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Abstract
Renewable energy, electricity and smart grids are core subjects as they have great environmental
and societal impacts. Thus, generating, transporting and managing electric energy, i.e., power,
still continue to drive a growing interest. In order to properly achieve these goals, several locks
must be removed. Beyond issues related to the distribution architecture, the formalization of
models, sizing tools, features and indicators, constraints and criteria, decentralized generation
and energy management, power quality is central for the whole grid’s reliability. Disturbances
a�ect the power quality and can cause serious impact on other equipment connected to the
grid. The work of this thesis is part of this context and focuses on the development of models,
indicators, and signal processing methods for power quality monitoring in time-varying power
distribution systems.
This thesis analyzes the power quality including several well-known features and their rele-
vance. Power system models and signal processing methods for estimating their parameters are
investigated for the purpose of real-time monitoring, diagnostic and control tasks under various
operating conditions. Among all, the fundamental frequency is one of the most important
parameters of a power distribution system. Indeed, its value which is supposed to be a constant
varies continuously and re�ects the dynamic availability of electric power. The fundamental
frequency can also be a�ected by renewable energy generation and by nasty synchronization
of some devices. Moreover, the power absorbed by loads or produced by sources is generally
di�erent from one phase to the other one. Obviously, most of the existing residential and indus-
trial electrical installations with several phases work under unbalanced conditions. Identifying
the symmetrical components is therefore an e�cient way to quantify the imbalance between
the phases of a grid.
New state-space representations of power systems are proposed for estimating the fundamental
frequency and for identifying the voltage symmetrical components of unbalanced three-phase
power systems. A �rst state-space representation is developed by supposing the fundamental
frequency to be known or to be calculated by another estimator. In return, it provides other
parameters and characteristics from the power system. Another original state-space model
is introduced which does not require the fundamental frequency. Here, one state variable is
a function of the frequency which can thus be deduced. Furthermore this new state-space
model is perfectly are able to represent a three-phase power system in both balanced and
unbalanced conditions. This not the case of lots of existing models. The advantage of the
proposed state-space representation is that it gives directly access to physical parameters of
the system, like the frequency and the amplitude and phase values of the voltage symmetrical
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components. Power systems parameters can thus be estimated in real-time by using the new
state-space with an online estimation process like an Extended Kalman Filter (EKF). The digital
implementation of the proposed methods presents small computational requirement, elegant
recursive properties, and optimal estimations with Gaussian error statistics.
The methods have been implemented and validated through various tests respecting real techni-
cal constraints and operating conditions. The methods can be integrated in active power �ltering
schemes or load-frequency control strategies to monitor power systems and to compensate for
electrical disturbances.

Keywords: electrical disturbances; power quality; power system model; power distribution; un-
balanced power systems; voltage symmetrical components; fundamental frequency estimation;
state space; Kalman �lter; online estimation
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Résumé
Les énergies renouvelables, l’énergie sous la forme électrique et son transport à l’aide de
réseaux électriques intelligents représentent aujourd’hui des enjeux majeurs car ils ont de
grands impacts environnementaux et sociétaux. Ainsi, la production, le transport et la gestion
de l’énergie électrique, continuent toujours à susciter un intérêt croissant. Pour atteindre
ces objectifs, plusieurs verrous technologiques doivent être levés. Au-delà des questions liées
aux architectures des réseaux électriques, aux modèles, aux outils de dimensionnement, à la
formalisation de caractéristiques et d’indicateurs, aux contraintes et aux critères, à la gestion et
à la production décentralisée, la qualité de la puissance électrique est centrale pour la �abilité
de l’ensemble du système de distribution. Les perturbations a�ectent la qualité des signaux
électriques et peuvent provoquer des conséquences graves sur les autres équipements connectés
au réseau. Les travaux de cette thèse s’inscrivent dans ce contexte et de fait ils sont orientés vers
le développement de modèles, d’indicateurs et de méthodes de traitement des signaux dédiés à
la surveillance en temps-réel des performances des réseaux de distribution électrique.
Cette thèse analyse la qualité de la puissance électrique, en prenant en compte plusieurs carac-
téristiques bien connues ainsi que leur pertinence. Les modèles des systèmes électriques et les
méthodes de traitement du signal pour estimer leurs paramètres sont étudiés pour des applica-
tions en temps-réel de surveillance, de diagnostic et de contrôle sous diverses conditions. Parmi
tous, la fréquence fondamentale est l’un des paramètres les plus importants pour caractériser
un système de distribution électrique. En e�et, sa valeur qui est censée être une constante, varie
en permanence et re�ète la dynamique de l’énergie électrique disponible. La fréquence peut
également être a�ectée par certaines productions d’énergie renouvelable et peut être in�uencée
par des mauvaises synchronisations de certains équipements. En outre, la puissance absorbée
par les charges ou produite par des sources est généralement di�érente d’une phase à l’autre.
Évidemment, la plupart des installations électriques existantes avec plusieurs phases, qu’elles
soient résidentielles ou industrielles, travaillent dans des conditions déséquilibrées. Identi�er
les composantes symétriques de tension est dans ce cas un moyen pertinent pour quanti�er le
déséquilibre entre les phases d’un système électrique.
De nouvelles représentations de type espace d’état et modélisant des systèmes électriques
sont proposées pour estimer la fréquence fondamentale et pour identi�er les composantes
symétriques de tension des systèmes électriques triphasés et déséquilibrés. Le premier modèle
d’espace d’état proposé considère la fréquence fondamentale comme connue ou obtenue par
un autre estimateur. En contrepartie, il fournit les autres paramètres caractérisant le système
électrique. Un second modèle d’état-espace est introduit. Il est original dans le sens où il ne
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nécessite aucune connaissance de la fréquence fondamentale. Une de ses variables d’état est
directement reliée à la fréquence et permet donc de la déduire. En outre, ce nouvel espace d’état
est parfaitement capable de représenter des systèmes électriques à trois phases équilibrés et
non équilibrés. Ceci n’est pas le cas de la majorité des modèles déjà existants. L’avantage de
l’espace d’état proposé réside dans le fait qu’il permet d’estimer directement les paramètres
physiques du système électrique, tels que la fréquence, l’amplitude et la phase des composantes
symétriques en tension. Les paramètres des systèmes électriques peuvent donc être estimés
en temps réel en utilisant le nouvel espace d’état avec un processus d’estimation en ligne
comme un Filtre de Kalman Etendu (EKF). L’implémentation numérique de la méthode proposée
présente des exigences calculatoires modestes, des caractéristiques récursives avantageuses et
des estimations optimales avec des statistiques d’erreur de type gaussienne.
Les méthodes ont été mises en œuvre et validées par le biais de di�érents tests proches des
contraintes techniques et des conditions d’utilisation réelles. Les méthodes peuvent être in-
tégrées aisément dans des �ltres actifs de puissance ou dans des schémas de contrôle de la
fréquence côté charge, et ceci a�n de réaliser des stratégies de surveillance ou de compensation
des perturbations présentes dans les systèmes électriques.

Mots clefs : Perturbation électrique ; qualité de l’énergie électrique ; modèle de système
électrique ; distribution de l’énergie électrique ; système électrique déséquilibré ; composantes
symétriques de tension ; estimation de la fréquence fondamentale ; estimation en ligne ; espace
d’état ; �ltre de Kalman
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Introduction

Electricity is one of the most important energy. Indeed, energy can be found in a number
of di�erent forms. It can be chemical energy, electrical energy, heat (thermal energy), light
(radiant energy), mechanical energy, and nuclear energy. Obviously, compared to the other
forms, electrical energy is very useful and presents one main advantage: Electricity can be very
easily transported and thus distributed very quickly from one location to another one. Another
advantage is that it is possible to store it for a while but under a di�erent form of energy. For
being stored, the electrical energy must be converted in another form of energy, and then this
energy must be converted back to electricity in other to be used.

Nowadays, the need of electrical energy is everywhere and permanent, i.e., at all-time by
everyone. Electricity is used by various equipment presents in resident houses and indus-
trial installations. Fossil sources such as coal and oil are traditional sources used to generate
electricity energy. The system responsible for generation, transmission and distribution of
electricity energy is called a power system. Fig. 1 illustrates a traditional power system where
the generation of the electrical energy from other forms of energy is concentrated in one point
of a grid [40]. The electrical energy must thus be transported and distributed from the source –
where is has been generated - to large amounts of loads - where it is consumed - connected to
the grid and sometime very far away. It is a kind of a hierarchical organization [40].

Electric power systems are complex and composed of various types of sources and of non-
homogeneous loads. A power system can be considered as a non-stationary system because of all
its parts which can show random behaviors. Indeed, loads can be switched on and o� according
to users’ unpredictable needs and sources generate electricity in a �uctuating and discontinuous
manner. This is of course the case of the renewable energy production which is absolutely
not constant. All these e�ects make the whole system to evolve continuously from one state
to another state. Additionally, the concern of power system reliability is increasing with the
wide development of electronic devices. One the other side, electronic devices are sensitive to
electrical disturbances, and the harmonic currents generated by their nonlinear characteristic
are considered as major disturbances that have a serious impact to other equipment connected
to the grid. Disturbances such as current harmonics, reactive power, �uctuating fundamental
frequency and unbalance once generated are propagated at long distances in the branches of
the grid [11, 13].
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Figure 1 – A classic power distribution system

In addition and due to the fear for fossil energy decline and its corresponding increasing cost,
there is a need of a new concept of electricity distribution. Now, there is a need of power systems
that are able to generate electricity from various other forms of energy and more speci�cally
from renewable energy such as solar energy and wind energy. All these distributed energy
generation processes have to be fully integrated in a unique power system. Obviously, this
leads to new consequences and new problems [40]. Therefore, the power system’s reliability
and stability must be monitored and enhanced continuously and in real-time . This is the basis
that leads to the development of new power distribution system which should demonstrate the
following capabilities [63, 118]:

• Real-time monitoring of grid conditions;

• Improved automated diagnosis of grid disturbances;

• Automated responses to grid failures that will isolate disturbed zones and prevent or limit
cascading blackouts that can spread over wide areas;

• Enhanced ability to manage large amounts of renewable energy power which are rapidly
changing power systems;

• “Plug and play” ability to connect new generating plants to the grid, reducing the need
for time consuming interconnection studies and physical upgrades to the grid;

• Load balancing and frequency adjustments;

• Compensation of harmonic currents generated by highly nonlinear loads.

A power distribution system with the previous properties can be referred to as a ’smart grid’ [103].
Such a communicating, smart, and distributed power system is represented by Fig. 2. It can be
seen that it is an unique grid that integrates lots of various sources and loads non homogeneously
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repartitioned. It is thus a �at organization – in opposition to the hierarchical organization
of Fig. 1. As a result, the transportation of the electrical energy is limited; it means that the
energy produced by a source can be locally and instantaneously consumed by loads which
are in the same area. On the other side, this distributed power system is more complex and
therefore requires new capabilities (at least communication and automation capabilities) but also
additional intelligent features (distributed computational intelligence) [112, 14]. Advantages and
drawbacks of these power distribution systems are further detailed in [23, 61]. The work of this
thesis is part of the context of electrical energy transportation and focuses on the development of
models, indicators, and signal processing methods for power quality monitoring in time-varying
power distribution systems.
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Power quality is a central issue for the whole grid’s reliability. Power quality refers to the
quality of the electrical signals used to transport the power into the grid [38]. Several physical
parameters can thus be considered as representative of the quality of the signals. In order to be
able to e�ectively monitor and diagnose, to detect grid failures, to compensate for disturbances,
the value of some important parameters are required. For example, the frequencies, the ampli-
tudes, and the phase angles of the voltages and/or currents must be continuously measured
or estimated in real-time. If measuring the grid voltages and currents is not a di�cult task,
some other parameters are not available nor easily measured. Signal processing then allows
extracting and deducing quantities from the measured voltages and currents.

This study will develop digital signal processing methods that are able to estimate online
relevant parameters and states from power systems under various conditions in order to lead to
pertinent diagnoses and control tasks. Of course, a power system is an electrical distribution
system, but a very general case can be considered: So, this study considers a power system
as any system including electrical aspects, i.e., handling electrical energy within at least one
of its part. Among the parameters of a power system, the fundamental frequency is one of
the most important parameters that can a�ect the stability and reliability of the whole system.
Although, several methods for estimating the fundamental frequency still exist. Most of them
are sensitive to perturbations and disturbances, most of them are not able to take into account
several di�erent behaviors (like unbalance).

In this context, several contributions have been developed by the MIPS laboratory through
PhD thesis in identifying the harmonic content of signals and in controlling shunt APF [74, 71],
in power quality enhancement with renewable energy control [17], in dis-aggregating loads
with non-intrusive monitoring strategies [15], in non-intrusive activity analysis, i.e., smart
metering [55]. The goal of this PhD thesis is to use parametric modeling techniques for
estimating parameters from sinusoidal signals from multi-phase power distribution systems.

This thesis proposes several new state-space models of three phase power systems. If their
state-space is new, their design is based on existing power system modeling techniques. Unlike
existing models which represent either one phase signal of a power system or balanced three
phase signals of a three phase power system, the new state-space models are able to represent a
three phase power system in both balanced and unbalanced conditions. For this, the theory of
the symmetrical components has been used for their design. One important advantage of these
original state-spaces is that their structure gives a direct access to some physical parameters
representing the changing behavior of a power system. As for other state-spaces, an iterative
estimation algorithm can be associated to them in order to deduce the systems states and
parameter continuously and in real-time. Here, Kalman and Extended Kalman �lters, which are
well-known system identi�cation algorithms, are chosen to be associated with the proposed
models. This strategy allows thus to estimate parameters and states of any power system.
More speci�cally, the proposed methods are used for estimating the fundamental frequency
and for identifying the symmetrical component of power systems. Di�erent simulation tests
have been implemented to evaluate the performance and to demonstrate the e�ciency of the
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0.1. Publications and Authors’ Contribution

proposed methods over other methods in estimating the fundamental frequency and identifying
the symmetrical component of three phase power systems under various and time-changing
conditions. The methods can be used for monitoring a power distribution system, for evaluating
the power quality and they can be integrated in an Active Power Filter (APF) to compensate for
disturbances.

0.1 Publications and Authors’ Contribution

The research activities presented in this thesis has been presented in the following publications.

Poster presented in a scienti�c meeting

• Anh Tuan Phan, Gilles Hermann, and Patrice Wira. Advanced techniques in power
transmission system enhancement and smart grid development. In Journée des Ecoles
Doctorales à l’Université de Haute Alsace, Poster, 2 juillet, Mulhouse, 2015 [79],

Conference papers published in international conferences with review and proceed-
ings

1. Anh Tuan Phan, Gilles Hermann, and Patrice Wira. “Online Frequency Estimation in
Power Systems: A Comparative Study of Adaptive Methods”. In: 40th Annual Confer-
ence of the IEEE Industrial Electronics Society (IECON 2014), Dallas, TX - USA, pages
4352–4357, 2014 [78]

2. Anh Tuan Phan, Gilles Hermann, and Patrice Wira. Kalman �ltering with a new state-
space model for three-phase systems: Application to the identi�cation of symmetrical
components. In IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS
2015), Douai-France, pages 216–221, 2015 [80]

3. Anh Tuan Phan, Duc Du Ho, Gilles Hermann, and Patrice Wira. A new state-space model
for three-phase systems for kalman �ltering with application to power quality estimation.
In 11th International Conference of Computational Methods in Sciences and Engineering
(ICCMSE 2015), Athens-Greece, 2015 [82]

4. Anh Tuan Phan, Gilles Hermann, and Patrice Wira. A new state-space for unbalanced
three-phase systems: Application to fundamental frequency tracking with kalman �lter-
ing. In 18th IEEE Mediterranean Electrotechnical Conference (MELECON 2016), Limassol-
Cyprus, 2016 [81]
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Article submitted in international journals

• Anh Tuan Phan, Patrice Wira, and Gilles Hermann. A Dedicated State Space for Power
System Modeling and Frequency and Unbalance Estimation, Evolving Systems, accepted,
to appear 2016 [83]

0.2 Organization of this thesis

The thesis contains the following chapters:

• Chapter 1 introduces power quality issues which directly impact to the reliability and
stability of a power system. After de�ning the concept ’power quality’, the chapter
analyzes typical power quality disturbances such as fundamental frequency deviation,
harmonics, and unbalance, by explaining the phenomenon, sources, e�ects to the system,
and the indices of the disturbances. Active power �lter, which takes the advantages
of signal processing methods, is mentioned as an e�ective solution to monitor and
compensate the problems.

• Chapter 2 presents a state of the art of signal processing methods for improving power
quality, focusing on the estimation of the fundamental frequency and the symmetrical
components of a power system. The advantages and disadvantages of the methods are
discussed and the performance of several of them is evaluated via various simulation
tests.

• Chapter 3, with the aim to overcome the shortcomings of the methods presented in chap-
ter 2, develops new state-space modeling of power signals and proposes two new signal
processing methods for estimating parameters of a power system. Possible applications
of the two new methods and the conditions for the applications are pointed out.

• Chapter 4 shows the performance of the new methods to estimate the fundamental
frequency and the symmetrical components of a power system with di�erent simulation
tests. The simulation results are compared to the results of some methods in chapter 2 of
the same simulation tests.

• Conclusion chapter that provides an overall summary and some perspectives.

The thesis ends up with an Appendix section that provides a list of the acronyms used in this
document in Annex A.1, and useful mathematical transformations used in power systems are
recapitulated in Annex A.2.
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1 Power quality disturbances in
power systems

1.1 Introduction

Power quality can be described in terms of voltage and current waveform deviations from the
ideal sinusoidal waveform. This is a very general description of one key issue of electricity
transportation and power supply. Furthermore, power quality covers the entire power system,
from the generation, transmission, distribution to end-users. Since many years, power quality
also means reliability. The major changes in the structure of the grids come from the liberaliza-
tion of electricity supply, deregulation, integration of renewable energy generation, increase of
the power demand, etc. So, power distribution systems are in a period of transformation set in
motion by signi�cant changes in their concepts and in their structures. The main developments
which are needed on power distribution systems are on high-speed communication, intelli-
gent control of substations and protection devices, integrated power distribution management,
monitoring, and high performance automation capabilities 1.

Historically, power grids where designed with the production process that is centralized [30].
This is represented by Fig. 1, it can be seen that there are di�erent steps in the life-cycle of
the electrical energy: The generation (or production), transmission and distribution, and its
consumption (i.e., conversion in another form of energy in order to produce something). In
this �gure, the big gray arrow shows the power �ow, from the power plant to the users; the
direction of the arrow shows the direction of the power �ow. This architecture is not compliant
to the distributed renewable energy production which is by de�nition distributed.

Since several years, the key idea is to try to produce the energy, if possible renewable, where it
will be consumed. And for costs reasons, the losses related to the energy transportation should
be reduced. This is the motivation to develop new architectures of power distribution systems.
They have to be distributed, communicating, and smart. Therefore, they are decentralized [38].
This new type of architectures is represented by Fig. 2. Energy can be produced anywhere, it

1NREL is the national laboratory of the U.S. Department of Energy, it provides some interesting studies and
reports on the future of electricity transportation, as an example: http://www.nrel.gov/docs/fy12osti/52409-1.pdf
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Figure 1.1 – IEEE Standards for Information applied to energy management and Communication
Technology [85]

can also be consumed anywhere. As it can be seen, some devices can take power from the grid
for one moment, and inject power into the grid on other instants (the big grey arrows and the
small black ones show the direction of the power �ow). The transportation of the power is thus
reduced. On the other side, compared to the �rst architecture, this architecture is more complex.
In addition, each device connected to the grid, loads or sources, are likely to change. Such a
power system is thus more sensitive and power quality problems occur more frequently. It must
thus be monitored in order to prevent against stability problems. What is not represented on
this diagram is the communication network, we can imagine that it can be the Internet, i.e., each
device absorbing or producing energy is a connected object able to communicate. Data can be
transmitted and received at all moment. New standards 2 for Information and Communication
Technology (ICT) have been specially developed for energy-e�ciency applications. Some are
represented on Fig. 1.1. At the same time, standards for smart homes [53] follows the same
objective: Managing alternative energy sources and smart grids into home devices, via smart
meters. The whole system can thus lead to an adaptive and intelligent management of the
energy and of his quality. This can be illustrated by Fig. 1.2 where the relation between the
smart grid and the home devices is very tight.

