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In the past years, robots have been a part of our every day lives. Even when we do not see them, we depend on them to build our computers, mobile phones, cars and more. They are also been used for organizing stocks in warehouses. And, with the growth of autonomous cars, we see them driving autonomously on highways and cities.

Another area of growth is social robotics. We can see a lot of studies such as robots helping children with autism. Other robots are being used to receive people in hotels or to interact with people in shopping centers. In the latter examples, robots need to understand people behavior. In addition, in the case of mobile robots, they need to know how to navigate in human environments.

In the context of human environments, this thesis explores socially acceptable navigation of robots towards people. To give an example, when a robot approaches one person, the robot shall by no means treat people as an obstacle because the robot get really close to the human and interfere with her personal space. The human is an entity that needs to be considered based on I am thankful to my advisors, Raja Chatila and Mohamed Chetouani, who guided me tirelessly throuhout my PhD. They are both brilliant researchers and I was fortunate to work with both of them and benefit from both their perspectives. They provided the input and the means needed to develop and finish my research.

This work is the result of collaboration with other people. Harmish Khambhaita and Rachid Alami provided several discussions and also technical knowledge and help to develop Chapter 3.

social norms that we (humans) use on a daily basis.

In a first time, we explore how a robot can approach one person. A person is an entity that can be bothered if someone or something approaches invading her personal space. The person also will feel distressed when she is approached from behind. These social norms have to be respected by the robot. For this reason, we decided to model the behavior of the robot through learning algorithms. We manually approach a robot to a person several times and the robot learns how to reproduce this behavior.

In a second time, we present how a robot can understand what is a group of people. We, humans, have the ability to do this intuitively. However, for a robot, a mathematical model is essential. Lastly, we address how a robot can approach a group of people. We use exemplary demonstrations to teach this behavior to the robot. We evaluate then the robot's movements by for example, observing if the robot invades people's personal space during the trajectory.

iii [START_REF] Kendon | Conducting interaction: Patterns of behavior in focused encounters[END_REF]. The O-space is a convex empty space surrounded by the people involved in a social interaction, where every participant looks inward into it, and no external people is allowed in this region.
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5.1

Person approaching a group of people. The goal of this chapter is to deploy a robot with similar capabilities. The color yellow is given by the members of the group, at some point the person becomes member of the group (detection of groups in the images is performed by methods of Chapter 4). . . . . . . . . . . . . . . . . . 5.2 Simulated scenario. Robot (blue) intends to intercept a group of people (green). Dense constraints computed with a Point-In-Polygon (PIP) equation plus angle similarity between V i and V j , that's the reason the red object below is rejected, the angle with respect to the blue needs to be small. . . . . . . . . . . . . . . . . 62 5.7 Built Graph from data in Figure 5.5 and from the constraints defined in this subsection and depicted in Figure 5.6. This graph drawing is created using Kamada's algorithm [START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF] at 1000 iterations. The drawback of this graph is that it is a discon- This thesis is developed within the European Project Social situation-aware PErceptioN and action for CognitivE Robots (SPENCER) 1 . This project was developed to deploy a robot capable of interacting with people and guide them to their gates in an airport. SPENCER is motivated by actual challenges in the aviation industry. KLM, the end-user in the consortium, considers the technologies developed highly relevant for the area of transfer passenger services. Up to 80% of passenger traffic at their home base Schiphol Airport in Amsterdam is due to transfer passengers whose efficient handling is a significant operational challenge. An important bottleneck are transfer passengers that have to go through a passport control in order to catch a connecting flight to Schengen countries. Every day, when they arrive with delay for example, people miss their connections due to short disembark-embark times, wayfinding problems, language and alphabet barriers, or other reasons.

Within the SPENCER project, this work targets the area of normative human behavior learning and modeling. An example of normative behavior can be seen in Figure 1.1. Here, a robot needs to go to a predefined goal, however it has to take into account the people passing in the scene. Factors that can intervene in the navigation process is the speed of the individuals, how near of the individuals can the robot be, invalidate navigation trajectories that interfere with groups of people (i.e. the robot passing through the group). Thus, the robot must be able to respect social norms.

In this work, we address the behavior of approaching people. What characteristics does a robot need to understand to be able to approach people? What are the factors involved in this navigation? Does it change from a standard navigation process?

The first element to think about is the representation of a person. A robot needs to understand what a person is in order to interact with her, some people have already consider this problem [START_REF] Kruse | Legible robot navigation in the proximity of moving humans[END_REF][START_REF] Kruse | Evaluating directional cost models in navigation[END_REF][START_REF] Li | Potential human reaction aware mobile robot motion planner: Potential cost minimization framework[END_REF][START_REF] Sisbot | A Human Aware Mobile Robot Motion Planner[END_REF]. Another element is a group of people, the robot needs a representation of what is a group of people, one of the pioneering works is Cristani [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] based on F-Formation, a conceptual framework developed by Kendon [41] in the field of social sciences. Lastly, another element is navigation of the robot. The standard navigation process requires a goal, in our case, the goal we look for is relative to a moving target (a person or a group of people that we want the robot to approach). This trajectory is prone to change during time of the trajectory.

In the following section we briefly explain the steps followed to achieve this goal.

Summary of Contributions

The models we developed are depicted in Figure 1.2 with arrows that mention dependencies.

When we started this work we addressed the problem of how to approach one person (approaching 1.2. Summary of Contributions one person in figure). We studied robot navigation theory as well as proxemics theory in social sciences, we also studied how to reproduce the movements of the robot and we decided to use Inverse Reinforcement Learning (IRL) algorithms [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF][START_REF] Ng | Algorithms for inverse reinforcement learning[END_REF][START_REF] Qiao | Inverse reinforcement learning with Gaussian process[END_REF][START_REF] Ramachandran | Bayesian inverse reinforcement learning[END_REF] in order to fulfill this task.

Once a navigation technique was deployed for approaching one person, we decided to take a step further and develop a model to approach groups of people. However, we found out that we 

Outline of the Dissertation

The following chapters are organized as follows:

Chapter 2 analyses previous works related with this thesis. We analyze the state of the art of two important issues: social navigation and identification of groups of people.

Chapter 3 focuses on producing a robot behavior able to approach one person in a socially acceptable manner. In this chapter we propose two navigation strategies in which a robot can approach one person from trajectories given by a human demonstrator.

Chapter 4 proposes a model to analyze groups of people. This provides a understanding of groups of people that a robot or any system is able to understand.

Chapter 5 focuses on producing a robot behavior able to approach groups of people in a socially acceptable manner. We propose a navigation strategy based on learning and features extracted from a given scenario.

Chapter 6 gives the general conclusions of our work and an outlook of future research.

Chapter 2

Related Works

I n this chapter, we will discuss about the state of the art at the intersection of some branches of robotic navigation, learning algorithms and social sciences. An objective of the current research is to design a robot capable of generating the behavior of approaching people and groups of people. On that account, a formalization of groups of people was developed. This formalization would allow a robot to understand what is a group of people, in Section 2.1 we study the definition of groups and public gatherings in social sciences, following by research in computer science. As for robotics, we deal with a navigation topic, therefore we focus on the modeling of navigation processes created to navigate around and towards people, which is discussed in Section 2.2.

Identification of Groups of People

Individuals perform a large set of activities within groups of different nature (e.g. private, public). Spontaneous and complex behaviors regulated by explicit and implicit social rules allow individuals to undertake social activities, for example greeting people, join a conversational group, interacting with a group. Conceptual frameworks building upon social sciences research have been proposed to describe proxemics in terms of intimate, private, personal and social spaces [START_REF] Hall | The hidden dimension, volume 1990[END_REF], Figure 2.1 depicts the latter areas of personal space for a person described by Hall.

Moving forward from an individual to a group of individuals, we can find some definitions of groups of people. For instance, a group is considered as a social unit comprising several members who stand in relationships with one another [START_REF] Forsyth | Group Dynamics[END_REF]. A group is characterized by some durable membership and organization [START_REF] Goffman | Encounters: Two studies in the sociology of interaction[END_REF]. Furthermore, Goffman states that groups or gatherings in public places consist of any set of two or more individuals in mutual presence at a given moment who are having some form of social interaction [START_REF] Goffman | Behavior in Public Places[END_REF].

Kendon [START_REF] Kendon | Conducting interaction: Patterns of behavior in focused encounters[END_REF] proposed the F-Formation. This conceptual framework is depicted in Figure 2.2.

An F-Formation is defined as a spatial organization of people around a shared physical space, to which they have equal, direct, and exclusive access. It is conformed by O-space, P-space and R-space. The O-space is a convex empty space surrounded by the people involved in a social interaction, where every participant looks inward into it, and no external people is allowed in this region. The P-space is a narrow stripe that surrounds the O-space, and that contains the bodies of the participants. Lastly, the R-space is the area beyond the O-space and P-space.

As social gatherings have been gaining attention from computer science. We can see that the latter F-Formation framework has been exploited by several authors [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF][START_REF] Setti | Group detection in still images by F-formation modeling: A comparative study[END_REF][START_REF] Setti | Multi-scale F-formation discovery for group detection[END_REF][START_REF] Setti | F-Formation Detection: Individuating Free-Standing Conversational Groups in Images[END_REF]. These works are analyzed in Subsection 2.1.1 in more detail.

F-Formation explains how people organize in some public gatherings but it does not necessarily explain all the kinds of public gatherings there are. A categorization of different types of gatherings was developed by Setti and is shown in first on static or/and dynamic gatherings as well as on the following interaction taxonomies: unfocused, common focused, jointly focused. This taxonomies are described by Goffman [START_REF] Goffman | Encounters: Two studies in the sociology of interaction[END_REF] (unfocused and focused) and extended by Kendon [START_REF] Kendon | Goffman's approach to face-to-face interaction[END_REF] (common focused and jointly focused).

This categorization is of great importance when defining a goal. Our goal is to deploy a robot that can be able to form a group of people in interaction by approaching them. This means that

Static Groups

Author

Dataset

Model

Cristani et al. [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] Synthetic Data and Home-made Dataset Cocktail Party and Coffee Break Head Orientation+Normal Distributed Sampling + Houng Voting Hung and Kröse [START_REF] Hung | Detecting F-formations as dominant sets[END_REF] Home-made Dataset with overhead Camera Body Orientation+Function of Distance + Affinity Graph Setti et al. [START_REF] Setti | Multi-scale F-formation discovery for group detection[END_REF] Synthetic Data and Caffe Break and Cocktail Party [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] Head Orientation+Normal Distributed Sampling + Houng Voting Setti et al. [START_REF] Setti | F-Formation Detection: Individuating Free-Standing Conversational Groups in Images[END_REF] Synthetic Data, GDET [START_REF] Bazzani | Social interactions by visual focus of attention in a three-dimensional environment[END_REF]and Cocktail Party and Coffee Break [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] Head and/or Body Pose+ O-space as normalized gaussian + Houng Voting

Dynamic Groups

Author

Dataset

Model

Vázquez et al. [START_REF] Vázquez | Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation[END_REF] In-house tracking system and Dataset [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] Lower-Body Orientations+Costmaps + local minimas Lower-body tracker is time dependent. Clustering groups is not.

Haritaoglu [START_REF] Haritaoglu | Detection and tracking of shopping groups in stores[END_REF] Home-made system deployed in a shop Silhouette detection + Person Segmentation + Interbody Distances+Time Bazzani et al. [START_REF] Bazzani | Social interactions by visual focus of attention in a three-dimensional environment[END_REF] Home-made Dataset (GDET), PETS 2006, PETS 2009 3D geometric interection of visual focus of attention (VFOA)+Time Lau [START_REF] Lau | Multi-model hypothesis group tracking and group size estimation[END_REF] and Luber [START_REF] Luber | Multi-Hypothesis Social Grouping and Tracking for Mobile Robots[END_REF] Laser data clustered points to represent people Multi-model hypothesis analysis+People Velocities+Time Linder and Arras [START_REF] Linder | Multi-model hypothesis tracking of groups of people in RGB-D data[END_REF] RGB-D data Multi-model hypothesis analysis+People Velocities+Time Table 2.1: Algorithms and datasets to detect groups of people (public gatherings).

Identification of Groups of People

we aim create a jointly focused group in which a robot takes part.

In the next subsections we present the research efforts on group detection classified as static groups and dynamic groups. Table 2.1 shows an overview of the principal authors of the next subsections.

Static Groups

A pioneering work inspired by social sciences was developed by Cristani et al. [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF]. This work uses the precedent F-Formation framework. It adopts a statistical inference over positions and orientation of standing people. However, this approach relies on sampling positions for every person on every time frame, as seen in Figure 2.4a. As a result of the sampling, this methodology is computationally heavy and therefore it is not able to run in real-time.

Setti et al. [START_REF] Setti | Multi-scale F-formation discovery for group detection[END_REF] presented an unsupervised approach for group detection. This method is based on a multi-scale Hough voting policy, containing voting sessions specialized for particular group cardinalities. However, the voting approach is similar to Cristani's approach and therefore there is no improvement in computation time.

Hung and Kröse [START_REF] Hung | Detecting F-formations as dominant sets[END_REF] used an affinity matrix to estimate the relationships among persons.

They proposed a socially motivated estimate of focus of orientation based on proxemics to identify when a person is prone to be included in a group. The affinity between two people depends on a function based on the distance as long as a condition in angle is met. However, this approach Later, Setti et al. presented another approach named Graph-Cuts for F-Formation (GCFF) [START_REF] Setti | F-Formation Detection: Individuating Free-Standing Conversational Groups in Images[END_REF].

Setti uses graphs to represent people and groups, this is an analogous representation to Hung's affinity matrix [START_REF] Hung | Detecting F-formations as dominant sets[END_REF]. Within the graph, nodes represent either people or the candidate O-spaces center (center of the group of people) and the edges are the connections between the nodes of different type. Setti proposes a model to get the center of the O-spaces and he models the probability of one individual as being part of latter O-spaces as follows: P r(

C i = O Gi |µ i ) ∝ exp -x Gi -µi 2 σ 2
. Thus, the probability of a person to be in a group depends on the distance of this person with respect to the position of the center of this group.

All these approaches focus on a frame based algorithm, i.e. their evaluation is performed in still images. Furthermore, they are not suitable in real-time processes, because of irregular events (e.g. shaking the head) that generate noise in the outputs.

Dynamic Groups

Addressing the scenario of free-standing conversational groups, Haritaoglu and Flickner [START_REF] Haritaoglu | Detection and tracking of shopping groups in stores[END_REF] proposed a monocular real-time computer vision system for identifying shopping groups. First, silhouettes are identified in the image. Groups are identified by analyzing distances between the persons waiting in a checkout line or service counter. People are grouped together as a shopping group by analyzing interbody distances. The system also monitors the cashier's activities to determine when shopping transactions start and end. This is an ad-hoc system was implemented, without considering sociology background.

Bazzani [START_REF] Bazzani | Social interactions by visual focus of attention in a three-dimensional environment[END_REF] introduces person relationships based on what he calls Subjective View Frustum (SVF), which is a 3D geometric representation of the VFOA (i.e. the space a person is able to see). Each person has a SVF, he then analyses the intersections of all the SVF during a period of time in order to suggest possible social interactions. This method is prone to affected considerably by head movements.

