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R É S U M É

Dans cette thèse, j’aborde le problème du contrôle du climat sur l’évolution des reliefs.
Plus spécifiquement, je travaille sur la relation entre la pluviosité et l’érosion fluviatile
en utilisant une approche probabiliste. En premier lieu, je développe une méthodolo-
gie indépendante de la moyenne pour caractériser la variabilité de la pluviosité jour-
nalière. L’indépendance vis-à-vis de la moyenne permet une comparaison simple et
objective de la variabilité de la pluviosité sous différents régimes climatiques. Elle se
montre également utile pour intégrer le concept de variabilité de la pluviosité dans la
théorie que je développe ensuite. J’applique cette approche à la chaine de montagnes
Himalayenne en utilisant des données de pluviosité de hautes résolutions spatiale et
temporelle et trouve qu’il existe des variations significatives de la variabilité de la plu-
viosité dans l’Himalaya. En prenant en compte la variabilité de la pluviosité en plus
de la pluviosité moyenne, je trouve un lien entre pluviosité et érosion qui, d’un point
de vue géomorphologique, diffère, de façon significative, de celui déduit de la seule
pluviosité moyenne.

Ensuite, je développe une théorie d’érosion fluviatile du type ’puissance de flux‘ qui
comprend une paramétrisation réaliste de la pluviosité et de l’hydrologie. Ceci est
réalisé en intégrant un modèle hydrologique stochastique-mécaniste bien établi dans
une formulation stochastique de la puissance de flux comprenant un seuil. La théorie
hydrologique conduit à des expressions mathématiques pour la distribution et la vari-
abilité du débit journalier en fonction des conditions climatiques qui sont valables
pour la majorité des régimes de débit observés à la surface de la Terre. Les nouveaux
paramètres qui en découlent ont une signification bien ancrée dans des théories clima-
tique et hydrologique établies et se mesurent facilement. Cette approche nous permet
de prédire comment le taux d’érosion fluviatile répond à des changements du forçage
climatique. Je trouve ainsi que les processus hydrologiques peuvent avoir une influ-
ence significative sur l’efficacité érosive d’un forçage climatique donné. Cette approche
peut également être utilisée comme fondement de nouveaux modèles d’évolution des
reliefs qui prennent en compte des conditions aux limites climatique et hydrologique.

Une des principales conséquences d’intégrer l’hydrologie dans le modèle de puissance
de flux est de révéler le double effet de la moyenne et de la variabilité du forçage clima-
tique sur la réponse écohydrologique. Une corrélation négative existe entre la moyenne
et la variabilité qui restreint grandement les réponses possibles d’un bassin versant à
des changements climatiques. L’approche théorique que j’ai développée décrit égale-
ment les relations qui relient la variabilité journalière à plusieurs paramètres écohydro-
climatiques. Je trouve ainsi que l’index d’aridité, le temps de réponse du bassin versant,
et l’épaisseur effective de sol sont les contrôles les plus importants sur la variabilité du
débit. Ceci a d’importantes conséquences pour le rôle que jouent l’hydrologie et la
végétation sur l’évolution des reliefs.

Finalement, je démontre que l’influence de la variabilité journalière du forçage clima-
tique sur le taux d’érosion des rivières est principalement déterminée par l’existence
et la valeur de seuils d’érosion. Je démontre que, quelques soient les détails du proces-
sus d’érosion considéré, c’est le rapport entre la valeur du seuil et la valeur moyenne
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du forçage climatique qui détermine si la variabilité compte ou pas, et dans quel sens.
Parmi de nombreuses autres applications, ces découvertes contribuent à l’élaboration
d’un nouveau cadre permettant de comprendre et prédire la réponse de la surface de
la Terre à des changements de la moyenne et de la variabilité de la pluviosité et du
débit des rivières. La généralité de ces découvertes a d’importantes implications pour
le reste des travaux présentés dans la thèse, ainsi que pour les travaux antécédents sur
le rôle de la variabilité de la pluviosité et du débit sur l’efficacité érosive des rivières.

A B S T R A C T

In this thesis, I address the problem of how climate drives landscape evolution. Specif-
ically, I work on the relationship between rainfall and fluvial erosion using a proba-
bilistic approach. First I develop a mean-independent methodology to characterize the
variability of daily rainfall. The mean-independent nature allows for simple, objective
comparison of rainfall variability in climatically different regions. It also proves useful
for integrating the concept of rainfall variability into theory. I apply this method over
the Himalayan orogen using high spatial and temporal resolution rainfall data sets and
find significant variations in rainfall variability over the Himalayan orogen. By taking
into account variability of rainfall in addition to mean rainfall rate, I find a pattern of
rainfall that, from a geomorphological perspective, is significantly different from mean
rainfall rate alone.

Next I develop a theory of stream power fluvial erosion that allows for realistically pa-
rameterized rainfall and hydrology. This is accomplished by integrating an established
stochastic-mechanistic model of hydrology into a threshold-stochastic formulation of
stream power. The hydrological theory provides equations for the daily streamflow
distribution and variability as a function of climatic boundary conditions that are ap-
plicable across most of the observed range of streamflow regimes on Earth. The new
parameters introduced are rooted firmly in established climatic and hydrological the-
ory and are easily measured. This framework allows us to predict how fluvial erosion
rates respond to changes in realistic rainfall forcing. I find that hydrological processes
can have a significant influence on how erosive a particular climatic forcing will be.
This framework can be used as a foundation for landscape evolution models that have
realistic climatic and hydrological boundary conditions.

One of the main strengths of integrating hydrology into the stream power model is to
reveal the dependence of both streamflow mean and variability on the climatic forcing
and ecohydrological response. This negative correlation of the mean and variability
vastly restricts the likely responses of a river basin to changing climate. The theoretical
framework also describes the scaling of daily variability with several other ecohydro-
climatic parameters. I find that the aridity index, the basin response time, and the
effective soil depth are the most important controls on discharge variability. This has
important implications for the role of hydrology and vegetation in landscape evolution.

Finally, I demonstrate that the influence of short-term climatic forcing variability on flu-
vial erosion rates is primarily determined by the existence and magnitude of erosional
thresholds. I show that, irrespective of the details of the erosional process, it is the ra-
tio between the threshold magnitude and the mean magnitude of climatic forcing that
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determines whether variability matters or not and in which way. Among many other
implications, these findings help provide a general framework to understand and pre-
dict the response of the Earth’s surface to changes in mean and variability of rainfall
and river discharge. The generality of this finding has important implications for the
other work in this thesis, as well as previous work on role of rainfall and discharge
variability on fluvial erosion.
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For every complex problem there is an answer that is clear, simple, and wrong.

— H. L. Mencken
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1
I N T R O D U C T I O N

1.1 climate and erosion

Perhaps the most easily observed mechanism linking surface processes to climate is
the influence of rainfall and the subsequent surface runoff on erosion and sediment
transport. Rainfall collects in low points on the landscape, forming streams and rivers.
The flowing water exerts shear stress on hillslopes and river channels, driving sediment
transport and fluvial erosion of the landscape. As river processes are, by definition,
dependent on the river discharge, their efficiency has long been thought to be strongly
modulated by rainfall (e.g. Gilbert, 1877). It is well documented, for example, that
recent Quaternary glacial cycles have led to cycles of deposition and erosion in many
non-glaciated river systems (e.g. Blum and Törnqvist, 2000; D’Arcy, Whittaker, and
Roda-Boluda, 2016).

Fluvial erosion is not the only important process operating in landscapes, however,
we focus on it exclusively in this thesis. There are good reasons for this. Though it is
challenging to make simple, reductive statements about systems as complex as land-
scapes, there are good arguments to be made for the river incision being dispropor-
tionally important in forming landscapes. Rivers are the lowest points in landscapes,
and as they incise, they steepen connected hillslopes and tributaries. In this way, in-
cision by rivers can cause an erosive response that propagates throughout the river
network as well as the hillslopes (e.g. DiBiase et al., 2010; Whipple, 2009; Whipple,
Kirby, and Brocklehurst, 1999). In addition, much of the material that erodes, chemi-
cally or physically, from a landscape is ultimately transported away from tectonically
active regions by the fluvial network. Theoretically the entire landscape can be slave
to the behaviour of the river network, a concept which is commonly employed to jus-
tify the focus on fluvial erosion. In practice, this is likely an oversimplification. There
are surely subtle, two-way interactions between hillslopes and river networks, such as
the influence of hydrology discussed in chapter 3. For example, Singh, Reinhardt, and
Foufoula-Georgiou, 2015 provide experimental evidence that hillslopes respond to cli-
mate before river channels. However, even if hillslopes are not simply responding to
river channels, the importance of the river channel network as both an active agent of
landscape evolution and a passive recorder of its history merits the close study it has
received, and which is continued here.

The stream power model (Howard, 1994; Whipple and Tucker, 1999) is widely used
to model fluvial incision in rapidly uplifting or steep regions, although its range of
applicability and the value and meaning of its rate parameter and exponents are sub-
ject to ongoing research and debate (Beer and Turowski, 2015; Lague, 2014; Sklar and
Dietrich, 2006). According to the stream power model, the long-term rate of erosion,
hEi, is directly proportional to slope, S, and contributing catchment area, A, used as a
proxy for river discharge:

hEi = KA

m

S

n (1)

Where the rate constant K and the exponents m and n are traditionally determined
empirically. Several studies DiBiase and Whipple, (2011), Lague, (2014), Lague, Hov-
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2 introduction

ius, and Davy, (2005), Snyder et al., (2003), and Tucker and Bras, (2000) have clearly
demonstrated that the existence of an erosional threshold implies that K and n should
also contain a dependence on discharge variability and, therefore, rainfall variability.
Expanding this work, and exploring the influence of rainfall and rainfall variability on
K is the focus of much of the work in this thesis.

According to the stream power model, one should observe a strong, positive corre-
lation between precipitation rate and erosion efficiency. This link between climate and
erosion is further supported by many modelling studies in which simple or complex
representations of landform evolution have been subjected to a parametric study rep-
resenting the effect(s) of the variability of the Earth’s climate at a range of spatial and
temporal scales (Armitage et al., 2013; Balen, Busschers, and Tucker, 2010b; Banwart,
Berg, and Beerling, 2009; Bogaart et al., 2003; Bovy, Braun, and Demoulin, 2016; Collins,
Bras, and Tucker, 2004; Coulthard and Macklin, 2001; Densmore, Allen, and Simpson,
2007; Fernandes and Dietrich, 1997; Godard et al., 2013; Hancock and Anderson, 2002;
Pedersen and Egholm, 2014; Rinaldo et al., 1995; Roe, Montgomery, and Hallet, 2002;
Roering et al., 2004; Simpson and Castelltort, 2012; Tucker and Bras, 2000; Tucker and
Slingerland, 1997). It is clear from these models that climate should play a significant
role in determining landscape form and rates of evolution. However, this has proved
challenging to validate convincingly in real landscapes. Many studies have compared
measured erosion rates to mean values of a number of potential direct or indirect
climatic drivers of erosion such as mean precipitation amount or intensity, channel
steepness, stream power, and vegetation density, but have struggled to find good cor-
relations (e.g. Acosta et al., 2015; Bermudez, van der Beek, and Bernet, 2012; Godard
et al., 2014; Olen, Bookhagen, and Strecker, 2016). However, such comparisons are po-
tentially flawed, in that it is erosion efficiency, rather than erosion rate that should
correlate with precipitation rate. In equilibrium landscapes, where the uplift rate is
equalled everywhere by erosion rate, there is a decoupling between erosion rate and
erosion efficiency, expressed in the morphology of the landscape.

Still, regional and global compilations show that more water falling on a landscape
does not equal more erosion (e.g. Blanckenburg, 2005; Riebe et al., 2001a), which might
be expected as a general, if noisy, trend if precipitation rate drives erosion efficiency.
As suggested by many, the sensitivity of the erosional response to small changes in
the climatic forcing and the dependence of the response on the recent history and
antecedent conditions of the landscape demand a more sophisticated understanding
of how climate drives erosion (Blum and Valastro, 1989; Lague, 2014; Leopold, 1951;
Schumm, 1979; Tucker and Bras, 2000; Tucker and Slingerland, 1997; Webb and Walling,
1982; Wolman and Gerson, 1978; Wolman and Miller, 1960). For example, different
river basins in different regions, or even in the same region but of different sizes have
been observed to respond to similar changes in climate very differently (Blum and
Valastro, 1989; Schumm, 1973). Complex depositional and erosional sequences have
also been observed in response to simple, one way climatic changes. For example, a
valley aggradation event caused by a climate-driven increase of sediment supply from
hillslopes can be followed by incision due to a reduction of sediment input caused by
exhaustion of erodible soil and regolith from these same hillslopes (Balen, Busschers,
and Tucker, 2010a; Schumm, 1977; Tucker and Slingerland, 1997).

In support of the proposition that fluvial erosion efficiency and climate should be
spatially correlated Thiede et al., (2004), for example, showed that in the southern Hi-
malayas variations in erosion rate estimates from low-T thermochronology do not cor-
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relate with tectonic structures. Surface processes, they argue, are more likely controlled
by the very high monsoonal precipitations causing a simple altitudinal variations in
observed erosion rates. More recent work (Ferrier, Huppert, and Perron, 2013) clearly
demonstrated the almost linear dependence of bedrock incision rate on stream power
and, consequently, precipitation rate using the large precipitation gradient across the
flank of the Hawaiian island of Kaua’i.

In contrast Godard et al., (2014) evidenced a very large gradient in erosion rate across
a region of uniform mean precipitation rate, based on a large compilation of cosmo-
genic isotopes along a transect in central Nepal. They concluded that the area has
reached steady-state conditions between rock uplift and erosion. This study highlights
the fact that evidence for climate control on erosion rate, in contrast to landscape form,
must be sought in the transient response of erosional systems to a climate perturba-
tion or change, rather than steady-state configurations under different climate/rainfall
conditions, as suggested by Whipple, Kirby, and Brocklehurst, (1999).

Following this strategy, Bookhagen and Strecker, (2012) or Carretier et al., (2013)
showed strong observational evidence that there is a spatial and temporal relation
between current and past precipitation rates in the southern Central Andes and erosion
rates as measured by cosmogenic isotope methods. More recently Carretier et al., (2015)
postulated that the present-day spatial variability in erosion rate can only be explained
by a transient response of the fluvial system to either climatic or tectonic change.

The evidence demonstrating the role climate plays in landscape evolution remains
mixed. The importance of climate, and rainfall in particular, for erosion processes is
so obvious that it has been a constant theme of geomorphology since at least Gilbert,
(1877). Despite this, the relationship between rainfall and landscape evolution is com-
plex enough that the role of climate remains debated (e.g. Burbank et al., 2003; Dadson
et al., 2003; Ferrier, Huppert, and Perron, 2013; Godard et al., 2014; Reiners et al.,
2003b; Thiede et al., 2004). The stream power model in particular has been successful
in capturing widely observed features of real landscapes (e.g Kirby and Whipple, 2012;
Lague, Hovius, and Davy, 2005; Willett et al., 2014; Wobus et al., 2006). However, it
is known to ignore several key processes, such as sediment transport, hydrology, as
well as spatially and temporally variable rainfall. Some key predictions of the stream
power model, and related derivations have also been shown to be general properties
of landscapes, not necessarily related to the stream power model (e.g. Kirchner, 1993;
Schorghofer and Rothman, 2002, and chapter 5). Here we take the perspective that
the judicious inclusion of key processes can lead to a better understanding of the rela-
tionship between climate and erosion, and therefore better match between theory and
observations. The highly variable behaviour of climate, rainfall, and rivers over short
timescales is one important source of complexity. As Lague, (2014) demonstrated, ac-
counting for this temporal complexity, or short-term variability, leads to better predic-
tion of several observations, such as the nonlinearity of the steady-state stream power
model, the velocity of traveling knockpoints, and the scaling of steepness index with
erosion rate.

1.2 short-term climate variability and long-term erosion rates

Many of the concepts concerning short-term variability can be generalized and are
similar across different landscapes and erosion processes. Because we discuss these
general concepts we will use a general vocabulary. We refer often to an erosional sys-
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tem, which is a portion of the landscape (hillslope, basin, river network, orogen, etc.)
with a definable climatic forcing and erosional response. Both the climatic input and
erosional output are defined by the processes in the system. For example, in a small
river basin, the processes under consideration may be soil creep and landsliding on the
hillslopes and sediment transport in the river system. In this case, the relevant climatic
input would be precipitation and the erosional response would be the sediment flux
on the hillslopes and in the river. Of interest will be both the erosional response to
instantaneous climatic forcing, which in this case would be a single rainstorm, and the
long-term erosional response due to many storms of different sizes over an extended
period of time. In our river basin, the long-term erosional response is the long-term
mean sediment flux out of the basin and the steady state form of the landscape. The
climatic forcing is the range of storms the basin is subject to. It could be characterized
by the mean annual precipitation rate, however, this may not be a useful or sufficient
characterization to understand the long-term erosional response. The relevant charac-
terization of climatic forcing from a geomorphological perspective is the goal of much
of the thesis and the work that it builds upon, and will depend on the specific erosional
processes under consideration. Also important are the conditions in the erosional sys-
tem that determine, or at least influence, the manner in which the system responds to
a particular instantaneous forcing. We refer to these relevant conditions collectively as
the state of the system.

An example highlighting the importance of the system’s state is given by Wolman
and Miller, (1960) concerning bank erosion in a river. As they describe it, the bank
erosion resulting from large storms is often greater during the winter months, even
though the largest storms occur during the summer. This is because in the winter the
riverbanks are often already wet due to generally damp conditions. As a result they are
weaker and more easily eroded. Another example is the amount of bedrock incision
during a flood event. The incision is sensitive to both the amount of sediment carried
as bedload, which drives erosion by striking the bedrock (Sklar and Dietrich, 2004),
and the amount of stationary sediment covering the bedrock and protecting it from
erosion (Sklar and Dietrich, 2006). As a result, how much erosion that occurs for a
certain size flood depends on the amount of sediment in the channel at the time of the
flood (Turowski, 2012).

In both these examples the conditions of the system (bank wetness and sediment
availability) determine the response to external forcing such as rainfall or river dis-
charge. The same system can exhibit different responses to the same forcing depend-
ing on its state. The state can be characterized quite simply (the banks are wet or dry)
or it can be more complex, as with sediment availability. In this case it is not just the
amount of sediment that matters, but also the size distribution of particles, and even
the manner that they are positioned. The sediment in a river channel is the result of
several processes, including landsliding, previous floods bringing sediment from up-
stream and even the way the bedrock fractures into smaller particles. Therefore the
state can represent a potentially complex evolution of the system from some point in
the past and can be thought of as a history of the system. We refer to both the simple
and complex cases as state dependency or a state dependent law.

Short-term variability can play an important role even in systems where the state is
constant. Let us go back to river erosion and imagine for a moment a stretch of steep
bedrock river overlain with a thin layer of gravel. We will say that these conditions
are dominant, so the state is constant and not a concern. In order for erosion to occur,
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the gravel must move across the bedrock. Two small, but similar magnitude floods,
each only just able to mobilize the gravel layer would not result in much erosion of
the bedrock. In contrast, a single flood with a magnitude twice the smaller ones will
move more gravel with a higher velocity, and result in considerably more than twice as
much erosion. If we imagine further that the rate of erosion increases disproportionally
with the volume of river discharge, this effect will be magnified. The same volume of
water can result in different amounts of erosion, based on the manner in which it
is delivered to the erosional system. Because the threshold effectively introduces a
nonlinearity into the relationship between climatic forcing and erosional response, we
refer to the existence of either a nonlinearity or a threshold as either nonlinearity or a
nonlinear law.

This example demonstrates that the mean annual discharge may not accurately cap-
ture the different effects of differently sized floods and will therefore be a poor pre-
dictor of the mean erosion rate if there is a threshold for erosion. The situation will
be similar if the same forcing produces different erosional responses because of differ-
ences in the state of the system. This is the fundamental drive for taking variability into
account. The result of both state dependency and nonlinearity is that the mean mag-
nitude of climatic forcing will, in general, not be able to predict the mean magnitude
of erosion, even if the correct erosion law is known. This is illustrated using a simple
mathematical example. If x is a random variable, and we have a function f(x) = x that
is linear, then the mean of the function hf(x)i is equal to the function of the mean of x,
f(hxi). However, if we have a different function g(x) = x

2, which is not linear, then in
general hg(x)i 6= g(hxi). In the first case, it is only necessary to know the mean of x and
the form of f to calculate the mean of f(x). However, when the function is nonlinear,
one must also know the distribution of the sample of x. In an erosional system, this is
equivalent to needing to know the full distribution of climatic forcing events applied
to the erosional system. The variable nature of climatic forcing of all kinds is a feature
that is consistently observed in many erosional systems.

