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Abstract 

 
This thesis reports on the study under magnetic field of the electronic properties of 

relativistic-like Dirac fermions in two Dirac systems: graphene and topological insulators. Their 
analogies with high-energy physics and their potential applications have attracted great attention 
for fundamental research in condensed matter physics. The carriers in these two materials obey a 
Dirac Hamiltonian and the energy dispersion is analogous to that of the relativistic particles. The 
particle rest mass is related to the band gap of the Dirac material, with the Fermi velocity 
replacing the speed of light. Graphene has been considered as a “role model”, among quantum 
solids, that allows us to study the relativistic behavior of massless Dirac fermions satisfying a 
linear dispersion. When a Dirac system possesses a nonzero gap, we have massive Dirac 
fermions. Massless and massive Dirac fermions were studied in high-mobility multilayer 
epitaxial graphene and in topological crystalline insulators Pb1-xSnxSe and Pb1-xSnxTe. The 
latter system is a new class of topological materials where the bulk states are insulating but the 
surface states are conducting. This particular aspect results from the inversion of the lowest 
conduction and highest valence bulk bands having different parities, leading to a topological 
phase transition. Infrared magneto-spectroscopy is an ideal technique to probe these zero-gap or 
narrow gap materials since it provides quantitative information about the bulk parameters via the 
Landau quantization of the electron states. In particular, the topological phase transition can be 
characterized by a direct measurement of the topological index.  

 
Keywords: Dirac fermions, graphene, topological crystalline insulator, topological phase 

transition, magneto-spectroscopy, Landau quantization.       
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Résumé 

 
Ce travail consiste en l’étude sous champ magnétique des propriétés électroniques des 

fermions de Dirac relativistes dans deux systèmes: graphène et isolants topologiques. Leur 
analogie avec la physique des hautes énergies et leurs applications potentielles ont suscité 
récemment de nombreux travaux. Les états électroniques sont donnés par un Hamiltonien de 
Dirac et la dispersion est analogue à celle des particules relativistes. La masse au repos est liée au 
gap du matériau avec une vitesse de Fermi remplaçant la vitesse de la lumière. Le graphène a été 
considéré comme un « système école » qui nous permet d’étudier le comportement relativiste des 
fermions de Dirac sans masse satisfaisant une dispersion linéaire. Quand un système de Dirac 
possède un gap non nul, nous avons des fermions de Dirac massifs. Les fermions de Dirac sans 
masse et massifs ont été étudiés dans le graphène épitaxié et les isolants topologiques cristallins 
Pb1-xSnxSe et Pb1-xSnxTe. Ces derniers systèmes sont une nouvelle classe de matériaux 
topologiques où les états de bulk sont isolants mais les états de surface sont conducteurs. Cet 
aspect particulier résulte de l’inversion des bandes de conduction et de valence du bulk ayant des 
parités différentes, conduisant à une transition de phase topologique. La magnéto-spectroscopie 
infrarouge est une technique idéale pour sonder ces matériaux de petit gap car elle fournit des 
informations quantitatives sur les paramètres du bulk via la quantification de Landau des états 
électroniques. En particulier, la transition de phase topologique est caractérisée par une mesure 
directe de l’indice topologique.            

 
 Mots clés: fermions de Dirac, graphène, isolants topologiques cristallins, transition de 
phase topologique, magnéto-spectroscopie, quantification de Landau.       
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Introduction 
      

This thesis focuses on the magneto-optical study of the electronic 
properties of Dirac fermions and their relativistic behavior in two extensively 
studied Dirac materials: graphene (Nobel Prize 2010) and topological insulators 
(Nobel Prize 2016). Such materials have recently become of great interest in solid 
state physics owing to their analogies with high-energy physics and their potential 
for promising technological applications.  
 
 The first Dirac system studied in this work is graphene known as the first 
truly two-dimensional crystal, composed of carbon atoms, ever found in nature. 
In condensed matter physics, graphene has been considered as "the role model" 
for studying the behavior of relativistic-like electrons known as massless Dirac 
fermions owing to its gapless and linearly dispersing electronic band structure at 
low energies. These massless Dirac particles in the vicinity of the corners of the 
hexagonal Brillouin zone of graphene (Dirac cone) can be described by a Dirac 
Hamiltonian with a Fermi velocity 300 times smaller than the speed of light.     
 

Recently, the search for other solid systems of which the carriers exhibit 
relativistic-like properties as those in graphene has become very active. 
Topological insulator is a new class of materials that provides access to the 
description of both relativistic massless and massive Dirac fermions. Note that the 
energy dispersion of massive Dirac fermions resembles that of graphene but there 
exists a mass term corresponding to the energy gap of the material. A notable 
characteristic of such material is that its bulk insulating states are coexisting with 
its surface conducting states occurring at the boundaries of the solid. This 
intriguing particular aspect originates directly from the spin-orbit coupling which 
invert the lowest conduction and the highest valence bulk bands of the material. 
The band inversion results in linearly dispersing spin-momentum locked 
topological surface states which are protected by time-reversal symmetry.  
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Such a physical phenomenon can be observed in narrow gap semiconductors where the role of 
the spin-orbit interaction is important enough to invert the bulk band ordering. The topological 
nature of condensed materials is thus fundamentally governed by the parity and orbital ordering 
of the conduction and valence bands. The material is in the trivial regime when the bands are 
normal (with positive band gap) and is in the nontrivial regime when the bands are inverted (with 
negative band gap). The material musts undergo a topological phase transition for changing the 
band ordering from trivial phase to nontrivial phase.  

 
Another novel class of topological matter, so-called topological crystalline insulator, has been 
shown to display similar bulk and topological surface state properties as in the case of 
topological insulator, but the topological surface states are protected by the crystalline symmetry 
of the system. Narrow gap rocksalt IV-VI semiconductors such as Pb1-xSnxSe and Pb1-xSnxTe 
were demonstrated to exhibit these topological properties. In this thesis, we chose these lead-tin 
chalcogenides as the second Dirac system to study the relativistic behavior of their massless and 
massive Dirac fermions, owing to their mirror-like conduction and valence bands. The 
topological phase transition resulting from the bulk band inversion can be studied by tuning the 
chemical Sn composition. For a given temperature, there exists a critical Sn content xc at which 
the topological phase transition occurs in Pb1-xSnxSe and Pb1-xSnxTe. For x < xc, the system is 
trivial and has a positive gap, while it is nontrivial and has a negative gap when x > xc.     
 
 In this work, magneto-optical absorption spectroscopy in the infrared domain (4-930 
meV) is the principal technique used to investigate these zero gap (graphene) and narrow gap 
(topological crystalline insulators) semiconductors having the energy gap less than 1 eV. When a 
magnetic field is applied perpendicular to the crystal surface, the electron states are quantized 
into Landau levels. Optical transitions between Landau levels can be observed at the minima of 
the transmission spectra. This allows us to extract the band parameters, i.e. the Dirac mass or the 
energy gap and the Dirac velocity, of the material using the Dirac fermion model analysis. The 
obtained physical quantities of the bulk bands allow us to study the bulk band inversion or 
equivalently the topological phase transition of the topological system, making magneto-
spectroscopy an ideal tool for probing topological material. Additionally, magneto-transport 
experiment, presented in the Appendix, can also be used as a technique to examine the 
topological character of a topological material via its bulk properties. Moreover, transport 
technique was used by M. König et al. in 2007 to demonstrate the quantum spin Hall effect in 
Hg1-xCdxTe/HgTe quantum wells, classified later as the first two-dimensional topological 
insulator.   
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 The present thesis is organized in two major parts, dealing successively with two Dirac 
matter systems: graphene and topological crystalline insulators. The magneto-optical study of 
relativistic-like Dirac fermions accommodated in these two quantum materials will be presented 
in this manuscript as follows: 

1. The first chapter presents two investigation techniques that can be used to 
study the electronic properties of Dirac fermions: angle-resolved 
photoemission spectroscopy (ARPES) and IR magneto-optical absorption 
measurement. ARPES is a surface sensitive probe, while magneto-
spectroscopy is essentially a bulk sensitive probe. The latter is the principal 
technique employed to realize this work and it allows us to investigate not 
only the bulk states, but also the surface states of solid materials.  
 

2. The second chapter is completely devoted to graphene. The electronic 
properties of single-layer graphene and graphene stacks (bilayer, trilayer, and 
multilayer) will be introduced. Several methods of graphene fabrication will 
be briefly described. The Landau quantization, in the presence of an external 
magnetic field, of the energy of Dirac fermions in different types of graphene 
stacking will be given. Magneto-optical results were mainly obtained from 
high-quality multilayer epitaxial graphene prepared by thermal decomposition 
of SiC substrates on both the C- and Si-terminated surfaces.  

 
3. The third chapter briefly overviews the characteristic aspects of topological 

matter: topological insulators and topological crystalline insulators. The first 
section regarding topological insulators starts with historical overview, then 
theoretical notions of topological states of matter, and finishes with presenting 
some well-known two-dimensional and three-dimensional Z2 topological 
insulators. We then describe topological crystalline insulator in the second 
section. This new kind of topological matter consists of narrow gap rocksalt 
IV-VI semiconductors such as Pb1-xSnxSe and Pb1-xSnxTe alloys. The 
electronic band structure of different surface orientations and the valley 
anisotropy in both systems will be described in details. This facilitates the 
interpretation of the transmission spectra shown in the upcoming chapter. The 
last section shows a Bernevig-Hughes-Zhang Hamiltonian model, equivalent 
to a three-dimensional Dirac Hamiltonian, that can be used to describe the 
topological nature of relativistic-like massive Dirac fermions in both 
topological insulators and topological crystalline insulators.  
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4. The heart of this thesis is presented in the last chapter. This chapter shows the 

magneto-optical experimental findings of high-quality (111)-oriented Pb1-

xSnxSe and Pb1-xSnxTe films grown on BaF2 substrates by molecular beam 
epitaxy. A systematic study, using Dirac Landau level magneto-spectroscopy, 
of the topological character of these chemical tuning systems across the 
topological phase transition is presented in details. From the bulk band 
parameters extracted, the valley anisotropy in Pb1-xSnxSe and Pb1-xSnxTe can 
be studied in the vicinity of the topological phase transition. The most 
important aspect of our analysis is the ability to verify whether a material is 
trivial or nontrivial via its topological index that can be measured 
experimentally by magneto-spectroscopy. This important result demonstrates 
that the topological character of the material can be directly determined via 
the bulk properties.  
 

5. Finally, we will conclude the ensemble of main results presented in this thesis 
and confirm that magneto-spectroscopy is a powerful investigation technique 
for Dirac matter. We will also give a few perspectives for future magneto-
optical studies of the topological phase transition in various Dirac systems that 
can be described by a Bernevig-Hughes-Zhang Hamiltonian.   

 
6. Another approach to determine the topological character via the bulk band 

properties of solids is represented in the Appendix. Performing magneto-
transport experiment, high-quality (111) Pb1-xSnxSe epilayers were 
demonstrated to exhibit the topological phase transition when the negative 
longitudinal magnetoresistance is observed and the system is in the nontrivial 
regime. The origin of this phenomenon will be described.  

4 
 



Chapter 1 

 

  

Investigation techniques of Dirac matter: 
ARPES and IR magneto-spectroscopy 

Numerous investigation techniques are efficient to study the electronic band 
structure of quantum solids. In this chapter, we present two representative techniques used 
to probe Dirac fermions and allowing us to study the band dispersion in Dirac matter. The 
first one is the angle-resolved photoemission spectroscopy which allows a direct 
experimental study of the electron distribution in the reciprocal space. It is a surface 
sensitive probe for the electron surface states. The second one, which is essentially a bulk 
sensitive probe, is the magneto-optical spectroscopy in the infrared domain. We will show 
in the Chapter 4 that this technique can be used to probe not only the bulk states, but also 
the surface states of solid materials.   
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1.  Angle-resolved photoemission spectroscopy (ARPES) 
Angle-resolved photoemission spectroscopy (ARPES) is one of the photoelectron 

spectroscopy techniques based on the photoelectric effect first observed by H. Hertz 1 and later 
explained by A. Einstein for the quantum description of light 2. In other words, this technique 
relies fundamentally on the detection of photoemitted electrons allowing to probe directly the 
momentum-dependent electronic band structure and provide detailed information about the 
band dispersion and Fermi surface of solids. To obtain ARPES spectra, the kinetic energy and 
angular distribution of the electrons photoemitted from a material under sufficiently high-
energy illumination are measured and analyzed. Up to now, ARPES reaches 2 meV energy 
resolution and 0.2° angular resolution 3 which lead to better reveal the behavior of the electrons 
propagating inside a material through a penetration length of a few nanometers. This 
improvement has played a key role in enhancing the potential of ARPES to become a more 
sophisticated precision tool for the investigation of complex phenomena.    

 
As mentioned earlier, the fundamental objective of an ARPES experiment is to detect 

the photoemission from the photoelectric effect occurring in a material. Within the non-
interacting electron scheme and the energy conservation law, one can thus relate the kinetic 
energy (𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘) of the photoelectron in vacuum to the binding energy (𝐸𝐸𝐵𝐵) of the electronic state 
inside the material by the following expression: 

 
𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 = ℎ𝜈𝜈 − 𝜙𝜙 − ǀ𝐸𝐸𝐵𝐵ǀ                                                      (1.1) 

 
where ℎ is the Planck constant, 𝜈𝜈 is the photon frequency, and 𝜙𝜙 is the material work function. 
The latter represents the potential barrier at the surface that prohibits the valence electrons from 
escaping.     
 
Fig. 1.1 schematically illustrates the photoemission occurring in a sample using ARPES probe 
under ultra-high vacuum (UHV) condition (𝑃𝑃 < 4 × 10-11 mbar) in order to minimize surface 
contamination and maximize the mean free path of the emitted electrons 3. A monochromatized 
light beam of energy ℎ𝜈𝜈 is incident on the sample. Light sources of energy between 10 and 200 
eV are, for example, plasma helium discharge lamp, synchrotron radiation, or lasers. As a 
consequence, the electrons will be emitted by photoelectric effect and escape in all directions 
in vacuum. The hemispherical electron energy analyzer is employed to collect the 
photoelectrons (denoted as e- in Fig. 1.1). Such photoelectrons are directed onto a 2D multi-
channel plate. The kinetic energy 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 of the photoemitted electrons can then be measured for 
a given emission direction specified by the azimuthal (𝜑𝜑) and polar (𝜃𝜃) angles.  
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Figure 1.1. Photoemission geometry of an ARPES experiment. The incident photon of energy hν 

causes the photoemitted electron (e-) escaping from the sample in vacuum. The emission direction of the 
photoelectron is identified by the azimuthal (𝜑𝜑) and polar (𝜃𝜃) angles. An electron energy analyzer collects the 
photoelectrons.   
 
The wave vector or momentum of the photoelectrons in vacuum can be determined as 𝐾𝐾��⃗ = �⃗�𝑝/ħ 
and its modulus is equal to 𝐾𝐾 = �2𝑚𝑚0𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘/ħ, where ħ is the reduced Planck constant and 𝑚𝑚0 
is the electron rest mass. The components parallel (𝐾𝐾��⃗ ∥ = 𝐾𝐾��⃗ 𝑥𝑥 + 𝐾𝐾��⃗ 𝑦𝑦) and perpendicular (𝐾𝐾��⃗ ⊥ =
𝐾𝐾��⃗ 𝑧𝑧) to the sample surface can be obtained in terms of the emission angles (𝜑𝜑 and 𝜃𝜃) defined in 
Fig. 1.1 as follows:     

 
𝐾𝐾𝑥𝑥 = 1

ħ �2𝑚𝑚0𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘sin(𝜃𝜃)cos(𝜑𝜑)                                              (1.2a) 
 

𝐾𝐾𝑦𝑦 = 1
ħ �2𝑚𝑚0𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘sin(𝜃𝜃)sin(𝜑𝜑)                                              (1.2b) 

 
𝐾𝐾𝑧𝑧 = 1

ħ �2𝑚𝑚0𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘cos(𝜃𝜃)                                                    (1.2c) 
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Since the objective of ARPES measurement is to construct the electronic dispersion relation 
between the binding energy 𝐸𝐸𝐵𝐵 and the wave vector or momentum 𝑘𝑘�⃗  of the electrons 
propagating inside the material, we have to determine the two components of 𝑘𝑘�⃗  which are 𝑘𝑘�⃗ ∥ 
and 𝑘𝑘�⃗ ⊥. Here 𝑘𝑘�⃗ ∥ = 𝑘𝑘�⃗ 𝑥𝑥 + 𝑘𝑘�⃗ 𝑦𝑦 is the component parallel to the material surface while 𝑘𝑘�⃗ ⊥ = 𝑘𝑘�⃗ 𝑧𝑧 is 
the component perpendicular to the material surface. Note that ARPES measurement requires 
sufficiently clean surfaces in order to establish a definite relationship between the crystal wave 
vector (𝑘𝑘�⃗ ) and the measured wave vector (𝐾𝐾��⃗ ) of the extracted photoelectron. 𝑘𝑘�⃗ ∥ is conserved in 
the process. For a pristine sample, 𝑘𝑘∥ reads: 
 

𝑘𝑘∥ = 𝐾𝐾∥ = 1
ħ �2𝑚𝑚0𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘sin(𝜃𝜃)                                               (1.3) 

 
Contrary to 𝑘𝑘�⃗ ∥, 𝑘𝑘�⃗ ⊥ is not conserved but is necessary to map the electronic band structure. To 
calculate 𝑘𝑘⊥, we can adopt a nearly-free-electron description for the final bulk Bloch states 4. 
We thus get:  
 

𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜙𝜙 = ħ2𝑘𝑘�⃗ 2

2𝑚𝑚0
− |𝐸𝐸0| = ħ2(𝑘𝑘�⃗ ∥

2+𝑘𝑘�⃗ ⊥
2 )

2𝑚𝑚0
− |𝐸𝐸0|                                    (1.4) 

 
Here, 𝐸𝐸0 corresponds to the energy at the bottom of the band with respect to the Fermi energy. 
As we can calculate the value of 𝑘𝑘�⃗ ∥2 from Eq. 1.3, the expression of 𝑘𝑘⊥ can thus be written as: 
  

𝑘𝑘⊥ = 1
ħ
�2𝑚𝑚0(𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃) + 𝑉𝑉0)                                            (1.5) 

 
where the inner potential 𝑉𝑉0 =  |𝐸𝐸0| + 𝜙𝜙 represents the energy of the bottom of the band 
referenced to the vacuum level. 
 

The electronic band structure of a material can be established by studying the 
momentum-dependent binding energy (𝐸𝐸𝐵𝐵(𝑘𝑘�⃗  )). Only occupied electronic states can be 
observed by ARPES. Fig. 1.2 represents ARPES spectra obtained from different Dirac systems 
accommodating 2D and 3D topological Dirac fermions. These ARPES data clearly show the 
surface electronic structure dispersion map for the 2D topological surface Dirac cone in 3D 
topological insulator Bi2Se3 5, 3D tunable topological insulators TlBi(S1-xSex)2 with x = 0.5 6 
and (Bi1-xInx)2Se3 with x = 0.04 7, and the 3D bulk Dirac cone in 3D Dirac semimetal Cd3As2 
8. Moreover, ARPES measurement allows us to estimate the surface state band velocity from 
the experimental slope of the Dirac cone structure.  
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Figure 1.2. ARPES measurements in different Dirac systems. ARPES spectra show the surface 

electronic band structure of (a) 3D topological Dirac semimetal Cd3As2 8, (b) 3D topological insulators Bi2Se3 
5, 

(c) TlBi(S0.5Se0.5)2 6 and (d) (Bi0.96In0.04)2Se3 7 in topologically nontrivial phase. Modified from 8.    
 

In summary, ARPES is an ideal surface sensitive probe used to investigate the electronic 
band structure of quantum materials due to the improvements of energy and angle resolutions 
and data acquisition efficiency. There are also many exciting developments trying to add new 
dimensions into this technique leading to the spin-resolved ARPES and time-resolved ARPES. 
With the efforts put into its development, this powerful tool will continue playing an 
irreplaceable role in the search for novel phenomena of complex materials. The ARPES results 
that will be presented later in this work were obtained by our collaborators.    

 
 
 

10 
 



CHAPTER 1  
Investigation techniques of Dirac matter: ARPES and IR magneto-spectroscopy 

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

 

2.  Magneto-optical absorption spectroscopy  
 In the previous section, ARPES as surface sensitive probe is shown to be a powerful 
tool allowing us to study the electronic band structure of Dirac materials. In this section, 
infrared magneto-optical absorption spectroscopy, the technique we used in this thesis to probe 
and characterize Dirac matter, will be described. When the crystal surface is subjected 
perpendicular to an applied magnetic field 𝐵𝐵, the electron states will be quantized into 
relativistic Landau levels dispersing as √𝐵𝐵 or �𝛼𝛼2 + 𝛽𝛽𝐵𝐵, where 𝛼𝛼 and 𝛽𝛽 are band parameters. 
This is a typical characteristic feature of Dirac fermions. The optical transitions occurring 
between these Landau levels give important information about the physical parameters of the 
electronic band structure of bulk states as well as surface states. Infrared spectral range is chosen 
thanks to the energy compatibility for probing semiconductors of which the energy gap is less 
than 1 eV. This is the primary reason why magneto-optical absorption spectroscopy in the 
infrared domain is primarily used in this thesis to investigate Dirac matter.  

 

 
Figure 1.3. Photo of magneto-optical spectroscopy experimental setup.   
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Fig. 1.3 shows the whole experimental setup used to probe Dirac fermions. The principal 
element is the Oxford Instruments 1.5K/17T cryostat, situated at the center of the photo, 
equipped with a superconducting coil. It allows us to do experiments in the temperature range 
1.5 K < 𝑇𝑇 < 220 K and under magnetic fields 𝐵𝐵 = 0-17 T. The Fourier transform infrared (FTIR) 
interferometer (Bruker VERTEX 80V), located in the upper left hand corner of the photo, is 
employed as the infrared light source and the spectral analysis apparatus at the same time. These 
two essential elements are connected by a coupler containing a parabolic mirror. Detailed 
information about the experimental setup and the data acquisition will be described in the 
following subsections.    

 
2.1. Sample preparation for measurement  

Samples are first prepared and attached at the bottom of the sample probe for magneto-
optical absorption measurement. In this subsection, three important parts will be described: the 
sample probe, the sample holder and the bolometer used as a detector of transmitted signals.  
 
2.1.1. Sample probe  

 
Figure 1.4. Different parts of the sample probe. (a) The sample is placed at the bottom of the sample 

probe for measurement. The sample probe envelope is used to avoid any contact between the sample and the 
exterior environment. (b) Zoom of the top of the sample probe.  

 
 A 1.5 m long sample probe was designed to mount samples for magneto-optical 
absorption measurement and to maintain three electrical channels carried by two nonmagnetic 
coaxial cables (Fig. 1.4(b)). The inner walls of the sample probe guide the incident infrared 
light reaching towards the sample. The three channels are used for the ±18 V bolometer power 
supply, the signal acquisition of the bolometer and the ground. The sample probe envelope (Fig. 
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1.4(a)) is necessary for protecting the cables, the bolometer and the sample from the exterior 
environment when the sample probe is immersed in the cryostat filled with liquid helium. After 
the sample is mounted and sealed, the sample probe is primarily evacuated down to ~ 1 × 10-2 
mbar. It is then filled with helium exchange gas, up to a pressure of 80-800 mbar at room 
temperature to ensure sample thermalisation, before being put into the variable temperature 
insert (VTI) of the cryostat for measurement. The pressure in the sample probe is maintained 
owing to a diamond window located at the connection between the sample probe and the 
coupler. The diamond window enables also an optimal passage of the transmitted signals 
throughout the infrared range. For the investigation of Dirac fermions in graphene and 
topological insulators, the pressure of the helium exchange gas is about 100-120 mbar at room 
temperature.             

 
2.1.2. Sample holder  

 Fig. 1.5(a) shows two kinds of sample holders: sample holder with one hole and rotating 
sample holder with two holes. The sample holder used for the transmission experiment has 
several diameters. An appropriate diameter for a given sample is chosen for maximizing the 
transmitted signals. Fig. 1.5(b) shows a sample bonded on a sample holder. The rotating sample 
holder can mount two pieces of samples as seen in Fig. 1.5(c). The rotating system (Fig. 1.4(b)) 
joining the rotating sample holder allows switching from one sample to another sample in situ. 
This is very practical for a measurement requiring a normalization between two consecutive 
transmission spectra at the same applied field. To glue a sample on a sample holder, we use 
silver paste or PMMA (Poly(methyl methacrylate)).   
 

  
Figure 1.5. Examples of sample holders. (a) Examples of a sample holder (with one hole) and a rotating 

sample holder (with two holes). There are several diameters adapting to the dimension of the sample. (b) A sample 
glued with silver paste to the sample holder. (c) A sample and a substrate glued with silver paste to the rotating 
sample holder.   
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2.1.3. Bolometer  

 
 Figure 1.6. Infrared Si-composite bolometer with a diamond window. The Si bolometer and the 
sample are attached to the bottom of the sample probe.  
 

The bolometer is a photo-detector used for spectrum measurement. Its operating 
principle is to convert the energy of the incident electromagnetic radiation on the surface of a 
metallic or semiconductor absorber into heat. A Si-composite bolometer (Infrared Laboratories) 
equipped with a diamond window was used in this thesis for infrared magneto-optical 
absorption measurement. It is used to collect the transmitted light directly below the sample 
(Fig. 1.6). The signal from the bolometer passes through an external preamplifier before being 
transmitted to the FTIR interferometer for analysis. It is possible to adjust the amplification 
factor (200, 2,000 and 5,000) of the preamplifier to obtain satisfying signal intensity.           

 
2.2. Fourier transform infrared (FTIR) interferometer  

 Infrared magneto-optical spectroscopy is a technique employed to obtain transmission 
spectra of a sample (intensity as a function of energy) in the infrared domain (30-7500 cm-1 or 
4-930 meV). The laboratory is equipped with a Bruker VERTEX 80V Fourier transform 
infrared (FTIR) interferometer monitored by the OPUS operating software. This spectrometer 
plays two essential roles as infrared light source and spectral analysis tool.     
 
2.2.1. Operating principle of the FTIR interferometer  

As represented in Fig. 1.7, The FTIR interferometer possesses two infrared light 
sources: far-infrared (FIR) source for 30-700 cm-1 and mid-infrared (MIR) source for 700-7500 
cm-1. The light beam is collimated and directed towards a beam splitter and a system of 
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associated mirrors. The half portion of the signal is transmitted to a mobile mirror which can 
move on nitrogen cushion thanks to a motor. When the mirror moves, each wavelength is 
periodically blocked or transmitted by the interferometer by interference phenomenon. Finally, 
the light emerging from the spectrometer is sent towards the cryostat using a vacuum coupler 
with a parabolic mirror. The incident light is then focused on the sample placed above the 
bolometer. The detector measures the light intensity remaining after passing through the sample 
and sends the transmitted signal, after amplification, to the FTIR interferometer for spectral 
analysis.   
 

 
Figure 1.7. Schematic representation of the FTIR interferometer (Bruker VERTEX 80V).  

 
The FTIR interferometer obtains the signal from the bolometer as an interferogram (the 

transmitted light as a function of mobile mirror position) (Fig. 1.8) and then changes it into a 
spectrum (the transmitted light as a function of energy) using the calculation of the Fourier 
transform (Eq. 1.6). Here, 𝐷𝐷(𝛿𝛿) is the intensity of the interferogram as a function of phase 
difference proportional to the mobile mirror displacement 𝛿𝛿. 𝐼𝐼(𝜈𝜈) refers to the intensity of the 
spectrum as a function of frequency 𝜈𝜈.     
 

𝐼𝐼(𝜈𝜈) = ∫ 𝐷𝐷(𝛿𝛿)cos (2𝜋𝜋𝛿𝛿𝜈𝜈)𝑑𝑑𝛿𝛿𝛿𝛿 𝑚𝑚𝑚𝑚𝑥𝑥
𝛿𝛿 𝑚𝑚𝑘𝑘𝑘𝑘                                             (1.6) 
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Figure 1.8. OPUS control window showing an interferogram. The central peak corresponds to the 
zero path difference (ZPD) position of the mobile mirror at which the maximum of light passes through the 
interferometer towards the detector.  
 

In order to get a good signal/noise ratio, each final spectrum is obtained after acquisition 
and average of several spectra. The number of averaged spectra is proportional to a parameter 
which is the number of scans. It can typically be selected among the values of 64, 128 or 256 
scans. Furthermore, the maximal spectral resolution can be adjusted up to 0.2 cm-1. The spectral 
resolution chosen for our magneto-optical absorption experiment is 5 cm-1. Note that the 
vacuum is essential during the measurement in the FTIR interferometer, the entire optical path 
and inside the coupler in order to avoid the absorption of the infrared light beam by the 
atmospheric gases (H2O, O2, CO2 , etc.).  
 
2.2.2. Infrared light sources  

The typical characteristics of FIR and MIR light sources of the FTIR interferometer are 
summarized in Table 1.1.  
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Characteristics Far-infrared 
(FIR)  

Mid-infrared 
(MIR) 

Source mercury vapor lamp SiC rod heated to 𝑇𝑇 > 100 ℃  
Beam splitter Mylar-Multilayer (CsI) KBr 

Filter polyethylene diaphragm of adjustable diameter 
Wavenumber range 30-700 cm-1 700-7500 cm-1 
Wavelength range  14-333 μm 1.3-14 μm  

Energy range 4-87 meV 87-930 meV 
 
Table 1.1.  Characterictics of FIR and MIR light sources. 
 
The operating software OPUS represents a spectrum in a function of wavenumber 𝜎𝜎. 

Some useful formulas regarding the conversion between the energy 𝐸𝐸, the wavelength 𝜆𝜆, the 
wavenumber 𝜎𝜎 and the frequency 𝜈𝜈 are written in Table 1.2.     
 

Energy (𝑬𝑬) Wavelength (𝝀𝝀) Frequency (𝝂𝝂) 
 

𝐸𝐸(𝐽𝐽) =
ℎ𝑐𝑐
𝜆𝜆(𝑚𝑚)

  

 

 

𝜆𝜆(𝑚𝑚) =
1

𝜎𝜎(𝑚𝑚−1)
  

 

𝜈𝜈(𝐻𝐻𝐻𝐻) =  
𝐸𝐸(𝐽𝐽)
ℎ

 

 
𝐸𝐸(𝑚𝑚𝑚𝑚𝑉𝑉)

=
ℎ𝑐𝑐 × 1000

𝜆𝜆(𝑐𝑐𝑚𝑚) × 10−2 × 1.6 × 10−19

=
0.124
𝜆𝜆(𝑐𝑐𝑚𝑚)

  

 

 
 

𝜆𝜆(𝜇𝜇𝑚𝑚) =
10000
𝜎𝜎(𝑐𝑐𝑚𝑚−1)

  

 
𝜈𝜈(𝑇𝑇𝐻𝐻𝐻𝐻)

=  
𝐸𝐸(𝑚𝑚𝑚𝑚𝑉𝑉) × 10−3 × 1.6 × 10−19

ℎ × 1012

=
𝐸𝐸(𝑚𝑚𝑚𝑚𝑉𝑉)

4.1
 

 
Table 1.2.  Conversion formulas between 𝑬𝑬, 𝝀𝝀, 𝝈𝝈 and 𝝂𝝂. 

 
Here, ℎ is the Planck constant (ℎ = 6.626 × 10-34 J.s) and 𝑐𝑐 is the speed of light in vacuum (𝑐𝑐 = 
2.997 × 108 m/s).    

 
2.3. Cryostat and superconducting coil  

 As illustrated in Fig. 1.9(a), the cryogenic storage dewar of total volume of 85 L contains 
a superconducting coil at the bottom of the cryostat and a variable temperature insert (VTI), 
resulting finally in a capacity of 46 L of liquid helium. The VTI is separated from the exterior 
container by the inner vacuum shield, consequently, the temperature of the sample can be varied 
to be different from the temperature of liquid helium (4.2 K). To decrease the temperature below 
4.2 K, we introduce liquid helium from the exterior container into the VTI via the needle valve 
and then pump out the pressure in the VTI. To increase the temperature above 4.2 K, we use 
the Oxford Instruments ITC503 automated control/heater apparatus that allows us to fix the 
desired temperature. The sample at the bottom of the sample probe is placed at the heart of the 
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superconducting coil as seen in Fig. 1.9(b). The sample holder is surrounded by the sample 
probe envelope to avoid any direct contact between the sample and liquid helium. The control 
and power supply of the superconducting coil are provided by the Oxford Instruments IPS120-
10 apparatus, enabling to work at fixed magnetic fields and to sweep the field with a maximum 
speed of 1 T/minute.      
 

 
Figure 1.9. Schematics of the cryostat equipped with a superconducting coil. (a) The dewar consists 

of two containers: an interior one or the variable temperature insert (VTI) and an exterior one containing the 
superconducting coil immersed in liquid helium. The maximum and minimum filling levels of liquid helium are 
indicated. The opening of the needle valve lets flow liquid helium from the exterior container into the VTI. (b) 
Zoom of the superconducting coil and the bottom of the sample probe. The heat exchange between the sample and 
the VTI is via a helium exchange gas of a pressure of 80-800 mbar at room temperature.  
 

2.4. Data acquisition  

 In this thesis, all experimental results were obtained from infrared magneto-optical 
absorption measurement. Fig. 1.10 displays the whole experimental setup used to probe Dirac 
fermions in graphene and topological insulators. The process of spectra acquisition is as 
follows. The infrared light beam generated from FIR or MIR sources passes by the beam splitter 
and the system of associated mirrors in the vacuum FTIR interferometer and is then transmitted 
to the entrance of the sample probe using the vacuum coupler. The parabolic mirror inside the 
coupler bends the light beam to propagate directly to the sample placed at the center of the 
superconducting coil. The magnetic field is oriented perpendicular to the sample surface in 
Faraday geometry and can be varied up to 𝐵𝐵 = 17 T. Each measurement is performed at a 
constant magnetic field. The temperature is fixed at 4.5 K. The Si bolometer detects the 
transmitted light directly below the sample. The transmission signals are acquired, then 
amplified and sent to the FTIR interferometer for spectral analysis. The corresponding 
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interferogram is obtained after the analysis and will then be converted by Fourier transform 
calculation to the transmission spectrum.  
 
The transmission spectra measured at different magnetic fields will be manipulated in order to 
obtain and analyze the relative transmission and the transmittance. As a result, we are able to 
extract valuable quantitative information about the physical properties, for instance, the Dirac 
velocity, the Dirac mass or the energy gap of a Dirac material. The relative transmission is 
defined to be the normalization of the sample transmission at a given magnetic field 𝑇𝑇(𝐵𝐵) by a 
zero-field sample transmission 𝑇𝑇(0). This indicates the absorption due to the transitions of 
carriers between different Landau levels. The transmittance at a fixed magnetic field is defined 
as the sample transmission 𝑇𝑇𝑐𝑐𝑇𝑇𝑚𝑚(𝐵𝐵) normalized by the corresponding substrate transmission 
𝑇𝑇𝑐𝑐𝑢𝑢𝑢𝑢(𝐵𝐵). This allows us to gain the information about the absorption of the free carriers and 
to determine the absorption threshold of the sample.  
 

Infrared magneto-optical absorption spectroscopy represents the powerful ability to 
investigate the volume of a quantum solid. It is shown to be a bulk efficient sensitive probe, yet 
not blind to the surface, used to reveal the electronic band structure of solids via physical 
parameters obtained from the measurement.    
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Figure 1.10. Experimental setup of infrared magneto-optical absorption measurement.        
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Chapter 2 

 

  

Magneto-optics in multilayer epitaxial graphene 

 In this work, the study of Dirac matter was first devoted to graphene: the first 
truly two-dimensional crystal, composed of carbon atoms, ever found in nature. The 
fundamental study of the theoretical aspects and experimental realization of graphene 
has always retained this research area active in condensed matter physics after the 2010 
Nobel Prize in Physics was awarded jointly to A. K. Geim and K. S. Novoselov for 
"groundbreaking experiments regarding the two-dimensional material graphene". In 
particular, the most intriguing typical characteristic of graphene, at low energies, is that 
its unusual linear energy-momentum dispersion is similar to the physics of quantum 
electrodynamics for massless fermions but the Dirac velocity of these particles is 300 
times smaller than the speed of light. This completely differs from ordinary electrons 
when subjected to magnetic fields. Graphene is thus a model system of Dirac matter 
allowing us to study the relativistic behavior of Dirac fermions in analogy with high-
energy physics.  
 

In this chapter, the electronic properties of an ideal graphene 
and graphene stacks will be addressed by magneto-optical 
spectroscopy. Different methods of graphene fabrication will be 
briefly described. We will essentially focus on the behavior of Dirac 
fermions in multilayer epitaxial graphene, fabricated by thermal 
decomposition of SiC substrates, which were investigated using 
infrared magneto-optical absorption measurements. Experimental 
results of multilayer epitaxial graphene on the C-terminated and Si-
terminated faces of SiC substrates will be shown.  
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1. Electronic properties of graphene 
 From a purely theoretical point of view, graphene is a two-dimensional (2D) one-

atom-thick allotrope of carbon. As represented in Fig 2.1(a), graphene is the mother for other 
carbon materials in different dimensionalities owing to the flexibility of the carbon-carbon 
bonding present in its honeycomb lattice structure. One can obtain a fullerene molecule (0D) 
from wrapped-up graphene with the introduction of pentagons (Fig. 2.1(b)), a carbon 
nanotube (1D) by rolling up graphene along a chosen direction (Fig. 2.1(c)), and a graphite 
(3D) by stacking many graphene layers connected by van der Waals force (Fig. 2.1(d)).  

 
   
 Figure 2.1. Allotropes of carbon. (a) Graphene is a 2D honeycomb lattice structure of carbon atoms. It 

is a mother building material for carbon materials in other dimensionalities. (b) Fullerene (C60) is a 0D buckyball 
molecule constructed by wrapping graphene with the introduction of pentagons on the hexagonal lattice. (c) 
Carbon nanotube is a 1D material that can be obtained by rolling up a graphene layer. (d) Graphite is a 3D 
structure consisting of several graphene layers electronically connected by van der Waals force. Adapted from 2.   
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Graphene was isolated for the first time, in the experiment carried out by K. S. Novoselov 

and A. K. Geim in 2004, by repeated peeling or mechanical exfoliation of pyrolytic graphite 
allowing to obtain few-layer graphene to measure its optical effects on top of the Si/SiO2 
substrate 1. They found that the electronic properties of their graphene with few layers on the 
Hall bar devices are different from those of 3D graphite. After this discovery, graphene has 
attracted great interest in both its fundamental physics study and enormous range of promising 
applications 2–7. Graphene was shown to possess remarkable physical properties which are 
fundamentally different from those of metals and conventional semiconductors such as 
transparency, elasticity, impermeability to any gases, outstanding intrinsic strength, high 
electronic and thermal conductivities, and high carrier mobility. As a consequence, graphene 
has become a candidate material for a wide range of applications, for example, a new 
generation of nanoscale ultra-fast transistors or flexible displays. 

 
As seen previously, graphene presents generally in the form of a stack of several 

monolayers electronically disconnected from each other. However, stacking in a regular order 
can change considerably the electronic properties of layered graphene. In this section, the 
electronic properties of graphene corresponding to the number of graphene sheets and their 
stacking order will be described.    

 
1.1. Ideal graphene   

 An ideal graphene is a 2D single crystal layer consisting of carbon atoms arranged in a 
hexagonal lattice structure shown in Fig. 2.1(a) as a honeycomb. The physical properties of 
graphene can be explained by the special arrangement of carbon atoms. 

 
Interestingly, four valence electrons of a carbon atom (1s22s22p2) in graphene have a 
particular electron configuration. In other words, three of them form an sp2 hybridization 
between one s orbital and two p orbitals, and the last electron is arranged in the other p orbital 
as shown in Fig. 2.2(a). The robustness of the honeycomb lattice structure of graphene results 
from the formation of a 𝜎𝜎 bond, owing to the sp2 hybridization, between two carbon atoms 
separated by a distance 𝑎𝑎 ~ 1.42 Å as shown in Fig. 2.2(b). Three 𝜎𝜎 bonds construct a trigonal 
planar structure with the angle 120° among them. Since the 𝜎𝜎 bond is fully filled of electrons, 
this covalent bonding between two adjacent carbon atoms is thus strong. The p orbital 
perpendicular to the trigonal planar structure will be bound with the p orbitals of neighboring 
carbon atoms, forming a half-filled 𝜋𝜋 bond which is not strong (Fig. 2.2(b)). 
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Figure 2.2. Origin of the robustness of graphene. (a) Orbital hybridization of a carbon atom in 

graphene. Four valence electrons (2s22p2) form three sp2 hybridized orbitals and one half-filled p orbital. (b) 𝜎𝜎 
and 𝜋𝜋 bonds between two neighboring carbon atoms separated by a distance 𝑎𝑎 ~ 1.42 Å. The angle between two 
𝜎𝜎 bonds is 120°, yielding a trigonal planar structure.     
 

The electronic band structure of single-layer of graphene was first proposed by P. R. 
Wallace in 1947 via tight-binding approach for band description in bulk graphite 8. He 
considered the perpendicular p orbital, forming the 𝜋𝜋 bond (Fig. 2.2(b)), that is responsible for 
the electronic band structure of graphene. Fig. 2.3(a) shows the hexagonal crystalline structure 
of graphene composed of carbon atoms arranged in two different sites: A and B. In the tight-
binding approximation, the nearest-neighbor hopping energy or the necessary energy for 
electrons to hop from one site to both nearest- (𝑡𝑡) and next-nearest-neighbor (𝑡𝑡′) sites is 
defined. A unit cell (green shaded area in Fig. 2.3(a)) contains two carbon atoms (A and B) 
and its lattice vectors can be written in the (𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦) basis as: 

 
�⃗�𝑎1 = 𝑎𝑎

2
(3,√3) and �⃗�𝑎2 = 𝑎𝑎

2
(3,−√3)                                    (2.1) 

 
where 𝑎𝑎 ~ 1.42 Å is the distance between the nearest two carbon atoms. The lattice parameter 
can then be defined as 𝑎𝑎0 = ǀ�⃗�𝑎1ǀ = ǀ�⃗�𝑎2ǀ = √3𝑎𝑎 ~ 2.46 Å.    
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Figure 2.3. Ideal graphene crystalline structure. (a) Hexagonal lattice structure of graphene in the 

real space. Carbon atoms are arranged in two different sites A and B. The unit cell of graphene is represented in 
the green shaded area containing two atoms (A and B) and can be identified by two lattice vectors �⃗�𝑎1 and �⃗�𝑎2. (b) 
Corresponding hexagonal Brillouin zone centered at the Γ-point in the reciprocal space. High-symmetry points 
𝐾𝐾, 𝐾𝐾′ and 𝑀𝑀 are also shown. The reciprocal lattice vectors 𝑏𝑏�⃗ 1 and 𝑏𝑏�⃗ 2 form a unit cell enclosing the 𝐾𝐾 and 𝐾𝐾′ 
points where the Dirac cones are located.  
 
The corresponding Brillouin zone is also hexagonal (Fig. 2.3(b)). Its reciprocal lattice vectors 
𝑏𝑏�⃗ 1 and 𝑏𝑏�⃗ 2, verifying �⃗�𝑎𝑖𝑖 ∙ 𝑏𝑏�⃗𝑗𝑗 = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑗𝑗 with 𝛿𝛿𝑖𝑖𝑗𝑗 = 0 for 𝑖𝑖 ≠ 𝑗𝑗 and 𝛿𝛿𝑖𝑖𝑗𝑗 = 1 for 𝑖𝑖 = 𝑗𝑗, can be 
expressed in the (𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦) basis as follows: 
 

𝑏𝑏�⃗ 1 = 2𝜋𝜋
3𝑎𝑎

(1,√3) and 𝑏𝑏�⃗ 2 = 2𝜋𝜋
3𝑎𝑎

(1,−√3)                                   (2.2)                                                      
                                                       

The fundamental physics of graphene occurs at the high-symmetry points 𝐾𝐾 and 𝐾𝐾′ situated at 
the corners of the Brillouin zone (Fig. 2.3(b)). Their positions in the (𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦) basis are given 
by:  
 

𝐾𝐾��⃗ = (2𝜋𝜋
3𝑎𝑎

, 2𝜋𝜋
3√3𝑎𝑎

) and 𝐾𝐾′����⃗ = (2𝜋𝜋
3𝑎𝑎

,− 2𝜋𝜋
3√3𝑎𝑎

)                                   (2.3) 

 
The energy dispersion in the momentum space derived from the tight-biding calculation 
reads: 
 

𝐸𝐸±�𝑘𝑘�⃗ � = ±𝑡𝑡�3 + 𝑓𝑓(𝑘𝑘�⃗ ) − 𝑡𝑡′𝑓𝑓(𝑘𝑘�⃗ )                                         (2.4a) 
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with 𝑓𝑓�𝑘𝑘�⃗ � = 2 cos�√3𝑘𝑘𝑦𝑦𝑎𝑎� + 4 cos(√3
2
𝑘𝑘𝑦𝑦𝑎𝑎) cos(3

2
𝑘𝑘𝑥𝑥𝑎𝑎)                       (2.4b) 

 
where ± signs refer to the upper 𝜋𝜋 band energy and the lower 𝜋𝜋 band energy, respectively. 
Generally, the band structure of graphene is asymmetric because of the nonzero values of 𝑡𝑡 
and 𝑡𝑡′. Most theoretical calculations found 𝑡𝑡 ~ 3 eV 3,4, while the value of 𝑡𝑡′ is not well 
known and it could be 0.02𝑡𝑡 ≤ 𝑡𝑡′ ≤ 0.2𝑡𝑡 9. We notice that if we neglect the hopping energy 
between two same sublattices 𝑡𝑡′ = 0, the band structure will become symmetric around zero 
energy as displayed in Fig. 2.4.  
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.4. Electronic band structure of graphene.  The band structure of graphene in the momentum 

space is symmetric when 𝑡𝑡′ = 0. The upper 𝜋𝜋 band and lower 𝜋𝜋 band correspond respectively to the conduction 
and valence bands. In the vicinity of the Dirac points (𝐾𝐾 or 𝐾𝐾′), the energy dispersion is linear and forms a Dirac 
cone as can be seen in the green circle. Adapted from 4.  
 