On both �gures, i.e., Fig. 1 and Fig. 2, the yellow arrows shows/locates how failures, faults
2For more information about standards: http://standards.ieee.org
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Figure 1.2 – Standards for Smart Homes [84]

troubles, dysfunctions and any malfunctioning can in�uence the power quality and the stability
of the power distribution system. Thus, important parameters related to the quality of the power
have to be measured and monitored. Technically, a Point of Common Coupling (PCC), sometimes
called Point of Common Connection (PCC) is a point in the electrical system where multiple
customers or multiple electrical loads may be connected. According to IEEE-519 [48], this should
be a point which is accessible to both the utility and the customer for direct measurement.

Data measured from the power grid can be locally measured but can be transmitted to the
transmission grid operator. They can be shared to other legal entities (municipality or local
government area, etc.) or companies with other data: Air quality, waste management, parking
and lightning information... This can even lead to the concept of smart cities [118]. The energy
consumption and mainly electricity consumption can also be an input for a global cyberphysical
system that works as of a Building Energy Management System (BEMS). BEMSs control heating,
ventilation, and air conditioning and lighting systems in buildings, etc. BEMSs will be essential
components of modern buildings and houses [63]. They have to �nd solutions which represent
a tradeo� between contradicting requirements: Maintaining the occupants’ comfort while
minimizing energy consumption in order to reduce the global impact of the house.

Modern power distribution systems are not only complex because of their architectures, they are
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Figure 1.3 – Power system facilities for energy management with transportation, distribution,
renewable production and storage

also complex due to their management. Indeed, nowadays in most of the countries, there is not
only one legal entity that is responsible of the power distribution system, but there are several
legal institutions or companies. This the consequence of the liberalization of the electricity
market in these countries. Fig. 1.3 for example shows a general division between the transmission
grid operator (transmission), the distribution operator, the actor responsible of renewable
production and eventually the actor managing the storage. The tasks and responsibilities of
each of them are listed by this �gure. Generally, the transmission system operator is responsible
not only for the operation of the transmission grid but also for its maintenance, renewal and
expansion 3.

This chapter will discuss the issue of power quality, starting with the de�nition of electric
power quality. The classi�cation of power quality disturbances including the phenomenons,
the sources, the impacts to electric equipment, and the indices of quanti�cation are presented
hereafter. Finally, the technologies used to mitigate the e�ects of the power quality problems
are also brie�y reviewed.

1.2 De�nition of power quality

In [38] the electric power quality can be de�ned as the goodness of the electric power quality
supply in terms of its voltage wave shape, its current wave shape, its frequency, its voltage
regulation, as well as level of impulses, and noise, and the absence of momentary outages.

3In the context of the European exchange of electricity, transmission system operators and main electricity
grid companies are member of the European Network of Transmission System Operators for Electricity (ENTSO-E,
http://www.entsoe.eu).
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Besides, according to [38] there are di�erent points of view and therefore di�erent de�nitions
of power quality.

Some utilities consider power quality as reliability. The equipment manufacturers may indicate
power quality as those characteristics of the power supply that enable their equipment to work
properly [38].

For customers, any power problemmanifested in voltage, current, or frequency deviations that result
in failure or unsatisfactory operation of customer’s equipment is a power quality problem [38].

1.3 Power quality disturbances

For one phase power systems, in ideal conditions, the voltage and current are represented as
sinusoidal waves with rated frequency and amplitude. In digital forms, the signals are expressed
as: {

v(k) =V sin(ωkTs +φv )

i (k) = I sin(ωkTs +φi )
(1.1)

where

• Ts is sampling time,

• v(k) is the voltage signal at instant k , i (k) is the current signal at instant k ,

• ω is the angular frequency of the sinusoidal signals, their fundamental frequency fo is
calculated by:

fo = ω

2π

• V is the amplitude of the single phase voltage, I is the amplitude of the single phase
current,

• φv and φi are respectively the phase angles of the voltage signal and the current signal,

• (ωkTs +φv ) is the phase of the voltage, and (ωkTs +φi ) is the phase of the current.

For three phase power systems, besides requirements for single phase systems, the ideal three
phase currents/voltages are represented as sinusoidal waves equal in amplitudes and displaced
120◦ from each other:

ia(k) = I sin(ωkTs +φi )

ib(k) = I sin(ωkTs +φi −2π/3)

ic (k) = I sin(ωkTs +φi +2π/3)

(1.2)
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and 
va(k) =V sin(ωkTs +φv )

vb(k) =V sin(ωkTs +φv −2π/3)

vc (k) =V sin(ωkTs +φv +2π/3)

(1.3)

with ia(k), ib(k), ic (k) three-phase currents and va(k), vb(k), vc (k) three-phase voltages.

Obviously, these de�nitions are directly for power distribution systems. It can be noticed that
they are generic and therefore can be applied to all type of power systems, i.e., to isolated micro
grids, and moreover to any electric drive or generator with sinusoidal signals.

In the following, several important power quality problems and signal distortions are analyzed.

1.3.1 Reactive power

De�nition of reactive power under sinusoidal conditions

Single-phase systems, assuming that the voltage and current are sinusoidal waves, can be
represented by:{

v(k) =V sin(ωkTs)

i (k) = I sin(ωkTs −φ)
(1.4)

The instantaneous power p(k) is the product of the instantaneous voltage and the instantaneous
current [5]:

p(k) = v(k)i (k) =V I sin(ωkTs)sin(ωkTs −φ) = V I

2
cos(φ)− V I

2
cos(2ωkTs −φ) (1.5)

The expression of p(k) in (1.5) includes two components: The �rst is constant and the second
is oscillating. Decomposing the oscillating component and re-arranging (1.5) yields to:

p(k) = V I

2
cos(φ)[1−cos(2ωkTs)]− V I

2
sin(φ)sin(2ωkTs) (1.6)

Expression (1.6) also contains two components. Based on (1.6), traditional concept of active, re-
active and apparent power are derived: The active power P is the average of the �rst components
of the expression of p(k) at (1.6)

P = V I

2
cos(φ) (1.7)

The reactive power Q is the peak value of the second component in (1.6):

Q = V I

2
sin(φ) (1.8)
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The apparent power S is de�ned as:

S = V I

2
(1.9)

The active power is the actual amount of power being dissipated by an electrical circuit. The
reactive power Q is referred as ’the portion of power that does not realize work’ or ’oscillating
power’ [5]. It represents the power component that has zero average value [5]. Apparent power
represents ’maximum reachable active power at unity power factor’ [5]. The de�nition of power
factor will be introduced later.

Origins

The existence of the reactive power in a electric circuit relates to the load characteristics [5]:

• For resistive load only, Q = 0 and P = S.

• If the load is not purely resistive, Q 6= 0 and P < S.

• Inductive loads and capacitive loads are sources of reactive power generation.

E�ects

With reactive power, the power lines have to carry more current than what would be necessary
to supply an amount of active power, resulting in heating, broken isolation and ine�cient power
delivery systems [103].

Power factor

The power factor is an e�cient indicator to quantify the amount of the reactive power �lter of a
power system. The power factor (PF) λ is de�ned as the portion of active power from apparent
power:

λ= PF = cos(φ) = P

S
(1.10)

Obviously, the power factor λ varies from zero to one. The power factor is zero when all power
supply is reactive and there is no actual work done. A unit value of power factor indicates
that all the power supply is consumed by loads. The power factor can be used to evaluate how
e�ciently a devices is able to use and consume the power.
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Figure 1.4 – Example the signals of an unbalanced three phase power system

1.3.2 Unbalance in three phase power systems

Phenomenon

A power system is balanced if its three phase currents (and three phase voltages) are equal in
magnitudes and phase-shifted by 120◦ from each other (like (1.2) and (1.3)); if not, the system is
unbalanced. The following equations are the expression of an unbalanced three phase system.

ia(k) = Ia sin(ωkTs +φa)

ib(k) = Ib sin(ωkTs +φb)

ic (k) = Ic sin(ωkTs +φc )

(1.11)

Ia , Ib , Ic are the amplitudes of the three phases respectively which can be di�erent from each
other. φa ,φb ,φc are the phase angles of the three phases that might not be shifted by 120◦

from each other. Fig 1.4 illustrates the unbalanced three phase signals ia(k), ib(k), ic (k) of an
unbalanced three phase power system, with Ia = 1.2, Ib = 0.9, Ic = 0.5 and φa = 0,φb = π

2 ,φc =
−π

2 .

Origins of unbalance

According to [110], the unbalance in a three phase power system can come from the di�erent
following causes:

• uneven distribution of single-phase loads;

• asymmetrical transformer winding impedances;

• asymmetrical transmission impedances;

• unbalanced and overloaded equipment;

• blown fuses on three-phase capacitor banks.

Besides, asymmetrical faults such as line to ground, two lines to ground, and line to line
connections cause the unbalance too.
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1.3. Power quality disturbances

E�ects

Current unbalance incurs the following problems [12]:

• increase in power losses

• additional heating which limit the line transmission capacity

Voltage unbalance adversely a�ects the performance of electrical equipment [12]:

• To asynchronous motors and synchronous generators, it causes power losses, heating,
reduced productivity and vibration

• To converters, it generates an additional variable component of a recti�ed voltage (current),
and harmonics that are not characteristic of a given converter.

In order to compensate for the e�ects of the unbalance in a power system, it is important to be
able to analyze the unbalance. ’Symmetrical components’ presented in the next section can be
used for that purpose.

Symmetrical components to quantify the unbalance

The theory of symmetrical components was �rst introduced by [33] in the form of phasors
and is a powerful tool to analyze unbalance conditions. In [5], it is presented in the time
domain. According to the theory of symmetrical components from [5], the set of three phase
signals (1.11) can be represented as sum of three sets: ia(k)

ib(k)

ic (k)

=

 i+a (k)

i+b (k)

i+c (k)

+

 i−a (k)

i−b (k)

i−c (k)

+

 i o
a (k)

i o
b (k)

i o
c (k)

 . (1.12)

In (1.12), the set i+a (k)

i+b (k)

i+c (k)

=

 I+ sin(ωkTs +φ+)

I+ sin(ωkTs +φ+− 2π
3 )

I+ sin(ωkTs +φ++ 2π
3 )

 (1.13)

is the positive sequence including three phase signals equal in magnitudes and displaced 120◦

from each other.

The set i−a (k)

i−b (k)

i−c (k)

=

 I− sin(ωkTs +φ−)

I− sin(ωkTs +φ−+ 2π
3 )

I− sin(ωkTs +φ−− 2π
3 )

 (1.14)
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Chapter 1. Power quality disturbances in power systems

is the negative sequence including three phase signals equal in magnitudes and displaced 120◦

from each other.
Finally the set i o

a (k)

i o
b (k)

i o
c (k)

=

 Io sin(ωkTs +φo)

Io sin(ωkTs +φo)

Io sin(ωkTs +φo)

 (1.15)

is the zero sequence including three phase signals equal in magnitudes and in phase with each
other.

It can be observed that the positive sequence has clockwise rotation of a-b-c and the negative
sequence has counter clockwise rotation of a-b-c. Let’s take an example to understand the
meaning of the components. In a motor, the unbalanced motor voltages are also composed of
symmetrical components. The positive sequence voltage produces the desired positive torque,
whereas the �ux produced by the negative sequence voltage rotates against the rotation of the
rotor and generates an unwanted reversing torque [110]. The zero sequence voltage does not
produce rotating �ux, hence, does not contribute to the torque.

The theory of symmetrical components can be applied for any general case of n-phase power
systems, see [33] for more information.

A three phase power is balanced when the decomposition of its three phase signals into
symmetrical components is composed of only a positive component. The existence of negative
components and/or zero components in the decomposition shows that the system is unbalanced.

1.3.3 Harmonics

Phenomenon

In a power system, the voltage produced by the generation system can be considered sinusoidal.
“However, when a source of sinusoidal voltage is applied to a nonlinear device or load, the
resulting current is not perfectly sinusoidal. In the presence of system impedance this current
causes a non-sinusoidal voltage drop and, therefore, produces voltage distortion at the load
terminal, i.e. the latter contains harmonics” [12].

“Power system harmonics are de�ned as sinusoidal voltages and currents at frequencies that are
integer multiples of the main generated (or fundamental) frequency. They constitute the major
distorting components of the main voltage and load current waveforms” [12].

For example, in [12], harmonic analysis of the current of a TV receiver shows the main harmonics
of the orders third, �fth, seventh and ninth as followed:

i (k) ≈ Io sin(ωkTs +φo)+ I3 sin(3ωkTs +φ3)+ I7 sin(7ωkTs +φ7)+ I9 sin(9ωkTs +φ7) (1.16)
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Figure 1.5 – Harmonic components caused by a) TV receiver, b) PC and printer, c) microwave
oven

where i (k) is current of the TV set, i(o)(k) is fundamental component, i(3)(k) is called harmon-
ics order 3 (the component’s frequency is equal three times of the fundamental frequency),
i(5)(k), i(7)(k), i(9)(k) are harmonics orders 5, 7, 9 respectively.

The current of PC and printer combined together contains the main harmonics as the third, �fth,
seventh and ninth, and the current of a microwave oven contains the third, �fth and seventh.
Fig. 1.5 shows the harmonics spectrum generated by those devices.

Harmonic sequence and origins

From [34], harmonic components can be considered as symmetrical components. One can
consider a balanced three phase power system with the fundamental currents in positive
sequence as follow:

ia1(k) = I1 sin(ωkTs)

ib1(k) = I(1) sin(ωkTs −2π/3)

ic1(k) = I(1) sin(ωkTs +2π/3)

(1.17)

Its third order harmonics are determined as:

ia3(k) = I3 sin3(ωkTs)

ib3(k) = I3 sin3(ωkTs −2π/3) = I(3) sin(3ωkTs −2π) = I3 sin(3ωkTs)

ic3(k) = I3 sin3(ωkTs +2π/3) = I(3) sin(3ωkTs +2π) = I3 sin(3ωkTs)

(1.18)

17



Chapter 1. Power quality disturbances in power systems

Type Frequency Source
DC 0 Electronic switching devices, half-

wave recti�ers,
arc furnaces, geomagnetic in-
duced currents (GICs)

Odd harmonics h. fo (h=odd) Nonlinear loads and devices
Even harmonics h. fo (h=even) Half-wave recti�ers, geomagnetic

induced currents (GICs)
positive sequence harmonics h. f1 (h = 1, 4, 7, 10, ... ) Operation of power system with

nonlinear loads
negative sequence harmonics h. fo (h = 2, 5, 8, 11, ... ) Operation of power system with

nonlinear loads
zero sequence harmonics h. fo (h = 3, 6, 9, 12, ... ) Unbalanced operation of power

system

Table 1.1 – Several types and Sources of Power System Harmonics [34]

From equations (1.18), the three phase signals of the third order harmonics are in phase with
each other, therefore the third harmonic components are known as zero sequence harmonics.
The �fth order harmonics are expressed as:

ia5(k) = I5 sin5(ωkTs) = I5 sin(5ωkTs)

ib5(k) = I5 sin5(ωkTs −2π/3) = I5 sin(5ωkTs −10π/3) = I5 sin(5ωkTs +2π/3)

ic5(k) = I5 sin5(ωkTs +2π/3) = I5 sin(5ωkTs +10π/3) = I5 sin(5ωkTs −2π/3)

(1.19)

From (1.19), the phase sequence of the �fth harmonic is counter clockwise, hence, the �fth
harmonic is known as negative sequence harmonic.

Similarly, other harmonic orders can be classi�ed as positive, negative, or zero sequence
harmonic. Table 1.1 displays di�erent types of harmonics, their order, and the sources of
them [57].

In this table, fo represents the fundamental frequency of a power system, and h represents the
harmonic order.

E�ects

Among power quality problems, the issue of harmonics draws much concern because of many
negative e�ects it gives rise to. We can cite:

• Heating in rotating machinery (induction and synchronous) due to iron and copper losses,
and mechanical oscillations as a consequence of pulsating torques;

• Heating in transformers due to an increase in copper losses and stray �ux losses;
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1.3. Power quality disturbances

• Dielectric (insulation) failure in power cables causing by skin e�ect and proximity e�ect;

• Increase of heating and voltage stress to capacitors resulting in a shorten capacitor life;

• Electronic equipment mis-operation and/or malfunction;

• Erroneous operation of metering devices;

• Decrease in response speed and mis-operation of relays;

• Communication system disturbance due to magnetic and electric �elds produced by
harmonic currents or voltages;

• Others.

Indices to quantify harmonic contamination of a signal

The most popular index to measure the quantity of harmonic distortion is the Total Harmonic
Distortion (THD), which is quanti�ed as root mean square (rms) of the harmonics expressed as
a percentage of the fundamental component [12]:

THD =
√∑N

n=2Vn
2

V1
(1.20)

where V1 is the rms value of the fundamental voltage, while Vn , n = 2,3, .., N is the rms voltage
of harmonic n. This index can also be applied for a current to evaluate its harmonic distortion
level. More information of causes, e�ects and control of harmonics is available in [1, 2, 98].
Identifying harmonics is also very important for optimal control of electrical drives and this is
illustrated in [117] for induction machines.

1.3.4 Fundamental frequency variations

Phenomenon

Frequency is a very important parameter to stable and reliable operation of electrical equipment
in power systems. A frequency’s low value can lead to abnormal performance of electrical
devices, for example, disturbing variations of the luminous �ux of incandescent lamps. On the
other hand, it’s high value increases losses due to skin e�ect. Ideally, the frequency should
be kept at a constant value which is 50 Hz in Europe and 60 Hz in USA [13]. However,
the frequency value rarely stays constant and varies in time. The record of variation of the
fundamental frequency of power systems in various countries and areas during two days are
represented on Fig. 1.6 4. Fig. 1.7 illustrates a �uctuating frequency during a short time in
Mulhouse, France.

4according to wikipedia https://en.wikipedia.org/wiki/Power_quality

19

https://en.wikipedia.org/wiki/Power_quality


Chapter 1. Power quality disturbances in power systems

a) b) c)

d) e)

Figure 1.6 – Frequency deviations of power systems of di�erent countries: a) Sweden, b) Central
Europe, c) Greate Britain, d) Singapore, e) China (East), recording during two days
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Figure 1.7 – Estimation of a �uctuating frequency during 500 s [75]
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1.3. Power quality disturbances

Origins

Since the fundamental frequency is directly related to the rotational speed of the generator in a
power system, its value depends on the balance between the power generation and the power
demand: The frequency rises if the power generation is higher than the power demand and
falls otherwise.

From [50], the quantity of the frequency shift and its duration depend on the load characteristics
and the response of the generation system. The continuous variation of power demand, i.e. load
switching leads to small fundamental frequency variation. The frequency variation outside
of the accepted limit for steady-state normal operation are normally caused by faults on the
bulk power transmission system, a large block of load being disconnected, or a large source of
generation going o� line [50].

E�ects

Frequency variation has great impact to normal operation of electrical devices, among them:

• Protection algorithms used in protective relays require the calculation in the values for
amplitudes, impedances, power, phase angle, etc which can result in large errors due to
frequency variation [95];

• The operation of rotating machinery, or processes using their timing from the power
frequency will be a�ected when the frequency changes [50];

• In harmonic �lters, the circuit impedance, which is designed to be equal to zero for
a harmonic at the norminal frequency, becomes other than zero because of frequency
variation [13];

• The magnetic characteristic of transformers can get into non-linear zones when the
fundamental frequency varies in time, resulting in the increase of the transformer’s
no-load losses [13].