1.3 state of the art

Much of the early work on short-term variability was concerned with the state of the
system (e.g. Anderson and Calver, 1977; Blum and Valastro, 1989; Newson, 1980; Wol-
man and Gerson, 1978) and the role of erosion thresholds (e.g. Schumm, 1979; Schumm,
1977; Wolman and Miller, 1960). However, taking into account state-dependency quan-
titatively is challenging, and most quantitative studies have focused on thresholds and
nonlinearity. Climatically triggered erosion thresholds are common, and have been
demonstrated or hypothesized to exist for many processes, including erosion and chan-
nel head initiation due to overland flow (e.g. Horton, 1945; Montgomery and Dietrich,
1992; Prosser and Dietrich, 1995), fluvial transport of bed-load sediment (e.g. Bagnold,
1980; Shields, 1936), fluvial erosion of bedrock channels (e.g. Baker and Kale, 1998;
Howard, 1994), debris flows and shallow land sliding (e.g. Gabet et al., 2004; Guzzetti
et al., 2008), as well as solifluction and soil creep (e.g. Matsuoka, 2001).

Leopold, (1951) made the convincing argument that due to a threshold for erosion,
many hillslopes and rivers should only erode and transport sediment during large
storms, because only then is the strength of flowing water sufficient to mobilize sed-
iment. In light of this, he argued that the intensity of rainfall might be a better mea-
sure of the impact of climate on fluvial erosion than the mean annual rainfall amount.
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This idea was supported by Chorley and Morgan, (1962), who arrived at a similar
conclusion from a comparative study of two basins, and by Brakenridge, (1980), who
hypothesized that increasing storm intensity is responsible for observed increases in
erosion rate in the sedimentary record. Sugai, (1993) also illustrated the importance of
rainfall intensity using river terrace data to show that the cycles of aggradation and
erosion in the Usui river in Japan are due to the high frequency of typhoons during
interglacial periods and their absence during glacial periods. Typhoons produce large
storms capable of moving the largest sediment grains downstream. In their absence,
these sediments accumulate. Using paleohydrological and paleoclimatic data from the
US, Blum and Valastro, (1989) showed that the erosional response to climate change is
complex and that it depends on the interaction of sediment transport dynamics and the
discharge regime. They concluded that, in part due to the existence of thresholds, sub-
tle changes in climate can have significant impacts on the fluvial regime and erosion
rates.

In a landmark paper, Wolman and Miller, (1960) offered an in depth qualitative anal-
ysis of the potential role of short-term meteorological variability on landform evolution.
They pointed out the importance of the history and ordering of meteorological forcing,
stressing that the landform response to these forcings is likely controlled by several
different processes occurring over different temporal and spatial scales. Although un-
able to quantitatively assess it, they emphasized how complex the landscape response
to climate forcing can be, along with many others at the time (Beaty, 1963; Leopold,
1951; Schumm, 1973). Wolman and Miller, (1960) provided a framework to discuss and
debate the role of meteorological and hydrological variability as well as the relative im-
portance of extreme hydrological events on landscape form and evolution (Anderson
and Calver, 1977; Andrews, 1980; Turowski, 2012; Webb and Walling, 1982; Wolman
and Gerson, 1978). Wolman & Miller also make a distinction between geomorphic
work and landform modification. Geomorphic work is an absolute measure of the ef-
fect of an event on the landscape, in contrast, landform modification is rather more
nebulous. It is the idea that a large event can modify the landscape in a way that has
an ongoing effect on the landscape long after it occurred, allowing for large events to
potentially influence landscapes much more than would be suggested by the actual
amount of geomorphic work accomplished.

Kirchner et al., (2001) demonstrated the variability inherent to erosional processes
and the importance of extreme events by comparing erosion rates in the same region
estimated over different periods of time. They argued that present day erosion rates do
not match erosion rates integrated over longer periods of time because the long-term
erosion rate is the result of punctuated erosion events, with much of the erosion (up
to 90%) occurring during very rare events. In this conceptual framework, the integral
over all possible erosion events does not converge very quickly; present day erosion
rates do not integrate over a long enough period of time to capture these significant,
but rare erosion events. The result is a positive bias in measured erosion rate with the
period of integration - a sort of negative Sadler effect for measured erosion rates.

In direct contrast to this, Finnegan, Schumer, and Finnegan, (2014) provide evidence
for a negative time bias that can exist over very long periods of time - up to millions
of years. This implies the existence of very long, but rare erosion hiatuses, rather than
large but rare erosion events. Gallen et al., (2015) describe a mechanism by which
erosion rates derived from terrace dating can exhibit either a negative or a positive
bias, (Finnegan, Schumer, and Finnegan, (2014) is based on terrace dating, but Kirchner
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et al., (2001) is not). Finally, Ganti et al., (2016) puts forth a theory in which glacial
erosion might exhibit a negative time bias, but measured fluvial erosion rates should
not. Though it is actually about sedimentation and not erosion, Schumer and Jerolmack,
(2009) discuss in depth the possibility of heavy tailed distributions of erosion intensity
and hiatuses, and the opposite effects that each can have on the convergence of the
integral over erosion events and the observed time bias of measured erosion rates. This
ongoing debate highlights the importance of physically realistic models of climate and
fluvial erosion that can provide insight into these vital problems.

1.3.1 Nonlinearity

The case of nonlinearity is considerably easier to tackle quantitatively, since one does
not need to characterize the state of the system nor how it evolves through time. If
the state of the erosional system is constant, modelling the impact of thresholds or
nonlinearities on the relationship between a variable climatic forcing and the long-
term erosional response is often straight forward, amounting to a nonlinear averaging
of the distribution of instantaneous climatic forcing events. The major difficulties lie
in finding a functional form of the relationship between instantaneous climatic forcing
and erosional response for the process under consideration and finding the distribution
of instantaneous climatic events. The modelling studies come in two flavours, at-a-
station models that solve an equation describing the process at a point in space, and
landscape scale models, which solve coupled equations for the entire landscape. At-a-
station models are more common, and have provided the most useful insight to date.
These insights have been largely confirmed by landscape scale models (e.g. Crave and
Davy, 2001; Tucker and Bras, 2000)

Tucker and Bras, (2000) provide perhaps the first notable quantitative study in which
they investigate the long-term impact of daily variability of rainfall on erosion rates.
They study the impact of rainfall variability in the context of thresholds for surface
runoff generation, sediment entrainment and bedrock erosion. Additionally they allow
for nonlinear relationships between river discharge and sediment transport/bedrock
erosion. They model both at-a-station dynamics and the full landscape. For at-a-station
models they find that rainfall variability becomes more influential when thresholds
are high enough that less than half of rainfall events cause erosion and when erosion
increases more than linearly with discharge. They also find that erosion rates increase
with increasing rainfall variability under the same conditions (more nonlinearity and
higher thresholds). However, the erosion rate can decrease with increasing variability
when thresholds are very small or when erosion rate increases less than linearly with
increasing discharge. When modelling a 2D landscape, they are hampered by a lack of
computational power, and they must make storms last years instead of days, impairing
their ability to truly model short-term variability. They still expose their landscape to
variable rainfall, and argue that if the system state is constant, extending storms for
years does not change the end result. Taking this caveat into account, their at-a-station
conclusions extend to the full landscape, with the subtle point that with the landscape
in dynamic equilibrium (where the erosion rate is set by the uplift rate), it is the erosion
efficiency (mm of erosion per mm of rainfall) rather than the erosion rate that increases
with increasing variability. As a result, landscapes subject to higher variability rainfall
exhibit gentler slopes and higher drainage density (because they assume thresholds to
be relatively large).



8 introduction

A contemporary study to Tucker and Bras, (2000), Crave and Davy, (2001) also con-
duct a quantitative analysis into the impact of variable discharge on long-term erosion
rates. They do not consider erosion thresholds, only nonlinearity between the climatic
forcing (discharge) and erosion. Rather they focus on the establishment of the precipi-
ton approach to landscape evolution modelling, a cellular automata method which
allows them to take variability of discharge into account with minimal computational
demands. They derive an inverse gamma distribution for discharge with a power law
tail that is similar to that used in several later studies (DiBiase and Whipple, 2011;
Lague, 2014; Lague, Hovius, and Davy, 2005; Molnar, 2001; Molnar et al., 2006). The
resulting model is a full 2D landscape evolution model that delivers similar results
to Tucker and Bras, (2000). Higher variability discharge generally leads to increased
erosion efficiency, gentler landscapes and higher drainage densities.

Molnar, (2001) describe a similar analysis using a power law distribution for floods
rather than an exponential one, but reach similar conclusions to Tucker and Bras, (2000).
They also pointed out that due to the much observed negative correlation between
the mean and variability of floods, a climate shift towards aridity could potentially
increase variability enough to increase river incision rates. However, in a later study
using empirical relationships between the mean and variability of discharge from the
US, Molnar et al., (2006) conclude that this is only possible under specific conditions
where a humid river basin with high erosion thresholds becomes more arid.

Snyder et al., (2003) applied the model developed by Tucker and Bras, (2000) and
Tucker, (2004) using parameters constrained by observations. They show that account-
ing for short-term climatic variability and erosion leads to a nonlinear relationship
between erosion rate and channel steepness index (a measure of the steepness of a
river channel normalized for contributing area). Snyder et al., (2003) are careful to
point that variability is not the only explanation for a nonlinear relationship between
channel steepness and erosion rate. However, because channel steepness determines
the overall elevation of a landscape, it has a potentially important influence of vari-
ability on the orogen scale. Many landscapes exhibit nonlinear relationships between
erosion rate and channel steepness, which implies that meteorological variability plays
an important role (DiBiase and Whipple, 2011; Lague, 2014; Ouimet, Whipple, and
Granger, 2009).

Tucker, (2004) introduced an analytical solution for their models (including bedrock
incision via the stream power model) which were obtained by using a slightly modified
functional relationship between daily discharge and erosion. They demonstrated that
erosion thresholds (which demand short-term variability be treated explicitly) have
a major influence on landscape morphology and slope-area scaling as suggested by
Snyder et al., (2003). They also reiterated the point made in Snyder et al., (2003) that
channel steepness is expected to be a nonlinear function of erosion rate.

Lague, Hovius, and Davy, (2005) offer analytical solutions for the long-term erosion
rate due to bedrock incision using the stream power model based on the same modifica-
tion to the functional relationship between daily discharge and erosion used by Tucker,
(2004). However, instead of using the Poisson model (exponential distribution of storm
depths, durations and inter-arrival times), they use an inverse gamma distribution for
daily discharge as derived by Crave and Davy, (2001), which has a power law tail for
large storm magnitudes, and tends to match observed distributions of daily discharge
better (DiBiase and Whipple, 2011; Lague, Hovius, and Davy, 2005). Despite using a
different probability distribution for discharge, they draw nearly identical conclusions
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about the influence of short-term variability and erosion thresholds on long-term ero-
sion rates. Tucker and Bras, (2000) showed that the significance of short-term variability
depends on the magnitude of the erosion thresholds. Lague, Hovius, and Davy, (2005)
take this a step further, and use the distribution of daily discharge to estimate the re-
turn time of floods that exceed an erosion threshold of a given magnitude. Although
the method they use to calculate flood return times is potentially flawed, they are still
able to define different regimes based on the frequency of erosive floods. They show
that when return times are short, short-term variability should not impact the channel
steepness. They point out that, based on the observed frequency of erosion in rapidly
eroding bedrock rivers (where their model assumptions are the most valid), variability
should not have an large influence on the long river profile. However, they show that
when return times are long, channel steepness should be a power law function of the
long-term erosion rate with an exponent that depends on the short-term variability of
discharge. This predicts that short-term variability will determine the scaling of chan-
nel steepness with long-term erosion rate. Short return times are associated with fast
erosion rates or small erosion thresholds, and long return times are associated with
slow erosion rates and large erosion thresholds, so these conclusions are in line with
previous work. Finally, by defining variability simply with a single parameter that can
easily be measured in real landscapes, they helped popularize the concept of short-
term discharge variability. Their measure of variability (k) has been incorporated into
several subsequent empirical studies (Carretier et al., 2013; DiBiase and Whipple, 2011;
Rossi, Whipple, and Vivoni, 2016).

In an analysis similar to that of Snyder et al., (2003), DiBiase and Whipple, (2011) ap-
ply the models of Tucker, (2004) and Lague, Hovius, and Davy, (2005) (i.e., a Poisson
model distribution and an inverse gamma distribution, respectively) to a case study
in the San Gabriel Mountains. In this case, DiBiase and Whipple, (2011) show again
that channel steepness scales as a power law of erosion rate in a real landscape. They
find that Lague’s model fits the observed scaling better than Tucker’s. DiBiase and
Whipple, (2011) clarified the conclusions of Lague, Hovius, and Davy, (2005) by defin-
ing three regimes based on the ratio of long-term erosion rate to erosion threshold.
Regime one occurs when the ratio is small, implying that the erosion threshold is large
or the erosion rate is small (or the return time of erosive events is long). It is in regime
one that short-term discharge variability will be important in determining the channel
steepness. It is also here that the erosion efficiency increases with increasing variability.
Regime three occurs when the ratio of erosion rate to erosion threshold is large. This
implies that erosion rates are high or that thresholds are very small. Here the discharge
variability does not influence channel steepness and the erosion efficiency decreases
with increasing variability. Regime two is a transitional regime between the other two
regimes and exhibits a mixture of features of both regime one and three. These three
regimes bring together the general results of all previous studies, describing how short-
term discharge variability should theoretically control the scaling of channel steepness
with erosion rate depending on the relative importance of the erosion thresholds. Their
analysis clarifies points made earlier that variability matters when thresholds are large
(Lague, Hovius, and Davy, 2005; Tucker, 2004; Tucker and Bras, 2000). By using an em-
pirical relationship between the mean and short-term variability of discharge, DiBiase
and Whipple, (2011) demonstrate that it is possible for rivers to become more erosive
as they become more arid, in contrast to the conclusions of Molnar et al., (2006). At the
very least, they show that is under a wide range of conditions, increasing the mean dis-
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charge should not appreciably increase the long-term erosion rate due to the associated
drop in discharge variability.

In a significant review of the state of the stream power model, Lague, (2014) focused
on the importance of taking into account the variability of meteorological forcing and
erosion thresholds. Lague, (2014) presented a large data set demonstrating that the
steepness index - erosion rate relationship is a power law with an exponent less than
one in many landscapes. This is possible evidence of the importance of variability and
erosion thresholds. The review also emphasized that the observed nonlinearity of the
stream power model calibrated to real landscapes can be instead described with a lin-
ear stream power model that allows for daily discharge variability. In addition, changes
in the nonlinearity of the stream power model during transient adjustment of the land-
scape can also be explained by accounting for variability as well as dynamic river
width. This all makes a powerful argument for the need to understand the stochastic
nature of meteorological forcing and the role that erosion thresholds play.

1.3.2 General conclusions of nonlinear models

The studies described above make up a majority of the quantitative literature on the
role of short-term climatic variability in determining long-term erosion rates. The uni-
formity of their conclusions is striking, and the three regimes proposed by DiBiase
and Whipple, (2011) in response to Lague, Hovius, and Davy, (2005) provide a good
framework for understanding the role of short-term discharge variability in real land-
scapes. Subsequent quantitative studies since Tucker and Bras, (2000) are important
contributions that explore the problem more deeply from different perspectives and
with different distributions of forcing and process laws. However, they do not find fun-
damentally different results from Tucker and Bras, (2000). The reason all these studies
find such similar results is because the process law used does not have a significant
influence on the role of variability and erosion thresholds.

Chapter 5 finds that there is a critical value for the erosion threshold, x

c

, above
which thresholds can be considered large. When the threshold is above this critical
value variability is important, and higher variability increases erosion efficiency. When
the threshold is smaller than the critical value, variability is less important, and erosion
efficiency can either be increased or decreased by increasing variability. This critical
value is reached when the threshold is not exceeded by a climatic event of mean mag-
nitude. This critical threshold value is related to that found by Tucker and Bras, (2000)
as well as the critical return time in Lague, Hovius, and Davy, (2005), but is relatively
independent of the process law used. It can also be shown that the critical threshold
value is the boundary between regime one and regime three as defined by DiBiase and
Whipple, (2011).

1.3.3 State dependency

Chapter 5 shows that the role of variability and thresholds is process-law independent.
However, in order to calculate absolute rates, rather than the qualitative effect of vari-
ability, the process law must be known. This is where the concept of state dependency
becomes important. Data sets of instantaneous forcing and erosional response (e.g. Tur-
owski, 2010) strongly suggest that the functional relationship between climatic forcing
and erosional response for bed-load transport, and therefore fluvial erosion, cannot be
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represented with one-to-one functions. The tools and cover model of fluvial erosion
dictates that erosion rate is related to both the instantaneous discharge, as well as the
state of the channel, in terms of hydraulic conditions and sediment supply (Sklar and
Dietrich, 2004). This points to state-dependency as a major missing piece from the pre-
ceding studies. There is a good reason for this, state dependent models tend to be more
challenging to construct and understand. While simple analytical solutions have been
found that address nonlinearity and short-term variability in climatic forcing (Lague,
2014; Lague, Hovius, and Davy, 2005; Tucker, 2004, chapter 3), similar solutions are
much less forthcoming in the case of state dependency.

State dependency has been discussed qualitatively more frequently than quantita-
tively, as mentioned previously. In particular, Schumm, (1973, 1979) consider some-
thing that they refer to as geomorphic thresholds. They cite several common examples
of erosion thresholds, but consider how the state of the system evolves over time such
that these thresholds are exceeded by an external forcing rather than how climatic
events trigger the thresholds. In this way they bring together the concept of erosion
thresholds and state dependency. They describes landscapes whose states are evolv-
ing towards erosion thresholds (e.g. steepening slopes due to uplift and thickening
soils due to weathering) that are then triggered by large climatic events. Though the
entire landscape responds to the instantaneous forcing, since different sections are in
different states that depend on their histories, the response across the landscape is
not uniform. They recognize the shortcomings of process based approaches that can
connect instantaneous forcings and responses but are unable to take into account the
history and evolution of the state of the landscape.

An early, and exceptional, quantitative treatment of state dependency can be found
in Benda and Dunne, (1997a,b), which address state dependency in the context of short-
term climatic variability in a series of studies modelling the evolution of the Oregon
Coast range. By explicitly modelling the impact of climatic variability on the rates of
soil accumulation, shallow land sliding and sediment transport using simple laws for
each, they create a model with seemingly random response to climatic forcing at any
particular time and place. The local landscape response to storms was heterogenous,
depending heavily on the evolution of each part of the landscape up until that point,
as a result the measured rates of different processes varied from place to place and
time to time, even though the mean climatic forcing was constant. The state depen-
dency aspect of the model arose naturally from a set of simple interacting laws. This
demonstrates how a few simple processes characterizing the state of the system can
lead to heterogenous responses to the same climatic forcing. Despite this complexity,
they are able to draw general conclusions about what sort of conditions can be gen-
erally expected in certain parts of the landscape. In doing so they show how even in
a landscape dominated by contingency, patterns emerge and can be understood. One
issue with the study is that the model was constructed using very specific knowledge
about the particular landscape carefully collected in the field. As a result it is difficult
to generalize the results to other landscapes.

Two critical components of the work of Benda and Dunne, (1997a,b) were the role
of vegetation in stabilizing slopes, and the episodic and unsteady delivery of sediment
to the channel. These two controls on the state of the erosional system are frequent
themes. Vegetation in particular is often used to create state dependent erosion models
for hillslopes and small channels.
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For example, Langbein and Schumm, (1958) show that vegetation is a state variable
that controls the sediment yield for a given mean annual precipitation rate. Istanbullu-
oglu and Bras, (2006a) find the same relationship with a stochastic model of landscape
evolution that explicitly models vegetation as a dynamic state variable. The vegetation
influences the landscape by increasing the erosion threshold for fluvial erosion. How-
ever, vegetation is also destroyed by fluvial erosion. In this manner, the erosion rate at a
point in the landscape is not only a function of the slope steepness and river discharge,
but also the current state of vegetation at that point. This state reflects the history of
plant growth, fluvial discharge and plant destruction. The resulting landscapes are vis-
ibly changed by the presence of vegetation at steady state, and the random temporal
fluctuations are also changed in character by the influence of vegetation. In particu-
lar, the slope-area scaling is fundamentally changed, a result found in several similar
studies (Collins, Bras, and Tucker, 2004; Istanbulluoglu and Bras, 2005).

