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General introduction

The ability to control the propagation of elastic waves has been widely investigated in phononic crystals,

a class of engineered media composed of periodic arrays of scattering inclusions in a homogeneous host

material [1]. The propagation of sound in phononic crystals is driven by the interference between Bragg

scattered waves. Similar to the electronic band structure of semiconductors and the electro-magnetic band

structure of photonic crystals, the phononic crystal structure does not allow certain frequency ranges to

propagate within it. The existence of these forbidden bands makes phononic crystals suitable for direct

applications, such as mechanical frequency filtering and sound insulation. In addition, the removal of

inclusions along some pathways produces acoustic waveguides, demultiplexers, and other elastic wave

devices. To foresee the next generation of elastic devices, it would be necessary to introduce a certain

degree of frequency tunability in the phononic properties. Greater interest has been shown along these

lines over the last few years, and many solutions have been proposed by a number of authors; these

include geometric changes to the structure by applying external stresses [2] and changes to the elastic

characteristics of the constitutive materials through application of external stimuli, like an electric field [3],

temperature changes [4], or a magnetic field [5].

Granular phononic crystals, namely ordered granular media made of elastic particles such as spheres,

are a type of phononic crystals with some very interesting features. A key point when considering granular

phononic crystals is the fact that contact forces between particles are applied at a radius distance from the

center of mass, leading in many configurations to the application of moments to the particles, due to non

central forces, in addition to central forces. Then, the rotational motion of the particles is excited and the

associated degrees of freedom should be accounted for, together with the translational degrees of freedom,

in the description of wave propagation and dispersion. Elasticity of granular materials differs from the

classical elasticity due to the micro-structured characteristic of the assembly. In the classical elasticity of

materials, the rotation of infinitesimal elements is not considered. A generalization of the classical theory

of elasticity accounting for rotation, called Cosserat theory or micropolar theory, has been proposed by

the Cosserat brothers in 1909 [6]. The Cosserat formalism has been adapted to the description of granular

media only from the 1980s. Compared to the variety of theoretical developments, including rotational

degrees of freedom where coupled rotational-translational modes have been predicted, experimental stu-

dies and evidence of the rotational and coupled rotational-translational modes of propagation are only

very few. Transversal-rotational modes of propagation have been identified experimentally in a three-

dimensional hexagonal compact arrangement of mm-size spheres in Ref. [7]. In this case, the propagation

1



2 General Introduction

along the high symmetry 6-axis of the crystal exhibits a specific dispersion with an isolated frequency

band of propagation for rotational-transverse modes. Furthermore, the importance of micro-rotations has

been recently theoretically and experimentally revealed also in colloidal-based metamaterials [8, 9] and in

torsional waves in granular chains [10].

Another key point of the granular phononic crystals is their tunable dynamical response stemming

from the contact nonlinearity. Not only their linear elastic properties are found dependent on the exter-

nally applied static force but also their elastic behavior can range from near linear to highly nonlinear,

by modifying the ratio of static to dynamic inter-particle displacements [11]. Consequently, due to this

especially appealing dynamic response, granular phononic crystals have recently played a key role in the

study of fundamental wave phenomena, including solitary waves with a highly localized waveform in the

case of uncompressed crystal, discrete breathers and others [12–17]. They have been also applied in vari-

ous engineering devices, including among others shock and energy absorbing layers [18–20], acoustic lenses

[21], and acoustic rectifiers [22, 23].

In this thesis, we extend the studies of granular phononic crystals by designing and studying magneto-

granular phononic structures. These are composed of linear chains of spherical steel beads inside a designed

magnetic field induced by permanent magnets. The external magnetic field offers not only a great ad-

vantage of straightforward construction but also a non-contact tunability via its magnetic field strength.

For the theoretical description of the dynamics of the granular chains, we consider all the six degrees

of freedom, i.e. three translations and three rotations. This modeling provides the dispersion relation

of the modes showing the presence of coupled rotational-transversal modes. Linear and nonlinear wave

propagation through such structures is studied by numerical simulations together with experimental mea-

surements. Interesting wave phenomena, such as the elastic wave propagation in the presence of micro-

rotations, the harmonic generation, the harmonic filtering with conversion from longitudinal to coupled

transversal-rotational modes are experimentally demonstrated.

Parts of this presented work have been extracted from published articles in Applied Physics Letters

[24] and Extreme Mechanics Letters [25].

This manuscript is composed of three chapters. A non-exhaustive review of the studies on periodic

media as well as on granular phononic crystals is presented in the first chapter. Some basic notions useful

for the understanding and the description of the wave propagation in a granular phononic crystal together

with the importance of rotational degrees of freedom of the particles are also exposed. Finally, we present

in details the magneto-granular experimental setup and we mention the advantage and the possibility to

create attractive forces between particles via the application of an external magnetic field.

In the second chapter, a linear theory describing the three-dimensional dynamics of a granular chain

is proposed by considering different coupling parameters between beads and the substrate providing the

dispersion relation of the modes. Evidence of the elastic wave propagation with micro-rotation is ex-

perimentally demonstrated, confirming the theoretical model. In addition, tunability of the dynamical
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response of the chain by external magnetic fields is also experimentally reported, and numerical and

experimental dispersion curves are successfully derived.

In the third chapter, linear and nonlinear wave propagation through a one-dimensional granular chain

and a Γ-shaped granular structures is numerically and experimentally studied. In the linear regime, the

comparison between experimental and numerical results permits to better estimate the precompression

force in the chain along with the estimation of the losses depending on the polarization of the wave propa-

gation. In the weakly nonlinear regime, predictions and experimental observation of the second harmonic

generation are performed. Finally, the filtering of harmonics along with conversion from longitudinal to

coupled transversal-rotational modes in Γ-shaped granular structures, is also reported.





Chapter 1

Acoustic wave propagation in granular
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6 Chapter 1: Acoustic wave propagation in granular phononic crystals

1.1 Introduction

Granular phononic crystals are periodic arrangements of elastic particles in contact which can be made

of different materials, shapes, and sizes. In general, granular media are biphasic since they are composed

of a solid phase, the elastic particles, and a fluid phase saturating the pores between the particles. When

one considers the elastic wave propagation in granular media, the coupling between the particles and

the surrounding fluid is often neglected due to the large impedance and mass difference between the two

media.

This first chapter introduces a set of notions, phenomena and behavioral description of granular ma-

terials useful for the understanding of theoretical and experimental results presented thereafter. First

sections of this chapter presents a non exhaustive state of the art from researches on periodic structures

and granular phononic crystals giving the context of this study. In particular, the importance of the rota-

tional degree of freedom in the dynamical description of granular structure is discussed. The macroscopic

behavior of a granular assemblies depends on the mechanical interaction at the microscopic scale between

the particles. The modeling of this interaction by the Hertz-Mindlin theory, presented in the fourth sec-

tion, is an essential basis of the physics of granular materials. The general equations for the longitudinal

motion of a granular chain are described based on the full Hertzian model showing the potential nonlinear

behavior of such structures. Then, the physical properties related to the periodic structure of a granular

crystal are described in the simple case of a one-dimensional monoatomic chain showing basic behavior

such as the dispersion of the wave velocity as a function of the frequency. Finally, the magneto-granular

experimental setup is detailed by briefly introducing the advantage and the possibility to create attractive

forces between particles via the application of an external magnetic field.



1.2 Periodic phononic structures 7

1.2 Periodic phononic structures

Figure 1.1: Example of a 3D
phononic crystal made of square-
rod rigid scatterers incorporating
a periodic arrangement of quarter
wavelength resonators [26].

Major technological innovations in recent decades have been based prin-

cipally on the ability to manipulate two particles: electrons and photons.

The control of electrons in semi-conductor materials has given rise to con-

siderable changes for electronic devices such as laptops, mobile phones,

cameras. On another side, the control of photons has lead to wireless

communication, use of optical fiber and microwaves. In addition to elec-

trons and photons, another particle that we experience in our daily life

is the phonon, which is responsible for the transmission of sound and

heat. The verbal human communication is based on the propagation of

audible acoustic waves while many imaging devices for medicine and in-

dustry are involving ultrasonic waves. Nevertheless, the control of waves

remains a challenge in all these domains. Thus, in the aim of the control

of waves, the design and engineering of artificial materials with more com-

plex properties can provide unprecedented behaviors and functionalities.

These artificial structures, usually periodic, are composed of elements

that can behave like a continuous material with unconventional effec-

tive properties. Thenceforth, numerous studies have focused on the understanding of the propagation

of classical waves through periodic structures. These periodic structures are called phononic crystals for

elastic/acoustic (phonon) waves, and photonic crystals for electromagnetic (photon) waves. Example of a

three dimensional phononic structure is presented in Fig. 1.1.

The most common phenomenon presents in such structures is the presence of forbidden band of pro-

pagation, also called band gap. These band structures arise from the wave diffraction by the periodic

structure and constructive or destructive interference as a function of the wave frequency. Waves with fre-

quency inside a band gap can not propagate through the crystal, their energy is reflected by it. Band gap

in photonic crystals is due to a periodic variation of the refractive index of the structured material whereas

in phononic crystals the density and/or elastic constants of the material are varying periodically. There

are important differences between mechanical and electromagnetic waves. Photons can propagate through

vacuum while phonons can not. In addition, the light can have two independent polarizations whereas

an elastic wave in a homogeneous solid has three independent polarizations: two transverse (shear waves)

and one longitudinal (compressional wave). Nevertheless, since shear waves are not supported by liquids

and gases, an acoustic wave has only one longitudinal polarization. One of the advantages of acoustics

in comparison with optical and electronic domains lies in the possibility of observing the effects of elastic

band gaps over wide frequency ranges, allowing the design of macroscopic devices and thus widening their

field of application.
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The concept of phononic crystals has been introduced quasi simultaneously by Kushawa et al. [27] and

Economou and Sigalas [28, 29] in 1993. They have shown band structures due to the periodicity in two

and three-dimensional structures leading to possible engineering applications such as acoustic insulator,

anti-seismic structures or filtering... The first experimental demonstration of the effect of a phononic

structure on the propagation of sound was carried out on a minimalist sculpture created by the Spanish

artist Eusebio Sempere exposed in Madrid (Spain) [30]. This structure is composed of a two-dimensional

periodical arrangement of steel tubes in air. They have observed a decrease in the level of the transmitted

signal at the output of the sculpture (at a certain range of frequencies) not due to absorption but due to

multiple scattering of sound waves due to the arrangement of the tubes in a periodic square array. They

have found band gaps which are existing only for a defined direction of the wave propagation through

the structure. Thus this work was followed by further experimental studies, on designed two-dimensional

periodic composite, where complete band gaps are exhibited [31–33] meaning that band gaps are present

for all directions of the wave propagation in the structure. Besides the band gap effect, other wave guide

phenomena can occur in phononic structures as for example negative refraction [34], focusing [35] and

cloaking effects [36, 37]. All these phenomena in phononic structures are studied in the linear regime

of propagation, however as the amplitude of the wave excitation is increased the response can become

nonlinear leading to more complex phenomena with no analogs in linear theory.

Nonlinearity in phononic materials can originate from two kinds of sources. The first one, called

intrinsic, is a nonlinearity coming from the material constitutive response such as for example interatomic

forces, nonlinear elasticity, or plasticity. The second one, called extrinsic, originates from the geometry of

the designed structure as for example contact force between particles [38], deformation of micromechanical

and nanomechanical oscillators and resonators [39], or geometric instabilities. A classical type of nonlinear

periodic phononic structures is the granular crystals which are arrays of elastic particles in contact. The

next section focuses on these granular structures.

1.2.1 Phononic granular crystals

Granular materials are composed of elastic particles exchanging forces and momenta through their geo-

metric contact interactions. The particles can be made of different materials, sizes, and shapes which

affect the particle interactions and thus the bulk mechanical response of this material. These materials

are found in many industrial sectors such as in civil engineering (concrete), in chemical industry (fuels and

catalysts are often in the form of grains to maximize exchange), in pharmaceutical industry (manipulation

of powders for the manufacture of medicines), in food-processing (cereals, animal feed). In all these sectors

there are problems of storage, transport, flow, mixing, transformation (grinding), to which the industries

have responded by clever but often empirical methods. Another area where granular media are present

is geophysics, the soil being mainly a medium formed of grains. Situations involving this environments

include: dunes, landslides, snow avalanches. The description of these events and the prediction of disasters

such as landslides require a good understanding of the flow properties of these media. In order to high-
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light the complexity in the description of granular media, we can give one simple example; a teaspoon of

powdered sugar can contain about one hundred thousand grains. To describe such media, the number of

particles becomes problematic and the need to find averaged quantities and link between the discrete na-

ture of granular system and a continuum description have strongly motivated investigations. In addition,

granular media can behave as a solid (e.g. wet sand), a liquid (e.g. flow of grains in a sandglass) or a gas

(e.g. collisions of moving beads in a box) [40]. Finally, this medium is highly dissipative, several enginee-

ring applications are using granular matter to damp vibrational waves but still using empirical methods.

Several numerical models have been developed in order to describe the dynamical behavior of granular

packing showing for example the tunability of the bulk properties in bidisperse granular mixtures [41–43].

Figure 1.2: Example of a phononic granular struc-
tures: (a) 1D, (b) 2D, and (c) 3D [7].

By defining the grains (shape, size, materials) and

the geometry of the granular structure, we can reduced

the number of parameters needed to describe the mate-

rial. Artificial periodic assemblies, also called granular

crystals, enable the direct control of the number of in-

teractions between particles leading to a better handling

of the dynamical behavior. Therefore, granular crystals

are really singular materials because they combine both

properties of periodic media with properties of granular

media. Fig. 1.2 presents different structures of granular

crystals in 1D, 2D, and 3D configurations. The 2D con-

figuration presents possible arrangements of the particles where the diagrams of the interaction between

particles are superimposed.

Strong interest for granular media comes from a particular nonlinearity originating from the geometry

of the contact between adjacent particles where the contact model have been developed by Hertz [38] (and

presented in the section 1.4). The Hertz theory points out a strong nonlinear relation between the force

applied to the particles and their displacements. The Taylor development of this normal force/displacement

relation includes quadratic and cubic terms (higher order terms are often neglected). These quadratic and

cubic nonlinearities are called classical nonlinearities. Thus, phenomena occurring in granular crystals

have received considerable interest and are now the subject of very active researches.

The study of granular crystals emerged in 1983 with the work of Nesterenko and Lazaridi on monodis-

perse granular chains where they predict and experimentally observe highly nonlinear solitary waves

[12, 44]. In general, solitons are caused by the counterbalance of the nonlinear effect by the effect of

the energy dispersion. The wave profile is constant along the propagation and its velocity depends on the

amplitude. A soliton can propagate in an uncompressed chain (zero compressional force between particles)

where the linear traditional wave equation does not support a characteristic wave speed of sound [17, 45].

This phenomenon is called sonic vacuum [11].
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The dynamical response of granular crystals can be tuned from near-linear to weakly nonlinear and

highly nonlinear regime by linearizing the system through the application of variable static load [13, 46, 47].

This broad range of dynamical regimes supported by granular crystals has been extensively studied. In the

near-linear regime, the possibility of tunable band gaps have been experimentally demonstrated in one-

dimensional diatomic chain composed of spheres [48] and cylinders [49]. In the weakly nonlinear regime,

phenomena such as harmonic generation, self-demodulation effect, and discrete breathers have been stu-

died [16, 50–53]. Experimental, numerical and analytical methods have been developed to describe the

interaction of solitary waves with an interface [54], with a mass defect [17], their dynamics at the interface

between two granular crystals [55] and in a disordered diatomic chain [56]. Finally, the study of the highly

nonlinear regime has resulted in the proposition of shock absorbers [18], the study of anomalous wave

reflection (acoustic diode effect) [57], and compact solitary waves [12].

In granular media, besides the classical nonlinearities (quadratic and cubic) discussed above, a non-

classical nonlinearity called hysteretic can be also observed when one studies the nonlinear transverse

force/displacement relation, or the nonlinear torque/angle relation. This nonlinearity can be taken into

account by phenomenological or analytical models [58, 59]. In a recent work, the propagation of hysteretic

torsional pulses in a vertical chain composed of magnetic beads has been theoretically and experimentally

studied [10]. Another non-classical nonlinearity can originate from the gap opening between particles which

can occur when the acoustic strain becomes large enough. When gaps open, the signal is truncated leading

to harmonics or even noise [60, 61]. Chaotic behaviors can provide for example bifurcation and period

doubling phenomena. Fig. 1.3 depicts example of nonlinear stress/strain relation existing in granular

media.
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Figure 1.3: Representation of some existing stress/strain relationships in granular media.

In the solid state physics, it is well known that the presence of boundaries or defects breaks the crystal

symmetry which can lead to localized vibrational modes. Such modes have been revealed in the linear

regime by considering boundary limits to a chain of cylinders [62]. Localized modes have been also ex-

perimentally and theoretically studied in diatomic linear chains with glued [15] and welded [63] particles.

Other deviations from a one-dimensional translational symmetry include the granular chain with grafted
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stubs. These structures support the existence of stub modes. In particular, the presence of these extra-sites

leads to dip in the spectral response of the chain [64]. Following these results, side branches considering

different materials are periodically grafted to a one dimensional chain [65]. The authors of these works

have shown, by numerical and experimental analysis, that the band structure of such systems clearly

depends on the material properties of the side branches, thus allowing tunable band structure. In the

weakly nonlinear regime, localized modes have been demonstrated considering a mass defect [17, 66]. The

combination of nonlinear effects and localized modes enables interesting phenomena employing frequency

filtering and asymmetrically excited bifurcations phenomena to provide rectification [22].

Figure 1.4: (a-c) Two-dimensional structures com-
posed of photoelastic particles submitted to ver-
tical tapping. (d-f) The obtained contact chain
forces [67].

The study of two-dimensional and three-dimensional

granular phononic structures are less developed due to

the difficulty to build a perfect crystal. However, the

recent manufacturing progress has stimulated studies in

micro/nano-granular structures [9, 68, 69]. Such struc-

tures are expected to present a variety of novel dynamic

phenomena. The study of square lattice of elastic par-

ticles including rotational degrees of freedom have been

presented in Ref. [70]. In addition, the theoretical ana-

lysis of a granular membrane, composed of a hexago-

nal lattice, has described the dispersion relations of such

system by including bending and shear rigidities at the

contact between particles [71]. Some experimental stu-

dies in two-dimensional structures have been realized on photoelastic particles [72, 73] and a recent study

has shown the effect of disorder on granular contact force chain [67], see Fig. 1.4. The presence of defects

can lead to the loss of contact between particles or to local compression in the surrounding particles.

Few studies have explored in two-dimensional granular structures the effect of imperfection on stress wave

propagation [74–76].

An experimental work has also demonstrated the control of wave propagation direction leading for

example to acoustic lenses (i.e. concentration of acoustic pulses at a focal point) [21]. The possibility of

redirection of nonlinear wave via pulse splitting has been investigated in curved or y-shaped granular net-

works [77–80]. Moreover, the presence of solitary wave in uncompressed two-dimensional granular crystals

have been experimentally and numerically demonstrated [81].
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1.3 Importance of rotational degrees of freedom

Rotational degrees freedom are usually neglected as a first approximation but several works have demon-

strated that the elastic wave propagation can be modified by taking into account the rotational motion of

inclusions [82–84]. The idea to take into account these additional degrees of freedom in the description of

the mechanical properties of a material comes from the Cosserat brothers [6]. In 1909, they developed a

generalization of the elastic theory, called Cosserat theory or theory of micropolar elasticity, in order to

describe the effect of material microstructure on the wave propagation. This model applies not only to the

displacements but also to the rotations of structural elements which have to be considered. As described

in Ref [85], the application of the Cosserat theory in granular media comes from simple observations. In

a classical material, the size of the vibrating particles (nucleus of atoms) is negligible in comparison with

the distance between the atoms. The simplest modeling consists in considering the material as a chain

of punctual masses linked with springs. The rotational degrees of freedom are not taken into account

due to their negligible influence. On the other hand in a granular media, the dimension of the masses

are comparable with the distance between the two particles. The forces are applied at the contact and

the contact behavior leads to a rigidity perpendicular to the axis formed by the center of the particles in

contact. Thus the rotational degrees of freedom must be treated at the same level as the translational

degrees of freedom. Neglecting the rotation in granular assemblies leads to artificially stiffen structure

which could provide incorrect results. These considerations are the starting point of theoretical studies

in granular media following the micropolar theory [86–91]. The presence of rotational degrees of freedom

leads to the appearance of rotational modes [70, 88, 92, 93] and affects in particular the velocity and the

dispersion of shear waves [71, 94–99].

Despite of the amount of theoretical works including rotational degrees of freedom in granular struc-

tures, very few experimental observations of these modes have been realized. The significance of micro-

rotations has been recently revealed experimentally for torsional waves within granular chains [10] as well

as for coupled translational-rotational waves in colloidal-based metamaterials [8]. The latter is composed

of a two-dimensional monolayer of micron-sized spheres on an elastic substrate as presented in Fig. 1.5(a.1).

They predict the resonance frequencies of such system in Ref. [9] considering normal and shear interactions

between beads and between bead and substrate (including rotation). The system supports one pure ver-

tical mode of vibration (fN ) and two coupled horizontal-rotational modes (fRH/fHR). By measuring the

transmission of surface acoustic waves (SAW) propagating across the interface between the blank sample

region and the monolayer they observe an attenuation of the SAWs at the predicted resonance frequencies,

presented in Fig. 1.5(a.2). Finally to identify the modes, they tune the interparticle stiffness, which shifts

the frequency of the horizontal-rotational resonances while leaving the vertical resonance unaffected and

they found reasonable agreement between experiment and theory.

Coupled rotational-translational (TR/RT ) elastic waves were first experimentally observed in three-

dimensional, hexagonal closely packed granular crystals [7], Fig. 1.5(b.1), the dispersion relation of which
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is described by a three-dimensional discrete lattice model that includes the rotational degrees of free-

dom [100]. The theoretical comparison of the propagation of the waves in a granular crystal with that

in a Cosserat medium has demonstrated that the Cosserat theory fails to correctly take into account the

inhomogeneities of the material [7]. However, this work has shown that this generalized theory could

describe the behavior of granular media at long wavelengths, Fig. 1.5(b.2).
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Figure 1.5: (a.1) Schematics of the laser ultrasonic experimental setup of [8]. (a.2) Transmission spectra for surface
acoustic waves propagating across the interface between the blank sample region and the monolayer regions [8]. (b.1)
Experimental setup for the experimental evidence of coupled rotational-translational (TR/RT ) and longitudinal
(L) modes [7]. (b.2) Received signals from a shear transducer (left) and a longitudinal transducer (right) after
transmission through the crystal [7].
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1.4 Mechanical description of the contact between particles

In order to study the acoustic wave propagation in granular media, a mechanical description of the

contact between two elastic spheres is essential. Indeed, the macroscopic behavior of granular media is

directly controlled by the microscopic behavior at the contact, even for complex media (three-dimensional,

heterogeneous, ...).

The elastic deformation of the contact between two elastic beads submitted to a normal stress (directed

along the axis formed by the centers of the two beads) has been described by Hertz in 1881 [38]. For this

description, he was investigating fringes of light interferences between two glass lenses as a function of

the elastic deformation at the contact surface due to axial stress. This relation between the contact

deformation and the normal applied stress has been experimentally validated in [46] and numerically

investigated in [101]. Mindlin has extended this theory with the application of tangential forces between

two elastic spheres [102–105].

The Hertz-Mindlin theory involves assumptions described in the following. The contact area is small

compared to the radius of the particle (small deformations) and is planar which allows to decouple the

mechanical behavior in the contact zone and the global stress inside the sphere. For the calculation of the

local deformations, each sphere is considered as an elastic linear half-space constrained on a small region

(elliptical in general) of its planar surface. The theory gives a maximum of normal stress in the center of

the contact and a stress equal to zero on its rims. Fig. 1.6 represents a schematics of the contact between

two spheres.
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Figure 1.6: Schematics of the contact between two spheres with a representation of the contact surface which depicts
the phenomenon of stick/slip. The inset shows the linearized problem allowing a modeling of the system by two
masses linked by two springs.

First considering only normal forces, F0, directed along the centers of the two different beads (different

radius and material), the assumptions made lead to define the radius of the contact surface, rc, between
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two spheres as:

rc =

(

3R∗F0

4E∗

)1/3

, with
1

R∗ =
1

R1
+

1

R2
and

1

E∗ =
1− ν21
E1

+
1− ν22
E2

, (1.1)

where indices 1 and 2 refer to the first and the second particle with R the radius, ν and E the Poisson’s

ratio and Young’s modulus of the particle material, respectively. The relation between the applied normal

force F0 and the relative axial displacement δ0 of the particles is written as:

δ0 =

(

9F 2
0

16R∗E∗2

)1/3

. (1.2)

This force-displacement relation is nonlinear since δ0 ∝ F
2/3
0 . This nonlinearity comes exclusively from

the geometry of the problem and is induced by the increase of the contact surface with the normal force.

