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CHAPTER

INTRODUCTION

Change is the law of life. And
those who look only to the past or
present are certain to miss the
future.

John E Kennedy

urvival of the fittest, as Darwin beautifully puts it, is a precious lesson that life wants us

S to learn. With every change, and in order to survive, one needs to adapt. A fact that holds
since the dawn of the first species.

The technological world, where change is plainly the dominant theme, is no exception. The only

difference is that extinction happens at a faster pace. Technologies that were trends a couple of

years ago could be on the verge of disappearing, should they abstain to cope with the current

changes.

Nowadays, data and events are being continuously and enormously collected in different do-
mains, all objects are becoming more and more connected, and things and interlinked to form a
gigantic network called the Internet of Things (IoT). Digital representations that were unimag-
inable before, are now real and waiting to be exploited. Harnessing such representative and
finely descriptive data has cultivated in the fact that prediction and proactivity are becoming
more and more requirements rather than options. Tremendous efforts are spent on technolo-
gies that promote proactivity and artificial intelligence such as data analysis and data mining.
In fact, it is unsurprising how the science of data is reaching to every other domain. Technolo-
gies that are striving to survive are obliged to integrate some data science techniques within
their cores. On the other hand, odds are against technologies that hold massive advantages and
opportunities, but are sticking to their reactive natures.
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Complex Event Processing (CEP) by design and definition reacts to situations, i.e., CEP engines
are oriented to respond to events that have already happened. The fact that puts this technol-
ogy on the weak spot, which may eventually lag behind when prediction becomes an obligation.
Logically, other technologies that count on CEP, such as Business Process Management (BPM),
are indeed occupant of the same slow train as well. They still did not fit with the current change
by incorporating data mining and prediction within their essence, and at the end, survival is
only for the fittest.

1.1 Motivation

Thanks to its countless and undeniable advantages, prediction is an enticing term that could
instantly capture anyone’s attention. In any domain or business that one could think of, predic-
tion can always comes in handy. If the predicted situation is negative, then it could be avoided,
and if avoidance is not an option, then risk could be efficiently mitigated and reduced. Else if it
is positive, then involved parties could take advantage of it, and maximize their gains.

This has always been the case, and prediction has hold an unbounded trait of attractiveness
since the beginning of humanity, where it was referred to as prophecies or visions. However the
big difference is that it is no more mere fantasies, and it now has scientific grounds. In fact, every
knowledgeable individual could emphasize that it is being used in many domains throughout
our everyday life, and that it will propagate to all other domains —that are willing to keep up—
in the near future. We argue that the main ingredient that brings this crystal ball into reality
nowadays, is data.

With every passing year, sensors are becoming cheaper and smaller, and they are continuously
being embedded into lifeless objects, such as cars, fridges, and buildings, to count a few. These
advances in the hardware world, combined with the omnipresence of fast broadband connec-
tion, in addition to the doubtless improvements in data handling frameworks, are serving as a
prologue to an era full of intelligent objects. It is no secret that the names of our "once-were-
dumb" objects, one after the other, are being prefixed with the word smart, like smart phones,
smart houses, smart TVs, etc.

These ever-evolving worlds of hardware, network, and software, are giving momentum to this
phenomenon to the extent that it obliged scientists to grant it a name: The Internet of Things
(IoT). Thanks to the ubiquity of IoT devices, data is generated in a pace that was unwitnessed
before. All kinds of events, that were otherwise unattainable, are now available for acquisition,
processing, and analysis, the thing that opens new perspectives for scientific-based predictions.
With that being said, harnessing this abundance of data merely for reactive purposes is no
longer sufficient. Both academia and industry are striving to maximally exploit this massive
amount of real life events in order to achieve one primary goal: proactivity.

In principle, prediction methods are already laid out by fields such as predictive analytic and
data mining, but IoT is now offering data as the best-ever inputs for these methods in order to



1.2. AIM 5

efficiently exercise prediction in real world applications. This forces technologies to proceed in
this direction, and incorporate data mining techniques within their cores. Other technologies
that stick to their reactive nature are being slowly left behind. Therefore we are witnessing a
change, or a paradigm shift from reactivity to proactivity, which is compelling us to alter the
way we are processing data.

As briefly mentioned before, two main promising technologies are being affected by this change,
complex event processing and business process management. Both technologies have gained
a substantial amount of popularity after their inceptions, however we doubt that this popularity
will hold given the paradigm shift we have just discussed.

CEP is currently sticking to its reactive quality, as achieving proactivity in this domain has proven
to be difficult in practice [55, 53]. On the other hand, BPM is activity-based, coarse-grained,
and it counts on CEP to achieve a level of event-based processing, even though the integration
of these two fields is not evident [76, 78]. In summary, and putting aside some timid attempts,
data mining and the availability of IoT data are not yet harnessed for CEP & BPM. Subsequently,
it is clear that these two technologies are fastened to the reactive side of the paradigm, and
indeed those who cannot adapt to the change will not survive it.

1.2 Aim

In recent years, a noticeable amount of enterprises have shifted toward BPM in order to better
understand, manage, organize, and visualize their business processes. This extensive adoption
in different fields has devised processes of various types. To account for all the diversity, the ac-
tive BPMN! standard, and in its latest version, has introduced many forms of tasks and events.
For instance, one could differentiate between automated and monitorable tasks. The former is
instantaneous, executed in a controllable environment, and could be monitored by software
engines. The latter refers to tasks that are executed in the real world, they probably span over
a long interval of time, and they may be affected by their dynamic surrounding. Therefore, it
makes sense to monitor the behavior of monitorable tasks by integrating different sensors, [oT
devices, and stream processing techniques.

However, the main problem with current BPM systems is that monitoring and analyzing the
behavior of monitorable tasks are beyond their reach [51, 14]. In other words, BPM allows to
differentiate between these tasks on the design level, but when it comes to execution, there isn’'t
much difference on how they are being handled. Typically, start and end times are recorded,
while with the potential of IoT, much more could be achieved. Therefore one of the main goals
of this work is to promote the management of processes, and exploit the availability of data to
better manage monitorable tasks.

The flaw of activity-based BPM engines has been extensively targeted by researchers [14, 76, 78,
26, 25, 120, 77, 4, 102, 127, 187] that sought the help of CEP. The aforementioned approaches,

http://www.bpmn.org/
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and through the CEP technology, have reached a level of fine-grained processing by connecting
real-life events with business process models. This practice helped to create more visibility for
monitorable tasks, and offered a mechanism to monitor and react to situations whenever they
happen. However, the integration of BPM and CEP was never evident. BPM users who seek to
monitor their tasks will quickly find themselves in need to master yet another complex tech-
nology to work out the integration, and to state how situations of interest will be detected in
CEP jargons. This hints at another dilemma as CEP is a reactive technology, and by employing
it, situations will only be detected rather than predicted. Therefore, the jump into the proactive
side of the paradigm will hardly occur.

The previous section carries us to plainly put the other main goals of this work. On one part, we
aim at equipping CEP with some data mining weapons at its core, in order to activate the hid-
den predictive potentials of this technology. Moreover, and since we are targeting the essence
of CEP then we require that our solution will be easy-to-use and generic. Mainly, filling a gap
between data mining and complex event processing is a first step to reach a solution. On the
other part, since we emphasized on the easy-to-use requirement, we intend for our predictive
CEP technology to be integrated seamlessly within the BPM world. Therefore, we aim at spar-
ing BPM users the hassle of learning another complex language and keep them working within
their comfort zone.

In summary, from an abstract point of view, the major objectives are to adapt the CEP and the
BPM technologies to the current change, and to provide the essential cornerstones to flip them
into the proactive side.

1.3 Scope

The research and contributions of this work stretches over a wide range of different domains. It
reaches to the data mining field on the low level, going through complex event processing, and
into business process management on the application level.

From a data mining perspective, we are interested in predictive analytic and specifically over
classified time series. To this end, our proposal exploits a relatively new primitive for time se-
ries data mining, which is called shapelet [207]. In supervised learning, each time series within
the available training set is annotated with a given class, shapelets are basically discriminative
subsequences within the time series that are likely correlated to these classes. In other words,
the occurrence of a given shapelet could be enough to tell which class the time series in ques-
tion belongs to. This practice supports real-time stream classification, and saves classification
time as it is not obligatory to scan the whole time series (like KNN classifiers do [205]) in order
to detect its class. On the other hand, depending on the size of the training set and the lengths
of shapelets, learning time could be expensive. Shapelets must be accurate, so they need to be
long enough to capture the features of time series, but at the same time to promote earliness
and prediction, the shorter the shapelet the better.
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On the other hand, we repeatedly highlighted the reactive nature of CEP, and we argue that this
is the case because of two facts: the only inference mechanism in this domain is CEP rules, plus
these rules must be specified manually by human experts. Naturally, it is extremely hard, even
for experts, to manually write rules that predict situations. In contrast, this is why domains such
as data mining and machine learning [19, 72] were created in the first place, i.e., by using data
mining techniques, machines could learn (predictive) patterns from histories that humans are
not able to find themselves. This clearly shows a gap between the two fields, data mining and
CEP and it also proves that filling this gap will potentially be very advantageous.

On the application level, the BPM technology is the main focus. Specifically, the monitorable
tasks within business processes. The environment where these tasks are executed is highly dy-
namic, and contextual events may break out stochastically and not as expected. Therefore pre-
diction and context-aware management are a must at this point.

From a global point of view, the shapelet-based data mining part will pull deep predictive CEP
capabilities to the surface. Afterward the outcome of this integration will be proven beneficial
for BPM applications.

1.4 Problem Definition

Throughout the previous sections, we have looked at main challenges from different perspec-
tives. By motivating, then directing, and finally mapping the scope of our research, we paved a
way to better define the problems that we are targeting.

At this point, it should be apparent that IoT is generating an abundance of data, and the CEP
technology is still away from exploiting these data for predictive purposes. From another per-
spective, as long as descriptive and detailed data are being generated, data mining methods
will excel in their results, after all these methods thrive on data. Therefore, we argue that it is
the best time to think of a bridge that can connect some data mining techniques with the CEP
core. Should this connection takes place in a seamless manner, solutions for one of the most
intractable problems will start to rise. This problem is: How to better exploit the abundance of
data in the CEP world? Or how to make best use of them in order to introduce predictive CEP
capabilities?

The aforementioned questions could be linked to a more fundamental problem, i.e., how to
adapt the CEP technology to the paradigm shift that is occurring? As we already discussed,
with the ever-developing hardware (to sense very exhaustive data), software (to better handle
these data), and connections (to easily transmit them), prediction will become a requirement
rather than an option. Therefore, asking this question, in an explicit way, does make sense.

Essentially, BPM extensively counts on CEP to hide its inability while managing long-running
real-world tasks (i.e., what we are calling monitorable tasks). Therefore the problems that were
highlighted before, and by a cascading effect, are totally appropriate in the BPM world. Still,
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other problems emerge at this level as well. On one hand, the BPM/CEP integration is known
to be complex, therefore how to turn this complexity into straightforwardness? On the other
hand, BPM systems tend to favor models over instances, even though monitorable tasks from
different instances, may be executed in distinct environments with unlike contexts. Therefore, a
rising problem is how to manage instances in a context-aware manner? And how (predictive)
CEP could come handy in this situation?

The merging of all aforementioned issues will give rise to one global problem: how to devise
a complete, a generic, and a dedicated approach that will address the questions, going from
low level data mining techniques, into an intermediate level of complex event processing,
and then concluding with business process management on the application level?

1.5 Research Questions

In order to go in more details and fetch solutions to the problems that we stated in the prior sec-
tion, some research questions must be asked on a higher level of concreteness. These questions
may be overlapping and answering one may answer the other, however all kind of questions
that may be addressed by our work are laid out explicitly.

* QO0I: What is the-state-of-the-art on this matter? And how to benefit from them?
At the beginning, and as the law of research dictates it, the literature needs to be in-
spected. Thus, its necessary to answer this question. As clearly shown in the scope sec-
tion, we are touching three separate domains, and this leads us to ask the subsequent
questions.

* QO02: Why shapelets are chosen as the data mining technique to be adopted for CEP?
This may be a starting question to address from a data mining perspective.

* QO03: What are the latest advancements on shapelets?
* QO04: Do these state-of-the-art approaches fit to be integrated in the CEP core?

* QO05: What extensions into the multivariate world exist?
In principle, shapelets are proposed to work on univariate time series.

* QO06: Could these extensions take advantage of the expressiveness of CER should we decided
to adopt them?

* QO07: How to go from manually specifying CEP rules into automatically defining them?
On the CEP level, this is an important concern to address.

* QO08: What work existed before on the integration of data mining and CEP?
* QO09: Is there some predictive approaches on this matter?

* QI0: How shapelet-based solutions could help CEP to adapt to the paradigm shift?
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Q11: What is the state-of-the-art on integrating CEP? and handling monitorable tasks?
Some questions need to be researched as well from a BPM point of view.

Q12: To what extent CEP capabilities are exploited in BPM systems?

Q13: Is there real predictive practices when it comes to managing business process instances?

Q14: Are instances (especially those who contain monitorable tasks) being managed in a
context-aware fashion?

After we have answered the state-of-the-art issues in our work, we were confronted with new
research questions to address.

* Q15: How to exploit CEP capabilities for prediction rather that reaction?
* QI6: How to transform shapelets into CEP rules in an automatic manner?
* QI17: How to go directly from pure data mining into the CEP world?

* QI18: How to extract shapelets with advanced knowledge from multivariate time series?
This question should be addressed in case shapelet transformation takes place. With ad-
vanced knowledge, we mean patterns that may predict and benefit from the expressive-
ness of CEP rules when they will be transformed, such as sequences, time windows, and
correlations over different dimensions.

Connecting data mining and CEP is a major step toward the solution, but still, we need to con-
sider some questions:

* Q19: How to go into the BPM field in an easy way?

* (Q20: With no expertise required in the CEP domain, how to make predictive CEP functions
available to BPM engines?

* Q21: How to wrap the solutions in an easy-to-use and generic framework?

1.6 Contributions

Typically, contributions will carry solutions to the unanswered research questions. In this sec-
tion, and to list our contributions in every domain, we will implicitly focus on two parts. In
the first part, we will analyze the domain and list shortcomings of current state-of-the-art ap-
proaches. In the second, we will provide our added-values.

1.6.1 Time Series Data Mining

In the realm of time series, different types of prediction may be distinguished. Notably always-
on forecasting (ARIMA, IBM Cognos, etc.) that foresees values at every time step, and rule-
based prediction (the focus of our work) that monitors the stream of events and triggers pre-
dictions only on the detection of specific shapes.
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1.6.1.1 Limitations of Current Approaches

After surveying the current related research efforts on rule discovery and prediction, we argue
that they have not matured enough, especially when it comes to consider predictive rules over
multivariate time series. On one hand, a handful of approaches explicitly targeted the extrac-
tion of predictive rules but they only operate on univariate time series like in [169, 196, 179, 44].
On the other hand, some recent research initiatives [115, 65, 66, 151] exploited shapelets to this
end.

In univariate settings, shapelets by themselves could be considered and implemented as rules [135].
However, when it comes to multivariate time series, things tend to be more complicated, as
predictive rules should take into account complex combinations and temporal correlations
among the time series dimensions. Although the aforementioned approaches have extended
the shapelet discovery algorithms to operate on multivariate time series, yet they disregard such
relationships between dimensional shapelets.

1.6.1.2 Our Contributions

In this work, we propose a novel two-step approach, called USE & SEE, which is built to deal
with supervised classification problems. At the first step, the algorithm learns shapelets from
multivariate time series. Afterward, it constructs accurate predictive rules that could classify as
early as possible a given new unclassified instance. Our proposition advances from the avail-
able multivariate shapelet learning algorithms by overcoming their limitations.

Firstly, unlike the existing work, our algorithm allows the learning of predictive rules from the
minimum needed combinations of shapelets. In other words, the outputted rules are not sup-
posed to include shapelets from all dimensions. Secondly, our rule discovery process explores
all possible correlations (synchronous, sequential with various time gaps) between time series
dimensions. As far as we know, this is the only early prediction approach on multivariate time
series that discovers such advanced knowledge.

1.6.2 Complex Event Processing

The CEP technology is applied in various domains: environmental monitoring [24], fraud de-
tection [172], RFID-based inventory management [194], and financial analysis [46]. Many great
books [118, 119, 55, 2] are totally dedicated to discuss CEP, and considerable amount of research
articles [23, 172, 185, 41, 42] have targeted different aspects of the CEP world—like scalability,
latency, distribution and performance. Such writings emphasize the undeniable advantages of
event-driven systems in general and complex event processing in particular. However, it is no
secret that all these efforts have focused on the reactive nature of CEP. Numerous scenarios and
examples were discussed by authors, yet they all tend to have reactive traits, like the detection
of high/low temperature, fraud, or traffic jams.
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1.6.2.1 Limitations of Current Approaches

Proactive event processing is already mentioned in the literature, but it was always looked at
as an emerging and future direction. For example, it was discussed in [55, 53] where authors
stated that going from reactive to proactive is a must, because this could offer limitless advan-
tages. However, and until now, proactive CEP remains a vision and it is still away from being
realized. We argue that this continues to be the case, because the standard way to define CEP
rules is by writing them manually. To this day, deep domain expertise allows manual correct
rule specifications that detect situations of interest. Nonetheless, regardless of the level of ex-
perience, it remains highly challenging and tedious for human experts to manually write rules
that can predict these situations. Consequently, we deem the ultimate fact that experts are in
charge of writing rules as the main barrier for the prosperity and diffusion of CEP, especially
that it holds the CEP technology from keeping up with the emerging science of data where pre-
diction is a requirement.

To cope with this problem, our work intends to overtake the de facto approach regarding the
definition of CEP rules. Therefore, we bridge a gap between time series data mining and com-
plex event processing to automatically extract rules that are driven by data and learned from
history. Few and recent approaches [122, 146, 185, 173] have also proposed this course of ac-
tions and focused on the automatic generation of rules. However they either make the unreal-
istic assumption of having one and only one rule that could lead to a specific situation [122], or
they are very user-dependent and cannot learn complete rules [146, 185, 173]. Furthermore, no
existing approach learns CEP rules for predictive purposes, rather they are focused on detecting
situations.

1.6.2.2 Our Contributions

In our work, we introduce a novel data mining-based approach to tackle the problem of auto-
matic predictive CEP rules generation. The proposed framework mainly counts on USE & SEE
for the learning, and then autoCEP is in charge of automatically translating rules into the CEP
jargon. More specifically, the whole approach USE & SEE with autoCEP, combines Early Clas-
sification on Time Series (ECTS) techniques with the technology of complex event processing,
and the result is a complete framework that addresses a big part of the problems discussed so
far.

In general, autoCEP carries these contributions in the domain of complex event processing: (1)
The first approach to integrate time series pattern mining techniques within the CEP domain.
Thanks to this, real-valued events are now supported, which was not the case in current state-
of-the-art rule generation approaches. (2) It works on multivariate time series, and so it learns
complex CEP rules by correlating events coming from multiple sensors. (3) The first approach
to automatically learn predictive CEP rules. (4) The involvement of the user is optional, and so
any user can now employ an out-of-the-box configured CEP engine without the requirement of
being a technical expert in the domain. (5) The overall solution is generic and could be applied
in any domain where classified (multivariate) time series exist.
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1.6.3 Business Process Management

By definition, existing BPM engines manage the whole process in an activity-oriented fashion.
This is very advantageous to administer the flows of procedures, keep them compliant with
agreements, log, and monitor the beginning and end of tasks. However, engines give little to no
knowledge about what is happening inside long-running tasks. From the viewpoint of analysts,
these tasks are just black boxes that being executed, and they need to be signaled manually
to the engine whenever they start and finish. Even though, most agreement violations could
potentially stem from the inside of long-running tasks, such as traffic jams while performing
a truck delivery [134], or a machine failure while producing goods [151]. BPM users have no
possibility to predict these violations or even monitor the inside of such tasks.

1.6.3.1 Limitations of Current Approaches

As already discussed, researchers in the domain have noticed this limitation in activity-based
BPM engines, and the obvious solution is to compensate by integrating Complex Event Process-
ing (CEP) techniques. Therefore, the BPM/CEP integration is storming this research area in the
past couple of years [14, 76, 78, 26, 25, 120, 77, 4, 102, 127, 187]. Even though these approaches
proposed various conceptual and practical solutions to the BPM/CEP integration, and some
of them even leveraged the predictive capabilities of event processing, all of them —as argued
in [27] as well—have mainly focused on design-time integration. In other words, they anno-
tate process models with all-purpose events at design-time. This practice is not able to support
specific process instances with special constraints, it may disregard contextual relevant events
coming from external services and sensors, and it is also not functional to perform predictions
while tasks are executing.

Up to this day, no real attempt was made to integrate predictive CEP capabilities inside execut-
ing long activities. We argue that the explicit reason for this is the overwhelming complexity that
this integration could yield. Designing a process and managing its instances through the help
of a BPM engine are one thing, but manually writing predictive CEP rules and linking them to
the instances are on a completely different level. Since, and as explained, in the CEP world rules
are written manually, an easy-to-use and a generic solution is not evident.

1.6.3.2 Our Contributions

This work introduces a novel and the easiest yet approach to fulfill a BPM/CEP integration.
Moreover, this integration is specifically designed to predict in-activities violations, and there-
fore helping to realize a proactive business process management. Next to its predictive capa-
bilities, our approach is also generic, i.e., it could be employed easily in different application
domains. Specifically, we propose the notion of contextual templates, in addition to a concep-
tual framework called the Butterfly, to tackle context-dependent monitorable tasks, and then
we link to autoCEP that will easily provide real-time predictions to BPM systems.
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1.6.4 The Overall Picture

As detailed in the previous three subsections, we are proposing a complete and complementary
work going from data mining into business process management. In every domain, we tried to
solve problems by tracing them to their roots. Starting with BPM, we saw that it is complex
to integrate CEP because this integration needs to be done manually. Moreover, CEP rules are
to be specified by humans, the thing that makes it even harder to use for predictive purposes.
Subsequently, we turned our eyes into the CEP world, and we found that rules indeed need to
be specified by users and they are in no manner driven by data. This is where we sought the
help of data mining, and we analyzed the gap that exists between the two fields. Therefore, we
continued into the data mining domain, and searched for proposals that could bridge the gap,
however no solution was easily compatible and applicable. Finally, at this point we proposed
USE & SEE as new pure data mining algorithms. Then the puzzle pieces started to fit together.
AutoCEP, which is a novel CEP rule generation approach, counts completely on USE & SEE.
At the end, the BPM solution is made possible because of autoCEP. So in our chain of contri-
butions, each proposition, whenever feasible, counts on the previous and supports the next.
Figure 1.1 illustrates it.

Supports

Counts on

AutoCEP

USE & SEE

Figure 1.1: The Big Picture

It is worth mentioning that even though our propositions are complementary, but as previously
discussed, each has its contributions within its domain, and of course they could be used with-
out the framework that they support (fig. 1.1). For example, USE & SEE could be employed for
pure data mining tasks, and equally, it is not mandatory for autoCEP to be used only in BPM
applications.

1.7 Structure of the Dissertation

Chapter 1 already introduced our work and approached different subjects with various level of
details. At this point, the motivation behind our research, our aim, and our contributions should
be clear. The subsequent chapters convey the following purposes:
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Chapter 2: This chapter gives more insight on related work. It first discusses the overall
domains that we touch in this dissertation, the different techniques that exist in these
domains, and therefore it helps to position the specific parts that we are dealing with. It
later presents the specifics of all appropriate state-of-the-art approaches.

Chapter 3: This section includes an exhaustive list of terms and definitions that are going
to be used throughout the dissertation. This chapter could be read at any point, and it
should be referenced several times from subsequent chapters.

Chapter 4: The business process management part is the first to be discussed in this chap-
ter. Specifically, scenarios are included, contextual templates are defined, and the appli-
cation face of our work is shown.

Chapter 5: This chapter will provide all necessary information on the data mining part.
The two algorithms USE & SEE will be explained, and all technical details will be included.

Chapter 6: AutoCEP is going to be discussed in this chapter, where the mechanism of how
data mining patterns could be algorithmically translated into CEP rules will be exposed.

Chapter 7: Different tests, evaluations, and comparisons to stress the good and weak
points of our approach are presented in this chapter.

Chapter 8: Finally, the work is concluded in this chapter, the contributions will be revis-
ited, and we will shed some light on future and potential perspectives.

For consistency purposes, we do recommend that the chapters be read in the specified order.
However and as Figure 1.2 shows, chapter 3 could be read at any point, and it could be refer-
enced from any other chapter.