Now, we consider the graphene band structure in the vicinity of the 𝐾𝐾 or 𝐾𝐾′ points. To do this, 
we write 𝑘𝑘�⃗ = 𝐾𝐾��⃗ + �⃗�𝑞. Here, �⃗�𝑞 is the momentum measured relatively to the 𝐾𝐾 or 𝐾𝐾′ points and 
|�⃗�𝑞| ≪ �𝐾𝐾��⃗ � . We thus get:  
 

𝐸𝐸±(�⃗�𝑞) ≈ ±ћ𝑣𝑣𝐹𝐹|�⃗�𝑞|                                                        (2.5) 
 
Here, ћ is the reduced Planck constant. This shows that the energy-momentum dispersion 
given in Eq. 2.4a (for 𝑡𝑡′ = 0) becomes nearly linear and rotationally symmetric close to the 𝐾𝐾 
or 𝐾𝐾′ points, yielding a Dirac cone as can be seen in the green circle of Fig. 2.4. Hence, 
graphene can exhibit the zero-bandgap semiconductor or semimetal character for which the 

29 
  



CHAPTER 2  
Magneto-optics in multilayer epitaxial graphene 
 ___________________________________________________________________________________________________________________________________________________________________________________  
 

conduction and valence bands touch or cross at the 𝐾𝐾 or 𝐾𝐾′ points, named as Dirac points. 
Note that in pristine graphene, the Fermi energy is situated at the Dirac points.  
 
The parameter 𝑣𝑣𝐹𝐹 having a dimension of a velocity is known as Fermi velocity. This physical 
quantity is directly related to the coupling strength between the adjacent carbon atoms or the 
nearest-neighbor hopping energy 𝑡𝑡. The expression of 𝑣𝑣𝐹𝐹 is given by:     
 

𝑣𝑣𝐹𝐹 = 3𝑡𝑡𝑎𝑎
2ћ

                                                                 (2.6) 
 

One can estimate the value of 𝑣𝑣𝐹𝐹 ~ 1 × 106 m/s for 𝑡𝑡 ~ 3 eV. The Fermi velocity is 
approximately 300 times smaller than the speed of light 𝑐𝑐 ~ 3 × 108 m/s. This shows the 
unusual semimetallic behavior of charge carriers in graphene. In other words, they behave as 
relativistic particles moving with the Fermi velocity 𝑣𝑣𝐹𝐹 and their rest mass is zero. These 
particles are known as massless Dirac fermions that can be described by a Dirac Hamiltonian. 
Interestingly, these important results analogous to high-energy physics show that quantum 
relativistic phenomena can also be investigated and observed in low-energy physics. The 
particular properties seen in an ideal graphene are therefore an essential starting point to study 
the electronic properties of carbon-based materials in other dimensionalities. 
 
1.2. Bilayer graphene 

 The electronic properties of a single layer of graphene or monolayer graphene have 
been described in the previous subsection. In reality, a monolayer graphene is very difficult to 
be isolated experimentally. Naturally, graphene presents in the form of several monolayers 
stacked in a regular order. Fig. 2.5 clearly shows three possible orientations of graphene 
layers: A, B and C. The influence of particular stacking orders on the electronic properties of 
graphene will be discussed later in the text 10,11.         

 
 
 
 
 

 
 
 
 
 

 
 

Figure 2.5. Schematic of three different orientations of graphene layers. ABA (Bernal) stacking is 
found in bilayer and trilayer graphenes. ABC (rhombohedral) stacking can be found in trilayer graphene. 

30 
 



   CHAPTER 2  
Magneto-optics in multilayer epitaxial graphene 

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

 
Bilayer graphene is constituted of two monolayers of graphene with the AB stacking 

structure (Fig. 2.5). Since the crystalline structure of bilayer graphene can be considered as an 
elementary brick for constructing the whole lattice structure of graphite (Fig. 2.6(a)), the 
Slonczewski-Weiss-McClure (SWM) model developed for describing the electronic band 
structure of graphite 12,13 can thus be applied in bilayer graphene 14. In contrast to monolayer 
graphene seen earlier, the electrons in bilayer graphene are massive Dirac fermions satisfying 
a parabolic energy dispersion 15 and they exhibit interesting quantum phenomena such as the 
integer quantum Hall effect with anomalies 16. In the SWM model, six electronic hopping 
energies associated with overlap and transfer integrals calculated for nearest neighboring 
atoms are 𝑡𝑡, 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4 and 𝑡𝑡5. Only the parameters 𝑡𝑡, 𝑡𝑡1, 𝑡𝑡3 and 𝑡𝑡4 denoted by red arrows 
(Fig. 2.6(a)) are considered in the calculation of the band structure of bilayer graphene. In 
bilayer graphene, interesting physical phenomena take place at the high-symmetry 𝐾𝐾 and 𝐾𝐾′ 
points of the Brillouin zone.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6. Crystalline structure of bilayer graphene. Bilayer graphene lattice structure in the AB 
stacking order as an elementary brick of graphite lattice structure. The A atoms of each layer are over each other. 
Only the Slonczewski-Weiss-McClure (SWM) parameters 𝑡𝑡, 𝑡𝑡1, 𝑡𝑡3, and 𝑡𝑡4 corresponding to the hopping energies 
of nearest neighboring atoms are presented.  

 
The SWM parameters can be determined by various investigation techniques 17. 

Typically, 𝑡𝑡1 ~ 0.4 eV, 𝑡𝑡3 ~ 0.3 eV, and 𝑡𝑡4 ~ 0.04 eV. The simplest way to calculate the band 
structure of bilayer graphene is to neglect the parameters 𝑡𝑡3 and 𝑡𝑡4, and consider only the 
parameter 𝑡𝑡1. Under these conditions, the electronic band structure of bilayer graphene at the 
𝐾𝐾 and 𝐾𝐾′ points is constituted of four bands (Fig. 2.7). Their energy dispersions are parabolic 
at low energies and can be expressed as:  

 
 

31 
  



CHAPTER 2  
Magneto-optics in multilayer epitaxial graphene 
 ___________________________________________________________________________________________________________________________________________________________________________________  
 

 

𝐸𝐸4,3�𝑘𝑘�⃗ � = ± 𝑡𝑡1
2

+ �𝑡𝑡12

4
+ ħ2𝑣𝑣𝐹𝐹2𝑘𝑘2                                        (2.7a) 

      and                   

𝐸𝐸2,1�𝑘𝑘�⃗ � = ± 𝑡𝑡1
2
− �𝑡𝑡12

4
+ ħ2𝑣𝑣𝐹𝐹2𝑘𝑘2                                        (2.7b) 

 
Here, the Fermi velocity 𝑣𝑣𝐹𝐹 has the same definition and the same value as that in the case of a 
single-layer graphene (Eq. 2.6). The bands numbered 3 and 4 constitute the conduction bands, 
while the bands 1 and 2 correspond to the valence bands. We notice that the band structure is 
symmetric with respect to the point where the bands 2 and 3 touch each other. At the 𝐾𝐾 and 𝐾𝐾 ′ 
points, the band 4 is shifted upwards by the energy 𝑡𝑡1 from the band 3, and the band 1 is 
shifted downwards by the same energy from the band 2. Note that if there is no interlayer 
coupling constant 𝑡𝑡1 = 0, we will obtain the band structure of ideal monolayer graphene at the 
𝐾𝐾 and 𝐾𝐾 ′ points (Eq. 2.5). 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.7. Scheme of the electronic band structure of bilayer graphene. The electronic band 
structure around the 𝐾𝐾 and 𝐾𝐾′ points of bilayer graphene schematically shown here is calculated with 𝑣𝑣𝐹𝐹 = 1 × 
106 m/s by taking into account only the principal parameter 𝑡𝑡1 = 0.4 eV and when the interlayer potential is not 
considered. The energy dispersion of all four bands is parabolic at low energies.  

 
1.3. Trilayer graphene 

 Trilayer graphene is composed of three graphene monolayers stacked in the ABA 
(Bernal) or ABC (rhombohedral) sequences as represented in Fig. 2.8. Trilayer graphene has 
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been experimentally realized by several fabrication methods and theoretically studied, leading 
to explore its remarkably interesting electronic properties 18–24. Importantly, the electronic 
properties of graphene trilayers depend drastically on how the three stacked layers are 
rearranged 10,11.  

 

  
Figure 2.8. Crystalline structure of trilayer graphene. Trilayer graphene possesses three graphene 

monolayers. These three layers can be stacked in the ABA sequence (a) or ABC sequence (b). Some hopping 
energy parameters are also denoted. Adapted from 25. 
 

The low-energy electronic band structures of ABA- and ABC-stacked trilayer 
graphene in the vicinity of the 𝐾𝐾 point of the Brillouin zone are different and their energy 
dispersions are written as 25: 

 
• For the ABA stacking sequence:  

 

𝐸𝐸𝛼𝛼(𝑘𝑘�⃗ ) = ±�𝑡𝑡12 + ћ2𝑣𝑣𝐹𝐹2𝑘𝑘2 + 𝛼𝛼�𝑡𝑡14 + 2𝑡𝑡12ћ2𝑣𝑣𝐹𝐹2𝑘𝑘2                              (2.8a) 

and 
𝐸𝐸0(𝑘𝑘�⃗ ) = ±ћ𝑣𝑣𝐹𝐹�𝑘𝑘�⃗ �                                                   (2.8b) 

 
Here, 𝑣𝑣𝐹𝐹 and 𝑡𝑡1 have the same definition as described previously for the monolayer and 
bilayer graphenes. Fig. 2.9(a) schematically shows the trilayer graphene band structure around 
the 𝐾𝐾 point in the ABA stacking order with six energy bands in total. In the expression of 
𝐸𝐸𝛼𝛼(𝑘𝑘�⃗ ), 𝛼𝛼 = +1 refers to the energy bands that do not touch each other at the 𝐾𝐾 point (green 
lines) and 𝛼𝛼 = -1 refers to the energy bands touching each other at the K point (red lines). 
𝐸𝐸0(𝑘𝑘�⃗ ) represents two linear band dispersions (black lines). We notice that the low-energy 
band structure of ABA trilayer graphene is a combination of two massless monolayer 

33 
  



CHAPTER 2  
Magneto-optics in multilayer epitaxial graphene 
 ___________________________________________________________________________________________________________________________________________________________________________________  
 

graphene-like subbands with linear dispersion and four massive bilayer graphene-like 
subbands with parabolic dispersion.  
 

• For the ABC stacking sequence:  
 

𝐸𝐸1,𝛼𝛼(𝑘𝑘�⃗ ) = 2�𝑄𝑄 cos �𝜃𝜃+2𝜋𝜋
3
� − 𝛼𝛼 𝑣𝑣𝐹𝐹�𝑘𝑘�⃗ �

3
                                  (2.9a) 

 

𝐸𝐸2,𝛼𝛼(𝑘𝑘�⃗ ) = 2�𝑄𝑄 cos �𝜃𝜃+4𝜋𝜋
3
� − 𝛼𝛼 𝑣𝑣𝐹𝐹�𝑘𝑘�⃗ �

3
                                  (2.9b) 

 

𝐸𝐸3,𝛼𝛼(𝑘𝑘�⃗ ) = 2�𝑄𝑄 cos �𝜃𝜃
3
� − 𝛼𝛼 𝑣𝑣𝐹𝐹�𝑘𝑘�⃗ �

3
                                     (2.9c) 

 

Here, new parameters are 𝜃𝜃 = cos−1 � 𝛼𝛼𝛼𝛼
�𝑄𝑄3

�, 𝑅𝑅 = 8𝑣𝑣𝐹𝐹
3𝑘𝑘3

27
− 𝑣𝑣𝐹𝐹𝑘𝑘𝑡𝑡12

6
, and 𝑄𝑄 = 3𝑡𝑡12+4𝑣𝑣𝐹𝐹

2𝑘𝑘2

9
 . 𝑣𝑣𝐹𝐹, 𝑡𝑡1 and 

𝛼𝛼 = ±1 have the same definition as in the ABA stacking order. Fig. 2.9(b) schematically 
shows the ABC trilayer graphene band structure around the 𝐾𝐾 point with six different energy 
bands. 

  

  
Figure 2.9. Low-energy electronic band structure of trilayer graphene around the 𝑲𝑲 point. (a) The 

band structure of ABA-stacked trilayer graphene exhibits two massless monolayer graphene-like dispersions 
(black lines) and four massive bilayer graphene-like dispersions (red and green lines). (b) The band structure of 
ABC-stacked trilayer graphene with six subbands in total. These band structures are calculated with 𝑣𝑣𝐹𝐹 ~ 1 × 106 

m/s (for 𝑡𝑡 = 3 eV) and 𝑡𝑡1 = 0.4 eV. The dashed horizontal lines indicate the position of the bottom (top) of the 
upper (lower) bands. Adapted from 25. 
 

Interestingly, trilayer graphene with the Bernal stacking possesses lower energy 
configuration than that in the rhombohedral stacking, therefore the Bernal trilayer graphene is 
energetically more favorable than the rhombohedral one 26. Consequently, an energy barrier is 
required for moving carbon atoms assembled in the Bernal sequence to be rearranged in the 
rhombohedral order. Furthermore, the rhombohedral trilayer graphene exhibits a tunable 
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narrow gap semiconductor character due to the gap opening in the presence of a perpendicular 
electric field 11,19,22,23. 
 
1.4. Multilayer graphene 

 Multilayer graphene consists of many graphene layers stacked in a particular sequence 
following three inequivalent orientations shown in Fig. 2.5. The most common observed 
stacking sequence is ABA, whereas the ABC order can also be found but less frequently due 
to the higher energy configuration 26. In this thesis, we will mainly focus on multilayer 
epitaxial graphene (MEG) fabricated by thermal decomposition on the C-terminated or Si-
terminated faces of SiC substrates that we will describe later in the subsection 2.4. The 
electronic properties of MEG were shown by several investigation techniques to be 
predominantly similar to those of single-layer graphene 27–30. ARPES spectra in Fig. 2.10 
show the Dirac cones as the band structure of the graphene layers in a MEG sample. This can 
be explained by the existence of a rotational stacking occurring in each pair of two adjacent 
graphene sheets that make all the graphene layers electronically decoupled and satisfy the 
Dirac linear dispersion 29,30. The MEG sometimes contains a small contribution of bilayer 
graphene feature and one can thus observe the signature of the electronic band structures 
stemming from both monolayer and bilayer graphenes 31–33.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.10. ARPES spectra showing the band structure of an 11-layer epitaxial graphene grown 

on the C-face of 6H-SiC substrate. ARPES measurement shows the top three graphene layers of the sample. 
Two unperturbed Dirac cones with 𝑣𝑣𝐹𝐹 ~ 1 × 106 m/s were observed, evidencing that the graphene layers are 
electronically decoupled and the MEG sample behaves like an isolated graphene sheet. Adapted from 30. 
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2. Fabrication methods of graphene 
 Graphene has long been theoretically and experimentally demonstrated to exhibit 

outstanding physical properties as mentioned previously. However, the production of 
graphene to attain the required properties for applications is extremely challenged. To this 
day, a large number of existing fabrication methods have been employed and continuously 
developed in order to prepare graphene with specific properties suitable for applications. Such 
methods are mainly categorized into two classes: bottom-up and top-down methods. The first 
one is based on the formation of 2D graphene lattice resulting from the covalent bonding 
between carbon atoms. The last one depends on the direct exfoliation of graphite. As a result, 
graphene samples obtained by different methods are in various dimensions and their quality is 
distinguishing. In this section, we will focus only on certain essential techniques producing 
scalable graphene samples. The four following production methods of graphene will be 
described as well as their advantages leading to the feasibility of numerous graphene 
applications.   

 
2.1. Mechanical exfoliation 

 The first method to fabricate graphene is mechanical exfoliation. There are several 
mechanical exfoliation techniques 34 but at this stage we will concentrate only on 
micromechanical cleavage of graphite generating the first graphene flakes in the real world 1. 
This technique allows to obtain monolayers of graphene from natural graphite thanks to its 
particular structure in stacked graphene sheets. Fig. 2.11 shows how to create graphene by this 
process. One can easily make mechanically exfoliated graphene by peeling a great number of 
times in different orientations some natural graphite grains on an adhesive piece (Fig. 
2.11(b)). The normal force from the peeling applied on the graphite surface plays a dominant 
role of the exfoliation mechanism (Fig. 2.11(a)). The main objective of the peeling is to 
mechanically overcome the van der Waals attraction force between two adjacent graphene 
layers. One will then get on the surface of the adhesive a quasi-homogeneous distribution of 
graphene monolayers, bilayers, multilayers or graphite micro-grains (Fig. 2.11(c)). Finally, 
the graphene sample will be transferred to the surface of a substrate for measurements.  

 
The mechanical exfoliation technique is one of the most promising platforms to 

achieve high-quality graphene with the electron mobility > 2 × 105 cm2/(V.s) at ambient 
temperature or > 1 × 106 cm2/(V.s) at low temperatures. The dimension of exfoliated 
graphene is typically > 1 mm2. Importantly, the graphene production using this technique can 
be effectuated at an extremely low cost compared to other fabrication methods. However, the 
research on mechanically exfoliated graphene always remains in laboratories because this 
technique is highly time-consuming, exfoliated graphene samples extracted from graphite 
have uncontrollable dimensions and defects, and they are impossible to be scaled up for 
industrial production. Therefore, it is substantial to improve the mechanical exfoliation 
efficiency.   
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Figure 2.11. Illustration of graphene production by mechanical exfoliation: micromechanical 

cleavage. (a) Normal force denoted by blue arrows is applied on the surface of bulk graphite during the peeling. 
To exfoliate graphite into graphene flakes, the normal force has to overcome the van der Waals interaction force 
between two adjacent graphene layers. (b) Natural graphite grains are deposited on an adhesive sheet. (c) 
Exfoliated graphene flakes obtained from the repeated peeling in different oriented axes. (b) and (c) are adapted 
from the Ph.D. thesis of J. Guignard defended in 2011.     

  
2.2. Chemical exfoliation 

 Graphene flakes can also be prepared from graphite via a variety of chemical 
approaches followed by exfoliation such as liquid-phase exfoliation, graphene from graphite 
oxide, electrochemical exfoliation, and supercritical fluid exfoliation 35. These various 
techniques rely in principle on the intercalation procedure of specific molecules between 
graphene layers stacked in graphite in order to provoke the delamination through chemical 
reactions. The most straightforward chemical method allowing the reduction of the van der 
Waals forces is to dip graphite into a liquid medium. Fig. 2.12 schematically elucidates the 
liquid-phase exfoliation process of graphite 36. The molecules in N-methylpyrrolidone solvent 
will insert between two adjacent graphene sheets. Ultrasonication is then used to induce 
exfoliation, leading to the splitting of graphite into individual graphene layers in the 
suspension. Nevertheless, the interactions between the solvent and the graphene flakes need to 
compensate the attractive forces among the graphene sheets. Hence, surfactant or intercalator 
molecules can be sometimes added in a solvent to avoid graphene re-aggregation caused by 
van der Waals forces after the sonication.  
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 Figure 2.12. Schematic illustration of graphene production by chemical exfoliation: liquid-phase 

exfoliation. Graphite is immersed in N-methylpyrrolidone solvent. The solvent molecules will intervene between 
graphene layers of graphite. With the aid of sonication, graphite will splits into individual graphene sheets. The 
liquid-phase exfoliation process can be carried out with or without surfactant or intercalator molecules, helping 
to avoid the re-aggregation of graphene after the chemical exfoliation. Adapted from 36.  

 
 Since the graphene flakes obtained by this technique flow in a solvent, they are thus 

free of any substrate. This means that there is no charge transfer from substrates to the 
graphene flakes. Moreover, the graphene flakes have possibilities to be deposited onto many 
different substrate materials. Chemical exfoliation method provides potentially up-scalable 
graphene samples with the electron mobility of about 100 cm2/(V.s) even if, for example, the 
controls of lateral size and layer number have to be improved. A wide range of applications of 
chemically exfoliated graphene are, for instance, printing inks, coatings, graphene-based 
composites, thin film transistors, transparent conductive layers and photovoltaics.  

 
2.3. Chemical vapor deposition  

 Another method to produce graphene is chemical vapor deposition (CVD) of which 
the principal aims at growing graphene layers using hydrocarbon gas precursors (CH4) which 
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decompose at high temperatures ~ 1,000 ℃ to carbon radicals forming at the surface of 
various transition metal substrates (for example Ni or Cu) 37–39. After cooling with an 
appropriate rate, the formation of graphene layers at the surface of the metal substrates can 
occur. The as-grown CVD graphene can be transferred onto other insulator substrates (for 
example Si/SiO2, glass or h-BN) for characterizations or applications. Fig. 2.13(a) 
schematically represents the CVD growth of graphene. Fig. 2.13(b) shows briefly the transfer 
process of the CVD-graphene using polymethyl methacrylate (PMMA) onto a substrate.   

 

 
 Figure 2.13. Schematic representation of graphene preparation by chemical vapor deposition 

(CVD). (a) CVD growth of graphene on a transition metal using hydrocarbon gas precursors at high 
temperatures. When cooling with an appropriate rate, graphene layers can form at the surface of the metal 
substrate. (b) Transfer process of CVD-graphene onto an insulator targeting substrate. A thin layer of polymethyl 
methacrylate (PMMA) is usually used as coating on the CVD-graphene. The metal substrate is then etched from 
the sample. PMMA/graphene thin film is then transferred onto a substrate. Acetone is used at the final stage to 
remove PMMA, leaving only graphene layers on the substrate. (a) is adapted from 37 and (b) is adapted from 39.     

  
 The CVD technique provides single-layer and few-layer graphenes with the electron 

mobility of approximately 10,000 cm2/(V.s) and the small number of defects. Large-scale area 
of CVD-graphene can be obtained with the dimension between 1 cm2 to 1 m2. However, the 
number of layers and stacking order of CVD-graphene have to be controlled because these 
can change completely the graphene properties with respect to monolayer graphene. In 
addition, the removal of metallic substrates used in the CVD growth and the graphene transfer 
process onto other targeting substrates are big challenges to be improved and optimized in 
order to diminish the damage to graphene layers. All the advantages of graphene fabricated by 
CVD method give rise to possible applications such as coatings against corrosion, photonics, 
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sensors, field effect transistors, touch screen and flexible transparent conductive electrodes for 
organic photovoltaics. 

 
2.4. Epitaxy by thermal decomposition of SiC substrate  

 It has long been known that graphene could be grown epitaxially by thermal 
decomposition of materials consisting carbon atoms, for instance, hydrocarbons, carbon oxide 
40–43, nanodiamonds 44 and silicon carbide (SiC) 27–30,45–47. In this thesis, we are particularly 
interested in multilayer epitaxial graphene or MEG grown on SiC substrates by this 
fabrication method. When heating at high temperatures, silicon atoms from the top layers of 
SiC desorb and carbon atoms left will then form in graphene lattice structure (Fig. 2.14(a)). 
Rotational stacking occurs during the process, leading to the electronic decoupling between 
the graphene layers (Fig. 2.14(b)). As a result, several layers of graphene are grown on the 
SiC substrates (Fig. 2.14(c)). The number of graphene monolayers (up to 100 layers) depends 
on the duration or temperature of the heating process.  

 

 
Figure 2.14. Multilayer epitaxial graphene (MEG) prepared by thermal decomposition of SiC 

substrate. (a) The SiC substrate is used in the heating treatment at temperature 𝑇𝑇 ~ 1550 ℃. Si atoms desorb 
from the substrate and carbon atoms left form several graphene layers. (b) Rotational stacking occurs during the 
epitaxial growth, leading to the electronic decoupling among graphene monolayers. (b) is adapted from 29. (c) 
Multilayer epitaxial graphene is obtained after the thermal decomposition process on the C- or Si-face.     

 
 Two surfaces of SiC are possible for the epitaxial growth: C-terminated or Si-

terminated surfaces. The graphene growth rate on the Si-terminated face is slower than that on 
the C-terminated face. Additionally, the number of layers and the quality of the samples 
grown on the C-face differ from those grown on the Si-face 46,47. Lower mobility (typically ~ 
1,000-10,000 cm2/(V.s) 47,48) samples with few layers can be obtained on the Si-face, whereas 
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on the C-face higher mobility (up to 250,000 cm2/(V.s) at room temperature 49) samples with 
more layers than the first case will be obtained. This is mainly due to the fact that it is easier 
to control the graphene growth on the Si-face as well as the number of graphene layers which 
can be limited to one, two or few layers over a large area 50. Furthermore, the choice of SiC 
substrates has an impact on the formation of epitaxial trilayer graphene in Bernal or 
rhombohedral stackings 51,52. The dimension of the samples fabricated on both surfaces by 
this method is about 1 cm2. One of the typical characteristics of MEG is that the first few 
layers next to the SiC substrates are highly doped because of the charge transfer from the 
substrates to these layers but the remaining quasi-neutral layers have much more lower carrier 
density 47.  

 

3. Magneto-spectroscopy in graphene 
 Infrared magneto-optical spectroscopy is an efficient technique allowing the study of 

electronic properties of graphene. M. Orlita and his colleagues at the Laboratoire National des 
Champs Magnétiques Intenses (LNCMI) in Grenoble, have studied profoundly the Dirac 
electronic states in graphene systems 4,31,49,53–58. When a magnetic field 𝐵𝐵 is applied parallel to 
the propagation direction of light, in the Faraday geometry, and perpendicular to the graphene 
plane, the electron energy will be quantized into discrete Landau levels (LLs) which do not 
vary linearly with 𝐵𝐵 due to the relativistic behavior of Dirac fermions. To calculate LLs of 
ideal graphene, bilayer graphene and trilayer graphene, one can proceed the Peierls 
substitution by replacing the wave vector 𝑘𝑘�⃗  of a considered Hamiltonian by 𝑖𝑖∇��⃗ + 𝑒𝑒𝐴𝐴/ћ, where 
𝐴𝐴 is the vector potential generating 𝐵𝐵�⃗ = ∇��⃗ × 𝐴𝐴 5. This is valid for electrons on a lattice system 
as long as the lattice parameter is much smaller than the magnetic length 𝑙𝑙𝐵𝐵 = �ћ/𝑒𝑒𝐵𝐵. The 
LLs of the system are thus given by the eigenenergies of the obtained Hamiltonain. Optical 
transitions between LLs can be observed in transmission spectra. This allows us to extract the 
physical information about the electronic band structure of graphene such as the Fermi 
velocity, the Fermi energy and the carrier mobility. 

  
3.1. Ideal graphene  

 The LL energies of ideal monolayer graphene are given by 4,5,59: 
 

𝐸𝐸𝑛𝑛
𝑐𝑐,𝑣𝑣 = ±𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵𝑛𝑛 = ±𝐸𝐸1√𝑛𝑛                                      (2.10) 

 
where 𝑛𝑛 ≥ 0 is the LL index. The signs ± refer to the conduction band energies (𝐸𝐸𝑛𝑛𝑐𝑐) and the 
valence band energies (𝐸𝐸𝑛𝑛𝑣𝑣), respectively. 𝑣𝑣𝐹𝐹 is the Fermi velocity as defined before and 𝑣𝑣𝐹𝐹 ~ 
1 × 106 m/s. ћ and 𝑒𝑒 have their usual meaning. Here, 𝐸𝐸1 = 𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵 is defined to be a 
characteristic energy introduced by the magnetic field. LL energy dispersion of ideal graphene 
depending on 𝐵𝐵 is represented in Fig. 2.15. The energy spacing between two adjacent LLs is 
not constant for each couple of 𝑛𝑛 and 𝑛𝑛 + 1. We notice that the LLs of pure graphene evolve 
as a function of √𝐵𝐵 as a consequence of the linearity of its band structure and the only one 
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parameter to be adjusted is 𝑣𝑣𝐹𝐹. The √𝐵𝐵𝑛𝑛-dependence of the graphene LLs is in contrast to 

what occurs in conventional 2D electrons where 𝐸𝐸𝑛𝑛 = �𝑛𝑛 + 1
2
� ћ𝑒𝑒𝐵𝐵/𝑚𝑚, with 𝑚𝑚 is the 

cyclotron mass, which corresponds to equidistant LLs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.15. Landau levels of ideal monolayer graphene as a function of magnetic field. Ideal 

graphene Landau levels of the conduction (𝐸𝐸 ≥ 0) and valence (𝐸𝐸 ≤ 0) bands are calculated with the Fermi 
velocity 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s.  

 
 Magneto-optical absorption experiments consist in sending infrared light beam 

through a graphene sample subjected to a perpendicular magnetic field in order to observe the 
absorption lines due to optical transitions between LLs. The selection rules governing these 
transitions in the Faraday geometry are ∆𝑛𝑛 = ±1. Such selection rules authorize two types of 
transitions: intraband transitions and interband transitions. The former transitions, also called 
cyclotron resonances, are transitions between two LLs of the same band. The latter transitions 
regard transitions from a LL of the valence band to a LL of the conduction band. Fig. 2.16 
illustrates, for a given Fermi energy 𝐸𝐸𝐹𝐹 (green line), possible intraband (blue arrows) and 
interband (red arrows) transitions between LLs of ideal monolayer graphene calculated for 𝑣𝑣𝐹𝐹 
= 1.03 × 106 m/s with the selection rules ∆𝑛𝑛 = ±1. Note that all the transitions can occur 
when the starting level is populated with electrons (𝐸𝐸 < 𝐸𝐸𝐹𝐹) and the arrival level is at least 
partially depopulated (𝐸𝐸 > 𝐸𝐸𝐹𝐹).  
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 Figure 2.16. Optical transitions in ideal monolayer graphene in the Faraday geometry. Intraband 

(blue arrows) and interband (red arrows) transitions between Landau levels of ideal graphene with the Fermi 
velocity 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s are shown for the Fermi energy 𝐸𝐸𝐹𝐹 = 100 meV. The selection rules in the Faraday 
geometry is given by ∆𝑛𝑛 = ±1.  

 
Intraband or cyclotron resonance transition energies from the level 𝑛𝑛 to the level 𝑛𝑛 + 1 of the 
conduction or valence bands can be written as: 
 

For n-type samples: 𝐸𝐸𝑛𝑛+1𝑐𝑐 − 𝐸𝐸𝑛𝑛𝑐𝑐 = 𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵(√𝑛𝑛 + 1 − √𝑛𝑛)                              (2.11a)      
           

For p-type samples: 𝐸𝐸𝑛𝑛𝑣𝑣 − 𝐸𝐸𝑛𝑛+1𝑣𝑣 = 𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵(√𝑛𝑛 + 1 − √𝑛𝑛)                             (2.11b) 
 

Interband transition energies from the level 𝑛𝑛 of the valence band to the level 𝑛𝑛 ± 1 of the 
conduction band are expressed as: 
 

𝐸𝐸𝑛𝑛±1
𝑐𝑐 − 𝐸𝐸𝑛𝑛𝑣𝑣 = 𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵(√𝑛𝑛 ± 1 + √𝑛𝑛)                                 (2.12) 

 
Note that, in our model, the transitions 𝑛𝑛(𝑣𝑣) → 𝑛𝑛 + 1(𝑐𝑐) and 𝑛𝑛 + 1(𝑣𝑣) → 𝑛𝑛(c) have the same 
transition energy. 
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3.2. Bilayer graphene  

 The LLs of bilayer graphene read as follows 4,60: 
 

𝐸𝐸𝑛𝑛,𝛼𝛼
𝑐𝑐,𝑣𝑣 = ± 1

√2
�𝑡𝑡12 + (2𝑛𝑛 + 1)𝐸𝐸12 + 𝛼𝛼�𝑡𝑡14 + 2(2𝑛𝑛 + 1)𝑡𝑡12𝐸𝐸12 + 𝐸𝐸14             (2.13) 

 
where 𝑛𝑛 ≥ 0 is the LL index, 𝐸𝐸𝑛𝑛,𝛼𝛼

𝑐𝑐 ≥ 0 and 𝐸𝐸𝑛𝑛,𝛼𝛼
𝑣𝑣 ≤ 0, 𝑡𝑡1 is the hopping energy as defined in 

the subsection 1.2, 𝐸𝐸1 = 𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵, and 𝑣𝑣𝐹𝐹 is the Fermi velocity having the same definition as 
for single-layer graphene. 𝛼𝛼 is the value indicating which conduction and valence bands of 
bilayer graphene will be considered in the LL calculation. 𝛼𝛼 = -1 gives the LLs of the highest 
valence band and the lowest conduction band that touch each other at the 𝐾𝐾 or 𝐾𝐾 ′ points (𝐸𝐸2 
and 𝐸𝐸3 bands in Fig. 2.7). We notice that if 𝑡𝑡1 = 0, the above LLs will become exactly equal to 
those of single-layer graphene. Fig. 2.17 displays the LLs of bilayer graphene as a function of 
magnetic field calculated with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s, 𝑡𝑡1 = 0.4 eV, and 𝛼𝛼 = -1.  
   

 
 

Figure 2.17. Landau levels of bilayer graphene as a function of magnetic field. Bilayer graphene 
Landau levels are calculated with the Fermi velocity 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s and the hopping energy 𝑡𝑡1 = 0.4 eV for 
𝛼𝛼 = -1 corresponding to the lowest lying conduction band and the highest lying valence band touching each other 
at the 𝐾𝐾 or 𝐾𝐾′ points. 
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3.3. Trilayer graphene 

 The fundamental research on the electronic properties of trilayer graphene has 
previously demonstrated that there exist two different electronic band structures depending on 
the stacking sequences: ABA (Bernal) or ABC (rhombohedral). As a consequence, the 
corresponding LLs of graphene trilayers stacked in these two orders are different. Here, we 
will only describe the LLs of the ABA configuration which are expressed as 25: 

 

𝐸𝐸𝑛𝑛,𝛼𝛼
𝑐𝑐,𝑣𝑣 = ± 1

√2
�2𝑡𝑡12 + (2𝑛𝑛 + 1)𝐸𝐸12 + 𝛼𝛼�4𝑡𝑡14 + 4(2𝑛𝑛 + 1)𝑡𝑡12𝐸𝐸12 + 𝐸𝐸14        (2.14a) 

and  
𝐸𝐸𝑛𝑛,0
𝑐𝑐,𝑣𝑣 = ±𝐸𝐸1√𝑛𝑛                                                (2.14b) 

 
where 𝑛𝑛 ≥ 0 is the LL index, 𝐸𝐸𝑛𝑛,𝛼𝛼

𝑐𝑐 ≥ 0, 𝐸𝐸𝑛𝑛,𝛼𝛼
𝑣𝑣 ≤ 0, 𝐸𝐸𝑛𝑛,0

𝑐𝑐 ≥ 0, 𝐸𝐸𝑛𝑛,0
𝑣𝑣 ≤ 0, 𝐸𝐸1 = 𝑣𝑣𝐹𝐹√2ћ𝑒𝑒𝐵𝐵, and 𝑣𝑣𝐹𝐹 

is the Fermi velocity having the same definition as for single-layer graphene. For the LLs 
𝐸𝐸𝑛𝑛,𝛼𝛼
𝑐𝑐,𝑣𝑣 , 𝛼𝛼 = ±1 are respectively defined for the contribution of the parabolic bands that do not 

touch each other and the parabolic bands touching each other at the 𝐾𝐾 point, as seen 
previously in the band structure of trilayer graphene presented in the subsection 1.3. The 
remaining LLs are written as 𝐸𝐸𝑛𝑛,0

𝑐𝑐,𝑣𝑣 that are exactly equivalent to those for monolayer graphene 
in the subsection 3.1. To summarize, the LL spectrum of ABA-stacked trilayer graphene can 
be studied by considering the summation of both the LLs of monolayer and bilayer graphenes. 
Fig. 2.18 shows ABA trilayer graphene LLs only for the positive energies. 
                                                                                            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2.18. Positive Landau level spectrum of ABA-stacked trilayer graphene. ABA trilayer 
graphene Landau levels: 𝐸𝐸𝑛𝑛,0 (black lines), 𝐸𝐸𝑛𝑛,𝛼𝛼=−1 (red lines), and 𝐸𝐸𝑛𝑛,𝛼𝛼=+1 (green lines). The energy origin of 
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𝐸𝐸𝑛𝑛,𝛼𝛼=+1 is very high. Thus, the Landau levels at low energies are only combined with 𝐸𝐸𝑛𝑛,0 and 𝐸𝐸𝑛𝑛,𝛼𝛼=−1. The 
parameters used in the calculations of these first 50 Landau levels in each band are 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s and 𝑡𝑡1 = 
0.4 eV.  
   

4. Experimental results 
In this section, experimental results obtained from magneto-optical absorption 

measurement performed on MEG samples grown on the C- and Si-terminated faces of SiC 
substrates will be presented and discussed. Our C- and Si-face MEG samples were fabricated 
by A. Ouerghi at the Laboratoire de Photonique et de Nanostructures (LPN-CNRS), 
Marcoussis, France.  
 
4.1. C-terminated face multilayer epitaxial graphene 

4.1.1. Fabrication of C-terminated MEG samples  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 2.19. Representative image of our C-terminated MEG samples obtained by scanning 

tunneling electron microscopy (STEM). The darker region corresponds to a MEG sample of which ~ 8-10 
graphene layers grown by thermal decomposition of SiC substrate on the C-terminated surface can be clearly 
seen. The lighter region represents the surface of the SiC substrate at the atomic level. This image was taken by 
G. Patriarche (LPN-CNRS).   

 
The high-quality MEG samples investigated by magneto-spectroscopy measurement 

were prepared at LPN-CNRS using thermal decomposition, as described in the subsection 2.4, 
from the C-terminated surface of semi-insulating oriented (0001) 4H-SiC substrate. First of 
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all, the SiC substrate was etched in a hydrogen flux at temperature 𝑇𝑇 = 1,500 ℃ and under 
pressure 𝑃𝑃 = 200 mbar for 15 minutes in order to remove any damage derived from the 
polishing of the SiC surface and to construct a step-ordered structure on the surface. The 
graphene layers were then grown in a closed radio-frequency (RF) induction furnace at 𝑇𝑇 ~ 
1,550 ℃ and at 𝑃𝑃 = 1 × 10-5 mbar. The number of graphene layers was intentionally chosen to 
be ~ 8-10 layers which were confirmed by scanning tunneling electron microscopy (STEM) 
analysis (Fig. 2.19). A few graphene layers close to the SiC substrate are significantly doped 
due to the charge transfer from the substrate to the sample, whereas the remaining layers are 
quasi-neutral. The dimension of our C-terminated MEG samples is typically 5 × 5 mm2.  

 
4.1.2. Dirac Landau level spectroscopy in monolayer and bilayer graphenes 

We have performed infrared magneto-optical transmission measurement on C-face 
MEG samples to determine the band parameters of our graphene layers. In this investigation, 
the magnetic field 𝐵𝐵 can be varied up to 15 T and the temperature was held to be at 𝑇𝑇 = 4.5 K. 
FIR and MIR light sources were used to generate the spectral range between 4 and 750 meV. 
To measure the relative transmission spectrum of the sample, the transmission at a given 
magnetic field 𝑇𝑇(𝐵𝐵) is normalized by the zero-field transmission 𝑇𝑇(0).   

 
Fig. 2.20 shows typical transmission spectra of a representative C-terminated MEG 

sample taken at different magnetic fields in the MIR range. The transmission minima 
indicated by different arrows disperse as a function of magnetic field and correspond to 
optical transitions between LLs of the sample. We have seen the calculation of optical 
transitions in the subsection 3.1 for the LL index 𝑛𝑛 ≥ 0. For the following, an intraband 
transition will be written as 𝑛𝑛𝑐𝑐(𝑣𝑣) − (𝑛𝑛 + 1)𝑐𝑐(𝑣𝑣) for a transition from the level 𝑛𝑛 to the level 
𝑛𝑛 + 1 of the conduction (𝑐𝑐) or valence (𝑣𝑣) bands. An interband transition is written as 𝑛𝑛𝑣𝑣 −
(𝑛𝑛 ± 1)𝑐𝑐 for a transition from the level 𝑛𝑛 of the valence band to the level 𝑛𝑛 ± 1 of the 
conduction band. A large number of strong transmission minima that satisfy the √𝐵𝐵-
dependence (black arrows) are attributed to the interband transitions originating from the 
excitation of massless Dirac fermions in monolayer graphene. Other weaker transmission 
minima that are linearly dependent on 𝐵𝐵 (red arrows) are associated with the transitions 
resulting from the excitation of massive Dirac fermions in bilayer graphene. The orange 
arrows depict additional transitions that follow the √𝐵𝐵-dependence as the transitions in 
monolayer graphene. Such transitions will be discussed later on the text. Narrow absorption 
lines were observed down to low fields, evidencing the high quality and high mobility of the 
sample.  
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Figure 2.20. MIR transmission spectra of a representative C-face MEG measured at different 

magnetic fields. Transmission minima corresponding to optical transitions between Landau levels disperse as a 
function of magnetic field. Interband transitions in monolayer graphene and bilayer graphene are respectively 
depicted by black and red arrows. Narrow absorption lines were observed down to low fields, evidencing the 
high quality and high mobility of the sample. Additional transmission minima indicated by orange arrows cannot 
be interpreted by the Dirac Landau level transitions in monolayer or bilayer graphene.   

 
Fig. 2.21 shows FIR transmission spectra of the same C-face MEG sample measured 

at different magnetic fields. The dispersion of various transitions with increasing fields was 
also observed as in the MIR range.  
 
The principle absorption in the FIR range is the ground cyclotron resonance transition CR 
0𝑐𝑐 − 1𝑐𝑐 (blue arrows) satisfying the √𝐵𝐵-dependence. Hence, this transition originates from 
the excitation of massless Dirac fermions in monolayer graphene. Since the band structure of 
single-layer graphene is gapless, therefore the CR 0𝑐𝑐 − 1𝑐𝑐 can also be considered as the first 
interband transition. Such a transition appears up to 4.5 T in the FIR range. After this field 
any transmission associated with the CR 0𝑐𝑐 − 1𝑐𝑐 can be observed between 85 and 210 meV 
(reststrahlen band) due to the opacity of the SiC substrate caused by the phonon-related 
absorption. The CR 0𝑐𝑐 − 1𝑐𝑐 is narrow and disappears below 𝐵𝐵 ~ 0.05 T, evidencing the high 
quality and high carrier mobility of this C-face MEG sample. As we know that the necessary 
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condition for electrons to create a cyclotron orbit is given by 𝜇𝜇𝐵𝐵 ≥ 1, we can thus deduce, for 
𝐵𝐵 = 0.05 T, that the electron mobility of our graphene is very high: 𝜇𝜇 ≥ 200,000 cm2/(V.s). 
This agrees with the measurements on MEG samples carried out by M. Orlita et al. 49. 
Furthermore, the CR 0𝑐𝑐 − 1𝑐𝑐 that is visible for the magnetic fields higher than 0.05 T allows 
us to determine the Fermi energy 𝐸𝐸𝐹𝐹. By considering the level 1𝑐𝑐 (𝑛𝑛 = 1) that is depopulated 
from 𝐵𝐵 = 0.05 T, we can thus estimate using Eq. 2.10 with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s that 𝐸𝐸𝐹𝐹 ≤ 𝐸𝐸1 
~ 8 meV above the Dirac point. This method was used to determine 𝐸𝐸𝐹𝐹 in all the MEG 
samples 61,62.        

 
 

Figure 2.21. FIR transmission spectra of a representative C-face MEG measured at different 
magnetic fields. The minima of transmission spectra dispersing as a function of magnetic field correspond to 
optical transitions between Landau levels of various features of our graphene layers (denoted by arrows of 
different colors). The principle transition in this energy range is the ground cyclotron resonance CR 0𝑐𝑐 − 1𝑐𝑐 
(marked by blue arrows) of graphene monolayers. This transition is narrow and can be followed down to a very 
low field, indicating the high mobility of the sample.  
 
Besides the main absorption lines originating from monolayer graphene (blue arrows), we 
observed also weaker transmission minima (red arrows) observed from 4 T to higher fields 
that are linearly dependent on 𝐵𝐵. Such transitions can thus be associated with the ground CR 
0𝑐𝑐 − 1𝑐𝑐 of massive Dirac fermions accommodated in bilayer graphene.  
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Interband transitions in monolayer graphene (black arrows) and bilayer graphene (red arrows 
indicating 1𝑣𝑣 − 2𝑐𝑐) were also observed in this low-energy range. High intensity of these 
transitions can be seen clearer in the transmission spectra measured in the MIR range. 
 