Lague, (2010) analyze a model of sediment transport and bedrock erosion with state
dependent sediment cover to understand the impact of cover and stochastic sediment
flux in a stochastic-threshold context of fluvial erosion. This study is the most in line
with the nonlinear law models in that it attempts to connect short-term variability to
long-term erosion rates. It succeeds in deriving a functional description for the long-
term erosion rate. It is notable that the long-term law is quite unrelated to the law
describing instantaneous processes. The study also succeeds in conveying how quickly
state dependent models become very complex, and the difficulty in upscaling process
laws to geomorphic time if state dependency is to be taken into account.

In chapters 3 and 4, we take advantage of a theoretical framework that allows for
a state-dependent hydrological response to rainfall. This framework, first derived in
Rodriguez-Iturbe et al., (1999), is a rare case where state-dependancy can be accounted
for in a set of analytical equations. The result is a powerful tool that has been a boon
to the fields of ecology, hydrology, and now potentially, geomorphology. It can serve
as an example of how state-dependent responses to climatic forcing can be included in
theoretical treatments of fluvial erosion.

In order to make landscape evolution models more predictive and produce testable
hypotheses on the interactions between climate, erosion and tectonics, it is important
to unravel the complexity of the relationship between climate and erosion. This prob-
lem has been approached with some success with statistical methods that aim to un-
derstand the temporal complexity posed by meteorological variability (e.g Crave and
Davy, 2001; DiBiase and Whipple, 2011; Huang and Niemann, 2006a; Lague, 2014;
Lague, Hovius, and Davy, 2005; Molnar, 2001; Molnar et al., 2006; Rossi, Whipple, and
Vivoni, 2016; Snyder et al., 2003; Tucker, 2004; Tucker and Bras, 2000). Focusing on
erosion over meteorological timescales may seem far removed from tectonics, and its
potential interactions with climate. However, it has been clearly shown, and in par-
ticular for fluvial processes crucial in linking climate with tectonics, that the impact
of thresholds and meteorological variability must be taken into account in order to
properly understand how climate drives erosion over long periods of time (DiBiase
and Whipple, 2011; Lague, 2014; Lague, Hovius, and Davy, 2005; Snyder et al., 2003;
Tucker, 2004; Tucker and Bras, 2000). Much of this work pertains to fluvial erosion,
however, several aspects of this analysis are more generally applicable, with implica-
tions for other erosion processes.

These theories have mostly been developed considering the response of the land-
scape at a single point in space. When spatial dimensions are included, and full 2D
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landscapes driven by stochastic meteorology are modeled, the result is far more com-
plex. Different parts of the landscape respond to simple climate changes differently,
leading to diachronous erosion and deposition events resulting from the temporal vari-
ability and spatial connectivity inherent in landscapes (Balen, Busschers, and Tucker,
2010a; Lague, 2010; Tucker and Slingerland, 1997). In these models, it is difficult to
identify the causes of various effects, due to the significant role of history in determin-
ing how the landscape responds to a meteorological event (Benda and Dunne, 1997a,b).
These modeling results match observations to the extent that they verify that landscape
response to climate and tectonics is complicated and difficult to interpret (Blum and
Valastro, 1989; Schumm, 1973). This helps to highlight the considerable temporal and
spatial complexity involved in landscape evolution.

1.4 summary

When I arrived in Grenoble to start my PhD in January 2014, I was, by chance, alone
for the first week in my advisor’s office. He had told me the topic of my thesis should
be related to climate, erosion and tectonics in the Himalaya, probably some modelling
with the stream power model and some sort of climate model. By good fortune an
excellent review on the stream power model had just come out (Lague, 2014), and it
was the first paper I read. I spent the week undisturbed, learning the background and
state-of-the-art of the stream power model. I had the impression going in that rainfall
drives fluvial erosion. So I was surprised to see that it is discharge, not rainfall, that is
represented in the equations. I could conceptualize integrating rainfall as a boundary
condition in a landscape evolution model, but not discharge. I resolved to connect the
two, and rewrite the stream power model in terms of rainfall without ignoring hydrol-
ogy. The framework of Lague, Hovius, and Davy, (2005) and Tucker and Bras, (2000)
seemed the perfect way to achieve this. The chapters that follow document this at-
tempt, and as such represent a natural progression deeper into the problem of climatic
variability and fluvial erosion.

1.4.1 Measurement techniques

I started with an analysis of the variability of daily rainfall in the Himalayan oro-
gen. The choice to investigate meteorological and hydrological variability on daily
timescales was a pragmatic choice. The investigation of variability often lends itself
to a statistical treatment, and the ability to assume statistical independence between
the events under investigation is a powerful tool. At a point, rainfall is often assumed
to be independent on a daily timescale. This is also important in assuring indepen-
dence between runoff-producing storms in the hydrological model set out in chapter
3. Clearly, considering daily rainfall and discharge rates will underestimate peak rates,
which occur over a period of minutes or hours. A shorter timescale that more accurately
captures the highest rates would be superior. However, this may break the assumption
of independence, which is beyond the abilities of myself or the theories that I make
use of. Further, data sets of rainfall or river discharge measurements are often given
with a frequency of one measurement per day. The use of a daily timescale is a com-
promise between the demands of the problem and currently available theory and data.
The problem of sub-daily variability remains for future work.
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The Himalaya, with a dramatic rainfall gradient from south to north, as well as
highly active erosion processes throughout the orogen, but a minimum of glacial ero-
sion, is a natural laboratory to investigate the relationship between fluvial erosion and
climate. However, in the end I realized that because of the consistent rainfall during
the monsoon season, the rainfall, and in particular, fluvial discharge variability is ex-
ceptionally low in this region. This makes it less than ideal to study variability in
particular, and after the study of rainfall, I did not pursue study in the region further.
Regardless, valuable things were learned about rainfall variability.

This work prompted me to explore the fields of meteorology and probability. For
guidance, I reached out to Anne-Catherine Favre. She introduced me to applied prob-
ability in the geosciences and was vital in ensuring the high quality of the work we
did together. The most important outcome of chapter 2 was the development of a
tool for comprehensively measuring rainfall variability. In the field of meteorology this
is achieved by fitting a simple function to some form of the probability distribution
of daily rainfall. Commonly, the function has a single parameter which influences its
shape. This parameter then serves as a measure of variability. In chapter 2 we fit a
gamma distribution to the observed frequency magnitude distribution of daily rain-
fall. In this case the shape parameter of the gamma distribution acts as a measure of
variability in storm size. A second measure of variability is the frequency with which
rainfall occurs, easily measured as the fraction between days with rainfall over total
number of days. These two metrics of variability serve two purposes. First, they pro-
vide a mean-independent measure of variability that allows for accurate comparison
from one data set or region to another. Second, in conjunction with the mean intensity
of daily rainfall (mean of rainfall on days when it rains), these two metrics are suffi-
cient to reconstruct the probability density function (pdf) of daily rainfall. This allows
for calculation of any relevant metric, such as the P99 of daily rainfall, or the expected
maximum annual storm size. These three numbers can also be used to construct a sim-
ple rainfall generator. The end result is a tool that can objectively measure variability,
and provides a method for integration of rainfall variability into landscape evolution
models.

In developing this tool, we tested several functions, such as the gamma function,
the exponential function and the stretched exponential function. We found the gamma
function worked best in the region we investigated, though that may not always be the
case. We also tested several fitting techniques, including the method of moments, the
maximum likelihood estimation method, the expectation maximization method and a
hybrid of the maximum likelihood and expectation maximization methods. In the end,
the maximum likelihood estimation (MLE) was superior because it performed reason-
ably well, and, critically, always returned physically reasonable parameter estimates.
In addition, we could use the MLE method to estimate the statistical significance of the
parameter estimation. The MLE method, a standard parameter estimation technique,
works by finding a maximum on an n-dimensional surface that represents the likeli-
hood of obtaining the observed sample given an assumed ‘true’ distribution (n = the
number of parameters of ‘true’ distribution). The statistical significance of the parame-
ter estimation is found using the Fisher information, which is an approximation of the
second derivative of the likelihood surface (i.e. the curvature). When the curvature is
large, the fit is considered significant.

Sensitivity tests predict that when the observed rainfall is gamma distributed, a sam-
ple size of several tens of measurements is large enough to obtain a good parameter
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estimation. As a result, it is theoretically possible to measure variability during a single
monsoon season. This tool has proved useful in understanding long-term rainfall pat-
terns and erosion rates (chapter 2) and may also be useful in understanding seasonal
rainfall and erosion patterns.

1.4.2 Realistic models

The purpose of measuring rainfall variability was to relate it to discharge variability,
and understand the relationship between the two. This lead me into the field of hy-
drology, and a collaboration with Gianluca Botter. Chapters 3 and 4 are the result of
our work together. In these chapters, we integrate a model of stochastic hydrology
into a stream power model. The stochastic hydrology model describes the relationship
between the probability distribution of daily rainfall and the probability distribution
of daily discharge in a manner that is well suited for use in the current stochastic-
threshold stream power theory. This work has been useful for understanding the re-
sponse of stream power erosion to rainfall explicitly. It will be integral in the construc-
tion of a model of landscape evolution with realistic climatic forcing.

As a minimalist statistical model, the hydrological model is approximate. However,
it has been well-studied, and often does well when tested empirically (e.g. Basso,
Schirmer, and Botter, 2015; Ceola et al., 2010; Müller, Dralle, and Thompson, 2014).
This work is also important in pointing to several specific controls on the relationship
between rainfall and fluvial erosion. For example, the theory highlights evapotranspi-
ration as an important control on discharge variability. Coincidentally, Rossi, Whipple,
and Vivoni, (2016), without the guidance of this theory, demonstrate with a compre-
hensive data set, the importance of evapotranspiration for discharge variability and
landscape evolution. Our work also points to the recession exponent b and the hydro-
logic timescale ⌧ as important controls on fluvial erosion. These hydrological parame-
ters, though well studied in the field of hydrology (e.g. Berghuijs et al., 2014; Bogaart,
Lyon, and Dekker, 2016; Brutsaert and Nieber, 1977), have been ignored in landscape
evolution.

Although the stochastic hydrology model of Botter et al., (2007, 2009) was already
well suited for integration into the stochastic-threshold framework of Lague, (2014) and
Lague, Hovius, and Davy, (2005), there was still work to bring the two theories together.
The most important contributions that I personally made in this regard were, first, to
rederive the theory from Lague, Hovius, and Davy, (2005) in a slightly different manner.
Instead of taking an integral of daily discharge weighted by the erosional impact of
each discharge magnitude, I first explicitly derive the distribution of daily erosion, and
then integrate over it. This allows me to calculate separately the effect of events not
exceeding the erosion threshold and the effect of the threshold on events that do exceed
it. I made an effort to ensure the theoretical soundness of the derivation. The fact that
I obtain the exact equations of Lague, Hovius, and Davy, (2005) when I make the
same assumptions points to the soundness of both derivations. A second contribution
I made was to verify the fact that the gamma distribution and the inverse gamma
distribution were definitely the asymptotic solutions of the main pdf of discharge when
the recession exponent, b is one and two respectively, and find the approximation for
the normalization coefficient C for b 6= 1, 2 as presented in the appendix of chapter 3.
In the course of this I also developed a robust code base for producing the cumulative
density function, probability density function, survivor function, and random samples
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for a wide range of b values, quickly and with high precision. Gianluca Botter and
I plan to publish this code to allow others to take advantage of it. I made a third
contribution by using the work of Dralle, Karst, and Thompson, (2015) as a justification
to rewrite the pdf of daily discharge so that the shape parameter was constant for all
values of b. This is the basis of the coefficient of variability that is critical to chapter
4. Botter et al., (2013) had already recognized the value of the coefficient of variability
when b = 1, but this work helped to extend the concept to other values of b.

1.4.3 General theory

Throughout the course of my work, I read the literature concerning climatic variability
and fluvial erosion carefully. In particular, I became familiar with the small collection
of quantitative studies accounting for the nonlinearity in the erosional response to cli-
matic forcing (Crave and Davy, 2001; DiBiase and Whipple, 2011; Huang and Niemann,
2006b; Lague, 2014; Lague, Hovius, and Davy, 2005; Molnar, 2001; Molnar et al., 2006;
Snyder et al., 2003; Tucker, 2004; Tucker and Bras, 2000). It was striking how consistent
the theoretical results were, despite the use of different probability distributions to de-
scribe climatic forcing and different erosion process laws. This lead me to develop a
more general model to understand this consistency. The result is described in chapter
5. This chapter is useful in allowing the results from previous studies to be reinter-
preted as general rather than specific. Their conclusion can be more widely applied as
a general rule, to understand approximately the erosional response of fluvial systems
to short-term climatic variability. This work also strengthens the results of the previ-
ous chapters. Even if there are significant inaccuracies in derived relationship between
rainfall and fluvial erosion presented here and elsewhere (which there almost certainly
are), the qualitative results and conclusions drawn from the work are more likely to be
correct in light of chapter 5. Finally, it points to a better understanding of the fluvial
erosion threshold, and controls on the threshold as a worthwhile endeavour.
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R A I N FA L L VA R I A B I L I T Y I N T H E H I M A L AYA N O R O G E N

2.1 abstract

Over the last 15 years, it has been established that long-term fluvial erosion rates are
sensitive not just to the mean annual river runoff, but also the short-term (daily) vari-
ability of runoff, with more erosion occurring in rivers characterized by high variability
runoff. Though rainfall variability is not the only control on runoff variability, current
research indicates that it at least partly determines runoff variability. This implies that
high variability rainfall should increase or, at least, impact fluvial erosion rates. Further,
fluvial erosion is not the only erosion process influenced by rainfall variability. Land
sliding, for example, should also be more efficient under a high variability rainfall
regime.

In light of this, we have characterized the variability of daily rainfall over the Hi-
malayan orogen using high spatial and temporal resolution rainfall data sets. We find
significant variations in rainfall variability over the Himalayan orogen. By taking into
account variability of rainfall in addition to mean rainfall rate, we find a pattern of
rainfall that, from a geomorphological perspective, is significantly different from mean
rainfall rate alone. Though we cannot exclude the possibility that modern climate is
not representative of past climate, the observed rainfall patterns are caused by condi-
tions (high topography and the monsoon) that are thought to have existed for at least
the last several million years. Using these findings we also demonstrate that short-term
rainfall variability may help explain observed short and long-term erosion rates in the
Himalayan orogen.

2.2 introduction

Erosion rates are measured in years or thousands of years, in contrast, erosion events
often occur over hours, taking place discretely and episodically until they sum in great
numbers over extended periods of time to yield measured erosion rates. This is a
common feature of geomorphic systems, where the average rates related to long-term
landscape evolution are disconnected from the rapid processes we observe. Reconcil-
ing these two timescales with one another is key to understanding how climate and
tectonics interact with each other and remains a formidable challenge.

The discrete and episodic nature of erosion events can often be directly attributed to
the intermittent, variable nature of rainfall, one of the principle drivers of erosion. The
vital role that rainfall plays in shaping landscapes is unquestioned; the vast majority
of erosive processes require or are dramatically enhanced by the presence of water.
Implicit in this comparison is the assumption that the details of rainfall, such as storm
size and frequency, are unimportant, that more water yields more erosion. Many have
concluded that the observed erosion rates are driven by uplift rates rather than climate
(e.g. Burbank et al., 2003; Godard et al., 2014). This is expected if the Himalayas are in
dynamic equilibrium (uplift rate ⇡ erosion rate), which they are thought to be (Hodges,
Hurtado, and Whipple, 2001). Still, the tectonic control on erosion rates should cause
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the landscape morphology to adapt to the available climatic forcing - e.g. hillslopes
will steepen where rainfall rates are low. The joint impact of climatic forcing and land-
scape form are taken into account by specific stream power, which estimates fluvial
erosion rates as proportional to shear stress applied on the river bed. The shear stress
is a function of river slope, river discharge and channel shape. Erosion rate can be
increased with steeper channels, narrow channels, or higher river discharge. By taking
into account slope steepness and channel width, the specific stream power should be a
better match to the long-term erosion rates than rainfall rate. However, specific stream
power also decreases across the topographic divide, albeit less rapidly than the mean
rainfall rate (Burbank et al., 2003).

This leads to several possible conclusions: 1) current theories are mistaken and cli-
mate is not important in determining erosion rates, or 2) climate is important but the
modern climate is a poor representation of the past climate that produced the observed
erosion rates, or finally, 3) climate is important and the modern climate is representa-
tive but mean rainfall rates and specific stream power based on mean discharge rates
do not accurately characterize the active erosion processes, and are therefore a poor
predictor of erosion rates.

It is not possible to rule out that the modern climate is a poor representation of past
climate. However, the current climatic regime results from moisture laden air brought
by the Indian monsoon colliding with high relief topography (the southern edge of
the Tibetan plateau) (Bookhagen and Burbank, 2006). Both the plateau and the Indian
monsoon are estimated to have existed in their current form for the last 8 million
years (Zhisheng et al., 2001). This implies that the current climate should be roughly
representative of climatic forcing in the region over the last few million years, and lends
credence to the idea that the Himalayan orogen is in dynamic equilibrium. Assuming
modern climate to be representative, we show that the observed erosion rates can be
consistent with modern climate if key erosion processes active in the orogen, such as
fluvial erosion and landsliding, do not depend solely on the mean rainfall rate, but
are also sensitive to the variability of forcing. This is accomplished by characterizing
the variability of daily rainfall in the Himalayan orogen using high resolution gridded
data sets.

There are several established methods for characterizing the daily variability of rain-
fall. Extreme rainfall analyses describe the most intense days of rainfall, their frequency
of occurrence and magnitude. This has obvious value to human society, and has been
applied to the Himalayan orogen (e.g. Joshi et al., 2014; Bharti et al., 2016), where in-
tense monsoon storms can cause significant economic damage (Thayyen et al., 2013).
Here, we are not attempting an extreme value assessment of daily rainfall. Theoreti-
cal work accounting for erosion thresholds and nonlinearities argues that it is not just
extreme events that are potentially significant, but also the distribution of moderate
magnitude events (e.g. annual maximum storm or even smaller, depending on the ero-
sion threshold) (Wolman and Miller, 1960; Tucker and Bras, 2000; Snyder et al., 2003;
Tucker, 2004; Lague, Hovius, and Davy, 2005; Lague, 2014). Also, we do not wish to
estimate future rainfall statistics, but rather to characterize the observed distribution
of daily rainfall, and do so as succinctly as possible. Characterizing variability by fit-
ting a function to some empirical form of the distribution of daily rainfall is another
established technique. Whether the function is fit to the empirical frequency distribu-
tion (e.g. May, 2004b; Suhaila et al., 2011), the normalized rainfall curve (e.g. Burgueño
et al., 2010), or the concentration index (e.g. Martin-Vide, 2004; Caloiero, 2014; Jiang,
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Wang, and Cao, 2016) the result is the same: the actual form of the distribution of daily
rainfall variability is summarized by a function with just a few parameters. In order to
keep in line with previous work on the importance of climatic variability on long-term
landscape evolution (Tucker and Bras, 2000; Tucker, 2004; Lague, Hovius, and Davy,
2005; Rossi, Whipple, and Vivoni, 2016), we fit a mixture of gamma distributions to the
empirical frequency distribution of daily rainfall.

In this study we make use of two high spatial and temporal resolution gridded
rainfall data sets. Several studies have characterized the daily variability of rainfall us-
ing high spatial resolution gridded data sets (e.g. Burgueño et al., 2010; Jiang, Wang,
and Cao, 2016), however, not over the Himalayan orogen. Several others describe the
distribution of Indian rainfall using similar methods to those employed in this study
(Mooley, 1973; May, 2004a; May, 2004b). However, they make use of data sets with low
spatial resolution and tend to focus on rainfall patterns across the Indian subcontinent
rather than the orogen. Prakash, Mitra, and Pai, (2015) compute the coefficient of varia-
tion of monsoon rainfall, which is closely related to daily variability, using TMPA and
other high resolution gridded data sets, however by restricting the analysis to India,
they leave out much of the Himalayan orogen. Finally, there are several studies com-
paring the frequency-magnitude distribution of daily rainfall to erosion patterns in the
Himalayas (e.g. Craddock et al., 2007; Bookhagen and Burbank, 2010; Wulf, Bookha-
gen, and Scherler, 2010; Wulf, Bookhagen, and Scherler, 2012). However, these studies
do so only from the perspective of extreme events and often only on the scale of in-
dividual valleys. The previous studies of daily variability of Indian and Himalayan
rainfall are useful to to corroborate our results where the different data sets overlap.
However, they do not allow for a careful assessment of daily variability over the entire
Himalayan orogen, which is the goal of this study.