Indices

According to standard EN 50160/2006 [31], the nominal frequency of the supply voltage shall
be 50 Hz. Under normal operating conditions the mean value of the fundamental frequency
measured over 10 s shall be within a range of

• for systems with synchronous connection to an interconnected system
50 Hz ±1% (i.e. 49.5 - 50.5 Hz) during 99.5% of a year
50 Hz + 4%/−6% (i.e. 47 - 52 Hz) during 100% of the time
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• for systems with no synchronous connection to an interconnected system (e.g., supply
systems on certain islands)
50 Hz ±2% (i.e. 49 - 51 Hz) during 95% of a week
50 Hz ±15% (i.e. 42.5 - 57.5 Hz) during 100% of the time

1.3.5 Short-duration voltage variations

Interruptions

Interruption, which is illustrated in Fig. 1.8 a), occurs when the supply voltage (or load current)
decreases to less than 0.1 pu for less than 1 minute. After a while after the interruption happens,
the supply is restored automatically. Equipment failures, control malfunction, and blown fuse
or breaker opening are some causes of interruptions [34].

Sags

Reductions in the rms voltage between 0.1 and 0.9 pu in a short duration (usually between 0.5
cycles and 1 minute.) are called sags [34], its phenomenon is illustrated at Fig. 1.8 b). According
to [34], the power quality problem can be consequence of:

• energization of heavy loads,

• starting of large induction motors,

• single line-to-ground faults,

• load transferring from one power source to another

Sags are reason for malfunctions of electrical low-voltage devices.

Swells

Swells are the increases of voltage magnitude between 1.1 and 1.8 pu during the most accepted
duration from 0.5 cycles to 1 minute [34], as shown in Fig. 1.8 c). Main causes of swells are [34]:

• switching o� of a large load,

• energizing a capacitor bank,

• voltage increase of the unfaulted phases during a single line-to-ground fault
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Figure 1.8 – Short duration voltage variations: a) Interruption, b) Sag, c) Swell

1.3.6 Long-duration voltage variations

Long Interruptions

Long interruption is a phenomenon at which voltage drops to zero and does not return auto-
matically [34]. According to the IEEE de�nition, the duration of this type of interruption is
more than 1 minute [34]. There are several causes of long interruptions:

• fault occurrence in a part of power systems with no redundancy or with the redundant
part out of operation,

• an incorrect intervention of a protective relay leading to a component outage,

• scheduled (or planned) interruption in a low-voltage network with no redundancy.

Under voltage and over voltage

The undervoltage condition occurs when the rms voltage decreases to 0.8-0.9 pu for more than
1 minute.
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Overvoltage is an increase in the rms voltage to 1.1-1.2 pu for more than 1 minute. This
phenomenon could happen because of:

• an insulation fault, ferroresonance, faults with the alternator regulator, tap changer
transformer, or overcompensation,

• an incorrect intervention of a protective relay leading to a component outage,

• scheduled (or planned) interruption in a low-voltage network with no redundancy.

1.3.7 Other power quality problems

Besides the power quality problems discussed above, there are others such as electrical transients
and inter harmonics. More details of di�erent power quality phenomena, their types and origins,
and their indice of evaluation are available in [50, 29] for reference.

1.4 Power quality monitoring and control

Power quality disturbances result in power loss, heating, and bad performance of electrical
devices. Further, they may propagate to the entire power system and cause more serious
consequences.

Power quality monitoring indicates measuring power quality parameters of a power grid,
evaluation and diagnosis of the power system’s conditions. Power quality control relates to the
activities of compensation power quality disturbances and/or isolation the infected area from
the power grid [119]. The Flexible AC Transmission System (FACTS) is an application of power
electronics revolution in areas of electric energy in order to enhance controllability, stability,
and power transfer capability of AC transmission systems [43].

The followings present some methods to monitor and control power quality of power grids:
frequency control, compensation of power quality problems, protection of power systems from
failures.

1.4.1 Frequency Control

As stated previously, the fundamental frequency is related to the stability of a power system
and the stable operation of all the electrical devices connecting to the system. The frequency
value rarely stays constant and depends on the power generation and the power demand which
vary and lead to fundamental frequency variations. Energy management strategies are also
necessary to control and to optimize the power �ow in a grid [111].

According to [104], Automatic Generation Control (AGC) is important in controlling the fre-
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Figure 1.9 – Principle of a passive power �lter [71]

quency of power systems. AGC contains three levels:

• Primary control is to perform the speed control of the generating units in order to response
immediately to sudden change of load (or change of frequency). A deviation in system
frequency is compensated by adjusting the unit power generation.

• Secondary control has function of restoring the frequency to its nominal value while
maintaining power interchange among areas by regulating the output of selected genera-
tors [91].

• Tertiary control helps the system operate as economically as possible and restore security
level if necessary.

Secondary control is referred as Load Frequency Control (LFC) [65]. For more information
about LFC in interconnected power systems, one can refer to [76, 47].

1.4.2 Compensation

Passive power �lters and active power �lters are typical compensators of power quality distur-
bances.

Passive �lters consist of capacitors, inductors and/or resistors. The functions of passive �lters
are correcting power factor and �ltering high order harmonics [4]. Fig. 1.9 shows an example
of passive �lters applied for harmonic �ltering. Such a passive �lter is installed in the vicinity
of a nonlinear load to absorb the dominant harmonic currents �owing out of the load.

The performance of passive power �lters depends on the source impedance, however, the
impedance may be not well determined and may vary as the grid topology changes [5]. Parallel
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resonance between the source impedance and the shunt �lter impedance produces harmonic
magnifying phenomenon [5]. One can refer to IEEE Std 1531-2003 [49] for instructions on how
to install passive power �lters to meet certain standards.

Active power �lters (APF) were developed to overcome disadvantages of passive power �lter
by providing dynamic and �exibly adjustable compensation for power quality problems [99].
A review of active �lters for power quality is provided in [100]. An APF is able to measure
harmonic currents and harmonic voltages caused by nonlinear loads and eliminate them to
ensure the THD of grid voltages and currents and the power factor with su�cient capacity
and low background harmonics. It can also compensate for negative component sequence,
reduce power o� loss caused by resonance phenomenons and improve the reliability of the
power supply system. This is achieved by injecting compensating currents/voltages into the
grid and these currents/voltages are calculated from important estimated parameters. APF have
to be adaptive because of the load changes, energy generation variations, and non-stationary
properties of the power system’s signals. Adaptive AFP strategies can be found in [72].

An APF is composed of three steps: Signal processing, control, and generation of compensating
currents and/or voltages, as shown in Fig. 1.10.

The step of signal processing is to measure the power signals (voltages, currents) from a power
grid then to process these signals in order to estimate the power system’s parameters and
states and to calculate the compensating current (voltage) references. These functions can be
implemented on a digital controller using DSPs, FPGAs, and A/D converters for digital signal
processing, together with operational and isolation ampli�ers for analog signal processing,
and Hall-e�ect voltage/current sensors [4]. Examples of a signal processing methods used to
calculate harmonic-compensating currents with ANNs are presented in [114].
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Figure 1.11 – A typical architecture of a Voltage Source Inverter (VSI)

The compensating currents or voltages are generated by controlling on/o� switch of semicon-
ductor devices such as IGBT of an inverter. Fig. 1.11 presents a Voltage Source Inverter (VSI).
For how an inverter works to generate a desired analog current or voltage, one can refer to [18].

In the APF family, there are shunt APF and series APF. The shunt active �lter is designed to
compensate all current disturbances, for example, harmonics, unbalance, and voltage sag [71,
74, 113]. The �lter, which is connected in parallel with a nonlinear load to �lter harmonics,
operates in the following steps [5]:

• Measure the instantaneous load current and voltage;

• Extract the harmonics current by digital signal processing;

• Inject the current equal to the harmonic current extracted from the load current but
opposite in phase, so that the current supply by the network is sinusoidal

The series active �lter is designed to compensate for all voltage disturbances like harmonics,
unbalance, and voltage sag [71] [74]. The con�guration of a three-phase series APF for harmonic-
voltage �ltering is shown in Fig. 1.12. In this example the �lter is connected in series with the
utility supply voltage through a three-phase transformer or three single-phase transformers [5].
The series APF works according to the following steps:

• Measure the instantaneous load voltage and current;

27



Chapter 1. Power quality disturbances in power systems

VSai a

VSc

i c
VSb

i b

Va

Vc

Vb

VCa

VCb

VCc

VSI VSI VSI

Signal Processing

Va ,V b,V c

i a ,i b,i c

PWM

Voltage

Control

Basic series

active filter

V*Ca ,V*Cb ,V*Cc

Capacitor

Figure 1.12 – Basic series active �lter [5]

• Calculate the compensating voltage for the harmonic voltage components in the load by
digital signal processing;

• Apply the compensating voltage across the primary of the transformer.

More information of series active �lter can be found at [66] Futher more, an UPQC (Uni�ed
Power Quality Conditioner) is the integration of a shunt APF and a series APF to bene�t from
the advantages of each of the two �lters [51].

Hybrid APF is a shunt or series active �lter combined with a passive �lter. Here, the active �lter
plays a role as an active impedance to help to overcome the dependence of the passive �lter
on the source impedance. More information of hybrid APF can be found in [77] [92] [62] [35].
APF architectures are listed in Table 1.2 for some speci�c applications.

The guidance notes [2] introduce di�erent types of equipment for measuring, analyzing and
compensating for harmonics. More recently, power quality enhancement and renewable energy
control can be associated in APF schemes for a better use of these resources [17, 115]. It
can be noticed that identifying the harmonic content of signals measured on drives allows to
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Compensation for Active Power Filters Topologies
speci�c applications Active Active Hybrid of active series UPQC

series shunt and passive shunt
Current harmonics •• ••• •
Reactive power ••• •• ••
Load balancing •
Neutral current •• •
Voltage harmonics ••• •• •
Voltage regulation ••• • •• •
Voltage balancing ••• •• •
Voltage �icker •• ••• •
Voltage sag & dips ••• • •• •

Table 1.2 – Selection of APF for speci�c application considerations [99] (a higher number of ’•’
is preferred)

achieve optimal control signal for torque ripple minimization in permanent magnet synchronous
motors [71].

1.4.3 Power system protection

The protective relay and the circuit breaker usually works together to isolate faults in power
systems. A protective relay is responsible for detecting faults and then send a signal to the
circuit breaker to make a trip that isolates the faults detected. According to [9], there are
di�erent types of protective relays, below are three of them:

• Electromechanical relays: The relays base on magnetic �eld and mechanical movement
to detect faults.

• Static relays: Without armature or other moving element, in the relays, the faults are
detected by electronic components.

• Digital relays: The relays work with samples of the signal and use digital signal processing
embedded in microprocessors to identify abnormalities and power quality disturbances.

According to [10], digital relays have advantages over analog relays:

• The evolution of hardware makes it possible to have di�erent digital signal processing
implemented, and to exchange date between devices, e.g., alarm signals.

• Useful information, e.g., the whole information of an event, can be stored with low cost
of memory for protection engineer.

• One hardware can be programmed with di�erent algorithms in order to implement
di�erent tasks.
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1.5 Conclusion

In this chapter, an introduction to the main power quality problems has been presented. There
are di�erent types of perturbations and we focus on the reactive power, the unbalance between
the phases, harmonics, the frequency deviation, the voltage variations. At the same time, their
origins, their impacts to end-user equipment and their quantifying indices are analyzed.

Passive power �lters and active power �lters are mentioned as solutions to mitigate the negative
e�ects caused by the power quality problems. Most of power �lters in the market today are
’closed’, i.e, the parameters of the �lters are �xed so that the �lters are only dedicated for a
speci�c function, like �ltering the 5th harmonic, but not work with other harmonics. The
application of digital signal processing in active power �lters makes them more �exible to
varying environment. Indeed, digital signal processing allows to analyze the currents and
voltages and to identify the existing harmonics in real time even with load changes. Active
power �ltering consists in using shunt APF, series APF, Hybrid APF, UPQC, each is appropriate
for some speci�c applications.

The next chapter will present digital signal processing methods applicable to estimate parameters
and states of a power system.
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2 Advanced signal processing meth-
ods for power quality improvement

Signal processing is concerned with the representation, manipulation, and transformation of
signals and the information that they carry. Typical signal processing tasks for example consist
in enhancing a signal by reducing the noise or some other interference, or in extracting some
information from it [41].

Analog signal processing works directly with physical signals, e.g., analog currents or analog
voltages. Digital signal processing works with samples of the signals, i.e, the analog signal must
be converted into a digital signal by an analog-to-digital conversion before being processed.
Digital signal processing has some advantages: It is easy to implement complex algorithms
and/or modify the algorithms, it is convenient to exchange information, and it is useful to store
and memorize values and parameters.

Digital signal processing methods are classi�ed into o�ine methods and online methods. O�ine
methods collect a batch of data before processing the data so that they are only applicable to
non-real-time applications. Online methods update their estimation at each time that a new
data is available. This type of signal processing methods is appropriate to real-time applications.
Adaptive �lters or adaptive methods belong to online method and are able to self-adapt to
changing conditions [42]. Digital signal processing has found applications in various �elds, e.g.,
control, communication, health care, etc. [59]. In power system applications, signal processing
has been used widely to improve power quality. It is used in harmonics analysis and signal
parameter estimation [11, 71, 74, 113]. Several signal processing methods can detect voltage
sags and swells [68]. Other digital signal processing methods have been applied to improve and
control the power quality in power grids [96].

The fundamental frequency is a very important parameter of a power system and it is often
required by di�erent other applications, e.g., harmonics analysis and unbalance conditions
analysis. The frequency value rarely stays constant and varies according to the power demand.
The power generation and demand vary continuously and lead to small fundamental frequency
variations. There are other faults, among them unbalanced voltage situations in the case of
multiphase systems. Fast and precise harmonics compensation and fault detection necessitate
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an online estimation and tracking of the fundamental frequency in power lines.

The theory of symmetrical components is a powerful tool to analyze a power system in unbal-
anced conditions. Symmetrical components are used in fault analysis and design of protective
relays [22], reactive power compensation and unbalance mitigation [101] and other applications.
Therefore identifying the symmetrical components plays an important role in improving the
reliability and stability of power systems.

This chapter will present some e�ective adaptive signal processing methods of power quality
improvement, focusing on the estimation of the fundamental frequency of a power system, and
on the estimation of the symmetrical components of a power system. Their advantages and
disadvantages are also discussed.

2.1 Adaptive signal processing methods to estimate the funda-
mental frequency of a power system

Various frequency estimation techniques have been proposed for electric transmission grids.
One of the earliest methods used for tracking the phase angle is the Zero Crossing (ZC) method
which determines the moment the signal passes zero. The performance of ZC is badly a�ected
by power quality disturbances such as noise and harmonics [78].

More sophisticated methods like polynomial models can be used to estimate the parameter of a
typical signal issued from a power system. Thus, Auto-Regressive (AR) models, Auto-Regressive
Moving Average (ARMA) models, or other polynomial signal model can be used for frequency
and parameter estimation of non-stationary power signals [69]. A power system frequency
estimation method using morphological prediction of Clarke components has been proposed
in [28]. All these methods are able to adapt themselves to changes, but at the same time they
need new measurements and time to take into account the new behavior.

Adaptive methods like Arti�cial Neural Networks (ANN), neuro-evolutionary approaches [86],
fuzzy adaptive �lter for frequency are faster in estimating parameters of non-stationary power
signals [69]. In these approaches, unknown nonlinear terms are identi�ed by arti�cial nonlinear
units (i.e., neurons) or neuro-fuzzy networks [90, 115]. They take into account the changes
through an adaptation and/or learning procedure. These approaches have also been successfully
applied for estimating frequency variations of electric signals [26, 19, 39].

Filters like Adaptive Notch Filter (ANF) [70] or Adaptive Prony Method (APM) [21] are also
good candidates under some conditions. For example, a speci�c adaptive notch �lter solution
under unbalanced and/or distorted conditions has been proposed in [108]. Recently, Phase
Locked Loop (PLL) methods have found much attention for being applied to power systems,
mainly due to their simplicity, robustness, and e�ectiveness [93, 58].

Extended Kalman Filter (EKF) is a well-known method that �nds applications in di�erent �elds
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of signal processing and control, e.g., wind generator control [7]. Kalman �ltering is based on a
state-space model, it is therefore a time-based method. EKF has been investigated and designed
in [25, 45, 36, 56] for fundamental frequency estimation of a power system. The method is
robust to noise, but the initialization remains a challenge and often requires prior knowledge of
the process.

Fourier’s methods and the Fast Fourier Transform (FFT) algorithms are e�cient to estimate
the spectrum of a signal. Obviously, the assumptions that must be made before using Fourier’s
theory are that the signal to be processed have to be periodical and stationary. However, one
major disadvantage associated with the approaches is the leakage e�ect which is the spreading
of energy from one frequency into adjacent ones. Due to that leakage e�ect, the amplitudes
and phase angles of harmonics can not be determined accurately from the spectrum of the
signal [37, 107]. Power quality can also be evaluated with the wavelet theory [94].

Time-frequency analysis methods are known to be e�cient methods [44]. Thus, Stockwell’s
theory can be used and it is referred to as the s-transformation [67, 52]. Parameter estimation
of frequency changing signals based on the robust s-transform algorithms is well illustrated
in [24].

PLL, APM, ANF and methods of EKF are presented in the following sections and their charac-
teristics are discussed.

2.1.1 Phase-locked Loop (PLL)

PLL was introduced by de Bellescize in 1936 [6]. Since that time, PLL has found applications in
various �elds such as communication, signal processing and control [6]. ”A PLL is de�ned as
a circuit that enables a particular system to track another one. More precisely, a PLL is a circuit
synchronizing an output signal (generated by an oscillator) with a reference or input signal in the
frequency as well as in phase” [6].

In [6], the authors claim that: ”In the synchronized or the locked state, the phase error between
the oscillator’s output and the reference signal is either zero or an arbitrary constant. In the case
of a phase error building up, the oscillator is tuned by a control mechanism in order to reduce the
phase error to a minimum. In such a control system, the phase of the output signal is actually
locked to the phase of the reference input”. A basic digital structure of a PLL is shown in Fig. 2.1
and contains three basic functional components: A digital controlled oscillator to generate
an oscillating signal (the output signal) to track the phase of the input signal, a phase error
detector to measure the phase error of the input and output signals, and a digital �lter to control
the DCO (Digital Controlled Orcillator) in producing the phase-tracking output [6]. Modern
power distribution systems include distributed electric power generation which is based on
wind energy, fuel cells, PV, hydraulic systems, etc. and grid synchronization is one of the most
important issues. Grid voltage conditions such as phase, amplitude and frequency determine the
proper operation of a grid connected system. In such applications, a fast and accurate detection
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Figure 2.1 – Basic principle of a Digital PLL [6]

of the phase angle, frequency and amplitude of the grid voltage is essential. These parameters,
together with the implementation simplicity and the cost are all important when examining the
credibility of a synchronization scheme. Therefore an ideal phase-detection scheme must be
used to promptly and smoothly track the grid phase through various short-term disturbances
and long term disturbances to set the energy transfer between the grid and any power converter.

The Phasor Measurement Unit (PMU) technology can provide phase information (both magni-
tude and phase angle) in real-time by using a common time source for synchronization [97].
The advantage of referring phase angle to a global reference time is helpful in capturing the
wide area snap shot of the power system. E�ective utilization of this technology is very useful
in monitoring power quality and mitigating blackouts [46].