Aside from the main flow of chapters, this dissertation also contains four additional appendices.
These appendices constitute extra information, they could be examined at anytime, and they
are not necessary for the main chapters.

* Appendix A: This part presents with fine details the early published version of autoCEP

that deals with univariate time series. It also contains all specifics about learning shapelets
in univariate environments, in addition to all experiments and results achieved.

* Appendix B: This appendix contains the motivation and the overall story behind our re-

search from the very beginning where the thesis started. Specifically, it includes the re-
search methodology and all different steps that were followed to produce this work.

» Appendix C: This appendix exhaustively lists all publications till the date of writing this

dissertation. Submissions that are still being reviewed are not included, and only the pub-
lications in international journal and conferences are listed.

» Appendix D: For clarity purposes, this appendix contains the list of all acronyms used

throughout the dissertation. It could be visited at any point should readers have any am-
biguity about a specific abbreviation.
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CHAPTER

STATE-OF-THE-ART

Literature adds to reality, it does
not simply describe it.

C.S. Lewis

we are working with. It discusses related work with fine levels of details. First this work

will be broadly examined from three perspectives, and there will be an explicit differen-
tiation between data mining, complex event processing, and business process management.
This broad separation will help to position our work compared to the general domain. Next,
complete sections will be dedicated to discuss tightly related state-of-the-art approaches that
deal with the same problems that we are dealing with.

T his chapter serves as a pillar in order to provide an enough picture about the domains that

After going through the introduction of this dissertation, it should be already obvious that the
content of this work is very dense. Therefore, this chapter will help to give an enough back-
ground, and to keep a coherent flow before going into more technical details in the following
chapters.

2.1 Introduction

A fundamental research step is to thoroughly inspect the literature, and check whether it an-
swers our concerns or not. In section 1.6, where we discussed our contributions, we already
shed some light on state-of-the-art approaches, and highlighted their shortcomings. This sec-
tion will give fine details about this related body of work.

At this point, it is clear that we touch three different domains, and for concreteness, we are in-
terested in early classification on time series, complex event processing rule learning, and finally

17
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the integration of complex event processing and business process management. However, before
going in details on these specific points that interest us, we will zoom out in this section and
talk about the main concepts when it comes to time series data mining and complex event pro-
cessing. This discussion will help to give the bigger picture and to clearly position the work.

2.1.1 Time Series Data Mining

A time series is a collection of observations that is made chronologically and in a periodic fash-
ion. It is characterized by its numerical and continuous nature. Based on the fact that time se-
ries represent a popular data model that could be obtained easily from different scientific and
financial applications, we witnessed lately a remarkable deal of time series research from data
mining perspectives. The article proposed in [59] serves as an interesting review on the subject.

Whenever time series data mining is mentioned, and before discussing any data mining tech-
nique, two main concepts need to be made clear: representation methods and distance mea-
sures. Time series data are known to have high dimensionality, so they are very large in size. This
fact imposes many challenges when it comes to storing, querying, mining, visualizing, and any
other form of analyzing this type of data. Efficiency in representation and distance measures
would pave the way to a better exploitation of time series. Different types of representation
methods and distance measures exist. From an abstract point of view, representation methods
deal with dimensionality reduction, transforming data from one domain to another, and keep-
ing representative features rather than storing the whole time series. Distance measures on the
other hand dictates the strategy to measure the similarities between two given time series. The
following sections will give more details about these concepts. At this point, it is essential to
know that they make a complementary step for the time series data mining techniques dis-
cussed below.

A plethora of approaches exist to mine time series data, they started to flourish by the end of
the 20th century [1, 17, 57], and they could be divided into three broad categories:

1. Indexing: Given a database of stored time series, a query time series at hand, and a sim-
ilarity measure, indexing could help to efficiently extract the set of the most similar time
series from the database. This similarity search in time series database has been intro-
duced in 1993 by Agrawal et al. [1], and since then it has been an area of very active in-
terest [85, 189, 188, 28, 157, 58]. Indexing on its own could be excluded from the time
series data mining list, but what we intend to convey by indexing is what is called guery
by content.

2. Clustering: Generally, clustering is a technique where data are positioned into homoge-

neous groups, and no explicit definitions nor meta-information on the groups are known [155].

In the realm of time series, and given a database of this data model, clustering could help
to find natural groupings of these time series. Specifically, and with a similarity measure
at hand, clusters are constructed by grouping time series that have maximum similarity
with other time series within the same group, and minimum similarity with time series
from the other groups.
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3. Classification: To simply put it, with a set of predefined classes at hand, a database of
classified time series, and with the help of a specific similarity measure, an unlabeled
time series, when going through the classification procedure, will be assigned a known
class at the end. The early classification that we are interested in makes a subpart of this
more complete data mining technique.

Before giving more details about the three broad categories above, one could find other re-
searches, notions, and projects in the world of time series data mining, such as: subsequence
matching [156, 89], motif discovery [37, 186, 144, 111], identifying patterns, trend analysis [32,
21], summarization [110], and forecasting [21, 31]. Depending on authors’ point of views, these
concepts could just mean other nomenclatures of the three tasks highlighted above, or they
exist to serve the same purposes. Therefore, and in their cores, they could be traced back to
indexing, clustering, or classification.

2.1.1.1 Representation Methods

Dimensionality reduction is one of the main goals of time series representation methods. By
reducing the dimension, the number of data points that make up a time series will decrease. A
myriad of representation methods exist that it is impossible to count them all. In general, the
proposed methods reduce the data points within a time series as much as they could, but at the
same time, they try to preserve the character, the shape, and the semantic that the unmodified
time series hold.

One of the earliest followed methods is to merely sample the original data [7]. This transforms
a time series of n data points (length) into a time series of m data points where m < n. In other
words, m data points from the original time series are selected. The selection process could
be run periodically, randomly, or following different criteria. Even though this method is ex-
tremely simple, it neglects the global shape and semantics of a given time series, and therefore
the distortion may be high if the sampling rate is not specified carefully. To contend against
the problem of distortion, other enhanced sampling variations were proposed in the litera-
ture [209, 94, 85]. Generally speaking, and instead of taking the data points directly from the
original time series, other metrics could be computed for each sampled segment. For instance,
in [209] the average is preserved. This method of calculating and keeping the means of segments
is called Piecewise Aggregate Approximation (PAA) [94]. This technique is extended to allow for
adaptive varying-length segments in [85]. Other than averages, in [106] authors represented the
sampled segments with the Segmented Sum of Variation (SSV), and other researchers substi-
tuted data points with bit level representations [159, 11].

Perhaps one of the most frequently used representation methods is the Piecewise Linear Rep-
resentation (PLR) [86, 87, 168, 147, 49, 197, 64, 81, 96]. In general, and among the data mining
community, when time series segmentation is mentioned, what is meant is the PLR method.
Briefly, PLR boils down a given time series of length 7 into k segments (segments are basically
straight lines). This method, and in its purest form, is iterative. It starts by approximating an
n-length time series with n/2 segments, and in the process, it iteratively merges each segment
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with its right or left neighbor depending on a specific cost function. The algorithm is usually
given stopping conditions, such as the envisioned number of segments. Various enhancements
were later added to the PLR method, for example, in [91] authors introduced weighted seg-
ments, and users’ feedback were integrated into PLR in [92]. Beside PLR, a way to approximate
time series with straight lines is to employ linear regressions, and represent each segment with
its best fitting line [177].

In 2001, Chung et al. [38] introduced the Perceptually Important Points (PIPs) identification
process. This is a promising method that is currently followed to reduce the dimension of time
series [191, 152]. It preserves the most important and descriptive points within a time series and
omit all other points in between. To initiate the algorithm, the first and the last data points in
the original time series are considered to be the first and the last PIPs. Then the next PIPs will
be the ones with the maximum distance to the other PIPs that are already preserved [60].

Another common method to represent time series is by transforming them into symbolic strings.
In essence, the time series is first segmented following one of the segmentation methods dis-
cussed above, then each segment is converted into a character [6, 132]. One of the most popular
algorithms in this family is SAX [110, 112], which stands for Symbolic Aggregate approXimation.
After sampling a time series with the PAA method discussed above, SAX transforms the resulted
segments into symbols picked from a predefined set of alphabet characters. The length of the
segments and the alphabet size are two obligatory parameters that need to be provided to SAX.
This algorithms divide the y-axis into regions with the same size, where each region is repre-
sented by one of the alphabet characters. Then, each segment will be mapped to a symbol cor-
responding to the region in which it resides.

All aforementioned methods keeps the resulted transformation in the time domains. Other
methods convert time series into different representations in various domains. This is the cat-
egory where the famous Discrete Fourier Transform (DFT) resides [1, 154], and other transfor-
mation strategies such as the Discrete Wavelet Transform (DWT) [30, 149] and the Haar trans-
form [183, 192].

2.1.1.2 Similarity Measures

When we briefly mentioned the three broad time series data mining tasks, we always high-
lighted the fact that these tasks are dependent on a specific similarity measure. In other words,
with no similarity measure techniques, all data mining methods would become useless. There-
fore, a way to measure similarities between time series is a fundamental step.

In the realm of time series, there is no best way to measure similarities, and different measures
can perform better depending on the setups and the domains. In addition, and differently from
traditional databases, similarity is not exact. Given the numerical and continuous nature of
time series data, similarity is approximate [62]. Two main ways of measuring similarities could
be considered. The first one is whole sequence matching, and the second one is subsequence
matching.
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Whole Sequence Matching: At this level, the whole length of all time series is considered in
order to find similarities. The most popular approach is to employ a transformation method
such as DFT or DWT, and then employ the Euclidean distance on the transformed coefficients.
This practice started in the nineties with [1, 30]. However as it was later shown [153, 105], this
approach is not always suitable in specific domains, such as in stock time series.

Hundreds of similarity measures could be found in the literature [67, 22, 103, 130, 164, 63, 198],
and one of the most popular measure is the time warping. The first Dynamic Time Warping
(DTW) technique to extract patterns from time series was proposed in 1994 [18]. In order to
match two time series, T! = {t{, 13,..., t;} and T? = {¢?, £3,..., t3,}, using DTW an n by m matrix
M is constructed. The distance between tl.l and tJZ. constitutes the element m; ; of the matrix M.
If the Euclidean distance is used to compute the similarity, then m;; = (¢} - tjz.)z. This is called

the alignment between the points ¢} and t]g_ Then a mapping between T! and T? is extracted.
This mapping is called the warping path, W = {w,, w», ..., wg} with max(m,n) <k <m+n-1.
W is a contiguous set of matrix elements and it should satisfy three main conditions. Foremost,
the first and the last elements in W need to be the very first and last elements in the matrix M
respectively, w; = (1,1) and wy = (n, m). Given wy = (i, j) and wy_; = (i’, j'), the next two con-
straintsare: 0 < i—i’ <1 and 0 < j— j’ < 1. There is an undefined number of warping paths that
could satisfy these conditions, the selected path is the one that minimize a given warping cost
and it could be efficiently extracted by using dynamic programming as discussed in [17].

Finding the warping path could be computationally expensive, and therefore the literature is
full of propositions to speedup the DTW matching process [99, 93, 84, 180, 167, 166, 56]. In [199,
160] authors have pruned the matrix to reduce the space that the warping path is allowed to
visit. Others have proposed a sequential indexing structure [163] to balance the overhead ofI/0
access and the efficiency of indexing.

Other than speed concerns, DTW may not be the most accurate solution as Keogh and Pazzani
pointed out [95]. One single point from one time series could map onto a very large number of
points from another time series, the thing that could lead to unintuitive alignments. In addition,
in the existence of abnormalities, DTW may fail to detect natural alignments. Other similarity
measures [189, 131, 35] were proposed to answer the shortcomings of DTW while dealing with
outliers and data imperfection.

Subsequence Matching: This mechanism matches two time series of different lengths. The
query time series T, has a length that is smaller than the time series T to match with. The main
task is to find subsequences from T that have the same length as T,; and are similar to it. This
search strategy requires that T}, be slid at every possible offset within T The first approach to
search for subsequences dates back to 1994 [57]. Afterward, the sliding window mechanism to
match subsequences was introduced in [129], and then it was enhanced in [128]. As discussed
in [98], subsequence matching is computationally expensive, and it suffers from bottlenecks re-
garding the processing time and the disk access time. Moreover, when matching subsequences
redundant access to disk and CPU is required in order to account for the post-processing step
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that further enhance the results [109].

The literature is full of innovative approaches that combine some kind of transformation before
searching for subsequences [101, 184, 142, 174, 208]. The similarity in these approaches is usu-
ally computed using the Euclidean distance. For instance, SAX was used in [89] to detect abnor-
mal subsequences. PLR was also employed to match subsequences in an online fashion [196] or
counting on weighted segments [195]. The correlation and relationship between the extracted
subsequences were studied by some authors as well [50, 73].

One of the most recent and fastest approaches to perform subsequence matching is proposed
in [208]. It is a method that is adopted in signal processing, and it was recently brought into
time series data mining. The method depends on the Fourier transform and on some statistical
measures. To give the whole picture, we provide algorithm 1. The inputs of the algorithm are
the full length time series T, and the shorter time series T,;. The output is an array of distances
that contain all the distances between T, and all subsequences within T' that have the same
length of T,. More information about this algorithm and this method in general could be found
in [208].

2.1.1.3 Indexing

Indexing is an efficient technique for organizing time series, the thing that helps in storing,
querying, and processing them while reducing overheads. However, the effectiveness of index-
ing mainly depends on the representation method. Some methods do not allow for intuitive
indexing, whereas others could be indexed naturally. For example, when a time series is trans-
formed into other domains using DFT or DWT, each resulted coefficient could map onto one
dimension of an index tree.

Having mentioned indexing structures, R-tree and its variations are among the most popu-
lar [182, 114, 57, 30, 54, 210]. Many indexing schemes were proposed to suit the different di-
mensionality reduction methods. For example, In [36], authors proposed an indexing method
for PLR representations. On the other hand, for SAX-encoded series, iSAX was proposed [178]
to index massive time series. In general a good indexing mechanism is expected to fulfill the
following requirements:

1. It should be much faster than sequential scanning

2. It should require little space overhead

3. It should be able to handle queries of various lengths

4. It should allow insertions and deletions without rebuilding the index
5. It should be correct with no false dismissals

Indexing is the fundamental step that makes query by content feasible. Query by content is one
of the most active area of research in time-series analysis. Given a query time series entered by
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Algorithm 1: The MASS Algorithm

Input: T, Tq

Output: dist

T — T.append(0 x |T]) // Append Ox|T| to T

y < y.reverse()

Ty — Ty..append(0 x |T|—[T|)

TF — fastFourierTransform(T)

TF, — fastFourierTransform(7,)

Z—TFxTF;// The dot product

Z — inverseFastFourierTransform(2)

sumTy — sum(T,) // Sum the elements of T
sum2Ty — sum(Tj) // Sum the elements of T, squared

© 0 N S g ks W N -

10 cSumT — cumulativeSum(T)

1 cSumT2 — cumulativeSum(T?)

12 subl < cSumT.subarray(|Tyl,|TI)

13 sub2 — cSumT.subarray(0,|T|—|Ty|)
14 sub3 — cSumT2.subarray(|Tql,|TI)

15 sub4 — cSumT2.subarray(0,|T|—|Tyl)
16 sumX «— subl —sub2

17 SumX2 — sub3 — sub4

18 meanX — SunX
T,

19 sigmaX2 — X2 —meanX?
q

20 sigmaX —/sigmax2
21 subZ — z.subarray(|Tyl,|T|)

dist sumX2—2><sumX><meanX+|Tq|><mecmX2
2 aiSt < sigmaX2

23 dist —Vdistreturn dist

subZ-sumTyxmeanX
sigmaX

—2 %

+sum2Tq

the user, a set of the most similar time series are retrieved and returned. The queries could be
broadly divided into two types: the e-range, and k-nearest neighbors. The former retrieves all
time series where the distances between them and the query time series are less or equal to €.
The latter returns to nearest K neighbors to the query time series depending on a specific sim-
ilarity measure. Later approaches enhanced query by content techniques to deal with scaling,
gaps, and faster rejection of false candidates [100, 204, 108].

2.1.1.4 Clustering

The main goal of clustering is to collect similar time series in natural groups, or what is called
clusters. The distribution of time series over clusters should be carried out in a way that maxi-
mizes inter-cluster variance, and minimizes intra-cluster variance. Such grouping mechanisms
could help to understand and analyze what knowledge is conveyed in data. In fact, distance-
based clustering is extensively used for motif discovery [176], anomaly detection [83, 104], and
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finding discords [206]. One of the main challenges when it comes to clustering is to specify a
(near) correct number of clusters in order to capture the (dis)similarity of time series. Time se-
ries clustering could be further divided into two parts, whole series and subsequence.

Whole Series Clustering: At this point, the complete time series is used, and the goal is to
form clusters of entire time series. Therefore, time series in one cluster are supposed to be sim-
ilar in their entireties. Generally, five categories of clustering could be found in the literature:
partitioning, hierarchical, model-based, density-based, and grid-based. In the realm of time se-
ries, only the first three are adopted. Beside pattern discovery as we mentioned earlier, time
series clustering have proved to be very efficient for data streams [40, 39, 34, 126].

Subsequence Clustering: In the technique, clusters are constructed from subsequences in-
stead of the complete time series. Therefore, time series may not be similar in their entireties,
yet subsequences extracted from them may belong to the same cluster. One approach [74] is
to employ DFT in order to analyze the periodicity of time series, and therefore to slice them
into non-overlapping chunks. These chunks could be later tested for similarities and grouped
into clusters. Another approach from the other side of the spectrum would be to extract over-
lapping subsequences [88]. However, the same authors proved that overlapping subsequence
clustering may produce meaningless results, and that non-overlapping counterpart may miss
important structures. Solutions to these inconsistencies started to emerge when not all subse-
quences were forced into the clustering procedure, but some of them were ignored all together.
This is the followed method in [80, 48].

2.1.1.5 Classification

The main difference between clustering and classification is that in the latter classes are known
in advance. Therefore, the primary goal of a classification model is boiled down to the task of
learning distinctive features that characterize each class. With these distinguishing features at
hand, any new and unlabeled time series could be given a class. Optimally, these features should
be non-overlapping, distinguishing, and discriminative, therefore whenever they appear in an
unlabeled time series, it could be easily classified.

Since this work heavily counts on time series classification, section 2.2 will focus on classifi-
cation algorithms that are forged to only deal with time series. Other model-based generative
classification methods have been proposed in the literature, like fitting auto-regressive mod-
els [39, 10], Hidden Markov Models (HMM) [181], and kernel models [33]. These generative ap-
proaches are omitted because they are not competitive against other algorithms that are com-
pletely dedicated for time series classification [12].

2.1.2 Real-Time Processing Systems

Traditional Database Management Systems (DBMSs) store and index data so they can be explic-
itly queried by users (Query on demand). Even though this is desirable, but from the point of
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view of distributed real-time applications, this is not necessary neither efficient. These applica-
tions seek real-time responses in order to efficiently carry out their missions. For example, a fire
detection application that should detect the existence of fire as fast as possible so timely coun-
termeasures could be taken. It makes no sense to store and index the fire sensor data, then query
them on demand to detect if a fire has happened or not. Such examples and many more consti-
tute the main motivation behind Real-Time Processing Systems (RTPSs). RTPSs store queries in-
stead of data, and then data are processed against these queries as they arrive. In other words, in
application domains where users are interested in collecting information from multiple sources
to process them in a timely manner, and to extract knowledge from them as soon as possible,
then RTPSs are needed.

RTPSs are being used consistently in real life applications, some scenarios include: Environ-
mental monitoring and predicting disasters as early as possible [24]. Identifying trends in stocks [46].
Fraud detection and prevention [172]. Intrusion detection systems [45]. RFID-based inventory
management [194]. And anomaly detection in smart manufacturing [150].

The database community were the first to notice the need for implicit queries over data in ad-
dition to the common query-on-demand mechanism. Therefore, the notion of active database
systems was introduced in 1989 [123] where actions are allowed to be automatically executed
on stored data. Not until a decade later, real and more matured RTPSs emerged. The dominant
two systems nowadays are Data Stream Management Systems [8] (DSMSs) and Complex Event
Processing (CEP) systems [118]. The former processes multiple streams by performing some
transformation operations, and then produces new continuous streams as output. The latter
sees the flowing information as notifications of events that happen in the outside world, and by
filtering, combining, processing, and analyzing these events, particular complex patterns and
situations of interest could be detected.

2.1.2.1 Active Database Systems

Traditional DBMSs are completely passive, i.e., they present data only on the request of users.
Therefore, there is no way to automatically present data after the occurrence of a specific sit-
uation or the fulfillment of a specific condition. Active database systems [43] were created to
address this exact limitation.

In order to be considered as an active database, the system should support the active rules
knowledge model. By active rules, we mean rules that adhere to the ECA (Event-Condition-
Action) principle. In more details:

» Event: This is the trigger that stimulates the automatic action. At this level, different event
generators could be supported. E.g., some active databases only consider internal op-
erators such as insertion, update, deletion, etc. Others extend this functionality to even
support external event sources such as sensors and clocks.

* Condition: After the events to be supported are specified, and on the detection of such
events, actions are taken only if specific conditions are met. For example, on the insertion
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of a tuple that contains a temperature value greater than a fixed threshold.

 Action:If an event is being detected, and the conditions are being fulfilled, then the action
could be automatically executed. Actions could be categorized as internal and external.
Internal actions modify the state of the internal database (e.g., insertion, update, deletion,
etc.). On the counterpart, external actions could alert and trigger functionalities within
external applications.

2.1.2.2 Data Stream Management Systems

Active databases are built with persistent storage in mind. Therefore, even if ECA rules are sup-
ported, persistently storing all coming data may not be desirable for RTPSs. For instance, if the
number of coming events is too high and many updates are to be performed, then the limita-
tion of such store-all systems may become more apparent.

In this context, DSMSs [43] come to the rescue. These systems can process large streams and
perform transformations in a timely manner. The differences between DSMSs and DBMSs are
numbered, the most obvious ones are:

* DBMSs store all data by default whereas the expected behavior of DSMSs is to discard all
data by default

* DSMSs can efficiently handle unbounded streams and not just bounded data (tables)

e DSMSs could account for out-of-order events. That is, no assumption are made on data
arrival order

* Since data are discarded, one-time processing is the best mechanism to deal with data
streams

* Queries are standing and active in DSMSs, and therefore they continuously produce re-
sults as new stream events arrive. Users are not supposed to explicitly ask for updated
information.

2.1.2.3 Complex Event Processing Systems

Rather than just calling them stream of events or flow of information as in DSMSs, incoming
events in CEP systems have a specific semantic, they represent notifications of something that
happened in the real world. CEP engines then are responsible of filtering these events, com-
bining them, and deduce higher knowledge from them. This higher knowledge is commonly
referred to as composite events or situations of interest. The deduction of such complex situ-
ations and patterns are made possible because of the expressiveness of CEP operators and the
chaining nature of CEP agents, where each agent could process the output of other agents and
adds to it.
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Historically, the emergence of CEP started with the popularity of publish/subscribe systems in
1997 [162]. These system decoupled event generators from event consumers, where a message-
oriented middleware was in charge of delivering the right events to the right consumers. Users
express their interest in specific topics by subscribing to the relevant event classes at the mid-
dleware level, then sources publish the information to these middleware, where they will be
filtered, processed, and outputted to the relevant subscribers. Two dominant types of pub-
lish/subscribe systems are available nowadays:

1. The first one is topic-based, where publishers classify events with a given topic, and ev-
ery consumer who is subscribed to the specific topic will receive the event. This is the
simplest form of the publish/subscribe pattern

2. The second one is content-based, in a way that complex filters could be specified to filter
events based on their contents. Filters are specified by using different languages such as
XML schema, simple attribute/value pairs, etc. Middleware engines are in charge of run-
ning the incoming events through the filtering requirements in order to dispatch these
events to the right subscribers.

CEP systems adopted the publish/subscribe patterns, but they went way beyond that as well.
Typical publish/subscribe systems, topic- or content-based, process events independently, each
one as it arrives, and they do not take into account the history or summaries of already received
events. Therefore, interesting queries such as: trigger an alert if the same credit card was used to
withdraw money from two different countries within 10 hours, or suspend a credit card if three
wrong PIN codes were attempted within 1 minute one from the other, are impossible to achieve.
To overcome this limitation, CEP systems were devised, and they could be seen as powerful ex-
tensions of traditional publish/subscribe systems. CEP allows for users to express their interest
no matter how complex and time-dependent it is.