First, in section 2.1, we describe the gridded data sets that we use in our analysis
(APHRODITE and TMPA) (section 2.1) followed by the statistical model of rainfall that
we use in section 2.2, and the methods applied to fit the model to the data in section 2.3.
Then we show the model parameter estimates obtained and compare the two rainfall
data sets in section 3. Finally, in section 4, we discuss the pattern of rainfall variability
in the Himalayan orogen and the implications for measured erosion rates.

2.3 data and methods

2.3.1 Data

In recent years several rainfall data sets spanning the entire Himalayan orogen have
become available, ranging from moderate to high temporal and spatial resolution. We
use two, described below, that are known to perform well in the Himalayan orogen
(Andermann, Bonnet, and Gloaguen, 2011).

2.3.1.1 APHRODITE

Asian rainfall Highly Resolved Observational Data Integration Towards Evaluation of
Water Resources, Monsoon Asia, Version 11 - APHRO_MA_025deg_V1101R2 (referred
to here as APHRODITE) is a distance weighted interpolation of daily rainfall depths
from between 5,000 and 12,000 ground based stations (depending on the time period)
spread throughout Asia over the period from 1951 to 2007. It is made available by the
Research Institute for Humanity and Nature (RIHN) Japan and the Meteorological Re-
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search Institute of Japan Meteorological Agency (MRI/JMA). The data set has a spatial
resolution of 0.25

� x 0.25

�, and a temporal resolution of one day (Yatagai et al., 2012).
Despite making use of an orographic correction algorithm, there are concerns with the
accuracy of the data set due to the relatively small number of stations it is interpolated
from in the orogen. Particularly outside of Nepal and north of the main topographic di-
vide. Andermann, Bonnet, and Gloaguen, (2011) tested the accuracy of this data set in
the Himalayan orogen and found it to be good relative to other large scale rainfall data
sets available in the region. However, their analysis is potentially problematic because
APHRODITE incorporates nearly all available station data, making it difficult to find
independent station time series against which to test the accuracy of APHRODITE.

2.3.1.2 TMPA

Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA)
- 3B42 V7 (TMPA) is a remotely sensed, gauge-adjusted, precipitation data set com-
posed of measurements from several space borne instruments (Huffman et al., 2007)
covering the globe from 50

�N to 50

�S and spanning from the beginning of 1998 to mid
2015 available at 3 hour, daily and monthly resolution. The data set integrates infrared
and microwave observations from multiple satellites as well as ground based gauge
data (Prakash, Mitra, and Pai, 2015). We use the daily version of the product from 1998

to the end of 2013.
TMPA is known to have difficulties properly estimating the magnitude of rainfall in

complex, steep terrain, though the new version V7 has improved in this regard (Bharti
et al., 2016). Bharti et al., (2016) also find that TMPA V7 does a good job estimating
the frequency of large storms, but has difficulty accurately measuring their magnitude,
commonly overestimating the storm magnitude below 3000 m and underestimating
above 3000 m. In general it is also known to overestimate rainfall magnitudes in the
Indian subcontinent (e.g. Prakash et al., 2015). Despite these shortcomings TMPA out-
performs all other available multisatellite products in the region (Prakash et al., 2014).

2.3.1.3 Quality of the data sets

While recognizing that both gridded data sets have potential issues, they are also the
best currently available with a daily resolution (Andermann, Bonnet, and Gloaguen,
2011; Prakash et al., 2014). In addition their respective weaknesses and strengths are
complementary. APHRODITE is interpolated from accurate ground data, but suffers
from a lack of stations. TMPA consists of measurements with a very high spatial res-
olution, but suffers from a lack of accuracy in the orogen. To mitigate the potential
weaknesses of these data sets, we restrict our interpretations to features observed in
both data sets and on a scale larger than the scale of the data set resolution.

2.3.2 Statistical model

We define here the distribution of daily rainfall intensity to be the distribution of daily
rainfall depths on days with rainfall exceeding 0.5 mm (wet days). The mean of this
statistical distribution is referred to as the mean daily rainfall intensity (↵). The mean
rainfall rate including days with less than 0.5 mm of rainfall (wet days and dry days) is
referred as the daily rainfall amount (E[P]). The relationship between the two means is
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Figure 1: Map of the region of interest. Shown in b), c) and d) are examples of fitting the
empirical distribution (black points). The plots correspond to the three black stars in
a). The full pdf is shown as a solid line, the monsoon season pdf as a dashed line, and
the dry season as a dash-dotted line. Note the fundamental change in shape of the
monsoon pdf from b) the southern band of high magnitude rainfall to c) the northern
band, and d) the Tibetan plateau. The approximate location of the topographic divide
is shown by the smoothed 3,000, 4,000 and 5,000 meter contour lines.

controlled by the ratio of wet days to the total number of days (�) such that E[P] = �↵.
We refer to � as the mean wet day frequency.

In order to describe the distribution of daily rainfall intensity (ignoring days with
less than 0.50 mm of precipitation) we use a pdf that can be fit to the empirical distribu-
tion. We searched for a model that is both simple (only a few, physically interpretable
parameters) and flexible (it can fit well the empirical distribution over a wide range
of climates). With only two parameters, the gamma distribution can fit the empirical
distribution from markedly different climates. It also has a long history of application
in modelling daily rainfall in general (e.g. Eagleson, 1978; Srikanthan and McMahon,
2001, and references therein), and in the Indian monsoon region specifically [e.g. Moo-
ley, 1973; Stephenson et al., 1999, and references therein; May, 2004b, and references
therein; May, 2004a; Mueller and Thompson, 2013].

Due to the marked difference in daily rainfall intensity between the monsoon sea-
son and the dry season, we follow Mueller and Thompson, (2013) and model the two
seasons separately, so that the annual distribution is a mixture of distributions com-
posed of one gamma distribution for the wet season and a second for the dry season,
each weighted by the relative length of the associated season as shown in figure 1. The
resulting pdf, f

P

(p), has seven parameters - two daily rainfall intensity distributions
with three parameters each and the length of the wet season.
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where �(·) is the gamma function, �
w

is the rate parameter, and 
w

is the shape param-
eter. The first term of equation 3 describes an atom of probability that the daily rainfall
intensity is zero. The theoretical mean of the gamma distribution can be expressed as
E[x] = 

w

/�

w

, which can be interpreted as the wet season mean rainfall intensity ↵
w

.
The dry season daily rainfall intensity distribution has the identical form, where all

parameters are subscripted with d instead of w. Because we are interested in the ability
of the rainfall to drive erosion, we will focus exclusively on the wet season rainfall
since it delivers a majority of the annual rainfall in much of the Himalayan orogen. All
future references to the parameters of the gamma distribution refer to those from the
wet season distribution.

In this model, the daily variability is described by two different parameters: the
mean wet day frequency � and the shape parameter . The first describes the likeli-
hood of observing rainfall on a given day, with a lower likelihood of rain implying
higher daily variability. This is very similar to how daily rainfall variability is quan-
tified by Tucker and Bras, (2000) or Rossi, Whipple, and Vivoni, (2016). The second
describes the variability of daily rainfall magnitude on days that have rainfall, with
lower values implying higher variability in daily rainfall magnitude. Figure 2 shows
how � and  separately effect the shape of the rainfall pdf. Knowing �,  and ↵ gives
detailed information about the probability structure of daily rainfall for a given season.
This allows for the computation of how often and by how much various geomorphic
thresholds are expected to be exceeded in different climates.

There are several other distributions that are commonly used for wet day rainfall,
such as the stretched exponential distributions (e.g. Rossi, Whipple, and Vivoni, 2016),
and we do not claim any strong theoretical reasons for using the gamma distribution
over others. We make use of it because it fits the empirical distributions over the wide
range of climates found in the Himalayan orogen, though it is probable that other
distributions could do so as well.

2.3.3 The applicability of the statistical model

We can use the statistical model to predict the average maximum annual storm. We
obtain this from the mean of the probability distribution of the maximum annual storm
magnitude. This is equivalent to the probability of exceeding a given storm size p over
the course of a year, which is the joint probability of exceeding p on each day of the year.
Rainfall is assumed to be independent from day to day, so Fmax(p) is the probability
to exceed a storm size of p on a given day raised to the power n

a

, where n

a

is the
number of rainy days per year. Therefore, Fmax(p) = Pr[x > p]na = F

P

(p)na , where
F

P

(p) = �(,�p) is the cumulative distribution function of the gamma distribution
and �(·, ·) is the regularized upper incomplete gamma function. We assume that the



2.3 data and methods 23

10-2 10-1 100 102101
10-5

10-4

10-3

10-2

10-1

100

Increasing shape
 parameter or mean

wet day frequency

Mean
rainfall

intensity

decreasing 
shape parameter 
or mean wet day

frequency

Mean daily rainfall (mm/day)

R
el

at
iv

e 
fre

qu
en

cy

Figure 2: The thick line shows an example of a seasonal distribution with a shape parameter
of 1 and a mean wet day frequency of 0.5. The thin solid lines show the effect of
increasing or decreasing the mean wet day frequency � to 1 and 0.25 respectively. The
thin dashed lines show the effect of increasing and decreasing the shape parameter 
across much of the observed range from 2 to 0.2. When either � or  are decreased,
the magnitude of storms for low relative frequencies (e.g. < 10

-2) increases though
the total amount of rainfall does not.

monsoon season will always contribute the largest storm of the year, so the average
maximum annual storm is Pmax = E[�(

w

,�
w

p)nw ], where n

w

= �

w

T

w

· 365 is the
mean number of rainy days in the monsoon season.

2.3.4 Data fitting techniques

We estimate the model parameters described in section 2.2 for the distribution of daily
rainfall at each node in both gridded data sets. To obtain estimates of the model pa-
rameters we first created seasonal distributions by fitting a step function to the annual
time series using the technique of Mueller and Thompson, (2013). The fitting of the
step function is a simple method that provides an average start and end date for the
wet season at each grid point. The results we obtain agree well with other assessments
of the onset of the monsoon (Wang, 2002). The seasonal mean wet day frequency was
computed as the ratio of the number of days with more than 0.5 mm of rainfall to the
total number of days in each season. We used maximum likelihood estimation to find
the seasonal shape and rate parameters (figure 3).

To assess the significance of our parameter estimation for the shape parameter and
the rate parameter we used the Fisher information to estimate the standard error (fig-
ure 4a-d). While useful, this only informs us about how probable the estimated pa-
rameters are under the assumption that the sample is gamma distributed. It does not
inform us about how well the chosen gamma distribution fit the data; the best fitting
gamma distribution may still fit poorly. To establish objectively the quality of the fit to
observed daily rainfall distributions we calculated the coefficient of determination, r2,
of a linear regression of the theoretical quantiles against the observed quantiles (figure
4e and f). The closer r

2 is to one, the better the fit. To be conservative, we reject all fits
where r

2

< 0.90.
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2.4 results

The three estimated parameters, mean intensity, mean frequency, and wet day variabil-
ity (b↵, b�, and b respectively) are shown in figure 3. Other aspects of the data analysis
are shown in figure 4. The relative standard error for both the shape parameter and the
mean rainfall intensity is shown in figure 4a-d. The standard error tends to be lower
(< 5%) for the APHRODITE data because the sample size is larger. However, it is still
quite low for the TMPA data set, with most estimates having less than 10% relative
standard error. Figure 4e and f show the r

2 value of the quantile-quantile fits. We note
that the goodness of fit is for the most part above the 0.9 threshold we chose, though
there are some poor fits on the Tibetan plateau, particularly in the west. Rejected fits
are shown in figure 3 as shaded regions. Also shown in figure 4 is the length of the
monsoon season as computed by fitting a step function to the annual rainfall time se-
ries, and the number of monsoon season wet day samples in each data set (figure 4g-l).
The abrupt change in the length of the monsoon season in the western edge of the
Himalayan orogen (34

�N, 75

�E) is associated with the breakdown of the dry season/-
monsoon season model due to the influence of significant winter rainfall. This results
in a poor fit of the statistical model to empirical rainfall distributions and the low r

2

values in the region.

2.4.1 Spatial distribution of the gamma shape parameter

As discussed previously, the variability of daily rainfall is described by both the shape
parameter and the mean wet day frequency. We find in this case that the range in the
shape parameter is more significant than the range in the wet day frequency. Overall,
the observed range of gamma shape parameter is between 0.1 and 4, with the majority
of the values falling between 0.2 and 2. The range from 0.1 to 4 represents nearly an
order of magnitude change in the size of the 99

th percentile storm for a given mean
rainfall amount. This means that there is a significant and important change in the
variability of daily rainfall across the Himalayan orogen.

The spatial distribution of the gamma shape parameter, shown in 3a and b, are
qualitatively similar for both data sets across the Himalayan arc, though the range of
values is smaller in the TMPA data set. The TMPA data set also exhibits higher wet day
variability in western India, the southwestern edge of the Tibetan plateau and Pakistan.
This may be due to the fact that the very low magnitude and frequency of rainfall in
these areas allows them to be disproportionally affected by measurement errors.

Although the previous studies that measure the gamma shape parameter in a compa-
rable manner do not focus on Himalayan rainfall and have a much coarser resolution,
the general trends in shape parameters match well between all studies. May, (2004b)
and May, (2004a) show large shape parameters along the Himalayan mountain front
and May, (2004a) and Mooley, (1973) also show small shape parameters in northwest-
ern India and Pakistan, all observations which match our estimates well. More specif-
ically, the magnitudes of the measured shape parameters from this study are very
similar to May, (2004b) and in particular, the reanalysis data set from May, (2004a).
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Figure 3: Gamma shape parameter (a and b), mean wet day frequency (c and d), and mean daily
intensity (e and f) for both APHRODITE and TMPA. The cross sections in figure 7 are
shown in white in c and d.
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APHRODITE and TMPA. Panels k and l show the percent difference between the first
and last 15 years of the APHRODITE data set for the shape parameter and mean wet
day frequency respectively.
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2.4.2 Spatial distribution of mean wet day frequencies

The pattern of mean wet day frequencies, seen in figure 3c and d is broadly similar
between the two data sets, though there are notable differences in the far western
reaches of the range. The TMPA data set has in general higher wet day frequencies,
though the frequencies are high overall in both data sets during the monsoon. The
TMPA data set may exhibit higher frequencies because it is an areal measurement
rather than a point measurement (Del Jesus, Rinaldo, and Rodríguez-Iturbe, 2015). In
both data sets frequencies are much higher closer to the bay of Bengal, the source of
moisture for monsoonal rainfall, and fall off westward in the foreland basin. In contrast,
wet day frequencies remain high for several thousand kilometres along the Himalayan
mountain front where high relief has been shown to drive frequent rainfall (Bookhagen
and Burbank, 2006). Overall the estimated monsoon intensities and frequencies match
well with previous analyses using large ground station data sets (Stephenson et al.,
1999; May, 2004a; May, 2004b), and high spatial resolution remotely sensed data sets
(Bookhagen and Burbank, 2006, 2010).

2.4.3 Spatial distribution of mean storm intensities

The mean rainfall intensities for the two data sets (figure 3e and f) again have similar
general trends, exhibiting high mean rainfall along the Himalayan mountain front.
They also both measure low rainfall in the Tibetan plateau and Pakistan. However,
TMPA has higher magnitudes of daily rainfall intensity in general (note the different
scale bars). The APHRODITE intensities are in agreement with estimates of intensity
from three other studies, two using ground station data (Stephenson et al., 1999; May,
2004b) (four and 89 years long respectively), and a third using a reanalysis data set
(May, 2004a). The TMPA intensities agree well with intensities measured by GPCP,
another satellite data set (May, 2004a).

2.4.4 Stationarity

Malik, Bookhagen, and Mucha, (2016) demonstrate secular nonstationarity in daily
rainfall in the Indian subcontinent. The main data set that they rely on for their analy-
sis is derived from the same source as the APHRODITE data set we use here. Though
their analysis of long-term trends is considerably more sophisticated, it is not surpris-
ing that we also find similar trends. Figure 4k and l, show the difference in the shape
parameter and the mean wet day frequency between the first 15 years (

F

, �
F

) and the
last 15 years (

L

, �
L

) of the APHRODITE data set such that diff() = (
F

- 
L

)/
L

and
diff(�) = (�

F

- �
L

)/�
L

. There is a notable decrease in both the shape parameter and
mean wet day frequency towards the present in the western Tibetan plateau (increase
in variability), though this largely corresponds to regions where the statistical model
we use does not work well, and therefore may be suspect. There is also a significant
increase in the shape parameter in northern Nepal and Bhutan and moderate decrease
in the shape parameter in southern Nepal. This implies that the pattern we observe in
Nepal of a band of low variability in the north has increased in strength towards the
present. The changes in variability implied by the observed shift in the mean wet day
frequency and shape parameter match the changes in the distribution of rainfall across
quantiles observed by Malik, Bookhagen, and Mucha, (2016). Though the number and
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distribution of stations from which the APHRODITE data are interpolated from has
changed over the decades, and this may be partly responsible for the observed nonsta-
tionarity. Regardless, the main spatial trends in rainfall variability which we discuss in
this study are observed in throughout the APHRODITE data set, even if their magni-
tudes shift, as well as in the TMPA data. One perspective is that the nonstationarity can
be viewed as part of the variability, and we do not find it problematic that we implicitly
include it in our measurement of daily variability. We are interested in the patterns of
daily variability over periods of hundreds to thousands of years, which encompasses
variation in measures of daily variability such as the shape parameter and mean wet
day frequency which undoubtably occur over decades and centuries. Ideally we would
have data sets spanning these timescales, but given the dearth of such data, we make
do with 50 years.

2.4.5 Correlations between intensity, frequency and shape parameter

There is a strong negative correlation between the mean rainfall intensity and vari-
ability as measured by the frequency and the shape parameter. This is not surprising,
because the shape parameter is related to the mean storm intensity via the scale pa-
rameter (↵ = /�), and the mean wet day frequency is related to the mean rainfall
intensity via the mean daily rainfall amount (E[P] = ↵�). Further the negative correla-
tion between mean rainfall intensity and variability has been observed before (Tucker,
2004). These negative correlations are shown in figure 5. We have only shown the re-
sults from the TRMM data. The trends for the APHRODITE data are even stronger
(steeper slopes and higher r

2 values) however, because the data is interpolated, there
is the risk the observed correlations result in part from the interpolation.

Figure 5a shows the negative correlation between the mean rainfall intensity and
one minus the mean wet day frequency. This reflects a negative correlation between
intensity and variability. We have separated the data by elevation, and it can be seen
that the trend between frequency and intensity is the same for different elevations. We
can collapse the data by normalizing both the intensity and the frequency for each
elevation range by the mean value for that elevation range as seen in figure 5b. The
result is a nondimensional relationship between the mean intensity and mean wet day
frequency that is valid at all elevations in the Himalayan orogen of the form 1-� / ↵c

1 .
Although there is a positive correlation between the shape factor and mean intensity
(5c), this still reflects a negative correlation between intensity and variability because
increasing the shape parameter reduces the variability. We can also collapse this trend
by normalizing the mean intensity (5d), giving  / ↵

c

2 . Notably, the slope between
all elevations are similar with the exception of elevations below 500 m, which includes
much of the foreland basin and exhibits a weak relationship between mean intensity
and variability. Given that both the shape parameter and the wet day frequency are
strongly correlated with the mean intensity, it is not surprising that they are correlated
with one another as well. Figure 5e shows a negative correlation between one minus the
frequency and the shape parameter which reflects a positive correlation between both
measures of variability. Again we can collapse the trends by normalizing the mean wet
day frequency by the mean of the mean wet day frequency for each elevation range
(5f). This yields a relationship between the shape parameter and the mean wet day
frequency of the form  / (1- �)c3 .
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These empirical relationships can potentially be used to relate the variability and
intensity of rainfall to the mean annual rainfall amount at different elevations in a
landscape evolution model of a monsoon dominated orogen. This is useful because it
allows for the distribution of daily rainfall to be reconstructed with an estimate of the
mean annual rainfall and estimates for the slopes (c

2

) of the trends between intensity
and variability.