Vázquez et al. [START_REF] Vázquez | Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation[END_REF] used the tracking of lower body pose as an input for these algorithms.

They present a distribution for every subject in a scene, mixing the functions and using the Hessian of these functions to localize the centers of groups. They use the strides of a person to calculate the mentioned functions in order to find an O-space. The use of value of fixed strides may be inconvenient with different subjects in a scenario. Figure 2.5a depicts the contours of 2.1. Identification of Groups of People the function proposed with the calculation of new O-spaces. This work is included as dynamic because it relies on data obtained by a real time tracking system. However, their results are computed on a dataset which sample rate is 0.2 Hz.

Lau [START_REF] Lau | Multi-model hypothesis group tracking and group size estimation[END_REF] clusters people with a multi-model hypothesis analysis. The perception system they use is based on a SICK laser, through a supervised learning algorithm they detect which points compose a person. However, the orientation of the person is noisy because it is obtained with the current and previous position of the person. Luber [START_REF] Luber | Multi-Hypothesis Social Grouping and Tracking for Mobile Robots[END_REF] extended the latter system. The difference with [START_REF] Lau | Multi-model hypothesis group tracking and group size estimation[END_REF], who represent groups of people in a single collapsed state without spatial extension information, this approach keeps track of both the state of individual group members and the group affiliation, Figure 2.5c shows how the system works in outside environments. Subsequently, Linder [START_REF] Linder | Multi-model hypothesis tracking of groups of people in RGB-D data[END_REF] implemented this system with a RGB-D system, an image of this representation is depicted in Figure 2.5d. The latter systems [START_REF] Lau | Multi-model hypothesis group tracking and group size estimation[END_REF][START_REF] Linder | Multi-model hypothesis tracking of groups of people in RGB-D data[END_REF][START_REF] Luber | Multi-Hypothesis Social Grouping and Tracking for Mobile Robots[END_REF] mostly have several parameters empirically tuned and proxemics studies are barely taken into account.

Social Navigation

The objective of this thesis is to learn interactive behaviors and apply them, in this case we are interested in the behavior of approaching people. We introduce first a subsection in Social Navigation to give an introduction of existing models for robots navigating in a 2D plane surrounded by humans. Later we tackle a more specific subject which is robot approaching humans.

Navigating within Humans and Motion Planners

In robot navigation, navigation planners usually minimize time or distance to go from point A to point B. This minimization consists in the robot taking into account its geometry and constrains (i.e. walls). Widely known methods on this kind of navigation are by occupancy grid mapping [START_REF] Elfes | Using occupancy grids for mobile robot perception and navigation[END_REF] and potential fields [START_REF] Koren | Potential field methods and their inherent limitations for mobile robot navigation[END_REF]. However, this is often not the case for social navigation, because we need to respect the private and social spaces of a person or group of people.

One of the earliest works about human aware robot navigation was developed by Tadokoro et al. [START_REF] Tadokoro | On motion planning of mobile robots which coexist and cooperate with human[END_REF]. They use a grid to exemplify the steps that the robot shall take to go to the goal as it tries to maintain a high safety risk for the human. Some other pioneering work using Partially Observable Markov Decision Process (POMDP) are Foka and Trahanias [START_REF] Foka | Predictive autonomous robot navigation[END_REF] in which they use prediction of obstacles. Weak points about Foka's work is that the POMDP they use is expensive and the environment they used was only simulated.

Another work by Arras et al. [START_REF] Arras | Robox, a remarkable mobile robot for the real world[END_REF] where they developed a robot to perform exhibitions for the Swiss National Exhibition Expo-02. However, their focus is primarily the localization of the robot, and the navigation of the robot is made through waypoints stopping when the robot detects an obstacle.

In more recent theory, we find the Human Aware Motion Planner (HAMP) developed in [START_REF] Sisbot | A Human Aware Mobile Robot Motion Planner[END_REF].

They state that a social motion planner must not only provide safe robot paths, but also synthesize socially acceptable and legible paths. HAMP is a general Human Robot Interaction framework that considers safety and comfort of people. Subsequently, an extension of this framework was developed by [START_REF] Li | Potential human reaction aware mobile robot motion planner: Potential cost minimization framework[END_REF]. In this framework human actions can be considered in order to help the robot to accomplish its goal, e.g. the person can move in order to let passage to the robot, in the opposite case, the robot may be force to take a long path or it may not be able to reach its goal. Analyzing further the HAMP methodology, the left side of Figure 2.6a presents a safety cost around a person. In a trajectory planner this cost represents the following: The closer a 2.2. Social Navigation robot is to a person, the higher the cost to be in that position. Thus, the safety of a person is ensured by not making the robot go unreasonably near. They proposed also a visibility cost that can be used for an analogous purpose, but instead of avoiding passing near the person, it avoids passing to positions that the person is not able to see. Some applications of HAMP are [START_REF] Kruse | Legible robot navigation in the proximity of moving humans[END_REF][START_REF] Kruse | Evaluating directional cost models in navigation[END_REF] where the authors studied a crossing scenario. In this scenario, depicted in Figure 2.6b the robot has to decide what action is better for the human, stop and let him pass or continue with a trajectory that may affect the human behavior 1 . A problem that may arrive with works as [START_REF] Kruse | Evaluating directional cost models in navigation[END_REF][START_REF] Sisbot | A Human Aware Mobile Robot Motion Planner[END_REF] is that they take into account proxemics hardcoded values derived from social sciences. However, these values are not necessarily true in all situations, as they could depend on the velocities of the people, as commented in [START_REF] Luber | Socially-aware robot navigation: A learning approach[END_REF].

Papadakis [START_REF] Papadakis | Social mapping of human-populated environments by implicit function learning[END_REF] proposes a model for social mapping. The authors claim that the model takes into account context-dependent human spatial interactions. Thus, this model could be used as an extension of HAMP deployed as a social costmap that the robot will take into account during the navigation planning process.

Another approach of a robot navigating within humans is [START_REF] Ferrer | Robot companion: A social-force based approach with human awareness-navigation in crowded environments[END_REF], where a robot navigate using the social force model proposed by Helbing [START_REF] Helbing | Social force model for pedestrian dynamics[END_REF] and Moussaïd [START_REF] Moussaïd | The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics[END_REF]. In this approach, the robot accompanies a human to navigate to a predefined goal, avoiding possible obstacles and people moving through the output of the social force model.

Vasquez [START_REF] Vasquez | Human aware navigation for assistive robotics[END_REF] developed an Rapidly exploring Random Tree (RRT) that evaluates the risk of interfering with people (called RiskRRT). He proposed an scenario of a wheelchair to help elderly people move. He tackles social navigation by possible risk of interfering. Thus, the robotic wheelchair won't be allowed to cross a group of people talking or navigate near a person personal space. However, comfort and social compliance are not taken into account in this study. Also, Bacciu [START_REF] Bacciu | Learning context-aware mobile robot navigation in home environments[END_REF] proposes context-aware mobile robot navigation. Thus, they use navigation in a topological manner, i.e. the robot moves from room to room in a house instead of moving in the geometric space. He takes into account environmental variables as well as user preferences over time. This kind of navigation can be relevant for robots that interact with people every day, e.g. robots in hospitals, robots at home and robots in the industry. However, this is only a topological planner and another planner has to be used for the path planning navigation.

Other approaches involving learning algorithms and navigation are [START_REF] Henry | Learning to navigate through crowded environments[END_REF][START_REF] Kim | Socially adaptive path planning in human environments using inverse reinforcement learning[END_REF][START_REF] Ramon-Vigo | Transferring human navigation behaviors into a robot local planner[END_REF][START_REF] Vasquez | Inverse Reinforcement Learning algorithms and features for robot navigation in crowds: An experimental comparison[END_REF]. All of the approaches use Inverse Reinforcement Learning (IRL). Thus, they learn from demonstrations of an expert a behavior that a robot shall learn. Henry [START_REF] Henry | Learning to navigate through crowded environments[END_REF] and Vasquez [START_REF] Vasquez | Inverse Reinforcement Learning algorithms and features for robot navigation in crowds: An experimental comparison[END_REF] use IRL to learn how the robot should move in a crowded environment (Figure 2.7). Thus, the robot learns behaviors such as learning to prioritize navigation in the sense of the people flow, i.e. the robot won't go against the direction of the people flow unless there is no other choice.

Kretzschmar [START_REF] Kretzschmar | Socially compliant mobile robot navigation via inverse reinforcement learning[END_REF] applied a similar strategy as Vasquez. Using their proposed model, the robot is able to imitate the behavior of pedestrians or, alternatively, to replicate a specific behavior that was taught by tele-operation in the target. Figure 2.8 portrays an scenario where the robot has to avoid two people walking in a hallway while going towards its target. This method is able to predict collaborative movements of humans in order to plan its trajectory.

Ramón-Vigo [START_REF] Ramon-Vigo | Transferring human navigation behaviors into a robot local planner[END_REF] uses IRL to transfer behaviors of how to avoid people to the local navigation planner. They use the information from the BIWI walking pedestrians dataset from ETHZ [START_REF] Pellegrini | You'll never walk alone: Modeling social behavior for multi-target tracking[END_REF] as input information of the IRL. They select manually some people be the expert demonstrator and the state is represented w.r.t. the person closest to the expert. Trying to learn features as when to turn when this other person is too close. The results are giving in the form of linear and angular velocities (v, w).

Kim [START_REF] Kim | Socially adaptive path planning in human environments using inverse reinforcement learning[END_REF] uses IRL in a similar fashion as Ramón-Vigo [START_REF] Ramon-Vigo | Transferring human navigation behaviors into a robot local planner[END_REF] but instead of controlling directly the output, they overlay a costmap in the Dynamic Window Approach (DWA) local navigation planner. This allows the robot to use predefined obstacle avoidance parameters with the drawbacks of loosing some information. This is due to the fact that when learning parameters, information is obtained w.r.t. position and angle (x, y, θ) and the transformation to costmap occurs (to be used by the DWA) only position information (x, y) is passed.

In the last examples, navigation is proposed as means of going from point A to point B.

However, our research focuses on developing methodologies to approach people, this means that point B can change as people move. None of the latter works deals with this problem and this is addressed in the next subsection.

Approaching Humans

The main difference with navigation among people and towards people is that in the latter, the level of interaction robot-human increases. Subsection 2.2.1 talked about social navigation and about the features regarding to humans that need to be considered. In order for a robot to navigate within humans, social rules (proxemics) are modeled. However, all the navigation strategies consisted in navigating from a fixed point A to a fixed point B. In the case of approaching people, point B may not be always fixed because people might be moving while you approach them.

In this subsection the topic of approaching people in two different fashions: Approaching One Person and Approaching Multiple People. Table 2.2 presents an overview of the two following subsections. 

Approaching One Person

Sardar's work [START_REF] Sardar | Don't stand so close to me: users' attitudinal and behavioral responses to personal space invasion by robots[END_REF] addresses this topic from point of view of social sciences. It determines the effect of personal space invasion when a robot approaches a person at different speeds. The main contribution of the work is determining when the robot invades the human privacy.

One conceptual framework in which approaching in lightly tackled was developed by Pandey [START_REF] Pandey | A framework for adapting social conventions in a mobile robot motion in human-centered environment[END_REF].

It is depicted in Figure 2.9a the path robot takes to approach a person for later guide her. In the image the robot have fixed waypoints in the human reference in order to approach. However, the manner in which the robot shall approach (e.g. straight path, curved path) is never tackled.

Svenstrup [START_REF] Svenstrup | Pose estimation and adaptive robot behaviour for human-robot interaction[END_REF] proposes a model where the robot tracks a person and based on a potential

(a) (b) (c) Figure 2
.10: a) How the robot is designed to approach a person by [START_REF] Satake | How to approach humans?-strategies for social robots to initiate interaction[END_REF]. b) Generation of social paths in [START_REF] Avrunin | Socially-appropriate approach paths using human data[END_REF]. A costmap like function to generate the behavior for the robot to approach the person. c) Macharet's work [START_REF] Macharet | Learning how to increase the chance of human-robot engagement[END_REF] where the robot chooses a position to be (green circles) along the day and when the person is detected the robot approaches her accordingly to certain distance. Satake [START_REF] Satake | How to approach humans?-strategies for social robots to initiate interaction[END_REF] proposes a model of approach behavior with which a robot can initiate conversation with people who are walking. Figure 2.10a shows the path planning strategy used. The robot predicts the trajectory of its target person (the dashed line) and finds the turning point where the robot has enough time to correct its orientation in order to approach from frontal direction after the robot arrives.

Approaching One Person

Avrunin [START_REF] Avrunin | Socially-appropriate approach paths using human data[END_REF] proposes to generate social paths for a robot to approach a person based on human data. The path is generated from a cost function derived of this data as depicted in Figure 2.10b.

A study was conducted in which a robot approached participants using the proposed social path and straight-line behavior. Both approaches were rated comparably when the robot approached from the participant's front or side, but the social approach was significantly preferred when the robot came from behind the participant.

Macharet [START_REF] Macharet | Learning how to increase the chance of human-robot engagement[END_REF] analyzed a simulated scenario where they predict the best decisions to approach a person in relation to its position in the environment and approach distance, each one accordingly to a certain time of day. Figure 2.10c depicts the scenario with robot predefined positions (green circles). They evaluate themselves with a random technique and they claim they increase the chance of human-robot engagement with this method w.r.t. the random technique. This technique is based on Reinforcement Learning (RL), therefore it is measured based on the number of iterations.

Kato [START_REF] Kato | May I Help You?: Design of Human-like Polite Approaching Behavior[END_REF] presents a modeling of polite approaching behavior. The model was inspired by the service staff in mall who politely approach visitors who need help. Thus, he modeled an estimator for pedestrians' intentions in order to know if the robot should approach the person or act passively. Figure 2.11 depicts two scenarios a proactively waiting behavior and a proposed condition where the robot imposes to be approached.

In the latter examples we have focused on approaching only one person. There are variables that we haven't analyzed. Within these factors we can find for example how sound affects human behavior when a robot is approaching a person. This was already analyzed by Lohse [START_REF] Lohse | The influence of approach speed and functional noise on users' perception of a robot[END_REF]. In this research the robot was controlled manually, also the robot and the person where in the same corridor-like environment. Sound was used to call the attention of the human, thus, expressing the intent of the robot to approach the person.

Other examples of factors that can affect the human behavior is the anthropomorphism of the robot. Bartneck shows in [START_REF] Bartneck | The influence of robot anthropomorphism on the feelings of embarrassment when interacting with robots[END_REF] how the robot anthropomorphism can intervene in human feelings. Duffy [START_REF] Duffy | Anthropomorphism and the social robot[END_REF] also explains how the anthropomorphism of the robot can change our behaviors towards it.

Later in Chapter 3, we propose a learning strategy. We show the robot how to approach a robot by demonstrating trajectories. Given this information, the robot learns how to approach a person. The demonstrations are given manually by a human respecting social norms such as non-invation of personal space. We claim thus that the robot is able to reproduce human-like behavior.