PLL-based systems can be used to track the phase angle in order to improve the synchronization
systems response in adverse grid conditions [106]. Although the implementation of PLL is
simple, the drawbacks associated with the PLL are: Sensitivity to the grid voltage variations,
harmonics and unbalance, di�culty to obtain an accurate tuning of the PLL parameters. PLLs
are not fast because of their proportional-integral block and low-pass �lters used by the phase
error detector. With real-time implementations of discrete signal processing, various high
performance PLL-based methods have been introduced to simplify the phase error detector. For
example, the d q-PLL in [20, 116] is based on the d q-transformation to calculate the signal of
the phase error. The existence of harmonic and/or unbalanced conditions can seriously a�ect
the performance of PLL. Enhanced methods called robust PLL have been proposed to overcome
this limitation [3].

2.1.2 Extended Kalman Filter for fundamental frequency estimation of bal-
anced three phase power systems (3P EKF)

The 3P EKF is a model-based method which is based on a state-space model of the input signals
and uses EKF to estimate the state variables of the model.
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One can consider the following balanced three-phase signals of a power system:
ia(k) = I sin(ωkTs +φ)+εa(kTs)

ib(k) = I sin(ωkTs +φ−2π/3)+εb(kTs)

ic (k) = I sin(ωkTs +φ+2π/3)+εc (kTs)

(2.1)

where εa , εb and εc are time-varying terms that can be any combination of white noise and
higher-order harmonics.

Signal modeling

According to [25], the α−β components iα and iβ of the three phases signals in (2.1) are
obtained from the αβ-transform of the three phase signals given in (2.1), and the corresponding
complex form is determined by (Appendix A.2):

i (k) = iα(k)+ j iβ = Ae j (ωkTs+φ) +η(k) , (2.2)

where η(k) is the noise component. De�ning{
q1(k) = e jωkTs

q2(k) = Ae j (ωkTs+φ) (2.3)

leads to the following state-space model:[
q1(k +1)

q2(k +1)

]
=

[
1 0

0 q1(k)

][
q1(k)

q2(k)

]
, (2.4)

and a scalar output

y(k) = i (k) = q2(k)+η(k) . (2.5)

According to [25], the previous state-space model can be extended in order to take into account
harmonics and thus to be more precise. For example, including the �fth harmonic into the state
space q(k) is achieved with q3 and gives: q1(k +1)

q2(k +1)

q3(k +1)

=

 1 0 0

0 q1(k) 0

0 0 q5
1 (k)


 q1(k)

q2(k)

q3(k)

 , (2.6)

i.e., q(k +1) = F (k,q(k)), and

y(k) = i (k) = q2(k)+q3(k)+η(k) =C (k,q(k))+η(k) . (2.7)
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Estimation algorithm: Extended Kalman Filter (EKF)

Before presenting the Extended Kalman Filter (EKF), we �rst introduce the Kalman Filter.

The Kalman Filter (KF) is a recursive estimation method based on a linear state-space model of
the dynamics of the plant, i.e., the system [42].

q(k +1) = F(k +1,k)q(k)+ν1(k) , (2.8)

y(k) = C(k)q(k)+ν2(k) , (2.9)

where F(k +1,k) is a known state transition matrix, C(k) is a known measurement matrix. ν1

and ν2 are uncorrelated, zero-mean, white noises.

The KF is used to estimate the state vector by minimizing the Mean Squared Error (MSE) based
on the real values of the state vector. This error is updated iteratively and error correction can
be taken online for estimating the states. Below the update equations are presented, in which
the input of the �lter is y(k), and the output is the estimate q̂(k|Yk ) of the state vector [42]:

K(k) = F(k +1,k)P(k,k −1)CH (k)[C(k)K(k,k −1)CH (k)+Q2(k)]−1 (2.10a)

α(k) = y(k)−C(k, q̂(k|Yk−1)) (2.10b)

q̂(k +1|Yk ) = F(k +1,k)q̂(k|Yk−1)+P(k)α(k) (2.10c)

P(k) = P(k,k −1)[I−F(k +1,k)K(k)C(k)] (2.10d)

P(k +1,k) = F(k +1,k)P(k)FH (k +1,k)+Q1(k) (2.10e)

Table 2.1 below de�nes the variables used in equations (2.10). To start the one-step �ltering
algorithm, the initial conditions must be speci�ed. In [42], the initialization is:

q̂(1|Y0) = E [q(1)] (2.11)

36



2.1. Adaptive signal processing methods to estimate the fundamental frequency of a
power system

Variable De�nition
I Identity matrix
Q1(k) Correlation matrix of process noise vector ν1(k)
Q2(k) Correlation matrix of measurement noise vector ν2(k)
Y(k) The observation set, i.e., all the measurements from the �rst to the actual iteration:

Y(k) = [y(1),y(2), ...,y(k)]
q̂(k +1|Yk ) Predicted estimate of the state vector at iteration k +1, given

the observation vectors y(1),y(2), ...,y(k)
q̂(k|Yk ) The estimated state vector at iteration k , given

the observation vectors y(1),y(2), ...,y(k)
K(k) Kalman gain at iteration k
α(k) Innovations vector at iteration k
P(k +1,k) Correlation matrix of the error in q̂(k +1|Yk )
P(k) Correlation matrix of the error in q̂(k|Yk )

Table 2.1 – Summary of Kalman variables

P(1,0) = E [(q(1)−E [q(1)])(q(1)−E [q(1))H ] (2.12)

KF is a robust and e�cient method to estimate the parameters of systems represented by a
linear state-space model. The convergence properties of KF are presented in [88] [89]. Di�erent
forms of Robust Kalman Filters and their applications are discussed in [60].

The EKF is the variant to handle non-linear systems. A nonlinear system can be modeled by a
nonlinear state model with the following recursive expressions

q(k +1) = F(k,q(k))+ν1(k) , (2.13)

y(k) = C(k,q(k))+ν2(k) , (2.14)

where q(k) is state vector, ν1 and ν2 are uncorrelated, zero-mean, white noises. The output
vector y(k) is supposed to be known or measured. Functions F() or C() are non-linear functions
that represent the dynamics of the system whose states have to be estimated.

The EKF is based on the idea of linearizing the state-space model of equations (2.13) and (2.14) at
each time instant around the most recent state estimate. For convenient reference, the recursive
equations of the discrete EKF are recapitulated thereafter [42]:

K(k) = P(k,k −1)CH (k)[C(k)P(k,k −1)CH (k)+Q2(k)]−1 (2.15)
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α(k) = y(k)−C(k, q̂(k|Yk−1)) (2.16)

q̂(k|Yk ) = q̂(k|Yk−1)+K(k)α(k) (2.17)

q̂(k +1|Yk ) = F(k, q̂(k|Yk )) (2.18)

P(k) = [I−K(k)C(k)P(k,k −1)] (2.19)

P(k +1,k) = F(k +1,k)P(k)FH (k +1,k)+Q1(k) (2.20)

Initial conditions can be chosen as:

q̂(1|Y0) = E [q(1)] (2.21)

P(1,0) = E [(q(1)−E [q(1)])(q(1)−E [q(1))H ] (2.22)

The time-varying case, where the system matrices (i.e., functions) and noise covariances are
function of k is presented for the sake of generality. F(k,q(k)) in (2.13) denotes a nonlinear
transition matrix function that is time-variant and that depends on the state. The non-linear
system is then simpli�ed by a linearized model at each iteration:

F(k +1,k) = ∂F(k,q)

∂q
|q̂(k|Yk ) (2.23)

C(k) = ∂C(k,q)

∂q
|q̂(k|Yk−1) (2.24)

Finally, the implementation of the discrete EKF consists in updating expressions (2.15) to (2.20),
(2.23) and (2.24) on each iteration, i.e., for k = 1,2,3, .... Initial conditions have to be set, i.e.,
the predicted state error correlation matrix and the predicted state: K(1,0) and q(1|Y0). One
should note that using KF or EKF schemes needs some assumptions: ν1(k) and ν2(k) are white
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processes that are uncorrelated with q(k) and with each other. The EKF algorithm is iteratively
updated by using local linearized functions F() and C().

In the context of fundamental frequency estimation of a power system, the instantaneous value
of the frequency is obtained from the states of the model. Indeed, the angular frequency is
obtained from (2.3). This means that the state vector is estimated and the angular frequency is
deduced at each instant k from the imaginary part of q1(k):

ω̂(k) = 1

Ts
sin−1 (

img(q1(k))
)

. (2.25)

The fundamental frequency then can thus be determined by:

f̂o(k) = 1

2πω
= 1

2πTs
sin−1 (

img(q1(k))
)

. (2.26)

The e�ciency of this EKF method in estimating the states of a nonlinear and dynamic power
system and in tracking its fundamental frequency has be evaluated [78].

2.1.3 Extended Kalman Filter for fundamental frequency estimation of sin-
gle phase power systems (1P EKF)

Another method tries to estimate the fundamental frequency of a power system from only the
measured voltage from one phase as follow [45]:

i (k) = I sin(ωkTs +φ)+ε(kTs) (2.27)

where ε(kTs) is zero-mean white Gaussian noise.

Signal modeling

The signal i (k) in (2.27) can be decomposed as:

i (k) =−0.5 j I e j (ωkTs+φ) +0.5 j I e− j (ωkTs+φ) +ε(kTs) (2.28)

De�ning q1(k) = e jωTs , q2(k) = I e j (ωkTs+φ) and q3(k) = I e− j (ωkTs+φ) leads to the following
equation: q1(k +1)

q2(k +1)

q3(k +1)

=

 1 0 0

0 q1(k) 0

0 0 1
q1

(k)


 q1(k)

q2(k)

q3(k)

 . (2.29)
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The scalar output associated to (2.29) is the measurement of va(k):

y(k) =
[

0 −0.5 j 0.5 j
][

q1(k) q2(k) q3(k)
]T

. (2.30)

It is obvious that (2.29) is a state-space model composed of the three state variables q1(k), q2(k),
and q3(k).

Algorithm: EKF

Since equations (2.29) is nonlinear, the EKF in [45] is employed for the model to estimate the
fundamental frequency of the power system. When q1(k), q2(k), and q3(k) are determined at
each instant k , the fundamental frequency also obtained from the imaginary part of q1(k):

f̂o(k) = 1

2πTs
sin−1 (

img(q1(k))
)

. (2.31)

2.1.4 Adaptive Notch Filter

One can consider a power current as:

i (k) = I sin(ωkTs +φ)+ε(k) , (2.32)

where ε(k) is zero-mean white noise.

Adaptive Notch �lters (ANF) are frequently used to eliminate narrow-band or sinusoidal wave
disturbances with unknown frequencies from observed time series [70]. In [105], ANF is used
to estimate the fundamental frequency of a signal.

Signal modeling

In [105], a single ANF is represented in a form of a transfer function as follow:

H(z,θ,ρ) = 1−2cos(θ)z−1 + z−2

1−2cos(θ)ρz−1 +ρ2z−2 . (2.33)

where H(z,θ,ρ) is an ANF; θ is called a ’notch’, i.e., any sinusoidal component of an input
signal that has frequency angular equal to θ will be eliminated when the signal passes the �lter;
ρ represents the bandwidth β of the �lter with the following relationship:

β=π(1−ρ).

If the single sinusoidal signal i (k) from (2.32) is taken as the input of H(z,θ,ρ) and if its
parameter θ is adjusted to be close to the frequency angular ω of i (k), then we have the
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following relationship:

i (k)H(z,θ,ρ) ≈ ε(k) . (2.34)

Expression (2.34) means that in order to estimate the fundamental frequency of i (k), we consider
the signal as the input of H(z) and estimate the value of parameter θ of the �lter so that the
output of the �lter approximates a zero mean white noise.

If i (k) is disturbed by harmonics and if the harmonic terms are multiple of the fundamental
frequency, a single ANF H(z,θ,ρ) in (2.33) can be expanded to a cascade of single ANFs to take
into account the harmonic components [105]. A cascade of single ANF can be expressed by
H(z,θ,ρ):

H(z,θ,ρ) = Y (z)

X (z)
=

M∏
m=1

Hm(z) , (2.35)

where M is the number of frequency terms to be taken into consideration, Hm(z) are the m-th
sub-�lter of H(z) and has the following expression:

Hm(z,θ,ρ) = 1−2cos(mθ)z−1 + z−2

1−2cos(mθ)ρz−1 +ρ2z−2 . (2.36)

m represents the harmonic order and is considered to be known in advance.

The transfer function H(z,θ,ρ) has two parameters θ and ρ. Similar to (2.32) in the case of a
single-sinusoid signal, if θ ≈ω, then

i (k)H(z,θ,ρ) ≈ ε(k) . (2.37)

From (2.37) and (2.34), the problem of estimating the fundamental frequency of i (k) can become a
problem of estimating the optimal value of θ which minimizes the output of H(z,θ,ρ) according
to a certain cost function (ρ that represents the bandwidth of H(z,θ,ρ) can be assigned a �xed
value).

Algorithm: Least Mean Squares (LMS)

The Least Mean Squares method (LMS) is based on steepest descent algorithm to iteratively
update the estimation of the parameters of a mean squared function in order to minimize that
function [41].

In (2.37), ym(k) denotes the output of the m-th sub-�lter, so yM (k) is the output of H(z,θ,ρ).
LMS are used in [105] to iteratively estimate θ in (2.37) that minimizes the mean squared
function E

∣∣yM (k)
∣∣2. The update equations of estimating θ by LMS is shown below [105]:

θ(k +1) = θ(k)−2µyM (k)βM (k) , (2.38)
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with µ a simple adaptation rate, and βm(k) = δym (k)
δθ(k) the gradient term of the m-th sub-�lter.

At each iteration k , yM (k) and βM (k) in (2.38) are determined by the following recursive
equations:

ym(k) = ym−1 −2cos(mθ)ym−1(k −1)+ ym−1(k −2)

+2ρ cos(mθ)ym(k −1)−ρ2 ym(k −1) ,
(2.39)

βm(k) =βm−1(k)−2cos(mθ(k))βm−1(k −1)

+2m sin(mθ(k))ym−1(k −1)+βm−1(k −2)

+2ρ cos(mθ(k))βm(k −1)−ρ2βm(k −2)

−2ρm sin(mθ(k))ym(k −1) .

(2.40)

with m = 1,2, ..., M and y0(k) = i (k) and β0(k) = 0.

The estimated fundamental frequency is thus obtained with:

f̂o(k) = θ(k)

2π
. (2.41)

2.1.5 Adaptive Prony’s method

Signal modeling

According to [87], Prony’s method is a signal processing technique which approximates a signal
by a sum of exponential functions. A power signal i (k) can thus be approximated as a sum of
M exponential terms:

î (k) =∑M
m=1 hm zk−1

m , (2.42)

where:

hm = Am ·e jψm , (2.43)

zm = e(αm+ jωm )Ts , (2.44)

and with Am , ψm , ωm and αm respectively the amplitudes, the phases, the frequencies and the
damping factors of each frequency contribution of i (k). The complete signal is estimated with
each of its M frequency contributions and the fundamental frequency will be deduced from the
�rst one.
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Algorithm: Least square

The values of the parameters Am and ψm of hm and αm and ωm of zm with m = 1,2, . . . , M are
determined by solving two sets of equations in order to minimize the following square error:

ε=∑N
k=1

∣∣i (k)− î (k)
∣∣2

, (2.45)

where î (k) is the estimation of i (k) using model (2.42) in which its parameters are assigned to
certain values, and || is modulus of a complex number.

One can consider a polynomial P (z) whose roots are zm with m = 1,2, . . . , M :

P (z) =∏M
m=1 (z − zn) (2.46)

The polynomial can be represented as:

P (z) =∑M
m=0 am zM−m , (2.47)

The �rst set of equations is to determine coe�cients am (m = 1,2, . . . , M ) of the polynomial.
They are the solution of the following set of linear equations:∑M

m=0 ami (k −m) = 0 , (2.48)

for k = M +1, M +2, . . . , N .

In (2.48), if N = 2M , the number of equations is equal to the number of variables. If N > 2M ,
the number of equations is more than the number of variables and the variables need to be
estimated as the least square solution.

When zm is determined, αm and ωm can be deduced from zm .

After zm is determined, hm corresponds to the least square solution of another set of linear
equations:∑M

m=1 hm zk−1
m = i (k) . (2.49)

with k = 1,2, . . . , N .

Am and ψm can be deduced from hm .

Prony’s method is only applicable for approximating signals with constant parameters . For
signals with time-varying parameters, an adaptive variant of Prony’s method has been proposed
in [21] and [87]. This APM de�nes a mean square relative error over the L last passed samples,
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i.e., L de�nes a short-time window:

ε2
cur r =

1

L

∑L
l=1

∣∣i (l )− î (l )
∣∣2

i (l )2 . (2.50)

This error is iteratively compared to a threshold in order to detect if the parameters’ values
correspond to the measures. If not, a new short-time windows is considered and the signal
is thus separated into contiguous short-time windows where the signal is supposed to have
constant model parameters.

Applying the APM consists in the following steps:

1. Chose a starting length Lmi n for a short-time window;

2. Apply Prony’s method over the samples in the short-time window in order to obtain the
values of the model’s parameters;

3. Calculate ε2
cur r from these values;

4. Compare ε2
cur r with a predetermined threshold ε2

thr and:

(a) if ε2
cur r ≤ ε2

thr , store the Prony model parameters and increase the window length
(and then the subset of the data segment) with a new measure of the signal until
ε2

cur r > ε2
thr and, then, go to step 2 to analyze the next contiguous short-time

window.

(b) if ε2
cur r > ε2

thr , increase the short-time window length (and then the subset of the
data segment) with a new value of the signal and go to step 2

The steps �nish at the end of the signal. The estimated fundamental frequency is thus obtained
from zr in (2.44) where r is the index at which ‖Ar ‖ is the largest of ‖Am‖ with m = 1,2, . . . , M :

f̂o(k) = 1

2π
ωr . (2.51)

2.1.6 Performances and comparison of well-known methods

In this section, simulation results are shown to con�rm the performance of the four methods
APM, ANF, 1P EKF, and 3P EKF under many di�erent conditions of the three phase power signals,
these conditions are: Balanced sinusoidal signals disturbed by noise, balanced sinusoidal signals
disturbed by harmonics, and unbalanced sinusoidal signals. The comparison is made through
simulation results of the techniques under the same type of disturbances. The simulations were
implemented in Matlab/Simulink and the parameters used in each simulation were set aiming
for the best performance under each situation.
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In the simulation test with sinusoidal signals disturbed by noise, the APM uses an initial short-
time window of length Lmi n=20, the order is set to p=10 and the threshold to ε2

thr =0.005. In
the test with harmonics, the window length, the order, and the threshold employed by the APM
correspondingly are Lmi n=34, p=16, ε2

thr = 0.001. In the test with unbalanced signals, Lmi n=15,
p=6, ε2

thr = 0.001 are chosen.

The ANF uses a transfer function of order 8 for the test with harmonic disturbance and a
transfer function of order 2 for the other tests. Besides, the ANF uses µ=0.0004 and ρ=0.88 for
the test with noise disturbance, µ=0.0002 and ρ=0.88 for the test with harmonic disturbance,
and µ=0.0007 and ρ=0.88 for the test with unbalanced signals.

With 3P EKF and 1P EKF, their initial state variables should be close enough to the true values
to prevent the estimation from converging to local minima. The initial state variables q1(k) and
q2(k) of 3P EKF and the initial state variables q1(k), q2(k) and q3(k) of 1P EKF are chosen so
that parameters I , f , φ of system (2.52) are initialized at 0.8A, 45Hz, and π/6rad) respectively.