We observed also a very small absorption corresponding to the intraband transition 1𝑐𝑐 − 2𝑐𝑐 
between 0.4 and 5 T indicated by green arrows. Actually, this transition cannot occur because 
we have seen before that the level 1𝑐𝑐 is depopulated from 0.05 T. If there exists the CR 1𝑐𝑐 −
2𝑐𝑐, it should only occur below 0.05 T when the level 1𝑐𝑐 is populated. This indicates that there 
are some graphene layers of which their properties differ from those of the monolayers 
investigated earlier. Using Eq. 2.10 with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s to calculate 𝐸𝐸𝐹𝐹 of these layers 
for the level 1𝑐𝑐 (𝑛𝑛 = 1) that is populated up to 𝐵𝐵 = 5 T, we get 𝐸𝐸𝐹𝐹 ~ 𝐸𝐸1 ~ 85 meV above the 
Dirac point. These layers have higher Fermi level energy and lower carrier mobility with 
respect to those of the monolayers seen before. Therefore, we propose that the observed CR 
1𝑐𝑐 − 2𝑐𝑐 arises from the few doped layers close to the SiC substrate.  
 

To extract the band parameters of the graphene sample, the energy positions of the 
transmission minima seen previously were plotted versus magnetic field and were analyzed 
using the calculation of intraband and interband transitions between LLs in monolayer and 
bilayer graphenes as shown in the subsections 3.1 and 3.2. Fig. 2.22 displays the LL transition 
diagram of the C-face MEG sample. Blue dots represent the transmission minima interpreted 
as the ground CR 0𝑐𝑐 − 1𝑐𝑐 of the graphene monolayers stacked in the sample. The 
corresponding blue curve fit was calculated with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s. The transmission 
minima denoted by black dots are attributed to the interband transitions occurring in the 
graphene monolayers. Black lines were calculated with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s to fit all these 
transitions. Red dots refer to the transmission minima associated with the ground CR 0𝑐𝑐 − 1𝑐𝑐 
and interband transitions of bilayer graphene present in the sample. The curve fits are in red 
and were calculated with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s and 𝑡𝑡1 = 0.4 eV. The latter parameter obtained 
by means of magneto-optics is in good agreement with several theoretical and experimental 
studies shown before. The stacking faults are frequently observed in the rotationally ordered 
MEG. The ratio between bilayers and monolayers in MEG has been reported to be typically 
10% by M. Orlita et al. 31. Green dots mark the transmission minima that can be interpreted 
by the CR 1𝑐𝑐 − 2𝑐𝑐 of monolayer graphene represented in green line. As already explained 
before, such a transition and the ground CR 0𝑐𝑐 − 1𝑐𝑐 in monolayer graphene cannot occur at 
the same time. This is an evidence for the existence of the few highly doped graphene 
monolayers close to the SiC substrate, having high Fermi energy and low electron mobility. 
Gray shaded rectangle represents the reststrahlen band of SiC substrate between 85 and 210 
meV which limits our magneto-optical investigation because no transition can be observed in 
this spectral range. Overall, an excellent agreement between theory and experimental data is 
obtained for describing the electronic properties of different graphene layers stacked in our C-
face MEG. 
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Figure 2.22. Landau level transition diagram of a representative C-face MEG. Transmission 
minima denoted by dots were plotted as a function of magnetic field. Solid lines are curve fits calculated for 
intraband and interband transitions that can occur in monolayer (with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s) and bilayer (with 𝑣𝑣𝐹𝐹 
= 1.03 × 106 m/s and 𝑡𝑡1 = 0.4 eV) graphenes. Blue color is used to represent the ground CR 0𝑐𝑐 − 1𝑐𝑐 transition in 
monolayer graphene. Black color is used for interband transitions in the graphene monolayers. Red color shows 
the ground CR 0𝑐𝑐 − 1𝑐𝑐 and interband transitions occurring in bilayer graphene. An excellent agreement 
theory/experiment is obtained. The emergence of the CR 1𝑐𝑐 − 2𝑐𝑐 shown in green corresponds to the transition 
resulting from the few highly doped graphene layers close to the SiC substrate, having high Fermi level and low 
mobility. Gray shaded region is the reststrahlen band of SiC substrate where no transition can be observed. 
Orange symbols mark the transitions that will be attributed to the structural disorder present in our C-face MEG.   

 
The additional √𝐵𝐵-dispersing transmission minima observed near the interband 

transitions in the graphene monolayers are denoted by orange dots on the fan chart (Fig. 2.22). 
From the above analysis, we found that these transitions do not obey neither the Dirac LL 
transitions in monolayer (with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s) nor bilayer (with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s and 
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𝑡𝑡1 = 0.4 eV) graphenes. However, we did not completely forget that our magneto-optical 
absorption technique probes all the graphene layers and these supplementary transitions could 
be due to the interband transitions with different 𝑣𝑣𝐹𝐹 in monolayer graphene grown on the 
other face of the SiC substrate. To verify this hypothesis, we etched the excessive graphene 
layers on this face and examined the sample once again by magneto-optics. The results 
obtained from this process remain unchanged. Hence, the supplementary transitions originate 
from the graphene layers on the C-face. Moreover, as seen in Fig. 2.20, the width of the 
additional absorption lines (orange arrows) is comparable to that of the principle absorptions 
(black arrows). This means that these two types of absorption peaks were caused by the same 
graphene monolayers. The physics of these additional transitions in our C-face MEG samples 
will be clarified in the following subsection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.23. Precise determination of the Fermi velocity of a representative C-face MEG sample 
using magneto-optical investigation. Interband transitions 2𝑣𝑣 − 3𝑐𝑐 and 3𝑣𝑣 − 4𝑐𝑐 occurring in the graphene 
monolayers were fit with three values of 𝑣𝑣𝐹𝐹: 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s (black solid lines), 𝑣𝑣𝐹𝐹 = 1.05 × 106 m/s (upper 
black dashed lines), and 𝑣𝑣𝐹𝐹 = 1.01 × 106 m/s (lower black dashed lines).   

52 
 



   CHAPTER 2  
Magneto-optics in multilayer epitaxial graphene 

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

 
Our magneto-optical absorption investigation provides a precise determination of the 

Fermi velocity. As shown in Fig. 2.23, the interband transitions 2𝑣𝑣 − 3𝑐𝑐 and 3𝑣𝑣 − 4𝑐𝑐 
occurring in the graphene monolayers were fit using the expression in Eq. 2.12 with 𝑣𝑣𝐹𝐹 = 1.03 
× 106 m/s, as represented by black solid lines. The black dashed lines at the energies higher 
than the experimental transition data were calculated with 𝑣𝑣𝐹𝐹 = 1.05 × 106 m/s, while the 
black dashed lines at lower energies were calculated with 𝑣𝑣𝐹𝐹 = 1.01 × 106 m/s. We see clearly 
that these two values of 𝑣𝑣𝐹𝐹 do not fit the experimental data. As a consequence, the Fermi 
velocity of massless Dirac fermions in monolayer graphene determined from our method is 
accurately given by 𝑣𝑣𝐹𝐹 = (1.03 ± 0.02) × 106 m/s. Note that this value is in agreement with 
previous magneto-optical determination by M. Orlita et al. 31,49.   
 
4.1.3. Disorder effect on magneto-optical transitions 

We have previously seen that the additional transitions dispersing with √𝐵𝐵 (depicted 
by orange symbols on Fig. 2.20 and 2.22) could not be associated with any excitation from 
massless Dirac fermions in pristine monolayer graphene. Furthermore, we checked that these 
transitions really occur in the graphene monolayers grown on the C-face. To explain this, we 
are interested in the structural disorder present in our graphene samples that can significantly 
modify their electronic properties 63–65. In this scope, we will focus on the point defects that 
can perturb the LLs of ideal monolayer graphene. The following discussion regarding the 
perturbed LLs in graphene caused by the localized defects can also be found in our work 62. 
 
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.24. Fan chart of perturbed Landau levels in the presence of point defects in graphene. 

The perturbed Landau levels are obtained from the diagonalization of the Hamiltonian of graphene including a 
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short-range perturbation potential (delta-like) 𝑉𝑉(𝑟𝑟) = 𝑊𝑊0𝛿𝛿(𝑟𝑟) in a truncated basis of unperturbed Landau levels, 
with 𝑊𝑊0 = 20 eV.nm2 and 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s. Two kinds of states are obtained: in between (orange lines) and 
at the same energies (black lines) as the unperturbed Landau levels. Adapted from our paper 62.  

 
The origin of the supplementary transitions can be attributed to short-range defects in 

the graphene layers: C vacancies, Si isoelectric substitution or adatoms on a sublattice A or B 
site. To study the effect of these localized defects in our graphene, we collaborated with the 
theory group of our laboratory. We developed a model in the 𝒌𝒌 ∙ 𝒑𝒑 framework by taking into 
account a short-range potential (delta-like) in real space. We then considered 𝑉𝑉(𝑟𝑟) = 𝑊𝑊0𝛿𝛿(𝑟𝑟) 
as the perturbation potential. 𝑊𝑊0 is a constant corresponding to the strength of the localized 
perturbation 63 and it is the only one parameter to be adjusted in the model in order to 
reproduce the experimental data. The diagonalization of the Hamiltonian 𝐻𝐻0 + 𝑉𝑉(𝑟𝑟), for 𝑊𝑊0 = 
20 eV.nm2 and 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s, in a truncated basis of unperturbed Landau states gives 
the LLs in the presence of the point defects as represented in Fig. 2.24. For the sake of 
simplicity, we considered -10 < 𝑛𝑛 < 10, resulting in 21 LLs in the basis.  

 
The perturbed LLs obtained can be separated in two kinds of states: (i) the states placed in 
between the unperturbed LLs (orange lines) and (ii) the states placed at the same energies as 
the unperturbed LLs (black lines). The perturbed LL spectrum structure can be understood at 
the lowest order by retaining only the two unperturbed states of the same index 𝑛𝑛 (different 
from zero) and derived from two different valleys. The eigenvalue equation to be solved is 
given by (𝐸𝐸𝑛𝑛 + 𝜂𝜂)𝐼𝐼 + 𝜂𝜂𝜎𝜎𝑥𝑥 = 𝐸𝐸𝐼𝐼, where 𝐸𝐸𝑛𝑛 is the unperturbed LLs of ideal monolayer 
graphene, 𝜂𝜂 = 𝑊𝑊0/𝜆𝜆𝐵𝐵2  represents the intra- and intervalley coupling strengths which are 

equivalent and 𝜆𝜆𝐵𝐵 is the magnetic length, 𝐼𝐼 = � 1 0
0 1� is the identity matrix, and 𝜎𝜎𝑥𝑥 =

�0 1
1 0� is the real nondiagonal Pauli matrix. The solutions of the above equation read:    

 
𝐸𝐸± = 𝐸𝐸𝑛𝑛 + 𝜂𝜂 ± |𝜂𝜂|                                                 (2.15) 

 
For a given index 𝑛𝑛, we get a state at the same energy 𝐸𝐸𝑛𝑛 as the unperturbed LL, and another 
either below or above 𝐸𝐸𝑛𝑛, depending on the sign of 𝑊𝑊0.    

  
 In the following, we will demonstrate that the additional transitions observed in 
magneto-optical transmission spectra can be described by the transitions between the 
calculated LLs shown in Fig. 2.24. To do this, we calculated all the possible transition 
energies between all the available LLs to fit the orange data points on Fig. 2.22. Note that the 
selection rules ∆𝑛𝑛 = ±1 for an ideal graphene are no longer applied in the presence of 
defects. Finally, we found that the orange points are associated with the transitions between 
unperturbed (black lines) and defect-related (orange lines) LLs seen in Fig. 2.24.  
 
In order to fit the experimental transmission spectra, we introduce a phenomenological 
broadening of the transitions of which the expression is written as:  
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𝑇𝑇(𝐸𝐸) = 𝐶𝐶 −
1
𝐸𝐸
� �

𝐴𝐴
ΓLL−to−LL

𝑒𝑒−
(𝐸𝐸−𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿)2
2ΓLL−to−LL

𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿

+ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 �
𝐴𝐴′(𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝑑𝑑𝑑𝑑𝑑𝑑)
ΓLL−to−def𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝑑𝑑𝑑𝑑𝑑𝑑

𝑒𝑒−
(𝐸𝐸−𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝑑𝑑𝑑𝑑𝑑𝑑)2
2ΓLL−to−def � 

(2.16) 
 

Here, the first sum corresponds to the transitions between unperturbed LLs, noted as LL-to-
LL, while the second sum is calculated for the transitions between unperturbed and defect-
related states, denoted as LL-to-def. 𝐴𝐴 and 𝐴𝐴′ represent the amplitudes of the transitions and 
can be obtained with the Fermi golden rule. 𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝐿𝐿𝐿𝐿 and 𝐸𝐸𝐿𝐿𝐿𝐿−𝑡𝑡𝑡𝑡−𝑑𝑑𝑑𝑑𝑑𝑑 are the positions of 
transmission minima due to the transitions LL-to-LL and LL-to-def, respectively. ΓLL−to−LL 
and ΓLL−to−def refer to the broadenings of the transmission spectra. 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 is the area density of 
defects. The last three quantities are parameters to be adjusted.    
 

  
Figure 2.25. Theory/experiment comparison. Transmission spectra (black) measured in a 

representative C-face MEG at 15 T (a and c) and 9 T (b and d). Calculated absorption spectra (red) are 
superposed to the experimental data. (c) and (d) are zooms of (a) and (b), respectively. A good agreement 
between the theory and experimental transmission spectra is obtained. Adapted from our paper 62.   
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Fig. 2.25 shows the comparison between theory and experiment. The calculated absorption 
spectra for 9 T and 15 T are represented by red curves. They correspond to the transitions of 
electrons initially in unperturbed valence states (black LLs with 𝐸𝐸 ≤ 0) towards all accessible 
excited perturbed states (with 𝐸𝐸 ≥ 0). Note that the level 𝐸𝐸 = 0 plays the twofold role of 
initial and final level as in the ideal graphene. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.26. Complete Landau level transition diagram of a representative C-face MEG. In this 

sample, the rotational stacking results in the electronic decoupling between graphene monolayers. Their ground 
CR 0𝑐𝑐 − 1𝑐𝑐 and interband transitions dispersing with √𝐵𝐵 are represented by blue and black circles, respectively. 
Blue and black solid lines are the corresponding curve fits calculated using 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s. Stacking faults 
frequently occurring in the sample give rise to ~ 10% of bilayer graphene. The associated transitions are marked 
by red dots and the corresponding curve fits shown in red solid lines are calculated with 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s and 
𝑡𝑡1 = 0.4 eV. Additional transitions depicted by orange dots were fit by orange lines calculated from the 
transitions between unperturbed (black lines in Fig. 2.24) and defect-related (orange lines in Fig. 2.24) Landau 
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levels in the presence of the point defects (𝑊𝑊0 = 20 eV.nm2) in our C-face MEG. An excellent agreement 
theory/experiment is obtained. Adapted from our paper 62.   

 
All parameters were obtained in order to get the best fit. First, the energy positions of the 
weaker absorptions mostly depend on the potential strength 𝑊𝑊0. We obtained 𝑊𝑊0 = 20 
eV.nm2. Second, we know that the intensity of a defect-related absorption peak is proportional 
to the number of defects present in the sample, while the strength of an intrinsic contribution 
depends on the sample surface. Therefore, the relative amplitudes between the main and 
weaker absorption lines mostly rely on the area density of defects 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑. As discussed earlier, 
certain defect-related states possess the same energies as the unperturbed LLs, thereby each 
main line contains both LL-to-LL and LL-to-def contributions. The best fit is obtained for 
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 = 4.5 × 1011 cm-2 as shown in Fig. 2.25. Third, the energy-independent broadenings of 
the Gaussian fits were obtained: ΓLL−to−LL = 10 meV and ΓLL−to−def = 5 meV. The different 
broadenings (ΓLL−to−LL ≈ 2ΓLL−to−def) might be due to the fact that the width of the LL-to-LL 
transitions results from the convolution of two nearly equally broadened LLs, while we do not 
expect an important broadening for a spatially localized state in the gap between two LLs. For 
𝑊𝑊0 = 20 eV.nm2 and 𝑣𝑣𝐹𝐹 = 1.03 × 106 m/s, a good agreement between calculated transitions 
(black and orange lines) and the experimental results (black and orange symbols) is shown in 
Fig. 2.26. 
 

The concentration of the defects in the graphene layers is very diluted since the ratio 
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑/𝑁𝑁𝐶𝐶  ~ 1 × 10-4, where 𝑁𝑁𝐶𝐶 = 2/𝑆𝑆𝑈𝑈𝐶𝐶 is the area density of carbon atoms (two carbon 
atoms per unit cell) and 𝑆𝑆𝑈𝑈𝐶𝐶 = 0.052 nm2 is the area of the graphene unit cell. This is 
consistent with the high electron mobility 𝜇𝜇 ≥ 200,000 cm2/(V.s) deduced previously from 
the observation of the ground CR 0𝑐𝑐 − 1𝑐𝑐 from 𝐵𝐵 ~ 0.05 T. 

 
Interestingly, we observed in our samples a self-healing of the defects at room temperature. 
Fig. 2.27 shows the self-healing effect in a sample measured at 12 T at different times after 
the first measurement (𝑡𝑡0) done right after the growth. This puzzling phenomenon has not 
been fully understood yet. It could be probably due to the diffusion of atmospheric molecules, 
for example H2O, that penetrate between the graphene layers and place at the point defects, 
generating the LL-to-def transitions indicated by orange arrows. One month later (𝑡𝑡0 + 1𝑚𝑚), 
the intensity of these transitions diminishes but the broadening of the peaks remains 
unchanged: ΓLL−to−def = 5 meV. The other two experiments carried out later (𝑡𝑡0 + 4𝑚𝑚 and 
𝑡𝑡0 + 10𝑚𝑚) show the disappearance of the LL-to-def transitions. When the sample was heated 
to 1,100 ℃ for 10 minutes, we reproduced all the transitions (at 𝑡𝑡0 + 10𝑚𝑚 after the heating 
process) with comparable intensity as observed in the measurement at 𝑡𝑡0. Hence, the heating 
process allows to get rid of the atmospheric molecules from the sample.   
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Figure 2.27. Self-healing effect study in a representative C-face MEG. The upper four transmission 

spectra were measured at 12 T at different times. The intensity of the additional transitions marked by orange 
arrows diminishes as a function of time and disappears about one month later after the first measurement (𝑡𝑡0). 
The lowest transmission spectrum was reproduced at 12 T after the sample was heated to 1,100 ℃ for 10 
minutes. The signature due to the localized defects comes back after the heating procedure.  

 
4.2. Si-terminated face multilayer epitaxial graphene 

4.2.1. Fabrication of Si-terminated MEG samples  

It has been known that the Si-face of SiC substrates is more favorable than the C-face 
for controlling the epitaxial growth of a few graphene layers (1-3 layers), as described 
previously in the subsection 2.4. For instance, we discuss here the electronic properties of 
MEG samples (typically 5 × 5 mm2) fabricated from a 4° off-axis 4H-SiC(0001) substrate via 
the method of thermal decomposition (A. Ouerghi, LPN-CNRS). Before the graphitization, 
the substrate was first etched in a hydrogen flux (100% of H2) at temperature 𝑇𝑇 = 1,550 ℃ in 
order to prepare well-ordered atomic terraces of the SiC substrate. Secondly, the substrate was 
heated to 𝑇𝑇 = 820 ℃ and deoxidized at 𝑇𝑇 = 1,100 ℃ for removing the native oxide and any 
surface contamination. Then, the substrate was heated to 𝑇𝑇 = 1,550 ℃ under an argon 
atmosphere of pressure 𝑃𝑃 = 800 mbar for 10 minutes. Epitaxially grown graphene layers were 
finally cooled down to room temperature and transferred ex-situ to perform further 
characterizations and measurements. Note that the first carbon layer (buffer layer in Fig. 2.28) 
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of a Si-terminated MEG is insulating. This can be explained by the fact that one third of the 
carbon atoms of the buffer layer are covalently bound to the SiC substrate. The real epitaxial 
graphene layers exhibiting graphene properties are therefore on top of this interfacial layer.  

 

    
 Figure 2.28. Schematic structure of our Si-terminated MEG epitaxially grown on 4H-SiC(0001) 

substrate. The first carbon layer, known as buffer layer, close to the SiC substrate is insulating due to the 
covalent bonding between the carbon atoms of this interfacial layer and the substrate. Epitaxial graphene layers 
that exhibit graphene properties correspond to the layers next to the buffer layer. Adapted from our paper 66.   

 
Various characterizations and measurements were carried out and they confirm that 

this Si-terminated MEG is a trilayer graphene. All the measurements were performed in 
collaboration with the research group of A. Ouerghi at LPN-CNRS and at Synchrotron-
SOLEIL, Saint-Aubin, France. Characterization techniques used in this study were micro-
Raman mappings, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy 
(XPS). Different measurements were combined to study the electronic properties of this 
epitaxial trilayer graphene: near-edge X-ray absorption fine structure (NEXAFS), angle-
resolved photoemission spectroscopy (ARPES) and far-infrared magneto-transmission (FIR-
MT). In this thesis, only ARPES and FIR-MT experimental results will be shown and 
discussed. Further details regarding the characterizations and other measurements of this 
epitaxial trilayer graphene can be found in our paper 66.   
 
4.2.2. Electronic band structure of trilayer graphene from ARPES 
experiment   

ARPES experiment was performed in our epitaxial graphene at Synchrotron-SOLEIL, 
Saint-Aubin, France. It is a powerful technique since it allows us to get directly the 
information about the electron energy band dispersion of our graphene sample. Fig. 2.29(a) 
displays ARPES spectra, measured at the energy ћ𝜈𝜈 = 60 eV, along the 𝑀𝑀-𝐾𝐾-Γ direction of 
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the first Brillouin zone. The electronic band structure mostly shows the valence band energy. 
The Fermi energy 𝐸𝐸𝐹𝐹 is placed in the conduction band at the zero energy as reference (𝐸𝐸𝐹𝐹 = 
0). As can be seen in Fig. 2.29(b), the momentum distribution curve (MDC) was extracted at 
the energy 𝐸𝐸 − 𝐸𝐸𝐹𝐹 = -1.32 eV denoted by the horizontal red line in Fig. 2.29(a). Three 
maxima, indicated by black arrows, of the ARPES spectra intensity observed in the MDC 
evidence the existence of three valence bands. This is different from the band structure of 
monolayer graphene with a single valence band and bilayer graphene with double valence 
bands. As a consequence, our graphene sample epitaxially grown on the Si-face of 4H-
SiC(0001) substrate is most probably a trilayer graphene. Clearer evidence for trilayer 
graphene can be found in the second derivative of the electronic band structure as shown in 
Fig. 2.29(c). The energy dispersion of three valence bands can be clearly seen and the bands 
(2) and (3) indexed in Fig. 2.29(b) touch each other at the 𝐾𝐾 point. Density functional theory 
(DFT) calculation was also performed (Fig. 2.29(d)) to show the consistency of the trilayer 
graphene band structure with ARPES experimental data. The calculated band structure 
corresponds to the electronic band structure of trilayer graphene in Bernal or ABA stacking 
sequence. The Bernal stacking is energetically more preferable than the rhombohedral (ABC) 
stacking, as explained in the subsection 1.3, and this is finally confirmed by the ARPES 
results.  

 
The ARPES spectra clearly evidencing the three valence bands (Fig. 2.29(a)) 

demonstrate the high crystalline quality of this epitaxial trilayer graphene. It is well known 
that the 𝜋𝜋 bands of trilayer graphene form a Dirac cone and the 𝜋𝜋 branches cross each other at 
the Dirac point (𝐾𝐾 point). For our sample, the Dirac point is located at the energy denoted as 
𝐸𝐸𝐷𝐷 ~ -320 meV. From ARPES measurement, we can estimate the Fermi energy (𝐸𝐸𝐹𝐹 = 0) with 
respect to the Dirac point to be Δ𝐸𝐸 = 𝐸𝐸𝐹𝐹 − 𝐸𝐸𝐷𝐷 ~ 320 meV above the Dirac point. Using a 
Fermi velocity 𝑣𝑣𝐹𝐹 ~ 1 × 106 m/s, the carrier concentration can be estimated to be 𝑛𝑛 ~ 9 × 1012 
cm-2 per graphene layer.  
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 Figure 2.29. Electronic band structure measured by ARPES experiment of our Si-terminated 

MEG epitaxially grown on 4H-SiC(0001) substrate. (a) ARPES spectra of the epitaxial trilayer graphene 
measured along the 𝑀𝑀-𝐾𝐾-Γ direction of the first Brillouin zone at the energy ћ𝜈𝜈 = 60 eV. (b) Momentum 
distribution curve (MDC) extracted from the ARPES spectra in (a) at the energy -1.32 eV with respect to the 
Fermi energy at 0 eV. (c) Second derivative of the ARPES spectra in (a) showing clearer epitaxial trilayer 
graphene band structure. (d) Density functional theory (DFT) calculation for the band structure of trilayer 
graphene in Bernal stacking order. Adapted from our paper 66.     
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4.2.3. Infrared magneto-transmission results of trilayer graphene 

 We have performed FIR magneto-optical transmission measurement on this epitaxial 
trilayer graphene. Fig. 2.30 shows typical FIR relative transmission spectra measured at 
various magnetic fields at 4.5 K.  For 𝐵𝐵 ≥ 3 T, the broad absorption line of the sample 
indicated by black arrows disperses as a function of magnetic field. We notice that the 
transition energy minima are not linearly dependent on 𝐵𝐵. This is a typical characteristic of 
Dirac fermions.  
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.30. Infrared magneto-optical relative transmission spectra of our epitaxial trilayer 

graphene. Far-infrared transmission spectra of our trilayer graphene with Bernal stacking were measured at 
different magnetic fields at 4.5 K. Black arrows show the cyclotron resonance (CR) transitions. Each CR 
transition of the conduction band at a fixed field is denoted by 𝑛𝑛 → 𝑛𝑛 + 1, where 𝑛𝑛 ≥ 0 is the Landau level 
index, and has to satisfy the condition 𝐸𝐸𝑛𝑛 < 𝐸𝐸𝐹𝐹 < 𝐸𝐸𝑛𝑛+1, where 𝐸𝐸𝐹𝐹 is the Fermi level. Adapted from our paper 66.   
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As seen before in the subsection 3.3, the LLs of trilayer graphene can be decomposed 
in two LL origins: a monolayer graphene-like and a bilayer graphene-like LLs. This is 
expected since the trilayer graphene band structure exhibits two massless monolayer 
graphene-like subbands and four massive bilayer graphene-like subbands. The LL spectra for 
the conduction bands of a Bernal trilayer graphene are represented in Fig. 2.31. Only 
monolayer graphene-like LLs 𝐸𝐸𝑛𝑛,0

𝑐𝑐  (black curves) and bilayer graphene-like LLs 𝐸𝐸𝑛𝑛,𝛼𝛼=−1
𝑐𝑐  (red 

curves) are shown and they were calculated with 𝑣𝑣𝐹𝐹 = 1 × 106 m/s and 𝑡𝑡1 = 0.39 eV. Note that 
the LLs 𝐸𝐸𝑛𝑛,𝛼𝛼=+1

𝑐𝑐  of bilayer graphene are situated at the energies higher than 400 meV (Fig. 
2.18).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.31. Calculated Landau level spectra for the conduction bands of a Bernal trilayer 
graphene. Landau levels of a Bernal trilayer graphene consist of monolayer graphene-like and bilayer graphene-
like Landau levels represented respectively by black (for 𝐸𝐸𝑛𝑛,0

𝑐𝑐 ) and red (for 𝐸𝐸𝑛𝑛,𝛼𝛼=−1
𝑐𝑐 ) lines for the conduction 

bands. They were calculated with 𝑣𝑣𝐹𝐹 = 1 × 106 m/s and 𝑡𝑡1 = 0.39 eV. The LLs 𝐸𝐸𝑛𝑛,𝛼𝛼=+1
𝑐𝑐  of bilayer graphene are 

located at the energies higher than 400 meV and are not represented. Black arrows depict the cyclotron 
resonance (CR) transition energies at each magnetic field between two adjacent monolayer graphene-like Landau 
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levels, 𝑛𝑛 and 𝑛𝑛 + 1 with 𝑛𝑛 ≥ 0. Blue horizontal line indicates the Fermi energy 𝐸𝐸𝐹𝐹 being satisfied by all the CR 
transitions. Adapted from our paper 66.       
 

Using the Fermi energy 𝐸𝐸𝐹𝐹 = 320 meV and place it as blue horizontal line on the 
calculated LL spectra in Fig. 2.31, we can calculate the intraband transition energies, 
respecting the selection rules ∆𝑛𝑛 = ±1 in the Faraday geometry, at each field between two 
adjacent LLs of monolayer graphene, as indicated by black arrows. We found that these 
transition energies correspond to the transmission minima dispersing with magnetic fields 
depicted by black arrows in Fig. 2.30. Therefore, the main observed absorption can be 
attributed to the electron cyclotron resonance (CR) of the linear conduction bands touching at 
the 𝐾𝐾 point. At each 𝐵𝐵, the observed CR transition occurs between two adjacent LLs, the 
upper populated 𝑛𝑛 and the lower unpopulated 𝑛𝑛 + 1 LLs with 𝑛𝑛 ≥ 0, of the conduction band 
and will be denoted as 𝑛𝑛 → 𝑛𝑛 + 1. Note that the LL index 𝑛𝑛 varies with 𝐵𝐵 since the CR 
transition has to fulfill the condition 𝐸𝐸𝑛𝑛 < 𝐸𝐸𝐹𝐹 < 𝐸𝐸𝑛𝑛+1. The Fermi velocity was confirmed to 
be 𝑣𝑣𝐹𝐹 ~ 1 × 106 m/s and the Fermi energy above the Dirac point can be experimentally 
determined to be 𝐸𝐸𝐹𝐹 ~ 320 meV by our magneto-spectroscopy, in agreement with ARPES 
measurement. In sum, we essentially measured the CR transitions of the monolayer graphene-
like LLs. We did not observe any optical intraband transition from the bilayer graphene-like 
LLs having energies located around 𝐸𝐸𝐹𝐹 since the transition energy between two adjacent LLs 
is probably too narrow to be experimentally resolved, as compared to the transition energy 
between two adjacent monolayer graphene-like LLs having larger LL width.  
 
 Magneto-spectroscopy allows to determine the electron mobility 𝜇𝜇 of epitaxial trilayer 
graphene by considering the CR observation condition 𝜇𝜇𝐵𝐵 ≥ 1. With the fact that clear 
absorption minima in Fig. 2.30 are only defined for 𝐵𝐵 ≥ 3 T, the mobility of the Dirac 
fermions can thus be deduced to be 𝜇𝜇 ≥ 3,000 cm2/(V.s) at 4.5 K.   
 

5. Conclusion  
 We investigated C-terminated face MEG samples grown by means of thermal 

decomposition of SiC substrates using magneto-optical absorption measurement in the FIR 
and MIR ranges at 4.5 K and magnetic fields up to 𝐵𝐵 = 15 T. In spite of the SiC substrate 
reststrahlen band covering the energy range between 85 and 210 meV, the minima of 
transmission spectra dispersing as a function of 𝐵𝐵 can be followed down to low fields. This 
evidences the high electron mobility of the C-face MEG samples: 𝜇𝜇 ≥ 200,000 cm2/(V.s) at 
4.5 K. Narrow absorption lines observed in the spectra indicate the high quality of these 
samples. The minima were extracted from the spectra and plotted versus 𝐵𝐵 in order to 
construct Dirac LL transition diagrams. The minima of high absorption intensity were 
observed to vary with √𝐵𝐵 and therefore analyzed using the Dirac LL transitions of massless 
Dirac fermions in monolayer graphene. Other weaker transmission minima are dependent on 
𝐵𝐵 and they were analyzed by the Dirac LL transitions of massive Dirac fermions in bilayer 
graphene. We are able to extract the band parameters of our samples from the best fit. 
Magneto-spectroscopy allows us to accurately determine the Fermi velocity 𝑣𝑣𝐹𝐹 = (1.03 ± 
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0.02) × 106 m/s for massless Dirac fermions of graphene monolayers and massive Dirac 
fermions of graphene bilayers. The hopping energy between two adjacent layers in bilayer 
graphene was found to be 𝑡𝑡1 = 0.4 eV, in good agreement with previous theoretical and 
experimental studies. The very low Fermi energy from the Dirac point was estimated to be 𝐸𝐸𝐹𝐹 
≤ 8 meV. Our graphene samples were shown to exhibit essentially the electronic properties of 
monolayer graphene owing to the electronic decoupling among the layers caused by the 
rotational stacking during the SiC thermal decomposition. The presence of bilayer graphene ~ 
10% resulting from stacking faults was also observed in our samples. We observed the few 
graphene monolayers situated next to the SiC substrate, as commonly known, which are 
highly doped with 𝐸𝐸𝐹𝐹 ~ 85 meV from the Dirac point. Their mobility at 4.5 K is much smaller 
than that of the graphene monolayers.  

 
We also observed additional transmission minima that are located near the energies of the 
interband transitions in monolayer graphene investigated earlier and disperse as a function of 
√𝐵𝐵. It is experimentally known that thermal decomposition of SiC substrates gives residual 
graphene layers on the undesirable face of SiC. After having been etched the excessive layers, 
the samples were examined once again and these additional transitions still occur. Therefore, 
they really result from the monolayers grown on the C-face of SiC. We attributed these   
supplementary transitions to the structural disorder: short-range impurities or point defects. 
Such localized defects can perturb the LLs of ideal single-layer graphene. The developed 
model using a delta-like potential perturbation successfully describes in the 𝒌𝒌 ∙ 𝒑𝒑 framework 
the experimental transmission spectra. The disorder-perturbed LLs are found to be placed in 
between and at the same energies as the unperturbed LLs of ideal monolayer graphene. The 
additional transmission minima were shown to be associated with the transitions between 
unperturbed (black lines in Fig. 2.24) and defect-related (orange lines in Fig. 2.24) LLs. A 
phenomenological broadening of the transitions was used to fit the transmission spectra. From 
the analysis, we obtained the concentration of localized defects 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 = 4.5 × 1011 cm-2. This 
concentration is very diluted (~ 1 × 10-4) which is relevant to the high carrier mobility 𝜇𝜇 ≥ 
200,000 cm2/(V.s) of the samples measured at 4.5 K. Interestingly, a self-healing effect of the 
defects in the samples kept at room temperature was observed. The additional transmission 
minima due to the transitions between unperturbed and defect-related LLs disappear about 
one month after the first measurement done right after the growth. This could be explained by 
the diffusion of atmospheric molecules, i.e. H2O, that place at the point defects of the 
graphene layers, lowering the intensity of the additional transitions without modifying their 
broadening. We found that we can get rid of the atmospheric molecules by heating the 
samples to 1,100 ℃ for 10 minutes. After the heating process, the additional transitions occur 
again with comparable intensity as observed in the first measurement.      

 Si-terminated face MEG samples grown by thermal decomposition of SiC substrates 
were shown to exhibit the electronic properties of graphene trilayers stacked in the Bernal or 
ABA sequence using magneto-spectroscopy and ARPES combined with other measurements 
and characterizations. The band structure obtained from ARPES experiment mostly shows 
three valence bands of which two bands touch each other at the 𝐾𝐾 point, evidencing the 
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Bernal stacking. The Fermi energy was observed to be placed in the conduction bands, 
determining the n-type carriers in our samples. The ARPES results confirm the Bernal 
stacking in our trilayer graphene. The transmission minima observed in the FIR magneto-
transmission experiments are found to correspond to the CR between two adjacent LLs of the 
linearly dispersing conduction band of the trilayer graphene (black lines in Fig. 2.9(a)). The 
observed CR transitions allow us to determine the Fermi velocity 𝑣𝑣𝐹𝐹 = 1 × 106 m/s and the 
Fermi level 𝐸𝐸𝐹𝐹 ~ 320 meV above the Dirac point, in agreement with ARPES. The mobility of 
our epitaxial trilayer graphene is 𝜇𝜇 ≥ 3,000 cm2/(V.s) at 4.5 K.  

 
 Finally, the experimental results shown in this chapter demonstrate that magneto-

spectroscopy is a very powerful technique to characterize the very rich electronic properties of 
graphene stacks. The electronic properties of pristine stacks as well as the influence of defects 
(stacking faults, point defects, etc.) can be very accurately investigated.   
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Chapter 3 

 

  

A brief overview of topological matter 
The second part of this thesis deals with the Dirac matter systems studied in 

the so-called "topological insulators". This research field has recently become 
renowned after the 2016 Nobel Prize in Physics was awarded to David J. Thouless, 
F. Duncan M. Haldane and J. Michael Kosterlitz for "theoretical discoveries of 
topological phase transitions and topological phases of matter". They identified a 
completely novel type of phase transition and theoretically developed methods to 
describe this new kind of quantum phase transition based on arguments inspired from 
topology. In the research area of condensed matter physics, theoretical and 
experimental physicists are particularly interested in how topology can be applied to 
band structure theory, and what topological phenomena are. Up to date, certain 
semiconductors in suitable conditions were theoretically and experimentally shown 
to exhibit topological properties that could lead to numerous promising technological 
applications, for example, data storage, terahertz sensors, spintronic devices and 
quantum computing.  

In this chapter, the notion of topological insulators will 
be first introduced and some topological insulator materials 
recently discovered will be exemplified. Secondly, an 
extended class of topological materials called "topological 
crystalline insulators" will then be addressed. Finally, the 
Bernevig-Hughes-Zhang Hamiltonian model will be shown to 
be applicable in both topological insulators and topological 
crystalline insulators and to reliably describe the topological 
behavior of relativistic-like Dirac fermions residing in such 
Dirac topological matter.    
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1. Topological insulators  
 In the quantum world, a very large number of microscopic constituents such as ions or 

electrons in atoms can form different ordered phases of matter by spontaneously breaking 
symmetries. In a crystalline solid structure, ions are periodically arranged due to their 
electrostatic interactions, as a consequence, the continuous symmetries of space under 
translations and rotations are broken. In a typical magnet, magnetic moments or electrons 
break some rotational symmetries. The discovery of topological insulators (TIs) has 
revolutionized our understanding of quantum phases of matter since it challenged the 
symmetry-centered paradigm of phase transitions. Fundamentally speaking, it has allowed us 
to understand how unconventional states of matter can emerge in systems where fundamental 
symmetries remain preserved 1,2.  

 
 A TI is a novel quantum state of matter which behaves as an insulator in its interior 

but as a metal on its boundary 3,4. In other words, a TI material exhibits semiconducting bulk 
states accompanied by conducting edge or surface states. Several narrow gap semiconductors, 
in which the energy gap is smaller than relativistic corrections to the band structure, with 
spin-orbit interactions have been studied and theoretically or experimentally demonstrated to 
show metallic edge or surface states topologically protected by time-reversal symmetry. The 
combination of spin-orbit coupling and time-reversal symmetry drives to exotic physical 
phenomena. Therefore, the search for TIs is of importance and holds great promise for novel 
fundamental physics revealed from various investigation techniques such as the quantum spin 
Hall effect, the quantum anomalous Hall effect and Majorana fermions. 

 
 This section is completely devoted to TIs. It starts with the historical overview from 

quantum Hall effect to quantum spin Hall effect. Then, theoretical notions of topological 
states of matter will be introduced. Finally, some examples of two-dimensional (2D) and 
three-dimensional (3D) Z2 topological materials will be presented.   

 
1.1. Historical overview  

1.1.1. Quantum Hall effect  

The notion of TIs has been evolved from the ordinary Hall effect observed by Edwin 
H. Hall in 1879 5. He measured the resistance, bearing his name as Hall resistance 𝑅𝑅𝐻𝐻, in a 
thin conducting sample placed under an external perpendicular magnetic field 𝐵𝐵 and in which 
charged particles can go through. The Hall resistance is expressed as 𝑅𝑅𝐻𝐻 = 𝐵𝐵/𝑞𝑞𝑞𝑞, where 𝑞𝑞 is 
the density of charge carriers and 𝑞𝑞 is the particle charge (𝑞𝑞 = -𝑒𝑒 for electrons and 𝑞𝑞 = 𝑒𝑒 for 
holes, with 𝑒𝑒 the elementary charge). We notice that 𝑅𝑅𝐻𝐻 is linear in 𝐵𝐵. 

 
In 1980, K. von Klitzing, G. Dorda and M. Pepper discovered experimentally the 

integer quantum Hall effect (IQHE) in electrons confined to two dimensions, at 
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semiconductor heterojunction, and subjected to a strong uniform perpendicular magnetic field 
at low temperatures 6. In this experiment, the longitudinal conductance becomes zero because 
all charged particles circularly orbit in a cyclotron motion with cyclotron frequency 𝜔𝜔𝑐𝑐 around 
the magnetic flux due to the Lorentz force and they are thus localized in the bulk (Fig. 3.1(a)). 
For electrons, their circular orbits are quantized and lead to quantized Landau levels with 
energy 𝐸𝐸𝑛𝑛 = ћ𝜔𝜔𝑐𝑐(𝑛𝑛 + 1/2), where 𝜔𝜔𝑐𝑐 = 𝑒𝑒𝐵𝐵/𝑚𝑚 with 𝑚𝑚 the cyclotron mass, 𝑛𝑛 ∈ ℕ and ћ is 
the reduced Planck constant 7. These Landau levels may be viewed as a band structure as 
represented in Fig. 3.1(b).  We denote 𝜈𝜈 as the filling factor, indicating how many Landau 
levels are filled. Unlike an insulator, the Hall conductance or the transverse electrical 
conductance can be measured and is found to be quantized as: 

 
𝜎𝜎𝑥𝑥𝑥𝑥 =  𝜈𝜈𝑒𝑒2/ℎ                                                       (3.1) 

 
Here, 𝜎𝜎𝑥𝑥𝑥𝑥 is the quantized Hall conductivity, ℎ is the Planck constant and 𝜈𝜈 ∈ ℕ+. Since 

the conductance found in this experiment is quantized, this result completely differs from 
what is observed in the classical Hall effect. The IQHE is thus a quantum mechanical version 
of the classical Hall effect. 

 

  
 Figure 3.1. Quantum Hall state. (a) Circular cyclotron orbits of electrons confined to two dimensions 

and subjected to a strong perpendicular magnetic field, resulting in a quantum Hall state. (b) The quantized 
Landau levels of the electrons in (a) which may be viewed as a band structure. Adapted from 3. 

 
In a semiclassical scope, one can calculate the radius of the circular motion of a 

charged particle as 𝑅𝑅𝑛𝑛 = � ћ
𝑒𝑒𝑒𝑒

(2𝑛𝑛 + 1), varying as a function of magnetic field. Now, one 

may wonder what will happen when the particle moves close to the boundary. The answer is 
that the particle will bounce back from the rigid boundary and skip forward along the 
boundary (Fig. 3.2(a)). This physical phenomenon results in the formation of a one-
dimensional (1D) conducting channel, called the edge state, in which the current flows in one 
direction with a quantum conductance 𝑒𝑒2/ℎ along the boundary. Each edge state occurs at the 
interface between two states of different filling factor values, for instance, an insulator with 𝜈𝜈 
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= 0 and a quantum Hall state with 𝜈𝜈 = 1. The electronic band structure of a single edge state 
connecting the conduction band and the valence band is illustrated in Fig. 3.2(b). Note that 
each Landau level will generate one edge channel and 𝜈𝜈 filled Landau levels are thus equal to 
the number of edge channels. Consequently, the quantized Hall conductance is directly related 
to the number of edge channels present in a sample. Importantly, the charged particles in the 
bulk are localized by impurities or disorders, whereas the charge carriers in the edge channels 
are not affected by impurities or disorders and are thus very resistant to scattering. In other 
words, they move without energy dissipation. Such a dissipationless transport could be useful 
for semiconductor devices. Nevertheless, an applied strong magnetic field at low temperatures 
is required for realizing the QHE and thus limits the application potential of the QHE.    
 

 
 Figure 3.2. Chiral edge state at the interface between an insulator and a quantum Hall state. (a) 

Skipping cyclotron orbits of dissipationless transport electrons in a quantum Hall insulator. (b) The electronic 
band structure of a single edge state connecting the conduction band to the valence band. Adapted from 3. 

 
In 1988, F. Duncan M. Haldane theoretically proposed a model to describe the QHE 

that could break time-reversal symmetry without any magnetic flux in a 2D periodic system. 
The QHE occurring in the absence of an external magnetic field and without the associated 
Landau levels are referred to as the quantum anomalous Hall effect (QAHE) 8. This can be 
explained by the fact that the lattice system is composed of spinless electrons in a periodic 
magnetic flux. The electrons are able to form a 1D conducting edge channel owing to the 
periodic magnetic flux even if the total magnetic flux is zero. As a consequence, the quantized 
Hall conductance originates from the band structure of electrons in the lattice instead of the 
discrete Landau levels generated by external magnetic field. Much attempt has been paid for 
investigating the QAHE in real materials 9,10 and it has been observed for example in 
magnetic TIs such as Cr-doped (Bi,Sb)2Te3 11 and V-doped (Bi,Sb)2Te3 12 films.       
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1.1.2. Quantum spin Hall effect 

We have previously seen in the earlier subsubsections that, in particular, the IQHE 
requires an external magnetic field, resulting in the broken time-reversal symmetry. The 
QAHE could also break the time-reversal symmetry by a periodic magnetic flux present in a 
2D lattice system consisting of spinless electrons. In this part, a quantum state where the time-
reversal symmetry is preserved will be introduced. Conducting edge states can generate, 
without any applied magnetic field, from the coupling between the spin and orbital angular 
momentum degrees of freedom (spin-orbit interactions) of electrons propagating in a 2D 
system. 
 