Approaching Multiple People

The same problem of approaching people can change when you have multiple people instead of only one. One can find works proposing to find a spokesperson [START_REF] Ma | Detect the possible spokesperson with an omni-directional camera, in a robot-human communication system[END_REF][START_REF] Triebel | SPENCER: A socially aware service robot for passenger guidance and help in busy airports[END_REF], with this proposition you can reformulate the problem to approach only the spokesperson of the group. However, the heuristic to detect a spokesperson can be somewhat vague, e.g. in [START_REF] Triebel | SPENCER: A socially aware service robot for passenger guidance and help in busy airports[END_REF] one of the propositions is to use the height of the people in order to decide to whom speak.

Rios [START_REF] Rios-Martinez | Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach[END_REF] created a model for a wheelchair in which they pondered on the risk of the wheelchair disturbing the personal space of other people. One of the task in the model is to approach a group of people. Figure 2.12a depicts the path of the robot exploring the environment (on the left side), when the wheelchair finds a group of people, it replans a path to reach the center of the group of people (O-space) but stops at the P-space to avoid disturbing the people (on the 2.2. Social Navigation right). They claim that this behavior can be judged social, however they use a path planner based on [START_REF] Vasquez | Human aware navigation for assistive robotics[END_REF] which consider people as obstacles. This behavior might be convenient to avoid people when navigating, but not necessarily when approaching them. Figure 2.12: a) One of the tasks in Rios model [START_REF] Rios-Martinez | Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach[END_REF] is to explore the environment(left side) and when a group has been detected, approach them (right side). b) Narayanan's work [START_REF] Narayanan | On equitably approaching and joining a group of interacting humans[END_REF][START_REF] Narayanan | Analysis of an adaptive strategy for equitably approaching and joining human interactions[END_REF] on how to approach a group of people with a control process approaching to a hard-coded end position.

Another work using control theory is proposed by Narayanan [START_REF] Narayanan | On equitably approaching and joining a group of interacting humans[END_REF][START_REF] Narayanan | Analysis of an adaptive strategy for equitably approaching and joining human interactions[END_REF]. They present an analysis of an socially compliant robot motion strategy for approaching and joining humans groups in interaction. It is proposed to be employed by social robots such as service robots or intelligent wheelchairs. Using low level parameters they show a system that can approach a group of two people with some necessary conditions as the robot not being near the axis generated by the position of the two people. Besides these necessary conditions, another drawback is that the goal position is given by a hard-coded point w.r.t. the two people.

In the domain of social sciences, studies are made mostly by humans controlling manually a robot. These studies are a great starting point to develop control laws and/or planning algorithm for future robots. We have the following:

Vroon [START_REF] Vroon | Dynamics of social positioning patterns in group-robot interactions[END_REF] studied how acceptable a robot approaches a group of people. The robot is controlled by a human, but the data obtained could be very useful for learning how to approach people from real data. Figure 2.13a depicts the representation of a 2D plane in which a robot approaches 3 people. The time is represented in a lighter color when the process starts and darker as it approaches the end. Another work analyzing a robot approaching a pair of people is proposed by Karreman [START_REF] Karreman | Robot etiquette: how to approach a pair of people?[END_REF].

In one of the task the robot approached a person from various angles, on that individual level the participants liked to be approached by the front and disliked being approached by the back.

In another task they used a task-partner (as seen in Figure 2.13b), they studied how the taskpartner as well as furniture influences the experience of person. An extraction of data from this study could be also analyzed in order to an algorithm to learn how a robot should approach a pair of people.

There exist some works on guiding groups of people that might be interesting to take into account. Garrell [START_REF] Garrell | Local optimization of cooperative robot movements for guiding and regrouping people in a guiding mission[END_REF] works in a model to herd people, based on a model developed for shepherding [START_REF] Lien | Shepherding behaviors with multiple shepherds[END_REF]. These kind of models can be useful because they aim to interact with all the people in a group. In [START_REF] Joosse | Robots guiding small groups: the effect of appearance change on the user experience[END_REF], a robot guides groups of two or three people, the robot shows different appear-

Conclusions

ances to the people e.g. the robot displaying eyes as if it sees the people, the robot displaying the time to destination instead of a face, or the robot not showing a screen to the people. Thus, the selection of the robot and how the robot interact with the people is necessary trying to deploy a robot in social environments. The last two works can give us another insight about how to interact with group of people.

The only navigation methods to approach groups of people employ fixed hardcoded goals [START_REF] Narayanan | On equitably approaching and joining a group of interacting humans[END_REF][START_REF] Narayanan | Analysis of an adaptive strategy for equitably approaching and joining human interactions[END_REF] and navigation using humans as obstacles [START_REF] Rios-Martinez | Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach[END_REF]. Therefore, in Chapter 5 we aim to make a step forward in this field of social navigation.

Conclusions

In this chapter we analyzed the models previously developed. Thus, we addressed two main subjects: Modeling groups of people and robots approaching people.

Regarding modeling of groups of people, we analyzed in the context of social sciences what is a group of people in a public gathering. One of the key studies is the conceptualization of F-Formation. This conceptual framework was used as inspiration to develop models of human groups in the area of computer sciences. A drawback of these models is that they are not able to run in real-time because they are intended to be used for still images.

Other works developed in the area of detection of people came from areas where perception in real-time takes a great importance. They developed models capable of inferring if people merge into a group or the group splits using techniques as multi-hypothesis analysis. However, most of these models do not consider proxemics theory. Considering the previous aspects, in Chapter 4 we develop two fast proxemics-based models to detect groups of people.

Regarding robots approaching people, we first analyzed models that address problems of robots navigation in human environments. In some of these models some considerations of the humans were proposed. These considerations aim to avoid bothering people during the navigation process (e.g. by not approaching people's personal space nor areas where people are not able to see).

We passed then to methods where the robot approaches people. We have seen that the models developed have used hard-coded goal positions w.r.t the people that the robot intends to approach. Also, the path used is created based on control laws that correct some error in position and orientation of the goal position, this hardly represents a social behavior. We tackle this issue using learning. The learning process will help us to decide the end position as well as the robot's trajectory. Thus, Chapter 3 addresses the problem with one person and Chapter 5

with groups of people.

Chapter 3

Approaching One Person

I n this chapter we analyze and recreate an example of human-robot interaction in which a robot approaches one person (Figure 3.1). From the standpoint of our everyday life, approaching a person is an intuitive behavior that a person performs by subconsciously respecting social norms to avoid bothering people, e.g. we avoid approaching a person from behind.

What do we do exactly to approach somebody? This might be a simple question for a human, but when we refer to a robot, we have to model and formalize this kind of behavior. In addition, the implementation of such behavior intervene in the entire navigation process.

Later in this chapter, two navigation strategies to approach a single human are presented.

These strategies use low level information about human's position and orientation. The first one is a path planner that takes into account only a relative human polar frame as in Figure 3.2a and the second one is a costmap layer [START_REF] Lu | Layered costmaps for context-sensitive navigation[END_REF] based on the same variables that can take into account 

Modeling Steps

In this section, we first recall the IRL problem based on the MDPs. We then introduce the components of the MDP which composes our modeling.

MDP and IRL

A finite Markov Decision Process is classically defined by the following five elements:

• A finite set of states S.

• A finite set of actions A.

• A transition probability function P (s t , a t-1 , s t-1 ), which is the probability to reach state s t by achieving action a t-1 in state s t-1 . The transition matrix T (S, A, S) is composed of all such probabilities P (s t |a t-1 , s t-1 ) and its size is S × A × S.

• A reward function R(s t , a t-1 ) ∈ R that depends on the state-action pair.

• A discount factor γ ∈ [0, 1) which reflects the importance of short-term vs. long-term rewards.

Solving the MDP consists of finding an optimal policy, which provides an action for every state that should be selected in order to maximize the total utility.

Reinforcement Learning (RL) is a part of machine learning in which the learner is not told which actions to take, as in most forms of machine learning, instead it must discover which actions yield the most reward by trying them out. IRL on the other hand, deals with the problem of finding the reward from either an existent policy or from a demonstrated sequence (as in our case).

We assume that the expert from which we want to learn can be modeled by an MDP. Our problem is defined by the tuple S, A, T, R, D, γ , which is an MDP plus the added D variable which represents demonstrations given by an expert.

Since we want to find a reward function based on the state-action pairs, we can represent a state-action pair as a vector of features Φ(s, a) = [f 1 (s, a), f 2 (s, a), . . . , f n (s, a)], where f i is the ith function of the state-action pair. Thus, we can represent our reward function as a linear combination of these features R(s, a) = w T Φ(s, a). Where w is the vector of weights.

In general, learning the reward function is accomplished as follows. At the very first time a random reward is created, for this case, a random weighted vector w. At each step i of demonstration k the reward obtained will be denoted R(s k i , a k i ). Depending on the IRL algorithm, an optimal policy π * (s) is found by maximizing the probability of the reward given the demonstrations as a posterior probability of the likelihood of the demonstrations given the reward and a prior function of the reward P (R|D) ∝ P (D|R)P (R) or by maximizing the expected sum of rewards given the demonstrations E[

N t=0 γ t R(s, a)].

State

For the sake of clarity, we introduce the state representation considering one person only. The robot state will be the human-centered polar representation of the robot with respect to the person. This representation is depicted below in Figure 3. For the state angle component θ, we divided the region into m sections. Thus, the range between each state is a region 2π/m of the environment.

Both parameters (distance and angle) define the state. The state representation is, then, in R n×m , and we have a total number of states of S = n • m. For MDP purposes, the conversion of this 2-dimensional matrix R n×m needs to be transformed in a vector which is going to represent the state. For this work, the matrix was simply reduced into one dimension f : R n×m → R S by concatenating the rows.

Actions and Transitions

Given the state representation, we define a set of 5 actions described below. Where θ c represents the current angular state and d c the current distance from the person.

An example of state transition probability is shown in Figure 3.5, where we represent our polar states as an unfolded map.

The transition matrix is the agglomeration of the 5 actions for all the states. The probabilities reflect the actual reachability of the robot. 

Feature Representation

Two methods are developed to tackle the approaching behavior. Naive Global Planner, in which a path planner is created directly based on the response of the IRL algorithm and Layered Costmap Navigation, in which a state of the art path planner used based on [START_REF] Lu | Layered costmaps for context-sensitive navigation[END_REF]. In the first one, the number of features is equal to the number of states multiplied by the number of possible actions.

In the second one Radial Basis Function (RBF) are used to represent the state. Each one of these approaches is going to work differently for the implementation.

Naive Global Planner

In order to build the state-action vector, first we create a base feature vector based on our number of states S, as follows Φ(s) = [φ 1 (s), φ 2 (s), . . . , φ S (s)]. In which φ i (s) is a Kronecker delta function where φ i (s) = [i = s] using Iverson bracket notation. In order represent Φ(s, a), the technique used in [START_REF] Lagoudakis | Least-squares policy iteration[END_REF] is applied, creating a feature vector with size of the features Φ(s), multiplied by the number of actions. Let's say the action a is equal to 2, given the possible 5 actions, then Φ(s, a) = [0, Φ(s), 0, 0, 0]. Where 0 is a zero vector with the size of Φ(s).

Layered Costmap Navigation

The main difference with the previous case is the use of continuous state features. Our intention is to build a costmap for the approach scenario in which the robot navigates.

Since the states that are taken into account correspond to the polar human representation, we set n number of random points in the environment within a range for each axis of r d = [0, 14] and r θ = [-π, π), where r represents range and is given in meters and radians respectively. As for the value of the standard deviation, all RBF bins have the same value which is a quarter of the range for each axis. Thus, the vector state representation is

Φ(s) = [φ 1 (s coord ), φ 2 (s coord ), . . . , φ n (s coord )],
where φ i (s coord ) is the ith RBF and s coord is the cartesian center of the state s. Then we set Φ(s, a) = Φ(s) given than it is intended to use this information in a costmap, which is only represented by the states and not the actions, differently from Naive Global Planner. 

Adapting IRL Results

The input for an IRL is the demonstrations given by an expert, in our case, the demonstrations are the paths the expert chose to go to a person as depicted in Figure 3.7. These paths are sampled in state-action pairs which are converted to features described in Subsection 3.1.4. The output and the post-process applied this output is described in next subsections for each planner. 

Naive Global Planner

The result of this IRL provides the rewards to the MDP, and by applying the optimal navigation policy in this MDP, the robot moves along the sequence of states which forms the optimal trajectory to approach a person. Each state (i.e. the cell in the representation described in the previous section) is represented by its center. As a result the trajectory is a discontinuous line as shown in green in Figure 3.8a. We hence need to smooth this trajectory taking into account the robot orientation and human orientation. Smoothing process is described next and the result is also shown in Figure 3.8a. These trajectories are the global plan, nonetheless they do not take into account other constraints such as obstacle avoidance. 

Adapting IRL Results

MDP

Data Fitting

The trajectory points are first transformed in the global frame containing the grid map. Then the points are re-transformed with a parametric function t such that for the first (x, y) coordinate t = 1, for the second t = 2 and so on. After that the points (t, x) and (t, y) are separated as two sets of data, having thus the data for the parametric function. Next, each set of data is processed with a least squares function approximation shown as the green dotted line in Figure 3.8a.

Bézier

A smooth curve can be generated from the two fitted functions. However, the orientation of the robot is not taken into consideration. Bézier curves can smooth the trajectory to respect robot orientation. We still have the parametric function, but since Bézier uses Bernstein Polynomial, it is inherently parametric. We use our previously presented functions with a set of few points as control points for Bézier. Another control point is added projecting the orientation of the robot, thus the path starts in the direction of the robot's orientation. This procedure is shown in 

Layered Costmap Navigation

After the learning process the w vector is set. One important aspect is that Φ(s, a) = Φ(s) and s is represented by spatial features. Thus, a costmap can be generated in the environment. The cost of some area around the person is calculated given a normalization of R(s) = w T Φ(s) for all the coordinates in the map. Thus, s must be translated to the polar coordinates of the human frame. Then, based on [START_REF] Lu | Layered costmaps for context-sensitive navigation[END_REF], the cost is passed to the upper layer for every field if the value is higher than the one already set in the upper layer. Then Dijkstra's algorithm implementation is used to calculate the best path. The goal position of the planner is the position in which the maximum value of reward is found in the costmap. Finally the goal orientation to the direction the human. 

Experimental Results

Experimental Setup

We employed ROS (Robot Operating System) to simulate the human movements, allowing us to control both robot and human behaviors (positions and velocities). We employed it to generate trajectories of robot while approaching humans. The robot is manually controlled during different approaching scenarios. A set demonstrations was performed with this experimental platform for the learning process. The path taken by the robot in different positions with different orientations can be seen in Figure 3.7. This represents the path followed by the robot in the human reference frame. Considering people's comfort, the robot approached the people in order to finish its behavior in the near-peripheral vision of the person. Nonetheless, if the exemplary demonstrations were performed by a human in a human environment, this behavior could differ from ours and thus the learning output.

Metrics

We propose two metrics for the evaluation of the Naive Global planner model. In order to evaluate our model, we produce a test-set of paths generated with our experimental platform but not used as inputs for training the IRL algorithm. This test-set is analogous to the training and test set used for supervised learning. The produced test-set consists of 30 recorded paths.