In order to achieve this great expressiveness, CEP operates on complex patterns that could be
achieved by specifying complete and accurate CEP rules. Since CEP rules are of paramount
importance for use in our research, an in-depth discussion about them will be presented in a
dedicated section later on.

2.2 Time Series Classification

As mentioned in the prologue of this chapter, tons of time series classification algorithms have
been proposed so far, and they could be categorized in different ways. In this section, we will
group them based on the type of features that they attempt to learn, and at the end, we will
discuss the early classification style.

2.2.1 Whole Series Classification

With the exclusion of the class, whole series classification is almost indistinguishable from
whole series similarity matching discussed in 2.1.1.2. Usually, one nearest neighbor classifiers
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(1I-NN) are used, i.e., the unlabeled query is classified with the same class as the most similar
(the smallest distance) labeled time series. This technique could be very useful if there may be
discriminatory features that characterize the whole time series. In its simplest form, Euclidean
distance could be used, either on raw time series or on transformed representations, like PLR,
SAX, and others. However, this assumes that time series are perfectly aligned, and this is not
the case in real life situations. Therefore, alternative elastic distance measures are usually em-
ployed, with DTW (discussed in sec. 2.1.1.2) as the standard benchmark.

As discussed earlier, DTW suffers from some drawbacks when it comes to outliers and data
imperfection, therefore to boost classification accuracy, different approaches have enhanced
this raw method. In [82], authors added a multiplicative weight penalty in order to reduce the
warping. The idea is to add weights to the element of the matrix M before searching for the
warping path. Therefore, and if the Euclidean distance is used, the matrix elements would be
mij = wy—j(t; - tjz.)2 instead of m;j = (¢} — t]g)z that is figured in section 2.1.1.2. If the two com-
pared time series differ in their complexity, and in order to avoid the unintuitive mapping that
the DTW may create in such circumstances, the Complexity Invariant Distance (CID) proposed
in [13] could prove really handy. This distance is weighted in a way that compensates the differ-
ences in the complexity. Another interesting approach that uses NN classifiers but with a deriva-
tive DTW distance measure is proposed in [69]. In this approach, two distances are computed,
the first one is the distance between the raw series, and the second one is the distance between
the first-order differences of these raw series. At the end, the returned distance is a combina-
tion of the two aforementioned distances, with the help of a parameter a that is learned during
training. The same authors also proposed another derivative that works on transformed time
series [70], specifically the sin, cosine and Hillbert transform.

2.2.2 Interval Based Classification

In case of noise and redundant shapes, whole series classifiers may get confused and deliver
inaccurate results. This is where extracting features from intervals rather than the whole series
could be desirable. The challenge to conduct such technique is finding the best interval. Specif-
ically, there is an undefined number of possible intervals, so how to select the best one? Next,
what to extract from each interval once selected? The first approach to answer these questions
was proposed in [161], where intervals’ lengths were equal to powers of two, and binary features
were extracted from each interval. Afterward, a Support Vector Machine (SVM) was trained on
the extracted features.

Another popular interval based classification approach is the Time Series Forest (TSF) [47]. It
is a random forest approach. After specifying the number of desired decision trees, each tree
is trained by dividing the time series into random /7 intervals where n denotes the length of
the time series. Effectively, the training is done on 3 features extracted from each interval, they
are the mean, the standard deviation, and the slop. The final classification results is done by a
majority voting.



2.2. TIME SERIES CLASSIFICATION 29

One of the most popular interval based classification methods is the Bag of Features (BoF) ap-
proach proposed in [16]. BoF could be thought of as an extension of TSF that incorporate mul-
tiple levels.

 The first level generates a new training data set with additional features. This is done by
generating subsequences from the original existing training set. The number of generated
subsequences depends directly on the length of the desired intervals (which is inputted
as a parameter). Subsequently, for each subsequence and just as in TSE the mean, the
standard deviation, and the slop are computed. At the end, these features are combined
with other global stats of the full series.

* After the first level, a new training set that contains the number of instances multiplied by
the number of subsequences will be available. Then decision trees will be trained on this
newly created data set. The number of decision trees will be increased incrementally until
the out of bag error stops decreasing. After building the random forest, class probabilities
for each subsequence are computed.

 This third level creates a histogram of class probability estimates for each subsequence,
and then it combines these estimates for each original time series. This is how a bag of
patterns for each series is created.

e The final level is to build the definitive random forest classifier using the bag of features
of each time series in the training set.

2.2.3 Dictionary Based Classification

If motifs, or frequent patterns are what characterizes a given class, then dictionary based clas-
sification methods are the most suitable approach. This technique counts the frequency of pat-
terns. They usually operate on symbolic representations of time series. The main idea is to slide
awindow of a given length, and then compute the distribution of words over the different train-
ing instances. Following this mechanism, the correlation between the frequency of specific pat-
terns and the occurrence of particular classes could be established.

The Bag Of Patterns (BOP) approach proposed in [113] computes a histogram of words for time
series that are transformed with SAX. Then the same method is followed to build a histogram
for unlabeled time series, and finally the new series is given the class of the most similar his-
togram. In [175] authors discussed another approach that is very related to BOBP, as it works on
SAX-transformed time series. The key difference is that it adds techniques used in Information
Retrieval such as the vector space model. BOSS [170] is yet another recent approach that works
on DFT representations of time series, and that could efficiently count frequent patterns in the
presence of noisy data.

2.2.4 Shapelet Based Classification

In scenarios where one (or a limited number of) discriminative pattern(s) could characterize
the class of the time series, shapelets are the most suitable technique. They are shapes (subse-
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quences) that occur within the time series, independently from the phase (the placement at the
beginning, middle, end), and they are very distinguishing and discriminatory. For example, one
could think of abnormality detection like fatal heartbeats in ECG data. Shapelets were devised
in 2009 [207], and in their work, authors discover shapelets through testing all possible candi-
dates between two given lengths. This approach is called the brute force algorithm, it yields very
accurate results but on the expense of high computation time. The time complexity is O(n?m?)
where 7 is the number of time series and m is the length.

When they first emerged, shapelets were incorporated into decision trees as the best split points

to discriminate between classes [207, 143]. A more recent approach [158] suggested the Fast
Shapelet (FS) algorithm. This algorithm drastically improved the time complexity to find shapelets.
It was reduced from O(n?m?*) to O(nm?), however it is heuristic, with random projections, and

it is not guaranteed to have the same results as the brute force algorithm. FS contains different
steps:

1. The first step is to change the representation of the data form raw real-valued time se-
ries into discrete and low dimensional. This is done by transforming them into symbolic
representations with SAX.

2. After the transformation, the brute force algorithm could be applied. To contend against
the problem of false dismissals — i.e., two close time series may produce different SAX
words — FS uses random projections. It randomly masks and further transforms SAX
words of high dimensionality into lower dimensions.

3. After multiple random projections are performed, a frequency count histogram is learned
for each class. A discrimination score for each SAX word is attributed depending on how
much it distinguish between classes.

4. At the end the k-best SAX words are selected, and they are mapped back to their original
form, where they could be used to build the decision tree just like in [207].

Other shapelet based approaches [79, 20] devised what is called Shapelet Transform (ST). These
approaches are more concerned with the discovery of discriminative shapelets rather than build-
ing a classifier to use them. Following the ST, the original time series are transformed into a vec-
tor of distances where each element represent the distance between a given time series and a
specific shapelet. ST balances the trade-off between the number and quality of shapelets, i.e.,
it evaluate shapelets on how well they discriminate just one class. Assessing shapelets is done
by counting on the information gain metric. At the end, the top k shapelets for each class are
returned.

Another interesting approach that learns shapelets is discussed in [71], it is called LS (Learned
Shapelets). This proposition learns shapelets that characterize the available classes, however
the learning procedure is different than other algorithms like FS and ST. Originally, shapelets
are defined as subsequences from the original time series, yet in LS they are not limited to that.
LS uses k-means clustering of candidates in the training data set to initialize k shapelets. Then
these shapelets are adjusted based on a regression model for each class.
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2.2.5 Early Classification

So far traditional classification approaches were discussed where earliness has no significance.
However in some scenarios, for example when detecting abnormal heart beats, earliness could
play a major role. Early classification usually deals with online stream classification where the
major interest is to classify as early as possible the currently streamed time series, without wait-
ing for the complete time series to be read. In other words, given the smallest possible subse-
quence of a time series, the main goal is to accurately predict its class.

Among the different classification techniques that we have discussed, we argue that shapelets
are the best fit for early classification. As mentioned earlier, shapelets are specific shapes that
are characteristics of a given class, and no matter where they appear in a given stream, the class
could be immediately predicted. Furthermore, if shapelets’ lengths are taken into consideration
when attributing utility scores, earliness could be greatly boosted. Approaches such as [135, 138]
prove that shapelets perfectly fit for early classification and rule discovery.

By definition, shapelets only work on univariate time series, yet few recent research initiatives
have proposed different methods to extend this limitation and to favor multivariate time se-
ries [115, 65, 66, 151].

In [65], authors proposed MSD by projecting the logic of univariate shapelet discovery algo-
rithms into the multivariate world. The idea is to have a sliding window — between the min-
imum and the maximum lengths of shapelets — but instead of sliding it over one dimension,
the window is moved along all dimensions at the same time. Therefore, what the authors call
multivariate shapelets could be extracted. After extracting these multivariate subsequences us-
ing this windowing technique, authors continued normally as in the univariate shapelet ex-
traction algorithm, i.e., calculating distances, information gains, and utility scores, etc. but they
proposed multivariate algorithms and methods that replace their univariate counterparts. Typ-
ically, methods to deal with matrices instead of vectors. Even though, this approach attempts
to employ shapelets in multivariate environments, it still suffers from some drawbacks: First,
sliding a global window imposes the restriction that all shapelets from the different dimensions
need to start and end at the same time, and they are limited to have the same lengths as well.
Second, the algorithm always tries to seek shapelets from all dimensions, regardless of the fact
that in some cases some dimensions may be meaningless. Third, and since shapelets from the
different dimensions start and end at the same time, no correlations, like sequence and time
constraints, could be learned.

To overcome the limitations in [65], the same authors proposed a new shapelet-based approach
for early diagnostics [66]. The newer approach builds a binary matrix where rows are instances
and columns are all the different extracted subsequences within the given lengths. Each cell
contains a binary indicator stating if a subsequence appears in a given instance or not. Authors
then followed a convex-concave optimization problem to select one and only one subsequence
from each dimension. Finally, they reduced the number of outputted shapelets by using mixed
integer programming, and so disregarding unimportant subsequences. Authors overcame some
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limitations from the approach proposed in [65], specifically no restrictions on the start, end,
and length of multivariate shapelets are imposed, and more importantly irrelevant dimensions
are also disregarded. However, getting one and only one representative from each dimension is
somehow restrictive, as sometimes one shapelet from a given dimension may perform differ-
ently when combined with various shapelets from another dimension. On the other hand, and
as in [65], the approach stopped at the point of extracting different shapelets from the various
dimensions, with no regards to any correlation that may exist among them.

An approach that generalized univariate shapelet discovery to the multivariate setting is dis-
cussed in [115]. It is called REACT and this approach differs from our work by dealing with
numerical and categorical time series as well. Authors proposed a strategy, inspired from equiv-
alence class mining [117], to reduce the number of generated features. Therefore they devised
different formulas to learn categorical and numerical minimal frequent itemsets. Moreover, the
paper presents a GPU implementation that significantly reduced the learning time. Nonethe-
less, all dimensions are used to construct patterns, and finally they did not achieve complete
rules with both time and sequence constraints.

Shapelet Forests [151] and Shapelet Ensembles [29] are other interesting approaches to address
the problem of shapelet extraction from multivariate temporal observations. Even thought they
follow different strategies to get univariate shapelets from the various dimensions first, at the
end both approaches, and instead of building one single decision tree like in the univariate set-
tings [158, 207], they built an ensemble of decision trees in order to classify new multivariate
instances. In [151], feature selection techniques were used to assign weights to the existing di-
mensions, finally, the decisions given by the trees are ranked by their weights, and the one with
the highest weight is accounted for. On the other hand, the authors in [29] employed a majority-
based voting to assess the classes of new instances. Exploiting such ensemble techniques could
make it rather difficult for domain experts to understand what is the exact pattern that leaded
to a specific situation. Moreover, both approaches failed to consider time and sequence con-
straints among shapelets on the different dimensions.

The detailed discussion in this section particularly touched the numbered approaches that ex-
ploited shapelets in the multivariate settings. However, a vast majority of other proposals exists
to address different data mining problems for multivariate time series, such as [124] to find
motifs, and [190] for multidimensional indexing.

2.3 CEP Rules Specification

Complex Event Processing is a very active area of research, and in the same time it is adopted by
business enterprises as the standard course for real-time analysis and situation detection [119].
CEP engines are scalable regarding the number of data sources, input events, and registered
CEP rules. Normally, they are concerned with the processing of large and fast streams of input
events in order to recognize on-the-fly some situation of interests or composite events. Due to
the increasing interest in the CEP technology, various languages have been proposed to define
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events and rules [23, 3, 41, 172].

CEP rules are basically expressed through a combination of both declarative and pattern-based
languages.

* Declarative Languages: This type of languages allows users to express what they want,
rather than how they want it to be done. They are mainly derived from languages such
as relational algebra and SQL [52]. CEP rules extend these relational languages by adding
ad-hoc operators to support stream-specific operations, such as time windows and se-
quencing constraints.

e Pattern-based Languages: If we return to the abstract ECA model, pattern-based lan-
guages define the conditions of rules through complex patterns. These patterns could
incorporate logical, sequencing, content, and timing operators among others. Moreover,
actions could be also specified as patterns to create composite events that may be further
processed by other CEP operators.

Successful CEP systems such as Oracle! and Esper? support the expression of CEP rules in both
these languages.

2.3.1 CEP Operators

CEP rules are built on top of CEP operators. This set of operators defines the expressiveness that
could be achieved and the complexity of patterns that could be detected. CEP rules definition
languages such as CQL [5] and EPL [118] include a rich set of operators, we will discuss the most
important ones at this level. This discussion will help to evaluate the CEP rules learned by our
approach, as we will show in later chapters.

Single-Item Operators Most operators that fall under this category are imported from rela-
tional algebra, and they are enhanced to deal with streams and flowing events. They operate on
events one by one. The most known ones are selection, mapping, and projection operators.

Selection and just as in the SQL language, keeps events if their contents satisfy a given con-
straint, and discard events if their contents do not. For instance selecting temperature events
that have values greater that a specific threshold.

Mapping could modify the attributes of events and perform some kind of transformations, for
example capitalize the name of persons. Projection refers to extracting a subset of attributes
from a given event, for instance project only the timestamps of sensor readings.

Thttp:/ /www.oracle.com/technetwork/middleware/ complex-event-processing/overview/index.html
2http:/ /espertech.com/esper/
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Logic Operators These operators help to define patterns that detect the existence (or ab-
sence) of events coming from one or more streams. They are usually order independent, i.e.,
they are just concerned with the detection of non detection of specific information. Logic oper-
ators are typically found in pattern-based languages

Among the most popular operators are: Conjunction and it means that all events that are spec-
ified for this operator need to be detected, it is like a logical AND operator. On the contrary, the
logical OR operator is represented by the CEP disjunction operator, and this means that at least
one of the specified events must be detected. The third known operator is the repetition, and
it allows patterns to be fired if an event is repeated at least (and optionally at most) a specified
number of times.

Sequencing Operators Sequencing operators resemble to some extent the logic operators but
order is of utmost importance. In other words, they detect the occurrence of the specified events
but in the specified order. For example, stating a pattern where the event e; must be followed
by e, will not be fired if e, arrived into the system before e .

Pattern-based languages provide sequencing operators out-of-the-box. This kind of operators
is highly desirable in CEP systems and in building CEP rules. Almost all CEP rule learning ap-
proaches that we will discuss next support the learning of this operator. In some part, this is due
to its importance, and in another part, it could be one of the easiest operators to learn. This sim-
plicity turns into complexity when sequence constraints among events coming from multiple
sources need to be learned.

Windowing Operators Arguably, windows are the most important CEP operators to consider,
and it is the only mechanism that allows to transform unbounded streams into bounded set
of events. They could be used in combination with any other CEP operator to introduce time
constraints. For example, a sequence must be detected within this specif time window. Due to
the importance of windows, they are naturally supported in any CEP rule definition language
that could be found nowadays. Some authors [43] —rightfully— consider windows to be lan-
guage constructs rather than just operators, because they are mainly used to scope the actions
of other CEP operators.

Two types of windows could be found. The first one is time-based, that is, it scopes operators
based on time constraints. The other one is count-based, that is, it scopes the operators based
on the number of events that are currently inside the window. Regarding their bounds move,
time- and count-based windows could be mainly classified as fixed (tumbling) or sliding win-
dows.

Fixed windows are non-overlapping and they do not flush unless the constraints are satisfied.
For example, a count-based window with a length equals to ten events will wait until ten events
are effectively inside the window before sending them to processing and emptying itself, in
preparation to receive other new ten events. Sliding windows may be considered the most com-
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mon type of used windows. They have fixed sizes but they are also attributed a step. This step
allows these windows to overlap over each other.

From the point of view of CEP rule specification, windows may be the trickiest to define. This
adds an extra layer of complexity while attempting to automatically learn the size of such win-
dows.

Flow Management Operators CEP typically includes a set of operators to support the man-
agement of flowing events. For example, inserting simple or composite events into named win-
dows (more on named windows will be discussed in chapter 3), updating, duplicating, deleting,
and joining multiple streams.

Perhaps, one of the most popular flow management operator may be the grouping mechanism
(or the group-by operator). It allows to divide event streams into different partitions internally,
and then carry out the processing on each partition independently. Such operators are very
similar to the grouping operators in relational languages such as SQL.

Aggregation Operators It is natural for CEP engine to detect and perform some aggregation
operations over events. For example computing the average of temperature values within the
last hour. Aggregation functions could be used as conditions in rules, or as actions to output
results as well.

All existing languages include a large set of predefined and known aggregates such as the aver-
age, maximum, minimum to count a few. Moreover, almost all systems offer the possibility to
define and integrate customized aggregate functions.

2.3.2 Automatic CEP Rule Generation

Little work exists on the learning of CEP rules, and to the best of our knowledge, only five related
approaches [121, 122, 146, 185, 173] have suggested to take the path of integrating data mining
to this end. However, none of them is capable of dealing with periodic and numeric readings of
events (time series) or with trend recognition. In addition, all these approaches focus only on
the detection of situations of interest, and not on the prediction. So as far as we can tell, this is
the only work that is done on: first integrating trend mining techniques with CEP, and second
automatically learning predictive CEP rules.

Authorsin [121, 122] proposed the iCEP framework for the automatic learning of CEP rules. The
two approaches count on different techniques but they follow the same logic. The problem of
learning CEP rules in their work is boiled down to the learning of the operators of these rules. In
the recent version [122] a remarkable amount of CEP operators are supported. Specifically: se-
lection, conjunction, parametrization, sequence, window, aggregation, and negation. Authors
followed a flexible modular architecture, where they associated each operator with a module.
Therefore in each module, ad-hoc algorithms could be used to learn one specific operator, and
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build one part of the rule.

Although the followed methodology has its strong points regarding the rule expressiveness that
it tries to achieve, but it still has some limitations. The approach in [121] uses data mining tech-
niques and metrics, and it heavily relies on thresholds while learning the relevant events, the
window length, the negative events, etc. The thresholds in this approach are not learned, but
they need to be specified by experts. We argue that this is a non-evident task, and if the user is
left to do it, then imprecise thresholds are very probable, leading to inefficient rule generation.
One of the limiting factors of these two approaches [121, 122] is that they count on the strict
intersection theory that leads to one and only one rule. In other words, the proposals will only
work under the assumption that for each situation of interest there is just one rule that leads to
it. We argue that in real life different rules may indeed lead to the same situation. To clarify with
a simple illustration, let’s suppose that we have a situation of interest SoI that will occur if the
event E; is followed by the event E», or the event E; is followed by the event Es.

E, and E, — Sol
E, and E5 — Sol

Using an approach that strictly intersects the available records and outputs only one rule —no
matter how much history data we have— the learned rule will be E, — Sol (i.e., the intersec-
tion), which will obviously yield false results. Therefore we deem the assumption that each sit-
uation has one and only one rule as unrealistic.

Other work to integrate data mining techniques is proposed in [185] and [173]. From an abstract
point of view, both approaches are based on reinforcement learning styles. The main idea is to
let the user defines a CEP rule with arbitrary parameters, then following a prediction-correction
paradigm these parameters could be tuned depending on the feedback of human experts. The
drawback of such approaches is that users are in charge of defining the structure, the template,
and the operators of the rule, only parameters could be tuned.

In the work discussed in [146], authors proposed an extension for the hidden Markov models.
These extended models could learn sequences of events but they could also discard the noise.
More specifically, when a noisy event is received, the Markov model stays on the same state, and
does not proceed to the next one. In general the work is more concerned with the exclusion of
noisy events rather than learning a complete rule. In addition the approach is demonstrated to
work just on sequence patterns, but it cannot take windowing or other constraints into account.

2.4 The CEP/BPM Integration

From a research perspective, predictive monitoring and proactive adaptation are storming the
domain of workflow and process management [134, 133]. Related approaches with different
scopes, advantages, and limitations are arising continuously. Generally, these approaches try
to efficiently implement the concept of the MAPE (Monitor-Analyze-Plan-Execute) loop, intro-
duced by Kephart and Chess in their vision on autonomic computing [97]. In respect to the
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phases, the loop consists in monitoring the process run-time execution to get some strings
of events (Monitor), analyzing them in an attempt to detect the need of modification (Ana-
lyze), generating a series of adaptation actions (Plan), and finally applying them to the ongo-
ing process (Execute). The loop is considered a cornerstone to achieve proactive computations,
as it drew theoretically-feasible solutions that could anticipate upcoming violations, and ad-
dress them in advance. However when it comes to its realization, researchers are still suffering
from numbered limitations when drawing timely predictions, and serious flaws when practic-
ing adaptations. As in most of the cases, and despite their efforts, they are still reactive rather
than proactive, and more importantly, they lack dynamic adaptation policies, where each ex-
ception needs to be addressed at design-time.

As hinted in the introduction, different research efforts [14, 76, 78, 26, 25, 120, 77, 4, 102, 127,
187] are devised to integrate CEP within BPM in an easy and generic way. All these proposals,
in a way or another, promoted design-time integration of events over the process model. Typ-
ically, they assign what we call design-time monitoring points over the process model, so that
the monitoring, subsequently the prediction (if supported) are executed upon reaching these
points. This practice will not allow for a fine-grained processing inside the monitorable task it-
self.

One of the earliest frameworks that started this method is the PREvent framework [107]. It de-
fines a set of prediction checkpoints over the flow of the process. Every time one of these points
is reached, a prediction is enacted to check for probable future violations depending on the
current state of the flow. Then some predefined adaptation actions are executed if needed. The
monitoring and predictions are triggered only upon checkpoints, and adaptation plans are stat-
ically assigned regarding the placement of each point. In other words, adaptation actions at
a specified position will be the same despite the process context. Both the definition of good
checkpoints and the assignment of good adaptation actions for all undesired situations that
may arise at run-time, are tedious and human-oriented tasks, susceptible to erroneous config-
urations.

Other approaches employ predictions by statically defining preferable attribute values at design-
time, then monitor the same attributes at run-time, and finally deduce the consequences of any
mismatch on the state of the process. (i.e., if a violation will occur). For instance, They annotate
all services in a composition with preferable execution times to suit the agreement regarding
the global completion time. These times are assumed like in [171], or learned from past execu-
tions like in [193]. Afterward, during execution, the real response time for each invoked service
is monitored and compared to the preferable one. In case, the first exceeds the latter, a sum-
mation operation takes place to check if the global completion time will be violated. If so, the
process is suspended and the adaptation is triggered. This kind of approaches operates on the
detection of already violated local constraints, so regarding local violations, it remains reactive
rather than proactive.
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More recently, the Green European Transportation Service or the GET Service® was launched
as a European project in the domain of logistics. It incorporates efforts to enhance business
processes in order to efficiently support transportation missions. The ultimate goal is to re-
duce cost, time, and CO2 emission. The project embraces different publications with hetero-
geneous research problems, ranging from boosting design languages such as BPMN to better
support process monitoring [15], going through the semantic enrichment of transportation-
related events, tackling their geographical proximity to the planned transportation routes [125],
and finally to employ predictive monitoring in order to detect violations prior to their occur-
rences in an online logistics process [27]. The latter is one of the most interesting approaches.
Authors inspect the same question we are trying to address in our work. They distinguished
monitorable tasks that need to be continuously monitored in a business process. The focus is
mainly on flight shipping activities. They defined constrained and monitored attributes for this
activity at design time. During execution, they monitor these attributes in an interval-based
scheme. Then by counting on a trained support vector machine classifier, they detect diver-
gence if any. They demonstrated their idea with a transportation mission and a support vector
classifier, however it is really not obvious how it could be propagated to other application fields.
The intricate integration of data mining and event processing is not abstracted for BPM users.

