

treatment by struvite precipitation and nitritation/ anammox) to ensure the optimization of a more 

complex problem than the conventional WWTP by ASP. 

Once an optimization problem is properly structured and formulated, the second critical step is the 

choice of resolution method. Rigorous modelling allows a better understanding of the interactions 

between decision variables and therefore, the results are more realistic and represents the real efforts to 

be made in order to improve the system and its functioning. However, the consideration of highly non-

linear dynamic models that represents processes operating at considerably different rates - for instance, 

the biological and chemical reactions - makes the resolution of the whole system a stiff task.  

Additionally, a crucial condition has to be fulfilled, that is to ensure the global optimality of obtained 

solutions. In this case, genetic algorithms are a good option as, besides ensuring the global optimality, 

they do not require derivative information to optimize a function, due to their stochastic mechanism of 

search. Moreover, they are adapted for black-box or simulation-based systems with noise. In 

simulation-based systems, noises are mainly due the use of a fixed tolerance to approve the 

convergence of each simulation run.  

However, the use of genetic algorithms in their original form to solve expensive optimization 

problems is completely irrelevant, due to their considerable requirements in terms of computational 

budget. That’s the reason why in the present work a novel hybrid evolutionary algorithm, called 

AMOEA-MAP and developed by Ahmadi et al. (2016), was used to deal with expensive optimization 

problem. 

This chapter provides, in fact, a feasibility study - from computational time and reliability perspectives 

- of an efficient multi-objective approach to optimize alternative wastewater management and 

treatment plants with integrated LCA and rigorous dynamic modelling. This chapter has been recently 

accepted for publication in the journal of Chemical Engineering Research and Design.  
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Abstract 

The present paper describes a study on the feasibility of coupling rigorous dynamic modelling (DM) 

and its extended boundaries through life cycle assessment (LCA) with an efficient multi-objective 

optimization (EMOO) tool. The combined framework (DM-LCA-EMOO) was then applied to a real-

world dynamic system: the wastewater treatment. To give a global view of all environmental, 

economic and technological performance, three objectives were considered: Effluent Quality Index 

(EQI), Operational Cost Index (OCI) and environmental impacts quantified through Life Cycle Impact 

Assessment (LCIA). Legally imposed constraints, including total nitrogen, total phosphorus, total 

chemical oxygen demand, total suspended solids and ammonium ion were also taken into account.  

Given the contradictory nature of objectives, the presence of constraints and the time-consuming 

simulation-based calculations, an efficient multi-objective optimization framework, namely Archive-

based Multi-Objective Evolutionary Algorithm with Memory-based Adaptive Partitioning of search 

space (AMOEA-MAP) was used. The practicality of such a combined DM-LCA-EMOO tool for the 

evaluation of wastewater management and treatment was then addressed and demonstrated through a 

case application. 

 

Keywords: LCA-integrated dynamic modelling, expensive multi-objective optimization, WWTP 
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IV.1. Introduction 

 

Wastewater treatment plants (WWTPs) are a complex combination of biological, chemical and 

physical processes aiming to minimize damages caused by sewage discharge. Besides the variety of 

compounds to be treated (soluble, colloidal and particulate compounds that might be biodegradable or 

not), current directives are nowadays imposing stricter reject limits especially for nitrogen and 

phosphorus. Additionally, the conventional wastewater management, where several streams of 

wastewater are mixed, do not lead to an integrated solution as pollutants are diluted and nutrients 

recovery is complicated to accomplish (Balkema et al., 2002). To achieve an adequate performance 

together with minimum costs, there is an important need for optimal integration of these unit 

processes. 

However, WWTPs have traditionally been optimized considering only cost and quality performance 

aspects. The inclusion of sustainable criteria in the choice of plant operation has some challenging 

points such as the inclusion of the background processes by extending the life cycle boundaries of the 

system, the assessment of all economic, environmental and social spheres and the choice of the 

appropriate indicators to quantify the achievement of objectives targeted (Azapagic et al., 2006).  

Following the increasing interest for more sustainable processes, one should consider the 

quantification of the gains and the drawbacks of each alternative considered. Among the available 

methodologies to assess the sustainability of processes, Life Cycle Assessment (LCA) presents the 

advantage of taking into account the full process lifetime and thus the cumulative effect of emissions 

from foreground and background processes. 

When conducting a complete LCA, it is fundamental to evaluate the inventory emissions during the 

whole process lifetime. While background data can be obtained from databases, foreground data 

inventory is usually obtained by data collection at the plant. However, given the interaction between a 

great number of parameters, possible scenarios and treatment objectives, data collection cannot be 

used for outlining general trends or for process optimization. Modelling and simulation is thus an 

interesting alternative that can be very useful when predictive results or eco-design proposals are 

sought (Mery et al., 2013). 

Numerous LCA-integrated modelling have been published so far in several fields, comprising the 

water field. In the wastewater field, for instance, Corominas et al. (2013b) evaluated the environmental 

impact of strategies for nutrient removal in WWTPs by considering LCA, while Flores-Alsina et al. 

(2010) conducted a study of control strategies in a plant where environmental impacts through LCA 

were evaluated together with economic, technical and legal criteria. With a view to LCA-based 
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process evaluation, Foley et al. (2010) used steady state simulation results obtained from Biowin® for 

a systematic evaluation of several WWTP scenarios using LCA; Further, Mery et al. (2013) developed 

a LCA-integrated process modelling  tool, named EVALEAU dedicated to the environmental 

evaluation of drinking water treatment processes and Loubet et al. (2016) proposed a framework for 

the modelling of urban water systems coupled to LCA for assessing its environmental impacts 

according to the services provided. 

In a previous study, Bisinella de Faria et al. (2015) developed a LCA-integrated dynamic modelling 

applied to WWTP scenarios in order to obtain reliable and predictive LCA results. The framework 

allowed evaluating the environmental performances of different treatment scenarios together with its 

performance in an automated way, leaving the possibility to be subsequently used for other case 

studies. Accordingly, two main research streams - one generic to eco-design independently of the 

application, and the second specific to the field of wastewater management – remain to be further 

explored: (1) a practical integration of LCA calculation and dynamic process modelling with an 

efficient Multi-Objective Optimization (MOO) framework for appropriate process evaluations within a 

reasonable calculation time, (2) the achievement of reliable globally optimized performance in 

wastewater management with reduced costs. 

With a view to the first stream, efforts have been made in the most diverse fields to consider 

environmental aspects in the multi-objective optimization of process and specifically, using LCA to 

quantify these impacts. Ahmadi and Tiruta-Barna (2015) presented an approach to combine process 

modelling, LCA and MOO applied to potable water resulting in a set of alternative solutions. Carreras 

et al. (2015) applied a MOO in order to optimize the building insulation thickness considering 

economic and environmental impacts using the evolutionary algorithms. Guillen-Gosalbez and 

Grossman (2010) proposed a modelling and computational framework in the MOO of sustainable 

chemical supply chains and the effect of uncertainty in the environmental evaluation. Zhang et al 

(2015) presented the optimal design of microgrids using ε-constraint and weighted sum method for 

both environmental (using LCA) and economic concerns. Tascione et al (2016) proposed a coupled 

approach of LCA and linear programming to identify the optimal scenario for integrated waste 

management. Khoshnevisan et al (2015) studied the combined LCA and genetic algorithm applied to 

crop systems. Miret et al. (2016) proposed an approach that integrates, besides economic and 

environmental aspects, the social context in the MOO and the goal programming to solve the problem 

applied to bioethanol supply chain. In all works mentioned, the mathematical programming and the 

complexity related to its resolution as well as the calculation time can be seen as the most critical 

limitations. 

Considering the second stream, Hreiz et al. (2015b) proposed a review of the available literature on 

optimal design and operation of Activated Sludge Processes (ASP). Authors highlighted that the 
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optimality of results depends on the problem formulation. Unfortunately, there is no standardisation 

either on cost functions or on constraint selection (in order to respect feasibility along with physically 

relevant operations and on the uncertainty of models). Process dynamics is also an important aspect to 

be taken into account for the achievement of a sustainable functioning and for an appropriate 

consideration of units with slow dynamics. 

In the field of wastewater treatment, some interesting approaches in MOO can be mentioned. Hakanen 

et al. (2011, 2013) proposed an interactive optimization tool for the wastewater treatment plant design 

where decision-maker can express his preferences for the optimal solution while better understanding 

the problem. Iqbal and Guria (2009) presented the optimization of a WWTP from both single and 

multi-objective points of view (using thus SGA-II and NSGA-II) being the first authors to apply this 

MOO technique to this field. Three objective functions were considered in their study: maximization 

of influent flow rate, minimization of exit BOD and minimization of operational costs. Egea and 

Garcia (2012) have proposed to use advanced metaheuristics in order to tackle the optimization of a 

benchmark WWTP showing that this approach is capable of overcoming the multimodality and noise 

problems that appeared when a dynamic operation is supposed. Similar approaches on the 

optimization of WWTP have been widely discussed in the literature (Beraud et al., 2008; Costa et al., 

2011; Hreiz et al., 2015a; Guerrero et al., 2012; Fu et al., 2008), nevertheless  to the best of authors' 

knowledge, there has usually been lack of information on non-conventional treatment scenarios and on 

the multi-objective optimization of full plants with regard to the  time consuming issues of such 

computation (long time is necessary due to units with slow dynamics). Moreover, there is also no 

information available on optimization by considering environmental impacts together with water 

quality and operational costs. As showed in a previous study, background processes and recovery 

strategies (for instance, avoided raw material requirement when nutrient recovery takes place) present 

high impact values for several impacts categories (Bisinella de Faria et al, 2015) and should thus be 

considered for a further improvement of functioning conditions. 

When adding up different - usually conflicting - objectives in an optimization, it is recommended to 

handle it through a multi-objective optimization (MOO) approach rather than aggregating objectives 

into a single composite objective to be optimized. This is because a MOO context primarily allows the 

decision-maker to obtain more than only one possibility as scenario, and additionally when a single 

composite objective is used, the quality of optimal result is directly proportional to weighting factors 

used for the aggregation of objectives. A MOO approach is especially interesting in the case of 

WWTPs as the objectives are conflicting by nature and the optimal solution for a given context may 

be different in another future context. However, traditionally, WWTPs have been optimized using 

single objective optimization in view of minimising for example a total cost function. As discussed by 

Hakanen et al. (2013), this approach may lead to loss of information and interdependencies between 
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functions. Moreover, obtaining a non-dominated Pareto front (composed of a set of non-inferior 

solutions) allows the decision making process to be independent. 

Even if ASP is well studied, given the stricter limitations for reject water, the complex interactions 

between system variables and the non-conventional alternatives available nowadays, it is a difficult 

task to decide between several sets of operations and design parameters. The predictive modelling of 

WWTPs represents, in this context an interesting tool in order to give insights in decisions for future 

eco-design and implementations. However, computationally speaking, these simulation-based 

problems are to be seen as black-box systems, usually with expensive calculation-time requirements, 

where several variables interact in a complex and non-linear way. However, in the knowledge that 

these problems are often treated as simulation-based modules, the numerical approximation of 

gradient would be unreliable, which highlights the importance of using gradient-free optimization 

techniques. Thus, the two most challenging aspects in the optimization of such systems are to provide 

an appropriate problem formulation and to use suited optimization methods that allow relevant 

convergence accuracy and speed: the achievement of globally optimal results under multiple legally-

imposed constraints and within a reasonable calculation-time. 

Genetic algorithms have proven to be powerful tools for multi-objective optimization of real world 

problems such as in wastewater field (Fu et al., 2008). The use of a genetic algorithm present some 

advantages, for instance they are derivative-free therefore suited for non-linear black-box problems, 

and they are capable of ensuring the global optimality of results. Additionally, because they are 

population-based, they promote a diverse set of optimal solutions, called the non-dominated Pareto 

front. However, genetic algorithms as well as other evolutionary methods are extremely time-taking 

and it is quite impractical to apply them, in their original structure, to expensive optimization 

problems. 

When considering the optimization of computationally expensive problems - usually simulation-based 

where, mathematical programming of processes cannot be directly applied - the availability of suited 

meta-heuristics and acceleration techniques is markedly reduced. Ahmadi et al. (2016) have given an 

extensive literature survey on the enhancement of convergence speed in multi-objective optimization 

of expensive problems. For these specific problems, some promising improvements have been 

reported in the literature, for instance the hybrid and memetic Multi-Objective Evolutionary 

Algorithms (Kim and Liou, 2014; Lara et al., 2010), the interactive and surrogate problem 

construction (Ojalehto et al., 2015; Capitanescu et al., 2015) and the Gaussian stochastic process 

modelling (Knowles, 2006). Regarding the first two approaches, despite the multiple advantages in 

improving the convergence issues, their main limitation is either a still impractical computation budget 

or a lack of accuracy. In Gaussian stochastic process modelling, the computation budget can be set to a 

very low value; however, the complexity of the algorithm itself can become a limitation.  
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The present study aims to trigger and discuss the feasibility of optimizing a full alternative WWTP - 

simulated via rigorous LCA- integrated dynamic models - through an efficient multi-objective 

optimization (EMOO) algorithm. Therefore, here the attention is paid solely to the practicality of such 

an optimization for expensive rigorous WWTP problems, and to the analysis of the 3D Pareto optimal 

front yielded by comprising outlet water quality, costs and environmental impacts as three main 

process objectives, helpful for the understanding of objectives’ dependencies and for the identification 

of main treatment drivers.   

The remaining of this paper is organized as follows: First, the structure of dynamic modelling with 

integrated LCA for the alternative WWTP is presented. Then, the efficient multi-objective approach is 

described. This work uses the Archive-based Multi-Objective Evolutionary Algorithm with Memory-

based Adaptive Partitioning of search space (AMOEA-MAP) framework, to deal with the 

optimization of expensive systems (Ahmadi et al., 2016). At the end, important issues, related to the 

formulation of optimization problem (interactions between objectives in the optimal region, and 

constraints), the general guidelines for future design of innovative WWTPs, and the question of 

practicality and computational feasibility are addressed and discussed. 

 

IV.2. Materials and methods 

 

IV.2.1. Dynamic Modelling (DM) approach 

 

The plant under study is based on Benchmark Simulation Model N°2 (BSM2) with several 

modifications: Enhanced Primary Clarification (EPC) was added to enforce biogas production, post-

anoxic denitrification dedicated to achieve effluent quality limitations and a cogeneration module for 

the sake of energy sustainability (heat and electricity). Following the idea of an integrated wastewater 

management, an alternative collection of 50% of urine was applied. The urine is treated by struvite 

precipitation for the sake of nutriments recovery and nitritation coupled to anaerobic 

deammonification in order to treat the N-rich effluent from the precipitation. 

Configuration details are showed in figure IV.1. The considered WWTP comprises in the mainstream 

a pre-treatment (PT) unit for grit removal followed by a primary treatment unit (PRIM: ηremoval = 80%), 

2 anoxic tanks (ANOX1 and ANOX2) and 3 aerobic ones (AER1, AER2 and AER3 with oxygen 

controlled at 1.5, 2.0 and 0.5 gO2.m
-3

 respectively for the reference case). A post denitrification zone 

was also added to achieve acceptable effluent limits. Nitrate was recycled (QINT: ~35500 m
3
.d

-1
 for the 

reference case) from the aerobic to the anoxic zone and the sludge was separated in a secondary 
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clarifier (SEC), which was also partly a wastage flow (QW: ~300 m
3
.d

-1
 for the reference case) 

redirected to a thickener (THK), and partly recycled in the anoxic zone. The primary clarifier and 

thickener underflows were redirected to an anaerobic digester (AD). Finally, biogas from anaerobic 

digestion was used in a cogeneration unit for electricity and heat production (COGEN: ηelectrical = 35%; 

ηheating = 48.5%). The inlet flows of external carbon (QCARBON: methanol to improve denitrification; 

0.75 m
3
.d

-1
 in the reference case) and coagulant (QMETAL1 and QMETAL2: iron chloride for chemical 

precipitation of phosphorus; 2 m
3
.d

-1
 and 1 m

3
.d

-1
 respectively in the reference case) were also 

dynamic and followed a constant daily profile. Sidestream comprises a storage tank (ST), struvite 

precipitation tank (PPTSTRUV), a nitritation tank (NITRITATION: dissolved oxygen controlled at 

2.0 gO2.m
-3

 for the reference case) and an anaerobic deammonification tank (ANAMMOX) with 

external alkalinity input. 

Plant was dynamically simulated using SUMO (Dynamita, 2015). The used model is an adapted 

version of original Sumo2 and includes more than 70 equations including biological growth and decay 

of 8 microbial populations, hydrolysis and flocculation reactions, chemical precipitation of phosphorus 

with several species of hydrous ferric oxides (HFO), struvite and vivianite precipitation, gas transfer 

reactions and pH modelling resulting in more than 60 state variables. 

The dynamic influent comes from the simulation of an adapted version of influent generator from 

Gernaey et al. (2011) including dry and rainy periods. This influent generator was modified by authors 

in order to consider urine source separation. Flows are generated by households (with separation of 

urine and flush water) and a minor contribution of the industry. Infiltration due to rain and 

groundwater is also considered. Pollutant values are based on European average per person equivalent 

(PE) with also a minor contribution of industry. First flush effects and sewer transport was also 

considered for the influent (without urine separated part, which is collected and transported by lorry). 

Finally, simulation is conducted for 100000 PE. Average values for the WWTP influent are given in 

table IV.1. 
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Table IV.1. Average influent characteristics 

Composite variable Unit Mainstream input Sidestream input (Urine) 

Q m
3
.d

-1
 17692 82 

TCOD gCOD.m
-3

 607.4 5232.3 

TKN gN.m
-3

 50.0 4597.4 

NHx gN.m
-3

 33.4 4135.3 

TP gP.m
-3

 10.4 347.0 

PO4 gP.m
-3

 4.8 328.4 

 

Previously to all dynamic simulations a standard steady-state (using reference values in order to start 

from the same initialization) was applied and simulations were run during 21 days (7 days of process 

stabilization followed by 14 days of dynamic simulation which were integrated to be used in 

optimization). 

Reject limits were imposed to 10 mgN.L-1 for total nitrogen, 1 mgP.L-1 for total phosphorus, 100 

mgCOD.L-1 for total chemical oxygen demand, 35 mgTSS.L-1 for total suspended solids and 4 

mgN.L-1 for ammonium ion. Therefore, the process performance will be evaluated through 

technological, environmental and economic criteria, formulated as described later in section 2.3.2, and 

under the legally imposed restrictions in terms of reject limits mentioned above. 

 

IV.2.2. Life Cycle Assessment (LCA) approach 

 

LCA was conducted considering 1m
3
 of treated wastewater as functional unit. When defining 

boundaries, which were considered to be as broad as possible, background processes were separated 

from foreground ones. More, the source of data for each type of process was different, being specific 

simulation results for foreground processes and from Ecoinvent v2.2 for background processes. 

As discussed previously, considering the whole WWTP system means taking account not only of the 

benefits and drawbacks of coupled water and sludge lines but also of all background processes such as 

disposal of by-products, consumption of energy and chemicals, and transport and the avoided impacts 

when valuable by-products can be obtained. In this sense, boundaries expansion was considered to 

include the secondary function of fertilizers (sludge and struvite were all used in agriculture and 

therefore substitute triple super phosphate and ammonium nitrate) and the production of an excess of 

electricity when appropriate (which is reinjected in the network). 
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The inventory took into account all flow types proposed by the reference study included in the 

Ecoinvent 2.2. database (Doka, 2009) and also some others judged sensible in our case, such as a 

cogeneration system with electricity and heat production, external carbon source addition and 

production, fertilizer production from urine and its utilization. 

As emphasized by several authors, WWTPs are important producers of greenhouse gases (GHG) and 

thus gas transfer of carbon dioxide (CO2), which is 100% biogenic, was considered as well as methane 

(CH4) and dinitrogen monoxide (N2O) with a ratio of 0.5% of ammonia nitrified flows in dynamic 

conditions.  

The amounts of chemicals consumed (FeCl3 for P precipitation (coagulant), methanol, MgO, NaOH) 

that would consequently need to be produced in background processes were calculated according to 

simulation demands and the electricity consumption was calculated by taking the sum of all electricity 

requirements (aeration, mechanical mixing, pumping, scrapping and dewatering). Transports were also 

considered for grits collected, sludge to be disposed, chemicals used, conventional fertilizers in 

extended boundaries, urine from houses to the WWTP and struvite to the spreading site. 

It should be noted that this study does not consider the modification of the basic infrastructure as only 

operation parameters are studied in an existing WWTP. 

The environmental impacts were calculated in Umberto® v5.6 software using the LCA Ecoinvent 

database v2.2 and ReCiPe 2008 (Goedkoop et al., 2009) with endpoint (H,A) as in the LCIA method. 

Further details of LCA approach can be found in Bisinella de Faria et al., 2015. 

 

IV.2.3. Efficient Multi-Objective Optimization (EMOO) 

 

IV.2.3.1. Problem formulation: objective functions, constraints and range of decision 

variables 

 

As previously discussed, 3 objective functions were taken into account: (1) Operational Cost Index 

(OCI) to minimize (Eq. 1); (2) Effluent Quality Index (EQI) to minimize (as this index represents the 

amount of pollutants being reject to nature after treatment – Eq. 2) and (3) Life Cycle Impact 

Assessment (LCIA) to minimize (Eq. 3). 

Equation 1 was taken from the original OCI formulation in BSM2 (Alex et al., 2008) and adapted to 

this case study. The constants are given in table IV.2. To provide a realistic approximation of the net 
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operational cost of the plant, nutrients recovery and electricity production from biogas cogeneration 

were also taken into account together with costs related to the consumption of raw materials and 

energy (In equation 1, C stands for consumed and P for produced and all values are obtained from 

energy and mass balances that follow process simulation). 

 

𝑂𝐶𝐼 = 𝛼1𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + 𝛼2𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 + 𝛼3𝐶𝐹𝑒𝐶𝑙3
+ 𝛼4𝐶𝑀𝑔𝑂 + 𝛼5𝐶𝑁𝑎𝑂𝐻 + 𝛼6𝐶ℎ𝑒𝑎𝑡 − 𝛼7𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

− 𝛼8𝑃𝑠𝑡𝑟𝑢𝑣𝑖𝑡𝑒 

Equation 1 

 

Where, Celectricity represents the amount of consumed electricity, Cmethanol represents the amount of 

methanol added for post-denitrification, CFeCl3 represents the total amount of iron chloride added for 

phosphorus precipitation, CMgO represents the amount of magnesium oxide added for struvite 

precipitation, CNaOH represents the amount added for alkalinity required for nitritation process, Cheat 

represents the amount of additional heat required for the plant, Pelectricity represents the amount of 

electricity produced by anaerobic digestion in the plant and Pstruvite represents the amount of produced 

struvite.  

 

Table IV.2. Proposed α values for OCI function 

  Unit Value 

α1 Consumed electricity €/KWh 0.07 

α2 Methanol €/kg 0.412 

α3 FeCl3 €/kg 0.4 

α4 MgO €/kg 0.188 

α5 NaOH €/kg 0.35 

α6 Consumed heat €/MJ 0.008 

α7 Produced electricity €/kWh 0.175 

α8 Produced struvite €/kg 0 

 

Equation 2 (EQI) also was initially taken from the original BSM2 (Alex et al., 2008). The reference set 

of equations to describe the physico-chemical interactions as well as the complete set of chemical 

reactions taken into consideration were previously provided in Bisinella de Faria  et al. (2015), in 
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accordance with the original BSM2 following several relevant improvements. However, it was 

completed by including a new pollutant index (TP) designating the total phosphorus released in 

effluent, as this reject must respect specific regulation law. Coefficients used in Equation 2 are given 

in table IV.3. 

 

𝐸𝑄𝐼 = 𝛽1𝑁𝑂𝑥 + 𝛽2𝐵𝑂𝐷 +  𝛽3𝐶𝑂𝐷 + 𝛽4TKN + 𝛽5TSS + 𝛽6TP 

Equation 2 

 

Where, NOx stands for the sum of rejected nitrate and nitrite amount, BOD stands for the rejected 

Biochemical Organic Demand amount, COD stands for the rejected Chemical Oxygen Demand 

amount, TKN stands for the sum of rejected Kjeldahl forms of nitrogen amount, TSS stands for the 

rejected total suspended solids amount and TP stands for the rejected total phosphorus amount. 

 

Table IV.3. Proposed β values for EQI function 

  Value 

β1 Nitrate + Nitrite 10 

β 2 BOD 2 

β 3 COD 1 

β 4 TKN 30 

β 5 TSS 2 

β 6 TP 100 

 

In the present work, current cost coefficients (αi) and pollutant indexes for effluent quality (βi) have 

been precisely suited for the current global scenario in Europe. However, considering the structure of 

the developed framework, these values can be easily modified for other case studies in order to fit, for 

example, geographical market prices (e.g.: when consumed and produced electricity prices have a 

higher or lower ratio) or specific reject areas (e.g.: where the reject of important quantities of 

phosphorus may lead to significant problems). 

Equation 3 (LCIA) represents the calculation of the environmental impacts using ReCiPe Endpoint 

2008 where mi is the magnitude of intervention i, Qei is the characterisation factor that connects the 
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intervention i with the respective endpoint impact category e and Ie is the indicator result for endpoint 

impact category e (Goedkoop et al., 2009). 

 

𝐼𝑒 = ∑ 𝑄𝑒𝑖𝑚𝑖

𝑖

 

Equation 3 

 

As described in section 2.1, legally imposed reject limits should be respected. To impose the respect of 

the average legislative compliance, constraints on the integrated value during the last 14 days were 

explicitly added and formulated in problem. However, as system is simulated dynamically, it is also 

important to count the number of violation days in order to ensure that, for example, there are no 

extremely high pollutant peaks. It should be noted that above the reject constraints defined explicitly, 

all balance equations and chemical equilibriums are to be seen as implicit hard constraints, from a 

mathematical point of view. Accordingly, the main problem is in fact highly constrained both 

explicitly and implicitly: (1) explicitly, due to the few soft reject constraints and (2) implicitly, due to 

the large number of hard balance and chemical equilibrium equations.  

As discussed by Hreiz et al. (2015b), problem formulation is one of the major influencing elements in 

generating optimized solutions. The 9 decision variables chosen in this study, listed in table IV.4, are 

the most influencing parameters following expert decision. Aeration is well known to represent about 

70% of electricity consumption in WWTPs and has high influence on nitrogen performance. Carbon 

flow can have an interesting impact when COD available is not enough for denitrification. Coagulant 

addition influences on both enhanced clarification and phosphorus precipitation in order to achieve 

low P concentration in effluent. Finally, recycling ratios may influence WWTP performance as 

internal recycle ratio allows nitrate to be recycled to denitrification zone and external ratio allows 

more or less biogas production as well as modifying the sludge retention time that influences plant 

performance.  
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Table IV.4. Decision variables considered in this study 

Parameter Description Unit 
Reference 

value 

Lower 

level 

Higher 

level 

AER1 DO 
Dissolved oxygen concentration in 

the first aerated reactor 
g O2.m

-3
 1.50 0.25 4.00 

AER2 DO 
Dissolved oxygen concentration in 

the second aerated reactor 
g O2.m

-3
 2.00 0.25 4.00 

AER3 DO 
Dissolved oxygen concentration in 

the third aerated reactor 
g O2.m

-3
 0.50 0.25 4.00 

NITRITATION 

DO 

Dissolved oxygen concentration in 

the nitritation reactor 
g O2.m

-3
 2.00 1.00 4.00 

CARBON Q 
Methanol addition in the post 

denitrification zone 
m

3
.d

-1
 0.75 0.00 6.00 

METAL Q1 
Iron chloride addition in headworks 

(EPC) 
m

3
.d

-1
 2.00 0.50 6.00 

METAL Q2 
Iron chloride addition for polishing 

(post denitrification zone) 
m

3
.d

-1
 1.00 0.00 4.00 

TP1 pumped 

flow ratio 

Internal recycle ratio to 

denitrification (recycled 

output/input) 

Ratio 

(0-1) 
0.50 0.05 0.76 

TP2 pumped 

flow ratio 

External output ratio to thickener 

(output/input) 

Ratio 

(0-1) 
0.0165 0.0042 0.0370 

 

 

In this sense, decision variables reference values and boundaries were chosen in order to respect the 

desired plant functioning. Aeration (by means of dissolved oxygen set point) was fixed in the 

reference to achieve a correct ammonium decrease; for the first three reactors, dissolved oxygen was 

initially based on BSM1 open-loop dry weather scenario and then tuned to achieve the desired 

performance; also, the minimum value was set to achieve non anoxic conditions; however, in the case 

of nitritation reactor it was fixed to a higher level as high nitrogen concentrations are expected and 

thus, low oxygen concentration might lead to high N2O emissions. Carbon and the two metal addition 

were set to 0.75, 2.0 and 1.0 respectively in order to achieve the legal reject limits specified by the 

constraints for, respectively, nitrogen after the post-denitrification and phosphorus in effluent. Also, 

considering phosphorus, it might be noticed that for the first addition, the lower boundary was not 

fixed to zero as at least some iron chloride is required in order to achieve enhanced primary 
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clarification. Finally, internal recycle ratio was fixed to be less than 3 times of the influent (pumping 

limitation) and the reference value was set to 0.5 to be sufficient for the denitrification of available 

nitrate; external ratio recycle reference value and boundaries were fixed to maintain correct and 

feasible sludge retention time (SRT). 

 

IV.2.3.2. Expensive optimization algorithm and general settings 

 

The dynamic rigorous modelling of the alternative plant together with the LCA calculation on its 

extended boundaries is time consuming and therefore the global problem has to be treated as an 

expensive black-box system. In this sense, Archive-based Multi-Objective Evolutionary Algorithm 

with Memory-based Adaptive Partitioning of search space (AMOEA-MAP) was used here (Ahmadi et 

al., 2016). 

Figure IV.2 illustrates the structure of the algorithm. The left side in Figure IV.2, represents the 

Archive-based MOEA (AMOEA), while the Memory-based Adaptive Partitioning of search space 

(MAP) corresponds the bloc highlighted in grey on the right side. 

As described in detail in Ahmadi et al. (2016) and Ahmadi (2016), this algorithm is hybrid 

(evolutionary and metaheuristics) and presents two main modifications from the original structure of 

the state-of-the-art fast and elitist non-sorting genetic algorithm (NSGAII) of Deb et al. (2002): 

i. the use of two populations that are evolved simultaneously: a large archive population to stare 

the best optimal solutions previously achieved, and a small operational population to intervene 

genetic operations with lower computation budget, 

ii. the use of an adaptive partitioning algorithm for a dynamic reticulation of the search space in 

order to markedly decrease the number of required evaluations. As a result, the optimal Pareto 

front can be yielded within a fixed computation budget of 300 function evaluations only, for a 

tri-objective optimization problem. 

Further, following the idea of the adaptive partitioning of the search space, a new mutation operator, 

dubbed Importance-based Mutation Operator (IAMO), was included in order to balance exploration 

and exploitation tendency of the search algorithm while the small population is submitted to the 

genetic operations. 

As illustrated in figure IV.2, through AMOEA, the best optimal solutions previously evaluated are 

stored in an archive matrix and therefore only the operational population will intervene in the genetic 

operations with fewer function evaluations. On the other side, MAP offers a dynamic and realistic 
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partitioning of the search space, with the discretization being dynamically refined in an adaptive and 

probabilistic fashion, from coarse to finer partitioning when the need to attain better accuracy arises 

(Ahmadi et al., 2016; Ahmadi, 2016). 

For constraint handling, the concept of constraint domination was used at the level of genetic 

selection. Three criteria are therefore used to discriminate between solutions of a population: 

dominancy, diversity and constraint violation.  

General settings for AMOEA-MAP algorithm were set as follows. The population size was set at 36, 

four times the number of decision variables; to be large enough compared to the total number of 

variables and the size of the small operational population was set equal to the number of decision 

variables. As AMOEA-MAP is dedicated to expensive problems, the stopping criteria is the 

computation budget, which is here set to 300 function evaluations for the tri-objective optimization 

problems, described in Section 2.3.1. According to the crossover operation, the simulated binary 

crossover (SBX) was chosen with the original parameter settings as in NSGAII, (ηc=15 and pc=1), set 

by Deb and Agrawal (1995). The mutation operator – the Importance Adaptive Mutation Operator 

(IAMO) - is self-tuned internally in accordance with the information coming from the MAP algorithm.   

 

Figure IV.2. Structure of AMOEA-MAP framework used in this WWTP problem optimization 

 

IV.2.4. Integrated framework: DM-LCA-EMOO 

 

The combined/integrated framework comprises the three tools presented previously as well as the 

connections between those tools, performed via Python interfacing. Figure IV.3 details the combined 
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framework. Initially, model parameters were fixed and dynamic influent data was provided to the 

simulator (Fig. 2, data flows 1, 2, 3). Following the dynamic simulation, process inventories were 

generated with their own inputs and outputs (data flow 4). After the dynamic simulations, data are 

passed through a Python interface (data flow 5) and the results are integrated over the simulation time. 

Python scripts also perform complementary calculations (e.g. calculation of cogeneration and energy 

requirements) and adjust assignments between the output flows resulting from the SUMO simulation 

and Umberto® input flows (data flows 6-9). The results are then converted to an Umberto®-

compatible input file for foreground and background processes (data flow 10). 

LCA calculations are then performed within Umberto® using the Ecoinvent database (data flows 11 

and 13). This last step completes the LCI (data flow 12) by adding the contribution of background 

processes to WWTP ones. Following, the environmental impacts (data flow 14) are calculated using 

the chosen Life Cycle Impact Assessment valuation system. Further, the modules mentioned above, 

are connected to the Efficient Multi-Objective Optimization tool. EMOO is carried out through the 

AMOEA-MAP algorithm, where the results are received from the simulation and LCA blocks (data 

flows 15-20) and decision variables are steered via data flows 19-20 to the corresponding blocks. 

Regarding DM, Python interface and LCA modules, four main types of results are generated as output: 

effluent concentrations and quality violations (data flow A), operational cost along with energy 

parameters and nutrient recovery (data flow B), environmental impact results (data flow C). Finally, 

the non-dominated Pareto front serves as the final result, suited for decision making (data flow 21). 
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IV.3. Results and discussion 

 

IV.3.1. WWTP optimization and objectives’ dependencies 

 

In this section, results of the optimization of alternative wastewater management and treatment (DM-

LCA-EMOO) are illustrated, where both the feasibility and practicability of the optimization approach 

and the importance of problem formulation on the quality of results are emphasized and discussed. 

Graphical representations were all carried out within the Matplotlib (Hunter, 2007) under Python. 

Figure IV.4 presents the 3D Pareto optimal curve (black dotted line) obtained with a low computation 

budget of 300 function evaluations. These results have been achieved by minimizing the three 

objective functions (Eq. 1-3), previously discussed, without additional reject limit constraints in order 

to give an overall view of the shape of Pareto front and to better illustrate the correlation between 

different objective functions all over the objective space. In this figure, axes present operational cost 

represented by OCI, quality index (pollutants being rejected) represented by EQI and environmental 

impacts represented by LCIA. Additionally, a 3D surfacing fitting was conducted to better illustrate 

the shape of Pareto optimal curve on the tri-dimensional objective space (Figure IV.4). 

The correlation between objective functions can be directly drawn from figure IV.4.  Over the whole 

Pareto curve, OCI and LCIA showed to be positively correlated meaning that when one increases the 

other increases also. In contrast, EQI and LCIA showed to be negatively correlated, which is to say 

that when EQI is reduced (outlet water quality increases), environmental impacts increase. Following 

the previous discussion, OCI and EQI are also negatively correlated (an increase in operational costs is 

required in order to deliver a better quality of the outlet water). 

If reject limit constraints are also included explicitly (constrained optimization), a reduced Pareto 

curve will be achieved (red dotted line showed in figure IV.4). Therefore, in figure IV.4 three zones 

can be distinguished over the overall Pareto optimal curve (represented by grey arrows): zone I, II and 

III. Zone I corresponds to a region where quality is not acceptable as constraints are violated 

(EQI>0.22). However, in this zone it is relatively easy to obtain a substantial gain in water quality 

(EQI decreases) without significant increase in costs (OCI) and in environmental impacts (LCIA) as 

the system is not really forced to deliver the best treatment performance. On the other side, in Zone II 

and III, operating conditions are forced to respect the legally imposed reject constraints. Nevertheless, 

Zone II and III are distinguished by the amount of operational efforts required to attain better quality 

of outlet water. In Zone II, a moderated increase (relative to Zone III) in OCI and LCIA results in a 

satisfactory improvement in EQI (water quality). At this level, operator reaches the optimum quality of 
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treated water for the alternative wastewater treatment plant studied in the present study (EQI = [0.19-

0.22]). Beyond this quality (EQI<0.19), a small improvement in the quality of treated water induces an 

important increase in costs (OCI) and environmental impacts (LCIA). Hence, based on the 

configuration of wastewater treatment process proposed in the present study, it is industrially 

impractical to operate at the conditions belonging to Zone III.  

With the aim of detailing each zone, a zoom is provided for Zone I (figure IV.5a) and Zones II and III 

(figure IV.5b). With regards to Zone II, the practical optimal zone from the decision making point of 

view, the most sensitive parameters/variables to provide a reasonable improvement in the quality of 

treated water can be identified. For this purpose, a zoom on Zone II and III was provided in figure 

IV.5b where all reject constraints and the legally imposed quality of treated water are respected. 

It should be noted that running a minimization on EQI (maximizing the quality of treated water) 

instead of considering water quality as constraint is helpful when evaluating technological limits 

related to innovative wastewater treatment processes. By minimizing EQI, Zone III will also appear on 

the Pareto curve, where the limit of a reasonable (economic and environmental) treatment for a chosen 

wastewater management technology can be identified. This is to say that independently of the legally 

imposed quality for treated water, it is impractical to yield EQI below 0.19. As can be seen in figure 

IV.5b, in Zone III, EQI remains practically constant where both costs and environmental impacts are 

markedly increased. This zone is thus not an optimal operational zone; nevertheless, it offers the 

possibility to explore the limits of the chosen wastewater management technology. Additionally, the 

previous explanation suggests that to attain higher outlet water qualities (EQI<0.19), new treatment 

technologies shall be brought out. 

Moreover, according to figure IV.5a-b, EQI and LCIA are significant different by looking into their 

Pearson product-moment correlation coefficients (Figure 5a-b, bottom illustrations on the correlation 

between objective functions), as there are negatively and significantly correlated. However, based on 

the present definition of OCI function, OCI and LCIA seem to be correlated positively (correlation 

coefficient > +0.97). The conclusion is that for the present case-study and based on the improved OCI 

function used in this work, LCIA and OCI are not significantly different. It should be noted that a tri-

dimensional optimization with the simultaneous integration of the three objective functions is the only 

way to check such a positive correlation between economic and environmental functions for a given 

case-study. Nevertheless, this result cannot provide any generic suggestion on the exclusive use of 

either OCI or LCIA function in the context of multi-objective optimization. The reason is that the 

correlated behaviour between OCI and LCIA functions in the present work may be purely case 

specific and may also depend on the relevance of OCI definition. 
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Figure IV.4. Pareto optimal curves for constrained and unconstrained optimization of WWTP 
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IV.3.2. Drivers for an optimal treatment 

 

Given the Pareto optimal front for a WWTP where reject limits as well as the outlet water quality suit 

the legally imposed thresholds (constrained formulation); it is subsequently important to identify the 

main drivers (sensitive variables on the Pareto front) to the optimization.  

For instance, driver variables in Zone III indicate where a design modification should be conducted. 

Figures IV.6 and IV.7 presents the dependencies between objective functions and the main optimal 

process drivers: carbon addition and metal addition in the WWTP studied. Given the first optimal zone 

in figures IV.6 and IV.7, related to Zone II on the Pareto optimal curve (figure IV.5b), methanol added 

must remain the same at its optimum value while an increase in water quality up to EQI=0.19 can be 

yielded by increasing the amount of iron chloride added. Therefore, metal addition is the main 

treatment driver in this zone (Zone II) due to its effect on phosphorus removal. 

 
Figure IV.6. Level of methanol addition - driver for N treatment - for all solutions belonging to the 

Pareto optimal front  
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Figure IV.7. Level of iron chloride addition – driver for P removal – for all solutions in the Pareto 

optimal front 

 

Table IV.5. Decision variables values for chosen optimal points 

 

Parameter Unit A B C D 

AER1 DO g O2.m
-3

 0.25 0.625 0.625 0.625 

AER2 DO g O2.m
-3

 0.25 0.25 1.0 1.0 

AER3 DO g O2.m
-3

 0.25 1.0 1.0 1.0 

NITRITATION DO g O2.m
-3

 1.6 1.6 1.6 1.6 

CARBON Q m
3
.d

-1
 0.0 1.2 1.5 1.5 

METAL Q1 m
3
.d

-1
 0.5 2.125 2.4 2.4 

METAL Q2 m
3
.d

-1
 0.0 0.8 0.8 0.8 

TP1 pumped flow ratio Ratio (0-1) 0.121 0.334 0.334 0.405 

TP2 pumped flow ratio Ratio (0-1) 0.017 0.021 0.024 0.031 

 

 

In contrast, the increasing dose of methanol is responsible for a great increase in costs and 

environmental impacts in Zone III without any sensitive impact on the water quality (figure IV.6). As 

discussed previously, if water qualities beyond EQI ~ 0.19 (Zone III) are targeted, the technology 
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chosen in the management and/or treatment train has to be changed. As methanol addition plays an 

important role in denitrification, two design improvements could thus be carried out: i) managing 

differently the nitrogen input in the WWTP considering, for instance, the increase in urine source 

separation, and ii) treating more efficiently the nitrogen (using other process combination, for 

instance) in the sidestream and in the mainstream line. Both alternatives would allow thus the 

reduction in the addition of methanol at post denitrification level. 

Additionally, aiming to better identify the weight of decision variables to differentiate the optimal 

solutions over the Pareto front, table IV.5 was provided which compiles the decision variables values 

for 4 chosen points A, B, C and D on the boundaries of Zone I, II and III (Figure IV.4): the point A 

and B to restrict Zone I (minimum OCI value in relative to Zone I and II, respectively), the point C to 

separate Zone II and III, and the point D as the highest treated water quality obtained (minimum EQI 

value in Zone III). As showed in table IV.5, all the variables increase with the decrease of EQI (better 

wastewater treatment); however, the most influencing decision variables (drivers) providing a change 

from one functioning zone to a new one, are the carbon and iron chloride addition. This result is also 

confirmed by Figure IV.8 which presents the correlation between variables and objective functions 

with the scatterplots in the upper triangle, Pearson product-moment correlation coefficients in the 

lower triangle, and the corresponding variable or function name on the main diagonal. 
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Figure IV.8. Correlation scatterplots for decision variables and objective functions 

 

IV.3.3. Problem formulation and computational feasibility of multi-objective optimization  

 

As discussed in section 2.3.2, important computation time is usually required when optimizing 

expensive simulation-based problems. In the present study, computations were performed on an Intel 

2.60 GHz processor where each function evaluation (a complete simulation of dynamic WWTP with 

extra LCA calculations) took about 15 minutes. The choice of AMOEA-MAP algorithm was therefore 

relevant, due to the very expensive nature of the optimization problem. Additionally, the algorithm 

showed to manage well the difficulties imposed by both constrained and non-constrained 

formulations, obtaining thus the 3D optimal Pareto front within a very low computation budget of 300 

function evaluations. Figure IV.9 shows the convergence speed; by plotting Pareto front improvement 
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through normalized hypervolume difference indicator (IH
-
) as a function of computation budget 

(number of function evaluations already made). The efficient multi-objective optimization method was 

therefore necessary to make the optimization of rigorous DM-LCA system computationally feasible 

with no loss of accuracy.  