The first metric, called the Trajectory Difference Metric (TDM), is a modified version of the Mean Square Error (MSE). TDM evaluates every point of one trajectory to the closest point of another trajectory, where evaluating the closest point is the difference regarding MSE. This metric compares the parametric function generated by our algorithm with the trajectories of the test-set. In order to do so, all trajectories from the test-set and those provided by the algorithm are equally sampled. If P is the set of all points in the test-set trajectory and G i is one point of the generated trajectory, G i P represents all the distances between the point G i and the set of points P .

The TDM is then calculated as the average value of the minimal values of these distances:

TDM = 1 n n i min G i P (3.1)
The second metric is trajectory length, expressed as the ratio of the absolute value of the difference between the generated trajectory length and the test-set trajectory length to the testset trajectory length:

l error = |l m -l irl | l m (3.2)
For (3.2) we can have the case when the IRL path is longer than the test-set path or the other way around. This is due to human behavior changes, i.e. a person can change lightly how she moves even when the departing point and goal point are the same.

Results

The IRL result gives an optimal policy based on the examples given. As shown in the figure, the learning process has produced an optimal region near and facing the person to guide robot navigation. The discrete representation in Figure 3.10 is a matrix of rewards used to generate the optimal curves to approach a human. divisions performs slightly better that 16x16 divisions, for both the TDM and the l error metrics.

Given the disparity in human motions, we can consider that the average mean error around half a meter between the test-set and the IRL trajectories is acceptable. evaluate the behavior in different orientations of the robot. We can see that when the movement starts from the region in front of the person, we have less difference. This might be because the movement of the robot in this region is almost straight, it is easier to control the robot.

When we compare with actual human motions, we need to take into account that the human behavior is not completely smooth (e.g., the blue line of Figure 3.11). However, the paths generated by our method appear adequate and with less erratic behavior than the trajectories of the test set.

As previously discussed, we could substitute Bézier with B-Splines. The main difference between both of them is that Bézier will start the path with the same orientation as the robot, while B-Splines will not start at that same orientation and this difference of orientations can be corrected with a local planner which can be convenient for high frequency updates.

The results shown prevously are from the Naive Global planner, where we can compare and measure the output path (the output of our system) with a test set directly. In the case of the Layered Costmap Navigation the path depends also on other layers of the environment such as inflation of obstacles layer, thus the direct output of our algorihtm is a costmap and not a path.

With the Layered Costmap Navigation, the robot goes to a pertinent position (seen by the human eye) and it takes into account the obstacles, nonetheless, in order to have a good navigation we will probably need to add another layer as in [START_REF] Kruse | Evaluating directional cost models in navigation[END_REF] to give a higher cost to the center of the person. This method though, takes more computational time than the Naive Global Planner, because we need to compute all the cost inside the costmap area.

As an early stage test, we implemented the algorithm in a close space with PR2 robot. The detection and tracking of the person is achieved by an OptiTrack System. Figure 3.13a shows a person wearing a helmet that we use for tracking. The visual representation of the robot, human and the proposed path generated by the Naive Global Planner is shown in Figure 3.13b.

Conclusions

In this chapter we developed two path planning algorithms to approach a person. First of them uses an IRL algorithm to directly learn the socially acceptable paths. In this algorithm we recalculate the paths as the person moves. Also, an important feature is that in our global planner also selects the goal, being the final position to go and the solution of the MDP itself.

Thus, both methods provide the goal that must be reached.

For the Naive Global Planner, we are also able to reach almost the same performance with our two discretized state cases, 16x16 and 25x25, while the first one needs much less computational time for finding a solution.

Concerning the second planner, we added a layer based of the IRL result of RBFs function to the state of the art Layered Costmap Navigation. We could still add another layer such as in [START_REF] Sisbot | A Human Aware Mobile Robot Motion Planner[END_REF], to avoid going near to the person. Some drawbacks regarding both approaches are important to highlight. This framework only works for approaching only one person and also the speed of the robot is not taken into account.

Additionally, the local planner takes care of the speed, however this planner is not controlled by our algorithm. It could be interesting to develop a local planner to tackle this issue and have a more interesting behavior.

This work is a first step towards IRL based Human Aware Navigation for approaching. In the future, we aim to create a general framework for approaching people by exemplary data.

Furthermore, in future works we plan to have user studies to measure the level of comfort and 3.4. Conclusions how natural the behavior of the robot is while approaching people. We also aim to implement rewards functions that can be used in navigation planner such as RRT* instead of a costmap, this can improve the speed of calculations and lead to better answers. Lastly, we would like to verify convergence with the number of exemplary demonstrations needed by different IRL algorithms.

Latter in this document, Chapter 5 more techniques for approaching people are presented, the difference is that these techniques take into account more people and more parameters.

Chapter 4

Analysis of Groups of People

T his chapter focuses on the identification of groups of people. One of the objectives of the thesis is to approach groups of people. In order to do so, we need to have a clear

understanding of what is a group of people. Furthermore, identification of groups plays an important role in the deployment of a social robot. The social robot creates an understanding of how people are related one to another. Figure 4.1 portrays an scenario with several people, in which some of them are interacting with others and some are standing by themselves. As humans, we have the capacity to infer which people are part of a group, but in order for a computer/robot to understand these social connections, we need to establish a mathematical model.

Referring to the state of the art (Section 2.1); in computer vision, a group is defined as an entity whose members are close to each other, with a similar speed and with a similar direction of motion [START_REF] Bazzani | Decentralized particle filter for joint individualgroup tracking[END_REF][START_REF] Ge | Vision-based analysis of small groups in pedestrian crowds[END_REF]. Thus, our goal in this chapter is to develop an algorithm capable of detecting groups of people using as input low level features such as position, orientation and motion of individuals. The goal beyond this chapter is to create an algorithm that a robot can use to perform activities such as approaching, guiding or helping groups of people.

To achieve our goal, we developed algorithms that allow a robot to identify and track in real- 

Proposed algorithms for group detection

In this work, we use the definition of gathering in public places provided by Goffman [START_REF] Goffman | Behavior in Public Places[END_REF]: a gathering consists of any set of two or more individuals in mutual presence at a given moment who are having some form of social interaction. We argue that this definition is particularly suitable when a robot has to perform group detection tasks, considering that a robot with on-board cameras and laser is able to perceive and recognize people based on state-of-the-art computer vision techniques.

Two algorithms were conceived and developed. The first one, the Link Method, relies on 4.1. Proposed algorithms for group detection evaluating at each instant of time the graph of possible connections between the pairs of people on the scene. Time parameters are inspired by the Ebbinghaus's forgetting curve [START_REF] Ebbinghaus | Memory: A contribution to experimental psychology[END_REF]. The novelty of this approach is to merge dynamic and static analysis for group detection. The second algorithm, the Interpersonal Synchrony Method, grounds on the hypothesis by Fiske [START_REF] Fiske | Four modes of constituting relationships: Consubstantial assimilation; space, magnitude, time, and force; concrete procedures; abstract symbolism[END_REF] and Lakens [START_REF] Lakens | Movement synchrony and perceived entitativity[END_REF].

This hypothesis ascertains that interpersonal synchrony is as antecedent of entitativity, that is the degree to which a collection of people are perceived as a group (Campbell [9]). The following subsections detail the methods we propose.

Link Method

This method is performed in three steps:

1. Static Analysis.-subdivided into Link Method Simple and Link Method Gauss, is inspired by proxemics and in which data about the people acting on the scene is processed.

2. Dynamic Analysis.-is inspired by Ebbinghaus's forgetting curve.

3. Forming Groups from Pairs.-that allows to cluster people in groups. Step 3 is then computed based on the previous edges to obtain the groups.

Static Analysis

Let us consider persons p i and p j described by their position and orientation (i.e. p i = [x i , y i , θ i ]).

A Gaussian-like function f g is projected in the space in front of person p i at a distance r = 0.6

(half of personal space as in Cristani [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF]). Within this region a projection of p j at the same distance r is evaluated inside this function as follows. First, we transform the projected distance of p j to the p i 's coordinate system (4.1):

x j y j = Rot(-θ i ) x j + rcos(θ j ) -x i y j + rsin(θ j ) -y i (4.1)
where Rot(-θ i ) is the rotation matrix in the direction of -θ i and [ x j , y j ] is the projection of p j , this value is represented by the star in Figure 4.4. Then this position is evaluated as follows:

f g ( x j , y j ) = exp - ( x j -r) 2 2σ 2 x + y j 2 2σ 2 y (4.2)
However, the correct orientation of people may be impossible to extract, due to constraints of the perception system such as the position of the camera inside the scene, or the type of sensor employed. In these cases, f g can be replaced by the next equation:

f d (p i , p j ) = 1 a p j -p i n + 1 (4.3)
where p j -p i is the euclidean distance of the values of position x, y for both p i and p j , and a = 0.6 and n = 3 are parameters empirically tuned. The difference of f d with respect to f g , is that f d will create connection between nearby pairs, even pairs standing back-to-back; while with f g this situation will not occur.

To take into account people motion, we define a further function f v based on relative velocities between pairs of people.

˙ x j ˙ y j = Rot(-arctan2( ẏi , ẋi )) ẋj -ẋi ẏj -ẏi (4.4) f v ( ˙ x j , ˙ y j ) = exp - ˙ x j 2 2σ 2 ẋ + ˙ y j 2 2σ 2 ẏ (4.5)
where ˙ x j and ˙ y j are the relative linear velocities between person i and j. For σ ẋ and σ ẏ , the value of both variances is (0.2m/s), therefore relationships are created with pairs of people having similar velocities.

Dynamic Analysis

When a group is perceived by a person, the person retains the members of the group in mind.

This remembrance suggests that a person, member of a group, even when he/she leaves the group, will be related to the members of the group for a certain period of time.

This step allows to keep track of pairs for a certain period of time. Thus, for each pair, using the Ebbinghaus forgetting curve [START_REF] Ebbinghaus | Memory: A contribution to experimental psychology[END_REF] as inspiration:

g ij (t + T ) = g ij (t)τ T f (α ij ) if α ij < α th g ij (t) + (1 -g ij (t))τ l (α ij )T otherwise (4.6) τ f (α ij ) = 1 -τ f orget 1 - αij α th τ l (α ij ) = τ learn 1 - αij -α th 1-α th (4.7)
where t is current time, T is the period of a sampling time, τ l and τ f are the learning and forgetting parameters, and g ij is the relationship in time between a pair. Then,

α ij = f g (p i , p j )f v ( ṗi , ṗj ),
or without orientation of the person α ij = f d (p i , p j )f v ( ṗi , ṗj ). These equations will be referred as Link Method Gauss and Link Method Simple respectively in the results section. Finally α th is the threshold parameter, that means, whenever the value α ij is bigger than the threshold, the "remembrance" between person i and j will increase (learn), or decrease (forget) otherwise. 

Forming Groups from Pairs

In this step we define a couple of functions aimed to 1) cluster people in groups taking computed pairs as input; and 2) track groups in time through a similarity function Γ.

For this step, we consider all the persons in the scene as nodes of an undirected graph P and the pair calculation of previous steps as the edges g ij of this graph.

The pseudo code implementing this step is depicted in Algorihtm 4.1.

The similarity function Γ is defined as follows:

Γ(G a , G b ) = 2 N Ga + N G b N Ga i N G b j δ ij (4.8)
where δ ij is the Kronecker delta. prefixed length.

Pairing People from Possible Interactions

This step is devoted to detect the relationships between all the pairs of persons acting on a scene. We conceived a strategy that combines together the inter-body distance between a couple of persons and the potential space of their interaction here defined as the area resulting from the geometrical intersection of their 2D FoV (Field of View). At each time t in a time-window of size N , for each person p i a search of neighbors in his/her personal space of radius R is performed.

When a neighbor p j is detected, the instantaneous intersection of the p i p j 2D Field of View (FoV) is checked to determine if it is empty (0) or not [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF]. FoV of each person is approximated with a 6-vertices polygon. The overall intersection of the FoV of p i and p j in the time-window N is referred as Ψ i,j . It is computed as the summation of the instantaneous FoVs' intersections as follows:

Ψ i,j = 1 N N -1 t=0 ψ t i,j (4.9)
where N is the length of the observational window (2 s) and ψ i,j is the FoV intersection at the time t that can assume the value of 0 (empty intersection) or 1 (not empty intersection). Ψ i,j is estimated not empty when it is greater than 0.7, that is when p i and p j share their FoVs for more than 1.4 s. Then Ψ i,j is used as g ij in Algorithm 4.1. 

Forming groups from Pairs

This second step is similar to the third step of the Link Method (see Subsection 4.1.1).

Thresholding of candidate groups through intra-group synchrony

This step allows to finalize the groups' detection by computing an intra-cluster synchrony index among the speed of each person supposed to belong to the same group. Starting from these speeds, the S-estimator synchrony index is computed and a threshold on its value is applied to identify the final groups as explained below. This index was conceived by [START_REF] Carmeli | Assessment of EEG synchronization based on state-space analysis[END_REF] and provides the 4.2. Experimental Evaluation amount of synchrony relying on the eigenspectrum of the correlation matrix of a set of signals.

Let us consider a group candidate G i composed of K persons: the speed v i of each person is a vector that can be arranged in a matrix N x K, where N is the length of the observational window (2 s). The corresponding correlation matrix is:

C = 1 N N -1 n=0 v n v T n (4.10)
having the following associated Λ-spectrum:

Λ = {λ 1 , .., λ K } where λ i = λ i K j=1 λ j (4.11)
are the the normalized eigenvalues. Thus, the S-estimator is defined as:

S = 1 + K i=1 λ i log(λ i ) log(K) (4.12)
and has a range between 0 (for completely independent signals) and 1 (for fully synchronized signals). In our algorithm, the S-estimator is computed at each time t for each of the candidate groups, and its value is compared with the threshold value S th = 0.4 to decide if retain or not the persons as a group (this value is defined by rule of thumb). We expect that persons having similar speeds (e.g. people traveling together) will reach a synchrony value close to 1, whereas people acting in a disjointed way (e.g. a person stands watching a notice-board and another one passes by) will have a low value of synchrony.

Experimental Evaluation

This section includes a description of the data sets from which we extracted video sequences used as benchmarks for our models and the evaluated results.

Data sets

Our algorithms were tested on synthetic and real video sequences. The adoption of synthetic data set is devoted to demonstrate the effectiveness of our models in ideal experimental settings, that is in scenarios where a priori occlusions, bad tracking and so on are missing.

The synthetic data set employed in this study includes simulations performed using a ROS implementation 1 of PedSim. This simulator is based on the social force model [START_REF] Helbing | Social force model for pedestrian dynamics[END_REF][START_REF] Moussaïd | The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics[END_REF].

1 ROS implementation of PedSim https://github.com/srl-freiburg/pedsim_ros

The other two data sets are the Friends Meet [START_REF] Bazzani | Decentralized particle filter for joint individualgroup tracking[END_REF] and the SALSA [START_REF] Alameda-Pineda | SALSA: A Novel Dataset for Multimodal Group Behaviour Analysis[END_REF] real-world data corpus.

Both data sets contain annotated video sequences with humans standing or walking.