It can be shown that in the acoustic context, the contact system becomes more nonlinear as F0 becomes

smaller [11].

Because of friction at the contact area, a tangential force T0 can be applied in addition to the normal

force still keeping the particles in contact. As said before, the assumption of planar contact surface

allows to decouple the relative normal and tangential displacements. Considering the Coulomb’s law, if

T0 < µfF0 where µf is the friction coefficient, the beads remain in contact while after this limit the beads

slide relative to each other. The tangential stress applied to the surface is zero in the center of the contact

but increases away from the center. Thus, the contact area can be separated in a stick zone in the center

and an external ring of sliding zone, as presented in Fig. 1.6. The relative tangential displacement δt as a

function of the tangential force T0 and the normal force F0 is given by:

δt =
3µfF0

4rc

1

G∗

[

1−
(

1− T0

µfF0

)2/3
]

, with
1

G∗ =
2− ν1
4G1

+
2− ν2
4G2

, (1.3)

where G1 = E1/[2(1 + ν1)] and G2 = E2/[2(1 + ν2)] are the shear modulus of each particle. Eq. (1.3) is

also nonlinear, here the possibility of sliding could lead to hysteresis effect [103, 105].

Finally in the case of a system in equilibrium considering a static force F0 and T0 ≪ µfF0, the Hertz-

Mindlin relations can be linearized and each contact can be modeled as two rigidities; one for normal

interactions and another for transverse interactions. In the particular case where the spheres are identical

(R1 = R2, E1 = E2 and ν1 = ν2), we obtain for the normal rigidity,

KN =

(

3R

4
F0

)1/3

E1
2/3(1− ν1

2)−2/3, (1.4)

and for the transverse rigidity,

KS = (6F0R)1/3E1
2/3 (1− ν1

2)1/3

(2− ν1)(1 + ν1)
. (1.5)
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For this manuscript, we will be interested also in studying the coupling between a sphere and an elastic

half-space made of different materials. Thus, considering that the radius of the second particle tends to

infinity (R2 → ∞), and that a static force F is applied at the contact, the rigidity of normal interactions

can be explicitly given as,

K̃N =
3

2

[

4E1E2

√
R

3E2(1− ν12) + 3E1(1− ν22)

]2/3

F 1/3, (1.6)

and for the transverse interactions,

K̃S = (6FR)1/3
[

E2(1− ν1
2) + E1(1− ν2

2)

E1E2

]1/3

× 2E1E2

E2(2− ν1)(1 + ν1) + E1(2− ν2)(1 + ν2)
. (1.7)

We now turn our attention to the mechanical contact interaction between two elastic spheres submitted

to a torsional moment directed around the axes formed by the center of the spheres. From the mechanical

point of view, a torsional stress at the contact is close to a tangential stress described by the Hertz-

Mindlin theory. When two elastic spheres in contact are submitted to tangential stress, the friction allows

to transmit this stress and stick/slip phenomena occurs at the contact. Same phenomena are occurring by

considering torsional stress, thus the Hertz-Mindlin theory remains valid in this case [105]. The general

expression for the torsional stiffness can be written as:

KT =
16

3

(2− ν1)(2− ν2)

(2− ν1) + (2− ν2)
G∗r3c . (1.8)

If the two particles are identical (same dimension and material) the linear torsional stiffness can be

explicitly expressed as:

KT = (2R) (1− ν1)F0. (1.9)

Considering now that the radius of the second particle tends to infinity leading to a contact between a

sphere and an half-space, the torsional stiffness becomes:

K̃T =
4RF0G

∗

E∗

(2− ν1)(2− ν2)

(2− ν1) + (2− ν2)
. (1.10)

In this section, the linearized rigidities of the contact between particles have been presented for nor-

mal, shear, and torsional interactions. We now turn to the description of the dynamical equations of a

monoatomic granular chain considering longitudinal displacements.
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1.5 One-dimensional granular crystals

This section presents the equations of motion of a one dimensional granular crystal for different dynamical

regimes. The notation used in this section is related to the one presented in Ref. [1].

Considering that the applied frequency range remains considerably less than the individual bead reso-

nances and the contact area is very small compared to particle size, the granular crystals can be modeled

as a system of masses linked by nonlinear springs, see Fig. 1.7.
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Figure 1.7: (a) Schematics of the one-dimensional granular chain, a mass-nonlinear spring lattice. (b) Schematics
of the statically compressed granular chain by a static force F0. The crosses represent the initial positions of the
particle centers in a statically compressed chain while the black circles denote the current positions [11].

This kind of nonlinear lattices has been described by Fermi, Pasta, Ulam and Tsingou (FPU lat-

tices). Such system compressed by a constant static load F0 is described by the general coupled nonlinear

differential equations:

miüi = Ai−1,i [δ0,i−1,i + ui−1 − ui]
3/2
+ −Ai,i+1 [δ0,i,i+1 + ui − ui+1]

3/2
+ , (1.11)

where ui is the displacement from the equilibrium position of the ith particle and üi is its second time-

derivative. The mass of a spherical particle is defined by mi =
4
3πR

3
i ρi with ρi the density of the material.

The coefficient Ai,i+1 is defined from the Hertz relation as,

Ai,i+1 =

4EiEi+1

√

RiRi+1

Ri +Ri+1

3Ei+1(1− ν2i ) + 3Ei(1− ν2i+1)
, (1.12)

and the static overlap δ0,i,i+1 can be rewritten as,

δ0,i,i+1 =

(

F0

Ai,i+1

)2/3

. (1.13)

It should be noticed that Eq. (1.12) is equivalent to the Eq. (1.2). In the Eq. (1.11), the sign [s]+ means

that there is no force between the particles when they are separated; for s 6 0, the bracket [s] takes

the value 0 and if s > 0, the bracket takes the value s. We note that the dissipation is neglected in the

presented model.
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For the particular case of monoatomic granular crystals, i.e considering the same elastic particles in

dimension and material in the chain, it follows that Ri = R, mi = m, m = 4
3πR

3ρ, the coefficient Ai,i+1

can be simplified to,

Ai,i+1 = A =
E
√
2R

3(1− ν2)
, (1.14)

and the static overlap δ0,i,i+1 becomes,

δ0,i,i+1 = δ0 =

(

F0

A

)2/3

. (1.15)

Finally, the equations of motion Eq. (1.11) can be reduced to:

müi = A [δ0 + ui−1 − ui]
3/2
+ −A [δ0 + ui − ui+1]

3/2
+ . (1.16)

1.5.1 Near linear regime

These nonlinear equations Eq. (1.16) can be linearized assuming the approximation of very small amplitude

of displacement in comparison with the static overlap: |ui−1 − ui| ≪ |δ0|. An expansion in power series

can be realized keeping only the first order. In this case, the force/displacement relation can be considered

as linear and the granular chain can be approximated as a linear lattice.

The linearized differential equations for a monoatomic granular crystal take the following form,

müi = K2 (ui−1 − ui)−K2 (ui − ui+1) , (1.17)

where K2 =
3

2
Aδ

1/2
0 is the spring constant and is explicitly given by,

K2 =
E
√
2R

3(1− ν2)
·
√

δ0 =

(

3R

4
F0

)1/3

E2/3(1− ν2)−2/3. (1.18)

It is worth mentioning that Eq. (1.18) is equivalent to Eq. (1.4), i.e. K2 ≡ KN .

1.5.2 Weakly nonlinear regime

Considering now that the amplitude of the relative displacement is small comparatively to the static load

i.e |ui−1 − ui| < δ0, the expansion in power series is developed up to the fourth order term. The regime

can be considered as weakly nonlinear. Finally, the equations of motion can be written in the following

form:

müi =
4
∑

k=2

Kk

[

(ui+1 − ui)
k−1 − (ui − ui−1)

k−1
]

, (1.19)

where K2 =
3
2Aδ

1/2
0 , K3 = −3

8Aδ
−1/2
0 , K4 =

3
48Aδ

−3/2
0 .
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Eq. (1.19) is an example of the FPU model. This type of nonlinear lattice has been used in many theo-

retical studies revealing nonlinear periodic waves, solitary waves [106], and discrete breathers [16, 107, 108].
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1.6 Longitudinal normal modes in a one dimensional monoatomic

granular crystal

Let us consider the linear dynamics of a monoatomic granular chain for longitudinal displacement. As it

has been presented thanks to the linearization of the Hertz theory, the granular chain can be modeled as

a linear mass-spring lattice represented in Fig. 1.8.

0
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i

Figure 1.8: Schematics of a one-dimensional granular chain and its representation by a linear mass-spring lattice.

The equations of motion of the i-th particle have been already presented in the previous section and

can be rewritten as:

müi = KN (ui−1 − 2ui + ui+1) . (1.20)

Looking for solutions of equations Eq. (1.20) in the form:

un = B ei(ωt−kna), (1.21)

where ω is the wave pulsation, k the wave number, and a = 2R the lattice constant, the following dispersion

relation is obtained:

ω2 =
4KN

m
sin2

(

ka

2

)

. (1.22)

This relation is represented in Fig. 1.9. This relation is periodic and thus we can limit the representation

between values of k from 0 to π/a. This wave number interval is called first Brillouin’s zone [109]. From

Eq. (1.22), the cut-off pulsation ωc is defined by the relation

ωc = 2

√

KN

m
, (1.23)
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Figure 1.9: Dispersion relation for the longitudinal mode in one-dimensional granular chain.

Under this cut-off pulsation ω < ωc, the wave number is real and written as

k = ±2

a
arcsin

(

ω

ωc

)

. (1.24)

The sign plus corresponds to the wave propagating toward the increasing i. Oppositely, the sign minus

corresponds to the wave propagating toward the decreasing i. When ω > ωc, the wave number becomes

complex which implies that harmonic waves are evanescent. The zone above this cut-off pulsation is a

forbidden band of propagation also called band gap. The wave number in the forbidden band is decomposed

in a real and imaginary part:

k =
π

a
− j

2

a
arccosh

(

ω

ωc

)

, (1.25)

where j =
√
−1.

The dispersion relation (1.22) allows to define the phase velocity cLφ
which is written as,

cLφ
=

ω

k
=

aω

2 arcsin(ω/ωc)
, when ω < ωc, (1.26)

and the group velocity cLgr
=

∂ω

∂k
,

cLgr
=

∂ω

∂k
= a

√

KN

m

(

1− ω2

ω2
c

)

. (1.27)

In general, the phase velocity describes the velocity at which the phase of the wave with (ω, k) propagates.

The group velocity is the velocity at which the amplitude envelope of a wave packet propagates. The wave

packet is the superposition of propagating waves with different values of k. Generally, the group velocity

corresponds to the velocity at which the energy is transmitted by the signal. Fig. 1.10 shows the phase
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and group in a monoatomic granular chain considering longitudinal modes. The velocities are normalized

by the maximum of the phase velocity cLφc
= aωc/2.
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Figure 1.10: Phase and group velocities for the longitudinal mode in a one-dimensional granular chain.

For the low frequency range, phase and group velocity are equal meaning that the wave is propagating

without dispersion. As long as the frequency increases, phase and group velocity are decreasing and the

difference between the velocities is increasing. The group velocities is decreasing more rapidly than the

phase velocity and at the Brillouin’s limit k = π/a the group velocity is equal to zero.

The next section focuses on the utility and ability of an external magnetic field to design a magneto-

granular structure.
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1.7 Magnetic description of the magneto-granular phononic crystal

The use of magnetic elements to control wave propagation in discrete systems has received a growing

interest the last decades. Nonlinear magnetic potential between particles has been explored via repelling

magnetic oscillators showing existence of solitary waves [110], chaotic behavior [111], moving breathers

[112], and second harmonic generation [113]. Magnetic field has been also used as an external stimulus

in order to introduce contactless tunability of band gap structure [5, 114, 115]. Finally, magnetism could

provide attractive forces, thus chains of magnetic beads can be formed without the need of an external

load [10, 116].

magnet

granular chain

Figure 1.11: Picture of the experi-
mental setup of the granular chain
in direct contact with the magnets.

The designed structure studied here, Fig. 1.11, is composed of a chain

of spherical steel beads inside a properly designed magnetic field. This

field is induced by an array of permanent neodymium magnets (NdFeB)

located at a given distance from the granular chain or in direct contact

with the chain. Since ferromagnetic materials (as steel) can be strongly

magnetized in the presence of a magnetic field, changing the magnetic

field strength allows tuning the interparticle forces and consequently

the dynamic response of the granular crystal. This setup offers the ad-

vantages of straightforward construction and non-contact tunability via

external magnetic fields.

The aim of this section is to describe the role of the permanent magnets for the creation of attractive

forces between particles by analytical, numerical and experimental means. The interaction force between

soft magnetic particles, in the presence of uniform and non-uniform applied magnetic fields, was investi-

gated in Ref. [117]. Fujita and Mamiya in Ref. [118] have presented an analytical model for the interaction

forces between two non-magnetic spheres in the presence of a uniform magnetic field. In our case, due

to the highly non-unifom form of the magnetic field and the interactive magnetization between spheres,

analytical formulas of the magnetic forces between spheres are not available. Thus, we will turn to nume-

rical simulations using the ACDC module from Comsol multiphysics (solving through the finite element

method (FEM)). Simple configurations will be studied analytically and experimentally in order to verify

the numerical simulations. In particular, numerical simulations can be used to calculate the magnetic flux

density of our complete configuration, while experimental measurements estimate the attractive forces

between two adjacent spheres.

1.7.1 Magnetic field created by one magnet

The non-uniform magnetic field created by a permanent magnet has been analytically presented by Yonnet

in Ref. [119] in two and three dimensions. In this section we consider the 2D configuration. The rectangular

magnet has a height 2Lm = 10 mm, width 2lm = 4 mm and an infinite dimension along z-axis. The
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analytical expressions of the magnetic field components in air B0(x, y) for such a magnet are:

B0x =
−σ∗

4πµ0

∑

i=0,1

∑

j=0,1

(−1)i+j ln
{

[lm + (−1)ix]2 + [Lm + (−1)j(y + Lm)]2
}

, (1.28a)

B0y =
−σ∗

4πµ0

∑

i=0,1

∑

j=0,1

(−1)i+j2atan

(

lm + (−1)ix

Lm + (−1)j(y + Lm)

)

, (1.28b)

where σ∗ = Brµ0µair is the surface charge density of the magnet with the remanent magnetization Br,

µ0 = 4π10−7 is the vacuum permeability and µair = 1 is the relative permeability of the air. Inside the

magnet, the field is calculated using the same expressions of Eqs. (1.28) considering now σ∗ = Brµ0µm

where µm is the relative permeability of a permanent neodymium magnet. For our configuration, we use

a permanent neodymium magnet with µm = 1.05. Then, the density of the magnetic field is given by

B0 =
√

B2
0x +B2

0y. The left panel of Fig. 1.12 shows analytical results from Eqs. (1.28) for the magnetic

field density B0.

We turn now to finite element simulations. The magnetic flux lines created by a permanent magnet are

circular and thus we chose a surrounding box of air with circular shape in order to minimize the boundary

problem which can appear with a square box. Finally, the studied domain consists of a disk with air

characteristics (µair = 1), and a rectangle corresponding to the permanent magnet with µm = 1.05 and

Br = 1.32 T. The direction of the polarization has to be defined. In our case the polarization is along y-

axis. Moreover, a surrounding domain with infinite elements is created leading to an unbounded domain,

mimicking a free space case, see Fig. A.2. The mesh is built with triangles, for the study domain, and

with quadrangle, in the infinite domain. The total density of magnetic field is presented on the center

panel of the Fig. 1.12. In order to compare analytical and numerical results, we define a relative error as

Error = 100
|Ba −Bn|

Bn
, (1.29)

where the indexes a and n correspond to analytical and numerical results respectively. The error on the

total density of magnetic filed is shown on the right panel of the Fig. 1.12.
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Figure 1.12: Density of the magnetic field created by a rectangular magnet. Left panel analytical, central panel
numerical results. Right panel, the error between analytical expression and finite element simulations.
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h
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Figure 1.13: Represen-
tation of the magnet.

We can notice that the global error on the magnetic field density B0 is less

than 4% and as a conclusion, the 2D simulated magnetic field for a permanent

magnet is well numerically simulated. So we can extend the numerical simulation

to three dimensions. The way to simulate in 3D is the same than in 2D but

now we consider a surrounding sphere of air and the magnet becomes a cylinder

(with finite dimension in the z-direction, see Fig 1.13). The spacial decrease of

the magnetic field from the upper surface of the magnet is studied. Analytically, a

simple expression for this decrease of magnetic field in 3D configuration along the

symmetry axis of a cylinder axially magnetized (y-axis in our case) is given by:

B =
Br

2

(

h+ y
√

R2
c + (h+ y)2

− y
√

R2
c + y2

)

, (1.30)

where Br is the remanent magnetization which is independent from the geometry, y is the distance from

the pole surface on the axis of symmetry, h is the height of the cylinder and Rc is the radius of the cylinder.

Measurement using a Gauss-meter F.W. Bell 5180 allows to estimate experimentally the magnetic field

from our neodymium magnets. Analytical, numerical and experimental results are presented in Fig. 1.14

for two different magnets with the permanent magnetization B1 = 1.32 T and B2 = 1.37 T given by the

manufacturer.
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Figure 1.14: Magnetic flux density as a function of the distance from the upper surface of magnets for B1 = 1.32 T
and B2 = 1.37 T from Eq. (1.30) (solid line), from 3D finite element simulations (dashed line) and experiments
(marks) (a) in linear scale and (b) in log scale.

A very good agreement is found between analytical, FEM simulations and experimental results. Only

far from the upper magnet surface it seems that analytical results deviate from from numerical and

experimental results that are still in very good agreement. It can be observed that major variations in

magnetic field strength are possible by either placing the permanent magnets at different distances or

changing their remanent magnetization. For example, by using the B1 permanent magnets, the magnetic

field at D = 10 mm from the upper surface of the magnet is reduced by 42% compared to B2 permanent

magnets (see Fig. 1.14(b)). As we will see in the next section, this effect influences the strength of the

static normal forces between spheres F0 (see Fig. 2.12), induced by the external magnetic field. It should
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be noticed that analytical results with 2D configuration from Eqs (1.28) completely over-estimated the

magnetic field. That clearly demonstrated the need to go from 2D to 3D simulations in order to have

quantitative results consistent with experiments.

In the next section, we study the forces between between magnets and beads as well as between beads.

1.7.2 Magnetic field induced by several magnets and beads

The objective of this section is to obtain the interaction forces between beads, and between magnets and

beads. First we check what happens when magnets are put in a linear array and in a configuration where

poles of the magnets are alternatively oriented. Numerical and experimental results are performed with a

chain of 15 magnets. Experimentally, a Gauss-meter F.W. Bell 5180 is used to measure the magnetic field.

It is attached to a 3D moving robot PI. This robot is programmable and allows to scan by planes choosing

the spatial step between two measured points. The schematics of the experimental setup is presented on

Fig. 1.15. We scan the plane (x,z) just above the top of magnets considering a spatial step of 0.5 mm

and numerical simulations using COMSOL are performed for this configuration. Results are shown in

Fig. 1.16. Experimental measurements on the plane (x,y) are presented in the appendix A.

(a)

3D Robot

Gauss-meter

magnet (b) Gauss-meter

x z

x
z

Figure 1.15: (a) Experimental setup to measure the magnetic field created by a linear array of magnets. (b)
Zoom on the Gauss-meter. The experimental magnetic field measured by the Gauss-meter is superimposed on both
panels.

From Fig. 1.16(a-b), we can see red spots corresponding to high intensity of the magnetic field when the

probe is just above the top of magnets. We can observe some differences in the size of spots. These

differences are confirmed on panel (c), where we see that along the line z = 1 cm the experimental data

falls close to zero. This effect comes from the sensitivity range of the probe which is very low leading

to less accuracy when the magnetic field becomes small. We can also notice from panel (c), looking at

the maxima of the magnetic field, that the field decreases along the chain of magnets. This could be

happening because experimentally, magnets are not perfectly aligned with the plot line z = 1 cm and

not exactly at the same distance from the probe (in the y-direction). Numerically, in order to simulate

this misalignment we deviate very slightly the plot line in order to obtain identical plot line between both
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results. Thus good agreement is found for the large value of the magnetic field.
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Figure 1.16: Magnetic field created by a chain of 15 magnets from (a) experiments and (b) simulations. (c)
Magnetic field on the line z = 1 cm from experiments (solid line) and simulations (dashed line).

Then, we add a stainless steel bead above each permanent magnet in order to determine attractive

forces into the chain of beads. Just to understand qualitatively the magnetization of the bead by the

presence of a permanent magnet, Fig 1.17 depicts simple cases where we can see how the magnetic field

(calculated by FEM simulations) creates attractive forces between the beads of the chain.
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Figure 1.17: Simulated magnetic field created by (a) one magnet, (b) two magnets with poles alternatively oriented.
(c) Simulated magnetic field using periodic conditions for alternatively and (d) identically orientations of the
poles.The colormap is saturated to see clearly the magnetization into the beads. Red to blue color means high to
low density of magnetic field respectively.

Fig. 1.17(a) shows that the bead is magnetized due to the presence of the permanent magnet which is

in contact with it. Analytical and numerical simulations in 2D configuration for the case of one bead /

one magnet are presented in the appendix A. Panel (b) shows the magnetic field created by 2 permanent

magnets with alternatively oriented poles. As we can see beads are densely magnetized around the contact

between them. If we look at real values of the magnetic field, beads are polarized with opposite sign lead-

ing to attractive forces between particles. The case of an infinite chain of beads and magnets alternatively

oriented is shown in Fig. 1.17(c). The high density of magnetic field at the contact point between particles

leads to attractive forces into the chain. If the magnets are oriented in the same direction (Fig. 1.17(d)),
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there is no more high density of magnetic field and thus beads are not attracted by each other. It should

be noted that in all the cases, dense magnetic field is present at the bead/magnet contact leading as well

to attractive forces of these two particles. For these reasons, experimentally the magnet will be placed

with alternate orientation in order to obtain attractive forces between particles into the chain.

Figure 1.18: Simulated mesh
in FEM, non contact case.

Thanks to these numerical simulations, we can try to determine the at-

tractive forces between beads and magnets. We consider two beads in direct

contact with magnets (alternatively oriented) surrounded by a sphere of air.

The distance between the two beads is varying from 1mm to zero (beads in

contact), see Fig. 1.18. Parametric analysis is performed on the mesh to ensure

the convergence of the results. Using magnets with B1 = 1.32 T remanent

magnetization and beads with diameter 15.875 mm and with a 1 mm distance

between each other, we obtained a variation of the force: 6 N < F < 6.4 N.

Decreasing the element size of the bead mesh, leading to an increase of the

element numbers, we obtained a variation on the force equal to 0.02 N. The

calculation of the force F between beads and magnets converges to a constant

value. When the beads are in contact, the force between magnets and beads is found to be F ≈ 6.4 N. So,

small variation of the distance between the spheres do not dramatically change the magnetic density at

the contact between beads and magnets and thus the resulting attractive force takes similar values. We

also tested other cases. For example, by using magnets with B1 = 1.32 T remanent magnetization but

smaller beads of 8 mm diameter, we calculated from FEM simulations an attractive force of F ≈ 5 N. For

both cases, we also measured experimentally the resulted forces. We found for the magnet B1 the force

to be F = 4.5 N for a 8 mm bead and F = 5.5 N for a 15.875 mm bead. Thus, numerical and experimen-

tal results are in good agreement. Another case that we studied was the one of magnets with stronger

remanent magnetization, namely B2 = 1.37 T. FEM simulations give an attractive force of F ≈ 10.5 N

for beads of 15.875 mm in diameter. Experimentally, we found F > 7 N, since the dynamometer limit

is 7 N so we cannot confirm this estimated value by direct measurements. However in section 2.3.3, the

comparison between theoretical prediction using F = 10 N and experimental results will indirectly confirm

this estimated value. If more unit cells are simulated, the estimated values are still the same.

Let us examine now the force between spheres F0. Considering identical protocol, we start the simu-

lation by two unit cells varying the distance between them from 1 mm to 0, i.e. contact between spheres.

When the beads are not in contact we observe an increase of the attractive force from 0.28 N to 7.15 N

approaching the two cells. When the beads are in contact the force becomes 3.1 N. Making a parametric

analysis on the mesh, creating an adaptive mesh as a function of the distance of separation, the results

do not converge. We can find values from F0 = 0.2 to 20 N and if the particles are very densely mesh

at the contact, the precompression force can reach values up to 330 N. Since this work is not focused

on the simulation problem and because this force can be experimentally measured, we decide to use the

numerical simulation only to estimate the force between beads and magnets.
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1.8 Conclusion

Granular phononic crystals are interesting engineered structures that combine both properties of periodic

media with properties of granular media. They exhibit tunable dynamic behavior that leads to particular

phenomena on the acoustic wave propagation such as tunable band gaps, energy localization, or wave

guiding. The acoustic wave propagation in granular media depends on periodicity (e.g. monoatomic or

diatomic chain), on the dimensionality (1D, 2D or 3D structures), and the interaction between parti-

cles (including rotational degrees of freedom, nonlinearity) for example. Consequently, the diversity of

phenomena occurring in granular media have strongly motivated this present work.

The possible realization of an experimental granular device using an external magnetic field has been

proposed in the latest section. In order to describe the dynamical behavior of such structure, the following

chapter is devoted to the theoretical description of the linear dynamics of a monoatomic granular chain

including all the degrees of freedom in translational and rotational bead motions. In addition, the effect

of the coupling between the granular chain and a substrate is theoretically and experimentally studied.
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2.1 Introduction

This chapter is devoted to the study of the linear dynamics of one-dimensional magneto-granular phononic

crystals composed of a chain of spherical steel beads inside a properly designed magnetic field. First, the

theoretical description of the three-dimensional dynamics of the chain is presented. A linear model taking

into account all degrees of freedom of the beads (three translations and three rotations) as well as all

elastic couplings (longitudinal, shear and torsional), between the beads and between the beads and the

substrate is developed. This model provides the dispersion relation of the modes in the system for different

coupling parameters.

The associated experiments confirm the elastic propagation of modes with micro-rotation of beads

and demonstrate the pertinence of the model for the system description. Several interesting effects on

the dispersion are observed and discussed, like zero group velocity modes. Moreover, tunability of the

dynamical response of the granular chain is demonstrated by changing the strength of the external magnetic

field. Finally, experimental dispersion curves are performed by measuring each particle velocity of the

chain and are successfully compared to numerical simulations including boundary conditions and the

experimental driver characteristics.
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2.2 Theory of infinite linear granular chain considering 6 degrees of

freedom

To describe the three-dimensional dynamics of a linear granular chain and its mechanical coupling to a

rigid substrate, we consider the model as shown in Fig. 2.1. The possible motions are presented in two

decoupled planes, a "sagittal" plane (x,y) and a "horizontal" plane (x,z). The model considers all 6

degrees of freedom for each n-th sphere of the chain; 3 displacements along j = x, y, z-direction (un,j) and

3 rotations (φn,j). The linear model assumes infinitely small displacements and angular displacements.

Between two adjacent spheres, we consider normal, shear and torsional couplings characterized by constant

rigidities KN , KS and KT respectively. The coupling of the linear granular chain with the substrate is

characterized by the normal, shear and torsional constant rigidities K̃N , K̃S , K̃T , respectively. Note that

in this study we ignore a possible bending coupling between the particles verified to be very weak [99].
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Figure 2.1: Representation of the infinite granular chain coupled with a rigid substrate. Displacement and rotation
motions are separated in (a) the sagittal plane (displacements along x and y, rotation relative to z-axis) and (b)
the horizontal plane (rotations relative to x and y-axes, displacement along z).

In order to obtain the equations of motion of our system, the Lagrangian formalism is used [91]. For a

system of N degrees of freedom described by N generalized coordinates α, the lagrangian L is expressed

from the generalized coordinates αi and their time-derivative α̇i as the difference between the kinetic

energy T and the potential energy V .

L = T − V (2.1)

Equations of motion in Lagrangian mechanics are Lagrange’s equations of the second kind (also called

Euler-Lagrange equations) and are written as follows:

∂L
∂αi

− d

dt

(

∂L
∂α̇i

)

= 0, (2.2)

where i = 1, 2, ...N corresponds to the i-th degrees of freedom.

For our system, we can obtain the equations of motion using the Lagrangian formalism for modes

polarized in the sagittal and horizontal plane.
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2.2.1 Equations of motion for sagittally polarized modes

In the sagittal plane, there are 3 degrees of freedom (2 displacements ux, uy and 1 rotation φz). The

system is presented in Fig. 2.2, where we show the zero-th particle which is in contact with the neighboring

particles −1, 1 and the substrate, denoted by particle 2. For each contact, we consider normal and shear

couplings.

x
Longitudinal

2

-1 0 1

Shear

2

-1 0 1

i 1 2 −1

êxê0i 1 0 −1

êy ê0i 0 1 0

êxτ̂0i 0 −1 0

êy τ̂0i 1 0 −1

kN
−1

kS
−1

Figure 2.2: Representation of the studied system for the sagittal plane.

The Lagrangian of the particle "0" is described as follows:

L(0)
s = T

(0)
s − V

(0)
s , (2.3)

where the indices "S" refers to the sagittal plane. The kinetic energy Ts and the potential energies Vs are

given by:

T
(0)
s =

1

2
m0

(

u̇20,x + u̇20,y
)

+
1

2
I0φ̇

2
0,z, (2.4a)

V
(0)
s =

1

2

∑

i=−1,2,1

(

kN
i∆Li

2 + kS
i∆Si

2
)

, (2.4b)

where i = {−1, 2, 1}, m0 is the mass and I0 is the particle’s momentum of inertia (for the particular

case of homogeneous spheres I = 2
5mR2). The normal and shear rigidities are kN

i = {KN , K̃N ,KN} and

kS
i = {KS , K̃S ,KS} for the interaction between the zero-th particle and the i-th particle, respectively.

Normal ∆Li and shear ∆Si spring elongations can be explicitly written as:

∆Li = (ui,x − u0,x) êxê0i + (ui,y − u0,y) êy ê0i, (2.5)

∆Si = (ui,x − u0,x) êxτ̂0i + (ui,y − u0,y) êy τ̂0i − (Riφi,z +R0φ0,z) , (2.6)

where we denote by ê0i the unit vector in the direction from the zero-th particle center to the i-th particle

center. êx, êy and êz correspond to the unit vector along x, y and z-axis, respectively. τ̂0i is the unit

vector normal to ê0i and êz: τ̂0i = [êz · ê0i]. Then, the Lagrange’s equations are:

∂L(0)
s

∂αs

− d

dt

(

∂L(0)
s

∂α̇s

)

= 0, (2.7)



2.2 Theory of infinite linear granular chain considering 6 degrees of freedom 35

where αs = (ux, uy, φz) denote the generalized coordinates for the sagittal plane, while α̇s =
(

u̇x, u̇y, φ̇z

)

the generalized velocities.

Considering the case of a granular chain coupled to a rigid substrate, namely considering fixed boundary

conditions for particle 2, we obtain u2,x = u2,y = φ2,z = 0, and then the equations of motion of a

monodisperse chain, m0 = m and R0 = R, take the following form:

mü0,x = KN (u1,x − 2u0,x + u−1,x)− K̃S(u0,x −Rφ0,z), (2.8a)

mü0,y = KS(u1,y − 2u0,y + u−1,y)− K̃Nu0,y +KSR(φ−1,z − φ1,z), (2.8b)

Iφ̈0,z = KSR(u1,y − u−1,y)−KSR
2(φ1,z + 2φ0,z + φ−1,z) + K̃SR(u0,x −Rφ0,z). (2.8c)

Considering the case of a free granular chain, namely considering free boundary conditions for particle

2, we obtain u2,x = u0,x, u2,y = u0,y, φ2,z = −φ0,z, and then the equations of motion of a monodisperse

chain, m0 = m and R0 = R, take the following form:

mü0,x = KN (u1,x − 2u0,x + u−1,x), (2.9a)

mü0,y = KS(u1,y − 2u0,y + u−1,y) +KSR(φ−1,z − φ1,z), (2.9b)

Iφ̈0,z = KSR(u1,y − u−1,y)−KSR
2(φ1,z + 2φ0,z + φ−1,z). (2.9c)

2.2.2 Equations of motion for horizontally polarized modes

In the horizontal plane, there are also 3 degrees of freedom (1 displacement uz, and 2 rotations φx, φy).

The system is presented in Fig. 2.3, where we show the zero-th particle which is in contact with the

neighboring particles −1, 1 and the substrate, denoted by particle 2. For each contact, now we consider

shear and torsional couplings.

x
Torsional Shear

kT
1

kT
2

2

-1 0 1

2

-1 0 1

kT
−1

kS
−1

i 1 2 −1

êxê0i 1 0 −1

êy ê0i 0 1 0

êxτ̂s0i 1 0 −1

êy τ̂t0i 0 1 0

Figure 2.3: Representation of the studied system for the horizontal plane.

The Lagrangian of the particle "0" is described as follows:

L(0)
H

= T
(0)
H

− V
(0)
H

, (2.10)

where the indice "H" refers to the horizontal plane. The kinetic energy TH and the potential energies VH
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are given by:

T
(0)
H

=
1

2
m0u̇

2
0,z +

1

2
I0

(

φ̇2
0,x + φ̇2

0,y

)

, (2.11a)

V
(0)
H

=
1

2

∑

i=−1,2,1

(

kS
i∆Si

2 + kT
i∆Ti

2
)

, (2.11b)

where i = {−1, 2, 1}, the torsional and shear rigidities are kT
i = {KT , K̃T ,KT } and kS

i = {KS , K̃S ,KS}
for the interaction between the zero-th particle and the i-th particle, respectively. Shear ∆Si and torsional

∆Ti spring elongations can be explicitly written:

∆Si = (ui,z − u0,z)− (Riφi,x +R0φ0,x) êz τ̂t0i − (Riφi,y +R0φ0,y) êz τ̂s0i , (2.12)

∆Ti = (φi,x − φ0,x) êxê0i + (φi,y − φ0,y) êy ê0i, (2.13)

where τ̂s0i is the unit vector normal to ê0i and êy: τ̂s0i = [êy · ê0i] and identically τ̂t0i = [êx · ê0i]. Then,

the Lagrange’s equations in the horizontal plane have the following form:

∂L(0)
H

∂αH

− d

dt

(

∂L(0)
H

∂α̇H

)

= 0, (2.14)

where αH = (uz, φx, φy) denote the generalized coordinates for the horizontal plane, while α̇H =
(

u̇z, φ̇x, φ̇y

)

the generalized velocities.

Similar to the sagittal case, considering the case of a granular chain coupled to a rigid substrate,

namely considering fixed boundaries conditions for particle 2, we obtain u2,z = φ2,x = φ2,y = 0, and then

the equations of motion of a monodisperse chain, m0 = m and R0 = R, take the following form:

mü0,z = KS(u1,z − 2u0,z + u−1,z)− K̃S (u0,z −Rφ0,x) +KSR(φ−1,y − φ1,y), (2.15a)

Iφ̈0,x = KT (φ1,x − 2φ0,x + φ−1,x) + K̃SR(u0,z −Rφ0,x), (2.15b)

Iφ̈0,y = −KSR
2(φ1,y + 2φ0,y + φ−1,y) +KSR(u1,z − u−1,z)− K̃Tφ0,y. (2.15c)

Considering the case of a free granular chain, namely considering free boundaries conditions for particle

2, we obtain u2,z = u0,z, φ2,x = −φ0,x, φ2,y = −φ0,y, and then the equations of motion of a monodisperse

chain, m0 = m and R0 = R, take the following form:

mü0,z = KS(u1,z − 2u0,z + u−1,z) +KSR(φ−1,y − φ1,y), (2.16a)

Iφ̈0,x = KT (φ1,x − 2φ0,x + φ−1,x), (2.16b)

Iφ̈0,y = −KSR
2(φ1,y + 2φ0,y + φ−1,y) +KSR(u1,z − u−1,z). (2.16c)

Solutions of the set of Eqs. (2.8)-(2.15) are plane waves propagating in x-direction for each family of
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modes, the indices "S" and "H" respectively referring to the sagittal and to the horizontal plane:

V
s

n
=









un,x(x, t)

un,y(x, t)

Φn,z(x, t)









= v
seiωt−ikxn , (2.17a)

V
H

n
=









un,z(x, t)

Φn,x(x, t)

Φn,y(x, t)









= v
Heiωt−ikxn , (2.17b)

considering the new variables Φx = Rφx, Φy = Rφy and Φz = Rφz. Here, k is the wave number

in the x-direction, v the amplitude vector and ω is the angular frequency. For both the horizontal and

the sagittal plane, Eqs. (2.17) are developed around the equilibrium position x0 of the central particle

Vn = veiωt−ikx0e−ik∆xn , where ∆xn = xn − x0 is the relative coordinate between the central particle

and the n-th particle. Substituting Eqs. (2.17) into the set of Eqs. (2.8)-(2.15) leads to two eigenvalue

problems:

D
s
v
s = −Ω2

v
s, (2.18)

D
H
v

H = −Ω2
v

H, (2.19)

where Ω = ω/ω0 is the reduced frequency with ω0 =
√

KS/m. Elements of the 3×3 dynamical matrices

D
s for the sagittal plane and D

H for the horizontal plane are

D
s =









−4η1 sin
2(q)− η2 0 η2

0 −4 sin2(q)− η3 4i sin(q) cos(q)

η2p −4ip sin(q) cos(q) −4p cos2(q)− η2p









, (2.20)

D
H =









−4 sin2(q)− η2 η2 4i sin(q) cos(q)

η2p −4η4p sin2(q)− η2p 0

−4ip sin(q) cos(q) 0 −4p cos2(q)− η5p









, (2.21)

where η1 =
KN

KS
, η2 =

K̃S

KS
, η3 =

K̃N

KS
, η4 =

KT

KSR2
, η5 =

K̃T

KSR2
, p =

mR2

I
and q =

ka

2
, where a = 2R

corresponds to the lattice constant. Solutions to these eigenvalue problems Eqs. (2.18)-(2.19) yield the

Ω(k) dispersion relation. The ratio p characterizes the mass distribution in a spherical particle. In our

model we consider homogeneous particle (p = 2.5) but by modifying this ratio the dispersion curves could

be strongly modified. Two cases are studied, the first where the chain is not coupled to a substrate, denoted

as " free " chain and the second when the coupling with a substrate is taken into account, denoted as

"coupled" chain.
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2.2.3 "Free" linear granular chain

In this section we consider the case where the chain is not coupled to a substrate, namely K̃N = K̃S =

K̃T = 0. Particles are interacting only via normal KN , shear KS and torsional KT stiffnesses. Solving

eigenvalue problems Eqs. (2.18)-(2.19) gives the Ω(k) dispersion relation for each of the two planes, and

the analysis is restricted to the first Brillouin zone for waves propagating to the right (k > 0). In Fig. 2.4,

theoretical dispersion curves are presented for each plane, the sagittal with ux, uy and φz components

and the horizontal with uz, φx and φy. The characteristics of the particles and pre-compressional force

are related to experimental relevant values. The pre-compressional force between spheres is equal to the

experimentally measured one, F0 = 1 N, and particles are chosen to be stainless steel beads with a diameter

of 15.875 mm (material characteristics are presented in section 2.3). Eqs. (1.4)-(1.9) therefore yield

KN = 6.60·106 N/m, KS = 5.44·106 N/m, KT = 1.12·10−2 m·N and KSR
2 = 3.42·102 m·N ≈ 3×104 KT .
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Figure 2.4: Dispersion curves for the infinite free granular chain considering the static force F0 = 1 N and
K̃N = K̃S = K̃T = 0 for (a) modes polarized in the sagittal plane and (b) modes polarized in the horizontal plane.

The dispersion relation for the sagittal plane, see Fig. 2.4(a), contains three branches: one corresponds

to the longitudinal mode with displacement just along the x-axis, denoted as L(ux), while the other

two correspond to transverse-rotational mode, denoted as TR1,2(uy, φz) with displacements along the y-

axis and rotations along the z-axis. TR1 is a zero-frequency branch resulting from the counterbalance

between rotational and transverse motions; further details on zero-frequency TR branches can be found

in Refs. [88] and [62]. The component predominance in the TR branches is determined by identifying the

largest component of the calculated eigenmodes of Eq. (2.18), as denoted in 2.4(a). For example, in the

lower part of the TR2 branch, the predominant component is uy, while it is φz in the upper part.

The dispersion relation for the horizontal plane, see Fig. 2.4(b), contains two TR branches, denoted

TR1,2(uz, φy), and one branch corresponding to torsional modes, denoted as R(φx). This branch is at very

low frequencies due to the small value of the torsional stiffness KT , compared to the effective rotational

stiffness KSR
2 provided by shear interactions. TR1 is also a zero-frequency branch due to the counter-

balance between rotational and transverse motions, while TR2(uz, φy) is similar to the TR2(uy, φz) of the

sagittal plane. This result stems from the symmetry of the rotational φz, φy and transverse uy, uz motions
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of the free-standing granular chain, Fig. 2.1.

Fig. 2.5 presents the presence of one component in comparison with the two others for each mode by

plane. The presence of the component is displayed in grey scale. Colors white and black correspond to

absence and pure existence of the component, respectively.
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Figure 2.5: Relative amplitude of the components for each mode polarized in (a) sagittal and (b) horizontal
planes for the free granular chain. Colors white and black correspond to absence (0) and pure existence (1) of the
component, respectively.

Fig. 2.5(a), depicts the predicted branches; one pure L(ux) and two coupled TR(uy, φz). The upper

part of the higher TR branch becomes more and more rotational meanings that experimentally it will

be more difficult to detect translational motion in this part. From Fig. 2.5(b), identical conclusions can

be made, we see the pure rotational branch R(φx) and the two other TR(uz, φy) branches with the same

behavior.

In order to quantitatively express the interplay between transverse (u) and rotation (φ) components

in the upper branches TR2, Fig. 2.6 presents the relative amplitude of each component as a function of

the frequency. We can clearly see that the transverse component is quickly reducing as the frequency is

increasing.

Analytical values of cutoff frequencies of modes are explicitly given for modes polarized in the sagittal

plane (ux, uy, φz) as follows for k = 0:
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Figure 2.6: Relative amplitude (in percentage) of transverse (u) and rotation (φ) in the TR2 branch as a function
of the frequency. Dashed line corresponds to the lower and higher cutoff frequencies for the TR2 branch.

fL = 0, (2.22)

fTR1
= 0, (2.23)

fTR2
=

1

2π

√

4KSR
2

I
, (2.24)

while for k = π/a:

f ′
L =

1

2π

√

4KN

m
, (2.25)

f ′
TR1

= 0, (2.26)

f ′
TR2

=
1

2π

√

4KS

m
. (2.27)

For modes polarized in the horizontal plane (uz, φx, φy), cutoff frequencies of the TR branches are

identical than in the sagittal plane due to symmetry consideration. The cut-off frequency of the pure

rotational branch R(φx) for k = 0 is fR = 0 and for k = π/a:

f ′
R =

1

2π

√

4KT

I
. (2.28)

After the study of freely-standing chain, the theoretical study of the granular chain coupled with a

rigid substrate is now considered.

2.2.4 Linear granular chain coupled with a rigid substrate

This section focuses on the linear chain coupled with a rigid substrate, the normal K̃N , shear K̃S and

torsional K̃T are now activated. Fig. 2.7 shows some cases of the dispersion relation of the structure

within the first Brillouin zone for waves propagating to the right (ℜ(k) > 0), varying the η2 ratio, which
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corresponds to modifying the shear rigidity K̃S between bead and substrate. The choice to consider K̃S as

a free parameter is discussed in the experimental section 2.3.3. Values of other parameters are η1 = 1.21,

η3 = 1.89, η4 = 8.18 · 10−5 and η5 = 2.14 · 10−4. These correspond to experimental relevant values

taking into account the Hertzian theory (see section 1.4) and estimated forces between spheres equal to

F0 = 4 N and between sphere and substrate F = 10 N. In panels presented in columns 1 and 3, we

plot the dispersion relation of sagittally polarized waves that include longitudinal motion (ux), transversal

motion along y-direction (uy) and rotational motion around z-axis (φz), while in panels in columns 2 and

4, we display the dispersion relation of horizontal polarized waves that include transversal motion along

z-direction (uz) and rotational motions around x-axis (φx) and y-axis (φy). The predominance of each

motion is labeled in Fig. 2.7.
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Figure 2.7: Dispersion curves of an infinite granular chain coupled to a rigid substrate, as a function of the
free parameter η2 = K̃S/KS . (a) η2 = 0, no shear coupling, (b) η2 = 0.72 (c) η2 = 1.60 corresponds to the Hertz
prediction with the force created by the magnet of Br (1.37 T) remanent magnetization, (d) η2 = 4.56 (e) η2 = 2.86.
Values of other parameters are η1 = 1.21, η3 = 1.89, η4 = 8.18 · 10−5 and η5 = 2.14 · 10−4. Ω = ω/ω0 is the reduced
frequency with ω0 =

√

KS/m.

In Fig. 2.7(a.1-2) we consider the case where the granular chain is coupled to a substrate only through

the K̃N and K̃T , namely K̃S = 0. For the sagittal plane motion, the longitudinal branch L(ux), with

displacement only along the x-axis, is uncoupled to two other transversal-rotational branches denoted by

TR1,2(uy, φz), with displacement along y-axis and rotation around the z-axis. Similarly, a pure rotation

branch R(φx) is uncoupled to two TR3,4(uz, φy). We have to notice that the TR1,2 and TR3,4 are not

identical between the sagittal (x,y) and horizontal (x,z) plane.

When the shear coupling between the chain and the rigid substrate is activated, each branch in the

dispersion diagram contains all components of the relevant mode family. In Fig. 2.7(b.1-2) we consider

the case of η2 = 0.72. According to analytical expressions for frequencies of the modes at k = π/a in the

sagittal plane, this corresponds to the case where two branches degenerate at the edge of the Brillouin zone.
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For this case, we also observe that the first two branches in the sagittal plane show an anti-crossing effect

which leads to the existence of a zero group velocity (ZGV) mode at a finite wavelength, k ≈ π/(2a).

In particular, increasing the parameter η2 from zero to a finite value, we observe that the dominant

component of the first branch, at the crossing point with the second branch, is not the longitudinal ux any

more but the transversal uy. This explains the avoided crossing of these two branches and the existence of

a ZGV mode. One can also observe the existence of a band gap from zero up to the value Ω1 (expressed

later in Eq. (2.30)). Since this value depends on the free parameter η2, it can be tuned by the shear

coupling between the granular chain and the substrate. In Fig. 2.7(c.1-2), we present the case using values

of stiffnesses given by the Hertz prediction and considering force created by the magnet B2 = 1.37 T, thus

η2 = 1.60. Three branches in each plane are smooth and they do not exhibit ZGV. In Fig. 2.7(d) and

Fig. 2.7(e), we consider cases for η2 = 4.56 (sagittal plane) and η2 = 2.86 (horizontal plane) respectively.

Accidental degeneracies at k = 0 are present in both cases as well as a ZGV mode at k ≈ 0.26π/a

(Fig. 2.7(d)).

Analytical values of cutoff frequencies of modes at k = 0 and k = π/a are explicitly given for modes

polarized in the sagittal plane (ux, uy, φz) as follows for k = 0,

Ωs2

2 = η3, (2.29)

Ωs2

1,3 =
1

2

[

4η1 + η2(1 + p)±
√

(4η1 + η2(1 + p))2 − 16η1η2p
]

, (2.30)

while for k = π/a

Ωs
′
2

1 = 4 + η3, (2.31)

Ωs
′
2

2,3 =
1

2

[

4η1 + η2(1 + p)±
√

(4η1 + η2(1 + p))2 − 16η1η2p
]

. (2.32)

For modes polarized in the horizontal plane (uz, φx, φy), one has for k = 0,

ΩH2
1 = 0, (2.33)

ΩH2
2 = η2(1 + p), (2.34)

ΩH2
3 = p

(

4 + η5

)

, (2.35)

while for k = π/a,

ΩH
′2

1 = η5p, (2.36)

ΩH
′2

2,3 =
1

2

(

4η4p + η2(1 + p) + 4±
[

(4η4p + η2(1 + p) + 4)2 − 16p(4η4 + η2 + η2η4)
]1/2)

. (2.37)

To conclude this section, we emphasize that the granular chain coupled to a rigid substrate results in

rich dispersion behavior including ZGV modes at finite wavelength and accidental degeneracy.
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2.2.5 Summary

In considering all degrees of freedom in transversal and rotational motions, the full set of dispersion

relations has been derived for the case of free-standing granular chain and of a chain interacting with a

substrate. The dispersion curves are presented in two decoupled planes, called sagittal (ux, uy, φz) and

horizontal (uz, φx, φy).

When the chain is not coupled to a substrate, the dispersion curves show two pure branches. One

corresponding to longitudinal motion L(ux) and one to pure rotational motion R(φx). For each considered

plane, two other coupled transverse-rotational TR branches are also present whose one is at zero frequency.

Considering a coupling of the beads with a substrate, there is no more pure branches and the modes

are containing all components of the relevant plane. By modifying only the shear rigidity between bead

and substrate, theoretical dispersion curves have shown that our system supports transversal/rotational

propagation modes, zero group velocity (ZGV) modes and accidental degeneracies. Dispersion engineering

by tuning some of contact stiffnesses can thus lead to interesting wave phenomena. In order to improve

the modeling, the bending rigidity could be added to the study as in [62, 71, 99].
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2.3 Linear spectra : experimental results and discussion

The objective of this section is to demonstrate the validity of the model via two different experimental

setups using external magnetic field to induce forces in a granular chain. The first one is a free-standing

chain where couplings between a substrate and beads can be neglected. The second setup corresponds to

the case where the chain is coupled to a substrate.
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Figure 2.8: Schematics of the experimental setup. The
configuration allows us to drive the chain along x, y or z
directions. We place the vibrometer in 3 different posi-
tions, Pos. 1, 2 and 3 to detect displacement along the x,
y and z axis, respectively.