2.4.6 General along and across strike trends in variability

We observe large scale trends in the shape parameter and mean wet day frequency both
across and along the east-west strike of the orogen. These trends are shown in figure 6a-
d, separated by elevation. Again, we show only the TRMM data, for the same reasons
as before. The APHRODITE data show the same trends, with the difference that the
variation in the shape parameter is much larger and the mean wet day frequencies
somewhat lower. Along strike from east to west both the shape parameters (6a) and
the mean wet day frequencies (6c) increase at all elevations above 500 m. Below 500 m,
both the shape parameter and the mean wet day frequency are relatively constant. At
moderate and high elevations (500 to 4500 m) the shape parameter reaches peak values
at around 85

�E, after which it decreases again, but even at these elevations, the shape
parameters in the east are still larger than in the west. Because increases in either the
mean wet day frequency or the shape parameter imply a decrease in rainfall variability,
it can be seen that the variability is highest in the west and decreases significantly to
the east with a low in variability at around 85

�E. Similar trends exist across strike. At
all elevations both shape parameter and mean wet day frequency decrease to the north
(6b and d respectively). Therefore, in general the variability of daily rainfall during
the monsoon is lowest in the east and the south of the orogen, and increases both
northwards and westwards. This reflects the pattern of rainfall mean and intensity,
which is unsurprising, given the strong correlation between daily intensity and both
the shape parameter and mean wet day frequency.

The mean rainfall amount and intensity decrease towards the west from the source
of moisture, the bay of Bengal, in the east. However, because of the increasing rain-
fall variability at elevations above 500 m (as shown by both the frequency and shape
parameter), the magnitude of the average maximum annual daily rainfall is nearly
constant at those elevations (6e). At elevations above 4500 m, the magnitude of the av-
erage maximum annual daily rainfall increases towards the west from a minimum at
around 83

�E. Wulf, Bookhagen, and Scherler, (2016) found a bias in the TMPA data that
causes rainfall to be overestimated in the dry, high relief regions in the west of the oro-
gen. This bias could potentially cause the trend seen here. However, the APHRODITE
data, which will not be influenced by this bias, exhibits the same trend. In fact, in the
APHRODITE data, the average maximum annual daily rainfall magnitude increases
slightly for all elevations above 500 m rather than remaining constant.

Figure 6 g and h show the standard deviation of the maximum annual daily rainfall
as a percent of the maximum annual daily rainfall. It is relatively constant from east
to west, perhaps increasing slightly in the west, however from south to north it can be
seen to increase modestly. This means that in the orogen interior, storms with return
times longer than a year can be larger with respect to the mean rainfall intensity than
in the south, reflecting the higher variability in the north and highlighting that big
storms are likely to be very significant in the relatively dry orogen interior.
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Figure 5: For the TMPA data set, a shows correlations between the mean wet day frequency and
the mean rainfall intensity with trends fit to the data sorted by elevation. b shows the
same, except the mean intensity and mean wet day frequency have been normalized
by the mean value for each elevation range, collapsing the trends (normalized fre-
quency - (1- �)/(1- �

o

) where �
o

is the mean value for each elevation range). Panel
c shows the correlation between the shape factor and the mean intensity, which can
be again collapsed by normalizing the mean intensity as in b (shown in d). Panels e
and f show the same for the shape factor and the mean wet day frequency. In f, the
mean wet day frequency has been normalized as in b.
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Figure 6: The average trends in the TMPA data along strike of the orogen from 75

�E to 95

�E of,
a, the shape parameter, b, the mean wet day frequency, c, the mean maximum annual
daily rainfall, and d, the standard deviation of the max. annual daily rainfall. Panels
e-f show the same respectively from 25

�N to 35

�N. Data has been smoothed by taking
the running mean with a window size of 3 (averaging across one point on either side
of each data point). For d the window size was increased to 5.
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2.5 discussion

2.5.1 Rainfall variability and erosion rates

The relative importance and impact of the intensity and variability of daily rainfall
will depend on the details of the erosion regime in question, with emphasis on the
kind and magnitude of erosion threshold or nonlinearity considered. For an erosion
threshold associated with a minimum storm size or a nonlinearity which dispropor-
tionally weights larger storms, higher variability rainfall will lead to higher erosion
rates. This is thought to be the case for erosion occurring in mountainous bedrock
rivers (Tucker and Bras, 2000; Snyder et al., 2003; Tucker, 2004; Lague, Hovius, and
Davy, 2005; DiBiase and Whipple, 2011). River erosion is far from the only erosion
process occurring in the Himalayan orogen, but it is generally considered to be one
of the most significant in active orogens (e.g. Molnar, 2001; Whipple, 2004), especially
considering the minor influence of glaciers and glacial erosion in central Nepal. Due to
the complexity of hydrological processes, it is challenging to link daily rainfall distri-
butions to daily streamflow distributions. Empirical work investigating the drivers of
daily streamflow find a number environmental controls, including the evapotranspira-
tion rate and aridity index (Rossi, Whipple, and Vivoni, 2016). Importantly, they find
a positive correlation between the wet day frequency and streamflow variability, and
to a lesser extent between rainfall variability (i.e. the shape parameter) and streamflow
variability. Using numerical simulations, another study found that the shape parame-
ter of daily rainfall could have a significant impact on streamflow variability (Müller,
Dralle, and Thompson, 2014), and a third theoretical study predicts that the mean wet
day frequency should be an important control on the streamflow variability [Deal et al.
submitted].

These results are not particularly surprising. It is intuitive that a river catchment
with high variability rainfall (i.e. larger storms for a given mean rainfall rate) will
experience larger floods than a river catchment with low variability rainfall. In light
of these studies it seems likely that higher variability rainfall will lead to higher river
erosion rates.

2.5.2 Relevance to the Himalayan orogen

One of the more striking features of the spatial distribution of the shape parameter
and the wet day frequency in figure 3 is the 1000 km long arc along the crest of the
Himalayan orogen, particularly strong in Nepal. This band appears in both data sets,
and corresponds with the northern most of the two bands of high magnitude rainfall
described by Anders et al., (2006) and Bookhagen and Burbank, (2006). The large shape
parameter and high wet day frequency imply that the northern band of high magni-
tude rainfall is characterized by low variability rainfall. In contrast, the southern band
possesses moderate to high variability along its length. Therefore the two bands of
rainfall, while similar in mean intensity of daily rainfall, overall rainfall amount, and
topographic setting, differ greatly in the frequency and magnitude of rainfall during
the monsoon. This is supported by Bookhagen and Burbank, (2010) who use both the
frequency of lightning strikes (a feature of extreme rainfall events) and the intensity
of rainfall during extreme events to characterize the magnitude of extreme events and
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find a maximum of extreme events along the front of the Himalayan arc, over the
southern rainfall band.

2.5.2.1 Patterns of variability and long-term erosion rates

The band of low rainfall variability may help to explain the inconsistency between mea-
sured long-term erosion rates and rainfall rates in the region. Burbank et al., (2003) and
Thiede and Ehlers, (2013) showed that in central Nepal, erosion rates increase north of
the band of high magnitude rainfall. It can be seen that mean erosion rate increases
even as the mean rainfall rate decreases. Erosion rates peak close to the topographic
divide, well north of the highest mean rainfall rates. If the region is in dynamic equilib-
rium, we expect the erosion rate to be set by the uplift rate rather than climate. How-
ever, the specific stream power should still reflect the erosion rate. In this region the
specific stream power still decreases northward (albeit more slowly that rainfall) (Bur-
bank et al., 2003). This implies that steeper slopes and narrower channels can make
up only partially for the decreasing rainfall. Increasing rainfall variability may explain
the rest of the discrepancy between erosion rates and rainfall rates. Figure 7a shows
a representative cross section over the topographic divide in this region. The rainfall
variability increases rapidly as the mean rainfall rate decreases across the topographic
divide, as demonstrated by the observed decrease in the shape parameter and mean
wet day frequency. The observed increase in rainfall variability, in conjuction with nar-
rowing channels and steepening slopes, is consistent with a peak erosion rate on the
topographic divide despite significantly decreasing mean rainfall rate. As further sup-
port for this, both steeper slopes and higher rainfall variability are expected to enhance
other important erosion processes, such as landsliding (Gabet et al., 2004).

Increasing rainfall variability means that while the total amount of rainfall decreases
sharply across the topographic divide, the size of large storms will decreases more
slowly. The solid yellow line in figure 7a and b show the average maximum annual
storm size, and it can be seen that it does not track with the mean daily rainfall rate,
and does decrease more slowly across the divide. More than that, the east-west striking
band of very low variability associated with the northern band of high rainfall results
in the large storms in this region being exceptionally small given the high rainfall rate.
The ratio of the mean maximum annual storm to the mean daily rainfall rate can be
used as another measure of rainfall variability. Shown as the solid red line in figure 7,
we see that it is consistent with the measured changes in the shape parameter and mean
wet day frequency. It is very low over the northern band of high magnitude rainfall,
and highest over the Tibetan plateau. Figure 7c and d show another representative cross
section further to the west near the end of the arc of low variability. The same pattern
holds for this cross section as well, with increasing variability across the topographic
divide, reflected both in the ratio of the maximum annual storm to the daily mean
rainfall as well as the shape parameter and wet day frequency. In this cross section, the
rise in topography from south to north is gentler, as are the gradients in the erosion
rate, mean daily rainfall, mean wet day frequency and the shape parameter.

We put forth the idea of rainfall variability resolving the inconsistency between long-
term erosion rate and rainfall rate only as a possibility. The theoretical arguments
provide a basis for this theory, and the APHRODITE data support it. However, the way
that rainfall drives erosion rates across the landscape is not perfectly understood, so we
must restrict ourselves to a qualitative assessment of the patterns of rainfall variability
and mean. It is not clear how to asses whether the magnitude of increase in variability
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is sufficient to offset the magnitude of decrease in mean rainfall. Additionally, the
TMPA data (7b and d) only broadly match the pattern observed in the APHRODITE
data set (7a and c). The rise in variability observed in the TMPA data occurs further
north than in the APHRODITE data, and is not coincident with the peak in the erosion
rate. Further, the TMPA data do not resolve the northern rainfall maximum, making it
more difficult to compare the peak in erosion to rainfall. Due to this, in the Nepal swath
(7b) the TMPA data do not support the theory that increasing rainfall variability offsets
decreasing rainfall mean (though they do in swath 7d). Additionally the elevation is
an important parameter in the interpolation scheme of the APHRODITE data, making
swath profiles with the APHRODITE data suspect.

One point in support of the theory comes from a data set derived from the TMPA
2B31 data that has much higher spatial resolution that the ones we used here Bookha-
gen and Burbank, 2006; Bookhagen, 2010; Bookhagen and Burbank, 2010; Olen, Bookha-
gen, and Strecker, 2016. While we do not have access to the data directly and cannot
compute the shape parameter, mean frequency and mean intensity, the data agrees
well with our results here. The TMPA derived data resolve the northern peak in rain-
fall magnitude and, as far as we can tell, low in variability in a very similar location to
the APHRODITE data. This lends support to the APHRODITE data. So, while we find
the data presented here is suggestive that rainfall variability may be a key parameter
influencing the erosion efficiency of rainfall in the Himalayan orogen, we conclude that
better data, which may become available in the future, is necessary to confirm or refute
this hypothesis.

2.5.2.2 Patterns of variability and short-term erosion rates

Olen, Bookhagen, and Strecker, (2016) conducted an analysis of the empirical relation-
ships between vegetation density, precipitation rates and short-term denudation rates
in the Himalayan orogen. They find a strikingly clear negative correlation between veg-
etation density and the variability of measured denudation rates within a single basin.
The lower the vegetation density, the higher the variation in measured denudation
rates. They point out the logic in this; vegetation tends to stabilize soils, increasing the
resistance to erosion. Basins with low vegetation density should be more vulnerable
to substantial surface erosion during large rainstorms than those with high vegetation
density. The erosion caused by large rainstorms will likely not be evenly distributed
across the basin for a variety of reasons including localized high intensity rainfall,
non-uniformly distributed vegetation, and different antecedent conditions on different
hillslopes. This will lead to more episodic, localized erosion events, and consequently,
more variation in denudation rates measured within a single basin or region.

It is also logical that rainfall variability would influence this trend by increasing
the size and frequency of large storms in regions with high rainfall variability rela-
tive to those with low variability. Olen, Bookhagen, and Strecker, (2016) therefore also
compare rainfall variability to denudation variability and vegetation density. However,
while they observe vegetation density to increase and denudation variability to de-
crease from west to east along the strike of the orogen, they find rainfall variability
trends in the opposite sense, increasing from west to east. This doesn’t match the de-
crease in denudation variability from west to east, so they conclude that the influence
of increasingly dense vegetation towards the east is so strong as to erase any effects of
increasing rainfall variability on denudation variability.
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Figure 7: Representative cross sections orthogonal to the strike of the orogen showing the pat-
terns of daily rainfall mean and variability across the topographic divide. Cross sec-
tions are aligned relative to the location of the northern rainfall peak. The lines show
the average value across the section, and the shaded regions show the range. The
mean daily rainfall rate is shown in blue, the mean maximum annual storm is shown
in solid yellow, the estimated maximum annual storm is shown in dashed yellow, the
ratio of the daily mean to the annual max. storm is shown in red, the gamma shape
parameter is shown in purple and the mean wet day frequency is shown in green.
Estimated erosion rates over the last 2 million years obtained from a 1D inversion of
thermochronological data taken from Thiede and Ehlers, (2013) are are shown with
the dashed black line. Average maximum topography shown as solid black line.
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While we agree completely with their explanation of how vegetation density and
rainfall variability are likely to influence the variation in measured denudation rates,
we find that rainfall variability increases along strike from east to west rather than west
to east. Olen, Bookhagen, and Strecker, (2016) use the number of times per year that
extreme events occur as a measure of variability. Extreme events are defined by them
as events above the 90

th percentile. Since, by definition, extreme events consist of 10%
of observed events, the number of extreme events is more a reflection of the mean wet
day frequency than anything else. Although the data sets are not directly comparable
because they analyze annual rainfall, and we only consider monsoon rainfall, the spa-
tial pattern of mean wet day frequencies during the monsoon match the number of
extreme events per year quite well.

The issue with using the number of events above the 90

th percentile as a measure
of daily rainfall variability is that there is not a standard relationship between the
magnitude of the 90

th percentile event and the mean rainfall intensity. This is in fact
determined by the shape parameter of the distribution and varies from region to region.
Figure 8 shows the mean magnitude of events above the 90

th percentile as a function
of the shape parameter. As gamma falls below one, the average magnitude of extreme
events approaches ten times the mean rainfall intensity, but above one, it is only about
2-3 times the mean. Therefore, right where they find the most frequent extreme events,
in central Nepal, is where those extreme events will be the smallest. This is an impor-
tant point, because from the perspective of geomorphology it is not just the frequency
of big storms that is important, but also their magnitude. The shape parameter and
mean wet day frequency can be used to measure the magnitude of these big storms
relative to the mean rainfall intensity in an unbiased way that allows for comparison
between regions with significantly different mean rainfall intensities (such as central
Nepal and the Tibetan plateau).

As figure 6 shows, these measures of variability point to an increase in varability
from the east to the west and from the south to the north of the orogen. This is more
consistent with the patterns of denudation variability and vegetation density observed
by Olen, Bookhagen, and Strecker, (2016). Moving along the orogen from east to west,
the mean annual rainfall drops, as does the mean rainfall intensity and the vegetation
density. At the same time the variability of rainfall and the variability in denudation
increase. As figure 6c shows, the maximum annual storm magnitude does not change
along strike for most elevations, because of increasing rainfall variability. As a result,
large storms become more extreme relative the mean rainfall intensity. It is unsur-
prising that the most episodic erosion is observed in the west. However, whether the
denudation variability increases to the west because of increasingly significant large
storms, or because of decreasing vegetation density or both is less clear.

2.6 conclusions

In this study we have made a careful characterization of the distribution of rainfall in
the Himalayan orogen. We find a consistent pattern appearing with the gamma shape
parameter, mean wet day frequency and mean rainfall intensity in many places along
the Himalayan arc, particularly in Nepal. We observe moderate rainfall variability in
the foreland basin up to and including the southern band of high magnitude rainfall.
This is where the biggest storms are taking place during the monsoon as the moist air
coming from the bay of Bengal collides with the first rapid rise in topography and relief
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Figure 8: The change in the mean magnitude of daily rainfall above the 90th percentile as
a function of the shape parameter. When the shape parameter is less than 0.5, the
average intensity of storms above the 90th percentile is 5 to 10 times the mean rainfall
intensity. For shape parameters above one, the it is only about two times the mean
rainfall intensity.

(Bookhagen and Burbank, 2006). Although a significant amount of moisture makes it
past the initial mountain front to collide with the second steep rise in topography
and relief near the topographic divide and form the northern band of high magnitude
rainfall, the storms there are not as intense. Instead a more frequent, more moderate
rainfall regime is observed. This is reflected in the rainfall variability which begins
to drop rapidly starting at the southern band moving north, and reaches a low right
at or directly north of the northern band. Further into the orogen from the northern
band, mean rainfall amount decreases rapidly while variability increases due to both
the mean wet day frequency and the shape parameter. In general the plateau directly
behind the mountains possesses moderate to high rainfall variability. Similarly, while
the mean monsoonal rainfall amount and intensity decrease along strike from east
to west, the rainfall variability increases. As a result, the magnitude of moderate to
large storms remains constant along the strike of the orogen above 500 m elevation.
These two trends point to monsoonal rainfall having a larger geomorphic impact in the
north and the west of the orogen than the mean rainfall intensity and amount suggest.
This demonstrates the potential importance of rainfall variability in understanding the
relationship between erosion and climate.
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R A I N FA L L , H Y D R O L O G Y A N D F L U V I A L E R O S I O N E F F I C I E N C Y

3.1 abstract

As a result of the postulated influence of climate on landscape morphology and tec-
tonic deformation rates, the erosional response of mountainous bedrock rivers to changes
in climatic forcing has been the subject of intense research. However, due to the chal-
lenges in upscaling daily climatic forcing to geological time, physically realistic models
describing how rainfall drives fluvial erosion are lacking. We derive a theoretical frame-
work for long-term fluvial erosion rates driven by realistic climate by integrating an
established stochastic-mechanistic model of hydrology into a threshold-stochastic for-
mulation of stream power. The hydrological theory provides equations for the daily
streamflow distribution and variability as a function of climatic boundary conditions
that are applicable across most of the observed range of streamflow regimes on Earth.
The new parameters introduced are rooted firmly in established climatic and hydrolog-
ical theory and are easily measured. We predict how fluvial erosion rates respond to
changes in realistic climatic forcing, observing an anti-correlation between streamflow
mean and variability, peak erosion rates for moderate climatic conditions, and an in-
sensitivity to increasing mean streamflow above a certain point in many cases. We find
that hydrological processes can have a significant influence on how erosive a particu-
lar climatic forcing will be. Based on the generally unaccounted for role of hydrology,
we conclude that the failure to find a clear dependence of long-term erosion rates on
rainfall rates or steepness indices does not exclude the possibility that climate is an
important control on erosion rates and landscape evolution.

3.2 introduction

Rivers play an important role in shaping Earth’s surface, especially in high relief, moun-
tain environments; they have become a major focus of research in quantitative geo-
morphology (e.g. Whipple, Kirby, and Brocklehurst, 1999; Whipple, 2009; Tucker and
Hancock, 2010b), because they are one of the main links between climate and erosion.
(e.g. Whipple and Tucker, 1999; Tucker and Bras, 2000; Crave and Davy, 2001; Burbank
et al., 2003; DiBiase et al., 2010; DiBiase and Whipple, 2011; Lague, 2014). Mountainous
bedrock rivers control landscape evolution in unglaciated mountain environments by
steepening hill slopes through bedrock incision and transporting the resulting debris
away. In doing so, they not only set the relief structure of a mountain, but also com-
municate tectonic signals throughout the landscape (Whipple, Kirby, and Brocklehurst,
1999; Whipple, 2009). All of this is accomplished ultimately by the ability of flowing
water to transport sediment. Therefore it is natural to conclude that climate, or more
specifically, rainfall plays an important role in landscape evolution as the main source
of river water. Gilbert, (1877) pointed this out more than 140 years ago. In the interven-
ing time there have been a myriad of theoretical models postulating, and sometimes
demonstrating, that climate should play an integral part in determining the form and
rate of change of Earth’s surface. Some consider climate specifically in the context of a
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landscape dominated by fluvial erosion (e.g. Beaumont, Fullsack, and Hamilton, 1992;
Whipple, Kirby, and Brocklehurst, 1999; Roe, Montgomery, and Hallet, 2002), and oth-
ers in a more general sense (e.g. Dahlen and Suppe, 1988; Willett, 1999; Whipple and
Meade, 2006).