 
 Figure 3.3. Conducting edge states at the boundaries of the quantum Hall insulator and the 

quantum spin Hall insulator. (a) 1D transport of spinless electrons in the quantum Hall insulator. The spinless 
electrons of the upper edge only move forward, while those of the lower edge only move backward. (b) 1D 
transport of spinful electrons in the quantum spin Hall insulator. The upper edge allows two helical conducting 
edge channels: spin up electrons move in the opposite direction of spin down electrons. The same situation 
occurs at the lower edge. In both cases, the conducting edge states are robust to impurities. The electrons move 
in one direction without backscattering, allowing dissipationless transport. Adapted from 2. 

 
In 2005, C. L. Kane and E. J. Mele generalized the Haldane model for the QAHE in a 

single plane of graphene consisting of spin-1/2 electrons by introducing the spin-orbit 
interactions in order to replace the periodic magnetic flux 13. The effect of the spin-orbit 
coupling converts an ideal 2D semimetallic graphene to a quantum state having an energy gap 
in the electronic band structure and supporting the gapless states propagating at the graphene 
boundaries, known as quantum spin Hall effect (QSHE). This effect was also predicted to 
exist in 2D semiconductor systems 14 where different electron spins (spin up and spin down) 
experience opposite spin-dependent force while the electrons are moving through a crystal 
lattice. The intrinsic spin Hall conductance is quantized in units of 2𝑒𝑒2/ℎ. The QSHE is thus 
an analog of the QHE where spin currents flow at the boundaries instead of charge currents. 
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1D transport of the edge states is schematically illustrated in Fig. 3.3. A quantum Hall 
insulator has two conducting edge channels in which the spinless electrons move forward at 
the upper edge and move backward at the lower edge (Fig. 3.3(a)). In a QSH insulator, there 
are four conducting edge channels containing the spinful electrons (Fig. 3.3(b)). At each edge, 
the electrons of opposite spins flow in opposite directions, forming a pair of helical edge 
states. Such 1D electronic transport is dissipationless or without backscattering owing to the 
robustness of the electrons against impurities or geometric perturbations at the boundaries of 
the system. For the QSHE, the spinful electron backscattering in the two edge channels is 
prohibited due to the preserved time-reversal symmetry, which is not the case for the QHE.  
 

 A pair of helical edge states of the QSHE can be realized at the interface between a 
QSH insulator and an ordinary insulator (Fig. 3.4(a)). The corresponding electronic band 
structure is similar to that of a quantum Hall insulator but each single edge state links the 
conduction and the valence bands (Fig. 3.4(b)).  

 

  
 Figure. 3.4. Helical edge states in the quantum spin Hall insulator. (a) A pair of conducting edge 

channels that contain spin up and spin down electrons propagating in opposite directions at the interface between 
a quantum spin Hall insulator and a conventional insulator. (b) The dispersion of the helical edge states in the 
graphene model. Adapted from 3.  

   
1.2. Theoretical notions of topological states of matter 

 There exist a large number of materials that were demonstrated to host a topological 
phase. The classification of topological states (or phases) can be carried out by considering 
one or more indices, the so-called topological invariants. In this part, necessary theoretical 
notions regarding how topological states of matter can be distinguished and classified will be 
presented in the following subsubsections.   
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1.2.1. Berry phase 

 The emergence of topological states in a system originates directly from the influence 
of the Berry phase on the band structure. This concept was introduced by M. Berry in 1984 15. 
He underlined the importance of geometric phases in mathematics that can be applied in 
classical and quantum physics. The Berry phase is thus a phase difference acquired during a 
cyclic adiabatic process of a system.  In solid state physics, degeneracies of high-symmetry 
points in the Brillouin zone can be induced by the Berry phase. This leads to gapless states, 
states when the band structure has no energy gap, at the interface between two materials 
belonging to different topological classes. The Berry phase 𝜙𝜙𝑒𝑒 in a closed contour 𝐶𝐶 
enclosing the Γ-point of the Brillouin zone (Fig. 3.5) can be expressed as the path integral:  

  
𝜙𝜙𝑒𝑒 = ∮  〈𝑢𝑢𝑚𝑚(𝒌𝒌)|𝑖𝑖∇𝒌𝒌|𝑢𝑢𝑚𝑚(𝒌𝒌)〉 ∙ 𝑑𝑑𝒌𝒌                                        (3.2) 

 
Here, 𝑢𝑢𝑚𝑚(𝒌𝒌) are the 𝑚𝑚th eigenstates in the reciprocal space. 𝑨𝑨𝑚𝑚(𝒌𝒌) = 〈𝑢𝑢𝑚𝑚(𝒌𝒌)|𝑖𝑖∇𝒌𝒌|𝑢𝑢𝑚𝑚(𝒌𝒌)〉 is 
the Berry connection which plays the role of the vector potential.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.5. Schematic representation relating to the Berry phase in the reciprocal space. The 
projection of a closed path 𝐶𝐶 enclosing a surface 𝑆𝑆 on the Bloch sphere is represented. The Berry phase 
corresponds to the circulation of the Berry vector potential, or the Berry connection, on the closed path 𝐶𝐶. 
Equivalently, the Berry phase can be regarded as the flux of the Berry magnetic field, or the Berry curvature, 
passing through the surface 𝑆𝑆.   
 
Note that we can define an equivalent Berry magnetic field, named as Berry curvature, from 
the Berry connection as 𝑩𝑩(𝒌𝒌) = ∇𝒌𝒌 × 𝑨𝑨𝑚𝑚(𝒌𝒌). Using the Stokes’ theorem, the Berry phase can 
thus be rewritten as an area integral of the flux of the Berry magnetic field through the surface 
𝑆𝑆 of the Brillouin zone sited on the closed path 𝐶𝐶 (Fig. 3.5):   
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𝜙𝜙𝑒𝑒 = ∬𝑩𝑩(𝒌𝒌)𝑑𝑑2𝒌𝒌                                                     (3.3) 

 
In a system where the time-reversal symmetry is preserved, the Berry phase can only take 
integer values of 𝜋𝜋 modulo 2𝜋𝜋. For example, the Berry phase is equal to 𝜋𝜋 for a TI material in 
topologically nontrivial phase (discussed in the subsection 1.3). This 𝜋𝜋 Berry phase has a 
physical meaning which can be interpreted as the phase formed by closed trajectories of 
quasiparticles in a nontrivial TI system.  
 
 The Berry phase and the Berry curvature are directly related to the Hamiltonian of a 
system and they can thus reflect the physical properties of the system. Moreover, one can 
extract from the Berry phase a physical parameter known as topological invariant that is used 
as a classifier of topological materials.  
 
1.2.2. Topological invariants  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6. Grouping of objects by the concept of topology for 3D surfaces. Objects are classified by 

their genus 𝑔𝑔 ∈ ℕ representing the number of holes they have. (a) A rugby ball and a bowl do not have hole and 
they are in the group 𝑔𝑔 = 0. (b) A coffee cup and a donut have one hole and they belong to the group 𝑔𝑔 = 1. 
Continuous deformations of an object into another one are allowed in the same group. When there exists a 
cutting during the transformation, 𝑔𝑔 will change suddenly.    

 
Topological invariants are physical indices used to distinguish topological systems and 

categorize them into different topological classes. The easiest intuitive way to understand the 
notion of topological invariant is the analogy with the topology of 3D surfaces 1,3. In 
mathematics, topology is the study of the properties of objects that are invariant or remain 
unchanged under smooth deformations. The classification of objects is determined by genus 
𝑔𝑔 ∈ ℕ which is analogously equivalent to topological invariant and corresponds to the number 
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of holes that an object contains. Since this number is an integer and discrete, it cannot thus be 
changed continuously from one value to another value by simply deforming the surface of the 
object. Fig. 3.6(a,b) show two different groups of objects. A rugby ball and a bowl have no 
hole and belong to the same group of 𝑔𝑔 = 0 (Fig. 3.6(a)). One can thus transform a rugby ball 
into a bowl, and vice versa, by squeezing, stretching or twisting without cutting. These 
continuous deformations are also allowed in the group 𝑔𝑔 = 1 for transforming a coffee cup 
into a donut (Fig. 3.6(b)). If we consider the transformation between a bowl and a donut, it is 
unavoidable to cut the surface of a bowl to make a hole like in a donut. Consequently, 𝑔𝑔 
changes abruptly from 0 to 1 since no intermediate value is allowed. When a discontinuous 
deformation between two objects takes place, we assure that these two objects belong to two 
topologically distinct classes.  

    
 In solid state physics, similar considerations are taken into account for the electronic 

band structure of a system. Note that the band structure comes out of the Hamiltonian 
established by several symmetries. As a result, the band structures of two systems described 
by different Hamiltonians are not the same. Hence, these two systems are of distinguishing 
topological classes. It is impossible to transform continuously the Hamiltonian of the first 
system into that of the second system. Nevertheless, to make the transformation between both 
distinct systems possible, the closing of the band gap must occur at the interface between 
these two gapped materials, equivalently to changing the topological class and thus the 
topological invariant.      

               
 We describe in the following two examples of topological indices: the TKNN and the 

Z2 topological invariants.   
 

 1. The TKNN topological invariant or the Chern number  

 In 1982, D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs (TKNN) 
demonstrated the difference between a conventional insulator and a quantum Hall insulator 
using the Kubo formula rewritten in an appropriate form to show the quantization of the Hall 
conductance in a 2D electron gas subjected to a uniform magnetic field and a periodic 
potential 16. The obtained results lead to the definition of a number named as the Thouless-
Kohmoto-Nightingale-Nijs or the TKNN topological invariant. It can also be understood in 
terms of the Berry phase. For the Bloch wave function |𝑢𝑢𝑚𝑚(𝒌𝒌)〉, the Berry phase or the area 
integral of the Berry curvature run over the first Brillouin zone is related to the Chern number 
𝑛𝑛𝑚𝑚 of the 𝑚𝑚th occupied band, where 𝑛𝑛𝑚𝑚 ∈ ℕ. The latter reads: 

 
𝑛𝑛𝑚𝑚 = 1

2𝜋𝜋∬𝑩𝑩(𝒌𝒌)𝑑𝑑2𝒌𝒌                                                  (3.4) 
 

The total Chern number denoted as 𝑁𝑁 can be obtained by the summation of 𝑛𝑛𝑚𝑚 for all 
occupied bands (𝑀𝑀 bands). We, thus, get: 
  

𝑁𝑁 = ∑ 𝑛𝑛𝑚𝑚𝑀𝑀
𝑚𝑚=1                                                          (3.5) 
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The Chern number 𝑁𝑁 is equivalent to the TKNN topological invariant and is demonstrated to 
be equivalent to the integer filling factor 𝜈𝜈 in Eq. 3.1 of the IQHE. The Chern invariant cannot 
change when the Hamiltonian of the system varies continuously and is used to characterize 
the topological nature of the Bloch states of the system. 

 
 2. The Z2 topological invariant 

 The spin-orbit coupling is responsible for TIs accommodating spin-1/2 particles when 
the time-reversal symmetry is preserved 13. This leads to at least twofold degenerate 
eigenstates of the Hamiltonian under the time-reversal symmetry. Such Hamiltonians belong 
to the TI class. Consequently, smooth deformations without the gap closing are authorized 
between such two Hamiltonians. The corresponding band structures are symmetric in each 
wave vector direction (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥, and 𝑘𝑘𝑧𝑧) with respect to the center (𝑘𝑘𝑥𝑥 = 0, 𝑘𝑘𝑥𝑥 = 0, 𝑘𝑘𝑧𝑧 = 0) of the 
first Brillouin zone owing to the mirror image property of the time-reversal symmetry.    
 
 Now, we will turn our attention to the topological invariant of a spin-orbit coupled 
system where the time-reversal symmetry is preserved. In such a system, the TKNN 
topological invariant or the Chern number becomes zero. However, an additional topological 
invariant with two possible values 𝜆𝜆 = 0 or 1 has to be considered, known as the Z2 
topological invariant 17, leading to two topologically distinct classes. In condensed matter, the 
parity ordering of the conduction and valence band wave functions is closely tight to the 
topological character of the band structure. Several narrow gap semiconductors are known to 
exhibit an inversion of this orbital ordering, whereby, an s-like conduction and a p-like 
valence bands can be inverted to yield a p-like conduction and an s-like valence bands, when 
a certain external physical parameter is varied (temperature, pressure, or chemical 
concentration). The topological invariant essentially characterizes the orbital character. Two 
different types of orbital orderings are associated different Z2 indices: Z2 = 0 for the trivial 
parity order and Z2 = 1 for the nontrivial one. A material with a nonzero Z2 index was also 
shown to host Dirac-dispersing edge or surface states when it is in junction with a material 
having Z2 = 0, or even at its free surface when in contact with air or vacuum. 
 

The Z2 topological class with only the unbroken time-reversal symmetry 18 consists of 
2D TIs with topologically protected 1D conducting edge states and 3D TIs with topologically 
protected 2D conducting surface states. Further details about theoretical prediction and 
experimental realization of the Z2 TIs will be presented in the following subsection. 

 
1.3. Theoretical prediction and experimental realization of Z2 
topological insulators 

 A Z2 TI is a semiconductor that hosts a band inversion at time-reversal symmetric 
points in the Brillouin zone. It possesses insulating gapped bulk states and conducting gapless 
edge or surface states topologically protected by time-reversal symmetry. Such topological 
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gapless states occurring at the boundaries of the system stem from the spin-orbit interactions, 
playing the role of magnetic field. Hence, no external magnetic field is needed. The 
robustness of these topological gapless states against impurities and disorder makes TIs 
remarkable. Now, several Z2 TI systems theoretically predicted and experimentally realized 
will be exemplified in order to better understand their intrinsic physical properties. 

 
1.3.1. 2D topological insulator: QSHE in CdTe/HgTe/CdTe quantum wells   

The QSHE theoretically predicted in a monolayer graphene by C. L. Kane and E. J. 
Mele in 2005 13 has inspired the search for real materials that can exhibit such a topological 
phase of matter. Actually, the QSH state requires a material composed of elements with high 
atomic number in order to generate the strong spin-orbit coupling in the system. In reality, the 
weak intrinsic spin-orbit coupling of carbon in graphene is not enough to observe the QSHE.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. Band structure and energy confinement of the CdTe/HgTe/CdTe heterostructure. (a) 

Bulk band structure of the quantum well HgTe and the barrier CdTe at the Γ-point of the Brillouin zone. (b) The 
CdTe/HgTe/CdTe quantum well in the normal regime (𝐸𝐸1 R > 𝐻𝐻1 R and 𝑑𝑑 < 𝑑𝑑𝑐𝑐) and in the inverted regime (𝐸𝐸1 R < 𝐻𝐻1 R 

and 𝑑𝑑 > 𝑑𝑑𝑐𝑐), where 𝑑𝑑𝑐𝑐 is the critical thickness at which the band inversion of the quantum well HgTe occurs. 
Adapted from 19.  

 
The first QSH state was successfully found in CdTe/HgTe/CdTe semiconductor 

quantum wells. In 2006, B. A. Bernevig, T. L. Hughes and S. C. Zhang theoretically 
demonstrated that helical conducting states of spin currents could occur in this sandwiched 

82 
 



CHAPTER 3 
  A brief overview of topological matter  

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

heterostructure at the edges between the quantum well HgTe and the barrier CdTe 19. The 
bulk energy bands of the barrier CdTe have a normal band structure with the s-type Γ6 band 
lying above the p-type Γ8 band, while these two bands are inverted in the quantum well HgTe 
(Fig. 3.7(a)). The Γ7 bands of both materials represent the far-band having negligible effects 
on the interaction between the Γ6 and Γ8 bands. When two semiconductors of different parity 
orderings of the bulk band structure are put alternatively next to each other, 1D topological 
gapless states can occur at the edges between these two materials under certain conditions. As 
shown in Fig. 3.7(b), by varying the thickness 𝑑𝑑 of the well material, the energy confinement 
in the well can be altered from a normal regime (𝐸𝐸1 > 𝐻𝐻1) to an inverted one (𝐸𝐸1 < 𝐻𝐻1) when 
𝑑𝑑 ≥ 𝑑𝑑𝑐𝑐 ≈ 64 Å, where dc is the critical thickness at which the band inversion of the HgTe layer 
occurs. This band inversion leads to a topological quantum phase transition (at 𝑑𝑑 = 𝑑𝑑𝑐𝑐) of the 
whole structure between a conventional insulating state and a state exhibiting the QSHE. 
 

 
Figure 3.8. Quantum spin Hall effect in the Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te quantum wells. (a) 

Schematic illustration of the helical conducting edge channels of the spin-polarized currents moving in opposite 
directions. (b) Zero-field transport measurements of the longitudinal resistance at 𝑇𝑇 = 30 mK in normal (I) and 
inverted (II, III and IV) quantum well samples as a function of normalized gate-voltage. Adapted from 20.    

 
The QSHE was later experimentally observed by König et al. in 2007 in low density 

and high mobility carriers residing in Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te quantum wells 20. Fig. 
3.8(a) schematically illustrates the spin-polarized currents moving in opposite directions at the 
boundaries of the Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te quantum well. In this experiment, 
Hg0.3Cd0.7Te exhibits a normal band structure as in the barrier CdTe seen previously and the 
critical thickness of the well HgTe is 𝑑𝑑𝑐𝑐 ≈ 63 Å. Fig. 3.8(b) shows the longitudinal resistance 
as a function of normalized gate-voltage of four quantum wells (I, II, III and IV) measured by 
transport experiment at zero magnetic field and at temperature 𝑇𝑇 = 30 mK. The length and 
width (𝐿𝐿 × 𝑊𝑊) of the samples are 20 × 13.3 µm2 for 𝑑𝑑 < 𝑑𝑑𝑐𝑐 (I), 20 × 13.3 µm2 for 𝑑𝑑 > 𝑑𝑑𝑐𝑐 (II), 
1 × 1 µm2 for 𝑑𝑑 > 𝑑𝑑𝑐𝑐 (III) and 1 × 0.5 µm2 for 𝑑𝑑 > 𝑑𝑑𝑐𝑐 (IV). The sample I with 𝐺𝐺 = 0.01𝑒𝑒2/ℎ 
shows the normal regime of the well HgTe for 𝑑𝑑 < 𝑑𝑑𝑐𝑐. The samples III and IV reach 𝐺𝐺 close 
to the predicted value 2𝑒𝑒2/ℎ for 𝑑𝑑 > 𝑑𝑑𝑐𝑐, demonstrating the existence of the transport of 
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helical conducting states through edge channels which is independent of the width of the 
structure. This evidences the QSHE occurring in the inverted regime (𝐸𝐸1 < 𝐻𝐻1 and 𝑑𝑑 > 𝑑𝑑𝑐𝑐).  

 
 The Hg1-xCdxTe/HgTe/Hg1-xCdxTe quantum well that exhibits the QSHE with 1D 

helical conducting edge states is the first 2D TI. Nowadays, the QSHE has attracted great 
attention not only in the study of its fundamental physical properties, but also in its potential 
application in spintronic devices with low power dissipation. 

 
1.3.2. 3D topological insulators: Bi-based compounds  

 The classification of topological materials began after the theoretical and experimental 
discoveries of the QSHE in the first 2D TI: Hg1-xCdxTe/HgTe/Hg1-xCdxTe quantum well. 3D 
TIs were predicted in 2007 by L. Fu, C. L. Kane and E. J. Mele 21 and demonstrated to be 3D 
bulk insulators coexisting with 2D metallic surface states surrounding materials that evolve 
from 1D helical conducting edge states in 2D TIs. In contrast to a 2D TI governed by only one 
Z2 topological invariant, a 3D TI is characterized by 4 Z2 topological invariants 22,23, yielding 
16 distinguishing topological phases of TIs. They are categorized into two general classes: 
weak TIs (WTIs) and strong TIs (STIs). WTIs and STIs were shown to exhibit 2D conducting 
gapless surface states with an even and odd number of Dirac points, respectively. The STI 
state is robust against impurities, whereas the WTI state can be easily destroyed by disorder. 
In the following text, we will only focus on the STIs since they lead to a new topological 
surface phase at their interface with topologically trivial systems. 

 
 The Bi-based materials were proposed to be 3D STIs. Semiconducting alloy Bi1-xSbx 

theoretically predicted by L. Fu and C. L. Kane in 2007 was prime candidate of the first 
generation of 3D TIs 24 and was verified experimentally via ARPES measurements by D. 
Hsieh et al. in 2008 25. Additionally, Landau level magneto-infrared spectroscopy performed 
in a single crystal of Bi0.91Sb0.09 provides evidence for the existence of topological surface 
states 26. The second generation of 3D TIs was predicted by H. Zhang et al. in 2009 to be 
stoichiometric Bi-based compounds in the Bi2Se3 family: Bi2Se3, Bi2Te3, and Sb2Te3, 
hosting a single Dirac cone on their surface 27. The latter is one of the characteristic features 
of such materials. ARPES experiments were subsequently performed in Bi2Se3 by Y. Xia et 
al. 28 and in Bi2Te3 by Y. L. Chen et al. 29 in 2009 and topological surface states were 
successfully observed. In order to get a better understanding of 3D TIs, only the most 
elementary form of 3D TI materials in the Bi2Se3 family with a large bulk band gap and a 
single nondegenerate surface Dirac cone will be described.  
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Figure 3.9. Structural properties of Bi2Se3. (a) Crystal structure of Bi2Se3. Three primitive lattice 

vectors 𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3 form a rhombohedral unit cell with five atoms in the space group 𝐷𝐷3𝑑𝑑5  (𝑅𝑅3�𝑚𝑚). The red 
rectangle represents a quintuple layer composed of five atomic layers of Bi and Se. (b) Top view along the z-
direction of three different positions (A, B and C) of the triangle lattice in a quintuple layer. (c) Side view along 
the z-direction of stacking order of Bi and Se atomic layers. In this configuration, Se2 atoms play the role of 
inversion centers. (d) Bulk Brillouin zone of Bi2Se3 with four inequivalent time-reversal-invariant high-
symmetry points Γ, 𝐿𝐿, 𝐹𝐹 and 𝑍𝑍. 2D Brillouin zone is represented by blue hexagon with high-symmetry points Γ�, 
𝐾𝐾�, and 𝑀𝑀� . Adapted from 27.    

 
 Bi2Se3, Bi2Te3, Sb2Te3 and Sb2Se3 possess the same rhombohedral crystal structure 

in the space group 𝐷𝐷3𝑑𝑑5  (𝑅𝑅3�𝑚𝑚) shown in Fig. 3.9(a) for a representative Bi2Se3. Five atomic 
layers of Bi and Se form a quintuple layer (Fig. 3.9(a,c)) in the sequence …-A(Se1)-B(Bi1)-
C(Se2)-A(Bi1/)-B(Se1/)-…, where A, B and C are three different positions of the triangle 
lattice (Fig. 3.9(b)). Here, Se2 plays the role of inversion centers by which the Se1 (Bi1) layer 
can be related to the Se1/ (Bi1/) layer. The interaction between two consecutive atomic layers 
within a quintuple layer is strong, while the van der Waals force is dominant between two 
consecutive quintuple layers. Fig. 3.9(d) shows the bulk Brillouin zone of Bi2Se3 with four 
inequivalent time-reversal-invariant high-symmetry points Γ, 𝐿𝐿, 𝐹𝐹 and 𝑍𝑍. The projection of 
red high-symmetry points, represented by red solid lines, onto the corresponding 2D Brillouin 
zone gives rise to Γ�, 𝐾𝐾�, and 𝑀𝑀�  high-symmetry points.  
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Figure 3.10. Evolution from the atomic orbitals of Bi and Se into the conduction and valence 

bands of Bi2Se3 at the 𝚪𝚪-point of the Brillouin zone. The Fermi energy is indicated by blue dashed line. Three 
processes (I), (II) and (III) show respectively the effect of chemical bonding, crystal-field splitting and spin-orbit 
coupling on the energy levels. Two green rectangles highlight the levels undergone the effects near the Fermi 
energy. The level crossing in Bi2Se3 occurs due to the spin-orbit coupling. Adapted from 27.  

 
 We have previously seen that the spin-orbit interaction is responsible for the 

emergence of a TI phase in the system accommodating spin-1/2 particles when the time-
reversal symmetry is preserved. Fig. 3.10 schematically shows the evolution of the atomic p 
orbitals of Bi (6s26p3) and Se (4s24p4). Here, the effect of their s orbitals is neglected since 
they are far from the Fermi energy, indicated by blue dashed line. The process (I) is related to 
the chemical bonding between Bi and Se atoms within a quintuple layer. This lifts up the Bi 
states from each p orbitals (one odd (-) and one even (+)) and pushes down the Si states from 
each p orbitals (two odd (-) and one even (+)). The process (II) corresponds to the crystal-field 
splitting between different p orbitals in the first green rectangle near the Fermi energy. This 
effect results in the splitting of the pz orbital, to be near the Fermi energy, from the px and py 
orbitals. The process (III) is the effect of the spin-obit coupling. The order of the two pz 
orbitals of different parity obtained from the crystal-field splitting will be reversed if the spin-
orbit coupling is strong enough. We notice that the TI phase at the Γ-point of the Bi2Se3 
system stems from the inversion between two levels of opposite parity due to the spin-orbit 
interaction. Similarly, the level crossing caused by the spin-orbit coupling occurs in Bi2Te3 
and Sb2Te3. In Sb2Se3, the scenario is different since the spin-orbit coupling is not strong 
enough.             
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Figure 3.11. Band structure calculations of Bi-based compounds in the Bi2Se3 family. Band 

structures of (a) Sb2Se3, (b) Sb2Te3, (c) Bi2Se3 and (d) Bi2Te3 along the 𝐾𝐾�-Γ�-𝑀𝑀�  direction on the 2D Brillouin 
zone. Red color indicates the regions of bulk energy bands and violet color indicates the regions of bulk energy 
gaps. The surface states can be clearly seen at the Γ�-point as red lines linearly dispersing in the bulk energy gap 
in Bi2Se3, Bi2Te3 and Sb2Te3. No evidence for the surface states in Sb2Se3. Adapted from 27.   

 
 The most characteristic feature of 3D TI materials is the existence of topological 

surface states. Fig. 3.11 displays the study of the electronic band structures of Bi2Se3, Bi2Te3, 
Sb2Te3 and Sb2Se3 calculated using ab initio simulations along the 𝐾𝐾�-Γ�-𝑀𝑀�  direction on the 
2D Brillouin zone 27. One can clearly see at the Γ�-point a single linearly dispersive Dirac cone 
in the bulk energy gap associated with the topological surface states occurring in Bi2Se3, 
Bi2Te3 and Sb2Te3. These three materials are thus topologically nontrivial insulators. The 
Dirac velocity of the topological surface states was found to be ~ 5.0 × 105 m/s. On the 
contrary, no Dirac cone is observed in Sb2Se3, such a compound is thus a topologically trivial 
insulator. 

 
The topological surface states of Bi-based materials in the Bi2Se3 family were also 

experimentally evidenced by ARPES measurements. Fig. 3.12(b) shows high-resolution 
ARPES spectra of the surface electronic band dispersion in Bi2Se3 along the 𝑀𝑀�-Γ�-𝑀𝑀�  and 𝐾𝐾�-Γ�-
𝐾𝐾� momentum-space cuts following the wave vector directions on the surface Brillouin zone 
shown in Fig. 3.12(a). The Dirac velocity of the topological surface state band is 
approximately 5 × 105 m/s in the two linecut directions. This confirms the occurrence of the 
topological surface state feature that can be observed as a single nondegenerate Dirac cone at 
the Γ�-point, coexisting with the bulk states projected on the surface Brillouin zone. Moreover, 
another typical characteristic of TIs is the spin polarization of Dirac fermions on the surface. 
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As can be seen in Fig. 3.12(c), the spin angular momentum direction (red line) of helical 
Dirac fermions is perpendicular to its translational momentum direction and this results in the 
spin-momentum locked helical surface Dirac cone in Bi2Se3, Bi2Te3 and Sb2Te3 30,31.  

 

 
Figure 3.12. Topological surface state properties of Bi-based materials in the Bi2Se3 family. (a) 

Bulk and surface Brillouin zones of Bi-based materials in the Bi2Se3 family and three orthogonal directions of 
wave vectors of which the origin is located at the Γ�-point. (b) ARPES spectra of Bi2Se3 showing the electronic 
band dispersion of bulk and topological surface states along the 𝑀𝑀�-Γ�-𝑀𝑀�  and 𝐾𝐾�-Γ�-𝐾𝐾� linecuts on the surface 
Brillouin zone shown in (a). (a) and (b) are adapted from 28. (c) Schematic of the spin-polarized surface state 
dispersion in the Bi2Se3 family compounds. (c) is adapted from 31.   

 
 Interestingly, Bi2Se3 has a topologically nontrivial energy gap of approximately 300 

meV predicted by theoretical calculations 27 and measured by ARPES experiments 28,30. In 
contrast, optical studies report significantly lower values of about 200 meV for the energy gap 
of Bi2Se3 32. There is still no consensus on the value of the energy gap of Bi2Se3 and this 
discrepancy has not yet been clearly understood. Nevertheless, this could be explained by the 
fact that ARPES is a surface sensitive technique used to investigate the surface states of a 
material and it could take into account surface reconstruction effects, while optical methods 
probe the whole volume of the material. In Bi2Te3, the band gap is close to 170 meV 29,31. 
The large band gap observed in the Bi2Se3 family makes the topological surface states much 
more robust against any perturbations.     
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2. Topological crystalline insulators  
Inspired by the discovery of TIs, topological crystalline insulators (TCIs) are a novel 

family of topological materials extended from the topological classification of band structures 
by including certain point group symmetry. In this thesis, the typical topological 
characteristics of massive and massless Dirac fermions in TCIs will be addressed. The notion 
of TCIs was first introduced by L. Fu in 2011. Such materials possess semiconducting bulk 
states accompanied by metallic gapless surface states as in the case of the well-known 
existing Z2 TIs 33, but their topological surface states occur at an even number of high-
symmetry points in the Brillouin zone.  Contrary to TIs protected by time-reversal symmetry 
3,4,34, a TCI material is protected by mirror symmetry or reflection symmetry present in the 
crystal 33,35. Such a reflection symmetry 𝑀𝑀 is a combination of spatial inversion 𝑃𝑃 (𝑟𝑟 → −𝑟𝑟) 
and twofold rotation 𝐶𝐶2 (a rotation of an angle 2𝜋𝜋/𝑛𝑛, where 𝑛𝑛 = 2) around the axis 
perpendicular to the plane of reflection:  𝑀𝑀 = 𝑃𝑃𝐶𝐶2 R 35. Moreover, for a TCI material, the total 
Chern number required by time-reversal symmetry is zero, but one can define a mirror Chern 
number which is a nonzero integer 36. The latter becomes a new topological invariant 
determining a TCI state protected by mirror symmetry. Note that crystal symmetries can be 
broken by material surfaces. As a consequence, topological surface states of a TCI can only 
exist on some high-symmetry surfaces of the crystal, which is not the case in TI materials. 
The key role of mirror symmetry present in TCIs makes the study of different surface 
orientations very attractive.  

 
The classification of TCI materials has not been completed yet. Therefore, the 

discovery of these topological states of matter is extremely intriguing and challenging in the 
research area of condensed matter physics. In 2012, Timothy H. Hsieh et al. 37 theoretically 
predicted the first class of TCI materials in narrow gap rocksalt IV-VI semiconductors and 
proposed SnTe as a representative by identifying its nonzero topological index or mirror 
Chern number. The first experimental observation of the topological surface states in SnTe 
single crystals was subsequently carried out by Y. Tanaka et al. 38. ARPES experiment was 
performed in this compound and showed Dirac-like band dispersion originating from the 
metallic surface states. In contrast, the isostructural compound PbTe in the same IV-VI 
material family was demonstrated to be a conventional insulator 37. However, PbTe can 
become a TCI by applying strain, pressure, temperature or alloying. Therefore, ARPES 
measurements were performed in related Pb1-xSnxSe 39 and Pb1-xSnxTe 40 alloys. The 
signature of topological surface states was also evidenced in transport and scanning tunneling 
microscopy (STM) experiments 41–43. Henceforward, the study of the electronic band 
structures of the lead-tin salt Pb1-xSnxSe and Pb1-xSnxTe alloys has recently become an active 
field in the search for topological states of matter. A complete understanding of the behavior 
of surface Dirac fermions in such materials and the ability to reliably distinguish them from 
the bulk carriers is a necessary prerequisite to their development and implementation in 
potential devices 44–47.  
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2.1. Crystal structure  

Pb1-xSnxSe (for x ≤ 0.4) and Pb1-xSnxTe alloys crystallize in a face-centered-cubic 
(FCC) structure as that of NaCl (space group 𝐹𝐹𝑚𝑚3�𝑚𝑚) 37,39,40 represented in Fig. 3.13(a). In 
this structure, Pb/Sn and Te/Se form independently an FCC lattice. By interpenetrating these 
two lattices, we get a 3D checkerboard pattern. The first 3D Brillouin zone (3DBZ) or bulk 
Brillouin zone of these compounds is a truncated octahedron composed of six square faces 
and eight hexagonal faces 40 as illustrated in Fig. 3.13(b). As discussed in the subsection 2.2, 
ellipsoidal bulk carrier pockets are located at the 𝐿𝐿-points, the centers of the hexagonal faces.   
 

 
Figure 3.13. Structural properties of Pb1-xSnxSe and Pb1-xSnxTe systems. (a) Rocksalt (space group 

𝐹𝐹𝑚𝑚3�𝑚𝑚) crystal structure. (b) The first 3D Brillouin zone (3DBZ) accompanied by a (001)-oriented 2D Brillouin 
zone (2DBZ). Two mirror crystallographic planes {110} are shown in yellow and green inside the bulk Brillouin 
zone. (b) is adapted from 40. 

 
2.2. Band inversion  

Rocksalt IV-VI semiconductors Pb1-xSnxSe and Pb1-xSnxTe possess a small direct 
band gap that is found to be situated at the 𝐿𝐿-points of the 3DBZ. In a system having the 
conduction and valence bands of opposite parity, a band inversion (or equivalently a parity 
inversion) of bulk states can take place and gives rise to metallic gapless surface states 

19,24,27,33,37. The band inversion in such materials can be induced by varying temperature 39,48,49 
or pressure 50 of the systems, applying strain to the crystal structure of the TCI layers grown 
on a specific substrate having different lattice constant 51, and chemical composition alloying 
40,42,48,49,52–55.     

 
In this thesis, we present the topological phase transitions induced by chemical 

alloying in TCIs. For the system of lead salts, the band inversion occurs as a function of 
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increasing Sn content at four equivalent 𝐿𝐿-points of the bulk Brillouin zone. As illustrated in 
Fig. 3.14(a), in the topologically trivial phase 𝐿𝐿6− is the lowest conduction band and 𝐿𝐿6+ is the 
highest valence band that are of different parity. They form an energy gap 𝐸𝐸𝑔𝑔 of the system. 
The band inversion at 4.5 K occurs at a critical value of the Sn composition xc (xc ≈ 0.16 for 
Pb1-xSnxSe and xc ≈ 0.4 for Pb1-xSnxTe) 48,49,53,54 leading to a trivial to nontrivial topological 
phase transition. In the topologically trivial phase (normal regime), the energy gap (𝐸𝐸𝑔𝑔 > 0) 
initially decreases with increasing Sn content, then closes at x = xc, and finally re-opens as x 
> xc (𝐸𝐸𝑔𝑔 < 0) in the topologically nontrivial phase (inverted regime). This band inversion 
results in the emergence of the topological surface states (TSS) in the topologically nontrivial 
regime (blue shaded region), exhibiting zero gap Dirac-like dispersion. After the band 
inversion, the alloys remain direct band gap semiconductors.  

 

 
Figure 3.14. Band inversion in narrow gap rocksalt IV-VI semiconductors. (a) Schematic 

illustration of a topological phase transition in Pb1-xSnxSe and Pb1-xSnxTe systems, from topologically trivial 
regime to topologically nontrivial regime (blue region), occurring at a critical Sn concentration xc. (a) is 
modified from our previous paper 55. (b) Schematic illustration of the evolution of the conduction and valence 
band edges (𝐿𝐿6

±) as a function of Sn content x for Pb1-xSnxSe adapted from 50. The far-bands represented above 
and below the 𝐿𝐿6

± bands are very distant and do not deform too much the 𝐿𝐿6
± bands, especially in the vicinity of 

the bulk band crossover point xc where the band gap is really narrow.  
 

Fig. 3.14(b) illustrates qualitatively the variation of the energies of the principal 
conduction and valence bands (𝐿𝐿6

±) and four far-bands (represented by black lines) at the 𝐿𝐿-
points for Pb1-xSnxSe 50. The conduction far-bands 𝐿𝐿4,5

−  and 𝐿𝐿6− and the valence far-bands 𝐿𝐿4,5
+  

and 𝐿𝐿6+ result from the spin-orbit interactions. Using the 𝒌𝒌.𝒑𝒑 perturbation theory and taking 
into account the spin-orbit interactions, it was predicted that the band structures of PbSe and 
PbTe are quite similar, but only a difference in the spacing of various conduction and valence 
far-bands will be appeared 56. Furthermore, theoretical calculations using a 𝒌𝒌.𝒑𝒑 model of the 
band structures of Pb1-xSnxSe and Pb1-xSnxTe as a function of Sn composition were later 
performed 57, showing the four far-bands in these two systems are distant from the main 
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conduction and valence bands (𝐿𝐿6
±). These three conduction and three valence levels are of 

important because they lie in the energy interval spread of about 3-5 eV for PbSe, PbTe and 
PbS 54.  

 
It is important to note that the critical Sn content xc of Pb1-xSnxSe and Pb1-xSnxTe 

alloys depends on the temperature of measurement. As shown in Fig. 3.15, the experimental 
data at temperatures 𝑇𝑇 = 77, 195 and 300 K obtained from infrared absorption and the p-n 
junction laser emission studies by A. J. Strauss in 1967 49 show a decrease in energy gap 𝐸𝐸𝑔𝑔 of 
Pb1-xSnxSe with increasing x through the topological phase transition. Black dashed line 
represents an extrapolation derived from known parameters (𝐸𝐸𝑔𝑔 = 0.165 eV for PbSe and the 
composition dependence 𝑑𝑑𝐸𝐸𝑔𝑔/𝑑𝑑𝑑𝑑 = -0.89 eV 49) for measurement at 4 K. We notice that a 
temperature-driven experiment allows one to observe a topological phase transition in a given 
Sn content sample, for example in the compound with x = 0.23 indicated by red dashed line. 
At low temperatures, the sample is in the nontrivial regime (yellow area) and has negative 
band gap (𝐿𝐿6+ is above 𝐿𝐿6− with the TSS in broken lines). Then, its band gap becomes closer to 
zero when temperature is increased and the 3D gapless Dirac state could occur at the critical 
temperature 𝑇𝑇𝑐𝑐 (between 77 and 195 K). Beyond 𝑇𝑇𝑐𝑐, the energy gap of this sample changes 
sign from negative to positive (𝐿𝐿6− is above 𝐿𝐿6+ without the TSS) and the sample is in the trivial 
regime (white area).     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.15. Variation of the band gap in Pb1-xSnxSe alloys as a function of Sn composition and 
temperature. The experimental data points were obtained by A. J. Strauss in 1967 49 at 77, 195 and 300 K. An 
extrapolation at 4 K (black dashed line) is derived from known parameters. The band gap decreases as x is 
increased for all the temperatures. This figure demonstrates that the critical Sn content xc depends on the 
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temperature of measurement and the topological phase transition of a given compound can be studied by varying 
temperature, as indicated by red dashed line for the sample with x = 0.23. White and yellow regions correspond 
to trivial (positive gap with 𝐿𝐿6− above 𝐿𝐿6+) and nontrivial (negative gap with 𝐿𝐿6+ above 𝐿𝐿6− and the TSS) phases, 
respectively. This figure is adapted from 39.   
 
2.3. Topological surface Dirac cones in different bulk Brillouin 
zone orientations 

 The crystalline mirror symmetry present in the rocksalt structure dictates that there 
only exist some surfaces residing topological gapless surface Dirac cones. As represented in 
Fig. 3.16, three 3DBZs of the rocksalt crystal are appropriately oriented to show the 
projections onto their corresponding (001), (110) and (111) surface Brillouin zones or 2DBZs 
shown in green 58. Owing to the inversion symmetry of the crystal, the 𝐿𝐿-points are diagonally 
symmetric with respect to the six equivalent {110} mirror planes shown in yellow 40. Thus, 
there are four equivalent 𝐿𝐿-points in total. For the (001)-oriented surface (Fig. 3.16(a)), there 
are two {110} mirror planes, there is only one for the (110) surface (Fig. 3.16(b)), and there 
are three such planes for the (111) surface (Fig. 3.16(c)). In all three cases, the projections of 
all high-symmetry 𝐿𝐿-points of the 3DBZs are located at the edges of each respective 2DBZ. 
The only one exception is the 𝐿𝐿1-point in the (111)-oriented 3DBZ of which the projection is 
at the Γ�-point, the center of the (111)-2DBZ. Moreover, in a given configuration, each mirror 
plane can be projected onto the crystal surface arising in a corresponding mirror plane 
symmetry line shown on the 2DBZ. 

 
Figure 3.16. The first three-dimensional Brillouin zones (3DBZs) of rocksalt crystal structure in 

various configurations. (a) (001)-oriented surface. (b) (110)-oriented surface. (c) (111)-oriented surface. The 
six equivalent {110} mirror planes are shown in yellow. The mirror plane symmetry lines on each respective 
two-dimensional Brillouin zone (2DBZ) are depicted by black solid lines. Adapted from 58. 
 

 In topologically nontrivial materials, the band inversion at the 𝐿𝐿-points of the bulk 
Brillouin zone with the crystalline mirror symmetry with respect to the {110} crystallographic 
planes leads to topologically protected band crossings at an even number of points (2 for 
(110) surface and 4 for (001) and (111) surfaces) on the 2DBZ 33. This is in contrast to TIs 
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where the band crossings topologically protected by time-reversal symmetry occur at an odd 
number of high-symmetry points of the 3DBZ 3,4,34. These points correspond to where the 
bulk 𝐿𝐿-points project on each respective surface. Thus, in each 3DBZ orientation, this band 
inversion results in the emergence of surface Dirac cones at points of the corresponding 
2DBZ which are also mirror symmetric with respect to the mirror symmetry lines. Since all 
ellipsoidal bulk carrier pockets of the (001) 3DBZ are equivalently oriented with respect to 
the [001] direction, the (001)-oriented surface of Pb1-xSnxSe and Pb1-xSnxTe thus ends up 
having four similar Dirac cones along the Γ�-𝑋𝑋� linecuts of the 2DBZ (Fig. 3.17(a)). The (111)-
oriented surface has one Dirac cone (blue) at the Γ�-point stemming from a bulk pocket (black) 
oriented along the [111] direction and three Dirac cones (green) at the 𝑀𝑀�-points resulting 
from the other three bulk pockets (red) similarly oriented with respect to the [111] direction 
(Fig. 3.17(b)). Ternary (001) and (111) Pb1-xSnxSe and Pb1-xSnxTe alloys are thus fourfold 
degenerate TCI where topology is governed by the symmetry of the crystal. Contrary to the 
(110)-oriented surface (twofold degenerate TCI), two Dirac cones occur along the Γ�-𝑌𝑌� 
linecuts of the 2DBZ. In this thesis, we essentially consider the (111) orientation even if some 
measurements were performed on (001)-oriented samples. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.17. Topological gapless surface Dirac cones of nontrivial Pb1-xSnxSe and Pb1-xSnxTe 

alloys. (a) (001)-oriented and (b) (111)-oriented 3DBZs with respective 2DBZs shown on top. Ellipsoidal bulk 
carrier pockets at the L-points are represented in each configuration. All bulk pockets of the (001) 3DBZ are 
equivalently oriented from the [001] direction and give rise to four surface Dirac cones located along the mirror 
symmetry lines Γ�-𝑋𝑋�. The (111) 3DBZ has a bulk pocket (black) oriented along the [111] direction and this 
results in a surface Dirac cone (blue) at the Γ�-point. The other three bulk pockets (red) of the (111) 3DBZ are 
similarly oriented from the [111] direction and they lead to three surface Dirac cones (green) at the 𝑀𝑀�-point.      
 
2.4. Electronic band structure of Pb1-xSnxSe and Pb1-xSnxTe  

 Various bulk Brillouin zone configurations and corresponding topological surface 
Dirac cones have been previously described. In this part, the electronic band structure of Pb1-

94 
 



CHAPTER 3 
  A brief overview of topological matter  

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

xSnxSe and Pb1-xSnxTe alloys in each 3DBZ orientation obtained from theoretical 
calculations, a tight-binding approach, as well as experimental observations will be presented. 
 
2.4.1. Electronic band structure of nontrivial Pb1-xSnxTe alloy  

 According to 58, the electronic band structures of three surface orientations, (001), 
(110) and (111), were calculated in Pb0.4Sn0.6Te alloy as shown in Fig. 3.18. This 
composition was chosen to assure the band inversion and the TCI phase.   
    

  
Figure 3.18. Theoretical calculations of the electronic band structure of Pb0.4Sn0.6Te. (a) The 

calculated band structure of the (001)-oriented surface along the Γ�-𝑋𝑋�-𝑀𝑀�  direction. (b) The calculated band 
structure of the (110)-oriented surface along the Γ�-𝑌𝑌�-𝑆𝑆̅-Γ� direction. (c) The calculated band structure of the 
(111)-oriented surface for the 𝑘𝑘�⃗  wave vectors of the 2DBZ along the 𝐾𝐾�-Γ�-𝑀𝑀�-𝐾𝐾� direction with cations at the 
surfaces and (d) with anions at the surfaces. The yellow to blue color change depends on the cation (yellow) and 
anion (blue) p-type orbitals which dominantly contribute to the state’s wave function. The 𝑘𝑘 values are in the 
unity of 2𝜋𝜋/𝑎𝑎0, where 𝑎𝑎0 is the lattice parameter. Adapted from 58. 
 
 The calculated band structure of the (001)-oriented surface is represented in Fig. 
3.18(a) for the 𝑘𝑘�⃗  wave vectors of the 2DBZ along the Γ�-𝑋𝑋�-𝑀𝑀�  direction (shown by the red line 
in the inset). The 𝑘𝑘 = 0 value corresponds to the 𝑋𝑋�1-points where the 𝐿𝐿1 and 𝐿𝐿2 R points are 
projected and the 𝑋𝑋�2-points for the 𝐿𝐿3 and 𝐿𝐿4 points (Fig. 3.16(a)). A band crossing around 
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the 𝑋𝑋�-point is observed, evidencing the topological surface states. This is similar for all 𝑋𝑋�-
points. Thus, four gapless Dirac cones occur in the inverted bulk band gap along the Γ�-𝑋𝑋� 
linecuts and inside the 2DBZ. We notice that these four Dirac cones are not located at time-
reversal-invariant momenta and this can be explained by the interaction between the 𝐿𝐿 valleys 
which are projected onto the same point of the 2DBZ. These theoretical calculations are in 
agreement with those in (001) SnTe 37,59 and (001) Pb0.6Sn0.4Te 40. Furthermore, ARPES 
measurements in (001) SnTe crystal 38 and (001) Pb0.6Sn0.4Te crystal 40 (Fig. 3.19) reveal the 
observation of double Dirac cones around the 𝑋𝑋�-point 37.  
 

  
Figure 3.19. Topological Dirac surface states in (001) Pb0.6Sn0.4Te crystal. (a) Schematic surface 

band dispersion illustrating the evolution of double surface Dirac cones located at the Λ�1 and Λ�2 points lying 
along the Γ�-𝑋𝑋� linecuts. Blue circles depict energy contours of Fermi surface for a chosen binding energy. (a) is 
adapted from 38. (b) ARPES low-energy electronic structure measurements on Pb0.6Sn0.4Te (for 10 eV, 18 eV 
and 24 eV of incident photon energy) showing the signature of double surface Dirac cones. (c) First-principles 
calculated surface states of SnTe at a given energy below the Dirac point are shown in red along the Γ�-𝑋𝑋� 
direction. (d) ARPES iso-energetic contour mapping of Pb0.6Sn0.4Te at the same energy in (c) (for an incident 
photon energy of 24 eV). (e) Energy contour mapping (green circles) of ARPES data at different binding 
energies. Green straight lines represent the guide to the eyes of the linear dispersion of the surface Dirac cones. 
(b-e) are adapted from 40.   
 
 For the (110)-oriented surface, the calculated band structure along the Γ�-𝑌𝑌�-𝑆𝑆̅-Γ� 
direction is shown in Fig. 3.18(b). The band inversion at the 𝐿𝐿1 R and 𝐿𝐿2 points leads to the bulk 
and surface band structures around the 𝑌𝑌�-points that are similar to those around the 𝑋𝑋�-points 
of the (001) surface. The surface states cannot exist around the 𝑆𝑆̅-points where the 𝐿𝐿3 and 𝐿𝐿4 
points are projected because these two 𝐿𝐿-points are not situated on the {110} mirror planes 
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(Fig. 3.16(b)). These theoretical calculations are in agreement with ab initio calculations 
demonstrated in (110) SnTe 59. 

 
The electronic band structure calculations of the (111)-oriented surface along the 𝐾𝐾�-Γ�-

𝑀𝑀�-𝐾𝐾� direction is displayed in Fig. 3.18(c) with cation-terminated (Pb or Sn) and in Fig. 
3.18(d) with anion-terminated (Te) at the surfaces. For both situations, topologically protected 
Dirac cones (one isotropic at the Γ�-point and three anisotropic at the 𝑀𝑀�-points) are observed. 
The Dirac points of the cation surface states are located close to the top of the valence band, 
while they appear at the bottom of the conduction band for the anion surface states. In contrast 
to the (001) and (110) surfaces, we notice that all Dirac cones are situated exactly at the points 
of the 2DBZ where the projection of all single 𝐿𝐿-points takes place (Fig. 3.16(c)). These 
theoretical results agree with the 𝒌𝒌.𝒑𝒑 theory combined with the band calculation on (111) 
SnTe 59. The resolved spectra obtained from ARPES measurements on (111) SnTe crystal 60 
and on high-quality epitaxial (111) Pb1-xSnxTe films 52 exhibit the topological surface states 
satisfying the Dirac-like dispersion at the Γ�-point and the 𝑀𝑀�-points.    
  
2.4.2. Electronic band structure of nontrivial Pb1-xSnxSe alloy  

 As shown in Fig. 3.20, the electronic band structures of nontrivial Pb1-xSnxSe in (001) 
and (111) surface orientations were theoretically studied. 

 

 
Figure 3.20. Theoretical calculations of the electronic band structure of nontrivial Pb1-xSnxSe. (a) 

The calculated band structure of the (001)-oriented surface of Pb0.73Sn0.27Se along the Γ�-𝑋𝑋�-𝑀𝑀�  direction at 
temperature 𝑇𝑇 = 80 K. (b) The calculated band structure of the (111)-oriented surface of cation terminated 
Pb0.64Sn0.36Se along the 𝐾𝐾�-Γ�-𝑀𝑀�-𝐾𝐾� direction at temperature 𝑇𝑇 = 100 K. The inset shows the lattice model of a 
(111) crystal terminated with cations (Pb,Sn), not with anions (Se). Yellow and blue colors denote the relative 
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contribution of cation and anion p-type orbitals to the wave function, respectively. The 𝑘𝑘 values are in the unity 
of 2𝜋𝜋/𝑎𝑎0, where 𝑎𝑎0 is the lattice parameter. (a) is adapted from 61. (b) is adapted from 62. 
 

The (001)-oriented surface band structure was calculated in Pb0.73Sn0.27Se along the Γ�-
𝑋𝑋�-𝑀𝑀�  high-symmetry line for parameters corresponding to a temperature 𝑇𝑇 = 80 K 61. The 
obtained results shown in Fig. 3.20(a) are similar to those obtained in (001) Pb0.4Sn0.6Te in 
Fig. 3.18(a). Four Dirac cones are situated around the 𝑋𝑋�-points, along the Γ�-𝑋𝑋� linecuts, and in 
the 2DBZ. However, we notice that the band structure of (001) Pb1-xSnxSe is nearly isotropic, 
in contrast to that of (001) Pb1-xSnxTe which is anisotropic 63,64. ARPES experiments 
evidencing the double Dirac cones along the high-symmetry lines through the 𝑋𝑋�-points were 
also carried out in (001) Pb0.73Sn0.27Se 61. Moreover, a systematic study of the temperature 
dependence of the TCI phase was done in (001) Pb0.77Sn0.23Se monocrystals 39. Fig. 3.21(a) 
shows the ARPES spectra of (001) Pb0.77Sn0.23Se monocrystals measured at different 
temperatures for a direction perpendicular to the linecut Γ�-𝑋𝑋� (Fig. 3.21(b)) of the momentum 
space in the 2DBZ. Experimental results confirm the existence of four surface Dirac cones 
inside the 2DBZ and along the high-symmetry lines Γ�-𝑋𝑋�. 

 

 
Figure 3.21. Temperature dependence of the ARPES spectra measured in (001) Pb0.77Sn0.23Se 

monocrystals. (a) ARPES studies along the line “a” depicted in (b). They clearly show the topological surface 
states for 𝑇𝑇 ≤ 100 K. (b) A sketch of the rocksalt 3DBZ showing the selected study lines “a” and “b” for ARPES 
measurements. Adapted from 39.  
 

The calculated band structure of the (111)-oriented surface was done in cation 
terminated Pb0.64Sn0.36Se along the 𝐾𝐾�-Γ�-𝑀𝑀�-𝐾𝐾� high-symmetry line for parameters 
corresponding to a temperature 𝑇𝑇 = 100 K 62 (Fig. 3.20(b)). The lattice model with cation 
termination (Pb,Sn) is shown in the inset. The obtained findings of (111) Pb1-xSnxSe are 
comparable to those of (111) Pb1-xSnxTe (Fig. 3.18(c)) with an isotropic surface Dirac cone at 
the Γ�-point. However, the other three Dirac cones at the 𝑀𝑀�-points are found to be slightly 
anisotropic in the case of (111) Pb1-xSnxSe, while they are highly anisotropic in (111) Pb1-

xSnxTe. ARPES studies of (111) Pb0.64Sn0.36Se epitaxial films were also done and they show 
the existence of a surface Dirac cone at the Γ�-point and three surface Dirac cones at the 𝑀𝑀�-
points 62 (Fig. 3.22).   
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Figure 3.22. ARPES spectra of the surface states of (111) Pb0.64Sn0.36Se epitaxial films. (a) Band 

structures measured at two locations (Γ�- and 𝑀𝑀�-points) of the 2DBZ and along the high-symmetry lines indicated 
in (c). (b) Fermi surface maps at both locations at the Fermi level, showing circularly symmetrical surface states 
at the Γ�-point and slightly anisotropic surface states at the 𝑀𝑀�-points. (c) A rocksalt 3DBZ with bulk Fermi 
ellipsoids at the 𝐿𝐿-points. Their projection onto the corresponding 2DBZ is shown on top with Fermi surfaces at 
the Γ�- and 𝑀𝑀�-points. Adapted from 62.   
 
 Fig. 3.23 shows the temperature dependence of ARPES intensity map measured in the 
vicinity of the Γ�-point of high-quality epitaxial (111) Pb1-xSnxSe epilayers grown on BaF2 
substrates by G. Springholz et al.. In Pb0.9Sn0.1Se, the energy gap increases with increasing 
temperature (Fig. 3.23(a)). The scenario is different in Pb0.8Sn0.2Se (Fig. 3.23(b)) and 
Pb0.72Sn0.28Se (Fig. 3.23(c)) since the gapless Dirac-like band dispersion was observed in 
both samples at temperatures 𝑇𝑇  ≤ 130 K and the gapped band dispersion appears at higher 
temperatures 𝑇𝑇 ≥ 200 K. This study allows one to determine, for each compound, the critical 
temperature of the topological phase transition.   
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Figure 3.23. Temperature dependence of ARPES spectra measured in high-quality epitaxial (111) 

Pb1-xSnxSe films in the vicinity of the 𝚪𝚪�-point. (111)-oriented Pb1-xSnxSe films for (a) x = 0.1, (b) x = 0.2 and 
(c) x = 0.28 grown on BaF2 substrates were measured as a function of temperature. This experiment provides the 
study of the evolution of the band gap in each sample. Private communication of G. Springholz et al.   
 
2.5. Valley anisotropy 

IV-VI semiconductors possess four bulk ellipsoids 54,63 located at the 𝐿𝐿-points of the 
bulk Brillouin zone. Different configurations of the 3DBZ result in different orientations of 
the ellipsoidal bulk carrier pockets (Fig. 3.24). When a magnetic field is applied perpendicular 
to the sample surface, Landau quantization of the electron energy will be on planes parallel to 
this surface. 

100 
 



CHAPTER 3 
  A brief overview of topological matter  

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

 

 
Figure 3.24. Illustration of bulk carrier ellipsoids in different surface orientations. (a) Bulk 

ellipsoid in the (111) longitudinal valley of IV-VI semiconductors with its major axis “2b” oriented parallel to 
the [111] direction and its minor axis “2a”. An applied magnetic field yields the cyclotron motion of electrons on 
a plane perpendicular to the field. The cross section of the Fermi ellipsoid by this plane results in a circular 2D 
Fermi surface shown below the ellipsoid. (b) In the (111) oblique valley, the ellipsoid is tilted by an angle 70.5° 
with respect to the [111] direction and the direction of the applied field. The 2D cross section is an ellipse. (c) In 
(001)-oriented crystals, the magnetic field is oriented parallel to the [001] direction. The ellipsoid is tilted by an 
angle 53° and the cross section also yields an ellipse.     

 
For a (111)-oriented sample (Fig. 3.16(c)), the longitudinal valley is defined from the 

ellipsoidal bulk carrier pocket that is oriented parallel to the [111] direction. This longitudinal 
ellipsoid has its major axis “2b” parallel to the [111] direction and its minor axis “2a” (Fig. 
3.24(a)). An applied magnetic field in the [111] direction will quantize the cyclotron orbits of 
electrons on the plane perpendicular to the [111] direction, yielding a 2D circular Fermi 
surface with a diameter “2a” (Fig. 3.24(a)). The three remaining ellipsoids have their major 
axes tilted by 𝜃𝜃 = 70.5° with respect to the [111] direction, defining the oblique valleys (Fig. 
3.24(b)). The cross sections of the oblique ellipsoids are ellipses (Fig. 3.24(b)). For a (001)-
oriented sample (Fig. 3.16(a)), the ellipsoids situated at the 𝐿𝐿-points are equivalent with their 
great axes tilted by 𝜃𝜃 = 53° with respect to the [001] direction (Fig. 3.24(c)), leading to 2D 
elliptic Fermi surfaces (Fig. 3.24(c)).  

 
We can define the valley anisotropy factor 𝐾𝐾 as the area anisotropy factor 𝐾𝐾 = (𝑏𝑏/

𝑎𝑎)2. This is equivalent to the 𝒌𝒌.𝒑𝒑 matrix element anisotropy factor 𝐾𝐾 = (𝑃𝑃⊥/𝑃𝑃∥)2 54, where 
𝑃𝑃⊥ and 𝑃𝑃∥ are respectively transverse and longitudinal momentum matrix elements. Note that 
𝐾𝐾 is found to depend on the Sn content of the Pb1-xSnxSe or Pb1-xSnxTe alloys.  
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3. Bernevig-Hughes-Zhang Hamiltonian for topological 
matter 
 The notions of TIs and TCIs have been previously presented. In this section, the 
models in physics allowing us to understand the topological character of a material will be 
introduced. B. A. Bernevig, T. L. Hughes and S. C. Zhang (BHZ) proposed for the first time 
in 2006 an explicit model Hamiltonian to describe the QSHE that was theoretically predicted 
to be realized in HgTe/CdTe quantum wells, known as the first 2D TI 19. For 3D TIs with a 
single Dirac cone on the surface, in the Bi2Se3 family, their topological nature can be 
similarly described by the model Hamiltonian developed by H. Zhang et al. in 2009 27,65. 
Here, the multiband 𝒌𝒌.𝒑𝒑 perturbation theory used to study TCI materials 54,66–68 will be 
demonstrated to be equivalent to the BHZ Hamiltonian for TIs. This model is equivalent to a 
3D Dirac Hamiltonian that reliably describes relativistic-like Dirac fermions in topological 
matter.   

 For the sake of simplicity, the longitudinal valley (𝜃𝜃 = 0) of (111)-oriented surface 
TCI material will be considered. Following 54, the Hamiltonian of a 2-band 𝒌𝒌.𝒑𝒑 model 
including the lowest conduction and the highest valence levels (𝐿𝐿6

±), for 𝑧𝑧//[111], reads: 
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                            (3.6) 

 
where 𝐸𝐸𝑔𝑔 is the band gap, 𝑃𝑃⊥ and 𝑃𝑃∥ are respectively transverse and longitudinal momentum 
matrix elements, 𝑘𝑘± = 𝑘𝑘𝑥𝑥 ± 𝑖𝑖𝑘𝑘𝑥𝑥, and 𝑚𝑚0 is the electron rest mass.  

 
In the Dirac formalism, three new parameters are defined as follows: Δ = 𝐸𝐸𝑔𝑔/2, 𝑣𝑣𝑐𝑐 = 𝑃𝑃⊥/𝑚𝑚0 
and 𝑣𝑣𝑐𝑐′ = 𝑃𝑃∥/𝑚𝑚0. Here, 𝑣𝑣𝑐𝑐 is the velocity perpendicular to the 𝑧𝑧-axis and 𝑣𝑣𝑐𝑐′ is the velocity 
parallel to the 𝑧𝑧-axis. Thus, a massive Dirac Hamiltonian with uniaxial anisotropy along the 
𝑧𝑧-direction can be written as:  
 

𝐻𝐻(𝑘𝑘�⃗ ) = �

Δ 0 ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧 ћ𝑣𝑣𝑐𝑐𝑘𝑘−
0 Δ ћ𝑣𝑣𝑐𝑐𝑘𝑘+ −ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧

ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧 ћ𝑣𝑣𝑐𝑐𝑘𝑘− −Δ 0
ћ𝑣𝑣𝑐𝑐𝑘𝑘+ −ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧 0 −Δ

�                                    (3.7) 
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The eigenvalues of the above Hamiltonian yield the following Dirac dispersion:  

 

𝐸𝐸𝑐𝑐,𝑣𝑣(𝑘𝑘�⃗ )  = ±�∆2 + ħ2𝑣𝑣𝑐𝑐2𝑘𝑘⏊
2 + ħ2𝑣𝑣𝑐𝑐′

2𝑘𝑘𝑧𝑧2                                        (3.8) 

 
where 𝑘𝑘⊥2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑥𝑥2 and the ± signs refer respectively to the energy of the conduction 𝐸𝐸𝑐𝑐(𝑘𝑘�⃗ ) 

and valence 𝐸𝐸𝑣𝑣(𝑘𝑘�⃗ ) bands. In this 2-band model, the Dirac transverse mass is given by 𝑚𝑚 =
Δ/𝑣𝑣𝑐𝑐2.  
 
If the effect of the four far-bands (two conduction (𝐿𝐿4,5

−  and 𝐿𝐿6−) and two valence (𝐿𝐿4,5
+  and 𝐿𝐿6+) 

bands) are treated in 𝑘𝑘2-approximation 54,66–68, the diagonal terms of the Hamiltonian in Eq. 
3.7 will be changed. Here, 𝑚𝑚�𝑐𝑐𝑡𝑡  and 𝑚𝑚�𝑣𝑣𝑡𝑡  represent the far-band contributions to the transverse 
(𝑡𝑡) Dirac masses of the conduction (𝑐𝑐) and valence (𝑣𝑣) bands. Similarly, 𝑚𝑚�𝑐𝑐𝑙𝑙  and 𝑚𝑚�𝑣𝑣𝑙𝑙  denote 
the contributions to the longitudinal (𝑙𝑙) Dirac masses. Note that since the four far-bands are 
nearly equally distant from the main conduction and valence bands (𝐿𝐿6

±), thereby these two 
bands are supposed to remain symmetric. We thus get: 

 
𝑚𝑚�𝑐𝑐𝑡𝑡 = −𝑚𝑚�𝑣𝑣𝑡𝑡 = 𝑚𝑚� > 0                                                   (3.9a) 

 
𝑚𝑚�𝑐𝑐𝑙𝑙 = −𝑚𝑚�𝑣𝑣𝑙𝑙 = 𝜇𝜇� > 0                                                    (3.9b) 

 
For the following calculations in this thesis, we use 𝑚𝑚�  and 𝜇𝜇� as the far-band contributions to 
the transverse and longitudinal Dirac masses in the conduction and valence bands, 
respectively.  
 
The diagonal terms of Eq. 3.7 are thus replaced by:  
 

𝐻𝐻11 = 𝐻𝐻22 = ∆ + ћ2

2𝑚𝑚�
𝑘𝑘⊥2 + ћ2

2𝜇𝜇�
𝑘𝑘𝑧𝑧2                                            (3.10a) 

 

𝐻𝐻33 = 𝐻𝐻44 = −∆ − ћ2

2𝑚𝑚�
𝑘𝑘⊥2 −

ћ2

2𝜇𝜇�
𝑘𝑘𝑧𝑧2                                          (3.10b) 

 
Therefore, the diagonal terms can be written as the 𝑘𝑘�⃗ -dependent mass term 𝑀𝑀�𝑘𝑘�⃗ � = ∆ +
ћ2

2𝑚𝑚�
𝑘𝑘⊥2 + ћ2

2𝜇𝜇�
𝑘𝑘𝑧𝑧2 and the Hamiltonian reads: 

 

𝐻𝐻(𝑘𝑘�⃗ ) =

⎝

⎜
⎛
𝑀𝑀(𝑘𝑘�⃗ ) 0 ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧 ћ𝑣𝑣𝑐𝑐𝑘𝑘−

0 𝑀𝑀(𝑘𝑘�⃗ ) ћ𝑣𝑣𝑐𝑐𝑘𝑘+ −ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧
ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧 ћ𝑣𝑣𝑐𝑐𝑘𝑘− −𝑀𝑀(𝑘𝑘�⃗ ) 0
ћ𝑣𝑣𝑐𝑐𝑘𝑘+ −ћ𝑣𝑣𝑐𝑐′𝑘𝑘𝑧𝑧 0 −𝑀𝑀(𝑘𝑘�⃗ )⎠

⎟
⎞

                                  (3.11) 
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If we swap the lines 2 and 3, then the columns 2 and 3 of the above Hamiltonian, we will 
exactly obtain the BHZ Hamiltonian for 3D TIs as expressed in 27,65:  

 

𝐻𝐻(𝑘𝑘�⃗ ) =

⎝

⎜
⎛
𝑀𝑀(𝑘𝑘�⃗ ) 𝐴𝐴1𝑘𝑘𝑧𝑧 0 𝐴𝐴2𝑘𝑘−
𝐴𝐴1𝑘𝑘𝑧𝑧 −𝑀𝑀(𝑘𝑘�⃗ ) 𝐴𝐴2𝑘𝑘− 0

0 𝐴𝐴2𝑘𝑘+ 𝑀𝑀(𝑘𝑘�⃗ ) −𝐴𝐴1𝑘𝑘𝑧𝑧
𝐴𝐴2𝑘𝑘+ 0 −𝐴𝐴1𝑘𝑘𝑧𝑧 −𝑀𝑀(𝑘𝑘�⃗ )⎠

⎟
⎞

                                     (3.12) 

 

where 𝑀𝑀�𝑘𝑘�⃗ � = ∆ − 𝐵𝐵1𝑘𝑘⊥2 − 𝐵𝐵2𝑘𝑘𝑧𝑧2. We can thus identify that 𝐴𝐴1 = ћ𝑣𝑣𝑐𝑐′, 𝐴𝐴2 = ћ𝑣𝑣𝑐𝑐, 𝐵𝐵1 = − ћ2

2𝑚𝑚�
 

and 𝐵𝐵2 = − ћ2

2𝜇𝜇�
. This Hamiltonian is nothing but the 3D Dirac Hamiltonian with uniaxial 

anisotropy along the 𝑧𝑧-direction and 𝑘𝑘�⃗ -dependent mass terms.  
 

Neglecting the 𝑘𝑘4 terms, the dispersion relation of the conduction and valence bands is given 
by: 

 

𝐸𝐸𝑐𝑐,𝑣𝑣(𝑘𝑘�⃗ )  = ±�∆2 + ħ2(𝑣𝑣𝑐𝑐2 + Δ
𝑚𝑚�

)𝑘𝑘⏊
2 + ħ2(𝑣𝑣𝑐𝑐′2 + Δ

𝜇𝜇�
)𝑘𝑘𝑧𝑧2                               (3.13) 

 
The topological nature of massive bulk Dirac fermions can be identified by the sign of Δ/𝑚𝑚� :  
If Δ/𝑚𝑚�  > 0, the material is trivial and its band structure is in the normal regime.   
If Δ/𝑚𝑚�  < 0, the material is topological and its band structure is in the inverted regime. 

 

The dispersion relation of massless surface Dirac fermions can be obtained by setting Δ = 0.   
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Chapter 4 

 
  

Magneto-optical investigation of 
topological crystalline insulators: 
IV-VI compounds  

The concept of band topology has revolutionized our understanding of 
quantum phases of condensed matter. Fundamentally, the topological nature of 
materials is controlled by the orbital and parity ordering of the conduction and 
valence bands. When the parity of the conduction and valence bands of a 
material is inverted compared to conventional case with positive band gap in 
the trivial regime, the material is said to be nontrivial and has negative band 
gap. It undergoes a topological phase transition between two topologically 
distinct phases. Several theoretical and experimental works have recently 
demonstrated that the topological phase transition can be studied via the 
inversion of the bulk bands of a solid, the basis of a topological insulator (TI). 
Narrow gap rocksalt IV-VI semiconductors such as Pb1-xSnxSe and Pb1-xSnxTe 
could be considered as an ideal system to study the bulk band inversion by 
changing Sn composition, temperature or pressure of the system owing to their 
mirror-like conduction and valence bands 𝐿𝐿6

± which are nearly symmetric. The 
electronic band structure of IV-VI compounds is therefore relatively simple 
when compared to II-VI and V-VI materials that possess asymmetric bulk 
conduction and valence bands.  

 
    In this chapter, we present a systematic study of the 

topological character of (111) Pb1-xSnxSe and Pb1-xSnxTe 
topological crystalline insulators (TCIs) across the topological 
phase transition occurring at the critical Sn content xc using Dirac 
Landau level magneto-spectroscopy. With this powerful bulk 
sensitive probe, we are able to precisely measure the band 
parameters of our systems in the entire composition range such as 
the absolute value of the energy gap and the Dirac velocity of the 
bulk bands using massive Dirac fermion model analysis.  
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Our investigation technique does not only give access to the information of the band structure 
of the bulk states, but also a quantitative assessment of the gapless band structure of the 
topological surface states in the samples with x > xc using the massless Dirac fermion model. 
Extracting the Dirac velocity of different bulk valleys allows us to study the valley anisotropy 
in (111) Pb1-xSnxSe and Pb1-xSnxTe as a function of Sn content. The most important aspect of 
our analysis is the ability to verify whether a material is trivial (with positive gap) or 
nontrivial (with negative gap) via the measure of its topological index defined by L. Fu. Here, 
we show that we can experimentally determine the topological index of the material. The 
results were analyzed using the Bernevig-Hughes-Zhang (BHZ) Hamiltonian. We can 
measure the sign of the band gap and we can experimentally extract xc corresponding to the 
topological phase transition occurring when the gap changes sign from positive (x < xc) to 
negative (x > xc). This is the first magneto-optical demonstration that the topological index 
can be measured and the topological character of the material can be directly determined by 
the bulk properties, and not just inferred from the observation of the topological surface 
states. We argue that our approach is more or less general and can be applied to other material 
families that host a trivial to nontrivial topological phase transition and can be described by a 
BHZ model Hamiltonian.   

 

1. Dirac Landau levels of IV-VI semiconductors 
 In this section, we will study the behavior of Dirac fermions in IV-VI lead-salt 

compounds subjected to the magnetic field via the quantization of their energy into discrete 
Landau levels. We define 𝜃𝜃 as the angle between the direction of the magnetic field and the 
major axis of the ellipsoids of bulk carriers. The longitudinal valley corresponds to the bulk 
ellipsoids with a major axis oriented parallel to the magnetic field direction. Other ellipsoidal 
bulk carrier pockets whose major axes are tilted by an angle 𝜃𝜃 with respect to the direction of 
the applied magnetic field are defined as oblique valleys.  

 
1.1. Landau levels of the longitudinal valley  

 We will first treat the Landau quantization problem for the longitudinal valley of 
(111)-oriented narrow gap rocksalt IV-VI semiconductors using the description proposed by 
D. L. Mitchell and R. F. Wallis 1–5. Their approach is a 6-band 𝒌𝒌.𝒑𝒑 approach where the 𝐿𝐿6

± 
conduction and valence bands are exactly accounted for and the effect of four far-bands (two 
conduction (𝐿𝐿4,5

−  and 𝐿𝐿6−) and two valence (𝐿𝐿4,5
+  and 𝐿𝐿6+) bands) is included perturbatively in 

𝑘𝑘2-approximation. Since the far-bands are nearly equally distant from the 𝐿𝐿6
± conduction and 

valence bands (Fig. 3.14(b)), we assume that these two bands are symmetric. In the trivial 
regime where the 𝐿𝐿6− band is above the 𝐿𝐿6+ band, the Dirac transverse band edge mass 𝑚𝑚∗ can 
be written as: 
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 For the conduction band (𝐿𝐿6−):  1

𝑚𝑚∗ = 1
𝑚𝑚

+ 1
𝑚𝑚�

                                                  (4.1a) 
 

For the valence band (𝐿𝐿6+):         1
𝑚𝑚∗ = − 1

𝑚𝑚
− 1

𝑚𝑚�
                                              (4.1b) 

 

Here, 𝑚𝑚 is due to the interactions between the 𝐿𝐿6
± bands in a 2-band 𝒌𝒌.𝒑𝒑 model where 1

𝑚𝑚
= 𝑣𝑣𝑐𝑐2

∆
. 

∆ represents the half band gap (∆ = 𝐸𝐸𝑔𝑔/2) and 𝑣𝑣𝑐𝑐 is the velocity perpendicular to the 𝑧𝑧-
direction defined as 𝑣𝑣𝑐𝑐 = 𝑃𝑃⊥/𝑚𝑚0, where 𝑃𝑃⊥ is the transverse momentum matrix element. 𝑚𝑚�  is 
due to the interactions between the main conduction/valence bands (𝐿𝐿6

±) and the four far-
bands (Fig. 3.14(b)). In the following text, we denote 𝐵𝐵 as the applied magnetic field and 
𝜇𝜇𝐵𝐵 = 𝑒𝑒ћ/2𝑚𝑚0 as the Bohr magneton. From Eq. 4.1(a,b), the cyclotron frequencies (𝑒𝑒𝐵𝐵/𝑚𝑚∗) 
of the conduction (𝜔𝜔𝑐𝑐) and valence (𝜔𝜔𝑣𝑣) bands are defined respectively as 𝜔𝜔𝑐𝑐 = 𝜔𝜔 + 𝜔𝜔� and 
𝜔𝜔𝑣𝑣 = −𝜔𝜔 − 𝜔𝜔�, where 𝜔𝜔 = 𝑒𝑒𝐵𝐵/𝑚𝑚 is the cyclotron frequency in the 2-band 𝒌𝒌.𝒑𝒑 approach and 
the tilde term 𝜔𝜔� = 𝑒𝑒𝐵𝐵/𝑚𝑚�  represents the far-band contributions. The Landé factors of the 
conduction (𝑔𝑔𝑐𝑐) and valence (𝑔𝑔𝑣𝑣) bands are given by 𝑔𝑔𝑐𝑐 = 𝑔𝑔 + 𝑔𝑔�𝑐𝑐 and 𝑔𝑔𝑣𝑣 = −𝑔𝑔 + 𝑔𝑔�𝑣𝑣, where 
𝑔𝑔𝜇𝜇𝐵𝐵𝐵𝐵 = ћ𝜔𝜔, and 𝑔𝑔�𝑐𝑐 and 𝑔𝑔�𝑣𝑣 are the far-band contributions. The far-band cyclotron energy 
contribution is assumed to be equal to the effective spin splitting. We thus obtain 𝑔𝑔�𝑐𝑐𝜇𝜇𝐵𝐵𝐵𝐵 =
−𝑔𝑔�𝑣𝑣𝜇𝜇𝐵𝐵𝐵𝐵 = −ħ𝜔𝜔�.  
 
Therefore, the matrix Hamiltonian of Mitchell and Wallis that describes the 𝐿𝐿6

± conduction 
and valence levels in the trivial regime, Δ > 0, is given by:   

 

⎝

⎜
⎛

∆ + 𝑛𝑛ћ𝜔𝜔� (2𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1))1/2 0 ћ𝑘𝑘𝑧𝑧𝑣𝑣𝑐𝑐
(2𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1))1/2 −∆ − (𝑛𝑛 + 2)ћ𝜔𝜔� ћ𝑘𝑘𝑧𝑧𝑣𝑣𝑐𝑐 0

0 ћ𝑘𝑘𝑧𝑧𝑣𝑣𝑐𝑐 ∆ + (𝑛𝑛 + 2)ћ𝜔𝜔� (2𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1))1/2

ћ𝑘𝑘𝑧𝑧𝑣𝑣𝑐𝑐 0 (2𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1))1/2 −∆ − 𝑛𝑛ћ𝜔𝜔� ⎠

⎟
⎞

 

 
(4.2) 

 
where the Landau level (LL) index is denoted by 𝑛𝑛 = -1, 0, 1, … . 
 
Solving the eigenvalues of the above Hamiltonian, we get the LLs of the conduction (𝑐𝑐) and 
valence (𝑣𝑣) bands for the 𝜎𝜎 = ±1/2 states, at 𝑘𝑘𝑧𝑧 = 0, that are expressed as: 

 
𝐸𝐸𝑣𝑣,𝑛𝑛,−
𝑐𝑐,𝑛𝑛,+ = 1

2
(𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛) ± 1

2
[(𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)2 + 8𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1)]1/2                 (4.3a) 

 
𝐸𝐸𝑣𝑣,𝑛𝑛,+
𝑐𝑐,𝑛𝑛,− = 1

2
(𝑐𝑐𝑛𝑛 + 𝑑𝑑𝑛𝑛) ± 1

2
[(𝑐𝑐𝑛𝑛 − 𝑑𝑑𝑛𝑛)2 + 8𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1)]1/2                 (4.3b) 
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with 
 

𝑎𝑎𝑛𝑛 = ∆ + 𝑛𝑛ћ𝜔𝜔�                                                       (4.3c)  
 

𝑏𝑏𝑛𝑛 = −∆ − (𝑛𝑛 + 2)ћ𝜔𝜔�                                               (4.3d)  
 

𝑐𝑐𝑛𝑛 = ∆ + (𝑛𝑛 + 2)ћ𝜔𝜔�                                                 (4.3e)  
 

𝑑𝑑𝑛𝑛 = −∆ − 𝑛𝑛ћ𝜔𝜔�                                                     (4.3f)  
 
Note that the term that varies in 𝐵𝐵2 under the square root of the LLs given in Eq. 4.3(a,b) are 
explicitly neglected. This is equivalent to neglecting the 𝑘𝑘4 terms in the BHZ eigenvalues (see 
the section 3 of the Chapter 3). We have to keep in mind that the lowest conduction and the 
highest valence LLs are respectively 𝐸𝐸𝑐𝑐,𝑛𝑛=−1,− and 𝐸𝐸𝑣𝑣,𝑛𝑛=−1,−. The conduction and valence LL 
energies, for 𝑛𝑛 = -1, 0, 1, … , read finally as follows:  

          

𝐸𝐸𝑛𝑛≥0
𝑐𝑐,± = ∓ħ𝜔𝜔� + �∆2 + 2 �𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
� ħ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1)              (4.4a) 

and 
𝐸𝐸𝑛𝑛=−1
𝑐𝑐,− = ħ𝜔𝜔� + ∆                                                 (4.4b) 

 

𝐸𝐸𝑛𝑛≥0
𝑣𝑣,± = ±ħ𝜔𝜔� − �∆2 + 2 �𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
� ħ𝑒𝑒𝐵𝐵(𝑛𝑛 + 1)              (4.4c) 

and 
𝐸𝐸𝑛𝑛=−1
𝑣𝑣,− = −ħ𝜔𝜔� − ∆                            (4.4d) 

 
The LL index can be redefined such that 𝑁𝑁+ = 𝑛𝑛+ + 1 for spin 𝜎𝜎 = +1/2 states (+) and 
𝑁𝑁− = 𝑛𝑛− + 1 for spin 𝜎𝜎 = −1/2 states (-). Note, however, that special care has to be taken 
when dealing with the 𝑁𝑁 = 0 (𝑛𝑛− = −1−) LL which is non-degenerate in spin. Finally, the 
above equations can be reduced to:   

 

𝐸𝐸𝑁𝑁>0
𝑐𝑐,± = ∓ħ𝜔𝜔� + �∆2 + 2 �𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
� ħ𝑒𝑒𝐵𝐵𝑁𝑁                  (4.5a) 

and 
𝐸𝐸0𝑐𝑐 = ħ𝜔𝜔� + Δ                                                   (4.5b) 

 

𝐸𝐸𝑁𝑁>0
𝑣𝑣,± = ±ħ𝜔𝜔� − �∆2 + 2 �𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
� ħ𝑒𝑒𝐵𝐵𝑁𝑁                         (4.5c) 

and 
𝐸𝐸0𝑣𝑣 = −ħ𝜔𝜔� − Δ                                                 (4.5d) 
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We can extract the Dirac velocity 𝑣𝑣𝐷𝐷 from Eq. 4.5(a,c) as the renormalization of 𝑣𝑣𝑐𝑐 by the far-
band correction term 𝑚𝑚�  to the band edge mass. Thus, the expression of 𝑣𝑣𝐷𝐷 can be written as: 
 
  
            (4.6) 

          
          
We define the Dirac transverse band edge mass as:  
 

𝑚𝑚∗ = |∆|/𝑣𝑣𝐷𝐷2                                                         (4.7) 
 
The LL energies for the LL index 𝑁𝑁 = 0, 1, 2, … , in the trivial regime with Δ > 0, are finally 
written as: 
 

𝐸𝐸𝑁𝑁>0
𝑐𝑐,± = ∓ħ𝜔𝜔� + �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵𝑁𝑁                 (4.8a) 

and 
𝐸𝐸0𝑐𝑐 = ħ𝜔𝜔� + Δ                                                    (4.8b) 

 
𝐸𝐸𝑁𝑁>0
𝑣𝑣,± = ±ħ𝜔𝜔� − �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵𝑁𝑁                   (4.8c) 

and 
𝐸𝐸0𝑣𝑣 = −ħ𝜔𝜔� − Δ                                                  (4.8d) 

 
They correspond to the levels of a massive Dirac fermion model with the velocity 𝑣𝑣𝐷𝐷 plus a 
linear far-band cyclotron energy contribution term ±ħ𝜔𝜔� 6. 
 
In our experimental setup, magneto-optical spectroscopy is performed in the Faraday 
geometry where the applied magnetic field is oriented parallel to the propagation direction of 
the light beam and the [111] growth direction of the sample. In this geometry, the selection 
rules are given by ∆𝑁𝑁 = ±1 and ∆𝜎𝜎 = ±1. Fig. 4.1 schematically illustrates the equivalence 
between the Landau levels in the 6-band 𝒌𝒌.𝒑𝒑 model proposed by Mitchell and Wallis and in 
the massive Dirac fermion model with the far-band contributions. Accordingly, the interband 
transition energies from the level 𝑁𝑁 of the valence band to the level 𝑁𝑁 ± 1 of the conduction 
band, occurring at 𝑘𝑘𝑧𝑧 = 0 where the joint density of states is optimal, simply yield:  

 
𝐸𝐸𝑁𝑁±1
𝑐𝑐,± − 𝐸𝐸𝑁𝑁

𝑣𝑣,∓ = �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵(𝑁𝑁 ± 1) + �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵𝑁𝑁                  (4.9) 

𝑣𝑣𝐷𝐷 = �𝑣𝑣𝑐𝑐2 +
∆
𝑚𝑚�
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 Figure 4.1. Equivalence between the Landau levels in the 6-band 𝒌𝒌.𝒑𝒑 model of Mitchell and 

Wallis and in the massive Dirac fermion model including the far-band correction terms (for the trivial 
case). In the massive Dirac model, the 𝑁𝑁 = 0 LL is non-degenerate in spin. Black arrows indicate the interband 
transitions of the same energy in the Faraday geometry where the selection rules are given by ∆𝑁𝑁 = ±1 and 
∆𝜎𝜎 = ±1.  

 
We notice that the interband transition energy is independent from the linear far-band 
contribution term ±ħ𝜔𝜔�. Hence, the transitions are insensitive to the effective spin. This is 
characteristic of the transitions in an ideal massive Dirac fermion model. To summarize, in 
the Faraday geometry the LL interband transitions can be effectively described by an ideal 
massive Dirac model even if the far-band correction terms are present. Note that the velocity 
of massive Dirac fermions is not a constant but it has to be modified as given by Eq. 4.6 
across the topological phase transition.   
 
The intraband or cyclotron resonance (CR) transition energies, obeying ∆𝑁𝑁 = ±1 and ∆𝜎𝜎 =
0, from the level 𝑁𝑁 to the level 𝑁𝑁 + 1 of the conduction and valence bands similarly read, at 
𝑘𝑘𝑧𝑧 = 0:  
 

𝐸𝐸𝑁𝑁+1
𝑐𝑐/𝑣𝑣,± − 𝐸𝐸𝑁𝑁

𝑐𝑐/𝑣𝑣,± =  �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵(𝑁𝑁 + 1) −�∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵𝑁𝑁             (4.10) 
 

The ground state CR transition energies from the level 𝑁𝑁 = 0 to the level 𝑁𝑁 = 1 of the 
conduction and valence bands, at 𝑘𝑘𝑧𝑧 = 0, are given by:  
 

𝐸𝐸1
𝑐𝑐/𝑣𝑣,− − 𝐸𝐸0

𝑐𝑐/𝑣𝑣 = �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵 − |∆|                                   (4.11) 
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1.2. Landau levels of the oblique valleys  

 The massive Dirac fermions in any tilted bulk valleys 𝜃𝜃 ≠ 0 undergo the same physics 
as in the longitudinal valley 𝜃𝜃 = 0. As a consequence, the expressions of interband and 
intraband transition energies remain unchanged. However, we have to consider the Dirac 
velocity 𝑣𝑣𝐷𝐷 that varies as a function of 𝜃𝜃. In this section, useful formulas for the calculation of 
𝑣𝑣𝐷𝐷 in a tilted valley are given.  

  
 The electronic bulk band structure of (111)-oriented Pb1-xSnxSe and Pb1-xSnxTe is 

four-fold degenerate. The magnetic field is applied along the growth axis [111] and 
perpendicular to the sample surface. Hence, four band minima occurring at four equivalent 𝐿𝐿-
points yield a longitudinal valley for an ellipsoidal bulk carrier pocket oriented parallel to the 
[111] direction 𝜃𝜃 = 0 and remaining three oblique valleys for ellipsoidal pockets tilted by 𝜃𝜃 = 
70.5° with respect to the [111] direction. For this matter, we define the Dirac velocity in the 
longitudinal valley as 𝑣𝑣𝐷𝐷(111). We can then derive the expression of 𝑣𝑣𝐷𝐷 as a function of 𝜃𝜃 
from the expression of the cyclotron frequency of the band edge mass in the tilted valleys 
given by H. Pascher, G. Bauer and R. Grisar 4 that reads:  

 
𝑣𝑣𝐷𝐷(𝜃𝜃) = 𝑣𝑣𝐷𝐷(111)(1

𝐾𝐾
𝑠𝑠𝑠𝑠𝑛𝑛2𝜃𝜃 + 𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃)1/4                              (4.12) 

 
Here, 𝐾𝐾 is the valley anisotropy factor defined as 𝐾𝐾 = (𝑃𝑃⊥/𝑃𝑃∥)2, where 𝑃𝑃⊥ and 𝑃𝑃∥ are 
respectively the transverse and longitudinal momentum matrix elements 2–4. Note that this 
anisotropy factor is found to be dependent on the Sn composition of the Pb1-xSnxSe or Pb1-

xSnxTe compounds. 
  
For the oblique valleys of (111)-oriented surface, we have: 
 

𝑣𝑣𝐷𝐷(𝜃𝜃 = 70.5°) = 𝑣𝑣𝐷𝐷(111)(8
9
1
𝐾𝐾

+ 1
9
)1/4                               (4.13) 

 
For (001)-oriented surface, we get: 
 

 𝑣𝑣𝐷𝐷(𝜃𝜃 = 53°) = 𝑣𝑣𝐷𝐷(111)(16
25

1
𝐾𝐾

+ 9
25

)1/4                               (4.14) 
 

1.3. Landau levels of the topological surface states  

 The LLs of massive Dirac fermions in Pb1-xSnxSe and Pb1-xSnxTe are represented in 
the previous two subsections. For massless Dirac fermions in the topological surface states 
(TSS) that satisfy the linear energy-momentum relation dispersing in the band gap, we can 
imagine the simplest case of their LL energies when the energy gap 2∆ in Eq. 4.8 becomes 
zero and the linear far-band contribution terms are absent. The optical transitions of the TSS 
obey the same selection rules for the ideal massive Dirac fermion model: ∆𝑁𝑁 = ±1. The 
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Dirac velocities 𝑣𝑣𝐷𝐷 of massless Dirac fermions in the Γ�- and 𝑀𝑀�-Dirac cones are not necessary 
the same and they can be different from those of the bulk bands.  