The Friends Meet dataset contains 15 annotated video sequences at 30fps, with lengths ranging between 20 s and 90 s with people standing and walking in outdoor area where usually they meet to have coffee breaks. The data set provides the following information: id, position (x, y) and velocity of people ( ẋ, ẏ). We have inferred the people orientation θ by computing the arc tangent of the ratio of the two velocity components. This angle assumption is going to affect the algorithms performance when people are quasi-static because the orientation vector will become noisy.

The SALSA data set includes two 30 minutes long video sequences recorded by four synchronized static RGB cameras (1024 x 768, 15 fps). These sequences were recorded in an indoor space where 18 participants were involved in a poster session and a cocktail party, respectively.

SALSA data set includes multimodal data as position, head and body orientation for each person in the scene and data from microphones, accelerometers, bluetooth and infrared sensors. This work focuses only on group detection from position data of the cocktail party scenario. However, the ground-truth annotations provided by this data set were performed only every 3 seconds;

for this reason, in order to reach a finer resolution, we re-annotated both position of the people and groups. Further, groups are re-annotated at 5hz following the focused and unfocused gatherings taxonomy proposed by Kendon [START_REF] Kendon | How gestures can become like words[END_REF]. The SALSA data set is, at the present, the most challenging data set for groups detection in ecological scenario: a large number of people interact really close to each other in an indoor environment, there are not scripted behaviors, furniture accessories besides tables that influence the geometry of groups, illuminations settings changes during recordings.

Images from both data sets are shown in Figure 4.7.

Results

To evaluate the performance of our group detection models on the several data sets, two external cluster validation indexes are computed at each frame and then they are averaged over the whole length of the video sequences. These indexes measure the extent to which cluster labels match an externally supplied ground truth. Here, we adopted these measures to determine how well the groups detected by our algorithms match the ground-truth annotations. The following mutual information-based scores are chosen.

The first one, the Normalized Mutual Information (NMI) [START_REF] Strehl | Cluster ensembles-a knowledge reuse framework for combining partitionings[END_REF], is commonly used in the literature. It ranges from 0 (all the persons in a detected groups are assigned to different groups in the annotations) to 1 (all the persons in a detected groups are assigned exactly as in the annotations), but it does not have a constant baseline. To tackle this problem, we have also computed a second score, the Adjusted Mutual Information (AMI) [START_REF] Vinh | Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance[END_REF]. This score is a normalized against chance variation of NMI guaranteeing a constant baseline around 0 for random group assignment. In this way, we filter out the possible agreement between grouping solely due to chance. This score is upper bounded at 1 indicating a perfect agreement with the annotations. AMI is independent of the absolute values of the labels, so a permutation of the class or cluster label values will not change the score. This is more suitable when comparing people labeled as a group in ground truth and deduced as another group, but having the same members of people as in ground truth.

In the state of the art other metrics are used, for example Cristani et al. [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] provide an accuracy measure based on the cardinality of a group. They assume that a group G i with more than two participants is correctly estimated when at least ( 2 3 * |G i |) of its component are found, where |G i | is the cardinality of G i . For groups having cardinality is equal to 2, all participants have to be found. The indexes we chose are less tolerant than this cardinality-based approach that assume that there is a perfect group matching when at least 67% of persons are correctly detected in a group. In other studies (e.g., [START_REF] Hung | Estimating Cohesion in Small Groups Using Audio-Visual Nonverbal Behavior[END_REF][START_REF] Setti | Group detection in still images by F-formation modeling: A comparative study[END_REF]) F 1 score is used. However, this score, defined as a combination of precision and recall is suitable for classification problems and it is not applicable when the number of detected groups is different from the number of of ground-truth groups.

Two alternative F1-scores: the pairwise F1-score [START_REF] Manning | Introduction to Information Retrieval[END_REF] and the cluster F1-score [START_REF] Huang | Efficient name disambiguation for large-scale databases[END_REF] are proposed as more specific measures to evaluate the quality of clustering.

Evaluation was performed on video sequences extracted from the three data sets mentioned above. We tested our algorithms on two video sequences (S1 and S2) for each data set. The two sequences from SALSA are chopped at the beginning and at the end of the video to have considerable changes in groups. Table 4.1 shows the results in terms of average NMI and AMI for each benchmark data set. The time course of AMI is illustrated for 2 sequences in Figure 4.8.

Table 4.1 reports an R value. For Link Method Gauss it represents the following:

σ x = σ y = R
applied on (4.2) and for Interpersonal Synchrony Method R is defined as the radius of the FoV.

The indexes show that our algorithms globally work well over all the sequences extracted from the three data sets. We compared the performance of our algorithms with the most widely known F-Formation approach [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] using a grid with resolution of 10 divisions per meter and local maxima footprint of a 20x20 divisions to find centers of groups. In the future, we intend to compare our results with other state of the art dynamic approaches.

Our algorithms outperform F-formations approach over all the sequences. F-Formations implementation of Cristani have the expected performance on synthetic data. However the performance of this method is low on the real data sets having their worst performance on the SALSA sequences where the value of the indexes is very low due to random assignment according to the AMI metric. In Table 4.1, R* represents the value used in the Interpersonal Synchrony Method. When R* is not present, its value is equal to R. All R values are those of interpersonal space defined by Hall and Hall [START_REF] Hall | The hidden dimension, volume 1990[END_REF].

Link Method Simple generally exhibits a very good behavior. However its performance on the sequence SALSA S2 is not convincing at all because the people during that scene are really close to each other, and it includes all the people (even when they are not facing) due to the lack of orientation. This, however, it is expected and it was developed to be applied within systems incapable to provide orientation of people. 

Conclusions

In this chapter we developed two algorithms to detect and track groups of people in crowded environments. The first algorithm is inspired by learning and forgetting curves combined with proxemics. The second one exploits interpersonal synchrony to refine clusters of people obtained mixing proxemics and the intersections of the 2D fields-of-view of people. The algorithms are evaluated both on synthetic and real data sets through standard external cluster validation indexes and the results are encouraging. However, they revealed some limitations of our methods.

For example, the Link Simple Method in SALSA sequences performs poorly due to the lack of orientation and its counterpart Link Gauss Method performs well (AMI=0.74) given the cluttered scenario where it is applied.

In Human Aware Robotics, fast algorithms as ours can be advantageous for detecting groups.

These methods can provide a level of membership that a robot has with respect to a group of people, i.e. at what level the robot itself is a member of a group. We aim to use them in the future to interact with groups of people. These algorithms could be used to enable social aware navigation where the robot is able to understand groups of people in order to interact with them, e.g. approaching people in shopping malls to advertise products, guiding people in an airport in order to find their boarding gate or guide people during emergencies.

Summarizing the previous information, our contributions were the following:

• We go beyond some traditional approaches [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF][START_REF] Huang | Efficient name disambiguation for large-scale databases[END_REF][START_REF] Setti | Group detection in still images by F-formation modeling: A comparative study[END_REF] that focus on frame based algorithms and whose evaluation is performed in still images by adding tracking capabilities.

• We propose robust real-time algorithms taking into account the current perception sensing abilities of a robot [START_REF] Triebel | SPENCER: A socially aware service robot for passenger guidance and help in busy airports[END_REF].

Dependency from some parameters and from the scenarios does not allow, at the present, a complete generalization and it will be investigated. These limitations will be addressed through a more extensive test on sequences from other synthetic and real data sets.

Chapter 5

Approaching Groups of People

A pproaching people is an activity that we see every day: people arriving with a group of friends, people offering pamphlets on the streets or when we ask for directions in a new city. with markers that are detected by an Optitrack system. The people are colored to identify what people belong to a group (computed with model developed in Chapter 4).

In this chapter we develop a methodology to learn by demonstrations how a robot should approach a group of people. The demonstrations are given by a human controlling the robot, then the parameters are learned using Inverse Reinforcement Learning (IRL). The learning process is implemented in a graph, the nodes representing the states and the edges representing the possible actions that the robot can take from each state. After the learning process is completed, the exploitation part consist on using the parameters learned in a probabilistic approach of the Rapidly exploring Random Tree (RRT) algorithm.

As for the rest of this chapter: Section 5.1 introduces the experimental synthetic scenario used to carry out the demonstrations of the robot approaching people. Section 5.2 explains how the graph that represents the Markov Decision Process (MDP) is computed. Section 5.3 explains how the states are modeled. Section 5.4 shows the navigation strategy when the parameters are already defined in the environment. Section 5.5 presents the results obtained and finally the conclusions are exhibited in Section 5.6.

Environment and Demonstration

In the pursuit of learning parameters from a realistic environment and with the support of SPENCER project, we use a map extracted from the ADREAM building at the LAAS laboratory.

A robot is inserted in the environment along with a group of people that we aim to approach, as shown in Figure 5.2. The robot is then controlled by an expert demonstrator to approach the group of people. The demonstrator tries to move the robot in a natural fashion in terms of positions and velocities that should be comfortable for the people. The previous demonstrations create trajectories or paths as depicted in Figure 5.3. We use later these trajectories in the learning algorithm to obtain parameters that will allow the robot to navigate later on its own. 

Graph Representation

A graph represents a set of objects, some of the objects are connected between each other by links. The objects are represented by abstractions called vertices (also called nodes or points), and the links that connect some pairs of vertices are called edges (also called arcs or lines).

Regarding learning algorithms, a graph can represent a MDP (states represented by vertices and actions as edges). In addition, algorithms such as Reinforcement Learning (RL) and IRL can be applied to them. In continuous space environments, Neumann [START_REF] Neumann | Efficient continuous-time reinforcement learning with adaptive state graphs[END_REF] has shown that a sampling technique represented as a graph can allow an agent to learn the proper parameters with RL. This implementation has also been extended for Bayesian IRL [START_REF] Okal | Learning Socially Normative Robot Navigation Behaviors with Bayesian Inverse Reinforcement Learning[END_REF]. Ergo, we decided to use sampling to create a graph in which the agent learns how to navigate.

The methodology to create the graph is divided in computation of vertices in Subsection 5.2.1

and computation of the edges in Subsection 5.2.2. For our purposes, vertices are going to represent the states and the edges the possible actions that can be taken from one state. An overview of the steps is depicted in Figure 5.4. 

Computation of Vertices

A robot moves in the space with position and orientation [x, y, θ] ∈ R 3 , where where θ has range of [0, 2π). The nodes of the graph are sampled in the same space. Nodes are highly sampled in the area near the targeted group of people to approach and less sampled otherwise. In Figure 5.5 the sampled nodes are shown in 2D and 3D.

The sampling was performed as follows: Dense Area is the area surrounding the groups of people and it is densely sampled; Sparse Area is sampled much less. This difference in sampling density is due to the post-construction of a navigation graph explained in next subsection. Also, an uniform distribution sampling approach is used for the dense area U D . On the other side the spare area is also uniformly sampled excluding values within the range of the dense area

U S / ∈ range(U D ).
The ranges of the sampled areas are the following:

• Dense Area: x ∈ [-2, 1.9], y ∈ [-14.9, -11], θ ∈ [0, 2π] • Sparse Area: x ∈ [-4.5, 7], y ∈ [-15.03, -6.54], θ ∈ [0, 2π] excluding samples within range(U D )
For the sake of clarity, we name the vertices in the dense area as V D , the vertices in the sparse area as V S , lastly V A represents all vertices. Thus, 

V S ⊂ V A , V D ⊂ V A , V S ⊂ V D and V D ⊂ V S . (a) (b) (c) 

Computation of Edges

A non-holonomic robot as the one used in the SPENCER project, has constraints in movement.

For instance, the robot cannot move from side-to-side as a human. Thus, the edges need to be modeled based on the previous considerations. These constraints will connect the vertices in a way that a robot shall be able to navigate.

Two types of constraints are defined. Sparse Constraint for V S , and Dense Constraint for

V D .
For sparse constraints we evaluate the distance between each

V S i ∈ V S with V A j ∈ V A . d ij = |V S i -V A j | i ∈ V S , j ∈ V A (5.1)
This constraint is visually described in Figure 5.6a. If the distance is inside a predefined range then an edge is created between i and j. Point-In-Polygon (PIP) equation plus angle similarity between V i and V j , that's the reason the red object below is rejected, the angle with respect to the blue needs to be small.

As for the generation of the dense constraints we have two conditions: 1) the vertex V A j must be contained in a polygon projected by V D i and 2) the difference of angles between the same pair of vertices which must no exceed the threshold θ th . This conditions are depicted in Figure 5.6b.

For the first condition, the polygon P i of vertex V i ∈ V D is built from the points p i k defined as follows:

p i 1 = (V x i , V y i ) p i 2 = (V x i + r cos(V θ i + α), V y i + r sin(V θ i + α)) p i 3 = (V x i + r cos(V θ i ), V y i + r sin(V θ i )) p i 4 = (V x i + r cos(V θ i -α), V y i + r sin(V θ i -α)) p i 5 = (V x i , V y i )
where (V x i , V y i , V θ i ) are the geometric parameters (x, y, θ) of vertex V i and α is a predefined angle. Finally, the polygon is created based on the previous points.

P i = {p i 1 , . . . , p i n } (5.2)
within that polygon with a Point-in-Polygon equation such as Hormann and Agathos [START_REF] Hormann | The point in polygon problem for arbitrary polygons[END_REF]. If that condition is valid, then condition 2) is evaluated. When both conditions are true then an edge is created between the two vertices E ij = {V i , V j } in graph G. The result of this process is shown in Figure 5.7.

Figure 5.7: Built Graph from data in Figure 5.5 and from the constraints defined in this subsection and depicted in Figure 5.6. This graph drawing is created using Kamada's algorithm [START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF] at 1000 iterations. The drawback of this graph is that it is a disconnected graph, therefor an extraction of the biggest connected graph is performed in Algorithm 5.1

The graph G as shown in Figure 5.7 is a disconnected graph. This can lead to an unsolvable navigation problem. This is because there are regions that are not connected to others. In order to overcome this problem we create a navigation graph, which is the subset G N ⊂ G. The graph G N represents the biggest connected graph inside G and is calculated based on a modified version of Breadth First Search (BFS).

Algorithm 5.1 shows the methodology implemented to obtain the biggest connected graph.

The modified version of the BFS or MBFS is presented starting from line 3. The main difference with BFSis that we consider that the minimum number of out-edges (or actions) of one node has to be at least 2 because the node possess a connection to itself (as seen in line 7 Our graph G N contains the navigation constraints in which the robot is going to learn how to navigate. However, it is to be highlighted that the sparse constraints generate movements that a non-holonomic robot is not able to perform. This is a design consideration in which the amount of nodes are reduced in order to speed up the learning process.

Generalization of States and Rewards

The IRL algorithm aims to learn a Reward Function which can be based on the state R(s) or on the state-action pair R(s, a) in some rare cases also taking into account the next state R(s, a, s ).

In Section 3.1 we already introduced how a model a space for IRL. We obtain a reward function which is a linear combination of functions representing our space.