Test with balanced three phase signals

In the �rst test, the three phase balanced sinusoidal signals of (2.52) are taken into account.
ia(k) = I sin(ωkTs +φ)

ib(k) = I sin(ωkTs +φ− 2π
3 )

ic (k) = I sin(ωkTs +φ+ 2π
3 )

(2.52)

with I = 1A, ω= 2π fo = 100π rad/s is the signal’s pulsation, φ= 0rad. In this case fo = 50Hz,
but all the approaches are able to tackle any other values of the main frequency.

The estimated frequencies of the four methods are illustrated by Fig. 2.2, a) and the results are
presented in Table 2.2. In the case of balanced sinusoidal signals with a constant fundamental
frequency, the frequencies estimated by APM and ANF quickly converge to the true value with
very high accuracy (the MSE in the range of 10−25). On the other hand, the 3P EKF and 1P EKF
provide the frequency estimation with a MSE in the range of 10−6. The initial conditions impact
the convergence speed and the accuracy of the estimated frequencies of the two EKF methods.

Test with balanced three phase signals disturbed by noise with the fundamental fre-
quency of step changes

A zero-mean white Gaussian noise with a signal-to-noise (SNR) ratio of 40 dB is added to the
signals in (2.52) in order to investigate the degree of noise immunity of the methods. In addition,
the fundamental frequency changes from 50Hz to 50.1Hz at instant 0.2s and from 50.1Hz to
50.2Hz at instant 0.35s.

Fig. 2.2 b) shows the real fundamental frequency of the testing signals and the estimated
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Figure 2.2 – Performance of the four considered methods in estimating the fundamental fre-
quency of a power system under di�erent conditions, a) signals (2.52), b) signals (2.52) with a
40 dB noise, c) signals (2.52) disturbed by harmonics, d) unbalanced three phase signals

frequencies by the four considered methods. The numerical results are presented in Table 2.3.
The presence of the noise makes the estimated frequency of the APM unable to converge.
Because of the noise, the MSE of the estimated frequency by the ANF increases largely, from
the range of 10−6 to the range of 10−4. The 3P EKF and the 1P EKF provide the estimated
frequencies with MSEs in the range of 10−6 and 10−5 respectively. One can see that among the
four methods, the two EKF methods are the most robust to noises.
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Test with balanced three phase signals distorted by harmonics

This second test consists in evaluating the robustness of the four methods against harmonic
distortions. For that purpose, harmonic components of orders 3th , 5th and 7th are introduced
in the power system. This results in the test signals described in (2.53):

va(k) = sin(ωkTs)+ 1

5
sin(3ωkTs)+

1

5
sin(5ωkTs)+ 1

9
sin(7ωkTs)

vb(k) = sin(ωkTs − 2π

3
)+ 1

5
sin(3ωkTs)+

1

5
sin(5ωkTs + 2π

3
)+ 1

9
sin(7ωkTs − 2π

3
)

vc (k) = sin(ωkTs + 2π

3
)+ 1

5
sin(3ωkTs)+

1

5
sin(5ωkTs − 2π

3
)+ 1

9
sin(7ωkTs + 2π

3
)

(2.53)

Considering the signals in (2.53), it can be noticed that the harmonic of order 3 is in the zero
sequence, harmonic of order 5 is in the negative sequence, and harmonic or order 7 in the
positive sequence.

The results are shown in Table 2.4 and Fig. 2.2, c). The frequencies estimated by APM and ANF
converge to the the real value in a short time with high accuracy (the MSEs are in the range of
10−27 and 10−21 respectively). Compared to the �rst test, the performance of 1P EKF and 3P
EKF shows degradation in the frequency estimation (the MSEs are in the range of 10−5 and 10−6

in order). The model errors clearly a�ect to the performance of EKF methods (the harmonic
components are not taken into account in the state-space models used by the methods).

Test with unbalanced three phase signals

The last test veri�es the performance of the four methods in estimating the fundamental
frequency of a power system under unbalanced conditions, i.e., the amplitude of phase b in
system (2.52) is equal to 0.3A, and the one of the other phases of the system are equal to 1A. The
estimated frequencies are illustrated in Fig. 2.2, d) and Table 2.5 provides the estimation errors
and convergence time. The results show that the estimated frequency by 3P EKF oscillates and
its accuracy is worsened compared to the three �rst tests (the MSE is in the range of 10−5). The
performance of the other methods are not a�ected.
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time to reach the MSE at Error max.
methods reference frequency steady-state at steady-state

with +/- 0.1 Hz (ms) (Hz) (Hz)

APM 0.0069 1.0683 10−25 3.2685 10−13

ANF 0.0204 2.6849 10−25 7.2617 10−12

3-phase EKF 0.0420 2.8992 10−6 0.0038
1-phase EKF 0.0563 7.3860 10−6 0.0061

Table 2.2 – Performance of the four methods in estimating the frequency of three phase
sinusoidal signals

time to reach the MSE at Error max.
methods reference frequency steady-state at steady-state

with +/- 0.1 Hz (ms) (Hz) (Hz)

APM Oscillates 0.0307 0.2954
ANF 0.0368 2.9575 10−4 0.0522

3-phase EKF 0.0064 4.9076 10−6 0.0064
1-phase EKF 0.0198 1.4147 10−5 0.0099

Table 2.3 – Performance of the four methods in estimating the frequency of three phase
sinusoidal signals disturbed by a noise of 40 dB

time to reach the MSE at Error max.
methods reference frequency steady-state at steady-state

with +/- 0.1 Hz (ms) (Hz) (Hz)

APM 0.0165 8.5323 10−27 9.2371 10−14

ANF 0.0399 1.1513 10−21 3.3441 10−10

3-phase EKF 0.0401 2.9783 10−6 0.0062
1-phase EKF 0.1207 7.3469 10−5 0.0394

Table 2.4 – Performance of the four methods in estimating the frequency of three phase
sinusoidal signals disturbed by higher-order harmonics

time to reach the MSE at Error max.
methods reference frequency steady-state at steady-state

with +/- 0.1 Hz (ms) (Hz) (Hz)

APM 0.0070 1.0683 10−25 3.2685 10−13

ANF 0.0204 2.6849 10−25 7.2617 10−12

3-phase EKF 0.0874 3.5027 10−5 0.0207
1-phase EKF 0.0282 6.4441 10−7 1.7918 10−3

Table 2.5 – Performance of the four methods in estimating the frequency of unbalanced three
phase sinusoidal signals

2.1.7 Discussion

The methods described above are online frequency estimators. We have seen that their it-
erative implementation allows to estimate the frequency changes in real-time respectively
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from (2.51), (2.41), (2.26) and (2.31) for the APM, ANF, 3P EKF, 1P EKF. The characteristics of
the methods are compared in Table 2.6. Their underlying models, adaptive parameters, and
tuning ability are recapitulated. Their complexity, advantages and drawbacks are also evaluated
and listed.

methods characteristics
underlying comple- tuning para- advantages drawbacks
model xity ability meters

APM sum of expo-
nential func-
tions

+++ + hi , zi adaptive, fast con-
vergence

frame-based

and highly accurate
without noise

sensitive to
noise

ANF band-cut �l-
ter

++ +++ θ, ρ adaptability,
sample-based,

sensitive to
noise, to lo-
cal

simple working
rule

minimum,
and to mis-
adjustment,
slow conver-
gence rate

3P EKF state-space
and noise
models

+++ ++ F̂ (k),
Ĥ(k),

adaptability,
sample-based,

steady-state
error

P(k) fast convergence,
robust to noise, but
sensitive to model
error

1P EKF state-space
and noise
model

++++ F̂ (k),
Ĥ(k),

adaptability,
sample-based,

steady-state
error

P(k) fast convergence,
robust to noise, but
sensitive to model
error

Table 2.6 – The characteristics of the four methods APM, ANF, 3P EKF and 1P EKF

These frequency estimators are adaptive but in di�erent ways. The APM works with speci�c
coe�cients an that de�nes constant polynomials P (z) over adjustable time-windows of the
signal. The ANF is like a band-cut �lter where the parameters θ and ρ are adjusted. The EKF is
adaptive because it relies on a local linearized state-space model and uses an automatic online
reinitialization of the covariance matrix.

Moreover, it is necessary to know which harmonic term is present or not in the signal for all
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of these methods. In other works, each method includes in his model the harmonic terms and
estimates or rejects them separately. Obviously, the 1P EKF method does not take into account
the harmonic terms supposed to be in the signal.

The simulation results indicate that [78]:

• The APM is appropriate to model signals with harmonics and inter-harmonics. However,
the estimation of the fundamental frequency is very sensitive to the existence of noise in
the signals.

• The ANF is able to track the fundamental frequency, even in harmonic environment.
However, with disturbing noise, the performance of the method is considerably degraded.
In addition, the estimated frequency easily falls into local minima due to the non-quadratic
error surface. Since the fundamental frequency of power systems oscillates around a
nominal value with small amplitude in power systems, the initial value of the estimated
frequency can be easily chosen.

• The 3P EKF uses a state-space model in the α−β frame and thus requires three-phase
measurements. The initialization of the state variables has a great impact to the perfor-
mance of the method and the variables should be assigned by appropriate initial values
in order to prevent divergence.

• The 1P EKF is also based on a state-space model that directly represents an one-phase
power signal. Initialization of the state variables of the model is more di�cult than in the
3P EKF, since the model is more complex with one more state variables compared to the
model of the 3P EKF.

• The 1P EKF and the 3P EKF are robust to noise, but the estimated frequency given by the
two methods are degraded due to model errors. In the 1P EKF, model errors occur in the
simulation test with the appearance of harmonics, because the state-space model (2.29) of
the method does not take into account harmonics components. Model (2.4) of the 3P EKF
also does not consider the harmonics, so the performance of the method is also a�ected
by harmonics, but the estimated frequency by this method is better compared to that of
the 1P EKF because of the α−β transform (presented in Appendix A.2) that is used to
remove the zero sequence harmonics from the input signals.

For power system applications, the selected methods have simple digital implementation and,
therefore, low computational burden.
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2.2 Adaptive signal processingmethods to identify symmetrical
components of a power system

Because of the important role of symmetrical component theory in analyzing power systems,
numerous methods have been proposed to identify symmetrical components. The Kalman �lter
used in [102] is a dynamic method, however, in order to estimate symmetrical components, the
method requires the fundamental frequency of a power system to be speci�ed in advance. The
gradient descend method in [54] and the method based on arti�cial neural networks in [32]
allow to estimate symmetrical components and the fundamental frequency recursively at the
same time. The method in [32] is time-delaying, and the one in [54] is complex. Other neural
methods have been developed like in [8] or in [73]. PLL-based methods can also be used. For
example in [109], vectorial properties of the three-phase input signal in the αβ-reference frame
are taken into account but the method necessitate to converge after each nonlinear load changes.

Among all the available methods for symmetrical components estimation, the method in [64]
introduces an adaptive linear combiner structure (Adaline) and is applicable to deal with multi-
output systems. The method is called MO-Adaline and is investigated due to its simplicity.

2.2.1 Signal modeling

One can consider that ia(k), ib(k), ic (k) are the three phase signals of a power system. According
to the symmetrical component theory presented in Chapter 1, the signals can be represented by
a sum of symmetrical components as follow:

ia(k) = I+ sin(ωkTs +φ++ I− sin(ωkTs +φ−+ Io sin(ωkTs +φo

ib(k) = I+ sin(ωkTs +φ+− 2π
3 )+ I− sin(ωkTs +φ−+ 2π

3 )+ Io sin(ωkTs +φo

ic (k) = I+ sin(ωkTs +φ+− 2π
3 )+ I− sin(ωkTs +φ−− 2π

3 )+ Io sin(ωkTs +φo

(2.54)

The zero component is calculated by:

io(k) = ia(k)+ ib(k)+ ic (k)

3
(2.55)

Subtracting the zero component from the three phase signals in (2.54) yields to:
ia(k)− io(k) = I+ sin(ωkTs +φ+)+ I− sin(ωkTs +φ−)

ib(k)− io(k) = I+ sin(ωkTs +φ+− 2π
3 )+ I− sin(ωkTs +φ−+ 2π

3 )

ic (k)− io(k) = I+ sin(ωkTs +φ+− 2π
3 )+ I− sin(ωkTs +φ−− 2π

3 )

(2.56)
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Using the relation sin a +b = sin a cosb + sinb cos a for (2.56) yields to:

ia(k)− io(k) = sin(ωkTs)I+ cosφ++cos(ωkTs)I+ sinφ+
+sin(ωkTs)I− cosφ−+cos(ωkTs)I− sinφ−

ib(k)− io(k) = sin(ωkTs − 2π
3 )I+ cosφ++cos(ωkTs − 2π

3 )I+ sinφ+
+sin(ωkTs + 2π

3 )I− cosφ−+cos(ωkTs + 2π
3 )I− sinφ−

ic (k)− io(k) = sin(ωkTs + 2π
3 )I+ cosφ++cos(ωkTs + 2π

3 )I+ sinφ+
+sin(ωkTs − 2π

3 )I− cosφ−+cos(ωkTs − 2π
3 )I− sinφ−

(2.57)

If we de�ne:

X(k) =

 sinωkTs cosωkTs sinωkTs cosωkTs

sinωkTs − 2π
3 cosωkTs − 2π

3 sinωkTs + 2π
3 cosωkTs + 2π

3

sinωkTs + 2π
3 cosωkTs + 2π

3 sinωkTs − 2π
3 cosωkTs − 2π

3

 (2.58)

d(k) =

 ia(k)− io(k)

ib(k)− io(k)

ic (k)− io(k)

 (2.59)

W(k) =


I+ cosφ+
I+ sinφ+
I− cosφ−
I− sinφ−

 (2.60)

then, the expressions in (2.57) can be summarized under the form of a linear combiner structure:

d(k) = XT (k)W(k) (2.61)

where X(k) is the input matrix, d(k) is the output vector, and W(k) is the parameter vector that
needs to be estimated.

2.2.2 Multi-output Adaline (MO-Adaline) for tracking symmetrical compo-
nents

The output vector d(k) of the linear combiner structure (2.61) can be calculated from the
measurements of ia(k), ib(k), ic (k) as the expression (2.59).

W(k) represents the weight vector of the structure (2.61) that can be iteratively updated by a
MO-Adaline [64] according to:

W(k +1) = W(k)+αX(k)[X(k)T X(k)]−1e(k) (2.62)
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where e(k) = d(k)−XT (k)W(k) represent an error.

After the weight vector W(k) is estimated, parameters I+,φ+, I−,φ− can be determined and the
positive and negative components can be also reconstructed.

2.2.3 Discussion

The method uses a linear combination with an input matrix of size 3×4, an output vector with 3
rows and a weight vector with 4 rows. The MO-Adaline algorithm is then applied to estimate the
weight vector W(k) at each iteration k , however, the fundamental frequency must be provided.
Besides its simplicity, the algorithm is sensitive to noise and results in mis-adjustment of the
estimation.

2.3 Conclusion

The principle of four methods of fundamental frequency estimation (an adaptive method based
on Prony’s theory, an adaptive notch Filter, an EKF dedicated for balanced three phase power
systems, and an EKF dedicated for single phase power systems) is presented speci�cally for
estimating the frequency in grid-interconnection systems. Drawbacks and advantages are also
discussed. To evaluate and con�rm the performance of the methods, extensive simulation and
experimental veri�cations were performed. The adaptive methods are also compared to the
zero-crossing technique. Numerical simulations with unknown frequency variations, when
harmonic terms are present and under noise condition, but also representative experiments
have highlighted the performance of the methods in real-time applications.

An adaptive method based on the principle of a MO-Adaline is also presented to identify
the symmetrical components of a three phase power system. Obviously, its advantages and
disadvantages are discussed.

In general, each of those methods assumes a di�erent signal model. Prony’s method tries to
model a single phase voltage/current as a sum of exponential functions. ANF also models
a single phase signal, however, by employing a cascade of second order notch �lters. The
state-space model in EKF takes three phase signals into account. However, all these models
only deal with either a single phase of a power system or a balanced three phase power system.
Although MO-Adaline method exploits a linear combiner structure to take into account the
three phase signals of a unbalanced three phase power system, the model is not su�cient to
fully represent the signals since it still requires the fundamental frequency value. Besides, the
algorithm used in the method is sensitive to noise.

The next chapter proposes several new state-space models which are able to model the three
phase signals of a power system and thus even under unbalanced conditions. Furthermore, a
system identi�cation algorithm is proposed for estimating the states in real-time. Therefore,
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the proposed model is capable of estimating the fundamental frequency and of identifying the
symmetrical components of any power system, i.e., by recovering their amplitudes and phase
angles.
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3 New state-space representations for
modeling unbalanced three phase
systems
3.1 Introduction

The fact is that in real world applications, because of load variations, a three phase power system
is generally always unbalanced. A balanced state is only for a limited period of time and will
permanently evolve. Most of the developed models only represent power systems with only one
phase and/or with three phases but balanced. As examples, four methods have been presented
in Chapter 2. Those models are not capable of representing the properties of a three phase
system in practical situations, thus new models are expected. Among di�erent types of models
(AR, ARMA, state-space, etc.), the state-space model is a simple and basic way of modeling a
system and/or signals issued from a process. Recently, state-spaces have been developed for
the modeling and forecasting of high frequency data from power systems [27], this was for
short-term load forecasting issues, i.e., hourly electricity loads of the French electricity demand.

In this chapter, two new state-space models are developed to model unbalanced three phase
power systems. They have been inspired by the two state-space models presented in Chapter 2.
Indeed, the model given by (2.4) is for a balanced three phase power system, and the one given
by (2.29) is appropriate for single phase power systems. The two new state-space models are
developed to represent unbalanced three phase power systems under di�erent assumptions
(one is linear, the other one is nonlinear):

• The �rst state-space model we propose is able to represent any three phase power systems
which can be either balanced or unbalanced. It supposes that the fundamental frequency
is known in advance. According to that, the frequency is a parameter of the model and
should be provided by another process.

• The second state-space model that is developed thereafter is also suitable to represent any
three phase power systems either balanced or unbalanced. Furthermore, this state-space
does not require the fundamental frequency to be known in advance. It is capable to
instantaneously estimate the time-varying value of the fundamental frequency of the
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power system. In fact, one state variable of the model is representative of the fundamental
frequency because it is a function of it. The model and its performance have been
published the research in [80, 81, 82].

The two new state-space models will provide to power system designers and engineers two
possibilities: With the �rst state-space model, the fundamental frequency is supposed to be
available or estimated by another method and then it is a known parameter to estimate other
parameters and/or quantities of a power system, with the second state-space model it is possible
to implement the estimation of the fundamental frequency at the same time with the estimation
of the other quantities of the power system.

In the thereafter section, the two state-space models we propose are completely detailed. The
next section presents algorithms for the online parameter estimation of a three phase power
systems. Then, a discussion is proposed in a section and the solution to �nd initial values of
the proposed nonlinear method is introduced in another section. Applications of the proposed
state-space models are presented in a section for estimating power system’s parameters, i.e., for
fundamental frequency estimation and for symmetrical component identi�cation in real-time.
Finally, various applications of these new state-space models are brie�y referred to in a section
and some concluding remarks are given in the last section.

3.2 New state-space models of unbalanced three phase signals

3.2.1 A new state-space model of unbalanced three phase signals of which
the fundamental frequency is an unknown parameter

One can consider unbalanced three phase power currents as:
ia(k) = Ia sin(ωkTs +φa)

ib(k) = Ib sin(ωkTs +φb)

ic (k) = Ic sin(ωkTs +φc )

(3.1)

According to the theory of symmetrical components, the set of three phase signals can be
represented as a sum of three sets: ia(k)

ib(k)

ic (k)

=

 i+a (k)

i+b (k)

i+c (k)

+

 i−a (k)

i−b (k)

i−c (k)

+

 i o
a (k)

i o
b (k)

i o
c (k)

 . (3.2)
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In (3.2), the set i+a (k)

i+b (k)

i+c (k)

=

 I+ sin(ωkTs +φ+)

I+ sin(ωkTs +φ+− 2π
3 )

I+ sin(ωkTs +φ++ 2π
3 )

 (3.3)

is the positive sequence.