2.5 Summary

This chapter provided in-depth discussions of the most related fields to our work. We started
by showing the global picture, introducing the different domains that we are working with, and
showing where they stand in the overall computer science field. Later sections showed with
fine-grained details the exact subjects that we are dealing with. Specifically, classification over
time series, CEP rules specification, and the CEP/BPM integration.

The propositions discussed in this chapter made it clear that there is still some shortcomings to
address. On the time series classification level, shapelets are still independently extracted from
multiple time series dimensions. In other words, correlations such as sequence and time con-
straints are not learned from historical observations. Rules in the CEP domain are still specified
manually, and the few approaches that tried to change this did not completely succeed. On one
hand, they cannot learn complete rules, and on other hands they fail to integrate prediction
within the CEP domain. Lastly, some approaches to integrate BPM and CEP were discussed,
but it is shown that this integration is not evident and the great potentials of CEP are waster on
uncomplicated analysis and the detection of straightforward situations.

3http://getservice-project.eu/









CHAPTER

BACKGROUND

Our scientific age demands that
we provide definitions in order to
be taken seriously.

Dennis Prager

coming chapters. Understanding the concepts discussed and defined in this chapter is

important to smoothly go over the more technical chapters to come. Better yet is to refer-
ence this chapter now and then from any other part of the dissertation, in order to shatter any
arisen ambiguity.

T his chapter provides an elaborated list of definitions that will be referenced in the up-

The definitions are divided into two sections. The first one will tackle the early classification on
time series domain. Afterward, some notations and standards from the complex event process-
ing field will be discussed. At the end, performance measures of our approach will be identified,
and a more formal problem statement will be included.

3.1 Early Classification on Time Series
Early classification in our work is achieved through shapelets [207]. Briefly, shapelets are special

shapes in a time series that are discriminative and have high significance in determining a time
series class.

Definition 3.1.1. A time series T = {f1, f2, ..., tn—1, tn} is @ sequence of observations that is made
chronologically at discrete times. Each time series is characterized by its length, |T'| = n.

41
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Definition 3.1.2. To measure the similarity between two time series 77 and T, of the same
length | T} | = | T»| = n, the Euclidean distance is used. This distance is denoted as || T}, T2|l.

3.1) Ty, Toll = | Y (T1lil - ToLi])?
i=1

Definition 3.1.3. A subsequence s of a given time series T is defined as a set of continuous real
values that are sampled from T, we say s T, and more formally s = {¢;, tj+1, ...,
tirn—1} where|s|=n<|T|=N.

Definition 3.1.4. In order to calculate the similarity between two time series s and T of different
lengths |s| = n < |T| = N, a window of length equals to # is slid over the time series T, then on
each stop the distance between the subsequence g; within that window and s is calculated.
Finally the best matching distance is extracted as:

(3.2) s, T = min S, q;
|| ”bmd Vie{l,Z,...,N—n+1}|| QI”

Definition 3.1.5. For the sake of this work, a shapelet § is defined as § = (s,0, c5, score), where

s is a time series, 0 is a distance threshold, c; is the class of the shapelet, and score is a utility
score.

Definition 3.1.6. A shapelet § = (s,6, c5, score) is said to be contained in a time series T, if the
similarity between them is less or equal to the distance threshold 6, §€ T < |I§, Tllpma < 6.

3.3) SeTo|S, Tlpma <0

Definition 3.1.7. A d-dimensional time series is represented as dT = {T', T?,..., T%"1, T%}. For
brevity, we may refer to Multivariate Time Series as MTS, and Univariate Time Series as UTS.
The length of an MTS is defined as |dT| = maxy;eq1,...a} | T, so it is equal to the longest UTS.
Whereas |dT|;in = minyieq,.. 4 |T%|. Each multivariate time series is labeled with a class c € C
where C is a finite set of class labels.

Definition 3.1.8. A dataset of d-dimensional time series is designated as a collection of pairs,
i.e, each time series with its class, D% = {(d T}, ¢;)}.

As noted before, shapelets are extracted from training sets with univariate time series—we will
refer to a univariate training set simply as 1D. In a multivariate environment, d univariate train-
ing sets could be constructed from a dataset of d-dimensional time series if grouped by dimen-
sions. 1 D! symbolizes a univariate training set containing time series for the dimension i.

Definition 3.1.9. Given a multivariate training set D%, § with i = 1...d is a set containing the
shapelets extracted from 1D’. For clarity, shapelets in S* may also have i as a superscript to state
that they are extracted from the dimension i. The set of all shapelets Sp, of a given D¢ contains

all the shapelets extracted from all dimensions, therefore, Sp = U?:l St.
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Definition 3.1.10. A Time-Annotated Sequence (T AS) of shapelets and as its name implies, is
a list of shapelets that are ordered and with time annotations between them. Formally, TAS =
{SAh, W, c} where |W| = ISAhI —1. Shis a list of shapelets that constitutes the sequence TAS (the
order of the list matters). W is a set that contains real values representing the time windows
between shapelets, its cardinality is always equal to the cardinality of Sh minus 1. Finally, c is
the class of the sequence.

A

Example3.1.1. For a given dataset D?, if we have TAS = {(512, $1), (3), c;}, this sequence means
that the shapelet named s§; from the second dimension needs to be followed by the shapelet
named s, from the first dimension within a window of 3 time steps in order for the pattern to
be fulfilled. And a sequence of the form TAS = {(§%), @, ¢;} simply indicates that if the shapelet
§ is found on the second dimension, then this is sufficient for the pattern to be fired.

Definition 3.1.11. A given sequence TAS = {Sh, W, ¢} is said to be contained in an MTS dT,
if for all §' € Sh, §' needs to appear in T?, in addition the order of the shapelets and the time
windows that exist in W need to be respected. In such case, the predicted class of d T will be c.

Definition 3.1.12. Given a dataset D% = {(dT;,c;) | i = 1..N}, the set of all sequences that could
be extracted from D and will lead to all classes is denoted as TASp.

3.2 Complex Event Processing

CEP rules are defined using different CEP operators like windowing, selection, sequence, etc.
These operators are considered the main enabler to define complex patterns. In this work we
will demonstrate rules using the Event Processing Language (EPL). EPL is an SQL-like language,
that is understandable by different known CEP engines such as Esper!. In EPL, queries operate
on streams of events instead of relational tables. Note that we will skip a detailed description
of the vast features of EPL, and we will focus only on the necessary operators in this section.
Interested readers may refer to the Esper documentation for a comprehensive description of
EPL.

Example 3.2.1. This example demonstrates the selection operator. Given a weather event WE
that has two attributes temperature and humidity. An EPL statement to select all attributes
would be SELECT * FROM WE. In order to select only temperature values, the statement would
change to SELECT temperature FROM WE. On the other hand and to select events with tem-
perature values that are larger than 10, then the statement will be SELECT WE(temperature
> 10) FROM WE, etc.

Definition 3.2.1. To define a sliding window over an event stream .win:length(X) is used. This
creates a window of length X events. If X = 4, and four events already exist in the window, when
a fifth event arrives the oldest event in the window will be thrown out

Definition 3.2.2. To select all events that are captured within a given window, the following
syntax is used: window(*). To count the number of these events count(*) is employed instead.

Thttp://espertech.com/esper/
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Definition 3.2.3. To impose constraints on events, three different methods could be used in
EPL. We already demonstrated the first one with the selection operator. Another method is to
employ the WHERE construct. The latest method is to utilize HAVING. The HAVING clause, and
differently from the first two methods, operates on what is called aggregation methods. Briefly,
the selection and WHERE impose constraints on single events, whereas HAVING could impose
constraints on the collection of events within a given window, like the count of these events, the
average value of temperature, etc.

Example 3.2.2. To select weather events that have an average temperature value greater than
10 degrees from a window of 10 events, one could write: SELECT * FROM WE.win:length(10)
HAVING avg(temperature) > 10

Definition 3.2.4. A Named Window NW is a table-structured window with column headers and
data types (just like a table in SQL) that could be created explicitly in EPL. A Named Window
could be used for many ends, e.g., when a given CEP rule matches it could insert data into
NW, and another could listen for any inserted data, etc. It is exactly like a stream of events but
created explicitly, in other words, anything that could be done on a stream of events could also
be performed on NW. These windows need to have a storing policy, because by default any
event that is inserted into the window, is dispatched to the engine and discarded right away
(just like a stream). To instruct the window to keep all inserted events, the syntax .win:keepall()
could be used. The main utility of named windows is to insert composite events (see next) into
them, and with the existence of CEP queries to process these composite events even further, a
complex chain of event processing that is famous, fast, and advantageous in CEP systems could
be devised.

Definition 3.2.5. Raw events are events that come directly from sensors or other simulation
and event-emitting sources like CSV files. On the other hand, composite events are more com-
plex events that are the results of CEP rules. That is, when a CEP rule matches, it could emit a
composite event of any form. Typically, this composite event is stored in a named window in
order to be processed by other more complex CEP rules.

Definition 3.2.6. For the sake of this paper, simple CEP rules R are rules that operate on single
stream (dimension) of raw events. Complex CEP rules CR on the other hand, are rules that
operate on multiple streams (dimensions). These complex rules combine the results (composite
events) of the different simple rules (typically through Named Windows), and impose sequence
and time constraints on them by employing CEP operators to create complex patterns. Just as
TASp, the set of all complex rules that could be extracted from a given data set D? is denoted
as CRp.

3.3 Performance Metrics

Other than execution and classification times, we are interested in several measures in this pa-
per to assess the performance of our algorithms. More specifically we are interested in the av-
erage f-score, accuracy, applicability and the earliness of the approach.
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The accuracy (acc) is computed from the number of true and false classifications as:

TP+TN

(3.4) acc=
TP+ FP+FN+TN

TP stands for the number of True Positives, TN is that of True Negatives, whereas FP and FN are
False Positives and Negatives respectively. By definition, 0 < acc < 1, and the higher the better.

The avg. f-score is computed using equation 3.5, with ¢ as a class in the set of all classes C,

s __TP __TP
precision(c) = tp-pp and recall(c) = 7p -

1 2x precision(c) * recall(c)
(3.5) avg.f-score=— —
|Cl| e¢ precision(c) +recall(c)

By definition, 0 < avg.f-score < 1, and the higher the better.

The earliness on the other hand is computed from the average number of observations needed
before classifying a full-length MTS. Therefore for a given MTS d T € D%, supposing that TAS
was used to classify d T and || T AS||;; denotes how much observations are read before assessing
the classification, one can compute the earliness as:

1 TAS
(3.6) earliness= — w
|D | dT€Dd |dT|

By definition, 0 < earliness < 1, and the smaller the better.

Finally, the applicability (app) simply signifies the percentage of testing instances that could be
classified by our approach. By definition, 0 < app < 1, and the higher the better.

3.4 The objective revisited

Time series represent a popular data model, and in real-life applications, they often are mul-
tivariate. Typically in these application fields where the different events are recorded as mul-
tivariate time series, particular situations take place when specific temporal patterns over the
different dimensions are observed. In real-life scientific domains, the patterns are rather com-
plex and they may not be known, but regardless of this, domain experts will be able to recognize
the situation of interest whenever it happens. Therefore they could annotate or classify the his-
tory observations with the proper situation or class.

Our proposed algorithm takes advantage of these classified multivariate time series in order to
perform two novel tasks. The first one is to learn predictive complex patterns that could classify
a given scenario as early as possible. By complex we specifically mean, patterns that capture the
various existing correlations (synchronous, sequential, and time gaps) that might exist between
the different dimensions of the multivariate time series. The second task is to seamlessly and
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algorithmically transform the learned patterns into predictive CEP rules with no human inter-
vention.

More formally, given a dataset D¢ as input, the first fold of the problem is how to deliver the set
of all time-annotated sequences TASp as output? The second fold is how to go from the learned
time-annotated sequences into the CEP world in a seamless manner? Given that the earliness
of the approach must be kept to minimum in order to achieve predictions, but in the same time
high accuracy values must be preserved.

A post-goal then will be to let the BPM world benefit from the results of such approach. That is,
within any business process, and whenever a monitorable task could be found, the approach
should be employed without complexity. We stress on the fact that monitorable tasks are mon-
itored by using different sensors, and these sensors usually emit their data as time series. His-
torical observations (the recorded time series) of these tasks should be classified with proper
classes and situations.

Therefore the most important requirement to exploit our proposal is met for these kind of pro-
cesses. That is, the existence of classified multivariate time series. What is left is the integration
part, which we did swiftly as we will later discuss.









CHAPTER

KNOWLEDGE-DRIVEN BUSINESS PROCESS MANAGEMENT

Success in management requires
learning as fast as the world is
changing.

Warren Bennis

his chapter holds our contributions in the field of business process management. It is on
T the application level, and it is the least technical part compared to other chapters.
Following the path of most research efforts in the domain we consider complex event process-
ing as one of the main enabler to achieve the goal of creating knowledge-driven processes, but
we argue that data mining is the main source of knowledge. Therefore we further contribute by
combining data mining techniques with CEP to devise a full approach that could be integrated
easily to predict challenging violations.

Before starting to detail our added-values in this domain, we will mention the concept of instance-
based process management, and then we will answer the question: to what extent the benefits
of CEP are being exploited in the world of BPM?

1. As shown earlier, related approaches have been limited to design-time methodologies
and overlooked the contexts and environments of the instantiated processes during exe-
cution. They assign (explicitly or implicitly) model-based monitoring points over the pro-
cess model in order to track its progress, detect coarse-grained deviations, and predict
end-to-end time violations. This practice helped to correlate events stemming from dif-
ferent sensors (like GPS) to a task of an ongoing process instance (like Trucking) [26, 25].
It also assisted to create a finer level of visibility over continuous tasks, which in turn fa-
cilitated end-to-end predictions concerning the remaining time for the whole process to
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finish. Nonetheless, only considering the process at design-time is not sufficient for con-
tinuous tasks that are executed in dynamic environments, i.e., tasks where the dynamicity
of their execution environments will potentially affect them. In such cases, in order to pre-
dict for challenging violations and force the agreements, each instance of the model needs
to be handled differently and according to its context. Generally, current approaches fail
to consider an instance-based management of processes and their continuous and mon-
itorable tasks.

2. Since CEP rules are written manually, then the benefit of using CEP is limited, and this is
clearly shown in current approaches. To some extent, they have been restricted to straight-
forward rules that monitor typical and all-purpose events (such as delays based on the
current GPS location) without further analysis and advanced inferences. However if instance-
based management is to be applied, then CEP needs to be used for prediction and beyond
just all-purpose events.

To answer the shortcomings of other approaches, we have devised the concept of contextual
templates [141, 139], and we have created a template-driven framework that is called the But-
terfly [137]. The Butterfly is mainly a conceptual framework. Its contributions could be at-
tributed to both design-time and run-time levels. The conceptual part of our proposals will
be proven through a real running scenario from the domain of artwork transportation. The
run-time potential of the approach is already realized, integrated with autoCEP, and will be
demonstrated through a real scenario from the manufacturing domain.

4.1 Scenarios

As stated, two main real-world scenarios are going to be used. The artwork transportation one
is going to serve as a proof of concept. Then the manufacturing scenario is going to be fully
demonstrated with the help of autoCEP.

4.1.1 Artworks Transportation

This domain serves as a good proof for why instance-based process management is critical.
Each transported piece of art is different, and it has its own capacity to resist environmental fac-
tors. For example, one object could handle temperature fluctuations, whereas another cannot.
Therefore and in this domain, each instance of the transportation process needs to be managed
differently and according to its context, such as the transported objects, the routes, locations,
weather, etc. This is exactly what current business process management systems [14, 51] fail to
consider, because they are mainly activity-based, and they support the model of a process, but
not the instances.

Itis important to note that almost 80% of the overall real scenarios have recorded contract viola-
tions in a way or another, as our partner in the project have indicated!. Therefore in this section,

1The C2RMF center in Paris
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we show a real scenario that will point out some of the frequently encountered problems while
transporting artworks.
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Figure 4.1: Artwork Transportation Scenario

Figure. 4.1 depicts a multi-modal transport process for an artwork that needs to be transported
from the Louvre museum in Paris to the national museum in Quebec City. The plan was to go
from Paris airport to New York airport and from there almost ten hours of trucking to reach
the final destination in Canada. The C2RMF center usually attaches sensors on the transported
piece of arts, so the conservation experts could check what happened during transportation and
how much the pieces were affected by their dynamic surroundings. The lower part of figure. 4.1
illustrates these sensor readings as time series. On that trip, shocks, temperature, humidity, and
pressure were monitored, and they were represented by the gray, red, blue, and green lines re-
spectively.

Temperature violations were identified during the trip, i.e., going from high-temperature values
to low values and bypassing a minimum threshold. This variation in temperature is highlighted
on the figure and it may have long-term negative effects on the life of the transported piece.
Moreover, and during the ten hours of trucking, high and continuous shocks were recorded,
causing more direct and obvious damages. At the end, the painting reached the museum with
some cracks and frictions on its borders, leading to contract violations and dissatisfaction.

4.1.2 Smart Manufacturing

In the manufacturing of semiconductor microelectronics, several silicon wafers need to be etched.
Different sensors to capture important measurements are deployed on the machines that etch
these wafers. After the creation of one silicon wafer, it is manually checked if it is normal or ab-



52 CHAPTER 4. KNOWLEDGE-DRIVEN BUSINESS PROCESS MANAGEMENT

normal, and then the sensor data related to this specific wafer are classified accordingly.

Such manufacturing processes have rather complex models, however for the sake of demon-
stration we will just include the relevant parts. Figure 4.2 shows a portion of a manufacturing
process. The manufacture wafer task is long-running and beyond the reach of the BPM engine.

Abnormal

I.-"i'i
- - Mormal

NGB £ Check Wafer

Wafer

—

Reactio
Violation

Figure 4.2: Manufacturing Business Process

In fact, typical engines in this case, just wait for a manual signal that the task has started, and
another signal when it finishes. After the manufacture, an expert checks the produced wafer, if
it is normal then the process reaches its end, else the manufacture wafer task is repeated.

Theoretically, following state-of-the-art BPM/CEP integration approaches and creating an ad-
hoc CEP support, one could have the interrupting error event that is attached to the manufac-
ture task. Thanks to this, reactive procedures could be later executed (React to Violation sub-
process in figure 4.2).

In contrast what could be achieved using our approach is shown in figure 4.3. The manufacture
wafer task could have another interrupting event, however this time for a predicted situation.
Therefore, the management of the process could be carried out proactively (Proact to Violation
sub-process in figure 4.3). In this example, the current batch could be dropped thus saving time
and resources, or other measures could be taken to prevent the violation if possible.

The strong point to emphasize is that this is not going to be achieved through an ad-hoc sup-
port, i.e., specifically for manufacturing processes, but it could be done easily in many domains
and for any number of situations. The CEP engine will work automatically and signal any viola-
tion that it is trained to predict. The only key requirement is a history data set that is classified
with the different situations of interest.
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Figure 4.3: Manufacturing Business Process with Proactivity

4.2 Contextual Templates

A main concept that paves the way for a better management of monitorable and long-running
activities is contextual templates. Templates are supposed to wrap such activities in order for
the CEP engine to infer what should be monitored and predicted for this specific instance (it is
a way of specializing the management of processes on the instance level).

Templates contain two sections, an attribute section and a prediction one.

1. Attribute Section: This section contains three types of attributes. The first type is instance-
based attributes, these are static data that are useful to configure the engine, and to spe-
cialize the management of a specific instance. They are filled before the execution of the
process, and they assist to provide context-aware and design-time support. The second
type is run-time attributes, and they constitute the attributes that the CEP engine should
monitor in real-time, i.e., provide real-time monitoring capabilities for BPM users. The
final type contains constrained attributes. This group contains the Run-Time Attributes,
which values may reflect signs of violations. They need to be constrained by the user. In
other words, they may constitute some agreement clauses, and the framework needs to
continuously predict and estimate the values of these attributes in order to give insight
about violations if any.

Figure 4.4 presents a concrete example of the attribute section of a template that could be
applied to a trucking task

2. Prediction Section: The other part of a template is the prediction section where check-
boxes for each situation of interest (classes) need to be provided. Then the user can check
(select) what situations she is interested in predicting for this specific instance, and later
on the CEP engine will make sure to predict and signal them. Figure 4.5 shows an example
template for manufacturing activities. It is obvious that there are six sensors deployed on
the machine, the CEP engine will see to provide real-time values from each sensor during
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Instance-Based Attributes Run-Time Attributes

Start DateTime End DateTime Shipment Sensitivity adeniiall - m
Transportation | Constrained Attributes
Truck Model Planned Routes Gase Quality

Estimated End DateTime

Figure 4.4: Attribute Section of a Template for a Trucking Task

Instance-based Attributes

Path to the Patterns

Path to the test file

Run-Time Attributes

Forward Power Sensor
Reflected Power Sensor
Pressure Sensor

405 nm emission sensor
520 nm emission sensor
Direct Current Bias sensor

Predictions:

]
Predict Abnormality Predict Normality

Figure 4.5: An example of a Template for the Manufacturing Task

the execution of the manufacture task. Regarding the predictions, there are two situations
or classes in this case because historical wafer manufacturing scenarios are classified as
normal or abnormal. Historical scenarios from different application domains may con-
tain multiple classes rather than binary, and they all need to be written down in the pre-
diction section of the template. Selecting some of these classes will notify the CEP engine
that users are interested in predicting them, and then the CEP engine will work its magic
to predict these classes in an automatic way and without any manually written CEP code.
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Templates are extensible, flexible, and they can be easily created using current BPM engines. All
typical engines provide an easy way (usually HTML forms) in order to create templates to assign
values to process variables. A template could be associated to the start event of a process, and
so it can be filled (checkboxes checked) before the long-running task is reached.

We suggest that all monitorable and long-running tasks should be wrapped with contextual
templates. We envision some extensions to current business process management systems, so
they could identify these tasks and trigger some template-driven frameworks to handle them
whenever they are encountered in a business process model. This is going to be shown in the
evaluation section for the manufacturing process.

4.3 The Butterfly

AutoCEP, as we will later discuss, will automatically take care of the prediction section of the
template.

: Instance-Based Attributes
Business Process
1.* Info: Need to be

specified at design-time
1. by the system or users

: Known Input
. Template i v
may require = { |nfo: Inputs that are already

available in the template

supported by 1* Run-time Attributes

1.x Info: Filled at run-time
Monitorable Task by the framework
N Prediction Model

supported by

Constrained Attributes Unknown Input

may require

Info: Need to be 2{ Info: Inputs that could not be
supported by a acquired unless the template is
enriched

prediction model

Figure 4.6: Class Diagram for the Main Concepts used in the Butterfly

For the attribute section, any kind of prediction model (given by experts or learned) could be
employed. To provide a bigger picture, Figure 4.6 presents a class diagram for all important con-
cepts related to the attribute section of the template, and it depicts the logical relationships be-
tween them as well. Obviously, a business process is composed of monitorable tasks, these tasks
need to be supported by templates, and we already covered the different types of attributes. The
remaining concepts are going to be explained in the remainder of the chapter.

Figure 4.7 explains the name of the framework, i.e., the butterfly and it also shows that the
template is the cornerstone of the whole approach, because it is central and available for all the



56 CHAPTER 4. KNOWLEDGE-DRIVEN BUSINESS PROCESS MANAGEMENT

modules to use.
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Figure 4.7: A Conceptual Representation of the Butterfly

As figure 4.7 proposes, the framework is clearly divided into two parts, the Analyze Discover
Enrich (ADE) modules within the dashed wing of the butterfly, and the Monitor Predict Check
(MPC) modules within the other wing.

4.3.1 The ADE Principle

The ADE are design-time modules, they operate in a sequential manner starting with the Ana-
lyze, then the Discover, and finally the Enrich.