R(s, a)

= w 1 φ 1 (s, a) + w 2 φ 2 (s, a) + • • • + w n φ 2 (s, a) = n i w i φ i (s, a) (5.3) R(s, a) = n i w i φ i (s, a) = w T Φ(s, a) (5.4)
Where R is the reward function, s is the state, a is the action, φ i is the ith descriptor and w is the weight of each of the descriptors that gives the proper reward. IRL tune the w parameters in such way to achieve the maximum reward based on a set of demonstrations. Thus, we aim to define a proper set of descriptors φ based on the states that we can extract of the perception of the robot. We list the information that we have:

• Geometric Information of the robot (Position, orientation and velocities) of the robot in a 2D plain (x, y, θ, ẋ, ẏ, θi )

• Geometric Information of the people that shall be approached. [p i , . . . , p n ] where

p i = [x i , y i , θ i , ẋi , ẏi , θi ]
In Subsection 5.3.1, some models are presented based on social features. Subsequently other features are presented in Subsection 5.3.2.

Social Features

The first type of functions φ we define are the function based of the people in a group. The number of people in a group of people can change, it could be a group of 2, 3, 4 or N people.

Some people have used a Gaussian Function to represent the energy or cost to be close to a person [START_REF] Kruse | Evaluating directional cost models in navigation[END_REF][START_REF] Pandey | Towards Socially Intelligent Robots in Human Centered Environment[END_REF]. Thus, we propose also a gaussian like function around the people around the person. This gaussian like function could define the proxemic limits in which the robot is or is not allowed to go as in [START_REF] Kruse | Legible robot navigation in the proximity of moving humans[END_REF][START_REF] Okal | Learning Socially Normative Robot Navigation Behaviors with Bayesian Inverse Reinforcement Learning[END_REF]. You can see an example of how this function acts for 2 people in Figure 5.8.

Figure 5.8: Gaussian around people

This descriptor is defined in values of the following equation.

f α i (x, y) = exp(-(a(x -µ xi ) 2 -2b(x -µ xi )(y -µ yi ) + c(y -µ yi ) 2 )) (5.5) a = cos 2 (θ i ) 2σ 2 x + sin 2 (θ i ) 2σ 2 y b = sin 2 (2θ i ) 4σ 2 x + sin 2 (2θ i ) 4σ 2 y c = sin 2 (θ i ) 2σ 2 x + cos 2 (θ i ) 2σ 2 y
Where f α i is the gaussian like function w.r.t. person i and µ xi , µ yi and θ i are the position in x, y and θ of the person i respectively. The algorithm is set to understand tuple values of µ xi which can define the front and rear part of the person.

f α (x, y) = i f α i (x, y) (5.6)
Where i iterates over all the persons in the group that the robot is approaching.

The second proposition for the feature representation is the gradient of this gaussian function, we suspect that it could give us a good understanding of open areas to approach a group.

f βx (x, y) = ∂f α (x, y) ∂x = -(2a(x -µ x ) -2b(y -µ y ))f (x, y) (5.7) f βy (x, y) = ∂f α (x, y) ∂y = -(2c(y -µ y ) -2b(x -µ x ))f (x, y) (5.8)
Figure 5.9: Gradient of f α of the same people. On the left the gradient w.r.t. x axis and on the right w.r.t. axis y

In Figure 5.9, the result of (5.7) and (5.8) is shown on the left and on the right respectively.

Subsequently, the next feature can be based on the squared of the past equations which have an interesting shape that can provide information about how to approach.

f γ = f βy (x, y) 2 + f βy (x, y) 2 (5.9) 
Figure 5.10 depicts the generated result given by (5.9

). An aperture in the direction of the open space can be seen, this aperture is prone to have an positive impact to learn properly trajectories to approach people.

Another proposed feature is based on F-Formation [START_REF] Kendon | Conducting interaction: Patterns of behavior in focused encounters[END_REF]. The developed method gives us a continues function as shown in Figure 5.11.

The equations used for F-Formations are analogous to (5.5) but the values [µ x , µ y ] are the values of the projected position of the person as in Cristani [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF]. This method was presented in [START_REF] Islas Ramírez | Detection of Public Gatherings with Low Level Features in Static Data[END_REF] as an extension of what it was developed in Chapter 4. For the purposes of notation, this feature is called f F .

We extract other features based on the representation of the scenario in Figure 5.12. The orange dot represents the midpoint between the two closest people to the robot. Negative n is the normal to v ij which is the vector going from person i to j. d l n is the distance to the robot to the line generated by n. We define the three following parameters to use as features.

• Distance in between closest people to the robot. 

f dist = | v ij |

Non-social Features

Other parameters important in robotics are obstacles. Since knowledge of the environment is needed to navigate, we employ a map of the environment in which the detection of the nearest obstacle to the robot is computed. A simple image is shown in Figure 5.13. The features are the following:

• Distance to the nearest obstacle f od and depicted as d in Figure 5.13.

• Angle to the nearest obstacle is f oθ and is shown as θ in Figure 5.13.

This information mixed with the information of people could provide a robot with an understanding of the environment. Thus, even if there is space to engage a conversation with a group, but this space is near to a wall, the robot shall receive a low reward when going there.

Exploitation

Once the learning process has been performed, a technique to navigate the environment is required. The graph created in Section 5.2 is computationally expensive. Thus, a modified version of the RRT algorithm is introduced.

A toy example with mixture of gaussians is developed and shown in Figure 5.14. In this example, only axes [x, y] are generated for visual purposes.

A non-holonomic robot must be able to navigate inside this environment. Taken this into consideration and also the energy map previously presented, the MRRT is depicted in Algorithm 5.2. The main difference with a normal RRT lies in Lines 5 -7 where a comparison with a energy function is computed. This energy function is analogous to (5.4) and it is replaced in the results section with the latter function. Based on the computed value we follow through or not with the process. This part of the process let us create more connections in areas with higher values. Subsequently the goal of the trajectory is decided based of which is the node with the highest value. One can image this process as a robot planning to go to the top of a hill.

As for the parameters of Algorithm 5.2. q init represents the initial pose of the robot, K the number of iterations in which we decide to construct our navigation tree. q rand a randomly generated position by a uniform distribution. The functions are described below:

• ENERGY uses the toy function depicted in Figure 5.14 and it is replaced by (5.4) for the results section.

• COMPARE(c) takes the result of the ENERGY function and decides in an stochastic fashion if the value of c is big enough to be sampled or it decides to continue with the process.

Robot

Obstacle 

Result: Modified RRT Graph R Algorithm MRRT(q init ) R. init(q init )
for k = 1 to K do q rand ← random pose c ← ENERGY(q rand ) random pose if COMPARE(c) then continue q near ← QNEAREST(q rand ) q new ← TRANSITION(q near ) R. add vertex(q new ) R. add edge(q near , q new ) return R Algorithm 5.2: Modified RRT.

• QNEAREST(q rand ) performs compute the nearest node to q rand in the following fashion.

argmin i (q x rand -q x i ) 2 + (q y rand -q y i ) 2 + (q θ rand -q θ i ) 2 where i ∈ vertices(R) (5.10)

However, q θ rand -q θ i is computed differently in order to keep angles in the range of [-π, π). Thus q θ rand -q θ i = atan2(sin(q θ rand -q θ i ), cos(q θ rand -q θ i )).

• TRANSITION(q near ) performs a stochastic transition from node q near as follows.

q new = [q x near + cos(q θ near + δ), q y near + sin(q θ near + δ), q θ near + δ] (5.11)

where q new is the new node to be added in the graph and δ is a random number generated with N (0, α). 

Results

Once the navigation tree is created by the MRRT, we find the node in which the energy is maximum.

n g = argmax i ENERGY(q i ) i ∈ vertices(R) (5.12)
The node n g of graph R becomes our goal. Recursively finding the parents of the node in R will lead us to the navigation path needed to achieve the goal. This path is presented in red color in Figure 5.15, the other black paths represent the tree generated by the MRRT.

Results

As in Subsection 3.1.4, we use Radial Basis Function (RBF) to represent the features. Thus, we project N number of RBF features in the space [f dist , f θ , f d l ] instead of the geometric space as in the past chapter. To measure if the created paths are acceptable we evaluate two conditions. The first condition is that the robot shall not interfere with the personal space of any person. In the second condition, the robot shall share part of her Field of View (FoV) with people of the targeted group.

Thus, the first condition is depicted in Figure 5.17 where RP i represents the distance between the robot and person i. C 1 is evaluated along all the points of the trajectory, and if any of the points is invading the personal space, the path is considered to be incorrect.

The second condition is based on the FoV of the people in the target group and it is depicted in Figure 5.18. The FoVs of the person and the robot are represented by convex polygons (similar to the construction of the polygon used in Subsection 4.1.2). Thus, we calculate the sum of the intersection of polygons of the people in the targeted group with the robot's polygon as follows:

C 2 = persons i ψ r,i (5.14) 
where r and i represent the robot and ith person respectively, ψ r,i represents the intersection of FoVs and gives 0 when there is no intersection and 1 otherwise. This equation is evaluated only with the final position of the robots trajectory.

The previous solution was based on RBFs with features [f dist , f θ , f d l ]. It was run 1000 times from different initial positions [x, y, θ] in order to evaluate the conditions previously defined. • 14.5% the robot interfered with the personal space of at least one of the people in the scene.

From (5.13).

• 97.5% of the time the robot intersected > 0 persons. From (5.14).

• 91.7% of the time the robot intersected > 1 person. From (5.14).

• 38% of the time the robot intersected > 2 persons. From (5.14).

We consider a successful trajectory when it complies with the condition of not interference with the personal space of any person during the trajectory and having at least one intersection with the FoV of 1 person. Thus, we have 83.2% of successful trajectories. However, in the case a trajectory is consider as unsuccessful, replanning is a viable option.

Conclusions

In this chapter we developed a path planning algorithm to approach a group of people. This algorithm uses IRL in order to learn features to create a socially acceptable path.

We employed two navigation strategies, one for learning and another for exploitation of the algorithm. The first one is employed to be used as a sampled MDP of the continuous space, this allow us to learn a the weight of the features selected. Keeping the same philosophy of sampling we use a modified version of the RRT to navigate the environment and decide where and how to navigate.

This work is a step towards Human Aware Navigation. The main difference with most navigation algorithms is that the goal is selected through our model. The methodology to real a goal is like climbing a mountain, in which the robot tries to find the best energy level to go and how to go.

One of the drawbacks of the algorithm is that some of the features used are only acceptable when there is more than one person. Thus, an implementation for a general framework for N number of people might be an interesting future work. Finally, we aim in a short-term to evaluate the efficiency of our method to apply it in a real robot.

Chapter 6

Conclusions and Outlook

Conclusions

This thesis has been developed in the context of social robotics. We have explored robot navigation, learning algorithms and detection of groups of people. We have explore conceptual frameworks to translate them into the understanding of a robot. Our goal has been to give a step forwards to the co-existence between humans and robot.

In a more precise manner, this work addressed the following questions:

• How can a robot approach one person?

• What is a group of people? Can a robot perceive groups through low level information of people?

• How can a robot be able to approach a group of people?

Main contributions

We summarize the main contributions of the chapters as follows:

Chapter 3: One of the contributions is the naive global planner, a fast planning model that can re-plan in real-time. One more contribution is the Layered Costmap Navigation, this type of navigation introduces a costmap where the minimum cost represents the goal position and the costmap represents how the robot should approach the targeted person. Both approaches were learned by means of Inverse Reinforcement Learning (IRL). We claim that this work takes into account the personal space of the person because this aspect is learned during the demonstrations.

Chapter 4: Introduces a model to cluster groups of people. This is based in relationships of people described as edges in a graph. The values of the relationships take into account the time people interact between each other, we called this remembrance. In addition, this model is computationally fast and it is able to perform in real-time having low level feature information about people (position and motion). Lastly, in terms of publications, based on Chapter 3 we published [START_REF] Islas Ramírez | Robots Learning How and Where to Approach People[END_REF]. Concerning Chapter 4, the publications are: [START_REF] Islas Ramírez | Modeling the dynamics of individual behaviors for group detection in crowds using low-level features[END_REF] and [START_REF] Islas Ramírez | Detection of Public Gatherings with Low Level Features in Static Data[END_REF]. We aim to publish the results of Chapter 5 shortly.

Furthermore, during this thesis, we collaborated with the following works: [START_REF] Li | Potential human reaction aware mobile robot motion planner: Potential cost minimization framework[END_REF] and [START_REF] Triebel | SPENCER: A socially aware service robot for passenger guidance and help in busy airports[END_REF].

Outlook

Five key research directions have been identified:

General Approaching Framework: Chapters 3 and 5 address navigation to approach people. However, different techniques were used for every chapter. The issues to address in the future are:

• Generalization of approaching people. In Chapters 3 and 5, we addressed the problem separately. We want to combine these two models (with a high level path planner switcher)

or create a general one (through features that apply to single people and multiple people).

• Maximization of robot as part of the group. In Chapter 4 we developed function representing the affinity between people in groups of people. We can maximize such function so the robot becomes part of a target group (by approaching the people).

• Navigation with Fast Marching Trees [START_REF] Janson | Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions[END_REF]. This could be lead to better performance than RRT, accelerating the computational time which is important in planning.

Learning Behaviors: Until now we have reproduced the behavior of learning how to ap-6.2. Outlook proach people. Some other behaviors may be guide a group of people, learning pedestrian traffic rules such as going to the right in case of possible collision with a person, navigation within crowds of people. Level of politeness can be an important aspect in navigation, if the robot is needed to perform a navigation task, maybe she can decide if a rude behavior is needed to achieve a task (e.g. in an emergency case). Furthermore, behaviors can be related to the age of the people surrounding the robot, the classification of the groups (e.g. families, friends).

Detection of Groups:

Until now, we worked in the detection of groups of people based on low level features, i.e. we take the position and motion of people and we cluster groups. We would like to expand this approach to deal directly with perception strategies using cameras, RGB-D and/or velodynes.

Simulation of People Behaviors:

We have analyzed people and their movements, but we haven't analyze the behavior of people in different situations (e.g. shopping, wandering, etc).

Some approaches for generation of people and groups of people have been made, and we used those approaches as synthetic data in Chapter 4. However, several techniques could be used from existing data collections [START_REF] Alameda-Pineda | SALSA: A Novel Dataset for Multimodal Group Behaviour Analysis[END_REF][START_REF] Bazzani | Decentralized particle filter for joint individualgroup tracking[END_REF][START_REF] Pellegrini | You'll never walk alone: Modeling social behavior for multi-target tracking[END_REF], from this, some behaviors can be extracted to simulate realistic behaviors.

Learning Algorithms: During the thesis, we explored learning algorithms. Mainly Reinforcement Learning (RL) and IRL were analyzed and exploited. We would like to make some contributions in the mathematical part of these areas (by presenting new approaches in RL or IRL). Les prochaines sections sont organisées de la manière suivante:

• La Section A.1 présente les travaux qui ont été développés autour de la navigation sociale, les algorithmes d'apprentissage pour la navigation et l'analyse de groupes de personnes.

• Dans la Section A.2 décrit des modèles développés pour la compréhension des groupes de personnes (i.e. ce que veut dire pour un robot un groupe de personnes)

• La Section A.3 parle d'un modèle développé pour approcher une personne de manière agréable.

• La Section A.4 présente un modèle développé pour approcher groupe de personnes.

• Finalement, la Section A.5 parle brièvement des contributions faites pendant cette thèse.