The optimization results, for both a constrained and an unconstrained formulation, were provided in 

figure IV.4. The unconstrained optimization (black disconnected line in figure IV.4) provided a wider 

distribution of optimal solutions, and clearly illustrated the contrast between three optimal zones (Zone 

I, II and III). The two Pareto optimal fronts (constrained and unconstrained) are superposed with the 

sole difference that the results based on a constrained problem formulation provide EQI below 0.22. 

This proves that in case the reject limits are explicitly defined as constraints, optimal results can be 

attained more quickly (less computation effort), with the same level of accuracy and with no additional 

constraint-related complexities. EROI (energy return on investment) for all solutions belonging to the 

Pareto optimal front, remain practically constant at 1.2, which shows that the suggested cost 

formulation in terms of OCI, allowed additionally a proper optimization of energy recovery 

throughout the treatment process. 

 

Figure IV.9. Optimization improvement based on hypervolume distance indicator (IH
-
) calculations 

(computation budget of 300 function evaluations for constrained problem) 
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IV.4. Conclusion 

 

The present study fulfils the current concerns for more eco-friendly and sustainable processes and the 

wide range of available combination of alternatives in the wastewater management field. Given the 

interconnected objectives and parameters as well as the great quantity of data that can be yielded using 

a predictive modelling, it becomes a difficult task for decision makers to visualize all options and 

choose among multiple optimal scenarios. Thus, the integrated DM-LCA-EMOO framework helps to 

compromise between technological aspects (process performance), operational costs and 

environmental impacts. However, when optimizing time-consuming simulation-based systems, efforts 

have to be made in order to reduce the number of function evaluations required, for the optimization to 

be practical and computationally feasible. The practicability of such an integrated framework (DM-

LCA-EMOO) was demonstrated when a relevant optimization approach, suited for expensive 

problems (AMOEA-MAP), is used. Conducting optimization with and without legally imposed 

constraints on reject limits, allowed a deeper analysis on the technological limits of a given treatment 

process. When applied to a real world case study in the wastewater treatment field, OCI showed 

globally to be positively correlated with LCIA as both costs and environmental impacts are mainly 

generated by background processes (supply chain). In contrast, OCI (and also LCIA) showed to be 

negatively correlated with EQI, as improvements in quality require increasing operational costs and 

environmental impacts. Throughout the Pareto optimal curve with acceptable water quality (Zone II 

and III), two situations were discussed: i) a water quality (EQI) belonging to [0.19-0.22], where an 

improvement in treatment can be achieved by increasing the amount of metal added, which is to say 

that the water quality can be improved with less requirement in costs and less environmental damages; 

and ii) a EQI below 0.19 (extremely good water quality), where the treatment has already arrived to its 

limitation, which is to say that a slight improvement in water quality by increasing the amount of 

methanol added with result in an excessive increase in costs and environmental damages. The latter 

shows that to attain higher water qualities (EQI<0.19), the technology itself has to be improved or 

changed.  
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“Climate change, demographics, water, food, energy, global health, women's empowerment – these 

issues are all intertwined. We cannot look at one strand in isolation. Instead, we must examine how 

these strands are woven together.” (Ban Ki-moon) 

 

As previously described in chapter IV, when rigorous modelling of WTTPs and WRRFs together with 

its extended life cycle boundaries is considered for the optimization of economic, environmental and 

performance aspects, the problem becomes easily complex from the optimization point of view, and 

therefore requires an efficient optimization tool. However, such a multi-criteria approach is 

unavoidable, as WWTP problems involve usually conflicting objectives with somehow unpredictable 

interconnections between them. 

When a rigorous and integrated tool is available and the feasibility of the approach has been 

previously validated, the appropriate analysis of different real-world case studies can be carried out, in 

order to understand, for instance, how process objectives, constraints or dynamics are influenced by a 

functioning point of the plant. Moreover, comparative optimization-based studies on different 

alternative scenarios against the conventional ones are thereafter practical and reliable to bring about. 

Indeed, in this case, the optimization becomes a powerful tool to help learning about system 

interactions and objectives interdependencies. 

The role of a wastewater treatment plant (WWTP) is to avoid the contamination caused by wastewater 

discharge. Whereas, WWTPs are constantly facing perturbations in influent flow rate and nutrient 

loads; therefore, they shall be systematically subject to the regulations. The nutrient limitations of the 

receiving water body, that are getting tighter due to the ever increasing environmental concerns, 

involves especially nitrogen and phosphorus. However, achieving low levels of pollutants demands 

high energy (notably regarding the aeration for nitrification) and chemicals consumption (e.g. in 

phosphorus removal). It is thus important to find a way to compromise between ensuing advantages 

and drawbacks arising out of a new alternative scenario. Moreover, whatever the scenario 

(conventional or alternative), the decision-making is a difficult task, as parameters are often 

interconnected and the problem is highly non-linear. As a consequence of this interaction, results 

might be influenced at different levels and at all objective functions. 

The system optimization for the sake of performance and sustainability is receiving more and more 

attention, nowadays. Nevertheless, restricted comparisons against conventional facilities, when the 

new optimal operating conditions were not necessarily provided, are often inaccurate. The reason is 

that alternative systems might sometimes generate irrelevant environmental impacts due often to an 

underestimation of benefits arising from the recovery of certain valuable by-products. Therefore, when 

assessing these alternative scenarios based on comparative studies, it is fundamental to adopt rigorous 
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predictive models together with the quantification of involved benefits and drawbacks through the 

whole process life cycle. 

A review on single and multi-objective optimization of WWTPs was conducted by Hreiz et al. (2015). 

Authors showed that MOO approaches are still scarce and problem formulation remains as one of the 

most important issues to be addressed. Moreover, not many optimization studies based on wide-plant 

modelling were found in the literature, with an appropriate multi-objective approach to preserve the 

true interactions between the conflicting objectives involved. Also, to the best of the author 

knowledge, for the moment, there are no alternative scenarios optimization studies available on 

literature. 

Accordingly, one aim in this chapter is to study different problem formulations together with their 

consequences on optimal results, when applied to the reference or alternative scenarios. Then, based 

on a reference conventional scenario, comparative studies on dynamic versus steady-state simulation 

are provided. Moreover, the impact of constraint formulation on the quality of optimal solutions is 

discussed. The difference between the ReCiPe Endpoint method and the ReCiPe Midpoint for 

environmental analysis is also brought about as an independent comparative study. Finally, a through 

comparison between the reference and an alternative scenario (urine source separation followed by 

nitrogen treatment by nitritation/ anaerobic deammonification, dubbed ANA) is provided.  

This chapter is thought to be submitted for publication in the journal Water Research.  
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Abstract 

A comparison has been made between a conventional wastewater treatment plant (WWTP) and an 

alternative water resource recovery facility (WRRF) by using a plant-wide efficient multi-objective 

optimization tool, with the objectives being the effluent quality (expressed as a sum of rejected 

pollutants, EQI), the operational cost (OCI) and the environmental impacts (LCIA) through Life Cycle 

Assessment (LCA). The alternative scenario included the Enhanced Primary Clarification (EPC) and 

the Urine Source Separation (USS). In the latter, urine is treated afterwards by struvite precipitation (P 

recovery) and by partial nitritation coupled with anaerobic deammonification (to treat residual 

nitrogen). For the multi-objective optimization, an efficient Archive-based Multi-Objective 

Evolutionary Algorithm with Memory-based Adaptive Partitioning of search space (AMOEA-MAP), 

tailored to deal with expensive simulation-based problems was used. The analysis proved the 

efficiency of the innovative scenario studied and demonstrated that the results of such an analysis 

would be reliable when, (i) the optimal results are achieved with no pre-defined aggregation of 

objectives in problem formulation, (ii) the life cycle inventories are appropriately integrated through 

LCA, and (iii) the plant dynamics together with the main operating parameters are taken into 

consideration via predictive models. The optimization-based approach allowed, additionally, the 

achievement of fruitful conclusions on several critical issues: the importance of problem formulation 

and constraint definition in WWTP optimization, the actual interdependencies between objective 

functions through Pearson product-moment correlations on optimal results, the choice of suited 

environmental impact categories, and the identification of the main process drivers with regards solely 

to optimal operating conditions.  

 

Keywords: Expensive multi-objective optimization; alternative wastewater treatments; LCA-integrated 

dynamic modelling; water resource recovery facility 
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V.1. Introduction 

 

Wastewater treatment plants (WWTPs) are, by definition, facilities aiming to treat wastewater before 

their discharge into the environment. However, the treatment process itself as well as ancillary 

materials and energy requirements would become responsible for additional environmental footprints, 

as new pollutants would appear if a proper environmental analysis based on the whole process life 

cycle is established. Especially for the assessment of innovative alternative scenarios in wastewater 

treatment and management, it is fundamental to account for these newly generated impacts  

Activated sludge process (ASP) is the most widely used technique for sewage treatment. However, 

this conventional wastewater treatment is being more and more criticized nowadays, because of its 

high consumption of energy and chemicals and the substantial amounts of sludge that it produces (that 

is considered sometimes as a waste). Therefore, scientific and industrial communities are moving 

towards a more sustainable way of wastewater treatment where more attention in paid to the recovery 

of valuable products. This might be conceived by applying some alternative processes to the existing 

WWTPs that uses a conventional ASP with extra process units, resulting in water resource recovery 

facilities (WRRFs).  

The importance of a rigorous modelling as a powerful tool can be understood, when dealing with 

complex interactions generated due to the related modifications brought in the plant’s configuration. 

However, the unit processes involved are highly influenced by dynamic inputs as the flows and 

nutrient fluxes in influent can vary depending on daily, weekly, seasonally and even yearly 

fluctuations. Moreover, interactions between the mechanical, biological, chemical and physical aspects 

of the processes involved leads to a highly non-linear modelling system. The resulting system is 

indeed computationally expensive, requiring specific calculation strategies for its resolution. 

Since the publication of Azapagic and Clift (1999), the literature reviews have been depicting the 

importance of considering environmental aspects when assessing and evaluating processes. However, 

technical and economic aspects might not be forgotten or underestimated. In this sense, when making 

an effort to find the optimal operating conditions for a given system, it is fundamental to compromise 

between all genuine criteria, including the process performance, cost and environmental footprints. 

Specifically in the field of wastewater, Flores-Alsina et al. (2011; 2014) presented a complementary 

approach to the traditional cost and performance analysis, where greenhouse gases are also taken into 

account. By applying the proposed approach, authors arrived to the conclusion that, in order to have an 

overall assessment of the plant and to achieve the optimal conditions of operation in a more 

sustainable way, it is necessary to compromise harmoniously between the three criteria mentioned 

above.  
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Given the presence of several conflicting objectives in WWTPs and WRRFs optimization, multi-

objective optimization (MOO) is an interesting tool to address the optimization of the problem with no 

pre-defined aggregation or weighting. Hreiz et al. (2015a) proposed a review on the use of single and 

multi-objective optimization in the context of WWTPs. According to authors, there are important 

challenges to be addressed when conducting an optimization, among which the problem formulation 

was recognized to be the most determining. Somehow, the problem formulation accounts for the 

unpredictable interactions between the objective functions, decision variables  – whose sensitivity may 

change from one problem to another - and legally or environmentally imposed constraints. The 

problem formulation shapes indeed the quality of optimal solutions. Additionally, authors highlighted 

that, as the real optimality depends on the problem formulation, there is an important challenge, for 

instance, in the standardisation of cost functions and constraint selection (in order to respect feasibility 

along with physically relevant operating conditions). The process dynamics was also mentioned by 

authors as an important aspect to be integrated, to achieve sustainability based on reliable predictions 

of process behaviour as both slow and rapid dynamics are present in some treatment units. The 

importance of using multi-objective optimization when real-word wastewater problems are thought 

was thoroughly highlighted by Hreiz et al. (2015a), as the use of single objective optimization might 

be misleading or restricted by the weighting strategies imposed to aggregate different process 

objectives. The aggregation might hide the contradictory interactions between the objectives and avoid 

the achievement of common-sense conclusions on the real efficiency of a given treatment strategy and 

on its efficiency change over the adjacent operating conditions.  

Another interesting aspect regarding the MOO is that instead of one single optimal solution, a set of 

optimal points, namely the non-dominated Pareto front, can be achieved. The Pareto front allows for 

further discussions on outcomes generated (both benefits and drawbacks) and decision-making. 

Therefore, other sensitive aspects that are sometimes not quantifiable (thus usually not included in the 

optimization) or that are known for their influence on the robustness of plant such as the use of a short 

sludge retention time (SRT), the presence of filamentous bacteria and the dysfunctioning in the 

secondary clarifier, could be taken into account for further analysis. Moreover, as described earlier, the 

decision-making can be carried out afterwards based on the generated optimal solutions and the expert 

of the field suggestions (Hreiz et al, 2015a; Azapagic, 1999; Hakanen et al., 2008). 

To the authors’ knowledge, only a few studies on the literature, that are discussed hereafter, have 

tackled properly the problem from a multi-objective point of view. Sweetapple et al. (2014) studied 

the optimization of a modified version of the Benchmark Simulation Model N°2 (BSM2) - without 

sludge line - and obtained Pareto sets by targeting the minimisation of greenhouse gas (GHG) 

emissions, operational costs and effluent pollutant concentrations. A modified version of BSM2 was 

chosen in order to make the problem feasible, as otherwise the complexity could not allow the 
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achievement of optimal solutions within a reasonable calculation time. Authors have indicated the 

importance of taking into account GHG emissions as only decreasing costs and pollutants in output 

water may lead to inadvertent increases in GHGs emissions. Hreiz et al. (2015b) proposed a multi-

objective optimization of a small-size WWTP, by considering water line and sludge incineration. The 

study used rigorous modelling and was based on cost and nitrogen discharge as the objective functions 

to minimize. Authors indicated that incineration of sludge might present important benefits, especially 

when the discharge amount of nitrogen is high; however, the plant did not achieve energy autarky. 

Another study on the field was proposed by Beraud (2009) where multi-objective optimization was 

conducted over the Benchmark Simulation Model N°1 (BSM1) scenario considering effluent quality 

and energy consumption. Authors highlighted the important gains that might be achieved at the 

optimal operating conditions compared to the conventional control strategies applied to BSM1. Also, 

according to authors, in order for the optimization to be feasible, it has to be performed within a 

limited time horizon. 

Moreover, there is no available information in the literature on optimization when considering 

environmental impacts together with water quality and operational cost. However, it has already been 

shown that background processes present important levels for several environmental impact categories 

(Bisinella de Faria et al, 2015; Foley et al., 2010; Yoshida et al., 2014). 

Several studies in the literature brought about the question of problem formulation, even though in 

these studies, only cost and performance are commonly considered as objective functions. Iqbal and 

Guria (2009) presented a first work where the elitist non-dominated sorting genetic algorithm 

(NSGAII) was used in the field of wastewater. Different problem formulation were proposed by 

authors (single, two and three objectives) with the consideration of performance and economic criteria. 

According to authors, the optimal Pareto front could be achieved after 2500 generation. Such an 

approach is quite impractical when rigorous dynamic modelling is involved, as the average calculation 

time for a dynamic simulation run exceeds several minutes. 

Guerrero et al. (2012) proposed a multi-criteria function optimization to take into account 

microbiology-related failures in the plant functioning. In a more global approach, Fu et al. (2008) 

proposed a study on a MOO platform applied for the control of an integrated urban wastewater 

system. Authors showed through a case study that including the discharging water body as a decision 

variable provides more information for the decision maker to compromise between objectives. 

Important improvements compared to the non-optimal case were found in both performance and cost 

objectives. Authors showed that NSGAII is a powerful and effective algorithm to be used in this type 

of problem. However, modelling was conducted through BSM1 scenario and using ASM1 modelling 

approach. 
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As opposed to the above-mentioned works, Kim et al. (2015) considered not only the water line but 

also sludge train. When modelling the plant, authors used a modified version of ASMN model that 

includes the GHG emissions and the Anaerobic Digestion Model (ADM) to simulate the anaerobic 

digestion. However, when solving the optimization problem, targeting the minimization of GHG 

emissions, cost and discharged pollution, an integrated performance index was calculated by 

normalizing the objectives and applying a weighted aggregated sum. Results were thus obtained 

between 300 and 2000 simulation runs and it was claimed that even in already tuned facilities, new 

optimal points can be achieved (with the optimal system reducing 31% of GHG emissions, 11% of 

cost and 2% of discharged pollutants). Nevertheless, the results were achieved based on a single 

objective reformulation of the problem, and therefore no solid conclusion can be drawn on the real 

sensitivity of original objective functions towards the decision variables. 

Finally, an interesting approach from Hakanen et al. (2011; 2013) proposed the use of an interactive 

tool to consider decision makers’ preferences during the optimization of WWTPs. The tool was meant 

to be used for the design of new plants or for the optimization of existing ones. According to authors, 

there is no need in converting evaluation criteria into specific functions that might lead to loss of 

information. Also, it was claimed that, as the decision maker can express her/his own preferences, it is 

possible to learn reciprocally about the interdependencies in the problem. However, authors indicated 

that further research is still necessary when the consideration of process dynamics and rigorous 

modelling is targeted. 

Having in mind the available approaches in the literature and, to the best of authors' knowledge, there 

is still a lack of comprehensive information on the interest in an appropriate multi-objective approach 

for the optimization and the understanding of WWTPs when dynamics and rigorous predictive 

modelling are involved. The rigorous modelling and simulation being time consuming, more efficient 

algorithms have to be developed and used. Moreover, nowadays, multi-objective optimization is 

almost applied to reference treatment systems, only. However, there exists an increasing interest in 

sustainable systems in order to reduce the environmental damages resulting from a WWTP plant, 

while ensuring the optimal conditions of the plant (minimal cost and maximal performance). 

Currently, several alternatives to conventional ASP have been proposed in order to achieve flexibility 

and stability during the treatment and to maximize the resource recovery. Among the proposed 

options, urine source separation has been highlighted as one of the promising alternatives to promote 

sustainability in the wastewater management (Maurer et al., 2006). A great interest in this type of 

collection is that when the urine is collected separately, it allows also the recovery of certain nutrients, 

notably nitrogen (N) and phosphorus (P), thanks to its high composition (Larsen and Gujer, 1996). 

Subsequently, urine can be treated with magnesium in order to form struvite (MgNH4PO4 . 6H2O), a 

slow-release fertilizer (Maurer et al., 2006). In addition to the recovery possibilities, the urine source 
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separation leads to the avoidance of ammonia peaks in the plant which will logically result in a more 

stable plant and therefore a redesign would be feasible when new infrastructures are envisaged (Rauch 

et al., 2003). Urine separation can also decrease the consumption of chemicals used for P-elimination 

and reduce the consumption of energy and external carbon sources in WWTPs through a reduction in 

advanced N-removal requirements. There is also treatment options proposed nowadays for nitrogen 

rich streams such as nitritation/ deammonification by Anammoxidans bacteria. 

Another feature with a view to enhanced sustainability in WWTP plants is to achieve energy autarky. 

The energy autarky is gaining interest from both economic and environmental points of view. When 

the anaerobic digestion is implemented, one way to improve biogas production is to accentuate the 

enhanced primary clarification where, with the addition of chemicals, a more efficient flocculation 

takes place and thus more organic matter can be dedicated to anaerobic digestion. This strategy helps 

to turn the energy balance of WWTPs into a net positive energy. Accordingly, Flores-Alsina et al. 

(2014) proposed the enhancement of total suspended solids (TSS) removal in the primary clarifier, 

which led to a higher chemical oxygen demand (COD) for the digestion and consequently more biogas 

production was produced. Additionally, if coupled with a less rich nitrogen influent (when 

considering, for instance, a fraction of urine that is separated at the source), enhanced primary 

clarification represents an important benefit, as less organic matter is required for N-removal. 

Accordingly, beyond the predictable advantages that can easily be raised, the imposed changes in the 

wastewater management and treatment may require important efforts and thus, it is fundamental to 

provide complete life cycle assessment for any further evaluation or validation of a given alternative 

treatment strategy. Among the alternative scenarios for WWTPs, proposed in the literature, Remy et 

al. (2008) showed that the new scenarios might sometimes generate higher environmental impacts 

when compared to a conventional treatment scenario. In this case, it should be noticed that 

conventional scenarios are provided with already optimized operating conditions. Therefore, with 

regards to alternative scenarios, a parallel optimization of design and operating conditions must be 

carried out to provide a fair comparison with the conventional plants.  

In order to shed light on new options of wastewater management and treatment, the goal in the present 

study is to apply a previously validated optimization platform – an efficient multi-objective 

optimization tool coupled with a rigorous dynamic modelling and life cycle assessment (Bisinella de 

Faria et al., 2016a) - to the reference and alternative scenarios in the field of wastewater. The 

practicality of such an expensive optimization and the reliability of results have been previously 

demonstrated for a WWTP. In the present study, the conventional WWTP and an alternative WRRFs 

are compared when optimized, by accounting also the operating conditions as complementary decision 

variables to provide a fair comparison. The proposed alternative scenario allows thus giving insights 

on new options of wastewater management and treatment.  
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V.2. Materials and methods 

 

V.2.1. Dynamic Modelling – Life Cycle Assessment – Efficient Multi-Objective Optimization 

(DM-LCA-EMOO) coupling approach 

 

The multi-objective optimization approach used in this study, which is extensively described in 

Bisinella de Faria et al. (2016a) together with its feasibility study, might be globally divided into 3 

calculation blocks interconnected via Python™. The first part represents the Dynamic Modelling 

(DM) where a rigorous dynamic simulator for WWTPs - in this study, SUMO v.15 beta 69.1 from 

Dynamita (2016) using an adapted version of Sumo2 model - is integrated (Dynamic modelling block 

in figure V.1). The simulation results are then converted into a Life Cycle Assessment (LCA) 

compatible process inventory by integrating dynamic output results over the time. The complementary 

calculations, mainly related to energetic and background aspects, are also conducted in this 

intermediate block and managed through Python™ scripts (Python™ interface block in figure V.1). 

As illustrated in LCA block (figure V.1), Life Cycle Impact Assessment (LCIA) is performed within 

Umberto® software v.5.6 by using the Ecoinvent database v.2.2, and is fed by the Life Cycle 

Inventories (LCI) previously provided. Finally, the above-mentioned tools and results are connected to 

an Efficient Multi-Objective Optimization tool (EMOO block in figure V.1). Details on each 

calculation step have been provided previously in Bisinella de Faria et al. (2016a), where the whole 

combined platform was subject to a feasibility study based on a full WWTP configuration. In the 

present work, however, brief instructions will be provided through the following subsections to clarify 

the specificity of each modelling or calculation block. 
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Figure V.1. Simplified structure of the integrated framework (Dynamic Modelling - Life Cycle 

Assessment - Efficient Multi-Objective Optimization) 

 

V.2.1.1. Dynamic modelling (DM) 

 

Dynamic  modelling and simulation was conducted within SUMO software (Dynamita, 2015). The 

chosen model is an adapted version of original Sumo2 and holds for more than 70 equations including 

biological growth and decay of 8 microbial populations, hydrolysis and flocculation reactions, 

chemical precipitation of phosphorus with several species of hydrous ferric oxides (HFO), struvite and 

vivianite precipitation, gas transfer reactions and pH modelling. It should be noted that the resulting 

system deals with more than 60 state variables.  

Previously to all dynamic simulations, the initialization was conducted by the consideration of a 

reference steady-state condition that contains reference parameter values. The simulation was 

thereafter carried out, in dynamic regime for 3 weeks, whereas only the simulation results of the last 2 

weeks were employed for further calculations (the first week is considered as a stabilization period 

between the steady-state and the dynamic period). 

Details on each scenario flowsheet will be provided in section 2.2. 
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V.2.1.2. Life Cycle Assessment (LCA) 

 

Aiming to estimate the environmental impact calculation over the whole wastewater management and 

treatment system, an LCA was conducted based on the WWTP present in Ecoinvent 2.2. database 

(Doka, 2009) with relevant adaptations for the considered case studies. The considered functional unit 

was 1m
3
 of treated wastewater. The system’s boundaries were defined to be as broad as possible in 

order to consider detailed foreground and background emissions. 

In this sense, boundaries included as the foreground process the coupled water and sludge lines with 

their direct emissions (e.g.: pollutants rejected to the river after the treatment; GHG emissions during 

treatment such as CO2 – considered as biogenic if coming from the input wastewater -, CH4 and N2O – 

estimated as 0.5% of ammonia nitrified flows); Similarly, background processes included plant 

infrastructure, the disposal of by-products (grits from pre-treatment and sludge), the supply chain of 

raw materials (iron chloride for P precipitation (coagulant), methanol for post-denitrification, MgO for 

struvite precipitation and NaOH for alkalinity addition), energy consumption (from aeration, 

mechanical mixing, pumping, scrapping and dewatering) and the transport (collected grits for disposal, 

sludge to be disposed, chemicals coming from production, conventional fertilizers in extended 

boundaries, urine from houses to the WWTP and struvite to the spreading site in the alternative 

scenario). Moreover, modification of the WWTP infrastructure was not considered, neither for the 

conventional nor for the alternative scenario, as only operation parameters were included in this study. 

In an effort to take into account all foreground and background processes, benefits and drawbacks 

were considered, beyond the calculation of direct and indirect impacts, by the addition of avoided 

impacts in case of by-product recovery (such as fertilizer recovery from sludge and struvite when 

urine is source separated that can substitute triple super phosphate and ammonium nitrate) and by the 

excess of produced electricity (reinjected in the network). 

Moreover, considering the obtained Life Cycle Inventory, background processes were separated from 

the foreground. This was done as source of data for each type of process was different: specific 

simulation results were used for foreground processes, while Ecoinvent v2.2 modules were used for 

background processes calculation (modules were fulfilled with required quantities from process 

simulation). 

Finally, the environmental impacts were calculated via Umberto® v5.6 software using the LCA 

Ecoinvent database v2.2 and ReCiPe 2008 (Goedkoop et al., 2009) with endpoint (H,A) and midpoint 

(H) as in the LCIA method. Further details on LCA approach can be found in Bisinella de Faria et al. 

(2015). 
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V.2.1.3. Efficient Multi-Objective Optimization (EMOO) 

 

Broadly, multi-objective optimization is the process of optimizing simultaneously two or several 

objectives with or without constraints. Among the several proposed optimization methodologies in the 

literature, evolutionary algorithms are particularly sought to highlight because of their capability of 

ensuring the global optimality of results and their derivative-free search strategy due to the use of 

stochastic operators (e.g. probabilistic selection, genetic crossover, mutation and migration) (Deb, 

2011). 

However, in the field of eco-design and intensive process optimization, the choice of a search 

algorithm shall also follow the computational complexity of problem. As the dynamic modelling 

coupled with the LCA calculations is time consuming (20 minutes per simulation run, in average), the 

present WWTP optimization problem has to be treated as an expensive simulation-based system. Here, 

the expensive aspect refers to the computational time required for the achievement of optimal results, 

which is directly proportional to the computational budget (number of simulation runs needed) for a 

satisfactory optimization of WWTP. 

An efficient multi-objective approach is thus required in order to deal with expensive simulation-based 

problems. To this end, Archive-based Multi-Objective Evolutionary Algorithm with Memory-based 

Adaptive Partitioning of search space (AMOEA-MAP) was used in this work. As described in Ahmadi 

et al. (2016) and Ahmadi (2016), AMOEA-MAP is a hybrid algorithm, result of the combination of 

multi-objective evolutionary algorithms with new metaheuristics to reduce the number of simulation 

runs required and to provide a rapid and accurate convergence to optimal Pareto front. The algorithm 

presents two main modifications from the original structure of the state-of-the-art NSGAII (Deb et al., 

2002): (i) the use of a bi-population search strategy involving simultaneously a large archive 

population to stare the best optimal solutions previously achieved, and a small operational population 

to intervene genetic operations with lower computation budget; (ii) the use of a memory-based 

adaptive partitioning algorithm for a dynamic self-adaptive reticulation of the search space in order to 

efficiently identify the zones susceptible of providing optimal solution with fewer number of function 

evaluations. 

For constraint handling, the concept of constraint domination was used (Deb et al., 2002). Three 

criteria are therefore used to discriminate between solutions in a population: dominancy, diversity and 

constraint violation. The latter operates by integrating the constraint satisfaction as the third selection 

criteria within the evolutionary selection procedure, and therefore prevents a parallel handling of 

optimization and constraint satisfaction as two independent search strategies.   
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As general settings for AMOEA-MAP, the population size was set to four times the number of 

decision variables to be large enough compared to the total number of variables and the size of the 

small operational population was set equal to the number of decision variables. The stopping criteria 

was set to the computation budget, which is here set to 300 function evaluations. According to the 

crossover operation, the simulated binary crossover (SBX) was chosen with the original parameter 

settings as in NSGAII, (ηc=15 and pc=1), set by Deb and Agrawal (1995). The mutation operator – the 

Importance Adaptive Mutation Operator (IAMO) - is self-tuned internally in accordance with the 

information coming from the MAP algorithm.  

 

V.2.2. WWTP scenarios (conventional vs. innovative) 

 

The plant under study is based on Benchmark Simulation Model N°2 (BSM2). Two scenarios are 

accordingly proposed in this study:  

i) the reference scenario (REF);  

ii) the urine source separation scenario coupled with the sidestream recovery of phosphorus by 

struvite precipitation and nitrogen treatment in urine by nitritation coupled with anaerobic 

deammonification (ANA);  

 

A set of brief and comprehensive flowsheets for the two above-mentioned scenarios is given in figure 

V.2. Further, the main detailed configuration is illustrated in figure V.3. 

Starting from BSM2 configuration, some adaptations were proposed. For the ANA scenario, where 

less nitrogen is to be treated in the water line, Enhanced Primary Clarification (EPC) was introduced 

for the enforcement of biogas production (figure V.2). Also, in both scenarios, a post-anoxic 

denitrification zone was included which is dedicated to achieve effluent quality limitations (figure 

V.3). Additionally, a cogeneration module was integrated for the sake of energy sustainability (heat 

and electricity). 

As shown in figure V.2, REF scenario does not involve the sidestream line, depicted in figure V.2 as a 

yellow box, and EPC (green box) is also included only in ANA scenario. Moreover, for the alternative 

scenario, urine source separation was considered in a proportion of 50%. 
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Figure V.2. Simplified flowsheet for the two WWTP scenarios studied in the present work 

 

Basically, the considered WWTP comprises in the mainstream, a pre-treatment (PT) unit for grit 

removal (not showed in figure V.3) followed by a primary treatment unit (PRIM: ηsolids removal = 50% 

for REF and ηsolids removal = 80% for ANA), 2 anoxic tanks (ANOX1 and ANOX2) and 3 aerobic ones 

(AER1, AER2 and AER3 with oxygen set to DO1 = 1.5, DO2 = 2.0 and DO3 = 0.5 gO2.m
-3

, 

respectively) followed by a post denitrification zone (figure V.3). Nitrate was recycled from the 

aerobic to the anoxic zone (QI) and the sludge was separated in a secondary clarifier (SEC), which was 

also partly a wastage flow (QW) redirected to a thickener (THK), and partly recycled in the anoxic 

zone. The primary clarifier and thickener underflows were redirected to an anaerobic digester – AD 

(figure V.3). Finally, biogas from anaerobic digestion was sent to a cogeneration unit for electricity 

and heat production (Cogeneration module: ηelectrical = 35%; ηheating = 48.5%). Also, at this level, an 

input flow of external carbon (QCARBON: methanol to improve denitrification) and coagulant (QMETAL1 

and QMETAL2: iron chloride for chemical precipitation of phosphorus) were considered. Sidestream 

comprises a storage tank (ST), struvite precipitation tank (PPTSTRUV), a nitritation tank 

(NITRITATION: dissolved oxygen controlled at DONITRITATION = 2.0 gO2.m
-3

) and an anaerobic 

deammonification tank (ANAMMOX) with external alkalinity input (figure V.3). 
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Figure V.3. Detailed configuration of the proposed WWTP scenarios in SUMO 

 

Given the importance of dynamics on the operation of the plant, dynamic influents were considered in 

the simulation. Dynamic influents were generated by using an adapted dynamic and phenomenological 

influent generator proposed by Bisinella de Faria et al. (2016b) that considers wastewater and urine 

streams (in the case of urine source separation). Main characteristics of influent streams are given in 

table V.1. 

 

Table V.1. Influent characteristics 

Variable Unit 
REF ANA 

CONVENTIONAL WW WW w/o 50% URINE URINE 

Q m
3
.d

-1
 18019.6 16991.7 82.1 

Soluble COD gCOD.m
-3

 130.0 114.4 4869.8 

Particulate COD gCOD.m
-3

 478.1 505.3 365.3 

Ammonium gN.m
-3

 51.5 34.8 4121.0 

Organic N gN.m
-3

 17.2 15.9 458.3 

Phosphate gP.m
-3

 6.2 5.0 328.2 

Organic P gP.m
-3

 5.4 5.5 18.8 

 

V.2.3. Optimization problem formulation 

 

V.2.3.1. Objective function 

 

In order to account for all technical, economic and environmental aspects involved in the improvement 

of WWTP, 3 objective functions were subject to minimization: (1) Operational Cost Index (OCI) (Eq. 
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1); (2) Effluent Quality Index (EQI) (as this index represents the amount of pollutants being rejected to 

the environment after the treatment – Eq. 2) and (3) Life Cycle Impact Assessment (LCIA) (Eq. 3). 

Equation 1 was taken from the original OCI formulation in BSM2 (Alex et al., 2008) and was adapted 

to this case study in order to account for the real market prices provided by the field experts. The 

corresponding constants are given in table V.2. Additionally, in order to provide a realistic 

approximation of the net operational cost of the plant, nutrient recovery and electricity production 

from biogas cogeneration were also taken into account, together with the costs related to the 

consumption of raw materials and energy. It should be noted that, in equation 1, C stands for 

consumed and P for produced. 

 

𝑂𝐶𝐼 = 𝛼1𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + 𝛼2𝐶𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 + 𝛼3𝐶𝐹𝑒𝐶𝑙3
+ 𝛼4𝐶𝑀𝑔𝑂 + 𝛼5𝐶𝑁𝑎𝑂𝐻 + 𝛼6𝐶ℎ𝑒𝑎𝑡 − 𝛼7𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

− 𝛼8𝑃𝑠𝑡𝑟𝑢𝑣𝑖𝑡𝑒 

Equation 1 

 

Table V.2. Proposed α values for OCI function 

  Unit Value 

α1 Consumed electricity €/KWh 0.07 

α2 Methanol €/kg 0.412 

α3 FeCl3 €/kg 0.4 

α4 MgO €/kg 0.188 

α5 NaOH €/kg 0.35 

α6 Consumed heat €/MJ 0.008 

α7 Produced electricity €/kWh 0.175 

α8 Produced struvite €/kg 0 

 

Equation 2 (EQI) was initially taken from the original BSM2 (Alex et al., 2008). However, it was 

completed by including a new pollutant index (TP) designating the total phosphorus released in 

effluent, as this reject must respect specific regulation laws. The coefficients used in Equation 2 are 

provided in table V.3. 

𝐸𝑄𝐼 = 𝛽1𝑁𝑂𝑥 + 𝛽2𝐵𝑂𝐷 +  𝛽3𝐶𝑂𝐷 + 𝛽4TKN + 𝛽5TSS + 𝛽6TP 

Equation 2 
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Table V.3. Proposed β values for EQI function 

  Value 

β1 Nitrate + Nitrite 10 

β 2 BOD 2 

β 3 COD 1 

β 4 TKN 30 

β 5 TSS 2 

β 6 TP 100 

 

In the present work, current cost coefficients (αi) and pollutant indexes for effluent quality (βi) have 

been precisely suited for the global scenario in present Europe. However, when considering the 

structure of the developed framework, these values can be easily readjusted for other benchmarks in 

order to fit, for instance, geographical market prices and problematic reject areas where, for instance, 

important quantities of phosphorus are to be avoided. Moreover, it should be noticed that, a zero 

market price is attributed to struvite, even in case it is valorised in agriculture. This reason is to be 

capable of accounting for the eventual situation through which the recovery and use of this fertilizer is 

not well accepted. Similarly, nitrogen and phosphorus in sludge were not financially valorised. 

Additionally, other operational costs such as the cost of labour were not included. 

Equation 3 (LCIA) represents the calculation of the environmental impacts using ReCiPe Endpoint 

2008 (H, A) considering the aggregated sum that considers human health (HH), ecosystem diversity 

(ED) and resources availability (RA). 

𝐼𝑒 = ∑ 𝑄𝑒𝑖𝑚𝑖

𝑖

 

Equation 3 

 

Where mi is the magnitude of intervention i, Qei is the characterisation factor that connects the 

intervention i to the respective endpoint impact category e, and Ie is the indicator result for the 

endpoint impact category e (Goedkoop et al., 2009). The ReCiPe Endpoint indicator resulted from the 

aggregation of normalized and weighted endpoint impacts and was used in this study as an 

environmental objective to be minimized.  

Moreover, in an effort to respond to different decision makers’ requirements, on a complementary 

problem formulation, environmental impact was also optimized based on the ReCiPe Midpoint 2008 

(H) Global Warming Potential (GWP) indicator. 
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V.2.3.2. Decision variables and constraints handling 

 

The set of chosen decision variables in the present work depends on the choice of scenario studied.  

The decision variables in REF and ANA scenario are listed in table V.4. The choice of decision 

variables was made based on their sensitivity through expert analysis and was previously justified in 

Bisinella de Faria et al. (2016a). 

 

Table V.4. Decision variables chosen for REF and ANA scenarios 

Parameter Description Unit 

REF 

reference 

value 

ANA 

reference 

value 

Lower 

level 

Higher 

level 

DO1 
Dissolved oxygen concentration in 

the first aerated reactor 
g O2.m

-3
 1.50 1.50 0.25 4.00 

DO2 
Dissolved oxygen concentration in 

the second aerated reactor 
g O2.m

-3
 2.00 2.00 0.25 4.00 

DO3 
Dissolved oxygen concentration in 

the third aerated reactor 
g O2.m

-3
 0.50 0.50 0.25 4.00 

DONITRITATION 
Dissolved oxygen concentration in 

the nitritation reactor 
g O2.m

-3
 - 2.00 1.00 4.00 

QCARBON 
Methanol addition in the post 

denitrification zone 
m

3
.d

-1
 0.80 0.80 0.00 6.00 

QMETAL1 
Iron chloride addition in 

headworks (EPC) 
m

3
.d

-1
 - 2.00 0.50 6.00 

QMETAL2 

Iron chloride addition for 

polishing (post denitrification 

zone) 

m
3
.d

-1
 4.00 0.80 0.00 4.00 

QI 
Internal recycle flowrate to 

denitrification 
m

3
.d

-1
 50,000 40,000 1,000 55,000 

QW Sludge wastage m
3
.d

-1
 400 300 50 500 

DONITRITATION is not included as variable in case of REF scenario as sidestream does not exists; 

QMETAL1 variable is also excluded for REF scenario as no EPC is envisaged in this scenario. 

 

Finally, in the context of WWTP optimization, the legally imposed limits on rejects shall be, in 

average, respected. For the problem formulation under constraints, the reject limits were set to 10 
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gN.m
-3

 for total nitrogen, 1 gP.m
-3

 for total phosphorus, 100 gCOD.m
-3

 for total COD, 35 gTSS.m
-3

 for 

total suspended solids and 4 gN.L
-3

 for ammonium ion. 

To satisfy these conditions, constraints were explicitly included in the problem formulation to check 

their violations during the last 14 days of simulation. However, as system is simulated dynamically, it 

is also important to check the number of daily violations in order to ensure, for instance, the absence 

of high pollutant peaks in daily rejects. 

 

V.2.3.3. Recall on optimization problem formulation 

 

Several combinations of scenarios and problem formulations are hereafter proposed (table V.5). The 

first aim in this regard is formerly to observe the relevance of different problem formulations and 

assumptions in case of WWTP optimization (case studies A to D in table V.5). At this level, the 

following comparisons have been carried out: constrained versus unconstrained problem formulations, 

dynamics versus steady-state (with averaged influent) simulations and total Endpoint versus the 

Midpoint GWP as the choice of environmental impacts assessment method. Given the first set of 

comparative studies, the second goal is to evaluate the consistency of an innovative WRRF scenario 

(case study E in table V.5) while a suited problem formulation is used, under the most realistic 

conditions of simulation. 

 

Table V.5. List of comparative studies on different problem formulations and innovative scenarios in 

the field of WWTP optimization 

Case study Scenario Dynamics Constraints LCIA 

A REF Yes No Endpoint 

B REF Yes Yes Endpoint 

C REF No No Endpoint 

D REF Yes No Midpoint GWP 

E ANA Yes Both Endpoint 

 

 

 

 

 

 



Chapter V. Case Studies on Multi-Objective Optimization 

142 

 

V.3. Results and discussion 

 

In this section, results of the conducted optimization will be presented together with the corresponding 

interdependencies between objective functions. The optimal decision variables together with the main 

drivers of the proposed configurations as well as the consequences of different problem formulations 

will be pointed out. Here, the graphical representations were all carried out through the Matplotlib 

(Hunter, 2007) under Python. 

 

V.3.1. Reference scenario 

 

V.3.1.1. General results 

 

Before the analysis of the alternative optimization scenario, results over the reference scenario were 

presented. Figure V.4 presents the 3D Pareto optimal curve achieved for the reference scenario. As 

previously highlighted, this curve was obtained with a low computation budget of 300 function 

evaluations (simulation runs). The complexity of objective functions as well as their interdependencies 

resulted in a tri-dimensional curve instead of a tri-dimensional surface. A tri-dimensional curve is 

usually attained where the adjacent solutions are dominated, from a multi-objective optimization point 

of view, and therefore, the condition of global optimality is hard to achieve. This is another proof on 

the importance of choosing evolutionary algorithms for optimization instead of conventional local 

search methods. 

In figure V.4, axes present the operational cost represented by OCI, the quality index (pollutants 

rejected) represented by EQI and the total environmental impacts calculated by the total aggregated 

ReCiPe Endpoint approach via LCIA. Two sets of points, obtained from two different problem 

formulations were presented in figure V.4. The first problem formulation, namely the case study A 

(table V.5) was illustrated by yellow and green points in figure V.4 (Zone Ia and Ib). This formulation 

represents an unconstrained problem for the reference scenario. The second problem formulation, 

namely the case study B in table V.5 was shown in figure V.4 through blue and rose points (Zone II 

and III). The latter corresponds to a constrained problem formulation where better output water quality 

is expected to be obtained. 
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Figure V.4. Pareto-optimal curves for constrained and unconstrained optimization of the reference 

WWTP 

[bottom illustrations are the box-and-whisker plots on decision variables] 
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Box-and-whisker plots were given on each decision variables and for each zone, through 

complementary illustrations (bottom graphics in figure V.4). In each box, the small red square 

represents the average value and the red line represents the median. The 25
th
 and the 75

th
 quartile were 

represented by the edges of the box and the whiskers were extended to the most extreme data that are 

not considered as outliers (represented by ‘+’ sign beyond the whiskers). Also, in order to represent 

the distribution of decision variables over the lower and higher boundaries, ranges through the x-axis 

of the plot were set to the same boundary values fixed for the optimization. 

From figure V.4, a direct correlation between objective functions can be seen. In general, OCI and 

LCIA showed to be positively correlated, as both have the same direction of increase. However, EQI 

and LCIA showed to be negatively correlated. Moreover, when EQI is reduced (less pollutants 

rejected) the global environmental impact increases. This behaviour might be justified by the 

important impact of background processes, already described in the literature, which influence both 

costs and environmental impacts. Consequently, OCI and EQI were negatively correlated, where an 

increase in quality – reduction of EQI – lead to more energy and chemicals consumption and 

consequently to higher operational costs. 

As a result of individual efforts made by each objective function to achieve its own condition of 

optimality despite the contradictory effects between the objectives, four main zones, namely Zone Ia, 

Ib, II and III, appeared on the overall Pareto optimal front. The constrained zone (Zone II and III) 

represents the legal compliance imposed to more than 100,000 person equivalent WWTPs (TN < 

10gN.m
-3

 and TP < 1gP.m
-3

). However, in order to give insights on plants functioning with less strict 

constraints, discussion will be also provided for Zones Ia and Ib concerning pollutants concentration. 

Nevertheless, it has to be noted here that no comparison over objective function results between 

different zones might be done as reject limits are different and thus the function of the system is not 

anymore the same (functional unit defined in this study: 1m
3
 of treated water respecting 10 gN.m

-3
 for 

total nitrogen, 1 gP.m
-3

 for total phosphorus, 100 gCOD.m
-3

 for total COD, 35 gTSS.m
-3

 for total 

suspended solids and 4 gN.m
-3

 for ammonium ion). 

Initially, it should be noticed that Zone I (points that do not respect the strict reject limits) was divided 

into Ia and Ib depending on the level of cost required to achieve a better quality (the shape of cost 

increase in each zone was represented by the average slope of the curve). Globally, Zone Ia and Ib 

correspond to a region where quality is not acceptable and the strict constraints are not respected. 

However, in these zones, important gains can easily be achieved without important increase in costs 

and environmental impacts. Actually, in zone Ia, TN objective for less strict constraints in WWTPs 

was reached (TN < 15gN.m
-3

); however, phosphorus elimination was not satisfactory (TP > 3.5gP.m
-

3
). When considering Zone Ib, the constraints were all respected for the less strict regulation limits 
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(TN < 15gN.m
-3

, TP < 2gN.m
-3

); in contrast, they were not respected for this study constraints. Details 

on each effluent concentration were given in figure V.5.  

Zone II represents the real-world optimal operating zone for the considered plant in this study, as in 

this region, operating conditions are pushed to respect the legally imposed European reject limits 

(especially TN < 10gN.m
-3

, TP < 1gP.m
-3

, figure V.5) with reasonable efforts regarding the 

environmental impacts and cost. Finally, Zone III was represented by extremely low quantities of 

pollutants rejected and thus by a great effluent quality (TN < 5 gN.m
-3

 and TP < 1gP.m
-3

). 

Nevertheless, despite achieving the highest quality in this zone, a slight increase in quality resulted in 

considerable increase in environmental impacts and operational costs, which is not necessarily desired. 

These results are in accordance with the previous ones proposed by authors (Bisinella de Faria et al., 

2016a) throughout a feasibility study of the WWTP optimization platform. One of the major 

conclusions that might be drawn here is that, even in the case of a well stablished technology, such as 

a conventional wastewater activated sludge treatment process, there is a limit point up to which the 

treatment is still reasonable and practical. Beyond this limit point, if one wishes to still improve the 

quality (decreasing EQI above the Zone II), a new technology should be conceived. 

 

 

Figure V.5. Box-and-whisker plots for total nitrogen, ammonium ion and total phosphorus 

concentrations in effluent for the optimized reference scenario (REF) 

 

Moreover, in order to better understand the limitation of the technology, disaggregation of the total 

Effluent Quality Index was presented in figure V.5 for total nitrogen, total phosphorus and ammonium 

in effluent. Also, even if Total Suspended Solids (TSS) and Chemical Oxygen Demand (COD) are 
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included in the quality index and as constraints, they were not given in figure V.5 as they respect reject 

limits all along the Pareto front. 

It has been previously indicated that, strict constraints were respected only in Zone II and III. 

However, the total nitrogen started already having a reasonable level in Zone Ib, while for phosphorus 

the acceptable level was only achieved in Zone II and III. This might represent the great difficulty of 

achieving low phosphorus concentration in effluent without adaptations in plant (as only chemical 

precipitation is applied in this WWTP). Instead, the nitrogen treatment had more important operation 

flexibility, as more variables are involved with their own interactions (DOs, carbon addition, internal 

recirculation). Accordingly, there was no increase in quality from Zone II to III, due to the decrease in 

phosphorus reject concentration (figure V.5). 

Also, when considering the nitrogen conversion from ammonium ion to nitrite/nitrate and finally to 

N2, it might be concluded that the shift from Zone II to Zone III (where low EQI is achieved with more 

important cost) represent an advanced post-denitrification, where ammonium cannot be further 

reduced and thus nitrite/nitrate are tackled (figure V.5). This behaviour might also be explained from 

two points of view. Firstly, the weights were attributed differently in the EQI function, for instance, 

TKN presented a greater weight (30) than NOx species (10), and therefore, in order to minimize EQI, 

it is preferable to minimize TKN before the NOx minimization. Similarly, when minimizing OCI, 

electricity contribution seemed to increase slightly from Zone II to III while carbon addition 

contribution increased markedly (figure V.6) 

 

 

Figure V.6. Box-and-whisker plots for the main cost contributors in Operational Cost Index (OCI) 

function for the optimized reference scenario (REF) 
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The constraint violation for ammonium happened only in Zone I and when low DO was fixed. This is 

the case, when all three DOs where set to 0.25gO2.m
-3

. 

Further, when comparing the constrained versus the unconstrained Pareto fronts, it should be noted 

that given the fixed population size for the optimization, the same number of points will be used to 

describe the diversity in Pareto fronts. Consequently, for an unconstrained problem formulation (case 

studies A, C and D), the Pareto fronts were mainly concentrated around the Zone I, and were not 

necessarily intended to  provide more details (optimal solutions) over the zones where the strict reject 

limits were satisfied. The identification of Zone I is important due the minimum operational cost 

associated to this zone. However, an unconstrained optimization formulation, where no reject 

constraint is explicitly imposed to problem, might result in a set of optimal solutions, as in Zone I. 

Such a formulation is quite impractical to use, due to the unacceptable level of effluent quality in 

results. 

 

V.3.1.2. Analysis on decision variables 

 

In order to analyse the influence of decision variables over the 4 zones in the Pareto front, as 

previously illustrated in figure V.4, box-and-whisker plots were provided. These plots (bottom plots in 

figure V.4) allowed studying the variability of decision variables per Pareto optimal zone. Globally, 

when considering average values of dissolved oxygen set points, a correlation with EQI can be 

observed, as the increase in DO values leads to a shift from one zone to another. Moreover, a 

markedly increase, passing from zone Ib to II, was observed for all the three DO set points (figure 

V.4). This DO increase was responsible for the great conversion of ammonium nitrogen through other 

forms of nitrogen, nitrite and nitrate, which have a lower weight than the ammonium ion in the EQI 

function. Deeply on DO1, in Zone Ia, II and III, variations in the interquartile range was almost 

inexistent and thus variable values were almost punctual. Consequently, there was no flexibility over 

its set point leading to one fixed operational set point. When considering the dissolved oxygen set 

point for the secondary basin (DO2), all zones in figure V.4 presented an important variability in the 

interquartile range, and some outliers showed possible alternative functioning points. Finally, DO3 

presented a similar behaviour as DO2. Overall, there was not a large range for dissolved oxygen 

operation and, in general, DO values could be suitably set for each zone. 

When considering carbon addition, an almost linear increase was noticed among the represented 

zones. A relatively small addition of carbon lead to a shift from one zone to another and, globally, the 

choice of the variable set point do not present much flexibility. Also, as previously discussed, the shift 

from Zone II (good quality with acceptable cost) to Zone III (good quality with exaggerated cost) 
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seemed to be governed by the carbon addition (leading to an advanced post denitrification). Therefore, 

it is possible, from a technological point of view, to obtain a very high water quality in terms of 

nitrogen rejects. However, the latter would lead to inadvertent increases in cost and environmental 

impacts and therefore, new ways of managing nitrogen in the plant (or avoiding its entrance in the 

plant) are required. 

The amount of metal addition had also an important influence on the shift between different zones 

over the Pareto optimal front (figure V.4).  This was especially the case when going from Zone Ia to 

Zone Ib, as when a great amount of phosphate is available, in the beginning of the treatment, it is quite 

easy to eliminate it. Therefore, in this case, the plant required an increase in the amount of iron 

chloride added in order to markedly decrease phosphorus concentration in effluent. However, from 

Zone II to Zone III, there was almost no increase in metal addition. This might be justified, as 

previously discussed, by the limitation of P-elimination technology in the reference case - P is mainly 

eliminated by chemical precipitation of phosphate, whereas residual P is also organic. Thus, in Zone 

II, constraints were already respected and almost no more phosphorus was eliminated in Zone III. It is 

also important to notice the variation of metal addition along its fixed boundaries (the molar ratio of 

Fe/PTotal varies from 0.5 to 2.3). Globally, lower and higher averages were quite far from the extreme 

boundaries, which validate the choice of wide ranges for variables during the optimization of the 

WWTP.  

The only variable presenting an opposite trend compared to all others was the internal recycle, QI. This 

is mainly explained by the increase in carbon addition that was required to achieve good treatment. QI 

must indeed decrease as denitrification will take place afterwards in the post-anoxic zone. However, 

there is still a flexibility in the operation of the internal recycle, represented by boxes boundaries, 

except for Zone Ia, where treatment is really poor (together with the low DOs and the low carbon 

addition) and thus high recirculation is required to achieve the best, however not sufficient, treatment. 

Finally, the wastage, represented by QW, presented a dispersed behaviour with lower values for Zone 

Ia and Ib and, with higher values for Zone II and III. Globally, higher sludge wastage was allowed in 

Zone II and III, as more organic matter was available and thus more biomass was expected in the 

reactors allowing more sludge wastage in order to increase biogas production and to compensate the 

increase in electricity consumption. 

Complementary to figure V.4, the correlation between decision variables and objective functions is 

provided in figure V.7. Results, which are represented through scatterplots in the upper triangle, 

Pearson product-moment correlation coefficients in the lower triangle, and the corresponding variable 

or function name on the main diagonal, are in accordance with the previously discussed correlations 

among objective functions and decision variables. Furthermore the Pearson product-moment 
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correlation coefficients over the whole Pareto (lower triangle in figure V.7, without distinction on 

zones), showed that OCI and EQI were mostly driven by carbon and metal addition, followed by DOs 

set points. This behaviour was also confirmed by the chosen gradient of QCARBON and QMETAL2, 

presented through the bottom illustrations in figure V.7. 

 

V.3.1.3. Steady state versus dynamic modelling approach 

 

Aiming to reinforce the reliability of results, a comparative study was conducted by considering 

dynamics of the plant, as opposed to a steady state condition of run. This problem formulation is 

justified by the importance of understanding the trends of objectives and decision variables when 

steady state conditions are considered.  

In figure V.8, a comparison of the optimal Pareto front resulting from problem formulation A and C 

(table V.5) is presented. Accordingly, it can be observed that for high EQI values (poor treatment), the 

optimal results for the steady state conditions seemed to be close to the Pareto front obtained by the 

consideration of plant’s dynamics and followed similar trends. However, an important gap can be 

noticed when EQI starts decreasing (where treatment started to effectively take place). The gap was 

followed in the region where constraints become stricter. From the authors’ point of view, this trend is 

mainly related to the fact that, when constraints are stricter and thus, treatment is intensified to further 

improve the quality, steady state regime underestimates significantly costs and environmental impacts, 

as the influent flow and concentration peaks are not taken into account. Therefore, fictive water 

qualities would be obtained for the same operational cost. Moreover, when considering the distribution 

of decision variables over the optimal Pareto front, they seemed similarly to be underestimated. It was 

especially observed for the dissolved oxygen in the third basin DO3, the metal addition and the internal 

recycle. Additionally, it should be noted that simulation runs based on steady state conditions do not 

allow the identification of daily violations of constraints. 
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Figure V.7. Correlation scatterplots on decision variables and objective functions (optimized REF 

scenario) 

[bottom illustrations represent the gradient of carbon and metal addition over the whole Pareto optimal 

front] 



Chapter V. Case Studies on Multi-Objective Optimization 

151 

 

 

Figure V.8: Pareto-optimal fronts resulting from steady state versus dynamic simulations (REF 

scenario) 

 

V.3.1.4. Total Endpoint versus Midpoint Global Warming Potential 

 

As previously discussed, decision-making might become a difficult task in complex problems such as 

in WWTPs where not only several operational parameters (represented by decision variables) are 

involved, but also several conflicting objectives have to be optimized simultaneously. To provide 

comprehensive and visually descriptive results for decision-making, it is recommended to limit the 

number of objectives to 3 objective functions maximum. Nowadays, in the field of WWTPs, GHG 

emissions are one of the major issues to be minimized together with cost and performance. In order to 

show the contrast between an aggregated ReCiPe total Endpoint impact and the original endpoint 

categories of impact, a correlation against the most influencing impact categories in human health 

(HH), ecosystem diversity (ED) and resources availability (RA) was provided in Figure V.9. In this 

figure, the upper triangle represents the scatterplots, while the Pearson product-moment correlation 

coefficients were given in the lower triangle. The name of corresponding impact categories can be 

found on the main diagonal. 

Pearson product-moment correlation coefficients in figure V.9 demonstrate that several endpoint 

impact categories are well represented by the aggregated ReCiPe total Endpoint impact. Actually, only 

one category, freshwater eutrophication (FEP ED), is negatively correlated to the aggregated index. 

However, as this impact is by nature linked to the discharge emissions, it was expected that their 

values would be correlated to the Effluent Quality Index, instead of the total environmental impact. As 

a result, it can be concluded that all main endpoint impacts presented a positive correlation to LCIA 
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(and consequently OCI), and a negative correlation to EQI. The latter indicates that the chosen 

aggregated ReCiPe total Endpoint impact category represents correctly the majority of the impacts 

categories. Finally, the strongest correlation was found between the aggregated ReCiPe total Endpoint 

impact and the Global Warming Potential (GWP) indicator for both human health (HH) and ecosystem 

diversity (ED). This might be explained by the important influence of GHG emissions in a WWTP’s 

Life Cycle Analysis, as already shown by several authors in the literature.  

 

Figure V.9. Pearson product-moment correlations between different impact categories in LCIA 

[HH - Human Health; ED - Ecosystem diversity; RA - Resources availability; GWP - Global Warming 

Potential; HTP - Human Toxicity Potential; PMFP - Particulate Matter Formation Potential; FEP - 

Freshwater Eutrophication Potential; ALOP - Agricultural Land Occupation Potential; FDP - Fossil 

Depletion Potential] 

 

By following the same idea of providing decision makers with complete and comprehensive 

information on each case study, it is important to verify for the present case study if the optimal 

solutions depend on the choice of impact categories or not. For this aim, a comparative study was 

carried out based on the use of the aggregated total ReCiPe Endpoint impact and the ReCiPe Midpoint 

GWP (scenarios A versus D in table V.5). Results, which consider also the two other common 
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objectives - OCI and EQI - showed Pareto fronts well fitted, which is to say that both impact 

categories resulted in almost the same optimal solutions. When comparing the 3D Pareto fronts, in 

general, similar trends on the curve were found and thus, the total endpoint represents a good 

approximation of the total GHG minimization (including direct and indirect emissions). This 

observation, however, is case specific, and might not be generalized. According to the scenarios 

studied in the present work, it should be noted that in order for the midpoint GWP impacts to fit the 

same trends as in total ReCiPe endpoint impact, all relevant emissions through the life cycle in 

foreground and background processes must be accurately taken into account. 

  

V.3.2. Alternative scenario (ANA) 

 

The final part of this study is dedicated to the comparison of the conventional wastewater management 

and treatment (REF scenario) against an alternative WRRF (ANA scenario). The comparative results 

on these scenarios were provided in figure V.10. Regarding the ANA scenario, two optimization runs 

were carried out, one unconstrained (Zone Ia and Ib) and one with strict constraints (Zone II and III). 

The same distinction of 4 zones over the optimal Pareto front was done for this alternative scenario. 

The bottom graphics in figure V.10 represent the box-whisker plots over the decision variables. 

Globally, the alternative scenario showed to offer an interesting gain in the functioning of the 

wastewater treatment in terms of performance, operational cost and environmental impacts. For 

instance, for a fixed water output quality, fewer costs were achieved together with less environmental 

impacts through ANA scenario. 

Also, from figure V.10, it is important to indicate that in both technologies, a high water quality can be 

attained (lowest EQI equal to 0.18 in Zone III), and if the decision maker wishes still to decrease EQI 

bellow 0.18, compromises have to be made, as cost and environmental impacts would exaggeratedly 

increase through both technologies. 

Similarly to the reference scenario, OCI showed to be positively correlated to LCIA while EQI is 

negatively correlated to the previous. By following the trends in decision variables, the metal and 

carbon addition presented a similar behaviour, with a limited flexibility in the variable operation. Also, 

similarly to the trend observed in REF scenario, there was no increase in metal addition between Zone 

II and III; however, the carbon addition increased aiming to eliminate the residual nitrite and nitrate. 

Regarding the metal addition, the presence of a quite fixed optimal point for the distribution of metal 

in headworks (for the enhanced primary clarification) and by the end of the mainstream (for polishing 

of phosphorus treatment) was observed. 
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Figure V.10: Comparative optimal Pareto fronts on the reference scenario (REF) versus the urine 

treatment by nitritation/ anaerobic deammonification (ANA)  

 

Figure V.11. Box-and-whisker plots on total nitrogen, ammonium ion and total phosphorus 

concentrations in effluent of the optimized ANA scenario 

 

Considering the dissolved oxygen values for the first three basins, results followed the expected 

trends, with fewer requirements in aeration as less nitrogen was present. However, DO values seemed 

to be extremely low for some optimal points bringing in the question of plant redesign when urine 

source separation is envisaged at a proportion of 50% coupled to enhanced primary clarification. 

When considering DONITRITATION, values seemed to be stable around 2gO2.m
-3

 for all zones (figure 

V.10); however, even if an unexpected large range in Zone Ia and Ib was noticed, it did not seem to 

considerably influence the performance and energy consumption in the plant. Finally, the optimal 

solutions were not recognized as being sensitive to internal recycle (QI) and wastage (QW). 

Regarding the effluent concentrations over the optimal zones in figure V.11, it should be noticed that 

in Zone Ia, neither nitrogen nor phosphorus reject limits were respected. However, in the following 

zone (Zone Ib), less strict reject limits (TN < 15gN.m
-3

 and TP < 2 gP.m
-3

) were fully satisfied. In 

addition, Zone II and III respected the strict constraint limits imposed in this study (TN < 10gN.m
-3

 

and TP < 1 gP.m
-3

) with an extremely low amount of nitrogen reject in Zone III (TN around 3gN.m
-3

). 

 

V.3.3. Consequences on energy autarky 

 

With a view to energy autarky in wastewater treatment plants, one might propose the addition to the 

optimization problem of a supplementary objective function or constraint based, for instance, on the 

ratio between the recovered amount of energy and the consumed one. This parameter is hereafter 



Chapter V. Case Studies on Multi-Objective Optimization 

156 

 

called as Energy Return On Investment (EROI). However, given the results provided earlier, it was 

found that EROI is fully driven and optimized via the previously chosen objectives. Figure V.12 

presents the improvement in EROI (by colour gradient) along with the Pareto-optimal front in the 

reference case. Box-and-whisker plots were presented for electricity consumption and production in 

both REF and ANA scenarios through the bottom illustrations in figure V.12. As it might be noted, 

even without considering EROI explicitly among the objective functions for the REF scenario, it was 

optimized implicitly as followed the changes in three other functions. There is thus no need for a 

systematic integration of EROI in the problem formulation, unless the cost and LCIA were not 

genuinely approximated.  

 

 

Figure V.12: EROI (Energy return on investment) calculations for all solutions belonging to the 

optimal Pareto front (REF and ANA scenarios) 

[bottom graphics are box-whisker plots on consumed and produced electricity for REF and ANA 

scenarios] 

 

Moreover, it is important to state that, for the reference scenario, the optimal values did not allow the 

energy autarky to be achieved (EROI ranging from 0.65 to 0.81) and more specifically, EROI faced a 

decrease in Zone II and III, as a consequence of consuming more energy to provide better qualities. In 

reality, regarding the reference scenario, to achieve a relevant treatment, EROI cannot attain high 

values as the electricity consumption increases rapidly whereas its production encounters a slight 

increase only. From Zone Ia to Zone III, the electricity consumption rose from 0.43 to 0.53 kWh.m
-3
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while the produced electricity faced a slight increase from 0.34 to 0.36 kWh.m
-3

, which is to say an 

increase of 19% and 6%, respectively.  

As opposed to REF scenario, the alternative ANA scenario did not present a strong correlation of 

EROI with quality over the optimal Pareto front (figure V.12), as DOs were not highly correlated with 

objective functions. The problem drivers were indeed identified to be mainly the methanol and iron 

chloride addition. 

However, with a view to box-whisker plots (bottom figure V.12), it might be noted that, similarly to 

REF scenario, the shift from one zone to another (in the sense of decreasing EQI), increased the 

energy consumption; however, the produced electricity did not face any significant change during the 

shift. Moreover, ANA scenario allowed, for all zones, the energy autarky with EROIs evolving from 

1.48 to 1.82 due to an important increase in energy production compared to REF scenario. 

 

V.3.4. Benefits achieved from REF and ANA scenarios  

 

Table V.6 summarizes the main differences found when comparing REF and ANA scenarios with the 

objective functions being the effluent quality index, the operational cost and the environmental 

impacts, and by accounting for the amount of produced and consumed electricity, the addition of 

chemicals (iron chloride and methanol), the main reject concentrations (Total Nitrogen and Total 

Phosphorus) and GHG emissions by the endpoint category climate change for human health and 

ecosystem diversity. Also, general gains, which were presented in table V.6 (% gain is represented by 

(ANA-REF)/REF) passing from REF scenario to ANA scenario were shown throughout Zone II and 

III (figure V.10). 

As previously discussed, comparison might not be established for Zones Ia and Ib as the functional 

unit of the system is not the same considering the respected constraints. Throughout this study, it has 

been demonstrated that for Zone II and III, which represent the most relevant operating zones, all 

process parameters and objective functions were improved. Among the main gains, it is important to 

highlight the improvement in OCI by approximately 100% (due to the “negative cost” of electricity 

production), in quality by 10% and in environmental impacts (using the total aggregated ReCiPe 

Endpoint indicator) by 30%. 

Both consumed and produced electricity presented important gains. Considering the consumption, it 

was decrease by 28% and an increased of more than 70% was observed for produced electricity. 

Moreover, chemical addition decreased by more than 20% for methanol and 21% for iron chloride 

due, respectively, to less nitrogen and less phosphorus entering the plant to be conventionally treated. 
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When considering reject limits, even if in both scenarios constraints were respected for Zones II and 

III, ANA scenario allowed a decrease of 12% in rejected total nitrogen and of approximately 15% in 

total phosphorus. 

Finally, for the GHG emitted over the total life cycle (foreground and background together with 

avoided impacts), an important decrease of approximately 30% in climate change impact was noted 

for both human health and ecosystem diversity category. 

Table V.6. Benefits derived from ANA scenario when compared with REF scenario 

 REF ANA 

Average value for each zone II III II III 

OCI 

(€.m
-3

) 
0.056 0.071 -0.009 -116% 0.006 -91% 

EQI 

(kg poll-Eq.m
-3

) 
0.207 0.179 0.189 -9% 0.165 -8% 

LCIA 

(points) 
0.073 0.081 0.051 -31% 0.058 -28% 

Consummed electricity 

(kWh.m
-3

) 
0.52 0.53 0.37 -28% 0.38 -28% 

Produced electricity 

(kWh.m
-3

) 
0.35 0.36 0.61 +74% 0.62 +72% 

Methanol addition 

(m
3
.d

-1
) 

1.46 2.19 1.07 -27% 1.73 -21% 

Iron chloride addition 

(m
3
.d

-1
) 

3.87 4.06 3.04 -21% 3.19 -21% 

TN effluent 

(gN.m
-3

) 
6.29 3.72 5.52 -12% 3.29 -12% 

TP effluent 

(gP.m
-3

) 
0.88 0.76 0.74 -16% 0.66 -13% 

Climate change – Human health 

(points) 
0.022 0.024 0.015 -32% 0.017 -29% 

Climate change – Ecosystem diversity 

(points) 
0.015 0.016 0.010 -33% 0.011 -31% 
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V.4. Conclusions 

 

When evaluating WWTP scenarios, the decision-making is at the same time a crucial and difficult 

task. Commonly, there are several interconnected parameters and variables as well as multiple 

conflicting objectives. In this sense, the multi-objective optimization allows for a harmonious 

optimization of each objective despite their intrinsic contradictions, and therefore, provides a diverse 

set of optimal solutions. Throughout this study, it has been demonstrated that a coupled Dynamic 

Modelling - Life Cycle Assessment - Efficient Multi-Objective Optimization (DM-LCA-EMOO) 

platform is truly needed to provide a proper evaluation and comparison between different conventional 

and innovative WWTP scenarios, to allow further discussions on functions interdependencies, and to 

construct a reliable basis for decision-making.  

With regards to optimal wastewater treatment and management scenarios, the main process drivers 

were identified to be carbon and metal addition followed by dissolved oxygen set points. Throughout 

the optimal solutions, four main zones were particularly highlighted over the Pareto-optimal front 

where treatment performance depended on the achievement of more or less strict constraints. Energy 

aspects were also discussed by means of the consumed and produced electricity and the energy return 

on investment (EROI). It was proved that the alternative scenario ANA is capable of achieving energy 

autarky by decreasing electricity consumption and increasing its production. 

Moreover, the consequences resulting from the problem formulation, the simulation conditions (steady 

state versus dynamic) and the choice of environmental impact category throughout LCIA (ReCiPe 

Midpoint GWP versus the aggregated total ReCiPe Endpoint) were discussed and clarified. 

Accordingly, the major outcomes were that steady state importantly underestimates all the three 

objectives and the use of the aggregated total ReCiPe Endpoint is capable of representing almost all 

impact categories, except eutrophication which is linked to the discharge of pollutants. 

The benefits in case of an alternative scenario, at optimal conditions, which considers the urine source 

separation coupled with nitrogen treatment by nitritation and anaerobic deammonification (ANA), 

were compared with the conventional reference scenario (REF). The comparison showed that when 

managing nitrogen differently, significant gains might be achieved: approximately 100% in 

operational cost (OCI), 10% in water quality (EQI) and 30% in environmental impacts through the 

LCIA. Finally, presented results provided insights on a requirement for redesigning the plant when an 

alternative scenario is aimed as, for instance, really low dissolved oxygen set points were found for 

ANA scenario. 
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Finally, an important aspect of this work to be emphasized is that the developed platform was 

conceived to be flexible to other case studies. Therefore, the consistency of other conventional or 

alternative wastewater treatment plants can be evaluated with few modifications in framework’s 

flowsheet. 
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“Everything we think about regarding sustainability - from energy to agriculture to manufacturing to 

population - has a water footprint. Almost all of the water on Earth is salt water, and the remaining 

freshwater supplies are split between agricultural use and human use - as well as maintaining the 

existing natural environment.” (Jamais Cascio) 

 

Nowadays, wastewater might be considered as both a problem and an opportunity for recovery of 

nutrients and energy. When considered as a problem, in order to ensure the quality of water bodies and 

avoid other indirect environmental problems, wastewater is required to be correctly treated. This 

treatment requires the use of an important quantity of energy (especially for nitrogen treatment) and 

chemicals. When considering the environmental burden of the treatment, it is important thus to 

consider all the involved processes, from the entrance of the wastewater in the WWTP to the output of 

treated water and passing by the production of required raw materials and the disposal/ utilization of 

by-products.  

However, when considering wastewater as a source of valuable nutrients and energy, it is a promising 

alternative and thus WWTPs are nowadays being considered mainly as water resource recovery 

facilities. The recovery might include different and more or less innovative options such as energy 

recovery by biogas production and urine source separation with recovery/ treatment of nutrients 

(mainly nitrogen and phosphorus). 

Additionally, considering the whole urban water management as an anthropogenic activity that already 

allows the reutilisation of water in a cycle, it seems logical to think about nutrients recycling, 

especially when having in mind the future (or in some current cases) scenario of resources depletion 

and the need of achieving less intensified and more sustainable processes. 

The presented work is a result of a coupling approach including rigorous dynamic modelling, life 

cycle assessment with extended boundaries and efficient multi-objective optimization. When tackling 

comparisons between scenarios aiming to clarify the benefits and drawbacks of each scenario, realistic 

aspects were considered and the proposed alternative scenarios, that include mainly enhancement of 

biogas production and management of source separated urine, globally showed to be more sustainable 

than conventional ones. 

Globally, the main achievements through this study are described as follows. Concerning LCA, this 

work included the definition of a relevant approach according to the ISO methodology together with 

the correspondence between simulation results and LCA inputs. The coupling platform was developed 

and a range of conventional and alternative scenarios were analysed. With regards to influents, more 

reliability was obtained as this study considered the dynamic characterisation of urine and wastewater 
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followed by its inclusion in an adapted influent generator. Concerning the last part of this work - the 

multi-objective optimization - different problem formulations and case studies were proposed together 

with the application of the platform to conventional and alternative treatment scenarios. A detailed 

conclusion on each chapter’s achievement is provided hereafter. 

In chapter II, the importance of considering the environmental aspects when the eco-design of 

WWTPs is aimed was highlighted. A coupled platform integrating a wide-plant dynamic modelling 

and LCA was fully developed with data treatment by Python™. The approach was successfully 

applied to six WWTP scenarios. Scenarios with urine source-separation (USS) presented a positive 

effect on the effluent quality and decreased the energy consumption in WWTP while the enhanced 

primary clarification (EPC) led to important energy savings (with more energy recovery and less 

energy use). The coupling of these two approaches, led to energy autarky together with a better respect 

of reject limits. The most interesting scenarios showed to be the USS+EPC coupled to urine treatment 

by nitritation/deammonification (considering also feasibility and acceptability) and the agricultural 

valorisation as fertilizer. By the contribution analysis, hotspots were identified such as the 

infrastructures (which might be optimized if alternative scenarios are targeted), N2O direct emissions 

(which depend, among others, on the nitrogen concentration in WWTP input) and heavy metals in 

sludge. 

Following, chapter III presented the adaptation of a dynamic and phenomenological influent generator 

to take into account the urine source separation at a user specified level and its impact on total 

wastewater stream. The use of the influent generator, allowed in a non expensive way to obtain 

reliable influents that might be used later for simulation of alternative scenarios. Given its flexibility, it 

is also possible to envisage other alternative scenarios, and the generated variables might be easily 

used for different modelling approaches such as wide-plant modelling and ASM family models. By 

the end, the benefits from the urine separation were demonstrated by the dynamic simulation of a 

typical plant, where daily nutrient peak load were avoided and the reject quality was improved. The 

developed tool is thus available for future simulations including innovative wastewater and urine 

management scenarios and for their optimization. 

Chapter IV studied the feasibility of coupling the previously developed DM-LCA platform with an 

efficient multi-objective optimization (EMOO) approach dedicated to expensive black-box problems. 

The coupled DM-LCA-EMOO platform was capable of generating an optimal Pareto front that 

compromises between technological aspects (process performance), operational cost and 

environmental impacts. Also, the analysis of the differences between constrained and unconstrained 

optimization results allowed for a deeper view to the technological limitation of a given treatment 

process. Finally, relations between objectives were better understood: OCI and LCIA were positively 

correlated thanks to supply chain impacts and costs, while EQI showed to be negatively correlated 
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with them. Three main zones were also identified: (1) a zone with a unacceptable water quality easy to 

attain, (2) an intermediate zone where reject limits are respected with no exaggeration in costs and 

environmental impacts, (3) a zone of technological limitation where, further treatments may imply 

exaggerated costs and environmental impacts. 

Finally, chapter V promoted the application of the previously developed platform to an alternative 

scenario considering the urine source separation and the nitrogen treatment by nitritation and 

anaerobic ammonium oxidation. Together with the major gains identified, reaching approximately 

100% for operational costs, 10% for effluent quality and 30% for environmental impacts, the 

application of the platform also allowed identifying the differences between results when different 

problem formulations are available. Additionally, the platform provided also results concerning 

functions’ interdependencies and correlations between decision variables for different case studies. 

Furthermore, it is important to indicate that the major difference between this study and others found 

in the literature is the reliability of the framework when using dynamic simulations and a reliable 

dynamic input for WWTP and urine streams. Further, this study is the first one that comprises multi-

objective optimization of alternative scenarios, coupling wide-plant modelling and dynamic aspects, 

together with a relevant integration of LCA. Also, the alternative scenarios related to the urine source 

separation such as nitritation/deammonification and agricultural spreading - not so far evaluated in the 

literature through LCA - were also studied.  

In an effort to disseminate and encourage the inclusion of environmental aspects when assessing 

WRRFs as well as the multi-objective optimization approach to tackle wastewater management and 

treatment problems, this work resulted in 4 peer-reviewed papers that were already accepted or under 

preparation for submission. It was also communicated in 6 different conferences and seminars 

focusing each time on different aspects of the study, i.e. nutrient recovery and recycling, 

environmental assessment methodology and multi-objective optimization in order to ensure an 

enriching exchange between authors and the most involved researchers in each field.      

 

The perspectives might be divided into the three main aspects of the platform: wide-plant modelling, 

LCA and multi-objective optimization. Before, it should be noted that the flexibility is one of the main 

characteristics in the DM-LCA-EMOO platform. This characteristic was particularly pursued 

throughout this work. Special efforts were made during the construction of the platform in order to 

ensure its applicability to other benchmarks or other case studies that might become relevant. 

Considering modelling and simulation, the flexibility is especially important as WWTP flowsheets are 

frequently changing to achieve, for instance, lower required reject limits. One might also want to 
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evaluate a different and innovative process by comparing it with a reference one. Also, the modelling 

of specific parts of the process are evolving rapidly nowadays such as nitrous oxide emissions 

modelling that have not yet achieved a consensus in scientific and industrial communities. The latter, 

however, might completely revolve the choice of functioning parameters when sustainable scenarios 

are targeted. 

According to inputs in WWTP, it is also important to increase efforts to provide more realistic 

information at different level (time dependency, geographical and catchment characteristics). 

However, this is also highly dependent on real-world data collection that would allow the 

comprehension of dynamics, mainly for urine generation that is not deeply studied, especially 

according to aspects related to the time dependency and the fate of some components. Another 

interesting perspective that might be considered is the generation of other streams from a household 

when considering other source separation scenarios. 

Improving proposals in the field of LCA includes mainly the addition of dynamic aspects in the 

environmental assessment as well as the addition of more details – such as emerging substances - 

when the system is case specific. It should be noted that, currently, as LCA relies on steady state 

conditions, the dynamic results of WWTP operation are integrated and calculated in average. 

However, certain improvements in LCA would allow the consideration of the time dependency in 

background processes according to the operational functioning of the plant as well as long term 

changes in catchment and concentration changes in the wastewater input due to, for instance, 

population growth or water scarcity conditions. 

Another important effort to be made when considering environmental analysis coupled to WWTP 

scenarios concerns the infrastructure involvement, as evaluations based on alternative scenarios might 

also include infrastructure modifications in order to reflect their real gains. However, nowadays, a 

great uncertainty is involved in environmental analysis and thus, slight modifications in infrastructure 

might not be quantified correctly. In this sense, efforts have to be made in order to consider the 

infrastructure modelling in a rigorous way or at least to validate the uncertainties linked to a plant size 

range to allow the redesign of new alternative scenarios. Accordingly, one might think of an 

exhaustive list of perspective scenarios (with infrastructure changes) to be evaluated and optimized 

such as the inclusion of anaerobic ammonium oxidation in the mainstream as well as a multitude of 

processes for the treatment and valorisation of urine source separated. 

Considering the optimization aspects, methodology is evolving rapidly and recent advances on 

machine learning have been helpful in the field of expensive optimization. From the best of our 

knowledge, the utilisation of these tools, especially the Support Vector Machine (SVM) for efficient 

function recognition and approximation might represent an important gain in case of expensive 



Chapter VI. Conclusion and perspectives 

167 

 

optimization such as in WWTPs, but also when the optimization is subject to multiple stiff constraints. 

Finally, as the optimization platform is mixed-integer, there is also the possibility of including a 

superstructure in the optimization problem by using binary variables, the pathway to follow in the 

treatment, for instance in the case of urine source separation and especially when more complex 

problems such as full household waste managements or elevated retention percentages of urine are 

envisaged. 

As a final conclusion, the developed DM-LCA-EMOO tool is now available for both evaluation and 

optimization of any desired scenario in the field of WWTPs and WRRFs, under realistic assumptions 

and operational conditions. The tool is indeed flexible enough to be adapted to any related case studies 

and might be integrated to any existing modelling platform. 
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Résumé long en français 
 

Selon les Nations Unies, dans le monde, 40% des personnes souffrent d’une pénurie d'eau et 

ce nombre risque d’augmenter. En 2011, 41 pays ont connu un stress hydrique et, d'ici 2050, au moins 

une personne sur quatre serait touchée par des pénuries d'eau récurrentes. Globalement, encore 2,4 

milliards de personnes utilisent des installations d'assainissement précaires et au moins 1,8 milliard de 

personnes utilisent une source d'eau potable qui est contaminée par des fèces. En conséquence, environ 

1000 enfants meurent chaque jour en raison de maladies liées à l'eau et au manque d'assainissement. 

Les Objectifs du Millénaire pour le Développement (en anglais, Millennium Development 

Goals, MDGs) proposés en 2000 par le Programme des Nations Unies pour le développement, qui 

comptent parmi les huit principaux objectifs, la durabilité environnementale est arrivée à son terme en 

2015. Comme indiqué dans le rapport final (Nations Unies, 2015), des progrès ont été réalisés : 1,9 

milliard de personnes ont accès à l'eau potable depuis 1990 ; 2,1 milliards de personnes ont maintenant 

accès à un assainissement amélioré et 98% de substances appauvrissant la couche d'ozone ont été 

éliminées depuis 1990. 

Toutefois, de nombreux progrès restent à faire et certains points ont été laissés de côté. 

Comme indiqué dans le rapport final, le changement climatique et l'environnement se détériorent. Les 

chiffres relatifs aux impacts environnementaux directs sont alarmants: les émissions mondiales de 

dioxyde de carbone (CO2) ont augmenté de plus de 50% depuis 1990 et le taux de croissance des 

émissions entre 2000 et 2010 a été plus important que dans chacune des trois décennies précédentes; 

Les émissions de méthane (CH4) et de protoxyde d’azote (N2O), puissants gaz à effet de serre, 

pourraient augmenter de 50% et 25% entre 1990 et 2020 ainsi que la température moyenne mondiale 

qui a augmenté de 0,85 °C entre 1880 et 2012; En outre, le niveau moyen de la mer a augmenté de 19 

cm entre 1901 et 2010 et environ 40% des océans sont actuellement fortement touchés par les activités 

humaines; Enfin, on estime que 90% des eaux usées dans les pays en développement sont rejetées sans 

traitement (Nations Unies, 2016). 

Néanmoins, non seulement les chiffres sont alarmants. Les changements dans le contexte 

mondial deviennent de plus en plus évidents quand on considère la croissance de la population avec 

l'urbanisation et l'industrialisation, la demande alimentaire croissante, les changements de l'utilisation 

des terres et dans les niveaux de vie (UN-Water, 2015). Par conséquent, compte tenu de la pression 

croissante exercée sur les systèmes existants de collecte et de traitement des eaux usées, celles-ci sont 

évacuées sans traitement et la qualité de l'eau où elles sont déversées, diminue. Ce manque de 

traitement conduit à des impacts directs sur l'équilibre des écosystèmes aquatiques et finit en modifiant 

également les activités anthropiques, du développement urbain à la production alimentaire et à 
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l'industrie. En conséquence, l'environnement est menacé et soumis à des pressions ; également, la 

santé humaine est en voie de dégradation. 

Par conséquent, il est de plus en plus clair que les eaux usées, en tant que flux de pollution 

produit par l'activité anthropique qui a besoin d'utiliser les ressources naturelles, doivent retourner à 

l'environnement de manière sûre. Ceci est essentiel pour mettre fin à la dégradation engendrée par ce 

cycle non écologique et qui entraîne l'épuisement des ressources, la dégradation des écosystèmes et 

enfin l'exposition de la santé humaine à un danger imminent. Il est donc impératif de trouver une 

gestion et un traitement des eaux usées plus consciencieux pour atteindre des niveaux de traitement 

plus élevés et une robustesse afin de faire évoluer ensemble le lien écosystème - santé humaine. Dans 

ce sens, au lieu d'être une source de problèmes, les eaux usées bien gérées devraient jouer un rôle 

positif dans l'environnement, ce qui améliore la sécurité alimentaire, la santé et l'économie. Cependant, 

cela ne peut être fait que si la gestion des eaux usées est considérée comme faisant partie intégrante 

d'un cycle intégré et d'un système de gestion écosystémique comprenant des aspects sociaux, 

économiques, environnementaux et géographiques (Corcoran et al., 2010). 

Les eaux usées sont aujourd'hui décrites comme une ressource et un problème par plusieurs 

auteurs. Depuis 2013, des publications de la Water Environment Federation (WEF) ont commencé à 

utiliser le terme « WRRF – Water Resource Recovery Facility » plutôt que « WWTP – Wastewater 

Treatment Plant » pour « mieux cibler les produits et les avantages du traitement, plutôt que les 

déchets qui entrent dans ces installations » (WE & T, 2013). Dans le passé, l'objectif principal du 

traitement des eaux usées était d'atteindre les limites de rejet autorisées. De nos jours, les objectifs 

visent à maximiser la récupération des ressources précieuses bien que la qualité de l'eau soit maintenue 

et que la robustesse des processus soit atteinte. 

Lorsque l'on considère les éléments nutritifs, la partie la plus importante vient de l'urine. Par 

exemple, comme discuté par Tidaker et al. (2007), l'urine de la population suédoise contient environ 

36 kilotonnes d'azote et 3,3 kilotonnes de phosphore tandis que 170 kilotonnes d'azote et 15 kilotonnes 

de phosphore ont été consommées à partir d'engrais minéraux en Suède en 2001. Par conséquent, si 

l'azote, le phosphore et même le potassium de l’urine avaient été utilisés en remplacement des engrais 

synthétiques, la production industrielle de ceux-ci pourrait être diminuée et la décharge de ces 

nutriments serait également réduite (Johansson et al., 2000). 

Aussi, l'extraction des ressources des eaux usées n'est pas nouvelle. Certaines solutions telles 

que la production d'eau adapté à l'usage à posteriori (fit-for-purpose), les biosolides utilisés dans les 

terres agricoles et la production d'énergie provenant de la digestion anaérobie sont déjà courantes dans 

les stations d'épuration. De nos jours, on commence à étudier de nouveaux procédés pour produire / 
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récupérer des composés spécifiques des eaux usées comme la struvite précipitée (à utiliser comme 

engrais), les polyhydroxyalcanoates à partir des boues et à utiliser le gaz issu de la digestion pour 

produire du méthanol ou de l'ammoniac (WERF, 2011). 

En outre, l'utilisation des biosolides et des eaux usées elles-mêmes dans les terres agricoles est 

de plus en plus acceptée par la population. Dans les pays en développement, la réutilisation des eaux 

usées est due notamment à la capacité limitée de traiter les eaux usées et à l'absence d'autres sources 

d'eau acceptables pour l'agriculture. Dans les pays développés, la réutilisation et le recyclage de l'eau 

sont de plus en plus considérés comme un moyen de répondre à la pénurie sur place d’eau et à la 

réaffectation de l’eau dédie à l'agriculture à d'autres usages. En outre, toutes les normes 

environnementales strictes conduisent à une utilisation agricole inévitable et économiquement faisable 

des eaux usées et des boues (Drechsel et al., 2010). 