Despite theoretical predictions and the obvious influence of rainfall on erosion pro-
cesses at the local scale, many studies attempting to relate mean rainfall rates or stream
power to erosion rates struggle to find a functional relationship across a range of spa-
tial and temporal scales (e.g. Riebe et al., 2001b; Burbank et al., 2003; Blanckenburg,
2005; Bermudez, van der Beek, and Bernet, 2012; Godard et al., 2014; Acosta et al.,
2015). However, a few studies that carefully consider factors that may obscur the re-
lationship between rainfall and erosion rates find a clearer relationship (e.g. Moon et
al., 2011; Ferrier, Huppert, and Perron, 2013). This suggests that when the major con-
founding factors can be tightly controlled, a relationship between climate and erosion
is likely to emerge. In a fluvially dominated landscape, a non-comprehensive list of
these factors includes spatially varying rock type and uplift rate, the nature of the
dominant erosion process(es), erosion thresholds, the intensity and frequency of big
storms, the type amount and influence of vegetation, sediment supply and transport
dynamics, channel form, as well as perhaps other as yet unidentified factors. In order
to implement a landscape evolution model that incorporates realistic climatic forcing,
these confounding factors must be elucidated and accounted, and their potential effect
on erosional efficiency must be quantified.

Understanding the specifics of how climate controls fluvial erosion is a key part of
understanding how the tectonic history is encoded in a landscape (Whipple, 2009), and
could potentially influence the interpretation of sedimentary records (e.g. Armitage et
al., 2011). The pace of erosion set by the balance between climatic and tectonic forcing
in a landscape also has implications for the rate of weathering, CO

2

draw down and
carbon burial that can effect the global climate (e.g. Raymo and Ruddiman, 1992; Galy
et al., 2007). Therefore, in order to untangle the past and future joint evolution of the
lithosphere, atmosphere and hydrosphere, it is critical to understand the role of climate,
especially the effect of a changing climate, on landscape evolution.

A major difficulty with understanding the impact of climate is the large disparity in
timescales. Rainfall rates are measured over hours or days, landscape evolution over
millennia (Tucker and Bras, 2000). Another major difficulty with understanding the
impact of climate on erosion processes is the ecological and hydrological response to
climatic forcing, which is complex and time dependent, and can have unexpected re-
sults (Istanbulluoglu, 2009). It is a challenge to establish geomorphic transport laws
that capture the net effects of this complexity over the relevant ranges of spatial and
temporal scales in a quantifiable way. Initial attempts used a parameterized effective
streamflow that was assumed to capture the average effect of sediment laden water
flowing over bedrock (Wolman and Miller, 1960; Beaumont, Fullsack, and Hamilton,
1992; Tucker and Slingerland, 1994). It has since been shown that this does not work
well in detachment limited rivers due to the existence of erosion thresholds and po-
tential nonlinearities between streamflow and erosion (Tucker and Bras, 2000; Snyder
et al., 2003; Lague, Hovius, and Davy, 2005). An erosion threshold represents the exis-
tence of a minimum forcing, usually shear stress, that is required before erosion takes
place. The effect of an erosion threshold has been investigated for overland flow on
vegetated slopes (Horton, 1945), channel initiation (e.g. Dietrich et al., 1993; Prosser
and Dietrich, 1995), sediment entrainment in rivers (e.g. Wolman and Miller, 1960),
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and fluvial erosion of gravel bed and bedrock rivers (e.g Tucker and Bras, 2000; Lague,
Hovius, and Davy, 2005; Beer and Turowski, 2015).

Stochastic methods are well suited to the task of understanding the long-term effect
of nonlinear time and state dependent processes operating over short timescales, and
thus ideal for problems such as these. Pioneering efforts by Tucker and Bras, (2000),
Crave and Davy, (2001) and Lague, Hovius, and Davy, (2005) using stochastic rain-
fall forcing and/or the full distribution of streamflow quantitatively established the
advantages of using a threshold-stochastic approach rather than a constant stream-
flow one. They established a theoretical basis for streamflow variability, a concept long
considered important (e.g. Wolman and Miller, 1960), permanently changed the per-
spective on bedrock river erosion and set the stage for other important work to follow
(e.g. Molnar, 2001; Snyder et al., 2003; Collins, Bras, and Tucker, 2004; Tucker, 2004;
Istanbulluoglu and Bras, 2005, 2006b; Molnar et al., 2006; DiBiase and Whipple, 2011;
Carretier et al., 2013; Lague, 2014; Phillips and Jerolmack, 2016; Rossi, Whipple, and
Vivoni, 2016).

However, one of the key features missing from these original works is a realistic
description of hydrology. Tucker and Bras, (2000), Crave and Davy, (2001) and Tucker,
(2004) use a very simplified model for hydrology which is only applicable in very small
catchments. Lague, Hovius, and Davy, (2005) use a distribution of daily streamflow
known to result from natural hydrological systems, but do not include any model for
hydrology itself. A few other studies include stochastic rainfall forcing in conjunction
with a hydrological model, but many use a simplified model for hydrology similar
to Tucker and Bras, (2000) (e.g. Collins, Bras, and Tucker, 2004; Istanbulluoglu and
Bras, 2006b). Ijjász-Vásquez, Bras, and Moglen, (1992) develop a clever way to inte-
grate stochastic rainfall into a hydrological and landscape evolution model, but the
hydrological model used is a constant streamflow one. Huang and Niemann, (2006b,
2008) present a landscape evolution model with a sophisticated hydrological model.
However, the hydrological model requires very short time steps that make the model
slow to run (runtimes measured in weeks).

It would be acceptable to ignore hydrology if it had only second order influence on
the distribution of daily streamflow. However, this is not the case. Hydrological and
ecological processes have first order importance in determining the fluvial response
to a particular climatic forcing (Rodriguez-Iturbe, 2000; Huang and Niemann, 2008;
Istanbulluoglu, 2009). For example, they are often responsible for producing heavy
tailed daily streamflow distributions from light tailed daily rainfall distributions (Basso,
Schirmer, and Botter, 2015; Rossi, Whipple, and Vivoni, 2016), which has important
implications for fluvial erosion. Therefore, in order to build a landscape evolution
model with realistic climatic forcing, hydrology and to some extent ecology must be
accounted for. However, realism and accuracy must be balanced with computational
efficiency. A landscape evolution model that requires time steps on the order of hours
or days to keep track of ecological and hydrological processes will be prohibitively
slow when the timescales of interest are millions of years.

To that end, we have integrated a stochastic-mechanistic model of hydrology (Bot-
ter et al., 2007, 2009) which has been demonstrated to work well across a range of
landscapes and climates (e.g. Botter et al., 2010; Ceola et al., 2010; Schaefli, Rinaldo,
and Botter, 2013; Basso, Schirmer, and Botter, 2015; Doulatyari et al., 2015) into the
threshold-stochastic stream power formulation of Lague, Hovius, and Davy, (2005). By
using a stochastic approach, we develop analytical solutions that describe the net effect
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of daily climatic, hydrological and ecological processes over long periods. In this way,
key thresholds and nonlinearities can be accounted for with a minimum loss of effi-
ciency. We used the hydrological theory, which incorporates water related ecological
processes, to establish equations for the daily streamflow distribution and streamflow
variability that are applicable across most of the observed range of streamflow regimes
on Earth. The model shows how the distributions of daily streamflow arise from the
climatic and ecohydrological (hydrology plus water related ecological processes) con-
ditions in a river basin. The new climatic and ecohydrological parameters introduced
are rooted firmly in established hydrological theories and can be measured from hy-
drographs and weather station data.

Our equations for the daily streamflow distribution eliminate the problem of choos-
ing which probability distribution function (pdf) to use (e.g. exponential or power law
tail) (DiBiase and Whipple, 2011; Rossi, Whipple, and Vivoni, 2016) and unite previous
geomorphological theory on stochastic-threshold stream power erosion into a single
framework. We also describe a general coefficient of daily streamflow variability with
a firm physical basis and provide a theoretical foundation for the long observed nega-
tive correlation between mean daily streamflow magnitude and variability. Using the
coefficient of variability and the negative correlation between streamflow mean and
variability we reproduce previous work on the role of the mean and variability in set-
ting the long-term erosion rate (Tucker and Bras, 2000; Tucker, 2004; Lague, Hovius,
and Davy, 2005; DiBiase and Whipple, 2011), but in a more general framework and
related it explicitly to the climatic forcing and ecohydrological setting. We found that
ecohydrological processes (water storage in the soil layer and evapotranspiration) and
the fundamental hydrological response time of river basins can have a significant influ-
ence on how erosive a particular climatic forcing will be. Combined with the already
established role of streamflow variability in determining the erosiveness of a river, the
work we present here leads to the prediction that care must be taken to evidence trends
between mean rainfall rates or mean streamflow rates and long-term erosion rates due
to the complexity of the ecohydrological and fluvial response to climatic forcing.

3.3 the (eco)hydrological model

The fluvial erosion model presented in this work is an extension of the physically
based stochastic hydrology and soil moisture model laid out in Botter et al., (2007) and
Botter et al., (2009). In the following sections we briefly go over the key aspects of the
stochastic hydrology model and then describe our extension to fluvial erosion.

3.3.1 Rainfall

Daily rainfall is modelled after Rodriguez-Iturbe et al., 1999 as a marked poisson pro-
cess of rate � [T-1]. The sub-daily temporal structure of individual storms is not con-
sidered. The depths of daily rainfall are considered to be independent and identically
distributed random variables, p, described by an exponential pdf,

f

P

(p) =
1

↵

e

-p/↵, (5)

where ↵ is the specific mean daily rainfall amount on days with rainfall - i.e., the
volume of rainfall divided by the catchment area [L] - from now on referred to as
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the mean storm depth. We follow this practice for all variables which are measured as
volumes integrated over a river catchment. It is worth noting, however, that the specific
storm depth, ↵, is not necessarily the same as the mean storm depth that would be
measured at a point. There are often scaling effects that can cause the point-scale value
and the catchment-scale specific value to differ. In the case of rainfall, for ↵ to be equal
to the point-scale storm depth requires uniform rainfall across the catchment, which
is usually not the case. Thus, in general, and for the majority of parameters discussed
in this work, the point-scale value and the catchment-scale specific value will differ.
The rate of the poisson process � can be interpreted as the mean frequency with which
rainfall occurs, thus we refer to it as the mean storm frequency. The specific mean daily
rainfall rate is the product of the mean storm depth and the mean storm frequency,
p̄ = ↵� (Rodriguez-Iturbe, Cox, and Isham, 1987).

There are some potential issues with using the exponential distribution to represent
daily rainfall depths, which we address at the end of the discussion. Regardless, the
exponential distribution for daily rainfall depths has been applied with great success in
hydrology and ecohydrology, particularly for the characterization of daily soil moisture
and streamflow dynamics (e.g. Milly, 1993; Rodriguez-Iturbe et al., 1999; Laio et al.,
2001; Porporato, Daly, and Rodriguez-Iturbe, 2004; Settin et al., 2007; Botter et al., 2010;
Ceola et al., 2010; Tamea et al., 2010; Müller, Dralle, and Thompson, 2014; Park et al.,
2014; Basso, Schirmer, and Botter, 2015; Doulatyari et al., 2015).

3.3.2 Soil moisture

Soil moisture has come to be recognized as a vital ecological and hydrological fea-
ture of river basins (Rodriguez-Iturbe, 2000), influencing the river response to storm
events (Rodríguez-Iturbe et al., 2006). The processes involved in determining the daily
soil moisture state are numerous and complex, including rainfall, evapotranspiration,
surface runoff and runon, subsurface flow, and leakage to deeper water reservoirs.

After Botter et al., (2007), we model the effect of these processes on daily streamflow
with a physics based model of soil moisture first developed by Rodriguez-Iturbe et al.,
(1999). For simplicity, we refer to the hydrologically active layer, or the layer of soil that
is affected by rainfall and evapotranspiration processes at a daily timescale as the soil
layer. The soil layer acts as a reservoir that is filled by random rainfall inputs. Each
rainfall event of depth p replenishes the soil layer which has capacity n

s

Z

r

(where n

s

is soil porosity and Z

r

the active or rooting depth) until a critical threshold s = s

1

is
reached, after which the soil layer is saturated, and any additional rainfall recharges the
catchment-scale excess water storage and eventually becomes streamflow. In between
rainfall events, the soil moisture is reduced by evapotranspiration, which is considered
to be nonexistent below the wilting point s = s

w

and increases linearly with increasing
soil moisture up to a maximum rate of ET

max

. ET
max

depends on available energy
for vaporization as well as the abundance and kind of vegetation present. Since the
soil moisture can only range from s

w

to s

1

, the dynamic soil moisture capacity is
s

o

= (s
1

- s

w

)n
s

Z

r

. For a more in depth description, see the Laio et al., (2001) or
Porporato, Daly, and Rodriguez-Iturbe, (2004).

This model captures one of the key roles of ecohydrology in determining daily
streamflow, which is that the soil layer acts as a buffer to incoming rainfall, and al-
lows for the intervention of ecological processes in the form of evapotranspiration.
The presence of a soil moisture threshold that needs to be exceeded before significant
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runoff and infiltration processes occur means that the buffer effect is more dramatic for
small storms than large storms. This reduces the frequency of streamflow producing
storms (referred to from now on as effective storms) relative to the frequency of rainfall
events, which in turn reduces the mean streamflow rate relative to the mean rainfall
rate. Calculating the mean frequency of effective storms is challenging because the
storm depth required to exceed the soil moisture threshold depends on the antecedent
soil moisture state, which is time dependent. It has been shown by Porporato, Daly,
and Rodriguez-Iturbe, (2004) to be !� where ! is a nondimensional filtering factor
that is a complex function of ecohydrology and climate,

! =
�h

h

s

/�

s

e

-h

s

h

s

�(h
s

/�)�(h
s

/�,h
s

)
(6)

where �(·) is the gamma function, �(·, ·) is the regularized lower incomplete gamma
function, � is the aridity index and h

s

is the effective soil depth. The effective soil
depth is the dynamic soil layer water storage capacity divided by the average storm
depth, h

s

= s

o

/↵ and the aridity index is the ratio of the potential evapotranspiration
rate to the mean rainfall rate (� = ET

max

/p̄). We refer to ! as the streamflow ratio.

In the following sections, the effects of the soil layer (storage and evapotranspiration)
on incoming rainfall are captured by !. The relevant parameters of the soil moisture
model are the dynamic soil storage, s

o

, and the maximum evapotranspiration rate,
ET

max

, which express the influence of the soil layer conditions on the streamflow ratio.
Despite its simplicity and low dimensionality, this minimalist mechanistic-stochastic
model has seen wide application and success in predicting probability distributions of
catchment-scale daily soil moisture and streamflow (e.g. Laio et al., 2001; Porporato
et al., 2002; Porporato, Daly, and Rodriguez-Iturbe, 2004; Rodríguez-Iturbe et al., 2006;
Settin et al., 2007; Doulatyari et al., 2015; Feng, Porporato, and Rodriguez-Iturbe, 2015).

3.3.3 Catchment-scale water balance and the streamflow ratio

Here we consider a simplified mean catchment-scale water balance at steady state that
can be written as,

hETi
hPi +

hQi
hPi = 1 (7)

where hPi = p̄A is the mean rainfall rate (A is catchment area), hETi is the mean
loss to evapotranspiration, and hQi is the mean drainage rate to the catchment-scale
storage caused when the soil moisture threshold is exceeded. The fraction of rainfall
lost directly to the atmosphere as evapotranspiration does not contribute to streamflow,
whereas the fraction of water drained to the catchment-scale storage must leave the
catchment as streamflow. Therefore hQi also represents the mean daily streamflow.
hQi is the product of the mean frequency of effective storms, !� and the mean storm
depth. Therefore, the fraction of incoming rainfall that is partitioned into streamflow
is described by !,

hQi
hPi =

↵!�A

↵�A

= !, (8)

and the specific mean daily streamflow is simply,

µ = ↵!� = !p̄. (9)
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As seen in equation 6, the streamflow ratio is controlled by the effective soil depth
and the aridity index, two nondimensional numbers that describe the interaction of
climate and ecohydrology. The effective soil depth is a measure of how easily a single
storm can saturate the soil layer. When h

s

is small, the average storm can easily saturate
the soil, putting the catchment into the thin soil regime. When h

s

is large, the soil is
saturated only by big, rare storms, and the catchment is in the thick soil regime.

The aridity index is a measure of the drying power of a catchment. The larger � is
the larger the losses to evapotranspiration relative to the volume of incoming rainfall.
Although there is always a probability for a storm to occur while the soil layer is
still wet from a previous storm, the larger that � is the more unlikely this is to occur
because the soil layer dries rapidly. We refer to the case where � is greater than one as
the dry soil regime. When � is less than one, the opposite is true; rainfall onto a wet
soil layer will be common and the catchment is in the wet soil regime. A storm is more
likely to exceed the soil moisture threshold and produce streamflow if the soil layer
is already wet. Therefore the aridity index influences the ability of a storm to drive
streamflow, which has implications for the partitioning of incoming rainfall.

These two numbers, � and h

s

, define four different soil moisture regimes that are
determined by climate and catchment soil properties as shown in figure 9. When � is
greater than one, the catchment is in the dry soil regime, and the main control on!, the
streamflow ratio, is the effective soil depth. This divides the dry soil regime further into
the thick dry soil regime and the thin dry soil regime, depending on whether h

s

is less
than or greater than one. When h

s

> 1, the catchment is in the thick dry soil regime, !
is very small, and the transformation of rainfall to streamflow is dramatically impacted
by ecohydrology. The effectively thick dry soil layer acts as a buffer on incoming storms,
absorbing small to moderate storms, and releasing the water from these storms back
to the atmosphere through evapotranspiration. As a result both the mean streamflow
µ and the effective storm frequency are strongly reduced. When h

s

< 1 the impact
on the mean streamflow and storm frequency are less dramatic because moderate and
even small storms can saturate the soil layer, and the role of evapotranspiration is
downplayed due to the small soil moisture storage capacity.

When � is less than one, the catchment is in the wet soil regime. As before, the wet
soil regime is further impacted by the effective soil depth. When h

s

> 1 the catchment
is in the thick wet soil regime and the main control on the streamflow ratio ! is the
aridity index �. Although the soil layer is effectively thick, the slow drying rate means
that storms will often occur over wet antecedent conditions. This means that even small
storms normally incapable of saturating the soil layer may push an already wet soil
layer over the threshold and produce a streamflow event. For this reason the thick wet
soil layer can behave similarly to the thin dry soil layer, though the important control
is � rather than h

s

. When � and h

s

are both less than one the catchment is in the thin
wet soil regime and the highest transmission rates of rainfall to streamflow occur. Most
storms are able to saturate the soil layer and produce a streamflow event, and both �
and h

s

are important in setting the streamflow ratio.

3.3.4 Daily streamflow

3.3.4.1 Streamflow variability

The hydrological model makes the common assumption that excess storage in the
catchment (W) is released as river streamflow (q) according to a power law relationship
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Figure 9: The four water balance soil regimes. The contours denote the value of the streamflow
ratio ! as a function of the aridity index � and the effective soil capacity h

s

.

(q = cW

d) e.g. Botter et al., 2009; Kirchner, 2009; Basso et al., 2015. This results in the
time rate change of streamflow being governed by,

dq
dt

= -aq

b + ⇠
r

, (10)

where q is the (specific) daily streamflow, ⇠
r

is the stochastic effective rainfall forc-
ing, and a and b are the recession coefficient and the recession exponent, respectively.
Botter et al., (2007) show that the effective rainfall forcing ⇠

r

can be well approximated
by a poisson process with the same distribution of depths as rainfall, but a lower rate
that is modulated by the streamflow ratio, such that the rate is equal to the effective
storm frequency (!�).