A. D'autres travaux développés autour de ce sujet: Bazzani [START_REF] Bazzani | Social interactions by visual focus of attention in a three-dimensional environment[END_REF], Vazquez [START_REF] Vázquez | Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation[END_REF], Lau [START_REF] Lau | Multi-model hypothesis group tracking and group size estimation[END_REF], Luber [START_REF] Luber | Multi-Hypothesis Social Grouping and Tracking for Mobile Robots[END_REF] pour nommer quelques uns, utilisent des méthodes diverses ainsi que des méthodes d'obtention de données différentes (ils utilisent soit des images, soit du RGB-D, soit données d'un laser).

A.1.2 La navigation sociale

Une des parties importantes de cette thèse est la navigation des robots. Il y a beaucoup de méthodes de navigation, ainsi qu'un grand nombre d'étapes qui composent un processus de navigation pour un robot. On trouve par exemple la commande de bas niveau qui contrôle les roues, un autre niveau de commande se focalise sur la planification des trajectoires et un autre la prise de décisions.

Le Human Aware Motion Planner (HAMP) a été conçu par Sisbot [START_REF] Sisbot | A Human Aware Mobile Robot Motion Planner[END_REF]. Le HAMP est un système général qui prend en compte certains traits dans un environnement social. Un exemple de ce type de système peut-être vu dans [START_REF] Kruse | Legible robot navigation in the proximity of moving humans[END_REF] 

A.2.1 Modèles proposés

Pour un des modèles, on peut considérer les personnes p i et p j qui sont décrites par leurs positions et leurs orientations (i.e. p i = [x i , y i , θ i ]). On propose une fonction de type gaussienne projetée dans l'espace devant p i . Postérieurement, p j projette un point qui est évalué par la fonction de Pour la partie dynamique on s'inspire d'algorithmes de mémoire comme la courbe d'oubli [START_REF] Ebbinghaus | Memory: A contribution to experimental psychology[END_REF].

Les équations (A.1) et (A.2) décrivent ce comportement. Une autre méthode a été développée en prenant en compte le champ de vision des personnes. 

g ij (t + T ) = g ij (t)τ T f (α ij ) if α ij < α th g ij (t) + (1 -g ij (t))τ l (α ij )T otherwise (A.1) τ f (α ij ) = 1 -τ f orget 1 - αij α th τ l (α ij ) = τ learn 1 - αij -α th 1-α th

A.2.2 Résultats

Les méthodes sont évalués avec une implémentation de F-Formation [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF] que nous avons développé.

Nos modèles obtiennent des meilleures performance comme on peut voir dans le Tableau A.1. Il est nécessaire de concevoir des modèles spécifique pour qu'un robot puisse approcher une personne. À titre d'illustration, une personne qui approche une autre doit suivre normes sociales A.3. Comment approcher une personne pour éviter de la gêner (par exemple, on évite approcher une personne par l'arrière).

Method

A.3 Comment approcher une personne

Ainsi, on développe deux techniques de navigation. La première est un planificateur de mouvement et la deuxième est une méthode qui superpose de cartes de coûts [START_REF] Lu | Layered costmaps for context-sensitive navigation[END_REF] avant de réaliser la planification. La carte de coût ajouté représente les valeurs appris par un algorithme d'IRL.

A.3.1 Modèle

Pour commencer, on définit les états pour représenter l'environnement. Dans la 

A.3.2 Démonstrations

Pour l'apprentissage, on a besoin de démonstration pour que le robot apprenne. La 

A.3.3 Résultats

Pour construire le chemin de navigation que le robot doit parcourir, on a développé un traitement du résultat de l'IRL comme on voit dans la 

A.4.4 Résultats

Pour faire la navigation avec le robot, on n'utilise pas la construction du graphe générée dans la sous-section précédente à cause du temps de construction est considérable. On utilise une alternative inspiré par les algorithmes Rapidly exploring Random Tree (RRT).

La 

A.5 Conclusions

Cette thèse a été développée autour de la robotique sociale, principalement dans la navigation à travers l'apprentissage et la détection de groupes de personnes.

Nous avons exploré la navigation des robots, les algorithmes d'apprentissage et les sciences sociales pour savoir comment un robot devrait interagir avec les personnes. Ainsi, on s'est inspiré des cadres conceptuels pour faire comprendre ce qu'est un groupe de personnes. Du côté de la navigation, nos travaux se placent dans le cas où le robot doit trouver où il doit aller au lieu de recevoir une destination directe d'une personne, comme c'est le cas dans la plupart des techniques de l'état de l'art.

Finalement, le but de cette thèse est d'avancer un peu vers la co-existence des humains et robots. Les principales contributions jusqu'à maintenant sont:

• Du côté de modèles de groupe de personnes: [START_REF] Islas Ramírez | Modeling the dynamics of individual behaviors for group detection in crowds using low-level features[END_REF] et [START_REF] Islas Ramírez | Detection of Public Gatherings with Low Level Features in Static Data[END_REF] • Du côté de la navigation par apprentissage pour savoir comment approcher une personne [START_REF] Islas Ramírez | Robots Learning How and Where to Approach People[END_REF] 
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Figure 1 . 1 :

 11 Figure 1.1: One scenario of the SPENCER project. In this scenario the robot navigates toward a predefined goal and it has to consider the people in the environment. The research question is how to produce a pleasant behavior that does not inconvenience the people nearby.

Figure 1 . 2 :

 12 Figure 1.2: Overview of the methodology

Figure 2 . 1 :

 21 Figure 2.1: Proxemics representation, personal space described by Hall [23]. Intimate distance (15 -45 cm), Personal distance (45 -120 cm), Social distance (1.20 -3.50 m) and Public distance (3, 50 -7.50 m).

Figure 2 . 3 .

 23 Figure 2.2: Kendon's conceptual framework for F-Formation[START_REF] Kendon | Conducting interaction: Patterns of behavior in focused encounters[END_REF]. The O-space is a convex empty space surrounded by the people involved in a social interaction, where every participant looks inward into it, and no external people is allowed in this region. The P-space is a narrow stripe that surrounds the O-space, and that contains the bodies of the participants. Lastly, the R-space is the area beyond the O-space and P-space. Image extracted from[START_REF] Marquardt | Cross-device interaction via micro-mobility and f-formations[END_REF].

Figure 2 . 3 :

 23 Figure 2.3: Examples of static and dynamic gatherings based on their type of interaction (focused, common focused, jointly focused). Extracted from [79].

Figure 2 . 4 :

 24 Figure 2.4: a) Hough Voting for F-Formations proposed by Cristani et al. [11]. b) Groups Hung using graphs. Nodes represent people and edges people relationships.

Figure 2 .

 2 5b shows a figure where a group splits into two groups. This work tracks and reasons about multiple social grouping hypotheses in a recursive way.

Figure 2 . 5 :

 25 Figure 2.5: a) Vázquez et al. [87] implementation. Yellow dots refer to the center of groups. People in the left image are colored by group. b) Multi-model hypothesis analysis [49]. Illustration of a group splitting in two. c) Extraction of multi-model hypothesis by Luber and Arras [56]. d) Multi-model hypothesis analysis working with RGB-D [52].

Figure 2 . 6 :

 26 Figure 2.6: a) Examples for social cost functions proposed in [45, 80]. Left: Safety, Right: Visibility b) Kruse et al.[START_REF] Kruse | Evaluating directional cost models in navigation[END_REF], experimentation in a crossing scenario where the robot has to decide whether to stop or not given the level of comfort the person may have.

Figure 2 . 7 :

 27 Figure 2.7: a) and b) are path planners based on information as humans going in the same direction of the robot, pictures extracted from [26, 86].

Figure 2 . 8 :

 28 Figure 2.8: Kretzschmar's model[START_REF] Kretzschmar | Socially compliant mobile robot navigation via inverse reinforcement learning[END_REF] in a real environment. The images describe the steps the planner followed (from top to bottom and from left to right). The driven trajectories are in gray, the most likely trajectories of the people in blue and the robot trajectory in red. The robot expects the pedestrians to cooperatively engage in joint collision avoidance with the wheelchair.

Figure 2 . 9 :

 29 Figure 2.9: a) In framework proposed by Pandey [67] one of the uses is to approach a person to continue the guidance process.b) Svenstrup [82] identifies if a person is interested to be approached by the robot. In this case the figure describes the function of person interested in being approached.

2 :

 2 Algorithms to approach people. The mark (*) represents the works related to social sciences. function the robot decides whether or not the person is interested in being approached. Figure 2.9b you can see the function he proposes for a person that shows interests. He categorizes the person in interested, partially interested and interested and then the robot approaches or not the person.

Figure 2 . 11 :

 211 Figure 2.11: Transitions go from a) to c) in upper and lower sequences. Upper sequence shows a robot proactively waiting for a person to engage a conversation while the lower sequence is a proposed condition where the robot approaches a person and the person responds engaging interaction. Extracted from [38].

Figure 2 .

 2 Figure 2.13: a) Vroon's work[START_REF] Vroon | Dynamics of social positioning patterns in group-robot interactions[END_REF] about how people behaves when a robot approaches. The time is represented as a lighter color when the process starts and darker as it approaches the end. b) Karreman's experiment[START_REF] Karreman | Robot etiquette: how to approach a pair of people?[END_REF] on how comfortable is for a person to be approached from different angles. A task-partner and furniture are involved to evaluate the comfort in several scenarios.

Figure 3 . 1 :

 31 Figure 3.1: Big picture of the final goal of this chapter. The robot approaches a person.

Figure 3 . 2 :

 32 Figure 3.2: a) Proposed path to approach the person. Violet line: Markov Decision Process (MDP) resolution in a deterministic or the most probable transition case. Green line: fitted curved treated with least squares and Bézier lines. b) Layered Costmap Navigation with Inverse Reinforcement Learning (IRL) learned layer
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Figure 3 . 3 :

 33 Figure 3.3: Human centered State

Figure 3 . 4 :

 34 Figure 3.4: Discretization of distance state given the quadratic based function. Values in y axis are the ones used for Φ d .

1 .

 1 (θ c , d c ) : staying in the same place. 2. (θ c + 1, d c ) : moving forward in θ c . 3. (θ c -1, d c ) : moving backward in θ c . 4. (θ c , d c + 1) : moving forward in d c . 5. (θ c , d c -1) : moving backward in d c .

Figure 3 .Figure 3 . 5 :

 335 Figure 3.5: Illustration of action "go in direction θ+1" and its transition probabilities to adjacent places.

Figure 3 .

 3 Figure 3.6 offers a better insight of how these features work. The linear combination of RBFS represents the reward of the function. What we obtain from the IRL is the weights of the features needed to later compute R(s) = w T Φ(s).

Figure 3 . 6 :

 36 Figure 3.6: Representation of 3 RBFs in a plane. Each φ i (s) is an RBF and has a weight w i . Thus, the continuous function of rewards within the environment is created. The values w i will be tuned by means of IRL.

Figure 3 . 7 :

 37 Figure 3.7: Demonstration of the robot approaching the target person. Values of N = 16 and M = 16 for the state space. The darker black line represents the front of the person.

Figure 3 . 8 :

 38 Figure 3.8: a)IRL post-processing. The green line represent the result of the MDP. The black line represents the least square approximation as a parametric function in x and y. The red line is a Bézier curve created from the set of points of this parametric function and the initial orientation of the robot. b) Path generation of the robot approaching the target person.

Figure 3 .

 3 Figure 3.8a and examples from various starting points of the robot are depicted in Figure 3.8b.

Figure 3 .

 3 Figure 3.9 shows a costmap result the weighted values of R(s), result of the application of IRL with the demonstrations given in Figure 3.7, this is feasible due to the representation of features as continuous functions. Even when we have discrete states, the values of the coordinate system is in R for distance and angle.

Figure 3 . 9 :

 39 Figure 3.9: Layered Costmap Navigation: Costmap generated with w T Φ(s) in an unfolded polar map. The blue + signs represent the center of all the RBF used in this task.

Figure 3 .Figure 3 . 10 :

 3310 Figure 3.10: Naive Global Planner learned state environment, red value is the maximum V Value for each state. The image displayed correspond to the 25x25 grid.

Figure 3 .Figure 3 . 11 :

 3311 Figure 3.12 represents the error described in (3.1) for all the samples in the 25x25 case. The x axis represents the initial angular position of the robot given the orientation of the person.The starting angular position could go from -π to π. We performed this analysis in order to

Figure 3 . 12 :

 312 Figure 3.12: Evaluation of errors in (3.1) for all samples for 25x25 case. Angles are in rd

Figure 3 . 13 :

 313 Figure 3.13: Early stage real scenario a) Person wearing a helmet that is detectable by OptiTrack to get his position and orientation. b) Visualization of the computed path based on the Naive Global Planner (green line).

Figure 4 . 1 :

 41 Figure 4.1: Scenario with people doing activities on their own or in groups. We aim to cluster gatherings of people interacting for the detection of a robot.

  time groups of persons acting in a crowded environment. The algorithms have been validated on video sequences extracted from state-of-the-art databases (Figure4.2 illustrates our algorithm detecting groups of the SALSA database[START_REF] Alameda-Pineda | SALSA: A Novel Dataset for Multimodal Group Behaviour Analysis[END_REF]).

Figure 4 . 2 :

 42 Figure 4.2: A snapshot from the SALSA database. Left panel shows a frame from the Cocktail party scenario. Right panel shows the groups detected by our algorithm: blue lines stand for the links between two people. The remainder of this chapter is organized as follows: Section 4.1 introduces and details the methods, and Section 4.2 presents the results. Finally, in Section 4.3 conclusions are drawn and future research is sketched.

Figure 4 . 3 :

 43 Figure 4.3: Representation of the result after step 2 : Nodes in the graph represent the people in the scene and the edges between nodes represent the affinity or connection between two people.Some edges are bolder than others, than means that the connection between two people is stronger.

Figure 4 .

 4 Figure 4.3 depicts the result of step 1 and step 2. This result is the connection between people in a scene, represented by the width of the edges in the graph and which value is in the range of [0, 1]. Step 3 is then computed based on the previous edges to obtain the groups.

Figure 4 . 4 :

 44 Figure 4.4: Gaussian-like function f g . p i and p j represent the person i and j respectively. The concentric circles represent the contours of f g in (4.2) with variances equal to σ x and σ y . The yellow star represents [ x j , y j ] T computed in (4.1).

Figure 4 .

 4 Figure 4.5 illustrates how these parameters act with respect to α ij value. τ learn , τ f orget and α th are tuned parameters with values 0.3, 3 and 0.7 respectively.

Figure 4 . 5 :

 45 Figure 4.5: Remembrance curves from eq. (4.6) and (4.7) with different values of α ij ∈ [0, 1]. The dotted lines are inspired from Ebbinghaus Forgetting curve. The continuous lines represent the learning strategy.

  G a and G b are the groups to compare, each variable contains the ids of the people inside the group. N Ga and N G b are the number of people that contained in each group respectively. The value of the similarity Γ ∈ [0, 1] where 1 is complete similarity, therefore all the members of group in G a are exactly the same as in G b and 0 when none of the members of G a is in G b . Finally, we empirically chose Γ th = 0.66 as the similarity threshold used in Algorithm 4.1.