Additionally, the set i−a (k)

i−b (k)

i−c (k)

=

 I− sin(ωkTs +φ−)

I− sin(ωkTs +φ−+ 2π
3 )

I− sin(ωkTs +φ−− 2π
3 )

 (3.4)

is the negative sequence.

Finally the set i o
a (k)

i o
b (k)

i o
c (k)

=

 Io sin(ωkTs +φo)

Io sin(ωkTs +φo)

Io sin(ωkTs +φo)

 (3.5)

is the zero sequence.

Theα−β components and then the complex form of the three phase signals in (3.1) are calculated
from the αβ transform of the corresponding symmetrical components. The αβ components for
the positive components are:

[
i+α (k)

i+
β

(k)

]
= MT

 I+ sin(ωkTs +φ+)

I+ sin(ωkTs +φ+− 2π
3 )

I+ sin(ωkTs +φ++ 2π
3 )

 . (3.6)

with

M =
√

2

3


1 0

−1
2

p
3

2

−1
2 −

p
3

2

 . (3.7)

The corresponding complex form of the positive component is determined from (3.6) as:

i+(k) = i+α (k)+ j i+β (k) = A+e jωkTs . (3.8)
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Similarly, the αβ components of the negative components are:

[
i−α (k)

i−
β

(k)

]
= MT

 I− sin(ωkTs +φ−)

I− sin(ωkTs +φ−+ 2π
3 )

I− sin(ωkTs +φ−− 2π
3 )

 . (3.9)

The complex form of the negative component is calculated from (3.9) as:

i−(k) = i−α (k)+ j i−β (k) = A−e− jωkTs . (3.10)

The zero component via the αβ transform is eliminated. By applying the αβ transform on
the three phase signals ia(k), ib(k), ic (k) in (3.1), the resulting complex form of the three phase
signals is the sum of the complex currents corresponding to the positive, negative and zero
components and is:

i (k) = A+e jωkTs + A−e− jωkTs . (3.11)

(3.11) can be expressed as:

i (k) = e jωTs A+e jω(k−1)Ts +e− jωTs A−e− jω(k−1)Ts . (3.12)

By de�ning q1(k) = e jωTs = cos(ωkTs)+ j sin(ωkTs) and q2(k) = A+e jωkTs and q3(k) = A−e− jωkTs ,
and by assuming the fundamental frequency of system (3.1) is constant in one sampling period,
the following equations can be deduced from (3.12): q1(k +1)

q2(k +1)

q3(k +1)

=

 q1(k)

q1(k)q2(k)
q3(k)
q1(k)

 , (3.13)

with a scalar output

y(k) =
[

0 1 1
][

q1(k) q2(k) q3(k)
]T

. (3.14)

Process noises can be added to state-space model (3.13) to account for the variance of the
parameters of the state variables, so the model becomes: q1(k +1)

q2(k +1)

q3(k +1)

=

 q1(k)+ν1

q1(k)q2(k)+ν2
q3(k)
q1(k) +ν3

 , (3.15)

with ν1,ν2,ν3 process noises. It can be observed that state-space model (3.13) (3.14) or (3.15) (3.14)
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3.2. New state-space models of unbalanced three phase signals

is only one expression of the general state-space model in (2.13) (2.14) with:

F(k,q(k)) =

 q1(k)

q1(k)q2(k)
q3(k)
q1(k)

 , (3.16)

and

C(k,q(k)) = [q2(k)+q3(k)], (3.17)

The state equation (3.13) is nonlinear and contains three state variables q1(k), q2(k) and q3(k),
here, q2(k) and q3(k) respectively represent the positive and negative components of the three
phase system given by (3.1). Additionally, q1(k) represents the variation of the phase angle of
q2(k) and q3(k) between two consecutive iterations.

3.2.2 A new state-space model of unbalanced three phase signals of which
the fundamental frequency is a known variable

The state equation (3.13) considers the fundamental frequency of a power system as an unknown
variable. However, in many applications, at each sampling time, the fundamental frequency is
known or already estimated using some methods of frequency estimation. If the fundamental
frequency is available at each sampling time, so that e jωTs in (3.12) can be considered as an
available parameter at each sampling time. Therefore, denote a(k) = q1(k) = e jωTs to represent
the parameter at sampling time k , then:

i (k) = a(k)A+e jω(k−1)Ts + 1

a(k)
A−e− jω(k−1)Ts . (3.18)

By de�ning q1(k) = A+e jωkTs and q2(k) = A−e− jωkTs , a new state-space model of the complex
signal of the three phase signal in (3.1) can be deduced:[

q1(k +1)

q2(k +1)

]
=

[
a(k) 0

0 1
a(k)

][
q1(k)

q2(k)

]
, (3.19)

with a scalar output

y(k) =
[

1 1
][

q1(k) q2(k)
]T

. (3.20)

Model (3.19) is linear and composed of two state variables: q1(k) and q2(k) respectively represent
the positive and negative components of the three phase system given by (3.1), and one parameter
a(k) represents the fundamental frequency. After a state-space model of the three-phase power
signals of a power system has been designed, an identi�cation algorithms is required to estimate
the states of the power system.
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3.3 Algorithms for online estimation of a three phase power sys-
tem’s parameters and states

It is easily recognized that model (3.13) is a nonlinear state-space model, and (3.19) is a linear
one. Chapter 2 describes KF and EKF as e�ective solutions to the problem of estimating the
parameters of a system based on a state-space model in case of no model error. According to
that, KF and EKF are adaptive and robust to noise. The distinction of the two �lters is that: KF
is exclusive for linear state-space models, and EKF is an expansion of KF for applications on
nonlinear state-space models.

From that facts, two proposals are elaborated:

• The �rst proposal is called the ’linear method’: It consists in applying KF to linear
model (3.19) to recursively estimate the states of a power system, the fundamental fre-
quency is known or provided by a previous process.

• The second proposal is the ’nonlinear method’: It consists in applying EKF to model (3.13)
to recursively estimate the states and parameters of a power system including the funda-
mental frequency.

3.4 Discussion about the two proposed methods

3.4.1 Discussion of the proposed linear method

The proposed linear method requires the fundamental frequency provided by a previous process.
Its model (3.19) is linear and composed of two state variables: q1(k) and q2(k) respectively
represent the positive and negative components of the three phase system given by (3.1).
Additionally, parameter a(k) represents the fundamental frequency. The method employs KF to
estimate the states and parameters of a power system, the �lter is adaptive and robust to noise.

Considering the fundamental frequency as an available parameter at each iteration, it allows
to utilize the available powerful methods to estimate the fundamental frequency, e.g., the PLL
presented in Chapter 2.1.1.

In addition, one big advantage of model (3.19) compared to model (2.61) of MO-Adaline in
Chapter 2, is that: The fundamental frequency must be constant for the MO-Adaline. If its value
changes in time, the estimation given by the MO-Adaline method will not be accurate due to
the error integration. In the proposed linear model, the fundamental frequency represented
by parameter a(k) is updated at each iteration, which satis�es the characteristic of practical
power systems: The fundamental frequency is not constant but changes in time. Therefore,
the proposed method is able to estimate the symmetrical components even if the fundamental
frequency varies in time. The simulation tests in Chapter 4 will verify this judgment.
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3.4. Discussion about the two proposed methods

3.4.2 Discussion of the proposed nonlinear method

In the proposed nonlinear method with three state variables, the state equation of (3.13) is
nonlinear and contains three state variables. Compared to the model (3.13), (2.4) has only
two and (2.29) has three state variables. It is also important to notice that, the state vari-
ables of model (2.29) have no physical meaning while model (2.4) only represents the positive
components of three phase power signals. Furthermore, the states of (3.13), q2(k) and q3(k)

respectively represent the positive and negative components of the three phase system given
by (3.1). Additionally, q1(k) represents the variation of the phase angle of q2(k) and q3(k)

between two consecutive iterations which directly relates to the fundamental frequency. This
explains why the proposed nonlinear method can identify not only balanced but also unbalanced
three phase systems.

Both the proposed method and the 3P EKF (the EKF for balanced three phase signals) apply
Clark’s transform to transform the three phase signals measured from grids into the complex
representation. Via the α−β transform, zero sequence harmonics (harmonic of orders 3, 6, 9,
12,. . . , as mentioned in Chapter 1) are eliminated. Therefore, the results of the two methods
are not a�ected by zero sequence harmonics. On the other hand, the 1P EKF uses directly the
signal measured from the grid as the output of its state-space model, so it is sensitive to the
harmonic components.

As 3P EKF and 1P EKF, the proposed nonlinear method relies on a nonlinear state-space model
so that the initial values of the state variables of the model must be selected carefully in order
for their estimation to be able to converge to the right values without su�ering bias and falling
into local minima, e.g., the initial values should be close enough to the global minimum point.
The selection of the initial conditions is a hard issue and often requires prior knowledge of the
process.

Table 3.1 compares the proposed nonlinear method with the two EKF methods presented in
Chapter 2 in terms of number of state variables, application ability, computation, and initializa-
tion.

3P EKF 1P EKF proposed nonlinear method
number of states 2 3 3

suitable for balanced three phase one phase systems balanced and unbalanced
systems three phase systems

computation ++ +++ +++
complexity

initial condition ++ +++ +++
choice

Table 3.1 – Comparison of the proposed method and the EKFs in Chapter 2

61



Chapter 3. New state-space representations

3.5 A solution to the initialization problemof the proposed non-
linear method

As mentioned in the discussion above and in Chapter 2, in order to be able to be applied in
practice, the methods based on EKF, i.e, the 1P EKF, 3P EKF and the proposed nonlinear method
have to deal with the di�culty of choosing initial values of the state variables. Thereafter, we
propose a solution to solve the initialization problem of the proposed nonlinear method. The
1P EKF and 3P EKF can use the same strategy to get good initialization conditions.

According to Chapter 1, the real frequency should deviate around its nominal value (50Hz, for
example). There are two state-space models proposed in this chapter, in which the proposed
nonlinear method accompanies with the nonlinear model (3.13). If the fundamental frequency
from which the state variable q1(k) of (3.13) is calculated directly is assigned to the nominal
value, the estimation of the state variables q2(k) and q3(k) becomes a linear estimation using
the proposed linear method, from that the two state variables can be estimated to a certain
accuracy depending on the variation of the fundamental frequency from its nominal value. In
addition, recalling that q1(k) = e jωTs , the relatively small sampling time Ts makes the error of
the nominal value and the real frequency negligible. Using the observations, an initialization
stage can be added to the proposed nonlinear method. The method now contains two stages:
Initialization and tracking.

Initialization stage consists in:

1. Fixing the fundamental frequency at its nominal value

2. Applying the proposed linear method in case of the fundamental frequency is known
to estimate the state variables q2(k) and q3(k) of the model (3.13) in No iterations corre-
sponding to No samples y(k).

Here No is called the ’number of iterations in the initialization stage’. Two iterations that is
equivalent to No = 3 are enough to calculate the initial values of state variables q2(k) and q3(k).
No is chosen more than 3 to mitigate the bad e�ect of noise and outlier samples.

The tracking stage consists in:

1. Assigning the estimated state variables in the initialization stage as initial values for the
state variables q1(k), q2(k) and q3(k) in this stage

2. Applying the proposed nonlinear method to estimate the state variables

3. At each iteration k , calculating the mean square relative error ε(k), if the error is over a
threshold εthr (k), it means there is a big change in the signals and the estimation is out
of track. The initialization stage needs to be restarted.
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parameters in real-time

The mean square error ε(k) is determined from a number L of the last samples in the tracking
stage:

ε(k) = 1

L−1

∑L
l=0

∣∣y(l )− ŷ(k − l )
∣∣2 . (3.21)

where ŷ(k) is the reconstruction of the samples y(k) from the estimated state variables. The
value of εthr (k) and L can be chosen so that the e�ects of noises and/or outliers will be reduced.

3.6 Applications of the proposedmethods for estimating power
system’s parameters in real-time

Based on proposed approaches, di�erent parameters and states of power systems can be esti-
mated.

3.6.1 Fundamental frequency estimation

The proposed nonlinear method allows to estimate the fundamental frequency of a power
system iteratively. At each instant k the fundamental frequency can be estimated from the
imaginary part of state q1(k) according to:

f̂o(k) = 1

2πTs
arcsin

(
img(q1(k))

)
. (3.22)

The fundamental frequency can also be calculated from state variable q2 as follow:

f̂o(k) = 1

2πTs
(∠q2(k)−∠q2(k −1)). (3.23)

3.6.2 Symmetrical component identi�cation

Both the proposed methods are capable of estimating symmetrical components of a power
system. The only di�erence is that for the proposed linear method, the positive and negative
components are represented by q1(k) and q2(k) respectively, while in method with three
variables, they are q2(k) and q3(k). If ϕ+ is the phase of the positive components, if ϕ− is the
phase of the negative components, the following details how to determine the symmetrical
components and their amplitudes, phase angles and phases by the proposed linear method.

The zero component is directly calculated from the three phase signals ia(k), ib(k), ic (k) mea-
sured on the grid at each iteration by:

i o
a (k) = i o

b (k) = i o
c (k) = ia(k)+ ib(k)+ ic (k)

3
(3.24)
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The amplitude I+, the phase angle φ+, and the phase ϕ+ of the positive component can be
estimated at each iteration by:

I+(k) =
√

2
3 mod (q2(k))

φ+(k) =π/2+∠q2(k)−k∠q1(k)

ϕ+(k) =π/2+∠q2(k)

(3.25)

where mod (z) is the module of z and ∠z is the phase angle of z. Here ∠q2(k) =ωkTs+φ+(k)−
π/2 and ∠q1(k) =ωTs . If

[
i+a (k) i+b (k) i+c (k)

]
are the three phases of the positive component,

then they can be reconstructed by applying the inverse αβ transform:

 i+a (k)

i+b (k)

i+c (k)

=
√

2
3


1 0

−1
2

p
3

2

−1
2 −

p
3

2


[

i+α (k)

i+
β

(k)

]
, (3.26)

 i+a (k)

i+b (k)

i+c (k)

=
√

2
3


1 0

−1
2

p
3

2

−1
2 −

p
3

2


[

r eal (q2(k))

i mg (q2(k))

]
. (3.27)

In the same way as for the positive component, the amplitude I−, the phase angle φ−, and the
phase ϕ− of the negative component are determined from state q3(k) according to

I−(k) =
√

2
3 mod (q3(k))

φ−(k) =π/2−∠q3(k)−k∠q1(k)

ϕ−(k) =π/2−∠q3(k)

(3.28)

where ∠q3(k) =π/2−ωkTs −φ−(k).

The corresponding three phases
[
i−a (k) i−b (k) i−c (k)

]
can be reconstructed by:

 i−a (k)

i−b (k)

i−c (k)

=
√

2
3


1 0

−1
2

p
3

2

−1
2 −

p
3

2


[

i−α (k)

i−
β

(k)

]
, (3.29)

 i−a (k)

i−b (k)

i−c (k)

=
√

2
3


1 0

−1
2

p
3

2

−1
2 −

p
3

2


[

r eal (q3(k))

i mg (q3(k))

]
. (3.30)

Using the proposed nonlinear method, the symmetrical components can be calculated in a
similar way.
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3.7. Applications of the ability of estimating power systems’ parameters of the
proposed methods in improving power quality of power systems
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Figure 3.1 – Principles of the proposed nonlinear method

Fig. 3.1 summarizes the principle of the proposed nonlinear method. The currents and/or
voltages measured from the grid are converted to digital form before being processed by the
proposed methods. The output of the process is the estimated fundamental frequency and the
estimated symmetrical components. For the proposed linear method, the output is only the
estimated symmetrical components.

3.6.3 Discussion

Power systems are non-stationary, their parameters, e.g., the fundamental frequency, the
amplitudes and phase angles of the currents and voltages are not �xed but changes in time.
To represent the parameter variance, white Gaussian process noises can be integrated in
model (3.13) and model (3.19) in the same way as in model (3.15). That helps to improve the
tracking ability of the proposed methods.

The calculation of the phase angles of the positive and negative components by (3.25) and (3.28)
is accurate when the fundamental frequency is constant all the time. For systems with a varying
fundamental frequency, the phase angles can be calculated from:{

φ+(k) =π/2+∠q2(k)−∑k
i=1∠q1(i ),

φ−(k) =π/2−∠q3(k)−∑k
i=1∠q1(i )

(3.31)

The problem with (3.31) comes from the sum up of errors of frequency angular estimation over
time. The estimation of the phases does not encounter this problem, so that the phases can be
used to replace the phase angles in di�erent applications.
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- Matlab/Simulink
- C/C++ programs
- Real-Time Toolbox (RTT)
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Figure 3.2 – Applications of the new methods in an APF

3.7 Applications of the ability of estimating power systems’ pa-
rameters of the proposedmethods in improving power qual-
ity of power systems

The estimator, i.e., the proposed state-space associated to an EKF, are implemented in a very
general compensating and monitoring strategy. This context is presented by Fig. 3.2 where the
orange box corresponds to Fig. 3.1. Fig. 3.2 is a detailed diagram of our shunt APF. The APF
can be installed in di�erent places of a power grid to improve power quality of the whole grid
or certain areas of the grid. It can also be put next to the loads to compensate harmonics and
unbalance generated by them and to prevent the disturbances from infecting the whole grid.

In fault conditions, e.g., phase-to-ground, phase-to-phase, two-phase-to-ground, etc, the sym-
metrical components are useful information for fault detection [22, 16]. Due to this reason,
in practice, some types of protective relays are able to estimate the symmetrical-components
estimation. Fig. 3.3 illustrates a structure of such a protective relays in reference of the similar
structure presented in [22]. The orange box in the �gure indicates the function of symmetrical
component estimation that can be implemented by the proposed methods. Below are some
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Figure 3.3 – Processes for estimating the symmetrical components of a power system in a digital
protective relay

examples of using the negative components in relay applications [22]:

1. Rotating machinery applications: The information of the negative sequences is used to
protect rotating machinery from damaging e�ect of the negative-sequence current �ow,

2. Over-current protection: The relay provides sensitive backup protection against phase
faults and overcurrent backup protection,

3. Directional elements: The relays provide the necessary sensitivity and direction for all
unbalanced faults,

4. Line current di�erential relay: Negative sequence quantities are used in line current
di�erential relays to increases the its sensibility in detecting unbalanced faults

5. Phase selection: A phase-selection algorithm based on negative-sequence and zero-
sequence currents allows for implementation of sophisticated single-pole tripping relays,

6. Fault location: Fault location algorithms using negative-sequence components provide
accurate solutions,

7. Other applications.

The values estimated by the proposed methods including the phase sequence, the voltage
magnitudes, the frequency, and the phases or phase angles of the three-phases grid voltages of
the positive sequence is useful for synchronizing the electric power of a generator to a grid.

3.8 Conclusion

Most of the modeling techniques of power systems only take into account one-phase systems or
balanced three-phase systems. Therefore, in this chapter, two state-space models for unbalanced
three-phase systems have been proposed. One model is linear and supposes that the estimated
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frequency is provided from another estimation step. The other model is nonlinear and can
handle unknown fundamental frequency. When combined with suitable algorithms, the two
models allow to estimate di�erent parameters and quantities of an unbalanced and varying
three-phase system. Therefore, this chapter proposes two methods and their applications in
power systems:

• The linear method consists in applying KF for the linear model (3.19) to estimate the
symmetrical components of a power system;

• The nonlinear method consists in applying EKF for the nonlinear model (3.13) to iteratively
estimate the fundamental frequency but also the symmetrical components of a power
system.