 
The interband transitions of the TSS are given by:    

 
𝐸𝐸𝑁𝑁±1
𝑐𝑐 − 𝐸𝐸𝑁𝑁𝑣𝑣 = �2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵(𝑁𝑁 ± 1) + �2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵𝑁𝑁                      (4.15) 

 
The intraband or CR transition energies read as follows:  
 

𝐸𝐸𝑁𝑁+1
𝑐𝑐/𝑣𝑣 − 𝐸𝐸𝑁𝑁

𝑐𝑐/𝑣𝑣 = �2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵(𝑁𝑁 + 1) −�2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵𝑁𝑁                     (4.16) 
 

The ground CR transition energies from the level 𝑁𝑁 = 0 to the level 𝑁𝑁 = 1 of the same band 
are written as:  
 

𝐸𝐸1𝑐𝑐 − 𝐸𝐸0𝑐𝑐 = 𝐸𝐸0𝑣𝑣 − 𝐸𝐸1𝑣𝑣 = �2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝐵𝐵                                 (4.17) 
 

2. Growth and characterization of (111) Pb1-xSnxSe and 
Pb1-xSnxTe epilayers 

High-quality (111)-oriented epitaxial Pb1-xSnxSe and Pb1-xSnxTe films were grown 
and characterized by G. Springholz, V.V. Volobuev and G. Bauer at the Institut für Halbleiter 
und Festkörperphysik, Johannes Kepler Universität, in Linz, Austria.  

 
2.1. Molecular beam epitaxy growth 

 (111)-oriented Pb1-xSnxSe and Pb1-xSnxTe films were grown by means of molecular 
beam epitaxy (MBE) on freshly cleaved (111) BaF2 substrates using a Riber 1000 and a 
Varian GEN-II MBE setups, respectively 7,8. The epilayers were grown under ultra-high 
vacuum (UHV) conditions with a pressure better than 5 × 10-10 mbar. Material sources 
employed for the growth are effusion cells filled with stoichiometric PbSe, PbTe, SnSe and 
SnTe. The chemical composition of the ternary compounds can be varied over a wide range 
by controlling the SnSe/PbSe or SnTe/PbTe beam flux ratio that is measured precisely using a 
quartz microbalance moved into the substrate position. The Sn content of the layers is 0 ≤ x ≤ 
0.30 for Pb1-xSnxSe and 0 ≤ x ≤ 0.56 for Pb1-xSnxTe. The growth rate is typically 1 µm/hour 
or 1 monolayer/second. The film thickness is between 1 and 3 µm for the magneto-optical 
absorption measurement. The temperature growth was set to 380 ℃. Note that the epilayers 
have intrinsic p-type carrier concentration (typically p > 1019 cm-3), originating from native Pb 
and Sn vacancies, that strongly increases with higher Sn composition in Pb1-xSnxSe and Pb1-

xSnxTe. In order to compensate this high carrier density, n-type Bi-doping (< 1019 cm-3) was 
eventually supplied by Bi2Se3 and Bi2Te3 effusion cells 9. When Bi atom is substitutionally 
incorporated on group IV lattice sites, it acts as a charged donor and thus compensates the 
background hole concentration. This mechanism leads to achieve the low carrier density 
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without compromising the mobility of the films. The growth of epitaxial films was monitored 
in-situ by reflection high energy electron diffraction (RHEED). Additionally, the atomically 
flat surface of the films was visualized using atomic force microscopy (AFM).  
    
2.2. X-ray diffraction 

 (111) Pb1-xSnxSe and Pb1-xSnxTe samples were characterized by high resolution X-ray 
diffraction (XRD) that was performed in a Seifert XRD3003 diffractometer using Cu-Kα1 
radiation. The diffractometer is equipped with a Ge(220) primary beam Bartels 
monochromator, a parabolic mirror, and a Meteor 1D linear pixel detector. This technique 
was used to determine the composition and thus the lattice constant of the films with a 
precision better than 2%. Fig. 4.2 shows the XRD characterization of (111) Pb1-xSnxSe and 
Pb1-xSnxTe films. Fig. 4.2(a) a {111} Bragg series of (111) Pb1-xSnxTe with x = 0.46 can be 
clearly observed 10. In this study, all the epilayers with the thickness higher than 0.5 µm were 
demonstrated to be fully relaxed 10. Fig. 4.2(b,c) show only the (222) Bragg reflection for two 
series of Pb1-xSnxSe (0 ≤ x ≤ 0.30) (Fig. 4.2(b)) and Pb1-xSnxTe (0 ≤ x ≤ 1) (Fig. 4.2(c)) films. 
The (222) diffraction peaks were observed to monotonically shift to higher diffraction angles 
with increasing Sn concentration. The lattice constant of the ternary compounds can be 
directly obtained from the peak position. Fig. 4.2(d) shows the Sn content determined from 
XRD as a function of the beam flux ratio Sn/(Sn+Pb) measured by the quartz balance method 
in the growth of Pb1-xSnxSe (●) and Pb1-xSnxTe ( ). The dashed green line represents the 
calculated nominal values of the Sn content from the change in lattice constant using the 
Vegard’s law that is written as: 

 
• For Pb1-xSnxSe: 𝑎𝑎Pb1−xSnxSe(𝑥𝑥) = (6.124 − 0.123𝑥𝑥) Å                                 (4.18) 

 
• For Pb1-xSnxTe: 𝑎𝑎Pb1−xSnxTe(𝑥𝑥) = (6.462 − 0.162𝑥𝑥) Å                                (4.19) 

 
Here, the lattice constants of pure PbSe and PbTe are respectively 6.124 Å and 6.462 Å. As 
can be seen, the data points are in very good agreement with the nominal values within ±1% 
without any adjustable parameters. Note that Pb1-xSnxSe films with x > 0.40 have 
orthorhombic crystal structure and are no longer single phase, resulting in a splitting of the 
diffraction peaks. Therefore, their Sn content results are not shown here. For this reason, only 
Pb1-xSnxSe films with single phase cubic rocksalt structure in the Sn solubility limit x ~ 0.45 
were studied. For Pb1-xSnxTe, complete miscibility exists over the entire composition range.   
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Figure 4.2. X-ray diffraction characterization and analysis. (a) Symmetric X-ray diffraction scan of 

(111) Pb1-xSnxTe with x = 0.46 using Cu-Kα1 radiation shows the diffraction peaks of the epitaxial layer with 
respect to the substrate (111) BaF2. (222) Bragg diffraction peaks of Pb1-xSnxSe films for 0 ≤ x ≤ 0.30 (b) and 
Pb1-xSnxTe films for 0 ≤ x ≤ 1 (c). (d) The Sn content extracted from X-ray diffraction as a function of the beam 
flux ratio Sn/(Sn+Pb) measured during the MBE growth of Pb1-xSnxSe (●) and Pb1-xSnxTe ( ) films. A very 
good agreement is obtained between the data points and the dashed green line representing the nominal values of 
the Sn concentration calculated from the change in lattice constant using the Vegard’s law. All the figures are 
adapted from our papers ((a) from 10 and (b-d) from 11).  
  
2.3. Electrical transport characterization 

 Transport measurements using a van der Pauw geometry were carried out at 77 K to 
determine the Hall carrier density and mobility. For (111) Pb1-xSnxTe, moderate Bi-doping (< 
1019 cm-3) 9 was applied for x > 0.28 to limit the carrier concentration to no more than 4 × 
1018 cm-3 and mobilities are between 5,000 and 30,000 cm2/(V.s).  For (111) Pb1-xSnxSe, 
carrier densities as low as 1017 cm-3 were achieved and mobilities were measured to be 
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between 10,000 and 40,000 cm2/(V.s). Table 4.1 show the carrier concentration and the 
mobility of (111) Pb1-xSnxSe and Pb1-xSnxTe films measured at 77 K. Thanks to these good 
transport properties, Landau quantization can be observed at low magnetic fields. 
Additionally, these electrical transport measurements allow us to know whether the sample 
has n- or p-type carriers, being the useful information for the magneto-optical determination 
of the Fermi energy of the sample.  

 
Composition 
Pb1-xSnxSe 

Thickness 
(µm) 

Carrier 
type  

Bi-
doping 

Carrier density  
(cm-3) 

Carrier mobility 
(cm2/(V.s)) 

PbSe 3 n No 1.5 × 1017 29,700 
Pb0.95Sn0.05Se 2 n No 2.4 × 1017 32,800 
Pb0.90Sn0.10Se 2 n No 1.7 × 1017 35,800 
Pb0.86Sn0.14Se 2 p No 9.77 × 1016 14,900 
Pb0.835Sn0.165Se 2 n No 1.43 × 1017 29,500 
Pb0.81Sn0.19Se 2 n Yes 2.6 × 1017 34,600 
Pb0.76Sn0.24Se 3 n No 1.86 × 1017 15,900 
Pb0.70Sn0.30Se 2.6 p No 1.20 × 1018 9,540 

 
Composition 
Pb1-xSnxTe 

Thickness 
(µm) 

Carrier 
type  

Bi-
doping 

Carrier density  
(cm-3) 

Carrier mobility 
(cm2/(V.s)) 

PbTe 1 n No 5.24 × 1016 30,100 
Pb0.92Sn0.08Te 1 n No 2.82 × 1017 17,600 
Pb0.89Sn0.11Te 1 p No 9.14 × 1017 6,820 
Pb0.86Sn0.14Te 1 p No 6.71 × 1017 4,410 
Pb0.85Sn0.15Te 1 p No 2.09 × 1018 7,160 
Pb0.80Sn0.20Te 2 n Yes 5.18 × 1018 10,000 
Pb0.75Sn0.25Te 1 p No 1.01 × 1018 7,640 
Pb0.72Sn0.28Te 1 p No 1.83 × 1018 8,520 
Pb0.69Sn0.31Te 1 p Yes 7.91 × 1017 8,100 
Pb0.66Sn0.34Te 1 p Yes 1.31 × 1018 10,000 
Pb0.65Sn0.35Te 1 n Yes 6.54 × 1017 19,900 
Pb0.63Sn0.37Te 1 n Yes 2.34 × 1018 11,300 
Pb0.60Sn0.40Te 1 p Yes 1.09 × 1018 9,630 
Pb0.59Sn0.41Te 1 p Yes 1.81 × 1018 11,100 
Pb0.56Sn0.44Te 1 p Yes 2.89 × 1018 9,810 
Pb0.55Sn0.45Te 1 n Yes 1.16 × 1018 7,480 
Pb0.54Sn0.46Te 2 p Yes 8.2 × 1017 7,000 
Pb0.50Sn0.50Te 1 p Yes 1.81 × 1018 6,990 
Pb0.49Sn0.51Te 1 p Yes 3.04 × 1018 9,060 
Pb0.44Sn0.56Te 1 p Yes 3.94 × 1018 7,430 

Table 4.1. Carrier concentration and mobility of (111) Pb1-xSnxSe and Pb1-xSnxTe epilayers 
characterized by electrical transport measurements at 77 K (at the Institut für Halbleiter und 
Festkörperphysik, Johannes Kepler Universität, in Linz, Austria)  
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3. Magneto-optical Landau level spectroscopy of Dirac 
fermions in (111) Pb1-xSnxSe 

 Magneto-optical IR Landau level spectroscopy was performed in eight (111) Pb1-

xSnxSe samples (0 ≤ x ≤ 0.30) in the Faraday geometry for 𝐵𝐵 = 0-17 T and 𝑇𝑇 = 4.5 K in the 
FIR and MIR spectral ranges (4-600 meV). The applied magnetic field was oriented along the 
[111] direction or the growth axis and thus perpendicular to the sample surface. The relative 
transmission spectra at fixed fields 𝑇𝑇(𝐵𝐵)/𝑇𝑇(0) of each sample were acquired and analyzed 
using the Dirac fermion model as presented in the section 1.  

 
3.1. Bulk states in (111) Pb1-xSnxSe 

The typical MIR magneto-optical transmission spectra measured at different magnetic 
fields of six representative samples are shown in Fig. 4.3(a,b) for x = 0.05, Fig. 4.3(c,d) for x 
= 0.10, Fig. 4.3(e,f) for x = 0.14, Fig. 4.4(a,b) for x = 0.19, Fig. 4.4(c,d) for x = 0.24 and Fig. 
4.4(e,f) for x = 0.30. A number of strong absorption minima dispersing as a function of field 
can be clearly seen in all the samples. Two series of transitions were observed and are 
associated with different bulk valleys. The series depicted by black arrows is attributed to the 
transitions in the bulk longitudinal valley. Other transitions marked by red arrows originate 
from the bulk oblique valleys, tilted with the angle 𝜃𝜃 = 70.5° with respect to the [111] 
direction. The intensity and broadening of the absorption lines increase when two 
contributions resulting from the transitions in both types of valleys occur at about the same 
energy. For high LL index 𝑁𝑁 of the transitions, the longitudinal and oblique transitions of 
massive Dirac fermions are mixed. For the sake of simplicity, only the oblique ones are 
represented. Narrow absorption lines observed in the transmission spectra indicate the high 
crystalline quality of the epilayers. We observe that a strong and clear modulation can be 
followed down to low fields, evidencing the high mobility and low carrier concentration of 
the films. The transmission curves are vertically shifted for clarity purposes.  
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Figure 4.3. MIR transmission spectra of trivial Pb1-xSnxSe. MIR magneto-optical transmission 

spectra of Pb1-xSnxSe measured at 4.5 K for x = 0.05 (a,b), x = 0.10 (c,d) and x = 0.14 (e,f). Black and red 
arrows mark the transmission minima resulting from the transitions in the bulk longitudinal and oblique valleys, 
respectively. At high LL index 𝑁𝑁, the bulk longitudinal and oblique transitions are mixed and only the oblique 
ones are shown by red arrows. Narrow absorption lines evidence the high crystalline quality of the films. 
Transitions can be observed at low fields, indicating the high mobility and low carrier density of the films. All 
the spectra are shifted vertically for clarity. 
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Figure 4.4. MIR transmission spectra of nontrivial Pb1-xSnxSe. MIR magneto-optical transmission 

spectra of Pb1-xSnxSe measured at 4.5 K for x = 0.19 (a,b), x = 0.24 (c,d) and x = 0.30 (e,f). Black and red 
arrows mark the transmission minima resulting from the transitions in the bulk longitudinal and oblique valleys, 
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respectively. At high LL index 𝑁𝑁, the bulk longitudinal and oblique transitions are mixed and only the oblique 
ones are shown by red arrows. Narrow absorption lines evidence the high crystalline quality of the films. 
Transitions can be observed at low fields, indicating the high mobility and low carrier density of the films. All 
the spectra are shifted vertically for clarity. 

 
FIR magneto-optical absorption measurements were also performed in the eight 

samples. Typical FIR transmission spectra at several magnetic fields are shown in Fig. 4.5(a) 
for x = 0.05, Fig. 4.5(b) for x = 0.10, Fig. 4.5(c) for x = 0.14, Fig. 4.5(d) for x = 0.19, Fig. 
4.5(e) for x = 0.24 and Fig. 4.5(f) for x = 0.30. Some transmission minima were observed in 
both FIR and MIR ranges. All the samples are opaque in the region covering the energy range 
from 22 to 55 meV. This is due to the phonon-related absorption in the BaF2 substrate 
resulting in the reststrahlen band where we cannot observe any transition. However, since our 
samples have low carrier densities, we can thus observe intraband transitions between low 
indices 𝑁𝑁 dispersing down to low fields below the reststrahlen band.  
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Figure 4.5. FIR transmission spectra of trivial Pb1-xSnxSe. FIR magneto-optical transmission spectra 

of Pb1-xSnxSe measured at 4.5 K for x = 0.05 (a), x = 0.10 (b), x = 0.14 (c), x = 0.19 (d), x = 0.24 (e), and x = 
0.30 (f). Arrows mark the transmission minima originating from the transitions in the bulk valleys. The samples 
are opaque in the energy range from 22 to 55 meV (reststrahlen band) due to the phonon-related absorption in 
the BaF2 substrate. All the spectra are shifted vertically for clarity.  
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Note that baseline signal contributions from the response of the bolometer to the 

applied magnetic field have a negligible impact on the position of the transmission minima 
thanks to the large amplitude and narrowness of the observed absorption lines. Nevertheless, 
we also verified the change in the position of the minima in the transmission spectra taken at 
each field and found that it is negligible after removing the baseline slope originating from the 
detector’s response. Accordingly, the error resulting from the presence of the baseline is 
significantly smaller than the error bars represented by the size of the markers on the LL 
transition diagrams (shown later). For our experimental results, we can directly extract the 
transition energies from the measured transmission spectra. 

 
 The transmission minima were identified and plotted as circles versus magnetic field 

in Fig. 4.6(a) for x = 0.05, Fig. 4.6(b) for x = 0.10, Fig. 4.6(c) for x = 0.14, Fig. 4.6(d) for x = 
0.19, Fig. 4.6(e) for x = 0.24 and Fig. 4.6(f) for x = 0.30 in order to construct LL transition fan 
diagrams. Full black circles and empty red circles denote respectively the transitions resulting 
from the bulk longitudinal and oblique valleys. Bicolor circles (black and red) represent the 
minima originating from the transitions in both longitudinal and oblique valleys that occur 
very nearly at or exactly at the same energy. The green frame covering the energies between 
22 and 55 meV is the BaF2 substrate reststrahlen band where no absorption can be observed. 
The massive Dirac model was used to fit the experimental data for both types of valleys. Note 
that the magneto-optical absorption experiment measures the absolute value of the energy 
gap. For a given Sn content, the interband (Eq. 4.9), intraband (Eq. 4.10), and ground CR (Eq. 
4.11) transition energies for the bulk states were calculated with two parameters for both types 
of valleys: the half band gap |Δ| and the Dirac velocity 𝑣𝑣𝐷𝐷. Black and red solid lines are the 
calculated curve fits for the transitions in the bulk longitudinal and oblique valleys, 
respectively. Interband transitions from the level 𝑁𝑁 of the valence band (𝑣𝑣) to the level 𝑁𝑁 ± 1 
of the conduction band (𝑐𝑐) are denoted as 𝑁𝑁𝑣𝑣 − (𝑁𝑁 ± 1)𝑐𝑐. CR-L and CR-O refer to the 
ground cyclotron resonance of the valence (0𝑣𝑣 − 1𝑣𝑣) or conduction (0𝑐𝑐 − 1𝑐𝑐) bands of the 
longitudinal and oblique valleys, respectively. 𝑁𝑁𝑣𝑣 − (𝑁𝑁 + 1)𝑣𝑣 and 𝑁𝑁𝑐𝑐 − (𝑁𝑁 + 1)𝑐𝑐 are used 
respectively as notation for intraband transitions with 𝑁𝑁 > 0 between two adjacent levels of 
the valence and conduction bands. An excellent agreement between the theory and the 
experimental data is obtained in the eight samples. Their band parameters precisely 
determined from the massive Dirac model analysis are represented in Table 4.2 as well as the 
corresponding Dirac transverse band edge masses 𝑚𝑚∗ =  |Δ|/𝑣𝑣𝐷𝐷2 .  
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Composition 
Pb1-xSnxSe 

2|𝚫𝚫|  
(meV) 

𝒗𝒗𝑫𝑫 (long.) 
(× 105 m/s) 

𝒗𝒗𝑫𝑫 (obl.) 
(× 105 m/s) 

𝒎𝒎∗ (long.) 
(× 𝒎𝒎𝟎𝟎) 

𝒎𝒎∗ (obl.) 
(× 𝒎𝒎𝟎𝟎) 

PbSe 146 ± 4 6.4 ± 0.1 5.6 ± 0.1 0.031 ± 0.001 0.041 ± 0.002 
Pb0.95Sn0.05Se 85 ± 5 5.8 ± 0.1 5.2 ± 0.1 0.022 ± 0.002 0.028 ± 0.002 
Pb0.90Sn0.10Se 40 ± 5 5.25 ± 0.10 4.9 ± 0.1 0.013 ± 0.002 0.015 ± 0.002 
Pb0.86Sn0.14Se 25 ± 5 5.05 ± 0.10 4.8 ± 0.1 0.009 ± 0.002 0.010 ± 0.002 
Pb0.835Sn0.165Se 15 ± 5 4.9 ± 0.1 4.7 ± 0.1 0.005 ± 0.002 0.006 ± 0.002 
Pb0.81Sn0.19Se 25 ± 10 4.8 ± 0.1 4.6 ± 0.1 0.010 ± 0.004 0.010 ± 0.004 
Pb0.76Sn0.24Se 55 ± 5 4.4 ± 0.1 4.4 ± 0.1 0.025 ± 0.003 0.025 ± 0.003 
Pb0.70Sn0.30Se 100 ± 10 4.0 ± 0.1 4.0 ± 0.1 0.055 ± 0.006 0.055 ± 0.006 

 
Table 4.2. Magneto-optical band parameters determined from the massive Dirac model analysis 

in eight (111) Pb1-xSnxSe samples measured at 𝑻𝑻 = 4.5 K. 2|Δ| is the band gap. The Dirac velocities 𝑣𝑣𝐷𝐷 in the 
longitudinal and oblique valleys are represented for each compound. The band edge masses can be deduced from 
those two parameters 𝑚𝑚∗ =  |Δ|/𝑣𝑣𝐷𝐷2  for both types of valleys. 𝑚𝑚0 is the electron rest mass.  
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Figure 4.6. Landau level transition diagrams of (111) Pb1-xSnxSe. Landau level transition fan charts 

of (111) Pb1-xSnxSe for x = 0.05 (a), x = 0.10 (b), x = 0.14 (c), x = 0.19 (d), x = 0.24 (e) and x = 0.30 (f). Full 
black and empty red circles denote respectively the transitions in the bulk longitudinal and oblique valleys. 
Circles with two colors (black and red) mark the transitions in both types of valleys that occur very nearly at or 
exactly at the same energy. The green rectangle located between 22 and 55 meV is the BaF2 substrate 
reststrahlen band. The experimental data were analyzed using the massive Dirac fermion model. Black and red 
curve fits were calculated for the transition energies in the longitudinal and oblique bulk valleys. Experimental 
results agree very well with the theory. 
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We notice that the band gap is the same in both types of valleys, while the Dirac 
velocity is found to be different due to the bulk valley anisotropy 2–4. The larger value 
corresponds to the Dirac velocity of massive Dirac fermions in the bulk longitudinal valley, 
whereas the smaller one corresponds to that in the bulk oblique valleys. A decrease in 𝑣𝑣𝐷𝐷 
when x is increased is observed in both types of bulk valleys and this will be discussed in the 
sections 5 and 7. From Fig. 4.6, it is clear that the anisotropy decreases as x increases. For x ≥ 
0.24, we observe that the Dirac velocity is the same for the longitudinal and oblique valleys. 
This indicates that the longitudinal and oblique bulk pockets are nearly spherical. The 
anisotropy of ellipsoidal bulk carrier pockets of Pb1-xSnxSe demonstrated by magneto-optics 
will be discussed in detail in the section 7.        
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7. Dirac Landau level dispersion and examples of Landau level transitions in (111) 

Pb0.95Sn0.05Se with n-type carriers. The massive Dirac Landau levels in the oblique valleys (red curves) are 
calculated using the band gap 2|∆| = 85 meV and the Dirac velocity 𝑣𝑣𝐷𝐷 = 5.2 x 105 m/s. Pink arrows show the 
first interband transition 0𝑣𝑣 − 1𝑐𝑐 that can be observed down to 𝐵𝐵 ~ 6 T. Since the level 1𝑐𝑐 is depopulated from 
𝐵𝐵 ~ 6 T, the Fermi energy 𝐸𝐸𝐹𝐹 is estimated to be 𝐸𝐸𝐹𝐹 ~ 𝐸𝐸1𝑐𝑐 ~ 20 meV in the bulk conduction band edge. Brown 
arrows show the interband transition 1𝑣𝑣 − 2𝑐𝑐 that can be followed down to 𝐵𝐵 ~ 3 T. Since the level 2𝑐𝑐 is 
depopulated from 𝐵𝐵 ~ 3 T, therefore 𝐸𝐸𝐹𝐹 ~ 𝐸𝐸2𝑐𝑐 ~ 20 meV above the bulk conduction band edge. 𝐸𝐸𝐹𝐹 is depicted by 
green horizontal line, allowing the intraband transition 1𝑐𝑐 − 2𝑐𝑐 (sky blue arrows) to occur between 3 and 6 T 
(𝐸𝐸1𝑐𝑐 < 𝐸𝐸𝐹𝐹 < 𝐸𝐸2𝑐𝑐).      
 

We can estimate the Fermi energy 𝐸𝐸𝐹𝐹 in the bulk band edge by calculating the LL 
energy at a fixed 𝐵𝐵 where the transmission appears. For example, as shown in Fig. 4.7, in 
Pb0.95Sn0.05Se with n-type carriers (Fig. 4.6(a)) the first interband transition 0𝑣𝑣 − 1𝑐𝑐 (pink 
arrows) of the bulk oblique valleys was observed down to 𝐵𝐵 ~ 6 T. By considering the level 
1𝑐𝑐 that is depopulated from 𝐵𝐵 ~ 6 T, therefore 𝐸𝐸𝐹𝐹 ~ 𝐸𝐸1𝑐𝑐 ~ 20 meV above the bulk conduction 
band edge of the oblique valleys. This agrees very well with the interband transition 1𝑣𝑣 − 2𝑐𝑐 
(brown arrows) of the oblique valleys that was observed down to 𝐵𝐵 ~ 3 T because the level 2𝑐𝑐 
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is depopulated from 𝐵𝐵 ~ 3 T, therefore 𝐸𝐸𝐹𝐹 ~ 𝐸𝐸2𝑐𝑐 ~ 20 meV above the bulk conduction band 
edge of the oblique valleys. According to the theoretical calculation in the massive Dirac 
fermion model, the ground cyclotron resonance CR-O of this sample exists because the level 
1𝑐𝑐 of the oblique valleys is depopulated from 𝐵𝐵 ~ 6 T, but this transition is masked in the 
reststrahlen band. The intraband transition 1𝑐𝑐 − 2𝑐𝑐 (sky blue arrows) below the reststrahlen 
band can then occur below 𝐵𝐵 ~ 6 T down to 𝐵𝐵 ~ 3 T. The same scenario occurs in the bulk 
longitudinal valley, exhibiting 𝐸𝐸𝐹𝐹 ~ 24 meV above the bulk conduction band edge. This 
indicates that, in our sample Pb0.95Sn0.05Se, the bulk longitudinal and oblique conduction 
band edges are situated at about the same energy from the zero energy taken at the mid gap. 
This agrees well with the electronic band structure calculation of (111) Pb0.64Sn0.36Se 12 (Fig. 
3.20(b)). It is known that one can estimate the carrier mobility from the necessary condition 
for electrons or holes to create a cyclotron orbit: 𝜇𝜇𝐵𝐵 ≥ 1. In Pb0.95Sn0.05Se, we observed 
transitions down to 𝐵𝐵 ~ 0.07 T, evidencing a carrier mobility 𝜇𝜇 ≥ 140,000 cm2/(V.s) at 4.5 K.   
 
3.2. Topological surface states in (111) Pb1-xSnxSe 

 The interband and CR transitions occurring in the bulk longitudinal and oblique 
valleys of the eight (111) Pb1-xSnxSe samples were interpreted using the massive Dirac 
fermion model as shown in the previous subsection. Besides those transitions, some additional 
transmission minima cannot be fit with the Dirac LL transitions of massive Dirac fermions. 
Such minima could be pertaining to the transitions resulting from the TSS. To demonstrate 
this, we compare two samples x = 0.14 and x = 0.19 with the Sn compositions that are nearly 
“symmetric” with respect to the critical Sn content xc = 0.16 of the bulk band crossing in Pb1-

xSnxSe measured at 4.5 K. Magneto-spectroscopy was then carried out up to 𝐵𝐵 = 17 T at 𝑇𝑇 = 
4.5 K. The ground CR transitions (CR-O and CR-L) and the first interband transition 1𝑣𝑣 − 0𝑐𝑐 
of the bulk valleys can be observed in Pb0.86Sn0.14Se (Fig. 4.8(a)). In Pb0.81Sn0.19Se (Fig. 
4.8(b)), two transitions can be resolved: the first interband transition 0𝑣𝑣 − 1𝑐𝑐 of the bulk 
valleys and the additional transition depicted by blue arrow which is only visible at 15 T and 
above. The additional transition occurs in topologically nontrivial Pb0.81Sn0.19Se (x > xc with 
negative band gap) but not in topologically trivial Pb0.86Sn0.14Se (x < xc with positive band 
gap) 11. 

  
The LL transitions in the FIR range are represented in Fig. 4.8(c) for Pb0.86Sn0.14Se 

and Fig. 4.8(d) for Pb0.81Sn0.19Se. Supplementary experimental data from 16 to 17 T were 
extracted from the transmission spectra of Pb0.86Sn0.14Se (Fig. 4.8(a)) and Pb0.81Sn0.19Se (Fig. 
4.8(b)). The data points were added on the corresponding LL transition fan charts. The ground 
CR and the first interband transitions of the bulk valleys are marked by bicolor circles (black 
and red). The additional transmission minima of Pb0.81Sn0.19Se denoted as blue circles are 
seen to satisfy a massless Dirac dispersion and could thus be interpreted as the ground CR of 
the TSS (CR-TSS) of massless Dirac fermions. The additional transition occurs at energies 
higher than 60 meV where the CR-O and CR-L of the bulk bands are expected.  Using the 
massless Dirac fermion model to calculate the transition energy of the CR-TSS as a function 
of magnetic field (Eq. 4.17), we obtain the blue solid line as curve fit for the CR-TSS in the Γ� 
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and 𝑀𝑀�  valleys. The Dirac velocity of massless Dirac fermions is 𝑣𝑣𝐷𝐷 = (4.7 ± 0.1) x 105 m/s, 
almost equal to that of the bulk valleys ((4.8 ± 0.1) x 105 m/s for the longitudinal valley and 
(4.6 ± 0.1) x 105 m/s for the oblique valleys). This is in good agreement with the theoretical 
calculation of the band structure of (111) Pb0.64Sn0.36Se 12 (Fig. 3.20(b)) where we can clearly 
see that the slope of the Γ�- and 𝑀𝑀�-Dirac cones is nearly equal to that of the bulk longitudinal 
and oblique bands.  

 

 
Figure 4.8. Magneto-optical Landau level spectroscopy of the topological surface states in (111) 

Pb1-xSnxSe. FIR magneto-optical transmission spectra measured up to 17 T at 4.5 K of Pb0.86Sn0.14Se (a) and 
Pb0.81Sn0.19Se (b). Red arrows depict the ground CR and the first interband transitions in the bulk valleys. 
Additional transition associated with the cyclotron resonance of the topological surface states (CR-TSS) of 
massless Dirac fermions is labeled by blue arrow. Dirac Landau level transition diagrams of Pb0.86Sn0.14Se (c) 
and Pb0.81Sn0.19Se (d) are shown. Data points of the CR-TSS denoted by blue circles were added on (d). Other 
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circles refer to the bulk longitudinal (black) and oblique (red) transitions. Black and red solid lines are curve fits 
calculated using the massive Dirac model for the bulk longitudinal and oblique valleys. Blue solid line is the 
calculated curve fit derived from the massless Dirac model for the CR-TSS. The BaF2 reststrahlen band is shown 
by green rectangle. Adapted from our previous work 11.    

 
We cannot distinguish the transitions of massless Dirac fermions in the Γ�-Dirac cone from the 
M� -Dirac cones in Pb0.81Sn0.19Se since they have very similar Dirac velocities and hence their 
ground CR are overlapping. This might also explain why the intensity of the ground CR 
transition attributed to the TSS is large, as can be seen in the transmission spectra. Since the 
CR-TSS can be observed for 𝐵𝐵 ≥ 15 T, the Fermi level measured from the Dirac point can be 
estimated to be around 60 meV for the Γ�-and M� -Dirac cones in Pb0.81Sn0.19Se.  
 
We also calculated the interband transitions of the TSS and they are found to be nearly 
located at the energy of the interband transitions of the bulk states. This can be easily 
understood by considering the square root terms of the interband transition energies in Eq. 4.9 
for the bulk states and Eq. 4.15 for the TSS. In narrow gap semiconductors as our samples, for 
𝑁𝑁 ≥ 1 and 𝐵𝐵 > 1 T, we obtain (∆2 + 2𝑣𝑣𝐷𝐷2ћ𝑒𝑒𝐵𝐵𝑁𝑁)1/2 ≈ (2𝑣𝑣𝐷𝐷2ћ𝑒𝑒𝐵𝐵𝑁𝑁)1/2 since ∆2 becomes 
smaller than 2𝑣𝑣𝐷𝐷2ћ𝑒𝑒𝐵𝐵𝑁𝑁. Hence, the TSS interband transitions cannot be experimentally 
resolved from the bulk interband transitions.   
 
 Finally, note that we also observed the CR-TSS in all the topologically nontrivial 
(111) Pb1-xSnxTe samples (see the subsection 4.2).       
 

4. Magneto-optical Landau level spectroscopy of Dirac 
fermions in (111) Pb1-xSnxTe  

 Magneto-optical IR Landau level spectroscopy was performed in twenty (111) Pb1-

xSnxTe samples (0 ≤ x ≤ 0.56) in the Faraday geometry for 𝐵𝐵 = 0-15 T and 𝑇𝑇 = 4.5 K in the 
FIR and MIR spectral ranges (4-600 meV). The applied magnetic field was oriented parallel 
to the [111] direction (the growth axis) and thus perpendicular to the sample surface. The 
relative transmission spectra of each sample can be obtained from the normalization of the 
sample transmission at a fixed field 𝑇𝑇(𝐵𝐵) by the zero-field transmission 𝑇𝑇(0) of the sample. 
The Dirac fermion model as described in the section 1 was used to analyze the experimental 
results.  

 
4.1. Bulk states in (111) Pb1-xSnxTe 

The magneto-optical MIR transmission spectra taken at various magnetic fields of six 
representative samples are represented in Fig. 4.9(a,b) for x = 0.11, Fig. 4.9(c,d) for x = 0.14, 
Fig. 4.9(e,f) for x = 0.25, Fig. 4.10(a,b) for x = 0.35, Fig. 4.10(c,d) for x = 0.46 and Fig. 
4.10(e,f) for x = 0.56. The observed transmission minima dispersing with increasing field 
correspond to absorptions due to the presence of LL transitions of Dirac fermions. Black and 
red arrows mark respectively the transitions originating from the bulk longitudinal and 
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oblique valleys. The absorption lines are broadened and their intensity increases when two 
transitions in both types of valleys occur at about the same energy. For high LL index 𝑁𝑁 of 
the transitions, only the transitions from the bulk longitudinal valley are shown. A large 
number of strong interband transitions were observed down to low fields and low energies in 
these samples, evidencing the Fermi energy close to the bulk band edge in both types of 
valleys. The samples possess high mobilities and low carrier densities. The sharpness of the 
absorption lines assures the high crystalline quality of the films.  
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Figure 4.9. MIR transmission spectra of trivial Pb1-xSnxTe. MIR magneto-optical transmission 

spectra of Pb1-xSnxTe measured at 4.5 K for x = 0.11 (a,b), x = 0.14 (c,d) and x = 0.25 (e,f) at different magnetic 
fields. Black and red arrows depict the transmission minima originating from the transitions in the bulk 
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longitudinal and oblique valleys, respectively. At high LL index 𝑁𝑁, the bulk longitudinal and oblique transitions 
are mixed and only the longitudinal ones are represented by black arrows. Narrow absorption lines evidence the 
high crystalline quality of the films. Transitions can be observed down to low fields, indicating the low carrier 
density and high mobility of the samples. All the spectra are shifted vertically for clarity 
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Figure 4.10. MIR transmission spectra of Pb1-xSnxTe around the topological phase transition. 

MIR magneto-optical transmission spectra of Pb1-xSnxTe measured at 4.5 K for x = 0.35 (a,b), x = 0.46 (c,d) and 
x = 0.56 (e,f) at different magnetic fields. Black and red arrows depict the transmission minima originating from 
the transitions in the bulk longitudinal and oblique valleys, respectively. At high LL index 𝑁𝑁, the bulk 
longitudinal and oblique transitions are mixed and only the longitudinal ones are represented by black arrows. 
Narrow absorption lines evidence the high crystalline quality of the films. Transitions can be observed down to 
low fields, indicating the low carrier density and high mobility of the samples. All the spectra are shifted 
vertically for clarity. 
 

The eight samples were also examined by magneto-optical spectroscopy in the FIR 
range. Here, we will show the typical FIR transmission spectra measured at several magnetic 
fields of Pb0.89Sn0.11Te (Fig. 4.11(a)), Pb0.86Sn0.14Te (Fig. 4.11(b)), Pb0.65Sn0.35Te (Fig. 
4.11(c)) and Pb0.54Sn0.46Te (Fig. 4.11(d)). In spite of the BaF2 substrate reststrahlen band 
between 22 and 55 meV, the ground CR and intraband transitions in high-mobility samples 
were observed at low fields below the reststrahlen band.   
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Figure 4.11. FIR transmission spectra of Pb1-xSnxTe. FIR magneto-optical transmission spectra of 

Pb1-xSnxTe measured at 4.5 K for x = 0.11 (a), x = 0.14 (b), x = 0.35 (c) and x = 0.46 (d). The ground state CR, 
intraband and interband transitions associated with the bulk valleys are shown by black (longitudinal valley) and 
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red (oblique valleys) arrows. The reststrahlen band of the BaF2 substrate is from 22 to 55 meV. All the curves 
are shifted vertically for clarity. 

 
 To construct LL transition fan charts, experimental transmission minima were then 

plotted as a function of magnetic field in Fig. 4.12(a) for x = 0.11, Fig. 4.12(b) for x = 0.14, 
Fig. 4.12(c) for x = 0.25, Fig. 4.12(d) for x = 0.35, Fig. 4.12(e) for x = 0.46 and Fig. 4.12(f) 
for x = 0.56. Full black circles and empty red circles are used respectively for the absorption 
minima originating from the bulk longitudinal and oblique transitions. The green rectangle 
represents the reststrahlen band of the BaF2 substrate (22-55 meV) which limits our 
observation. Similar analysis using the massive Dirac fermion model was carried out in these 
representative samples as in Pb1-xSnxSe films seen in the subsection 3.1. The black and red 
solid lines are the transition energies calculated using Eq. 4.9 for interband transitions, Eq. 
4.10 for intraband transitions and Eq. 4.11 for the ground CR for the bulk longitudinal and 
oblique valleys, respectively. We used the same notation as in the case of Pb1-xSnxSe for 
intraband and interband transitions. Again, an excellent agreement theory/experiment is 
obtained in these representative Pb1-xSnxTe films. Magneto-optical band parameters (|Δ| and 
𝑣𝑣𝐷𝐷) of these twenty Pb1-xSnxTe samples precisely extracted from the massive Dirac model are 
represented in Table 4.3. The Dirac transverse band edge mass of each valley can then be 
deduced from those two principle parameters: 𝑚𝑚∗ =  |Δ|/𝑣𝑣𝐷𝐷2 .    
 

Composition 
Pb1-xSnxTe 

2|𝚫𝚫|  
(meV) 

𝒗𝒗𝑫𝑫 (long.) 
(× 105 m/s) 

𝒗𝒗𝑫𝑫 (obl.) 
(× 105 m/s) 

𝒎𝒎∗ (long.) 
(× 𝒎𝒎𝟎𝟎) 

𝒎𝒎∗ (obl.) 
(× 𝒎𝒎𝟎𝟎) 

PbTe 190 ± 5 9.0 ± 0.2  6.0 ± 0.1 0.021 ± 0.001 0.046 ± 0.002 
Pb0.92Sn0.08Te 145 ± 5 8.3 ± 0.1 5.6 ± 0.1 0.019 ± 0.001 0.041 ±0.002 
Pb0.89Sn0.11Te 125 ± 5 8.15 ± 0.10 5.4 ± 0.1 0.017 ± 0.001 0.038 ± 0.002 
Pb0.86Sn0.14Te 110 ± 5 8.0 ± 0.1 5.3 ± 0.1 0.015 ± 0.001 0.034 ± 0.002 
Pb0.85Sn0.15Te 105 ± 5 8.0 ± 0.1 5.3 ± 0.1 0.014 ± 0.001 0.033 ± 0.002 
Pb0.80Sn0.20Te 90 ± 5  8.0 ± 0.1 5.3 ± 0.1 0.012 ± 0.001 0.028 ± 0.002 
Pb0.75Sn0.25Te 70 ± 5 7.75 ± 0.10 5.15 ± 0.10 0.010 ± 0.001 0.023 ± 0.002 
Pb0.72Sn0.28Te 62.5 ± 7.5 7.65 ± 0.10 5.15 ± 0.10 0.009 ± 0.001 0.021 ± 0.003 
Pb0.69Sn0.31Te 55 ± 5 7.6 ± 0.1 5.15 ± 0.10 0.008 ± 0.001 0.018 ± 0.002 
Pb0.66Sn0.34Te 55 ± 5 7.575 ± 0.075 5.1 ± 0.1 0.008 ± 0.001 0.019 ± 0.002 
Pb0.65Sn0.35Te 50 ± 10 7.55 ± 0.10 5.2 ± 0.1 0.008 ± 0.002 0.016 ± 0.003 
Pb0.63Sn0.37Te 45 ± 15 7.5 ± 0.1 5.2 ± 0.1 0.007 ± 0.002 0.015 ± 0.005 
Pb0.60Sn0.40Te 50 ± 10 7.4 ± 0.1 5.2 ± 0.1 0.008 ± 0.002 0.016 ± 0.003 
Pb0.59Sn0.41Te 50 ± 10 7.4 ± 0.1 5.2 ± 0.1 0.008 ± 0.002 0.016 ± 0.003 
Pb0.56Sn0.44Te 40 ± 5 7.3 ± 0.1 5.1 ± 0.1 0.007 ± 0.001 0.014 ± 0.002 
Pb0.55Sn0.45Te 40 ± 5 7.3 ± 0.1 5.1 ± 0.1 0.007 ± 0.001 0.014 ± 0.002 
Pb0.54Sn0.46Te 30 ± 5 7.3 ± 0.1 5.0 ± 0.1 0.005 ± 0.001 0.011 ± 0.002 
Pb0.50Sn0.50Te 35 ± 5 7.1 ± 0.1 4.9 ± 0.1 0.006 ± 0.001 0.013 ± 0.002 
Pb0.49Sn0.51Te 35 ± 5 7.2 ± 0.1 5.05 ± 0.10 0.006 ± 0.001 0.012 ± 0.002 
Pb0.44Sn0.56Te 30 ± 10 7.1 ± 0.1 4.9 ± 0.1 0.005 ± 0.002 0.011 ± 0.004 

Table 4.3. Magneto-optical band parameters determined from the massive Dirac model analysis 
in twenty (111) Pb1-xSnxTe samples measured at 𝑻𝑻 = 4.5 K. 2|Δ| is the energy gap. The Dirac velocities 𝑣𝑣𝐷𝐷 in 
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the longitudinal and oblique valleys are represented for each composition. The band edge masses are deduced 
from the previous two parameters 𝑚𝑚∗ =  |Δ|/𝑣𝑣𝐷𝐷2  for both types of valleys. 𝑚𝑚0 is the electron rest mass.  
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Figure 4.12. Landau level transition fan charts of (111) Pb1-xSnxTe. Landau level transition fan 

charts of (111) Pb1-xSnxTe for x = 0.11 (a), x = 0.14 (b), x = 0.25 (c), x = 0.35 (d), x = 0.46 (e) and x = 0.56 (f). 
Full black and empty red circles mark respectively the transitions in the bulk longitudinal and oblique valleys. 
The BaF2 substrate reststrahlen band between 22 and 55 meV is represented by green rectangle. The 
experimental results were analyzed using the massive Dirac model. Black and red curve fits were calculated for 
the transition energies in the longitudinal and oblique bulk valleys.  

 
The energy gap takes the same value for both types of valleys. The Dirac velocity 

decreases as x increases in both types of bulk valleys, as discussed in the sections 5 and 7. 
The Dirac velocity of the bulk states in the longitudinal valley is larger than that in the oblique 
valleys as seen previously in (111) Pb1-xSnxSe system, but the ratio of the longitudinal and 
oblique Dirac velocities of (111) Pb1-xSnxTe is always large through the Sn composition 
range. This can be explained by the fact that the valley anisotropy in Pb1-xSnxTe is higher 
than that in Pb1-xSnxSe. This topic will be further clarified in the section 7.  