Figure 4 . 6 :

 46 Figure 4.6: Reconstruction of FoVs (orange polygons) for two groups of participants (in green) acting in a synthetic scene.

Figure 4 . 7 :

 47 Figure 4.7: Images from the real data sets. a) Image from SALSA [2]. b) Image from FriendsMeet[START_REF] Bazzani | Decentralized particle filter for joint individualgroup tracking[END_REF] 

Figure 4 . 8 :

 48 Figure 4.8: AMI shape during a time segment of 20 s extracted from the video sequence SALSA S1.

Figure 5 .Figure 5 . 1 :

 551 Figure 5.1: Person approaching a group of people. The goal of this chapter is to deploy a robot with similar capabilities. The color yellow is given by the members of the group, at some point the person becomes member of the group (detection of groups in the images is performed by methods of Chapter 4).

Figure 5 . 2 :

 52 Figure 5.2: Simulated scenario. Robot (blue) intends to intercept a group of people (green).

Figure 5 . 3 :

 53 Figure 5.3: Trajectories performed by the robot manually moved by the expert. Colors are just to differentiate trajectories.

Figure 5 . 4 :

 54 Figure 5.4: Overview of the steps to create the graph. First the poses in which the robot may be able to navigate are sampled. Then, motion constraints are added. Finally, a navigation graph is created.

Figure 5 . 5 :

 55 Figure 5.5: Sampled vertices for graph. Dense area of vertices is the area close to the people where the angles are a constrain in the connection of vertices. 1000 vertices are sampled in the area close to the people and 100 more outside that area within some predefined boundaries. a, b) 3D representation seen in 2 angles and c) Ortho view representation.

Figure 5 . 6 :

 56 Figure 5.6: Edges constraints, the dark blue object represents the vertex to evaluate, light blue one of the constraints, red and green objects rejected and accepted edges respectively. a) Spare constraints based on the distance between 2 vertices. b) Dense constraints computed with a

22 MRBF(i) 23 Then 24 return G N Algorithm 5 . 1 :

 22232451 G N is built based on the activated nodes (ivis) Compute biggest connected graph. The input is the graph G as in Figure5.7. MBFS algorithm visits; ivis has the visited nodes in an iteration and nvis has the visited nodes during the whole process.
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 5511512 Figure 5.10: Squared Gradient

Figure 5 . 13 :

 513 Figure 5.13: Distance and Angle from the robot to the nearest obstacle.

Figure 5 . 14 :

 514 Figure 5.14: Toy example and possible representation of the environment.

Figure 5 . 15 :

 515 Figure 5.15: Navigation tree created by the MRRT and the best solution found.

Figure 5 .

 5 [START_REF] Fiske | Four modes of constituting relationships: Consubstantial assimilation; space, magnitude, time, and force; concrete procedures; abstract symbolism[END_REF] gives two examples of the result. Drawings in green represent a group of people, the colored contours represent the projection in 2D of the reward function, the black lines represent the branches of the RRT tree and finally, the red line is the trajectory that the robot should follow. The robot select the goal by finding the maximum reward of every sampled node of the tree and as described in (5.12).

Figure 5 . 16 :

 516 Figure 5.16: Result of exploitation algorithm with RBF features with axes [f dist , f θ , f d l ]. Drawings in green represent a group of people, the colored contours represent the projection in 2D of the reward function, the black lines represent the branches of the RRT tree and finally, the red line is the trajectory that the robot should follow.

Figure 5 . 17 :

 517 Figure5.17: The intrusion is measured as follows. If the robot, at any part of the created path gets inside the personal space (.45 m) of any person, the path is considered as a failed path. This zone is marked in red around the person.

Figure 5 . 18 :

 518 Figure 5.18: For the goal position given by the path the intersection of FoV of the robot with the people in the targeted group. In the left image the robot FoV does not intersect with any of the persons FoV while in the right side the robot intersects with all 3 of them.

Chapter 5 :

 5 Two navigation strategies were developed. One of these strategies addresses the simplification of a continuous navigation environment into a sampled interconnected depicted as a graph. This navigation graph allows to learn the parameters of the continuous map through IRL. Some of the parameters are based on social features extracted from the models developed in Chapter 4. The second navigation strategy is used once the continuous map is learned. We developed a modified version of the Rapidly exploring Random Tree (RRT) algorithm. The latter algorithm analyses possible positions of the robot in the environment and computes a goal, equivalent to Chapter 3. Finally, the trajectory is computed to arrive to approach the group of people.
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 1 Figure A.1: Exemple d'un robot qui navigue dans un environnement social

A. 1 . 1

 11 Identification de groupes de personnesUne des premières questions à se poser quand on parle d'un groupe de personnes est d'abord, "Qu'est-ce qu'une personne?". La Figure A.3 présente l'espace personnel de Hall[START_REF] Hall | The hidden dimension, volume 1990[END_REF], un des cadres conceptuels développés dans les sciences sociales.

Figure A. 3 :

 3 Figure A.3: Représentation de la proxémique: espace personnel de Hall [23].

Figure A. 4 :

 4 Figure A.4: Cadre conceptuel de Kendon appelé F-Formation [41].

Figure A. 5 :

 5 Figure A.5: a) Système de vote pour la F-Formation proposée par Cristani [11]. b) Détection des groupes par Hung [30], les noeuds représentent les personnes et les arêtes représentent l'interconnexion entre les gens.

  Figure A.7a et A.7b présentent les travaux de Henry[START_REF] Henry | Learning to navigate through crowded environments[END_REF] et Vasquez[START_REF] Vasquez | Inverse Reinforcement Learning algorithms and features for robot navigation in crowds: An experimental comparison[END_REF]. Ils entraînent des robots par démonstration, puis, les paramètres du planificateur de mouvement du robot sont réglés de telle manière que le robot puisse reproduire les comportements de l'expert démonstrateur.Ce que nous voulons faire, contrairement aux exemples des travaux précédents, c'est trouver où le robot doit aller et la trajectoire à suivre.

Figure A. 6 :A. 2

 62 Figure A.6: a) Exemples de fonctions de coût proposé dans [45, 80]. Gauche: sécurité, Droite: visibilité b) Expérimentation dans un scénario où un robot et une personne croisent leurs chemins [46].

Figure A. 7 :

 7 Figure A.7: a) et b) sont des planificateurs de trajectoires qui prennent l'information des personnes telle que leurs vitesses pour déterminer la trajectoire navigation optimale en donnant priorité aux sens du mouvement des gens [26, 86].

Figure A. 8 :

 8 Figure A.8: Capture de la base de données SALSA. À gauche, une image extraite de la scène Cocktail Party. À droite, la même image aperçue par l'algorithme développé: chaque groupe a une couleur distinctive et les lignes bleus représentent la connexion entre chaque paire de personnes.

p 1 a

 1 Figure A.9: Fonction de type gaussienne projetée par p i et évaluée sur le point projeté par p j .

(A. 2 )

 2 Figure A.10 présente le comportement des équations précédentes. Jusqu'à maintenant, on a un niveau d'affinité entre les paires de personnes. Pour finir ce premier modèle, un algorithme a été décrit dans le document intégral pour faire le regroupement de personnes et le suivi de groupes.

Figure A. 10 :

 10 Figure A.10: Courbes générées à partir de (A.1) and (A.2). Les lignes pointillées représentent la courbe d'oubli d'Ebbinghaus [13] et les lignes continues la stratégie d'apprentissage.

Figure A. 11 :

 11 Figure A.11: Reconstruction du Champ de Vision (polygones oranges) pour deux groupes de participants (couleur verte) dans une scène synthétique.

  Dans cette section on analyse et on reproduit un exemple d'interaction humain-robot dans lequel un robot doit approcher une personne. La Figure A.12 montre une vision générale de ce qu'on entreprend.

Figure A. 12 :

 12 Figure A.12: Vision générale. Le robot doit approcher une personne d'une manière gentille.

  Figure A.13, on peut voir la représentation d'états dans laquelle le modèle d'apprentissage va mettre au point les paramètres.

Figure A. 13 :

 13 Figure A.13: État de représentation polaire avec une personne comme origine.

Figure A. 15 montreFigure A. 14 :

 1514 Figure A.14: Illustration de l'action "aller en direction θ + 1" et ses possibles transitions.

Figure A. 15 :

 15 Figure A.15: Démonstrations données par une personne qui commande directement un robot pour approcher une personne.

  Figure A.16a. La Figure A.16b montre le résultat en utilisant différentes positions de départ du robot.

Figure A. 17 :

 17 Figure A.17: Résultats avec la deuxième méthode. On utilise RBF pour décrire l'environnement.

Figure A. 18 :A. 4 . 1 Démonstrations

 1841 Figure A.18: Vrai scénario a) Une personne qui porte un casque pour être détecté par le système Optitrack. b) Visualisation du chemin de navigation donné par notre planificateur de mouvement (ligne verte).

Figure A. 19 :

 19 Figure A.19: Une personne qui approche un groupe de gens. C'est le comportement qu'on veut analyser et que l'on va tenter de reproduire dans cette section.

Figure A. 20 :A. 4 . 2 Figure A. 21 :A. 4 . 3

 20422143 Figure A.20: Trajectoires exécutées manuellement à partir de différents points de départ. À partir de ces exemples, le robot doit apprendre comment approcher un groupe.

Figure A. 22 :

 22 Figure A.22: Détection de groupes[START_REF] Islas Ramírez | Detection of Public Gatherings with Low Level Features in Static Data[END_REF] 

  Figure A.23 montre deux possibles points de départ pour un robot et la navigation qu'il doit suivre pour s'approcher des personnes qui forment le groupe.

Figure

  Figure A.23: L'algorithme de navigation pour approcher un groupe de gens. On voit en vert les images qui représentent les humains dans un groupe de personnes, la projection en 2D de l'espace avec des contours en couleur, les ramifications de l'arbre de navigation en noir et le résultat en rouge.

  

  needed to understand what a group of people is, and how a robot can understand this concept (what is a group? in figure). We developed then a component of the work entitled analysis of groups of people, taking reference of works in social sciences (such as F-Formation) and computer science[START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF][START_REF] Hung | Detecting F-formations as dominant sets[END_REF][START_REF] Vázquez | Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation[END_REF]. Lastly, once the robot is able to understand what a group of people is, we embraced the problem of approaching groups. We developed navigation techniques to learn and exploit parameters and find an appropriate navigation technique that takes into account people.
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Table 3 .

 3 

	1: TDM and l error evaluation of generated paths
		16x16 vs real 25x25 vs Real
	TDM (meters)	0.54 ± 0.31	0.53 ± 0.30
	l error (%)	5.56 ± 4.53	5.40 ± 4.29

Table 3 .

 3 [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF] shows the average of the two metrics (3.1) and (3.2) with their respective standard deviations through the 30 test-set sample trajectories. We applied the IRL algorithm to the polar space divided in 16x16 and 25x25 discrete values respectively, and we can see that the 25x25

Table 4 .

 4 1: Average NMI and AMI for the video sequences on which we evaluated our algorithms.In bold the best performance reached by each algorithm.Link Method Gauss and Interpersonal Synchrony Method proved to be the most robust against both inter data sets and intra data set variations. For example, sequences S1 and S2 of SALSA differ in how cluttered people are gathered in one specific area.

The algorithms Link Method Simple and Link Method Gauss run in at around 2.5 ms and Interpersonal Synchrony Method in around 10 ms with 35 persons in a scene on a 2.2GHz Intel Core i7-4702MQ. Videos of the results can be seen in: http://chronos.isir.upmc.fr/ ˜islas/ group_analysis/

  Initialize nvis and ivis as Boolean vector with zeros. Initialize vis Int vector with zeros.

		Data: G: Possible disconnected graph with navigation constraints	
		Result: G N : Connected graph with navigation constraints	
		/* Set global variables	*/
	1 3 Procedure MRBF(k)	
	4	if nvis[k] has been already visited then	
	5	return	
		/* compute number of possible actions from node k	*/
	6	n = count(out-deges(G(k)))	
	7	if n < 2 then	
	8	return	
	9	nvis[k] = 1	
	10	for possible actions a ki of node G(k) do	
	11	MRBF(i)	
	12 Algorithm BiggestGraph(G)	
	14	if nvis[k] = 1 then	
	15	continue	
	16	Re-initialize ivis with zeros.	
	17	MRBF(k)	
	18	vis[k] = count(ivis) /* Count visited nodes	*/
	19	nvis = nvis ∧ ivis /* vector and operation to refresh visited nodes	*/
	20	i = argmax(vis) /* Argmax of number of visited nodes	*/
	21	Re-initialize ivis with zeros.	
		). Algorithm 5.1	
	includes the following variables: vis, contains the information concerning how many nodes the	

2 13 for all nodes k of graph G do

1 État de l'art

  Dans cette section, on discute sur les diverses ramifications de la science telles que la navigation pour la robotique, les algorithmes d'apprentissage et les sciences sociales. Un des objectifs de cette recherche est de déployer un robot capable de reproduire le comportement qu'un personne utilise pour approcher une personne ou un groupe. De la même manière, une formalisation de groupe de personnes a été développée. Cette formalisation permet à un robot de comprendre ce qu'est un groupe de personnes. De cette manière un robot pourrait être capable robot d'avoir une interaction avec groupes des gens. La Sous-section A.1.1 parle de ce qu'est un groupe de personnes d'après les sciences sociales et les sciences de l'informatique. Ensuite, la Soussection A.1.2 présente les algorithmes de navigation sociale développés jusqu'à maintenant.

Table A .

 A 1: NMI et AMI des vidéo séquences évaluées avec nos modèles.

http://spencer.eu/

[START_REF] Kruse | Evaluating directional cost models in navigation[END_REF] is openly available for Robot Operating System (ROS) as a costmap navigation layer[START_REF] Lu | Layered costmaps for context-sensitive navigation[END_REF] in the following address https://github.com/harmishhk/hanp_layer and called Human Aware Navigation Planner (HANP)
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Data: P t : Graph of relationships at time t. G t-1 : all groups at time t -1.

Result: Groups at time t (G t )

1 Algorithm computeGroups(P t ,G t-1 ) 2 Initialize idused vector. 

Interpersonal Synchrony Method

This algorithm is performed in three steps: (1) Pairing People from Possible Interactions; [START_REF] Alameda-Pineda | SALSA: A Novel Dataset for Multimodal Group Behaviour Analysis[END_REF] Forming groups from Pairs; and (3) Thresholding of candidate groups through intra-group synchrony. Unlike the Link Method, in which there is a step for static analysis and another one for the dynamic analysis, the Interpersonal Synchrony Method runs over sliding time-windows of a Appendix A

Résumé (French)

Au fil des dernières années, l'intérêt vers la robotique sociale a augmenté. Plusieurs robots ont été déployés dans le secteur privé par entreprises comme Softbank Robotics. On peut trouver dans le marché robots comme les suivants:

• Nao, Pepper de Softbank Robotics Proxemics the branch of knowledge that deals with the amount of space that people feel it necessary to set between themselves and others.. 5, 16

A.4 Comment approcher un groupe de personnes

R-space

In the concept of F-formation. The R-space is the area beyond the O-space and Pspace.. xi, 6, 7

Rapidly exploring Random Tree is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree. The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased