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1
Introduction

The visual scene is a rich source of information. A huge amount of data is daily per-
ceived by our human visual system, and intelligently processed to grasp the important
and meaningful visual cues. In other words, this huge data is massively compressed and
stored in our memory, in a way much more advanced than our current capturing and
storing technologies.

The visual information can broadly be classified into two categories: structures and
textures. The structures represent the shape of the scene, while the textures fill in the
gap between structures. An example of the superposition of structures and textures is
drawing a piece of art, in which the painter would draw first the structure part, com-
posed of the dominant edges, and would then fill in the rest with textures. Due to this,
the visual information conveyed by structures is much valuable when compared with
textural information.

There have been several studies attempting to understand texture perception, with
the main intention to reveal texture similarity. This is because judging the similarity
by the human visual system is a complex task that highly diverges from the simple
mathematical correlation. These studies have helped in developing many intelligent
visual applications such as scene understanding, synthesis, recognition and others.

This thesis is concerned about texture perception, and aiming at providing a percep-
tual model for texture similarity that mimics the neural processing in the human visual
system. For that, a comprehensive review of the theories of texture perception is car-
ried out, and an extrapolation link is provided between the perception of texture images
and texture videos. This perceptual model shall bridge the gap between the theories on
perception and the applications in computer vision.
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The fundamental application that is drawn from this work is video compression.
This application is nowadays in a very high demand, due to the massive deployment of
the multimedia over the internet, as well as the huge amount of contents that are daily
produced, stored, and transferred. The objective is to enhance the current technology
by the means of texture perception. In other words, the objective is to perceptually
optimize the technology to produce a better experience.

1.1 Contribution
In this work, three main contributions have been achieved:

1. Local Texture Synthesis:
This is an algorithm that can efficiently encode texture images, by utilizing a
texture synthesis model. Unlike the other synthesis-based coding techniques,
this one is fully compatible with the coding standard, for which no need for
altering the end-users’ software and/or hardware.

2. V1-E
V1-E is a perceptual model of texture similarity that is generalized for both static
and dynamic textures. It asymptotically follows the neural processing in the
human visual system. The model has shown an excellent performance in texture
recognition and retrieval, as well as prediction of visual characteristics such as
distortion sensitivity.

3. Perceptual Rate-distortion Optimization Framework
Based on V1-E, the texture similarity is explored in order to optimize the video
coding system to provide an improved rate-quality performance. The model is a
perceptual rate-distortion model, in which the perceptual distortions are visually
assessed, and used to tune the encoder to reduce these distortions. The model
has shown significant improvement over the state of the art video compression
techniques.

1.2 Thesis Organization
The thesis is organized in three parts, as shown in Fig. 1.1. In the first part (Part I),

a comprehensive review on state of the art about visual texture perception is presented,
along with texture similarity and its application in image and video compression. It
starts in Chapter 2 with definition of textures, and theories about texture perception.
Then, it moves forward to the concept of texture similarity, covering most of the ap-
proaches and tools for similarity estimation. In the last chapter (Chapter 3), an overview
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of the use of texture similarity in image and video compression is given, with a brief
overview about first contribution of the local texture synthesis algorithm.

Part II is dedicated to the proposed perceptual model of texture similarity, which
is named as V1-E. The main theory and reasoning are given in Chapter 4. The per-
formance evaluations are carried out in two chapters. First, the evaluation of V1-E as
a similarity metric in the context of texture retrieval and recognition is carried out in
Chapter 5. Second, it was evaluated as a features extractor, to predict the visual prop-
erties associated with texture that are in link with video compression is given Chapter
6.

The last part is concerned about the employment of the model in the video compres-
sion scenario. It consists of two chapters. Chapter 7 describers the proposed framework
of perceptual optimization, accompanied by initial experimentation with texture images.
The full implementation, subjective evaluation and generalization is then provided in
chapter 8.

The thesis is concluded in Chapter 9, where the summary and outlook are provided.
The manuscript encompasses also two appendixes, where Appendix A shows the gener-
ated texture video dataset (HomoTex), and Appendix B provides a list of the generated
scientific papers during this PhD work.
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2
From Texture Perception to Texture
Similarity

Textures are homogeneous visual phenomena commonly appearing in the visual
scene. They are usually characterized by random structures with some stationarity.
They have been well studied in different domains, such as neuro-science, vision sci-
ence and computer vision, and showed an excellent performance in many applications
for machine intelligence.

This chapter provides a review about texture perception, covering both classical and
modern theories. After understanding this mechanism, the chapter moves forward to the
concept of texture similarity, providing a survey about the existing models and their link
to the perceptual studies. It also provides the information about benchmarking tools to
differentiate the performance of each model.

2.1 Introduction
Textures are a fundamental part of the visual scene. They are random structures

often characterized by homogeneous properties, such as color, orientation, regularity
and etc. They can appear both as static or dynamic, where static textures are limited to
spatial domain (like texture images shown in Fig. 2.1), while dynamic textures involve
both the spatial and temporal domain Fig. 2.2.

Research on texture perception and analysis is known since quite long time. There
exist many approaches to model the human perception of textures, and also many tools

21
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Figure 2.1 – Example of texture images from VisTex Dataset.

to characterize texture. They have been used in several applications such as scene analy-
sis and understanding, multimedia content recognition and retrieval, saliency estimation
and image/video compression systems.

Expressing texture similarity is quite a challenging task. This is because the sim-
ilarity highly deviates from point-wise comparison. However, texture similarity is a
key tool for many machine intelligence applications, such as recognition, classification,
synthesis, etc. These applications are the key element in many modern technologies,
associated with image and video understanding. For example, it could be used for scene
analysis, which is employed for driving assistant system, or more generally robot vi-
sion. Another interesting application is medical image analysis, where textures are the
main components of these images. The other application, which is the context of this
thesis, is image and video compression, where texture similarity has often been used to
improve the existing compression system (details in Chapter 3).

To elaborate more on the difficulty of expressing texture similarity, Fig. 2.3 shows
examples of similar textures. In this figure, each group of the three textures has over-
all similar textures, but there is still a large difference if one makes a point by point
comparison. Thus, the human visual system does not compute similarity using pixel
comparison, but rather considers the overall similarity in the semantics. For this reason,
simple difference metrics, such mean squared error, can not accurately express texture
(dis-)similarity, and proper models for measuring texture similarity has always been
studied. This is even more difficult in the case of dynamic textures, because there exists
a lot of change in details over time, the point-wise comparison would fail to express the
visual difference.

There exists a large body of reviews on texture analysis and perception. For exam-
ple, the review of Landy [11][6] as well as the one from Rosenholtz [12] give a detailed
overview of texture perception. Other reviews, such Tuceryan et al. in [13], cover most
aspects of static texture analysis for computer vision applications, such as material in-
spection, medical image analysis, texture synthesis and segmentation. On the other side,
reviews about dynamic textures, for example [14, 15], do not provide any information
about the perceptual part of the textures.

In contrast to those reviews, this chapter covers the two aspects of texture perception
and texture similarity. The objective is to establish the link between the perceptual stud-
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Figure 2.2 – Example of dynamic textures from DynTex Dataset [5]. First row represent
the first frames, and next rows are frames after respectively 2 seconds.

ies on visual textures, and texture similarity models designed for different applications.
Unlike other reviews, the chapter covers both static and dynamic textures.

The chapter is organized as follows: Section 2.2 discusses the meaning of texture in
both technical and non-technical contexts, and proposes a generalized definition that is
used through this work. The details of texture perception, covering both static texture
and motion perception, are given in section 2.3. The different models of texture sim-
ilarity are reviewed in section 2.6, with benchmarking tools in section 2.7. A general
discussion and conclusion is then given in the end of the chapter in section 2.8.

2.2 What is Texture
Linguistically, the word texture significantly deviates from the technical meaning in

computer vision and image processing. According to Oxford dictionary [16], the word
refers to one of the followings:

1. The way a surface, substance or piece of cloth feels when you touch it.
2. The way food or drink tastes or feels in your mouth.
3. The way that different parts of a piece of music or literature are combined to

create a final impression.
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Figure 2.3 – Three examples of similar textures, having a large pixel-wise differences.
These images were cropped from dynamic texture videos in DynTex dataset [5].

However, technically, the visual texture has many other definitions, for example:
— We may regard texture as what constitute a macroscopic region. Its structure is

simply attributed to pre-attentive patterns in which elements or primitives are
arranged according to placement order [17].

— Texture refers to the arrangement of the basic constituents of a material. In a
digital image, texture is depicted by spatial interrelationships between, and/or
spatial arrangement of the image pixels [18].

— Texture is a property that is statistically defined. A uniformly textured region
might be described as “predominantly vertically oriented”, “predominantly small
in scale”, “wavy”, “stubbly”, “like wood grain” or “like water” [11].

— We regard image texture as a two-dimensional phenomenon characterized by
two orthogonal properties: spatial structure (pattern) and contrast (the amount
of local image structure) [19].

— Images of real objects often do not exhibit regions of uniform and smooth inten-
sities, but variations of intensities with certain repeated structures or patterns,
referred to as visual texture [20].

— Textures, in turn, are characterized by the fact that the local dependencies be-
tween pixels are location invariant. Hence the neighborhood system and the
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accompanying conditional probabilities do not differ (much) between various
image loci, resulting in a stochastic pattern or texture [21].

— Texture images can be seen as a set of basic repetitive primitives characterized
by their spatial homogeneity [22].

— Texture images are spatially homogeneous and consist of repeated elements, of-
ten subject to some randomization in their location, size, color, orientation [23].

— Texture refers to class of imagery that can be characterized as a portion of infi-
nite patterns consisting of statistically repeating elements [24].

— Textures are usually referred to as visual or tactile surfaces composed of re-
peating patterns, such as a fabric [25].

The above definitions cover mostly the static textures, or spatial textures. However,
the dynamic textures, unlike static ones, have no strict definition. The naming terminol-
ogy changes a lot in the literature. The following names and definitions are summary of
what is defined in research:

— Temporal Textures:
1. They are class of image motions, common in scene of natural environment,

that are characterized by structural or statistical self similarity [26].
2. They are objects possessing characteristic motion with indeterminate spatial

and temporal extent [27].
3. They are textures evolving over time and their motion are characterized by

temporal periodicity or regularity [28].
— Dynamic Textures:

1. They are sequence of images of moving scene that exhibit certain stationarity
properties in time [29][14].

2. Dynamic textures (DT) are video sequences of non-rigid dynamical objects
that constantly change their shape and appearance over time [30].

3. Dynamic texture is used with reference to image sequences of various natural
processes that exhibit stochastic dynamics [31].

4. Dynamic, or temporal, texture is a spatially repetitive, time-varying visual
pattern that forms an image sequence with certain temporal stationarity [32].

5. Dynamic textures are spatially and temporally repetitive patterns like trees
waving in the wind, water flows, fire, smoke phenomena, rotational motions
[33].

— Spacetime Textures:
1. The term “spacetime texture” is taken to refer to patterns in visual spacetime

that primarily are characterized by the aggregate dynamic properties of el-
ements or local measurements accumulated over a region of spatiotemporal
support, rather than in terms of the dynamics of individual constituents [34].



26 CHAPTER 2. FROM TEXTURE PERCEPTION TO TEXTURE SIMILARITY

— Motion Texture:

1. Motion textures designate video contents similar to those named temporal or
dynamic textures. Mostly, they refer to dynamic video contents displayed by
natural scene elements such as flowing rivers, wavy water, falling snow, ris-
ing bubbles, spurting fountains, expanding smoke, blowing foliage or grass,
and swaying flame [35].

— Texture Movie:

1. Texture movies are obtained by filming a static texture with a moving camera
[36].

— Textured Motion:

1. Rich stochastic motion patterns which are characterized by the movement
of a large number of distinguishable or indistinguishable elements, such as
falling snow, flock of birds, river waves, etc. [37].

— Video Texture:
Video textures are defined as sequences of images that exhibit certain stationarity
properties with regularity exhibiting in both time and space [38].

It is also worth mentioning that in the context of component based video coding,
the textures are usually considered as details irrelevant regions, or more specifically, the
region which is not noticed by the observers when it is synthesized [39, 40, 41].

As seen, there is no universal definition of the visual phenomena of textures, and
there is a large dispute between static and dynamic textures. Thus, for this work, we
consider the visual texture as:

A visual phenomenon, that covers both static and dynamic textures, where static
textures refer to us as homogeneous regions of the scene that are typically composed
of small elements (texels) arranged in a certain order, they might exhibit simple mo-
tion such as translation, rotation and zooming. On the other hand, dynamic textures
are textures that evolve over time, allowing both motion and deformation, with certain
stationarity in space and time.

2.3 Static Texture Perception
Static texture perception has attracted the attention of researchers since decades.

There exists a bunch of research papers dealing with this problem. Most of the studies
attempt to understand how two textures can be visually discriminated, in an effortless
cognitive action known as pre-attentive texture segregation.

Julesz extensively studied this problem. In his initial work in [42, 43], he posed
a question if the human visual system is able to discriminate textures, generated by a
statistical model, based on the kth order statistics, and what is the minimum value of k
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that beyond which the pre-attentive discrimination is not possible any more. The order
of statistics refers to the probability distribution of the pixels values, in which the 1st

order measures how often a pixel has certain color (or luminance value), while the 2nd

order measures the probability of obtaining a combination of two pixels (with a given
distance), and the same can be generalized for higher order statistics.

First, Julesz conjectured that the pre-attentive textures generated side-by-side, hav-
ing identical 2nd order statistics but different 3rd order and higher, cannot be discrimi-
nated without scrutiny. In other words, textures having difference in the 1st and/or 2nd
order statistics can be easily discriminated. This can be easily verified with the tex-
tures given in Fig. 2.4. The textures are generated by a small texture element (letter
L) in three manners. The first one (Fig. 2.4a) is by having differences in the 1st order
statistics, in which the probability of black and white pixels is altered (different sizes of
L). The second one (Fig 2.4b) is by having differences in the 2nd order statistics (with
identical 1st order statistics). This is done by rotating one texture with respect to the
other. The third (Fig. 2.4c) is by having difference in 3rd order statistics (with iden-
tical 1st and 2nd order statistics) by using a mirror copy of the texture element (L) in
the right texture. One can easily observe that conjecture holds here, as we just observe
the differences pre-attentively when the difference is below the 2nd order statistics. In
the original work of Julesz in [43], one can find also similar examples that support this
conjecture.

(a) Textures pair with different
1st order statistics

(b) Textures pair with different
2nd order statistics

(c) Textures pair with different
3rd order statistics

Figure 2.4 – Examples of pre-attentive textures discrimination. Each image is composed
of two textures side-by-side. (a) and (b) are easily distinguishable textures because of
the difference in the 1st and the 2nd order statistics (resp.), while (c), which has identical
1st and the 2nd but different 3rd order statistics, is not.

However, it was realized then it is possible to generate other textures having identical
3rd order statistics, and yet pre-attentively discriminable [44]. An example is provided
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here in Fig. 2.5. In this figure, the two side-by-side textures are generated by four
squares (2x2 squares) texture element, in which the left texture has an even number of
black (or white) blocks in each of its 2x2 squares, whereas the right one has an odd num-
ber. This led to the modified Julesz conjecture and the introduction of the texton theory
[45]. The theory proposes that the pre-attentive texture discrimination system cannot
globally process third or higher order statistics, and that discrimination is the results of
few local conspicuous features, called textons. This has been previously highlighted by
Beck [46], where he proposed that the discrimination is a result of differences in first
order statistics of local features (color, brightness, size, etc.).

Figure 2.5 – Example of 2 textures (side-by-side) having identical 3rd order statistics,
yet pre-attentively distinguishable.

On the other side, with the evolution of the neurophysiological studies in the vision
science, the research on texture perception has evolved, and several neural models of
human visual system (HVS) were proposed. The functionality of the visual receptive
field in [47], has shown that HVS, or more specifically the visual cortex, analyzes the
input signal by a set of narrow frequency channels, resembling to some extent the Ga-
borian filtering [48]. Accordingly, different models of texture discrimination have been
developed, based on Gabor filtering [49, 50], or difference of offset Gaussians [51], etc.
These models are generally performing the following steps:
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1. Multi-channel filtering

2. Non linearity stage

3. Statistics in the resulting space

The state of the art texture perception model based on the multi-channel filtering
approach is known as back-pocket model (according to Landy [11, 6, 12]). This model,
shown in Fig. 2.6, is employed in the task of texture discrimination. It consists of
three fundamental stages: linear-, non-linear- and linear-filtering. For this reason, the
back-pocket model is sometimes called LNL model (for Linear - Non-linear - Linear
process) or FRF model (for Filter - Rectify - Filter process) where the non-linearity
stage is considered as rectification process. The first linear stage accounts for the linear
filtering that resembles the spatial filtering in the visual cortex. This is followed then
by a non-linear stage, which is described as full-wave or half-wave rectification. This
stage is required to avoid negative responses. It can also account for lateral neurons
interactions, in the sense that a certain neuron response is attenuated by the surrounding
ones in a phenomenon known as lateral inhibition. It can also account for response
normalization, depending on the model design. The last stage is also another layer of
spatial filtering, which performs averaging of higher spatial support than the first stage,
such that the responses are combined for large spatial area. Then, the responses from all
the neurons are combined, with a certain pooling and decision mechanism, to deduce
the discrimination boundaries.

Figure 2.6 – The Back-pocket perceptual texture discrimination model [6] showing the
three layers of linear-, non-linear- and linear-filtering.
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2.4 Motion Perception
Texture videos, as compared to texture images, add the temporal dimension to the

perceptual space. Thus, it is important to include the temporal properties of the visual
system in order to understand its perception. For this reason, the section provides an
overview of studies on motion perception.

The main unit responsible for motion perception is the visual cortex [52]. Generally,
the functional units of the visual cortex, which are responsible for motion processing,
can be grouped into two stages:

1. Motion Detectors
The motion detectors are the visual neurons whose firing rate increases when
an object moves in front of the eye, especially within the foveal region. Several
studies have shown that the primary visual cortex area (V1) is the place where the
motion detection happens [53, 54, 55, 56]. In V1, simple cells neurons are often
modeled as spatio-temporal filters that are tuned to a specific spatial frequency
and orientation and speed. On the other hand, complex cells perform some non-
linearity on top of the simple cells (half/full wave rectification and etc.).
The neurons of V1 are only responsive to signal having the preferred frequency-
orientation-speed combination. Thus, there is still a lack of the motion integra-
tion from all neurons. Besides, the filter response cannot cope with the aperture
problem. As shown in Fig. 2.7, the example of the signal in the middle of the
figure shows a moving signal with a certain frequency detected to be moving up,
while it could actually be moving up-right or up-left. This is also true for the
other signals in the figure.

Figure 2.7 – Examples of the aperture problem: Solid arrow is the detected direction,
and the dotted arrow is the other possible directions.

2. Motion Extractors
The motion integration and aperture problem are solved at a higher level of the
visual cortex, namely inside the extra-striate middle temporal (MT) area. It is
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generally assumed that the output of V1 is directly processed in MT in a feed-
forward network of neurons [53, 57, 58, 54]. The velocity vectors computation
in the MT cells can be implemented in different strategies. First, the intersection
of constraints, where the velocity vectors will be the ones that are agreed by
the majority of individual motion detectors [53][59][60]. Other than that, one
can consider maximum likelihood estimation, or a learning based model if the
ground truth is available. An example of this could be MT response measured
by physiological studies [54], or ground truth motion fields such as [61, 62].

It is also worth mentioning that there are other cells responsible for motion per-
ception. For example, the medial superior temporal (MST) area of the visual cortex
is responsible for motion perception during eye pursuit or headings [63, 64]. Another
thing, the above review is concerning the motion caused by a luminance traveling over
time, which is known as the first order motion. However, there exist the second and third
order motion which is due to contrast moving and feature motion (resp.). These are out-
side the scope of this work. This is because the proposed perceptual model considers
only the first order motion to be representative for the phenomena of textures.

2.5 Higher Order Visual Processing
The overall visual processing is depicted in Figure 2.8. Beyond the V1 area, we

can differentiate two pathways. The above is called the dorsal stream, while the lower
is called the ventral stream. The dorsal stream is responsible for the motion analysis,
while the ventral stream is mainly concerned about the shape analysis. For this reason,
the dorsal stream is known as the "where" stream, while the ventral is known as the
"what" stream [52].

One plausible assumption about texture perception is that texture has no shape. This
means that visual texture processing is not in the ventral stream. Beside this, one can
also assume that the type of motion is not a structured motion. Thus, it is not processed
by the dorsal stream as well. Accordingly, the resulting perceptual model is only due
to V1 processing. That is, the perceptual space is composed of proper modeling of V1
filters a long with their non-linearity process.

In the next section, we will see that such an assumption hold, and most of the per-
ceptually inspired texture similarity models do not go beyond V1 neural processing.

2.6 Texture Similarity Models
After reviewing the existing studies on texture perception, the goal here is to bridge

this knowledge to the aspect of texture similarity. In the following subsections, several
models of texture similarity models are reviewed. These models are assumed to have an
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Figure 2.8 – Hierarchy of the visual system, as in [7].

inspiration of the human visual perception. Other models are thus excluded from this
review.

2.6.1 Transform Based Modeling
Transform based modeling has gained lots of attention in several classical as well

as recent approaches of texture similarity. This is because of the direct link with the
neural processing in the visual perception. As explained in section 2.3, both neural
mechanisms of static texture and motion perception involve kind of subband filtering
process.

One of the first early approaches for texture similarity was proposed by Manjunath
et al. [65], in which the mean and standard deviation of the texture subbands (using
Gabor filtering) are compared and the similarity is assessed accordingly. Following this
approach, many other similarity metrics are defined in a similar way, using different
filtering methods or different statistical measures. For example, the Kullback-Leiber
divergence on wavelet coefficients is used in [66] and [67]. Other approach is by using
the steerable pyramid filter [68] and considering the dominant orientation and scale [22].