La digestion anaérobie est aujourd'hui un processus de valorisation dans plusieurs stations 

d’épurations. Dans ce procédé, la fermentation microbienne a lieu et convertit la matière organique en 

biogaz (principalement CH4 et CO2) qui peut ainsi être utilisé pour produire de l'énergie dans les 

systèmes de cogénération. Une autre conséquence de la digestion anaérobie est la minéralisation des 

composés organiques biodégradables qui conduit à une concentration élevée de NH4
+
 et PO4

3-
 en 

solution et à la stabilisation des boues (van Lier et al., 2008). Plusieurs études ont été menées afin 

d'améliorer la production de biogaz visant à inverser le bilan énergétique et à conduire les stations 

d'épuration à être en autarcie énergétique (Schaubroeck et al., 2015; Aichinger et al., 2015). Étant 

donné que la production de biogaz dépend des solides en suspension volatils entrant dans le digesteur 

qui seront dégradés, une possibilité d'augmenter la production de biogaz est de forcer l'entrée de plus 

de matière organique dans le digesteur. Ceci peut être fait en récupérant la matière organique entrant 

dans la station par une clarification primaire renforcée (avec une addition de produits chimiques pour 

obtenir une meilleure floculation), précédemment à sa dégradation dans la ligne d'eau par l'oxydation 

microbienne. Un autre avantage de la récupération de la matière organique à ce point est qu’il aura 

moins de croissance bactérienne pour traiter le carbone dans les bassins aérés et donc moins d'énergie 

sera nécessaire pour aérer la boue activée (Flores-Alsina et al., 2014). Des recherches plus récentes ont 

également été développées pour le procédé à forte teneur en boues activées (HRAS) - Jimenez et al., 

2015 - travaillant à faible temps de rétention de la boue et également pour le processus de nitritation 

partielle et anammox sur la ligne principale (Laureni et al., 2016). Si le couplage des deux approches 

précitées réussissait, cette approche innovante permettrait de minimiser la dégradation aérobie de la 

matière organique et de produire des boues plus fermentescibles pour la digestion anaérobie (Xu et al., 

2015). 
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Une des possibilités prometteuses de la récupération du phosphore est la précipitation de la 

struvite provenant des eaux usées. La struvite (phosphate d'ammonium et de magnésium hexahydraté - 

MgNH4PO4 · 6H2O) est un engrais à libération lente qui pourrait remplacer les engrais industriels 

conventionnels. La récupération de la struvite à partir des eaux usées permettrait non seulement une 

diminution de la production d'engrais minéraux et l'épuisement des ressources naturelles de phosphore, 

mais aussi une diminution du phosphore rejeté. Cependant, pour être réalisables et présenter des 

avantages réels, la précipitation de la struvite doit être conduite dans des eaux usées riches en 

nutriments, contenant principalement du phosphate et de l'ammonium. Plusieurs études ont été menées 

pour la précipitation de la struvite en utilisant, entre autres, le surnageant de digesteur, le lixiviat de 

décharge et l'urine. Cependant, comme l'ont discuté Maurer et al. (2006), sans ajout de phosphate, 

seulement 3% de l'azote dans l'urine pourraient être éliminés dans la précipitation de la struvite (avec 

une précipitation efficace de 98% de phosphore). Par conséquent, davantage de recherches sur les 

nouveaux procédés de récupération de l'azote sont encore nécessaires. 

Comme précédemment mentionné, plusieurs possibilités de valorisation sont disponibles et 

bien appliquées dans les stations d'épuration. Cependant, l'un des freins pour tirer pleinement parti de 

la récupération des ressources dans les eaux usées est que dans les eaux usées municipales, les flux 

riches en éléments nutritifs (par exemple l’urine et les fèces) ne doivent pas être dilués (par exemple 

par les eaux grises) et donc la séparation à la source devrait être encouragée. Dans le même temps, le 

choix des systèmes centralisés ou décentralisés n'est pas évident: entre autres, l'approche de gestion 

dépend de la zone (urbaine ou rurale), de la taille et de la densité de la population, du niveau de 

développement, de la faisabilité technique, de la qualité de l’eau requise et de l'éducation et de la 

culture de la population, étant nécessaire de l’évaluer au cas par cas (Corcoran et al., 2010, Libralato et 

al., 2012). 

De nombreux aspects des systèmes centralisés et décentralisés font l'objet de discussions dans 

la littérature. Selon Libralato et al. (2012), quelques aspects importants à prendre en compte pour les 

systèmes centralisés sont les coûts concurrentiels des installations existantes, les phénomènes 

potentiels d'eutrophisation et les problèmes de surcharge en eau de pluie. D'autre part, les systèmes 

décentralisés peuvent répondre à des situations diverses, à la  diminution ou à l’arrêt de la réduction de 

la qualité de l'eau dans les bassins versants et permettre la récupération et le recyclage des nutriments à 

partir des eaux usées comme dans le cas de la séparation de l'urine à la source. 

De plus, certains inconvénients ont également été présentés dans les systèmes pilotes 

décentralisés tels que les précipitations et, par conséquent, le colmatage des tuyaux et les odeurs ainsi 

que les difficultés lors que des changements dans le système centralisé sont nécessaires et le stockage 

et le transport doivent être ajoutés à la nouvelle structure de gestion (Maurer et Udert et al., 2003). En 
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ce qui concerne les impacts, certaines études ont montré des impacts plus importants pour 

l'acidification lors de l'analyse de l'empreinte écologique des systèmes séparés à la source. Cependant, 

il est également souligné que, contrairement aux systèmes conventionnels déjà optimisés, les systèmes 

alternatifs doivent être bien évalués afin d'obtenir des résultats optimaux en termes de qualité des 

effluents et de consommation d'énergie et de produits chimiques (Remy, 2010). 

Même lorsque l'on dispose de données pour évaluer les technologies classiques et les 

nouvelles technologies, on pourrait prétendre que, selon la méthodologie utilisée pour évaluer le 

processus, les résultats seraient différents. Il est donc nécessaire d'avoir une méthodologie normalisée 

pour évaluer l'ensemble du processus et de ses besoins. Actuellement, différents outils d'évaluation 

sont disponibles pour évaluer la durabilité des systèmes tels que l'analyse de l'exergie, l'analyse 

économique et l'Analyse de Cycle de Vie (ACV) (Balkema et al., 2002). 

Dans le but d'analyser l'empreinte écologique des stations d'épuration, plusieurs études 

suggèrent l'utilisation de l'ACV. Cette méthodologie permet d’évaluer les impacts environnementaux 

attribués au cycle de vie d'un processus ou d'un produit. Selon l'ISO 14044 (2006), l'ACV est définie 

comme la compilation et l'évaluation des intrants, des sortants et des impacts environnementaux 

potentiels d'un système ou d’un produit tout au long de son cycle de vie. Dans ce contexte, il convient 

de tenir compte de l'impact de la décharge des effluents (approche de fin de cycle), mais également de 

l'ensemble des processus associés au traitement principal, tels que le traitement et l'élimination des 

boues, la consommation d'énergie et la production de matériaux auxiliaires. 

Lors de l’application d’une ACV sur un procédé, les quatre étapes principales recommandées 

par l'ISO 14044 (2006) doivent être suivies: i.) La définition de l'objectif et du scope de l’étude; ii) la 

définition de l'inventaire; iii) la phase d'analyse d'impact et iv.) L'interprétation. La première étape, la 

définition de l'objectif et du scope, permet de décrire le système en fonction des limites du même, de 

l'unité fonctionnelle et des méthodes d'allocation. Aussi, la bonne définition de l’unité fonctionnelle 

permet la comparaison entre différentes alternatives. La deuxième étape, l'inventaire du cycle de vie, 

est la compilation des toutes les consommations estimées de ressources de l'environnement et des 

substances émises à l'environnement pendant le cycle de vie. A la fin de cette étape, un inventaire du 

système est obtenu sur la base d'une unité fonctionnelle bien définie. La troisième étape, l’évaluation 

de l'impact sur le cycle de vie, fournit la corrélation entre les substances émises et les indicateurs 

d'impacts sur l'environnement. Enfin, la dernière étape, c’est-à-dire, l'interprétation de l’analyse du 

cycle de vie, apparaît naturellement lors de l’étape de décision, après la comparaison des scénarios 

(Rebitze et al., 2004) et de l’identification des hotspots dans le système étudié. 
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Dans le domaine du traitement de l'eau et des eaux usées, l'ACV a déjà été utilisée dans 

plusieurs études pour évaluer les performances environnementales des technologies proposées. Les 

différentes applications de l'ACV dans ce domaine publiées jusqu'à présent ont été recensés 

(Corominas et al., 2013a) pour différentes configurations de stations d'épuration ainsi que pour les 

technologies de gestion des boues d'épuration (Yoshida et al., 2013) et pour le système complet d’eau 

urbain (Loubet et al. ). Cependant, comme les résultats sont généralement obtenus par les données 

collectées sur site, les études ne peuvent pas être utilisés pour analyser automatiquement les tendances 

générales ni pour optimiser les processus. Par conséquent, la prise en compte d'une ACV avec les 

outils de modélisation et de simulation est une approche puissante pour permettre la modification des 

paramètres opérationnels et de l’écoconception. Cependant, il faut souligner que, pour être réaliste et 

pour fournir une comparaison équitable par rapport aux scénarios étudiés, l’ACV doit être conduite en 

tenant compte des limites appropriées et d’une méthodologie d'allocation pertinente. Par exemple, lors 

de l'analyse de la récupération des nutriments, l'évaluation du cycle de vie doit être adaptée pour tenir 

compte de tous les impacts évités via les sous-produits. De même, les nouvelles fonctions du système 

doivent être ajoutées car les nouveaux scénarios ne fourniront plus la même unité fonctionnelle. 

Une autre caractéristique importante de l'ACV qui permet de l'appliquer à la quantification des 

impacts et à l'évaluation des scénarios dans le traitement des eaux usées apparaît quand on considère 

les émissions directes de la station d’épuration. Même si aujourd'hui, les méthodologies d'évaluation 

de l'impact sur le cycle de vie ne sont pas capables d'intégrer toutes les substances sortant d'une station 

d'épuration, comme les résidus des produits de soins et les résidus de médicaments, les principales 

émissions résultantes de la mise en œuvre d'un traitement des eaux usées (tels que le rejet de polluants 

non traités, le rejet des gaz à effet de serre et la forte consommation d'énergie et de produits 

chimiques) peuvent être correctement quantifiés et évalués par les catégories d'impact actuellement 

disponibles (par exemple l'eutrophisation marine et d'eau douce, la toxicité humaine, le changement 

climatique et l'épuisement des ressources). 

Cependant, lorsqu'une nouvelle technologie doit être évaluée en tenant compte de la durabilité 

mais aussi des aspects techniques et économiques, il est important de conduire une optimisation. De 

plus, cette optimisation doit considérer, non seulement un point de fonctionnement optimal; Il 

nécessaire de faire des compromis entre les différents résultats sans aucun jugement préliminaire. 

Comme l'explique Deb (2011), l'optimisation multi-objectif consiste à optimiser 

simultanément plus d'un objectif. Contrairement à l'optimisation mono-objectif, l'optimisation multi-

objectifs minimise toutes les fonctions objectives, généralement contradictoires, simultanément et sans 

utiliser une équivalence entre les objectifs via des poids. Par conséquent, un ensemble de solutions, 

appelé un front de Pareto, est généralement obtenu à la fin d'une optimisation multi-objectif. Ensuite, 
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une étape supplémentaire, le processus décisionnel, est nécessaire pour comprendre les compromis et 

pour trouver le point de fonctionnement optimal, si besoin. En outre, étant donné que les objectifs 

contradictoires sont le plus souvent impliqués, aucune des solutions optimales trouvées ne peut être 

améliorée sans aggraver au moins un des autres objectifs (Hakanen et al., 2011) et ainsi les solutions 

ne peuvent pas être facilement triées seulement sur la base de leur valeur objective. 

Il existe différentes façons de résoudre un problème d'optimisation multi-objectif parmi 

lesquels les algorithmes génétiques, largement connus en raison de leur robustesse. Dans cette 

méthode, l'optimisation est réalisée en utilisant une population de solutions, habituellement créées au 

hasard et donc la robustesse est assurée indépendamment de la qualité de l'initialisation. Ensuite, 

l'algorithme fournit une opération de génération (itérative) mettant à jour la population actuelle pour 

créer de nouvelles populations basées sur des opérations génétiques telles que la sélection génétique, 

le croisement, la mutation et la migration. Cette opération, basée sur la génération, est poursuivie 

jusqu'à ce qu'un ou plusieurs critères de terminaison prédéterminés soient satisfaits (Deb, 2011). 

Du point de vue de l'application, l'optimisation de la conception et de l'exploitation des 

stations d'épuration a été appliquée depuis les années 1990. En général, les stratégies d'optimisation 

décrites dans la littérature sont basées sur l'agrégation, c'est-à-dire que l'optimisation est réalisée en 

agrégeant plusieurs objectifs en une fonction objective unique à travers des facteurs de poids 

représentant l'importance de chaque objectif (Hakanen et al., 2011; 2013). 

Cependant, comme décrit par Hreiz et al. (2015) dans un état de l’art de l'optimisation des 

stations d’épuration, plusieurs objectifs n'ont pas les mêmes unités (et parfois ils sont même 

contradictoires) et ne peuvent donc pas être combinés instinctivement pour former une seule fonction 

objective. D'un point de vue pratique, même si des procédés hautement non linéaires sont présents 

dans une station d’épuration, par exemple en raison d’une modélisation rigoureuse des réactions 

biochimiques, il est important d'éviter l'agrégation des objectifs et de préserver la structure 

intrinsèquement multi-objective du problème d'optimisation. Par exemple, la qualité des eaux usées 

traitées et les coûts opérationnels sont deux objectifs contradictoires car, pour atteindre des 

concentrations faibles de matière organique, d’ammonium ou de phosphate dans les effluents, la 

consommation d'énergie et de produits chimiques dans l’usine doit être élevée. 

L'optimisation multi-objectif est reconnue comme étant plus appropriée pour traiter les 

problèmes dans les stations d’épuration en raison de la nature conflictuelle des objectifs pris en 

compte. De plus, l'utilisation d'algorithmes d’optimisation qui n’utilisent pas un gradient tels que les 

algorithmes génétiques peut être priorisé pour éviter les incertitudes dues à l'approximation numérique 

des gradients dans les systèmes hautement non-linéaires et pour assurer la robustesse de l'algorithme. 
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Néanmoins, en ce qui concerne ces algorithmes, le principal inconvénient est le budget numérique 

requis. Aussi, l'étude d’une station d’épuration complète est un exemple d'un problème d'optimisation 

coûteux, où la résolution sans un outil d'optimisation efficace serait pratiquement impossible. 

Dans le but de fixer un budget de calcul qui permet d'obtenir un front de Pareto optimal, 

Ahmadi et al. (2016) ont proposé un nouvel algorithme appelé AMOEA-MAP pour traiter les 

problèmes coûteux de simulation et réduire le budget informatique de l'optimisation à environ 300 

évaluations de la fonction objective. Les modifications proposés dans cet algorithme reposent 

principalement sur le maillage adaptatif de l'espace de recherche, pour accélérer la recherche sans 

perte de précision et sur une approche bi-population (Ahmadi et al., 2016). 

Finalement, le choix des systèmes innovants et plus durables de gestion et de traitement des 

eaux usées nécessite un soutien décisionnel multicritère capable de prendre en compte tous les aspects 

techniques, économiques et environnementaux. Par conséquent, il est nécessaire d'avoir un outil 

capable de prédire de manière fiable et interconnectée les avantages et les inconvénients lors de 

l'application d'une technologie nouvelle. 

Les travaux présentés dans ce manuscrit poursuivent une thèse conclue au Laboratoire 

d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) de Méry (2012). Dans le travail 

précédemment cité, un outil intégré pour la modélisation et l'évaluation du cycle de vie appliqué à 

l'analyse environnementale des stations de potabilisation de l’eau a été mis au point avec succès. En 

revanche, ce travail été axé sur le développement de la modélisation et de la simulation des processus 

unitaires en régime stationnaire (considérées comme satisfaisantes pour ce type de processus) et sur 

l'application à une installation existante. Suite à l'idée de cette approche antérieure, il semblait évident 

que la même approche pourrait être appliquée à d'autres champs d’étude comme le traitement des eaux 

usées. Cependant, comme les processus physico-chimiques et biologiques impliqués dans ce type de 

procédé sont complexes et dépendent fortement des entrants (composition, variation de débit), il est 

extrêmement important d'adopter une modélisation rigoureuse et dynamique. Un autre intérêt 

recherché dans le présent travail est la construction de scénarios de perspective, ce qui signifie que 

l'outil devrait avoir un aspect prédictif et une capacité d'écoconception. Une approche d'optimisation 

multi-objectif devrait alors être intégrée pour aborder les objectifs contradictoires impliqués. 

 

L'objectif principal de cette étude est donc d'obtenir une plateforme couplant la 

modélisation dynamique rigoureuse, l'analyse de cycle de vie et un outil d'optimisation multi-

objectif efficace. 
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La plateforme développée, DM-LCA-EMOO, doit être flexible afin de permettre la mise en 

œuvre des différents scénarios ainsi que des multiples critères en fonction des différents paramètres de 

décision. Aussi, pour atteindre les objectifs, les outils impliqués dans la plateforme doivent être 

interconnectés avec leurs paramètres de processus et leurs résultats. Initialement il est donc nécessaire 

de contrôler automatiquement les simulateurs commerciaux existant ainsi que d'exécuter des 

simulations et de récupérer les résultats. Lorsque les résultats sont récupérés, ils doivent être convertis 

en substances et modules corrects pour l'ACV afin de permettre la prise en compte des processus de 

premier plan et de fond avec les bilans de masse et d'énergie. Des exemples de valeurs importantes 

récupérées sont la violation des limites de rejet, la quantité d'énergie produite sur la quantité d'énergie 

consommée, les concentrations moyennes en sortie de la STEP, entre autres.  Aussi, les impacts 

doivent être obtenus d’une sorte à ce qu’à la fin de l'évaluation d'une gamme de scénarios, une analyse 

de contribution détaillée puisse identifier les hotspots les plus importants de chaque scénario à 

optimiser ultérieurement. Enfin, pour permettre l'optimisation multi objectif des scénarios, la 

plateforme doit être reliée à un algorithme d’optimisation multi-objectif efficace qui permet 

l'optimisation de la station d'épuration. 

La plateforme développée doit être en mesure d'évaluer et de comparer les options de gestion 

et de traitement des eaux usées classiques et alternatives. Parmi les alternatives envisagées, on cherche 

à étudier la séparation à la source de l’urine avec un traitement spécifique (production de la struvite et 

nitritation / oxydation anaérobie d'ammonium) et / ou la valorisation en agriculture et la clarification 

primaire renforcée pour augmenter la production de biogaz dans la station d’épuration afin d’atteindre  

une autarcie énergétique. 

L'intérêt d'une telle plateforme combinée peut être compris sous deux angles. Premièrement, il 

s'agit d'un outil de validation de benchmark, qui consiste donc à évaluer et à comparer des scénarios 

conventionnels et alternatifs (approche DM-LCA - chapitre 2). Deuxièmement, lorsqu'elle est couplée 

à l'outil d'optimisation, la plateforme est capable d'optimiser simultanément les variables 

opérationnelles et de conception (approche DM-LCA-EMOO - chapitres 4 et 5), pouvant  aussi valider 

des nouvelles configurations avec un réajustement des conditions de fonctionnement en raison des 

modifications éventuelles de la structure de l'installation et des conditions de fonctionnement. De plus, 

afin de satisfaire aux objectifs de modélisation et de simulation, un générateur d'influents 

phénoménologique et dynamique doit être adapté pour tenir compte des intrants réalistes dans la 

station d'épuration et dans le traitement de l’urine (chapitre 3). 

Ce manuscrit est structuré en 6 chapitres. Le chapitre I présente le contexte et les objectifs de 

la thèse en présentant les principaux défis à relever en tenant compte des approches existantes dans la 

littérature. Dans ce contexte, les objectifs de recherche et les tâches correspondantes sont définis. 
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Le chapitre II décrit le développement initial de la plateforme qui couple la modélisation 

dynamique et l'évaluation du cycle de vie avec des limites étendues. De plus, la plateforme développée 

est utilisée pour évaluer des scénarios conventionnels et alternatifs. En mettant l'accent sur le choix de 

scénarios alternatifs pour l'avenir, l'attention a été portée à la modélisation et à l'analyse des hotspots 

de chaque scénario visant à les optimiser davantage. 

Le chapitre III présente l'adaptation d'un générateur influent phénoménologique et dynamique 

qui est nécessaire pour obtenir des données d’influents plus réalistes (et par conséquent des résultats 

de simulation plus précis) pour des scénarios de séparation à la source de l'urine avec le flux d'eaux 

usées résultant. 

Le chapitre IV est une étude préliminaire sur l'optimisation multi-objectif de la station 

d'épuration qui vise à comprendre la faisabilité d'une telle optimisation, tant du point de vue du calcul 

que de la fiabilité. Une attention particulière est portée dans ce chapitre à la formulation du problème 

en tenant compte des variables de décision, des fonctions objectives et des contraintes. Le choix d'un 

algorithme d'optimisation efficace est également discuté et justifié. 

Finalement, le chapitre V présente l'application de la plateforme DM-LCA-EMOO élaborée 

précédemment à un scénario de référence et à des scénarios alternatifs. De plus, différentes 

formulations de problèmes sont étudiées en même temps que ses effets sur les résultats du front de 

Pareto. 

Enfin, le chapitre VI présente les principales conclusions de ce travail ainsi que les 

perspectives qui suivent cette thèse. 

 

Chapitre II 

Ce chapitre est publié dans Water Research, 84 (99-111), doi: 10.1016 / j.watres.2015.06.048. 

Il est le résultat du couplage de la modélisation dynamique et de l’analyse de cycle de vie (ACV) avec 

l'application correspondante à plusieurs scénarios. Les scénarios étudiés comprennent i.) Un scénario 

de référence; ii) un scénario de clarification primaire renforcée; iii) un scénario de séparation d'urine à 

la source; iv) un scénario combinant les variantes ii et iii (USS + EPC); v.) Un scénario adapté du 

scénario iv où le flux résiduel riche en azote issu de la précipitation de la struvite est épandu sur les 

terres agricoles et valorisé comme engrais (USS + EPC + AGRI); vi.) Un scénario adapté de iv où le 

flux riche en azote est traité par nitritation / oxydation anaérobie d'ammonium conjointement avec 

l'effluent de déshydratation provenant de la digestion anaérobie (USS + EPC + ANA). 
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Le choix des scénarios reflète ce qui a été discuté précédemment dans l'introduction et est 

inévitable aujourd'hui: Les stations d'épuration devraient se diriger vers les installations de 

récupération d’énergie et nutriments afin d'obtenir des systèmes de gestion et de traitement des eaux 

usées plus durables. Toutefois, cette perspective respectueuse de l'environnement ne peut être atteinte 

et bien évaluée qu'en ayant une vision intégrée de l'ensemble du processus et en considérant la voie 

complète des eaux usées, de la source à la réutilisation de l'eau traitée dans l'environnement et à la 

récupération des sous-produits. 

Plusieurs questions doivent être adressées lors de la modélisation de ces systèmes. Afin de 

répondre à cette approche comparative qui permet d’aller vers les systèmes plus durables, la 

plateforme a été développée en tenant compte des frontières étendues de l'évaluation du cycle de vie, 

c'est-à-dire que toutes les émissions (directes et indirectes), ainsi que les émissions évitées ont été 

prises en compte. 

 

Chapitre III 

La récupération des nutriments, en particulier de l'azote et du phosphore, pourrait être 

envisagée si l’urine était récupérée séparément et non diluée. En ce qui concerne les expériences de 

séparation de l'urine à la source, plusieurs études pilotes ou même des villages écologiques ont été mis 

en œuvre de nos jours. Cependant, peu de études de modélisation et de simulation ont été trouvées sur 

la littérature concernant cette séparation. A la connaissance des auteurs, il s’agit d’une conséquence de 

la variabilité de la concentration et de la génération de l’urine qui n'est pas constante car elle dépend 

du comportement humain et il est donc difficile de caractériser dynamiquement l'urine de manière 

réaliste. Par conséquent, il est essentiel d'avoir un outil pour générer un flux d’urine réaliste, 

dynamique et standardisé ainsi que les autres flux d'eaux usées. Comme montré dans une revue 

proposée par Martin et Vanrolleghem (2014) sur l'analyse et la génération d'influents, plusieurs 

approches sont actuellement disponibles pour pallier au manque d'information sur les influents. 

Cependant, il existe encore un besoin important de mettre en œuvre des générateurs d'influent plus 

réalistes. 

En conséquence, l'objectif de ce chapitre est de proposer un générateur d'influent flexible, 

dynamique et phénoménologique pour considérer à la fois l’urine et les eaux usées. Ce chapitre est en 

préparation pour être soumis à une revue en partenariat avec l'Institut Eawag afin d'assurer des aspects 

réalistes dans la génération d'urine. Ce générateur d'influent a été adapté à partir du générateur 

d'influent dynamique et phénoménologique de Gernaey et al. (2011). Les données sur la composition 

des urines et des eaux usées ont été obtenues à partir d'une compilation de la littérature pour respecter 
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les données réelles. Aussi, le modèle est flexible et permet de simuler des études de cas spécifiques 

(lorsque l'utilisateur veut considérer, par exemple, d'autres systèmes de séparation à la source, d'autres 

dynamiques de génération ou d'autres conditions géographiques ou de collecte) ainsi que l'utilisation à 

posteriori des influents dans les modèles de la famille ASM et les super-modèles. 

 

Chapitre IV 

Lorsqu'un outil automatisé est disponible pour la quantification des performances, des coûts et 

des impacts environnementaux tels que la plateforme précédemment décrite, on pourrait vouloir 

analyser un large éventail de scénarios disponibles et d'alternatives opérationnelles. Cependant, étant 

donné l'aspect rigoureux des simulateurs dynamiques, le problème pourrait facilement devenir coûteux 

et complexe à résoudre, avec des exigences considérables en termes de temps de calcul. 

Une étude de faisabilité de l’optimisation - du point de vue du temps de calcul et des 

perspectives de fiabilité - a donc été menée dans ce chapitre (récemment accepté pour publication dans 

Chemical Engineering Research and Design) en tenant compte de trois fonctions objectives: le coût 

opérationnel, la qualité des effluents et les impacts environnementaux. De plus, l'impact de l'addition 

de contraintes a été analysé sur la base des limites de rejet européennes. Aussi, l'étude de faisabilité a 

été menée à l'aide d'un scénario alternatif (séparation de la source d'urine et traitement par struvite et 

nitritation / anammox) pour assurer l'optimisation d'un problème plus complexe que celui de la station 

d’épuration classique. 

 

Chapitre V 

Lorsqu'un outil rigoureux et intégré est disponible et que la faisabilité de l'approche a déjà été 

validée, une analyse appropriée des différentes études de cas du monde réel peut être réalisée afin de 

comprendre, par exemple, comment les objectifs, les contraintes ou la dynamique du processus sont 

influencés par un point de fonctionnement de la station d’épuration. Par ailleurs, pour la suite, des 

études comparatives basées sur l'optimisation sur différents scénarios alternatifs par rapport aux 

procédés conventionnels sont pratiques et fiables à réaliser. En effet, dans ce cas, l'optimisation 

devient un outil puissant pour aider à l'apprentissage des interactions entre les systèmes et des objectifs 

interdépendants. 

Par conséquent, un des objectifs de ce chapitre est d'étudier les différentes formulations de 

problèmes ainsi que leurs conséquences sur les résultats optimaux, lorsqu'ils sont appliqués aux 
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scénarios de référence ou aux scénarios alternatifs. Ensuite, sur la base d'un scénario conventionnel de 

référence, des études comparatives sur la simulation dynamique par rapport à l'état stationnaire sont 

fournies. De plus, l'impact de la formulation de contraintes sur la qualité des solutions optimales est 

discuté. La différence entre la méthode ReCiPe Endpoint et le ReCiPe Midpoint pour l'analyse 

environnementale est également réalisée en tant qu'étude comparative. Enfin, une comparaison entre la 

référence et un scénario alternatif (séparation de l’urine à la source suivie d'un traitement de l’azote) 

est fournie. Ce chapitre sera soumis pour publication dans la revue Water Research. 

 

Conclusions et perspectives 

De nos jours, les eaux usées peuvent être considérées à la fois comme un problème et comme 

une occasion de récupération des nutriments et de l'énergie. Si considérée comme un problème, vu 

qu’on doit assurer la qualité de l’eau dans les bassins versants et éviter d'autres problèmes 

environnementaux indirects, les eaux usées doivent être correctement traitées. Ce traitement nécessite 

l'utilisation d'une quantité importante d'énergie (en particulier pour le traitement de l'azote) et de 

produits chimiques. 

Cependant, si l'on considère les eaux usées comme source d'éléments nutritifs et d'énergie, 

elles sont une alternative prometteuse et, par conséquent, les stations d'épuration sont aujourd'hui 

considérées principalement comme des installations de récupération des ressources. La récupération 

pourrait inclure des options différentes et plus ou moins innovantes telles que la récupération d'énergie 

par la production de biogaz et la séparation à la source de l'urine avec la récupération / traitement de 

nutriments (principalement l’azote et le phosphore). 

Le travail présenté dans ce manuscrit est le résultat d'une approche de couplage comprenant 

une modélisation dynamique rigoureuse, une évaluation du cycle de vie avec des limites étendues et 

une optimisation multi-objectif efficace. En ce qui concerne les influents, une plus grande fiabilité a 

été obtenue puisque cette étude a examiné la caractérisation dynamique de l'urine et des eaux usées 

suivie de son inclusion dans un générateur d'influents adapté. En ce qui concerne la dernière partie de 

ce travail - l'optimisation multi-objectifs - différentes formulations de problèmes et études de cas ont 

été proposées avec l'application de la plateforme aux scénarios de traitement conventionnels et 

alternatifs. 

En outre, il est important d'indiquer que la principale différence entre cette étude et d'autres 

trouvés dans la littérature est la fiabilité de la plateforme lors de l'utilisation de simulations 

dynamiques et d’une entrée dynamique plus fiable pour les flux, notamment d'urine. De plus, cette 
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étude est la première qui comprend l'optimisation multi-objectif de scénarios alternatifs, couplant la 

modélisation de la totalité de la station et les aspects dynamiques, ainsi qu'une intégration pertinente 

de l'ACV. On a également étudié les scénarios alternatifs liés à la séparation de l’urine à la source et 

l’épandage agricole pas encore largement évalués dans la littérature par l’ACV. 

Les perspectives pour la suite de cette étude pourraient être divisées en trois principaux 

aspects de la plateforme: la modélisation de la station d’épuration, l'ACV et l'optimisation multi-

objectif. Aussi, il convient de noter que la flexibilité est l'une des principales caractéristiques de la 

plateforme DM-LCA-EMOO et que cette caractéristique a été particulièrement envisagée tout au long 

de ce travail. Des efforts particuliers ont été déployés pendant la construction de la plateforme afin 

d'en assurer l'applicabilité à d'autres cas d’études qui pourraient devenir pertinentes dans le futur. 

En ce qui concerne la modélisation et la simulation, la souplesse est particulièrement 

importante, car les technologies et les configurations changent fréquemment pour atteindre, par 

exemple, des limites de rejet plus faibles. En outre, la modélisation de certaines parties du processus 

évolue rapidement de nos jours, comme la modélisation des émissions de N2O qui n'ont pas encore 

atteint un consensus dans les communautés scientifiques et industrielles. Ces derniers, cependant, 

pourraient changer complètement le choix des paramètres de fonctionnement lorsque des scénarios 

durables sont ciblés. 

Selon les intrants de la station d'épuration, il est également important d'intensifier les efforts 

pour fournir des informations plus réalistes à différents niveaux (dépendance temporelle, 

caractéristiques géographiques et de collecte). Cependant, cela dépend aussi fortement de la collecte 

de données qui permettrait la compréhension de la dynamique, principalement pour la génération de 

l’urine qui n'est pas profondément étudiée, en particulier en fonction des aspects liés à la dépendance 

de la concentration de certains composants. Aussi, une perspective intéressante qui pourrait être 

considérée est la génération d'autres flux d'un ménage lors de l'examen d'autres scénarios de séparation 

de source. 

L'amélioration des propositions dans le domaine de l'ACV comprend principalement l'ajout 

d'aspects dynamiques dans l'évaluation environnementale ainsi que l'ajout de plus de détails - comme 

les substances émergentes telles que les micropolluants. Il convient de noter que, actuellement, comme 

l'ACV repose sur des conditions statiques, les résultats dynamiques de l'exploitation de la station 

d’épuration sont intégrés et calculés en moyenne. Cependant, certaines améliorations de l'ACV 

permettraient de tenir compte de la dépendance temporelle des processus de background en fonction 

de l’opération de l'installation ainsi que des changements à long terme des systèmes de collecte. 
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Un autre effort important à réaliser lorsque l'on considère l'analyse environnementale couplée 

aux différents scénarios de gestion et de traitement des eaux usées concerne l'infrastructure, car les 

évaluations basées sur des scénarios alternatifs devraient également inclure des modifications 

d'infrastructure afin de refléter leurs gains réels. Cependant, de nos jours, une grande incertitude est 

impliquée dans l'analyse environnementale et par conséquent, de légères modifications dans 

l'infrastructure peuvent ne pas être quantifiées correctement. Dans ce sens, des efforts doivent être 

déployés pour considérer la modélisation des infrastructures de manière rigoureuse ou du moins pour 

valider les incertitudes liées à la taille d'une installation afin de permettre des conclusions plus réalistes 

pour les scénarios alternatifs. Par conséquent, on pourrait penser à une liste exhaustive de scénarios de 

perspective (avec des changements d'infrastructure) à évaluer et optimiser tels que l'inclusion de 

l'oxydation anaérobique de l'ammonium dans la filière principale d’une station d’épuration ainsi 

qu'une multitude de procédés pour le traitement et la valorisation de l’urine séparée à la source. 

Considérant les aspects d'optimisation, la méthodologie évolue rapidement et les progrès 

récents sur l'apprentissage automatique sont actuellement utilisés dans le domaine de l'optimisation 

coûteuse. A notre connaissance, l'utilisation de ces outils pour une reconnaissance et une 

approximation efficace des fonctions objectives, pourrait représenter un gain important dans 

l’optimisation des stations d'épuration, mais aussi lorsque l'optimisation est sujette à des contraintes 

rigides multiples. Enfin, il est également possible d'inclure une superstructure dans le problème 

d'optimisation en utilisant des variables binaires afin de définir les voies à suivre dans le traitement de 

l’eau, par exemple dans le cas de la séparation à la source de l'urine et surtout quand les problèmes 

plus complexes, tels que la gestion complète des déchets ménagers ou des pourcentages plus élevés de 

rétention d'urine sont envisagés. 

En conclusion, l'outil DM-LCA-EMOO développé est désormais disponible pour l'évaluation 

et l'optimisation de tout scénario souhaité dans le domaine du traitement des eaux usées. L'outil est en 

effet assez souple pour être adapté à toutes les études de cas connexes et peut être intégré à différentes 

plateformes de modélisation existantes. 
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A. Supplementary Information for chapter II 

 

A.1. Emissions calculation  

 

Dynamic simulation results integration and conversion 

𝑇𝑖 = ∫ 𝑄𝑖  . 𝑐𝑖  . 𝑓𝑖  . 𝑑𝑡
𝑡𝑓

𝑡=0

 

 

Where: 

 Ti is the total mass of species i in kg (required for LCA calculation) 

 ci is the concentration of species i in concentration units 

 Qi is the flow related to species i in m
3
 . d

-1
 (depending on the species I it can be a specific flow or influent/effluent flow) 

 fi is the conversion factor used for species i (unit is function of species concentration) 

 

 

Effluent discharged 

 

COD: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝐶𝑂𝐷 [

𝑔 𝐶𝑂𝐷

𝑚3
] .

1

103
 [

𝑘𝑔 𝐶𝑂𝐷

𝑔 𝐶𝑂𝐷
] 

BOD: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝐵𝑂𝐷 [

𝑔 𝐵𝑂𝐷

𝑚3
] .

1

103
 [

𝑘𝑔 𝐵𝑂𝐷

𝑔 𝐵𝑂𝐷
] 

Nitrate 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝑁𝑂3

[
𝑔 𝑁

𝑚3
] .

1

14.007
 [

𝑚𝑜𝑙 𝑁

𝑔 𝑁
] . 1 [

𝑚𝑜𝑙 𝑁𝑂3

𝑚𝑜𝑙 𝑁
] . 62.004 [

𝑔 𝑁𝑂3

𝑚𝑜𝑙 𝑁𝑂3

] .
1

103
 [

𝑘𝑔 𝑁𝑂3

𝑔 𝑁𝑂3

] 

Nitrite 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝑁𝑂2

[
𝑔 𝑁

𝑚3
] .

1

14.007
 [

𝑚𝑜𝑙 𝑁

𝑔 𝑁
] . 1 [

𝑚𝑜𝑙 𝑁𝑂2

𝑚𝑜𝑙 𝑁
] . 46.005 [

𝑔 𝑁𝑂2

𝑚𝑜𝑙 𝑁𝑂2

] .
1

103
 [

𝑘𝑔 𝑁𝑂2

𝑔 𝑁𝑂2

] 

 



196 

 

Supplementary Information 

 

 

Ammonium: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝑁𝐻4

[
𝑔 𝑁

𝑚3
] .

1

14.007
 [

𝑚𝑜𝑙 𝑁

𝑔 𝑁
] . 1 [

𝑚𝑜𝑙 𝑁𝐻4

𝑚𝑜𝑙 𝑁
] . 18.039 [

𝑔 𝑁𝐻4

𝑚𝑜𝑙 𝑁𝐻4

] .
1

103
 [

𝑘𝑔 𝑁𝐻4

𝑔 𝑁𝐻4

] 

Nitrogen, organic bound: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . (𝑐𝑋𝑈,𝑁

[
𝑔 𝑁

𝑚3
] +  𝑐𝑋𝐵,𝑁

[
𝑔 𝑁

𝑚3
] + 𝑐𝑆𝐵,𝑁

[
𝑔 𝑁

𝑚3
] ) .

1

103
 [

𝑘𝑔 𝑁

𝑔 𝑁
] 

Nitrogen: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝑆𝑈,𝑁

[
𝑔 𝑁

𝑚3
] .

1

103
 [

𝑘𝑔 𝑁

𝑔 𝑁
] 

N in Biomass 

𝑄𝑆𝐿𝑈𝐷𝐺𝐸 [
𝑚3

𝑑
] . (𝑐𝑂𝐻𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] +  𝑐𝑀𝐸𝑂𝐿𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐴𝑂𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑁𝑂𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
]  + 𝑐𝐴𝑀𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑃𝑅𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐴𝐶𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐻𝑀𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
]

+ 𝑐𝑃𝐴𝑂  [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐸  [

𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.07 [

𝑔 𝑁

𝑔 𝐶𝑂𝐷
] .

1

103
 [

𝑘𝑔 𝑁

𝑔 𝑁
] 

Phosphorus: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝑇𝑃 [

𝑔 𝑃

𝑚3
]  .

1

30.974
 [

𝑚𝑜𝑙 𝑃

𝑔 𝑃
] . 1 [

𝑚𝑜𝑙 𝑃𝑂4

𝑚𝑜𝑙 𝑃
] . 94.97 [

𝑔 𝑃𝑂4

𝑚𝑜𝑙 𝑃𝑂4

] .
1

103
 [

𝑘𝑔 𝑃𝑂4

𝑔 𝑃𝑂4

] 

Magnesium: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝑀𝑔 [

𝑔 𝑀𝑔

𝑚3
] .

1

103
 [

𝑘𝑔 𝑀𝑔

𝑔 𝑀𝑔
] 

Calcium: 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝐶𝑎 [

𝑔 𝐶𝑎

𝑚3
] .

1

103
 [

𝑘𝑔 𝐶𝑎

𝑔 𝐶𝑎
] 

TOC 
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𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . (((𝑐𝑆𝑈

 [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑋𝑈

 [
𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.553 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
]) + ((𝑐𝑆𝐵,𝐶𝑂𝑀𝑃𝐿𝐸𝑋

 [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑋𝐵

 [
𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.594 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
])

+ ((𝑐𝑂𝐻𝑂  [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑀𝐸𝑂𝐿𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐴𝑂𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑁𝑂𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
]  + 𝑐𝐴𝑀𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑃𝑅𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐴𝐶𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐻𝑀𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
]

+ 𝑐𝑃𝐴𝑂  [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐸  [

𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.531 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
])) .

1

103
 [

𝑘𝑔 𝐶

𝑔 𝐶
] 

DOC 

𝑄𝐸𝐹𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . ((𝑐𝑆𝑈

 [
𝑔 𝐶𝑂𝐷

𝑚3
]  . 0.553 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
]) + (𝑐𝑆𝐵,𝐶𝑂𝑀𝑃𝐿𝐸𝑋

 [
𝑔 𝐶𝑂𝐷

𝑚3
]  . 0.594 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
])) .

1

103
 [

𝑘𝑔 𝐶

𝑔 𝐶
] 

Carbon dioxide (total): 

∑ 𝑄𝑔𝑎𝑠,𝑖  [
𝑚3

ℎ
] . 24 [

ℎ

𝑑
] . 𝑐%𝐶𝑂2,𝑖[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] .

5

𝑖=1

 1.830 . 10−2 

Where i represents each reactor of the process (aerobic and anoxic ones) and c%CO2,i is between 0-100. 

Total carbon dioxide is then divided between biogenic (from influent) and fossil (from methanol added) by the ratio of biogenic/fossil carbon: 

DCO biogenic: 

𝑄𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . (𝑐𝑋𝐵

 [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑆𝐵,𝐶𝑂𝑀𝑃𝐿𝐸𝑋

 [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐶𝐵

[
𝑔 𝐶𝑂𝐷

𝑚3
]) .  

29.160

93.440
 [

𝑔 𝐶

𝑔 𝐶𝑂𝐷
] .  

1

103
 [

𝑘𝑔 𝐶

𝑔 𝐶
] 

DCO fossil: 

𝑄𝐶𝐴𝑅𝐵𝑂𝑁 [
𝑚3

𝑑
] . 𝑐𝐶𝐴𝑅𝐵𝑂𝑁  [

𝑔 𝐶𝑂𝐷

𝑚3
]  .  

12

48
 [

𝑔 𝐶

𝑔 𝐶𝑂𝐷
] .  

1

103
 [

𝑘𝑔 𝐶

𝑔 𝐶
] 

Methane: 

∑ 𝑄𝑔𝑎𝑠,𝑖  [
𝑚3

ℎ
] . 24 [

ℎ

𝑑
] . 𝑐%𝐶𝐻4,𝑖[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] .

5

𝑖=1

 6.669 . 10−3 

Where i represents each reactor of the process (aerobic and anoxic ones) and c%CH4,i is between 0-100. 
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Ammonia: 

∑ 𝑄𝑔𝑎𝑠,𝑖  [
𝑚3

ℎ
] . 24 [

ℎ

𝑑
] . 𝑐%𝑁𝐻3,𝑖[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] .

5

𝑖=1

 7.079 . 10−3 

Where i represents each reactor of the process (aerobic and anoxic ones) and c%NH3,i is between 0-100. 

 

Hydrogen: 

∑ 𝑄𝑔𝑎𝑠,𝑖  [
𝑚3

ℎ
] . 24 [

ℎ

𝑑
] . 𝑐%𝐻2,𝑖[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] .

5

𝑖=1

 8.380 . 10−4 

Where i represents each reactor of the process (aerobic and anoxic ones) and c%H2,i is between 0-100. 

 

For details in gas calculations please refer to Section 7 

Dinitrogen monoxide: 

∑ 𝑑𝑁𝑖𝑡𝑖  [
𝑚𝑔 𝑁

𝐿 . ℎ
] .

0.5

100
[𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠]  .  