4.3.1.1 Analyze

This module is the first to interact with the template, it analyzes its attributes in order to achieve
a sole goal, which is to assess if an enrichment is needed or not. To this end, it examines the
attributes that were constrained by the user for this specific instance (i.e., the constrained at-
tributes). Each one of these attributes needs to be supported by a prediction model (i.e., to
predict its values). Typically, a prediction model can be thought of as a data mining algorithm
(e.g., aregression function, a support vector...) that requires a defined set of inputs, the Butter-
fly framework classifies these inputs into two categories: known and unknown. The former type
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can be extracted directly from the template, however, the latter cannot and it can be only ac-
quired through a specific type of enrichment. Figure. 4.6 describes this relationship between the
constrained attributes, prediction models, and the inputs. Putting it all together and by examin-
ing the constrained attributes, the Analyze module presents our dynamic enrichment strategy,
as it stresses the need for enrichment if it finds one or more required unknown inputs.

4.3.1.2 Discover

If an enrichment is necessary, then the Analyze module will transfer the needed unknown in-
puts to the Discover module where they are going to be examined. According to the examina-
tion, external services and sources - from where the needed inputs can be acquired - will be
discovered. Such discovery mechanisms are already proposed in the literature [75]. At the most,
a set of predefined sources can be made known and accessible to the framework, then depend-
ing on the needs of the currently running instance, the most suitable services will be invoked for
the enrichment. It is important to distinguish between two types of external services that could
be discovered by this module, the first one will be exploited by the Enrich at design-time (see
next), and the second will be preserved for run-time usage whenever needed (e.g., real-time
road status from services offered by Google maps).

4.3.1.3 Enrich

After the discovery and identification of external sources, at this stage, the actual enrichment
takes place. This module will query the different necessary sources and services in order to en-
rich the attributes of the template. Typically, it will transform raw data in the instance-based
attributes into higher knowledge that can address the needs of the prediction models (e.g., go-
ing from raw coordinates in the template into full street and city names). After this module is
executed, the template will be transformed into an enriched one, carrying more meanings and
semantics.

4.3.1.4 ADEin Action

To value the benefits of our proposed Analyze-Discover-Enrich technique, we will run a small
demonstrative example. Taking a trucking activity with its template shown in figure. 4.4. Con-
sidering that the end-user constrained the vibration attribute, so the Butterfly is supposed to
estimate vibration values along the planned routes. The prediction model that foresees such
vibration values is a trained regression function that takes four parameters as input: the road
smoothness, the road surface, the transport case quality, and the permitted road speed. Among
these inputs, only the transport case quality could be known from the template, but the other
three inputs are unknown. Therefore the Analyze task triggers the need to enrich. Afterward,
during the Discover task, the framework examines the needed missing inputs and it concludes
what external services to trigger and what attributes in the template to enrich. The planned
routes attribute in figure 4.4 needs to be enriched from raw coordinates to more valuable knowl-
edge in order to give the regression function what it expects as input (see figure. 4.8). To this end,
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Figure 4.8: Transforming Raw Data into Valuable Knowledge

external sources and services® are queried and the attribute is enriched, to finally estimate vi-
bration values over roads even before the execution of the process, which is considered as a very
beneficial move for the risk assessment phase. Figure. 4.9 shows an example of the output, the
red section that is highlighted on the road alerts about expected high vibration values on this
specific route.
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4.3.2 The MPC Principle

Differently from the ADE, the modules in this wing are dedicated for run-time usage, and they
are not executed in a sequential manner but they are required to continuously and simulta-
neously perform their operations as long as the process is still running. This is why the small
looping arrows in the MPC wing (fig. 4.7) exist. The MPC modules have access to the enriched
template, they can make use of it and update it as needed.

2http:/ /www.openstreetmap.org/
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4.3.2.1 Monitor

The Monitor module incarnates the functionality of the CEP engine. It receives different real-
time events from internal sensors and external services, correlates them, and finally delivers
them to the corresponding listeners to further deduce inference and knowledge. One of the
main duty of this module is to continuously update the run-time attributes (including the con-
strained ones) in the template with their proper values.

4.3.2.2 Predict

This module needs to continuously predict future values for the constrained attributes. This is
done by employing the various prediction models that are associated to this kind of attributes
in the first place (fig. 4.6), the ADE modules made sure that all the unkonwn inputs will be avail-
able at this stage. The method of prediction is not limited to a specific set of models, and it
depends on the target attribute itself, for example if it is numerical or categorical, periodic or
not...In general, various data mining algorithms exist to suit the different requirements. Exam-
ples of prediction models are regression functions, shapelets [207], CEP rules, etc.

When it comes to the prediction section of the template, autoCEP is in charge of predicting all
global classes before they occur. This part is going to be discusses at the end of the autoCEP
chapter (chapter 6)

4.3.2.3 Check

As the name suggests, this module will check the constrained attributes for violations in a con-
tinuous fashion. It is necessary to distinguish between two types of violation detection. In case
the Monitor module updated a constrained attribute with a violated value (i.e., out of the ac-
cepted range), then the detection in this case is reactive and the violation is caught as it hap-
pens in real-time. Whereas if the Predict module estimated an unaccepted value for one of the
constrained attributes, then the detection is completely predictive, and a violation is signaled
before it happens.

4.4 Summary

In this chapter, we introduced a novel framework that could address the gap between processes
with monitorable tasks and information systems. Its main goal is to extend current model-based
methodologies, in order to reach a finer level of processing, and specialize the handling of each
case according to its context. We proposed the usage of contextual templates that go beyond
design-time monitoring points to exercise more advanced support for continuous and moni-
torable tasks.

The templates are broadly composed of two sections. The first contains the attributes. These
attributes could be used for different purposes as we explained. They are exploited for design-
time supports and enrichment, for real-time monitoring, and for customized prediction, in case



60 CHAPTER 4. KNOWLEDGE-DRIVEN BUSINESS PROCESS MANAGEMENT

one of the real-time attributes is to be anticipated. The second is the prediction section that
contains global classes to be predicted.

The overall Butterfly framework is discussed on the conceptual level with the artwork trans-
portation as a running scenario. The integration with autoCEP is going to be presented later.









CHAPTER

USE & SEE

Change is the end result of all
true learning

Leo Buscaglia

of learning time-annotated sequences from multivariate time series. The first step is an

algorithm called USE, it stands for Univariate Shapelet Extractor. At USE, the algorithm
takes D9 as input and delivers the set of all shapelets Sp as output, therefore USE(D?) = Sp.
Afterward, Sp is fed to the second algorithm, SEE that symbolizes SEquence Extractor, and the
set of all time-annotated sequences TASp is returned as the final output, thus SEE(Sp) = TASp.
Note that the two algorithms may take more that one parameter as we will shortly discuss. For
clarity reasons, the logic behind USE and SEE are respectively depicted in figure 5.1 and fig-
ure 5.2 in a demonstrative manner. The details will be discussed in the upcoming two sections.

Q s hinted in the introduction, we proposed a two-step approach to answer the problem

It is important to note, that the learned sequences may have different lengths. So if our pro-
posal is confronted with a multivariate training set D9, it is not obliged to produce d shapelets,
one from each dimension, as current state-of-the-art multivariate shapelet algorithms do [115,
65, 66, 151]. In fact, some authors proved that even in multivariate environments, extracting
shapelets from one dimension could be enough to deliver good results [158, 208]. While other
researchers insisted on the fact that in real world applications, patterns are complex mixtures
of shapelets over more than one dimension [66, 151]. We argue that we do not know in advance
and we let the algorithm decides on the number of shapelets. Therefore, our approach breaks
the ice by learning rules with the minimum sufficient number of shapelets, whether it is only
one or more.
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5.1 USE

This stage contains our algorithm that is in charge of extracting highly useful shapelets by learn-
ing them from historical multivariate time series. The algorithm, written in listing 2, takes only
the training data set D¢ as a mandatory parameter and all other parameters are optional. Ba-
sically, the USE could be deemed as parameter-free, which is an advantage over other learning
algorithms especially for non-expert users. On the other hand, the algorithm is parametrized,
i.e., all optional parameters have values by default, yet they could be changed. The thing that
could be a plus for experts in order to integrate their knowledge in the learning process.

Algorithm 2: The USE Algorithm
Input: D, minLength =10, maxLength = None, distanceMeasure = brute,
pruning = cover, k=10
Output: Sp

1 Sp—¢

2 if maxLength = None then
3 | dT — D]

4 maxLength=1dT|nin

s 1D',1D?,...,1D% — divide(D%)

6 for i in range(d)do

7 §' — shapeletExtractionAlgorithm(1D?, minLength, maxLength,
distanceMeasure)

8 SD — SD U S’

9 Sp— pruneShapelets(SD, D4, pruning, k)

10 return SD

5.1.1 Parameters Explained

The minLength and maxLength parameters could be specified by domain experts in case
there are any preferences or prior knowledge about the desired length of shapelets (i.e., they
desire to learn shapelets between these lengths). Specifying the minimum and the maximum
boundaries may guide the learning process and dramatically decrease the learning time. How-
ever if no such preferences or knowledge exist, then users may leave the default values shown
in listing 2, and the algorithm will learn the shapelets of the best length by its own.

The distanceMeasure specifies the strategy to follow while calculating distances between
time series. By default, it is the brute force strategy that searches all time series subsequences
(within minLength and maxLength) for similarities using the Euclidean distance. This tech-
nique is highly adopted to search for time series shapelets [135, 207, 115, 65, 143] as it yields the
most accurate results. Another value that could be taken by this parameter is 'MASS’, which is
a fast technique to calculate similarities. It is adopted in signal processing domains, and it was
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recently exported into the time series data mining fields. It is based on the Fast Fourier Trans-
form. '"MASS'’ is implemented into our algorithm, it was briefly discussed in the background
chapter 2.1.1.2, but to obtain more details, readers are invited to check [208]. The final value
that could be provided to this argument is 'DTW’, which stands for the technique of dynamic
time warping.

Lastly the pruning, as its name suggests, identifies the pruning strategy to follow. It could take
two values, the default value is 'cover’, which is an algorithm that we have proposed and will
discuss next. The other value is 'top-k’ to select the typical top-k pruning algorithm, and the
remaining k parameter exists to serve this matter. The evaluation chapter will shed some light
on the impact of these parameters on the performance of the approach 7.

5.1.2 Algorithm Explained

The explanation of algorithm 2 is straightforward. First if maxLength is not defined then it is
set to equal the shortest time series in the training set. At line 5, the D¢ is divided into d training
sets with univariate time series. Therefore, all time series related to one dimension are grouped
into one data set. It is important to note that a UTS gets the class of its parent MTS. In other
words, givena dT = {T", T?,.., T%1, T% and class(dT) = c, then Vi € {0...d} class(T?) = c. Af-
terward, the learning is executed on all the obtained data sets (more details in section 5.1.2.1),
and the resulted shapelets are gathered in Sp. The final step is to prune the large set of ex-
tracted shapelets, and select only the ones that have high utility scores (detailed information
are included in section 5.1.2.2).

5.1.2.1 Shapelet Extraction Phase

Algorithm 3 gives some insight on how the shapelet extraction process is performed. The pa-
rameters are already explained. As for the logic: First, it loops over the training data set 1D, then
from each time series T and for the specified minimum and maximum boundaries, it extracts a
subsequence using the getSubsequence function. This function takes a time series T, a starting
position k, a given length [, and it simply returns a subsequence s of the time series that starts
at k, so s[1] = T[k] and |s| = [. Basically, s ={T'[k], T[k +1],..., T[K + [ — 1]}.

Afterward, an array of similarities sim is calculated. This array represents the distances between
the extracted s and all time series in the training data set. If the distance measure is set to "brute’,
then the similarity array is calculated using the Euclidean distance as shown in equation 5.1.

(5.1) Vie{l,..,[1D}}, simlil =|Is, Tillpma

Else if the value is set to 'MASS’, then the technique of applying the Fast Fourier Transform, pro-
posed by the authors in [208], is executed to calculate the similarities.

With sim athand, 6 could be calculated by following different methods like the Chebyshev’s in-
equality [203] or the information gain split [143]. Our calculateDelta function adopts the latter
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Algorithm 3: The Shapelet Extraction Algorithm

Input: 1D, minLength, maxLength, distanceMeasure
Output: A set of shapelets S

S—g;

for Te1Ddo

for [ in range(minLength, maxLength)do

for k inrange(1, |T|—1+1)do

s — getSubsequence(T,k,l);

sim — calculateSimilarities(1D, s, distanceMeasure);
0, score «— calculateDelta(1D, sim, s);
§—(s,0,cs=class(T),score);

S.add(3);

© 0 N O g s wWN -

10 return S;

approach. It takes the training data set, the array of similarities, and the sequence s as parame-
ters. Afterward, it searches for the best distance value that could split the distances in sim in a
way that assorts time series belonging to the same class as s in one group, and other time series
in another group. More technical details about this technique exist in the appendix A, but ba-
sically, the algorithm tries different candidate thresholds, then it takes the one that maximizes
the information gain as the selected distance threshold. As shown at line 7, the algorithm also
returns the maximum gain as a utility score (we favor shorter subsequences to break ties). In
other words, the score variable refers to how much information we gained from using this spe-
cific s. Finally, a candidate shapelet is constructed at line 8 and it is added to S. These steps are
repeated for every subsequence within minLength and maxLength in 1D, before S could be
eventually returned.

The information gain formula is discussed in appendix A, but for completeness purposes we
will discuss it here. The gain is dependent on the entropy of the dataset. If D is a dataset, and its
instances are classified with labels from C, d, refers to the number of instances classified with
the class ¢, then the entropy is calculated as:

de de
(5.2) Entropy=-Y —log(—)
py CEZC D86,
We calculate the information gain of splits as we discussed earlier, so let us suppose that the
dataset D will be divided into two sets, D; to the left of the split and D, to the right. With these
notions, the information gain is calculated as:
Dyl

D
(5.3) InformationGain = Entropy(D) — HﬂEntropy(Dl) - %Entropy(Dr)

5.1.2.2 PruningPhase

At this stage, we will have an enormous amount of candidate shapelets, of which only few may
be highly important. To this end, the pruning algorithm (algo 4) is essential. The first step of this
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algorithm is to divide the data set and the big list of shapelets into different chunks grouped by
the class and the dimension altogether. In other words, for each combination of (class, dimen-
sion) there exist a data set of time series and a list of related shapelets. E.g., for (class = c1, 1°*
dimension) there exists one, for (class = ¢2, 1°! dimension) there is another, the same could be
said for (class = c1, 2"¢ dimension), and so on...

Algorithm 4: The Prune Shapelets Algorithm

Input: A set of candidate shapelets &', D?, pruning, k
Output: A set of pruned shapelets S

1 S —o;

listp — groupByDimensionAndClass(D);

N

w

listg — groupByDimensionAndClass($");
4 forDelistp and S" € listy do

5 S — sortByScore(g”);
// sort in decreasing order

6 if pruning = top-k then

7 | S$—Susl.k];

8 if pruning = cover then

9 for $€ 5" do

10 for Te Ddo

11 if all D is covered then
12 |_ Continue from line 5;
13 if € T then

// definition 3.1.6

14 Check T as covered;
15 if $¢ S then
16 | S.add(s);

17 return S;

The algorithm then loops over these groups, and it sorts the set of shapelets S” depending on
the utility score, in decreasing order. If the pruning strategy is set to top-k, then the first k ele-
ments from each group are simply added to S.

On the other hand, if 'cover’ is specified as a pruning strategy, then the algorithm performs
nested loops. The outer loop is over the shapelets in S, and then for each shapelet $, it loops
again over the time series in D. At line 11, it checks if all time series in D are already covered,
if so then it continues the outermost loop at line 5. Else, the algorithm checks if § is contained
in T, if so T is highlighted as covered and § is added to the final set of shapelets. Basically, in
the cover strategy, the algorithm starts to test shapelets with high scores first, and all covered
time series by the selected shapelet are ruled out when testing the other shapelets in S”. The
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logic continues until no time series are left to test (i.e., they are all covered) or there are no more
shapelets to try.

It is important to highlight the grouping mechanism that we did at the beginning of the prun-
ing algorithm. We intentionally did not search for false positives and negatives when testing
shapelets, as we plan to obtain conclusive discrimination (accuracy) in the SEE algorithm, when
various shapelets from different dimensions are combined to build accurate rules.

5.2 SEE

After executing the algorithms described in section 5.1, a set of useful shapelets S, will be avail-
able at this level. This set of shapelets in addition to the original data set are the only mandatory
inputs for the SEE algorithm, shown in listing 5. The minAcc and the maxEarliness param-
eters are the accuracy and the earliness thresholds, and they are set to 80% and 50% respec-
tively. They are calculated using the formulas discussed in section 3.3. These settings could be
changed by the user, and by default the algorithm searches for sequences with a minimum of
80% accuracy and a maximum of 50% earliness. The last parameter n specifies the number of
shapelets from each dimension that are allowed to be found in a sequence. More details on this
parameter can be found next. The output of the SEE algorithm is the set of all time-annotated
sequences TASp.

5.2.1 The Algorithm Explained

The algorithm first starts by creating an empty set of rules. Then it calls the encodeWithShapelets
method. Briefly, this method transforms a given multivariate time series d T into a sequence of
shapelets, listed as they appear in dT. Figure 5.3 shows a demonstrative example. For a given
time series 3T and three shapelets §!, §2, and §, 37T is encoded as (52, §!, 8!, §3, §2). It is the
order of appearance of the three shapelets in 3T For clarity, in algorithm 5 and for a given MTS,
dT represents the unchanged format of a multivariate time series, and enc(dT) refers to the
encoded format. It is important to note that the time series and the encoding shapelets need
to belong to the same class, V$§ € enc(dT), class(8) = class(dT). In other words, shapelets with

different classes than the time series, can not be part of the encoding for this specific time series.

In addition to the list of shapelets and the data set, the encodeWithShapelets method takes a
third parameter, which is the n. As hinted earlier, it limits the number of shapelets from each
dimension that are allowed to appear in a given encoding. By default, it is equal to one, so only
one shapelet from each dimension is permitted to appear. To clarify with the same example
in figure 5.3, without the parameter, it is evident that 3T = (§2, &, §!, 83, §2), but with n =1,
then the algorithm neglects multiple appearances of shapelets from the same dimension and it
keeps only the earlier occurrence, therefore 3T becomes encoded as (52, §!, §%), i.e., keeping one
shapelet from each dimension. n can take any integer, if it is less than one, then the encoding of
the multivariate time series is left as is, without disregarding any shapelet. If it is larger or equal
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Figure 5.3: The Encode with Shapelets Method

to one then the first n shapelets are kept and the others are dropped out. From a performance
perspective, and in order to learn rules with the best earliness percentages (as shown in the
evaluation section), we recommend that this parameter is kept to the default. Unless and for
exceptional reasons, advanced users are searching for sequences with more than one shapelet
from each dimension.

The algorithm then loops over the time series in the training data set, and at line 4 it gets all
possible permutations (of all lengths) for a given encoded time series. E.g., for dT encoded
as (8!, §?), permutations(enc(dT)) = {(81); (8%); (8!, §%); (82, §1)}. The set of all permutations is
stored in the variable perms, afterward, the algorithm loops over this variable, and for each
sequence seq in it, it performs the following:

1. First it checks if seq is already tested, if it is, then it is skipped, and the code continues to
test the next sequence in per ms.

2. Else if seq is new, then it is tested for being prefixed with another accepted sequence,
if so, then seq is dropped, and the algorithm jumps to the next sequence. Since we are
searching for earliness, if a sequence with only §! is accepted, then it makes no sense to
take a sequence like (81, $2) (i.e., since the occurrence of only §lis enough). This helps us
to learn rules with the minimum needed number of shapelets.

3. If seq surpassed the aforementioned two tests, then it is tested for accuracy. It is impor-
tant to note that at this stage the algorithm does not use time constraints, but tests only
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Algorithm 5: The SEE Algorithm
Input: S, D¢, minAcc = 80, maxEarliness =50, n=1
Output: The set of all time-annotated sequences TASp

1 TASp — @

2 D= encodeWithShapelets(Dd .S, n)

/* After this line of code, each time series in D% is encoded with a
sequence of shapelets. And all shapelets that encode a given time
series dT, they belong to the same class as dT by definition. */

for dT € D% do

3
4 perms — permutations(enc(dT))
5 for seq € permsdo
6 if seq already tested then
7 |_ Continue

if seq already prefixed then

| Continue

10 if acc(seq) =2 minAcc then
11 W — getTimeWindows(seq, D%
12 TAS — (seq, W, class(seq))
13 ifearliness(TAS) < maxEarliness then
14 | TASp.add(TAS)

15 return TASp

the ordering. If the accuracy test succeeds, then the code learns time constraints as dis-
cussed in section 5.2.2, and builds complete time-annotated sequences. Afterward, it tests
the earliness. Finally, accepted rules are added to TASp, which is returned at the end. The
accuracy and earliness are computed as shown in section 3.3.

Even thought some minor codes are not shown in algorithm 5 for clarity reasons, they deserve
to be explained in order for the reader to obtain a complete picture. First, it is important to recall
that shapelets that constitute a single sequence (seq at line 5), they all belong to the same class,
because enc(dT) contains shapelets from the same class by definition. Second, it is necessary to
highlight that the list of already tested and accepted sequences, which are used for checking at
line 6 and 8, are different for each class. E.g., at line 6, the algorithm does not check a sequence
that belongs to class c¢; with the already tested sequences that belong to class c,.

5.2.2 Learning the Time Gaps

Before this method is being called at line 11 of listing 5, the algorithm has at hand a set of
shapelets that constitute accurate sequences but with no time constraints. Therefore, this method
learns the time windows for each sequence, in order to complete it. To find the different time
windows between shapelets, the algorithm searches for multivariate time series d T where the
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sequence seq is found, given that class(dT) = class(seq), then it calculates the time steps be-
tween the different shapelets of the sequence. At the end, the maximum time steps that could
be found are considered to be the selected time window. For example, given two time series d T;
and d T and a sequence seq = (81, $»), with class(dT) = class(dT,) = class(seq): For dTi, $;
appears at time point x and §, appears at x + 10, therefore the time window is equal to 10. For
dT,, s appears at time point y and s, appears at y + 15, thus the detected time window is 15. As
aresult, w = max(10,15) = 15 is selected. This logic is formally detailed in listing 6.

Algorithm 6: The Get Time Windows Method

Input: A sequence seq, D4
Output: W
1 W—¢p
2 if|seq| =1 then
// If there is only one shapelet in the sequence
3 return W

// Initialize W to O

4 fordT e D% do
5 if segedT and class(dT) = class(seq) then

6 for (5, §') € seq do
// Take two consecutive shapelets from seq
7 candWindow — timePoint(§') — timePoint(s)
8 if candWindow > W(; ¢ then
/* W) means the time window that is specific for these
two shapelets (between them) */
9 W) < candWindow

10 return W

5.3 Summary

In this chapter, we introduced USE & SEE, a novel two-step algorithm to tackle the problem
of rule discovery and early classification over multivariate time series. The presented approach
exploits time series shapelets to build accurate rules and to address the challenging problem of
rule-based prediction. Therefore, we crossed the barrier where many researchers have stopped
in the realm of multivariate shapelets discovery, and we built complete rules that support a
greater number of application domains where sequence and time constraints are important.
Basically, our approach is generic to be used in univariate and multivariate settings, and more
importantly in normal and strict domains where time and sequence matter.
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AUTOCEP

Life is really simple, but we insist
on making it complicated.

Confucius

technology to be easily employed in predictive applications, and yet the solution needs

to be generic and used in as many domains as possible. Therefore we seek a solution with
two requirements: Generic and predictive. By automatically learning and deploying accurate
and predictive CEP rules, a major step towards the solution could be taken, and in order for this
automatic learning to be carried out, we bridge a gap between data mining and complex event
processing.

T he overall goal of our work is to realize a complete framework that would allow for the CEP

After some research in the area of predictive analytics, we found that Early Classification on
Time Series (ECTS) techniques are of utmost importance to address our needs. First, on the ar-
chitectural level, learning patterns in ECTS is a design-time phase and the CEP is a run-time
technology so they complement each other. Second, time series are a popular data model that
exists in almost every application domain, and by exploiting the fact that time series are the
same as timestamped events, the combination of the two fields would support the fulfillment
of the generic solution requirement. Lastly, following an early classification style will eventually
yield rules with predictive capabilities, since by definition the approach learns (mini) patterns
that classify a situation given just the minimum set of observed events.

Figure 6.1 hints at the overall architecture till this point. After USE & SEE we will have a set of
time-annotated sequences at hand. The next step, and at run-time, these learned sequences
(T ASp) will be transformed on-the-fly into CEP rules which in turn will be enrolled into a CEP
engine.
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Figure 6.1: The Overall Architecture

6.1 autoCEP with univariate time series

Before getting into the final version of our CEP. It is important to note that this project supported
only univariate time series [135, 136, 138] when it was first developed, and it didn’t count on USE
& SEE. However, and as we project to deprecate this early version, we decided to move it out of
the flow of this dissertation and put it in appendix A.