Knowing the importance of subband statistics, Heeger et al. proposed to synthesize
textures by matching the histogram of each subband of the original and synthesized
textures. To overcome the problem of irreversibility of Gabor filtering, they used the
steerable pyramid filter [68]. The resulting synthesized textures were considerably sim-
ilar to the original, especially for the case of highly stochastic textures. The concept has
also been extended by Portilla et al. [23], where larger number of features defined in the
subband domain are matched, resulting in a better quality of synthesis.
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The significance of the subband statistics has led more investigation of texture sim-
ilarity in that domain. Recently, a new class of similarity metrics, known as structural
similarity, has been introduced. The structural texture similarity metric (STSIM) was
first introduced in [69]. Then, it was enhanced and further developed in [70], [2] and
[71]. The basic idea behind them is to decompose the texture, using the steerable pyra-
mid filter, and measure statistical features in that domain. The set of statistics of each
subband contains the mean and variance. Besides, the cross correlation between sub-
bands is also considered. Finally, these features were fused to form a metric that showed
a high performance in texture retrieval.

The filter-bank approach, which was applied for static textures, has been also used in
dynamic texture modeling by several studies. However, the concept was used in a much
smaller scope compared to static textures. In [72], three dimensional wavelet energies
were used as features for textures. A comparison of different wavelet filtering based
approaches, which includes purely spatial, purely temporal and spatio-temporal wavelet
filtering, is given in [33].

A relatively new study on using energies of Gabor filtering is found in [73]. The
work is claimed to be inspired by the human visual system, where it resembles to some
extent the V1 cortical processing (section 2.3).

Beside this, there exist also other series of papers, by Konstantinos et al. [34, 31],
which employed another type of subband filtering, which is the third Gaussian deriva-
tives tuned to certain scale and orientation (in 3D space). The approach was used for
textures representation recognition and also for dynamic scene understanding and action
recognition [74].

2.6.2 Auto-regressive Modeling
The auto-regressive (AR) model has been widely used to model both static and dy-

namic textures, especially for texture synthesis purposes. In its simplistic form, AR can
be expressed in this form:

s(x, y, t) =
NX

i=1

�is(x+�yi, y +�yi, t+�ti) + n(x, y, t) (2.1)

Where s(x, y, t) represents the pixel value at the spatio-temporal position (x, y, t),
�i is the model weights. �xi,�yi and �ti are the shift to cover the neighboring pixels.
n(x, y, t) is the system noise which is assumed to be white Gaussian noise.

The assumption behind AR is that each pixel is predictable from a set of its neigh-
boring spatio-temporal pixels, by the means of weighted summation, and the error is due
to the model noise n(x, y, t). An example of using model for synthesis can be found in
[75, 76, 77].
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The auto-regressive moving average (ARMA) model is an extension of the simple
AR model that is elegantly suited for dynamic textures. It was first introduced by Soatto
and Dorreto [29, 14] for the purpose of dynamic texture recognition. The ARMA model
is mathematically expressed in this equation:

x(t+ 1) = Ax(t) + v(t)

y(t) = �x(t) + w(t)
(2.2)

Where x(t) is a hidden state and y(t) is the output state, v(t) and w(t) are system
noise (normally distributed) and A, � are the model weights as in AR. Typically, the
output state represents the original frames of the image sequence. Comparing Eqn. 2.2
with Eqn. 2.1, it is clear that the model assumes that the hidden state x(t) is modeled as
an AR process, and the observed state is weighted version of the hidden state with some
added noise.

Both AR and ARMA can be used to measure texture similarity. This has been used
in texture recognition, classification, segmentation and editing [78, 79]. Other than this,
ARMA has been extended by several studies. For example, by using Fourier domain
[80], by including several ARMA models with transition probability [81], using higher
order decomposition [82] and others [83, 84].

Although there is no direct link between the texture perception and the auto-regressive
models, we can still interpret its performance in terms of Julesz conjectures (section
2.3). The assumption behind these models is that textures would look similar if they are
generated by the same statistical model with a fixed set of parameters. Similarly, Julesz
has conjectured that the textures are indistinguishable if they have the same first and
second order statistics. Thus, auto-regressive models can be understood as an extension
of this conjecture, in which the condition for similarity is better stated.

2.6.3 Texton Based Modeling
Recalling that textons are local conspicuous features (section 2.3), a large body of

research has been put to define some local features that can be used to measure the
texture similarity. One of the first approaches, and still very widely used, is the local
binary pattern approach (LBP) [19]. This approach is simply comparing each pixel
with each of its circular neighborhood, and gives a binary number (0-1) if the value is
bigger/smaller than the center value. The resulting binary numbers are gathered in a
histogram, and any histogram-based distance metric can be used.

The approach has gained a lot of attention due to its simplicity and high perfor-
mance. It was directly adopted for dynamic textures in two manners [85]: First, by
considering the neighborhood to be cylindrical instead of circular in the case of Volume
Local Binary Pattern (V-LBP); second, by performing three orthogonal LBP on the xy,
xt and yt planes, which is therefore called Three Orthogonal Planes LBP (LBP-TOP).
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Several extensions of the basic LBP model have been proposed. For example, a
similarity metric for static textures known as local radius index (LRI)[1, 86], which
incorporates LBP along with other pixels to neighbors relationship. Besides, there is
another method that utilizes the Weber law of sensation, which is known as Weber
Local Descriptor (WLD) [87].

Rather than restricting the neighborhood relationship to binary descriptors, other
studies have introduced also trinary number [88, 89, 90] and what is known as texture
spectrum.

It is also worth mentioning that some studies consider the textons as the results
of frequency analysis of texture patches. The study of Liu et al. [91] considered the
marginal distribution of filter bank responses as the "quantitative definition" of texton.
In contrast, textons are defined [92] as the representation that results from codebook
generation of a frequency histogram.

2.6.4 Motion Based Modeling
The motion based analysis and modeling of dynamic textures has been considered

in large body of studies. This is because motion can be considered as a very important
visual cue, and also because the dynamic texture signal is mostly governed by motion
statistics. To elaborate on motion analysis, let us start with basic assumption that we
have an image patch I(x, y, t) in a spatial position (x, y) and at time (t), and this patch
would appear in the next frame, shifted by (�x,�y). Mathematically:

I(x, y, t) = I(x+�x, y +�y, t+ 1) (2.3)

This equation is known as Brightness Constancy Equation, as it states that the bright-
ness does not change from one frame to another. Eqn. 2.3 can be simplified by employ-
ing the Taylor expansion as follows (removing the spatial and temporal indexes for
simplicity):

I =
1X

n=0

�Ixn
n!

⇥�x+
Iyn
n!

⇥�y +
Itn
n!

⇥�t
�

(2.4)

where Ixn, Iyn and Itn are the nth order partial derivative with respect to x, y and t.
The equation can be further simplified by neglecting the terms of order higher than one.
Then the it becomes:

Ix ⇥ Vx + Iy ⇥ Vy = �It (2.5)

where Vx, Vy are the velocities in x and y directions (Vx = �x/�t and so on). The
solution of Eqn. 2.5 is known as optical flow. However, further constraints are needed
to solve the equation because of the high number of unknowns. One of the constraints
is the smoothness, in which a patch is assumed to move with the same direction and
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speed between two frames. This is not usually the case for dynamic texture, in which
the content could possibly change a lot in a short time instant. Accordingly, there exists
also another formulation of the brightness constancy assumption that does not require
the analytical solution. This is known as the normal flow. It is a vector of flow, that
is normal to the spatial contours (parallel to the spatial gradient), and its amplitude is
proportional to the temporal derivative. Mathematically, it is expressed as:

NF =
�Itq

Ix
2 + Iy

2
N (2.6)

where N is a unit vector in the direction of the gradient.
The normal flow, as compared to the optical flow, is easy to compute. It needs only

the image derivatives in the three dimensions (x, y, t), and no computation of the flow
speed is needed. One drawback of normal flow is that it can be very noisy (especially
for low detailed region) when the spatial derivatives are low. For this reason, a threshold
is usually set before evaluating any statistical property of the normal flow.

The motion based modeling of dynamic textures was pioneered by Nelson and Palo-
nan in [26], where they used normal flow statistics for dynamic textures classification.
This model has been extended in [93] to include both the normal flow and some static
texture features (coarseness, directionality and contrast). Other than that, Peteri et al.
[94] have augmented the normal flow with a regularity measure, computed from corre-
lation function.

The optical flow has been also used in dynamic texture analysis. In [95], the au-
thors compared different optical flow approaches to normal flow, and showed that the
recognition rate can be significantly enhanced by optical flow.

Similar to the concept of co-occurrence matrix, Rahman et al. have developed the
concept of motion co-occurrence [96], in which they compute the statistics of occur-
rence of a motion field with another one for a given length.

It is also worth mentioning here there are other approaches beyond the concept of
brightness constancy. Since dynamic textures can change their appearance over time, it
is more logical to move towards brightness conservation assumption. It can be mathe-
matically expressed as [97, 98]:

I(x, y, t)(1��xx ��yy) = I(x+�x, y +�y, t+ 1) (2.7)

Where �xx and �yy are the partial derivatives of the shifts in x and y. Comparing
this equation to Eqn. 2.3, the model allows the brightness I to change over time to
better cover the dynamic change inherited in the dynamic textures. The model has been
used for detecting dynamic textures [97], in which regions satisfying this assumption
are considered as dynamic textures. However, further extensions of this idea were not
found.
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2.6.5 Others
Along with other aforementioned models, there exist other approaches that cannot be

straightforwardly put in one category. This is because the research on texture similarity
is quite matured, but still very active.

One major approach for modeling texture and expressing similarity is by using the
fractal analysis. It can be simply understood as an analysis of measurements at different
scales, which in turn reveals the relationship between them. For images, this can be
implemented by measuring the energies of a Gaussian filter at different scales. The
relationship is expressed in terms of the fractional dimension. Recent approaches of
fractal analysis can be found in [99, 100, 101].

Another notable way is to use the self avoiding walks. In this, a traveler walks
through the video pixel using a specified rule and memory to store the last steps. A
histogram of walks is then computed and considered as features for characterizing the
texture (cf. [102, 103]).

Beside these, there exist also other models that are based on the physical behavior
of textures (especially dynamic textures). This includes models for fire [104], smoke
[105] and water [106].

Although these models suit very well specific textural phenomenon, they cannot be
considered as perceptual ones. This is because they are not meant to mimic the visual
processing, but rather the physical source. For this reason, these are out of scope of this
work.

2.7 Benchmarking and Comparison
After viewing several approaches for assessing the texture similarity (section 2.6),

the fundamental question here is how to compare these approaches, and to establish a
benchmark platform in order to differentiate the behavior of each approach. This is of
course not a straightforward method, and a reasonable construction of ground truth data
is required.

Broadly speaking, comparison can either be performed subjectively or objectively.
In other words, either by involving observers in a kind of psycho-physical test, or by
testing the similarity approaches performance on a pre-labeled dataset. Both have ad-
vantages and disadvantages, which are explained here.

The subjective comparison is generally considered as the most reliable one. This is
because it directly deals with human judgment on similarity. However, there are several
problems that can be encountered in such a methodology. First is the selection and
accuracy of the psycho-physical test. For example, a binary test can be the simplest
for the subjects, and would result in very accurate results. In contrast, this test can be
very slow to cover all the test conditions, and possibly such a test would not be suitable.
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Metric Retrieval rate (%)
PSNR 4
LBP 90

Wavelet Features [66] 84
Gabor Features [65] 92

STSIM 96
LRI 99

Table 2.1 – Retrieval rate as a benchmark tool for different texture similarity metrics.
Results obtained from [1, 2].

Second, the budget-time limitation behind the subjective tests would result in a limited
testing material. Thus, it is practically unfeasible to perform a large scale comparison
with subjective testing.

Accordingly, there exist few studies on the subjective evaluation of texture similar-
ity models. For example, the subjective quality of synthesized textures were assessed
and predicted in [107, 38], and adaptive selection among the synthesis algorithms was
provided in [108]. The similarity metrics correlation with subjective evaluation was also
computed in [109, 110].

As explained earlier, subjective evaluation suffers from test accuracy and budget
time-limitation. One can also add the problem of irreproducibility, in which the sub-
jective test results cannot be retained after repeating the subjective test. There is also a
certain amount of uncertainty with the results, which is usually reported in terms of con-
fidence levels. To encounter this, research in computer vision is usually led by objective
evaluations.

One commonly used benchmarking procedure is to test the performance on recog-
nition task. For static textures, two large datasets of 425 and 61 homogeneous texture
images are cropped into 128x128 images with substantial point-wise differences [2].
The common test is to perform a retrieval test, in which for a test image if the retrieved
image is from the correct image source, it is considered as correct retrieval. This is
performed for all of the images in the dataset, and the retrieval rate is considered as the
criteria to compare different similarity measure approaches. For example, Table 2.1 pro-
vides the information about the performance of different metrics. In this table, one can
easily observe that simple point-wise comparison metric like the Peak Signal to Noise
Ratio (PSNR) provides the worst performance.

For dynamic textures, a similar task is defined. Commonly, the task consists of
classification of three datasets. These are the UCLA [111], DynTex [5] and DynTex++
[112] datasets. For each dataset, the same test conditions are commonly used. For
example, DynTex++ contains 36 classes, each of 100 exemplar sequences. The test
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Metric Recognition Rate (%)
VLBP 94.98

LBP-TOP 94.05
WLBPC [113] 95.01

CVLBP [3] 96.28
MEWLSP [4] 98.48

Table 2.2 – Recognition rate on the DynTex++ as a benchmark tool for different texture
similarity metrics. Results obtained from [3, 4].

condition is to randomly assign 50% of the data for training and the rest for testing. The
train data are used for training the models, and the recognition rate is reported for the
test data. The procedure is repeated 20 times and the average value is retained. This is
shown in Table 2.2.

2.8 Discussion and Conclusion
This chapter reviewed the studies about texture perception, and linked them to the

existing models of texture similarity. The chapter focused on both static and dynamic
textures.

First, it has been realized that there is a lack of universal definition of the textures, in
the sense that static textures tends to be differently defined when compared to dynamic
textures. Besides this, there is a large controversy on understanding what dynamic tex-
tures are. Since the scope of this thesis is both static and dynamic textures, a proper
definition was developed, that is meaningful and covers what we understand as a textu-
ral phenomena.

Second, it was observed that despite the extensive studies on static texture percep-
tion, dynamic textures are not yet well explored. This is because most of the perceptual
studies consider texture images rather than texture videos. The chapter thus reviewed
the static texture perception, and included also motion perception, in order to cover all
the visual processing that could be associated with dynamic textures. The overview of
the neural processing carried out in this chapter revealed that the fundamental part of
the visual processing for texture is assumed not to happen in higher levels of the visual
cortex. In fact, the primary visual cortex (V1) was assumed to be responsible for tex-
ture perception. This is because textures are generally considered as regions without
specific shapes and do not have any structured motion. This indicates that the further
processing in the ventral stream (shape stream) or the dorsal stream (motion stream) is
not necessary to explain texture perception. This is the keystone argument in the pro-
posed perceptual texture model that is developed in this thesis, which is presented in
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Chapter 4.
Third, the chapter linked the knowledge of texture perception to texture similarity.

An overview of the existing similarity models for both static and dynamic textures was
provided. Different models have been classified into 4 categories: Transform-, Auto-
regressive-, Texton- and Motion-based modeling. The transform based modeling can
be considered as a direct link between texture perception and texture similarity. This
is because it is based on the fact that a similar transform occurs in the V1 cortical
processing area, and further processing is not fully known. However, it was realized that
such an approach is mostly limited to static textures, which ignores its potential use for
dynamic ones. Texton based modeling is highly indirect, as it assumes that the similarity
is due to the distribution of the texture element, and ignores the actual neural processing.
The difference between these two approaches, transform and texton modeling, is usually
referred to the bottom-up vs. up-down modeling. Bottom-up modeling of the human
visual system starts from the actual/observed low level processing, up to the cognition
level, whereas the top-down modeling formulate a hypothesis about the processing,
and validate it accordingly. The other two models are, to some extent, less perceptual
and more computational models. This is because the human visual system is, for sure,
neither following any auto-regressive model nor computing the motion as those models
assume. The chapter also listed other models that are purely non perceptual models, but
rather follow the properties of the textures themselves.

Finally, the chapter included also benchmarking tools for assessing the performance
of different models. The pros and cons of subjective and objective evaluations are high-
lighted. Due to the simplicity, and the capability of performing large-scale testing, the
objective evaluations are generally preferred. For both static and dynamic textures,
common testing conditions have already been established. The evaluation results have
clearly shown that simple metrics, based on pixels comparison such as PSNR, cannot
be used for computing texture similarity.



3
Texture Similarity for Image and
Video Compression

Image/Video compression is the key technology that enables several applications
related to storage and transmission. The current technologies enable content capturing
with large spatio-temporal resolutions, which end up with massive amount of data. For
this reason, it is practically impossible to deploy uncompressed content because of the
limited physical memory and transmission channel capacity. Thus, compression is the
only solution in the current applications related to multimedia.

As textures represent a major part of visual scenes, there have been different studies
on how to efficiently compress this part. This can be either by exploiting the intrinsic
properties of textures, or utilizing the perceptual aspects of them. Among the different
approaches, there exists a large body of methods for texture similarity based image and
video compression, which is in line with this work. Accordingly, this chapter is dedi-
cated to provide an overview of the state of the art image/video compression techniques,
utilizing texture similarity models.

The chapter is organized as follows: The introduction is given in section 3.1. The
overview of the state of the art video compression standard, known as HEVC, is pro-
vided in section 3.2. The texture based approaches are given in section 3.3 and section
3.4, while the conclusion is given in section 3.5.

41
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3.1 Introduction
Visual scene is characterized by high amount of redundancies in both spatial and

temporal domain. For example, if one analyzes a given image or video of natural scene,
it would be observed that there is a large correlation between neighboring pixels. This
is also true for the temporal domain, because the amount of change from one frame to
another is not expected to be exceptionally high.

Due to this, the image and video compression techniques are based on exploiting
these redundancies to yield a compact representation of the visual signal. This is mainly
achieved by the prediction mechanism (intra- and inter-picture prediction) and the trans-
form coding. Beyond this, entropy coding is employed to further exploit the statistical
redundancies inherited in the visual scene.

Beyond these redundancies, the image/video compression techniques further com-
press the visual signal by the means of quantization. This step provides a lossy com-
pression that can highly reduce the amount of bits needed to encode the scene.

Since the scope of this thesis is mainly about video compression, the following
sections will mostly focus on the video compression part.

3.2 State of the Art in Video Compression
Video compression techniques have been evolving in terms of successive standards.

Currently, the latest standard is known as the High Efficiency Video Coding (HEVC)
[114]. It has shown a significant improvement over the previous standard, known as
Advanced Video Coding (AVC), in the sense that it provides up to 50% bitrate saving
[115], where both objective and subjective verifications are performed.

To give a brief overview of HEVC, Fig. 3.1 depicts the block diagram of its reference
encoder. First, it divides the input frame into equal size square units called Coding Tree
Units (CTU). CTU’s have a maximum dimension of 64x64 pixels for luma channels,
and can be further divided into smaller units, called coding units (CU), in a quad-tree
manner. A prediction unit (PU), which can either be the full CU or a part of it, is the
unit where intra- or inter-picture prediction is performed. The residual signal (after
prediction) is then quantized. The quantized values are then binary encoded using the
entropy encoder and saved in the bitstream.

HEVC is very flexible in terms of block partitioning. While CTU can be partitioned
into several CU’s in quad-tree manners, each CU can also be portioned into several
transform units (TU) and PU’s. Furthermore, the restriction for square blocks is not
required for PU’s, thus allowing high flexibility for motion compensation, and resulting
in efficient compression system.

It is also worth mentioning that beside HEVC, there exist other video compression
standards (for example, the VP8, VP9 and VP10 [116] series of standards). These are
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Figure 3.1 – Simplified reference HEVC encoder [8].

not covered in this thesis as they did not show an improvement over HEVC [117]. Thus,
HEVC is the state of the art benchmark for video compression standards. Other than
this, these coding approaches are not fundamentally different from HEVC.

3.3 Texture Based Perceptual Compression
In the context of compression, texture is usually referred to homogeneous regions

of high spatial and/or temporal activities with mostly irrelevant details. According to
this, textures would usually consume high amount of bitrate for unnecessary details.
Thus, a proper compression of texture signal is needed. In the following subsections, an
overview of different approaches for texture similarity in video compression is provided.

3.3.1 Texture Removal Approaches
In the context of image/video compression, the common hypothesis is that texture

would look similar, if a good synthesis algorithm is used. By synthesizing the texture,
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there is no need to encode it but rather to encode the synthesis parameters, which need
to be significantly easier to encode in order to provide an improved compression ratio.

One of the first approaches for synthesis based coding was introduced by Ndjiki Nya
et al. in [118][119]. The proposed algorithm consists of two main functions: texture an-
alyzer (TA) and texture synthesizer (TS). The TA is responsible of detecting regions of
details irrelevant textures, via spatial segmentation and temporal grouping of segmented
textures. The TS, on the other hand, is responsible of reproducing the removed parts in
the decoder side. TS contains two types of synthesizers, one employs image warping,
which is used to warp texture with simple motion (camera motion mostly), the other one
is based on Markov Random Fields and is responsible for synthesizing textures contain-
ing internal motion. This algorithm was implemented in the video coding standard of
H.264 [120], in which irrelevant texture signals are skipped by the encoder, and only
the synthesis parameters are sent to the decoder as a side information.

Ndjiki-Nya et al. produced several extensions of the above mentioned approach. In
[121], a rate distortion optimization was also used for the synthesis part. The rate is the
number of bits required to encode the synthesis parameters and the distortion accounts
for the similarity between the original and synthesized textures, in which they used an
edge histogram as well as color descriptor for computing the objective quality. A review
of their work, as well as others, is given in [122].

Similar to these approaches, many other researchers have developed texture removal
algorithms varying in their compression capability, complexity, synthesis algorithm and
distortion measure. Interested reader may refer to [39] and [41]. For HEVC, there exist
also initial investigations about the pyramid based synthesis [123] and motion based
synthesis for dynamic textures [124].

Recently, as a part of our study on texture synthesis for video compression, a new
approach for texture synthesis has been proposed in [9]. In this approach, half of the
frames are encoded, and the rest are synthesized based on subband linear phase inter-
polation. This is shown in Fig. 3.2, where each intermediate frame is skipped at the
encoder side, and synthesized at the decoder side after reconstructing the previous and
next frames. With this approach, significant amount of data is removed, which results
in large bitrate saving. Visually, the synthesized frames as compared to the compressed
frames, at a similar bitrate, are in much better quality (Fig. 3.3). There is significant
reduction of the blocking artifacts. The results have been verified by subjective testing,
where it was shown that observers tend to prefer the synthesis-based model against the
default compression, for the equivalent bitrate levels.

3.3.2 Texture Simplification Approaches
One problem of the synthesis based approaches is the necessity of modifying the

existing standard by modifying the decoder side. This is certainly undesired as it re-
quired changing the users’ software and/or hardware, and thus could negatively impact
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Figure 3.2 – Dynamic texture synthesis approach for alternative frames [9]. E is a
decoded picture and S is synthesized one.

the user experience. To encounter this problem, Dumitras et al. in [125] proposed a
"texture replacement" method at the encoder, in which the encoder synthesis some tex-
ture areas in a way that it is simpler to encode. In doing this, the encoded image/video
would be the simplified synthetic signal, which would have a similar look to the original
one. Accordingly, it is only a pre-processing step, which does not require any further
modification of the encoder and decoder. However, the approach was only limited to
background texture with simple camera motion.

In one of our studies, we presented a new online synthesis algorithm that is fully
compatible with HEVC. It is named as Local Texture Synthesis (LTS [10]). The al-
gorithm, as described in Fig. 3.4, generates for each block to be encoded B a set of
synthetic blocks B containing n blocks (B1,B2,...,Bn) that are visually similar to B. A
subset B0 out of B that has blocks with good match to the given context is only main-
tained. Then, the encoder tries encoding block by replacing its content by the contents
in B0, and will then select the block Bj such that Bj has the minimum rate and dis-
tortion. Thus, the algorithm tries to replace the contents while encoding, by visually
similar ones, such that the contents will be easier to encode.

An example for comparing the behavior of LTS against HEVC is shown in Fig 3.5.
Due to the simplification procedure of the contents in LTS, one can achieve about 10%
bitrate saving. On the other hand, there are also some visual artifacts due to this sim-
plification. By carefully examining the differences, we can see that some of the wall
boundaries are eliminated in LTS. This is because encoding an edge cost more than a
flat area, and thus LTS would choose to replace this edge by another possible synthesis
that is easier to encode.

3.3.3 Texture Prediction Approaches
As explained earlier, the prediction mechanism, accompanied by transform coding,

are the main tool for exploiting the spatio-temporal redundancies in order to provide
efficient compression system. The texture synthesis approaches can be used to predict
the texture signal, and result in less residual to be encoded. Some few studies have used
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Figure 3.3 – Examples of visual comparison between default compression and proposed
method in [9]. Left: original frames, middle: compressed frames with HEVC and right:
synthesized frames at the decoder side.

this idea, and showed its significance in video compression.
First, the spatial prediction scheme was presented in [126]. It is named as extended

texture prediction, which employed Markovian model to synthesize the prediction sig-
nal. It was provided as an extra mode, which the encoder can choose if it provides
better rate-distortion trade-off. Similarly, in the temporal domain, the auto-regressive
moving average (ARMA) (section 2.6.2) model was used in [127] to synthesize predic-
tion frames. These approaches have shown a notable bitrate reduction, besides, they
maintain the pixels fidelity, where this property eliminates the problem of designing a
reliable criterion to assess the quality of the synthesized regions.

3.4 Indirect Approaches
Beside texture synthesis based coding; there also exist several studies on percep-

tually optimizing the encoder based on texture properties. These studies fall gener-
ally into the category of noise shaping, where the coding noise (compression arti-
fact) is distributed to minimize the perceived distortions. Examples can be found in
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[128, 129, 130, 131, 132]. Besides, textures are considered as non-salient areas, and
less bitrate is consumed there [133, 134].

The other indirect use of texture similarity measure is to exploit the analysis tools
and features from that domain in image and video compression. For example, in [135],
the visual redundancies of dynamic textures can be easily predicted by a set of features,
such as normal flow and gray level co-occurrence matrix. Similarly, the optimal rate-
distortion parameter (Lagrangian multiplier) can be predicted as well [136].

3.5 Discussion and Conclusion
In this chapter, different approaches of image and video compression, utilizing tex-

ture similarity are presented, with the first overview of the current state of the art video
compression standard, known as the high efficiency video coding (HEVC). Three cate-
gories have been identified, which are: texture removal, texture simplification and tex-
ture prediction. Beyond these, there are also indirect approaches that partially utilize
texture similarity for image and video compression.

Texture removal approaches omit large part of the textures, and rely on texture syn-
thesis for generating back the missing part. These approaches are commonly used as
they can provide significant bitrate saving. This is because the omitted part is encoded
only by synthesis parameters, which are either easier to encode than original data, or
can be derived at the decoder side. In one of the presented algorithms, by Thakur et al.
[9], the experimental results showed about 50% bitrate saving on the same bitrate. The
subjective evaluations showed the general tendency of preferring this algorithm over
HEVC.

Texture removal approaches requires significant changes in the coding standard.
This is because they add extra processing and coding units that are not available in
the original standard. This would be an issue with deploying this kind of solutions in
practice. The reason is that both software and hardware video coding systems follow the
existing standard, so that the content can be accessed by a universal decoder. Violating
the standard will directly lead to change of the end-users’ existing software/hardware,
which would negatively impact the user experience, unless new generation of video
coding is being initiated. Another problem, which is more serious, is that a lot of com-
plexity is added to the decoder side. It is generally tolerated to increase the complexity
at the encoder side, because video are encoded once, and this can be done in the content
provider side, but they are decoded as many times as they viewed, shared and received
from broadcasting. Increased decoder complexity means extra processing power with
the users’ limited device capacity, which is why it is generally avoided.

To mitigate these problems, texture simplification approaches have been proposed.
In these approaches, the synthesis is performed on the encoder side only, and the decoder
is agnostic to this process. This means any standard decoder can be used to decode the
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bitsteam, and view the contents. In this category, 2 approaches were identified. The
first is introduced by Dumitras [125], in which some texture are replace by a synthe-
sized ones which are simpler to encode. This idea was further extended by one of our
work in [10], where each block is replaced by a set of synthesized ones, provided that
some statistical constraints are met. The encoder selects the synthetic block the min-
imizes the immediate rate-distortion cost. Typically, this type of approaches showed
lesser bitrate saving, as compared to the texture removal approaches because no omis-
sion is performed, but solve the issues associated with standard violation and decoder
complexity.

As both texture removal and texture simplification approaches replace the original
texture by a synthetic ones, the resulting textures would usually be pixel-wise very dif-
ferent. This is, of course, not a problem with this type of contents, as the overall similar-
ity is preserved. Nevertheless, in some applications the pixel fidelity is important. For
example, if one is interested in large scale evaluation of performance of the similarity
based approaches, with the current standard, a proper evaluation metric is required, that
is generally pixel based one such as PSNR. Other than this, it can be safer to preserve the
pixel fidelity rather than perceptual fidelity, because the latter can hardly be expressed
mathematically. For this purpose, another category of similarity based approaches are
proposed, namely prediction based approaches. In this category, the texture synthesis is
used to generate a prediction signal in the encoder, which can be used to enhance the
prediction mechanism and thus the overall coding efficiency. The same problems as in
the removal based approaches still exist.

Other than those approaches, the chapter provides an overview of the indirect ap-
proaches. These approaches do not utilize texture similarity, but rather texture proper-
ties to allocate distortions, or to optimize encoder parameters. A very limited overview
is provided as it is outside the scope of this work.

It has been observed that all the proposed approaches do not fully exploit the knowl-
edge about texture similarity. They rather rely on the reverse-engineered concept, in the
sense that texture synthesis is employed instead of a straightforward texture similarity.
This is because texture similarity and texture synthesis are mutually inter-related. For a
good synthesis, the synthesized textures need to be similar to the original one. On the
other hand, a good similarity model can be used for synthesis purpose by understanding
what makes textures look similar, and reverse-engineer the process. This can also be
understood as a top-down approach, instead of bottom up one, i.e. the hypothesis that
is made here is that texture would look similar because of the used synthesis algorithm,
neglecting the important part of the neural processing in the human visual system.

The lack of bottom-up approach was the main motivation behind this work. The
work proposes a perceptual model of textures (Part II), which can be used both as a
similarity metric as well as a features extractor. The aim is to utilize this to perceptually
optimize the video coding system to fill the hole with a new bottom-up approach. Due to
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the several issues identified with violating the standard, we aimed at providing a solution
with full compatibility (Part III).
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Figure 3.4 – Algorithmic overview of the local texture synthesis approach in [10].
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Figure 3.5 – Compressed texture with QP=27. Left: default encoder, right: LTS. Bitrate
saving=9.756%.





II
Proposed Perceptual Model and its

Performance Evaluation
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4
V1-E: A Generalized Perceptual Model
of Texture Similarity

In the previous chapters, an overview of texture perception and texture similarity
models was established. It has been observed that there exist several models for texture
similarity, that can be directly mimicking the neural processing of the visual system,
or inspired by a certain properties of HVS. The first is known as bottom-up modeling;
while the second is top-down one. The bottom-up modeling is generally more preferable
as it does not require a hypothesis formulation about the visual system, but directly
resembles its observed behavior.

It was also observed that, in contrast to static textures, dynamic texture perception is
highly under explored. Most of the perceptual studies are based on texture images rather
than texture video. This led to the fact the most perceptual texture similarity models are
limited for static textures, and the dynamic texture ones are more computational than
perceptual models.

In this chapter, we propose a generalized perceptual model of texture similarity that
covers both static and dynamic textures. The model is inspired by the knowledge of
neural processing in HVS, more specifically, the knowledge about the human visual
cortex. The model can be directly used as a similarity metric, and also to extract a set
of robust perceptual features.

The rest of the chapter is organized as follows: In section 4.1, the general introduc-
tion of the neural processing in the human visual system is provided. Section 4.2 gives
the rationale behind the proposed model, and its details are presented in section 4.3. The
use of the model as a feature extractor and similarity metric is given in section 4.4, with
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Figure 4.1 – Simplified block diagram of HVS.

a conclusion in section 4.5.

4.1 Introduction
Up to our knowledge, a perceptual model that governs both static and dynamic tex-

tures does not exist. The main issue is that although extensive perceptual studies on
texture images exist, the texture videos have not been yet completely explored.

The aim here is to propose a perceptual texture model, based on the neural process-
ing of the human visual system. For this purpose, a careful insight to the human visual
system is necessary.

There are several stages of human visual system. In Fig. 4.1, a simplified archi-
tecture of the human visual system is provided. First, it starts with the human eye that
contains the retina, the visual information captured in the retina travels through the vi-
sual pathway to the visual cortex, where the main tasks are motion and shape processing.
Below, the summary of each component is provided. For details, the reader is referred
to [137, 138, 139].

1. Retina
The retina is a spherically shaped layer of the human eye. It is responsible
for converting the incoming light into neural signal, to be transported by the
optical nerves to the higher layers of visual perception. The retina contains two
types of receptors, known as rods and cones, which are responsible for low light
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level (scotopic) and high level light (photopic) vision. In the retina, there is a
specific spot where the highest concentration of photo receptors exists. This
spot is named the fovea. It is the one that extracts the visual information in the
area towards which the viewer is focusing, and the corresponding mechanism is
called foveal vision. Similarly, there is also the peripheral vision, where much
less photo receptors exist, and thus fewer details are perceived.
In terms of signal processing, the retina processing can be considered as a pas-
sive processing. This is because it is, more or less, a sampling unit. Although
there exists some spatial and temporal filtering operations, but it is negligible
when compared to the higher level processing in the visual cortex.

2. Lateral Geniculate Nucleus
After converting the incoming light to a neural signal, the visual information
is transported through the optic nerves to further processing units in HVS. The
next processing unit is the Lateral Geniculate Nucleus (LGN). LGN acts mainly
as an information relay, in the sense that it transmits the information back and
forth between the retina and visual cortex. The forward stream, from the retina
to the visual cortex, is for analyzing the scene, such as extracting the motion and
shape. On the other hand, the backward stream carries the brain commands for
view localization, i.e. for re-centering the fovea towards the desired object or
part of the scene.
Similar to the retina, the signal processing part is negligible at this unit. Thus, it
is also considered as a passive unit in the neural model.

3. Primary Visual Cortex
The primary visual cortex, denoted as V1, is the main unit where neural process-
ing is performed. V1 has a large set of receptive fields that are tuned to different
spatial orientations, spatial frequencies, temporal flickering frequencies and mo-
tion directions. For this reason, it is always modeled as a set of spatio-temporal
filters. This model is also supported by the evidence from the cortical response
recordings carried out by Hubel and Wiesel [47]. It was observed that the spatial
response resembles to some extent the Gabor filtering. Hubel and Wiesel dis-
tinguished two types of cells: simple and complex cells, where simple cells are
linear, and complex cells are not linear.

4. Higher Order Cortical Processing
Beyond V1, further cortical processing is performed in the higher level areas
of the visual cortex, known as extrastriate cortex. Referring back to Fig. 2.8,
one can distinguish two analysis chains. First, the chain of motion processing,
called dorsal stream, is responsible for analyzing the output of the V1 motion
detectors (section 2.4) and extracting the actual object motion by integrating the
individual motions. It is able also to re-direct the fovea, via the feedback channel
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in LGN, to track the object of interest. Second, the ventral stream analyzes the
edges extracted by V1, and integrated them to reconstruct the shapes existing in
the scene.

4.2 Primary Visual Cortex Inspired Model
Textures, both static and dynamic, are neither defined by a specific shape, nor struc-

tured motion. The reason is that textures are stochastic visual phenomena, and they are
perceived as an abstract part of the scene, where the details are mostly irrelevant.

In addition, we do not assume eye pursuit for texture perception. This is because it
is assumed that we are not following an object, or following a motion path for texture
contents. Accordingly, the proposed texture perceptual model is not concerned with
shape and motion analysis.

By looking at the block diagram of HVS in Fig. 4.1, we can plausibly assume
that texture perception is mainly happening before the dorsal and ventral streams. In
other words, we are disregarding the processing that occurs for motion analysis (dorsal
stream) and also the processing for shape analysis (ventral stream). Accordingly, the
model is up to V1 processing. In addition, since the neural processing in the previous
units (Retina and LGN) are considered as passive processing (section 4.1), only a proper
modeling of the neural processing happening in V1 is adequate for this model.

The V1 inspired modeling for textures is extensively used in the literature. It is very
similar to the back-pocket model described in section 2.3, in the sense that it mimics the
neural processing in the visual cortex. It has been successfully mainly applied for static
texture similarity task, but has not been well explored for the dynamic textures (section
2.6.1).

The main motivation behind this model is the outstanding performance of its static
texture version. For example, the performance in texture synthesis of the well-known
Portilla and Simoncelli approach [23], showed that the texture similarity is mainly based
on subband statistics. The resulting synthesized textures look very similar to the original
one, despite the point-wise differences. The model has been re-adjusted in order to de-
sign a texture similarity metric, called structure-texture similarity metric (STSIM) [70],
which has shown an excellent performance in the context of similar texture retrieval.

Accordingly, the proposed model can be considered as an extension of the existing
ones in the temporal domain, in order to cover both static and dynamic textures. In
contrast to other models, the proposed model considers only the energy of the bandpass
signals, resulting from cortical processing, as the features used for texture similarity,
and thus named as V1-E. This means that the model does not consider the inter-band
correlations, or higher order statistical features for measuring texture similarity. This
is mainly to constrain the complexity of the model. As shown in the verification and
validations tests (next chapters), such a simple model is adequate for its purpose.
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4.3 V1-E: Details
V1-E is a perceptual texture model that is inspired by the cortical processing of

HVS. It mimics the spatio-temporal filtering that happens in the primary visual cortex
area (V1). In the following, the details of the filtering process are provided.

Spatially, the cortical processing was first studied by Hubel and Wiesel [47]. It has
been observed that the simple cells perform a bandpass filtering that can be asymptoti-
cally modeled as Gabor filtering. However, other studies considered this type of filtering
to be differences of offset of Gaussians [51, 140], or differences of offset differences of
Gaussians [141]. Along with this, there has been a lot of progress in subband filtering
that exhibits good trade-of between cortical mathematical processing. For example, the
Gabor filtering approach proposed by Manjunath [65] can provide the best parameters
subband frequencies and orientations setting for minimizing the cross-band interactions.
On the other hand, there has been always a need for a reconstructable subband trans-
form, i.e. from image domain to cortical domain and vice-versa, for many applications
such as texture synthesis. For such purposes, the cortex transform [142] or the steerable
pyramid filter [68] can be used.

Temporally, the processing is slightly different, in the sense that there exist two
types of processing. The first type of neurons, which are about 68% of the total neurons
[143], perform low pass filtering, and the rest is bandpass filtering [144]. The low pass
filtering is used for shape analysis, which is further analyzed in the ventral stream, while
the bandpass filtering is used for motion extraction in the dorsal stream. However, some
other studies do not consider this behavior, and simply expand the spatial filtering to the
temporal domain. For example, both spatial and temporal V1 filtering are considered
as derivative of Gaussian functions in [53], and direct Gabor filtering in [54]. The latter
has shown a high correlation with the neural recordings, by learning the parameters of
Gabor filtering.

On top of the linear filtering, there exists a non-linear mechanism. This is mainly
due to two things. First, the neurons response to a signal is experienced in terms of
neurons firing rate. The firing rate can only be a positive number, which mandates some
rectification (full or half wave rectification). Beside this, the neurons responses are not
fully linear. There exists a certain range where the saturation occurs, which results in
the second non linearity.

Beside the simple cells, the complex cells are characterized by having a shift inde-
pendent response. In other words, their response is relatively less sensitive to the stimuli
position in comparison to the simple cells. This leads to the same modeling of the V1
simple cells, and eliminating the spatial phase dependency.

For V1-E, one of the recent modeling of V1 is used [60], which is named Feed-
Foward V1-MT network (FFV1MT). This model was developed in order to mimic the
human visual system mechanism of motion perception, by properly representing the
neural processing in V1 and MT cells. The model has been tested in computing the
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(a) Real (cosine) part.

(b) Imaginary (Sine) part.

Figure 4.2 – An example of the FFV1MT spatial filters’ impulse responses of a fixed
spatial frequency and 10 orientations.

optical flow and has shown its powerfulness in that task [62].
The V1 cortical processing in FFV1MT is represented by separable spatial and tem-

poral filtering. This is done in order to reduce the overall complexity of computing the
cortical subband signals. The spatial filtering is modeled as a series of Gaborian kernels,
as given in this equation:

SF (x, y, ✓, fs) = Be�(x2+y2)/2�2
ej2⇡(fscos(✓)x+fssin(✓)y) (4.1)

Where x and y are the spatial coordinate of the pixels, ✓ is the spatial orientation, fs
is the spatial frequency of the subband signal, � is the support (width) of the Gaussian
filter and B is a normalization factor. An example of the filters impulse responses is
shown in Fig. 4.2, in which a fixed spatial frequency (fs) and 10 orientations (✓) are
used.

For taking into account different values of the spatial frequency, FFV1MT considers
a pyramid based multi-scale approach. The original image is first smoothed by Gaus-
sian filter, in order to avoid aliasing problem, and subsampled sequentially by a factor
of 2. In a consequence, applying the same filters, as in Fig. 4.2, will lead to dyadic spa-
tial frequency analysis. This method provides high design simplicity and computation
efficiency.

The temporal filtering approach in FFV1MT is modeled as bandpass filter, with an
exponential decay. The impulse response is given in this equation:

TF (t, ft) = e(�t/⌧)ej2⇡(ftt) (4.2)

Where ft is the temporal frequency,⌧ is a constant which defines the temporal extent.
The ratio of ft over fs is considered as the neuron preferred velocity magnitude, i.e. the
velocity for which the neuron exhibits the highest firing rate. According to this, the
number of temporal filters needs to be high enough to achieve high resolution motion
analysis.
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(a) Real (cosine) part.

(b) Imaginary (sine) part.

Figure 4.3 – An example of the FFV1MT temporal filters’ impulse responses for a fixed
spatial frequency. Each subfigure shows the response for 3 velocities. From left to right:
Negative to positive velocity direction. Middle: zeros veolcity. The figures shows that
the real part is even symmetric while the imaginary part is odd symmetric. In each plot,
the x-axis is the time and y-axis is the response value of the filter.

An example of the impulse response for 3 velocity values is shown in Fig. 4.3.
It should be noted that the real part has an even symmetry, while the imaginary part
has an odd symmetry. This is also the same for the spatial filtering, which can be
mathematically verified from the governing equations (Eqn. 4.1 and Eqn. 4.2).

The spatio-temporal filtering can be achieved by cascading the spatial and temporal
filters. First, the even and odd spatio-temporal filters can be expressed in this manner:

STFE(x, y, t, ✓, V ) = SFE(x, y, ✓, fs)TFE(t, ft)� SFO(x, y, ✓, fs)TFE(t, ft) (4.3)

STFO(x, y, t, ✓, V ) = SFO(x, y, ✓, fs)TFE(t, ft) + SFE(x, y, ✓, fs)TFO(t, ft) (4.4)

Where the subscripts E and O denote the even and odd parts (resp.), and V is the
velocity under consideration.

The complex cells, as described earlier, are position independent when compared to
the simple cells. To take this into account, the complex cells are assumed to compute
the energy of the quadrature pairs (even and odd parts) resulting from the simple cells
response (Rs(x, y, t, ✓, V )). Mathematically, this can be expressed as:

Rc(x, y, t, ✓, V ) = RsE(x, y, t, ✓, V )2 +RsO(x, y, t, ✓, V )2 (4.5)

where Rc is the complex cell response, and RsE and RsO are respectively the simple
cells even and odd responses. RsE is obtained by convolving the input signal with the
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even spatio-temporal filter (Eqn. 4.3). Like-wise, RsO is obtained from the odd filter
(Eqn. 4.4).

This is followed by lateral inhibition, in which the amplitude of the response is
normalized by the energy of the surrounding neurons. It should be noted that the non-
linearity of V1 is implicitly modeled as full-wave rectification in Eqn. 4.5.

In V1-E model, the lateral inhibition is not considered. This is first to reduce the
computations, and second, the goal is not to model the complex cells. It is well known
that the complex cells are mostly used for motion estimation, and V1-E is not a motion
perception model. However, the energy is an important feature that can capture the
visual information in textures, as well be shown in the next chapters.

It should be noted that the model has spatial and temporal restrictions. Spatially, it
does not consider peripheral processing in HVS. In other words, it considers only the
foveal vision. The foveal vision is limited to a narrow viewing angle (1-4 degrees of
visual angle). For this reason, the spatial filters have limited spatial extents. Tempo-
rally, the analysis window is considered to be very short. It is assumed that the motion
integration in the visual cortex takes an average time of 200ms [145]. Thus, this time
period is considered as the length of the analysis window in FFV1MT.

4.4 V1-E as Features Extractor and Similarity Metric
One of the aims behind the developed perceptual model is to be used as a features

extractor. The features can be used to characterize textures, as well as to feed a general
machine learning approach for different texture related applications.

The complete block diagram of the model is given in Fig. 4.4. The input visual
signal is a short term foveated signal, that means a signal with 1 to 4 degrees of visual
angles and 200ms temporal length. The signal is first processed by the spatial filters, de-
fined by their spatial frequency (or scale) and spatial orientation. The resulting subband
signals are further processed by the temporal filters, for extracting the velocity related
components. The output quadrature pairs are used to extract the energies (Eqn. 4.5),
which is then used as texture features. This model, as highlighted before, is a general-
ized model for both texture images and videos. However, for still images, the temporal
filtering should be eliminated.

For measuring texture similarity, there are several ways to combine the extracted
features to form a similarity measure. One could possibly use machine learning tools,
such as linear regression, to pool the features and to yield a similarity score. It is gener-
ally true that the more complex the tools are, such as support vector machine or artificial
neural networks, the better the performance is. However, the intention here is to design
a metric, that is independent of the dataset used for training and validation. Beside this,
the metric is preferred to be bounded, such that when its score is maximum, perfect
similarity is achieved, and the minimum metric score correspond to no similarity.



4.5. CONCLUSION 63

y 

x 

t 

 
x 
x 
x 

Spatial 

Filtering 

Directions Frequencies 

Temporal 

Filtering 

Energy 

Computation 

Velocities 

E1 

E2 

E3 

En 

Figure 4.4 – Block diagram of V1-E features extractions (E1,E2,...,En).

In order to achieve this, we consider the following mathematical expression for mea-
suring the similarity between 2 features (EiT1 and EiT2) corresponding to the ith energy
of two textures under consideration (T1 and T2)

Sim(EiT1, EiT2) =
2EiT1EiT2

Ei2T1 + Ei2T2 + ✏
(4.6)

This expression is the same that is used in STSIM [69]. It is bounded between 0 and
1, in which the score of 1 refers to the perfect similarity. ✏ is small value introduced here
to avoid division by zero. The overall similarity is considered as the average similarity
across all the energy components, as given in this equation.

SIM(T1, T2) =
1

n

nX

i=1

Sim(EiT1, EiT2) (4.7)

4.5 Conclusion
In this chapter, a generalized model for texture similarity is proposed. The model

covers both static and dynamic textures, and it can be considered as an extension of
transform based similarity models, described in section 2.6.1, with more in detailed
modeling of the human visual system.

There are several stages of visual processing in the human visual system. Among
them, the cortical processing stage is considered as an active processing stage in this
model. This is because other levels show a very marginal effect when compared to
the cortical area. However, the cortical processing itself is complex one, with many
cascaded units. The proposed model relies on the argument that textures are neither
defined by shapes nor structured motion, which leads to the exclusion of higher level
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of analysis associated with shape perception (ventral stream) and motion perception
(dorsal stream), and thus it only considers the initial processing unit, named as V1.

The neural processing in V1 can be generally modeled as bank of spatio-temporal
band-pass filters. The exact parameters of these filters are not fully known. Thus, we
relied on a recently introduced computational model in [60].

The proposed model considers only the energies, thus named V1-E, of sub-band
signals as the features for texture similarity,. This is because they are actually assumed
to be computed by the V1 complex cells in order to provide a shift invariant response.
The computed energies are then fused to produce a similarity score for each subband,
where the average is finally taken to yield the overall similarity.

It should be noted that the model is based on cortical processing. This makes it
limited to the spatio-temporal support of this type of processing. Spatially, it is limited
to the foveal vision, which is a small part of the visual scene with up to 4 degrees of
the visual angel. Temporally, it is limited to very short time, which is arrount 200ms.
Another limitation is that it is neglecting any eye movement. Thus, it is considering the
textures to be localized short term homogeneous signal, which are not tracked by the
human eye. In the next chapter (Chapter 5), we show that this model performs as perfect
similarity metric when dealing with such type of signals, and it also shows an excellent
performance when extending it to larger extents. Besides; it can provide a powerful
set of perceptual features for predicting texture properties associated with the perceived
distortions due to video compression (Chapter 6).



5
Performance Evaluation as a
Similarity Metric

After having introduced the proposed perceptual texture similarity model in Chapter
4, it is necessary to check its performance and compare it to the state of the art models.
As already highlighted in section 2.7, there are broadly two mechanisms of testing:
subjective and objective. Due to the difficulties associated with the subjective testing,
and also the lack of the benchmarking results, this chapter focuses on the objective
testing. For this, two test scenarios are defined. The first is a retrieval test, which is
about finding identical textures in a dataset, given a query sample. The second is a
recognition test, which targets similar textures that belong to the same category of the
query sample.

5.1 Introduction
V1-E, the developed perceptual texture similarity model, is a generalized model

that covers both static and dynamic textures. It is inspired by the cortical processing
happening in the primary visual cortex (V1). In order to evaluate its performance, the
model is first tested by considering its design constraints. In other words, it is verified
for the same conditions that it was designed for. This type of testing is considered as a
verification test in contrast to the validation test, which is about assessing the validity
of the model for other testing scenarios.

As explained in section 4.2, V1-E is developed with the following assumptions:
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1. It is meant for textural contents: homogeneous signals with relatively irrelevant
details.

2. It is a foveated model. Spatial extents are less than 4 degrees of the visual angle.
3. It considers a short term cortical response, about 200ms.
4. No eye pursuit is assumed, which mandates eliminating any motion trajectory.

Accordingly, to examine its performance, a proper dataset of videos that complies
with the above constraints needs to be designed. For this purpose, HomoTex dynamic
textures dataset is designed in this work, which is fully explained in section 5.2.1.

There are many approaches that can be employed for the verification testing, but the
goal here is to test the performance in terms of measuring texture similarity. This could
either be performed subjectively or objectively. Subjectively, this is usually performed
through psycho-physical experiments, by measuring the perceived texture similarity ac-
cording to visual scores from observers. Objectively, it can be performed by designing
a dataset with similar textures groups, and checking the metric response in this dataset.
The advantage and disadvantage of each methodology was discussed in section 2.7.

At this level, the objective evaluation is considered. This is to have a large scale
evaluation of the proposed model in terms of measuring similarity. We designed a spe-
cific test in order to examine the performance of the V1-E as a texture similarity metric,
within the constraints of the model itself. For this, identical texture retrieval task was
performed, considering the complaint textures dataset of HomoTex. Details are given in
section 5.2.

Beyond this, the model is tested with a more general framework that does not con-
sider the model constraints. This is known as validation test, in contrast to the previous
verification test. In fact, the evaluation tests for dynamic textures are pretty much well
defined. There exists a set of common test conditions, which are used to compare the
performance of different approaches. A couple of datasets are designed for this purpose.

The first dataset that is used for this purpose is known as UCLA dataset [14, 146],
where UCLA stands for University of California/Los Angeles. However, this dataset
contains few number of texture videos. For this reason, DynTex dataset [5] has been
created to be a comprehensive dataset, involving large number of textures, exhibiting
also some camera panning. For the task of recognition, a subset of DynTex is used to
generate a new dataset, known as DynTex++ [112], in which each video is labeled by
its corresponding class.

In order to perform the recognition task, an extension of the proposed model from a
short term dimension to a larger one is needed. A discussion about different extension
possibilities is discussed in section 5.3.3.

The rest of the chapter is organized as follows: Section 5.2 provides the details of
the retrieval test, the used dataset and experimental results. Section 5.3 is concerned
about the recognition test, with the details about the datasets of DynTex++ and UCLA.
The general discussion and conclusion is then provided in section 5.4.
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Figure 5.1 – Examples of texture classes used in the verification test. Each row shows
the first image of 5 texture videos, out of 50, belonging to the same class.
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Figure 5.2 – Architecture of the retrieval system, inspired by [67].

5.2 Texture Retrieval Test

The general architecture of the retrieval test is shown in Fig. 5.2. The dataset con-
sists of a large number of textures, for which the V1-E is used to extract the textural
features represented by V1 energies. A query texture, i.e. the one that we are interested
in extracting its identical samples from the dataset, is also analyzed by V1-E model to
extract its feature vector. The V1-E similarity metric is then computed between this
feature vector and all the vectors from the dataset, and the sample which has the highest
similarity is retrieved as the best match. As a performance measure, the retrieval rate is
used, where it is defined as the ratio of number of the correctly retrieved textures, to the
number of queries. In the following subsections, the details of the implementation and
results of the retrieval system are provided.
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5.2.1 HomoTex: Homogeneous Textures Dataset
As explained in section 5.1, it is required to design a dataset that meets the con-

straints of V1-E model. For this purpose, the new dataset has been manually designed
from the other existing datasets.

For texture videos, there is a limited number of available datasets. One of the com-
monly used one in computer vision applications is the DynTex dataset [5]. This dataset
contains a large number of videos (650), each with a resolution of 720x576 and 25
frames per second. This dataset is the most important one, as it covers almost all types
of textures, captured both by static and moving cameras.

Besides this, a relatively new dataset of natural scenes, focusing on textural contents
is developed in 2015 [147], named as BVI textures. This dataset contains high quality
videos, subjectively annotated with perceived distortion due to video compression.

The two datasets were used to generate the dataset used in this work (HomoTex).
First, some source videos from the two datasets were manually cropped to cover only
homogeneous areas of textures. Temporally, only contents that exhibit some inconsis-
tency over time are eliminated. Overall 47 texture videos, meeting the constraints, were
collected from the two datasets. For further information, the complete dataset is shown
in the appendix (Fig. A.1).

It is assumed that the textures are viewed at standard viewing distance. Within
this distance, 1 degree of visual angle roughly corresponds to 64x64 pixels. Since the
dataset is designed to be within the foveal vision, the spatial extent was fixed at 128x128,
which is a good trade-off between foveal vision, spatial homogeneity and video coding
consideration as will be seen in Chapter 8. The 200ms temporal window corresponds to
5 frames for DynTex, and 30 frames for BVI.

The HomoTex dataset is further reduced by removing videos containing least dy-
namics. This is done in order to focus on more difficult contents, with lots of variations
over time. Then, we only considered 38 out of 47 video, and neglected that last 9 tex-
tures shown in Fig. A.1. Nevertheless, the complete texture dataset was used for other
tests in this work, namely for distortion sensitivity estimation (Chapter 6) and testing
the proposed perceptual rate-distortion estimation framework (Chapter 8).

5.2.2 Experiment Details and Results
With the resulting 38 texture videos from HomoTex, a special objective test is de-

signed in order to verify the performance of V1-E as a texture similarity metric. The
main idea is to generate a ground truth data, in which similar (and dis-similar) textures
are labeled. To do so, it is hypothesized that textures look similar regardless of the cap-
turing/viewing period. For example, looking at the sea wave would result in the same
perception at a given time instant or some instant later or before. This is because the
same physical phenomenon is present, and the difference in the details is negligible.
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Accordingly, all the 38 videos, which are of 10 second length, are split into non-
overlapping chunks of 200ms. The resulting chunks from the same source videos are
labeled as similar and others as dissimilar. By doing so, the evaluation procedure is a
classification problem. Overall, the dataset for evaluation contains 1800 texture videos,
distributed in 38 classes, and each class has 50 class members.

It should be noted that this type of testing is also carried out for testing and com-
paring the performance of the state of the art image texture similarity metrics, such as
STSIM and LRI [86]. However, it is considered as a retrieval task rather than a clas-
sification task. For texture videos, the similar procedure is used in [148] to test the
performance of the local binary pattern extension for texture videos. However, in both
cases, the spatial and temporal dimensions are randomly selected, without considering
the visual perception part.

To give an idea about the resulting videos, Fig. 5.1 shows some examples of the
resulting texture classes. Within each class, one can easily notice the point-wise differ-
ences due to the difference in sampling time. The evolution over time, not possible to
be shown in the figure, is also significantly different by point-wise visual examination.
However, the overall similarity of each class contents is much higher when compared to
the other classes.

In order to assess the performance of V1-E, the classification test is performed as
follows. For each class sample, the similarity score is computed with all the other tex-
tures from the dataset. If the maximum similarity is achieved with respect to any sample
of the same class, the sample is considered to be correctly classified. The classification
rate is considered as the tool for performance assessment, which is mathematically com-
puted as the ratio of the number of correctly classified samples to the total number of
samples in the given class. Thus, it is the same as the retrieval rate that is defined before
(section 5.2). For this reason, the results are reported in terms of retrieval rate rather
than classification rate.

To avoid the over-fitting problem, the dataset is randomly divided into training and
testing sets of equal sizes, i.e. 50% of the data for training and 50% for testing. In
this way, the similarity scores for each testing sample are computed against the training
samples, and the classification rate is computed as before. The experiment is repeated
20 times, in order to reduce the possible bias due to the random division.

The performance is compared to the well-known similarity measure of Local Binary
Pattern (LBP) for dynamic textures, which is known as Local Binary Pattern - Three Or-
thogonal Planes (LBP-TOP) [85]. This is because this metric has shown an excellent
performance for texture recognition and is generally considered as the benchmark for
other metrics. Secondly, LBP-TOP implementation, in contrast to other texture simi-
larity approaches, is available from the authors website. This made it easy to have the
reference implementation for fair comparison.

For V1-E, three parameters sets need to be specified (Fig. 4.4). First, the selected
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Figure 5.3 – Performance evaluation in terms of retrieval rate for both V1-E and LBP-
TOP. The experiment is repeated with 20 trials. Clearly, V1-E outperforms LBP-TOP
for all the trials.

number of orientations is 8, which means that for each spatial frequency, 8 equally
spaced spatially oriented bandpass filters are used. Second, 5 spatial frequencies were
used. As explained in section 4.3, the frequencies are considered as dyadic. Then, the
number of frequencies corresponds to the number of scales. Third, 7 velocity values are
considered, that contains positive, negative and zeros velocities. Overall, the number
of energy components used inside similarity metric is 280 (8x7x5). For LBP-TOP, the
default implementation considers a joint histogram XY,XT and YT channels with the
length of 178.

The results of the performance evaluation test are shown in Fig. 5.3. For each trial,
the V1-E shows an outstanding retrieval rate. In many trials, it can reach the 100% limit.
This is significantly better than LBP-TOP. On average, the rate is 99.84% for V1-E and
95.51% for LBP-TOP. This shows that V1-E improves the rate by more than 4% (on
average) when compared to LBP-TOP.

The results clearly indicate that the proposed model can well express the texture
similarity, when the data fits the model constraints. It can then be concluded that it is
faithfully achieving its design goal.
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Figure 5.4 – Architecture of the recognition system.

5.3 Texture Recognition Test
The recognition test is very similar to the retrieval test. However, in recognition the

task is rather about recognizing the category of the query texture. In other words, the
task is about finding which class the query texture belongs to. It should be noted that
the words recognition and classification are interchangeably used by different studies
for the same task that we are tackling here.

The general architecture is given in Fig. 5.4. Similar to the retrieval test, V1-E is
used to compute the feature vectors of the all video in the dataset. The similarity metric
is used to find the most similar sample in the dataset to the query texture. If the class
of this texture is the same as the query class, it is considered as correctly classified. For
performance measure the classification rate, which is very similar to the retrieval rate,
is used. In the following subsections, the test is fully explained and the benchmarking
results are provided.

5.3.1 UCLA Dataset
UCLA dataset has been designed during the pioneer work of Doretto et al. on dy-

namic texture analysis. The work has shown significant progress in texture recognition,
synthesis and editing [29, 14, 79], based on the auto-regressive moving average model
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(section 2.6.2). The dataset contains 50 classes of textures, such as boiling water, can-
dles, flowers, plants and others. Each class contains 4 samples, thus, the overall number
of textures is 200. Each video is of 160x110 spatial resolution, with 75 frames and 15
frames per second.

Currently, the UCLA dataset version by Chan et al. [146] is used. This version
contains cropped videos from the original UCLA videos. The cropped videos contain
only the representative texture part, to eliminate/reduce the background inhomogeneity
problem. The resulting textures are shown in Fig. 5.5.

There exist two procedures for objective evaluation with this dataset. First is the
leave-one-out cross validation test. In this test, for each class of 4 textures, 3 are used
for training and the 4th texture for testing. The process is repeated for some trials and
the mean classification rate is used as an evaluation criteria. The second procedure is
the four-folds cross validation test. This procedure is proposed in [112], and commonly
used for benchmarking of similarity models.

5.3.2 DynTex++
To overcome the limitations of UCLA dataset, that present in terms of low reso-

lution and few number of texture videos. DynTex was developed to cover wide range
of dynamic textures, and to have multiple captures of the same phenomena, allowing
different camera pans. This led to generate much higher number of videos, which are
650. Each video is at least 10 seconds long. The spatial resolution is 720x576, with 25
frames per second.

Although there is a classification benchmark for DynTex, for example Alpha dataset
with three classes of sea, grass and trees, the native videos are not directly used for
recognition task. Usually, homogeneous videos are segmented, both spatially and tem-
porally, into non-overlapping patches. The patches belonging to the same source videos
are labeled as the same class. This procedure is first presented in [85], which is very
similar to the one that is followed in the verification test in section 5.3.

A more systematic classification benchmark has been introduced by Ghanem et al.
in [112], in which a subset of DynTex was used to generate a large scale classification
dataset, named DynTex++. The main reasons made UCLA more suitable for classifica-
tion task, when compared to DynTex, is highlighted by Ghanem as follows:

1. Its DT sequences have already been pre-processed from their raw form, whereby
each sequence is cropped to show its representative dynamics in absence of any
static or dynamic background.

2. Only a single DT is present in each DT sequence.

3. In each DT sequence, no panning or zooming is performed.

4. Ground truth labels of the DT sequences are provided.
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Figure 5.5 – Examples of some classes of UCLA dataset. Each row shows the first
image of texture videos belonging to the same class.
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Accordingly, the aim of DynTex++ is to organize the texture videos available in
DynTex, to provide richer benchmark than UCLA. DynTex++ contains 3600 texture
videos, equally organized into 36 classes, with 100 samples per class. Each video is
50x50 pixels, with 50 frames. The videos are manually selected in the way that they do
not possess dynamic background, do not have more than one dynamic texture and do
not have any camera pan or zoom.

To have an idea about the different classes, Fig. 5.6 shows some examples of the
texture videos from the dataset. It could be noticed that this dataset is more challeng-
ing than UCLA. First, it has larger number of samples per class. This means a lot of
deviations within one class. Second, it contains some videos that are defined by their
shapes and motions, which can hardly be considered as dynamic textures. For exam-
ple, the traffic videos shown in the figure (second row) have distinguishable shapes in
each sample. This is certainly not complying with the design principle of the proposed
perceptual texture model V1-E. In addition, the smoke videos in the fifth row are not
homogeneous; one can clearly distinguish the background from the smoke.

The common evaluation procedure on DynTex++ is a classification task. In this task,
50% of the data is used for training, and 50% for testing. This assignment to training
and testing is random. It is repeated 20 times, and the average classification rate is
reported for benchmarking.

5.3.3 Extending V1-E for General Sequences

V1-E, as explained in details in section 4.3, is designed for a foveated signal that
has a short temporal window (about 200ms). In the verification test (section 5.2), the
dataset for testing considered these constraints. However, the two datasets considered in
the validation test, namely UCLA and DynTex++, do not have this restriction. Spatially,
both datasets do not have large extent, so it can possibly be assumed they are within the
foveal vision. This is not true in the temporal domain. In UCLA, each sample video is
5 seconds long, where as DynTex++ is 2 seconds. This poses the question on the way
that V1-E can handle videos longer than its temporal window.

The approach that is considered in this work is depicted in Fig. 5.7. For each 200ms,
V1-E is used to extract the features, which are the energies of the cortical response (sec-
tion 4.4). The features are pooled in the temporal domain, by employing 4 statistical
measures. The statistical measures considered are the mean, standard deviation, skew-
ness and kurtosis. This results in 4 groups of features, for each of which the same
similarity metric of native V1-E is used (section 4.4). Let us denote the similarity due
to mean energy as SimM , due to the standard deviation of the energy as SimS , due to
the skewness as SimSk and due to the kurtosis as SimKr. Then, the overall similarity
is computed in this way:
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Figure 5.6 – Examples of some classes of DynTex++ dataset. Each row shows the first
image of texture videos belonging to the same class.
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Model version ↵ � � �
V1-E-1 1 0 0 0
V1-E-2 2 1 0 0
V1-E-3 4 2 1 0
V1-E-4 8 4 2 1

Table 5.1 – Different parameters settings.

Method Year Classification Rate (%)
AR-LDS [111] 2001 89.9

Spacetime orientation structure [34] 2012 81.0
Low dimensional LBP based scheme[149] 2016 95.0

MEWLSP [4] 2016 96.5
V1-E-1 - 97.50
V1-E-2 - 98.00
V1-E-3 - 98.00
V1-E-4 - 97.00

Table 5.2 – Averaged classification rate on UCLA dataset, using leave-one-out cross
validation scheme, of different dynamic texture recognition approaches. LBP-TOP and
VLBP results are copied from [4].

Sim =
↵SimM + �SimS + �SimSk + �SimKr

↵ + � + � + �
(5.1)

Several values of the weights (↵,�,�,�) are tested, which are shown in Table 5.1. The
rationale behind the numbers in the table is that it is assumed that lower order statistical
measures are more important than the higher ones. This means that the mean value is
more important than the standard deviation. Thus, the weights are selected in the way
that it becomes half when the statistical order is doubled. The first version of V1-E
similarity metric in the table tests the influence of the mean only; the second tests the
added value due to the standard deviation and so on.

5.3.4 Benchmarking Results
In this section, the classification rate of the four versions of V1-E extensions (Table

5.1) is reported, following the same testing procedure defined for both UCLA (section
5.3.1) and DynTex++ (section 5.3.2). For the purpose of performance comparison to
other approaches, many results were collected from literature. It should be noted that
the naming terminology is the same as in [4].
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Figure 5.7 – Extended V1-E model.

Method Year Classification Rate (%)
VLBP [85] 2007 89.9

KDT-MD [150] 2007 89.5
LBP-TOP[85] 2007 94.5

DFS [99] 2011 89.5
3D-OTF [101] 2012 87.1

CVLBP [3] 2016 93.0
Low dimensional LBP based scheme [149] 2016 95.0

MEWLSP [4] 2016 96.5
V1-E-1 - 97.50
V1-E-2 - 98.50
V1-E-3 - 98.50
V1-E-4 - 97.00

Table 5.3 – Averaged classification rate on UCLA dataset, using four folds cross valida-
tion scheme, of different dynamic texture recognition approaches. LBP-TOP and VLBP
results are copied from [4].
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Method Year Classification Rate (%)
VLBP [85] 2007 94.98

LBP-TOP [85] 2007 94.05
DL-PEGASOS [112] 2010 63.7

DFS [99] 2011 89.9
3D-OTF [101] 2012 89.17

PCA-cLBP/PI-LBP/PD-LBP [151] 2013 91.9
DDLBP with MJMI [152] 2014 95.8

NLSSA [153] 2014 92.4
KSSA [153] 2014 92.2

DKSSA [153] 2014 91.1
Chaotic vector [154] 2016 69

MBSIF [155] 2014 97.17
High level feature [156] 2015 64.22

DNGP [157] 2015 90.2
WLBPC [113] 2016 95.01

Low dimensional LBP based scheme [149] 2016 96.28
MEWLSP [4] 2016 98.48

V1-E-1 - 90.88
V1-E-2 - 91.79
V1-E-3 - 92.14
V1-E-4 - 92.11

Table 5.4 – Averaged classification rate on DynTex++ dataset, using 50% of the data
for training and 50% for testing, of different dynamic texture recognition approaches.
LBP-TOP and VLBP results are copied from [4].



80 CHAPTER 5. PERFORMANCE EVALUATION AS A SIMILARITY METRIC

First, the results for the leave-one-out cross validation scheme for the UCLA dataset
(Table 5.2) indicates clearly that the proposed method outperforms the state of the art
methods. This is true even for the simplest version of V1-E, which includes only the
mean of energies (V1-E-1). Increasing the statistical features (standard deviation, skew-
ness and kurtosis) can generally improve the performance. However, the kurtosis has
an adverse effect. It could be due to the pooling parameters (Table 5.1), and better
combination can be found to achieve better results.

The other test of 4-fold cross validation scheme shows similar performance as the
leave-one-out cross validation. The results shown in Table 5.3, indicates clearly that the
classification rate is the highest when compared to the others. The same conclusion can
be drawn regarding the higher order statistical pooling features.

Second, the results with DynTex++ are slightly different. Although V1-E provides
an excellent classification rate (Table 5.4), it is below the best performance. Interest-
ingly, the local binary patterns of VLBP and LBP-TOP, which were developed in 2008,
outperforms many other models that are up-to 2015. However, in the verification test
(section 5.2), LBP-TOP could not compete with V1-E. In comparison to the results on
UCLA dataset, both LBP-TOP and VLBP are way beyond the other models. This is
partly highlighted in the introduction of the datasets (section 5.3.1 and section 5.3.1).
DynTex++ contains many videos that are defined by their shapes and motions (Fig.
5.6). This is certainly against the purpose of V1-E, which analyzes the textures on the
assumption that they are treated as adequately shapeless phenomena, without structured
motion (section 4.2).

5.4 Discussion and Conclusion
In this chapter, large scale evaluations of the proposed perceptual texture similarity

model are performed. The evaluations included both verification and validation tests, in
which the verification test is mainly concerned about testing the performance within the
design constraint of the model, while the validation test is a generalization test in order
to assess the performance with general dataset, that is not biased towards the model
itself.

With the same concepts used for developing the V1-E model, a dataset of texture
videos has been designed. This dataset, named HomoTex, consists of 38 texture videos,
having homogeneous contents with a spatial resolution that is with then the foveal vi-
sion. Each video was further temporally split into 50 non-overlapping patches, each of
200ms temporal extent. As the resulting dataset is complaint with model constraint, a
proper test was designed to assess the performance of the model in terms of similar-
ity measure. The test was about the ability of this model to retrieve identical textures,
given a query sample. In this context, identical textures are the ones that belong to the
same original video (before splitting). It has been realized that the proposed model pro-
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vides an outstanding performance, in which the correct classification rate can reach up
to 100%, in a large dataset where 50% of it was used for training and validation. It also
outperforms the well-known dynamic texture model of LBP-TOP.

The result obtained from the verification test is to some extent biased to the proposed
model. The benchmarking with other models was not possible, since the dataset is not
yet published, and the reference implementation of other models, apart from LBP, is
missing.

For this reason, we were also interested into assessing its performance in a more
general testing scenario, where the benchmarking data are available. We considered
this as a validation test, in contrast to the verification test, that is not biased to the
proposed model. For this purpose, the common recognition tasks are performed, in
which 2 datasets are used (UCLA and DynTex++). This task necessitated the extension
of V1-E from short term foveal resolution to a general one. Different statistical pooling
methods have been discussed, such as considering the mean of V1-E features only, or
involving higher order features like standard deviation, skewness and kurtosis.

The results indicate that the V1-E shows an excellent performance. It also outper-
forms the state of the art methods on UCLA dataset. However, for DynTex++ it is not
the best. This is possibly due to the complexity of DynTex++, which highly conflicts
with the design principle of V1-E.





6
Performance Evaluation as a Features
Extractor

The proposed model (V1-E) has been tested as a similarity metric in the previous
chapter. It showed an excellent performance in both retrieval and recognition tasks.
However, V1-E is also a model that can extract textural features, that might be used for
other purposes rather than texture similarity analysis. The objective here is to test the
performance of these features in predicting visual properties associated with textures.
Unlike the previous tests of retrieval and recognition, this time a psychophysical testing
is involved to extract these properties.

As of its vital importance in this work, a link to video compression is brought here.
The properties that we study here are related to the visual sensitivity to the perceived
distortions due to video compression. The objective is to understand to what extent
the perceptual texture features, obtained via V1-E, can be used to predict these visual
properties.

The rest of the chapter is organized as follows: The general introduction about the
context is given in section 6.1. Section 6.2 provides the details of the psychophysical
test with its results. In section 6.3, the performance of V1-E in terms of predicting the
perceptual properties, resulting from the psychophysical test, is examined, while the
conclusion is given in section 6.4.

83
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6.1 Introduction

V1-E is a perceptual texture model, which can be either used as a similarity metric,
or features extractor (section 4.4). One of the intention of developing this model is to be
used in the context of image/video compression. In this chapter, the first investigation
about perceptual properties of textures involving compression is carried out.

The latest video compression standard is known as high efficiency video coding
(HEVC) [114]. A short overview of it is given in section 3.2. It is basically a hybrid
video coding that utilizes both signal prediction and transform in order to provide a com-
pact representation of the video sequences. An entropy based binary coding (CABAC
[114]) is used to achieve the minimum amount of information to be stored or transmit-
ted over channels. These mechanisms (prediction, transform and entropy coding) rely
on the statistical redundancies of the input signals, such as spatial and temporal corre-
lation. However, beside this, there are also perceptual redundancies that can be further
exploited to enhance the coding performance.

It is well known that the human visual system can detect differences when a certain
perceptual threshold is crossed. The just noticeable difference/distortion (JND), is the
threshold at which the change of certain physical quantity causes a perceptual differ-
ence. It is of huge importance in many applications involving perceptual optimization.
An example of this, in the scope of this work, is permitting the coding system to fur-
ther compress the input signal, while assuring an equivalent perceptual quality. In other
words, the idea is to exploit the existing perceptual redundancies in the input signal.

Typically, JND threshold is estimated based on low level mechanisms of human vi-
sion, namely contrast sensitivity [158][159]. Such methods are of limited scope, and can
poorly perform in the region of apparent distortion (suprathreshold region) as indicated
in [160]. According to this, it is argued that the threshold can be properly estimated
from the natural image sequences themselves, taking into account computational fea-
tures describing them. However, our scope is limited here to textured signals.

The perceptual distortion sensitivity is a general term concerning how much sensi-
tive the human visual system is to a particular distortion type. Two properties are studied
here. First is concerned about the perceptual redundancies, which refer to the amount of
redundant visual information that can be eliminated without causing visual difference.
Second is the perceptual tolerance, which precisely tells how much distortion can be
tolerated without changing the perceived quality.

V1-E, as a features extractor, is tested in order to understand whether it can predict
these properties. This can be considered as an extra test, beside the verification and
validation test (Chapter 5), to look into V1-E powerfulness and weakness.
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6.2 Perceptual Distortion Sensitivity Estimation

6.2.1 Method and Apparatus
The perceptual distortion sensitivity, as discussed in section 6.1, is concerned about

the amount of how much the visual system is sensitive to a particular distortion. There
are many ways to study this, and several psycho-physical approaches can be employed
for this purpose.

In this work, a particular interest in image and video compression is considered.
It is thus important to study the perceptual distortion sensitivity in a manner that is
directly applicable to the compression scenario. Thus, the goal here is to understand
the sensitivity towards this type of distortion, and apply that knowledge to enhance the
compression efficiency.

For an image sequence under consideration, which is compressed up to a certain
ratio, an experiment is designed to quantify the amount of further compression that
can be added, without altering the perceived quality. In other words, to quantify how
much redundant visual information can be eliminated, without causing any perceived
difference.

This type of study is well established in psycho-physics. It is related the task of
threshold detection, or more generally psychometric estimation. The psychometric
function ( ) is generally an "s" shaped function that relates the physical change to
the detection/discrimination probability [161]. The general mathematical form of it is
[162]:

 (x,↵, �, �,�) = � + (1� � � �)F (x,↵, �) (6.1)

F is an "s" shaped function that usually takes the range [0-1], for example Weibull,
logistic and cumulative Gaussian. � is the guess rate, and � is the lapse rate. The other
two parameters (↵ and �) represent the shape parameters of F , such that ↵ corresponds
to the shift in x and � correspond to the slope of F .

Estimating the psychometric function, or the subjective threshold, is a classical task
in psychophysics. There are generally two types of methods, adaptive vs. non-adaptive.
An example of the non adaptive methods is the method of limits. This method is used
to measure a certain perceptual threshold by changing the value of a physical quantity
until the perceptual threshold is detected. This can be in either ascending or descending
(or both) manner. In the method of adjustment, the observer himself controls the stimuli
level to determine the perceptual threshold. Another method, which is known as the
method of constant stimuli, is used to measure the psychometric function at constant
point. The psychometric function can be then interpolated by different functions using
either least square or maximum likelihood estimation. The details of these methods, as
well as others, are described in [163].
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The adaptive methods, as compared to non-adaptive ones, are usually faster and
more precise. There exists a large body of research dealing with this topic. One of the
first, and the highly inspiring, method is known as Parameter Estimation by Sequential
Testing (PEST) [164]. In this method, the stimuli level is tested, and the instantaneous
probability is estimated. Using the Wald test, it can be determined whether the level is
within the range of target probability. When it is not the case, the stimulus is level is
changed within a constant step size. Once an inversion in the order happens, the step
size is halved. The process continues until the minimum step size is achieved. Several
extensions of the PEST test has been proposed, for example: more virulent PEST [165],
ML-PEST[166], QUEST [167] and Zest [168]. For more details, the reader is referred
to the reviews in [169] and [170].

The state of the art method is known as Updated Maximum Likelihood (UML) test
[171, 172]. It defines three search ranges of the psychometric function (�, � and �) as
in Eqn. 6.1. Based on the observer response, it measures the log likelihood value of all
of the possible psychometric functions in the search range, and places the next stimulus
level in the critical point of the curve. The test is shown to provide a fast convergence
compared to other methods.

The UML method was employed here. The physical quantity that was studied is
related to HEVC compression, which is the relative rate Rr. Given a reference video
compressed with a rate of R1, and the same video at another rate R2, Rr is defined as:

Rr = (R2 �R1)/(R1) (6.2)

On the perceived scale, the preference probability is considered. This means that
for a given reference video with a rate of R1, the preference probability measures how
much the same video with a rate of R2 is preferred. In other words, how the relative
relate affects the perceived preference. To do so, the observers in the psycho-physical
tests were asked to select among the two compression levels (at R1 and R2) of a video,
the decoded video that they prefer.

An example of the resulting psychometric function is given in Fig. 6.1. In this fig-
ure, we can see that sequences having a large negative relative rate are not preferred
(and vice-versa), which reflects the fact that negative relative rate represents lower bi-
trate due to higher compression, which would necessarily result in lower visual quality,
and thus less preference. The same is true for the opposite case. An interesting and most
informative point on the curve is the point of 50% preference probability. This point is
the one at which no clear preference towards any of the compared pairs is present. The
observers would randomly prefer any one of the tested videos, as they do not perceive
any difference. This point is commonly known as the point of subjective equality. Ide-
ally, this point should correspond to the point where the compared videos are exactly
the same perceived quality, which is the point of zero relative rate, but it appears at rel-
ative rate of approximately -10% (Fig. 6.1). This can be interpreted in the way that the
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Figure 6.1 – An example of the measured subjective preference pychometric function.
Red line represents the point of subjective equality.

given video is perceptually equivalent to the same video being compressed at a higher
compression level, namely the given video possesses a certain amount of perceptual
redundancy which can be exploited to produce 10% bitrate saving.

The UML test was conducted with 25 naive observers, with normal or corrected (to
normal) vision. They received written instructions on using the software as well as the
task they have to perform. A screen shot of the used software is shown in Fig. 6.2,
in which two videos are simultaneously shown, and the observer task is to select the
sequence with better perceived quality.

The subjective test was conducted in a professional room specifically designed for
subjective testing. It complies with the ITU recommendations regarding the room light-
ing and screen brightness [173]. The used screen was a TVLogic LVM401 with a res-
olution of 1920x1080 at 60Hz. The viewing distance was 3H, where H is the screen
height. The test duration was less than half an hour for all of the observers.
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Figure 6.2 – Screen shot of the software used for psychophysical experiment.

6.2.2 Material

In most of the tasks involving visual quality assessment, the test materials are se-
quences having divergent contents, extending from 5 to 10 seconds long. However,
other studies of psychophysical threshold estimation use simplistic signals with con-
trolled properties (for example: bars, Wavelet-Gaussian patches). In this work, which
covers both perceptual quality assessment and video compression, a combination of
both is required.

The main goal of the video compression standard (HEVC), is to provide the best
trade-off between rate and distortion. Thus, HEVC encoder selects the best predic-
tion mode, splitting depth and etc. according to the instantaneous rate and distortion
measure. The distortion is computed with a limited knowledge about the spatial and
temporal part of the signal. Spatially, the maximum extent is limited by the Coding
Tree Unit (CTU) size, with a maximum 64x64 pixels, and temporally it is limited by
the decoded picture buffer, which is limited by few number of pictures. For this rea-
son, the optimal perceptual optimization model should consider the smallest possible
spatio-temporal extent.

Visually, the spatio-temporal extent is limited by the foveal vision in the spatial do-
main, and the minimum fixation time in the temporal domain. The exact mathematical
numbers are discussed in Chapter 4 in developing V1-E. Taking into consideration these
numbers, and trying to capture the textural phenomena for a shortest period, samples
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Figure 6.3 – Dataset used in this work (from HomoTex section 5.2.1), with SeqId from
1 to 25 (from top left to bottom right).
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from the developed dataset (HomoTex dataset section 5.2.1) were used for the exper-
iment. Temporally, they were limited to 500ms, which is assumed to be sufficient to
represent the textural contents.

Accordingly, 25 sequences (shown in Fig. 6.3) were collected. For clarity, each
video was assigned a sequence identity (SeqId) from 1 to 25. A circular windowed
version (as shown in Fig. 6.3) was used in the experiment. The window diameter (91
pixels) was selected in order to show 1.5 degrees of visual angle, and the rest of each
video was gradually faded to the background level using gaussian filter. This is done
such that the signal falls within the foveal vision. Temporally, as the initial signal is
quite short, it was repeated upon the end of the sequence with time reversal to avoid the
temporal discontinuity artifact.

The sequences were compressed to 3 quality levels (high, medium, and low) using
the HEVC reference encoder (HM 16.2 [8]). Certainly, these quality levels depend
on the content, but overall a large range of quantization parameter (QP) was covered
(minimum QP was 22, whereas the maximum was 47). This resulted in 75 source
videos (SRCs), which were compared to other compression levels (HRCs) to obtain the
preference probability using the UML procedure section 6.2.1.

6.2.3 Results
The results of the psychophysical test are 75 psychometric preference functions (as

the one shown in Fig. 6.1), each of them represents the probability of preferring a
given HRC over another HRC. For each function, the threshold of 50% probability of
preference is retained, which represents the point of subjective equality (section 6.2.1).
An example of one sequence is shown in Fig. 6.4, where we can see that the redundancy
in the high quality region (low QP) is higher than for low quality region (large QP).

The overall average relative rate from the three quality points for all the sequences is
shown in Fig. 6.5. We can see clearly that for most of the sequences, the corresponding
subjective equality does not appear at the same bitrate. This clearly indicates that there
are high perceptual redundancies, which can be exploited to reduce the bitrate, while
maintaining an equivalent subjective equality.

6.3 Perceptual Redundancy and Distortion Tolerance Pre-
diction

After measuring the 75 psychometric functions, two perceptual criteria in the context
of distortion sensitivity can be defined. The first is called the perceptual redundancy,
which quantifies the amount of visual information that can be omitted without causing
any visual disturbance. The other is the distortion tolerance, which specifies for a given
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Figure 6.4 – An example of relative rated at equivalent subjective quality for the video
with SeqId=11. Error bars correspond to 95% confidence interval.
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Figure 6.5 – Overall average relative rate of all videos. Error bars correspond to 95%
confidence interval.
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video how much the visual system can tolerate distortions.

The visual redundancy is expressed in terms of the objective metric of Peak Signal
to Noise Ratio (PSNR). For each of the textures, at a certain compression level, spec-
ified by its quantization parameter (QP) value, the visual redundancy is the amount of
minimum PSNR (PSNR2) that can be used, in contrast to the target PSNR (PSNR1),
without making a visual difference. In other words, it measures how much signal fi-
delity, measured in PSNR, can be lost without being noticed by the observers. Then,
the visual redundancy, expressed by PSNR2, can be predicted with features analysis
by employing a regression model.

In our published work in [135], computationally simple features were used for the
regression problem. Accordingly, we used the following set of descriptors: the standard
Spatial Information (SI) and Temporal Information (TI) [174], The Colorfulness (CF)
[175], the Gray Level Co-occurrence Matrix (GLCM) [176], and the set of dynamic tex-
ture descriptors defined in [94]. The GLCM descriptor combines 4 features, which are
contrast, correlation, energy and homogeneity. Similarly, the following descriptors are
defined in [94] for normal flow vectors: Divergence, Curl, Peakness and Orientations.
For the frame based features, such as SI and TI, we experimented different temporal
pooling strategies, such as temporal mean and standard deviation. A linear regression
model was trained to predict the redundancies. Similarly, V1-E can be used as a fea-
tures extractor for the linear regression model, and the performance can be compared.
For purpose of simplicity, the dimensionality of V1-E has been reduced by considering
less number of spatial frequencies, orientations and velocities. Overall, 9 features (V1
energies) were considered, corresponding to 4 orientations and two velocities. The per-
formance of the linear regression process (normalized data), in terms of leave-one-out
cross validation is given in Table 6.1.

The results indicate that the redundancies can be well predicted, with a high pre-
cision. It also shows that V1-E outperforms the proposed features set of [135], which
indicates the importance of the perceptual features obtained by V1-E.

The possible use of this model is shown in Fig. 6.6. The input video, which is
assumed to be homogeneous texture with a short spatio-temporal extent, is first analyzed
by V1-E to extract the set of representative features. The features can be used to predict
the amount of visual redundancies (MinPSNR) as compared to the target compression
level, specified by QP. MinPSNR could be fed to the encoder (HEVC), so that it can
try further compression, limited by MinPSNR, to achieve higher bitrate saving, while
keeping the same perceived quality.

Beside the visual redundancy, one could also study the visual distortion tolerance. In
contrast to the visual redundancy, the distortion tolerance is independent of the compres-
sion level, and thus it is a sequence dependent property. Mathematically, it is defined in
the work as:
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Features Number of Mean Mean
set features Squared Error Absolute Error

Combined features 9 0.002 0.038
set [135]

V1-E 9 0.0013 0.036

Table 6.1 – Performance evaluation of perceptual redundancies predictors, using leave-
one-out validation procedure.

DT =
PSNR1� PSNR2

PSNR1
(6.3)

Where PSNR1 and PSNR2 are as before: reference PSNR and lower PSNR that
does not cause any observed difference. It should be noticed that the distortion sen-
sitivity is inspired by the Weber law of sensation, which indicates that the perceived
difference in a stimuli is proportional to the initial stimuli. In the case under study, the
Weber law can be mathematically expressed as:

PSNR1� PSNR2 = ↵⇥ PNSR1 (6.4)

Comparing Eqn. 6.3 with Eqn 6.4, the constant of the proportionality (↵) is equiva-
lent to the distortion tolerance. Since the psychophysical test covers three quality levels,
the distortion sensitivity is considered as the average of the three levels.

To illustrate the distortion tolerance, Fig. 6.7 shows examples of images from videos
with 3 Distortion tolerance values, at 3 equal compression levels. The lowest distortion
tolerance value is found in the top sequence, the highest is for the sequence on the bot-
tom, while the center sequence is the sequence exhibiting the median tolerance among
the 25 sequences. One can observe that with increasing compression (from left to right
in Fig. 6.7), the details of the sequence with lowest tolerance are easily diminished, in
contrast to sequences with higher tolerance, the details are more persistent, and thus the
human visual system can tolerate higher amount of distortions.