The performance of the two proposed methods will be evaluated in the next chapter.
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4 Simulations and Results

4.1 Introduction

In this chapter, a set of simulation tests has been achieved to evaluate the performance of the
proposed methods for estimating the fundamental frequency and the symmetrical components
of a power system under di�erent operating conditions. These tests are for evaluating:

• The ability of the proposed linear method in estimating symmetrical components of a
power system (the fundamental frequency is supposed to be known or provided by a
previous process);

• The ability of the proposed nonlinear method in estimating the fundamental frequency
and the symmetrical components of a power system (in these tests, the fundamental
frequency is unknown).

As mentioned in Chapter 3, each of the two approaches can be useful for speci�c applications
in practical systems. In addition, the performance of the proposed initialization scheme for the
proposed nonlinear method is also evaluated.

4.2 Tests with the proposed linear method

In these tests, a sampling time Ts of 0.5ms is chosen, the value of the fundamental frequency fo

is 50Hz and will be provided for the proposed linear method to online identify the symmetrical
components. The results will be compared with those of the MO-Adaline method presented in
Chapter 2, in order to verify the e�ciency of the linear method.

With the proposed method, the initial values of state variables q1(k) and q2(k) are respectively
chosen as 0 and 0. The error covariance matrix of the state estimate of KF is initialized at 1.2I.
The weight vector W(k) of MO-Adaline method in (2.62) is also initialized at W(0) = 0.
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4.2.1 Test with an unbalanced system

The following typical unbalanced three phase system is taken into account to evaluate the
performance of the proposed method of two state variables.

ia(k) = I+ sin(ωkTs +π/3)+ I− sin(ωkTs +π/6)+ Io sin(ωkTs)

ib(k) = I+ sin(ωkTs +π/3+2π/3)+ I− sin(ωkTs +π/6−2π/3)+ Io sin(ωkTs)

ic (k) = I+ sin(ωkTs +π/3−2π/3)+ I− sin(ωkTs +π/6+2π/3)+ Io sin(ωkTs)

(4.1)

The following numerical values are chosen in our simulations: I+ = 1A, I− = 0.2A and Io = 0.1A.

Applying the proposed method and MO-Adaline for estimating the symmetrical components
of system (4.1), the results are shown in Fig. 4.1. Fig. 4.1 a) represents the three phase signals
of (4.1), Fig. 4.1 a) represents the estimated amplitudes of the positive and negative components
and Fig. 4.1 b) represents the estimated phase angles of these components. It can be seen from
Fig. 4.1 that the estimated amplitudes by the two methods converge to two values 1A and
0.2A, and the estimated phase angles converge to values close to π/3rad and π/6rad. These are
the amplitudes and phase angles of the positive and negative components of system (4.1). In
addition, the proposed method shows much higher convergence speed than that of MO-Adaline.

Table 4.1 compares the performance of the two methods to estimate the amplitude quantities
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Figure 4.1 – Estimation of symmetrical components by the proposed linear method and MO-
Adaline a) the unbalanced three-phase signals, b) estimated amplitudes of the positive and
negative components, and c) phase angles of the positive and negative components
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4.2. Tests with the proposed linear method

mean at MSE at Error max.
Amplitudes steady-state steady-state at steady-state

MO-Adaline 1.0000 1.2663 10−7 0.0021
Proposed method 0.9999 1.4767 10−14 2.4657 10−7

Table 4.1 – Performance of the new method for estimating the amplitudes of the positive
components of three phase signals

mean at MSE at Error max.
Amplitudes steady-state steady-state at steady-state

MO-Adaline 0.2000 6.3673 10−8 0.0013
Proposed method 0.2000 6.6309 10−15 1.6747 10−7

Table 4.2 – Performance of the new method for estimating the amplitudes of the negative
components of three phase signals

of the positive components, using the mean, MSE and maximum error of the estimations at
steady-state. In the table, the MSE at steady-state is in the range of 10−7 A with the MO-Adaline
and 10−14 A with the proposed method. Table 4.2 presents the comparison of the performance
of the two methods in estimating the amplitudes of the negative components. According to
the table, the MSE at steady-state of the proposed method in the range of 10−15 and of the
MO-Adaline is in the range of 10−8. Obviously, the amplitudes estimated by the proposed
method shows much higher accuracy.

4.2.2 Robustness against load changes

This test is in order to verify the performance of symmetrical component estimation of the
proposed linear method in an appearance of load changes. Equations (4.2) below represents a
balanced system.

ia(k) = 1.2sin(ωkTs)

ib(k) = 1.2sin(ωkTs −2π/3)

ic (k) = 1.2sin(ωkTs +2π/3)

. (4.2)

At instant 0.075s (at iteration k = 150), a switch in the load makes the system to become
unbalanced, i.e., having the three phase signals as (4.1). The three phase signals of the power
system before and after the switching are illustrated in Fig. 4.2 a).

The proposed linear method is used to estimate the system’s symmetrical components. We
want to evaluate its robustness to the practical problem. To improve the tracking ability of the
proposed method, process noises are used to represent the variance of the state variables. The
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correlation matrix of the process noise vector used by the EKF scheme is set to:

Q1(k) =
[

2 10−7 0

0 2 10−7

]
(4.3)

The MO-Adaline is also employed for comparison. Fig. 4.2 b) shows the estimated amplitudes
of the positive and negative components of the testing signals by the two methods. Fig. 4.3
shows the reconstructed positive components by the proposed method and the MO-Adaline,
accompanied by the real ones. Fig. 4.4 shows the reconstructed negative components by the
proposed method and MO-Adaline, accompanied by the real ones. According to these �gures,
the two methods can track the change of the signals. The proposed linear method demonstrates
a better performance in comparison of the performance of MO-Adaline.

4.2.3 Tracking symmetrical components when the fundamental frequency
constantly varies in time

In this test, the three-phase signals (4.1) are considered with the fundamental frequency that is
not constant all the time but it varies in time at a rate of 2Hz/s, starting at 50Hz. Fig. 4.5 shows
the variation of the frequency during the time from 0.8s to 0.1s. The correlation matrix of the
process noise vector used by the EKF scheme is set to:

Q1(k) =
[

2 0

0 2

]
. (4.4)
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Figure 4.2 – Estimation of the symmetrical components of the power system in load changes
by the proposed method and MO-Adaline a) the unbalanced three-phase signals, b) estimated
amplitudes of the positive and negative components
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Figure 4.3 – Reconstruction of the positive components of the power system in load changes by
the proposed method and MO-Adaline a) positive component in phase a b) positive component
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The estimated amplitudes of the positive and negative components of the proposed method
and MO-Adaline are shown in Fig. 4.6. It can be seen from the �gure that the estimation of
the proposed method accurately converges to the real amplitudes of the positive and negative
componets. On the other hand, the estimation of MO-Adaline shows some oscillations around
the real values.

The error of the estimated three phase signals of the positive and negative components of the
MO-Adaline compared to the real signals are shown in Fig. 4.7. Fig. 4.8 draws the deviation of
the estimated signals of the proposed method from the real signals. The error in estimating
the symmetrical components of the proposed method is less than 1.510−5 which is much less
compared to the error of the estimated symmetrical components obtained with the MO-Adaline
(more than 0.01). The bad performance of the MO-Adaline in this test with a constantly varying
fundamental frequency comes from the assumption of this method for a constant fundamental
frequency.
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4.3 Test with the proposed nonlinear method

4.3.1 Fundamental frequency estimation

The proposed nonlinear method, which is able to work under balanced or unbalanced conditions,
is used to estimate the fundamental frequency of a power system under di�erent conditions.
The results are compared to the one obtained with the 3P EKF method and 1P EKF method
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Figure 4.5 – varying fundamental frequency
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presented in Chapter 2.

For each of these tests, the proposed method utilizes the state-space model (2.6) of 3 state
variables including the positive and negative components, the 1P EKF employes model (2.29)
also composed of three variables while the model used by the 3P EKF has only 2 variables,
either the positive or negative component.

The initial conditions of the EKFs are the �rst estimation of the frequency f̂ (0) = 45Hz and
1.2I for the error covariance matrix of the state estimate, I is the identity matrix. The initial
values of the other state variables of the three methods are chosen such that the amplitude and
phase angle of the positive components are 0.8A and π/6rad and the amplitude of the negative
components is equal 0A.

Frequency estimation under balanced conditions

In this test, the system that is used is composed of the following three-phase balanced sinusoidal
signals with I = 1A, φ= π

3 rad, ω= 2π fo with fo = 50Hz:
ia(k) = I sin(ωkTs +φ)

ib(k) = I sin(ωkTs +φ−2π/3)

ic (k) = I sin(ωkTs +φ+2π/3)

. (4.5)

The fundamental frequency is estimated at the same time with the two methods. The results
are presented in Table. 4.3 with the Mean Square Error (MSE), the maximum error at steady
state and the time to converge. Both the proposed method and the 3P EKF method require a
short transient time to converge, i.e., about 39 ms, and present a small error in estimating the
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Figure 4.6 – The estimated amplitudes of the positive and negative components of the proposed
method and MO-Adaline
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frequency (in the range of 10−6 Hz). The estimated frequency given by the 1P EKF method is
slightly less accurate than the other two method (in the range of 10−5 Hz).

Frequency estimation under unbalanced conditions

An unbalanced power system is considered in this test. The following is a typical unbalanced
three phase system:

ia(k) = I+ sin(ωkTs +φ+)+ I− sin(ωkTs +φ−)+ Io sin(ωkTs +φo)

ib(k) = I+ sin(ωkTs +φ+−2π/3)+ I− sin(ωkTs +φ−+2π/3)+ Io sin(ωkTs +φo)

ic (k) = I+ sin(ωkTs +φ++2π/3)+ I− sin(ωkTs +φ−−2π/3)+ Io sin(ωkTs +φo)

(4.6)
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Figure 4.7 – The errors of the estimation of the positive and negative components of the
signals (4.1) with the frequency varies as in Fig. 4.5 by MO-Adaline compared to the real ones:
a) phase a, b) phase b, c) phase c
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The following numerical values are chosen in our simulations: fo = 50Hz, I+ = 1, I− = 0.3,
Io = 0.1, and φ+ = 0, φ− =π/5, φo =π/2.

The three phase signals of this system are shown on Fig. 4.9.

The proposed method, the 3P EKF method and the 1P EKF method are applied to estimate the
fundamental frequency of the system given by (4.6). The results are presented by Fig. 4.10 a).
As it can be observed, the estimated frequency given by the 3P EKF method oscillates around
the true value meanwhile the estimated frequencies using the proposed method and the 1P
EKF converge faster without oscillation. The e�ciency of the three methods in estimating the
fundamental frequency is shown by Table. 4.4. It can be seen that the estimated frequency
obtained with the proposed method is the most accurate (the MSE is about 10−7 Hz). On the
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Figure 4.8 – The errors of the estimation of the positive and negative components of the
signals (4.1) with the frequency varies as in Fig. 4.5 by the proposed method compared to the
real ones: a) phase a, b) phase b, c) phase c
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time to reach the reference MSE at max. error at
methods frequency with +/- 0.1 Hz (s) steady-state (Hz) steady-state (Hz)

proposed method 0.0332 1.8350 10−6 0.0030
3P EKF 0.0388 1.5620 10−6 0.0028
1P EKF 0.0667 3.3167 10−5 0.0126

Table 4.3 – Performance of the proposed nonlinear method compared to the 3P EKF and the 1P
EKF in estimating the frequency of a balanced system

time to reach the reference MSE at max. error at
methods frequency with +/- 0.1 Hz (s) steady-state (Hz) steady-state (Hz)

proposed method 0.049 6.810 10−7 0.001
3P EKF 0.100 1.242 10−4 0.015
1P EKF 0.057 6.535 10−6 0.015

Table 4.4 – Performance of the proposed nonlinear method compared to the 3P EKF and the 1P
EKF in estimating the frequency of an unbalanced system

time to reach the reference MSE at max. error at
methods frequency with +/- 0.1 Hz (s) steady-state (Hz) steady-state (Hz)

proposed method 0.049 3.6844 10−6 0.0049
3P EKF 0.115 1.8268 10−4 0.0368
1P EKF 0.047 9.1296 10−6 0.0065

Table 4.5 – Performance of the proposed nonlinear method compared to the 3P EKF and the 1P
EKF in estimating the frequency of an unbalanced system with an additional 30 dB noise

time to reach the reference MSE at max. error at
methods frequency with +/- 0.1 Hz (s) steady-state (Hz) steady-state (Hz)

proposed method 0.070 7.6017 10−6 0.0094
3P EKF 0.135 4.8846 10−4 0.0535
1P EKF 0.150 1.0793 10−4 0.0435

Table 4.6 – Performance of the proposed nonlinear method compared to the 3P EKF and the 1P
EKF in estimating the frequency of an unbalanced system disturbed by harmonics
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other hand, the MSE with the 3P EKF method has a largest value (in the range of 10−4 Hz).

Evaluation of the robustness against noise

The immunity of the methods to noise is now investigated. Each of the three phase signals
of the system in (4.6) is contaminated by a zero-mean white Gaussian noise with a Signal-to-
Noise Ratio (SNR) of 30 dB. Table. 4.5 shows a MSE in the range of 10−6 Hz for the estimated
frequency with the proposed nonlinear method and the 1P EKF method. At the same time, the
corresponding MSE for the 3P EKF method is in the range of 10−4 Hz. Fig. 4.10 b) illustrates
the performance of the two methods. These results prove that the proposed method and the
1P EKF are able to estimate the fundamental frequency quickly and accurately even under
noisy conditions. The 3P EKF requires a longer convergence time and results in a less accurate
estimation.
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Evaluation of the robustness against higher-order harmonics

The presence of harmonic terms in�uences the fundamental frequency estimation. This is
evaluated for the three methods. Each phase signal of the system in (4.6) are therefore disturbed
by adding higher order harmonics of rank 3 and 5, respectively with amplitudes of V+

3 and V+
5

in which harmonic of rank 3 is in the zero sequence. Results are presented in Table. 4.6 and
the estimated frequencies of the two methods are shown by Fig. 4.10 c). It can be seen that the
addition of harmonics strongly degrades the performance of the 1P EKF method, meanwhile
the proposed method is robust against harmonic pollution.

The results of these tests can be explained as follow: The model used by the 3P EKF method
is �awed for modeling unbalanced systems. Thus, estimating the frequency is even more
challenging for it under severe conditions, i.e., with the presence of noise and harmonics. As a
consequence, the estimation is achieved with a low convergence rate, a constant steady-state
error and oscillations. On the other hand, the state-space proposed in (3.13) models power
systems with their unbalance properties. Therefore, this model is e�cient in estimating the
frequency in an EKF scheme and is robust against noise and higher-order harmonics. The
1P EKF employs a state-space model for one phase power signal and is not a�ected under
unbalanced conditions, however, when the other two methods apply α−β transform that helps
to eliminate zero sequence harmonics, the 1P EKF method does not have the ability and hence
su�ers severe impact by these harmonics.

case a) b) c)
freq. step amplitude (Hz) 0.00001 0.0001 0.001

peak value (Hz) 50.00012004 50.00120044 50.01200460
PO (%) 1100.45 1100.44 1100.46

�rst peak time (ms) 11 11 11
settling time to 5% (ms) 77.6 77.3 77.2
steady-state error (Hz) 7.105 10−15 3.553 10−13 4.007 10−12

Table 4.7 – Performance of the proposed state-space method in tracking fundamental frequency
steps

Tracking of fundamental frequency steps

Further investigations have been carried out to check the harmonic tracking ability of the
proposed method. To test the speed and convergence of the proposed technique at nominal
frequency conditions (the fundamental frequency is f0 = 50 Hz but it can be any other numerical
value), a signal is taken for fundamental frequency estimation where frequency steps occur
under unbalanced conditions.

In this test, fundamental frequency steps appear with di�erent amplitudes, i.e., 0.001, 0.0001
and 0.00001 Hz. The fundamental frequency is estimated by using the proposed state-space
model and the EKF algorithm. The fundamental frequency step appears at instant 0.25 s, in
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other words at iteration 500. The correlation matrix of the process noise vector in the EKF
scheme is set to:

Q1(k) =

 5.10−7 0 0

0 1.10−4 0

0 0 1.10−4

 (4.7)

The simulation results reveal that the proposed state-space method takes few iterations to reach
the steady-state value of the new value of the fundamental frequency. Results are represented
on Fig. 4.11. The evaluated converged results have been presented for each case in Table 4.7
which indicates the Percent Overshoot (PO), the peak value, the �rst peak time, the settling
time to within 5% of the �nal value and the steady-state error. If the peak values are high in
percent, frequency steps of 0.001 Hz are very severe cases and reasonably never happen in
real installations, and a frequency step of 0.1 10−3 Hz leads to a overshoot of 11.004 10−4 Hz.
Furthermore, the fundamental frequency estimated by the proposed state-space model and the
EKF converges rapidly the real value of the frequency. In all cases, the peak value appears only
22 iterations after the fundamental frequency step, i.e., in approximately 11 ms. Table 4.7 also
shows the accuracies of the proposed estimator: At steady-state, the error is almost less than
4.1 10−12 Hz.

All these results demonstrates that the proposed state-space method is an accurate frequency
estimator even in time-varying environments and for fundamental frequency variations.

Tracking of a fundamental frequency varying constantly in time

The estimation performance of the proposed nonlinear method has been evaluated with a
continuously changing fundamental frequency of the power system whose decay is 2Hz/s. The
correlation matrix of the process noises is set to:

Q1(k) =

 2 0 0

0 2 0

0 0 2

 (4.8)

Fig. 4.12 shows the tracking performance of the proposed method: Fig. 4.12 a) plots real and
estimated frequency and Fig. 4.12 b) presents the frequency error (subtraction of the estimated
frequency and the real frequency). The frequency error is less than 2.510−3Hz which is an
acceptable range in power systems applications.
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4.3.2 Symmetrical component estimation

In the section, the performance of the proposed nonlinear method applyed in estimating the
symmetrical components of a power system is investigated in various conditions.

Performance under unbalanced conditions

The �rst test works with a set of three phase signals of a unbalanced power system which can
be represented as the sum of three symmetrical components as in (4.9):


ia(k) = I+ sin(ωkTs +φ+)+ I− sin(ωkTs +φ−)+ Io sin(ωkTs +φo)

ib(k) = I+ sin(ωkTs +φ+−2π/3)+ I− sin(ωkTs +φ−+2π/3)+ Io sin(ωkTs +φo)

ic (k) = I+ sin(ωkTs +φ++2π/3)+ I− sin(ωkTs +φ−−2π/3)+ Io sin(ωkTs +φo)

(4.9)

In this application, the following numerical values are used for (4.9): fo = 50Hz, I+ = 1, I− = 0.4,
Io = 0.1 and φ+ = π/3, φ− = π/6, φo = 0, the three phase signals in (4.9) are unbalanced. A
zero-mean, white Gaussian noise of 30 dB is added to each of the signals.

The proposed state-space model is used in an EKF scheme, and expressions (3.25)-(3.27) and (3.28)-
(3.30) are used to identify the symmetrical components at each instant. The initial values of
q1(k) is chosen as 0.9891+0.1471i (this value corresponds to the fundamental frequency at
47Hz). Supposing that we do not know the existence of the negative components, q3(k) is
initialized at 0. The initial value of q2(k) is chosen as 1.2−0.5i which is not far from the true
value of q2(0). The error covariance matrix of the state estimate is initialized at 1.2I.