1

14.007
 [

𝑚𝑚𝑜𝑙 𝑁

𝑚𝑔 𝑁
] .

1

2
 [

𝑚𝑚𝑜𝑙 𝑁2𝑂

𝑚𝑚𝑜𝑙 𝑁
] . 44.013 [

𝑚𝑔 𝑁2𝑂

𝑚𝑚𝑜𝑙 𝑁2𝑂
] . 1000 [

𝐿

𝑚3
]  . 24 [

ℎ

𝑑
]  𝑉𝑙𝑖𝑞𝑢𝑖𝑑,𝑖[𝑚3] .  

5

𝑖=1

1

106
 [

𝑘𝑔 𝑁2𝑂

𝑚𝑔 𝑁2𝑂
]  

Where i represents each reactor of the process (aerobic and anoxic ones) and Vliquid,i is the liquid volume. 

 

 

Sludge to agriculture 

Total N: 

𝑄𝑆𝐿𝑈𝐷𝐺𝐸 [
𝑚3

𝑑
] . 𝑐𝑇𝑁 [

𝑔 𝑁

𝑚3
] .

1

103
 [

𝑘𝑔 𝑁

𝑔 𝑁
] 

Ammonia: 

𝑇𝑁 [
𝑘𝑔 𝑁

𝑑
] . 0.2581 [

𝑘𝑔 𝑁𝐻3 − 𝑁

𝑘𝑔 𝑁
] .

17.031

14.007
[

𝑘𝑔 𝑁𝐻3

𝑘𝑔 𝑁𝐻3 − 𝑁
] 

Dinitrogen monoxide: 

𝑇𝑁 [
𝑘𝑔 𝑁

𝑑
] . 0.0118 [

𝑘𝑔 𝑁2𝑂 − 𝑁

𝑘𝑔 𝑁
] .

44.013

14.007
[

𝑘𝑔 𝑁2𝑂

𝑘𝑔 𝑁2𝑂 − 𝑁
] 

Total P: 

𝑄𝑆𝐿𝑈𝐷𝐺𝐸 [
𝑚3

𝑑
] . 𝑐𝑇𝑃 [

𝑔 𝑃

𝑚3
]  .

1

103
 [

𝑘𝑔 𝑃

𝑔 𝑃
] 



 

Supplementary Information 

199 

Phosphate to ground water: 

𝑇𝑃 [
𝑘𝑔 𝑃

𝑑
] . 0.0057 [

𝑘𝑔 𝑃𝑂4 − 𝑃

𝑘𝑔 𝑃
] .

94.97

30.974
[

𝑘𝑔 𝑃𝑂4

𝑘𝑔 𝑃𝑂4 − 𝑃
] 

Phosphate to surface water: 

𝑇𝑃 [
𝑘𝑔 𝑃

𝑑
] . 0.02005 [

𝑘𝑔 𝑃𝑂4 − 𝑃

𝑘𝑔 𝑃
] .

94.97

30.974
[

𝑘𝑔 𝑃𝑂4

𝑘𝑔 𝑃𝑂4 − 𝑃
] 

Total C: 

𝑄𝑆𝐿𝑈𝐷𝐺𝐸 [
𝑚3

𝑑
] . (((𝑐𝑆𝑈

 [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑋𝑈

 [
𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.553 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
]) +  ((𝑐𝑆𝐵,𝐶𝑂𝑀𝑃𝐿𝐸𝑋

 [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑋𝐵

 [
𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.594 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
])

+ ((𝑐𝑂𝐻𝑂  [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑀𝐸𝑂𝐿𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐴𝑂𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑁𝑂𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
]  + 𝑐𝐴𝑀𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝑃𝑅𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐴𝐶𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐻𝑀𝑂  [

𝑔 𝐶𝑂𝐷

𝑚3
]

+ 𝑐𝑃𝐴𝑂  [
𝑔 𝐶𝑂𝐷

𝑚3
] + 𝑐𝐸  [

𝑔 𝐶𝑂𝐷

𝑚3
]) . 0.531 [

𝑔 𝐶

 𝑔 𝐶𝑂𝐷
]) + (𝑐𝐶𝑂3

2−  [
𝑚𝑜𝑙 𝐶𝑂3

2−

𝑚3
] . 1 [

𝑚𝑜𝑙 𝐶

𝑚𝑜𝑙 𝐶𝑂3
2−] . 12.011 [

𝑔 𝐶

 𝑚𝑜𝑙 𝐶
])

+ (𝑐𝐻𝐶𝑂3
−  [

𝑚𝑜𝑙 𝐻𝐶𝑂3
−

𝑚3
] . 1 [

𝑚𝑜𝑙 𝐶

𝑚𝑜𝑙 𝐻𝐶𝑂3
−] . 12.011 [

𝑔 𝐶

 𝑚𝑜𝑙 𝐶
])) .

1

103
 [

𝑘𝑔 𝐶

𝑔 𝐶
] 

Magnesium: 

𝑄𝑆𝐿𝑈𝐷𝐺𝐸 [
𝑚3

𝑑
] . 𝑐𝑀𝑔 [

𝑔 𝑀𝑔

𝑚3
] .

1

103
 [

𝑘𝑔 𝑀𝑔

𝑔 𝑀𝑔
] 

Calcium: 

𝑄𝑆𝐿𝑈𝐷𝐺𝐸 [
𝑚3

𝑑
] . 𝑐𝐶𝑎 [

𝑔 𝐶𝑎

𝑚3
] .

1

103
 [

𝑘𝑔 𝐶𝑎

𝑔 𝐶𝑎
] 

 

Effluent and sludge (divided in function): 

Chloride 

From coagulant: 

𝑄𝑀𝐸𝑇𝐴𝐿 [
𝑚3

𝑑
] . 103  [

𝐿

𝑚3
] . 𝑐𝑀𝐸𝑇𝐴𝐿,𝐼𝑂𝑁 [

𝑚𝑚𝑜𝑙 𝐹𝑒3+

𝐿
] . 3 [

𝑚𝑚𝑜𝑙 𝐶𝑙−

𝑚𝑚𝑜𝑙 𝐹𝑒3+
] . 35.453 [

𝑚𝑔 𝐶𝑙−

𝑚𝑚𝑜𝑙 𝐶𝑙−
] .

1

106
 [

𝑘𝑔 𝐶𝑙−

𝑚𝑔 𝐶𝑙−
] 
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From H2S treatment: 

𝑄𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝐹𝑒𝐶𝑙3

[
𝑔 𝐹𝑒𝐶𝑙3

𝑚3
] .

1

162.206
[
𝑚𝑜𝑙 𝐹𝑒𝐶𝑙3

𝑔 𝐹𝑒𝐶𝑙3

] . 3 [
𝑚𝑜𝑙 𝐶𝑙−

𝑚𝑜𝑙 𝐹𝑒𝐶𝑙3

] . 35.453 [
𝑔 𝐶𝑙−

𝑚𝑜𝑙 𝐶𝑙−
] .

1

103
 [

𝑘𝑔 𝐶𝑙−

𝑔 𝐶𝑙−
] 

Iron 

From coagulant: 

𝑄𝑀𝐸𝑇𝐴𝐿 [
𝑚3

𝑑
] . 103  [

𝐿

𝑚3
] . 𝑐𝑀𝐸𝑇𝐴𝐿 [

𝑚𝑔 𝐹𝑒3+

𝐿
] .

1

106
 [

𝑘𝑔 𝐹𝑒3+

𝑚𝑔 𝐹𝑒3+
] 

From H2S treatment: 

𝑄𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝐹𝑒𝐶𝑙3

[
𝑔 𝐹𝑒𝐶𝑙3

𝑚3
] .

1

162.206
[
𝑚𝑜𝑙 𝐹𝑒𝐶𝑙3

𝑔 𝐹𝑒𝐶𝑙3

]  . 1 [
𝑚𝑜𝑙 𝐹𝑒3+

𝑚𝑜𝑙 𝐹𝑒𝐶𝑙3

] . 55.847 [
𝑔 𝐹𝑒3+

𝑚𝑜𝑙 𝐹𝑒3+
] .

1

103
 [

𝑘𝑔 𝐹𝑒3+

𝑔 𝐹𝑒3+
] 

Background processes 

 

Infrastructure: 

1[𝑢𝑛𝑖𝑡]

𝑡𝑃𝑙𝑎𝑛𝑡 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒  [𝑦] . 𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑒𝑤𝑎𝑔𝑒 𝑖𝑛 [
𝑚3

𝑦
]
 

FeCl3 

From coagulant: 

𝑄𝑀𝐸𝑇𝐴𝐿 [
𝑚3

𝑑
] . 103  [

𝐿

𝑚3
] . 𝑐𝑀𝐸𝑇𝐴𝐿 [

𝑚𝑔 𝐹𝑒3+

𝐿
] .

1

55.847
[
𝑚𝑚𝑜𝑙 𝐹𝑒3+

𝑚𝑔 𝐹𝑒3+
] . 1 [

𝑚𝑚𝑜𝑙 𝐹𝑒𝐶𝑙3

𝑚𝑚𝑜𝑙 𝐹𝑒3+
] . 162.206 [

𝑚𝑔 𝐹𝑒𝐶𝑙3

𝑚𝑚𝑜𝑙 𝐹𝑒𝐶𝑙3

] .
1

106
 [

𝑘𝑔 𝐹𝑒𝐶𝑙3

𝑚𝑔 𝐹𝑒𝐶𝑙3

] 

From H2S treatment: 

𝑄𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝑇 [
𝑚3

𝑑
] . 𝑐𝐹𝑒𝐶𝑙3

[
𝑔 𝐹𝑒𝐶𝑙3

𝑚3
] .

1

103
 [

𝑘𝑔 𝐹𝑒𝐶𝑙3

𝑔 𝐹𝑒𝐶𝑙3

] 

Methanol 

𝑄𝐶𝐴𝑅𝐵𝑂𝑁 [
𝑚3

𝑑
] . 𝑐𝐶𝐴𝑅𝐵𝑂𝑁 [

𝑔 𝐷𝐶𝑂

𝑚3
] .

32.042

48
[
𝑔 𝑀𝑒𝑂𝐻

𝑔 𝐷𝐶𝑂
] .

1

103
 [

𝑘𝑔 𝑀𝑒𝑂𝐻

𝑔 𝑀𝑒𝑂𝐻
] 

NaOH 

𝑄𝐴𝐿𝐾𝐴𝐿𝐼𝑁𝐼𝑇𝑌 [
𝑚3

𝑑
] . 𝑐𝑆𝑇𝑅𝑂𝑁𝐺 𝐵𝐴𝑆𝐸𝑆 [

𝑚𝑜𝑙 𝑁𝑎𝑂𝐻

𝑚3
] . 39.997 [

𝑔 𝑁𝑎𝑂𝐻

𝑚𝑜𝑙 𝑁𝑎𝑂𝐻
] .

1

103
 [

𝑘𝑔 𝑁𝑎𝑂𝐻

𝑔 𝑁𝑎𝑂𝐻
] 
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Struvite production and emissions 

Magnesium oxide: 

𝑄𝑈𝑅𝐼𝑁𝐸 [
𝑚3

𝑑
] . 𝑐𝑀𝑔 [

𝑔 𝑀𝑔

𝑚3
] .

1

24.305
[
𝑚𝑜𝑙 𝑀𝑔

𝑔 𝑀𝑔
]  .  1 [

𝑚𝑜𝑙 𝑀𝑔𝑂

𝑚𝑜𝑙 𝑀𝑔
] .  40.304 [

𝑔 𝑀𝑔𝑂

𝑚𝑜𝑙 𝑀𝑔𝑂
] .

1

103
 [

𝑘𝑔 𝑀𝑔𝑂

𝑔 𝑀𝑔𝑂
] 

Struvite production: 

𝑄𝑆𝑇𝑅𝑈𝑉𝐼𝑇𝐸 [
𝑚3

𝑑
] . 𝑐𝑇𝑆𝑆 [

𝑔 𝑆𝑡𝑟𝑢𝑣𝑖𝑡𝑒

𝑚3
]  .

1

103
 [

𝑘𝑔 𝑆𝑡𝑟𝑢𝑣𝑖𝑡𝑒

𝑔 𝑆𝑡𝑟𝑢𝑣𝑖𝑡𝑒
] 

 

 

 

 

A.2. Inventory 

UF: 1 m
3
 of raw wastewater to be treated 

Process Operational data Ecoinvent process Unit REF EPC USS 
USS+E

PC 

USS+E

PC+AG

RI 

USS+

EPC+

ANA 

WWTP 

Infrastructure 
wastewater treatment plant, class 2, CH, [unit] 

(#2284) 
unit 4.42E-9 4.42E-9 4.42E-9 4.42E-9 4.42E-9 4.42E-9 

Effluent 

discharge 

NH4 Ammonium, ion, water, river, [kg] (#4259) kg 1.21E-3 6.10E-4 8.14E-4 4.43E-4 9.15E-4 1.33E-3 

NO2 Nitrite, water, river, [kg] (#5075) kg 6.08E-4 2.56E-4 3.69E-4 1.86E-4 4.24E-4 8.52E-4 

NO3 Nitrate, water, river, [kg] (#5067) kg 1.91E-2 1.35E-2 1.53E-2 1.46E-2 1.33E-2 1.35E-2 

Norg 
Nitrogen, organic bound, water, river, [kg] 

(#5091) 
kg 1.63E-3 1.73E-3 1.63E-3 1.71E-3 1.59E-3 1.54E-3 

PO4 Phosphate, water, river, [kg] (#5139) kg 2.05E-3 1.33E-3 1.79E-3 1.15E-3 1.16E-3 1.52E-3 

BOD5 
BOD5, Biological Oxygen Demand, water, river, 

[kg] (#4371) 
kg 4.47E-3 6.31E-3 4.62E-3 5.83E-3 4.32E-3 3.78E-3 

COD 
COD, Chemical Oxygen Demand, water, river, 

[kg] (#4603) 
kg 4.09E-2 4.41E-2 4.15E-2 4.36E-2 3.79E-2 4.05E-2 

TOC 
TOC, Total Organic Carbon, water, river, [kg] 

(#5563) 
kg 2.18E-2 2.32E-2 2.20E-2 2.30E-2 2.02E-2 2.16E-2 

DOC DOC, Dissolved Organic Carbon, water, river, kg 1.53E-2 1.55E-2 1.55E-2 1.56E-2 1.35E-2 1.52E-2 
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[kg] (#4659) 

CO3
2- Carbonate, water, river, [kg] (#4443) kg 2.37E-1 2.52E-1 2.65E-1 2.72E-1 2.70E-1 2.95E-1 

NH3 
Ammonia, air, high population density, [kg] 

(#2579) 
kg 3.67E-5 3.09E-5 3.36E-5 2.73E-5 1.45E-5 1.03E-5 

N2O 
Dinitrogen monoxide, air, high population 

density, [kg] (#2814) 
kg 3.79E-4 3.35E-4 3.67E-4 3.20E-4 2.07E-4 2.42E-4 

CH4 
Methane, biogenic, air, high population density, 

[kg] (#3149) 
kg 2.32E-4 1.40E-4 2.35E-4 1.38E-4 1.31E-4 1.44E-4 

CO2,biogenic 
Carbon dioxide, biogenic, air, high population 

density, [kg] (#2694) 
kg 4.42E-1 3.55E-1 4.37E-1 3.51E-1 3.04E-1 2.65E-1 

CO2,fossil 
Carbon dioxide, fossil, air, high population 

density, [kg] (#2699) 
kg 6.78E-2 6.36E-2 6.72E-2 5.39E-2 1.81E-2 - 

H2 
Hydrogen, air, high population density, [kg] 

(#3019) 
kg 3.97E-4 4.77E-4 4.63E-4 4.64E-4 3.66E-4 3.42E-4 

Ca Calcium, ion, water, river, [kg] (#4427) kg 1.50E-2 1.50E-2 1.55E-2 1.55E-2 1.55E-2 1.54E-2 

Mg Magnesium, water, river, [kg] (#4947) kg 7.99E-2 7.96E-2 8.23E-2 8.21E-2 8.21E-2 8.17E-2 

Fe Iron, ion, water, river, [kg] (#4899) kg 4.99E-4 4.99E-4 4.99E-4 4.99E-4 4.99E-4 4.99E-4 

As Arsenic, ion, water, river, [kg] (#4307) kg 2.34E-6 2.34E-6 2.34E-6 2.34E-6 2.34E-6 2.34E-6 

Cd Cadmium, ion, water, river, [kg] (#4411) kg 9.99E-7 9.99E-7 9.99E-7 9.99E-7 9.99E-7 9.99E-7 

Co Cobalt, water, river, [kg] (#4571) kg 4.99E-7 4.99E-7 4.99E-7 4.99E-7 4.99E-7 4.99E-7 

Cr Chromium VI, water, river, [kg] (#4547) kg 1.25E-5 1.25E-5 1.25E-5 1.25E-5 1.25E-5 1.25E-5 

Cu Copper, ion, water, river, [kg] (#4611) kg 1.75E-5 1.75E-5 1.75E-5 1.75E-5 1.75E-5 1.75E-5 

Hg Mercury, water, river, [kg] (#4979) kg 5.99E-7 5.99E-7 5.99E-7 5.99E-7 5.99E-7 5.99E-7 

Mn Manganese, water, river, [kg] (#4955) kg 4.99E-5 4.99E-5 4.99E-5 4.99E-5 4.99E-5 4.99E-5 

Mo Molybdenum, water, river, [kg] (#5019) kg 4.78E-7 4.78E-7 4.78E-7 4.78E-7 4.78E-7 4.78E-7 

Ni Nickel, ion, water, river, [kg] (#5051) kg 1.50E-5 1.50E-5 1.50E-5 1.50E-5 1.50E-5 1.50E-5 

Pb Lead, water, river, [kg] (#4931) kg 6.49E-6 6.49E-6 6.49E-6 6.49E-6 6.49E-6 6.49E-6 

Ag Silver, ion, water, river, [kg] (#5347) kg 1.75E-6 1.75E-6 1.75E-6 1.75E-6 1.75E-6 1.75E-6 

Sn Tin, ion, water, river, [kg] (#5547) kg 1.39E-6 1.39E-6 1.39E-6 1.39E-6 1.39E-6 1.39E-6 
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Zn Zinc, ion, water, river, [kg] (#5667) kg 5.99E-5 5.99E-5 5.99E-5 5.99E-5 5.99E-5 5.99E-5 

Si Silicon, water, river, [kg] (#5339) kg 1.56E-4 1.56E-4 1.56E-4 1.56E-4 1.56E-4 1.56E-4 

Al Aluminium, water, river, [kg] (#4243) kg 3.25E-5 3.25E-5 3.25E-5 3.25E-5 3.25E-5 3.25E-5 

SO4 Sulfate, water, river, [kg] (#5427) kg 4.40E-4 4.40E-4 4.40E-4 4.40E-4 4.40E-2 4.40E-2 

Cl Chloride, water, river, [kg] (#4515) kg 5.09E-2 4.36E-2 4.24E-2 3.73E-2 3.98E-2 3.48E-2 

F Fluoride, water, river, [kg] (#4731) kg 3.27E-5 3.27E-5 3.27E-5 3.27E-5 3.27E-5 3.27E-5 

K Potassium, ion, water, river, [kg] (#5211) kg 3.98E-4 3.98E-4 3.98E-4 3.98E-4 3.98E-4 3.98E-4 

Na Sodium, ion, water, river, [kg] (#5363) kg 2.18E-3 2.18E-3 2.18E-3 2.18E-3 2.18E-3 2.18E-3 

Electricity 
electricity, production mix RER, RER, [kWh] 

(#7209) 1 
kWh 1.08E-1 3.42-3 1.02E-1 - - - 

Heat 
heat, natural gas, at boiler modulating >100kW, 

RER, [MJ] (#1350) 1 
MJ - - - - - - 

Grits 

collection 

Transport 
transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm 3.10E-4 3.10E-4 3.10E-4 3.10E-4 3.10E-4 3.10E-4 

Disposal 

disposal, paper, 11.2% water, to municipal 

incineration, CH, [kg] (#2108) 
kg 1.55E-2 1.55E-2 1.55E-2 1.55E-2 1.55E-2 1.55E-2 

disposal, plastics, mixture, 15.3% water, to 

municipal incineration, CH, [kg] (#2112) 
kg 1.55E-2 1.55E-2 1.55E-2 1.55E-2 1.55E-2 1.55E-2 

Cogeneration 

unit 

Infrastructure 
cogen unit 160kWe, common components for 

heat+electricity, RER, [unit] (#1201) 
unit 1.04E-8 1.32E-8 1.08E-8 1.37E-8 1.32E-8 1.32E-8 

Oil for 

maintenance 

Production lubricating oil, at plant, RER, [kg] (#416) kg 6.25E-5 7.93E-5 6.47E-5 8.20E-5 7.91E-5 7.90E-5 

Disposal 
disposal, used mineral oil, 10% water, to 

hazardous waste incineration, CH, [kg] (#2064) 
kg 6.25E-5 7.93E-5 6.47E-5 8.20E-5 7.91E-5 7.90E-5 

Operation emissions 2 

biogas, burned in cogen with gas engine, CH, 

[MJ] (#135) 
MJ 2.08E0 2.64E0 2.16E0 2.73E0 2.64E0 2.63E0 

electricity, at cogen with biogas engine, 

allocation exergy, CH, [kWh] (#6221) 
kWh 2.03E-1 2.57E-1 2.10E-1 2.66E-1 2.56E-1 2.56E-1 

heat, at cogen with biogas engine, allocation 

exergy, CH, [MJ] (#6219) 
MJ 1.01E0 1.28E0 1.05E0 1.33E0 1.28E0 1.28E0 

Dinitrogen monoxide, air, high population 

density, [kg] (#2814) 
kg 5.21E-6 6.61E-6 5.39E-6 6.83E-6 6.59E-6 6.59E-6 
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Methane, biogenic, air, high population density, 

[kg] (#3149) 
kg 4.79E-5 6.08-5 4.96E-5 6.29E-5 6.06E-5 6.06E-5 

Carbon dioxide, biogenic, air, high population 

density, [kg] (#2694) 
kg 1.51E-1 1.87E-1 1.56E-1 1.98E-1 2.08E-1 2.20E-1 

Carbon dioxide, fossil, air, high population 

density, [kg] (#2699) 
kg 2.32E-2 3.35E-2 2.40E-2 3.04E-2 1.24E-2 - 

Carbon monoxide, biogenic, air, high population 

density, [kg] (#2709) 
kg 8.67E-5 1.08E-4 8.98E-5 1.14E-4 1.19E-4 1.26E-4 

Carbon monoxide, fossil, air, high population 

density, [kg] (#2714) 
kg 1.33E-5 1.93E-5 1.38E-5 1.75E-5 7.10E-6 - 

NMVOC, non-methane volatile organic 

compounds, unspecified origin, air, high 

population density, [kg] (#3274) 

kg 4.17E-6 5.29E-6 4.32E-6 5.47E-6 5.27E-6 5.27E-6 

Nitrogen oxides, air, high population density, 

[kg] (#3269) 
kg 3.12E-5 3.97E-5 3.24E-5 4.10E-5 3.95E-5 3.95E-5 

Sulfur dioxide, air, high population density, [kg] 

(#3529) 
kg 4.38E-5 5.55E-5 4.53E-5 5.74E-5 5.54E-5 5.53E-5 

Heat, waste, air, high population density, [MJ] 

(#2979) 
MJ 3.44E-1 4.36E-1 3.56E-1 4.51E-1 4.35E-1 4.35E-1 

Chemicals 

Methanol 

Production methanol, at plant, GLO, [kg] (#422) kg 5.27E-2 6.15E-2 5.44E-2 5.44E-2 1.99E-2 - 

Transport 

transport, freight, rail, RER, [tkm] (#1983) tkm 3.16E-2 3.69E-2 3.26E-2 3.26E-2 1.20E-2 - 

transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm 2.64E-3 3.07E-3 2.72E-3 2.72E-3 9.96E-4 - 

FeCl3 

Production 
iron (III) chloride, 40% in H2O, at plant, CH, 

[kg] (#292) 
kg 7.78E-2 6.66E-2 6.47E-2 5.70E-2 6.08E-2 5.31E-2 

Transport 

transport, freight, rail, RER, [tkm] (#1983) tkm 1.17E-1 9.98E-2 9.70E-2 8.55E-2 9.13E-2 7.97E-2 

transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm 9.72E-3 8.32E-3 8.08E-3 7.12E-3 7.60E-3 6.64E-3 

Urine 

separation 

Storage glass fibre, at plant, RER, [kg] (#808) kg - - 8.40E-5 8.40E-5 8.40E-5 8.40E-5 

Transport 
transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm - - 1.56E-2 1.56E-2 1.56E-2 1.56E-2 

Struvite 

precipitati

on and 

utilization 

Chemicals MgO 

Production magnesium oxide, at plant, RER, [kg] (#296) kg - - 2.12E-3 2.12E-3 2.12E-3 2.12E-3 

Transport 

transport, freight, rail, RER, [tkm] (#1983) tkm - - 1.27E-3 1.27E-3 1.27E-3 1.27E-3 

transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm - - 1.06E-4 1.06E-4 1.06E-4 1.06E-4 
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NaOH 

Production 
sodium hydroxide, 50% in H2O, production mix, 

at plant, RER, [kg] (#336) 
kg - - - - - 1.19E-2 

Transport 

transport, freight, rail, RER, [tkm] (#1983) tkm - - - - - 1.43E-2 

transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm - - - - - 1.19E-3 

Transport 
transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm - - 1.14E-4 1.14E-4 1.14E-4 1.14E-4 

Spreading fertilising, by broadcaster, CH, [ha] (#156) ha - - 3.26E-6 3.26E-6 3.26E-6 3.26E-6 

Post 

emissions 

NH3 
Ammonia, air, high population density, [kg] 

(#2579) 
kg - - 2.38E-5 2.38E-5 2.38E-5 2.38E-5 

N2O 
Dinitrogen monoxide, air, high population 

density, [kg] (#2814) 
kg - - 9.23E-6 9.23E-6 9.23E-6 9.23E-6 

NOx 
Nitrogen oxides, air, high population density, 

[kg] (#3269) 
kg - - 8.39E-6 8.39E-6 8.39E-6 8.39E-6 

PO4 
Phosphate, water, river, [kg] (#5139) kg - - 1.19E-4 1.19E-4 1.19E-4 1.19E-4 

Phosphate, water, ground-, [kg] (#5135) kg - - 4.34E-5 4.34E-5 4.34E-5 4.34E-5 

Cd Cadmium, soil, agricultural, [kg] (#3951) kg - - 7.42E-8 7.42E-8 7.42E-8 7.42E-8 

Cu Copper, soil, agricultural, [kg] (#3991) kg - - 1.85E-7 1.85E-7 1.85E-7 1.85E-7 

Zn Zinc, soil, agricultural, [kg] (#4186) kg - - 1.16E-6 1.16E-6 1.16E-6 1.16E-6 

Pb Lead, soil, agricultural, [kg] (#4047) kg - - 7.49E-8 7.49E-8 7.49E-8 7.49E-8 

Ni Nickel, soil, agricultural, [kg] (#4088) kg - - 1.56E-7 1.56E-7 1.56E-7 1.56E-7 

Cr Chromium, soil, agricultural, [kg] (#3976) kg - - 8.56E-7 8.56E-7 8.56E-7 8.56E-7 

Sludge 

utilization 

Transport 
transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm 2.17E-2 2.32E-2 2.19E-2 2.29E-2 2.24E-2 2.11E-2 

Spreading 
slurry spreading, by vacuum tanker, CH, [m3] 

(#176) 
m3 1.06E-3 1.14E-3 1.07E-3 1.12E-3 1.10E-3 1.04E-3 

Post 

emissions 

NH3 
Ammonia, air, high population density, [kg] 

(#2579) 
kg 3.58E-3 4.62E-3 3.69E-3 4.66E-3 4.38E-3 4.19E-3 

N2O 
Dinitrogen monoxide, air, high population 

density, [kg] (#2814) 
kg 2.12E-4 2.73E-4 2.18E-4 2.75E-4 2.59E-4 2.48E-4 

C Carbon, soil, agricultural, [kg] (#3962) kg 1.04E-1 1.25E-1 1.06E-1 1.27E-1 1.21E-1 1.16E-1 
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PO4 
Phosphate, water, river, [kg] (#5139) kg 6.80E-4 6.99E-4 6.21E-4 6.38E-4 6.36E-4 5.82E-4 

Phosphate, water, ground-, [kg] (#5135) kg 1.93E-4 1.99E-4 1.76E-4 1.81E-4 1.81E-4 1.65E-4 

Ca Calcium, soil, agricultural, [kg] (#3955) kg 1.59E-5 1.71E-5 1.66E-5 1.73E-5 1.70E-5 1.65E-5 

Mg Magnesium, soil, agricultural, [kg] (#4053) kg 7.95E-5 1.34E-5 6.54E-5 9.87E-6 2.63E-5 4.54E-6 

Fe Iron, soil, agricultural, [kg] (#4041) kg 2.73E-2 2.34E-2 2.28E-2 2.01E-2 2.14E-2 1.88E-2 

As Arsenic, soil, agricultural, [kg] (#3924) kg 6.62E-7 6.63E-7 6.63E-7 6.63E-7 6.63E-7 6.62E-7 

Cd Cadmium, soil, agricultural, [kg] (#3951) kg 1.00E-6 1.00E-6 1.00E-6 1.00E-6 1.00E-6 1.00E-6 

Co Cobalt, soil, agricultural, [kg] (#3987) kg 5.01E-7 5.01E-7 5.01E-7 5.01E-7 5.01E-7 5.01E-7 

Cr Chromium, soil, agricultural, [kg] (#3976) kg 1.25E-5 1.25E-5 1.25E-5 1.25E-5 1.25E-5 1.25E-5 

Cu Copper, soil, agricultural, [kg] (#3991) kg 5.25E-5 5.25E-5 5.25E-5 5.25E-5 5.25E-5 5.25E-5 

Hg Mercury, soil, agricultural, [kg] (#4068) kg 1.40E-6 1.40E-6 1.40E-6 1.40E-6 1.40E-6 1.40E-6 

Mn Manganese, soil, agricultural, [kg] (#4059) kg 5.01E-5 5.01E-5 5.01E-5 5.01E-5 5.01E-5 5.01E-5 

Mo Molybdenum, soil, agricultural, [kg] (#4082) kg 4.79E-7 4.79E-7 4.79E-7 4.79E-7 4.79E-7 4.79E-7 

Ni Nickel, soil, agricultural, [kg] (#4088) kg 1.00E-5 1.00E-5 1.00E-5 1.00E-5 1.00E-5 1.00E-5 

Pb Lead, soil, agricultural, [kg] (#4047) kg 5.85E-5 5.85E-5 5.85E-5 5.85E-5 5.85E-5 5.85E-5 

Ag Silver, ion, water, river, [kg] (#5347) kg 5.25E-6 5.25E-6 5.25E-6 5.25E-6 5.25E-6 5.25E-6 

Sn Tin, soil, agricultural, [kg] (#4165) kg 2.01E-6 2.01E-6 2.01E-6 2.01E-6 2.01E-6 2.01E-6 

Zn Zinc, soil, agricultural, [kg] (#4186) kg 1.40E-4 1.40E-4 1.40E-4 1.40E-4 1.40E-4 1.40E-4 

Si Silicon, soil, agricultural, [kg] (#4133) kg 2.97E-3 2.97E-3 2.97E-3 2.97E-3 2.97E-3 2.97E-3 

Al Aluminium, soil, agricultural, [kg] (#3915) kg 6.18E-4 6.18E-4 6.18E-4 6.18E-4 6.18E-4 6.18E-4 

S Sulfur, soil, agricultural, [kg] (#4151) kg 2.00E-3 2.00E-3 2.00E-3 2.00E-3 2.00E-3 2.00E-3 

SO4 Sulfate, water, ground-, [kg] (#5423) kg 4.68E-5 5.01E-5 4.72E-5 4.94E-5 4.84E-5 4.56E-5 

Cl Chloride, soil, agricultural, [kg] (#3967) kg 5.43E-5 4.97E-5 4.55E-5 4.19E-5 4.39E-5 3.61E-5 

F Fluoride, soil, agricultural, [kg] (#4021) kg 3.49E-8 3.73E-8 3.52E-8 3.68E-8 3.61E-8 3.39E-8 

K Potassium, soil, agricultural, [kg] (#4114) kg 4.24E-7 4.54E-7 4.28E-7 4.47E-7 4.39E-7 4.13E-7 
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Na Sodium, soil, agricultural, [kg] (#4142) kg 2.33E-6 2.49E-6 2.34E-6 2.45E-6 2.41E-6 2.26E-6 

N-rich 

utilization 

Transport 
transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm - - - - 1.32E-2 - 

Spreading fertilising, by broadcaster, CH, [ha] (#156) ha - - - - 1.32E-3 - 

Post 

emissions 

NH3 
Ammonia, air, high population density, [kg] 

(#2579) 
kg - - - - 4.37E-4 - 

N2O 
Dinitrogen monoxide, air, high population 

density, [kg] (#2814) 
kg - - - - 2.26E-4 - 

NOx 
Nitrogen oxides, air, high population density, 

[kg] (#3269) 
kg - - - - 2.15E-4 - 

PO4 
Phosphate, water, river, [kg] (#5139) kg - - - - 2.77E-6 - 

Phosphate, water, ground-, [kg] (#5135) kg - - - - 1.01E-6 - 

Fertilizers 

avoided 

Production 

P-fertilizer 
triple superphosphate, as P2O5, at regional 

storehouse, RER, [kg] (#57) 
kg 1.77E-2 1.82E-2 1.95E-2 2.00E-2 2.00E-2 1.85E-2 

N-fertilizer 
ammonium nitrate, as N, at regional storehouse, 

RER, [kg] (#40) 
kg 4.57E-3 5.89E-3 5.36E-3 6.59E-3 2.06E-2 6.00E-3 

Transport 

transport, freight, rail, RER, [tkm] (#1983) tkm 2.23E-3 2.41E-3 2.49E-3 2.65E-3 4.06E-3 2.45E-3 

transport, lorry 20-28t, fleet average, CH, [tkm] 

(#1942) 
tkm 2.23E-3 2.41E-3 2.49E-3 2.65E-3 4.06E-3 2.45E-3 

transport, barge, RER, [tkm] (#1966) tkm 1.12E-2 1.26E-2 1.26E-2 1.39E-2 2.65E-2 1.28E-2 

Spreading fertilising, by broadcaster, CH, [ha] (#156) ha 2.28E-5 2.94E-5 2.68E-5 3.29E-5 1.03E-4 3.00E-5 

Post 

emissions 

NH3 
Ammonia, air, high population density, [kg] 

(#2579) 
kg 9.14E-5 1.18E-4 1.07E-4 1.32E-4 4.12E-4 1.20E-4 

N2O 
Dinitrogen monoxide, air, high population 

density, [kg] (#2814) 
kg 3.66E-5 4.71E-5 4.29E-5 5.27E-5 1.65E-4 4.80E-5 

NOx 
Nitrogen oxides, air, high population density, 

[kg] (#3269) 
kg 2.74E-5 3.53E-5 3.22E-5 3.95E-5 1.24E-4 3.60E-5 

PO4 
Phosphate, water, river, [kg] (#5139) kg 1.04E-4 1.07E-4 1.14E-4 1.17E-4 1.17E-4 1.08E-4 

Phosphate, water, ground-, [kg] (#5135) kg 3.79E-5 3.90E-5 4.17E-5 4.26E-5 4.27E-5 3.95E-5 

As Arsenic, soil, agricultural, [kg] (#3924) kg 3.00E-7 3.19E-7 3.33E-7 3.51E-7 4.81E-7 3.24E-7 

Cd Cadmium, soil, agricultural, [kg] (#3951) kg 7.28-7 7.56E-7 8.03E-7 8.28E-7 9.12E-7 7.66E-7 
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Cu Copper, soil, agricultural, [kg] (#3991) kg 1.72E-6 1.80E-6 1.90E-6 1.98E-6 2.34E-5 1.83E-6 

Zn Zinc, soil, agricultural, [kg] (#4186) kg 1.58E-5 1.65E-5 1.75E-5 1.81E-5 2.09E-5 1.67E-5 

Pb Lead, soil, agricultural, [kg] (#4047) kg 1.44E-6 1.54E-6 1.60E-6 1.70E-6 2.47E-6 1.57E-6 

Ni Nickel, soil, agricultural, [kg] (#4088) kg 1.66E-6 1.73E-6 1.83E-6 1.90E-6 2.19E-6 1.76E-6 

Hg Mercury, soil, agricultural, [kg] (#4068) kg 5.64E-9 5.88E-9 6.23E-9 6.44E-9 7.43E-9 5.97E-9 

Cr Chromium, soil, agricultural, [kg] (#3976) kg 9.99E-6 1.04E-5 1.10E-5 1.14E-5 1.25E-5 1.05E-5 

Electricity 

avoided 
Electricity 

electricity, production mix RER, RER, [kWh] 

(#7209) 
kWh - - - 8.22E-3 4.11E-2 2.22E-2 

 

1
 In the case of no auto-sufficiency 

2
 Modified with efficiencies of 35% electrical and 48.5% thermal (16.5% losses).



 

Supplementary Information 

209 

A.3. Energy parameters 

 

Aeration 

 

𝑃𝑎𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑤𝑎𝑖𝑟𝑅𝑇1

𝑀𝑊 𝑛 𝑒
 [(

𝑝2

𝑝1

)
𝑛

− 1] 

𝑝2 = 𝑃𝑎𝑡𝑚 + ℎ𝐿 + 𝐻 

ℎ𝐿 = 9.82 𝑥 10−8 (
𝑓𝐿𝑇Q𝑎𝑖𝑟

𝑃𝐷
) 

Where: 

 Paeration in the power requirement of the blower used for aeration (kW) 

wair is the mass flow of air (kg . s
-1

) 

T1 is the inlet temperature (°C) 

 p2 is the outlet pressure (atm) 

 p1 is the inlet pressure (atm) 

 hL is the head loss due to air friction 

 

Symbol Parameter Unit Value Reference 

dair Air density kg . m
-3

 1.2 Tchobanoglous et al. (2004) 

R Gas constante R kJ . (kmol K)
-1

 8.314 Tchobanoglous et al. (2004) 

Mw Molecular mass of air g . mol
-1

 29.7 Tchobanoglous et al. (2004) 

n (k-1)/k dimensionless 0.283 Tchobanoglous et al. (2004) 

e efficiency dimensionless 0.7 Tchobanoglous et al. (2004) 

Patm Atmosferic pression atm 1 Tchobanoglous et al. (2004) 

dwater Water density kg.m
-3

 1000 Tchobanoglous et al. (2004) 

g Standart gravity m.s
-2

 9.80665 Tchobanoglous et al. (2004) 

D Pipe diameter m 0.4 [Estimation] 

L Length of pipe m 100 [Estimation] 

H Height of the reactor m 4 [BSM2] 

f Friction factor dimensionless 0.016 Tchobanoglous et al. (2004) 
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DAmp Daily amplitude of sin function for ambient temperature dimensionless 9 [Estimation] 

DFreq Daily frequency of sin function for ambient temperature dimensionless 6.2832 [Estimation] 

DBiais Daily biais of sin function for ambient temperature dimensionless 0 [Estimation] 

DPhase Daily phase of sin function for ambient temperature dimensionless 4.7124 [Estimation] 

SAmp Seasonal amplitude of sin function for ambient temperature dimensionless 14 [Estimation] 

SFreq Seasonal frequency of sin function for ambient temperature dimensionless 0.0172615 [Estimation] 

SBiais Seasonal biais of sin function for ambient temperature dimensionless 5.5 [Estimation] 

SPhase Seasonal phase of sin function for ambient temperature dimensionless 1.1126474 [Estimation] 

 

Pumping 

 

 

𝑃𝑝𝑢𝑚𝑝𝑖𝑛𝑔 =  
ρ 𝑔 𝑄𝑝𝑢𝑚𝑝𝑒𝑑  𝛥ℎ

𝑒
 

∆ℎ𝑓 = 𝑓 (
𝐿

𝐷
) (

𝑢2

2𝑔
) 

Where: 

 Ppumping is the required power for pumping 

 Qpumped is the flow (dynamic variable) to be pumped 

 

Symbol Parameter Unit Value Reference 

g Standard gravity m . s
-2

 9.80665 Tchobanoglous et al. (2004) 

ρ1 AER3 to ANOX1 density kg . m
-3

 1000 Tchobanoglous et al. (2004) 

ρ2 SEC to ANOX1 density kg . m
-3

 1005 Tchobanoglous et al. (2004) 

ρ3 SEC to THK density kg . m
-3

 1005 Tchobanoglous et al. (2004) 

ρ4 PRIM to AD density kg . m
-3

 1020 Tchobanoglous et al. (2004) 

ρ5 THK to AD density kg . m
-3

 1020 Tchobanoglous et al. (2004) 

ρ6 DW to PRIM density kg . m
-3

 1000 Tchobanoglous et al. (2004) 

ρ7 INFLUENT density kg . m
-3

 1000 [Estimated] 
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ρ 8 EFFLUENT density kg . m
-3

 1000 [Estimated] 

ρ9 CARBON density kg . m
-3

 1000 [Estimated] 

ρ10 METAL density kg . m
-3

 1000 [Estimated] 

ρ11 URINE density kg . m
-3

 1000 [Estimated] 

ρ12 ALKALINITY density kg . m
-3

 1000 [Estimated] 

ρwater water density kg . m
-3

 1000 Tchobanoglous et al. (2004) 

D1 AER3 to ANOX1 pipe diameter m 1.2 Gernaey et al., 2005 

D2 SEC to ANOX1 pipe diameter m 0.6 Gernaey et al., 2005 

D3 SEC to THK pipe diameter m 0.1 Gernaey et al., 2005 

D4 PRIM to AD pipe diameter m 0.1 Gernaey et al., 2005 

D5 THK to AD pipe diameter m 0.1 Gernaey et al., 2005 

D6 DW to PRIM pipe diameter m 0.1 Gernaey et al., 2005 

D7 INFLUENT input pipe diameter m 0.6 [Estimated] 

D8 EFFLUENT output pipe diameter m 0.6 [Estimated] 

D9 CARBON pipe diameter m 0.1 [Estimated] 

D10 METAL pipe diameter m 0.1 [Estimated] 

D11 URINE pipe diameter m 0.1 [Estimated] 

D12 ALKALINITY pipe diameter m 0.1 [Estimated] 

L1 AER3 to ANOX1 pipe length m 100 Gernaey et al., 2005 

L2 SEC to ANOX1 pipe length m 100 Gernaey et al., 2005 

L3 SEC to THK pipe length m 100 Gernaey et al., 2005 

L4 PRIM to AD pipe length m 200 Gernaey et al., 2005 

L5 THK to AD pipe length m 100 Gernaey et al., 2005 

L6 DW to PRIM pipe length m 200 Gernaey et al., 2005 

L7 INFLUENT input length m 100 [Estimated] 

L8 EFFLUENT output length m 100 [Estimated] 

L9 CARBON input length m 50 [Estimated] 
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L10 METAL input length m 50 [Estimated] 

L11 URINE length m 50 [Estimated] 

L12 ALKALINITY length m 50 [Estimated] 

f1 AER3 to ANOX1 friction factor dimensionless 0.03 Gernaey et al., 2005 

f2 SEC to ANOX1 friction factor dimensionless 0.03 Gernaey et al., 2005 

f3 SEC to THK friction factor dimensionless 0.03 Gernaey et al., 2005 

f4 PRIM to AD friction factor dimensionless 0.06 [Based on Tchobanoglous et al. (2004)] 

f5 THK to AD friction factor dimensionless 0.1 [Based on Tchobanoglous et al. (2004)] 

f6 DW to PRIM friction factor dimensionless 0.03 Gernaey et al., 2005 

f7 INFLUENT input friction factor dimensionless 0.03 [Based on Tchobanoglous et al. (2004)] 

f7 EFFLUENT output friction factor dimensionless 0.03 [Based on Tchobanoglous et al. (2004)] 

f7 CARBON friction factor dimensionless 0.03 [Based on Tchobanoglous et al. (2004)] 

f7 METAL friction factor dimensionless 0.03 [Based on Tchobanoglous et al. (2004)] 

f7 URINE friction factor dimensionless 0.03 [Based on Tchobanoglous et al. (2004)] 

f7 ALKALINITY friction factor dimensionless 0.03 [Based on Tchobanoglous et al. (2004)] 

u1 AER3 to ANOX1 liquid velocity m . s
-1

 0.98 Gernaey et al., 2005 

u2 SEC to ANOX1 liquid velocity m . s
-1

 0.98 Gernaey et al., 2005 

u3 SEC to THK liquid velocity m . s
-1

 0.44 Gernaey et al., 2005 

u4 PRIM to AD liquid velocity m . s
-1

 0.23 Gernaey et al., 2005 

u5 THK to AD liquid velocity m . s
-1

 0.06 Gernaey et al., 2005 

u6 DW to PRIM liquid velocity m . s
-1

 0.35 Gernaey et al., 2005 

u7 INFLUENT input velocity m . s
-1

 0.98 [Estimated] 

u8 EFFLUENT output velocity m . s
-1

 0.98 [Estimated] 

u9 CARBON velocity m . s
-1

 0.98 [Estimated] 

u10 METAL velocity m . s
-1

 0.98 [Estimated] 

u11 URINE velocity m . s
-1

 0.98 [Estimated] 

u12 ALKALINITY velocity m . s
-1

 0.98 [Estimated] 
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Z1 AER3 to ANOX1 height m 0 Gernaey et al., 2005 

Z2 SEC to ANOX1 height m 4 Gernaey et al., 2005 

Z3 SEC to THK height m 8 Gernaey et al., 2005 

Z4 PRIM to AD height m 21 Gernaey et al., 2005 

Z5 THK to AD height m 17 Gernaey et al., 2005 

Z6 DW to PRIM height m 0 Gernaey et al., 2005 

Z7 INFLUENT input height m 0 [Estimated] 

Z8 EFFLUEN output height m 0 [Estimated] 

Z9 CARBON height m 4 [Estimated] 

Z10 METAL height m 4 [Estimated] 

Z11 URINE height m 0 [Estimated] 

Z12 ALKALINITY height m 4 [Estimated] 

e Efficiency dimensionless 0.65 Descoins et al., 2012 

 

Mixing 

 

𝑃𝑚𝑖𝑥𝑖𝑛𝑔 = 𝑃 . 𝑉 

Where: 

 Pmixing is the power consumed for mixing 

 V is the volume of liquid in the reactor to be mixed 

 

Symbol Parameter Unit Value Reference 

PANOX Mix power for anaerobic reactors kW . m
-3

 0.008 Tchobanoglous et al. (2004) 

PAD Mix power for anaerobic digester kW . m
-3

 0.005 Tchobanoglous et al. (2004) 
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Cogeneration 

 

Energy balance: ∑ �̇�𝑜𝑢𝑡𝑝𝑢𝑡ℎ𝑜𝑢𝑡𝑝𝑢𝑡 − ∑ �̇�𝑖𝑛𝑝𝑢𝑡ℎ𝑖𝑛𝑝𝑢𝑡 = 0 

 

HE I (Heat exchanger I): �̇�𝑐𝑠2ℎ𝑐𝑠2 + �̇�ℎ𝑠2ℎℎ𝑠2 − �̇�𝑐𝑠1ℎ𝑐𝑠1 −  �̇�ℎ𝑠1ℎℎ𝑠1 = 0 

As ṁcs1 = ṁcs2 , they are called ṁcs . The same for ṁhs1 and ṁhs2 , which become ṁhs 

�̇�𝑐𝑠(ℎ𝑐𝑠2 − ℎ𝑐𝑠1 ) + �̇�ℎ𝑠(ℎℎ𝑠2 − ℎℎ𝑠1 ) = 0 

ṁcs, ṁhs, hcs1 and hhs1 are known by simulation results and hcs2 and hhs2 are still unknown 

The hypothesis is that there is a gradient of temperature of 10°C in HEI and then hhs2 become known. The balance is solved for hcs2. 
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HE II (Heat exchanger II): �̇�𝑐𝑠3ℎ𝑐𝑠3 + �̇�𝑐𝑜2ℎ𝑐𝑜2 − �̇�𝑐𝑠2ℎ𝑐𝑠2 −  �̇�𝑐𝑜1ℎ𝑐𝑜1 = 0 

As ṁcs1 = ṁcs2 they are called ṁcs and ṁco2hco2 - ṁco1hco1 is the heat provided by cogeneration unit which need to be used in HEII and so is called qCOGEN, HEII. 