In both cases, experimental setups are com-

posed of a chain of stainless steel beads of

15.875 mm diameter, above permanent NdFeB

magnets in a linear array configuration. The two

setups differ by the presence or not of a soft sub-

strate between beads and magnets.

The material characteristics of steel 440C beads

are the following: density 7650 kg/m3, Young’s

modulus E1 = 200 GPa and Poisson ratio ν1 = 0.3.

The magnets have a density of 7600 kg/m3, a

Young’s modulus E2 = 160 GPa, a Poisson ratio

ν2 = 0.24 and a remanent magnetization B1 =

1.32 T or B2 = 1.37 T. The chain is driven at one extremity in three independent directions (x,y,z)

by using two kinds of transducers (a longitudinal Panametrics V3052 and a shear Panametrics V1548).

The schematics of the setup describing the complete measurement chain is presented in Fig. 2.9. A bead

is glued to the exciting transducer to ensure the same contact between the driver (the glued bead) and

the chain. The excitation signal is a sweep sine of 65 s duration with a span from 100 Hz to 15 kHz. The

measurement of the particle velocity is made by a laser vibrometer Polytec OFV-503 with a sensitivity of

5 mm/s/V and an averaging is performed during the acquisition. We place the laser vibrometer in three

different positions to be able to detect all directions of displacement of the bead. Experimental setup

configurations are presented in Fig. 2.8.

Amplifier  
B&K 2713

GPIB

Vibrometer 
Polytec OFV-503

controller 
Polytec OFV-5000

Acquisition PC

Transducer 
Panametrics

Granular chain

Analyser SR785

Figure 2.9: Diagram of the instrumentation.
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A first measurement on the particle glued to the transducer is performed to ensure that the amplitude

of excitation is in the linear regime. Thus calculating the ratio between the driven displacement and the

theoretical static overlap leads to δ/δ0 6 0.019 for all configurations present in this chapter. The most

unfavorable case, when this ratio is equal to 0.019, can still be consider as linear regime and as a results

we are sure to excite the chains in a linear regime. Before each set of measurement, beads are cleaned

with acetone and placed carefully without touching directly the material with the skin finger.

2.3.1 "Free" linear granular chain

This section describes the experimental observations in a magneto-granular chain. Soft rubber has been

chosen as a substrate in order to ensure high impedance contrast between the granular chain and the

substrate. As such their mechanical coupling is weak while the remaining energy leakage from the beads

to the substrate is highly attenuated due to the high viscoelasticity of rubber. In other words, the effective

stiffness originating from contact deformation between spheres and the substrate is more than four order

of magnitude smaller relative to the contact stiffnesses between spheres. It can thus be assumed that the

granular chain is free, coupling with the substrate can be ignored. Permanent magnets are NdFeB cylinders

of remanent magnetization B2 = 1.37 T , located 10 mm from the center of the spheres. For this case, as

mentioned above, the measured static normal force is F0 = 1 ± 0.15 N. Eqs. (1.4)-(1.9) therefore yield

KN = 6.60·106 N/m, KS = 5.44·106 N/m, KT = 1.12·10−2 m·N and KSR
2 = 3.42·102 m·N ≈ 3×104 KT .

A schematic diagram of the chain on top of permanent magnets within a rubber substrate is presented

on Fig. 2.10.
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Figure 2.10: (a) Schematic diagram of the granular chain on top of permanent magnets within a rubber. Forces and
magnetic flux lines induced by the magnetic field have been superimposed. (b) Photography of the experimental
setup for the "free" chain configuration.

In Fig. 2.10, magnetic flux lines have been superimposed on the schematic diagram of the setup. These

lines have been calculated using FEM simulations, a large concentration of lines is visible at the contacts,

which indicates the attractive normal force between adjacent spheres and between spheres and substrate.

Using Eqs. (2.18-2.19) theoretical dispersion curves are obtained for each plane (sagittal and horizontal)

and are displayed on Fig. 2.11 along with the experimentally derived linear spectra. Measurements are

performed on the last bead of the chain in the same direction as the excitation polarization. Pos. 1 for

measurement along the x-axis, Pos. 2 along the y-axis, and Pos. 3 along the z-axis. The granular chain

is composed of 5 (center panel) or 15 particles (right panel).



46 Chapter 2: Tunable magneto-granular phononic crystals

0 π/a0 π/a0 π/a! "!
"

#$! !

%
&'
(
)
'*
+,
-.
/
01

!

2

3

45

#$! !

67*'8&9:;'+<&)=

-81

>?:@94
>?:@95

%
&'
(
)
'*
+,
-.
/
01

!

2

3

45

! #!
"

#$! ! #$! !

>?:@9A

-B1

C7:;'&:7?*9+)&D': 67*'8&9:;'+<&)=

E?&=8F70'G9H=;F7<)G'9-GI1

E?&=8F70'G9H=;F7<)G'9-GI1

0 π/a0 π/a0 π/a

J??=

! "!

!

C7:;'&:7?*9+)&D':

K?G':9;?F8&70'G97*9:8L7<<8F9;F8*'

K?G':9;?F8&70'G97*9M?&70?*<8F9;F8*'

!@!$

$%
5-&

' ()
*1

+,
& -.

$%4,&'()*.

$%
5,&

* ()
'.

$%4,&*()'.

%,) -
.

$%4

Figure 2.11: Dispersion curves (left) for the infinite free granular chain when considering the experimentally
measured F0 = 1 N (solid line) with an error of ±0.15 N (shadow zone). The linear spectrum of the signal (velocity
amplitude) detected by the laser vibrometer for a chain composed of 5 beads (center) and 15 beads (right) (a) in
the sagittal plane (x,y), and (b) in the horizontal plane (x,z). For both chains, permanent magnets of B2 = 1.37 T
remanent magnetization have been used.

From a direct comparison, a very good agreement can be observed between theoretical and experi-

mental findings on the allowed and forbidden band of propagation. In addition, the appearance of upper

branches in experiments provides evidence of the existence of coupled transverse/rotational branches. The

pure torsional branch R(φx) cannot be detected by the laser vibrometer. Indeed the laser vibrometer, be-

ing sensitive to changes in the optical path length, it permits to detect motion of the reflecting surface

only along the optical beam direction. The zero frequency branches TR1 presents theoretically in both

planes are not excited in this experimental configuration and as results they cannot be measured. In the

case of a 5-bead chain (central panels of Fig. 2.11), the 5 resonances in each branch are clearly visible.

In the case of a 15-bead chain and under longitudinal excitation (right panels of Fig. 2.11 - Pos.1), only

the first 10 resonances can be distinguished. This result offers evidence that increasing the system length

strengthens the dissipation effect, especially around the edges of propagating bands. Furthermore, at high

frequencies under both longitudinal and shear excitation, the corresponding propagating wavelengths are

on the order of the lattice constant. Hence, a small amount of disorder induced by bead misalignments

could lead to a stronger smearing of the relevant resonances.

With the validity of the theoretical model now verified, let’s continue with a demonstration of the

tunability of the "free" linear granular chain by external magnetic field.
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2.3.2 Tunable "Free" linear granular chain by external magnetic fields

Analytical expressions of the contact stiffnesses have been presented in section 1.4 where we notice a

nonlinear relation of the static force F0 between particles and the stiffnesses. It has been also presented in

the previous chapter, the dependence of the static force between spheres with the strength of the magnetic

field. Finally, by changing F0, which in our case is equivalent to change the strength of the magnetic

field induced by the permanent magnets, we can tune the dispersion relation of our "free" granular chain.

Plotting the analytical cutoff frequencies of the L and TR branches as a function of the static force F0

permits to show the allowed and forbidden bands of propagation. Explicit expressions of cutoff frequencies

are given for the L and TR branches in Eq. (2.25) and Eqs. (2.24, 2.27), respectively. Fig. 2.12 depicts

the expected theoretical cutoff frequencies using two permanent magnets of B1 and B2, which correspond

to F0 = 0.3 N and F0 = 1 N experimentally estimated, respectively.
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Figure 2.12: Cutoff frequencies for the L (left) and TR (right) branches as function of the normal force F0.
Experimentally estimated forces are F0 = 0.3 N (dashed red) and F0 = 1 N (dashed black) for permanent magnets
of B1 and B2 remanent magnetization, respectively, both placed a distance 10 mm from the center of the beads.
Grey zones correspond to pass bands. The torsional cutoff frequency is not shown.

In Fig. 2.12, dashed lines denote the experimentally measured force of each magnet B1 and B2 with

their predicted theoretical values of cutoff frequencies. Band structure tunability is observed by changing

the remanent magnetization. More specifically, using the B1 permanent magnets instead of the B2 magnets

reveals a downshift of band edges of roughly 18%.

Fig. 2.13 shows on the same plot the experimental linear spectra of a chain composed of 15 beads,

placed 10 mm above the linear array of permanent NdFeB magnets of B1 (red line) and B2 (black line),

respectively. In the former case, introducing the experimentally measured F0 = 0.3 N into Eqs. (1.4)-(1.9)

yields to KN = 4.42 · 106 N/m, KS = 3.64 · 106 N/m, KT = 3.34 · 10−3 m·N and KSR
2 = 2.29 · 102 m·N ≈

105 KT . Dashed lines denote predicted theoretical values of cutoff frequencies.

For the longitudinal branch L(ux), very good agreement is found for the cutoff frequencies depending

on the force created by the magnetic field. Both TR branches detected when there are B2 magnets (black

line) give also a good agreement. For TR branches into magnetic field created by B1 magnets, the high



48 Chapter 2: Tunable magneto-granular phononic crystals

! " # $%

&'!

!

(
)*
+
,-
.
+
/
01
23
4
5
64
7
8

9:;122:0-!-+)45< =)*1>)?2:0-"#-+)45<

@)<,-$ @)<,-A

B*5C35?DE 6F=>8 B*5C35?DE 6F=>8

&'!

!

B*5C35?DE 6F=>8

9:;122:0-"#-+)45<

@)<,-%

&'!

!

! " # $% ! " # $%

Figure 2.13: Linear spectrum of the velocity signal received for a chain of 15 beads under B1 (red) and B2 (black)
permanent magnets at a distance of 10 mm from the center of the spheres. In the left panel, the dashed lines
correspond to analytical cutoff frequencies of the longitudinal branch Eq. (2.25) along with the experimentally
estimated forces. The dashed line in both the center and right panels shows the expected analytical transverse
cutoff frequencies from Eqs. (2.24) and (2.27).

cutoff frequency is well predicted but it seems that the low cutoff is underestimated. For these low cutoff

frequencies, the corresponding propagating wavelengths are on the order of the lattice period. Thus, small

disorder in bead alignment could lead to smearing of the modes. This disagreement will be more discussed

in the section 2.4.4 where the experimental dispersion curves are estimated.

The theoretical model is validated for the case of linear granular chain submitted to a magnetic field

induced by permanent magnets. The assumption which consists of neglecting interactions between beads

and rubber substrate is confirmed by the experimental results. Tunability by an external magnetic field

is also demonstrated in such configuration. We can now turn to the case of a linear chain coupled with a

substrate.

2.3.3 Linear granular chain coupled with a rigid substrate

This section describes experimental observations of the dispersive modes in a magneto-granular chain

influenced by the coupling with a substrate. To ensure strong coupling of the chain with a substrate,

beads are placed directly in contact with permanent neodymium NdFeB magnets. Magnets are glued on

the bottom to a rigid metallic support. A schematic diagram of the chain in direct contact with the top

of permanent magnets is presented in Fig. 2.14. Magnets with B2 = 1.37 T remanent magnetization are

used in this section. Precompressional forces F are created between beads and the magnets and have

been estimated by finite element simulation to be F = 10 N. The interaction force between beads is

experimentally measured 20 times to average the results using a dynamometer. We find an interparticle

force between 2 N < F0 < 4.5 N with a mean value at 2.9 N. Between each measurement, beads are

removed from the substrate and cleaned. The different values found for the force come from the slight

variations of the bead positions relative to the center of the magnets making the magnetization of beads
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slightly different. The roughness of the magnets could also influence this result (more details on the

roughness can be found at the end of this section).
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Figure 2.14: (a) Schematic diagram of the granular chain put directly on top of permanent magnets. Forces and
magnetic flux lines induced by the magnetic field have been superimposed. (b) Photography of the experimental
setup for the granular chain coupled to a substrate.
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Figure 2.15: Dispersion curves (left) for the infinite granular chain considering the experimentally measured and
estimated forces F0 = 4 N (KN , KS , KT ), F = 10 N (K̃N , K̃T ) and experimentally fitted K̃S . Linear spectrum
of the signal (velocity amplitude) detected by the laser vibrometer for a chain composed of 5 beads (center) and
15 beads (right) (a) in the sagittal plane (x,y) and (b) in the horizontal plane (x,z). The measurement is made on
the last bead of the chain. We measure in the same direction than the polarization of the excitation. Pos. 1 (black
line) measurement along x-axis, Pos. 2 (red line) along y-axis, and Pos. 3 (green line) along z-axis. The grey zones
correspond to the theoretical forbidden propagation band-gaps.

Panels in the center and right of Fig. 2.15 present experimental results of a chain with 5 and 15

beads respectively, on top of cylindrical permanent magnets. From the dispersion curve presented in
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Fig. 2.7(c.1-2) which considers the predicted stiffnesses by Hertz theory, we expect a large forbidden band

of propagation from 0 up to 3880 Hz for the longitudinal motion (ux). The width of this forbidden gap is

governed mostly by the shear rigidity between each bead and the substrate, see Eq. (2.30). The Hertzian

prediction of the shear rigidity considering a normal load of F = 10 N gives K̃S = 1.38 · 107 N/m. As

we can see on the middle panel of Fig. 2.15(a), (linear spectrum measured in the Pos. 1 which is sensitive

to ux motion) the experimentally measured band gap is up to 1870 Hz. Considering the shear stiffness

between the granular chain and the substrate as a free parameter, this band gap is produced by using

K̃S = 2.36 · 106 N/m, namely an order of magnitude smaller. A similar discrepancy of the shear stiffness

(Hertzian expected and experimentally measured) has been also observed in [120], for the case of micro-

sized silica particles. Using this fitted parameter for K̃S , a very good agreement between experimental

results and the predicted allowed and forbidden bands of propagation is achieved. In particular, three

band gaps (denoted by the grey area in Fig. 2.15(a)) have been observed. At f = 4570 Hz, a dip in the

linear spectrum is noticed (a narrow band gap) to be in agreement with the frequency gap around the

theoretical ZGV mode for k ≈ 0.38π/a. This is an experimental evidence of the existence of ZGV mode.

For modes polarized in the horizontal plane, the lowest branch can not be excited by our transducer so we

can not measure it. The middle branch of the dispersion relation curve has a very strong predominance

of rotation (φx) and only a small translation component, in this case less than 15%. Thus, it can not be

detected by the laser vibrometer which permits to detect motion of the reflecting surface along the optical

beam direction.

The difference between the Hertzian predicted shear stiffness, which is obtained considering smooth

surfaces in contact, and the experimentally calculated one could be explained by the rough surface of

permanent magnets. Measurement with an Atomic Force Microscopy (AFM) helps in characterizing the

surface roughness. The AFM consists of a cantilever with a tip serving as a probe to scan a sample surface.

A schematics of the AFM principle is presented in Fig 2.16(a). Experimentally, we scan the top of several

magnets to find roughness properties. This technique can give the height of the asperities which is around

0.2-0.3 µm in our case, see Fig. 2.16(b-c). We also measured an averaged distance between asperities of

around 2-3 µm. In comparison, the static overlap between spheres and magnets predicted by the Hertzian

theory from Eq. (1.2) using the experimentally evaluated value of the static load F = 10 N is δ0 = 0.9 µm

and the contact radius from Eq. (1.1) is rc = 85 µm. Thus, the contact between spheres and magnets

can be considered as a multicontact interface. In this case, as it has been shown in [121, 122], the shear

stiffness varies proportionally to the normal load F ,

K̃S =
F

λ
, (2.38)

where λ is an elastic length that lies in the micrometer range, and which is the relevant scale for the

roughness of the surfaces. In our case, considering λ = 3 µm (the average distance between asperities) and

F = 10 N, we obtain K̃S = 3.3 · 106 N/m, very close to the experimentally obtained value. On the other

hand, considering now the interaction between spheres with a static load F0 = 4 N, we obtain a static
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overlap equal to 0.55 µm and a contact radius equal to 47 µm. The roughness of the steel 440C beads is

provided to be 0.025 µm, much smaller than the static overlap predicted by the Hertzian theory using the

experimentally evaluated values of the static loads F and F0. Thus, as a first approximation the contact

between the beads can be considered as a single contact.

Figure 2.16: (a) Principle of Atomic Force Microscopy. Topography of the magnet surface measured by Atomic
Force Microscopy (b) in 2D and (c) 3D representation.

Another point that should be commented is the fact that the magnets are fixed to one extremity

(glued to the substrate) and free to move at the other extremity where the beads are located. Magnets

can partially follow the bead motion, and as a consequence, the shear rigidity between bead and magnet

is not completely activated. By FEM simulations we found that the first flexural mode of the cylindrical

magnet is around 3.4 kHz clearly different from 4.4 kHz which is one of the gaps around the ZGV in

Fig. 2.15(a). Thus the gap cannot be caused by the hybridization of the chain modes with the vibrations

of the magnets. To further test this assumption, we performed experiments using shorter cylindrical mag-

nets of 4 mm height and the same magnetization. FEM simulations predict the first flexural mode to be at

22.7 kHz, but once again the K̃S is weaker than the Hertzian predicted value. Thus, we believe that this

disagreement in the K̃S is connected with the multicontact interface between the surface of the magnet

and the sphere. This actually reveals another important feature in the proposed configuration: the tun-

ability of the shear stiffness and thus of the dispersion relation by properly designed surface topographies.

The latter can be produced either through a slow etching process using H2 plasma [120] or by controlled

abrasive powder coating [122].

2.3.4 Summary

This section has presented the development and dynamics of a magneto-granular phononic crystal, com-

posed of spherical ferromagnetic spheres in contact, in the presence of a properly designed magnetic field.

We developed two experimental setups with very different interaction properties between beads and a

substrate.

The first experimental setup is composed of permanent magnets arranged in a row inside a soft rub-

ber holder at a given distance from the granular chain. The effective stiffness originating from contact



52 Chapter 2: Tunable magneto-granular phononic crystals

deformation between spheres and soft rubber substrate is very small relative to the contact stiffnesses

between spheres. In a first approximation, the coupling between the chain and the rubber substrate can

be neglected, and the system considered as a free granular chain, as confirmed by the experimental results.

They also reveal clearly the existence of TR modes and tunability of the dispersion relation upon external

magnetic fields.

The second experimental setup taking into account the interaction with a substrate is composed of

spherical ferromagnetic spheres in direct contact with permanent magnets. By fitting only one parameter,

the shear stiffness between the spheres and the magnets, we obtained a very good agreement between

experimental results and the predicted allowed and forbidden bands of propagation. We were also able

to experimentally observe a ZGV point at finite wavelength. Disagreement between the shear stiffness

predicted by the Hertzian theory for a single contact and the experimentally obtained one is attributed

to the rough surface of the magnet, which was characterized using AFM techniques. The use of properly

designed magnetic fields and particular surface topographies can lead to a programmable control of the

stiffnesses between the elements of the setup and thus to an engineered dispersion relation. In addition, one

can also modify the contact stiffnesses by placing dielectric spaces between the magnets and the spheres.

This will increase the distance between the magnets and the spheres, resulting in weaker contact forces

between the spheres and the dielectric spacer.
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2.4 Experimental and numerical dispersion curves

The objective of this section is to present the method to derive the numerical and experimental disper-

sion curves of a free standing granular chain. The previous analytical results describe the derivation of

dispersion curves for the case of infinite granular chain. The difference here stems from the addition of

boundary conditions taking into account the finite size of the system. In order to obtain dispersion curves,

displacements of each particle of the chain have to be estimated during a pulse propagation. Thus, a new

experimental configuration is built and numerical simulation are performed involving, linear on-site dissi-

pation, the driver excitation characteristic and boundary conditions. Numerical results will be compared

to experimental one leading to the estimation of the precompressional force F0 between particles together

with the dissipative term. Simulations are achieved using a fourth order Runge Kutta numerical scheme.

Before running simulations for the entire chain, the experimental driver has to be characterized. The

experimental driver is composed of a piezo-electric transducer with a bead glued on it to ensure the contact

between the driver and the chain is the same than inside the chain. The next section is devoted to the

characterization of this bead/transducer contact.

2.4.1 Characterization of the experimental driver

The driving bead and the transducer are glued together in order to ensure a high coupling. As a first

approach for longitudinal motion, this system can be model as a linear mass-spring system (with dissipa-

tion) presented in Fig. 2.17. In order to estimate the stiffness Kg and the dissipative coefficient τg of this

Transducer

Glue

Bead m

Experimental driver Model

Figure 2.17: Schematics of the experimental driver (left) and mass-spring modelization of the driver (right) for
longitudinal motion.

setup, we measure by laser vibrometer the response on the bead and on the transducer when a single pulse

is sent, see Fig. 2.18(a). We will use the signal measured on the transducer as an initial condition for the

driven wall in numerical simulation. Numerically, adjusting the stiffness and the dissipative parameters,

the signal measured experimentally on the bead should correspond to the numerical results . The equation

of motion solved numerically is:

mü1 = Kg (uact − u1)−mu̇1/τg, (2.39)
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where uact corresponds to displacement of the actuator and u1 is the displacement of the particle. Nu-

merically, uact is imposed and takes values of the experimental signal measured on the transducer (blue

line in Fig. 2.18(a)). The experimental and numerical results using Kg = 1.49 · 108 N/m, τg = 0.17 ms are

presented in the Fig. 2.18(b).
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Figure 2.18: (a) Experimental signal measured on the transducer (blue) and on the bead (red) for a pulse excitation.
(b) Numerical displacement (green) solving Eq.(2.39) with Kg = 1.49 · 108 N/m, τg = 0.17 ms and experimental
signal measured on the bead (red).

From Fig. 2.18(b), we observe a very good agreement, after adjusting the stiffness and the dissipa-

tion term, between numerics and experiments. The simple model considering a driven wall and a mass

linked by a linear stiffness is found appropriate. Exactly the same method is applied to characterized

the shear contact between the transducer and the glued bead. The difference now is that the experi-

mental shear transducer has in plane displacement (and also a small component of longitudinal motion).

The laser vibrometer used for measurement is sensitive to out-of-plane motion only along the optical

beam. Measuring with two opposite angles θ and applying simple trigonometric relations we can write

the relation between the longitudinal (vx) and the transverse (vy) components of the velocity as follow:
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Figure 2.19: Schematics of the setup for
the longitudinal and transverse compo-
nents of the velocity.

v(θ) = vx cos(θ) + vy sin(θ), (2.40a)

v(−θ) = vx cos(θ)− vy sin(θ). (2.40b)

Fig. 2.19 depicts the setup measurement. Then, adding (or substi-

tuting) Eq. 2.40 permits to obtain the longitudinal and transverse

components of the velocity as

vx =
v(θ) + v(−θ)

2 cos(θ)
, (2.41a)

vy =
v(θ)− v(−θ)

2 sin(θ)
. (2.41b)
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Finally, the contact of the bead with the transducer for our configuration is well fitted in shear motion for

K ′
g = 1.75 ·108 N/m and for the dissipative term τ ′g = 0.1 ms. It is worth mentioning that when boundary

conditions are taken into account for transversal-rotational modes, with shear rigidity between particles

KS , there is existence of a localized mode. It has been analytically demonstrated in Ref. [62] that the

modification of the boundary condition will influence the position of this localized mode either in the gap

between the two propagating branches (when K ′
g = KS) or above the higher propagative branch (when

K ′
g > KS). In our case the shear rigidity estimated for the glue K ′

g is two order of magnitude higher than

the shear rigidity KS inside the chain, hence a localized mode is present at very high frequency (far from

the studied frequency). Consequently, in the present study, we will not focus on this localized mode. For

the next simulations, we will include this first interaction between the transducer and the glued bead in

order to fully describe the experimental setup. Let us turn now on the modeling of the linear granular

chain with specific boundary conditions.

2.4.2 Modeling of the finite linear granular chain

The experimental setup has a finite size, thus boundary conditions have to be included in the numerical

analysis. The attenuation of the wave during the propagation has to be considered, therefore a linear

viscous on-site dissipation is added to the modeling considering a time of decay τ for the wave. This

kind of dissipation is chosen because it is easy to implement it. Equations of motion for the modes

sagittally polarized (ux, uy, φz) are explicitly given, for the first "1" and last particle "N" of the chain

including boundary conditions and for all the particle "i" in between, as follow for the pure longitudinal

branch L(ux):

mü1,x = −KN
1u1,x −KN

2(u1,x − u2,x)−
m

τ1
u̇1,

müi,x = KN
i(ui−1,x − ui,x)−KN

i+1(ui,x − ui+1,x)−
m

τi
u̇i, (2.42)

müN,x = KN
N (uN−1,x − uN,x)−

m

τN
u̇N ,

and for the coupled transverse-rotational branches TR(uy, φz),

mü1,y = −KS
1u1,y −KS

2(u1,y − u2,y) +KS
1Rφ1,z −KS

2R(φ2,z + φ1,z)−
m

τ ′1
u̇1,

Iφ̈1,z = KS
1Ru1,y +KS

2R(u2,y − u1,y)−KS
1R(Rφ1,z)−KS

2R(Rφ1,z +Rφ2,z),

müi,y = KS
i(ui−1,y − ui,y)−KS

i+1(ui,y − ui+1,y) +KS
iR(φi,z + φi−1,z)

−KS
i+1R(φi+1,z + φi,z)−

m

τ ′i
u̇i, (2.43)

Iφ̈i,z = KS
iR(ui,y − ui−1,y) +KS

i+1R(ui+1,y − ui,y)−KS
iR(Rφi,z +Rφi−1,z)

−KS
i+1R(Rφi,z +Rφi+1,z),

müN,y = KS
N (uN−1,y − uN,y) +KS

NR(φN,z + φN−1,z)−
m

τ ′N
u̇N ,

Iφ̈N,z = KS
NR(uN,y − uN−1,y)−KS

NR(RφN,z +RφN−1,z).
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Boundary conditions are "rigid" for one extremity leading to u0,x = u0,y = φ0,z = 0 and free for the

other: uN+1,x = uN,x, uN+1,y = uN,y, φN+1,z = −φN,z. KN
i and KS

i are the normal and shear rigidities

between particle i-1 and i, respectively. These rigidities depend on the material characteristics and the

precompression force F0 applied to the chain. This formulation allows to introduce different contact

rigidities between all particles. Finally, for the longitudinal branch, KN
1 corresponds to the first contact

between the transducer and the glue bead defined in the previous section, thus KN
1 = Kg = 1.49·108 N/m

and τ1 = τg = 0.17 ms. Similarly in the transverse-rotational branches, KS
1 = K ′

g = 1.75 · 108 N/m and

τ1 = τ ′g = 0.1 ms. The particle "1" will be considered as the driver for the chain. It should be noticed

that for simplicity we consider losses only to the transverse part and not directly into the rotational one.

Fixing the material of the particle (here stainless steel beads : R = 7.94 mm, E = 200 GPa, ν = 0.3),

the only two parameters which have to be defined are the precompression force F0 and the dissipation

coefficient τ . The precompression force can be experimentally estimated by measuring the pulling force

required to separate two adjacent particles when using a dynamometer, but the dissipation coefficient has

to be fitted comparing experiment and numerical simulation. In order to access to these parameters, a

pulse signal (short excitation in time) is employed. Indeed the finite length of the signal is useful because

we can clearly observe the time of flight of the pulse from the driver to the other extremity of the chain and

the reflections from the boundaries of the chain. In linear regime, the time of flight of the pulse propagation

is governed by the precompressional force F0. An increase of F0 will reduce the time of flight of the wave.

Thus looking for the amplitude of the pulse along the chain we can observe the attenuation of the wave.

As we will see later, this attenuation term can be different between the longitudinal and the transverse

branch. Numerically, the fourth order Runge Kutta method is implemented to solve Eqs. (2.42 - 2.43).

2.4.3 Experimental dispersion curve method and setup configuration

In order to derive the experimental dispersion curve of a free standing granular chain, i.e. without

interaction with a substrate, the experimental setup is identical to the one in section 2.3.1. The stainless

steel beads of 15.875 mm diameter are placed onto a rubber substrate, see Fig. 2.20. Permanent magnets

are inside the rubber substrate, thus the magnetic field created by the magnets induces forces between

particles. The use of soft rubber substrate allows neglecting the interaction between beads and substrate.

Figure 2.20: Photography of the 38
beads chain on top of the rubber sub-
strate, with permanent magnets in-
side it.

To obtain the dispersion curve, measurements on each particle of

the chain has to be realized. For the pulse signal which excites

the chain, a compromise between the frequency bandwidth and

the repartition of energy has to be taken into account to excite

all modes of the chain. Finally the chosen signal is a "haversine"

which is analytically described as one period of sin2(θ/2) and can

be produced with a function generator. This experimental signal is

a single sine wave with an offset voltage to obtain a zero amplitude

at the starting and ending point as presented in the Fig. 2.21(a)

in the temporal domain. From previous results, propagative bands
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are present up to 12 kHz so the excitation signal has to be sufficiently broadband to cover a frequency

range up to this cutoff frequency. Thus the frequency of the "haversine" cycle is chosen at 20 kHz and

we can see on Fig. 2.21(b) that a sufficient frequency bandwidth is reached which will permit to excite all

modes of the chain by this signal.
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Figure 2.21: One period of the "haversine" electric signal excitation used to derive experimentally the dispersion
curves, (a) temporal and (b) frequency domains.

Experimentally, the signal is repeated each second and 100 averages are performed on each particle

in order to get rid of the noise and perturbations during measurements. Then the same experimental

configurations than in the section 2.3.1 are explored, i.e. exciting the chain in 3 independent directions (x,

y, z) and measuring in the same direction than the excitation, see Fig. 2.8. The difference is that now we

scan every particles of the chain. With the aim of scanning each particle, the laser vibrometer is deported

on the side of the chain with a given angle ϕ and we project the velocity obtained along the x-axis by

the basic trigonometric formula vx = v(ϕ)/ cos(ϕ). The laser vibrometer is attached to a programable

displacement stage Newport. The schematics of the experimental measurement is shown on Fig. 2.22.

translation plate Newport
Amplifier  
B&K 2713

GPIB

Vibrometer - controller 
Polytec

Transducer 
Panametrics

Granular chain

Wave generator 
HP 33120A

Oscilloscope 
Lecroy LT264ML

Controller PC

GPIB

Controller Newport

ϕ

v(ϕ)

vx

Figure 2.22: Diagram of the instrumentation used for the experimental dispersion curve measurement.
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The displacement of each particle is recorded as a function of time. The post-processing is done

by applying a two dimensional (space-time) Fourier transformation (FT) which leads directly to the

experimental dispersion curves. The two dimensional FT permits to pass from temporal domain to wave

number domain, thus we can rebuild the wave number axis to display the experimental dispersion curve.

The resolution of this type of representation is limited by the number of measured points. Increasing the

number of particles and thus the number of measurement points leads to a better resolution. The number

of particles in the chain is extended to 38 beads. Because of practical issues, a new rubber substrate is

constructed responsible of a small difference on the distance between bead and magnet compared to the

previous setup (around 1.5 mm in this case). As a results the attractive force between particles is affected

and experimentally estimated by dynamometer to be F0 = 1.5± 0.15 N.

2.4.4 Results and discussion

This section is devoted to the comparison between experimental and numerical dispersion curves for a

"free" granular chain. The numerical simulation allows to better estimate the precompressional force F0

and to estimate the attenuation term τ . Analytically the complete dispersion curves have been already
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Figure 2.23: Dispersion curves for
the infinite free granular chain for
modes polarized in the sagittal
plane considering a precompres-
sional force F0 = 1 N.

presented in section 2.2.3 and are introduced in Fig. 2.23 as a re-

minder. In the sagittal plane, a purely longitudinal branch L(ux) and

two transverse-rotational branches TR1,2(uy, φz) are present. For modes

polarized in the horizontal plane, a pure rotational branch R(φx) and

two transverse-rotational branches TR1,2(uz, φy) are present. The TR

branches are identical between both planes because of the symmetry of

the model. Numerically, we solve the Eqs.(2.42) for the pure longitudinal

branch and Eqs.(2.43) for the transverse-rotational branch by a Runge

Kutta method including the driver presented in previous section 2.4.1

and considering a free boundary for the other extremity. The experi-

mental signal recorded on the glued bead is used as a driver in order

to compare exactly the same setup between experiments and numerical

simulations. The precompressional force and the dissipative term are

fitted based on the time of flight and the amplitude of the experimental

pulse propagation, respectively.

Fig. 2.24 presents experimental and numerical results for the longitudinal wave propagation and dis-

persion curves L(ux). The numerical simulations are performed using F0 = 1.8 N and τ = 2.4 ms. It

should be noticed that in Fig. 2.24, the displacement of the glued bead is not represented.

From the temporal results presented in Fig. 2.24(a-b), we can observe a good agreement between both

experimental and numerical results. The fitted parameter for the precompressional force F0 is on the same

order than the one experimentally estimated by the dynamometer (F0 = 1.5±0.15 N). The value obtained

for the dissipative term is on the same order than in [22] using the same bead material. However, from the

experimental results we can see on the main pulse propagation a small feature of the displacement signal
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Figure 2.24: (a) Experimental and (b) numerical (from Eq. (2.42)) results for the longitudinal wave propagation
as function of time for a chain of 38 beads. (c) Experimental and (d) numerical dispersion curves with F0 = 1.8 N
and τ = 2.4 ms. Analytical dispersion curves are superimposed.

at the particle 20 which is not present by the numerical results. A scattered wave is also present from this

site. This perturbation is probably due to the presence of a defect in the chain due to a modification of

precompression force and/or misalignment of the particle 20. Numerical simulations adding defects in the

precompression at the contacts are presented later on Fig. 2.28. On panel Fig. 2.24(c-d), the experimental

and numerical dispersion curves are presented. Theoretical dispersion curves for an infinite chain are also

superimposed adjusting the precompression force to F0 = 1.8 N. Theoretical curves depict the existence of

translational motion for ux component in a color scale (as in the Fig. 2.5). On the panel Fig. 2.24(c), a grey

scale from white (absence) to black (pure existence) of ux component is represented. As predicted in the

previous section, this branch is purely longitudinal L(ux), so the curve is totally black. We fully measure

the predicted pure longitudinal branch. It should be noted that at very low frequency, the displacement

amplitude decreases experimentally and numerically. This comes from the experimental transducer which

is not efficient at theses low frequencies.

Let us now examine the propagation of coupled transverse/rotational wave, by driving vertically along

the y-axis and measuring in the same direction. Numerically, we solve the set of Eqs. (2.43), only the

transverse part is represented. The results are shown in the Fig. 2.25. In order to fit the experimental

results in TR propagation, the precompression in now F0 = 1.23 N, which is significantly different than

in the L propagation where F0 = 1.8 N. It should be noticed that the experiments for the TR wave

propagation have been done a different day than the L propagation. After each series of experiment,

beads are take off from the setup, therefore when replacing beads for a new series of measurement there
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Figure 2.25: (a) Experimental and (b) numerical (from Eq. (2.43)) results for the transverse wave propagation as
function of time for a chain of 38 beads. (c) Experimental and (d) numerical dispersion curves with F0 = 1.23 N
and τ ′ = 0.8 ms. Analytical dispersion curves are superimposed.

are not exactly at the same positions, same alignment which could lead to difference in precompression.

This first result shows that our setup is sensitive to the arrangement of the particles.

Looking to the temporal traces of the TR pulse propagation, Fig. 2.25(a-b) we observe a large difference

on the propagation in comparison with the L branch. First, the time of flight is larger in TR meaning

that the wave velocity is smaller. Second, in order to fit the experimental results, the dissipation has to

be also larger in the TR propagation. This increase of losses can be expected because the loss mechanism

is different, e.g. friction between particles. The vertical direction of excitation (uy) leads also possibly to

more interaction between beads and the soft rubber substrate which could explain the larger lossy term.

From temporal signal point of view, we also observe some oscillations in the signal after the main pulse

which indicates small reflections in the signal along the chain. Finally, the spacio-temporal pattern of the

wave propagation in TR branch is different due to opposite sign between the group and phase velocity.

Regarding the experimental dispersion curve, Fig. 2.25(c), the theoretical existence of uy compo-

nent is superimposed in color scale from white (absence) to red (pure existence). Two coupled trans-

verse/rotational TR(uy, φz) branches are expected from theory. The TR branch at zero frequency is

not measured for both experimental and numerical methods because the experimental transducer can

not transmit enough energy at this frequency. Looking to the higher TR branch, the upper part becomes

more and more dominated by rotational motion. Indeed, experimentally and numerically the upper part of
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Figure 2.26: Numerical dispersion curve of the
rotational component with F0 = 1.23 N and
τ ′ = 0.8 ms.

the branch has a very weak amplitude in contrast with the

lower part. The numerical component of the rotational

part is shown on the Fig. 2.26 and we can clearly observe

the upper part of the TR branch. It should be noted that

close to k = π/a experimental and numerical results fail

to describe the theoretical branch.

The first hypothesis to explain this disagreement is that

at high frequency the corresponding propagating wave-

lengths are on the order of the lattice period. Hence, ex-

perimentally a small amount of disorder induced by bead

misalignments could lead to the loss of the relevant modes.

However, the numerical simulation which does not take

into account misalignment fails also close to k = π/a. The second explanation to the missing part of the

dispersion curve may arise from the very small values of the group velocity close to k = π/a. It has been

demonstrated in [123, 124] that for small group velocity an enhanced damping appears from the interplay

of losses and slow sound propagation. Looking to the rotational component, Fig. 2.26, the group velocity

is also small close to k = 0 however the branch is better described. This stems from the simulation which

does not consider direct dissipation for the rotational component.

Let us look again on the experimental TR dispersion curve, Fig. 2.25(c), the measured path is thicker

than the numerical results. Experimentally 100 averages are performed on each particle. For each measure-

ment, a rearrangement of the particles could exist leading to a modification of the effective precompression

into the chain. In order to verified this assumption, numerical simulations are computed 100 times consi-

dering a constant precompression F0 along the chain but varying this force at each simulation. Finally, 100

simulations are performed using 100 random values of F0 into the interval of F0±0.3 N. After simulations,

the mean value the precompression is equal to F0 and the numerical results of the dispersion curve for the

longitudinal and transversal-rotational branches are presented in the Fig. 2.27.
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Figure 2.27: Numerical dispersion curves for the longitudinal branch (left) and (right) for the transverse-rotational
branches after 100 simulations varying the precompressional force F0 ± 0.3 N. The analytical dispersion curves are
superimposed considering F0 (dashed lines) ± 0.3 N (shadow zones).
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From Fig. 2.27, we can observe that the TR dispersion curve are thicker than before which is in

accordance with experimental and analytical results. For the L dispersion curve, it appears some broad

lines at high frequency which are also present in the experimental results.

We can now examine the effect due to disorder in the precompressional force. Indeed, experimentally

on temporal domain we have observed some reflected and scattered waves during the propagation. For the

longitudinal propagation, a feature on the displacement at the particle 20 is clearly present with scattered

waves. We can numerically mimic this effect by decreasing the precompression force at the contact between

the particle 19 and 20. The numerical result is presented in Fig. 2.28(a). Physically, the decrease of the

attractive force could be due to a modification of the magnetic field and/or misalignment. To go further,

simulations with disorder in precompression at each contact are shown on Fig. 2.28(b-c) for the L and

TR propagation. The forces are created by random values into a certain interval around F0. The mean

value of the precompressional forces are very close to F0. For the L simulation the precompression are

F = F0± 0.9 N with F0 = 1.8 N, and for the TR one F = F0± 0.5 N with F0 = 1.23 N. Dissipative terms

τ are the same than the previous fitted parameters for each branch.
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Figure 2.28: Numerical results for (a) the L branch with F0 = 1.8 N and τ = 2.4 ms, defect at bead 20 with
F0 = 0.8 N (b) with several defects F = 1.8 ± 0.9 N and τ = 2.4 ms (c) TR branch with F = 1.23 ± 0.5 N and
τ ′ = 0.8 ms. The blue line corresponds to the mean value of F0. The dashed lines correspond to the analytical
dispersion curve using a constant F0.

From the result with only one defect, Fig. 2.28(a), on the spacio-temporal plot a reflected wave is

present starting from the defect site. A straight line appears along the time around the defect particle
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site, meaning that some waves are localized. This pattern is closer to experimental results. The dispersion

curve is not affected by this single defect. When the precompression is randomly created at each contact,

panel (b), we observe several reflected waves forming from sites with a large difference in precompression.

Furthermore, the dispersion curve seems to be more spread than before. For the case of several defect in

the TR branch, panel (c), reflected waves are also present but due to the pattern of the wave propagation

it is difficult to determine at which site the wave is reflected. The dispersion curve is basically the same

as before but with smaller amplitude. The decrease in amplitude could be expected because a part of the

wave is reflected at several sites and finally there is less energy reaching the end of the chain. Finally, this

numerical study shows the robustness of the dispersion curve visualization when large defect in precom-

pression are taken into account.

To complete the set of experimental results, the full dispersion curve can be presented for the modes

polarized in sagittal and horizontal planes, in Fig. 2.29. The sagittal plane is composed of displacements

along x and y-axes and a rotation around z-axis, which corresponds to the former results presented in

Figs. 2.24(c) and 2.25(c). Thus, the two results are represented on the same panel (a) of Fig. 2.29. The

horizontal plane is composed of a displacement along z-axis and two rotations around x and y-axes. Ex-

citing and measuring along the z-axis allows to describe the upper TR branch. The measurement has

been made the same day than for the longitudinal branch, thus fitting the precompression with the time

of flight, we obtain the same value of F0 = 1.8 N. The result is shown in Fig. 2.29(b) where the theoretical

existence of the translational motion uz is labeled by magenta color. Between both planes, the higher TR

branches have the same behavior: the upper part of these branches are not measured (mostly rotational

motion) as well as when k = π/a is approached. The pure rotational branch R(φx), existing at very low

frequency in the horizontal plane, is not excited and also cannot be detected by the laser vibrometer so

we do not expect to measure it, as well as the zero frequency branch.
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Figure 2.29: Experimental dispersion curves for a chain of 38 beads for modes polarized in (a) sagittal plane and
(b) horizontal plane. The theoretical existence of translational motion is superimposed on each panel in color scale
(black, red and magenta for ux, uy, uz components, respectively). Theoretical dispersion curves are plotted with
F0 = 1.8 N for L(ux) and TR(uz, φy) (same day of experiments) and F0 = 1.23 N for TR(uy, φz).
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A method presented in Ref. [125] provides the recovery of complex wavenumber information from

spacio-temporal experimental measurement. The method, called SLaTCoW for Spatial LAplace Transform

for COmplex Wavenumber recovery, is based so on spacial Laplace transform instead of the usual spacial

Fourier transform. The Laplace transform provides information on both real and imaginary parts of the

poles by minimizing a correctly chosen cost function. It enables the reconstruction of complex wavenumber

(kr, ki), as well as the complex amplitudes, of the modes. We applied the SLaTCoW method to our

experimental measurement for longitudinal wave propagation, the results are presented in Fig. 2.30.
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Figure 2.30: Experimental dispersion curve for longitudinal excitation in a chain of 38 beads. The colormap
corresponds to the experimental dispersion curve from the two dimensional Fourier transform (already presented
in Fig. 2.24(c)). Real (black) and imaginary (red) parts of the wavenumber, estimated by SLaTCoW method [125],
are superimposed.

From the Fig. 2.30, we can observe that the real part of the wavenumber is in very good agreement

with the results from the spacial FT. The imaginary part of the wave number is small and constant up to

5.5 kHz and then is three times larger up to the cutoff frequency of the chain. In the gap, we see a clear

increase of the imaginary part. Finally, this method could be used as an indicator of the loss present in

experimental system.

The preliminary experimental results for the dispersion curves of a linear granular chain coupled with

a subraste are presented in appendix B.

2.4.5 Summary

The experimental dispersion curves are successfully measured for the case of a linear granular chain without

interaction with a substrate. Numerical results including boundary conditions and driver characteristics

are in very good agreement for each branch. Via the study of the spacio-temporal wave propagation,

numerical results allow to better estimate the precompressional force and the attenuation of the wave

along propagation. We observe different values for the linear dissipation between L and TR propagation.

The dissipation is higher for the TR modes which is expected because the beads are interacting more
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with the soft rubber substrate, with shear excitation, than for L mode one. These numerical simulations

also explain why experimentally we are not able to detect the part close to k = π/a for the TR branches

which is due to enhanced damping from the interplay of losses and slow sound propagation (group velocity

takes very small values). This study points out that the precompression in the experimental setup is also

very sensitive to the initial position and alignment of the beads. In order to improved the comparison

between experiment and numerical simulation, a model taking into account the bead misalignment could

be developped.
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2.5 Conclusion

This chapter has described the propagation of elastic waves in a magneto-granular phononic crystal con-

sisting of a granular chain in direct contact or not with an array of fixed permanent magnets. Taking

into account all degrees of freedom in translational and rotational motions, the full dispersion relation has

been derived. Theoretical study have shown that our system supports transversal-rotational propagation

modes, zero group velocity (ZGV) modes and accidental degeneracies in the dispersion curves.

Furthermore, experiments have clearly revealed the existence of coupled transversal-rotational branches

in a granular chain that moreover can be tuned by the external magnetic field. In the configuration where

the beads are in direct contact with the magnets, good agreement is found between experimental results

and the predicted allowed and forbidden bands of propagation by fitting only one parameter: the shear

stiffness between the spheres and the magnets. Experimental evidence of a ZGV point at finite wavelength

has been shown. Disagreement between the shear stiffness predicted by the Hertzian theory of single

contact and the experimentally obtained one is attributed to the rough surface of the magnet, which was

characterized using AFM techniques. The use of properly designed magnetic fields and particular surface

topographies can lead to a programmable control of the stiffnesses between the elements of the setup

and thus to an engineered dispersion relation. In addition, one can also modify the contact stiffnesses by

placing a dielectric spacer between the magnets and the spheres. This will increase the distance between

the magnets and the spheres, resulting to weaker contact forces between the spheres and the dielectric

spacer.

Finally, experimental dispersion curves have been obtained by measuring the velocity each particle

of the chain and are successfully compared to numerical simulations including boundary conditions and

the experimental driver characteristics. The numerical simulations have provided a better estimate the

precompression force and the attenuation of the wave along the propagation. This study has pointed out

that the precompression in the experimental setup is sensitive to the initial position and alignment of the

beads. Numerical simulations taking into account bead misalignment could finally improve the comparison

with experimental results.

The low static load F0 values endows the system with a strong nonlinear response. The next chapter will

first focus on the complete understanding of wave packet and continuous signal propagation in magneto-

granular structures via the study of the linear dynamical response followed by the study of the nonlinear

case.
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3.1 Introduction

This chapter is focused on the complete description of the linear and nonlinear wave propagation through

one-dimensional and Γ-shaped granular structures. In the first part, the granular chain is excited by

wave packets and continuous harmonic waves in their linear dynamical regime. By direct comparison

of spatio-temporal measurements and numerical simulations, we estimate the precompression force and

the losses for different propagating wave polarization (i.e. longitudinal or transversal/rotational wave

propagation). The latter are approximated as viscous on-site damping in the numerical simulations. The

group velocity is also experimentally estimated as a function of the driven frequency for longitudinal and

coupled transversal/rotational waves.

In the second part, the nonlinearities originating from the contact between particles are taken into

account. In particular, we focus on the experimental excitation of harmonics and the observation of the

spatial beating in amplitude of the second harmonic. Finally, the nonlinear propagation in a Γ-shaped

granular structure is studied. Advanced wave control can be obtained by combining nonlinear effects and

geometrically induced conversion from longitudinal to coupled transversal/rotational modes.
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3.2 Linear propagation of packets and continuous harmonic waves

This section is devoted to the study of the linear propagation of wave packets (sinus modulated by a

Gaussian function) and continuous harmonic waves in a free standing granular chain considering both

longitudinal and transverse polarizations. The objective is to obtain from experiments a better under-

standing of the wave propagation in such a system. Experimentally, the setup configuration is identical to

the one presented in section 2.3.1. Only the wave generator is replaced by a Tektronix AFG3022B. The

stainless steel beads of 15.875 mm diameter are placed on a rubber substrate with permanent magnets

inside it. Using a laser vibrometer, we measure the velocity of each particle during the wave propagation.

Experimental results are compared with numerical simulations in order to estimate experimental values

for the dissipation and the precompression force.

3.2.1 Longitudinal wave propagation: experiments vs numerics

First, we study the propagation of wave packets (sinus modulated by a Gaussian function) in the granular

chain.

We choose a short duration signal (few periods of sinus) in order to clearly separate forward and

backward waves during the propagation. The central frequency of the wave packets is modified from
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Figure 3.1: Velocity measured on the
transducer for a sinus at 3kHz mod-
ulated by a Gaussian function (corre-
sponding to a maximum of displace-
ment 3.46 nm).

1 kHz to 10 kHz and the measurement is averaged 30 times by par-

ticle. Fig. 3.1 represents an example of the velocity signal recorded

on the transducer.

Numerically, we solve the Eq. (2.42) using the fourth order Runge

Kutta method. One boundary is considered free while the other

driven using the exact experimental signal as recorded by the laser

vibrometer. An example of the numerical and experimental particle

velocities as a function of the time is presented in Fig. 3.2 for a chain

of 38 beads, using a wave packet with central frequency at 3 kHz, see

Fig. 3.1. Wave propagation can be considered as near-linear when

the amplitude of the driver excitation is very small in comparison

with the static overlap, here δ/δ0 = 0.003.

By fitting the precompression force to F0 = 2.25 N and the dis-

sipative term to τ = 1.9 ms a good agreement is found between ex-

periments, Fig. 3.2(a), and simulations, Fig. 3.2(b). We can clearly

see the multiple reflections of the wave packet from the boundaries and the decrease of the wavepacket

amplitude during the propagation caused by dispersion and dissipation. Wave packets can be isolated

and numbered as presented in Fig. 3.2(a)(c). The wave packet ① corresponds to the initial wave packet

while ③ and ⑤ correspond to reflected waves from the boundaries. In Fig. 3.2(c)(d), we also show the

velocity of the first and the last particle of the chain as a function of time. Looking in more details at

the experimental velocity signal of the first particle, one can observe some oscillations between 2.5 ms
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Figure 3.2: (a) Experimental spacio-temporal diagram of the velocity of the particles during the propagation of
a wave packet with a central frequency of 3 kHz. (b) Numerical spacio-temporal diagram with F0 = 2.25 N and
τ = 1.9 ms. Velocity as a function of time for (c) the first bead and (d) the last bead of the chain.

and 4 ms (wave packet ②), as well as between 7 ms and 8 ms (wave packet ④). The same kind of small

oscillations are also presented in the experimental velocity signal of the last particle. These oscillations

do not appear in the numerics in which a perfectly aligned chain has been considered. Thus, we believe

that these oscillations represent reflected waves which come from misalignment of the central particles,

see more details below.

Using the spatio-temporal experimental measurements, we can also obtain the dispersion relation. To

do so, we apply the two-dimensional FFT for each wave packet propagation (central frequency from 1 to

7 kHz). We record the maxima (pairs of frequency-k) and we plot these in Fig. 3.3(a). Different colors

correspond to initial wave packets with different central frequency. The analytical solution from Eq. (1.22)

and a third order polynomial fit, given by the following expression

ω(k) = −0.0059725 ∗ k3 + 0.79966 ∗ k2 + 304.24 ∗ k + 1734.03, (3.1)

are also superimposed. Experimentally, the dispersion curve is not totally reconstructed at the very low

and high frequency ranges. For the low frequency range the reason is that the transducer that has been used

is not powerful at this frequency range and thus the chain is weakly excited at these frequencies. For the

high frequency range, close to the cutoff frequency, the obtained dispersion curve is not well reconstructed

since there are no clear maxima in the two-dimensional FFT post processing analysis (similar results have

been presented in Chapter 2). Furthermore, we observe that the fitted dispersion relation has a slight

deviation from the analytical dispersion as k goes to zero. In particular, it seems that in experiments, a
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small band gap exists up to f ≈ 275 Hz. This deviation leads to strong different group velocity at low

frequency. This small gap can be explained by considering a weak mechanical coupling, mostly governed

by shear coupling, between the granular chain and the rubber substrate. By estimating the shear rigidity

that causes this gap we find a rigidity three orders of magnitude smaller than the rigidity between particles.

This observation confirm the fact that the coupling between the chain and rubber can be safely neglected

for most of the frequency band.
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Figure 3.3: (a) Dispersion curve from experimental data (marker), analytics (solid line) and polynomial fit (dashed
line). (b) Phase and group velocity calculated by Eq. (1.26-1.27) (solid lines), by polynomial fit, Eq. (3.1) (dashed
line), and experimental group velocity calculated by Hilbert transform (markers).

In Fig. 3.3(b), we present the analytic and experimental phase and group velocity as a function of

the carrier frequency of the driver. By definition, for a lossless medium the velocity of the envelope of a

wave packet is equal to the group velocity ∂ω/∂k. In presence of dissipation, the group velocity is not

well defined [109], however this definition remains a good approximation taking only the real part of the

wave number. The polynomial fit, Eq. (3.1) gives an analytical expression ω(k) derived from experimental

data. Using this fitting expression, we can obtain the phase velocity considering ω/k and the group

velocity assuming ∂ω/∂k. These fitted velocities are denoted with dashed lines. Analytic phase and

group velocity from Eq. (1.26-1.27) for a lossless mediium are also shown with solid lines. In addition, we

obtained experimentally the group velocity, extracting the envelope of the wave packet using the Hilbert

transformation, and calculating its velocity from the spatio-temporal measurements. A good agreement

is found between this method and the group velocity curve calculated by the fitting function.

Regarding the dissipative term used in numerical simulation, we consider this to be constant and equal

to τ = 1.9 ms, regardless of the driven frequency. Fig. 3.4 shows the maximum of the wave packet velocity

along the propagation into the chain for different exciting frequencies. A reasonably good agreement

between experiments and numerics is observed. Some differences can be noticed as for example oscillations

of the experimental curves between particles 17 to 23 (orange zone), specially for the frequencies 4 and

5kHz. These oscillations, as we mentioned above, could be induced by misalignment of the central particles

in the chain leading to reflected waves. Similar kind of oscillations can be observed both in numerics and

experiments into the grey zone when reflections appear. When the driven carrier frequency is inside the
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Figure 3.4: Maximum of the wave packet velocity as a function of beads for different carrier frequencies. Thick lines
correspond to numerical results with τ = 1.9 ms and F0 = 2.25 N, and thin lines with markers are experimental
results. The grey/orange zones correspond to the presence of reflected wave.

forbidden band of propagation (9 kHz), the experimental results are still in good agreement with numerics

using the same damping term. Results from frequencies between 1 and 3 kHz are not presented here to

relieve the number of curves presented but they are similar to the one at 4 kHz. As a conclusion, the

assumption of a on-site, dissipative term which is independent of the driven frequency approximate fairly

good the dissipation of the experimental system. Additional numerical simulations have been performed

using a damping term between the contact of the particle and similar results have been achieved.

We end this section, by presenting the case at which the granular chain is driven by a continuous

harmonic wave (single frequency sinus wave). The driver amplitude is modulated by a linear ramp during

the first 4 ms up to a constant value. Fig. 3.5 presents the results for harmonic wave driver inside and

outside the propagating band. When the driver frequency is inside the propagating band we can see an

increase of the amplitude due to the linear ramp. Lattice waves are generated and they propagate with

phase velocity till the end of the chain, where they are reflected. After a certain time the steady state can

be obtained. The phase velocity is estimated to 348 m/s which is in accordance with analytical prediction.

When the driver frequency is in the band gap, as expected there is no propagation, waves are completely

damped after few particles (evanescent regime).
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Figure 3.5: Experimental velocity of each particle as function of time for harmonic wave frequency (a) inside and
(b) outside the propagating band.
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3.2.2 Transverse-Rotational wave propagation: experiments vs numerics

Now, we turn our attention to the propagation of transverse-rotational wave packets. We consider a

transverse direction of excitation in relation to the axis of chain. First numerical simulations are presented

by using again a 4-th order Runge Kutta method to solve Eq. (2.43) considering a purely transversal

driving. Fig. 3.6 presents the numerical results for the transverse and rotational parts along with dispersion

curves from the transverse component for two different widths of wave packet with a carrier frequency

of 7 kHz.
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Figure 3.6: Numerical spacio-temporal diagrams of the transverse velocity, angular velocity and dispersion curve
for (a) large and (b) short wave packet excitation with a central frequency of 7 kHz, considering F0 = 1.2 N and a
lossless configuration. Analytical prediction are superimposed on the dispersion curves (dashed red).
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Results are presented by column for a wide, i.e. many periods of the carrier signal, and a short (i.e.

few periods) wave packets excitation. Looking to the case with a wide wave packet excitation, panel

(a), we can observe that the wave packet is propagating without significant modification of the shape

meaning that the dispersion is very weak. The amplitude is remaining constant during the propagation

because the medium is considered lossless. The driver is composed only of a transverse component (uy)

and it should be noticed that this component takes part into both transversal and rotational equations

of motion in Eq. (2.43). As a result, we can see that transversal and rotational component are excited

from the beginning. The dispersion curve related to these results clearly shows that the excited frequency

range is small around 7 kHz which is expected due to the large number of periods in the carrier wave

packet. The dispersion curve is computed with a signal containing forward and backward waves thus the

two directions of propagation are represented in the positive and negative values of the wave number k.

Regarding now the case where the driven wave packet is short, i.e. with few periods of signal, presented

in panel (b), we observe in the temporal domain a spreading of the wave packet during the propagation.

This observation is confirmed by the dispersion curve representation where the excited frequency range is

large (in comparison with the panel (a)) and thus the dispersion is stronger.

The wave packet velocity can be determined, as for the longitudinal wave propagation, by following the

maximum of the absolute value of the Hilbert transform for the carrier frequency. Let’s describe first the

analytical phase and group velocities in the transverse-rotational branch TR(uz, φy). From the previous

chapter, the dispersion relation is defined as:

ω = ω0

√

p cos2 (kR) + sin2 (kR), (3.2)

with ω0 = 2
√

KS/m and p =
mR2

I
. The wave number into the propagating band can be explicitly

expressed as:

k =
1

R
arccos

(

√

ω2 − 4ω2
0

2ω0
√

p − 1

)

. (3.3)

It comes that the phase velocity cTφ
in the TR branch is,

cTφ
=

ω

k
=

Rω

arccos

(√
ω2−4ω2

0

2ω0

√
p−1

) , (3.4)

and the group velocity cTgr
is,

cTgr
=

∂ω

∂k
=

ω0R(1− p) sin (2kR)
√

(p cos2 (kR) + sin2 (kR))
. (3.5)

Fig. 3.7 depicts the analytical phase and group velocities for longitudinal and transverse-rotational branches

normalized by the maximum of the longitudinal phase velocity cLφc
= 2Rπf ′

L where f ′
L correspond to
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the longitudinal cutoff frequency defined in Eq. (2.25).
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Figure 3.7: Analytical phase and group velocities for the L and TR branches normalized by the maximum of the
longitudinal phase velocity cLφc

. The frequency is normalized by the longitudinal cutoff frequency f ′

L.

In the TR branch, phase and group velocities have similar shape with the one of the optical branch

in a diatomic granular chain. Phase and group velocities have an opposite sign. Experimentally and

numerically, we measure a positive group velocity and a negative phase velocity. We can thus compare the

estimated value with the absolute value of the analytical predictions. For the case of Fig. 3.6(a) with a

central frequency at 7 kHz, the analytical group velocity (Eq. (3.5)) is cTgr
= 163 m/s which is also found

by following the maximum of the wave packet envelope.
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Figure 3.8: Velocity measured on the
transducer for a sinus of 7 kHz modu-
lated by a Gaussian function.

Now, we focus on the experimental study of transverse-rotational

wave propagation. The transverse transducer (Panametrics V1548)

is placed to drive horizontally the first bead of chain. The carrier fre-

quency takes values from 4 to 13 kHz considering a short wave packet.

The real experimental signal, as presented in Fig. 3.8, measured on

the transducer by laser vibrometer (purely transverse signal) is con-

sidered as the numerical boundary driver. It is worth mentioning

that Eq. (2.43) presents the motion for coupled vertical transverse-

rotational motion TR(uy, φz) but due to the symmetry of the system

equations are identical to solve the horizontal problem: TR(uz, φy).

Zero frequency modes are predicted from the theory. In practice, due

to the presence of very weak torsional and bending rigidity, instead of

zero frequency modes one expects propagating modes at very small

frequencies, up to 100 Hz. These are experimentally difficult to be

excited (and observed) and thus we will not consider them in our study.

In Fig. 3.9, we present the experimental (a) and numerical (b) results for a transverse-rotational
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propagation of a wave packet with a central frequency at 7 kHz. A qualitatively good agreement is found

between experiments and numerics.
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Figure 3.9: (a) Experimental velocity measured for each particle driving with a wave packet with a central frequency
of 7 kHz, (b) transverse part from numerics with F0 = 1.2 N and τ = 1 ms. Transverse velocity as a function of
time for (c) the first bead and (d) the last bead of the chain. Angular velocity from numerical simulation for (e)
the first and (f) the last bead of the chain.

From panels (a),(b), we can observe a different pattern of propagation compared to the longitudinal

case. As we will comment below, this is connected with the negative product of group and phase velocity

for this propagating band. Regarding the temporal signal measured on the first particle, panel (c), we

found a good agreement with numerics. For the last particle of the chain, panel (d), the agreement is

less good. To complete the description of the transverse-rotational wave propagation, the rotational part

obtained from numerics is shown on panel (e-f). It should be noticed again that the laser vibrometer

is not sensitive to rotation, thus experimentally, only transverse displacements are recorded. As we can

see, although the chain is excited by a purely transverse wave packet, rotational motion is also excited.

As we mentioned in the previous chapter, the system supports coupled transverse-rotational waves. The

percentage of rotational motion in the coupled TR propagating wave depends on the frequency. For
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example, for the case of 7 kHz studied here, the theory predicts 55 % of rotation which is confirmed by

the simulations.

The wave packet velocity is determined by following the maximum of the envelope for the carrier

frequency. Fig. 3.10 depicts the analytical phase and group velocities for longitudinal and transverse-

rotational branches with the experimental results. As commented above, phase and group velocities have

an opposite sign. Experimentally, we can measured only positive group velocity and a negative phase

velocity. Due to that we present the absolute value of the group velocity in dashed line in order to

compare with the experimental results.
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Figure 3.10: Analytical phase and group velocities for the L and TR branches. The dashed line correspond to the
absolute value of the analytical group velocity in TR branch, markers correspond to the experimental results.

We can observe a good agreement for the experimental velocity with the analytical prediction for fre-

quencies 7 and 8 kHz. Close to the cutoff frequencies (6 and 9kHz), the group velocity becomes very slow

and the dispersion very strong. The wave packet is strongly spread out during the propagation leading

to more inaccurate estimation of the velocity. Moreover for the higher frequency 9 kHz, we expect from

theory more rotation than transverse motion. Thus the measured velocity of the transverse part could be

over or underestimated.

Let’s take a look to the maximum velocity (in the transverse direction) of the wave packet as this

propagates along the chain. Fig. 3.11 displays the results for a frequency inside the propagating band

and two frequencies outside (one in the lower gap and one in the higher gap). Numerical simulations

are computed using the same damping term τ = 1 ms regardless of the frequency of excitation. To be

consistent with the experimental results, we calculate the maximum velocity of the transverse direction.

An acceptable agreement is found between experimental and numerical results. The wave packet ve-

locity in the propagating band is less attenuated than in the band gap as it is expected. More attenuation

is found when the driver is in the lower gap. In this case, it should be noticed that the driving frequency

is into the gap for the TR branch but inside the propagative band of the L branch. Experimentally, we



78 Chapter 3: Linear and nonlinear wave propagation

! " !# !" $# $" %# %"
#

#&$

#&'

#&(

#&)

!

*+,-

"./01
2./01
!%./01

3
,
4
&.
5
+6
7
89
:;

Figure 3.11: Maximum of the pulse for each particle considering one frequency in the propagative band (7 kHz)
and two in the band gap (5 and 13 kHz). Thick lines correspond to numerical results with τ = 1 ms and F0 = 1.2 N,
and thin lines are experimental results. The grey zone corresponds to the presence of reflected wave.

can expect that a misalignment of the driver and the chain, will cause a possible conversion of mode from

transverse to longitudinal which could lead to lower energy transmitted in TR pulse. Numerically this

mode conversion is not allowed thus we can exclude this assumption. Numerical simulations capture well

the attenuation in the propagating band as well as in the forbidden bands keeping the same damping term.

Let us turn on the TR wave propagation by single harmonic frequency driver. The amplitude of the

driver is still modulated by a linear ramp at the beginning. Fig. 3.12 shows the propagation of harmonic

wave inside (8 kHz) and outside the propagation band in the lower band gap (4 kHz).
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Figure 3.12: Experimental velocity of each particle for single harmonic wave driving frequency (a) inside and (b)
outside of the propagative band (in the lower band gap). (c-d) Numerical results corresponding to the driving
frequency inside the propagative band for (c) transverse velocity and (d) angular velocity components.
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When the driver frequency is inside the propagating band, panel (a), we can observe a wave propagation

regime and a stationary regime (steady state). The numerical results, panel (c), are in good agreement

with experiments. It should be noticed that in the experimental results, there are in addition reflected

waves which is an indicator of misalignment of particles. When the driver frequency is inside the lower

band gap, panel (b), we can see a high amplitude of the velocity for the first particle followed by a quick

decrease inside the chain (evanescent regime). Even if the amplitude is small in comparison with the

first particle, a wave propagates all along the chain. This propagation is not predicted by our model.

The most interesting is the pattern of the wave propagation into the chain which corresponds in fact to

a longitudinal wave. The wave velocity is estimated at 324 m/s corresponding indeed to a longitudinal

wave velocity. We have to notice, that we are able to measure this longitudinal component because the

laser vibrometer is measuring with an angle from the axis formed by the center of the beads. Additional

measurement with the vibrometer perpendicular to the chain has been realized and indeed only the

evanescent transversal/rotational regime is observable. The first assumption to explain this longitudinal

wave propagation could be the misalignment of the transverse driver and/or of the particles into the

chain which could lead to mode conversion from TR to L. The second explanation is the driver itself.

Indeed, the shear transducer is never sending pure transverse motion but transverse and small component

of longitudinal motion. From the manufacturer’s datasheet of the transducer, it exists a ratio between the

longitudinal (ux) and transverse (uy) component defined as:

GL/T = 20 log10

(

ux
uy

)

< −30 dB. (3.6)

We experimentally estimate this ratio by making the decomposition of the velocity presented in sec-

tion 2.4.1 and we find GL/T = −39 dB at 4 kHz. Thus, the shear transducer is obviously participating to

excite longitudinal motion but the misalignment of the particles can also plays a role leading to stronger

longitudinal wave propagation by mode conversion.

3.2.3 Summary

The complete linear wave propagation in L and TR branches is experimentally realized for wave packets

and harmonic wave signals. Numerical simulations, using the experimental signal of the driver as a driving

boundary, are used in order to estimate the precompression force and the attenuation in the chain. Viscous

on-site damping are taken into account only for the displacement component (not directly to the rotational

part in the TR branch). The damping term τ is fitted for one driven frequency for each polarization of

excitation. As a first good approximation, these fitted values can be used for other driven frequencies

to describe the wave attenuation during the propagation. It should be noticed that different attenuation

values are found between L and TR modes. Experimental and numerical results are in good accordance

for all results. In addition, unexpected reflected waves have been observed during the propagation of wave

packets which are probably due to misalignment of particles.

Following the propagation of the envelope of the wave packet a good approximation of the group
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velocity for both L and TR chains comparing with analytical predictions was found.

Finally, the longitudinal component of the shear transducer and its possible role on the experimental

measured longitudinal waves after transverse excitation have been highlighted.
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3.3 Second harmonic generation in a finite granular chain

This section is devoted to the study of the second harmonic generation in a finite granular chain. The

chain is longitudinally driven at one extremity and both the effect of reflections, due to the finite size of

the chain, and dissipation are studied.
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Figure 3.13: Representation of the disper-
sion curve of a monoatomic granular chain,
linear relation and representation of the
wave number mismatch ∆k.

When harmonics are generated in a dispersive medium the

interaction between the fundamental frequency and the second

harmonic is modified. Considering the basic dispersion curve

of a 1D granular chain, Fig. 3.13, several zones in frequency

can be determined leading to different phenomena during the

harmonic generation. (i) At very low frequency range, the dis-

persion relation is quasi-linear for the fundamental but also for

the higher harmonics thus the dispersion can be neglected. (ii)

Increasing slightly the frequency, weak dispersion appears which

could lead to different wave speeds of the different harmonics.

In this regime there are different cases, for example one case is

when the second harmonic could travel with almost the same

velocity than the fundamental, meaning that the dispersion can

still be neglected for this harmonic but higher harmonics are in

the dispersive regime leading to different wave velocities. A more interesting case in this regime is when

even the second harmonic is located in the dispersive regime, a case that leads to a spatial beating in

amplitude depending on matching conditions [126]. (iii) Higher harmonics, for example the second or the

third are in the band gap of the structure, and in this case the wave propagation for these harmonics is

considered as evanescent.

For this section, we will focused in the regime where the fundamental f1 and the second harmonic are

located in the propagating band while the third harmonic in the forbidden gap, i.e. f1/fc < 0.5 where

fc is the linear cutoff frequency of the system. The second harmonic is in the strong dispersive regime of

the dispersion relation. First, we study the harmonic generation through numerical analysis and then we

present the experimental results.

3.3.1 Numerical analysis

For the numerical analysis, we solve by fourth order Runge Kutta method the following equations of

motion considering the Hertzian contact law:

mün = A [δ0 + un−1 − un]
3/2
+ −A [δ0 + un − un+1]

3/2
+ − m

τ
u̇n. (3.7)

The difference with Eq. (1.16) presented in the first chapter, is the presence of a dissipative term τ

corresponding to a phenomenological viscous on-site dissipation. In Ref. [127], analytical predictions for
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the generation of the second harmonic in the presence or not of the dispersion have been presented by

expanding Eq. (3.7) in series (quadratic approximation) and using successive approximation approach.

In the dispersive case, this study shows the presence of the well-known effect of beating for the second

harmonic considering a semi-infinite granular chain (no reflected wave) and without considering dissipation

in the system.

3.3.1.1 Absence of reflection

We start our numerical analysis by neglecting the dissipative term τ . Fig. 3.14 presents the amplitudes

of the fundamental, second and third harmonic for two different amplitudes of excitation. The amplitude

is normalized by the maximum of the fundamental amplitude. The chain is composed of 520 particles

which permits to obtain propagating waves containing only forward waves for the 100 first sites. The

precompression between particles is adjusted to F0 = 1.7 N leading to a linear cutoff frequency of the

chain at fc = 7.17 kHz. The driving frequency is at 3 kHz, f1/fc = 0.42 corresponding to a second

harmonic at 6 kHz in the propagating band but the third harmonic at 9 kHz in the band gap. The

first case, which is presented in Fig. 3.14(a) considers small amplitude of excitation with the maximum of

displacement very small in comparison to the static overlap (δ/δ0 = 3·10−4). In this case, the regime can be

considered as near-linear and no strong harmonic generation is expected. Considering a larger amplitude
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Figure 3.14: Normalized amplitude of the fundamental, second and third harmonics considering lossless propagation
for displacement amplitudes (a) δ/δ0 = 3 · 10−4 and (b) δ/δ0 = 0.19, for both cases f1/fc = 0.42. Green dashed
line are analytical predictions of the disappearance of the second harmonic contribution from Eq. (3.8).

of excitation, with δ/δ0 = 0.19, Fig. 3.14(b), the second harmonic is strongly generated. We can observe

a maximum of the fundamental amplitude when the second harmonic contribution is minimum. The site
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n of this minimum can be predicted by

n =
2lπ

∆k
, (3.8)

where l ∈ N
+ and the detuning parameter ∆k that describes the asynchronous second harmonic generation

is defined as

∆k =

∣

∣

∣

∣

2k

(

ω

ωc

)

− k

(

2ω

ωc

)∣

∣

∣

∣

. (3.9)

For this configuration n ≈ 24, 49, 73, 98 which is in good agreement with the numerical results (green

dashed lines). The third harmonic is in the forbidden band of propagation. In order to be closer to the

realistic wave propagation in granular chains, we add the dissipative term τ to the numerical simulations

as presented in Eq. (3.7). Fig. 3.15 presents the results of the harmonic generation without wave reflections

for two different cases, a weakly lossy case with τ = 10 ms (blue circles) and a strongly lossy case with

τ = 1 ms (black diamonds).
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Figure 3.15: Normalized amplitude of the fundamental and second harmonic considering lossy propagation for
displacement amplitudes δ/δ0 = 0.19 and f1/fc = 0.42. Blue circles correspond to a dissipative term τ = 10 ms
and black diamonds to τ = 1 ms. Green dashed line are analytical prediction of the disappearance of the second
harmonic contribution from Eq. (3.8).

On Fig. 3.15, we can see that the amplitude of the fundamental and the maxima of the second harmonic

are reduced as the wave propagates within the chain. We also note that despite the presence of dissipation,

the second harmonic vanishes at the same particles than in the case without losses.

3.3.1.2 Presence of reflection

The theory of the beating of the second harmonic assumes the absence of reflected waves during the

signal analysis. However, due to the finite size of the granular chain, it should be useful to study the

effect of reflected waves on the beating of the second harmonic. Fig. 3.16 presents the amplitude of the

fundamental and second harmonic for a chain composed of 150 particles considering driven-free boundary
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conditions. As presented in panel (b), the wave is reflected at the end the chain leading to an increase

of the presence of reflected components as the bead site is closer and closer to the free boundary. Grey
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Figure 3.16: (a) Normalized amplitude of the fundamental and second harmonic for a displacement amplitude
δ/δ0 = 0.19 and f1/fc = 0.41 when reflected wave is present. Blue circles correspond to a lossless case and black
diamonds to a dissipative case with τ = 10 ms. Grey zones correspond to the presence of reflection during the
analysis. Green dashed line are analytical predictions of the disappearance of the second harmonic contribution
from Eq. (3.8). (b) Displacement of each particle of the chain as a function of time.

zones in Fig. 3.16(a), are added to represent the presence of reflected wave into the analysis. Before the

presence of reflected wave, the results are the same than previously presented. The presence of reflected

wave disrupts the beating phenomenon and finally when the reflected part is strong the beating disappears

but the second harmonic is still present.

3.3.2 Experimental observation of the second harmonic generation

The objective of this section is to experimentally observe the second harmonic generation into the free

suspended granular chain. The experimental setup is identical to the one of Fig. 2.22. The velocity of each

particle of the 38-beads chain is measured by a laser vibrometer. The chain is driven by a piezo electric

transducer at one extremity by harmonic waves created with a Tektronix signal generator. Such generator

allows to create harmonic waves starting with a linear ramp in amplitude. As in numerical simulation, the

use of a linear ramp enables to excite the chain smoothly in amplitude which ensure the good harmonic

wave driving. Indeed without linear ramp, the transducer could "strike" the chain because of a strong

amplitude of displacement leading to the excitation of a wide band of frequencies. The velocity recorded

on the transducer is presented in Fig. 3.17(a) in the temporal domain where we can observe the linear ramp

in amplitude at the beginning of the signal. The spectral component of the driver is shown in panel (b)

for a driving frequency of 3 kHz. This frequency analysis of the transducer signal depicts very small

contribution of second, third and fourth harmonics in comparison with the fundamental amplitude (more

than 50 dB of difference). On panel (c), the velocity of each particle as a function of time is represented
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for the signal onset (left) and after a certain time (right). Fig. 3.17(c) depicts different dynamical regimes
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Figure 3.17: Experimental velocity of the transducer with a linear ramp in amplitude for a driving frequency of
3 kHz in (a) temporal and (b) frequency domains. (c) Velocity of each particle of the chain for the onset time (left)
and after a certain time (steady state) (right).

of the wave propagation. The first one, between the time 0 to 3 ms, is the propagation without reflected

wave followed by a transient dynamics where forward and backward waves are interacting, between the

time 3 to 6 ms. After a certain time, from 40 to 46 ms for example, the forward and backward waves get

mixed up reaching a stationary dynamic (steady state). The latter two regimes will be studied in more

details in the section 3.3.3.

Let us focus on the first part of the signal where there is only a small part of reflected wave. As it

has been shown in the previous section, the presence of reflected wave has to be minimized during the

analysis in order to obtain the beating phenomenon of the second harmonic. To do so, we take only one

period of the signal close to its beginning during the analysis. Starting the analysis on the first period just

after the linear ramp and repeating this for the two following periods allows to get rid of the reflection up

to the 27-th particle. Numerical simulations are used to fit the precompression and the damping term of

the experimental results. The precompression is found to be F0 = 1.8 N leading to a cutoff frequency at

fc = 7.24 kHz and the damping term is τ = 1.9 ms. Fig. 3.18 presents the experimental and numerical

results for a driving fundamental frequency at 3 kHz (f1/fc = 0.41) and 5 kHz (f1/fc = 0.69). The
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experimental velocity signal recorded on the transducer is used as the driver for the numerical simulation.

The maximum of displacement in comparison with the static overlap is δ/δ0 = 0.19, ensuring that we are

in the nonlinear regime.
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Figure 3.18: Experimental and numerical harmonic generation for a driving frequency at (a) 3 kHz: f1/fc = 0.41
and (b) 5 kHz: f1/fc = 0.69. Black circles correspond to numerics and red diamonds to experiment, respectively.
Green dashed line is given from Eq. (3.8). Grey zones correspond to the experimental presence of reflection during
the analysis.

The numerical results, presented in Fig. 3.18, are made for a large chain of 238 particles to avoid

completely the reflected wave during the analysis. Panel (a) depicts the harmonic generation for a driving

frequency at 3 kHz. In this case the second harmonic (H2) is inside the propagating band while the third

harmonic (H3) in the gap. From Eq. (3.8) the vanishing of the second harmonic is predicted at the 26-th

bead, shown by the green dashed line. Red diamonds represent the mean value of the frequency amplitude

and the error-bars correspond to the standard deviation found from the 3 periods analysis. Looking at

the experimental results, when there is no reflected wave (white zone) we find a very good agreement

on the fundamental, second and third harmonics dynamics compared to numerics. We can observe that

the third harmonic (inside the band gap) has a really small amplitude. Regarding the results with the

presence of reflected waves (grey zone), as it is expected, the experimental results do not capture the

beating phenomenon and moreover the standard deviation clearly increases into this regime. To confirm

this result, we present on Fig. 3.19 the experimental and numerical temporal signal for different bead

positions during the first beating phenomenon (from particle 1 to 26). We still observe a good agreement

in this temporal representation. Fig. 3.18(b) presents the configuration where the driving frequency is

5 kHz, in this case the second and third harmonics are in the forbidden band of propagation. Once again,
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the results are in very good agreement, the second and third harmonic get a very small amplitude. The

experimental data for the second and third harmonic have a bigger standard deviation due to a small

signal to noise ratio.
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Figure 3.19: Temporal signal of bead 2, 13, 26, 20, for a driving frequency at 3 kHz, corresponding to the beginning
of the chain, middle of the harmonic beating, at the end of the beating and in between, respectively. Solid black
lines and dashed red lines correspond to experimental and numerical results, respectively.

Now, we modify the fundamental driving frequency keeping the second harmonic into the propagating

band, in order to observe the change in bead position of the second harmonic vanishing. Fig. 3.20 shows

results for fundamental frequency at f1 = 3.2 kHz (f1/fc = 0.44) and f1 = 3.4 kHz (f1/fc = 0.47).

From Eq. (3.8), we expect disappearance of the second harmonic contribution at bead 19 and 37 for the

fundamental 3.2 kHz and at bead 13 and 26 for the 3.4 kHz. The maximum of displacement in comparison

with the static overlap is kept to δ/δ0 = 0.19.

From Fig. 3.20, we conclude that the experimental results are in accordance with the numerical results.

The beating of the second harmonic is well observed and corresponds to the analytical prediction for the

position of disappearance of the second harmonic. It should be noticed that for all the numerical analysis,

the value of the damping term is τ = 1.9 ms. From the previous section, studying the linear wave

propagation for several frequencies, it seems that this fitted value is a good approximation. We can expect

that in reality the dissipation could change as we change the amplitude of the driver, thus a nonlinear

model for the dissipation could be more appropriate, as the one developped in [128–130]. The aim here is

to keep the simplest model capturing well the wave propagation which is the case for these results.

3.3.3 Frequency analysis in different dynamical regimes

This section describes in more details the different dynamical regimes of the granular chain and in particular

the steady state regime.

Fig. 3.21 shows the experimental frequency components as a function of the time for different particles

for a driving frequency at 3 kHz. Particles have been chosen to be at a maximum (bead 10) or minimum

(bead 16) of displacement when the steady state is achieved. The bead 26 is chosen because it corresponds

to the site where the contribution of the second harmonic disappears during the beating phenomena.
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Figure 3.20: Experimental and numerical harmonic generation for a driving frequency of (a) 3.2 kHz: f1/fc = 0.44
and (b) 3.4 kHz: f1/fc = 0.47. Black circles correspond to numerics and red diamonds to experiment, respectively.
Green dashed line from Eq. (3.8). Grey zones correspond to the experimental presence of reflection during the
analysis.

From Fig. 3.21, three dynamical regimes can be determined. As presented before for the temporal domain
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- blue), second harmonic (H2 - red) and third harmonic (H3 - green) normalized by the maximum the fundamental
when steady state is achieved for each bead from experimental results.
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(Fig. 3.17(c)), the first regime, between 0 and 3 ms, is the propagation without reflected wave. The second

one, from 3 to 30 ms, is a transient dynamics with both forward and backward waves. Finally the last

one, from 30 to 50 ms, the forward and backward waves lead to a steady state. It should be noticed that

in this case, the mode is nonlinear because it is composed of several frequencies.

Looking at the frequency components in the transient regime for particle 26, where the beating is at

the minimum, we can see that the amplitude of the second harmonic is constant during few milliseconds

before growing up to the stable regime. Looking at the frequency components in the steady state, particle

10, with a maximum of displacement, has a strong presence of the second harmonic (less than 10 dB

between the fundamental and the second harmonic). For particle 16, corresponding to a minimum of

displacement, the second harmonic is 20 dB smaller than the fundamental.

Fig. 3.22 presents the steady state of the experiments and numerics. We can see that the pattern of the
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Figure 3.22: Velocity of each particle for a driven frequency at 3 kHz when the steady state is achieved for (a)
experimental and (b) numerical results.

mode is different between experimental and numerical results. Numerically, the studied chain is perfectly

aligned and the precompression is considered to be homogeneous all along the chain which is not the case

in reality. Normalizing the amplitude of the second harmonic by the amplitude of the fundamental for

each particle, we find that the mean amplitude of second harmonic in the experimental chain is 10 dB

lower than the fundamental with a standard deviation equal to 8 dB. For the numerical results we find a

mean value of the second harmonic 15 dB lower than the fundamental with a standard deviation equal to

6 dB. These results show that the second harmonic is strongly present in the steady state.

3.3.4 Summary

The second harmonic generation in a finite granular chain has been numerically described. When reflected

waves and dissipation are neglected, the well-known beating in amplitude of the second harmonic have

been shown. By adding attenuation in the propagation, the amplitude of the second harmonic is decreasing

as a function of the depth into the chain but the sites where the second harmonic disappear are the same

as in the lossless case. In the presence of reflected waves, we observe that the beating phenomenon is
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not captured. Finally, experimental evidence of the beating phenomenon in a granular chain has been

observed. Several driven frequencies have been tested and the harmonic generation is in good agreement

with analytical and numerical predictions. The amplitude and the sites where the second harmonic is

vanishing are well recovered. The presence of strong second harmonic in the stationary regime has been

also shown.

Additional measurements have been realized for the harmonic generation in the TR branch. For the

same electric voltage, it was not possible to achieve harmonic generation in this propagating branch. Thus,

these preliminary experiments can support the linear modeling of TR propagation for the same range of

amplitude excitations.
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3.4 Γ-shaped granular chain: mode conversion and harmonic filtering

The propagation of elastic waves in a one-dimensional granular chain has been fully described in chapter 2

and in the beginning of chapter 3. In this section, we extend the study to the wave propagation through a

granular setup deviating from a simple one-dimensional granular chain. Taking advantage of the external

magnetic field to induce attractive forces between the particles, various shapes can be easily built, such as

curved chain, zigzag chain, honeycomb, and hexagonal lattices. The new proposed granular structure that

we will study in this section is composed of two simple granular chains linked perpendicularly at those

extremities, forming a "Γ"-shaped chain, see Fig 3.24. From the previous results presented in chapter 2, we

theoretically and experimentally observe that coupled transversal-rotational modes can be excited using

a transverse driver. In the Γ-shaped configuration, if we drive longitudinally the first chain, the resulted

longitudinal wave will propagate up to its end where the second chain is linked. Thus, the last bead of the

first chain becomes a transverse driver for the second chain exciting transverse-rotational modes. Thus, a

conversion from longitudinal to transverse-rotational modes due to geometry is achieved. The conversion

from shear to longitudinal mode has been experimentally and theoretically shown in a three-dimensional

granular packing of mm-size glass beads [131] via the second harmonic generation. In two dimensional

granular structures, the conversion from shear to longitudinal mode has been theoretically and numerically

investigated also via second second harmonic generation in an hexagonal structure composed of micro-

spheres [132].

The propagation of elastic waves in granular structures composed of a main granular chain, side loaded

by several beads or granular chains has been already investigated by several authors. For example, the

transmission of an acoustic pulse through a one-dimensional granular chain composed of glued metal beads

with grafted stub have been numerically and experimentally investigated in Ref. [64]. The stub is created

by placing additional beads grafted on both sides of a bead at the middle of the chain. The authors of this

work have studied the effect of different stubs, containing different number of beads and different sizes,

on the spectral response of the chain. They have demonstrated the appearance of a dip in the frequency

response of the chain due to the excitation of the stub mode. In addition, they have shown that the

frequency of this dip can be adjusted by varying the stub mass. This work has been extended to the

case of periodic stub grafted to the one-dimensional granular chain made of glued steel particles [65]. The

band structure tunability of such system has been demonstrated by the modification of the bead materials

(steel, brass, or glass) in the stubs. In addition to these works, the possibility of redirection of nonlinear

wave via pulse splitting have been also investigated in other granular structures like curved or y-shaped

granular networks [77–80].

In this thesis, we present the first experimental results of the ability to control the conversion from

a longitudinal to a coupled transverse-rotational mode in a simple Γ-shaped granular structure. This

structure can be the building block of more complex granular networks in which an advanced control of
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elastic wave propagation will be achieved by tailoring the mode conversion and the nonlinear propagation.

3.4.1 Principle of conversion from longitudinal to coupled transverse-rotational

modes

In a simple one-dimensional granular chain, the longitudinal normal modes are decoupled from the

transversal-rotational ones, as presented in chapter 2. In the first chain, we consider only longitudi-

nal interactions between particles while in the second chain only transverse-rotational interactions are

taken into account. Thus, the first chain will be denoted as "L-chain", for Longitudinal-chain, which cor-

responds to the polarization of the wave motion propagating through it. The second chain will be called

TR-chain, for coupled Transverse-Rotational modes. The mechanical representation of the structure as a

mass-spring lattice is presented in Fig. 3.23(a).

TR-chain

L-chain

x

z

y

12

1

2

N

…

…

driver
i

(a) (b)

!

!"#

$

$"#

!0 /a

%
&
'(
)
*+
,-
.
/0
'-
1
2
-3
45

6

Figure 3.23: (a) Representation of the Γ-shaped granular chain and schematics of the linearized chain by mass-spring
lattice. (b) Dispersion curves considering longitudinal motion for the first chain (dark blue) with propagation along
the wavenumber kx and for the second chain (red) considering transversal-rotational motion along the wavenumber
kz. The precompression force is identical in both chains. The frequency is normalized by the longitudinal linear
cut-off frequency, ΩL1, of the first chain.

In Fig. 3.23(b), the dispersion curves are presented considering the same precompression force in both

chains. The frequency is normalized by the linear cut-off frequency of the longitudinal branch of the first

chain, ΩL1 given by Eq. (2.25). The linear lower cut-off frequency of the TR branch is ΩT2 = ω′
TR2/ΩL1

where ω′
TR2 is given in Eq. (2.27). The indices 1 and 2 are referred to the first and the second chain,

respectively. It should be noticed that the zero frequency branch, existing in the TR-chain, is excluded

from the study.

Considering that the first chain is excited longitudinally, we can expect three different regimes of

propagation as a function of the driven frequency. (i) When the driven frequency is under the TR cut-off

frequency, namely Ω < ΩT2, a pure longitudinal wave propagates up to the particle χ. Since the particle

χ is also part of the chain 2, a longitudinal motion of this particle for chain 1 corresponds to a transverse
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motion for chain 2. However, in this case the mode in the TR-chain is evanescent and finally nothing is

transmitted to the end of the second chain. (ii) When ΩT2 < Ω < 1, L and TR modes are supported by

both chains (overlapping in frequency of theses branches) leading to the propagation through the entire

structure. (iii) When Ω > 1, longitudinal waves are considered as evanescent from the beginning thus

there is no wave propagation along chain 1.

3.4.2 Experimental Γ-shaped chain

Let us turn to the realization and the presentation of some preliminary experiments in a Γ-shaped granular

structure. The complete chain is composed of 9 stainless steel beads of 15.875 mm diameter, leading to 5

beads for each chain, above a Γ-shaped configuration of cylindrical permanent magnets which are located

within a rubber substrate. As in the section 2.3.1, the coupling between the granular structure and the

rubber substrate is very weak and in a good approximation is neglected. The external magnetic field is

used to create attractive forces between particles of the chain. We assume that the forces into the chain are

identical by using the same magnets under both chains. This force is experimentally estimated to be 1 N

by using a dynamometer. The chain is driven longitudinally by a piezo-electric transducer Panametrics

V3052 where a bead is glued on it to ensure that the contact between the driver and the chain is the

same than inside the chain. The measurement of a particle velocity is made by a laser vibrometer Polytec

OFV-503 with a sensitivity of 5 mm/s/V and an averaging is performed during the acquisition. We

measure particle velocities at 3 different positions which are presented in Fig 3.24. The first position

of measurement is at end of the L-chain, the second and third position are at the end of the TR-chain.

The second position allows to measure translational motion of the TR-chain along x-axis while position 3

permits to measure longitudinal motion of the TR-chain in z-direction.

Pos. 1

Pos. 2

Pos. 3

(a) (b)

Figure 3.24: Schematics of the experimental Γ-shaped chain and representation of the measurement positions. (b)
Photography of the experimental setup.

The excitation signal is a continuous sinus wave and we focus on the study of the steady state of

the Γ-shaped granular structure. A linearization process of the entire chain of excitation (generator,

amplifier, and transducer with glued bead) is implemented. This method, described in Ref. [133], allows

to linearize the signal emitted by the transducer via an active loop which adds to the initial signal harmonic
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components with different phases providing the cancelation of the undesired harmonics. Thus, this method

ensure a direct control of the driver linearity. It is worth mentioning that our setup, even without this

linearization process, is sufficiently linear when the input voltages are smaller than the admissible limit.

However, close to this voltage limits harmonics can appear. In order to experimentally implement this

linearization method, a second laser vibrometer is used to measure and control the frequency components

of the glued bead to the transducer during each measurement. As a result, harmonics are 60 dB smaller

than the fundamental frequency corresponding to a level very close to the experimental noise.

From Eqs. (2.25, 2.27), using a precompression force of 1 N, the cutoff frequency of the longitudinal

branch is found at 6565 Hz (namely ΩL1 = 1) and 5958 Hz for the lower TR branch (namely ΩT2 = 0.90).

First measurements are made using a sinus at 3 kHz which leads to Ω = 0.455 < ΩT2. For this frequency,

we expect that the longitudinal wave is propagating while the TR wave is evanescent. Fig. 3.25 presents

the experimental temporal displacements and the related frequency analysis for each position of measure-

ment described above. The ratio between the driver displacement δ and the static overlap δ0 is estimated

to be δ/δ0 = 0.009 and thus we ensure a near-linear dynamical regime of the chain.

The first line in Fig. 3.25, presents the experimental signal of the driver (glued bead to the transducer)

when the steady state is achieved. We observe a very clean harmonic signal with only a frequency

component at the fundamental frequency. The amplitude of the frequency components is from now on

normalized by the maximum of fundamental component of the driving bead. Looking to the measured

signal in position 1, corresponding to the longitudinal components at the end of the first chain, we observe

that the amplitude of the displacement of the last bead of the L-chain is to close the driver amplitude.

We notice also the existence of the second and third harmonics with an amplitude 45 dB smaller than the

fundamental. The presence of these harmonic components is associated to the nonlinearity of the system

existing even at low amplitude of excitation (near-linear regime). Moreover, the third harmonic amplitude

is slightly higher than the second harmonic amplitude which could come from the modal behavior of the

chain at this driven frequency.

In the position 2, corresponding to the measurement of the transverse component at the end of the

second chain, we see that the measured amplitude is much weaker compared to the other two positions.

The experimental signal is noisy because we are close to the experimental noise. The driver frequency is

in the lower band gap of the TR branch thus we expect that the TR wave which is excited by particle χ

is evanescent. Due to the small length of the second chain (5 beads), the wave is not totally attenuated

and this is why it is measured in position 2.

Regarding the longitudinal motion of the second chain, namely position 3 of measurements, we can

observe that a wave is present in the longitudinal direction. This longitudinal modes was not expected

from the simple first model including only transversal-rotational motion in the second chain but can be

explained by a more complex modeling of the chain. A model considering three degrees of freedom (two

displacements and one rotation) for each bead motion of the Γ-shaped chain enables to demonstrate that

the rotational component is responsible to the couplings of all the motions at the particle χ. From preli-
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Figure 3.25: Experimental results for a driven frequency at Ω = 0.455 < ΩT1 in linear regime in (a) temporal
and (b) frequency domains.

minary numerical simulations, the presence of longitudinal motion is well capture by this model including

3 degrees of freedom. From this set of experimental results, we observe that L modes are excited in both

chains while the TR modes are in the evanescent regime.

We consider now the case where the driving frequency is at 6 kHz, namely ΩT2 < Ω = 0.91 < 1.

The experimental results are presented in Fig. 3.26 where the amplitude of excitation is again small and

thus the dynamics can be considered near linear, δ/δ0 = 0.012. For the signal measured on the driven bead

and on position 1, we can observe that a harmonic longitudinal mode is well presented. We can notice

the weak presence of the second harmonic in position 1 measurements, as in the previous case. Looking

the position 2 measurements (transverse detection) we can notice that the amplitude of the displacement

is clearly higher than in the previous case. These results show an evidence of the conversion of mode

from longitudinal to transverse-rotational mode in a Γ-shaped chain. In addition the very weak amplitude

measured in position 3 (longitudinal motion of the second chain) could highlight a good efficiency in the
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mode conversion.

!"#$%"

&'()*+

&'()*,

&'()*-

.#/%*0/(1

!
#(
2
34
5%
/
%6
7*
0/
1

8 - 9 : +, +;

<"%=>%65? 0@AB1

C
'"
/
43
#B
%D
*4
/
2
3#
7>
D
%
0D
E
1

8 - 9 : +, +;

8 - 9 : +, +;

8 - 9 : +, +;

!"#$%"

&'()*+

&'()*,

&'()*-

8DE

F+-DE

F,8DE

F;;DE

041

8 8); +

F,

8

,

·+8 F:

8 8); +

F;

8

;

·+8F+8

8 8); +

F,

8

,

·+8F+8

8 8); +

F+

8

+

·+8F++

F+88

F;8

8

F+88

F;8

8

F+88

F;8

8

F+88

F;8

8

0G1

Figure 3.26: Experimental results for a driven frequency at ΩT2 < Ω = 0.91 < 1 and linear amplitude of
excitation in (a) temporal and (b) frequency domains.

Let us now study the effect of nonlinear longitudinal wave propagation through the Γ-shaped granular

structure. We have presented, in section 3.3, the possibility to generate higher harmonics in our one-

dimensional granular chain. Taking advantage of this nonlinear phenomenon, we can tune the wave

propagation as a function of the fundamental frequency in the Γ-shaped chain. We consider a driving

frequency below the cut-off frequency of the TR-chain, Ω < ΩT2, having its second harmonic in the

frequency overlap of the L and the TR branches, ΩT2 < 2Ω < 1. In this configuration, harmonics are

generated in the first chain but only the second harmonic is allowed to propagate through the second chain.

This configuration provides a linear filtering of the fundamental wave. Considering the precompression

force to be 1 N and the fundamental frequency at 3 kHz, we obtain Ω = 0.455 < ΩT2 = 0.90, which

allows the second harmonic to be inside the frequency overlap of the L and TR branches: ΩT2 = 0.90 <

2Ω = 0.91 < 1. Fig. 3.27 depicts the experimental results for the wave propagation under longitudinal

excitation with large amplitude δ/δ0 = 0.32.
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Figure 3.27: Experimental results for a driven frequency at Ω = 0.455 < ΩT2 and nonlinear amplitude of
excitation (δ/δ0 = 0.32) in (a) temporal and (b) frequency domains.

Regarding the measured driver displacement in Fig. 3.27, we observe that the second harmonic gene-

rated by the driver is 60 dB smaller than the fundamental. Thus we can confirm that the driven bead

provides only the fundamental frequency. At the position 1, corresponding to the end of the first chain,

we can notice that the harmonics are strongly generated in the first chain. At the position 2, where we

are sensitive to transverse displacements of the last particle of the second chain, we can observe that

the period of the signal is doubled in comparison with the driver signal which indicates that the second

harmonic components is large. Indeed looking to the spectrum, we see that the second harmonic is higher

than the fundamental frequency which is expected because the fundamental frequency is not propagating

in the TR branch. This ratio between the fundamental and the second harmonic shows the experimental

evidence of the linear filtering effect of the fundamental and the mode conversion from longitudinal to

coupled transversal/rotational.

In position 3, we are sensitive to longitudinal displacements of the last particle of the second chain. We
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can observe that the dominant component is the fundamental and the ratio between the amplitude of the

second harmonic and the fundamental is close to the one in position 1.

3.4.3 Summary

In this section, we have presented the experimental realization of a Γ-shaped granular structure by conside-

ring the use of external magnetic field induced by identical permanent magnets in a Γ-shape configuration.