To test if V1-E can predict these properties of the sequences, SVM regression model
was trained using the same number of features for the visual redundancy learning. This
means 8 features were used, corresponding to the energies of V1-E obtained for 4 ori-
entations, 2 velocities and 1 spatial frequency. The results in Table 6.2 show that the
perceptual tolerance can be predicted with V1-E. However, the prediction is less accu-
rate compared to the perceptual redundancies estimation (Table 6.1). The results could
possibly be improved by expanding the V1-E features space, but this could cause an
over-fitting because the number of samples is very small, which is the number of source
videos (25).
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Figure 6.6 – Proposed perceptual optimization framework of HEVC Encoding.

Features Number of Mean Mean
set features Squared Error Absolute Error

V1-E 8 0.0067 0.25

Table 6.2 – Performance evaluation of perceptual tolerance predictors, using leave-one-
out validation procedure.
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Figure 6.7 – Images from sequences having different distortion sensitivity values, at
three compression levels. From top to down: Lowest, middle and highest distortion
tolerance. From left to right: HEVC compression with QP values of respectively 32,37
and 47.
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6.4 Conclusion
After examining the performance of V1-E as a similarity metric in both retrieval and

recognition tests (Chapter 5), the objective here was to test V1-E as a features extractor.
The features extracted by V1-E are tested in order to verify whether they can be used to
predict visual properties of textures, in link with video compression, that are revealed
with a psychophysical experiment.

Video compression is an important part of this thesis work. In this chapter, a first step
in linking V1-E to video compression is made. First, a psychophysical procedure was
employed to measure the amount of visual sensitivity of textures towards the perceived
distortions due to HEVC compression. In other words, for a given texture with a certain
compression level, the sensitivity tells us how much extra distortion can be allowed
without altering the perceived quality.

From the experiment, two visual properties are defined: perceptual redundancies
and perceptual distortion tolerance. In addition to the texture features, perceptual re-
dundancies depend on the compression parameters, while the latter is independent of
them.

The experimental results showed that V1-E, as a features extractor, can be used to
predict both the visual redundancies as well as distortion tolerance. With a very small
features set, it outperforms the set of features previously used in the published work.
With this achievement, as well as the results of the retrieval and recognition tests, it
is concluded that the proposed V1-E model is a proper model for textures, and it is
achieving its design goals.

Exploiting the distortion sensitivity can provide a significant bitrate saving without
altering the perceived quality. As can be seen in Fig. 6.5, up to 40% of the bitrate
can be reduced. This is a first employment of V1-E model in the video compression
system. This approach can be considered as a passive approach. This is because it is
implemented outside the encoding processes. In the next part (Part III), we propose
an active framework for perceptually optimizing the compression of textures, in which
V1-E is employed for this purpose.
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7
Proposed Optimization Framework

The main goal of the thesis work is to develop a model of visual texture perception,
that can be used to drive the compression system in order to improve the rate-quality
performance. The proposed model, V1-E, was shown to be a robust tool for expressing
texture similarity, as well as a texture features extractor. The question in this chapter is
how to use it inside the video compression system.

The chapter provides the general idea about the proposed perceptual optimization
framework of the video compression standard. The framework utilizes the knowledge
about perceptual texture similarity, for deriving a perceptual rate-distortion optimiza-
tion. Then, initial experimenting with the proposed model is performed, accompanied
by experimental results (visual and numerical).

The chapter is organized as follows: The introduction is given in section 7.1. The
state of the art details about the rate-distortion optimization is provided in section 7.2.
Section 7.3 explains the details of the proposed optimization frame-work. The distortion
measure used for perceptual optimization is explained in section 7.4.1. The details of the
rate-distortion implementation are provided in section 7.4.2. The experimental results
are given in section 7.4.3, with the verification test in section 7.4.4 and the conclusion
in section 7.5.

7.1 Introduction
Textures represent the perfect candidate for the optimization of the image/video

compression system. This is due to their spatio-temporal homogeneity, which facilitate
the characterization and analysis of their contents. Machine learning based approaches,
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for predicting encoding parameters or enhancing the encoding system, are one of the
successful solutions that utilize the analysis part of textures. Chapter 3 provides the
state of the art methodologies for intelligent compression of textural contents.

Perceptual optimization, on the other hand, is another important approach for im-
proving the compression system. It is generally concerned about improving the per-
ceptual quality of the decoded image/video, for a given rate budget. It is thus mostly
dependent on the definition and understanding of the perceptual quality, and how the
compression distortions interact with it.

By developing V1-E, the goal was to use it as a perceptual optimization tool for the
video compression system, specifically focusing on texture contents. V1-E has shown
to be an excellent model of expressing texture similarity (Chapter 5), then, the natural
way for utilizing this model is by improving the rate-similarity performance of the com-
pression system. In other word, for a given rate budget, V1-E can be utilized to drive the
encoder in such a manner that the perceptual similarity of the decoded video is higher
compared to the default compression scenario. This is a part of a general framework
of rate-quality optimization, which is extensively studied for perceptual optimization
purposes.

7.2 State of the Art in Rate-Distortion Optimization

The rate-distortion optimization is a tool that is used inside the state of the art image
and video encoder in order to achieve the best rate and distortion trade-off. For each en-
coder decision, the rate (expected number of bits) and distortion (expressed by a certain
metric) is computed, and combined by a cost function. The cost value is then used to
retain the best decision, which minimizes the computed cost.

The reference implementation of HEVC, realized by the HM software [8], follows a
classical approach of rate distortion optimization, inherited by the older standard of Ad-
vanced Video Coding (AVC [120]). The cost function (J), involving the two variables:
rate (R) and distortion (D), is defined as the following:

J = D + �R (7.1)

Where � is the Lagrangian multiplier used for finding the minimum of the cost value
J .

In the reference HEVC encoder, two distortion metrics are used. Namely, the Sum of
Squared Differences (SSD), and the Sum of Absolute Transformed Differences (SATD),
which is an extension of the Sum of Absolute Difference (SAD). For a given block
of size NxM pixels, SSD is computed from the difference (Diff(n,m)) between the
original block content and the reconstructed (decoded) version as follows:
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Figure 7.1 – Original frames (from the SJTU dataset [177]) and with their corresponding
bitrate maps .
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SSD(O,D) =
NX

i=1

MX

j=1

(Diff(i, j))2 (7.2)

Similarly, SAD is defined as:

SAD(O,D) =
NX

i=1

MX

j=1

|Diff(i, j)| (7.3)

The difference between the two is the same as the difference between L1 and L2
norms. There are many applications that prefer L1 over L2 (vice versa). Beside SSD
and SAD, SATD is computed by applying a transform to the difference before the sum,
as follows:

SATD(O,D) =
NX

i=1

MX

j=1

|T Diff(i, j) T 0| (7.4)

Where T is the transform matrix, and T 0 is the transpose of T . It should be noted that
the motivation behind preferring SATD over SAD is that the residual signal to be en-
coded (Diff(i, j)) will be represented in the transform domain before compression, and
the difference in that domain will correspond to the actual difference that will appear.
However, for reducing the complexity, the reference HEVC implementation considers
the simple transform of Hadamard, as an approximation to the discrete cosine transform
that used for the actual compression, since Hadamard transform is much computation-
ally simpler and requires only simple mathematical additions and subtractions.

In video compression scheme, the encoder has several options to encode each block.
For example, in HEVC there are 35 intra-prediction directions. In addition, there is
also a large number of candidates for inter-prediction, depending on the motion search
range. For making the optimal choice, the cost function must be computed for each
option, and the option showing minimum cost is then selected. Along with this, each
block can be portioned into smaller blocks (both symmetrically and asymmetrically).
The best decision then considers also the overall cost of the individual sub-blocks, as
well as the partitioning cost.

Instead of performing exhaustive search for the best decision, HEVC reference im-
plementation selects first a set of most probable candidates from which the best decision
is drawn. This is done to reduce the large complexity involved in computing the rate
term in the cost function, which requires performing the full compression steps (trans-
form, quantization and entropy coding) which is equivalent to running the encoder as
many times as the number of all candidates. Rather than this, an estimate of the rate,
combined with SATD is used. After specifying the most probable candidates, including
the ones with block partitioning, the accurate rate and SSD based distortions are used.
In this manner, two cost functions can be defined:
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J1 = SATD + �1R (7.5)

J2 = SSD + �2R (7.6)

Each of which has its own Lagrangian multiplier. Intuitively, SAD (and also SATD)
can be approximately considered as the square root of SSD. Thus, the two � are related
in this equation:

�1 =
p
�2 (7.7)

The Lagrangian multiplier is inherited from older standards. Mathematically, it can
be derived by searching for the value that minimizes the cost function. First taking the
first derivative of the cost function in Eqn. 7.1 with respect to R yields:

@J

@R
=

@D

@R
+ �

Then, set the derivative to zero for finding the minima:

0 =
@D

@R
+ �

Or

� = �@D

@R
(7.8)

This means that � is equal to the negative change of the distortion with respect to
the rate. For this, the prior knowledge of the functional relation between the distortion
and rate is needed, which is not feasible. For this reason, empirical solutions are usually
employed, such as the one in [178].

In HEVC reference implementation, the value of � used with SSD, i.e. �2 in Eqn.
7.6, is computed as follows [8]:

�2 = ↵⇥Wk ⇥ 2((QP�12)/3) (7.9)

and the other � for SATD (�1) is computed from Eqn. 7.5. ↵ and Wk are multiplica-
tion factors depend on the encoder configuration, and QP is the quantization parameter.

Looking at Eqn. 7.9, one can see that for higher QP value, which corresponds to
higher compression level, larger � value is set. This means that encoder puts a higher
weight for the rate, and thus seeks to reduce it as much as possible with loosely consid-
ering the distortion. The reverse is also true, for low compression (low QP), the rate is
unimportant, and the encoder tries to provide the least possible distortion.
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7.3 Proposed Framework
The distortion metrics used for the rate-distortion optimization, as explained in the

section above, are very attractive from both mathematical and practical point of view.
First, they represent the simplest and computationally most efficient metrics. Second,
they exhibit a monotonic behavior with the signal distortion.

Perceptually speaking, this type of metrics is very poor. This is because they rely
on the simple pixel difference, and do not consider any properties of the human visual
system, such as the distortion sensitivity (Chapter 6), masking and others. The problem
is even more severe in the case of textural contents. This is because textures similarity
can highly deviate from the pixel-wise difference. Accordingly, the measured distortion
cannot represent the perceived distortion.

For this reason, many studies proposed replacing these metrics by others that are
more perceptually flavored. Examples of this are found in [179, 180, 181], where SSIM
has been proposed as a replacement for these metrics.

On the other hand, the Lagrangian multiplier � needs to be assigned depending
on the visual importance of the region under consideration. In other words, higher �
can be assigned for visually unimportant areas, to spend fewer rate in comparison to
other important areas with lower �. This can even be done in combination with the
distortion metrics, such that they are weighted in correspondence to the importance of
each region. Examples of such approaches are the saliency-based coding [134], or Free-
Energy principle-based coding [132] and others that provide heuristics based on blocks
properties [182, 183, 184].

In the proposed perceptual optimization framework, the perceptual similarity (more
precisely the dissimilarity) developed in this thesis is considered as replacement for
the default metrics (SSD and SATD). In other words, the encoder will make its deci-
sions based on perceptual criteria, rather than a simple mathematical one. The proposed
framework utilizes V1-E for this purpose, in which two test scenarios are considered,
where V1-E is either directly used as a similarity metric inside HEVC, or as a features
extractor to predict the perceptual distortions for making the encoder decision.

7.4 Initial Experiment
The proposed framework, as explained in section 7.3, is a perceptual rate-distortion

optimization model that considers replacing the default compression standard’s distor-
tion metrics by other metrics that are based on the properties of the human visual system.
The main idea is to employ the texture similarity metrics for this purpose.

To do so, the similarity metric of V1-E, that is developed in this thesis (Chapter 4
for details), can be directly used. However, for the initial test, the work was limited
to texture images, rather than texture videos. For this purpose, any perceptual texture-
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image similarity metric could be used. We considered using an existing one, which is
conceptually very similar to V1-E. The one that is selected for this task is a very recent
metric, successfully applied for the purpose of textures retrieval, named as Structure-
Texture Similarity Metric (STSIM). Its details are given in section 7.4.1.

7.4.1 Overview of STSIM
STSIM is a recent texture similarity metric, which has been successfully used for

texture similarity assessment tasks like textures retrieval. It can be considered as an
extension of the structure-similarity index (SSIM), mainly concerned with textures. In
addition, it follows an asymptotic approach to the developed texture similarity metric
(V1-E) within this work. For measuring texture similarity, STSIM performs the follow-
ing steps [69]:

— Subband Decomposition: This is the first step in computing STSIM. The goal,
similar to V1-E, is to model the neural processing in the human visual cortex.
Instead of trying to resembling the exact neural processing, STSIM employs the
steerable pyramid filter [68] as a tool for this decomposition.

— Statistical Features Computation: After the subband decomposition, STSIM
defines some statistical features used for measuring texture similarity. Unlike
V1-E, which only considers the subband energies, STSIM takes into account
the mean, standard deviation and the horizontal and vertical auto-correlations
coefficients. It should be noted that the subband signal is, by definition, a sig-
nal with zero mean value (no DC component). However, the mean only exists
(not necessarily zero) in the case of windowed averaging. In this work, the im-
plementation considered only global averaging. This essentially means that the
considered STSIM implementation uses the root values of V1-E features, i.e.
standard deviations instead of energies, accompanied by another features of cor-
relations.

— Pooling: After computing the features on the subband domain, STSIM computes
the similarity in the following manner: Assuming that the similarity score is to
be computed between two textures (T1 and T2). Then, if F1

i and F2
i are certain

features of the ith subband from the first and second textures, STSIM computes
the similarity of those two features in this way:

Sim(F1, F2) =
2F1F2

F1
2 + F2

2 + C
(7.10)

which is exactly the same approach employed for V1-E (Eqn. 4.6). This similar-
ity metric is computed for each feature, and average independently, over all the
subands, for the standard deviations and the correlations. These three similarity
values (Simstd, SimHcorr, SimV corr) are pooled as follows:



108 CHAPTER 7. PROPOSED OPTIMIZATION FRAMEWORK

Simstd
↵SimHcorr

�SimV corr
� (7.11)

The performance of STSIM as a texture similarity metric has been partially dis-
cussed in section 2.7. It has shown an excellent performance for the common texture
retrieval task, with up to 96% retrieval rate (Table 2.1).

7.4.2 STSIM for Rate-Distortion Optimization
STSIM, as shown in the previous section, is conceptually very close to the V1-E

similarity metric, but limited to texture images. As explained in Chapter 7, the main
goal is to use a certain perceptual metric to improve the rate-distortion performance of
the video compression system, and STSIM is first tested in this initial experiment.

The similarity score obtained by STSIM cannot be directly used as a distortion mea-
sure inside the encoder. First, since the score is bounded between zero and one, where
one is the highest similarity, it can be converted to a distortion D (dis-similarity) score
by:

DSTSIM = 1� STSIM

Second, the metric should consider also the block size in its computation. This is
because it is used inside the rate-distortion loop of the encoder, in which encoder deci-
sions over different blocks, due to block splitting, need to be taken into account. This
is the same reason why the sum of squared differences (SSD), or the sum of absolute
differences (SAD), is used instead of the mean squared difference or mean absolute
difference. For this purpose, the distortion is scaled by the number of pixels that each
block contains.

Finally, the rate-distortion function, as given in Eqn. 7.1, includes also a Lagrangian
multiplier (�), which is equal to the negative value of the derivative of distortion with
respect to the rate (Eqn. 7.8). Because of the absence of information concerning the
relationship between the STSIM and rate, no modification has been performed with
respect to �. Nevertheless, for the purpose of having the same range for the new metric
DSTSIM as it is in SSD or SAD, DSTSIM is scaled by a proper value corresponding to
each one.

In summary, STSIM was used to generate two distortion metrics (D1 and D2), which
can be used to respectively replace SSD and SATD. Mathematically, they are expressed
as:

D1 = DSTSIM ⇥ 2552 ⇥N (7.12)

D2 = DSTSIM ⇥ 255⇥N (7.13)
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Where 255 is the maximum pixel values for 8 bits representation, and N is the
number of elements inside the block under consideration.

7.4.3 Experiments and Results
We have experimented the use of STSIM in HEVC for coding static textures. For

this purpose, the Brodazt textures dataset, downloaded from USC-SIPI dataset [185],
was used. This dataset contains 13 different gray scale textures which are extensively
used in textures analysis for engineering and psychophysical experiments. The refer-
ence HEVC encoder used in this experiment was HM software version 9.0 [186]. In the
following subsections, the details of each experiment are provided.

We experiment using STSIM inside the HM encoder as a distortion measure. Since
the tested videos consist of one frame (one image), these metrics were only tested for
Intra-Picture prediction scheme. The distortion metrics inside HM software that can be
replaced by STSIM are: Sum of Absolute Transformed Difference (SATD) and Sum of
Square Difference (SSD). For the details of each metric, the reader is referred to section
7.2.

For STSIM filter design, the simplified design of the steerable pyramid filter de-
veloped in [187], was used. The number of orientations we chose for the frequency
decomposition is 2 while the number of scales was varying according to the patch size.
We chose the number of scales equal to 2 for the HEVC prediction block sizes of 64x64,
32x32 and 16x16 and 1 for the size of 8x8 and 4x4. The experiments carried out are:

— Experiment 1: Replacing SATD alone: Eqn. 7.12
— Experiment 2: Replacing SSD alone: Eqn. 7.13
— Experiment 3: Replacing both SATD and SSD: Eqn. 7.12 and Eqn. 7.12
For all of the above experiments, the HM encoder was used to encode the texture

videos with different Quantization Parameters (QP). The QPs which we chose were
(22,26,32,36,43 and 51) to cover a wide range of compression ratios (from fine to coarse
compression). We studied the effect of using these metrics on the decoded picture qual-
ity. We studied also the effect of using these metrics on the prediction mechanism of
HEVC. The results of experiments are given in the next section.

Quality of the Decoded Textures

To show the result of the three experiments on the decoded pictures, we first pro-
vide one example of a decoded texture for each of the experiments explained before.
The effect of using different distortion metrics is not very distinguishable for lightly
compressed images. For this reason, we show here effect in a very high compression
scenario.

Fig. 7.3 shows the effect of replacing SATD with STSIM (D1) for QP value of 51.
It can be seen that this has an effect of reducing the number of DC blocks and enhances
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Figure 7.2 – Brodatz texture dataset (from USC-SIPI dataset [185]).
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Figure 7.3 – Visual effect of replacing of SATD with STSIM (D1) for QP value 51.
Left: original texture, middle: encoded using default distortion function, right: STSIM
instead of SATD.

Figure 7.4 – Visual effect of replacing SSD with D2, QP value 51. Left: original Image,
middle: encoded using default distortion measure, right: STSIM instead of SSD.

slightly the quality of the decoded image. This has very little improvement because
in this approach, the new metrics affect only choosing the three most probable intra-
prediction modes but does neither decide on the mode selection nor the block partition.

Replacing SSD with STSIM (D2) improves significantly the quality of the decoded
image. This can be seen in Fig. 7.4. If we examine carefully the decoded textures, it
can be seen that STSIM introduces some artificial lines which were not present in the
original image. The reason is that STSIM is less sensitive to rotational variations. With
this property, the prediction signal generated using directional prediction may have little
distortion computed by STSIM although it is in a wrong direction as compared with the
original image.

The effect of replacing both SATD and SSD, as shown in Fig. 7.5, is not very
different from replacing SSD only, since replacing SATD has a minor effect on the
decoded picture as seen before.
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Figure 7.5 – Visual effect of replacing both SATD and SSD with STSIM (D1 and D2),
QP value 51. Left: original Image, middle: encoded using default distortion measure,
right: STSIM instead of SATD and SSD.

One thing can be noticed is that the effect of producing artificial lines in STSIM is
more obvious here as the all mode selections do not rely on pixel by pixel comparison.
For the rest of the chapter, replacing both SATD and SSD is considered.

To elaborate more on the results, Fig. 7.6 provides other two examples of the dataset.
We see an example of encoding a highly structured texture (First row). In high com-
pression scenario, the texture looses most of its details when the default HEVC metrics
are used. This is because many blocks are replaced by DC values. Using the similarity
metrics, the overall structure of the texture can be retained. One can also notice that
there exist many wrong directions, but the overall quality is much better.

The second example (second row of Fig. 7.6) of bubbles is a good example of high
deviation from pixel fidelity when STSIM is used. We can see that the bubbles do
not appear closed anymore and many directions appear which were not available in the
original image. But overall, the decoded textures appear more pleasant when STSIM is
used.

Rate Distortion Analysis

The rate distortion analysis is usually carried out using PSNR as a distortion mea-
sure. In our approach, PSNR is avoided as it is based on pixel difference, which is far
away from the goal of this work. For this purpose, we sought another metric that is
specifically designed for textures.

We used a texture similarity metric (Gabor Distance [65]) which is based on com-
paring features of textures in the Gaborian domain. These features correspond to the
mean and standard deviation of the subband images obtained using Gabor filters. This
metric often provides close by performance as compared to LRI and STSIM (Table 2.1)
in terms of retrieval rate. The metric was downloaded from the author’s website and
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Figure 7.6 – Other examples of visual effects of replacing both SATD and SSD with
STSIM (D1 and D2) for the same QP. From left to right: Original texture, compressed
using HEVC default metrics and using STSIM.
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Metric PRCC SROCC KROCC
MSE 0.648826 0.633596 0.484619
PSNR 0.645703 0.633596 0.484619
SNR 0.705922 0.682557 0.536714
SSIM 0.763965 0.709877 0.577535

MSSIM 0.741126 0.687490 0.558827
VSNR 0.654254 0.611049 0.475622
VIFP 0.735588 0.681102 0.556914
UQI 0.736198 0.672940 0.533633
IFC 0.703233 0.655365 0.532372

NQM 0.666645 0.621154 0.472261
WSNR 0.709537 0.679295 0.558244

CWSSIM 0.778678 0.762760 0.606370
Gabor Distance[65] 0.838151 0.807865 0.595272

Table 7.1 – Statistical correlation measure of different quality metrics using QualTex
dataset.

used as a distortion metrics in our work.