It has been shown that the variability of streamflow is important for long-term land-
scape evolution e.g. Tucker and Bras, 2000; Tucker, 2004; Lague, Hovius, and Davy,
2005; DiBiase and Whipple, 2011; Lague, 2014. Therefore we are not only interested in
how the mean daily streamflow arises out of climatic forcing and ecohydrological re-
sponse, but also the variability of daily streamflow. Daily streamflow variability refers
how often and by how much the daily streamflow strays from the mean, and can be
measured in many ways. In the context of landscape evolution we are concerned in
particular with the frequency and magnitude of streamflow events significantly larger
than the mean - floods. In distributions of daily streamflow, this manifests itself in the
shape of the right hand tail of the distribution, which can be described as being light or
heavy. When the tail is heavy, the probability of observing very large floods is higher
than when the tail is light. If the tail follows an exponential form it is considered light,
if it instead follows a power law form, it is considered heavy. The nature of the tail can
easily be observed in a log-log plot of the probability density function or probability of
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exceedence (one minus the cumulative density function). In what is a slight abuse of
the terminology, we refer subsequently to the tail heaviness as a measure of the daily
streamflow variability. The heavier the tail, the more variable the daily streamflow is.
Figure 33 shows two hydrographs and their associated pdfs, including a log-log inset
to show the heaviness of the tail. The hydrograph in 33a is from a river with high
variability, and the hydrograph in 33b from one with low variability. This can be seen
from the hydrograph directly, as well as in the heaviness of the tail of the distributions.

If we idealize hydrographs as being made up of storm impulses followed by stream-
flow recessions that last until the next impulse we can understand the controls on the
variability of daily streamflow. In this idealized case, the variability is controlled by
the time it takes for the river basin to relax from its initial excited state directly after a
storm impulse and by the frequency of those storm impulses. If a river basin relaxes
quickly relative to the time between storms then the recessions will be long, spanning a
large range of daily streamflows. The river will spend some time well above the mean
and a lot of time well below the mean, such as in figure 33a. If, in contrast, the relax-
ation time is slow and the storm impulses frequent, there will be few long recessions.
The daily streamflow magnitude will hover more closely around the mean, leading to
low streamflow variability as in figure 33b.
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Figure 10: Figure adapted from Botter et al. 2013. Streamflow time series from a high variability
river (a) and a low variability river (b) are shown along with the associated distribu-
tions. The high variability in (a) can be attributed to the fast recessions which can
discharge the large storm impulses before the next storm.
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3.3.4.2 The recession exponent

In this model we will assume that the first control on daily streamflow variability,
the mean time between storms, is described by the mean effective storm frequency
(⌧storm = 1/!�). Therefore in order to fully determine the streamflow variability it
is only necessary to understand what controls the rate of the streamflow recession.
Within the framework of equation 10, the recession exponent b determines in part
the response of a river basin to a single storm impulse by dictating the shape of the
recession curve. When b is one, the recession follows a decreasing exponential function
of time. When b is greater than one, the response of the basin to an impulse is more
dramatic, with a faster drop from the initial high streamflow state to a slower decay
at very low streamflows. This means that for higher values of b, the peak of the storm
impulse is larger relative to the mean. This leads to a heavier tailed distribution of
daily streamflow.

While there are some theories as to precisely what determines b in a river basin
(e.g. Rupp and Selker, 2006; Harman, Sivapalan, and Kumar, 2009; Biswal and Marani,
2010), there is not yet a general consensus (Harman, Sivapalan, and Kumar, 2009;
Chen and Krajewski, 2016). Empirical data sets show that it is likely influenced by
climate (Berghuijs et al., 2014), ecohydrology (Szilagyi, Gribovszki, and Kalicz, 2007),
land use (Bogaart, Lyon, and Dekker, 2016) and basin geology/geomorphology (Tague
and Grant, 2004). For now we consider b to be an externally defined parameter. Despite
uncertainties due to different approaches used for fitting b (Chen and Krajewski, 2016),
empirical distributions from bulk analysis (rather than individual recessions) point to
values which mostly fall between 0.5 and 2.5, with values above 3.5 rare (Ye et al., 2014;
Berghuijs, Hartmann, and Woods, 2016; Bogaart, Lyon, and Dekker, 2016), an example
of this is shown in figure 11.

3.3.4.3 Characteristic response time

The recession exponent b is only part of what determines the streamflow recession.
River basins with the same value of b can still exhibit different recession times. This
is because there exists a characteristic timescale for the catchment’s hydrological re-
sponse to a storm impulse independent of the shape of the recession set by b. This
timescale captures important catchment wide hydrological features such as catchment
morphology and aspect ratio, average hydrological pathway length and conductivity,
etc. (Botter et al., 2013). Here we refer to this timescale as ⌧. If, for a given value of b,
the mean time ⌧storm between effective storms is small compared to the characteristic
time ⌧ associated with the time for a storm pulse to leave the basin, the supply of water
to the river will be relatively consistent, and the daily streamflow will stay close to the
mean daily streamflow. This will yield a streamflow regime with low variability. On
the other hand if the time it takes for the river basin to drain a storm pulse is small
relative to the effective interstorm period, then the river streamflow will often be well
below the mean, with infrequent but significant deviations well above the mean. This
will yield a streamflow regime with high variability.

To take this into account we define the coefficient of daily streamflow variability ⌫. It
is a nondimensional ratio of the timescale of the hydrological response to the effective
interstorm period, and is known to be a robust description of the streamflow variability
in the case b = 1 (Botter et al., 2013). Here we extend it to all values of b.

⌫ =
⌧storm

⌧

= (!�⌧)-1. (11)
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Figure 11: Observed distribution of b from 1144 rivers, 725 in Europe (Berghuijs, Hartmann,
and Woods, 2016) and 419 in the US [Berghuijs, personal communication]. The values
of b are well distributed around 1.5, with the majority falling between 1 and 2.

We are left then with defining a formal measure of the characteristic response time
⌧. We can extract this timescale from the recession coefficient a. Dralle, Karst, and
Thompson, (2015) point out that due to the scaleless nature of the power law describing
streamflow recessions (equation 10), a will exhibit an artificial correlation with b. They
show that there exists a decorrelated recession coefficient â such that â = aq

b-1

o

, where
q

o

is a scaling factor that is basin specific. Here we use the mean daily streamflow µ as
a proxy for q

o

. Though not perfect, there is some preliminary evidence that this is not
a poor choice [Berguijs, personal communication] and (Dralle, Karst, and Thompson,
2015). This defines a new recession coefficient â with units of [T-1]. The characteristic
timescale for the streamflow recession is then defined as ⌧ = 1/â.

3.3.4.4 Distributions of daily streamflow

Given the known probability distributions of the magnitudes of climatic forcing (rain-
fall) and antecedent conditions (soil moisture state) as well as the hydrological response
(as parameterized by b, ⌫ and µ and described by equation 10) for a given catchment,
we can now derive the probability distribution of the magnitudes of daily streamflow.
Depending on the value of b, this leads us to three different solutions for the distribu-
tion of daily streamflow in terms of ecohydroclimatic parameters. For the case b = 1,
(Botter et al., 2007) showed that the streamflow distribution is a gamma distribution
with shape parameter k and scale parameter k/µ shown here in nondimensional form,

f

Q⇤(q⇤) =
k

k

�(k)
q

k-1

⇤ exp [-kq⇤] , (12)
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where q⇤ = q/µ is the nondimensional daily streamflow, and k = !�⌧ contains the
climatic and ecohydrological parameters. For the second solution we present a newly
derived distribution of streamflow for the case b = 2 that is an inverse gamma distri-
bution with shape parameter k+ 1 and scale parameter kµ (derivation in appendix A),

f

Q⇤(q⇤) =
k

k

�(k)
q

-k-2

⇤ exp
⇥
-kq

-1

⇤
⇤

(13)

This distribution has a power law tail, meaning that it has a much heavier tail relative
to the gamma distribution found for b = 1. The general solution for the case that
b 6= 1, 2 is (Botter et al., 2009),

f

Q⇤(q⇤) = Cq

-b

⇤ exp

-k

✓
q

2-b

⇤
2- b

-
q

1-b

⇤
1- b

◆�
(14)

where C is a normalizing constant such that
R1
0

f

Q⇤(q⇤)dq⇤ = 1. An analytical solution
for C is impossible, though some analytical approximations exist (see appendix B). In
equation 14 there is an atom of probability, p

o

, that q = 0 for 0 < b < 1 (Botter et al.,
2009).

p

o

= C

k

µ

1-b

�(q⇤) (15)

Equation 14 is undefined at b = 1, 2. However, it can be shown numerically that the
limit of equation 14 as it approaches b = 1 is equation 12 and the limit as it approaches
b = 2 is equation 13. Further, for 1 < b < 2 equation 14 exhibits probabilities of extreme
events between that of the analytical solutions for b = 1 and b = 2, as shown in figure
12. This allows us to obtain the distribution of streamflow across the observed range of
b. It is worth noting that equation 13 is identical to the inverse gamma used in Lague,
Hovius, and Davy, (2005). The range of solutions for different values of b leads to a
resolution of the issue of which distribution to use to best represent daily streamflow.
Depending on the value of b, the distribution of streamflow ranges from exponential
(light tailed) to power law tailed (heavy tailed), and heavier.

In all three of the above solutions, the climatic and ecohydrological variables are
contained in k = !�⌧. This happens to be one over the coefficient of variability defined
earlier. Therefore, equations 12-14 show that the heaviness of the tail of the distribution
of daily streamflow is controlled by the shape and timescale of the recession (b, ⌧) and
the time between effective storms (⌧storm). In geomorphology literature, k has often
been referred to as the daily streamflow variability. However this is confusing, because
low values of k describe high variability, and vice versa. Therefore, to enhance clarity
we use the coefficient of variability ⌫ instead of k. When ⌫ is large, so is the daily
streamflow variability.

The recession exponent b determines the underlying distribution type (gamma, in-
verse gamma, or something in between). However, the variability parameter deter-
mines the precise form of the tail of the streamflow distribution. Figure 12 plots dis-
tributions of daily streamflow as calculated by equations 12-14 for different values of
b. The shaded regions surrounding the distributions for b = 1 (black line) and b = 2

(blue line) show the effect of changing the coefficient of variability ⌫ from 0.5 to 2.
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Figure 12: Shown are the distributions of streamflow for constant ecohydrological and climatic
conditions where only the recession coefficient has been changed. All lines corre-
spond to a variability parameter of 1, and the shaded regions show the effect of
changing the variability parameter from 0.5 to 2.0 for b = 1 and b = 2.

3.3.4.5 Daily streamflow mean and variability

Both the daily streamflow mean and variability depend on the effective storm fre-
quency!�. This leads to a spurious correlation (or in this case anticorrelation) between
the two parameters (Pearson, 1896),

⌫ =
↵

⌧

µ

-1 (16)

The spurious correlation is referred to as such in order to make clear that one parame-
ter does not control the other, but rather reflects the dependence of both on a common
control (the effective storm frequency). This helps explain the long observed anticorre-
lation between µ and ⌫ (Molnar et al., 2006; Lague, 2014; Rossi, Whipple, and Vivoni,
2016). Figure 13 uses this anticorrelation to support the common observation that dry
river basins have high daily streamflow variability. For a given set of ecohydrological
conditions (here b is arbitrarily set to 1.4), we computed three streamflow distributions,
shown in figure 13b, corresponding to three mean rainfall frequencies (0.9, 0.4, and 0.1),
shown in figure 13a. As the mean rainfall frequency decreases, the effective storm fre-
quency decreases which, in turn, causes a decrease in the mean streamflow and an
increase in the coefficient of streamflow variability. The effect is that the frequency of
moderate events is much lower in the dry basin, while the frequency of large floods is
more comparable between basins.

Hydrological systems are very complex, and there are other factors, besides mutual
dependence on the effective storm frequency, that influence the relationship between
streamflow mean and variability. However, this simple framework provides a useful
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way to think about climate, streamflow mean and variability that is important in mod-
erate sized catchments.

Figure 13: Changing the storm frequency � while keeping the ecohydrological conditions con-
stant demonstrates the covariation of µ and ⌫. Panel (a) shows three different daily
rainfall distributions with different rainfall frequencies (�). The resulting streamflow
distributions in panel (b) range from classically arid (yellow line), with low mean
and high variability to classically humid (blue line), with high mean and low vari-
ability.

3.4 integration of hydrology into the stream power incision model

3.4.1 Channel hydraulics and distributions of daily erosion

In detachment limited rivers incising into bedrock, the erosion rate is commonly mod-
elled as a power law of excess shear stress (e.g. Howard, 1994; Lague, Hovius, and
Davy, 2005; DiBiase and Whipple, 2011) of the form,

" = k

e

(⌧c
s

- ⌧c
c

), ⌧

s

> ⌧

c

, (17)

where " is the vertical incision into the riverbed with units of [LT-1], ⌧
s

is the basal
shear stress, ⌧

c

is the critical shear stress for erosion to occur, k
e

is an erosional effi-
ciency constant, and c an exponent reflecting the dominant erosion process (Whipple,
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Hancock, and Anderson, 2000). In order to relate streamflow to shear stress, it is neces-
sary to know the channel cross-sectional profile and roughness. To obtain this we make
common assumptions about channel width and depth as a function of mean stream-
flow and daily streamflow (e.g. Lague, Hovius, and Davy, 2005; DiBiase and Whipple,
2011). For more details see appendix C. This results in the following expression for the
daily incision as a function of daily streamflow, mean daily streamflow and channel
slope,

" = KhQimS

n

q

�

⇤ - , q > q

c

(18)

where K is a complex erodibility coefficient that is a function of channel hydraulics
and lithology but not climate, q⇤ is the daily streamflow, hQi is the mean daily catch-
ment integrated streamflow (hQi = µA), S is the river slope and  is the threshold for
erosion. The exponents m, n, and � are determined by the channel form and hydraulics.
The exponent n determines the relative importance of the river slope. The exponent m
is related to the bankfull width of the channel, and how this increases with increasing
hQi downstream. In contrast the exponent � describes in part the shape of the cross
sectional channel profile. This determines how the channel width at a given location
on the river changes with the daily variations in streamflow and therefore controls the
sensitivity of the daily erosion rate to streamflow variability. When � > 1 shear stress
⌧

s

increases disproportionately to daily streamflow, and large floods will be more im-
portant in determining the long-term erosion rate than when � 6 1.

We can use this relationship between daily erosion rate and daily streamflow to
rewrite the distribution of streamflow in terms of daily erosion rate. For the case b = 1

(derivation in appendix D),
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where �
"

= �(1/⌫)[�(1/⌫,q
c⇤/⌫)- �(1/⌫,q

m⇤/⌫)] is a normalizing constant that takes
into account the fact that the distribution of erosion only exists for streamflows above
q

c⇤, the critical streamflow, and below q

m⇤, the maximum streamflow we expect to see
over the time period of observation. We define "

o

= KhQimS

n as the reference erosion
rate; it is the erosion rate we would see in the absence of any stochastic variations in
streamflow or erosion threshold effects (q⇤ = 1,  = 0).

For b = 2 (derivation in appendix D),
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where �
"

= �(1/⌫ + 1)[�(1/⌫ + 1, 1/⌫q
m⇤) - �(1/⌫ + 1, 1/⌫q

c⇤] is a slightly different
normalizing constant that serves the same role as in the case b = 1.

In the case b 6= 1, 2 (derivation in appendix D),
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where C

"

is a normalizing constant such that
R
"

m

0

f

E

(")d" = 1. In the above expressions,
we see that the pdf of daily erosion can be expressed as a function of geomorphic (K,
S, m, n, �,  ) and ecohydrological (b, ⌫, µ) parameters.
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Figure 14 shows the distributions of daily erosion corresponding to the distributions
of daily streamflow in figure 12. The effect of changing the coefficient of variability ⌫
is shown as shaded regions for b = 1 and b = 2. It’s influence is slightly different due
to the significant probability to have days with no erosion at all.
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Figure 14: Distributions of daily erosion associated with the distributions of streamflow from
figure 12. For all distributions the ecohydrological and climatic conditions are held
constant, ⌫ = 1 and � = 1. The shaded regions show the effect of changing the
variability parameter from 0.5 to 2.0 for b = 1 and b = 2.

3.4.2 Mean long-term erosion rates as a function of climate and ecohydrology

To obtain the mean erosion rate we can integrate over the distribution of daily erosion
from "(q

c

) = 0 to "(q
m

) = "

m

. This yields the mean erosion intensity Ē, but does
not take into account the days on which no erosion occurs. To account for that we
must calculate the fraction of the days when there was erosion. This amounts to the
probability that the daily streamflow is equal to or greater than the critical streamflow
q

c⇤, Pr[q⇤ > q

c

]⇤, taking into account that the distribution has already been truncated
at q⇤ = q

m⇤. This can be thought of as the frequency with which the threshold q

c⇤ is
exceeded, therefore we refer to it as the threshold term and label it �

"

.
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(22)

where the superscripted t on the distribution of streamflow denotes the fact that it
has been truncated at q

m⇤ and renormalized such that the Pr[q⇤ < q

m⇤] = 1. The mean
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long-term erosion rate is the product of the mean erosion intensity and the fraction of
days that have erosion,

hEi = �
"

Ē (23)

where,

Ē =

Z
"

m

0

" f

E

(")d" (24)

We make a point to calculate the mean erosion rate hEi and the mean erosion intensity
Ē separately so that we can differentiate between rivers with low frequency, high im-
pact erosion events and rivers with high frequency, low impact erosion events. These
may both have similar mean erosion rates, but will have very different mean erosion
intensities and erosion frequencies.

The integral in 24 can be solved analytically (derivation in appendix D) in the cases
b = 1 or 2 yielding,

Ē =  "
o

(25)
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The new term  quantifies the impact of stochastic streamflow events above the erosion
threshold accounting for their relative frequency of occurrence and erosive power. It
is mainly a function of q

c⇤ and ⌫. We refer to this term as the stochastic term. In the
general case that b 6= 1 or 2, we can solve for �

"

and  numerically.
This brings us to the new form of the stochastic-threshold stream power incision

model,

hEi = �
"

 KhQimS

n (27)

where hQi = µA. The terms �
"

and  are both functions of the ecohydroclimatic
conditions of the catchment with analytical solutions in the cases b = 1 or 2. As q

m⇤
becomes very large and q

c⇤ becomes much smaller than the mean daily streamflow,
�

"

tends to one because there are no threshold effects, and  becomes a function of
only the streamflow variability ⌫ and the exponent of the erosion rate �. In the case
� = 1 (erosion rate increases linearly with streamflow),  becomes one as well, and the
erosion rate is simply the reference constant streamflow erosion rate "

o

.

3.5 results and discussion

The hydrological model creates a framework where only the daily mean and variabil-
ity of streamflow (µ and ⌫) and the recession exponent b are needed to fully specify
the distribution of daily streamflow, and to relate that distribution back to the cli-
matic and ecohydrological conditions giving rise to it. This allows us to unite the
work of Tucker and Bras, (2000) with the work of Crave and Davy, (2001) and Lague,
Hovius, and Davy, (2005). These workers established two different theoretical bases
of stochastic climatic forcing in landscape evolution that have been used in several
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subsequent studies (Snyder et al., 2003; Collins, Bras, and Tucker, 2004; Tucker, 2004;
Istanbulluoglu and Bras, 2005, 2006b; Molnar et al., 2006; DiBiase and Whipple, 2011;
Carretier et al., 2013; Lague, 2014; Rossi, Whipple, and Vivoni, 2016). Tucker and Bras,
2000 and Tucker, (2004) consider the effect of realistic stochastic climate forcing but
neglect hydrology, arriving at a light tailed exponential distribution for streamflow
and representing the variability of climate through the one over the storm frequency
(1/�). In contrast, Lague, Hovius, and Davy, (2005) consider hydrology directly, using
a heavy tailed distribution for streamflow commonly observed in nature and represent-
ing climatic variability with the shape parameter of their heavy tailed distribution (k).
However they do this at the expense of the connection to realistic climatic forcing, as
they cannot cast their distribution in terms of rainfall. Within the framework presented
here, a light tailed distribution of streamflow and a solution for the longterm erosion
rate very similar to Tucker, (2004, eq. 33) is recovered when b = 1. When b = 2, the
streamflow distribution is heavy tailed, and the solution for the longterm erosion rate
is equivalent to Lague, Hovius, and Davy, (2005, eq. 17). Furthermore, the different
concepts of climatic variability can be reconciled in this framework with the variability
parameter ⌫ = 1/k = (!�⌧)-1, which is equivalent to one over Lague’s variability
(k), and a linear function of Tucker’s variability (1/�), revealing that the two forms of
variability are related to each other, and adequately captured by ⌫.
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Figure 15: The hydrological parameter space covered in this study compared to previous stud-
ies on the effect of streamflow variability on fluvial erosion. Some of the other studies
can only be approximately represented in the parameter space presented here, these
are shown with dashed lines. The arrows show the observed natural ranges of b and
⌫.