A toy model has been proposed to explain and understand the experimental results. The experimental re-

sults have shown clearly the evidence of mode conversion from longitudinal to coupled transverse-rotational

modes along with a linear filtering of frequency due to the geometry of the structure. Experimental results

have shown that the modeling of the Γ-shaped has to include the longitudinal motion in the second chain

and the transversal-rotational motions in the first chain.
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3.5 Conclusion

The complete linear wave propagation in L and TR branches has been experimentally realized for wave

packets and harmonic wave signals in a freely standing granular chain. Numerical simulations, using the

experimental signal of the driver as a driving boundary, are performed in order to estimate the precom-

pression force and the attenuation in the chain. We found very good agreement between experimental

and numerical results for all the frequency studied. Moreover, the numerical simulations involving viscous

on-site damping describe correctly, as a first approximation, the attenuation of the waves as a function of

the frequency. In addition, the spatio-temporal measurements have highlighted the presence of defects in

the granular chain by the observation of unexpected reflected waves inside the chain. These defects are

probably a misalignment of particles with the chain axis. The linear study has included the experimental

estimation of the group velocity in L and TR branches by following the envelope of the wave packets

propagation as a function of different carrier frequencies. Theoretical predictions are in good agreement

with the experimental results.

The nonlinear dynamical behavior has been first numerically studied focusing on the second harmonic

generation. The well-known spatial beating in amplitude of the second harmonic has been shown by

neglecting reflected waves from the boundary and dissipation. Then, dissipation has been added to the

numerical model and the effect of reflected waves has been analyzed. The presence of dissipation affects

the amplitude of the harmonic but does not modify the spatial effect of the beating, while the presence

of reflected waves destroyed totally the beating of the second harmonic. Finally, experimental evidence

of the beating phenomenon in a granular chain has been realized by minimizing the presence of reflected

waves in the signal analysis. Several driven frequencies have been tested and the harmonic generation has

been found in good agreement with analytical and numerical predictions. The amplitude and the positions

where the second harmonic is vanishing have been recovered. Regarding the dynamics in the transverse

direction, all the performed experiments revealed a linear behavior. This is due to the small amplitude

excitation of the used shear transducers. However the potential nonlinear response in the tangential

direction could open the way for the observation of novel, nonlinear TR waves in mechanical structures.

Finally, in the last part, the experimental realization of Γ-shaped chain has been presented by taking

advantage of properly designed external magnetic field to induce attractive forces between the particles. A

first toy modeling of the chain, considering longitudinal motion in the first chain and transverse-rotational

motion in the second chain, has been proposed in order to understand the experimental results. The

experimental results have shown clearly the evidence of mode conversion from longitudinal to coupled

transverse-rotational modes along with a linear filtering of frequency. This mode conversion is induced

by the geometry of the structure. Experimental results have shown that the toy model is not sufficient to

describe well the dynamics of the Γ-shaped chain. Indeed, the longitudinal motion has to be taken into

account in the second chain as well which leads to the modeling of transverse-rotational motion also in the

first chain. Preliminary numerical results considering three degrees of freedom (two displacements and one

rotation) for each chain show a quantitatively good agreement for the estimation of the longitudinal motion



100 Chapter 3: Linear and nonlinear wave propagation

in the second chain and also show the possibility of mode conversion. The combination of the non-contact

tunability of the interparticle forces and strong nonlinear behavior allows the design of two-dimensional

metamaterials and networks for an advanced control elastic wave propagation.



General conclusion

In this thesis, we have reported on the design and study of elastic wave propagation in magneto-granular

phononic structures. These are composed of linear chains of spherical steel beads inside a properly de-

signed magnetic field induced by permanent magnets. The external magnetic field offers not only a great

advantage of straightforward construction but also a non-contact tunability via its magnetic field strength.

The importance of the rotational degrees of freedom in the dynamical description of the bead motion in

granular structures has been discussed. Theoretical studies from several authors, have predicted the exis-

tence of coupled transversal-rotational modes granular media, but very few have experimentally confirmed

their existence. This work has been devoted to the linear and nonlinear wave propagation through gran-

ular structures by analytical modeling, numerical simulations together with experimental measurements

including the presence of rotation in bead motion.

After a reminder of useful notions for the acoustic wave propagation in granular media, the theoretical

description of the three-dimensional dynamics of the granular chain has been proposed by considering a

linear model. The contact interactions between adjacent particles are modeled by three springs (for the

normal, shear, and torsional interactions) obeying the Hertz-Mindlin theory. The model is considering all

the six degrees of freedom, i.e. three translations and three rotations of bead motions. By the application of

different coupling parameters between beads and the substrate our system supports transversal/rotational

propagation modes, zero group velocity (ZGV) modes and accidental degeneracies in the dispersion curves.

Experiments have clearly revealed the existence of coupled transversal-rotational modes in a granular chain

that moreover can be tuned by the external magnetic field. When the granular chain is mechanically

coupled with the rigid substrate, experimental results are in good agreement with the predicted allowed

and forbidden bands of propagation by fitting only one parameter, the shear stiffness between the spheres

and the substrate. It has been shown that the disagreement between the shear stiffness predicted by the

Hertz theory and the one experimentally estimated is originating from the rough surface of the substrate.

Particular surface topographies can lead to a programmable control of the stiffnesses between the elements

of the setup and thus to an engineered dispersion relation. In addition to the coupled transverse-rotational

modes, an experimental evidence of a ZGV point at finite wavelength has been shown.

Then, spatio-temporal measurements have been performed by measuring the velocity each particle of

the chain and have been successfully compared to numerical simulations. The numerical analysis has pro-

vided a better estimation of the precompression force and of the wave attenuation along the propagation.

101
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The spatio-temporal measurements have also pointed out the presence of defects into the chain probably

due to misalignment of particles and have highlighted that the precompression in the experimental setup

is sensitive to the initial position and alignment of the beads.

The low value of the static load endows the system with a potential strong nonlinear response. Thus,

nonlinear dynamical behavior has been studied. In particular, the second harmonic generation has been

first numerically simulated in a chain without reflected waves and dissipation, and secondly in a more re-

alistic case (considering both the finiteness of the structure and the losses) focusing on the spatial beating

in the amplitude of the second harmonic. Finally, experimental results have revealed for the first time the

existence of such beating phenomenon in a granular chain by minimizing the presence of reflected waves

in the signal analysis. Several driven frequencies have been tested and the beating in amplitude of the

harmonic generation has been found in good agreement with analytical and numerical predictions.

Finally, the wave propagation in a granular structure deviating from a simple one-dimensional granular

chain has been studied. The proposed granular structure is composed of two simple granular chains forming

a "Γ"-shaped chain. A simple model considering longitudinal motion in the first chain and transverse-

rotational motions in the second has been proposed as a first approach to understand the experimental

results. The experimental results have shown the evidence of mode conversion from longitudinal to coupled

transverse-rotational modes along with a linear filtering of frequency. In a simple granular chain these

modes are decoupled, however here the ability of mode conversion is induced by the geometry of the

structure. The simple model fails to describe the entire chain dynamics. Thus, first numerical simulations

have been tested considering three degrees of freedom (two displacements and one rotation) for each chain

and a better agreement was found for the estimation of the final mode conversion as well as magnitude of

the longitudinal motion in the second chain.

Different perspectives to this work could be considered. From the modeling point of view, it would

be interesting to add a possible disorder in the alignment of the particles in order to analyze this effect

on the elastic wave propagation. The addition of bending rigidity between the granular chain and the

substrate could enable a better fitting of the experimental dispersion curve at low frequencies. Finally,

the complete modeling of the nonlinear interactions for the transverse displacement could lead to novel

nonlinear TR waves in mechanical structures. In addition, the modeling of dissipation is a key point in

granular assemblies. In this work, the dissipation has been qualitatively modeled via a viscous on-site

damping. The comparison between numerical simulations and experimental results has shown a good

agreement for the attenuation along the wave propagation. However, the implementation of nonlinear

viscoelastic model for the dissipation could provide better results, especially when considering the nonlinear

regime of the wave propagation.

From the experimental point of view, it would be interesting to investigate in more details the presence

of zero group velocity mode at the middle of the first Brillouin’s zone for the case of a granular chain

coupled with a rigid substrate. Moreover, the modification of the substrate roughness could lead to the
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tunability of the dispersion curve and interesting phenomena could appears such as the predicted acci-

dental degeneracies. In order to improve the detection of coupled transversal-rotational modes and the

experimental dispersion curve, the measurement of the rotational component is needed. Thus, accelerom-

eter or rotational laser vibrometer which are sensitive to angular displacement can be used to measure the

rotational motion. The main advantage of the laser vibrometer is the contactless measurement.

Magneto-granular structures offer a perfect experimental testbed for the study of novel wave pheno-

mena. Taking advantage of the external magnetic field to induce attractive forces between the particles,

different one-dimensional and two-dimensional structures can be easily built such as curved chain, zigzag,

armchair, or honeycomb structures. In addition, placing the permanent magnets on displacement stages

one could control the distance between the granular structures and the magnets leading to modification

of the force in the chain and thus adding tunability into the dynamical response of the granular structure.

Finally, rotational motion induced by non-central forces and nonlinear contact laws between the beads

enrich the dynamic response of these mechanical structures.

To conclude, all the above features of the magneto-granular structures, namely structural engineering

of the dispersion relation, tunability by external magnetic fields and the inherent potential strong response

open the way for novel wave phenomena and an advanced control of elastic wave propagation.





Appendix A

Additional experiment and simulations of

magnetic field

This appendix presents more details and results on magnetic simulation in 2 and 3 dimensions, comparison

between analytics and finite element methods.

One magnet - 2D model

The non-uniform magnetic field created by a permanent magnet has been analytically presented by Yonnet

in Ref. [119] in two and three dimensions. In this section we consider the 2D configuration. The rectangular

magnet has a height 2Lm = 10 mm, width 2lm = 4 mm and an infinite dimension along z-axis. The

analytical expressions of the magnetic field components in air B0(x, y) for such a magnet are:

B0x =
−σ∗

4πµ0

∑

i=0,1

∑

j=0,1

(−1)i+j ln
{

[lm + (−1)ix]2 + [Lm + (−1)j(y + Lm)]2
}

, (A.1a)

B0y =
−σ∗

4πµ0

∑

i=0,1

∑

j=0,1

(−1)i+j2atan

(

lm + (−1)ix

Lm + (−1)j(y + Lm)

)

, (A.1b)

where σ∗ = Brµ0µair is the surface charge density of the magnet with the remanent magnetization Br,

µ0 = 4π10−7 is the vacuum permeability and µair = 1 is the relative permeability of the air. Inside the

magnet, the field is calculated with same expressions as Eqs. (A.1) considering now σ∗ = Brµ0µm where

µm = 1.05 is the relative permeability of a permanent neodymium magnet. Then, the density of magnetic

field is given by B0 =
√

B2
0x +B2

0y. Fig. A.1 shows analytical results from Eqs. (A.1) for each component

and the density of the magnetic field.
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Figure A.1: Analytical magnetic field of one permanent magnet from Eq. (A.1) for x and y components, left and
center panels respectively, and the density of magnetic field (right panel).
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Figure A.2: Simulated geo-
metry in FEM.

We turn now to finite element simulations. The magnetic flux lines created

by a permanent magnet are circular and thus we chose a surrounding box of

air with circular shape in order to minimize the boundary problem which can

appear with a square box. Finally, the studied domain consists of a disk with

air characteristics (µair = 1), and a rectangle corresponding to the permanent

magnet with µm = 1.05 and Br = 1.32 T. The direction of the polarization

has to be defined. In our case the polarization is along y-axis. Moreover, a

surrounding domain with infinite elements is created leading to an unbounded

domain, mimicking a free space case, see Fig. A.2. The mesh is built with

triangles, for the study domain, and with quadrangle, in the infinite domain.

The magnetic field of each component and the total density is presented in Fig. A.3.
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Figure A.3: 2D finite element simulation of the magnetic field of one permanent magnet for the x and y components,
left and center panels respectively, and the density of magnetic field (right panel).

In order to compare analytical and numerical results, we define a relative error as

Error = 100
(Ba −Bn)

Bn
, (A.2)

where the indexes a and n correspond to analytical and numerical results respectively. The error for each
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component and the total density of magnetic are shown in Fig. A.4.
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Figure A.4: Error between the analytical model and the finite element simulation magnetic field for one magnet.

The error tends to +∞ when magnetic fields B0x and B0y of the reference tend to 0. Analytics and

numerics fields tend to 0 but are never equal to 0 due to numerical errors when interpolations from free

mesh (in numerics) to a grid mesh in order to compare the results. We can notice that the global error on

the magnetic field density B0 is less than 4% and as conclusion, the 2D simulated magnetic field from a

permanent magnet is well numerically simulated. The next step is to add into this non-uniform magnetic

field a sensitive material to magnetism and see the perturbation of the magnetic field by this particle.

One bead - one magnet: calculation of the magnetic force

If we add now a ferromagnetic bead (sensitive to magnetic field) into the previous field. The bead becomes

magnetized and the new magnetic field can be see as the initial field B0(x, y) with a perturbation due to

the added particle. This new magnetic field, considering this perturbation, can be expressed outside of

the bead for 2D configuration as:

B1xout = B0

(

1 +R2µb − 1

µb + 1

(x− xb)(y − yb)

((x− xb)2(y − yb)2)
2

)

, (A.3a)

B1yout = B0

(

1 +R2µb − 1

µb + 1

(y − yb)
2 − (x− xb)

2

((x− xb)2(y − yb)2)
2

)

, (A.3b)

where µb = 700 is the relative permeability of the bead (stainless steel material), xb and yb are the center

coordinates of the bead of radius R. The magnetic field inside the bead is defined as:

B1x,yin =
2µb

µb + 1
B0. (A.4)

Finally, the total density of magnetic field is given by B1 =
√

B2
1x +B2

1y. The Fig. A.5 presents analytical

and simulated results for the case of ferromagnetic bead inside a magnetic field created by a permanent

magnet in 2D configuration. From Fig A.5 (right panel), the error into the bead is very small (less than

2%), the error outside the bead is larger but still reasonable. We are interested in the field inside the
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Figure A.5: 2D Magnetic field density created by permanent and perturbed by a ferromagnetic bead analytically
solved (left), with finite element simulation (center), and the relative error (right).

bead thus we can say that simulation with finite element method describes well the magnetic field of a

permanent magnet. The numerical simulation allow us to determine force acting by the magnet on the

bead. In order to determine this attractive force, let us consider a bead (material 1) on the top of a

permanent magnet surrounding by air (material 2). The reaction force from the magnet on the bead will

be denoted by rm. The force created by the magnetic field on the bead have to be solved at the boundary

bead/air and into the volume of the bead. From Cauchy’s equation considering a stationary case (no

acceleration), on the boundary bead/air the equations apply

n1 (T2 − T1) + rm = 0, (A.5)

where T1 and T2 respectively represent the stress tensor for the material 1 and material 2, n1 is the normal

pointing out from the domain containing material 1. Equations for the equilibrium of forces are,

∇ · T1 + fext = 0, (A.6)

where fext is an external volume force. To obtain the total force F on the bead, equations Eq. (A.5) and

Eq. (A.6) have to be integrated over the entire domain and boundary,

∫

Ω1

(∇ · T1 + fext) dV +

∮

∂Ω1

(n1 (T2 − T1) + rm) dS = 0.

Considering the divergence theorem,

∫

Ω1

∇ · T1dV −
∮

∂Ω1

n1T1dS = 0, (A.7)

the external force can be expressed as,

Fext =

∫

Ω1

fextdV +

∮

∂Ω1

rmdS = 0. (A.8)
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Finally keeping the bead in a stationary state (Fext+F = 0), the total force is a boundary integral of the

stress tensor on the outside of the bead and is expressed as,

F =

∮

∂Ω1

n1T2dS = 0. (A.9)

If we consider a bead composed of stainless steel 440C material with a radius of R = 4 mm, Young’s

modulus E = 200 GPa, Poisson’s ratio ν = 0.3 and a cylindrical permanent magnet of dimension 4 mm

diameter and 10 mm height with a remanent magnetization equal to 1.32 T, the numerical simulation of

the force Eq. (A.9) give us F ≈ 4.7 N by 3D simulation. It should be noticed that parametric analysis are

performed on the mesh to ensure the convergence of the results. Now experimentally, as said previously,

the force induced by the external magnetic field can be estimated by using a dynamometer. Assuming

that the precompression force between bead and magnet is equal to the measured pulling force required

to separate two adjacent particles. We obtain F ≈ 4.5 N which is in a very good agreement with our

simulated estimation. One more time, the 2D simulation over-estimate results and gives F = 6 N. We can

conclude that our numerical simulation is correct.

Magnetic field measurement - plane (x, y)

As additional measurement, we present in Fig. A.6 the experimental magnetic field measured for the plane

(x, y) above a line array of 5 permanents magnets.
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Figure A.6: (a) Experimental setup to measure the magnetic field created by a line array of magnets. The
experimental magnetic field measured by the Gauss-meter is superimposed. (b) Experimental magnetic field created
by 5 magnets.





Appendix B

Experimental dispersion curves for a linear

granular chain coupled to a substrate

To complete the linear study of the chain coupled to a rigid substrate ( Fig. B.1), we have performed

preliminary experimental dispersion curves.

(b)

Figure B.1: Photography of the granular chain coupled to a rigid substrate.

The method, presented in the section 2.4.3, is realized in order to obtain this curves. The chain is

now composed of 26 particles. Fig. B.2 presents the experimental dispersion for the modes sagittally

polarized (ux, uy, φz). Theoretical dispersion curves are superimposed fitting the precompression force to

F0 = 2.1 N (KN ), F ′
0 = 1.8 N (KS , KT ), F = 10 N (K̃N , K̃T ), F ′ = 0.1 N (K̃S). Fitted forces F0 are

close to the experimentally measured forces using dynamometer

The theoretical curves depict the existence of translational motion for each component in a color scale.

On the panel Fig. B.2(a), a color scale from white (absence) to red (pure existence) of ux component is

represented and on the panel Fig. B.2(b) the color scale displays the absence (white) to pure existence

(magenta) of uy component. The branches containing ux motion are well detected by our measurement,

we can clearly see the forbidden gap at low frequency range and the upper limit is also well describe.

However, we don’t measure the predicted gap between 4.4 kHz and 5 kHz.

On the panel Fig. B.2(b), the existence of the uy component is measured and theoretically reported.

Experimentally, a low branch is present containing a zero group velocity (ZGV) mode at k ≈ 0.65π/a

while theoretically it appears at k ≈ 0.44π/a. A gap is also observed between the two lower branches
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Figure B.2: Experimental dispersion curves for a chain of 26 beads for (a) excitation along x-axis and measurement
in Pos. 1 and (b) excitation along y-axis and measurement in Pos. 2. The theoretical existence of translational
motion is superimposed on each panel in color scale. (a) Red color means existence of translational motion ux, (b)
Magenta for translational motion uy component. (c) Detection of the ZGV mode from uy measurement. Theoretical

dispersion curves are fitted using F0 = 2.1 N (KN ), F ′

0
= 1.8 N (KS , KT ), F ′ = 10 N (K̃N , K̃T ), F = 0.1 N (K̃S).

form 4000 Hz to 4600 Hz whereas the theoretical gap is from 4430 Hz to 5050 Hz. The second branch is

almost flat from k = 0 to k ≈ 0.44π/a with strong presence of translational uy motion. Experimentally,

the measurement of this part of the branch is not achieved but we detect the second part when the

branch slope is increasing up to the absence of translational motion. The highest branch is approximately

measured, the amplitude increase when k increase corresponding to more and more translational motion.

To ensure the presence of ZGV mode, post-processing delaying the starting point of the bi-dimensional

FT is realized. Indeed, such mode has a very slow velocity leading to a delayed arrival time in comparison

with the other modes. Thus looking after a certain time in the received signal it should appears only this

modes. The results of the ZGV detection is presented on panel Fig. B.2(c). As we can see, only one point

is detected at k ≈ 0.65π/a and f = 4020 Hz validating the presence of ZGV mode in our chain. We can

also observe some amplitude around f = 0 Hz coming from artifact noise during the post-processing.

Finally, the total experimental dispersion curves for both plane is presented in Fig. B.3. The panel

(a) represents on the same figure the measurement along x and y from Fig. B.2(a-b) whereas the panel

Fig. B.3(b) presents the results in the horizontal plane.

For the modes polarized in horizontal plane, once again the modes detected are only on the lower part

of the highest branch. The lowest branch is not be detected by our setup as well as the middle branch,

which is containing very small translational motion. It should be noted that at k = 0 and f = 11.4 kHz

the presence of a localized mode is detected and not predicted by the model. A localized mode seems to be

present also on the sagittal plane at f = 7.9 kHz. Such localized mode could be analytically predicted by

taking into account the finite size of the system (boundary conditions). Localized mode in a linear chain

considering boundary conditions for transversal and rotational degrees of freedom including bending has

been already study in [62].
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Figure B.3: Experimental dispersion curves for a chain of 26 beads for modes polarized in (a) sagittal and (b)
horizontal planes. The theoretical existence of translational motion uz is superimposed on panel (b) in color scale
(white to magenta). Theoretical dispersion curves are plotted using F0 = 2.1 N (KN ), F ′

0
= 1.8 N (KS , KT ),

F = 10 N (K̃N , K̃T ), F = 0.1 N (K̃S).

To conclude on this preliminary results, we are able to detect some part of the predicted branches. A

ZGV point at a finite wavelength is clearly present in our setup. Modeling the chain including boundary

limits could enable the prediction of localized modes and adding bending rigidity could improve the

comparison between experimental and theoretical results.
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Linear and Nonlinear Waves in
Magneto-Granular Phononic Structures: Theory and Experiments

Propagation d’Ondes Linéaires et Non Linéaires

dans les Structures Phononiques Magnéto-Granulaires : Théories et Expériences

Résumé

Les cristaux granulaires sont des arrangements périodiques ou
structurés de particules élastiques en contact. Ce travail de thèse
porte sur l’étude théorique et expérimentale de la propagation
d’ondes élastiques à travers de telles structures.
Un cristal granulaire unidimensionnel composé d’une chaîne de
billes d’acier couplées à des aimants permanents fixes est tout
d’abord étudié. Les forces statiques de contact entre les billes,
déterminantes pour les caractéristiques de la propagation et la
dispersion des ondes élastiques, sont créées par le champ mag-
nétique des aimants. Cette configuration permet donc d’adapter
la réponse dynamique du milieu en modifiant les forces magné-
tiques des aimants. Un modèle linéaire prenant en compte tous
les degrés de liberté en translations et rotations des billes et les
couplages élastiques (longitudinal, de cisaillement et de torsion)
entre billes et entre les billes et un substrat est développé. Il
permet d’obtenir les relations de dispersion des modes de pro-
pagation dans ce système en fonction des différents paramètres
de couplage. Les expériences réalisées mettent en évidence la
propagation de modes élastiques avec micro-rotation des billes
et démontrent la pertinence du modèle pour la description de ce
système. Plusieurs effets de dispersion intéressants sont observés
et discutés, modes à vitesse de groupe nulle, modes mous. . .
Dans un second temps, une étude prenant en compte les non-
linéarités de contact permet de prédire et d’observer expérimen-
talement la génération d’harmonique, le filtrage d’harmoniques
ainsi que la conversion de modes longitudinaux vers des modes
couplés de translation-rotation dans des structures granulaires
s’écartant des chaines unidimensionnelles simples.

Ces travaux ouvrent des perspectives intéressantes pour le con-

trôle d’ondes élastiques, dans le régime non linéaire, avec des

structures granulaires architecturées.

Abstract

Granular crystals are periodic or structured arrangements of elas-
tic particles in contact. This work is devoted to theoretical and
experimental study of the elastic wave propagation through such
structures.
A one-dimensional granular crystal composed of steel spherical
beads coupled to permanent magnets placed in a substrate is first
studied. Static forces at the contact between beads, determining
the wave propagation and dispersion characteristics, are induced
by the magnetic field from the magnets. This configuration en-
ables tuning the dynamic response of the chain by modifying the
magnetic strength of the magnets. A linear model taking into
account all degrees of freedom of the beads (three translations
and three rotations) as well as all elastic couplings (longitudinal,
shear and torsional), between the beads and between the beads
and the substrate is developed. This model provides the disper-
sion relations of the modes in the system for different coupling
parameters. The associated experiments confirm the elastic pro-
pagation of modes with micro-rotation of beads and demonstrate
the pertinence of the model for the system description. Several
interesting effects on the dispersion are observed and discussed,
zero group velocity modes, soft modes. . .

In a second part, we take into account the nonlinearities origi-

nating from the contacts to predict and then observe experimen-

tally the second harmonic generation. The filtering of harmonics

along with conversion from longitudinal to coupled transversal-

rotational modes in granular structures, is also observed for a

configuration deviating from simple one-dimensional chains. This

work opens the way for interesting applications in elastic wave

control, in the nonlinear regime, with structured granular de-

vices.

Mots-clés

cristal phononique granulaire, modes rotationnels,
non-linéarité, structures granulaires, contrôle d’ondes.

Keywords

granular phononic crystal, rotational modes, nonlinearity,
granular structures, wave control.
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