 
The Fermi energy 𝐸𝐸𝐹𝐹 in the bulk band edge of Pb1-xSnxTe can be estimated as 

presented previously for Pb1-xSnxSe. For example, in p-type Pb0.54Sn0.46Te (Fig. 4.12(e)), the 
interband transitions 1𝑣𝑣 − 0𝑐𝑐 and 2𝑣𝑣 − 1𝑐𝑐 of the longitudinal bulk valley were respectively 
observed down to 𝐵𝐵 ~ 3 T and 𝐵𝐵 ~ 1.5 T, indicating 𝐸𝐸𝐹𝐹 ~ 35 meV below the valence band 
edge of the longitudinal valley. In the oblique bulk valleys, the interband transitions 3𝑣𝑣 − 2𝑐𝑐 
and 4𝑣𝑣 − 3𝑐𝑐 were measured down to 𝐵𝐵 ~ 4 T and 𝐵𝐵 ~ 3 T, we thus get 𝐸𝐸𝐹𝐹 ~ 50 meV below the 
bulk valence band edge of the oblique valleys. Note that it is not surprising that the Fermi 
energy in the valence band edge in both types of valleys is slightly different. Since the system 
of Pb1-xSnxTe grown on BaF2(111) substrate has been reported to exhibit a mismatch at low 
temperatures due to a strong thermal expansion, therefore the bulk oblique bands could be 
shifted up in energy with respect to the longitudinal bands 14–16. In Pb0.54Sn0.46Se, we 
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observed transitions down to 𝐵𝐵 ~ 1.5 T, evidencing a carrier mobility 𝜇𝜇 ≥ 6,500 cm2/(V.s) at 
4.5 K.   

 
4.2. Topological surface states in (111) Pb1-xSnxTe 

 To study the TSS in (111) Pb1-xSnxTe, we applied the same analysis as used for (111) 
Pb1-xSnxSe to interpret additional transmission minima that seem to evade the expected 
physics of the carriers in the bulk longitudinal and oblique valleys. Here, we show two 
couples of samples that possess nearly “symmetric” Sn contents with respect to the critical 
concentration xc ~ 0.4 of the bulk band inversion in Pb1-xSnxTe measured at 4.5 K: x = 0.35 
and x = 0.46, and x = 0.25 and x = 0.56. Fig. 4.13 and Fig. 4.14 show a zoomed in view of the 
transmission spectra measured at 4.5 K and at high magnetic fields 𝐵𝐵 = 11 – 15 T of 
Pb0.65Sn0.35Te (Fig. 4.13(a)), Pb0.54Sn0.46Te (Fig. 4.13(b)), Pb0.75Sn0.25Te (Fig. 4.14(a)) and 
Pb0.44Sn0.56Te (Fig. 4.14(b)) in the spectral range 55 - 150 meV. The ground CR transition in 
the bulk longitudinal valley (CR-L) and the first interband transitions of the bulk valleys can 
be observed in these four samples. We observed the additional transition indicated by blue 
arrows that occurs between the CR-L and the first interband transition. This transition is only 
measured in nontrivial Pb0.54Sn0.46Te and Pb0.44Sn0.56Te samples (x > xc with negative band 
gap), but not in trivial Pb0.75Sn0.25Te and Pb0.65Sn0.35Te samples (x < xc with positive band 
gap). We have shown the magneto-optical results of (111) Pb0.54Sn0.46Te and (111) 
Pb0.44Sn0.56Te in our works 10,17.      

  
 We added the additional minima as represented by blue circles on the LL transition fan 

charts of Pb0.54Sn0.46Te (Fig. 4.13(d)) and Pb0.44Sn0.56Te (Fig. 4.14(d)). Using the massless 
Dirac model (Eq. 4.17), the additional transmission minima observed in Pb0.54Sn0.46Te and 
Pb0.44Sn0.56Te could be interpreted as the ground CR-TSS of massless Dirac fermions. The 
blue solid lines are the calculated CR-TSS using the same Dirac velocity as in the bulk 
longitudinal valley: 𝑣𝑣𝐷𝐷 = (7.3 ± 0.1) x 105 m/s for Pb0.54Sn0.46Te and 𝑣𝑣𝐷𝐷 = (7.1 ± 0.1) x 105 
m/s for Pb0.44Sn0.56Te. As the Dirac velocities of the longitudinal bulk states and the TSS are 
equivalent, the observed CR-TSS could thus be associated with the massless Dirac fermions 
in the Γ� valley, in good agreement with theoretical calculations shown in Fig. 3.18(c,d) 13. 
Since the CR-TSS transition was observed down to ~ 11 T in Pb0.54Sn0.46Te and ~ 9 T in 
Pb0.44Sn0.56Te, the Fermi energy measured from the Dirac point is estimated to be 𝐸𝐸𝐹𝐹 ~ 85 
meV and 𝐸𝐸𝐹𝐹 ~ 75 meV in the Γ�-Dirac cone, respectively. Note that the interband transitions of 
the TSS cannot be experimentally resolved since they are nearly located at the energy of the 
bulk interband transitions.  
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Figure 4.13. Magneto-optical Landau level spectroscopy of the topological surface states in (111) 

Pb1-xSnxTe. A zoomed in view of the magneto-optical transmission spectra measured between 11 and 15 T at 
4.5 K of Pb0.65Sn0.35Te (a) and Pb0.54Sn0.46Te (b). The ground CR and the first interband transitions in the bulk 
valleys are depicted by black (for the longitudinal valley) or red (for the oblique valleys) arrows. Additional 
transition associated with the ground cyclotron resonance of the topological surface states (CR-TSS) of massless 
Dirac fermions is labeled by blue arrow. Dirac Landau level transition diagrams of Pb0.65Sn0.35Te (c) and 
Pb0.54Sn0.46Te (d) are shown. Data points of the CR-TSS denoted by blue circles were added on (d). Other circles 
refer to the bulk longitudinal (black) and oblique (red) transitions. Black and red solid lines are curve fits 
calculated using the massive Dirac model for the bulk longitudinal and oblique valleys. Blue solid line is the 
calculated curve fit derived from the massless Dirac model for the CR-TSS. The BaF2 reststrahlen band is shown 
by green rectangle. (b) and (d) is adapted from our paper 10.    
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Figure 4.14. Magneto-optical Landau level spectroscopy of the topological surface states in (111) 

Pb1-xSnxTe.  A zoomed in view of the magneto-optical transmission spectra measured between 11 and 15 T at 
4.5 K of Pb0.75Sn0.25Te (a) and Pb0.44Sn0.56Te (b). The ground CR and the first interband transitions in the bulk 
longitudinal valley are depicted by black arrows. Additional transition associated with the ground cyclotron 
resonance of the topological surface states (CR-TSS) of massless Dirac fermions is labeled by blue arrow. Dirac 
Landau level transition diagrams of Pb0.75Sn0.25Te (c) and Pb0.44Sn0.56Te (d) are shown. Data points of the CR-
TSS denoted by blue circles were added on (d). Other circles refer to the bulk longitudinal (black) and oblique 
(red) transitions. Black and red solid lines are curve fits calculated using the massive Dirac model for the bulk 
longitudinal and oblique valleys. Blue solid line is the calculated curve fit derived from the massless Dirac 
model for the CR-TSS. The BaF2 reststrahlen band is shown by green rectangle. (b) and (d) is adapted from 17.    
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In this analysis, we did not observe any LL transition pertaining to the TSS in the 𝑀𝑀�  
valleys in Pb0.54Sn0.46Te and Pb0.44Sn0.56Te. This might be due to the fact that the Dirac 
velocity of the massless Dirac fermions in the 𝑀𝑀�-Dirac cones is almost equal to that of the 
oblique bulk bands. As a consequence, the interband transitions of the TSS in the 𝑀𝑀�  valleys 
and those of the bulk states in the oblique valleys are overlapping. Moreover, the search for 
the ground CR-TSS transition of the 𝑀𝑀�-Dirac cones is not that easy since it lies within the 
BaF2 reststrahlen band. If we consider the fact that the bulk oblique bands of p-type 
Pb0.54Sn0.46Te and Pb0.44Sn0.56Te samples are shifted up in energy due to the thermal 
expansion mismatch at low temperatures, the Fermi energy in the 𝑀𝑀�-Dirac cones seems to be 
located at the energy higher than that estimated from the Dirac point of the Γ�-Dirac cone. 
Therefore, further experiments up to high magnetic fields (𝐵𝐵 > 20 T) should be carried out in 
order to find out the CR-TSS related-feature of the 𝑀𝑀�-points.  

 
The magneto-optical determination of the Dirac velocity in the oblique valleys of 

(111) Pb1-xSnxTe is not precise as in the case of (111) Pb1-xSnxSe where the oblique bands 
are nearly isotropic (Fig. 3.20(b)). The high anisotropy of the oblique bands found in (111) 
Pb1-xSnxTe results in different Dirac velocities in different directions along the high-
symmetry line cuts 𝐾𝐾�-Γ�-𝑀𝑀�-𝐾𝐾� of the 2DBZ (Fig. 3.18(c,d)). Our experimental value of the 
oblique 𝑣𝑣𝐷𝐷 is actually an effective result derived from 𝑣𝑣𝐷𝐷(obl. ) = �𝑣𝑣𝑀𝑀�−𝐾𝐾�𝑣𝑣𝑀𝑀�−Γ�, where 𝑣𝑣𝑀𝑀�−𝐾𝐾� 
and 𝑣𝑣𝑀𝑀�−Γ� denote respectively the Dirac velocities along the 𝑀𝑀�-𝐾𝐾� and 𝑀𝑀�-Γ� directions. The 
Dirac velocity for the 𝑀𝑀�-Dirac cones is also an effective value. 𝑣𝑣𝑀𝑀�−𝐾𝐾� is expected to be almost 
equal to the Dirac velocity measured in the longitudinal valley. We can thus extract 𝑣𝑣𝑀𝑀�−Γ�, for 
example in (111) Pb0.54Sn0.46Te, that is given by 𝑣𝑣𝑀𝑀�−Γ� ~ (3.4 ± 0.2) × 105 m/s.  

 

5. Magneto-optical determination of a topological index 
Now, we will turn our attention to the notion of the topological index that can be used 

to describe the parity ordering of the conduction and valence bands of a Dirac fermion 
system. When the Dirac system is said to have positive energy gap, i.e. 𝐿𝐿6− is above 𝐿𝐿6+ in Pb1-

xSnxSe and Pb1-xSnxTe (Fig. 3.14(a)), their bulk bands exhibit trivial topology. On the 
contrary, the Dirac system possesses negative energy gap when their bulk bands are in the 
inverted regime and shown to have nontrivial topology. In this work, we show that the 
topological index of a material can be determined via the effective velocity of bulk massive 
Dirac fermions. This has been described in our previous paper 11. Starting from solving the 
eigenvalue problem for a Dirac system that can be described by the general BHZ Hamiltonian 
18,19, shown in the section 3 of the Chapter 3, we obtain the Dirac velocity as: 

     
𝑣𝑣𝐷𝐷2 = 𝑣𝑣𝑐𝑐2 −

2𝐵𝐵1∆
ћ2

                                                    (4.20) 
 
Here, 𝑣𝑣𝑐𝑐 is the critical velocity of a gapless 3D Dirac state that could take place at the critical 
composition xc of the topological phase transition. Comparing the above equation to Eq. 4.6 
derived from the 6-band 𝒌𝒌.𝒑𝒑 approach for the lead salts proposed by Mitchell and Wallis 1, 
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we can identify 𝐵𝐵1 = − ћ2

2𝑚𝑚�
. 𝐵𝐵1 is typically negative in the sign convention of BHZ 18 and the 

far-band contribution to the band edge mass 𝑚𝑚�  has a positive sign 1. 𝑚𝑚�  is due to interactions 
between the valence/conduction bands (𝐿𝐿6

±) and the four far-bands lying far away in energy 
from the band gap (Fig. 3.14(b)). When the main valence and conduction bands invert, the 
far-bands are still in the same ordering. Consequently, 𝑚𝑚�  does not change sign for 
fundamental reasons. Note that the term 1/𝑚𝑚�  is always small as compared to the term 1/𝑚𝑚 in 
Eq. 4.1 in lead-salt systems. For example, in PbSe 3,4, for the longitudinal valley 1/𝑚𝑚 (~ 
1/0.04𝑚𝑚0) is 6.25 times greater than 1/𝑚𝑚�  (~ 1/0.25𝑚𝑚0).  
 

Interestingly, the term −2𝐵𝐵1∆
ћ2

 in Eq. 4.20 has been previously defined in the literature to be 
related to the topological index 𝜂𝜂 as follows 20–23:     
 

(−1)𝜂𝜂 = sign �− 2𝐵𝐵1∆
ћ2
�                                             (4.21) 

 
We thus finally get: 
 

(−1)𝜂𝜂 = sign �∆
𝑚𝑚�
� = sign(𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2)                                  (4.22) 

 
As 𝑚𝑚�  is always positive, ∆ can thus change sign through the topological phase transition when 
the conduction and valence bands swap. For a TCI system, 𝜂𝜂 is a valley topological index that 
can be related to the mirror Chern number via the definition given by T.H. Hsieh et al. 24 and 
L. Fu 20,25. In the trivial regime, ∆ > 0, the material is attributed a zero topological index (𝜂𝜂 = 
0). The material in the nontrivial regime, ∆ < 0, is identified by the emergence of the TSS that 
disperse in the bulk band gap and has a nonzero topological index (𝜂𝜂 = 1). However, Eq. 4.22 
demonstrates that by measuring 𝑣𝑣𝐷𝐷 and 𝑣𝑣𝑐𝑐 of the bulk states, we can determine the topological 
index 𝜂𝜂 (modulo 2) of the topological matter. This approach is a new way for measuring 𝜂𝜂 
that is usually inferred from the direct observation of the TSS by ARPES or STM experiments 
as seen in the Chapter 3. 
 
 In this section, we will experimentally extract 𝜂𝜂 in Pb1-xSnxSe and Pb1-xSnxTe IV-VI 
TCI systems via the study of the variation of 𝑣𝑣𝐷𝐷, measured from magneto-spectroscopy, 
through the topological phase transition. 
 
5.1. (111) Pb1-xSnxSe 

 We systematically investigated a total of eight (111) Pb1-xSnxSe films in the Sn 
composition range 0 ≤ x ≤ 0.30 using IR magneto-optical LL spectroscopy. The massive 
Dirac model was used to extract, for each compound, the magneto-optical band parameters 
2|Δ| and 𝑣𝑣𝐷𝐷 in the longitudinal and oblique valleys as reported in Table 4.2.  
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The longitudinal and oblique velocities of massive Dirac fermions were respectively 
plotted as a function of Sn content in Fig. 4.15(a,b) in order to study their variation across the 
topological phase transition. We observe a decrease of the longitudinal and oblique Dirac 
velocities when x increases. The measured band gaps 2|Δ| were also plotted versus x in Fig. 
4.15(c). We observe at the beginning a decrease of the energy gaps, then they show a 
minimum about 15 ± 5 meV at x = 0.165 that is followed by an increase with increasing Sn 
composition. Hence, we can estimate the critical Sn content where the topological phase 
transition occurs at 4.5 K as xc = 0.16 for Pb1-xSnxSe. We can then deduce 𝑣𝑣𝑐𝑐 = 5 x 105 m/s 
for the longitudinal valley and 𝑣𝑣𝑐𝑐 = 4.7 x 105 m/s for the oblique valleys in (111) Pb1-xSnxSe. 
Overall, we found that 𝑣𝑣𝐷𝐷 > 𝑣𝑣𝑐𝑐 for x < xc in the topologically trivial regime and 𝑣𝑣𝐷𝐷 < 𝑣𝑣𝑐𝑐 for x 
> xc in the topologically nontrivial regime. Additionally, we observed in the magneto-optical 
transmission spectra that the decrease in bulk Dirac velocity correlates with the emergence of 
the CR-TSS beyond the crossing over point xc of the topological phase transition.  
 

 
 Figure 4.15. Magneto-optical spectroscopy of bulk (111) Pb1-xSnxSe measured at 4.5 K. 
Longitudinal (a) and oblique (b) velocities of massive Dirac fermions as a function of Sn content. A decrease in 
bulk velocity as x is increased is observed. Blue lines in (a) and (b) indicate the values of the critical velocity: 𝑣𝑣𝑐𝑐 
= 5 x 105 m/s for the longitudinal valley and 𝑣𝑣𝑐𝑐 = 4.7 x 105 m/s for the oblique valleys. (c) Energy gap 2|Δ| 
versus x shows a minimum at x = 0.165. We estimate the critical composition to be xc = 0.16 at 4.5 K. (d) 𝑣𝑣𝐷𝐷2 −
𝑣𝑣𝑐𝑐2 = Δ/𝑚𝑚�  plotted as a function of x for the longitudinal (black) and oblique (red) valleys. We observe 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 
> 0 for x < xc and 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 < 0 for x > xc. This indicates the sign change of Δ from positive to negative for x > xc 
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which can be seen in (c) when 2|Δ| turns to be increased beyond xc. Shaded region represents the topological 
regime. Adapted from our previous work 11.   

 
 The topological index 𝜂𝜂 of Pb1-xSnxSe can then be extracted by studying 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 as a 

function of x, as shown in Fig. 4.15(d) for both types of bulk valleys. We observe 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 
decrease with increasing x such that 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 > 0 for x < xc and 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 < 0 for x > xc. 
Therefore, we can determine from Eq. 4.22 that 𝜂𝜂 = 0 for x < xc when Pb1-xSnxSe is in the 
trivial regime and 𝜂𝜂 = 1 for x > xc when Pb1-xSnxSe is in the nontrivial regime. A first 
magneto-optical determination of the topological index in a material of 3D TI family is thus 
confirmed in our investigation. Moreover, since 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 = Δ/𝑚𝑚�  and 𝑚𝑚�  > 0, we can 
determine the sign of the band gap. We observe ∆ > 0 for x < xc and ∆ < 0 for x > xc. In other 
words, Pb1-xSnxSe has a positive band gap when it is topologically trivial (x < xc) and its 
band structure is in the normal regime, and it has a negative band gap when it is topologically 
nontrivial (x > xc) and its band structure is in the inverted regime. Table 4.4 represents the 
values of the energy gap with sign and Dirac velocities in both types of bulk valleys.  

 
Composition 
Pb1-xSnxSe 

2𝚫𝚫  
(meV) 

𝒗𝒗𝑫𝑫 (long.) 
(× 105 m/s) 

𝒗𝒗𝑫𝑫 (obl.) 
(× 105 m/s) 

PbSe 146 ± 4 6.4 ± 0.1 5.6 ± 0.1 
Pb0.95Sn0.05Se 85 ± 5 5.8 ± 0.1 5.2 ± 0.1 
Pb0.90Sn0.10Se 40 ± 5 5.25 ± 0.10 4.9 ± 0.1 
Pb0.86Sn0.14Se 25 ± 5 5.05 ± 0.10 4.8 ± 0.1 
Pb0.835Sn0.165Se -15 ± 5 4.9 ± 0.1 4.7 ± 0.1 
Pb0.81Sn0.19Se -25 ± 10 4.8 ± 0.1 4.6 ± 0.1 
Pb0.76Sn0.24Se -55 ± 5 4.4 ± 0.1 4.4 ± 0.1 
Pb0.70Sn0.30Se -100 ± 10 4.0 ± 0.1 4.0 ± 0.1 

 
Table 4.4. Magneto-optical band parameters extracted from the massive Dirac model analysis in 

eight (111) Pb1-xSnxSe films (0 ≤ x ≤ 0.30) measured at 𝑻𝑻 = 4.5 K. The band gap 2Δ is shown with sign. 
Longitudinal and oblique bulk velocities 𝑣𝑣𝐷𝐷 are represented for each compound.  

 
 We can deduce the value of 𝑚𝑚�  of (111) Pb1-xSnxSe samples for each respective valley 

by studying the variation of 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 in the longitudinal (black points) and oblique (red 
points) valleys as a function of ∆, as shown in Fig. 4.16. From the fitting parameters, we 
deduced 𝑚𝑚�  ~ (0.09 ± 0.01)𝑚𝑚0 in the longitudinal valley and 𝑚𝑚�  ~ (0.15 ± 0.01)𝑚𝑚0 in the 
oblique valleys.  
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Figure 4.16. Determination of the far-band contribution to the band edge mass 𝒎𝒎�  in the 

longitudinal and oblique bulk valleys. The variation of 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 in the longitudinal (black points) and oblique 
(red points) valleys is shown as a function of half band gap ∆. 𝑚𝑚�  is the inverse of the slope of the linear curve fit.    

 
5.2. (111) Pb1-xSnxTe 

 In order to consolidate the general aspect of our magneto-optical results obtained in 
(111) Pb1-xSnxSe, a total of twenty (111) Pb1-xSnxTe samples for 0 ≤ x ≤ 0.56 were also 
systematically examined by means of IR magneto-optical LL spectroscopy. For each 
composition, 𝑣𝑣𝐷𝐷 in the longitudinal and oblique valleys were obtained from the massive Dirac 
model analysis and are listed in Table 4.3.  
 

Similar to (111) Pb1-xSnxSe, we proceeded the same analysis to study the variation of 
the longitudinal and oblique bulk velocities (Fig. 4.17(a,b)) as a function of Sn composition 
through the topological phase transition in (111) Pb1-xSnxTe. The critical Sn content where 
the bulk bands 𝐿𝐿6

± invert can be estimated to be xc ≈ R 0.42 ± 0.02 for Pb1-xSnxTe measured at 
4.5 K. We can then deduce 𝑣𝑣𝑐𝑐 = 7.4 × 105 m/s for the longitudinal valley and 𝑣𝑣𝑐𝑐 = 5.1 × 105 
m/s for the oblique valleys in (111) Pb1-xSnxTe. Again, we found that 𝑣𝑣𝐷𝐷 > 𝑣𝑣𝑐𝑐 for x < xc in the 
topologically trivial regime and 𝑣𝑣𝐷𝐷 < 𝑣𝑣𝑐𝑐 for x > xc in the topologically nontrivial regime, 
being identified by the observation of the CR-TSS related feature in the transmission spectra 
after xc.  
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Figure 4.17. Magneto-optical spectroscopy of bulk (111) Pb1-xSnxTe measured at 4.5 K. 

Longitudinal (a) and oblique (b) velocities of massive Dirac fermions as a function of Sn content. A decrease in 
bulk velocity as x is increased is observed. Blue lines in (a) and (b) indicate the values of the critical velocity: 𝑣𝑣𝑐𝑐 
= 7.4 × 105 m/s for the longitudinal valley and 𝑣𝑣𝑐𝑐 = 5.1 × 105 m/s for the oblique valleys. We estimate the 
critical composition to be xc ≈ 0.42 ± 0.02 at 4.5 K. (c) 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 = Δ/𝑚𝑚�  plotted as a function of x for the 
longitudinal (black) and oblique (red) valleys. We observe 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 > 0 for x < xc and 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 < 0 for x > xc. 
This indicates the sign change of Δ from positive to negative for x > xc. Shaded region represents the topological 
regime.  
 

 Studying the sign of 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 as a function of x for both types of bulk valleys, as 
illustrated in Fig. 4.17(c), we can determine the topological index 𝜂𝜂 of Pb1-xSnxTe using Eq. 
4.22. We observe that 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 > 0 for x < xc and 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 < 0 for x > xc, thereby, 𝜂𝜂 = 0 for x 
< xc when Pb1-xSnxTe is in the trivial regime and 𝜂𝜂 = 1 for x > xc when Pb1-xSnxTe is in the 
nontrivial regime. Subsequently, we can give the sign to the band gap as we know that 𝑣𝑣𝐷𝐷2 −
𝑣𝑣𝑐𝑐2 = Δ/𝑚𝑚� , with 𝑚𝑚�  > 0: ∆ > 0 for x < xc and ∆ < 0 for x > xc. The values of the energy gap 
with sign and Dirac velocities in both types of bulk valleys are listed in Table 4.5.  
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Composition 
Pb1-xSnxTe 

2𝚫𝚫  
(meV) 

𝒗𝒗𝑫𝑫 (long.) 
(× 105 m/s) 

𝒗𝒗𝑫𝑫 (obl.) 
(× 105 m/s) 

PbTe 190 ± 5 9.0 ± 0.2  6.0 ± 0.1 
Pb0.92Sn0.08Te 145 ± 5 8.3 ± 0.1 5.6 ± 0.1 
Pb0.89Sn0.11Te 125 ± 5 8.15 ± 0.10 5.4 ± 0.1 
Pb0.86Sn0.14Te 110 ± 5 8.0 ± 0.1 5.3 ± 0.1 
Pb0.85Sn0.15Te 105 ± 5 8.0 ± 0.1 5.3 ± 0.1 
Pb0.80Sn0.20Te 90 ± 5  8.0 ± 0.1 5.3 ± 0.1 
Pb0.75Sn0.25Te 70 ± 5 7.75 ± 0.10 5.15 ± 0.10 
Pb0.72Sn0.28Te 62.5 ± 7.5 7.65 ± 0.10 5.15 ± 0.10 
Pb0.69Sn0.31Te 55 ± 5 7.6 ± 0.1 5.15 ± 0.10 
Pb0.66Sn0.34Te 55 ± 5 7.575 ± 0.075 5.1 ± 0.1 
Pb0.65Sn0.35Te 50 ± 10 7.55 ± 0.10 5.2 ± 0.1 
Pb0.63Sn0.37Te 45 ± 15 7.5 ± 0.1 5.2 ± 0.1 
Pb0.60Sn0.40Te 50 ± 10 7.4 ± 0.1 5.2 ± 0.1 
Pb0.59Sn0.41Te 50 ± 10 7.4 ± 0.1 5.2 ± 0.1 
Pb0.56Sn0.44Te -40 ± 5 7.3 ± 0.1 5.1 ± 0.1 
Pb0.55Sn0.45Te -40 ± 5 7.3 ± 0.1 5.1 ± 0.1 
Pb0.54Sn0.46Te -30 ± 5 7.3 ± 0.1 5.0 ± 0.1 
Pb0.50Sn0.50Te -35 ± 5 7.1 ± 0.1 4.9 ± 0.1 
Pb0.49Sn0.51Te -35 ± 5 7.2 ± 0.1 5.05 ± 0.10 
Pb0.44Sn0.56Te -30 ± 10 7.1 ± 0.1 4.9 ± 0.1 

 
Table 4.5. Magneto-optical band parameters extracted from the massive Dirac model analysis in 

twenty (111) Pb1-xSnxTe films (0 ≤ x ≤ 0.56) measured at 𝑻𝑻 = 4.5 K. The band gap 2Δ is shown with sign. 
Longitudinal and oblique bulk velocities 𝑣𝑣𝐷𝐷 are represented for each compound.  

 
 Similar to (111) Pb1-xSnxSe, we can deduce the value of 𝑚𝑚�  of (111) Pb1-xSnxTe 

samples for each respective valley by studying the variation of 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 in the longitudinal 
and oblique valleys versus ∆. From the linear curve fit parameter, we deduced 𝑚𝑚�  ~ (0.09 ± 
0.01)𝑚𝑚0 in the longitudinal valley and 𝑚𝑚�  ~ (0.20 ± 0.01)𝑚𝑚0 in the oblique valleys.  

 
6. Validity of the massive Dirac approximation  

We have previously seen that the LLs in the massive Dirac fermion model given in Eq. 
4.8 describe very well the optical transitions in Pb1-xSnxSe and Pb1-xSnxTe IV-VI 
semiconductors. Note that they are obtained by neglecting the 𝑘𝑘4 terms in the BHZ 
eigenvalues or equivalently the term that varies in 𝐵𝐵2 under the square root of the LLs 
expressed in Eq. 4.3(a,b). In the following, we will verify and show that our assumptions for 
neglecting these terms are valid. If we do not neglect any term, the LL energies in the trivial 
regime (Eq. 4.8) become:  
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𝐸𝐸𝑁𝑁>0
𝑐𝑐,± =  ∓ћ𝜔𝜔� + �(∆ + ћ𝑒𝑒𝐵𝐵𝑁𝑁

𝑚𝑚�
)2 + 2𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵𝑁𝑁                             (4.23a) 

and 
𝐸𝐸0𝑐𝑐 =  ћ𝜔𝜔� + ∆                                              (4.23b) 

 

𝐸𝐸𝑁𝑁>0
𝑣𝑣,± =  ±ћ𝜔𝜔� − �(∆ + ћ𝑒𝑒𝐵𝐵𝑁𝑁

𝑚𝑚�
)2 + 2𝑣𝑣𝑐𝑐2ћ𝑒𝑒𝐵𝐵𝑁𝑁                             (4.23c) 

and 
𝐸𝐸0𝑣𝑣 =  −ћ𝜔𝜔� − ∆                                             (4.23d) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.18. Comparison between the Landau level transitions obtained from the massive Dirac 

model and the full 𝒌𝒌.𝒑𝒑 model including the 𝑩𝑩𝟐𝟐 term. Only experimental data in the bulk oblique valleys of 
(111) Pb0.81Sn0.19Se investigated by magneto-spectroscopy at 4.5 K are fit by the Landau level transitions 
calculated using the massive Dirac model (red curves) and the full model with the 𝐵𝐵2 term (green curves). 
Adapted from the supplementary material for our previous work 11.  
 

For this matter, the magneto-optical transmission minima associated with the bulk 
oblique valleys of (111) Pb0.81Sn0.19Se will be fit using the LL transitions calculated from the 
massive Dirac model (red curves) and the full 𝒌𝒌.𝒑𝒑 model taking into account the 𝐵𝐵2 term 
(green curves), as shown in Fig. 4.18. We clearly see that our data points are mostly 
constrained by the curve fits of low index LLs resulting from both models and are therefore 
little affected by the 𝐵𝐵2 term. The discrepancy between both models can be seen at high LL 
indices and high magnetic fields. However, both of them agree with the data within 
experimental uncertainty. The band parameters extracted from the massive Dirac model are 
2∆ = -25 ± 10 meV and 𝑣𝑣𝐷𝐷 = (4.6 ± 0.1) × 105 m/s for the bulk oblique valleys. The 
systematic study by magneto-optics allows us to estimate the critical oblique Dirac velocity to 

152 
 



CHAPTER 4 
Magneto-optical investigation of TCIs: IV-VI compounds 

 ___________________________________________________________________________________________________________________________________________________________________________________  
 

be 𝑣𝑣𝑐𝑐 = (4.7 ± 0.1) × 105 m/s. Using the relation 𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2 = ∆
𝑚𝑚�

, we can then deduce 𝑚𝑚�  ≈ 
0.24𝑚𝑚0 for the bulk oblique valleys in (111) Pb0.81Sn0.19Se. The band parameters obtained 
from the full model are 2∆ = -25 ± 5 meV, 𝑣𝑣𝑐𝑐 = (4.6 ± 0.1) x 105 m/s for the oblique valleys 
and 𝑚𝑚�  = 0.24𝑚𝑚0, in good agreement with the massive Dirac model. For a typical value of 𝑚𝑚�  
for Pb1-xSnxSe and Pb1-xSnxTe, we can safely neglect the 𝐵𝐵2 term for 𝑁𝑁 ≤ 7 and 𝐵𝐵 < 15 T.  
 

Note that, even if the 𝐵𝐵2 term are not neglected, we can still extract the Dirac velocity 
from the LLs given in Eq. 4.23, allowing the determination of the topological index 𝜂𝜂. By 
expanding Eq. 4.23, we obtain: 

 

   𝐸𝐸𝑁𝑁>0
𝑐𝑐,± =  ∓ћ𝜔𝜔� + �∆2 + 2 �𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
� ħ𝑒𝑒𝐵𝐵𝑁𝑁 + (ћ𝑒𝑒𝐵𝐵𝑁𝑁

𝑚𝑚�
)2                 (4.24a) 

and 
𝐸𝐸0𝑐𝑐 =  ћ𝜔𝜔� + ∆                                              (4.24b) 

 

𝐸𝐸𝑁𝑁>0
𝑣𝑣,± =  ±ћ𝜔𝜔� − �∆2 + 2 �𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
� ħ𝑒𝑒𝐵𝐵𝑁𝑁 + (ћ𝑒𝑒𝐵𝐵𝑁𝑁

𝑚𝑚�
)2                  (4.24c) 

and 
𝐸𝐸0𝑣𝑣 =  −ћ𝜔𝜔� − ∆                                             (4.24d) 

 
The Dirac velocity can still be defined as before 𝑣𝑣𝐷𝐷2 = 𝑣𝑣𝑐𝑐2 + ∆

𝑚𝑚�
, and varies as expected when 

the sign of ∆ changes.   
 

7. Valley anisotropy in IV-VI compounds  
In the previous sections, we have seen that magneto-optical investigation allows us to 

precisely determine the band parameters such as the band gap, the Dirac velocity and the 
effective band edge mass of Pb1-xSnxSe and Pb1-xSnxTe systems. Furthermore, the magneto-
spectroscopy technique is also capable of studying the Sn composition dependence of the 
valley anisotropy in these IV-VI compounds at low temperatures. The valley anisotropy factor 
𝐾𝐾 must be defined as the square of the ratio of the maximum (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚) and minimum (𝐴𝐴𝑚𝑚𝑚𝑚𝑛𝑛) 
cross-sectional areas of the Fermi surface: 𝐾𝐾 = (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚/𝐴𝐴𝑚𝑚𝑚𝑚𝑛𝑛)2 = (𝑏𝑏/𝑎𝑎)2 26. Here, 2𝑎𝑎 and 2𝑏𝑏 
are respectively the minor and major axes of a 3D Fermi ellipsoid, as shown in the subsection 
2.5 of the Chapter 3. This area anisotropy factor can also be determined directly by the 𝒌𝒌.𝒑𝒑 
transverse (𝑃𝑃⊥) and longitudinal (𝑃𝑃∥) momentum matrix elements 2–4,27: 𝐾𝐾 = (𝑃𝑃⊥/𝑃𝑃∥)2.  

 
Using the massive Dirac model, we are able to extract 𝑣𝑣𝐷𝐷 in the longitudinal and 

oblique bulk valleys for each (111) Pb1-xSnxSe and Pb1-xSnxTe compound. Hence, we can 
determine 𝐾𝐾 of each lead-tin salt composition using Eq. 4.13. Finally, we can deduce the 
shape (𝑏𝑏/𝑎𝑎) of the corresponding 3D bulk carrier ellipsoids and study their evolution as a 
function of x.  
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7.1. Pb1-xSnxSe 

 (111) Pb1-xSnxSe films (0 ≤ x ≤ 0.30) were systematically investigated by magneto-
optical absorption measurement. Their bulk band parameters are reported in Table 4.6. For a 
given Sn composition, the band gap is the same for both types of bulk valleys, while the 
difference in bulk velocity is observed and it results originally from the valley anisotropy. Fig. 
4.19 shows the evolution of the bulk velocities in the longitudinal (black circles) and oblique 
(red circles) valleys as a function of x, represented in the same scale. We observe that the 
anisotropy in bulk Dirac velocity in Pb1-xSnxSe depends on x as the difference between the 
longitudinal 𝑣𝑣𝐷𝐷 and the oblique 𝑣𝑣𝐷𝐷 decreases with increasing x. They become equivalent 
when x ≥ 0.24 (bicolor circles) since the bulk transitions in both types of valleys occur at the 
same energy. This can be more clearly observed in the transmission spectra as well as in the 
LL transition fan charts of (111) Pb1-xSnxSe shown in the subsection 3.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.19. Study of valley anisotropy factor 𝑲𝑲 via the evolution of the bulk velocities in the 
longitudinal and oblique valleys as a function of Sn content in (111) Pb1-xSnxSe. The longitudinal (black 
circles) and oblique (red circles) velocities are plotted versus x in the same scale. The difference between them 
diminishes as x is increased. They are equivalent when x ≥ 0.24.   

 
A quantitative study of the valley anisotropy factor can be done by calculating 𝐾𝐾 for 

each compound using Eq. 4.13. The values of 𝐾𝐾 and the ratio 𝑏𝑏/𝑎𝑎 are listed in Table 4.6. 
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Composition 
Pb1-xSnxSe 

2𝚫𝚫  
(meV) 

𝒗𝒗𝑫𝑫 (long.) 
(× 105 m/s) 

𝒗𝒗𝑫𝑫 (obl.) 
(× 105 m/s) 

𝑲𝑲 𝒃𝒃/𝒂𝒂 

PbSe 146 ± 4 6.4 ± 0.1 5.6 ± 0.1 1.87 ± 0.22  1.37 ± 0.08 
Pb0.95Sn0.05Se 85 ± 5 5.8 ± 0.1 5.2 ± 0.1 1.66 ± 0.21 1.29 ± 0.08 
Pb0.90Sn0.10Se 40 ± 5 5.25 ± 0.10 4.9 ± 0.1 1.37 ± 0.18 1.17 ± 0.08 
Pb0.86Sn0.14Se 25 ± 5 5.05 ± 0.10 4.8 ± 0.1 1.26 ± 0.17 1.12 ± 0.07 
Pb0.835Sn0.165Se -15 ± 5 4.9 ± 0.1 4.7 ± 0.1 1.21 ± 0.16 1.10 ± 0.07 
Pb0.81Sn0.19Se -25 ± 10 4.8 ± 0.1 4.6 ± 0.1 1.21 ± 0.17 1.10 ± 0.08 
Pb0.76Sn0.24Se -55 ± 5 4.4 ± 0.1 4.4 ± 0.1 1 ± 0.14 1 ± 0.07 
Pb0.70Sn0.30Se -100 ± 10 4.0 ± 0.1 4.0 ± 0.1 1 ± 0.16 1 ± 0.08 

 
Table 4.6. Magneto-optical band parameters of eight (111) Pb1-xSnxSe (0 ≤ x ≤ 0.30) measured at 

𝑻𝑻 = 4.5 K and their valley anisotropy factor 𝑲𝑲. The band gap 2Δ, the longitudinal and oblique bulk velocities 
𝑣𝑣𝐷𝐷 are listed for each compound. The valley anisotropy factor 𝐾𝐾 = (𝑏𝑏/𝑎𝑎)2 can be deduced from both Dirac 
velocities. The ratio 𝑏𝑏/𝑎𝑎 gives the information about the shape of the 3D Fermi ellipsoid. 

 
 We measured 𝐾𝐾 = 1.87 ± 0.22 in the PbSe sample. This agrees very well with the 

results obtained from previous magneto-optical studies in PbSe reporting 𝐾𝐾 = 1.82 ± 0.3 3 or 
𝐾𝐾 = 1.82 ± 0.05 4. The Sn content dependence of 𝐾𝐾 in Pb1-xSnxSe is not high. 𝐾𝐾 decreases 
with increasing x and becomes equal to 1 when x ≥ 0.24, evidencing a nearly isotropic Fermi 
surface. The ratio 𝑏𝑏/𝑎𝑎 gives access to study the geometry of the ellipsoidal bulk carrier 
pockets in Pb1-xSnxSe in the whole range of x. This is a demonstration of the transformation 
from ellipsoidal (𝑏𝑏/𝑎𝑎 > 1) to spherical (𝑏𝑏/𝑎𝑎 = 1) shape of the 3D bulk carrier pockets when x 
increases. Note that Pb1-xSnxSe displays a very low anisotropy in the vicinity of the 
topological phase transition (𝐾𝐾 < 1.2). Therefore, Pb1-xSnxSe alloys are an ideal system 
allowing to investigate such phase transition owing to their two mirror-like bands 𝐿𝐿6+ and 𝐿𝐿6− 
which are nearly spherical, and the absence of a heavy hole band as for instance in the Hg1-

xCdxTe system.  
 

7.2. Pb1-xSnxTe  

 We have also studied the valley anisotropy factor in (111) Pb1-xSnxTe films (0 ≤ x ≤ 
0.56) in order to study the anisotropy factor of the Fermi surface. Their bulk band parameters 
are listed in Table 4.7, leading to study the evolution of the longitudinal (black circles) and 
oblique (red circles) bulk velocities versus x as shown in Fig. 4.20. In contrast to Pb1-xSnxSe, 
the anisotropy in bulk Dirac velocity in Pb1-xSnxTe is much more important. This is evidenced 
by the observation of a number of bulk transitions originating from both types of valleys in 
the transmission spectra as well as in the LL transition fan diagrams of (111) Pb1-xSnxTe (see 
the subsection 3.1).  
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Figure 4.20. Study of valley anisotropy factor 𝑲𝑲 via the evolution of the bulk velocities in the 

longitudinal and oblique valleys as a function of Sn content in (111) Pb1-xSnxTe. The longitudinal (black 
circles) and oblique (red circles) velocities are plotted versus x in the same scale. The difference between them 
remains high in the whole range of x.   

 
Using Eq. 4.13, we obtain the value of 𝐾𝐾 for each composition and subsequently the 

corresponding ratio 𝑏𝑏/𝑎𝑎 that are given in Table 4.7.   
Composition 
Pb1-xSnxTe 

2𝚫𝚫  
(meV) 

𝒗𝒗𝑫𝑫 (long.) 
(× 105 m/s) 

𝒗𝒗𝑫𝑫 (obl.) 
(× 105 m/s) 

𝑲𝑲 𝒃𝒃/𝒂𝒂 

PbTe 190 ± 5 9.0 ± 0.2  6.0 ± 0.1 10.3 ± 2.6   3.2 ± 0.4 
Pb0.92Sn0.08Te 145 ± 5 8.3 ± 0.1 5.6 ± 0.1 9.3 ± 1.7 3.0 ± 0.3 
Pb0.89Sn0.11Te 125 ± 5 8.15 ± 0.10 5.4 ± 0.1 10.9 ± 2.3 3.3 ± 0.4 
Pb0.86Sn0.14Te 110 ± 5 8.0 ± 0.1 5.3 ± 0.1 10.9 ± 2.3 3.3 ± 0.4 
Pb0.85Sn0.15Te 105 ± 5 8.0 ± 0.1 5.3 ± 0.1 10.9 ± 2.3 3.3 ± 0.4 
Pb0.80Sn0.20Te 90 ± 5  8.0 ± 0.1 5.3 ± 0.1 10.9 ± 2.3 3.3 ± 0.4 
Pb0.75Sn0.25Te 70 ± 5 7.75 ± 0.10 5.15 ± 0.10 10.6 ± 2.3 3.3 ± 0.4 
Pb0.72Sn0.28Te 62.5 ± 7.5 7.65 ± 0.10 5.15 ± 0.10 9.4 ± 1.9 3.1 ± 0.3 
Pb0.69Sn0.31Te 55 ± 5 7.6 ± 0.1 5.15 ± 0.10 8.9 ± 1.8 3.0 ± 0.3 
Pb0.66Sn0.34Te 55 ± 5 7.575 ± 0.075 5.1 ± 0.1 9.4 ± 1.8 3.1 ± 0.3 
Pb0.65Sn0.35Te 50 ± 10 7.55 ± 0.10 5.2 ± 0.1 7.8 ± 1.4 2.8 ± 0.3 
Pb0.63Sn0.37Te 45 ± 15 7.5 ± 0.1 5.2 ± 0.1 7.4 ± 1.3 2.7 ± 0.3 
Pb0.60Sn0.40Te 50 ± 10 7.4 ± 0.1 5.2 ± 0.1 6.7 ± 1.2 2.6 ± 0.2 
Pb0.59Sn0.41Te 50 ± 10 7.4 ± 0.1 5.2 ± 0.1 6.7 ± 1.2 2.6 ±  0.2 
Pb0.56Sn0.44Te -40 ± 5 7.3 ± 0.1 5.1 ± 0.1 7.0 ± 1.3 2.6 ± 0.2 
Pb0.55Sn0.45Te -40 ± 5 7.3 ± 0.1 5.1 ± 0.1 7.0 ± 1.3 2.6 ± 0.2 
Pb0.54Sn0.46Te -30 ± 5 7.3 ± 0.1 5.0 ± 0.1 8.2 ± 1.6 2.9 ± 0.3 
Pb0.50Sn0.50Te -35 ± 5 7.1 ± 0.1 4.9 ± 0.1 7.7 ± 1.5 2.8 ± 0.3 
Pb0.49Sn0.51Te -35 ± 5 7.2 ± 0.1 5.05 ± 0.10 6.8 ± 1.2 2.6 ± 0.2 
Pb0.44Sn0.56Te -30 ± 10 7.1 ± 0.1 4.9 ± 0.1 7.7 ± 1.5 2.8 ±0.3 
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Table 4.7. Magneto-optical band parameters of twenty (111) Pb1-xSnxTe (0 ≤ x ≤ 0.56) measured 

at 𝑻𝑻 = 4.5 K and their valley anisotropy factor 𝑲𝑲. The band gap 2Δ, the longitudinal and oblique bulk 
velocities 𝑣𝑣𝐷𝐷 are listed for each compound. The valley anisotropy factor 𝐾𝐾 = (𝑏𝑏/𝑎𝑎)2 can be deduced from both 
Dirac velocities. The ratio 𝑏𝑏/𝑎𝑎 gives the information about the shape of the 3D Fermi ellipsoid. 
 

 We obtain 𝐾𝐾 = 10.3 ± 2.6 for the PbTe sample, in good agreement with previous 
magneto-optical measurements in PbTe having 𝐾𝐾 = 10.24 ± 0.6 2 or 𝐾𝐾 = 10.9 ± 0.6 3. 𝐾𝐾 
decreases with increasing x. However, for the same x, 𝐾𝐾 in the case of Pb1-xSnxTe is more 
significant than that in the case of Pb1-xSnxSe. The values 𝑏𝑏/𝑎𝑎 indicate that the bulk carrier 
pockets of Pb1-xSnxTe are always ellipsoidal for the whole range of x.  