First of all, the performance of the Gabor distance metric as a texture quality met-
ric is examined. For this purpose, QualTex dataset [188] is used. This dataset consists
of 10 textures, with 5 types of distortions; each is subjectively evaluated, where the
mean opinion scores are used as ground truth quality data. The metric score is then
computed and compared to the ground truth data. Four statistical evaluation measures,
recommended by the ITU-T P.1401 [189], are used to verify the performance, namely :
Pearson Correlation Coefficient (PRCC), Root Mean Squared Error (RMSE) and Out-
lier Ratio (OR). In addition, two other measures: Spearman Rank Order Correlation
Coefficient (SROCC) and Kendell Rank Order Correlation Coefficient (KROCC) were
also considered. The results are shown in Tables 7.1 and 7.2. The result showed that
this metric has a globally better correlation with the subjective evaluation.

By calculating the distance measured by this metric to the original texture for all the
considered compression levels, we obtained the rate-distortion curves, or more precisely
rate-dissimilarity curves, shown in Fig 7.7. We observe that in most cases, STSIM based
rate-distortion optimization approach provides better score than the default metrics in
the low rate region. For high rate region, no gain is achieved. It should be noted that
these curves are associated with the third experiment, where both SATD and SSD are
replaced.
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Figure 7.7 – Rate-distortion curves (using Gabor distance metric [65]) of the brodatz
texture dataset shown in Fig. 7.6. x-axes: Bytes used to encode the texture, y-axes:
distance to the original texture.
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Metric RMSE OR
MSE 0.905398 0.638235
PSNR 0.908553 0.658824
SNR 0.842756 0.570588
SSIM 0.767757 0.532353

MSSIM 0.798822 0.526471
VSNR 0.899850 0.641176
VIFP 0.806037 0.567647
UQI 0.805247 0.558824
IFC 0.845932 0.594118

NQM 0.886882 0.679412
WSNR 0.838447 0.576471

CWSSIM 0.746541 0.547059
Gabor Distance[65] 0.648988 0.505882

Table 7.2 – Other statistical measure of different quality metrics on QualTex dataset.

Encoder Behavior Analysis

More analysis is carried out to understand the effects of using the perceptual metrics
on the prediction mechanism. For this, we measured the frequency of splitting depths
as a function of the quantization parameter. The corresponding histograms are shown in
Fig. 7.8. The splitting depth of zero means that the prediction block has its maximal size
(64x64). Increasing the splitting depth by one corresponds to partition the block into
four sub-blocks. The histograms in Fig. 7.8 were scaled by the number of (4x4) blocks
that each splitting has. This was done to have a fair comparison between splitting depths
as each splitting occupies different areas of the frame. One can observe from these
histograms that when the default metrics are used, the encoder uses small prediction
blocks for low compression (low QP) to better approximate the input signal. For high
compression, it tries to approximate large prediction blocks (mostly with DC values)
to have better compression. The behavior totally changes when STSIM is used. The
encoder behavior does not change much as the compression changes. It selects always
large block sizes to approximate the input signal and small block sizes (less than 16x16)
are rarely chosen. This can be explained by the fact that STSIM, in contrast to simple
difference metrics, does not have the summability property. This is a very important
property for the coding purpose. To understand this, let us take an example of what
happens inside the rate-distortion loop. Imagine that the encoder is processing an NxN
block, and obtained its best prediction mode, labeled by its cost value (D + �R). Now,
the encoder will try to split this block into smaller blocks, in quadtree manner, to check if
better cost is achieved. The encoder, after finding the best modes for the four subblocks,
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Figure 7.8 – Histograms of splitting depths vs QP. Each depth is scaled by the number
of 4x4 block that it has.

will compare the sum of the individual costs to the bigger size cost. However, the sum of
the four blocks does not equal to bigger block cost even if exactly the same distortion is
present. This is because computing 4 times STSIM is not generally equal to computing
4 individual STSIMs. This would result in the case where the metric has a preferred
block size. For example, in Fig. 7.8, the metric generally prefers the size of 32x32.
This problem is not present in SSD or SATD, which makes them preferable inside the
rate-distortion loop.

7.4.4 Verification of the results

To verify the results, we repeated the same experiments using a different dataset of
textures. This time, we used some textures from QualTex texture dataset [188]. Exam-
ples of the decoded textures are shown in Fig. 7.10. We can clearly see that the fine
details of the texture are better preserved when the texture similarity metrics are used,
but when using the default metrics, all images look more blurry compared to the original
ones.

The rate similarity curves are shown in Fig. 7.11. These curves are very much
consistent with curves obtained using Brodatz textures (Fig. 7.7). This indicates clearly
that these metrics perform better in low rate scenario.

The encoder behaves similarly in both datasets. As we see in Fig. 7.12, when
STSIM is used, the encoder uses larger blocks independently from QP, this is for the
same reason mentioned previously.
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Figure 7.9 – QualTex textures.
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Figure 7.10 – Examples of decoded textures using the same QP. From left to right:
Original texture, compressed using HEVC default metrics and using STSIM.
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Figure 7.11 – Rate Distortion (using Gabor distance metric [65]) of the textures shown
in Fig. 7.6. x-axes: Bytes used to encode the texture, y-axes: distance to the original
texture. Indexes above each curve correspond to the same naming terminology in the
dataset.
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Figure 7.12 – Histograms of splitting depths vs QP. Each depth is scaled by the number
of 4x4 block that it has.

7.5 Discussion and Conclusion

Research on encoder optimization for textures is often triggered; this is because
textures are perfect candidates for this task. The reason is that textures represent ho-
mogeneous areas, which facilitate the learning based approaches. On the other hand,
their details are relatively unimportant, which permits replacing them by synthetic ones
that are easier to encode. Last, textures usually consume high bitrate, which mandates
developing different coding tools for these contents.

In this chapter, a perceptual optimization framework has been proposed. This frame-
work utilizes the developed perceptual model of texture similarity, with the aim of
improving the rate-similarity behavior, rate-quality in parallel, of the state of the art
video compression standard HEVC. Effectively, we tackled the classical framework of
rate-distortion optimization, and considered replacing the default distortion metrics of
HEVC (SATD and SSD) by perceptual ones, derived from perceptual texture similar-
ity models, and modifying the corresponding Lagrangian multiplier. This has an effect
of tuning the encoder decision in a perceptual manner. That is, the prediction mode
selection, and the block splitting will be decided based on optimized rate and texture
similarity, rather than rate and pixel similarity, which is assumed to improve the overall
similarity of the compressed textures, and thus improving their quality.

After fully describing it, an initial experimentation with the proposed framework is
performed to examine its performance. The test was limited to texture images, rather
than texture videos. In this context, we considered a texture similarity metric that is
conceptually very close to V1-E similarity metric. This metric, named STSIM, performs
a subband decomposition, standard deviation and correlation computation, and pooling
in a manner very similar to the V1-E similarity metric.
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The initial test was conducted with texture images from Brodatz dataset. The visual
effect is quite clear for high compression level, in which the overall similarity is higher
when STSIM is employed, even though there exist large point-wise differences. In terms
of rate-distortion behavior, the model is tested with a texture dissimilarity metrics based
on Gabor decomposition. The results showed that the proposed model achieves more
similarity to the original textures, as compared to the default HEVC, especially for high
compression level.

The encoder behavior is has dramatically changed when STSIM is used. This is
because STSIM is not a linear metric, and thus it does not possess the summability
property. This has resulted in having a preferred metric size, and the encoder is thus
biased to this value.

The results have been verified with another dataset, namely QualTex textures. The
same experimental outcome is obtained. Thus, the conclusion can be generalized to any
type of textured images.



8
Framework Implementation and
Generalization

The proposed perceptual optimization framework, based on rate-distortion model,
has shown an improved coding of texture images (Chapter 7). This was achieved by
replacing the default distortion metrics in the video coding standard inside the rate-
distortion loop, by perceptual ones obtained via texture similarity. The results, despite
being promising in improving the rate-similarity behavior of the compression system,
suffer from the non-linearity property inherited in texture similarity metrics, thus the
summability does not hold, which made a dramatic change to the encoder behavior,
in which the block sizes are not fairly used, but rather there is bias towards a metric
preferred size.

In this chapter, we developed an indirect approach for employing texture similar-
ity in the rate-distortion loop. In this approach, rather than relying on specific texture
similarity metric, the dissimilarity is directly measured using a proper psycho-physical
procedure. The main idea is to use the interesting properties of the pixel-wise difference
metrics, such as MSE, by piece-wise linearly mapping its score to a perceptual one. V1-
E, in turn, is used as a features extractor to predict this mapping for each texture.

The chapter is organized as follows: The general introduction is given in section
8.1. An overview of the existing psycho-physical tests for measuring the perceived dis-
tortions is provided in section 8.2, while the details of the conducted psychophysical
experiment are provided in section 8.3. The implementation of the rate-distortion opti-
mization, accompanied by the resulting rate improvement, is given in section 8.4. The
generalization of the approach is discussed in section 8.5, while the conclusion is given
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in section 8.6.

8.1 Introduction

In the initial experiments in Chapter 7, we have implemented the initial version
of the proposed perceptual rate-distortion optimization framework. A texture similar-
ity metric, namely STSIM, was used as a distortion measure inside the HEVC refer-
ence software to replace the default metrics of SSD and SATD. The initial results were
promising in terms of improving the visual quality of the decoded images, and also
enhancing the encoder rate-distortion behavior.

Nevertheless, there exist some issues with this initial implementation:

1. Complexity: STSIM is much more computationally complex, as compared to
SSD or SATD. Since the metric is used for both pre-modes selection and full
rate-distortion loop, it is invoked quite a lot of times inside each CTU, which
results in much larger encoding time as compared to the default implementation.

2. Summability: This is an important issue. The encoder is biased to some extent
to a certain block size. This results in preventing other possible block sizes from
being selected.

For this reason, pixel differences based distortion metrics are extensively used for
encoder optimization. Other than this, there are many other properties of pixel differ-
ence based metrics, especially SSD that are listed in [190]. Among them, convexity,
symmetry and differentiability are present in this metric, facilitating its use for opti-
mization purposes.

Accordingly, in this chapter, we present a different implementation of the proposed
perceptual rate-distortion optimization framework, taking into account the importance
of MSE and the issues associated with texture similarity metrics. To do so, we were
looking into finding a mapping function, which takes as an input the computed distor-
tion (SSD), and maps it to its perceptual value. In other words, instead of relying on
the existing metrics of texture similarity for improving the compression quality, we di-
rectly measure the perceived distortion (or dissimilarity) due to HEVC compression on
textures [191], and find a mathematical function that relates the computed distortions
to the measured (perceptual) ones. This mathematical function is, by nature, sequence
dependent. The role of V1-E, in contrast to previous approach, is not to be a similarity
metric, but rather to use it as a features extractor, with which the mapping function can
be learned.
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8.2 Measuring the Perceived Distortions due to HEVC
To deduce the relationship between the computed and perceived distortions, we first

need to conduct a psychophysical experiment to measure the perceived distortions. To
do so, a proper subjective testing methodology must be selected, which well matches
the target behind the experiment.

The standard subjective tests methodologies are listed in the BT-500 [192] and P.910
[193] documents of International Telecommunications Union Recommendations Center
(ITU-T). There exist several methodologies that can be either single stimulus or dou-
ble stimulus. In the single stimulus methodologies, the basic method is known as the
Absolute Category Rating (ACR). In ACR, the observers are shown a visual stimulus
(an image or video), with a certain amount of distortion, and the task is to assign a
category to this stimulus (excellent, good, fair, poor or bad). Similar to this, in the Ab-
solute Category Rating with Hidden Reference (ACR-HR), the reference (undistorted
stimuli) is shown to the observers, without explicitly informing the observers. In this
way, differential quality can be estimated in order to reduce the source bias. Instead
of having discrete categories, the Single Stimulus Continuous Quality Scale Evaluation
(SSCQSE) defines a continuous quality scale (from 0 to 100%), where the observers
vote using a slider device.

Compared to single stimulus methodologies, the double stimulus ones allow the ob-
servers to compare the current stimulus to the reference one (undistorted). The Double
Stimulus Impairment Scale (DSIS) is the double stimulus version of ACR. However,
it uses the impairment scale instead of quality, that is, the used scale is (impercepti-
ble, perceptible but not annoying, slightly annoying, and very annoying). Similarly, the
Double Stimulus Continuous Quality Scale (DSCQS) is analogous to SSCQSE without
informing the observers about the reference stimulus.

Instead of voting for each individual stimuli, the Subjective Assessment Methodol-
ogy for Video Coding (SAMVIQ) [194] enables the observers to see all the possible
distortions of stimulus, view them as many times as needed, and then vote for each of
them. For this reason, SAMVIQ provides usually better precision than ACR [195].

Besides these methods, the classical method of Paired Comparison (PC) is highly
preferred. This is because it requires the least effort from the observers to obtain the
results, which makes it highly reliable. The observer votes are not directly used, but
rather converted to quality scale using Thurstone or Bradley-Terry Model [196]. The
PC test usually requires large number of trials because of comparing every possible
pairs, which makes it unpractical when the number of degradations is big. For this
reason, adaptive PC tests have been developed such as [197] [198]. On the other side,
extensions of PC has been developed in [199, 200, 201].

Similar to PC, another recent binary decision subjective test was introduced by Mal-
oney et al. [202], which is known as Maximum Likelihood Difference Scaling (MLDS).
The methodology is suited to measure the suprathreshold distortion profile of a stimulus.
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In MLDS, the observers are asked to compare two suprathreshold pairs having different
amount of distortions, and the task is to select the pair which shows less (or higher) per-
ceptual difference. The binary observation is then converted to continuous difference
scale using maximum likelihood estimation. The method has shown high theoretical
precision even in the case of using limited number of trails and/or observers. It has
been also tested in the context of estimating the visual quality of compressed images
[203]. The authors also provided a software package in [204]. This methodology was
employed in this work to measure the perceived distortions, due to HEVC compression.
The details of the psychophysical experiment are given in section 8.3.1.

8.3 Psycho-physical Measuring of the Perceived Differ-
ence

8.3.1 Method
As mentioned in section 8.2, we opted to use the Maximum Likelihood Difference

Scaling methodology for measuring the perceptual distortions due to HEVC. In this
methodology, specifically in the four-points protocol, observers are presented 2 pairs of
stimuli. The amount of the physical quality, say distortion, is different in each stim-
ulus. The observer task is to determine which of the pairs results in higher perceived
difference. The individual differences are then converted, by the means of maximum
likelihood estimation, to a difference scale that covers the range of the physical quan-
tity.

Adapting MLDS in this work is pretty straightforward. For each texture video under
consideration, the observers were presented 4 instances of that video, corresponding to
4 compression levels. The observers are asked to select one pair, out of two, that shows
higher differences. Fig. 8.1 shows the constellation of the videos. Horizontally, the
distance between the video pairs is kept at 1 degree of visual angle, while vertically
it was 3 degrees. The short horizontal distance is selected in order to facilitate the
comparison between the two videos in one pair, while the larger distance serves to avoid
the influence of cross pair interaction. The selection of pairs was done via the keyboard
arrows, and by pressing "enter" to validate the selection.

The subjective test was conducted in a professional room specifically designed for
subjective testing. It complies with the ITU recommendations regarding the room light-
ing and screen brightness [173]. The used screen was a TVLogic LVM401 with a res-
olution of 1920x1080 at 60Hz. The viewing distance was 3H, where H is the screen
height.

In total, 6 expert subjects participated in the test, where all of them have their re-
search field involving image/video quality assessment and coding. Each observer made
150 comparisons, which took on average 20 minutes.
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Figure 8.1 – Screen shot of the software used for MLDS

8.3.2 Material

There exist some constraints in selecting the material for the psychophysical exper-
iment. First, as already discussed in section 6.2.2, the video encoder has very limited
access to both spatial and temporal domains. This is because it deals with small block,
and does not store the full video while encoding it. Accordingly, all the encoder decision
are made on this limited access, which necessitate the development of spatio-temporally
short-term distortion model. Second, we are interested in the foveal vision, for the rea-
son that the human visual system is mostly attentive to this range of vision, this makes
the distortion measured in this type of vision represent the upper case of tolerated dis-
tortions.

For this reason, we used the HomoTex dataset (section 5.2.1 and Appendix A). This
dataset is developed in this work in order to provide a wide-range of homogenous tex-
ture videos. Spatially, the 128x128 (2 degrees of visual angle) spatial dimension were
masked by a circular Gaussian window, such that the inner 1.5 degrees of visual angle
is presented, and the rest is faded to the background level. Temporally, 500ms were
considered to be a good compromise between the minimum fixation time, and the time
for capturing the visual phenomena. To provide the observers with adequate time for
decision making, the videos were continuously repeated. However, upon the end of one
loop of video, the repetition was made with time reversal in order to avoid temporal
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discontinuity.
In the subjective test, one can only afford limited number of sequences. Thus, we

looked for sequences with distinguishable features. First, we selected 43 videos out
of the 47 ones, by removing the ones with high visual similarity. Second, we con-
sidered the HEVC performance as an important feature for clustering the sequences.
Using HEVC reference software (HM 16.2 [8]), the sequences were encoded to 4 levels
of Quantization Parameters (QP’s), that correspond to the common testing conditions.
Namely, the QP’s of (22,27,32 and 37) were used. The corresponding rate-distortion
curves are shown in Fig. 8.2. The Bjontegaard delta PSNR (BD-PSNR [205]) was com-
puted between all sequences. The sequence which has the minimum sum of BD-PSNR
compared with all the other sequences is considered as the reference one, and the BD-
PSNR with respect to this sequence is considered as the feature for clustering. Using
this feature, the k-means clustering algorithms (k=8) was used to generate 8 classes of
textures. One texture of each class, representing the class center, was used in the sub-
jective experiment. The resulting 8 sequences are shown in Fig. 8.3. For clarity, each
video was assigned to a SeqId from 1 to 8, which follows the same order as shown in
the figure (from left to right, and top to bottom).

8.3.3 Subjective Test Results

The raw data of selected pairs from the subjective experiment were converted to a
perceptual scale using the software package provided by the authors of MLDS in [204].
The resulting perceptual scales are shown in Fig. 8.4 for four sequences. The x-axes
represents the overall average MSE of all the frames, whereas the y-axes represents
the perceived difference. The confidence intervals are computed by learning the ob-
servers probability and repeating 10000 simulations using a boot-strapping procedure
as explained in [204].

The four curves shown in Fig. 8.4 represent two different trends in the MSE vs.
perceptual difference relationship. The first trend, as for SeqId 2, shows that there is
a big deviation between the measured distortion (MSE) and the perceived one. On the
other hand, the second trend, which is shown for SeqId 7, indicates that MSE is directly
proportional to the perceived value of distortion.

The relationship cannot be easily fit with any mathematical function. We opted to
use a piece-wise linear function to represent it. Thus, the mapping function between
the computed distortion (MSE) and the perceived difference is a sequence dependent
function, which is parameterized by a set of slopes and y-intersections for each sequence
function period. This function is used after for perceptual optimization, and we show
that it can be predicted by using the features extracted by V1-E perceptual texture model.
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Figure 8.2 – Rate distortion curves of HomoTex dataset, using 4 QP values correspond-
ing to the common testing conditions. Red curves represent the top, median and bottom
curves.

8.4 Perceptual Optimization of HEVC

8.4.1 Optimization Process

Looking carefully at the curves in Fig. 8.4, we can see that sequences belonging to
the first trend, where a large deviation between the computed and perceived distortions
exists, are suitable candidates for perceptual optimization. This is because this large
deviation can lead to wrong decisions inside the coding loop and thus would not lead
to the optimal rate quality compromise. The SeqId’s of the sequences belonging to this
trend are given in the first row of Table 8.1.

A straightforward way to utilize the subjective test result in the video compression
scenario (HEVC) is to map the distortion measure in HEVC to its perceptual value. To
achieve this, we used linear piece-wise mapping functions, derived from the subjective
test, to convert the measured MSE into a perceptual value (SSDp) as follows:
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Figure 8.3 – Sequences used for subjective test.

SSDp = (↵MSE + �)⇥N

= ↵SSD + �N
(8.1)

where N is the number of pixels belonging to the given block.
The Lagrangian multiplier (�), as discussed in section 7.2 (Eqn. 7.8), is equal to the

negative derivative of the distortion with respect to the rate. Thus, the new Lagrangian
multiplier (�p) value can be also derived as follows:

�p = �@SSDp

@r

= (
@SSDp

@SSD
)⇥ (�@SSD

@r
)

= ↵⇥ �

(8.2)

Thus, the �p is a scaled version of the previous �.
According to this analysis, the perceptual optimization process, for each texture

type, consists of piece-wise mapping function and scaling factor.

8.4.2 Estimating the Bitrate Saving
Instead of only testing whether the proposed framework is more preferred, we were

interested in measuring the amount of bitrate saving that it can provide. For this pur-
pose, one needs to compare the bitrate at equal subjective quality. However, finding the



8.4. PERCEPTUAL OPTIMIZATION OF HEVC 131

Figure 8.4 – Subjective test results of MLDS for 4 sequences.

subjective equality is not straightforward, but rather requires a specific psychophysical
test known as threshold estimation. This threshold corresponds to the point of subjective
equality. As discussed in section 6.2, we need to estimate the preference psychometric
function, and find the 50% preference point.

Instead of using the UML procedure, in contrast to the case of estimating the distor-
tion sensitivity (Chaper 6), we used the classical psychophysical test of forced choice, in
which the observers select one sequence, out of two, that they prefer. We designed a spe-
cific subjective test to estimate this threshold, namely a forced choice (yes/no) method.
We fixed the reference encoder bitrate (HM 16.2), and used the optimized encoder to
produce 7 bitrate values around the reference rate. Each pair of dynamic patches, ob-
tained from reference and optimized encoders, was shown to the observers 6 times. A
screen shot of the used software is shown in Fig. 8.5.

Using the same subjective setup as in 8.3.1, the preference probability was com-
puted. The preference probability is a psychometric function that can be generally fitted
with an S shaped function. We used Weibull function (from the Matlab psychophysics
toolbox [206]) as a fitting function using the maximum likelihood estimation. An ex-
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Figure 8.5 – Screen shot of the software used for forced choice experiment.

ample of the preference probability with its fitting function is shown Fig. 8.6. The fitted
preference probability is then used to infer the iso-quality point, which corresponds to
50% value of probability of preference.