Results are presented by Fig. 4.13. Furthermore, Fig. 4.13 a) shows the evolution of the unbalanced
three phase signals through time and the estimated amplitudes of the corresponding symmetrical
components are presented in Fig. 4.13 b). It can be seen that, after a short time, the estimated
amplitudes get close to two values 1.0 and 0.4 which are the true amplitudes of the positive
and negative components. In addition, Table 4.1 evaluates the mean values, the MSE and the
maximum errors of the estimated amplitudes at steady-state for the proposed method. The
mean values indicate the biases from the true values. It can be explained as the result of a poor
initialization of the EKF. However, the MSE is in the range of 10−6 and the maximum error is in
the range of 10−3. This demonstrates well that the deviation of the estimated amplitudes from
the true ones is small and that the method provides high accuracy in estimating the amplitudes
of the symmetrical components. Fig. 4.13 shows the evolution of the symmetrical components
converted in the αβ-reference frame. It can be observed that the estimated components track
the true ones very well.
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signals, b) estimated amplitudes of the positive and negative components

Robustness against higher-order harmonics

The second test aims to demonstrate the immunity of the proposed method to harmonics.
Each phase signal of the system given by (4.9) are therefore disturbed by adding higher order
harmonics of rank 5 and 7, respectively with amplitudes of I+

10 and I+
15 . The state variables q1(k),

q2(k) and q3(k) are initialized with the same values as in the �rst test. The results are presented
in Table 4.9 and are similar to the ones from the �rst test. There is a small bias and the MSE and
maximum errors are small, i.e., in the range of 106 for the MSE and 103 for the maximum error.

Robustness against load changes

A third test is proposed to evaluate the dynamics to the proposed method. This is for examining
the performance of the proposed method with time-varying processes, like changes of nonlinear
loads. We propose to switch suddenly from a balanced load to an unbalanced one because
this can happen in real-world applications. Therefore, the following three-phase system is
considered:

ia(k) = sin(ωkTs)

ib(k) = sin(ωkTs −2π/3)

ic (k) = sin(ωkTs +2π/3)

(4.10)

The three phase system is balanced. At instant 0.075 s (at iteration k = 150), it changes to
become unbalanced with the signals in (4.9) with I+ = 0.8, I− = 0.2, Io = 0.1, φ+ = π

3 , φ− = π
2

and φo = 0.

The proposed method is used to identify the symmetrical components of the changing system
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Figure 4.15 – Identi�cation of the symmetrical components, a) the unbalanced three-phase
signals, b) estimated amplitudes of the positive and negative components, and c) phase angles
of the positive and negative components
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mean at MSE at Error max.
Amplitudes steady-state steady-state at steady-state

(A) (A) (A)

Positive component 0.9988 2.8627 10−6 0.0046
Negative component 0.4011 1.7359 10−6 0.0032

Table 4.8 – Performance of the new method for estimating the amplitudes of the positive and
negative components of three phase signals disturbed by noise of 30 dB

mean at MSE at Error max.
Amplitudes steady-state steady-state at steady-state

(A) (A) (A)

Positive component 0.9981 5.2349 10−6 0.0083
Negative component 0.4008 9.2706 10−7 0.0031

Table 4.9 – Performance of the new method for estimating the amplitudes of positive and
negative components of three phase signals disturbed by harmonics of rank 5 and 7

at each instant. The EKF scheme uses the process noises with the following correlation matrix:

Q1 =

 10−3 0 0

0 10−3 0

0 0 10−2

 (4.11)

The results are presented by Fig. 4.15 and it can be seen that before the transition (k < 150), the
estimated negative component is zero while the estimated positive component has an amplitude
of 1 V and a phase angle of 0 rad at steady-state. After the failure appears at iteration k = 150

and after a short transient, the estimated amplitudes of the positive and negative components
converge respectively to the true amplitudes 0.80 V and 0.20 V. At the same time, the estimation
of the phase angles of the positive and negative components respectively converge to 1.047

and 1.571 which are approximatly the true phase angles π
3 and π

2 of the power system.

The evolution of the positive and negative components are shown on Fig. 4.16. This �gure also
shows the evolution of the three currents reconstructed from the symmetrical components.
The results show that after a time shorter than one cycle, the estimated currents are very
close to the real values. Finally, the evolution of the symmetrical components converted in
the αβ-reference frame are shown by Fig. 4.17. It can be seen from this �gure that at the
beginning, the reconstructed system is balanced. After the failure appears, the negative and
zero component become signi�cant and the positive component decreases at the same time.
This characterizes the behavior of the true power system.
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β

, c) i−α and d) i−
β

Robustness against varying fundamental frequency

The three phase signals with the constantly varying frequency presented in section 4.3.1 is
used again in this test to evaluate the performance of the proposed method in estimating the
symmetrical components. The estimated amplitudes of the positive and negative components
of the proposed method are shown in Fig. 4.18, the estimations converge to 1 and 0.3 which
are the exact values. Fig. 4.19 shows the errors of the estimated phases of the symmetrical
components which are relatively small (in the range of 10−6 and 10−5 respectively). The errors
of the estimated three phase signals of the positive and negative components compared to the
real signals are indicated in Fig. 4.20. According to the �gure, these errors are less than 2.10−5

so the estimation of the three phase signals of the symmetrical components of the proposed
method is precise. The proposed method proves to perform well even in the variance of the
fundamental frequency. From that, the error in estimating the symmetrical components is less
than 2.10−5, showing that the proposed method is able to accurately estimate the symmetrical
components of the power system with a continuously varying fundamental frequency.
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Figure 4.18 – The estimated amplitudes of the positive and negative components of the proposed
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4.4 Test the proposed initialization of the proposed nonlinear
method

The following typical unbalanced three phase system is taken into account to evaluate the
performance of the proposed nonlinear method with the addition of the initialization scheme.

ia(k) = I+ sin(ωkTs +φ+)+ I− sin(ωkTs +φ−)+ Io sin(ωkTs +φo)

ib(k) = I+ sin(ωkTs +φ+−2π/3)+ I− sin(ωkTs +φ−+2π/3)+ Io sin(ωkTs +φo)

ic (k) = I+ sin(ωkTs +φ++2π/3)+ I− sin(ωkTs +φ−−2π/3)+ Io sin(ωkTs +φo)

(4.12)

where sampling time Ts = 0.0002s, amplitudes I+ = 1, I− = 0.2, Io = 0.1 and phase angles φ+ = π
3 ,

φ− = π
6 , φo = 0. The nominal fundamental frequency is 50Hz.

4.4.1 Robustness against noises

A white Gaussian noise of 30 dB is added to each of the three phase signals in (4.12). To test
the performance of the proposed nonlinear method combined with the initialization scheme in
estimating the parameters of the power system, the state variables q1(k), q2(k), and q3(k) are
initialized according to the following two cases:

Case 1 The initial value of the fundamental frequency is 49.5Hz, correspondingly the initial
value of the state variables q1(k) = 0.9981+0.0622∗ j . Both the state variables q2(k) and
q3(k) are initialized at 0A.

Case 2 The initial value of the fundamental frequency is 45Hz. Both the state variables q2(k)

and q3(k) are initialized at 50A.

The number of iterations in the initialization stage No is chosen as 30. The estimated fundamen-
tal frequencies corresponding to the two cases are shown in Fig. 4.21 that both converge to the
value 50Hz. Table 4.10 provides the details of the estimation accuracy and convergence speed.
In each of the two cases, it takes approximately one cycle to reach the reference frequency with
+/- 0.1 Hz, the MSE of the frequency estimation of the three cases are in the range of 10−6.

Fig. 4.22 and Fig. 4.23 respectively plot the estimations of the three phases of the positive and
negative components, together with their real curves, with the initialization in Case 1. In the
case of a 30 dB disturbance noise, the estimations tightly track the real curves. There is no
special requirement of knowledge of the initial conditions as well as no special turning in this
test.
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Figure 4.21 – The estimated frequency of the proposed nonlinear method combined with the
initialization scheme in disturbance of 30 dB noise a) Initialization with Case 1, b) Initialization
with Case 2

time to reach the MSE at Error max.
Initialization reference frequency steady-state at steady-state

with +/- 0.1 Hz (ms) (Hz) (Hz)

Case 1 0.0220 2.8024 10−6 0.0043
Case 2 0.0288 3.4785 10−6 0.0056

Table 4.10 – The estimated frequencies of an unbalanced system disturbed by a noise of 30 dB
of the proposed method combined with the initialization scheme corresponding to the two case
of initialization
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time to reach the MSE at Error max.
Initialization reference frequency steady-state at steady-state

with +/- 0.1 Hz (ms) (Hz) (Hz)

Case 1 0.0030 3.9078 10−10 4.2130 10−5

Case 2 0.0058 2.9412 10−7 0.0011

Table 4.11 – The estimated frequencies of an unbalanced system in load changes of the proposed
method combined with the initialization scheme corresponding to the two case of initialization

4.4.2 Robustness against load changes

The signals in (4.12) in the previous test are used again in this test. However, at the instant 0.1s
their amplitudes and phase angles jumps to new values of I+ = 0.8A, I− = 0.3A, Io = 0.1A and
φ+ =π/2rad, φ− =π/5rad, φo =π/6rad, the fundamental frequency also jumps from 50Hz to
50.5Hz at this moment, e.g., because of load changes. The signals are illustrated in Fig. 4.24.

To test the performance of the proposed nonlinear method combined with the initialization
scheme in estimating the parameters of the power system, the state variables q1(k), q2(k), and
q3(k) are initialized according to the following two cases:

Case 1 The initial value of the fundamental frequency is 49.5Hz, correspondingly the initial
value of the state variables q1(k) = 0.9981+0.0622∗ j . Both the state variables q2(k) and
q3(k) are initialized at 0A.

Case 2 The initial value of the fundamental frequency is 45Hz. Both the state variables q2(k)

and q3(k) are initialized at 50A.

The number of iterations in the initialization stage No is chosen as 3.

Fig. 4.25 shows the estimated fundamental frequencies of the unbalance system in load changes
using the proposed nonlinear method combined with the initialization scheme in the two cases
of initialization. According to this �gure, the estimated frequencies in both the two cases
converge to the true value 50Hz of the fundamental frequency.

It can be seen from Table 4.11 that, in Case 1, after the transition, the estimated frequency takes
a short time (0.003s or approximately 1

7 of a cycle) to converge to the new value 50.5Hz, the
MSE of the estimation is in the range of 10−10. In case 2, the convergence time is 0.0058s and
the MSE is in the range of 10−7. The frequency estimation of the proposed method is good in
the both cases.

With the initialization of Case 1, the estimated three phases of the positive and negative
components of the proposed nonlinear method combined with the initialization scheme are
shown in Fig. 4.26 and in Fig. 4.27 respectively which de�nitely track the real curves.
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4.4.3 Frequency tracking

The signals used for this test is the unbalanced signals in (4.12) in which the fundamental
frequency varies like a sinusoidal wave form of frequency 4Hz. Fig. 4.28 a) plots the real
fundamental frequency and the estimated one by the proposed method combined with the
initialization scheme. The error of the estimation is presented in Fig. 4.28, the error is in the
range of 10−3Hz which is relatively accurate in power system applications.

4.5 Conclusion

This chapter is composed of three sections to evaluate:

• The performance of the linear method in estimating the symmetrical components of a
power system;

• The performance of the nonlinear method in estimating the fundamental frequency and
the symmetrical components of a power system;

• The performance of the nonlinear method when combined with the proposed initialization
scheme in estimating the fundamental frequency and the symmetrical components of a
power system.
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The simulation results show that the proposed linear method can accurately estimate the
amplitudes and phase angles of the positive and negative components of an unbalanced three
phase power system. The method is also able to track the amplitudes and the phase angles
when the system suddenly switches from a balanced state to an unbalanced state due to a load
change, and is able to reconstruct the positive, negative and zero components. The proposed
method works well even when the fundamental frequency varies constantly in time. Compared
to the MO-Adaline, the proposed linear method is superior in both convergence speed and
accuracy.

Various simulations were performed to evaluate the performance of the proposed nonlinear
method in di�erent conditions: With balanced and unbalanced systems, with unbalanced
systems with the presence of noise or with the presence of higher order harmonic terms,
and with unbalanced systems with constantly varying fundamental frequency. The estimated
frequency of the method is then compared to that of the 3P EKF and the 1P EKF presented
in Chapter 2. According to the simulation results, the 3P EKF is e�cient to estimate the
fundamental frequency of a balanced system, but the performance of the method is much
degraded for an unbalanced system, because of model error. The 1P EKF can handle unbalanced
systems, but is unable to remove the e�ect of zero sequence harmonics. The proposed approach
proves to be e�ective to estimate the fundamental frequency of an unbalanced system and to
track the varying frequency. Moreover, the method is immune to the impacts of zero sequence
harmonics. In additions, as the linear method, the nonlinear method is able not only to accurately
estimate the amplitudes and phase angles of the positive and negative components of a power
system, but also to reconstruct the symmetrical components, including the positive, negative
and zero components, even when the fundamental frequency is unknown and varies constantly.
However, like the 3P EKF and the 1P EKF, the proposed nonlinear method requires a careful
selection of the initial conditions to prevent the results from bias and local minimum (the initial
problem does not exist in the proposed linear method).

The initialization scheme proposed in Chapter 3 for the proposed nonlinear method is tested
in di�erent conditions: Disturbance of noise, load changes, and the fundamental frequency
varying in sin wave. Without prior knowledge of the initial conditions, the estimation results
are of fast convergence, high accuracy and high robustness to disturbances. Combining the
initialization scheme with the proposed nonlinear method leads to an e�cient solution for
estimating the fundamental frequency and the symmetrical components of a power system.
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Conclusion

Recently, securing a reliable power supply has become an important need worldwide. This is a
challenging issue because of the liberalization of electricity supply, deregulation, consciousness
on the impact on the environment, increase of the power demand, integration of renewable
energy generation, etc. So, power distribution systems are in a period of transformation set in
motion by signi�cant changes in their concepts and in their structures. The main developments
which are needed on power distribution systems are on high-speed communication, intelligent
control of substations and protection devices, integrated power distribution management,
monitoring, and high performance automation capabilities.

The research work proposed in this thesis aims to develop some new methods for estimating
physical parameters of power systems and their signals, i.e., voltages and currents. This
is directly related to power quality in electricity supply. Power quality is one key aspect in
electricity transportation, in the evolution of power distribution systems toward smart grids. The
proposed methods represent new tools that can be used for improving the reliability and stability
of electric power systems. They are based on advanced signal processing techniques and models.
The proposed methods can be implemented and applied to estimate the grid’s fundamental
frequency and symmetrical components in order to evaluate the operating conditions of a power
system. This study is based on four chapters.

Chapter 1 discusses the issue of power quality and analyzes the symptoms, causes, and e�ects
of several power quality problems that have bad impacts on power quality and reliability
of power systems, i.e., frequency deviation, harmonics, reactive power, short voltage, long
voltage, and unbalance. For each problem, the method of evaluating it is also mentioned. The
chapter also mentions passive power �lter and active power �lter as solutions for the power
quality problems, in which, the active power �lter is preferable because of its �exibility to
environment changes. In active power �lter strategies, signal processing plays an important
role in information extraction and parameter estimation from power grids.

Chapter 2 reviews signal processing methods used in power system applications to estimate
a very important parameter of the system, the fundamental frequency. Four of the methods
are chosen APM, ANF, 1P EKF, 3P EKF; their principles are explained and the advantages
and disadvantages of each method are discussed. Further simulation tests are implemented
to verify the performance of the four methods. The EKFs provide good estimation even in a
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noisy environment but are sensitive to model error (the error of modeling harmonics and/or
unbalance). The estimation by ANF is of low accuracy and that of the APM even does not
converge in a noisy environment. This chapter also presents the principle of another method of
identifying the symmetrical components of a power system, the MO-Adaline.

In chapter 3, we propose two new state-space models of an unbalanced three phase power
system. The �rst state-space model which has been developed is linear and is able to represent
an unbalanced three phase power system in the case where the fundamental frequency is
available. This model is composed of two state variables representing the positive and negative
components of the power systems. The second state-space model also represents an unbalanced
three phase power system, however, the model uses one more state variable to represent the
unknown fundamental frequency, and it is nonlinear. The nonlinear state-space model of an
unbalanced three phase power system is appropriate for the situation where the fundamental
frequency is not available nor estimated. Kalman �ltering schemes are used with these model
to estimate the power system’s parameters. The linear method uses a KF to estimate the
symmetrical components of a power system in real-time. On the other hand, the nonlinear
method uses an EKF to estimate the fundamental frequency and the symmetrical components
of the power system in real-time. The derivation of the proposed linear method is to make it
possible to use any other methods for fundamental frequency estimation. The characteristics
and the advantages and disadvantages of the proposed methods are discussed. The initialization
procedure is pointed out as a challenge for the proposed nonlinear method as well as the
other methods based on EKF. An simple scheme is also proposed in this thesis to solve the
initialization problem.

Chapter 4 veri�es the performance of the proposed methods in Chapter 3 with several and
di�erent simulation tests. Simulation results prove that:

• With the fundamental frequency supposed to be available, the linear method is able to
estimate the amplitudes and phase angles of the positive and negative components of
a power system, as well as to reconstruct the three symmetrical components, i.e., the
positive, the negative and the zero components.

• The nonlinear method, with a good initialization, is e�cient and robust in estimating
the fundamental frequency under unbalanced conditions. This approach can be used in
another application, i.e., for the identi�cation of the symmetrical components of time-
varying unbalanced power systems. It can be used to precisely estimate the value of the
fundamental frequency in order to be able to identify in real-time the harmonic content of
signals. When combined with the proposed initialization scheme, the proposed nonlinear
method becomes more e�ective and robust in estimating parameters of a power system.

Both methods are e�cient in cases representative of real industrial or domestic applications. It
has been demonstrated that both method are robust against noise and harmonics. They are
adaptive and able to handle time-varying conditions of power systems. Even under severe
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conditions, the fundamental frequency and the symmetrical components are rapidly estimated
with a good precision.

Perspectives

In the early future, further studies will be conducted on:

• Looking to associate to the proposed state space model another identi�cation algorithm
in order to diminish the disadvantage of EKF (model approximation error).

• Expanding the proposed state-space models in order to take into account the harmonic
components, as each component of three phases could be considered as a positive or
negative sequence.

• Enhancing the proposed state-space models for higher order unbalanced harmonics, the
�nal purpose is to come up to a general and uniform state-space model able to include in
one concept or model the unbalanced fundamental component, the unbalanced harmonics,
and the harmonic sequences.
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Appendix A. Appendixes

A.1 List of Acronyms

AGC Automatic Generation Control
ANF Adaptive Notch Filter
ANN Arti�cial Neural Network
APF Active Power Filter
APM Adaptive Prony’s method
AR Auto-Regressive
ARMA Auto-Regressive Moving Average
DCO Digital Controlled Oscillators
DSP Digital Signal Processor
EKF Extended Kalman Filter
FFT Fast Fourier Transform
FPGA A Field-Programmable Gate Array
IGBT Insulated-Gate Bipolar Transistor
KF Kalman Filter
LFC Load Frequency Control
LMS Least Mean square
MSE Mean Squared Error
PCC Point of Common Coupling
PF Power Factor
PLL Phase Locked Loop
PMU Phasor Measurement Unit
PO Percent Overshoot
PWM Pulse Width Modulation
RMS Root Mean Square (rms)
SNR Signal-to-Noise Ratio
THD Total Harmonic Distortion
VSI Voltage Source Inverter
ZC Zero crossing
EMS Energy Management System
FACTS Flexible ac transmission
PV PhotoVoltaics
UKF Unscented Kalman Filter
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A.2 The α−β transform and the complex form of three phase
signals

According to [25], αβ transform calculates the α−β components iα and iβ from the three
phases instantaneous signals in the abc phases ia(k), ib(k), ic (k) as

[
iα(k)

iβ(k)

]
= MT

 ia(k)

ib(k)

ic (k)

 , (A.1)

with

M =
√

2

3


1 0

−1
2

p
3

2

−1
2 −

p
3

2

 . (A.2)

The corresponding complex form of the positive component is determined from (A.1) as

i (k) = iα(k)+ j iβ(k) (A.3)
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