�̇�𝑐𝑠(ℎ𝑐𝑠3 − ℎ𝑐𝑠2 ) + 𝑞𝐶𝑂𝐺𝐸𝑁,𝐻𝐸𝐼𝐼 = 0 

ṁcs, hcs3 are known by simulation results and hcs2 is known by HE I energy balance. HE II balance is then solved for qCOGEN, HEII. 

 

Requirements for sludge heating and heat loss by digester walls: 

𝑞𝑠𝑙𝑢𝑑𝑔𝑒 =  w𝑠𝑙𝑢𝑑𝑔𝑒𝑐𝑝,𝑠𝑙𝑢𝑑𝑔𝑒∆𝑇𝑠𝑙𝑢𝑑𝑔𝑒  

𝑞𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 =  𝑈𝑤𝑎𝑙𝑙𝐴𝑤𝑎𝑙𝑙∆𝑇𝑤𝑎𝑙𝑙 + 𝑈𝑟𝑜𝑜𝑓𝐴𝑟𝑜𝑜𝑓∆𝑇𝑟𝑜𝑜𝑓 +  𝑈𝑓𝑙𝑜𝑜𝑟𝐴𝑓𝑙𝑜𝑜𝑟∆𝑇𝑓𝑙𝑜𝑜𝑟  

With A being the surface to be heated. 

 

COGEN:     𝑞𝐶𝑂𝐺𝐸𝑁,𝑇𝑂𝑇𝐴𝐿 =  𝑞𝐶𝑂𝐺𝐸𝑁,𝐻𝐸𝐼𝐼 +  𝑞𝐴𝐷 ± 𝑞𝐷𝐼𝐹𝐹 

Where qAD is the sum of all requirements for sludge heating and heat loss by digester walls 

 

Symbol Parameter Unit Value References 

dwater Water density kg . m
-3

 1000 Tchobanoglous et al. (2004) 

LHVMethane Biogas lower heating value (20°C; 1 atm) MJ . m
-3

 35.8 Tchobanoglous et al. (2004) 

dsludge Sludge (digester input) density kg . m
-3

 1020 Tchobanoglous et al. (2004) 

Ufloor Heat transfer coefficient for digester floor W . (m
2
 . °C)

-1
 0.85 Tchobanoglous et al. (2004) 

Uroof Heat transfer coefficient for digester floor W . (m
2
 . °C)

-1
 0.91 Tchobanoglous et al. (2004) 

Uwall Heat transfer coefficient for digester floor W . (m
2
 . °C)

-1
 0.68 Tchobanoglous et al. (2004) 

D Digester diameter m 25 [Estimated] 

H1 Digester side depth m 7 [Estimated] 
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H2 Digester middepth m 9 [Estimated] 

eheat Heat efficiency of cogeneration dimensionless 0.485 [Adapted from Doka (2009)] 

GradT Temperature gradient in HEI °C 10 [Estimated] 

Ambient temperature considerations for AD are the same as for aeration calculation.  

Finally, if qDIFF is positive there is a surplus of heat production. Otherwise, energy should be provided by another source. 

 

A.4. Effluent and ambient temperature 

 

 Influent temperature was obtained from influent data (Gernaey et al., 2011) and ambient temperature was modelled considering regional characteristics to achieve 

reliable energy results (used in aeration and cogeneration modelling). 
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Figure 1: Influent and ambient temperature: General overview of 1 year; Summer overview; Winter overview. 
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A.5. Agricultural spreading 

 

Post-spreading emissions based on Doka (2009), Bouwman et al. (1997), Bouwman et al. (2002) and Nemecek and Kägi (2007) 
 

N and P sources 
N2O-N (% of N 

content) 

NOx-N (% of N 

content) 

NH3-N (% of N 

content) 

PO4-P to ground water (% of P 

content) 

PO4-P to surface water (% of P 

content) 

Sludge 1.2 NA 25.6 0.6 2.0 

Struvite 0.9 0.6 3.0 1.0 2.7 

N-rich effluent 1.0 0.7 2.5 1.0 2.7 

Mineral 

fertilizers 
0.8 0.6 2.0 1.0 2.7 
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A.6. Other midpoint and endpoint results 

 

A.6.1 Environmental impact results for steady state and dynamic results 

 

A.6.1.1  ReCiPe Endpoint(H,A) 
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A.6.1.2  ReCiPe Midpoint (H) 
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A.6.1.3  CML 2001 
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A.6.1.4  Energy distribution 
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A.6.2 Environmental impact results for alternative scenarios 

 

A.6.2.1  ReCiPe Endpoint (H,A) 
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6.2.2 ReCiPe Midpoint (H) 
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A.6.2.3  CML 2001 
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A.6.2.4  Energy distribution 
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A.6.3 Cumulative energy demand for reference and alternative scenarios 
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A.7. General information 

 

A.7.1 Potable water avoidance 

 

The present study also considers an over production of potable water in scenarios 1 and 2 (scenarios without urine separation). For urine source separation scenarios, 

low flushing toilets are used. According to STOWA (2002), to flush urine in separation toilets 0.12-0.15 L of water is used in comparison to 6L used for conventional 

systems. The impacts of the avoidance of this overproduction are not considered, as the activity of “producing wastewater” is not included. However, it should be emphasized 

that approximately 600 m
3
.d

-1
 are avoided (which represents approximately 3% of total produced wastewater). 

 

 

 

A.7.2 Gas emission calculations 

 

𝑃𝑉 = 𝑛𝑅𝑇 

𝑛 =  
𝑃𝑉

𝑅𝑇
=  

𝑚

𝑀𝑤

 

𝑚 =
𝑃 . 𝑉 . 𝑀𝑤

𝑅 . 𝑇
 

𝑚𝑖,𝑗 =
101325 [

𝑁
𝑚2] . %𝑔𝑎𝑠𝑗  . 𝑉𝑜𝑓𝑓𝑔𝑎𝑠,𝑖 [

𝑚3

ℎ
] . 𝑀𝑤,𝑗 [

𝑔
𝑚𝑜𝑙

] .
1

1000
 [

𝑘𝑔
𝑔

] . 24 [
ℎ
𝑑

] 

8.3144 [
𝑁 . 𝑚

𝑚𝑜𝑙 . 𝐾
] . 293.15 [𝐾]

  

 

Where i represents each reactor and j each considered gas. 

 

A.7.3 Urine influent calculation 

 

Urine influent was based on original file proposed by Gernaey et al. (2011). A few steps were accomplished in order to separate urine from other flows: 1) Ammonia 

and soluble biodegradable N were considered to completely come from urine so decreases in volume of used water was calculated based on these flows. 2) With volume 

reduction, new concentrations were calculated for the effluent without urine (calculated considering 50% of urine separation). 3) For P calculations, a ratio of N/P = 12 was 

considered and all P is in the form of phosphate. 4) For COD calculations, it was considered the ratio COD/TKN = 1.49 and COD is 85% readily biodegradable and 15% 
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soluble inert.5) Finally, for alkalinity in urine, a ratio of total CO2 in relation to total N was calculated based on Udert et al. (2006) and applied to influent calculation. 6) 

Additionally, magnesium addition for struvite precipitation was calculated considering a molar excess of 10%. 

 

A.7.4 General tables 

 

Table 1: Initial concentration and transfer coefficients for metals 

Concentration in sewage Transfer Coefficients
1
 

Source 
Ecoinvent notation Short name Concentration (kg.m

-3
) To sludge

2
 To effluent

3
 

Arsenic, ion As 3E-06 0.22 0.78 Henze and Ledin (2001) 

Cadmium, ion Cd 2E-06 0.50 0.50 Henze and Ledin (2001) 

Cobalt Co 1E-06 0.50 0.50 Henze and Ledin (2001) 

Copper, ion Cu 7E-05 0.75 0.25 Henze and Ledin (2001) 

Lead Pb 6.5E-05 0.90 0.10 Henze and Ledin (2001) 

Manganese Mn 1E-04 0.50 0.50 Henze and Ledin (2001) 

Mercury Hg 2E-06 0.70 0.30 Henze and Ledin (2001) 

Nickel, ion Ni 2.5E-05 0.40 0.60 Henze and Ledin (2001) 

Silver, ion Ag 7E-06 0.75 0.25 Henze and Ledin (2001) 

Tin, ion Sn 3.4E-06 0.59 0.41 Doka (2009) 

Zinc, ion Zn 2E-04 0.70 0.30 Henze and Ledin (2001) 

Silicon Si 3.1E-03 0.95 0.05 Doka (2009) 

Fluoride F 3.3E-05 0.00 1.00 Doka (2009) 

Potassium, ion K 4E-04 0.00 1.00 Doka (2009) 

Sodium, ion Na 2.2E-03 0.00 1.00 Doka (2009) 

Molybdenum Mo 9.6E-07 0.50 0.50 Doka (2009) 

Chromium VI Cr 2.5E-05 0.50 0.50 Henze and Ledin (2001) 

S particulate S 2E-03 1.00 0.00 Doka (2009) 

Magnesium Mg 5.7E-03 0.10 0.90 Doka (2009) 
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Calcium, ion Ca 5.1E-02 0.10 0.90 Doka (2009) 

Aluminum Al 6.5E-04 0.95 0.05 Henze and Ledin (2001) 

Sulfate (dissolved) SO4 4.4E-02 0.00 1.00 Doka (2009) 

Iron, ion Fe 1E-03 0.50 0.50 Henze and Ledin (2001) 

Chloride Cl 3E-02 0.00 1.00 Doka (2009) 
1
 Doka (2009) 

2
 Share in particulate matter 

3
 Dissolved share 

 

Table 2: Direct emissions impacts contribution for ReCiPe Midpoint (H) for Ecoinvent module “treatment, sewage, to wastewater treatment, class 2, CH, [m3] (#2276)” 

compared to this study. 

Category 
% Contribution 

This study
1
 ReCiPe Midpoint (H) 

Climate change 33.93% 12.26% 

Freshwater ecotoxicity 33.40% 18.84% 

Freshwater eutrophication 83.18% 90.08% 

Human toxicity 56.11% 33.60% 

Marine ecotoxicity 30.53% 17.48% 

Marine eutrophication 94.19% 98.57% 

Particulate matter formation 59.97% 44.47% 

Terrestrial acidification 85.90% 70.31% 

Terrestrial ecotoxicity 99.28% 82.17% 
1
 For the comparison, direct emissions in this study are here, considered to be all emissions from WWTP (both directly to water body and from sludge) 

Table 3: Endpoint impacts for alternative scenarios. 

Scenarios 

Ecosystem quality Human health Resources Total 

Impact (points) 
Reduction in 

impact % 

Impact 

(points) 

Reduction in 

impact % 

Impacts 

(points) 

Reduction in 

impact % 

Impacts 

(points) 

Reduction in 

impact % 

REF 1.41E-02 - 3.54E-02 - 1.44E-02 - 6.39E-02 - 

USS 1.37E-02 3.00% 3.46E-02 2.10% 1.40E-02 3.10% 6.23E-02 2.50% 

EPC 1.30E-02 8.20% 3.43E-02 3.10% 1.30E-02 9.90% 6.02E-02 5.80% 
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USS+EPC 1.21E-02 13.90% 3.29E-02 7.10% 1.17E-02 19.20% 5.67E-02 11.40% 

USS+EPC+

AGRI 
8.06E-03 42.90% 2.56E-02 27.80% 5.41E-03 62.60% 3.90E-02 39.00% 

USS+EPC+

ANA 
9.48E-03 32.80% 2.82E-02 20.30% 6.20E-03 57.10% 4.38E-02 31.40% 

 

Table 4: Contribution of each species to Greenhouse Gases (GHGs) directly emitted in each scenario. 

    Fossil CO2 N2O CH4 Biogenic CO2 

REF 
kg CO2-Eq 0.068 0.113 0.006 0.442 

% Contribution 36.40% 60.50% 3.10% - 

EPC 
kg CO2-Eq 0.064 0.1 0.004 0.355 

% Contribution 38.10% 59.80% 2.10% - 

USS 
kg CO2-Eq 0.067 0.109 0.006 0.437 

% Contribution 36.80% 59.90% 3.20% - 

USS+EPC 
kg CO2-Eq 0.054 0.095 0.003 0.351 

% Contribution 35.30% 62.40% 2.30% - 

USS+EPC+AGRI 
kg CO2-Eq 0.018 0.062 0.003 0.304 

% Contribution 21.80% 74.30% 4.00% - 

USS+EPC+ANA 
kg CO2-Eq 0 0.072 0.004 0.265 

% Contribution 0.00% 95.25% 4.75% - 
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Table 5: Characteristics of considered influent. 

 
 Average Min Max 

Q (m
3
.d

-1
) Influent flow 20668.44 5146.12 76944.07 

SI (gCOD.m
-3

) Soluble inert 27.21 1.99 42.18 

SS (gCOD.m
-3

) Readily biodegradable 58.15 0.93 141.56 

XI (gCOD.m
-3

) Particulate inert 92.46 1.75 199.53 

XS (gCOD.m
-3

) Slowly biodegradable 363.77 16.08 770.23 

XBH (gCOD.m
-3

) Heterotrophic biomass 50.66 2.46 106.39 

XBA (gCOD.m
-3

) Autotrophic biomass 0 0 0 

XP (gCOD.m
-3

) Particulate products from biomass decay 0 0 0 

SO (gCOD.m
-3

) Soluble oxygen 0 0 0 

SNO (gCOD.m
-3

) Nitrate and nitrite 0 0 0 

SNH (gCOD.m
-3

) Soluble ammonia 27.91 1.75 64.01 

SND (gCOD.m
-3

) Soluble biodegradable organic nitrogen 6.66 0.21 17.01 

XND (gCOD.m
-3

) Particulate biodegradable organic nitrogen 19.35 0.91 41.87 
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B. Supplementary Information for chapter III 

 

B.1 Adapted Influent Generator Matlab code 

 

% This is an adapted file from the original BSM2 influent generation model 

% from Xavier Flores-Alsina, IEA, LTH, Sweden, June 2010 

% Adapted in order to include urine source separation (2016) 

% Bisinella de Faria et al., 2016. LISBP, INSA Toulouse 

 

% Loading total profiles (without urine separation) 

% These profiles will be used latter to recalculate new profiles in 

% function of urine retention in households 

% Industry profiles were not changed in this version 

 

% Load influent flow rate data files, households (HH) 

load Q_day_HS 

load Q_week_HS 

load Q_year_HS 

 

% Load influent flow rate data files, Industry (IndS) 

load Q_week_IndS 

load Q_year_IndS 

 

% Load influent pollution load, households (HH) 

load CODsol_day_HS 

load CODpart_day_HS 

load SNH_day_HS 

load TKN_day_HS 

load TP_day_HS 

load PO4_day_HS 

 

load pol_week_HS 

 

% Load influent pollution load, Industry (IndS) 

load CODsol_week_IndS 

load CODpart_week_IndS 

load SNH_week_IndS 

load TKN_week_IndS 

load TP_week_IndS 

load PO4_week_IndS 

 

all_noises = 1; 

 

%% 1.Households model block (flow rate) 

 

QperPE_Urine = 1.36;                            % in L/d 

NFlushes = 5;                                   % Number of urine flushes per PE and per day 

QOldFlush = 5;                                  % in L/flush 

QNewFlush = 0.15;                               % in L/flush 

UrineRetention = 0.5;                           % Percentage of urine source separated 

 

Contrib_Ind = 0.2; 

PE = 100000;                                     % Number of PE connected to the WWTP - 

Including HH and Ind 

sampling = 24*4;                              % Sampling should be set in order to have the 

number of points needed per day (e.g: 24h per day * 4 points per hour = sampling 

each 15 minutes) 

 

QperPE_Household = 150;                         % This flow only include total domestic 

water 

 

QperPE_WoUrine = (QperPE_Household - (UrineRetention * (QperPE_Urine + 

(NFlushes * QOldFlush))))*(1-Contrib_Ind); 

QperPE_SeparatedUrine = UrineRetention * (QperPE_Urine + (NFlushes * 

QNewFlush))*(1-Contrib_Ind); 
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QHHsatmin = 1E-50;                          

QHHsatmax = QperPE_WoUrine*50;                      

QHHsatmin_Urine = 1E-50;                        

QHHsatmax_Urine = QperPE_SeparatedUrine*50; 

 

factor_Q = 0.15; 

factor_Q_Urine = 0.05; 

 

Q_HH_ns = 3800;                                 % Seed for noise                          

Q_HH_nv = (factor_Q*QperPE_WoUrine)^2;                                   % Variance 

for noise 

Q_HH_st = 1/sampling;                           % Sampling time 

 

Q_HH_ns_Urine = 3801; 

Q_HH_nv_Urine = (factor_Q_Urine*QperPE_SeparatedUrine)^2;                               

Q_HH_st_Urine = 1/sampling;                          

 

HHpopswitch = 100;                              % Switch the household contribution on 

(100%) or off (0%) 

HHnoiseswitch = all_noises;                              % Switch the noise term in 

household flow rate  on (1) or off (0) 

 

%% 2.Industry model block (flow rate) 

 

QInd_weekday = QperPE_Household*PE*Contrib_Ind/1000;                            % 

Average wastewater production industry, for normal week-days (m3) 

QIndsatmin=0.001;                           

QIndsatmax=QInd_weekday*10;                 

 

factor_Q_Ind = 0.05; 

Q_Ind_ns=2000; 

Q_Ind_nv=(QInd_weekday*factor_Q_Ind)^2; 

Q_Ind_st=1/sampling; 

 

Indpopswitch = 100; 

Indnoiseswitch = all_noises; 

 

%% 3. Seasonal correction factor (flow rate) 

 

InfAmp = 1200;                                  % Sine wave amplitude (m3/d) 

InfBias = 7100;                                 % Sine wave bias (m3/d) (= average 

infiltration flow rate) 

InfFreq = 2*pi/364;                             % Sine wave frequency (rad/d) 

InfPhase = -pi*15/24;                           % Sine wave phase shift 

Infcst = 7100;                                  % Constant flow rate (m3/d), used when the 

sine wave is not selected (manual selection possible in 'Groundwater' model block 

 

QSCIsatmin=0.0;                              

QSCIsatmax=2*(InfBias+InfAmp);               

 

Q_SCI_ns=1000;                               

Q_SCI_nv=0.1*InfBias;                        

Q_SCI_st=1;                                  

 

SCIpopswitch=100;                            

SCInoiseswitch=0;                            

 

%% 4. rain generation model block (flow-rate) 

 

LLrain=3.5;                                     % Limit for rain (this value is subtracted from 

the values generated by the random number generator) 

Qpermm=1500;                                    % Flow rate due to rain (m3/mm) 

aHpercent=75;                                   % Assumed percentage of the extra flow due 

to rain that originates from impervious areas, where water is directly collected in 

the sewer system. In the model, the conversion aH = aHpercent/100 is made. 

rainmax = 1000;                                 % Max signal after the transfer function 

rainmin = 0;                                    % Min signal after the transfer function 

 

rain_ns=3000;                                

rain_nm=1;                                   

rain_nv=800;                                   % Originally 400 

rain_st=1/sampling;                          

 

rainpopswitch=100; 

 

%% 5 soil model accumulation block (flow rate) 

 

XINITSOIL=2.2;                                  % Initial h1 value.  
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subareas = 4;                                   % Subareas the catchment is divided 

HINV=2;                                         % Invert level in tank, i.e. water level 

corresponding to bottom of sewer pipes 

HMAX=HINV+0.8;                                  % Maximum water level in tank 

A=36000;                                        % Surface area 

K=1.0;                                          % Parameter, permeability of soil for water 

penetration 

Kinf=2500.0*subareas;                           % Infiltration gain, can be an indication of 

the quality of the sewer system pipes 

Kdown=1000.0;                                   % Gain to adjust for flow rate to 

downstream aquifer 

 

PARS_SOIL=[HMAX HINV A K Kinf Kdown];           % Parameter vector, an 

input to the unisoilmodel.c S-function 

 

%% 6.Households model block (pollutants) 

 

% Ratios between soluble and particulate considers that sewers will not consider 

hydrolysis 

 

% Total domestic (WITH urine) 

Total_COD = 120;                                % in g/(PE.d) 

TN_TP = 6;                                      % Ratio between TN and TP 

TCOD_TN = 9;                                    % Ratio between TCOD and TN 

TCOD_TP = TCOD_TN * TN_TP;                      % Ratio between TCOD and TP 

 

CODsol_TCOD = 0.21;                                 % Ratio between soluble COD and 

total COD 

SNH_TKN = 0.75;                                     % Ratio between ammonium and total 

nitrogen 

PO4_TP = 0.54;                                      % Ratio between PO4 and total 

phosphorus 

NOx_TKN = 1E-50;                                        % Ratio between NOx and total 

nitrogen 

 

TotalCOD_HH = Total_COD*(1-Contrib_Ind); 

CODsol_gperPEperd = Total_COD * CODsol_TCOD * (1-Contrib_Ind);        % 

Soluble COD load in g COD/d per PE 

CODpart_gperPEperd = Total_COD * (1-CODsol_TCOD) * (1-Contrib_Ind);   % 

Particulate COD load in g COD/d per  (includes also colloidal part) 

TKN_gperPEperd = Total_COD / TCOD_TN * (1-Contrib_Ind);               % TKN 

load in g N/d per PE 

SNH_gperPEperd = SNH_TKN * TKN_gperPEperd;          % Ammonium load in 

g N/d per PE 

NOx_gperPEperd = NOx_TKN * TKN_gperPEperd; 

TP_gperPEperd = Total_COD / TCOD_TP * (1-Contrib_Ind);                % TP load 

in g P/d per PE 

PO4_gperPEperd = PO4_TP * TP_gperPEperd;            % PO4 load in g P/d per 

PE 

 

% Total urine (100% retention) 

% Directly excreted values per PE per day are used for urine (instead of ratios) - 

concentration and values are well know 

CODsol_gperPEperd_Urine = 10.40;                    % Soluble COD load in g 

COD/d per PE in Urine 

CODpart_gperPEperd_Urine = 0.78;                    % Particulate COD load in g 

COD/d per PE in Urine 

Total_COD_Urine = CODsol_gperPEperd_Urine + CODpart_gperPEperd_Urine; 

TKN_gperPEperd_Urine = 9.78;                        % TKN load in g N/d per PE in 

Urine 

SNH_gperPEperd_Urine = 8.80;                        % Ammonium load in g N/d per 

PE in Urine 

NOx_gperPEperd_Urine = 1E-50;                           % NOx load in g N/d per PE in 

Urine 

TP_gperPEperd_Urine = 0.74;                         % Total phosphorus load in g P/d 

per PE in Urine 

PO4_gperPEperd_Urine = 0.70;                        % PO4 load in g P/d per PE in 

Urine 

 

% Urine separated 

CODsol_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(CODsol_gperPEperd_Urine); 

CODpart_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(CODpart_gperPEperd_Urine); 

Total_COD_SepUrine = CODsol_gperPEperd_SepUrine + 

CODpart_gperPEperd_SepUrine; 
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TKN_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(TKN_gperPEperd_Urine); 

SNH_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(SNH_gperPEperd_Urine); 

NOx_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(NOx_gperPEperd_Urine); 

TP_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(TP_gperPEperd_Urine); 

PO4_gperPEperd_SepUrine = UrineRetention*(1-

Contrib_Ind)*(PO4_gperPEperd_Urine); 

 

% Domestic without urine 

CODsol_gperPEperd_woUrine = CODsol_gperPEperd - 

CODsol_gperPEperd_SepUrine; 

CODpart_gperPEperd_woUrine = CODpart_gperPEperd - 

CODpart_gperPEperd_SepUrine; 

Total_COD_woUrine = CODsol_gperPEperd_woUrine + 

CODpart_gperPEperd_woUrine; 

TKN_gperPEperd_woUrine = TKN_gperPEperd - TKN_gperPEperd_SepUrine; 

SNH_gperPEperd_woUrine = SNH_gperPEperd - SNH_gperPEperd_SepUrine; 

NOx_gperPEperd_woUrine = NOx_gperPEperd - NOx_gperPEperd_SepUrine; 

TP_gperPEperd_woUrine = TP_gperPEperd - TP_gperPEperd_SepUrine; 

PO4_gperPEperd_woUrine = PO4_gperPEperd - PO4_gperPEperd_SepUrine; 

 

CODsol_HH_min = 0.001*CODsol_gperPEperd_woUrine*PE/1000; 

CODsol_HH_max = 20*CODsol_gperPEperd_woUrine*PE/1000; 

CODpart_HH_min = 0.001*CODpart_gperPEperd_woUrine*PE/1000;                          

CODpart_HH_max = 20*CODpart_gperPEperd_woUrine*PE/1000; 

SNH_HH_min = 0.001*SNH_gperPEperd_woUrine*PE/1000;                              

SNH_HH_max = 20*SNH_gperPEperd_woUrine*PE/1000;     

TKN_HH_min = 0.001*TKN_gperPEperd_woUrine*PE/1000;                              

TKN_HH_max = 20*TKN_gperPEperd_woUrine*PE/1000;     

TP_HH_min = 0.001*TP_gperPEperd_woUrine*PE/1000;                             

TP_HH_max = 20*TP_gperPEperd_woUrine*PE/1000;     

PO4_HH_min = 0.001*PO4_gperPEperd_woUrine*PE/1000;                            

PO4_HH_max = 20*PO4_gperPEperd_woUrine*PE/1000;   

 

CODsol_HH_min_Urine = 0.001*CODsol_gperPEperd_SepUrine*PE/1000;                

CODsol_HH_max_Urine = 20*CODsol_gperPEperd_SepUrine*PE/1000; 

CODpart_HH_min_Urine = 0.001*CODpart_gperPEperd_SepUrine*PE/1000;                

CODpart_HH_max_Urine = 20*CODpart_gperPEperd_SepUrine*PE/1000; 

SNH_HH_min_Urine = 0.001*SNH_gperPEperd_SepUrine*PE/1000;                             

SNH_HH_max_Urine = 20*SNH_gperPEperd_SepUrine*PE/1000;   

TKN_HH_min_Urine = 0.001*TKN_gperPEperd_SepUrine*PE/1000;                             

TKN_HH_max_Urine = 20*TKN_gperPEperd_SepUrine*PE/1000;   

TP_HH_min_Urine = 0.001*TP_gperPEperd_SepUrine*PE/1000;                             

TP_HH_max_Urine = 20*TP_gperPEperd_SepUrine*PE/1000;     

PO4_HH_min_Urine = 0.001*PO4_gperPEperd_SepUrine*PE/1000;                             

PO4_HH_max_Urine = 20*PO4_gperPEperd_SepUrine*PE/1000;         

 

factor1 = 0.1;                                        % Proportionality factor random noise 

generators 

factor1_Urine = 0.05;  

 

CODsol_HH_ns = 25000;                  

CODsol_HH_nv = (factor1*CODsol_gperPEperd_woUrine*PE/1000)^2; 

CODsol_HH_st = 1/sampling;                          

CODpart_HH_ns = 35000;                         

CODpart_HH_nv = (factor1*CODpart_gperPEperd_woUrine*PE/1000)^2; 

CODpart_HH_st = 1/sampling;                   

SNH_HH_ns = 45000;                             

SNH_HH_nv = (factor1*SNH_gperPEperd_woUrine*PE/1000)^2;       

SNH_HH_st = 1/sampling;                              

TKN_HH_ns = 55000;                             

TKN_HH_nv = (factor1*TKN_gperPEperd_woUrine*PE/1000)^2;  

TKN_HH_st = 1/sampling;                             

TP_HH_ns = 65000;                             

TP_HH_nv = (factor1*TP_gperPEperd_woUrine*PE/1000)^2;  

TP_HH_st = 1/sampling;                             

PO4_HH_ns = 75000;                            

PO4_HH_nv = (factor1*PO4_gperPEperd_woUrine*PE/1000)^2; 

PO4_HH_st = 1/sampling;                       

 

CODsol_HH_ns_Urine = 26000;                   

CODsol_HH_nv_Urine = 

(factor1_Urine*CODsol_gperPEperd_SepUrine*PE/1000)^2; 

CODsol_HH_st_Urine = 1/sampling;              

CODpart_HH_ns_Urine = 36000;                  
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CODpart_HH_nv_Urine = 

(factor1_Urine*CODpart_gperPEperd_SepUrine*PE/1000)^2; 

CODpart_HH_st_Urine = 1/sampling;             

SNH_HH_ns_Urine = 46000;                     

SNH_HH_nv_Urine = (factor1_Urine*SNH_gperPEperd_SepUrine*PE/1000)^2; 

SNH_HH_st_Urine = 1/sampling;                              

TKN_HH_ns_Urine = 56000;                             

TKN_HH_nv_Urine = (factor1_Urine*TKN_gperPEperd_SepUrine*PE/1000)^2; 

TKN_HH_st_Urine = 1/sampling;                       

TP_HH_ns_Urine = 66000;                             

TP_HH_nv_Urine = (factor1_Urine*TP_gperPEperd_SepUrine*PE/1000)^2; 

TP_HH_st_Urine = 1/sampling;                        

PO4_HH_ns_Urine = 76000;                            

PO4_HH_nv_Urine = (factor1_Urine*PO4_gperPEperd_SepUrine*PE/1000)^2; 

PO4_HH_st_Urine = 1/sampling;     

 

HHpolnoiseswitch = all_noises; 

 

%% 7. Industry model block (pollutants) 

 

CODsol_Ind_kgperd = CODsol_gperPEperd*Contrib_Ind/(1-

Contrib_Ind)*PE/1000;   % Soluble COD load in kg COD/d 

CODpart_Ind_kgperd = CODpart_gperPEperd*Contrib_Ind/(1-

Contrib_Ind)*PE/1000; % Particulate COD load in kg COD/d 

TKN_Ind_kgperd = TKN_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;         

% TKN load in kg N/d 

SNH_Ind_kgperd = SNH_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;         

% SNH load in kg N/d 

TP_Ind_kgperd = TP_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;          

% TP load in kg P/d 

PO4_Ind_kgperd = PO4_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000;          

% PO4 load in kg P/d 

NOx_Ind_kgperd = NOx_gperPEperd*Contrib_Ind/(1-Contrib_Ind)*PE/1000; 

 

CODsol_gperPEperd_Ind = CODsol_Ind_kgperd*1000/PE;                         % 

Soluble COD load in kg COD/d 

CODpart_gperPEperd_Ind = CODpart_Ind_kgperd*1000/PE;                       % 

Particulate COD load in kg COD/d 

TKN_gperPEperd_Ind = TKN_Ind_kgperd*1000/PE;                            % TKN 

load in kg N/d 

SNH_gperPEperd_Ind = SNH_Ind_kgperd*1000/PE;                             % SNH 

load in kg N/d 

TP_gperPEperd_Ind = TP_Ind_kgperd*1000/PE;                             % TP load in 

kg P/d 

PO4_gperPEperd_Ind = PO4_Ind_kgperd*1000/PE;                             % PO4 load 

in kg P/d 

TotalCOD_Ind = CODsol_gperPEperd_Ind + CODpart_gperPEperd_Ind; 

NOx_gperPEperd_Ind = NOx_Ind_kgperd*1000/PE; 

 

CODsol_Ind_max = 20*CODsol_Ind_kgperd;        

CODsol_Ind_min = 0.1;                          

CODpart_Ind_max = 20*CODpart_Ind_kgperd;       

CODpart_Ind_min = 0.1;                         

SNH_Ind_max = 20*SNH_Ind_kgperd;               

SNH_Ind_min = 0.1;                             

TKN_Ind_max = 20*TKN_Ind_kgperd;               

TKN_Ind_min = 0.1;                             

TP_Ind_max = 20*TP_Ind_kgperd;         

TP_Ind_min = 0.1;                         

PO4_Ind_max = 20*PO4_Ind_kgperd;       

PO4_Ind_min = 0.1;                        

 

factor2 = 0.1; 

 

CODsol_Ind_ns = 11000;                    

CODsol_Ind_nv = (factor2*CODsol_Ind_kgperd)^2;  

CODsol_Ind_st = 1/sampling;                 

CODpart_Ind_ns = 21000;                     

CODpart_Ind_nv = (factor2*CODpart_Ind_kgperd)^2;  

CODpart_Ind_st = 1/sampling;                   

SNH_Ind_ns = 31000;                            

SNH_Ind_nv = (factor2*SNH_Ind_kgperd)^2;           

SNH_Ind_st = 1/sampling;                       

TKN_Ind_ns = 41000;                            

TKN_Ind_nv = (factor2*TKN_Ind_kgperd)^2;       

TKN_Ind_st = 1/sampling;                     

TP_Ind_ns = 51000;                           
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TP_Ind_nv = (factor2*TP_Ind_kgperd)^2;           

TP_Ind_st = 1/sampling;                       

PO4_Ind_ns = 61000;                           

PO4_Ind_nv = (factor2*PO4_Ind_kgperd)^2;          

PO4_Ind_st = 1/sampling;                             

 

Indpolnoiseswitch=all_noises; 

 

%% 8. Influent fractionation model 

 

% General parameters 

COD_TSS = 0.75; 

 

Biomass_COD_VSS = 1.42; 

XU_COD_VSS = 1.3; 

XB_COD_VSS = 1.8; 

XE_COD_VSS = 1.42; 

 

% Parameters for total influent 

Total_XU_CODpart = 0.124; 

Total_XOHO_CODpart = 0.025; 

Total_XOtherBiomass_CODpart = 1E-50; 

Total_XE_CODpart = 1E-50; 

Total_SVFA_CODsol = 0.26; 

Total_CB_CODpart = 0.203; 

Total_CU_CODpart = 0.0405; 

Total_SMEOL_CODsol = 1E-50; 

Total_TCODinert_TCOD = 0.18; 

 

Total_TKNinert_TKN = 0.0245; 

Total_Organic_TKN = 1 - (SNH_TKN); 

Total_XNU_TKN = 0.0034; 

Total_XNB_TKN = 0.0904; 

Total_CNU_TKN = 0.0011; 

Total_CNB_TKN = 0.0301; 

Total_SNO3_NOx = 0.5; 

 

Total_TPinert_TP = 0.0075; 

Total_Organic_TP = 1 - (PO4_TP); 

Total_XPU_TP = 0.0011; 

Total_XPB_TP = 0.1714; 

Total_CPU_TP = 0.0004; 

Total_CPB_TP = 0.0571; 

 

Total_Ca_SNHx = 0.95; 

Total_Mg_SNHx = 0.23; 

Total_Na_SNHx = 1.73; 

Total_Cl_SNHx = 3.6; 

Total_TIC_SNHx = 4.2; 

 

% Parameters for urine 

XU_CODpart_Urine = 0.1071; 

XOHO_CODpart_Urine = 1E-50; 

XOtherBiomass_CODpart_Urine = 1E-50; 

XE_CODpart_Urine = 1E-50; 

SVFA_CODsol_Urine = 0.57; 

CB_CODpart_Urine = 0.214; 

CU_CODpart_Urine = 0.036; 

SMEOL_CODsol_Urine = 1E-50; 

TCODinert_TCOD_Urine = 0.09; 

 

TKNinert_TKN_Urine = 0.01; 

Organic_TKN_Urine = 1 - (SNH_gperPEperd_Urine/TKN_gperPEperd_Urine); 

XNU_TKN_Urine = 1E-50; 

XNB_TKN_Urine = 0.015; 

CNU_TKN_Urine = 1E-50; 

CNB_TKN_Urine = 0.005; 

SNO3_NOx_Urine = 0.5; 

 

TPinert_TP_Urine = 0.001; 

Organic_TP_Urine = 1 - (PO4_gperPEperd_Urine/TP_gperPEperd_Urine); 

XPU_TP_Urine = 1E-50; 

XPB_TP_Urine = 0.0075; 

CPU_TP_Urine = 1E-50; 

CPB_TP_Urine = 0.0025; 

 

Ca_SNHx_Urine = 0.026; 

Mg_SNHx_Urine = 0.022; 
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Na_SNHx_Urine = 0.392; 

Cl_SNHx_Urine = 0.565; 

TIC_SNHx_Urine = 1.57; 

 

% Calculating new parameters for HH without urine source separated 

XU_CODpart = 

((Total_XU_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) - 

(XU_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_

woUrine+CODpart_gperPEperd_Ind); 

XOHO_CODpart = 

((Total_XOHO_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) - 

(XOHO_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEpe

rd_woUrine+CODpart_gperPEperd_Ind); 

XOtherBiomass_CODpart = 

((Total_XOtherBiomass_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd

_Ind)) - 

(XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_

gperPEperd_woUrine+CODpart_gperPEperd_Ind); 

XE_CODpart = 

((Total_XE_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) - 

(XE_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_

woUrine+CODpart_gperPEperd_Ind); 

SVFA_CODsol = 

((Total_SVFA_CODsol*(CODsol_gperPEperd+CODsol_gperPEperd_Ind)) - 

(SVFA_CODsol_Urine*CODsol_gperPEperd_SepUrine))/(CODsol_gperPEperd_

woUrine+CODsol_gperPEperd_Ind); 

CB_CODpart = 

((Total_CB_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) - 

(CB_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_

woUrine+CODpart_gperPEperd_Ind); 

CU_CODpart = 

((Total_CU_CODpart*(CODpart_gperPEperd+CODpart_gperPEperd_Ind)) - 

(CU_CODpart_Urine*CODpart_gperPEperd_SepUrine))/(CODpart_gperPEperd_

woUrine+CODpart_gperPEperd_Ind); 

SMEOL_CODsol = 

((Total_SMEOL_CODsol*(CODsol_gperPEperd+CODsol_gperPEperd_Ind)) - 

(SMEOL_CODsol_Urine*CODsol_gperPEperd_SepUrine))/(CODsol_gperPEper

d_woUrine+CODsol_gperPEperd_Ind); 

TCODinert_TCOD = 

((Total_TCODinert_TCOD*(TotalCOD_HH+TotalCOD_Ind)) - 

(TCODinert_TCOD_Urine*Total_COD_SepUrine))/(Total_COD_woUrine+Total

COD_Ind); 

 

TKNinert_TKN = 

((Total_TKNinert_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) - 

(TKNinert_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUri

ne+TKN_gperPEperd_Ind); 

Organic_TKN = 

((Total_Organic_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) - 

(Organic_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrin

e+TKN_gperPEperd_Ind); 

XNU_TKN = ((Total_XNU_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) - 

(XNU_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+

TKN_gperPEperd_Ind); 

XNB_TKN = ((Total_XNB_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) - 

(XNB_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+

TKN_gperPEperd_Ind); 

CNU_TKN = ((Total_CNU_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) - 

(CNU_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+

TKN_gperPEperd_Ind); 

CNB_TKN = ((Total_CNB_TKN*(TKN_gperPEperd+TKN_gperPEperd_Ind)) - 

(CNB_TKN_Urine*TKN_gperPEperd_SepUrine))/(TKN_gperPEperd_woUrine+

TKN_gperPEperd_Ind); 

SNO3_NOx = ((Total_SNO3_NOx*(NOx_gperPEperd+NOx_gperPEperd_Ind)) - 

(SNO3_NOx_Urine*NOx_gperPEperd_SepUrine))/(NOx_gperPEperd_woUrine+

NOx_gperPEperd_Ind); 

 

TPinert_TP = ((Total_TPinert_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) - 

(TPinert_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_

gperPEperd_Ind); 

Organic_TP = ((Total_Organic_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) - 

(Organic_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_

gperPEperd_Ind); 

XPU_TP = ((Total_XPU_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) - 

(XPU_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gp

erPEperd_Ind); 
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XPB_TP = ((Total_XPB_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) - 

(XPB_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gpe

rPEperd_Ind); 

CPU_TP = ((Total_CPU_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) - 

(CPU_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gpe

rPEperd_Ind); 

CPB_TP = ((Total_CPB_TP*(TP_gperPEperd+TP_gperPEperd_Ind)) - 

(CPB_TP_Urine*TP_gperPEperd_SepUrine))/(TP_gperPEperd_woUrine+TP_gpe

rPEperd_Ind); 

 

Ca_SNHx = ((Total_Ca_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) - 

(Ca_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S

NH_gperPEperd_Ind); 

Mg_SNHx = ((Total_Mg_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) - 

(Mg_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S

NH_gperPEperd_Ind); 

Na_SNHx = ((Total_Na_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) - 

(Na_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S

NH_gperPEperd_Ind); 

Cl_SNHx = ((Total_Cl_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) - 

(Cl_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+S

NH_gperPEperd_Ind); 

TIC_SNHx = ((Total_TIC_SNHx*(SNH_gperPEperd+SNH_gperPEperd_Ind)) - 

(TIC_SNHx_Urine*SNH_gperPEperd_SepUrine))/(SNH_gperPEperd_woUrine+

SNH_gperPEperd_Ind); 

 

% Initial values 

% Urine 

SVFA_in_Urine = 

SVFA_CODsol_Urine*CODsol_gperPEperd_SepUrine/QperPE_SeparatedUrine*

1000; 

SMEOL_in_Urine = 

SMEOL_CODsol_Urine*CODsol_gperPEperd_SepUrine/QperPE_SeparatedUrin

e*1000; 

CB_in_Urine = 

CB_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1

000; 

CU_in_Urine = 

CU_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1

000; 

XU_in_Urine = 

XU_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1

000; 

XE_in_Urine = 

XE_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1

000; 

XOHO_in_Urine = 

XOHO_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrin

e*1000; 

XPAO_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XMEOLO_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XAOB_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XNOB_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XAMX_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XAMETO_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XHMETO_in_Urine = 

XOtherBiomass_CODpart_Urine*CODpart_gperPEperd_SepUrine/QperPE_Sepa

ratedUrine*1000; 

XB_in_Urine = (CODpart_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) 

- CB_in_Urine - CU_in_Urine - XU_in_Urine - XE_in_Urine - XOHO_in_Urine - 

XPAO_in_Urine - XMEOLO_in_Urine - XAOB_in_Urine - XNOB_in_Urine - 

XAMX_in_Urine - XAMETO_in_Urine - XHMETO_in_Urine; 
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SU_in_Urine = (Total_COD_SepUrine * 

TCODinert_TCOD_Urine/QperPE_SeparatedUrine*1000) - XU_in_Urine - 

CU_in_Urine; 

SB_in_Urine = (CODsol_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) - 

SVFA_in_Urine - SMEOL_in_Urine - SU_in_Urine; 

 

SNHx_in_Urine = SNH_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

SNO3_in_Urine = 

SNO3_NOx_Urine*NOx_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

SNO2_in_Urine = (NOx_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) - 

SNO3_in_Urine; 

CNB_in_Urine = 

CNB_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

XNB_in_Urine = 

XNB_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

CNU_in_Urine = 

CNU_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

XNU_in_Urine = 

XNU_TKN_Urine*TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

SNU_in_Urine = (TKN_gperPEperd_SepUrine * 

TKNinert_TKN_Urine/QperPE_SeparatedUrine*1000) - XNU_in_Urine - 

CNU_in_Urine; 

SNB_in_Urine = (TKN_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) - 

SNHx_in_Urine - SNO2_in_Urine - SNO3_in_Urine - CNB_in_Urine - 

CNU_in_Urine - XNB_in_Urine - XNU_in_Urine - SNU_in_Urine; 

 

SPO4_in_Urine = PO4_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

CPB_in_Urine = 

CPB_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

XPB_in_Urine = 

XPB_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

CPU_in_Urine = 

CPU_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

XPU_in_Urine = 

XPU_TP_Urine*TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000; 

SPU_in_Urine = (TP_gperPEperd_SepUrine * 

TPinert_TP_Urine/QperPE_SeparatedUrine*1000) - XPU_in_Urine - 

CPU_in_Urine; 

SPB_in_Urine = (TP_gperPEperd_SepUrine/QperPE_SeparatedUrine*1000) - 

SPO4_in_Urine - CPB_in_Urine - CPU_in_Urine - XPB_in_Urine - 

XPU_in_Urine - SPU_in_Urine; 

 

TIC_in_Urine = TIC_SNHx_Urine*SNHx_in_Urine; 

Ca_in_Urine = Ca_SNHx_Urine*SNHx_in_Urine; 

Mg_in_Urine = Mg_SNHx_Urine*SNHx_in_Urine; 

Na_in_Urine = Na_SNHx_Urine*SNHx_in_Urine; 

Cl_in_Urine = Cl_SNHx_Urine*SNHx_in_Urine; 

 

%Others 

Contrib_Other_Q = 0.25; 

QperPE_av = (QperPE_WoUrine + ((QInd_weekday*1000)/PE)) + 

(Contrib_Other_Q*QperPE_Household/(1-Contrib_Other_Q)); 

 

SVFA_in = 

SVFA_CODsol*(CODsol_gperPEperd_woUrine+CODsol_gperPEperd_Ind)/(Qpe

rPE_av)*1000; 

SMEOL_in = 

SMEOL_CODsol*(CODsol_gperPEperd_woUrine+CODsol_gperPEperd_Ind)/(Q

perPE_av)*1000; 

CB_in = 

CB_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe

rPE_av)*1000; 

CU_in = 

CU_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe

rPE_av)*1000; 

XU_in = 

XU_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe

rPE_av)*1000; 

XE_in = 

XE_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(Qpe

rPE_av)*1000; 

XOHO_in = 

XOHO_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(

QperPE_av)*1000; 

XPAO_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 
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XMEOLO_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 

XAOB_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 

XNOB_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 

XAMX_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 

XAMETO_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 

XHMETO_in = 

XOtherBiomass_CODpart*(CODpart_gperPEperd_woUrine+CODpart_gperPEpe

rd_Ind)/(QperPE_av)*1000; 

XB_in = 

((CODpart_gperPEperd_woUrine+CODpart_gperPEperd_Ind)/(QperPE_av)*1000

) - CB_in - CU_in - XU_in - XE_in - XOHO_in - XPAO_in - XMEOLO_in - 

XAOB_in - XNOB_in - XAMX_in - XAMETO_in - XHMETO_in; 

SU_in = ((Total_COD_woUrine + TotalCOD_Ind) * 

TCODinert_TCOD/(QperPE_av)*1000) - XU_in - CU_in; 

SB_in = 

((CODsol_gperPEperd_woUrine+CODsol_gperPEperd_Ind)/(QperPE_av)*1000) 

- SVFA_in - SMEOL_in - SU_in; 

 

SNHx_in = 

(SNH_gperPEperd_woUrine+SNH_gperPEperd_Ind)/(QperPE_av)*1000; 

SNO3_in = 

SNO3_NOx*(NOx_gperPEperd_woUrine+NOx_gperPEperd_Ind)/(QperPE_av)*

1000; 

SNO2_in = 

((NOx_gperPEperd_woUrine+NOx_gperPEperd_Ind)/(QperPE_av)*1000) - 

SNO3_in; 

CNB_in = 

CNB_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*

1000; 

XNB_in = 

XNB_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*

1000; 

CNU_in = 

CNU_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*

1000; 

XNU_in = 

XNU_TKN*(TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*

1000; 

SNU_in = ((TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind) * 

TKNinert_TKN/(QperPE_av)*1000) - XNU_in - CNU_in; 

SNB_in = 

((TKN_gperPEperd_woUrine+TKN_gperPEperd_Ind)/(QperPE_av)*1000) - 

SNHx_in - SNO2_in - SNO3_in - CNB_in - CNU_in - XNB_in - XNU_in - 

SNU_in; 

 

SPO4_in = 

(PO4_gperPEperd_woUrine+PO4_gperPEperd_Ind)/(QperPE_av)*1000; 

CPB_in = 

CPB_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000; 

XPB_in = 

XPB_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000; 

CPU_in = 

CPU_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000; 

XPU_in = 

XPU_TP*(TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000; 

SPU_in = ((TP_gperPEperd_woUrine+TP_gperPEperd_Ind) * 

TPinert_TP/(QperPE_av)*1000) - XPU_in - CPU_in; 

SPB_in = ((TP_gperPEperd_woUrine+TP_gperPEperd_Ind)/(QperPE_av)*1000) 

- SPO4_in - CPB_in - CPU_in - XPB_in - XPU_in - SPU_in; 

 

TIC_in = TIC_SNHx*SNHx_in; 

Ca_in = Ca_SNHx*SNHx_in; 

Mg_in = Mg_SNHx*SNHx_in; 

Na_in = Na_SNHx*SNHx_in; 

Cl_in = Cl_SNHx*SNHx_in; 

 

TSS_in = COD_TSS * (XB_in + XU_in + XOHO_in + XPAO_in + XMEOLO_in 

+ XAOB_in + XNOB_in + XAMX_in + XAMETO_in + XHMETO_in + XE_in); 
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% Noise Others 

factorVariables = 0.1; 

 

SVFA_ns = 13122;                                

SVFA_nv = (factorVariables*(SVFA_in))^2;                      

SVFA_st = 1/sampling;                                 

SVFA_max = 100*SVFA_in;                           

SVFA_min = 1E-50; 

 

SB_ns = 13123;                                

SB_nv = (factorVariables*(SB_in))^2;                      

SB_st = 1/sampling;                                 

SB_max = 100*SB_in;                           

SB_min = 1E-50; 

 

SMEOL_ns = 13124;                                

SMEOL_nv = (factorVariables*(SMEOL_in))^2;                      

SMEOL_st = 1/sampling;                                 

SMEOL_max = 100*SMEOL_in;                           

SMEOL_min = 1E-50; 

 

CB_ns = 13125;                                

CB_nv = (factorVariables*(CB_in))^2;                      

CB_st = 1/sampling;                                 

CB_max = 100*CB_in;                           

CB_min = 1E-50; 

 

XB_ns = 13126;                                

XB_nv = (factorVariables*(XB_in))^2;                      

XB_st = 1/sampling;                                 

XB_max = 100*XB_in;                           

XB_min = 1E-50; 

 

SU_ns = 13127;                                

SU_nv = (factorVariables*(SU_in))^2;                      

SU_st = 1/sampling;                                 

SU_max = 100*SU_in;                           

SU_min = 1E-50; 

 

CU_ns = 13128;                                

CU_nv = (factorVariables*(CU_in))^2;                      

CU_st = 1/sampling;                                 

CU_max = 100*CU_in;                           

CU_min = 1E-50; 

 

XU_ns = 13129;                                

XU_nv = (factorVariables*(XU_in))^2;                      

XU_st = 1/sampling;                                 

XU_max = 100*XU_in;                           

XU_min = 1E-50; 

 

XE_ns = 13130;                                

XE_nv = (factorVariables*(XE_in))^2;                      

XE_st = 1/sampling;                                 

XE_max = 100*XE_in;                           

XE_min = 1E-50; 

 

XOHO_ns = 13131;                                

XOHO_nv = (factorVariables*(XOHO_in))^2;                      

XOHO_st = 1/sampling;                                 

XOHO_max = 100*XOHO_in;                           

XOHO_min = 1E-50; 

 

XPAO_ns = 13132;                                

XPAO_nv = (factorVariables*(XPAO_in))^2;                      

XPAO_st = 1/sampling;                                 

XPAO_max = 100*XPAO_in;                           

XPAO_min = 1E-50; 

 

XMEOLO_ns = 13133;                                

XMEOLO_nv = (factorVariables*(XMEOLO_in))^2;                      

XMEOLO_st = 1/sampling;                                 

XMEOLO_max = 100*XMEOLO_in;                           

XMEOLO_min = 1E-50; 

 

XAOB_ns = 13134;                                

XAOB_nv = (factorVariables*(XAOB_in))^2;                      
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XAOB_st = 1/sampling;                                 

XAOB_max = 100*XAOB_in;                           

XAOB_min = 1E-50; 

 

XNOB_ns = 13135;                                

XNOB_nv = (factorVariables*(XNOB_in))^2;                      

XNOB_st = 1/sampling;                                 

XNOB_max = 100*XNOB_in;                           

XNOB_min = 1E-50; 

 

XAMX_ns = 13136;                                

XAMX_nv = (factorVariables*(XAMX_in))^2;                      

XAMX_st = 1/sampling;                                 

XAMX_max = 100*XAMX_in;                           

XAMX_min = 1E-50; 

 

XAMETO_ns = 13137;                                

XAMETO_nv = (factorVariables*(XAMETO_in))^2;                      

XAMETO_st = 1/sampling;                                 

XAMETO_max = 100*XAMETO_in;                           

XAMETO_min = 1E-50; 

 

XHMETO_ns = 13138;                                

XHMETO_nv = (factorVariables*(XHMETO_in))^2;                      

XHMETO_st = 1/sampling;                                 

XHMETO_max = 100*XHMETO_in;                           

XHMETO_min = 1E-50; 

 

SNHx_ns = 13139;                                

SNHx_nv = (factorVariables*(SNHx_in))^2;                      

SNHx_st = 1/sampling;                                 

SNHx_max = 100*SNHx_in;                           

SNHx_min = 1E-50; 

 

SNO2_ns = 13140;                                

SNO2_nv = (factorVariables*(SNO2_in))^2;                      

SNO2_st = 1/sampling;                                 

SNO2_max = 100*SNO2_in;                           

SNO2_min = 1E-50; 

 

SNO3_ns = 13141;                                

SNO3_nv = (factorVariables*(SNO3_in))^2;                      

SNO3_st = 1/sampling;                                 

SNO3_max = 100*SNO3_in;                           

SNO3_min = 1E-50; 

 

SNB_ns = 13142;                                

SNB_nv = (factorVariables*(SNB_in))^2;                      

SNB_st = 1/sampling;                                 

SNB_max = 100*SNB_in;                           

SNB_min = 1E-50; 

 

CNB_ns = 13143;                                

CNB_nv = (factorVariables*(CNB_in))^2;                      

CNB_st = 1/sampling;                                 

CNB_max = 100*CNB_in;                           

CNB_min = 1E-50; 

 

XNB_ns = 13144;                                

XNB_nv = (factorVariables*(XNB_in))^2;                      

XNB_st = 1/sampling;                                 

XNB_max = 100*XNB_in;                           

XNB_min = 1E-50; 

 

SNU_ns = 13145;                                

SNU_nv = (factorVariables*(SNU_in))^2;                      

SNU_st = 1/sampling;                                 

SNU_max = 100*SNU_in;                           

SNU_min = 1E-50; 

 

CNU_ns = 13146;                                

CNU_nv = (factorVariables*(CNU_in))^2;                      

CNU_st = 1/sampling;                                 

CNU_max = 100*CNU_in;                           

CNU_min = 1E-50; 

 

XNU_ns = 13147;                                

XNU_nv = (factorVariables*(XNU_in))^2;                      
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XNU_st = 1/sampling;                                 

XNU_max = 100*XNU_in;                           

XNU_min = 1E-50; 

 

SPO4_ns = 13148;                                

SPO4_nv = (factorVariables*(SPO4_in))^2;                      

SPO4_st = 1/sampling;                                 

SPO4_max = 100*SPO4_in;                           

SPO4_min = 1E-50; 

 

SPB_ns = 13149;                                

SPB_nv = (factorVariables*(SPB_in))^2;                      

SPB_st = 1/sampling;                                 

SPB_max = 100*SPB_in;                           

SPB_min = 1E-50; 

 

CPB_ns = 13150;                                

CPB_nv = (factorVariables*(CPB_in))^2;                      

CPB_st = 1/sampling;                                 

CPB_max = 100*CPB_in;                           

CPB_min = 1E-50; 

 

XPB_ns = 13151;                                

XPB_nv = (factorVariables*(XPB_in))^2;                      

XPB_st = 1/sampling;                                 

XPB_max = 100*XPB_in;                           

XPB_min = 1E-50; 

 

SPU_ns = 13152;                                

SPU_nv = (factorVariables*(SPU_in))^2;                      

SPU_st = 1/sampling;                                 

SPU_max = 100*SPU_in;                           

SPU_min = 1E-50; 

 

CPU_ns = 13153;                                

CPU_nv = (factorVariables*(CPU_in))^2;                      

CPU_st = 1/sampling;                                 

CPU_max = 100*CPU_in;                           

CPU_min = 1E-50; 

 

XPU_ns = 13154;                                

XPU_nv = (factorVariables*(XPU_in))^2;                      

XPU_st = 1/sampling;                                 

XPU_max = 100*XPU_in;                           

XPU_min = 1E-50; 

 

TIC_ns = 13155;                                

TIC_nv = (factorVariables*(TIC_in))^2;                      

TIC_st = 1/sampling;                                 

TIC_max = 100*TIC_in;                           

TIC_min = 1E-50; 

 

Ca_ns = 13156;                                

Ca_nv = (factorVariables*(Ca_in))^2;                      

Ca_st = 1/sampling;                                 

Ca_max = 100*Ca_in;                           

Ca_min = 1E-50; 

 

Mg_ns = 13157;                                

Mg_nv = (factorVariables*(Mg_in))^2;                      

Mg_st = 1/sampling;                                 

Mg_max = 100*Mg_in;                           

Mg_min = 1E-50; 

 

Na_ns = 13158;                                

Na_nv = (factorVariables*(Na_in))^2;                      

Na_st = 1/sampling;                                 

Na_max = 100*Na_in;                           

Na_min = 1E-50; 

 

Cl_ns = 13159;                                

Cl_nv = (factorVariables*(Cl_in))^2;                      

Cl_st = 1/sampling;                                 

Cl_max = 100*Cl_in;                           

Cl_min = 1E-50; 

 

polnoiseswitch = all_noises; 
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% Noise Urine 

factorVariables_Urine = 0.01; 

 

SVFA_ns_Urine = 13222;                                

SVFA_nv_Urine = (factorVariables_Urine*(SVFA_in_Urine))^2;                      

SVFA_st_Urine = 1/sampling;                                 

SVFA_max_Urine = 100*SVFA_in_Urine;                           

SVFA_min_Urine = 1E-50; 

 

SB_ns_Urine = 13223;                                

SB_nv_Urine = (factorVariables_Urine*(SB_in_Urine))^2;                      

SB_st_Urine = 1/sampling;                                 

SB_max_Urine = 100*SB_in_Urine;                           

SB_min_Urine = 1E-50; 

 

SMEOL_ns_Urine = 13224;                                

SMEOL_nv_Urine = (factorVariables_Urine*(SMEOL_in_Urine))^2;                      

SMEOL_st_Urine = 1/sampling;                                 

SMEOL_max_Urine = 100*SMEOL_in_Urine;                           

SMEOL_min_Urine = 1E-50; 

 

CB_ns_Urine = 13225;                                

CB_nv_Urine = (factorVariables_Urine*(CB_in_Urine))^2;                      

CB_st_Urine = 1/sampling;                                 

CB_max_Urine = 100*CB_in_Urine;                           

CB_min_Urine = 1E-50; 

 

XB_ns_Urine = 13226;                                

XB_nv_Urine = (factorVariables_Urine*(XB_in_Urine))^2;                      

XB_st_Urine = 1/sampling;                                 

XB_max_Urine = 100*XB_in_Urine;                           

XB_min_Urine = 1E-50; 

 

SU_ns_Urine = 13227;                                

SU_nv_Urine = (factorVariables_Urine*(SU_in_Urine))^2;                      

SU_st_Urine = 1/sampling;                                 

SU_max_Urine = 100*SU_in_Urine;                           

SU_min_Urine = 1E-50; 

 

CU_ns_Urine = 13228;                                

CU_nv_Urine = (factorVariables_Urine*(CU_in_Urine))^2;                      

CU_st_Urine = 1/sampling;                                 

CU_max_Urine = 100*CU_in_Urine;                           

CU_min_Urine = 1E-50; 

 

XU_ns_Urine = 13229;                                

XU_nv_Urine = (factorVariables_Urine*(XU_in_Urine))^2;                      

XU_st_Urine = 1/sampling;                                 

XU_max_Urine = 100*XU_in_Urine;                           

XU_min_Urine = 1E-50; 

 

XE_ns_Urine = 13230;                                

XE_nv_Urine = (factorVariables_Urine*(XE_in_Urine))^2;                      

XE_st_Urine = 1/sampling;                                 

XE_max_Urine = 100*XE_in_Urine;                           

XE_min_Urine = 1E-50; 

 

XOHO_ns_Urine = 13231;                                

XOHO_nv_Urine = (factorVariables_Urine*(XOHO_in_Urine))^2;                      

XOHO_st_Urine = 1/sampling;                                 

XOHO_max_Urine = 100*XOHO_in_Urine;                           

XOHO_min_Urine = 1E-50; 

 

XPAO_ns_Urine = 13232;                                

XPAO_nv_Urine = (factorVariables_Urine*(XPAO_in_Urine))^2;                      

XPAO_st_Urine = 1/sampling;                                 

XPAO_max_Urine = 100*XPAO_in_Urine;                           

XPAO_min_Urine = 1E-50; 

 

XMEOLO_ns_Urine = 13233;                                

XMEOLO_nv_Urine = (factorVariables_Urine*(XMEOLO_in_Urine))^2;                      

XMEOLO_st_Urine = 1/sampling;                                 

XMEOLO_max_Urine = 100*XMEOLO_in_Urine;                           

XMEOLO_min_Urine = 1E-50; 

 

XAOB_ns_Urine = 13234;                                

XAOB_nv_Urine = (factorVariables_Urine*(XAOB_in_Urine))^2;                      

XAOB_st_Urine = 1/sampling;                                 
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XAOB_max_Urine = 100*XAOB_in_Urine;                           

XAOB_min_Urine = 1E-50; 

 

XNOB_ns_Urine = 13235;                                

XNOB_nv_Urine = (factorVariables_Urine*(XNOB_in_Urine))^2;                      

XNOB_st_Urine = 1/sampling;                                 

XNOB_max_Urine = 100*XNOB_in_Urine;                           

XNOB_min_Urine = 1E-50; 

 

XAMX_ns_Urine = 13236;                                

XAMX_nv_Urine = (factorVariables_Urine*(XAMX_in_Urine))^2;                      

XAMX_st_Urine = 1/sampling;                                 

XAMX_max_Urine = 100*XAMX_in_Urine;                           

XAMX_min_Urine = 1E-50; 

 

XAMETO_ns_Urine = 13237;                                

XAMETO_nv_Urine = (factorVariables_Urine*(XAMETO_in_Urine))^2;                      

XAMETO_st_Urine = 1/sampling;                                 

XAMETO_max_Urine = 100*XAMETO_in_Urine;                           

XAMETO_min_Urine = 1E-50; 

 

XHMETO_ns_Urine = 13238;                                

XHMETO_nv_Urine = (factorVariables_Urine*(XHMETO_in_Urine))^2;                      

XHMETO_st_Urine = 1/sampling;                                 

XHMETO_max_Urine = 100*XHMETO_in_Urine;                           

XHMETO_min_Urine = 1E-50; 

 

SNHx_ns_Urine = 13239;                                

SNHx_nv_Urine = (factorVariables_Urine*(SNHx_in_Urine))^2;                      

SNHx_st_Urine = 1/sampling;                                 

SNHx_max_Urine = 100*SNHx_in_Urine;                           

SNHx_min_Urine = 1E-50; 

 

SNO2_ns_Urine = 13240;                                

SNO2_nv_Urine = (factorVariables_Urine*(SNO2_in_Urine))^2;                      

SNO2_st_Urine = 1/sampling;                                 

SNO2_max_Urine = 100*SNO2_in_Urine;                           

SNO2_min_Urine = 1E-50; 

 

SNO3_ns_Urine = 13241;                                

SNO3_nv_Urine = (factorVariables_Urine*(SNO3_in_Urine))^2;                      

SNO3_st_Urine = 1/sampling;                                 

SNO3_max_Urine = 100*SNO3_in_Urine;                           

SNO3_min_Urine = 1E-50; 

 

SNB_ns_Urine = 13242;                                

SNB_nv_Urine = (factorVariables_Urine*(SNB_in_Urine))^2;                      

SNB_st_Urine = 1/sampling;                                 

SNB_max_Urine = 100*SNB_in_Urine;                           

SNB_min_Urine = 1E-50; 

 

CNB_ns_Urine = 13243;                                

CNB_nv_Urine = (factorVariables_Urine*(CNB_in_Urine))^2;                      

CNB_st_Urine = 1/sampling;                                 

CNB_max_Urine = 100*CNB_in_Urine;                           

CNB_min_Urine = 1E-50; 

 

XNB_ns_Urine = 13244;                                

XNB_nv_Urine = (factorVariables_Urine*(XNB_in_Urine))^2;                      

XNB_st_Urine = 1/sampling;                                 

XNB_max_Urine = 100*XNB_in_Urine;                           

XNB_min_Urine = 1E-50; 

 

SNU_ns_Urine = 13245;                                

SNU_nv_Urine = (factorVariables_Urine*(SNU_in_Urine))^2;                      

SNU_st_Urine = 1/sampling;                                 

SNU_max_Urine = 100*SNU_in_Urine;                           

SNU_min_Urine = 1E-50; 

 

CNU_ns_Urine = 13246;                                

CNU_nv_Urine = (factorVariables_Urine*(CNU_in_Urine))^2;                      

CNU_st_Urine = 1/sampling;                                 

CNU_max_Urine = 100*CNU_in_Urine;                           

CNU_min_Urine = 1E-50; 

 

XNU_ns_Urine = 13247;                                

XNU_nv_Urine = (factorVariables_Urine*(XNU_in_Urine))^2;                      

XNU_st_Urine = 1/sampling;                                 
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XNU_max_Urine = 100*XNU_in_Urine;                           

XNU_min_Urine = 1E-50; 

 

SPO4_ns_Urine = 13248;                                

SPO4_nv_Urine = (factorVariables_Urine*(SPO4_in_Urine))^2;                      

SPO4_st_Urine = 1/sampling;                                 

SPO4_max_Urine = 100*SPO4_in_Urine;                           

SPO4_min_Urine = 1E-50; 

 

SPB_ns_Urine = 13249;                                

SPB_nv_Urine = (factorVariables_Urine*(SPB_in_Urine))^2;                      

SPB_st_Urine = 1/sampling;                                 

SPB_max_Urine = 100*SPB_in_Urine;                           

SPB_min_Urine = 1E-50; 

 

CPB_ns_Urine = 13250;                                

CPB_nv_Urine = (factorVariables_Urine*(CPB_in_Urine))^2;                      

CPB_st_Urine = 1/sampling;                                 

CPB_max_Urine = 100*CPB_in_Urine;                           

CPB_min_Urine = 1E-50; 

 

XPB_ns_Urine = 13251;                                

XPB_nv_Urine = (factorVariables_Urine*(XPB_in_Urine))^2;                      

XPB_st_Urine = 1/sampling;                                 

XPB_max_Urine = 100*XPB_in_Urine;                           

XPB_min_Urine = 1E-50; 

 

SPU_ns_Urine = 13252;                                

SPU_nv_Urine = (factorVariables_Urine*(SPU_in_Urine))^2;                      

SPU_st_Urine = 1/sampling;                                 

SPU_max_Urine = 100*SPU_in_Urine;                           

SPU_min_Urine = 1E-50; 

 

CPU_ns_Urine = 13253;                                

CPU_nv_Urine = (factorVariables_Urine*(CPU_in_Urine))^2;                      

CPU_st_Urine = 1/sampling;                                 

CPU_max_Urine = 100*CPU_in_Urine;                           

CPU_min_Urine = 1E-50; 

 

XPU_ns_Urine = 13254;                                

XPU_nv_Urine = (factorVariables_Urine*(XPU_in_Urine))^2;                      

XPU_st_Urine = 1/sampling;                                 

XPU_max_Urine = 100*XPU_in_Urine;                           

XPU_min_Urine = 1E-50; 

 

TIC_ns_Urine = 13255;                                

TIC_nv_Urine = (factorVariables_Urine*(TIC_in_Urine))^2;                      

TIC_st_Urine = 1/sampling;                                 

TIC_max_Urine = 100*TIC_in_Urine;                           

TIC_min_Urine = 1E-50; 

 

Ca_ns_Urine = 13256;                                

Ca_nv_Urine = (factorVariables_Urine*(Ca_in_Urine))^2;                      

Ca_st_Urine = 1/sampling;                                 

Ca_max_Urine = 100*Ca_in_Urine;                           

Ca_min_Urine = 1E-50; 

 

Mg_ns_Urine = 13257;                                

Mg_nv_Urine = (factorVariables_Urine*(Mg_in_Urine))^2;                      

Mg_st_Urine = 1/sampling;                                 

Mg_max_Urine = 100*Mg_in_Urine;                           

Mg_min_Urine = 1E-50; 

 

Na_ns_Urine = 13258;                                

Na_nv_Urine = (factorVariables_Urine*(Na_in_Urine))^2;                      

Na_st_Urine = 1/sampling;                                 

Na_max_Urine = 100*Na_in_Urine;                           

Na_min_Urine = 1E-50; 

 

Cl_ns_Urine = 13259;                                

Cl_nv_Urine = (factorVariables_Urine*(Cl_in_Urine))^2;                      

Cl_st_Urine = 1/sampling;                                 

Cl_max_Urine = 100*Cl_in_Urine;                           

Cl_min_Urine = 1E-50; 

 

polnoiseswitch_Urine = all_noises; 

%% 9. First flush effect 
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FFfraction = 0.25;                                  % Fraction of the TSS that is able to settle 

in the sewers 

 

% State values 

FF_XINIT=[TSS_in XB_in XU_in XE_in XOHO_in XPAO_in XMEOLO_in 

XAOB_in XNOB_in XAMX_in XAMETO_in XHMETO_in XNB_in XNU_in 

XPB_in XPU_in];         % Initital conditions (7 states) XINIT= [TSS  XI  XS  

XBH  XBA  XP  XND] 

 

% Parameters 

M_Max = 1000;                                       % kg SS 

Q_lim = 70000;                                      % m3/d 

n     = 15;                                         % Dimensionless 

Ff    = 500;                                        % Dimensionless, gain 

SSPARS=[M_Max Q_lim n Ff]; 

 

%% 10. Sewer model 

 

subarea = 4; 

 

% Initialisation of the individual sewer model blocks 

VARS_SEWERINIT =[zeros(1,39) 0.001]; 

 

% Parameters for individual sewer model block S-functions 

A=1100;                                             % Area (m2) 

C=150000;                                           % Tuning constant 

Hmin=0.00;                                          % Minimum water level in tank 

SPAR = [A C Hmin]; 

%% 11 Parameters temperature model block 

TAmp = 5;                                           % Sine wave amplitude (deg. C) 

TBias = 15;                                         % Sine wave bias (m3/d) (= average 

infiltration flow rate) 

TFreq = 2*pi/364;                                   % Sine wave frequency (rad/d) 

TPhase = pi*8.5/24;                                 % Sine wave phase shift 

 

TdAmp = 0.5;                                        % Sine wave amplitude (deg. C) 

TdBias = 0;                                         % Sine wave bias (m3/d) (= average 

infiltration flow rate) 

TdFreq = 2*pi;                                      % Sine wave frequency (rad/d) 

TdPhase = pi*0.8;                                   % Sine wave phase shift 

 

%% 12 Profiles 

QdayHS_SeparatedUrine = struct('signals' 

,struct('values',(SNH_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

QdayHS_woUrine = struct('signals' ,struct('values',Q_day_HS.signals.values), 

'time', []); 

 

CODsoldayHS_SeparatedUrine = struct('signals' 

,struct('values',(CODsol_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

CODsoldayHS_woUrine = struct('signals' 

,struct('values',CODsol_day_HS.signals.values), 'time', []); 

 

CODpartdayHS_SeparatedUrine = struct('signals' 

,struct('values',(CODpart_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

CODpartdayHS_woUrine = struct('signals' 

,struct('values',CODpart_day_HS.signals.values), 'time', []); 

 

TKNdayHS_SeparatedUrine = struct('signals' 

,struct('values',(TKN_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

TKNdayHS_woUrine = struct('signals' 

,struct('values',TKN_day_HS.signals.values), 'time', []); 

 

SNHdayHS_SeparatedUrine = struct('signals' 

,struct('values',(SNH_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

SNHdayHS_woUrine = struct('signals' 

,struct('values',SNH_day_HS.signals.values), 'time', []); 

 

TPdayHS_SeparatedUrine = struct('signals' 

,struct('values',(TP_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

TPdayHS_woUrine = struct('signals' ,struct('values',TP_day_HS.signals.values), 

'time', []); 

 

PO4dayHS_SeparatedUrine = struct('signals' 

,struct('values',(PO4_day_HS.signals.values - 1) * 0.4 + 1), 'time', []); 

PO4dayHS_woUrine = struct('signals' 

,struct('values',PO4_day_HS.signals.values), 'time', []); 
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C. Supplementary Information for chapters IV and V 

 

C.1. Adapted Sumo2 Gujer matrix 

 

The original Sumo2 Gujer matrix was developed by Dynamita. For more details, please refer to www.dynamita.com/the-sumo/ 

 
Name Unit 

SVFA VFAs g COD.m
-3

 

SB Readily biodegradable substrate (non-VFA) g COD.m
-3

 

SMEOL Methanol g COD.m
-3

 

CB Colloidal biodegradable substrate g COD.m
-3

 

XB Slowly biodegradable substrate g COD.m
-3

 

SU Soluble unbiodegradable organics g COD.m
-3

 

CU Colloidal unbiodegradable organics g COD.m
-3

 

XU Particulate unbiodegradable organics g COD.m
-3

 

XPHA Stored PHA g COD.m
-3

 

XE Endogenous decay products g COD.m
-3

 

XOHO Ordinary heterotrophs g COD.m
-3

 

XPAO Phosphorus accumulating organisms g COD.m
-3

 

XMEOLO Anoxic methanol utilizers g COD.m
-3

 

XAOB Aerobic ammonia oxidizers g COD.m
-3

 

XNOB Nitrite oxidizers g COD.m
-3

 

XAMX Anammox organisms g COD.m
-3

 

XAMETO Acidoclastic methanogens (VFA) g COD.m
-3

 

XHMETO Hydrogenotrophic methanogens g COD.m
-3

 

SNHx Total ammonia g N.m
-3

 

SNO2 Nitrite g N.m
-3

 

SNO3 Nitrate g N.m
-3

 

SN2 Dissolved Nitrogen g N.m
-3

 

SN,B Soluble biodegradable organic N (from SB) g N.m
-3

 

CN,B Colloidal biodegradable organic N g N.m
-3

 

XN,B Particulate biodegradable organic N g N.m
-3

 

SN,U Soluble unbiodegradable organic N g N.m
-3

 

CN,U Colloidal unbiodegradable organic N g N.m
-3

 

XN,U Particulate unbiodegradable organic N g N.m
-3

 

SPO4 Orthophosphate g P.m
-3

 

XPP,LO Releasable stored polyphosphate g P.m
-3

 

XPP,HI Non-releasable stored polyphosphate g P.m
-3

 

SP,B Soluble biodegradable organic P (from SB) g P.m
-3

 

CP,B Colloidal biodegradable organic P g P.m
-3

 

XP,B Particulate biodegradable organic P g P.m
-3

 

SP,U Soluble unbiodegradable organic P content g P.m
-3
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CP,U Colloidal unbiodegradable organic P content g P.m
-3

 

XP,U Particulate unbiodegradable organic P content g P.m
-3

 

SO2 Dissolved oxygen g O2.m
-3

 

SCH4 Dissolved methane g COD.m
-3

 

SH2 Dissolved hydrogen g COD.m
-3

 

SCO2 Total inorganic carbon g CO2.m
-3

 

XINORG Inorganic suspended solids g TSS.m
-3

 

SMg Magnesium g Mg.m
-3

 

SCa Calcium g Ca.m
-3

 

SCAT Sodium (strong cation) g.m
-3

 

SAN Chloride (strong anion) g.m
-3

 

SFe Soluble Fe g Fe.m
-3

 

XHFO,L Active, unused hydrous ferric oxide with low surface area g Fe.m
-3

 

XHFO,H Active, unused hydrous ferric oxide with high surface area g Fe.m
-3

 

XHFO,L,P Inactive, used hydrous ferric oxide with low surface area g Fe.m
-3

 

XHFO,H,P Inactive, used hydrous ferric oxide with high surface area g Fe.m
-3

 

XHFO,H,P,old Inert used HFO with high surface area g Fe.m
-3

 

XHFO,L,P,old Inert used HFO with low surface area g Fe.m
-3

 

XHFO,old Aged HFO from other four hydrous ferric oxide states g Fe.m
-3

 

XSTR Struvite g TSS.m
-3

 

GCO2 Carbon dioxide gas ppm 

GCH4 Methane gas ppm 

GH2 Hydrogen gas ppm 

GO2 Oxygen gas ppm 

GN2 Nitrogen gas ppm 
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Ordinary heterotrophs organisms 

 

 
Name SVFA SB SMEOL XB XE XOHO XMEOLO SNHx SNO2 SNO3 SN2 XN,B SPO4 XP,B SO2 SH2 SCO2 XINORG SCAT SAN 

r1 OHO growth on VFAs, O2 -1/YOHO,VFA,O2     
1 

 
-iN,BIO 

    
-iP,BIO 

 

-(1-

YOHO,VFA,O2)/

YOHO,VFA,O2 
 

1.375*(1-

YOHO,VFA,O2)/

YOHO,VFA,O2 

iIG -iIG*fNa -iIG*(1-fNa) 

r2 
OHO growth on VFAs, 

NO2 

-1/ 

YOHO,VFA,NOx     
1 

 
-iN,BIO 

-(1-

YOHO,VFA,NOx)/

(EEQN2,NO2* 

YOHO,VFA,NOx) 

 

(1-

YOHO,VFA,NOx)/

(EEQN2,NO2* 

YOHO,VFA,NOx) 

 
-iP,BIO 

   

1.375*(1-

YOHO,VFA,NOx)/

YOHO,VFA,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r3 
OHO growth on VFAs, 

NO3 

-1/ 

YOHO,VFA,NOx     
1 

 
-iN,BIO 

(1-

YOHO,VFA,NOx)/

(EEQNO2,NO3*

YOHO,VFA,NOx) 

-(1-

YOHO,VFA,NOx)/

(EEQNO2,NO3*

YOHO,VFA,NOx) 

  
-iP,BIO 

   

1.375*(1-

YOHO,VFA,NOx)/

YOHO,VFA,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r4 OHO growth on SB, O2  
-1/YOHO,SB,O2    

1 
 

-iN,BIO 
    

-iP,BIO 
 

-(1-

YOHO,SB,O2)/ 

YOHO,SB,O2 
 

1.375*(1-

YOHO,SB,O2)/ 

YOHO,SB,O2 

iIG -iIG*fNa -iIG*(1-fNa) 

r5 OHO growth on SB, NO2  
-1/YOHO,SB,NOx    

1 
 

-iN,BIO 

-(1-

YOHO,SB,NOx)/ 

(EEQN2,NO2* 

YOHO,SB,NOx) 

 

(1-

YOHO,SB,NOx)/ 

(EEQN2,NO2* 

YOHO,SB,NOx) 

 
-iP,BIO 

   

1.375*(1-

YOHO,SB,NOx)/

YOHO,SB,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r6 OHO growth on SB, NO3  
-1/YOHO,SB,NOx    

1 
 

-iN,BIO 

(1-

YOHO,SB,NOx)/(

EEQNO2,NO3*

YOHO,SB,NOx) 

-(1-

YOHO,SB,NOx)/ 

(EEQNO2,NO3*

YOHO,SB,NOx) 

  
-iP,BIO 

   

1.375*(1-

YOHO,SB,NOx)/

YOHO,SB,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r7 
SB fermentation (OHO 

growth, anaerobic) 

(1-

YOHO,SB,ANA-

YOHO,H2,ANA)/

YOHO,SB,ANA 

-1/YOHO,SB,ANA 
   

1 
 

-iN,BIO 
    

-iP,BIO 
  

YOHO,H2,ANA/ 

YOHO,SB,ANA 

frCH,SB*1.375*

YOHO,CO2,ANA*

(1-

YOHO,SB,ANA-

YOHO,H2,ANA)/

YOHO,SB,ANA 

iIG -iIG*fNa -iIG*(1-fNa) 

r8 OHO growth on SMEOL, O2   

-1/ 

YOHO,SMEOL,O2   
1 

 
-iN,BIO 

    
-iP,BIO 

 

-(1-

YOHO,SMEOL,O2)

/YOHO,SMEOL,O2 
 

1.375*(1-

YOHO,SMEOL,O2)

/YOHO,SMEOL,O2 

iIG -iIG*fNa -iIG*(1-fNa) 

r9 OHO decay 
   

1-fE fE -1 
     

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
   

-iIG iIG*fNa iIG*(1-fNa) 

r10 MEOLO growth, NO2   
-1/YMEOLO 

   
1 -iN,BIO 

-(1-YMEOLO)/ 

(EEQN2,NO2* 

YMEOLO) 
 

(1-YMEOLO)/ 

(EEQN2,NO2* 

YMEOLO) 
 

-iP,BIO 
   

1.375*(1-

YMEOLO)/YMEO

LO 

iIG -iIG*fNa -iIG*(1-fNa) 

r11 MEOLO growth, NO3   
-1/YMEOLO 

   
1 -iN,BIO 

(1-YMEOLO)/ 

(EEQNO2,NO3*

YMEOLO) 

-(1-YMEOLO)/ 

(EEQNO2,NO3* 

YMEOLO) 
  

-iP,BIO 
   

1.375*(1-

YMEOLO)/YMEO

LO 

iIG -iIG*fNa -iIG*(1-fNa) 

r12 MEOLO decay 
   

1-fE fE 
 

-1 
    

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
   

-iIG iIG*fNa iIG*(1-fNa) 

 

Rate expression (rj) 

µOHO,T*MsatSVFA,KVFA*XOHO*MsatSO2,KO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µOHO,T*ηanox,OHO*MsatSVFA,KVFA*XOHO*MsatSNO2,KNO2,OHO*MinhSO2,KO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µOHO,T*ηanox,OHO*MsatSVFA,KVFA*XOHO*MsatSNO3,KNO3,OHO*MinhSO2,KO2,OHO*MinhSNO2KNO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µOHO,T*MsatSB,KSB*XOHO*MinhSVFA,KVFA*MsatSO2,KO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µOHO,T*ηanox,OHO*MsatSB,KSB*XOHO*MinhSVFA,KVFA*MsatSNO2,KNO2,OHO*MinhSO2,KO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µOHO,T*ηanox,OHO*MsatSB,KSB*XOHO*MinhSVFA,KVFA*MsatSNO3,KNO3,OHO*MinhSO2,KO2,OHO*MinhSNO2KNO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µFERM,OHO,T*MsatSB,KSB,ANA*XOHO*MinhSO2,KO2,OHO*MinhSNOx,kin,KNO3,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

µOHO,T*MsatSMEOL,KMEOL,OHO*XOHO*MsatSO2,KO2,OHO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHOHO 

bOHO,T*XOHO*(MsatSO2,KO2,OHO+ηanox,b*MsatSNOx,kin,KNOx,OHO*MinhSO2,KO2,OHO+ηana,b*MinhSNOx,KNOx,OHO*MinhSO2,KO2,OHO) 

µMEOLO,T*MsatSMEOL,KMEOL*XMEOLO*MsatSNO2,KNO2,MEOLO*MinhSO2,KO2,MEOLO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHMEOLO 

µMEOLO,T*MsatSMEOL,KMEOL*XMEOLO*MsatSNO3,KNO3,MEOLO*MinhSO2,KO2,MEOLO*MinhSNO2,KNO2,MEOLO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHMEOLO 

bMEOLO,T*XMEOLO*(MsatSO2,KO2,MEOLO+ηanox,b*MsatSNOx,kin,KNOx,MEOLO*MinhSO2,KO2,MEOLO+ηana,b*MinhSNOx,kin,KNOx,MEOLO*MinhSO2,KO2,MEOLO) 
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Phosphorus accumulating organisms 

 

 
Name SVFA XB XPHA XE XPAO SNHx SNO2 SNO3 SN2 XN,B SPO4 XPP,LO XPP,HI XP,B SO2 SCO2 XINORG SCAT SAN 

r13 PAO growth on PHA, O2   
-1/YPAO,PHA,O2  

1 -iN,BIO 
    

-

fPHA,PP,O2/YPAO,

PHA,O2-iP,BIO 

YPPLO* 

(fPHA,PP,O2/ 

YPAO,PHA,O2) 

(1-YPPLO)* 

(fPHA,PP,O2/ 

YPAO,PHA,O2) 
 

-(1-

YPAO,PHA,O2)/ 

YPAO,PHA,O2 

1.375*(1-

YPAO,PHA,O2)/ 

YPAO,PHA,O2 

iIG -iIG*fNa -iIG*(1-fNa) 

r14 PAO growth on PHA, NO2   
-1/YPAO,PHA,NOx  

1 -iN,BIO 

-(1-

YPAO,PHA,NOx)/ 

(EEQN2,NO2* 

YPAO,PHA,NOx) 

 

(1-

YPAO,PHA,NOx)/ 

(EEQN2,NO2* 

YPAO,PHA,NOx) 

 

-

fPHA,PP,NOx/YPA

O,PHA,NOx-iP,BIO 

YPPLO* 

(fPHA,PP,NOx/ 

YPAO,PHA,NOx) 

(1-YPPLO)* 

(fPHA,PP,NOx/ 

YPAO,PHA,NOx) 
  

1.375*(1-

YPAO,PHA,NOx)/

YPAO,PHA,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r15 PAO growth on PHA, NO3   
-1/YPAO,PHA,NOx  

1 -iN,BIO 

(1-

YPAO,PHA,NOx)/ 

(EEQNO2,NO3*

YPAO,PHA,NOx) 

-(1-

YPAO,PHA,NOx)/ 

(EEQNO2,NO3*

YPAO,PHA,NOx) 

  

-fPHA,PP,NOx/ 

YPAO,PHA,NOx-

iP,BIO 

YPPLO* 

(fPHA,PP,NOx/ 

YPAO,PHA,NOx) 

(1-YPPLO)* 

(fPHA,PP,NOx/ 

YPAO,PHA,NOx) 
  

1.375*(1-

YPAO,PHA,NOx)/

YPAO,PHA,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r16 
PAO growth on PHA, O2; 

PO4 limited   
-1/YPAO,PHA,O2  

1 -iN,BIO 
     

-iP,BIO 
  

-(1-

YPAO,PHA,O2)/ 

YPAO,PHA,O2 

1.375*(1-

YPAO,PHA,O2)/ 

YPAO,PHA,O2 

iIG -iIG*fNa -iIG*(1-fNa) 

r17 
PAO growth on PHA, NO2; 

PO4 limited   
-1/YPAO,PHA,NOx  

1 -iN,BIO 

-(1-

YPAO,PHA,NOx)/ 

(EEQN2,NO2* 

YPAO,PHA,NOx) 

 

(1-

YPAO,PHA,NOx)/ 

(EEQN2,NO2* 

YPAO,PHA,NOx) 

  
-iP,BIO 

   

1.375*(1-

YPAO,PHA,NOx)/

YPAO,PHA,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r18 
PAO growth on PHA, NO3; 

PO4 limited   
-1/YPAO,PHA,NOx  

1 -iN,BIO 

(1-

YPAO,PHA,NOx)/ 

(EEQNO2,NO3*

YPAO,PHA,NOx) 

-(1-

YPAO,PHA,NOx)/ 

(EEQNO2,NO3*

YPAO,PHA,NOx) 

   
-iP,BIO 

   

1.375*(1-

YPAO,PHA,NOx)/

YPAO,PHA,NOx 

iIG -iIG*fNa -iIG*(1-fNa) 

r19 PHA storage from VFAs -1 
 

1 
       

fP,VFA -fP,VFA 
       

r20 PAO decay 
 

1-fE,PAO 
 

fE,PAO -1 
    

(1-

fE,PAO)*iN,BIO    
(1-fE,PAO)*iP,BIO 

  
-iIG iIG*fNa iIG*(1-fNa) 

r21 PHA release on PAO decay 1 
 

-1 
                

r22 
PPlow release on PAO 

decay           
1 -1 

       

r23 
PPhigh release on PAO 

decay           
1 

 
-1 

      

r24 
PPlow cleavage for 

anaerobic maintenance           
1 -1 

       

 

Rate expression (rj) 

µPAO,T*MRsatXPHA,XPAO,KPHA*XPAO*MsatSO2,KO2,PAO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,PAO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHPAO 

µPAO,T*ηanox,PAO*MRsatXPHA,XPAO,KPHA*XPAO*MsatSNO2,KNO2,PAO*MinhSO2,KO2,PAO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,PAO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHPAO 

µPAO,T*ηanox,PAO*MRsatXPHA,XPAO,KPHA*XPAO*MsatSNO3,KNO3,PAO*MinhSO2,KO2,PAO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,PAO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHPAO 

µPAO,LIM,T*MRsatXPHA,XPAO,KPHA*XPAO*MsatSO2,KO2,PAO*MsatSNHx,KNHx,BIO*MinhSPO4,KPO4,lim*MsatXPP,LO,KPP,lim*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHPAO 

µPAO,LIM,T*ηanox,PAO*MRsatXPHA,XPAO,KPHA*XPAO*MsatSNO2,KNO2,PAO*MsatSNHx,KNHx,BIO*MinhSPO4,KPO4,lim*MsatXPP,LO,KPP,lim*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHPAO 

µPAO,LIM,T*ηanox,PAO*MRsatXPHA,XPAO,KPHA*XPAO*MsatSNO3,KNO3,PAO*MinhSNO2,KNO2,PAO*MsatSNHx,KNHx,BIO*MinhSPO4,KPO4,lim*MsatXPP,LO,KPP,lim*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHPAO 

qPAO,PHA,T*XPAO*MsatSVFA,KSTORE,VFA*MRsatXPP,LO,XPAO,KPP,LO 

bPAO,T*XPAO*(MsatSO2,KO2,PAO+ηanox,b*MsatSNOx,kin,KNOx,PAO*MinhSO2,KO2,PAO+ηana,b*MinhSNOx,kin,KNOx,PAO*MinhSO2,KO2,PAO) 

r20*XPHA/XPAO 

r20*XPP,LO/XPAO 

r20*XPP,HI/XPAO 

bPPLO,ANA,T*XPAO*MinhSO2,KO2,PAO*MinhSNOx,kin,KNO3,PAO*MsatXPP,LO,KPO4,PAO 
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Aerobic ammonia oxidizers, Nitrite oxidizers and Anammox organisms 

 

 
Name SVFA XB XE XAOB XNOB XAMX XAMETO XHMETO SNHx SNO2 SNO3 SN2 XN,B SPO4 XP,B SO2 SCH4 SH2 SCO2 XINORG SCAT SAN 

r25 AOB growth 
   

1 
    

-1/       YAOB-iN,BIO 1/YAOB 
   

-iP,BIO 
 

-(EEQNO2-

YAOB)/YAOB   
-1.375 iIG -iIG*fNa -iIG*(1-fNa) 

r26 AOB decay 
 

1-fE fE -1 
        

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
    

-iIG iIG*fNa iIG*(1-fNa) 

r27 NOB growth 
    

1 
   

-iN,BIO -1/YNOB 1/YNOB 
  

-iP,BIO 
 

-(EEQNO2,NO3-

YNOB)/YNOB   
-1.375 iIG -iIG*fNa -iIG*(1-fNa) 

r28 NOB decay 
 

1-fE fE 
 

-1 
       

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
    

-iIG iIG*fNa iIG*(1-fNa) 

r29 Anammox growth 
     

1 
  

-(3*iN,BIO*AMO+ 2*AMN)/ 

(5*YNO3,AMX+3-

3*YNO2,AMX)/AMO 

-YNO2,AMX/ 

(5.*YNO3,AMX

+3.-

3.*YNO2,AMX)

*(3.*iN,BIO*

AMO+2.* 

AMN)/AMO 

YNO3,AMX/(5.

*YNO3,AMX+3

.-

3.*YNO2,AMX)

*(3.*iN,BIO*

AMO+2.*A

MN)/AMO 

2.*(YNO3,AMX* 

AMN-1.*AMN-

1.*YNO2,AMX* 

AMN+4.* 

YNO3,AMX*iN,BIO*

AMO-

3.*YNO2,AMX* 

iN,BIO*AMO)/ 

AMO/ 

(3.*YNO2,AMX-

5.*YNO3,AMX-3.) 

 
-iP,BIO 

    
-1.375 iIG -iIG*fNa -iIG*(1-fNa) 

r30 Anammox decay 
 

1-fE fE 
  

-1 
      

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
    

-iIG iIG*fNa iIG*(1-fNa) 

r31 AMETO growth -1/YAMETO 
     

1 
 

-iN,BIO 
    

-iP,BIO 
  

(1-

YAMETO)/

YAMETO 
 

MMCO2/ 

MMEQ,GCH4*

(1-YAMETO)/ 

YAMETO 

iIG -iIG*fNa -iIG*(1-fNa) 

r32 AMETO decay 
 

1-fE fE 
   

-1 
     

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
    

-iIG iIG*fNa iIG*(1-fNa) 

r33 HMETO growth 
       

1 -iN,BIO 
    

-iP,BIO 
  

(1-

YHMETO)/

YHMETO 

-1/YHMETO 

-MMCO2/ 

(MMEQ,GH2*

4)*1/YHMETO 

iIG -iIG*fNa -iIG*(1-fNa) 

r34 HMETO decay 
 

1-fE fE 
    

-1 
    

(1-fE)*iN,BIO 
 

(1-fE)*iP,BIO 
    

-iIG iIG*fNa iIG*(1-fNa) 

 

Rate expression (rj) 

µAOB,T*MsatSNHx,KNHx,AOB*XAOB*LogsatpHCO2,AOB*MsatSO2,KO2,AOB*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHAOB*MinhpHHNO2,AOB 

bAOB,T*XAOB*(MsatSO2,KO2,AOB+ηanox,b*MsatSNOx,kin,KNOx,AOB*MinhSO2,KO2,AOB+ηana,b*MinhSNOx,kin,KNOx,AOB*MinhSO2,KO2,AOB) 

µNOB,T*MsatSNO2,KNO2,NOB*XNOB*LogsatpHCO2,NOB*MsatSO2,KO2,NOB*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHNOB*MinhpHNH3,NOB 

bNOB,T*XNOB*(MsatSO2,KO2,NOB+ηanox,b*MsatSNOx,kin,KNOx,NOB*MinhSO2,KO2,NOB+ηana,b*MinhSNOx,kin,KNOx,NOB*MinhSO2,KO2,NOB) 

µAMX,T*XAMX*MsatSNHx,KNHx,AMX*MsatSNO2,KNO2,AMX*MinhSO2,KO2,AMX*LogsatpHCO2,AMX*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHAMX*MinhpHHNO2,AMX 

bAMX,T*XAMX*(MsatSO2,KO2,AMX+ηanox,b*MsatSNOx,kin,KNOx,AMX*MinhSO2,KO2,AMX+ηana,b*MinhSNOx,kin,KNOx,AMX*MinhSO2,KO2,AMX) 

µAMETO,T*MsatSVFA,KVFA,AMETO*XAMETO*MinhSO2,KO2,AMETO*MinhSNOx,kin,KNOx,AMETO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHAMETO 

bAMETO,T*XAMETO*(MsatSO2,KO2,AMETO+ηanox,b*MsatSNOx,kin,KNOx,AMETO*MinhSO2,KO2,AMETO+ηana,b*MinhSNOx,kin,KNOx,AMETO*MinhSO2,KO2,AMETO) 

µHMETO,T*MsatSCO2,KCO2,HMETO*MsatSH2,KH2,HMETO*XHMETO*MinhSO2,KO2,HMETO*MinhSNOx,kin,KNOx,HMETO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHHMETO 

bHMETO,T*XHMETO*(MsatSO2,KO2,HMETO+ηanox,b*MsatSNOx,kin,KNOx,HMETO*MinhSO2,KO2,HMETO+ηana,b*MinhSNOx,kin,KNOx,HMETO*MinhSO2,KO2,HMETO) 
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Acidoclastic methanogens (VFA) and Hydrogenotrophic methanogens 

 

 
Name SVFA XB XE XAMETO XHMETO SNHx XN,B SPO4 XP,B SCH4 SH2 SCO2 XINORG SCAT SAN 

r31 
AMETO 
growth 

-
1/YAMETO   

1 
 

-
iN,BIO  

-
iP,BIO  

(1-
YAMETO)/YAMETO  

MMCO2/MMEQ,GCH4*(1-
YAMETO)/YAMETO 

iIG 
-

iIG*fNa 
-iIG*(1-

fNa) 

r32 AMETO decay 
 

1-

fE 
fE -1 

  

(1-

fE)*iN,BIO  

(1-

fE)*iP,BIO    
-iIG iIG*fNa iIG*(1-fNa) 

r33 
HMETO 
growth     

1 
-

iN,BIO  
-

iP,BIO  
(1-

YHMETO)/YHMETO 
-

1/YHMETO 
-MMCO2/(MMEQ,GH2*4)*1/YHMETO iIG 

-
iIG*fNa 

-iIG*(1-
fNa) 

r34 HMETO decay 
 

1-

fE 
fE 

 
-1 

 

(1-

fE)*iN,BIO  

(1-

fE)*iP,BIO    
-iIG iIG*fNa iIG*(1-fNa) 

 

Rate expression (rj) 

µAMETO,T*MsatSVFA,KVFA,AMETO*XAMETO*MinhSO2,KO2,AMETO*MinhSNOx,kin,KNOx,AMETO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHAMETO 

bAMETO,T*XAMETO*(MsatSO2,KO2,AMETO+ηanox,b*MsatSNOx,kin,KNOx,AMETO*MinhSO2,KO2,AMETO+ηana,b*MinhSNOx,kin,KNOx,AMETO*MinhSO2,KO2,AMETO) 

µHMETO,T*MsatSCO2,KCO2,HMETO*MsatSH2,KH2,HMETO*XHMETO*MinhSO2,KO2,HMETO*MinhSNOx,kin,KNOx,HMETO*MsatSNHx,KNHx,BIO*MsatSPO4,KPO4,BIO*MsatSCAT,KCAT*MsatSAN,KAN*BellinhpHHMETO 

bHMETO,T*XHMETO*(MsatSO2,KO2,HMETO+ηanox,b*MsatSNOx,kin,KNOx,HMETO*MinhSO2,KO2,HMETO+ηana,b*MinhSNOx,kin,KNOx,HMETO*MinhSO2,KO2,HMETO) 
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Flocculation, hydrolysis and other conversion reactions 

 

 
Name SVFA SB SMEOL CB XB CU XU XE XOHO SNHx 

SNO

2 

S

N

O3 

SN,

B 
CN,B XN,B CN,U XN,U SPO4 SP,B CP,B XP,B CP,U XP,U SCO2 SCAT 

r35 CB flocculation 
   

-1 1 
                    

r36 CU flocculation 
     

-1 1 
                  

r37 CN,B flocculation 
             

-1 1 
          

r38 CN,U flocculation 
               

-1 1 
        

r39 CP,B flocculation 
                   

-1 1 
    

r40 CP,U flocculation 
                     

-1 1 
  

r41 XB hydrolysis 
 

1 
  

-1 
                    

r42 XN,B hydrolysis 
            

1 
 

-1 
          

r43 XP,B hydrolysis 
                  

1 
 

-1 
    

r44 
SN,B 

ammonification          
1 

  
-1 

            

r45 
SP,B conversion to 

PO4                  
1 -1 

     
iCAT,P 

r46 XE conversion 
    

1 
  

-1 
      

iN,BIO 
     

iP,BIO 
    

r47 

Anaerobic 
methanol 

conversion 

1 
 

-1 
                      

r48 
NO2 assimilative 

reduction         
-EEQNO2 1+EEQNO2*iN,BIO -1 

      
EEQNO2*iP,BIO 

     
1.375*EEQNO2 

 

r49 
NO3 assimilative 

reduction         
-EEQNO3 1+EEQNO3*iN,BIO 

 
-1 

     
EEQNO3*iP,BIO 

     
1.375*EEQNO3  
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Rate expression (rj) 

qFLOC,T*XBIO*MRsatCB,XBIO,kin,KFLOC 

qFLOC,T*XBIO*MRsatCU,XBIO,kin,KFLOC 

CN,B/CB*r35 

CN,U/CU*r36 

CP,B/CB*r35 

CP,U/CU*r36 

qHYD,T*XBIO,kin*MRsatXB,XBIO,kin,KHYD*(MsatSO2,KO2,OHO+ηanox,hyd*MsatSNOx,kin,KNOx,OHO*MinhSO2,KO2,OHO+ηana,hyd*MinhSNOx,kin,KNOx,OHO*MinhSO2,KO2,OHO) 

XN,B/XB*r41 

XP,B/XB*r41 

qAMMON,T*SN,B*XBIO,kin 

qPO4conv,T*SP,B*XBIO,kin 

qEtoB,T*XE 

0*SMEOL 

qASSIM,T*MsatSNO2,KNO2,ASSIM*MinhSNHx,KNHx,ASSIM*MsatXOHO,KOHO,ASSIM*XBIO,kin 

qASSIM,T*MsatSNO3,KNO3,ASSIM*MinhSNO2,KNO2,ASSIM*MinhSNHx,KNHx,ASSIM*MsatXOHO,KOHO,ASSIM*XBIO,kin 
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Phosphorus precipitation 

 

 
Name SNHx SPO4 SMg XHFO,L XHFO,H XHFO,L,P XHFO,H,P XHFO,H,P,old 

XHFO,L,P

,old 
XHFO,old 

XST

R 

r52 Aging of active HFO_H 
   

1 -1 
      

r53 Aging of active HFO_L 
   

-1 
     

1 
 

r54 
Fast binding of P to active 

HFO_H (EQ)  
-1 

  
-1/(ASFH*(AMP/ 

AMFe))  
1/(ASFH*(AMP/

AMFe))     

r55 
Slow sorption of P to active 

HFO_L  
-1 

 

-1/(ASFL*(AMP/ 

AMFe))  

1/(ASFL*(AMP/

AMFe))      

r56 Aging of XHFO,H,P 
      

-1 1 
   

r57 Aging of XHFO,L,P 
     

-1 
  

1 
  

r58 
Dissolution of XHFO,H and 

release of P  

(ASFH*(AMP/ 

AMFe))   
1 

 
-1 

    

r59 
Dissolution of XHFO,L and 

release of P  
(ASFL*(AMP/ 

AMFe))  
1 

 
-1 

     

r60 
P precipitation in digester 

(vivianite)  
-1 

     
1/(ASFH*(AMP/

AMFe))  
-1/(ASFH*(AMP/ 

AMFe))  

r66 Struvite 
-AMN/ 

MMSTR 
-AMP/MMSTR 

-AMMg/ 

MMSTR        
1 
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Rate expression (rj) 

qaging,H *XHFO,H 

qaging,L *XHFO,L 

qPcoprecip * SPO4/(KP+SPO4) *XHFO,H 

qPbinding * SPO4/(KP+SPO4) *XHFO,L 

qaging,H *XHFO,H,P 

qaging,L *XHFO,L,P 

qdiss,H * Kp,diss/(Kp,diss+SPO4)*XHFO,H,P 

qdiss,L * Kp,diss/(Kp,diss+SPO4)*XHFO,L,P 

qprec*MinhSO2,KO2,prec*MinhSNO3,KNO3,prec*MinhSNO2,KNO2,prec*MsatSPO4,KSPO4,prec*BellinhpHprec*MsatXHFO,old,KXHFO,old,prec 

qSTR*DrivingForceSTR*MMSTR*1000*XSTR/(KP,STR+XSTR) 
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Gas transfer 

 

 
Name SN2 SO2 SCH4 SH2 SCO2 GCO2 GCH4 GH2 GO2 GN2 

r61 

Carbon 
dioxide gas 

transfer 
    

1 
-1*cppm,Vconc/MMEQ,GCO2*R*Tnull/ 

pSt *fvolume,L,G     

r62 
Methane 

gas transfer   
1 

   

-1*cppm,Vconc/MMEQ,GCH4*R*Tnull/ 

pSt *fvolume,L,G    

r63 
Hydrogen 

gas transfer    
1 

   

-

1*cppm,Vconc/MMEQ,GH2*R*Tnull/

pSt *fvolume,L,G 
  

r64 
Oxygen gas 

transfer  
1 

      
-1*cppm,Vconc/MMEQ,GO2*R* 

Tnull/pSt *fvolume,L,G  

r65 
Nitrogen 

gas transfer 
1 

        

-

1*cppm,Vconc/MMEQ,GN2*R
*Tnull/pSt *fvolume,L,G 

 

Rate expression (rj) 

ktransfer,GCO2 

ktransfer,GCH4 

ktransfer,GH2 

ktransfer,GO2 

ktransfer,GN2 

 

 

 

 

 



 

Supplementary Information 

289 

Functions 

 

Symbol Name Expression 

Msat(var; k) Monod saturation var / (k + var) 

MsatpH(var;k;varpH;kpH) Monod saturation with check for pH 

availability 

If(Sumo__pHEffects; varpH/(kpH+varpH); var/(k+var)) 

Minh(var; k) Monod inhibition k / (k + var) 

MinhpH(var;k;varpH;kpH) Monod inhibition with check for pH 

availability 

If(Sumo__pHEffects; kpH/(kpH+varpH); k/(k+var)) 

MRsat(s;x;k) Monod ratio saturation (s/x)/(s/x+k) 

MRinh(s;x;k) Monod ratio inhibition (k)/(s/x+k) 

Bellinh(var; Klo; Khi) Bell-shaped inhibition (1 + 2 * 10^(0.5 * (Klo - Khi))) / (1 + 10^(var - Khi) + 10^(Klo - var)) 

BellinhpH(var; Klo; Khi) Bell-shaped inhibition with check for 

pH availability 

If(Sumo__pHEffects; (1 + 2 * 10^(0.5 * (Klo - Khi))) / (1 + 10^(var - Khi) + 

10^(Klo - var)); 1) 

Logsat(var; slope; halfval) Logistic saturation 1 / (1 + Exp((halfval - var) * slope)) 

LogsatpH(var; halfval; slope; varpH; 

halfvalpH; slopepH) 

Logistic saturation with check for pH 

availability 

If( Sumo__pHEffects; 1 / (1 + Exp((halfvalpH - varpH) * slopepH)); 1/((1 + 

Exp((halfval - var) * slope)))) 

Loginh(var; slope; halfval) Logistic inhibition 1 / (1 + Exp((var - halfval) * slope)) 

LoginhpH(var; halfval; slope; varpH; 

halfvalpH; slopepH) 

Logistic inhibition with check for pH 

availability 

If( Sumo__pHEffects; 1 / (1 + Exp((varpH - halfvalpH) * slopepH)); 1/((1 + 

Exp((var - halfval) * slope)))) 
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Parameters 

Heterotrophic kinetics 

Symbol Name Default Unit 

µOHO Maximum specific growth rate of OHOs 4.0 d
-1

 

KSB Substrate half saturation for OHOs 5.0 g COD.m
-3

 

KVFA VFA half saturation for OHOs 1.0 g COD.m
-3

 

KMEOL,OHO Methanol half saturation for OHOs (aerobic) 0.5 g COD.m
-3

 

KO2,OHO O2 half saturation for OHOs 0.05 g O2.m
-3

 

KNO3,OHO NO3 half saturation for OHOs 0.10 g N.m
-3

 

KNO2,OHO NO2 half saturation for OHOs 0.05 g N.m
-3

 

ηanox,OHO Anoxic growth reduction for OHOs 0.60 - 

bOHO Aerobic decay rate coefficient for OHOs 0.62 d
-1

 

µFERM,OHO Fermentation rate coefficient 0.4 d
-1

 

KSB,ANA Substrate half saturation during fermentation 5.0 g COD.m
-3

 

pHloOHO pH inhibition - low value 3.5 pH unit 

pHhiOHO pH inhibition -  high value 10.0 pH unit 

    
AOB kinetics 

Symbol Name Default Unit 

µAOB Maximum specific growth rate of AOBs 0.85 d
-1

 

KNHx,AOB Ammonia half saturation for AOBs 0.7 g N.m
-3

 

KCO2,AOB CO2 half saturation for AOBs 10.000 g CO2.m
-3

 

KCO2,AOB,pH HCO3
-
 half saturation for AOBs 0.0001 mol[HCO3

-
]/L 
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KO2,AOB Oxygen half saturation for AOBs 0.25 g O2.m
-3

 

KNOx,AOB Half saturation for anoxic conditions for AOBs 0.03 g N.m
-3

 

bAOB Aerobic decay rate coefficient for AOBs 0.17 d
-1

 

KSNO2,AOB SNO2 half saturation for AOBs 9999.00 g N.m
-3

 

KHNO2,AOB,pH HNO2 half saturation for AOBs 0.00 mol/L 

pHloAOB pH inhibition - low value 5.50 pH unit 

pHhiAOB pH inhibition -  high value 9.50 pH unit 

    
NOB kinetics 

Symbol Name Default Unit 

µNOB Maximum specific growth rate of NOBs 0.65 d
-1

 

KNO2,NOB Nitrite half saturation for NOBs 0.10 g N.m
-3

 

KCO2,NOB CO2 half saturation for NOBs 1.00 g CO2.m
-3

 

KCO2,NOB,pH HCO3
-
 half saturation for NOBs 1.00E-10 mol[HCO3

-
]/L 

KO2,NOB Oxygen half saturation for NOBs 0.25 g O2.m
-3

 

KNOx,NOB Half saturation for anoxic conditions for NOBs 0.03 g N.m
-3

 

bNOB Aerobic decay rate coefficient for NOBs 0.15 d
-1

 

KNH3,NOB SNHx half saturation for NOBs 9999.00000 g N.m
-3

 

KNH3,NOB,pH [NH3] half saturation for NOBs 0.00008 mol/L 

pHloNOB pH inhibition - low value 5.50 pH unit 

pHhiNOB pH inhibition -  high value 9.50 pH unit 

    
Anammox kinetics 

Symbol Name Default Unit 

µAMX Maximum specific growth rate of Anammox 0.1 d
-1
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KNHx,AMX Ammonia half saturation for Anammox 2 g N.m
-3

 

KNO2,AMX Nitrite half saturation for Anammox 1 g N.m
-3

 

KCO2,AMX CO2 half saturation for Anammox 10 g CO2.m
-3

 

KCO2,AMX,pH HCO3
-
 half saturation for Anammox 0.0001 mol[HCO3

-
]/L 

KO2,AMX Oxygen half saturation for Anammox 0.4 g O2.m
-3

 

KNOx,AMX Half saturation for anoxic conditions for Anammox 0.1 g N.m
-3

 

bAMX Aerobic decay rate coefficient for Anammox 0.019 d
-1

 

KSNO2,AMX SNO2 half saturaion for Anammox 1 mol/L 

KHNO2,AMX,pH HNO2 half saturaion for Anammox 1 mol/L 

pHloAMX pH inhibition - low value 5.5 pH unit 

pHhiAMX pH inhibition -  high value 9.5 pH unit 

    
Methylotroph kinetics 

Symbol Name Default Unit 

µMEOLO Methylotroph maximum specific growth rate 1.30 d
-1

 

KMEOL Methanol half saturation coefficient 0.50 g COD.m
-3

 

KO2,MEOLO O2 half saturation for MEOLOs 0.05 g O2.m
-3

 

KNO2,MEOLO NO2 half saturation for MEOLOs 0.02 g N.m
-3

 

KNO3,MEOLO NO3 half saturation for MEOLOs 0.05 g N.m
-3

 

bMEOLO Aerobic decay rate coefficient for methylotrophs 0.05 d
-1

 

pHloMEOLO pH inhibition - low value 4 pH unit 

pHhiMEOLO pH inhibition -  high value 9.5 pH unit 

    
PAO kinetics 



 

Supplementary Information 

293 

Symbol Name Default Unit 

µPAO Maximum specific growth rate of PAOs 0.95 d
-1

 

µPAO,LIM Maximum specific growth rate of PAOs, P limited 0.42 d
-1

 

KPHA PHA half saturation coefficient 0.05 - 

KO2,PAO Oxygen half saturation for PAOs 0.05 g O2.m
-3

 

KNO2,PAO NO2 half saturation for PAOs 0.05 g N.m
-3

 

KNO3,PAO NO3 half saturation for PAOs 0.1 g N.m
-3

 

ηanox,PAO PAO anoxic growth factor 0.33 - 

bPAO Aerobic decay rate coefficient for PAOs 0.20 d
-1

 

bPPLO,ANA Anaerobic maintenance PP cleavage 0.03 d
-1

 

qPAO,PHA PHA storage rate 6.0 d
-1

 

KSTORE,VFA VFA half saturation for storage 5.0 g COD.m
-3

 

KPP,LO PP-low half saturation for storage 0.01 g P.m
-3

 

KPO4,PAO PO4 half saturation for PAOs 0.10 g P.m
-3

 

KPP,lim PP limitation as nutrient 0.001 g P.m
-3

 

KPO4,lim PO4 limitation as nutrient 0.001 g P.m
-3

 

pHloPAO pH inhibition - low value 4 pH unit 

pHhiPAO pH inhibition -  high value 9.5 pH unit 

    
VFA (Acido)clastic methanogen kinetics 

Symbol Name Default Unit 

µAMETO Maximum specific growth rate of AMETO 0.50 d
-1

 

KVFA,AMETO VFA half saturation for AMETO 100 g COD.m
-3

 

KO2,AMETO Oxygen half saturation for AMETO 0.05 g O2.m
-3
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KNOx,AMETO NOx half saturation for AMETO 0.05 g N.m
-3

 

bAMETO Decay rate for AMETO (aerobic) 0.52 d
-1

 

pHloAMETO pH inhibition - low value 5.5 pH unit 

pHhiAMETO pH inhibition -  high value 9.5 pH unit 

    
Hydrogenotrophic methanogen kinetics 

Symbol Name Default Unit 

µHMETO Maximum specific growth rate of HMETO 1.50 d
-1

 

KCO2,HMETO CO2 half saturation for HMETO 1.0 g.m
-3

 

KH2,HMETO H2 half saturation for HMETO 0.1 g COD.m
-3

 

KO2,HMETO Oxygen half saturation for HMETO 0.05 g O2.m
-3

 

KNOx,HMETO NOx half saturation for HMETO 0.05 g N.m
-3

 

bHMETO Decay rate for HMETO (aerobic) 0.52 d
-1

 

pHloHMETO pH inhibition - low value 5.5 pH unit 

pHhiHMETO pH inhibition -  high value 9.5 pH unit 

    
Common switches 

Symbol Name Default Unit 

KNHx,BIO NHx half saturation for biomasses 0.005 g N.m
-3

 

KPO4,BIO PO4 half saturation for biomasses 0.002 g P.m
-3

 

ηanox,b Anoxic reduction of decay 0.50 - 

ηana,b Anaerobic reduction of decay 0.25 - 

ηanox,hyd Anoxic reduction of hydrolysis 0.50 - 

ηana,hyd Anaerobic reduction of hydrolysis 0.50 - 
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Kb,CH4 Methane switch (to indicate anaerobic conditions) 10.00 g.m
-3

 

KCAT Sodium half saturation for synthesis inorganics 0.1 g.m
-3

 

KAN Choride half saturation for synthesis inorganics 0.1 g.m
-3

 

 

Conversion kinetics 

Symbol Name Default Unit 

qFLOC Flocculation rate coefficient 50.0 d
-1

 

KFLOC Flocculation half saturation  coefficient 0.001 g COD.m
-3

 

qHYD Hydrolysis rate coefficient 2.0 d
-1

 

KHYD Hydrolysis half saturation coefficient 0.05 - 

qAMMON Ammonification rate coefficient 0.05 d
-1

 

qPO4conv Phosphate release rate coefficient 0.05 d
-1

 

qEtoB Endogenous residue conversion rate coefficient 0.007 d
-1

 

qASSIM Assimilative NHx production rate coefficient 1.0 d
-1

 

KNHx,ASSIM Assimilative NHx half saturation 0.0005 g N.m
-3

 

KNO2,ASSIM Assimilative NO2 half saturation 0.001 g N.m
-3

 

KNO3,ASSIM Assimilative NO3 half saturation 0.001 g N.m
-3

 

KOHO,ASSIM Assimilative OHO half saturation 0.001 g COD.m
-3

 

    
Operational inputs 

Symbol Name Default Unit 

T Temperature 15.0 C
o
 

Tbase Arrhenius base temperature 20.0 C
o
 

    
Temperature dependency 
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Symbol Name Default Unit 

θµ,OHO Arrhenius coefficient 1.04 - 

θFERM,OHO Arrhenius coefficient 1.04 - 

θb,OHO Arrhenius coefficient 1.03 - 

θµ,MEOLO Arrhenius coefficient 1.06 - 

θb,MEOLO Arrhenius coefficient 1.03 - 

θµ,PAO Arrhenius coefficient 1.04 - 

θµ,PAO,LIM Arrhenius coefficient 1.04 - 

θq,PAO,PHA Arrhenius coefficient 1.04 - 

θb,PAO Arrhenius coefficient 1.03 - 

θb,PPLO,ANA Arrhenius coefficient 1.03 - 

θµ,AOB Arrhenius coefficient 1.072 - 

θb,AOB Arrhenius coefficient 1.03 - 

θµ,NOB Arrhenius coefficient 1.06 - 

θb,NOB Arrhenius coefficient 1.03 - 

θµ,AMX Arrhenius coefficient 1.01 - 

θb,AMX Arrhenius coefficient 1.03 - 

θµ,AMETO Arrhenius coefficient 1.03 - 

θb,AMETO Arrhenius coefficient 1.03 - 

θµ,HMETO Arrhenius coefficient 1.03 - 

θb,HMETO Arrhenius coefficient 1.03 - 

θq,FLOC Arrhenius coefficient 1.0 - 

θq,HYD Arrhenius coefficient 1.029 - 
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θq,AMMON Arrhenius coefficient 1 - 

θq,PO4conv Arrhenius coefficient 1 - 

θq,EtoB Arrhenius coefficient 1 - 

θq,ASSIM Arrhenius coefficient 1 - 

    
Heterotrophic stoichiometry 

Symbol Name Default Unit 

YOHO,VFA,O2 Aerobic yield of OHOs on VFA 0.60 
 

YOHO,VFA,NOx Anoxic yield of OHOs on VFA 0.45 
 

YOHO,SB,O2 Aerobic yield of OHOs on substrate 0.67 
 

YOHO,SB,NOx Anoxic yield of OHOs on substrate 0.54 
 

YOHO,SB,ANA Anaerobic yield of OHOs on substrate 0.1 
 

YOHO,H2,ANA Anaerobic yield of H2 production in fermentation 0.35 
 

YOHO,CO2,ANA Anaerobic yield of CO2 production in fermentation 0.35 
 

frCH,SB Carbohydrate fraction in SB 1 
 

YOHO,SMEOL,O2 Aerobic yield of OHOs on methanol 0.4 
 

 

 

   

Methylotroph stoichiometry 

Symbol Name Default Unit 

YMEOLO MEOLO yield 0.4 
 

    
Ammonia oxidizer stoichiometry 

Symbol Name Default Unit 

YAOB AOB yield 0.15 
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Nitrite oxidizer stoichiometry 

Symbol Name Default Unit 

YNOB NOB yield 0.09 
 

    

Phosphorus accumulating stoichiometry 

Symbol Name Default Unit 

YPAO,PHA,O2 Aerobic yield of PAOs on PHA 0.639 
 

YPAO,PHA,NOx Anoxic yield of PAOs on PHA 0.52 
 

YPPLO PPlow yield on PP storage (rest goes to PPhigh) 0.94 
 

fPHA,PP,O2 PHA to PP ratio, aerobic 0.95 
 

fPHA,PP,NOx PHA to PP ratio, anoxic 0.35 
 

fP,VFA P release to VFA ratio 0.49 
 

iTSS,PP TSS content of PP 3.5 
 

    
Methanogenic stoichiometry 

Symbol Name Default Unit 

YHMETO HMETO yield 0.1 
 

YAMETO AMETO yield 0.1 
 

    
General stoichiometry 

Symbol Name Default Unit 

fE Endogenous fraction (death-regeneration) 0.08 
 

fE,PAO Endogenous fraction (death-regeneration) for PAO 0.25 
 

iN,BIO N content of biomasses 0.070 
 



 

Supplementary Information 

299 

iP,BIO P content of biomasses 0.020 
 

iCV,BIO Biomass XCOD/VSS ratio 1.42 g COD / g VSS 

iCV,B Xb XCOD/VSS ratio 1.80 g COD / g VSS 

iCV,U Xu XCOD/VSS ratio 1.30 g COD / g VSS 

YBOD,U Yield on ultimate BOD 0.95 - 

fBOD5,BODu BOD5 to ultimate BOD ratio 0.66 - 

iCV,PHA PHA XCOD/VSS ratio 1.67 g COD / g VSS 

iCV,E Xe XCOD/VSS ratio 1.42 g COD / g VSS 

iIG Synthesis inorganics in active biomass 0.11 g TSS / g COD 

iP,XSTR Phosphorus content of struvite 0.13 gP / gTSS 

iCAT,P Cation content of SP,B 0.00 mg CAT/mg P 

fNa Sodium mass fraction in NaCl 0.393 mg CAT/mg 

    

 
Anammox stoichiometry 

  
Symbol Name Default Unit 

YNO2,AMX YNO2,AMX 1.32 
 

YNO3,AMX YNO3,AMX 0.26 
 

    
P precipitation kinetics 

Symbol Name Default Unit 

qaging,H Aging coefficient for XHFO,H 200 
 

qaging,L Aging coefficient for XHFO,L 30 
 

qPcoprecip Maximum precipitation rate of XHFO,H 238 
 

qSTR,precip Struvite precipitation rate 30000000000 d-1 

qSTR,dissolve Struvite dissolution rate 3E+11 d-1 
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KP,STR Struvite half saturation 1 g TSS.m-3 

qPbinding Maximum binding rate of XHFO,L 8.8 
 

qdiss,H Redissolution rate coefficient - XHFO,H,P 36 
 

qdiss,L Redissolution rate coefficient - XHFO,L,P 36 
 

Kp,diss Inhibition coefficient for SPO4 for redissolution 0.03 
 

KP Half saturation coefficient for SPO4 0.5 
 

qprec Precipitation rate under anaerobic conditions (in digester) 40 
 

KO2,prec O2 half saturation for P precipitation in digester 0.01 
 

KNO3,prec SNO3 half saturation for P precipitation in digester 0.01 
 

KNO2,prec SNO2 half saturation for P precipitation in digester 0.01 
 

KSPO4,prec SPO4 half saturation for P precipitation in digester 60 
 

pHloprec pH inhibition - low value 4 
 

pHhiprec pH inhibition -  high value 8 
 

KXHFO,old,prec Half saturation coefficient for HFO old 80 
 

    
Stoichiometric parameters of P precipitation 

Symbol Name Default Unit 

ASFH Active site factor for HFOH 1.2 molP/molFe 

ASFL Active site factor for HFOL 0.2 molP/molFe 

 

 

 

 

 



 
 

 



 
 

Wastewater treatment plants are moving towards energy and nutrients recovery facilities. Simultaneously, they are 

submitted to stricter regulation with respect to environment and human health. Facing the great challenge of reducing 

operational costs along with the reduction of environmental impacts and the guaranty of plants robustness, tools might 

be developed in order to provide an integrated assessment. The goal of this work is to develop a reliable and predictive 

framework containing rigorous dynamic wide-plant modelling, extended boundaries life cycle assessment for scenarios 

evaluation and an efficient multi-objective optimization tool. The developed framework for environmental evaluation 

coupled to dynamic modelling was initially applied to several case studies including urine source separation, enhanced 

primary clarification and urine treatment by nitritation/ anaerobic ammonium oxidation, offering both performance 

results and environmental hotspots. Given the important benefits of the urine source separation provided by the 

previous results, a flexible and dynamic phenomenological influent generator was adapted in order to provide realistic 

dynamic data concerning urine and wastewater streams in different urine retention scenarios. Finally, as the complex 

combination of biological, chemical and physical processes leads to a computational expensive problem, a feasibility 

study (computational time and reliability) on the multi-objective optimization was conducted. Obtaining a set of 

solutions that avoids any prior discrimination among costs, environment and performance allowed thus the discussion 

of the involved trade-offs. Finally, the complete framework was applied to several case studies lightening on 

operational aspects of more sustainable options on wastewater management and treatment. 

Keywords: Wastewater; Modelling; Life Cycle Assessment; Multi-Objective Optimization; Urine Source Separation 

 

Les stations d’épuration se tournent actuellement vers des installations de récupération d'énergie et des nutriments. 

Dans le même temps, elles sont soumises à une réglementation de plus en plus stricte en ce qui concerne 

l'environnement et la santé humaine. Face au défi ambitieux de réduire les coûts d'exploitation et les impacts 

environnementaux tout en garantissant la robustesse du procédé, il est nécessaire de développer des outils capables de 

fournir une évaluation intégrée du procédé. L’objectif de ce travail est de développer une plateforme réaliste et 

prédictive contenant trois aspects: la modélisation rigoureuse et dynamique de l’ensemble de la station d’épuration; 

l'analyse de cycle de vie aux frontières étendues pour l'évaluation des scénarios et enfin un outil d'optimisation multi-

objectif efficace. La plateforme développée pour l'évaluation environnementale couplée à la modélisation dynamique a 

d'abord été appliquée à plusieurs cas d’étude. Ainsi des résultats de performance et d’impacts environnementaux ont 

été obtenus pour la séparation de l’urine à la source, la décantation primaire avancée et le traitement de l'urine par 

nitritation/ oxydation anaérobie de l’ammonium, et d’autres filières. Compte tenu des importants avantages de la 

séparation de l’urine établis par les résultats précédents, un générateur d’influents phénoménologique, flexible et 

dynamique a été adapté afin de fournir des données dynamiques réalistes concernant les flux d'urine et des eaux usées 

dans les différents scénarios de rétention d'urine. Enfin, comme la combinaison complexe de processus biologiques, 

chimiques et physiques conduit à un problème lourd en calcul, une étude de faisabilité (temps de calcul et fiabilité) a 

été réalisée sur l'optimisation multi-objectif. L'obtention d'un ensemble de solutions qui évite toute discrimination 

préalable entre les coûts, l'environnement et les performances ont permis la discussion des enjeux impliqués. 

Finalement, la plateforme complète a été appliquée à plusieurs cas d’étude et clarifie les aspects opérationnels des 

options plus durables en matière de gestion et de traitement des eaux usées. 

Mots-clés: Eaux usées; Modélisation; Analyse de Cycle de Vie; Optimisation Multi-Objectif; Separation de l’Urine à 

la Source 

 