8.4.3 Perceptual Optimization Results

The optimization process in section 8.4.1 was used for the sequences shown in Table
8.1, as being sequences with possible perceptual optimization (see section 8.4.1). To
investigate the amount of possible bitrate saving, we considered the points where the
maximum deviation between the MSE and perceptual difference is assumed to occur.
This corresponds to the QP values shown in Table 8.1. The bitrate saving is computed
as follows:

Saving = (Rd �Rp)/Rd (8.3)

where Rd and Rp represent the rate of the default HEVC and the perceptually opti-
mized version respectively. We can clearly see in Table 8.1 that the proposed optimiza-
tion process can highly reduce the bitrate (up to 17.7%).
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Figure 8.6 – Example of a psychometric preference function with Weibull fitting.

SeqId 1 2 3 8
QP (default) 43 47 42 42

Bitrate saving (%) 9.2 5.4 10.5 17.7

Table 8.1 – Relative bitrate saving.

8.4.4 Verification of the Proposed Approach

The results obtained so far, are specific for each texture type that was learned from
the subjective experiment in section 8.3. In order to practically deploy such an approach,
it must be verified that it works consistently with other textures belonging to same tex-
ture types. To do so, we sampled 4 new sequences (shown in Fig. 8.7), which are the
most similar to ones in Table 8.2. Once more, the used feature to assess the similarity is
the same as in section 8.3.2, namely HEVC rate-distortion behavior. These sequences
were compressed using the perceptual optimization process used for the corresponding
texture type. The corresponding bitrate saving, shown in Table 8.2, indicates clearly
that the proposed approach is also valid for other sequences, sharing similar features.
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Figure 8.7 – Sequences used for verification test.

SeqId 1 2 3 8
QP (default) 43 47 42 42

Bitrate saving (%) 6.5 12.3 28.6 7.5

Table 8.2 – Relative bitrate saving.

8.4.5 Testing Other Quality Levels

We were also interested in the performance of the proposed model on other quality
points. After encoding the sequences with large set of compression levels, we manually
selected three quality points corresponding to high, medium and low quality. This time,
instead of using the forced choice method, we used UML to achieve faster and more
accurate results.

The bitrate saving at the same subjective quality is shown in Table 8.3. One can
clearly realize that the proposed perceptual optimization algorithm provides a significant
bitrate saving, up to 37%.

SeqId Q1 Q2 Q3 Average(row)
1 12.2+-7.4 6.8+-2.2 19.2+-1.4 12.7+-3,7
2 40.4+-1.3 34.9+-1.0 20.7+-0.9 32.0+-1.1
3 36.9+-4.6 37.3+-5.5 33.5+-6.02 35.9+-6.0
8 13.3+-5.9 26.9+-6.3 3.8-7.4 14.6+-6.5

Average(col) 25.7+-5.3 26.5+-3.7 19.3+-3.9 23.8+-4.3

Table 8.3 – Bitrate saving (%) due to perceptual optimization. +- refers to 95% con-
fidence interval. Q1, Q2 and Q3 represent different quality points (High, medium and
low resp.).
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8.5 Generalization of the Proposed Approach

8.5.1 V1-E Features for Model Prediction

The results presented so far are based on optimizing sequences utilizing their mea-
sured perceived distortion profile. To generalize the perceptual optimization algorithm,
the distortion model parameters need to be estimated from the sequences features. In
other words, the piece-wise linear function parameters (values of ↵ and � in section
8.3.3), must be learned from each sequence.

For this purpose, the proposed perceptual texture model (V1-E) was used as a fea-
tures extractor (as in section 4.4). We used the same dimension as the one for sensitivity
prediction (section 6.3), i.e. 8 energies from V1-E. This set of features was used in the
form of linear regression. The performance has been evaluated by the mean squared er-
ror (normalized) of leave one out cross-validation test, which has a value of 0.01. This
indicates that model prediction is reasonably good.

In the published work of [207], another set of features was used for this purpose.
The set consists of the spatial and temporal information (SI and TI) [193] and the color-
fulness (CF) [175], the homogeneity feature obtained from the gray-level co-occurrence
matrix [176] and the curl and peakness of normal flow as defined in [94]. The predic-
tion accuracy was less than the one obtained with V1-E, in the sense that the normalized
mean squared error was 0.087, which is significantly higher than the one from V1-E
(0.01).

8.5.2 Generalization Test

The trained linear regression model has been used to predict the perceptual distortion
model parameters of novel sequences. As explained in section 8.3.2, we have an overall
of 43 dynamic texture sequences, 8 of them where used in the first experiment. For the
rest of sequences (33 sequences), the trained linear regression model was used to predict
their perceptual distortion model.

Among these sequences, we selected the top 24 sequences having the highest devia-
tion between the measured and the perceived (predicted) distortion. Examples of these
sequences are shown in Fig. 8.8.

Using the same perceptual optimization algorithm described in section 8.4.1, we en-
coded these sequences also for 3 quality points (high, medium and low). The bitrate
saving was measured subjectively, using the same psychophysical procedure as in sec-
tion 8.4.2. The results are shown in Fig. 8.9, in which the average saving of the three
quality points is plotted for each sequence, defined by its sequence id (SeqId). We can
clearly see that the model can provide significant bitrate saving for the majority of the
sequences. However, some exceptions are also present.
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8.6 Conclusion
In this chapter, the proposed framework of perceptually optimizing the video coding

system, based on rate-distortion optimization, was fully explored. To overcome the
issues associated with the direct use of the perceptual similarity metrics, such as the one
based on V1-E, this chapter presented a solution by mapping the simple metric, namely
MSE, to a perceptual value obtained from psychophysical experiments.

First, a psycho-physical test, namely MLDS, was used to measure the perceived
difference due to HEVC compression. This was used then to examine the relationship
between the perceived difference and the computed difference (using MSE). For this
purpose, a representative set of texture videos, belonging to different categories of rate-
distortion behavior, of short temporal extent within the foveal vision, was used for the
test. The results of this test reveal that there is generally two trends in the relation
between perceived and computed difference, one with large deviation, and one with
direct proportion. For first trend, a mapping between those differences is employed to
yield a perceptual metric that is defined for each sequence, which is used inside the
rate-distortion loop of the video coding system. The employment of such metric was
verified with subjective testing and showed an improved rate-quality performance over
the reference HEVC encoder (HM encoder).

The mapping between MSE and perceived difference is modeled as a piece-wise
linear function. This function is unique for each texture. It has been shown that V1-E,
as a features extractor, can be used to predict this function. Utilizing this, the function
can be predicted for novel videos, and be used for the optimization purpose. Using 24
new videos, we were able to show a significant bitrate saving, at different quality points.
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Figure 8.8 – Sequences used for the generalization test (from HomoTex dataset 5.2.1),
with SeqId from 1 to 24 (from top left to bottom right).
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Figure 8.9 – Average bitrate saving for three quality points of the generalization test.



9
Conclusion and Outlook

9.1 Overall Summary
The thesis work has dealt with concept of visual similarity of textures. It reviewed

most of studies on texture perception that has led to the development of texture similarity
models. The importance of texture similarity is highlighted, and its use for the purpose
of recognition and retrieval is thoroughly reviewed. As an important application, its
employment for improving the image and video compression system is reviewed in
details. By collecting all these studies, and analyzing them, this work has proposed a
perceptual model of texture similarity that is generalized for both static and dynamic
textures. The model has shown excellent performance in extensive testing scenarios.
Utilizing this model for video compression has also shown a significant improvement
over the state of the art video compression standard (HEVC).

In the first part of this thesis (Part I), a survey about texture perception was provided,
and linked them to the existing models of texture similarity. The chapter focused on both
static and dynamic textures. It was realized that there is a lack of universal definition
of the textures, in the sense that static textures tends to be differently defined when
compared to dynamic textures. In addition, a controversy was found in understanding
what dynamic textures are. Accordingly, a proper definition of texture, inlcuding both
static and dynamic textures, was given as:

A visual phenomenon, that covers both static and dynamic textures, where static
textures refer to us as homogeneous regions of the scene that are typically composed
of small elements (texels) arranged in a certain order, they might exhibit simple mo-
tion such as translation, rotation and zooming. On the other hand, dynamic textures
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are textures that evolve over time, allowing both motion and deformation, with certain
stationarity in space and time.

It was also observed that despite the extensive studies on static texture perception,
dynamic textures are not yet well explored. This was due to the fact that most of the
perceptual studies consider texture images rather than texture videos. This was the
motivation to develop a perceptual model that is generalized for both types of textures.

The review about similarity models revealed that there exist generally 4 categories,
with different degree of association to texture perception. The four categories are:
Transform-, Auto-regressive-, Texton- and Motion-based modeling. The transform based
modeling represents a direct link between texture perception and texture similarity. This
is because of the fact that there is a similar transform occurring in the V1 cortical pro-
cessing area. Texton based modeling is highly indirect, as it assumes that the similarity
is due to the distribution of the texture element, and ignores the actual neural processing.

The use of texture similarity concepts in image and video compression is then
overviewed. It was realized that most approaches consider indirect way of using tex-
ture similarity, in the sense that the similarity concepts are used for generating similar
textures, by the means of texture synthesis techniques, instead of using the similarity
models for improving the rate-similarity performance of the compression system. Three
categories of synthesis based coding were identified, which are: texture removal, tex-
ture simplification and texture prediction. Texture removal approaches omit large part
of the textures, and rely on texture synthesis for generating back the missing part. These
approaches are commonly used as they can provide significant bitrate saving. This is
because the omitted part is encoded only as a synthesis parameters, which are certainly
much more easier to encode than original data. However, two obstacles preventing the
deployment of such models were identified. First, significant changes in the coding stan-
dard are required which causes a change of the end-users’ existing software/hardware.
Second, high complexity would have to be added to the decoder side that might exceed
the end-users’ devices capacity.

To mitigate these problems, texture simplification approaches have been proposed.
In these approaches, the synthesis is performed on the encoder side only, and the bit-
steam can be decoded by any standard decoder. The local texture synthesis [10] was
proposed. This algorithm replaces each block by a set of synthesized ones, when some
statistical constraints are met. The encoder selects the synthetic block that minimizes
the immediate rate-distortion cost. Typically, texture simplification approaches showed
lesser bitrate saving, as compared to the texture removal approaches, because no omis-
sion of data is performed.

The lack of direct use of texture similarity was another motivation behind this work.
We were interested in developing a perceptual model of texture similarity that is directly
applicable to the optimization of image and video compression. Due to the several issues
identified with violating the standard, we intended also to provide a solution that is fully
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compatible with the current coding standard (HEVC).
In the second part (Part II), the proposed generalized model for texture similarity,

named V1-E, is presented. The model covers both static and dynamic textures, and
it can be considered as an extension of transform based similarity models with more
in detailed modeling of the human visual system. Among the several stages of visual
processing in the human visual system, the cortical processing stage is considered to be
an active processing stage. This is because other levels exhibit a very marginal effect
when compared to the cortical area. The proposed model relies on the argument that
textures are neither defined by shapes nor structured motion, which led to the exclusion
of higher level of analysis associated with shape perception (ventral stream) and motion
perception (dorsal stream), and thus it only considers the initial processing unit, named
as V1.

The neural processing in V1 can be generally modeled as bank of spatio-temporal
band-pass filters. The exact parameters of these filters are not fully known. Thus, we
relied on a recently introduced computational model in [60]. The proposed model con-
siders only the energies, thus named V1-E, of sub-band signals as the features for texture
similarity. This is because energies are actually assumed to be computed by the V1 com-
plex cells to provide a shift invariant response. The computed energies are then fused to
produce a similarity score for each subband, where the average is finally taken to yield
the overall similarity.

Despite its simplicity, the model showed an excellent performance as both similarity
metric and features extractor. Large scale evaluations are performed including both
verification and validation tests, in which the verification test is mainly concerned about
testing the performance within the design constraint of the model, while the validation
test is a generalization test in order to assess the performance with general conditions.
For the purpose of verification, a retrieval test is performed with a dataset (HomoTex)
that is designed with the same constraints of the proposed model. In other words, it
is compliant with the spatio-temporal resolution supported by V1-E. Excellent retrieval
rate was achieved by this model, while it outperformed the well-known similarity model
of LBP-TOP. The validation test was also performed in order to avoid the bias toward the
model constraints, as well as to provide benchmarking results. In this test, the common
recognition tasks were performed with the two datasets of UCLA and DynTex++. The
results indicated that the V1-E has excellent performances, outperforming the state of
the art method.

We also examined the performance of V1-E as a features extractor. The purpose
is to verify whether the perceptual features provided by V1-E can be used to predict
visual properties of textures, in link with video compression, that are revealed with
a psychophysical experiment. As a first step in linking V1-E to video compression,
a psychophysical procedure was employed to measure the amount of visual sensitiv-
ity of textures towards the perceived distortions due to HEVC compression. From the
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experiment, two visual properties are defined: perceptual redundancies and perceptual
distortion tolerance. The results showed that V1-E can be used to predict both the visual
redundancies and distortion tolerance. It was also shown that exploiting the distortion
sensitivity can provide a significant bitrate saving without altering the perceived qual-
ity. This approach was the first use of V1-E in a video compression task. However, it
is a passive approach, because it is implemented outside the encoding processes. For
this reason, we intended to propose an active framework for perceptually optimizing the
compression of textures.

In the last part (Part III), the proposed perceptual optimization framework of video
compression was described and implemented. It utilizes the developed the perceptual
model of texture similarity, with the aim of improving the rate-similarity behavior of
the state of the art video compression standard HEVC. The classical framework of rate-
distortion optimization was tackled. The idea is to replace the default distortion metrics
of HEVC (SATD and SSD) by perceptual ones, obtained from perceptual texture sim-
ilarity models, and also modifying the corresponding Lagrangian multiplier. In other
words, the prediction mode selection and the block splitting will be decided based on
optimized rate and texture similarity, rather than rate and pixel similarity.

Initially, a test of the proposed framework with texture images was performed. For
this, STSIM based dissimilarity metric was used. STSIM is conceptually very close
to V1-E similarity metric. The visual effect is quite clear for high compression level,
in which the overall similarity is higher when STSIM is employed, even though there
exist large point-wise differences. The rate-distortion behavior was tested with another
(dis-)similarity metrics based on Gabor decomposition, as typical PSNR metric is out
of context for this type of distortions. The results showed that the proposed approach
achieves higher similarity (as computed by the Gaussain similarity metric) to the orig-
inal textures, as compared to the default HEVC, especially for high compression level.
A side effect was observed, that the encoder behavior has dramatically changed. This
is because STSIM is not a linear metric, and thus it does not possess the summability
property. This resulted in having a metric preferred block size, and the encoder thus
does not equally consider the other possible block sizes

To overcome this issue, a solution is developed that utilizes the interesting properties
of pixel-wise similarity, and adds the perceptual aspect into it. This is done by mapping
the simple metric, namely MSE, to a perceptual value obtained with psychophysical
experiments. First, a proper psycho-physical test, named MLDS, was used to measure
the perceived difference due to HEVC compression, which in turn used to reveal the re-
lationship between the perceived difference, and the computed difference. The test was
performed on a representative set of texture videos, belonging to different categories of
rate-distortion behavior, of short temporal extent within the foveal vision. The results of
this test showed that there is generally two trends in the relation perceived and computed
difference, one with large deviation, and one with direct proportion. For first trend, a
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mapping between those differences is employed to yield a perceptual metric, which is
defined for each sequence, which is used inside the rate-distortion loop of the video
coding system. The employment of such metric was verified with subjective testing and
showed an improved rate-quality performance over the reference HEVC encoder (HM
encoder). The mapping function MSE and perceived difference is modeled as a piece-
wise linear function. It has been shown that V1-E, as a features extractor, can be used
to predict this function. Utilizing this, the function can be predicted for novel videos,
and be used for the optimization purpose. Using 24 new videos, we were able to show
a significant bitrate saving, at different quality points.

9.2 Future work

9.2.1 Beyond V1 Energies
The proposed perceptual model of textures (V1-E) considers only the energies of the

subbands as the features for computing texture similarity. This can be amended by other
statistical measures. The straightforward enhancement could be obtained by considering
the cross correlations between bands, in a way very similar to STSIM. STSIM considers
the correlation between bands having similar spatial orientation or spatial frequency. In
the case of V1-E, one needs to take into account the third dimension of time, which
largely increases computational space, and thus it is currently avoided for the proposed
model. Nevertheless, an investigation about the performance of this extension is left for
possible future work.

9.2.2 Alternative Uses of Texture Similarity and Features in Video
Coding

In this work, the texture similarity metric was used for quantifying the distortions
inside the rate-distortion loop of the video encoder. Besides its successful performance,
one can plausibly think of many other possibilities of utilizing it for better compression.

First, it can be used to decide on the amount of distortions within each texture region.
This can be done in order to allow different amount of compression, depending on the
region/block properties, such that the overall similarity level is maintained. An example
of this is region-based quantization parameter (QP) assignment. Another way is per-
ceptual preprocessing by simplifying regions, without passing below a given similarity
level, such that they are simpler to be encoded.

Other than this, the texture similarity metrics can also be used in the synthesis based
coding approaches. The main problem with these approaches is assessing the quality of
the synthesized regions, in comparison to distortions due to compression, in order that
the encoder can precisely choose whether to enable synthesis or not. Texture similarity
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metrics could possibly be used in this purpose, as they are meant for measuring sim-
ilarity in a way far from pixel-wise similarity. However, it is still challenging to have
a metric that can faithfully measure different types of distortions, and yet tells which
one is better. Other than that, texture synthesis is still far away from being developed
for coding purposes, and most of the synthesis-based coding approaches utilize simple
synthesis algorithms. A good synthesis algorithm, in turn, would usually require lots of
parameters to be encoded, that can already cost more than the original data itself.

On the other hand, the features extracted by V1-E can also be utilized to improve
the video compression system. As long as a strong set of texture features is provided,
intelligent machine learning models can be used to enhance the coding performance.
For example, the encoder parameters can be learning by analyzing these features to
provide better coding results. Other than that, the encoder decisions can also be learned,
such that no exhaustive search for the optimal decision is needed. This can lead to a
huge reduction of the complexity of the coding system, which is significantly desired
for many applications such as real time communications.

9.2.3 Beyond Texture Similarity
Understanding texture similarity can directly lead to revealing other visual mecha-

nisms of the human visual system. It can also be considered as a tool for many other
computer vision applications. V1-E, developed as a perceptual model for assessing tex-
ture similarity and extracting textural features, can be used for segmentation purposes.
This can result in providing coherent regions, defined by their spatio-temporal prop-
erties. Such type of segmentation can be used to explain visual mechanisms, such as
visual organization. Further possibilities would be to exploit this segmentation to ex-
plain the visual importance of regions, or to help in finding salient regions as well as
following eye gazes.

Finally, a proper modeling of texture similarity should obviously result in proper
synthesis of textures. This is clearly a reverse engineering problem, if we know why
textures look similar; we can easily generate similar textures. However, this is not an
easy problem. One issue is the reversibility of the signal processing operations, which
is not achievable. For example, the spatio-temporal decomposition that is considered
in V1-E cannot be inverted. In contrast, the human mental capability can synthesize
textures from the set of examples seen in the daily life. This is of course within the
cognitive level of vision, and out of the scope of this thesis.
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Figure A.1 – Thumbnails of HomoTex videos.
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Figure A.1 – Thumbnails of HomoTex videos (cont.).
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Modélisation de la Similarité Perceptuelle de Textures Visuelles Statiques et
Dynamiques - Application à l’Optimisation Perceptuelle de la Compression
Vidéo

Modeling the Perceptual Similarity of Static and Dynamic Visual Textures -
Application to the Perceptual Optimization of Video Compression

Résumé
Les textures sont des signaux particuliers dans la
scène visuelle, où elles peuvent couvrir de vastes
zones. Elles peuvent être classées en deux
catégories : statique et dynamique, où les textures
dynamiques impliquent des variations temporelles.
Plusieurs travaux sur la perception des textures
statiques ont permis de définir des mesures de
similarité visuelle pour des applications comme la
reconnaissance ou la classification de textures. Ces
mesures utilisent souvent une représentation inspirée
du traitement neuronal du système visuel humain.
Cependant de telles approches ont été peu explorées
dans le cas de textures dynamiques. Dans cette
thèse, un modèle perceptuel généralisé pour la
mesure de similarité applicable aux textures statiques
et dynamiques, a été développé. Ce modèle est
inspiré du traitement effectué dans le cortex visuel
primaire. Il s’avère très efficace pour des applications
de classification et de reconnaissance de textures.
L’application du modèle dans le cadre de l’optimisation
perceptuelle de la compression vidéo, a été
également étudiée. En particulier, l’intégration de la
mesure de similarité entre textures, a été utilisée pour
l’optimisation débit-distorsion de l’encodeur. Les
résultats expérimentaux avec observateurs humains
montrent une qualité visuelle améliorée des vidéos
ainsi codés/décodées, avec une réduction significative
du débit par rapport aux approches traditionnelles.

Abstract
Textures are special signals in the visual scene, where
they can cover large areas. They can be classified into
two categories: static and dynamic, where dynamic
textures involve temporal variations. Several works on
the perception of static textures made it possible to
define visual similarity measurements for applications
such as the recognition or classification of textures.
These measures often use a representation inspired
by the neural processing of the human visual system.
However, such approaches have been little explored in
the case of dynamic textures. In this thesis, a
generalized perceptual model for the measurement of
similarity applicable to static and dynamic textures has
been developed. This model is inspired by the
processing performed in the primary visual cortex. It is
very effective for texture classification and recognition
applications. The application of the model in the
context of the perceptual optimization of video
compression, was also studied. In particular, the
integration of the similarity measure between textures,
was used for the rate-distortion optimization of the
encoder. Experimental results with human observers
showed an improved visual quality of the decoded
videos, with a significant reduction in the bitrate
compared to the traditional approaches.

Mots clés
Similarité visuelle, Analyse de texture,
Modélisation du système visuel humain,
Compression vidéo perceptuelle

Key Words
Visual similarity, Texture analysis, Human visual
system modeling,Perceptual video compression
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