AutoCEP with univariate time series used shapelet techniques as well, and it was a generic ap-
proach that could be used in different domain. However, the shortcoming is that it deals with
univariate time series, and we argue that this is not completely suitable for real life applications.
It was tested with artwork transportation processes and it showed good results. Interested read-
ers are encouraged to take a look at the mentioned appendix where all details are presented.

6.2 autoCEP with multivariate time series

The learning process is concluded at this stage and the output is a set of accurate time-annotated
sequences (T ASp). The main task of autoCEP [140] is to transform these sequences into deploy-
ready CEP rules. In fact, autoCEP—behind the scenes—performs the following: creation of a
CEP engine, configuration of the engine, transformation of TASp into complex CEP rules CRp,
and enrollment of the rules into the engine. The result will be an engine that is ready for real-
time predictions. The only required input of autoCEP is the learned time-annotated sequences,
therefore autoCEP(TASp) = CRp.

Algorithm 7 sheds some light on the reasoning behind autoCEP, and how it transitions from
pure data mining into the CEP world. In this listing we kept away the details of EPL just to
demonstrate the logic first, and then we will show each EPL query afterwards. We also omit-
ted the details of configuring and creating the CEP engine as shown in the first comment. The
only significant configuration that needs to be known is that events always have a timestamp
attribute called time and the stream of events has a global name, i.e., stream.

What is important to realize from algorithm 7 is that autoCEP creates a named window and
a complex CEP rule for each time-annotated sequence (The outer for loop line 3 and line 6),
whereas it creates a simple CEP rule for each shapelet within any given T AS (the inner for loop
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line 5).

The logic goes like this: For any given time-annotated sequence (e.g., TAS;), the shapelets that
are related to this sequence are transformed into simple CEP rules. These created rules fire their
results (composite events), whenever their patterns match, into the unique named window
(e.g., NW) that belongs to this specific TAS; (created at line 3). In the meanwhile, a complex
query CR that is related to TAS; (created at line 6) will be listening on the appointed named
window (NWj). This complex query captures the patterns—in EPL jargons—that are required
by any given T'AS (the sequence and time constraints). Therefore, CR processes the composite
events emitted by the different simple CEP rules that are hooked to NW}, and whenever the
pattern occurs autoCEP could trigger a prediction—stating that the stream is predicted to have
this specific class (or this situation is about to happen).

Algorithm 7: The autoCEP Algorithm
Input: TASp
Output: The Complex CEP Rules CRp
// Engine and Events Configuration
1 CRp—¢@
for TAS = (Sh, W, c) € TASp do

N

3 NW < createNamedWindow(id(TAS))
// Create a unique named window for TAS
4 for ' = (5,8, cs, score) € Shdo
/* 1 refers to the dimension from where § is extracted */
5 createSimpleCEPRule(i, s, §, NW)
/* The Created CEP Rule emits composite events to the specific
NW x/
/* What remains is to create the query on the NW in order to
construct the complex CEP rule */
6 CR — createComplexCEPRule(SAh, W, c, NW)
7 CRp.add(CR)

s return CRp

6.2.1 Named Window Creation

The EPL code behind the createNamedWindow method in algorithm 7 line 3 is listed below.

Algorithm 8 shows the EPL syntax to create a named window. As mentioned before, a unique
window is created for each time-annotated sequence. The name of the window is rule + id of
the sequence (e.g., if id = 1 then the name of NW will be rulel). As shown in the code, we create
three columns as the structure of our named windows. The first column is named startTime
and it refers to the starting time of a pattern. The second endTime is just the opposite, i.e., the
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Algorithm 8: The createNamedWindow method

Input: id

Output: A named window NW

// In EPL Syntax

query — "CREATE WINDOW rule" + id + ".win:keepall()
(startTime int, endTime int, dim String)"

NW < engine.registerQuery(query)

return NW

W N

end time of a pattern. Finally, the dim is a string that represents the dimension. Recalling from
the explanation of the autoCEP algorithm (algo. 7) that each simple CEP rule created for the
shapelets will be hooked to a named window just like the one shown in algorithm 8. Therefore,
each simple CEP rule and whenever its pattern matches, is expected to register its starting time,
ending time, and the dimension over which it operates into the named window. This is done
through the EPL syntax discussed next.

6.2.2 Simple CEP Rule Creation

Algorithm 7 makes it clear that for each shapelet in a given time-annotated sequence, a sim-
ple CEP rule is created. To do that, the following EPL syntax is called (algo. 9). Some attributes
and defined names used in this listing are configured during the initialization of the engine in
algorithm 7, they are time (line 2 and 3) and stream (line 4). The input to algorithm 9 are self-

Algorithm 9: The createSimpleCEPRule method
Input: dimension, s, 5, NW
// In EPL Syntax
1 query — "INSERT INTO NW
2 SELECT prior(|s| — 1, time) AS startTime,
3 time AS endTime, dimension AS dim
4 FROM stream.win:length(|s|)
5
6
7

HAVING count(*) = |s| AND
|lwindow(*), s|| < 0"
engine.registerQuery(query)

explanatory if they are tracked back to algorithm 7. dimension is the name of the dimension
that the shapelet belongs to. s is the subsequence (UTS) that constitutes the shapelet. § is the
distance threshold and NW is the named window.

The EPL statement in algorithm 9 is a simple CEP rule with the three blocks discussed in the def-
initions: SELECT, FROM, and HAVING. The addition is the INSERT INTO at the beginning that
inserts the selected information (within the SELECT) into the named window NW. Basically,
NW expects three inputs per row (startTime, endTime, and dim) as discussed before, and this
is exactly what the SELECT construct extracts from the stream of events. First the startTime is
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extracted by using yet-another EPL function called prior, this function helps to yield the times-
tamp of the first event in the window. Second, the endTime is obtained by simply getting the
timestamp of the last event in the window (for startTime and endTime the time attribute of the
stream is used). The final input expected by NW is the dimension and it is transferred directly
from the parameter called dimension. The FROM simply specifies the stream to process (it is al-
ways called stream), and a sliding window that is equal to the length of the concerned shapelet
is created over that stream (line 4). Finally, the conditions that need to be met on the captured
events within the window are expressed in the HAVING clause. The first condition (line 5) is
that we want for the number of events in the window to be the same as the number of observa-
tions in the shapelet, this condition prevents unnecessary calls to the function that calculates
the distance (i.e., only when the lengths are the same, then calculate the distance). The second
condition is the most important, it effectively calculates the Euclidean distance between the
events within the window and the shapelet, in case the distance is smaller or equal to § then
a record (composite event of the form startTime, endTime, dim as instructed by SELECT) is in-
serted into NW.

It is important to highlight that through object-oriented reflective programming and based on
the dimension names, when the events captured within the window (window(*)) are transmit-
ted to the distance function, the events themselves are multivariate time series however only
the distance between the valid dimension and the shapelet is calculated.

6.2.3 Complex CEP Rule Creation

At this point, whenever a simple CEP rule matches, it will output a composite event into the
appointed named window. Therefore, a more complex CEP rule is needed to listen on each
named window, to search for patterns among the various composite events emitted by the dif-
ferent simple CEP rules, and to draw predictions when patterns are fulfilled. The code listed
in algorithm 10 demonstrates how this could be done in EPL. The inputs to this algorithm are:
the set of shapelets alongside the set of time windows that constitute the TAS in question (the
outer for loop in algo. 7), the class of the sequence, and the named window NW. This function
creates the complex rule, registers it into the engine and then returns it.

In order to present the whole picture in a clear way, we will explain the code of algorithm 10
through an example.

Example6.2.1. Supposing that we have the following TAS; = {Sh, W, c; }with Sh = (§2, §°, &1
and W = (10, 15). This basically means that the shapelet named ) from the second dimension
needs to be followed by § from the third dimension within 10 time steps, and finally §; from
the first dimension has to appear within 15 time steps after the start of §3, in order for the whole
pattern to be fired. This time annotated sequence could be presented as:

~ 10 . 15 .
6.1) §1° — §° = !

Supposing that the simple CEP rules for each shapelet are already created, and they are out-
putting (whenever their patterns matches) the start time (startTime), end time (endTime), and
the dimension names (dim) to a named window called NW, that belongs to TAS;. Given Sh, W
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Algorithm 10: The createComplexCEPRule method

Input: Sh, W, ¢, NW
Output: CRp
1 define alphabet
/* alphabet is a dummy array of characters just to give names (such as
’a’, ’b’, etc.) to the events */
// In EPL Syntax
2 query — "SELECT * FROM PATTERN [EVERY"

for index in ISAhI do

3
4 § — Shlindex] // get shapelet at position index
5 dimension — getDimensionOf($)
6 if index = 0 then
// First shapelet in the sequence
// + < means append to the query
7 query + — "alphabet[index]=NW (dim=dimension)"
8 else
9 query + — "="// add a CEP sequence operator to query
10 query + — "alphabet[index]=NW (dim=dimension, startTime - alphabet[index
-1].startTime < W{index - 1])"

11 CR — engine.registerQuery(query)
12 CR.registerListener(warn about situation c)
/* The listener could be any piece of code that one would like to put.
The listener is executed whenever the complex pattern is fulfilled.
The listener in our implementation simply warns about the predicted
situation. x/
13 return CR

and NW; to the createComplexCEPRule method shown in algorithm 10, the following query will
be created: SELECT * FROM PATTERN| EVERY a=NW, (dim=2) = b=NW, (dim=3, startTime -
a.startTime < 10) = c=NW, (dim=1, startTime - b.startTime < 15)]. Above we explained TAS;
in plain English, and this is its exact translation into the EPL language. PATTERN means that
we are about to define a complex pattern within the two brackets []. Then EVERY instructs the
engine that for every composite event that it detects where dim = 2, it should stay fully pre-
pared and search for the described pattern. Without the EV ERY keyword, the engine will try
to match the pattern only on the first occurrence of an event that has dim=2. Then sequence
constraints are employed through the CEP sequence operator =, and the time constraints are
accounted for when the events are being selected (condition inside the parentheses as shown
in the definitions section).
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6.3 Integration into BPM

After going through contextual templates and our novel techniques to go from classified sce-
narios into CEP rules, the integration within BPM could now be easily worked out.

Obviously the learning should be performed way before running the process and USE & SEE
should be executed on the available historical scenarios, so they can yield and save advanced
temporal patterns. Afterward when the process starts executing, users can check from the tem-
plate which classes they are interested to predict (e.g. in the manufacturing scenario, it makes
sense to predict abnormality). When the execution flow reaches the monitorable activity (e.g.
manufacture) whose behavior we aim to predict, the BPM engine will trigger autoCEP while
pointing it to the location where the temporal patterns are saved, i.e., the output of USE & SEE
(this pointing could be done through the instance-based attributes of the template see fig. 4.5.
or easily through the autoCEP API). AutoCEP then transforms on-the-fly the different patterns
into predictive CEP rules, it configures the CEP engine to predict for the checked classes in
the template, it runs the engine, and starts its real-time monitoring and analysis. Subsequently,
whenever one of the checked classes (in the template) is predicted, autoCEP will signal an event
to the BPM engine (e.g., throw a BPM error with the code equals to the name of the class). Fi-
nally, attached events to the monitorable tasks (as shown in the scenario section, fig. 4.3) with
the same code as the class will catch the error event dispatched by autoCEP, and the manage-
ment could be carried out proactively.

Nothing CEP-related at all is required from BPM users, on the contrary they are left to design
their business processes as they accustomed to. The only requirement is to give the process
variables of the checkboxes (the prediction section of the template) and the codes of the at-
tached events the same names as the existing classes from the historical scenarios. For example,
the manufacturing scenarios are classified as normal and abnormal, accordingly the checkbox
predict abnormality (resp. predict normality) from figure 4.5 should represent a process vari-
able with the name abnormal (resp. normal). The same is true for attached events, if users seek
to catch when autoCEP predicts abnormality, an event with the code abnormal should be at-
tached to the activity. Given this simple setup, the interaction between the BPM and CEP engine
will be worked out magically behind the scenes.

6.4 Summary

As shown in this chapter, going from pure data mining into CEP rules could be very complex,
however it is all done swiftly and automatically with the help of autoCEP. No human inter-
vention is required at this stage, and no tedious manual rule specification is needed anymore.
Moreover, our approach creates a steady portal to easily employ CEP techniques in predictive
domains, the thing that was only a vision.

The CEP world is very known for its expressiveness, where a massive amount of CEP operators
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could be employed. Our automatic rule learning method is able to generate rules with the most
relevant CEP operators as discussed in [43]. More specifically, our data-driven rules account for
selection, conjunction, parametrization, sequence, window, and aggregation.

At the end, we concluded this chapter by discussing the link to the BPM world. With automati-
cally learned CEP rules at hand, it turns out that most of the BPM/CEP integration complexity
is waived away.









CHAPTER

VALIDATION

All life is an experiment. The
more experiments you make the
better.

Ralph Waldo Emerson

chapter, however it is important to note that they are not capable of learning rules in

the manner we are doing it. They either make unrealistic assumptions, are very user-
dependent, or deal with symbolic sequences and not numeric time series, and all of them do
not account for earliness and prediction, therefore a direct comparison is not feasible.

The few existing approaches on CEP rule generation are discussed in the related work

On the other hand, and as far as we can tell, our approach is the first to create a generic frame-
work that exploits CEP for prediction inside monitorable and long-running tasks. Other pro-
posals are focused on design-time integration over the flow of the process, and they usually are
ad-hoc and require efforts to employ. Therefore a direct comparison does not seem sensible on
this level as well.

Therefore for the evaluation and comparison, we have selected different real-world data sets as
benchmarks to evaluate our approach and to compare it with different state-of-the-art propos-
als on multivariate shapelet learning. Our approach is the only one that is capable of learning
sequence and time constraints among the different dimensions, other work tends to learn in-
dependent shapelets from each dimension. The goal of the tests is to prove the performance
and applicability of our approach while tackling various real analytic tasks such as anticipat-
ing robot failure [9], predicting if ECG data are normal or abnormal [148], foreseeing failures
in wafer manufacturing [148]. All experiments were conducted on a PC with an Intel i7 2.8GHz
CPU and 32 GB of main memory. The algorithms of USE & SEE were written in Python, whereas
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autoCEP is implemented in Java, Esper1 is used as a CEP engine, and the integration is done
with the open-source Camunda BPM engine?.

7.1 Wafer Manufacturing Scenario

This section will demonstrate the integration of CEP and BPM for the wafer manufacturing sce-
nario. The complete demonstration and its videos could be found on the website of the project®.

Historical classified scenarios of real wafer manufacturing activities can be obtained from [148].
After deploying and configuring the process (in BPMN format), executing it will trigger auto-
CEP. Then autoCEP will go side by side with Camunda to provide real-time analysis and pre-
diction for the manufacturing task.
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Figure 7.1: A. Normal Instance B. Abnormal Instance

Figure 7.1 presents two portions of two running instances of the manufacturing process. On
the left side of the figure, a normal test instance was streamed through autoCEP, correctly no
abnormality was predicted, and the flow of the process continued normally — this is shown
with the execution token (this is inside the Camunda engine cockpit) on the No Predicted Ab-
normality task. On the right side of figure 7.1, another abnormal test instance was streamed,
and as shown the execution of the process was interrupted by the attached error event — the
execution token on the Abnormality Predicted task. Thanks to this easy integration with CEP,
proactive measures could now be employed. Even if these measures are not known in advance
(the structure is not evident), existing standards such as CMMN* could help to efficiently man-
age the case.

http://espertech.com/esper/
Zhttps://camunda.org/
3https://goo.gl/2aDHyu

*http:/ /www.omg.org/spec/ CMMN/1.1/
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7.2 Evaluation

Since we are dealing with real-time prediction over a stream of events, autoCEP records all the
predicted classes over time (classification variation). To examine the behavior of our algorithm,
we utilized five different methods, and for each we present the accuracy and earliness. Closest
classification: the stream is classified with the most similar pattern so far. First classification:
The stream is attributed the class of the first detected pattern. Abnormality Detection: Normally
in proactive applications, users are interested in predicting abnormality (or specific situations)
rather than normal streams, therefore this test focuses on specific classes and disregard unim-
portant situations. True class exists: This method tests if the true class exists among the classifi-
cation variation over time. Finally majority voting: For this method the class of the majority is
accounted for, earliness is always 100% because the full-length time series is used at the end.

Table 7.1: The Data Sets

Dataset # Dimen- Classes # In- Max. Min. Imbalance
sions stances Length Length

Wafer 6 Binary 1194 198 104 X

ECG 2 Binary 200 152 39

Robots 6 Multiple 93 15 15

Table. 7.1 presents different characteristics of the multivariate data sets that are used for the
experimentation®. For the comparison with state-of-the-art approaches all parameters are kept
to the default values, and the closest classification method is used. Tables 7.2, 7.3, 7.4 illustrate
the results that we have achieved on the wafer, ECG, and robot data sets respectively.

Table 7.2: Results on the Wafer Data Set

Approach Avg. f-score Earliness App. Acc.
autoCEP 90.5% 28.7% 100% 92.6%
REACT 91.9% 32.8% 100% -

Full INN 87.2% 100% 100% 89.9

Table 7.3: Results on the ECG Data Set

Approach Avg. f-score Earliness App. Acc.
autoCEP 81% 21.2% 100% 82.7%
REACT 76.7% 10.5% 100% -

Full INN 87.7% 100% 100% 88.7
MSD 58.8% 12.8% 100% -

>The robot dataset is a collection of five different datasets, so each dataset is handled separately and the re-
ported results are the average
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Table 7.4: Results on the Robot Data Set

Approach Avg. f-score Earliness App. Acc.
autoCEP 76.6% 50% 100% 80.8%
REACT 72.7% 40.7% 94.7% -
Full INN 71.9% 100% 100% 79.3
MSD 39.6% 27.4% 96.3% -

For each experiment and when applicable, we have compared our method with the 1NN classi-
fier as a baseline, and with two state-of-the-art approaches to learn shapelets from multivariate
time series. In general, the different compared methods for these experiments were: autoCEP,
REACT [115], INN classifier, and MSD [65]. Other than autoCEP, all approaches use ad-hoc al-
gorithms in order to implement real-time classification. In our work, we algorithmically shifted
toward the world of CEP, and thus taking advantage of its speed and performance.
As depicted in the aforementioned tables, our approach competes with current multivariate
shapelets learning methods, as it reported better or close results. In general, autoCEP showed a
good trade-off between earliness and average f-score. On the tests, where it didn’t score the best
earliness, it scored the best average f-score. Of course, the 1NN classifier always scored 100%
earliness because it consumed the whole time series before deciding to which class it belongs.
In terms of applicability, autoCEP always reported 100% scores.

99 99

100 100

0 First Classification

Abnormality Detection

25

True Class Exists
Classification Methods

95 95

Em Wafer:Acc
[ Wafer:Earliness
22 ECG:Acc

B ECG:Earliness

Majority Voting

Figure 7.2: Classification Results

On the other hand, and to get the global picture, Figure 7.2 depicts the results on the Wafer and
ECG data sets while employing the remaining four classification methods (the closest classifi-
cation method is already reported in the above tables when comparing to the state-of-the-art).
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The majority voting always scored a 100% earliness score because the approach waited to read
the whole time series before deciding to which class it belongs.

7.2.1 Efficiency
7.2.1.1 Memory-Aware Execution

Searching and calculating distances between time series subsequences is known as a very com-
plex, time-, and memory-consuming problem, even in the univariate settings [208]. Typically,
super machines are dedicated for this kind of problems with more than 96 GB of main memory
like in [115].

However, USE & SEE is an approach that is agnostic to the size of memory, and it could be exe-
cuted on normal machines without having memory errors. The trick behind this is in our smart
pruning strategy. More specifically, a thread that is responsible on monitoring the memory us-
age could interrupt the code shown in algorithm 2 to force a pruning phase. It saves the states
of the algorithm and the progress that is made so far, it forces the pruning, it cleans the mem-
ory from unwanted candidates, and then it signals the main algorithm to continue the learning
from where it stopped.

7.2.1.2 Learning Time

In the USE algorithm, and since we are testing every subsequence, a trade-off exists between
accurate results and learning time. To this end, we held different experiments with different
variations. More specifically we tried a straightforward implementation and an optimized one
(USE & SEE-O) with the help of multi-threading. In the two implementations, we attempted
both brute and mass as values to the distance measure parameter of the USE algorithm (see
algo. 2). It is important to note that we have implemented mass as the authors directed on their
page [145], yet their implementation omits the calculation of the first distance (i.e., the first el-
ement in the sim array of algo. 3). Therefore, we slightly changed the code to account for the
missing distance as well.

Table. 7.5 compares all the variations of USE & SEE that we have tried, in addition it shows
results reported by two state-of-the-art approaches [115, 65]. Default values are used for our
algorithm, and the same amount of training instances were employed in all experiments (For
brevity we will refer to our algorithm as U&S). The first row of table 7.5 hints about the testing
environments.

As shown in table. 7.5, learning time is quite expensive on big datasets, however it is still com-
parable to other recent approaches. Nonetheless, the training is a design-time phase and by
exploiting concurrent methods it could be optimized as shown in the table. Another point that
is important to highlight is that our approach is in its default settings regarding the minimum
and maximum lengths. So it tried to find the optimal lengths without any guidance, but if
minLingth and maxLength are to be provided then this will drastically affect the learning
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Table 7.5: Learning Time

| CPU @ 2.80GHZ, 32 GB of RAM | CPU @ 2.40GHZ, 96GB of RAM

Dataset U&S U&S U&S-0 U&S-0 MSD REACT REACT-

(brute) (mass) (brute) (mass) GPU
Wafer 52.2 31.8 29.4 17.1 > 2 41.8 18.9

hours hours hours hours weeks hours hours
ECG 8hours 3.5 2.2 44 min- 3.6 4.25 1.7 min-

hours hours utes hours hours utes

Robots 14.3 6.8 min- 2 min- 1.1 min- 2.9 min- 4.25 5.64 sec-

minutes utes utes utes utes minutes onds

time. For example, table. 7.6 shows the results after re-running the experiments with minLength
and maxLength manually specified. For the wafer dataset, the settings were minLength = 40,
and maxLength = 50. For the ECG, the minimum was 35 and the maximum 39. Finally for the
robots dataset, minLength = maxLength = 10.

Table 7.6: Learning Time with Lengths Specified

Dataset U&S (brute) U&S (mass) U&S-O (brute) U&S-0 (mass)
Wafer 21.8 hours 11.5 hours 7.3 hours 2.9 hours
ECG 1.2 hours 46 minutes 20.8 minutes 2.3 minutes
Robots 1.4 minutes 55 seconds 4 seconds 0.89 seconds

7.2.2 Sensitivity of Parameters

Instead of running USE & SEE with its default settings, we will run different experiments while
varying the various parameters, in order to assess their sensitivities and their effects on the
results. To this end, figure A.3 reports the accuracy and earliness scores on the ECG dataset.

N Acc
[ Earliness

Il Acc
[ Earliness ||

Percentage (%)
Percentage (%)

]
(1,10) (1,20) (1,30) Default brute mass dtw
Lengths (min, max) Distance Measure

Il Acc
[ Earliness

80 82

76

N Acc
[ Earliness ||

Percentage (%)
Percentage (%)

cover top-10 top-20 top-30 60 70 80 90
Pruning minAce

Figure 7.3: Results on the ECG dataset
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7.2.2.1 Discussion

The first graph (upper left) of figure A.3 depicts the results when the minimum and maximum
lengths are manipulated. As shown in table. 7.1, the shortest time series in the ECG data set is
equal to 39, so we changed the values of the lengths accordingly. As expected given the algo-
rithm a small space to search for patterns like (min=1, max=10) or (min=1, max=20) will affect
the accuracy, as very short shapelets may not be representative, and will yield false positives
or negatives. However with longer patterns, the approach was able to keep high accuracy. In-
tuitively, the earliness is directly affected by the minimum and maximum lengths as the graph
demonstrates. Providing these lengths is a good way for experts to get involved in the learning,
yet the default settings could also yield useful results.

The second graph (upper right) sketches the outcomes with the three distinct values that the
distance measure parameter of algorithm 2 could take. All other settings are kept to the default.
On the ECG dataset, the results were identical, so this parameter is not sensitive for the results.
On the other hand, table 7.6 demonstrates the advantage of using massfrom time-consumption
perspective.