 
8. Absence of band gap closure across the topological 
phase transition in Pb1-xSnxTe 
 

 
Figure 4.21. Variation of the band gap of IV-VI topological crystalline insulators across the 

topological phase transition at 4.5 K. (a) The band gap 2Δ of Pb1-xSnxSe (0 ≤ x ≤ 0.30) is plotted as a function 
of Sn content. The critical composition where the bulk band inversion occurs is xc = 0.16 at 4.5 K. We have Δ > 
0 for x < xc and Δ < 0 for x > xc. A gradual decrease in energy gap is observed through the topological phase 
transition. (b) The band gap 2Δ of Pb1-xSnxTe (0 ≤ x ≤ 0.56) is represented versus x. The band crossing occurs at 
the critical Sn content xc ≈ 0.42 ± 0.02 at 4.5 K. We plotted Δ > 0 for x < xc and Δ < 0 for x > xc. The positive 
gap continuously decreases as x increases only for x < xc, then beyond xc the gap changes sign from positive to 
negative and jumps abruptly without gap closure. Shaded region represents the nontrivial regime.  

 
We have shown in the previous sections that IR magneto-spectroscopy allows us to 

gain valuable information about the properties of the electronic bulk bands of Pb1-xSnxSe and 
Pb1-xSnxTe TCIs. Importantly, we are able to measure the sign of the energy gap and the 
topological index in these Dirac systems. Now, an unexplained issue is raised when we study 
the variation of the band gap across the topological phase transition. Fig. 4.21 shows the band 
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gap 2Δ varying as a function of Sn content in Pb1-xSnxSe for 0 ≤ x ≤ 0.30 (Fig. 4.21(a)) and 
Pb1-xSnxTe for 0 ≤ x ≤ 0.56 (Fig. 4.21(b)). We observe in Pb1-xSnxSe that the gap decreases 
gradually with increasing x through the topological phase transition occurring at xc = 0.16 at 
4.5 K. In Pb1-xSnxTe, the inversion of the bulk bands is experimentally observed at xc ≈ 0.42 ± 
0.02 at 4.5 K. The gap decreases continuously as x increases in the trivial regime x < xc, it 
then changes sign from positive to negative at the critical Sn content xc of the topological 
phase transition and jumps abruptly into the nontrivial regime x > xc without gap closure. Our 
observation is similar to recent ARPES experiments in IV-VI materials measured in the 
temperature range 9 K ≤ 𝑇𝑇 ≤ 300 K that show the anomaly of the zero-gap state of the bulk 
bands and the discontinuous process of band inversion 29.  

 
It is commonly assumed that a solid material cannot undergo a topological phase 

transition without closing its band gap. Consequently, a gapless 3D Dirac state is expected to 
exist at the critical point between two topologically distinct trivial and nontrivial phases. Our 
(111) Pb1-xSnxSe samples were shown to exhibit a zero-gap 3D Dirac state owing to the 
continuous evolution of the band gap through the entire Sn composition range. This matter is 
found to be completely different in (111) Pb1-xSnxTe samples since the variation of the band 
gap is discontinuous in the vicinity of the bulk band crossing. Several following hypotheses 
that could probably describe the dynamics of the topological phase transition in Pb1-xSnxTe 
will be addressed.  
 
A first explanation for the absence of the band gap closure in Pb1-xSnxTe is the fact that Bi-
doping (0.01%-0.2%) was used to compensate the high intrinsic hole carrier concentration 
from (Pb,Sn) vacancies in Pb1-xSnxTe with high Sn composition (x > 0.28) 30, as shown in 
Table 4.1. The Bi content could have some disorder impacts on the band gap and could 
explain the behavior of the gap observed in Fig. 4.21(b) in the vicinity of the phase transition.  
 
A second hypothesis could be related to the alloy disorder of which the effective potential 
varies as x(1-x) and becomes very significant around the critical Sn composition xc ≈ 0.42 in 
Pb1-xSnxTe measured at 4.5 K. Thus, we get xc(1-xc) ≈ 0.24 for Pb1-xSnxTe. This is not the 
case for Pb1-xSnxSe where xc(1-xc) ≈ 0.13, with xc = 0.16 at 4.5 K.  
 
Recent theoretical work has demonstrated that the topological phase transition in a TCI family 
can be argued to be first-order and discontinuous (without closing the gap) 21. This could also 
be used to explain our magneto-optical results in Pb1-xSnxTe. The BHZ Hamiltonian model 
for a 3D TI was treated in order to compute the free energy of the system that has been shown 
to exhibit a jump between the minima corresponding to the topological phase transition.    
 

Further measurements would be necessary in order to better understand whether the 
topological phase transition without gap closure in Pb1-xSnxTe is fundamentally discontinuous 
or caused by disorder (alloy scattering or Bi-doping). For instance, temperature-driven 
magneto-optical absorption experiments would provide a demonstration of the evolution of 
the band gap of a nontrivial Pb1-xSnxTe sample at 4.5 K that is expected to become closer to 
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zero and change sign from negative to positive when the temperature is increased, as 
demonstrated by F. Teppe et al. in Hg1-xCdxTe crystals 31.      
 
9. Conclusion and perspectives   

 Magneto-optical absorption measurement in the FIR and MIR ranges allows us to map 
out the LL spectrum of high-quality (111)-oriented Pb1-xSnxSe (0 ≤ x ≤ 0.30) and Pb1-xSnxTe 
(0 ≤ x ≤ 0.56) TCIs grown on BaF2(111) substrates by means of MBE. The band parameters 
such as the absolute value of the band gap, the Dirac velocity and the effective band edge 
mass in the longitudinal and oblique bulk valleys of all the investigated samples were 
accurately measured using the massive Dirac fermion model including the far-band 
contributions to the band edge mass. Our investigation technique, highly sensitive to the bulk 
states but yet not blind to the surface states, also provides a quantitative assessment of the 
gapless band structure via the observation of the ground CR transition of the TSS using the 
massless Dirac fermion model. The observed CR-TSS signature is attributed to the TSS in the 
Γ�- and M� -Dirac cones in Pb1-xSnxSe samples with x > 0.16, while it is attributed to the TSS in 
the Γ�-Dirac cone in Pb1-xSnxTe samples with x > 0.4. Further measurements up to high 
magnetic fields (𝐵𝐵 > 20 T) would allow us to probe the CR-TSS in the M� -Dirac cones in Pb1-

xSnxTe (x > 0.4) that may be shifted with respect to the Γ�-Dirac cone and may have Fermi 
energy lying farther from the M�  Dirac point. Finally, the electronic band structure of each 
lead-tin salt sample was established in the vicinity of the band gap.  

 
The magneto-optical band parameters of (111) Pb1-xSnxSe and Pb1-xSnxTe were extracted 
from the massive Dirac model analysis. By studying the evolution of the absolute value of the 
band gap 2|Δ| as a function of x, we can estimate the critical Sn content xc when 2|Δ| reaches a 
minimum: xc = 0.16 for Pb1-xSnxSe and xc ≈ 0.42 ± 0.02 for Pb1-xSnxTe at 4.5 K. This is 
relevant to the observation of the CR-TSS related feature in Pb1-xSnxSe for x > 0.16 and in 
Pb1-xSnxTe for x > 0.4. The critical velocity 𝑣𝑣𝑐𝑐 in both the longitudinal and oblique bulk 
valleys can then be estimated: 𝑣𝑣𝑐𝑐(long. ) = 5 × 105 m/s and 𝑣𝑣𝑐𝑐(obl. ) = 4.7 × 105 m/s for Pb1-

xSnxSe, and  𝑣𝑣𝑐𝑐(long. ) = 7.4 × 105 m/s and 𝑣𝑣𝑐𝑐(obl. ) = 5.1 × 105 m/s for Pb1-xSnxTe. From 
the variation of the bulk Dirac velocity 𝑣𝑣𝐷𝐷 as a function of x in both types of valleys in Pb1-

xSnxSe and Pb1-xSnxTe, we can conclude that a material is in the topologically trivial regime 
when 𝑣𝑣𝐷𝐷 > 𝑣𝑣𝑐𝑐 and x < xc, or is in the topologically nontrivial regime when 𝑣𝑣𝐷𝐷 < 𝑣𝑣𝑐𝑐 and x > xc. 
We can then experimentally measure the topological index 𝜂𝜂 of a material satisfying the BHZ 
Hamiltonian from the fundamental relation (−1)𝜂𝜂 = sign(𝑣𝑣𝐷𝐷2 − 𝑣𝑣𝑐𝑐2) = sign(Δ/𝑚𝑚�), where 𝑚𝑚�  
> 0 is the far-band correction to the band edge mass. If 𝜂𝜂 = 0 we have 𝑣𝑣𝐷𝐷 > 𝑣𝑣𝑐𝑐 and Δ > 0, the 
material is said to be trivial and has a positive gap in the normal band structure. If 𝜂𝜂 = 1 we 
get 𝑣𝑣𝐷𝐷 < 𝑣𝑣𝑐𝑐 and Δ < 0, the material is said to be nontrivial and has a negative gap in the 
inverted band structure. We have shown that our analysis is important and powerful since we 
are able to directly determine the topological character associated with the topological index 
of a material via its bulk band parameters. Our approach is argued to be more or less general 
and is expected to be valid for other systems that can be described by a BHZ Hamiltonian and 
exhibit a trivial to nontrivial topological phase transition such as tunable 3D TIs 
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BiTl(S1−𝛿𝛿Se𝛿𝛿)2 32,33 and (Bi1-xInx)2Se3 34,35, 3D Dirac semimetals Na3Bi 36,37 and Cd3As2 38,39, 
topological Heusler materials 40, and Hg1-xCdxTe 28 (see the supplementary material for our 
previous work 11).      

 
For most (111) Pb1-xSnxSe and Pb1-xSnxTe samples, the Dirac velocity of massive Dirac 
fermions in the longitudinal valley is larger than that in the oblique valleys due to the 
anisotropy of 3D Fermi ellipsoids of bulk carriers. We studied this anisotropy in the whole 
range of Sn composition by calculating the valley anisotropy factor 𝐾𝐾 for each compound 
from its bulk velocities in both types of bulk valleys. A decrease of 𝐾𝐾 with increasing x is 
observed in both materials. In Pb1-xSnxTe, 𝐾𝐾 (~ 7-11) is highly dependent on x, while 𝐾𝐾 (≤ 2) 
in Pb1-xSnxSe is much smaller and becomes nearly equal to 1 when x ≥ 0.24, indicating the 
quasi-isotropy of the ellipsoidal bulk carrier pockets. Subsequently, we studied the evolution 
of the geometry (𝑏𝑏/𝑎𝑎 = √𝐾𝐾) of the bulk carrier ellipsoids in Pb1-xSnxSe and Pb1-xSnxTe in the 
entire Sn content range. In Pb1-xSnxSe, the ellipsoids transform gradually into spheres when x 
increases, whereas the bulk carrier pockets in Pb1-xSnxTe remain ellipsoidal. It is worthwhile 
noting that in the vicinity of the topological phase transition, Pb1-xSnxSe displays a very low 
valley anisotropy. This makes Pb1-xSnxSe system an ideal test-bed to study the topological 
phase transition since their conduction and valence bands (𝐿𝐿6

±) are mirror-like and nearly 
spherical. Moreover, since these ternary alloys possess low carrier density and high mobility, 
they deserve great interest in fundamental research and could lead to significant achievements 
in the application of topological matter.  
 
The systematic study by magneto-optics allows us to better understand the mechanism of the 
topological phase transition in Pb1-xSnxSe and Pb1-xSnxTe. However, a challenging issue 
regarding the absence of the band gap closure that gives rise to the discontinuous topological 
phase transition in Pb1-xSnxTe needs to be addressed. Several arguments have been proposed 
to explain this phenomenon. Further experiments by varying temperature are required to be 
done for clarifying whether the unclosed gap is fundamental or results from the disorder 
(alloy scattering or Bi-doing used to control the carrier concentration).    
 

 In this work, we have shown that magneto-spectroscopy allows us to precisely gain the 
bulk band parameters of 3D tunable (111) Pb1-xSnxSe and Pb1-xSnxTe systems, and these 
quantities of each compound can then be directly used to determine the topological nature of 
the system: trivial phase or nontrivial phase relating to the TSS. Nevertheless, the direct 
observation of the TSS by magneto-optics has always been a topic that requires high-quality 
samples, accuracy of theoretical models, or experiments up to high magnetic fields (𝐵𝐵 > 17 
T). For some high-quality nontrivial (111) Pb1-xSnxSe and Pb1-xSnxTe samples, the CR-TSS 
seems to occur at energies within the reststrahlen band of the BaF2 substrates (22-55 meV), 
limiting our observation of the TSS. A next hard but feasible step that could bring us to probe 
the TSS is the BaF2 substrate removal from the epilayers and the deposition of these layers 
onto substrates such as Si that is not opaque. Additionally, a study of thickness dependence in 
nontrivial samples, where the CR-TSS is already observed, could also be performed to 
confirm the surface origin of this transition.  
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Our magneto-optical findings obtained in (111) Pb1-xSnxSe and Pb1-xSnxTe will pave the way 
for further magneto-transport studies on these materials as well as magneto-optical absorption 
measurements on other surfaces such as (001) Pb1-xSnxSe and Pb1-xSnxTe films grown on 
KCl(001) substrates by MBE. The latter could allow us to study how to control over band 
topology and the TSS by strain imposed by different kinds of substrates.     

  
Besides the TSS occurring in 3D topological matter, it has been known that 2D TIs such as 
HgTe/CdTe quantum wells provide a platform to study the band topology via the observation 
of the quantum spin Hall effect stemming from the helical edge states. Inspired by this 
discovery, single- and multi-quantum well structures of Pb1-xSnxSe/Pb1-xEuxSe and Pb1-

xSnxTe/Pb1-xEuxTe will be realized using MBE and examined by magneto-spectroscopy to 
study the quantum spin Hall state in 2D TCI quantum wells at higher temperature than that in 
HgTe/CdTe quantum wells.  
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Conclusion & outlook 
      

Using magneto-spectroscopy performed with magnetic field up to 17 T at 
4.5 K, we have successfully studied the electronic properties of two Dirac 
materials: graphene and topological crystalline insulators. 

 
High-quality C- and Si-terminated face MEG prepared by means of 

thermal decomposition of SiC substrates were investigated. The graphene layers 
of MEG were shown to be electronically disconnected due to the rotational 
stacking occurring during the heating process of fabrication. Therefore, the 
graphene sheets of C-face MEG behave as graphene monolayers. The interband 
and intraband magneto-optical transitions were clearly observed and interpreted 
using a massless Dirac fermion model analysis. Beside the principal transitions, 
transitions involving point defects in the graphene lattice were also observed and 
could be interpreted using a short-range impurity model. Moreover, the existence 
of bilayer graphene was evidenced in C-face MEG, indicating the stacking faults 
in the fabrication. Si-face MEG was also examined and shown to exhibit the 
electronic band structure of trilayer graphene. High mobility and low carrier 
density make graphene a prototype system to study the Dirac matter. We have 
also shown that magneto-optical absorption spectroscopy is an efficient 
investigation technique since it provides an accurate determination of the band 
parameters of graphene stacks.  

 
High-quality (111)-oriented Pb1-xSnxSe and Pb1-xSnxTe TCIs grown on 

BaF2(111) substrates using MBE were investigated across the topological phase 
transition by varying the Sn concentration. Magneto-spectroscopy allows us to 
accurately extract the bulk band parameters in both systems using the massive 
Dirac fermion model including the far-band contribution to the band edge mass. 
Our investigation technique, highly sensitive to the bulk states but yet not blind to 
the surface states, also provides a quantitative information about the gapless band 
structure of the topological surface states using the massless Dirac fermion 
model. The electronic band structure of each IV-VI compound was accurately 
established.  

 
   

 

 

165 
 



 
CONCLUSION & OUTLOOK 
 _________________________________________________________________________________________________________________________________________________________________________________________  
 

 
The heart of this thesis is the ability to determine experimentally the topological character of Pb1-

xSnxSe and Pb1-xSnxTe systems, satisfying the BHZ Hamiltonian, via its bulk band properties. In 
other words, we have shown that we can experimentally measure the topological index of a TCI 
system and give the sign to its band gap. A zero topological index implies that the system is in 
the topologically trivial regime and has a positive gap since the band ordering is normal (x < xc). 
A nonzero topological index indicates that the system is in the topologically nontrivial regime 
and has a negative gap as the bands are inverted (x > xc). Our approach can be argued to be more 
or less general to be applied to other systems that can be described by a BHZ-like Hamiltonian 
and exhibit a topological phase transition. 
 
The valley anisotropy study in the entire range of Sn composition demonstrates that Pb1-xSnxSe 
has a very low valley anisotropy in the vicinity of the topological phase transition. The fact that 
the mirror-like conduction and valence bands of Pb1-xSnxSe alloys are nearly spherical, 
combined with their high mobility and low carrier concentration, makes Pb1-xSnxSe an ideal 
system to study the topological phase transition in topological matter.  
 
Once again, we conclude that magneto-spectroscopy is a very powerful investigation technique 
that not only gives us an accurate information about the bulk band parameters of materials, but 
also allows us to determine the topological character of materials via the bulk band properties. 
  

The magneto-optical results obtained in (111) Pb1-xSnxSe and Pb1-xSnxTe TCIs provide a 
solid basis for further studies aimed at manipulating the band topology of topological material 
such as magneto-transport experiment performed in (111) Pb1-xSnxSe films that will be 
presented in the Appendix. A complete magneto-optical study of (111) Pb1-xSnxSe and Pb1-

xSnxTe by varying temperature would be necessary to confirm the gap closure in the vicinity of 
the topological phase transition. Moreover, magneto-optical absorption measurements on other 
surface orientations such as (001) Pb1-xSnxSe and Pb1-xSnxTe epilayers grown on KCl(001) 
substrates by MBE would also be interesting since this could allow us to study the band topology 
via the influence of the strain imposed by KCl substrates compared to BaF2 substrates. Last but 
not least, inspired by the QSHE observed in the first 2D TI HgTe/CdTe quantum wells, single- 
and multi-quantum wells of Pb1-xSnxSe/Pb1-xEuxSe and Pb1-xSnxTe/Pb1-xEuxTe fabricated using 
MBE would provide a study of the QSHE in 2D TCI quantum wells at temperature higher than 
that in HgTe/CdTe quantum wells.       
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Appendix 

 

  

Negative longitudinal magnetoresistance 
from anomalous N = 0 Landau level in 
topological material 

In this appendix, we present another approach to determine the topological 
character of quantum materials via their bulk properties. We performed magneto-
transport measurement on high-quality (111) Pb1-xSnxSe (0 ≤ x ≤ 0.30) epilayers 
grown on BaF2 substrates using MBE in order to demonstrate the topological phase 
transition in this system. We observed, in the extreme quantum limit, the negative 
longitudinal magnetoresistance (NLMR) that only occurs in Pb1-xSnxSe in the 
nontrivial regime (x > 0.16) where the bulk bands are inverted. When the system is in 
the trivial regime (x < 0.16) and has a normal band structure, this NLMR is shown to 
be positive. The NLMR results from the anomalous behavior of the lowest N = 0 
conduction and the highest N = 0 valence Landau levels that disperse respectively 
down and up in energy as a function of increasing applied magnetic field.         

In the following text, we present our recent manuscript entitled 
“Negative longitudinal magnetoresistance from anomalous N = 0 
Landau level in topological materials” and its supplementary material 
which are under peer review.  
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Abstract: Negative longitudinal magnetoresistance (NLMR) is shown to occur in 
topological materials in the extreme quantum limit, when a magnetic field is applied 
parallel to the excitation current. We perform pulsed and DC field measurements on Pb1-

xSnxSe epilayers where the topological state can be chemically tuned. The NLMR is 
observed in the topological state, but is suppressed and becomes positive when the system 
becomes trivial. In a topological material, the lowest (N=0) conduction (valence) Landau 
disperses down (up) in energy as a function of increasing magnetic field. This is shown to 
be responsible for the observed NLMR. Our work provides an explanation of the 
outstanding question of NLMR in topological insulators and establishes this effect as a 
possible hallmark of bulk conduction in topological matter. 
 
The emergence of topological insulators (TI) as novel quantum materials  [1] [2] [3] has played 
a key role in the discovery of novel physical phenomena,  [4] [5] [6] [7] [8] [9] such as the 
quantum spin Hall effect [4] [10] [11] and quantum anomalous Hall effect [5] [12] [13]. This 
stems from the helical Dirac nature of surface-states in 3D TIs or, that of edge-states in 2D TIs. 
In fact, a huge amount of literature (for a review: [14] [15] [16] [17]) took interest in this 
question and investigated electronic transport of 2D Dirac electrons in 3D-TIs. The majority of 
these studies were, however, impeded by the fact that bulk transport is usually significant in 
TIs, and thus dominates in most transport experiments. On the other hand, little attention has 
been given to signatures of non-trivial band topology in 3D electron transport in a TI. 
 
Naively speaking, one can think of the bulk energy bands of a TI as being identical to those of 
conventional semiconductors and are, thus, unlikely to generate non-conventional physical 
phenomena. However, one should not forget that the basis of a topological insulator lies in the 
inverted orbital character of these bulk energy bands. [10], [18] Most interesting is the unusual 
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behavior of the Landau levels of TIs that one can analytically extract from a general Bernevig-
Hughes-Zhang Hamiltonian (appendix of ref.  [18]). In fact, it has been both 
theoretically [18] [19] [20] and experimentally [21] [22] [23] shown, that the energy of the 
lowest (N=0) conduction (valence) Landau level in topological insulators decreases (increases) 
as a function of increasing magnetic field, opposite to what usually happens in a topologically 
trivial system (Fig. 1(a,b)). This behavior is anomalous and leads to a field-induced closure of 
the energy gap in a TI [21] (Fig. 1(b)), whereas in a trivial material, the energy gap usually 
opens as a function of magnetic field (Fig. 1(a)). This anomaly is a hallmark of the inverted 
band structure of topological materials. Its implications on magnetotransport have not yet been 
considered.  
 

 
FIG 1. (Color Online) Sketch of the behavior of the N=0 bulk Landau level (LL) as a function of magnetic field 
for a trivial (a) and a topological (b) system. The k-dispersion of the energy level in the direction of the applied 
field is shown (kz). Topological surface states are shown in black in (b) at B=0. (c) In-plane-MR measured with 
the magnetic field B || I at 10K in two trivial Pb1-xSnxSe epilayers (x=0.10 and x=0.14) and three topological ones 
(x=0.19, x=0.23 and x=0.3) up to B=15T. ARPES dispersions and momentum distribution curves (MDC) for x=0.1 
(d,e) and x=0.2 (f,g) measured with 18eV photons at 30K and 40K, respectively. 
 
In the present work, we study the MR in topological insulators in the extreme quantum limit – 
the regime where only the lowest Landau level is occupied. We measure magnetotransport in 
pulsed magnetic field up to 61T in high mobility Pb1-xSnxSe epitaxial layers. We show that, 
when all Lorentz components contributing to the MR are suppressed by applying the magnetic 
field in-plane and parallel to the excitation current, a negative longitudinal MR (NLMR) 
emerges near the onset of the quantum limit. This NLMR is only observed in Pb1-xSnxSe in the 
topological regime (x>0.16) and is absent in trivial samples (x<0.16). We theoretically argue 
that this NLMR is a result of the anomalous behavior of the N=0 Landau levels that leads to a 
field induced closure of the energy gap as a function of the applied magnetic field, thus 
enhancing the carriers’ Fermi velocity and reducing electrical resistivity. Our findings establish 
that NLMR is a hallmark of the topological insulating state, and may reconcile controversial 
interpretations of axial anomaly-induced NLMR in such materials. 
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Magnetotransport measurements are performed on [111] oriented Pb1-xSnxSe epilayers on 
(111) BaF2 substrates with different x. Growth by molecular beam epitaxy and characterization 
are described in our previous works [24] [25] [26]. We purposely study low carrier density 
samples that go into the quantum limit at low fields. A 15T/4.2K superconducting cryostat setup 
is used for in-house measurements. Further measurements are performed up to 61T using a 
200ms pulsed-field coil at the Dresden High Magnetic Fields Lab. These measurements are 
carried out at 10K. Angle-resolved-photoemission (ARPES) experiments are performed with 
linearly-polarized undulator radiation at the UE112-PGM1 beamline of the synchrotron 
BESSY-II in Berlin. 
 
Figure 1(c) shows the longitudinal MR measured at 10K, up to 15T for five Pb1-xSnxSe samples, 
with the magnetic field applied in-plane parallel to the current (I // B // [1-10]). For trivial 
samples having x<0.16,  [24] the MR rises fast. In non-trivial samples having 
x>0.16,  [24] [27] [28]  although initially positive, the MR turns negative, and remains so over 
a wide field range. This sign of the MR hence depends of the topological character of the 
sample.  
 
ARPES measurements [Figs. 1(d)-1(g)] for x=0.10 and x=0.20 below 50K clearly indicate the 
changing topological character for compositions across x=0.16. A gapped state is observed in 
the ARPES dispersion and momentum distribution curves (MDCs) for x=0.10 (Figs 1(d,e)) 
whereas for x=0.20 a gapless topological Dirac surface state is clearly resolved (Fig. 1(f,g)), in 
agreement with previous ARPES studies. [27] [28]. This ties the occurrence of the NLMR to 
the topologically non-trivial regime in Pb1-xSnxSe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG 2. (Color Online). (a) In-plane MR measured up to 60T using pulsed magnetic field for Pb1-xSnxSe with 
x=0.14 (blue) and x=0.19 (red). (b) Low-field Shubnikov-de-Haas oscillations and (c) Landau index versus 1/B 
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shown for both samples. Arrows mark the field at which the quantum limit is reached (BQL). (d) NLMR onset 
extracted from Fig. 1(c) versus BQL for the three topological samples considered in this work. The dashed grey 
line is obtained for an onset exactly equal to BQL. The Sn concentration ‘x’ corresponding to each sample is shown 
above the data points. 
 
In order to confirm the robustness of the MR trend on either side of the topological phase 
transition, transport measurements for field up to 61T are performed on two selected samples 
with compositions close to the transition. Results are shown in Fig. 2(a). Comparing the sample 
x=0.14 to x=0.19 confirms that the MR in the trivial regime is robustly positive up to 60T, 
whereas in the topological regime, the MR is initially positive, then turns negative reaches a 
plateau-like behavior at intermediate fields, then increases again at very high fields.  
 
We correlate the appearance of the NLMR to the crossing of the N=1 Landau level with the 
Fermi level, by looking at 3D Shubnikov-de-Haas oscillations measured in the same geometry 
as the MR (I // B // [1-10]). Fig. 2(b) shows SdH oscillations obtained from the second derivate 
of the resistance measured for x=0.14 and x=0.19 at 10K. The last oscillation minimum is 
observed at BQL≈5T (0.2T-1) and ≈2.8T (0.35T-1) for x=0.19 and x=0.14, respectively; this is 
the onset of the extreme quantum limit (arrows in Fig.2(b)). The SdH frequency extracted from 
the plot of the Landau index N versus 1/B (Fig. 2(c)) comes out close to 5T for x=0.19 and 2.6T 
for x=0.14. For x=0.19, this yields a 3D carrier density of about 6x1016cm-3 per valley or a total 
carrier density of 2.4x1017cm-3 for the four valleys of Pb1-xSnxSe. This also agrees with the Hall 
density n≈3x1017cm-3. [20] For x=0.14, we find 2x1016cm-3 per valley. [24] The Hall data yields 
p=1x1017cm-3 for four valleys in good agreement with the SdH analysis. We also note that the 
SdH results nicely agree with our previous magnetooptical measurements on the same 
samples. [24] Note that even though the two samples studied here in detail have different carrier 
type, the other samples examined in Fig. 1(c) rule out any possible link between this and the 
NLMR. [20]  
 
In x=0.19, BQL is close to the onset of the NLMR seen in Fig. 2(a). In x=0.14, even though BQL 
is small, no NLMR is observed up to 60T. We consolidate the relation between the NLMR and 
the entrance into the quantum limit in the topological state by further investigating the behavior 
of the Landau levels in two additional samples (x=0.23 and x=0.3). Detailed Shubnikov-de-
Haas and magnetooptical IR spectroscopy data shown in the supplement allow us to extract 
BQL for both. [20] The onset of the NLMR extracted from Fig. 1(c) is plotted versus BQL for 
x=0.19, x=0.23 and x=0.3 in Fig. 2(d). A clear correlation of the onset of NLMR with increasing 
BQL is observed, as indicated by the dashed line, confirming that the NLMR occurs when all 
electrons occupy the lowest N=0 Landau level. 
 
We next elucidate the origin of the NLMR occurring in topological materials in the quantum 
limit by investigating transport in the quantum regime. We have shown that the Landau levels 
in IV-IV TCIs can be well described by a massive Dirac spectrum that includes spin-
splitting [24] [29] [30] [31]. At low fields, the spin splitting can be neglected yielding an ideal 
massive Dirac model identical to one used in ref. [32]. At high fields, when only the N=0 level 
is occupied, Zeeman terms need to be taken into account.  
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The wavevector dispersion of the N=0 Landau level and its field dependence can be treated in 
this regime starting from the Mitchell and Wallis Hamiltonian [30] [33] [34] [35]. Here, we 
highlight, that this Hamiltonian is similar to the Bernevig-Hughes-Zhang 
Hamiltonian [18] [10] [36] that generally describes topological systems. Our treatment can thus 
be generalized to any topological system exhibiting an N=0 behavior similar to Fig. 1(b). We 
can write for the energy eigenvalue of the N=0 Landau level of the conduction band  [20]: 
 

( ) ( )22
0

~
zz kvE  +±∆= ω                                    (1) 

 
Here, the ± sign refers to the trivial and topological regime respectively. 𝛥𝛥 is the half-band gap,

zk is wavevector in the z-direction (z||B), zv is the Dirac velocity in the z-direction, and 
meB ~/~ =ω . m~ is a mass term resulting from interactions between the band edges, and far-bands 

located about 1eV above and below the energy-gap in IV-VI semiconductors. [30][31] It also 

appears on the diagonal of the BHZ Hamiltonian as ( )
m

kk
kM yx
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=−
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In Eq. 1, the ω~±∆  term describes whether the energy-gap closes (–) or opens (+) as a function 

of increasing magnetic field. Note that this equation remains valid as long as ω~≥∆ . At very 

high fields such that ω~<∆ , for both the topological and trivial regime, the energy gap opens 

with increasing field and the N=0 Landau level varies as given in Eq. 1 for the (+) case. [20]  
 
The Landau level energies are plotted versus magnetic in Fig. 3(a,b) for x=0.19 and x=0.14, 
respectively, (and in the supplement for x=0.23 and x=0.3). The parameters are given in the 
caption and table I. For N=0, Eq. (1) is used. In the topological state, the energy gap closes 
versus B, then reopens as dictated by eq. (1).  
 
The dependence of the Fermi energy of magnetic field is then extracted using: 
 

∑∫=
N

zzNSdH dkkEfeBn ),(
4 2π

                                    (2) 

 
Here SdHn is the valley carrier density, ),( zN kEf is a Fermi-Dirac step function, NE  is the 
Landau level energy. Ef(B) is also shown in Fig. 3(a,b) for x=0.19 and x=0.14. Eq. (2) also 
allows us to determine )(Bkz  in the quantum limit: 
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The magnetoconductivity for a 3D electron gas in the quantum limit has recently been treated 
for the case of short range impurities by Goswami et al. [37] Although ref.  [37] has also treated 
the problem of scattering by long range ionic impurities, we neglect their impact in Pb1-xSnxSe 
because of its very large dielectric constant (>280). [38] [39] In IV-VI systems, the scattering 
rate from ionic impurities is thus expected to be at least two-orders of magnitude smaller than 
that of III-V or II-VI narrow gap materials. [37] [40] It is also well known that in Pb1-xSnxSe, 
doping is essentially caused by atomic vacancies that can be treated as short range (point-like) 
defects. In this limit, the conductivity is given by  [37]: 
 

)(
2
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eB f
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=                                           (4) 

 
Here, in the notation of Goswami et al. in is the impurity density, 0U is the impurity potential 
and )(Bv f is the Fermi velocity as a function of magnetic field.  

 
Using Eq. (1) and (3), it can be shown that  [37]: 
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SdHn222 πα = . The± sign is for the trivial and topological case respectively. Using this 
expression for the Fermi velocity and plugging it into Eq. (4), we finally get, the MR in the 
quantum limit: 
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We find, 
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It is obvious that for emBem  /~2/~ ∆<<∆ the derivative becomes negative in the topological 
regime and resistance decreases as a function of magnetic field. Thus, a NLMR occurs in the 
quantum limit for topological materials. 
 
In order to plot the MR versus B using Eq. (6), a knowledge of Δ, zv and m~ is required. Note that 
the valley degeneracy of IV-VI materials, and the valley anisotropy for B||[1-10] also needs to 
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be carefully accounted for at high fields. When B||[1-10], the Fermi surface consists of two 
ellipsoidal valleys having their major axis tilted by θ=90⁰, and two others tilted by θ=35⁰ with 
respect to B. [21] [20] Δ and )(θzv  can be obtained from previous magnetooptical 
measurements. [24] Based on previous measurements of m~ , we can determine )(~ θm . [21] [24] 
We finally find ( ) 003.025.0)90(~ mm ±≈ and 0)02.020.0()35(~ mm ±≈ . [20]. All parameters are 
shown in table I. According to previous laser emission measurements, the far-band parameter 
m~  remains approximately constant over the concentration range 0<x<0.28. [21]  
 
Pb1-xSnxSe nSdH 

[pervalley] 
|Δ| 

[meV] 
vz [105 m/s] 
(35O,  90O) 

𝒎𝒎� /𝒎𝒎𝟎𝟎 
(35O,  90O) 

Bc [T] 
(35O,  90O) 

x=0.14 2x1016 cm-3 10 5.0, 4.8 0.20±0.02, 0.25±0.03 N/A 
x=0.19 6x1016 cm-3 10 4.8, 4.6 0.20±0.02, 0.25±0.03 17±2, 22±3 

 
Table I. Parameters used to compute the MR shown in Fig. 3(d). The carrier density is determined from SdH 
measurements shown in Fig. 2. emBc /~∆=  is the field at which the N=0 levels cross. 

 
We compute the variation of the N=0 conduction and valence Landau levels as a function of 
magnetic field for both valleys for x=0.19 (Fig. 3(c)) using the parameters listed in table I, and 
calculate the MR using Eq. (6) for both x=0.14 and x=0.19. In the trivial case for x=0.14, the 
MR is positive (Fig. 3(d)), in agreement with the predictions of Goswami et al. for point 
defects [37] and with our experimental data (Fig. 2(a)). In the topological regime for x=0.19, 
the model yields a negative MR, when emBem  /~2/~ ∆<<∆ , for each valley. The simulated 
MR is plotted in Fig. 3(d). We get a NLMR between 11T and 22T for the 90⁰ valley and between 
8.5T and 17T for the 35⁰ valley. Two MR minima are thus expected at 22T and 17T. 
Experimentally, we observe a wide MR minimum at around Bc=20T (Fig. 2(a)). The model 
thus agrees quantitatively with both the sign of the MR and position of the MR minimum. The 
broadening of the minumum can be explained by the coexistence of the two minima resulting 
from valley degeneracy [20] and an anticrossing of N=0 Landau levels (dashed line in Fig. 3(c)) 
near Bc. [41]  
 
The experimental onset of the NLMR is 5T. The model predicts an onset of about 8.5T. The 
onset calculated in the model is, however, non-universal and might strongly depend on carrier 
population of different valleys. [42] Here, for simplicity, a constant carrier population of valleys 
is assumed, leading to Eq. (3). This is not always the case in IV-VI TCIs thin films grown on 
BaF2 since the N=0 Landau levels disperse differently for different valleys and since a slight 
energy offset between different valleys may occur at low temperatures due to the mismatch of 
the expansion coefficients of the epilayers and the substrate. This causes a depopulation of one 
type of valleys and a repopulation of the other. [42] The most populated valley will then dictate 
the behavior in the quantum limit, however, the carrier density in this valley will no longer be 
constant resulting in a violation of Eq. (3). The onset of the NLMR will no longer be governed 
by the condition Bem =∆ 2/~ as inferred from Eq. (6) and will only be governed by the system 
entering the quantum limit.  
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FIG 3. (Color Online). Massive Dirac Landau levels (black) of Pb1-xSnxSe plotted versus magnetic field for x=0.19 
(a) and x=0.14 (b) using an energy gap 2Δ=20meV and a Dirac velocity vz=4.8x105m/s for x=0.19 and 
5.0x105m/s for x=0.14. Spin-split Landau levels are plotted in blue and red,

020.0~ mm = is used for both 

samples. [24] The variation of the Fermi energy Ef versus magnetic field is shown in yellow. The energy gap is 
shaded in green. (c) N=0 Landau levels for the conduction and valence bands computed using the parameters in 
table I. (d) MR calculated using Eq. (6) for parameters shown in table I, for x=0.14 and x=0.19 above quantum 
limit. 
 
Finally, the magnitude of the simulated MR is smaller than what is observed experimentally. 
This is due to the rescaling of the MR by R(B=0), which in the model is assumed to be given 
by Eq. (6) at B=0. Nevertheless, the shape of the NLMR, and its minimum agree very well with 
our model, without the use of any fit parameters. Most importantly, the model elucidates why 
the NLMR is observed in topologically non-trivial samples, and absent in trivial ones, and 
establish a firm basis for further theoretical treatment of this effect. 
 
In conclusion, we have shown that NLMR results from the anomalous behavior of the lowest 
bulk Landau level of topological materials (Fig. 1), when the system is in the quantum limit. 
This MR and its anisotropy [20] do not  appear to be qualitatively different from what is 
observed in Dirac and Weyl semimetals. [43] [44] [45] [46] However, its origin is 
fundamentally different. It is a result of the topologically non-trivial (inverted) nature of bulk 
bands, the anomalous behavior of the N=0 Landau level and is a direct consequence of the 
inverted band structure of topological materials. Our results establish that NLMR is a hallmark 
of the topological insulating state, and can reconcile controversial interpretations of axial 
anomalous-like  [47] [48] NLMR in candidate topological insulators such as, ZrTe5,  [23] 
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[34] [49] and possibly Pb0.75Sn0.25Te under pressure. [50] Our proposed model also clarifies 
why an NLMR may occur in Dirac and Weyl semimetals under a magnetic field, even if the 
Fermi energy is high above the Weyl nodes and the chirality is ill-defined. [51] The implications 
of our work, may even be extended to the quasi-classical regime to explain the occurence of 
NLMR in Bi2Se3. [52]  
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Supplementary materials for: 
Negative longitudinal magnetoresistance from anomalous  

N = 0 Landau level in topological materials 
 
S1. N=0 Landau level from Mitchell and Wallis Hamiltonian 

Using the Mitchell and Wallis (1966) formalism, we can write the following matrix 
Hamiltonian  [1] [2]: 
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With the following simplifications: 
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The terms are defined in ref. [1]. cv  is the critical Fermi velocity corresponding to each 

respective valley and
0m

P
v z

z = is the Fermi velocity in the z-direction (the direction of the applied 

field), given by the k.p matrix element in the z-direction ( ||P is the case of the longitudinal 

valley). 

The lowest Landau level is the N=0 (σ=-1/2) level. It is obtained by solving the inner block 
Hamiltonian when n = - 1:  
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The inner block reduces to: 
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We make an even further simplifying assumption: 

ωµ ~−≈Bg B . 

This is justified near the band inversion, since it has been shown that in the trivial regime 
ωµ ~≤Bg B whereas in the topological regime ωµ ~≥Bg B . [3] 

We can now solve the eigenvalue problem for the N=0 (σ= - 1/2) level: 
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ω
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We get the following equation: 

( )( ) ( ) 0~~ 2 =−∆++∆−− zzkvEE  ωω  

The energy eigenvalue to the lowest Landau level now rewritten as 0E is then given by: 

( ) ( )22
0

~
zz kvE  ++∆±= ω  

For the following we will only consider the N=0 Landau level of the conduction band with the 
(+) sign, keeping in mind that that of the valence band is simply given by its opposite. Thus, 

( ) ( )22
0

~
zz kvE  ++∆= ω  

When going through the topological phase transition, Δ changes sign yielding:  

( ) ( )22
0

~
zz kvE  ++∆±= ω  

( ) ( )22
0

~
zz kvE  +±∆= ω     (+ for trivial, – for topological) 

S2. Far-band mass correction anisotropy 

 

 

 

Figure S1. Ellipsoidal Fermi surface of Pb1-xSnxSe at the L-points of the bulk Brillouin zone.  
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In our previous work on magnetooptical characterization of the band structure of Pb1-xSnxSe, 
we measured ( ) 003.024.0~ mm ±≈ for the oblique valleys in the Faraday geometry (θ=710). [4] 
From Calawa et al. we have ( ) 022.0~ mm ≈ for the [001] valleys having (θ=530). [5] Using these 
two experimental results and the fact that: 
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θ

l

t
t m

mmm  

We can find the anisotropy ratio for far-band contributions: 

1.07.1 ±≈
tm

m , 

and estimate 0)02.019.0( mmt ±≈ and 0)05.032.0( mml ±≈ . Here tm and lm are the transverse and 
longitudinal far-band mass correction terms as defined in ref. 1. We can now compute )(~ θm for 
any angle. When B||[1-10], it can easily be shown that two oblique valleys  (the [1-11] and the 
[-111] valleys) are tilted by 35o with respect to the field and one longitudinal ([111]) and one 
oblique valley ([11-1]) are tilted by 90o.  
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S3. Hall effect 

For 
DC fields 

n1  
[cm-3] 

n2  
[cm-2] 

μ1 
[cm2/Vs] 

μ2 
[cm2/Vs] 

ρtot  
[Ω.m] 

x=0.10 3.0 x 1017 elec. 7 x 1017  holes 50000 1500 4 x 10-7 
x=0.14 1.5 x 1017 holes 6 x 1017  holes 60000 1600 4 x 10-6 
x=0.19 3.5 x 1017 elec. 1 x 1018  holes 17000 500 1 x 10-6 
x=0.23 3 x 1016 elec. 8 x 1017holes 40000 2000 2 x 10-5 
x=0.30 4.5 x 1017 holes 9 x 1017 holes 8500 4500 3 x 10-5 

 
Table S1. Transport parameters determined from the Hall effect using a 2 parameters Drude fit. Note that all 
samples show two carrier transport. The low mobility channel is either due to a 2D Fermi surface channel or an 
interfacial layer. The bulk is found to have a low carrier density n1 and a high mobility μ1 in all samples as 
confirmed by the low field Shubnikov-de-Haas oscillations and by magnetooptical data. [4]  
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S4. Quantum oscillations in x=0.23 and x=0.3 

 
Figure S2. (a) Shubnikov-de-Haas oscillations in x=0.3 at 10K. (b) Landau index versus 1/B extracted from (a). 
Red and blue indicate series of opposite spin as indexed in (a). (c) Magnetooptical infrared absorption spectra 
taken between 1T and 3T for x=0.23 at 4.5K. The N=0-N=1 interband transition is already visible and strong in 
amplitude at 2T.  
 
Shubnikov-de-Haas data shown is Fig. S2(a) for x=0.3. Spin is taken into account in the plot of 
N versus 1/B as shown Fig. S2(b) similarly to ref.  [3]. The lowest N=1 Landau level crosses 
the Fermi energy close to 9T. For x=0.23, magnetooptical Landau level spectroscopy 
measurements at low fields are performed. The details of these measurements are shown in ref. 
[4] The N=0 to N=1 interband Landau level transition is observed at 2T and above indicating 
that the N=1 Landau level crosses the Fermi energy at 2T.   

The Landau level energy for Pb1-xSnxSe derived from the Mitchell and Wallis Hamiltonian 
for N>0 has been discussed in our previous work  [4] [6] as is given by: 

𝐸𝐸𝑁𝑁>0
𝑐𝑐,± = ∓ħ𝜔𝜔� + �∆2 + 2𝑣𝑣𝐷𝐷2ħ𝑒𝑒𝑒𝑒𝑒𝑒 

𝐸𝐸𝑁𝑁>0
𝑣𝑣,± = −𝐸𝐸𝑁𝑁>0

𝑐𝑐,±  

∆ is the half energy gap, 𝑣𝑣𝐷𝐷is the Dirac velocity, and 𝜔𝜔� = 𝑒𝑒𝑒𝑒/𝑚𝑚�  as discussed in the main text. 
When spin splitting is neglected (𝜔𝜔� = 0), we recover a classical massive Dirac dispersion. The 
Landau level dispersion versus B is plotted for x=0.23 and x=0.30 in Fig. S3. 
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FIG S3. Landau level dispersion versus magnetic field for x=0.23 (a) and x=0.3 (d), with the field dependence of 
the Fermi energy. Landau levels from an ideal massive Dirac model (black) and a massive Dirac model that 
includes spin are also shown (red, blue). For N>0, spin splitting is only relevant and taken into for x=0.3, it is 
negligible in other samples at the fields of interest. 

S5. MR anisotropy  

 
 
 
 
 
 
 
 
 
 
 

 
Figure S4. (a) Resistance as a function of magnetic field for different angles θ, up to 60T at 10K.θ is the angle 
between the applied field and the normal. θ=0⁰ corresponds to an out-of-plane magnetic field, normal to the sample 
surface. When θ=90⁰ the magnetic field is aligned parallel to the current. The MR is highly anisotropic and positive 
MR is restored as of θ=85⁰. 
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