The lower graph to the left proves the effect of the pruning algorithm. It shows that the cover
strategy is the most beneficial one. The intuition behind this is that the top-k algorithm will
yield shapelets with elevated scores, but there is a high probability that these shapelets are so
close in their shapes (almost identical). The cover strategy allows for more diversified shapelets
to exist in the results. The earliness was not affected by the pruning algorithm, however the
same could not be said for the accuracy.

The last graph presents the results when the minAcc parameter of algorithm 5 is modified. This
parameter is tricky to calibrate, however even when given low values like 60, it yielded very good
results. In general, we consider the default value (80%) as a logical threshold, however user may
substitute it with another preferable one. Higher thresholds (> 80) and lower ones (< 50) may
probably lead to over and underfitting respectively.

7.2.3 Interpretability of Rules

In data mining, it will make more sense if users could understand how algorithms classify in-
stances. In other words, patterns that could be digested and interpreted by users are really im-
portant, as they may help domain experts in understanding the causes and the reasons of a
specific situation of interest. Then these understandings could help experts to carry new stud-
ies, in order to shed some lights on otherwise ambiguous situations.

Since shapelets are interpretable temporal patterns [207], a strong point to emphasize in our ap-
proach is the interpretability of the outputted rules. Specifically, our implementation is equipped
with visualization features that could assist experts on interpreting the results.
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Figure 7.4: Shapelet Explorer

Figure 7.4 hints at the shapelet explorer feature. With this equipment, experts could interpret
shapelets one by one to see what patterns and shapes exist over the different dimensions. The
shapelet explorer provides information about the temporal shape, the dimension and the class
of the selected shapelet (upper left graph). It also draws the time series from which the shapelet
was extracted, i.e., the parent time series. On the lower part, the explorer gives a clue on the
profiles of the time series that belong to the same class as the shapelet, and others that belong
to different classes. This visualization feature deals with univariate shapelets, so only the con-
cerned dimension of the multivariate time series is depicted. Figure 7.4 illustrates a shapelet on
the first dimension of the ECG data that is concerned with the abnormal class. As pictured on
the lower part of the figure, and for the ECG data, it is not evident to use just one dimension to
classify the whole multivariate time series, as the profiles for the normal (right part) and abnor-
mal (left part) time series seem almost the same at the first glimpse.

Furthermore, our approach comes equipped with a more advantageous visualization feature,
that could prove really handy when it comes to interpreting multivariate time series. Figure 7.5
sheds some light on the rule explorer.

The explorer sketches the rule on the upper part, showing the used dimensions, the class, the
order of the used shapelets, and the time windows between them. On the lower part, the ex-
plorer presents example multidimensional time series where the above rule could be found,
shapelets are depicted in bold on these instances. The figure draws an abnormal case from the
wafer dataset. Users can easily navigate the different rules, and the different instances that are
covered by each rule.
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Figure 7.5: Rule Explorer

In this regard, our approach has the upper hand over different multivariate shapelet algorithms,
by learning complete rules and drawing them to the users. Following this way, domain experts
could explore their data while noticing and learning new and otherwise hidden sequences, time
constraints, and correlations. It is obvious from figure 7.5 that only a subset of dimensions are
used for the outputted rules (in the figure a rule from 3 out of 6 dimensions is pictured). Fig-
ure 7.6 yet shows another pattern from the same data and for the same class, but with only one
shapelet from the 5! dimension.

The Rule [class=abnormal] (press left and right to navigate)

2500
2000
1500
1000

500

-500

Covered Timeseries:1571_05.csv (press a and d to navigate)

2500
2000
1500
1000

500

—500

Figure 7.6: Rule Explorer: Rule 2
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7.2.4 Complexity
7.2.4.1 USE

In this section, different tests will assess the time complexity of the USE algorithm. To this end,
we will variate the number of instances n, the length of time series m, and the number of di-
mensions d. Two values of the distance measure will be tested: brute and mass.
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Figure 7.7: Performance of USE & SEE

The first three graphs of figure 7.7 are related to the USE algorithm (they have the word USE in
the title of the x axes). These graphs depict the results of the tests, the y axis represents the time
complexity in hours. For the first experiment, reported in the upper left graph, four tests were
carried with n € {10,100,500,1000}, while m = 150 and d is set to 6. As shown our algorithm
in both variations is linear in regard to the number of instances in the dataset, given that with
mass, it is less complex.

In the second experiment (upper right graph), n and d are fixed to equal 200 and 6, while
m € {15,100, 150,200}. The brute strategy proved to be quadratic to the length of time series,
while the mass showed no inclination at all because it is in fact independent from this fac-
tor [208].

The third experiment (second row left graph) proved that the USE algorithm, again in both vari-
ations, is linear to the number of dimensions. The setups were as follow, n = 200, m = 100 and
de{2,6,10,20}.
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In general, the complexity of the brute and mass are O(nm?) and O(nlogn) respectively. As
for the cover pruning strategy, it takes another O(nlogn). Therefore adding the number of di-
mensions, the complexity of USE(brute) will be approximated as O(d * n(m?logn)), as for the
USE(mass) itis O(d * nlogn).

7.2.4.2 SEE

The results of the SEE algorithm are also reported in figure 7.7 (the remaining three graphs) for
the same experiments as the above section.

The SEE algorithm was relatively fast compared to USE (the y axis represents the complexity
in minutes), however it is mostly affected by d because it searches for the different permuta-
tions among the different dimensions. Even thought, we are not using a naive approach where
all combinations are tested, but we are encoding and departing from the training data set (see
algo. 5), and pruning many sequences, so converging rapidly towards solutions. In fact, we de-
vised this permutation strategy to account for all the important patterns from all dimensions.
This is completely different from state-of-the-art approaches like [151, 66] that label a whole di-
mension as relevant or irrelevant, and so disregarding it without taking into consideration some
specific combinations that could be formed using this dimension with others.

When varying n (second row right graph) and m (last row left graph) SEE was able to finish
within 6 and 2 minutes respectively for the highest values. When we fixed n and m at 200 and
100 respectively, with up to 6 dimensions, SEE took only 1 minute to execute. However with 10
dimensions it spanned over 50 minutes, and then with d set to 20, the learning dramatically
increased to score 500 minutes.

In general, SEE proved to be linear with the number of instances and the length of time series,
yet at its worse it might be factorial to the number of dimensions. Therefore the complexity of
SEE could be estimated (in extreme situations) as O(n * m * d!). An important note to highlight
is that the complexity never reached the factorial of d, because and as mentioned before, we are
departing from the time series and not all time series have shapelets on all dimensions.

7.2.4.3 autoCEP

Differently from the previous two algorithms, autoCEP has no time complexity as it transforms
rules on the fly. As a matter of fact, we transformed 40, 60 and 100 rules, and they all finished
within some fractions of a second.
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CONCLUSION

Enough research will tend to
support your conclusions.

Arthur Bloch

pace of this change is continuously accelerating. Every new day is bringing new concepts,

visions, and advancements that are shaping our lives. The realms of hardware, software,
and network are rapidly evolving. IoT is transmuting, from being a mere vision and fiction, into
tangible objects in the real world. All these changes are forcing technologies to modify the way
they handle data. Therefore, technologies who seek to survive this paradigm shift are compelled
to adapt and integrate within the ever-evolving world.

C hange will always be the main theme that will dominate our technological world, and the

The main driver of this change is data, its abundance is reforming the way all applications and
businesses are done. To highlight the importance of data, it is said that good data beats better
algorithms. To put it in another form, no matter how excellent an algorithm is, when more data
will be available, the algorithm will become obsolete. Therefore, data is one of the big influencer
when it comes to changes and paradigm shifts, and currently data is being acquired more than
ever before. As a matter of fact, our age is called the information age, and many things have
changed — and continuously being changed — from the prior industrial age.

In any application field, the followed techniques and practices have been reexamined and reeval-
uated to assess if they are exploiting data in a sufficient way. Medicine, diagnostics, healthcare,
construction, marketing, optimization, sports, security, finance, and any other domain that one
could think of, are striving to be more and more driven by data. Data mining techniques are
some of the best solutions that are able to achieve exactly this goal. This is the reason why data
science is currently taking the initiative, and data mining is being employed in almost every do-
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main.

Data mining and analysis of data could bring out precious hidden knowledge, and with the
abundance of data throughout the ages, analysis techniques evolved and matured. At the ear-
liest stages, descriptive analytics was the trend. Typically, monitoring and reporting was the
fundamental job of analysis, and it was sufficient and beneficial for businesses. However, this
is no longer the case, currently other advanced types of analysis emerged and all industrial and
research practitioners are seeking to efficiently apply them. Presently, predictive, prescriptive,
and proactive analytics are the trends. The first one predicts situations and signals them to in-
terested parties, then these parties are in charge of handling the anticipated situations. The sec-
ond predicts as the first type of analysis, but it also generates the best course of actions to deal
with the prediction, then involved parties are in charge of taking the recommended counter-
measures. Lastly, proactive analytics predicts situations, searches for the best responses to the
prediction, and autonomously takes action without the intervention of humans. This is where
the CEP technology is still lagging behind, as it is still used for monitoring and detecting situa-
tions. It still didn't make the jump toward the more advanced types of analysis.

This is where our work comes in handy, as we tweaked a fundamental principle in the CEP world
to introduce data mining to the mix. The core value that we changed is the way CEP rules are
defined. By definition, they should be specified manually, but with our proposition, the process
was automatized. Integrating data mining at this deep level of CEP, helped us to go from reactive
into predictive. At the end, the efforts were culminated when the integration between BPM and
CEP became easy to achieve.

8.1 Research Results

The answers to the research questions that we asked in the introduction were laid out through-
out the dissertation. Some of the answers were explicitly highlighted, and others were concealed
within the sentences. In this section we will go over the main questions again but in an outright
manner, we will try to summarize the answers and to exhibit the significance of our work.

Why time series is the data model that we targeted in our whole approach?

Answer: Devising a completely generic solution where all application domains and data
types are supported is somehow very difficult. In our work, and to fulfill the generic con-
straint, we tried to support time series, which is a popular data model that is adopted in a
myriad of real-life domains. The secret to this ubiquity is IoT devices. As discussed before,
sensors are becoming more pervasive, and they emit their data in the form of time series.
They are continuously monitoring the surrounding environments to produce time series
with high dimensionality. Add to this the seamless transition that we could do from pure
data mining to the CEP world. In fact, some would argue that time series are exactly the
same as timestamped events, but they just happen to have two names in two research
communities.
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Why shapelets are chosen as the data mining technique to be adopted for CEP?

Answer: Indeed different models could be adopted. Some researchers tried to integrate
SVM, Markov chains, and others. However, all these integrations were complex. In some
approaches, the prediction models require additional external inputs to function [61], in
others, users are in charge of specifying the structure and operators of CEP rules [146]. In
our work, we showed that shapelets are simpler to adopt, as the overall approach learns
CEP rules from scratch and it supports multiple CEP operators. Shapelets are chosen be-
cause: First, their inputs are time series which could be easily represented as events. Sec-
ond, shapelets are suitable for early classification, the thing that supports our prediction
requirement.

What are the latest advancements on shapelets? Do these state-of-the-art approaches fit to
be integrated in the CEP core?
Answer: Shapelets are a stable data model that is mainly used for time series classifica-
tion. Different authors in various applications adopted shapelet-based techniques [165,
116, 79, 68]. Typically, all approaches that adopt shapelets function in univariate environ-
ments, because and by definition, shapelets are basically extracted from these environ-
ments. In our approach, we refrained from deeply discussing related work on shapelets
extraction in univariate settings, because we have built our proposition on top of this work
and we did not substitute it. Our main focus was on multivariate environments. There-
fore, we referenced the shapelet extraction algorithms in this dissertation, we included
light details, and we have covered more specifics in appendix A.

The direct answer to the second fold of the question is yes, these approaches could be
integrated. In fact, this is exactly what we did when we started with autoCEP. We built
on top of univariate shapelet extraction algorithms, and autoCEP only worked on a single
stream of events (appendix A yields more details). The approach that we have created was
generic and easy-to-use, but it was limited to simple application domains where patterns
are found only on one dimension. We argue that in real life, patterns are more complex,
and they account for shapelets from more than one dimension. Therefore, as we men-
tioned, the direct answer is yes but with limitations that we still need to address.

What extensions into the multivariate world exist? Could these extensions take advantage of
the expressiveness of CEP, should we decided to adopt them?
Answer: The above answer brings up the limitation of using univariate time series with
autoCEP, and therefore answers for the current questions must be addressed. The related
work chapter (chapter 2) explicitly answered the first fold of the question. The different
multivariate shapelet learning approaches were discussed, their strong and weak points
were included as well. From their shortcomings comes the answer to the second part of
the question. Since the authors of such papers did not take the CEP technology into ac-
count when they first developed their approach, they could not take advantage of the
expressiveness of CEP. In other words, current approaches learns independent shapelets
from different dimensions, but when it comes to CEP, this technology detects correlated
patterns from different dimensions. The output of current methods are not correlated,
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and therefore it makes no sense to adopt them for a rich pattern-detection technology
such as CEP. From this point, the motive for a new learning approach arises.

The above responses could also be referenced to answer other literature questions that are re-
lated to the complex event processing field, such as: how shapelet-based solutions could help
CEP to adapt to the paradigm shift?. However we will complete the picture with some brief
answers.

How to go from manually specifying CEP rules into automatically defining them?
Answer: The obvious answer to this question is to go through data mining techniques.
In fact, as we discussed in the introduction, this is why domains such as data mining are
created in the first place.

What work existed before on the integration of data mining and CEP? Is there some predic-
tive approaches on this matter?
Answer: The research on the CEP domain is very lively. However the main goals of in-
volved researchers are computing efficiency, scalability, latency, etc. When it comes to
specifying CEP rules, only few approaches are concerned. These approaches were dis-
cussed in chapter 2. Among them, there is no one that accounts for prediction and earli-
ness. They are all interested in learning rules that only detect situations.

What is the state-of-the-art on integrating CEP with BPM?
Answers: Chapter?2 also discussed a myriad of approaches that integrated CEP and BPM.
The integration is highly targeted, so monitorable tasks could be better managed. The
main theme that describe all these approaches is the design-time methodology. They fo-
cus on the model of the process, they assign monitoring points, and they monitor the
same events for every instances. Of course this has its advantages but still it suffers from
some limitations as the related work chapter presents.

To what extent CEP capabilities are exploited in BPM systems?
Answers: We would confidently say that CEP capabilities are not sufficiently exploited in
BPM systems. First, CEP rules are written manually, and there is a limit to how advanced
a user’s inference could be. Second, since monitoring points are allocated on the model,
the same all-purpose events are monitored, and the management is not customizable for
different instances.

Is there real predictive practices when it comes to managing business process instances? Are
instances being managed in a context-aware fashion?
Answer: Prediction in business process management is centered on the overall workflow.
For instance, the global completion time of the process could be predicted regarding the
registered completion times of tasks that have already happened. However inside the exe-
cuting tasks, and since there is no prediction in CEP, there is also no prediction in BPM. On
the other hand, we argue that instances are not being managed in a context-aware fash-
ion because monitored events are general and not specific for each instance. The root
problem is that monitoring points are being allocated on the model of the process as we
discussed.
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How to go directly from pure data mining into the CEP world?

Answer: To exploit the CEP capabilities for prediction we need to start searching for pat-
terns that predict situations rather than detect situations. The CEP would detect these
predictive patterns and then afterward the overall situation would be anticipated. Predic-
tive patterns could be learned using data mining techniques, but CEP rules need to be
written in CEP jargon. AutoCEP is devised to bridge this gap by using shapelet learning
algorithms. In the heart of dissertation, we discussed with fine details, how to transform
the learned sequences from data mining into CEP. We explicitly explained, in a techni-
cal manner, how all CEP operators such as sequencing, windowing, parametrization, etc.
could be extracted and transformed. The algorithms showed the exact EPL syntax that is
responsible for the transformation. In addition, how advanced concepts such as complex
processing chains and named windows are exploited to achieve our goal.

How to extract shapelets with advanced knowledge from multivariate time series?
Answer: We have discussed the shortcomings of approaches related to the learning form
multivariate settings. To overcome these limitations, we have proposed new learning al-
gorithms that we have discussed in details throughout the dissertation. The approach
extracted independent shapelets from each dimension, however we did not stop at this
point like most related approaches, but we additionally learned sequence and time cor-
relations that may exist among the different dimensions.

How to go into the BPM field in an easy way?
Answer: After working out the bridge between data mining and CEP, the integration within
the BPM world was a lot easier. In fact, just little setups are required, like attaching inter-
rupting events and using process variables to communicate with autoCEP through its
API. All these concepts are BPM-related, therefore the hassle of writing CEP rules is com-
pletely negligent.

8.2 Contributions Revisited

In this section, we will revisit the three domains that we have touched in our work. Specifically,
we will re-mention what have been missing and how our contributions addressed them.

8.2.1 Time Series Data Mining

As shown in the second chapter, the number of approaches that have adopted shapelets for time
series classification are large relative to the freshness of this data mining primitive. However,
this number boils down to five approaches when it comes to consider shapelets with multivari-
ate time series. All these approaches have focused on extending shapelets learning algorithms
to the multidimensional settings but did not give extra attention to the correlation that may
exist between shapelets on the different dimensions. In some domains, this may not be neces-
sary, but in others it may be critical, especially for the sake of learning complex event processing
rules which is the main motivation behind our work.
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This is exactly where USE & SEE lend a helping hand, as these algorithms go beyond the point
where current approaches have stopped, to deduce advanced knowledge and correlation among
the different shapelets. In particular, USE supports independent shapelet extraction from mul-
tivariate time series. This algorithm divides the original data set into different smaller data sets
grouped by dimension. In other words, each one of the smaller data set contains univariate time
series that belongs to the same dimension. This division then would allow shapelets to be ex-
tracted by following typical shapelet learning algorithms. The learned shapelets are filtered so
only the most useful ones are kept, which in turn will be emitted to the second phase SEE. At
this phase, complete time-annotated sequences are learned in a sense that sequence and time
constraints are also deduced from historical observations. Moreover, these time-annotated se-
quences are constructed from the minimum needed number of shapelets to accurately assess
the classification. This strategy boosts the earliness and online classification time of the ap-
proach.

8.2.2 Complex Event Processing

Predictive and proactive complex event processing was always been discussed on the concep-
tual level and as a future vision, and surveying state-of-the-art approaches in this field has ab-
solutely confirmed that claim. It has always been very difficult to employ CEP in predictive con-
texts and applications, and this limited the CEP to merely reactive ends. All research efforts in
this domain have always discussed reactive scenarios like the detection of fraud, the detection
of traffic jams, and the detection of abnormal behavior. It has always been the detection but not
the prediction. We argued in this dissertation that the main reason for this is the manual specifi-
cation of CEP rules. Beside all the powerful real-time performance of CEP engines, users are left
without any support to define CEP rules themselves. This assumption is very limiting, because
the required knowledge may not be present, especially when we are dealing with predictions.

Some related approaches already introduced different ways to support users in the rule specifi-
cation process. They proposed different learning techniques to go from historical data into CEP
rules, however they all are reactive in nature. Instead of predicting situation of interests, they
all try to detect these situations after they occur. Even though, these approaches helped users
to better define their rules, yet in the context of employing CEP for prediction, they did not add
any value.

AutoCEP is proposed to exactly bridge this gap. Thanks to our data mining algorithms (USE &
SEE), sequence and temporal patterns could be extracted from history, then thanks to autoCEP
these patterns are swiftly transformed into predictive CEP rules. In summary, we have proposed
the first approach to learn predictive rules for complex event processing. With that being said,
autoCEP continues further by creating a CEP engine and configuring it, so it could be ready for
prediction.
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8.2.3 Business Process Management

Business process management systems are activity-based workflow managers. That is, they fo-
cus on the business process as a model, and they monitor compliance and detect divergence on
the flow level. For example, task A should not be executed in parallel with task B. Such manage-
ment systems are beneficial to better understand and optimize business operations, however
with the availability of sensors and data this is no longer sufficient. Fine-grained processing be-
came essential and it is currently provided by the complex event processing technology. So BPM
and CEP have always gone hand in hand.

Integrating CEP to monitor all purpose events and assigning monitoring points over the model
of the process have already been addressed by state-of-the-art approaches. However, only few
and timid attempts tried to go yet into a finer level of details and manage in-activities behav-
iors. In fact, it is shown to be far from simple to integrate CEP for custom and complex analysis,
because BPM users are not accustomed to writing complex CEP rules, especially if prediction is
to be considered.

With our approach that automatically learns predictive CEP rules now at hand, this problem
could be easily addressed. More specifically, in this dissertation, we have showed that with an
easy setups in BPM engines, a complete communication between BPM and CEP engines could
be established. Moreover, prediction could be now supported, which in turn will help to manage
activities in a proactive fashion. BPM users are not required to write CEP rules, in contrast, and
for the most of it, they are left to model their processes and work in the environment that they
are accustomed to.

8.3 Limitations

Even though our propositions have provided innovative solutions to some intricate problems
in the related domains, but still some limitations exist and they should be mentioned.

First, the learning algorithms, and on big data sets, may have high time complexity. Indeed
the learning is a design-time phase, but there is always room for improvements. USE employs a
brute force learning strategy that consumes a lot of resources and that spans over a long interval
of time. Even with the mass strategy as a distance measure, the learning time is still consider-
able. On the other hand, SEE could stall if it is confronted with a lot of dimensions. The main
reason for this is the permutation strategy that it is employed.

In addition, the learning algorithm works only with numerical time series, whereas a complete
proposal that could handle categorical and numerical variables would be much beneficial and
applicable in more domains. Especially that the literature is full with proposals that could be
exploited to fulfill this specific objective.

We argue that on the complex event processing level, our approach is new and innovative, and it
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could be considered as a first actual step toward proactive business process management. How-
ever, the language of CEP is very expressive, and we claim that one learning approach could not
capture this broad expressiveness. For example, a CEP operator that may be frequently used in
some domains is the negation, it means the absence of a specific event, and it is not supported
by autoCEP in its current version. Still, our approach is generic in a sense that it works in appli-
cation fields where numeric time series exist (usually sensor readings), which is a wide range of
domains, but we argue that it is suitable for applications that seek abnormality prediction more
than other goals.

8.4 Future Work

Presenting the limitations in the previous section could give some hints about the directions
that could be followed for future improvements and updates.

Basically, more research should be carried out to improve the performance of the learning algo-
rithms. Shapelet learning approaches are becoming more and more popular and fast algorithms
may surface in the upcoming years. Exploiting faster and more efficient algorithms in the USE
part would be a priority. Then and since at the SEE phase, time series are being encoded with
the shapelets that appear in them, this could be considered as a representing continuous nu-
merical time series with discrete representations, and then sequence mining algorithms could
be exploited to speed up the learning. Specifically, state-of-the-art approaches about sequence
mining from strings should be surveyed, and approach that could deal with high dimensions
should be integrated.

Also from an optimization perspective, big data technologies and frameworks should be ex-
ploited. Only using these frameworks would be enough to speed up the processing and the
learning time. For example, a framework such as Apache Flink! would distribute the learning
and make the most out of the available resources. Additionally, Flink supports complex event
processing for real-time analysis, and more studies should be performed to assess its advan-
tages over other CEP engines such as Esper.

Another potential extension is to support the learning from categorical variables as well. Some
application fields and a considerable amount of sensors produce categorical and boolean data.
Without supporting this data type, our approach could not be propagated to such domains,
and it could not handle such sensor readings. As previously mentioned, the literature is full
of approaches that support this type of learning, and they even consider earliness. Therefore,
more studies and surveys about this aspect should be carried out in the future.

https://flink.apache.org/









APPENDIX

AUTOCEP WITH UNIVARIATE TIME SERIES

of the dissertation we discussed the recent version that works with USE & SEE. This ap-

pendix is dedicated to discuss the early version of autoCEP. Therefore, and unless other-
wise noted, any mention of autoCEP in this appendix is intended to reference the early univari-
ate version

3 utoCEP started as a project that worked only with univariate time series. In the main flow

Even in its earlier versions, autoCEP exploited data mining and CEP to devise an easy-to-use
solution that would allow for the CEP technology to be employed with ease in the business
process management domains. Differently from current usage of CEP, autoCEP also make its
predictive capabilities available.

At this stage, autoCEP operated through two consecutive phases. Figure A.1 sheds some light
on the framework from a high-level perspective. The first phase consumes the classified history
records in order to produce the most useful shapelets. These shapelets are inputted into the
second phase in order to build the proper deploy-ready CEP rules from them.

A.1 CEP Rules: Reintroduced

This section is going to reintroduce CEP rules from the perspective of this version of autoCEP.

CEP rules are defined using different CEP operators like windowing, selection, sequence, etc.
These operators are considered the main enabler to define complex patterns. Regardless of the
various concrete models, we will keep an abstract representation for rules that could be ex-
pressed in any description language, and that captures the necessary operators. In this work,
a CEP rule is divided into three blocks. First the timeframe (or window) of the rule, which is
defined using the within construct, it indicates the maximum borders of a pattern. Second the

107
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Shapeletes Learning :

historical
time series

shapelets

CEP Rules Generation

Figure A.1: Two Phase High Level Framework of AutoCEP

filter block, which contains the events that are relevant for the rule (events within the time win-
dow), they will be written between two curly brackets {}. Finally the conditions that need to be
met on the captured sequence of events in order for the rule to be fired, this block is defined
using the where construct. In general:

(A.1) within[window) {relevant events} where[conditions]

Supposing that we have a temperature event E, the following pattern shows an example of a
rule:

P] .
within[30min] {E} where[avg(E.temp) > 20]

Pattern P is fired only if the average of temperature values within 30 minutes is greater than
20°C.

A.2 First Phase: Shapelets Learning

This stage contains our learning algorithm that can extract shapelets with the highest utility
scores by learning them from historical time series. This algorithm is the outcome of surveying
recent state-of-the-art approaches [207, 200, 115, 65, 203] regarding this kind of classification
problems.

Algorithm 11 takes as inputs the training data set D, which is a pair of time series along side their
classes. It also takes two other optional parameters (minLength and maxLength). These are
specified by domain experts in case there are any preferences or prior knowledge about the
shapelets’ lengths (i.e., they want to learn shapelets between these lengths). This may guide
the learning process and decrease the learning time (later on this in the evaluation section).
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However, if no such preferences or knowledge exist, then users may leave the default values
that are minLength =1 and maxLength = minyep|T|, and then the algorithm will learn by
its own the shapelets of the best lengths. On the other side, the algorithm outputs a set of trained
shapelets S that have the highest utility scores.

Algorithm 11: The Learning Algorithm
Input: Training dataset D, minLength, maxLength
Output: A set of shapelets S with the highest utility scores
1 S—o;
for each time series T € D do
3 for | — minLength to maxLength do
/* for each shapelet length */
4 fork—1to|T|-1+1do
/* create an empty candidate shapelet § */
5 $.s —buildShapelet(T, k,1);
6 $.s. —class(T);
7 similarities — calculateSimilarities(D,3);
8
9

N

$.0 — calculateDelta(D,similarities,$);
calculateUtilityScore(D,3);
10 S.add(3);

1 S« pruneShapelets(S);
12 return S;

First the algorithm (algo 11) loops over the time series T in the training dataset D, then for the
specified minimum and maximum lengths of the shapelets, and for each starting position k, it
creates an empty shapelet § and continues to define its attributes (i.e., s, 9, c;).

s that constitutes § is defined by using the buildShapelet(T, k, I) function. This function sim-
ply outputs a subsequence $.s from a given time series T. The first element in §.s is the k" ele-
ment of 7, and |§.s| = . So the output of buildShapelet(T, k,1) is $.s ={T[k], T[k+1],..., T[k+
I —1]}. This is called brute force building of the shapelets, and basically the algorithm extracts
every subsequence from every training time series within the specified lengths.

Afterward, the algorithm specifies the class of the shapelet ¢ as the class of the current time
series T.

The next step is to calculate the similarities between the created shapelet and the whole train-
ing data set. The similarities simply stand for the distances between § and all T € D by applying
equation 3.2. They are represented as an array of real values:

(A.2) Vie{l,...,|Dl},similarities[i] = IS, Tillpmad
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A.2.1 Learning the Distance Threshold

As explained in the definition about shapelets, distance thresholds are used for classifying new
instances. To this end, different methods have been proposed in the literature to best learn
and estimate this kind of thresholds. Some of the most popular and accurate methods are the
Chebyshev’s inequality [203] and the information gain split [143]. In this work we adopt the in-
formation gain-based technique, since it has been successfully adopted in data mining.

After attributing the sequence of real values s and the class c; to the created shapelet §, and af-
ter calculating the similarities, algorithm 11 can learn now the best distance threshold 6 for this
specific shapelet by calling the calculateDelta function. This function is an algorithm by its
own and before explaining it we will highlight some needed concepts and definitions.

Given a specific shapelet §, a time series T can be either positive or negative regarding §. T
belongs to the positive instances, denoted as I'*, if its associated class is the same as the class of
the concerned shapelet. On the contrary, T is an element in the set of negative instances, I~ if
it is labeled with a different class than the shapelet. Therefore, given a shapelet § = (s, 6, ¢;) and
a dataset of time series D, positive and negative instances are defined as (these are different for
each shapelet):

(A.3) I"={TeD|class(T)=cg

(A.4) I" ={TeD|class(T) # cs}

Second, given a dataset D, a set of finite classes C, and L. designates the number of time series
in D that belong to the class c € C, the entropy Ep of the dataset is defined as:
Lc

(A.5) Ep=— lo (LC)
‘ D=7 4 1p "8 p

The best § is the best distance that can separate positive instances I from the negative counter-
parts /™. To clarify the mechanism of getting this split figure A.2 presents an example, it draws
the values of the similarity array (see eq. A.2) on an x-axis. The positive instances (shaped as +
on the figure) will be gathered on the left side of the axis due to their relatively small distances
from - high similarities with - the shapelet, and the negative ones (shaped as x on the figure) will
be grouped on the other side, but of course this does not need to be a pure way as sometimes
they may blend (this is shown in the figure as well). To find the best split, the algorithm takes the
mid-point between two consecutive distances as a candidate distance threshold §. This & splits
the available instances into two datasets, D; and Dp, for the left and the right sides respectively.
Then the Information Gain (IG) is computed using equation A.6, where D is the whole dataset,
E; and Ep are the entropies of D; and Dp, respectively (calculated using eq. A.5). The calculated
IG will show the gain in information that results from the split by using this specific 5. Finally we
select the § that maximizes IG to be the real § of the shapelet. This logic is listed in algorithm 12.

Figure A.2 also shows two candidate distance thresholds §; and §,. As sketched, 8, has one false
positive and one false negative (1 “+” on the right side and 1 “x” on the left side), whereas 6,
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Figure A.2: Example to Clarify The Distance Threshold

has only one false positive (1 “x” on the left side). The obtained IG by splitting using 6, will be
higher, and 6, will eventually be selected.

(A.6) 1G=p,_ Pulp |Drlg
. =Ep———FE.———FERr
|D| |D|

A.2.2 Utility Score

Continuing algorithm 11, after learning the distance threshold, every shapelet needs to have
a utility score. This score verifies the usefulness of the shapelet. As with the distance thresh-
olds, many utility score functions had been proposed in the literature, like the weighted F;
score [203] and the weighted information gain [65]. However this work uses another costume
utility score function that takes into account the frequency, the discrimination, and the earli-
ness of a shapelet.

To list the formula that computes the utility score, we need to first define a predicate that given
a shapelet § and a time series T, it can state if § covers T. So we will define the Boolean operator
= as:

(A.7) sz T:{ true ifll$, Tllpma <6

false otherwise

§ = T isread as the shapelet § covers the time series T. This signals that § and T are similar (the
distance between them is less or equal to the distance threshold § of 3).

Given a dataset D and a shapelet §, the subset of D that contains time series covered by § is
denoted as D, and is defined as:

(A.8) D={TeD|§=T}

Given a shapelet § and a time series T, we define the Earliest Matching Time (EM T (8, T)) as the
point in time when § covers T, i.e., how many values we have read from 7T before assessing that
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Algorithm 12: Learning the Distance Threshold

Input: Training dataset D that contains the time series T, the array of similarities that
we have computed before, the shapelet § that we are building
Output: Assign the best distance threshold 6 to §
1 maxIG —0;
/* Sort the similarities array in an increasing order x/
sortedSim — sort(similarities);
Lsim — length(similarities);
4 fori—0toLsi;;, —1do
/* Get the candidate distance threshold as the mid-point between two

w N

consecutive distances x/
5 6" - sortedSimlil+sortedSim[i+1],
> ;
/* Initialize the true positive t*, false positive f*, true negative
t~, and false negative f~ counters */
6 T —fT—t"—f" <0
7 for j —0to L, do
8 if similarities|j] < 5 then
9 if class(Tj) = §.c; then
10 | tt—rt+1;
11 else
12 I_ ff<f"+1
13 else
14 if class(Tj) # §.c; then
15 | It +1;
16 else
17 fr—=f+1
18 \\ ;

19 EL‘——ﬁifJOg(ﬁifﬂ—t+£f+108(t++f+);
2 | En e~ loglity) - = log (o)
21 IG calculated using eq. A.6;

22 if IG> maxIG then
23 L maxIG — IG;

A

5.0 < 6;

24
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it is similar to $.

Taking all the above definitions into consideration, and using equation A.5 to calculate the en-
tropy of a dataset, the utility score U of a given shapelet § and a given training data set D is
defined as:

1

1eh EMT(S,T)

1
A9 U= Ep—-Ep) x —
(A.9) w* (Ep D)X|D|

In this equation, w is a parameter to weight frequency against earliness, i.e., if they matter the
same then w should be set to equal 1.

A.2.3 Pruning the Shapelets

At this stage, the algorithm will have a very large set of shapelets in which only few are really
important. So we need to prune this set, and keep only the most useful shapelets. To this end,
different pruning algorithms could be used, ranging from top-k to more complex ones.

In our work we implemented different pruning algorithms that can efficiently select the best
patterns, we discuss one of them that showed good results in the evaluation.

The algorithm sorts the set of shapelets in a decreasing order regarding their utility scores. It
loops over the sorted set, it selects the next shapelet, and then it checks which other shapelets
are covered by the selected one. All the covered shapelets are considered similar, and they are
pruned. The algorithm continues to perform the aforementioned steps for each shapelet aslong
as the input set is not empty yet. This is explained in algorithm 13.

Algorithm 13: Pruning the Set of Shapelets

Input: The set of all the extracted shapelets S
Output: A set of filtered shapelets F'S
1 S sor t(S);
FS—g;
for each shapelet s in S do
S.remove(3);
FS.add(s);
for each other shapelet 65 in S do
if § = Js then
L |_ S.remove(ds);

a s W N

e N &

o return F'S

A.3 Second Phase: CEP Rules Generation

At this point, the learned shapelets serve as inputs, where they will be automatically trans-
formed into CEP rules to be used later for predictions. Typically, in data mining approaches,
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ad-hoc classification algorithms are devised to test and use the different learned shapelets, and
these algorithms do not fit for real-time usage [203, 115, 65]. Therefore in our work, autoCEP
transforms the shapelets into CEP rules, creating a general approach that could be applied to
any numeric periodic attributes, and that benefits from the speed and the scalability of CEP
engines, without the need to implement ad-hoc classification algorithms.

The proposed algorithm in this phase extracts the three building blocks of the rule from the in-
put shapelets and their parameters.

For each shapelet a CEP rule is created, and thus we overcome the limitation of assuming
just one rule for each composite event, which is the assumption that is made by other ap-
proaches [121, 122].

Given a shapelet § = (s, 6, c¢;), the window parameter win for the within block is derived di-
rectly from the length of the shapelet. The algorithm calculates the size of the steps (e.g., each
1 second) between the elements that constitute the shapelet, and subsequently the window is
deduced from the whole length of the shapelet. Then the relevant stream of events are of the
same type as the elements that constitute the sequence s of the shapelet. Finally, the condition
to be met in order to predict if a stream of incoming events correspond to c; (the same class as
the shapelet) is that § needs to cover (eq. A.7) the stream within the window win. This is listed
in the following algorithm (algo. 14).

Algorithm 14: Transforming Shapelets into CEP Rules

Input: A set of shapelets S
Output: A set of CEP rules rules

1 rules — @;

for each shapelet  in S do

/* create an empty cep rule cep */

win < |8.s;

cep.setWindowBlock(win);

E — Extract event types from s;

cep.setEventTypes(E),

cep.setConditionBlock(s = E);

/* The above line means: cep.setConditionBlock(||$,E||<0). If we go
back to eq.A.7 and eq.3.1 */

8 cep.setListener ( this stream is predicted to belong to the class c;);

/* Listeners of the rules are set by experts, they are called in
case the rule is fired (the conditions are met), and they are
different depending on the domain. The default listener that we
provide in our algorithm is to alert about the prediction and
about the time when it was done x/

9 rules.add(cep);

N

N o gk W

10 return rules;
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Algorithm 14 outputs a rule for each shapelet § = (s, 9, ¢;) of the form:

(A.10) within[ |s| | {E} where[ |[§, E|| < §]

A.4 Experiments

The approach had been tested with different data sets from various domains. More precisely, we
have selected 4 of the most used data sets from the UCR time series archive [90] as a benchmark
to evaluate our approach and to compare it with different state-of-the-art proposals. Afterward,
we tested the approach on logs of real artworks transportation processes to predict challenging
in-activities SLO violations such as temperature variations. All experiments were conducted on
a PCwith an Intel i7 2.8GHz CPU and 32 GB main memory. The algorithms were written in Java,
with a JVM heap size of 4 GB.

Interested readers are encouraged to download the complete solution that we have implemented
from GitHub!. The Git repository contains a short demonstrative video as well.

A.4.1 UCRTime Series Archive

The results of the four data sets are listed in the shown table A.4.1. More precisely we have used 4
UCR data sets (ECG, CBE Gun-Point as Gun, and Synthetic Control as Syn) that are highlighted
in bold in addition to some information that relates to each one of them. These information
include the number of classes (cl), number of training (train) and testing (test) instances, and
finally the length of the time series (1).

On each data set, we have compared our approach with 8 different state-of-the-art methods.
The different compared methods are (as shown in the tables): autoCEP, EDSC-CHE [203], EDSC-
KDE [203], ECTS [201], RECTS [202], the 1NN classifier with its three variations (information
about these 1NN classifiers could be found in [90, 201, 202]), and finally SCR [200]. The shown
results include the accuracy (Acc.) and the average length (Avg. Len.) for each approach. The
average length is a factor showing the average lengths of the patterns that were used to classify
the given time series, so it could hint about the earliness, and therefore the smaller the better —
hence, a short pattern could classify a time series earlier than longer ones. The shapelets learn-
ing algorithm of autoCEP was always executed with the default parameters for minLength and
maxLength (refer to section A.2).

As depicted in the tables, autoCEP competes with current state-of-art approaches from an accu-
racy perspective, as it always scored close results. However, regarding the earliness, our method
outperformed the others. Therefore autoCEP was able to find the shortest possible length to
classify a time series without deteriorating the accuracy.

https://github.com/rmgitting/autoCEP
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Table A.1: Accuracy and Earliness Comparison

ECG: cl=2; train=100; test=100; 1=96 CBF: cl=3; train=50; test=900; 1=-128

Approach | Acc. Avg. Len. Approach | Acc. Avg. Len.
autoCEP 86% 20% autoCEP 82% 22%
EDSC-CHE | 82% 25% EDSC-CHE | 87% 35%
EDSC-KDE | 88% 32% EDSC-KDE | 85% 36%
ECTS 89% 77% ECTS 85% 71%
RECTS 89% 60% RECTS 85% 71%
Early INN | 89% 86% Early INN | 86% 80%
Fixed INN | 89% 92% Fixed INN | 83% 42%
Full INN | 88% 100% Full INN | 85% 100%
SCR 73% 39% SCR 55% 35%
Syn: cl=6; train=300; test=300; 1=60 Gun: cl=2; train=50; test=150; 1=150
Approach | Acc. Avg. Len. Approach | Acc. Avg. Len.
autoCEP | 88% 33% autoCEP | 90% 28%
EDSC-CHE | 87% 55% EDSC-CHE | 94% 46%
EDSC-KDE | 90% 55% EDSC-KDE | 94% 46%
ECTS 89% 89% ECTS 86% 46%
RECTS 88% 87% RECTS 86% 46%
Early INN | 88% 91% Early INN | 87% 71%
Fixed INN | 88% 100% Fixed INN | 91% 92%
Full INN | 88% 100% Full INN | 91% 100%
SCR 58% 50% SCR 62% 77%

A.4.1.1 Sensitivity of Parameters

The aforementioned experiments were done using the default settings of autoCEBP i.e., regard-
ing the lengths of the patterns to learn — minLength and maxLength (refer to section A.2) —
and also the w parameter is set to 1 in equation A.9. In this section we use the challenging CBF
data set (50 training and 900 testing instances) to test how changes to these parameters could
affect the result of autoCEP.

Figure A.3 illustrates the results of the tests.

The upper part depicts the accuracy and average length scores when w of equation A.9 is changed.
As expected, favoring one aspect over the other could potentially change the results of autoCEP,
yet the result changes are not big. With w < 1, then earliness is favored over frequency and au-
toCEP will try to search for shorter patterns on the expense of slightly smaller accuracy. On the
other side, favoring accuracy will direct autoCEP to give less importance for shorter patterns
while pruning the shapelets.

The bottom part of the figure demonstrates the effect of changing the minimum and maximum
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Figure A.3: Testing the Sensitivity of Parameters

lengths of the shapelets, i.e., autoCEP will try to find shapelets only within these lengths. As ex-

pected, given the algorithm a small space with short lengths (min=1,max=10) or (min=1,max=20)
will drastically affect the accuracy as very short shapelets may not be discriminative and will

yield false positives. However with longer patterns autoCEP always performed better by keep-

ing the accuracy higher than 80%, but of course with different average lengths as this factor de-

pends directly on the shapelet lengths. Entering the shapelet lengths is a good way for experts

to get involved in the learning process and to guide the algorithm. However as the experiments

show, the default values for these length could be used by non-experts, and the algorithm will

still score high results.

A.4.1.2 Efficiency

The algorithm that learns the shapelets is a brute force learning algorithm, and therefore it has a
tradeoff between good results and learning time. For the experiments that we held, we tried two
versions of our algorithm: a straightforward implementation and an optimized one (autoCEP-
0) with the help of concurrency and parallel computing.

Table A.2 compares the two implementations of autoCEP with other two approaches [203]. As
this table shows, a major drawback of our approach is the learning time, but still the trainingis a
design-time phase and the optimized version of autoCEP can significantly improve its time. An-
other point that is important to highlight is that autoCEP in its default settings searches for the
optimal patterns without any guidance, but if minLength and maxLength are to be provided
then this will drastically affect the learning time. For example, running the optimized version
on the CBF data set with minLength = 30 and maxLength = 40 reduced the learning time
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Table A.2: Learning Time Comparison

Data Set | Sample | Length | autoCEP | autoCEP-O | EDSC-CHE | EDSC-KDE
CBF 30 128 312 sec 106 sec 37 sec 41 sec
ECG 100 96 823 sec 341 sec 123 sec 137 sec
Syn 300 60 867 sec 344 sec 252 sec 332 sec
Gun 50 150 1149 sec | 670 sec 165 sec 170 sec

from 106 seconds to only 17 seconds.

Classification time on the other hand, is negligible, always smaller than 0.005 seconds. This
fast classification is due to the employment of the CEP technology that can process events
and match them against CEP rules faster than other ad-hoc algorithms used by different ap-
proaches.

A.4.2 Artworks Transportation Data Set

In this kind of transport processes, the involved parties are interested in analyzing temperature
readings and predict them in advance to prevent violations whenever possible (i.e., trespassing
a minimum or a maximum threshold). These violations will eventually affect the qualities of
the transported piece of arts, and violate SLO agreements. A dedicated framework such as the

Butterfly and autoCEP could handle such cases in a running process, in case they are integrated
into BPMSs.

Table A.3: Training and Testing Data Sets

Violated Scenarios | Normal Scenarios | Longest Series | Shortest Series
Training | 16 17 451 51
Testing | 17 17 460 39

Table A.3 presents information about the training and the evaluation data sets? used for this
experiment. As depicted in the table, these data sets have time series with different length, and
therefore we will measure the earliness of the approach using the formula in equation A.11
(EMT is discussed in section A.2.2) instead of the average length used above. This factor de-
scribes how much in advance we predicted the violation, i.e., how much time remains before
the violation occur, hence, the greater the better.

1 |T|—-EMT(,T)
|DI fep IT|

2These data sets are provided by our partner in the project: C2RMF http://c2rmf.fr/

(A.11)




A.5. SUMMARY 119

Results when changing minLength and maxLength
100 o1 ‘ o1 ‘ 94 94

80

60

40

Percentage (%)

20

(40,40) (30,40) (10,40)
Lengths (min,max)

Figure A.4: SLO Violation Prediction

Figure A.4 depicts the accuracy and the earliness of the framework when given different spaces
to build shapelets (different min and max).

The experiments on predicting temperature violation prove the benefits of using such approach
for anticipating challenging SLO violations in manual process environments. They also show
that the earliness and the accuracy are slightly affected by the values of the maximum and min-
imum lengths (fig. A.4), as giving the framework more space to search for patterns will eventu-
ally help it to detect more useful and smaller shapelets. Nonetheless, the autoCEP framework
proved to maintain high accuracies regardless of the shapelet lengths but with different earli-
ness percentages, i.e., it was always able to successfully classify the evaluation instances.

A.5 Summary

This appendix discussed with details the early version of autoCEP. The main two phases are
thoroughly explained. Finally, different experiments on a real life scenario and the UCR data
sets are presented.
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throughout this dissertation seem to be very beneficial for CEP and BPM users. Indeed, a

complete framework that could allow for the CEP technology to be used easily for predic-
tive purposes, and at the same time, that could seamlessly integrate these predictive capabili-
ties within BPM systems, is practical and very advantageous in real life. However, and before the
answers, reaching the point of defining these questions and finding these problems at the first
place, was the fruit of a profound research process. In this section, the story of how this work
has culminated will be highlighted.

3 chieving optimal answers to the problems and research questions that we have asked

1. Problem Definition: Like many other research efforts, our work typically started with
many attempts to define and properly formulate the problems that we are targeting. We
approached this subject from a practical point of view with the help of our partner!.
Specifically, we aimed at addressing the challenges of transporting artworks (i.e., trans-
porting sensitive objects in general). First, we modeled transportation processes through
typical BPM systems, the thing has helped us to gain some visibility, but it did not provide
much support on how to proactively manage monitorable tasks —the trucking activity it-
self for example, as most of the violations happened during such activities. Afterward, we
sought the help of CEP, but the integration was not obvious, and given that the CEP is a re-
active technology, then it was impossible to handle situations proactively. Subsequently,
we searched for predictive CEP solutions, but again we encountered visions and concep-
tions that were away from being realized. The conclusion of this step was the problems
and research questions that we previously noted.

2. State-of-the-art: During our research, the first step will always systematically carries us to
this step. Whenever we wanted to utilize, understand, and inspect a technology, we would
thoroughly go over the literature. For example, when we wanted to check the support of

LC2RME: http://c2rmf.fr/
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BPM for transport processes, the integration of CEP and BPM, and prediction in the CEP
domain, all these topics drove us to fully inspect state-of-the-art approaches. Addition-
ally, a point worth mentioning is that we looked at innovative ways of exploiting a specific
technology. For instance, CEP is mainly used for the detection of situations of interest,
however we sought its beneficial real-time capabilities for prediction, and this compelled
us to keep an up-to-date view on all existing and emerging work from research perspec-
tives. As mentioned, the prior step shaped the research questions, and this step helped us
to answer most of them.

. Solution: Studying the literature has answered most of our questions, however it also

left others that are waiting to be answered. Having inspected the different state-of-the-
art approaches, stating their strengths and weaknesses, gave us clear ideas about what
contributions could be held in the domain. Specifically, it turned out that it is up to our
solution to address some fundamental issues. Such as promoting shapelet learning algo-
rithms over multivariate time series, changing the notion of predictive CEP from mere
visions into a practical approach, the real and effective jump from data mining into CEB,
and the seamless integration within the BPM world.

4. Validation & Evaluation: The validation of our work was performed through two main

scenarios. The first is from the domain of smart manufacturing, where a complete prac-
tical example from data mining to BPM is discussed and validated. The second serves
as a support and use case for our proof-of-concept when it comes to the context-aware
management of business process instances. It is from the domain of artwork transporta-
tion. Moreover, the overall approach is evaluated on publicly available benchmarks, and
then it is compared to other state-of-the-art proposals. At the end, the contributions are
evaluated and well-positioned among other work in the literature.

These steps summarize our research approach. It is important to note that they are not
sequential, but we revisited each step many times whenever needed.
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