The hydrological model allows us to model how the mean and variability of stream-
flow respond to changes in the climatic and hydrological boundary conditions. In
turn, the influence that streamflow mean and variability have on stream power ero-
sion has been clearly investigated in previous studies (e.g. Lague, Hovius, and Davy,
2005; Lague, 2014) and is well understood. As a result, the coefficient of streamflow
variability ⌫ and the mean streamflow µ provide a useful way to understand the ef-
fect of ecohydrology and climate on longterm fluvial erosion rates. In the following
we first briefly review the impact of the streamflow variability on the longterm ero-
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sion rate. Then we discuss climatic and hydrological controls on streamflow mean and
variability. We finish with some examples of how climatic and hydrological conditions
can influence fluvial erosion rates and the development of steady state river profiles.
Throughout the entire following discussion we assume that the erodibility coefficient
K and the stream power exponents are constant (n = 1 and m = 0.5). The effect that
changes in these parameters have is already well understood (e.g. Whipple and Tucker,
1999).

3.5.1 Daily streamflow variability and longterm erosion rate

We briefly explore here how longterm erosion rates vary as a function of streamflow
variability, finding results similar to Tucker, (2004), Lague, Hovius, and Davy, (2005)
and DiBiase and Whipple, (2011). However, in contrast to previous studies, we present
the analysis for a range of values of b, exploring how tail-heaviness influences the
results. We use the normalized longterm erosion rate as a measure of the erosion
efficiency, which highlights the influence of the variability of daily streamflow and the
erosion threshold. The normalized longterm erosion rate is defined as the longterm
erosion rate hEi divided by the constant streamflow reference erosion rate "

o

.

Figure 16: At low streamflow variability the erosion threshold q

c⇤ controls the erosion rate,
with the erosion rate decreasing progressively as the erosion threshold is increased.
At high streamflow variability, the erosion nonlinearity � becomes the dominant
control, and the erosion rate increases as � increases. The trend is the similar for
1 6 b 6 2.5.

When the coefficient of variability is large, the normalized erosion rate is controlled
by the at-a-station nonlinearity, � (see figure 16). The normalized erosion rate increases
with increasing variability when � > 1 because of the strengthened influence of large
floods and decreases with increasing variability when � < 1 because of the weakened
influence of large floods. In contrast, when the coefficient of variability is small, the
erosion rate is controlled by the threshold streamflow q

c⇤. The normalized erosion
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rate decreases with increasingly high thresholds at low variability, regardless of the
value of �. These results are consistent for 1 6 b 6 2.5, and are in line with previous
work (Tucker and Bras, 2000; Lague, Hovius, and Davy, 2005). This suggests that for
a wide range of conditions, the erosion threshold will be a dominant factor in setting
the longterm erosion rate for ⌫ 6 1.

3.5.1.1 Tail heaviness

Larger values of b imply more nonlinear discharge recessions, which leads to heavier
tailed distributions of discharge. The rare discharge events associated with heavier
tailed distributions are larger than distributions with smaller values of b. This is similar
to distributions with larger coefficients of variability. As a result, increasing b leads to
an increased sensitivity to � when the coefficient of variability is large and a lowered
sensitivity to the erosion threshold when the coefficient of variability is small (see
figure 17).

Figure 17: The effect of the coefficient of variability on the normalized erosion rate for different
values of b. The solid lines represent � = 1, and the shaded region shows the range
from 0.75 6 � 6 1.25. The erosion threshold q

c⇤ = 5, maximum discharge q

m⇤ = 1.
As b increases, the sensitivity to q

c⇤ decreases and the sensitivity to � increases.

Though the hydrological and climatic controls on the coefficient of variability are
consistent across the range of b, the effect that changes in the coefficient of variability
has on the erosion rate will differ for different values of b. One consequence of this is
that if b and ⌫ covary, the response to increasing variability will be compounded by
increasing tail heaviness, and will be more significant than would be predicted for a
constant b value.

3.5.1.2 The importance of maximum streamflow for power law tailed streamflow distributions

For heavy tailed distributions (b > 2), the longterm mean erosion rate does not nec-
essarily converge to a constant value, even for long observation periods. Instead the
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measured longterm erosion rate will fluctuate continuously over time. However, if
there exists a physical upper limit on the magnitude of daily streamflow q

m⇤, the ero-
sion rate will converge to a mean value once the observation period is long enough to
have a good probability of including q

m⇤. Thus the existence of maximum streamflow
has a significant impact on the longterm erosion rate, especially when b > 2 and � > 1.
Despite the critical role of the maximum streamflow, the precise value of q

m⇤ is not im-
portant in determining the longterm mean erosion rate. This was also noted by Lague,
Hovius, and Davy, (2005) who showed that, except for nonlinear regimes (v > 1 and
� > 1) the value of q

m⇤ was not significant.

3.5.1.3 Peak in erosion frequency as a function of variability

It is possible to use the distribution of streamflow to estimate the return time of extreme
events simply by calculating the probability of observing an event larger than a chosen
extreme event threshold magnitude. However, this implicitly assumes that the individ-
ual daily floods are unrelated to one another, an assumption which is known to be
poor for daily streamflow, where storms can cause floods spanning several days. This
means that the estimated return time resulting from such an analysis is a minimum
estimate, the actual return times are likely to be longer. A more rigorous assessment of
return times requires a treatment of extreme value theory that is beyond the scope of
this work.

That said, we can still use the above approach to get a rough estimate of how the
importance of extreme events changes with ⌫ and q

c⇤. To measure the importance
of extreme events we calculate the daily streamflow magnitude above which 50% of
erosion occurs (referred to as q

50⇤). When q

50⇤ is large, it implies that very large
events accomplish 50% of the total erosion, and therefore extreme erosion events are
important. We have arbitrarily selected q

50⇤, other values could be used (derivation in
appendix E). We would expect that as variability increases, the importance of extreme
erosion events would go up. Figure 18a shows the magnitude of q

50⇤, demonstrating
that it indeed increases with increasing variability for a range of values of b, q

c⇤ and
q

m⇤. The increase is stemmed by imposing a maximum streamflow, which reduces the
importance of extreme events.

A high value for q

50⇤ implies that extreme erosion events are important. However,
it does not say anything about the frequency of these large erosion events. If erosion
events themselves are rare due to low variability or a high erosion threshold then even
common erosion events will require large, rare streamflow events. We can calculate
the fraction of streamflow events responsible for the upper 50% of erosion ("

50⇤). This
takes into account the effect of both q

50⇤ and the erosion frequency �
"

and is shown in
figure 18b. Unexpectedly, figure 18b shows that the frequency of "

50⇤ is very low at low
variability, with a peak at moderate variabilities. This is due to the fact that all erosion
events are caused by extreme streamflow events at very low streamflow variabilities.
This predicts counter-intuitively that infrequent erosion events will be important for
low and high variability rivers, while moderate variability rivers will be driven by
frequent erosion events.

3.5.2 Hydrologic and climatic controls on streamflow

Neither the climate nor the ecohydrology of a river basin alone dictates the resulting
streamflow distribution, but rather the interaction between the two. This means that
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Figure 18: Panel (a) shows the streamflow above which 50% of erosion is accomplished as a
function of variability for a range of q

c⇤, q
m⇤ and b. Panel (b) shows the frequency

of erosion events associated with the upper 50% of total erosion. The colors and
linestyles correspond to panel (a).

the same climate can give rise to different fluvial responses depending on the eco-
hydrological regime, leading to the conclusion that the erosional response to a given
climate cannot be predicted without taking into account the ecohydrology of a river
basin, among other things.

The manner in which ecohydrology modulates climate to yield the streamflow regime
(described by µ, ⌫ and b) is not straightforward. Ecohydrology effects both the total
amount of water transmitted through the hydrological system to the river as well as the
frequency of effective storms (storms significant enough to produce streamflow), and
consequently the streamflow variability. In some cases ecohydrology acts as a strong
filter of incoming rainfall, fundamentally altering the statistics of incoming rainfall. In
other cases it can be less important as a filter, leaving the statistics of rainfall relatively
intact as they are transmitted through the basin to become the statistics of streamflow.

3.5.2.1 Mean streamflow

The ecohydrological conditions in a river basin have a major influence on the mean
streamflow by controlling which proportion of the incoming rainfall enters the fluvial
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system (expressed by the streamflow ratio !), and which proportion of rainfall leaves
the catchment as vapor due to evapotranspiration. Through this influence the ecohy-
drological regime in a catchment can dictate the longterm erosion rate by reducing the
fraction of rainfall that goes to streamflow.

Considering the form of the mean, µ = ↵!�, and the fact that ! 6 1 it is clear
that taking ecohydrology into account will always reduce the estimation of the mean
streamflow. The reduction of the mean streamflow due to ecohydrology can be sig-
nificant, with arid catchments approaching 100% loss of incoming rainfall to evapo-
transpiration (Budyko, 1974). Two basins with similar mean rainfall rates, but very
different effective soil depths or aridity indices, e.g. as a result of different soil depths
or evapotranspiration rates, can have significant differences in the fraction of rainfall
that is partitioned into streamflow, with the catchment that has low evapotranspiration
rates and thin soils having higher streamflow. We can see this by increasing the mean
storm intensity while holding ecohydrological conditions constant, which changes the
effective soil thickness and the aridity index (figure 19). When the mean storm size is
large compared to the soil capacity, the soil layer is easily saturated, and most storms
produce runoff events. In this case the intensity and frequency of rainfall are closely
correlated with the mean and frequency of streamflow events, and the streamflow ra-
tio is close to one. As the storm size decreases, the effective soil depth increases, and
the soil layer is saturated only by increasingly infrequent, large storms. This results
in fewer runoff events, as larger fractions of each storm are stored in as soil moisture,
resulting in proportionally more water from each storm lost to evapotranspiration, a
larger aridity index, and a reduced mean streamflow magnitude. An interesting conse-
quence of this is that the mean streamflow may be significantly influenced by factors
other than the mean rainfall in a river basin, including temperature, insolation, slope
aspect, soil depth and porosity, and vegetation type and cover.

The partitioning of rainfall into streamflow and evapotranspiration can also respond
nonlinearly to changes in rainfall intensity or frequency, such that changes in mean
rainfall rate have a disproportionate effect on mean streamflow (figure 19). Addition-
ally, mean streamflow will respond differently to a change in mean rainfall intensity
than it does to a change in mean rainfall frequency, even if the change to mean rainfall
rate is the same in both cases. This is because the rainfall intensity and frequency have
different influences on the effective soil thickness and aridity index (figure 20.)

All else constant, the erosion rate will be less sensitive to changes in river slope when
the mean daily streamflow is lower. This means that catchments in the thick and/or
dry soil regimes will require steeper riverbed slopes to achieve the same erosion rate
compared to catchments with effectively thinner, wetter soils but with the same mean
rainfall rate. To the extent that vegetation is correlated with thicker soils and higher
evapotranspiration rates (leading to the dry thick soil regime), highly vegetated catch-
ments could experience slower erosion for the same steepness not only because of the
vegetation’s ability to stabilize slopes, but also because of its role in reducing the ero-
siveness of the rivers by a (potentially significant) reduction in the mean daily stream-
flow relative to the incoming mean rainfall. Similarly, arid catchments are expected
to use each millimeter of rainfall less efficiently for erosion due to more significant
losses to atmospheric fluxes. However, this may be obfuscated by other differences
such as the erosion threshold or streamflow variability that are also expected to vary
systematically between catchments in different ecohydrological regimes.
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Figure 19: The interaction of climatic and ecohydrological conditions (expressed as h
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and �)
is what determines the water partitioning in a catchment. The ecohydrological con-
ditions are held constant (PET = 0.5 cm/day, � = 0.4, soil capacity n

s

Z

r

(s
1

- s

w

) = 2

cm) while the mean storm intensity is varied (0.2 cm < ↵ < 20 cm). The result is that
the relative importance of ecohydrology changes across the range of storm depths,
with the fraction of rainfall lost to evapotranspiration and interception decreasing
significantly with increasing storm depth.

3.5.2.2 Streamflow variability

The retention of rainfall in the soil layer, and its release back into the atmosphere via
evapotranspiration does not only reduce the mean streamflow, but also causes a shift
in the statistics of runoff events relative to rainfall. This is because small and moderate
rainstorms are more affected by the buffering effect of the soil layer than larger rain-
storms. This is why the water balance term, !, that describes the partitioning of water
into fluvial and atmospheric fluxes appears in the equations for both the mean and vari-
ability of streamflow. This aspect of the hydrological model is well supported by the
study of the environmental controls on streamflow variability in several hundred river
basins in the US and Puerto Rico (Rossi, Whipple, and Vivoni, 2016). This study finds
that the increase in streamflow variability associated with increasing basin aridity can
be understood as a decrease in the frequency of moderate streamflow events (events
with a frequency of 0.2-2 years) relative to rare streamflow events (event frequency > 20

years). Additionally, the study finds that the basin aridity index, �, evapotranspiration
rate, ETrat, and the rainfall frequency, �, are the best predictors of streamflow variabil-
ity in rainfall dominated catchments (<10% precipitation as snow). Finally, study finds
that mean and variability of daily rainfall intensity are not predictors of streamflow
variability, suggesting that these are not important controls.

These findings match well with the environmental controls on the coefficient of
streamflow variability described by the model as well as the conceptual description
of how thin, thick, wet, or dry soil regimes drive the runoff ratio, and consequently
streamflow variability. Equation 11 predicts that the coefficient of variability is con-
trolled by the hydrological response time, the mean rainfall frequency, and the runoff
ratio, which is a function of the effective soil thickness and the aridity index (⌫ =
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Figure 20: Monte Carlo simulations of the mean daily streamflow ratio for a wide range of
hydrological and climatic boundary conditions (for more information see chapter 4).
Panel (a) the mean daily rainfall rate is an important control on mean streamflow
rate, particularly in humid basins (� < 1) with thin effective soils (thin, wet soils).
Panel (b) through their influence on the runoff ratio (!), the aridity index and effec-
tive soil thickness are also important controls on mean streamflow (as explained in
section 3.3.3).

[!(h
s

,�)�⌧]-1). Rossi, Whipple, and Vivoni, (2016) do not assess the relationship be-
tween soil moisture storage capacity or hydrological response time and streamflow
variability, but the relationships they find between aridity index and streamflow vari-
ability as well as mean rainfall frequency and streamflow variability are well captured
by this model.

Using Monte Carlo techniques we can probe the controls on streamflow variability
predicted by the model over a wide range of climatic and ecohydrological conditions
(see figure 21). When the aridity index is less than one (energy limited conditions), the
variability is mostly controlled by the hydrological response time. When the aridity
index is larger than one (water limited conditions), streamflow variability is predomi-
nantly controlled by the effective soil depth, h

s

. The control of the effective soil depth
reflects both the importance of soil moisture storage capacity and mean rainfall inten-
sity. The fact that Rossi, Whipple, and Vivoni, (2016) find mean rainfall intensity to be
a poor predictor of streamflow variability may imply that the model overemphasizes
the role of the effective soil depth. Across a wide range of climatic and ecohydrological
conditions, streamflow variability is predicted to be higher under more arid conditions.
This matches the observation from Rossi, Whipple, and Vivoni, (2016) that evapotran-
spiration and rainfall frequency are good predictors of streamflow variability (because
the aridity index is a function of the potential evapotranspiration rate and, indirectly,
mean rainfall frequency).

3.5.3 Ecohydrology, climate and erosion

3.5.3.1 The impact of changing climate on erosion rates

It is useful to understand independently the influence of streamflow mean and vari-
ability on the longterm erosion rate as we have done above. However, the relationship
between streamflow mean and variability that emerges from the theory presented in
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Figure 21: Monte Carlo simulations of the coefficient of streamflow variability for a wide range
of hydrological and climatic boundary conditions (for more information see chapter
4). Panel (a) for a wide rang of conditions, hydrological response time is an impor-
tant control on variability in humid basins (� < 1). Panel (b) Effective soil depth is
another important control on variability, but for arid basins rather than humid ones
(� > 1). Overall, the aridity index is an important control variability, with humid
basins tending to be less variable than wet basins.

this study suggests that the two should be considered together. This is supported by the
widespread empirical observation of an anticorrelation between streamflow mean and
variability (Molnar et al., 2006; Lague, 2014; Rossi, Whipple, and Vivoni, 2016), which
led to efforts to consider the influence of covarying mean and variability on longterm
erosion rates (Molnar et al., 2006; DiBiase and Whipple, 2011). However, previous work
was based on empirical relationships. With our theoretical framework relating stream-
flow mean and variability to climate and ecohydrology we are ideally suited to explore
the effect of covarying, anticorrelated mean and variability as a result of changing cli-
mate.

W do this by changing the underlying climatic and ecohydrological parameters,
which causes the mean and variability to change accordingly. We can calculate the
trajectory a river basin will chart in µ-⌫ parameter space in response to changing cli-
matic and hydrological boundary conditions (22a). These trajectories tend to follow the
negative correlation between mean and variability, i.e. to trend from high variability,
low mean discharge to high mean discharge, low variability. This dominant trend re-
sults in portions of µ-⌫ space that are unlikely to be occupied by a river basin, because
it requires extreme climatic and ecohydrological conditions. These regions consist of
the upper right and lower left corners of the parameter space in figure 22, which is
useful for directing our analysis to the realistic parameter space.

We use equation 27 to calculate the longterm erosion rate as a function of the stream-
flow mean and variability (shown as contours in figure 22a, where b = 2, q

c⇤ = 10,
� = 1). We compare the response of the erosion rate to increases in rainfall intensity
or frequency using the hydrological model to models where erosion rate is a simple
function of mean discharge, e.g. hEi = KhQimS

n, or rainfall, e.g. hEi = KhPimS

n (fig-
ure 22b and c). The reduction in variability as mean discharge increases reduces the
impact of a higher mean discharge. As a result, erosion is less efficient for high mean
discharge than predicted by simpler stream power models. However, this is not true for
the entire parameter space. In particular, if � > 1, the erosion rate predicted by the cou-
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pled hydrological model can exceed that predicted directly by mean rainfall or mean
streamflow rates. In general, rivers with a slower response time are more dramatically
affected by the trade off of the mean and variability of streamflow.

Figure 22: In panel (a) hypothetical river basins with the same ecohydrological conditions, but
different hydrological response times, are shown as circles in the streamflow mean-
variability parameter space on top of the longterm erosion rate (grey contours -
each contour represents an order of magnitude change in erosion rate with lower
erosion rates represented by darker colors). The trajectories that these basins follow
with changing mean storm frequency (solid lines) and mean storm depth (dashed
lines) are also plotted. Panels (b) and (c) show the longterm erosion rate along the
trajectories with the corresponding line color and style in panel (a). Also shown
is the erosion rate as a function of rainfall intensity or frequency using the model
hEi / hPim (dashed gray lines) and using the model hEi / hQim (solid gray lines).
The erosion threshold is set at 10x the mean discharge (q

c⇤ = 10). As a consequence,
the absolute magnitude of the threshold increases with increasing mean streamflow.

Figure 22 illustrates why the changes in longterm erosion rate depend so heavily
on both the climatic and ecohydrological conditions of the river basin. While we can
guess that the trajectory a basin will follow with changing climatic forcing will trend
from the lower right corner to the upper left corner of µ-⌫ space, we cannot know
how this will effect the erosion rate until we know its position in µ-⌫ space. This
requires knowledge of both the climatic and ecohydrological conditions in that basin.
Therefore, understanding what ecohydroclimatic regime a particular basin is in is key
to understanding how the longterm erosion rate will respond to changes in climatic
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forcing. Another key to understanding how the erosion rate will evolve with changing
climate is the response of the erosion threshold.

3.5.3.2 Steepness index and the long stream profile

To provide some tangible examples of the magnitude of influence of climatic and hy-
drological boundary conditions on the stream power model, we model the steady
state long stream profile for several sets of different boundary conditions. Lague,
(2014) provide evidence suggesting that it is more common for bedrock rivers to be
in a ’stochastic-threshold’ domain (Lague, 2014, figure 6), which corresponds approxi-
mately to q

c⇤ > 1. For all the following simulations the relative erosion threshold, q
c⇤,

is between 1 and 10. As a result, streamflow variability always plays a significant role.
For computational efficiency, we take advantage of analytical solutions (b = 2). Unless
otherwise noted, we use moderate values for all climatic and hydrological parameters:
s

o

= 3-30 mm, ETmax = 10 mm/day, ↵ = 10 mm/day, � = 0.25 or 0.6 day-1, p̄ = 2 or
6 mm/day, ⌧ = 3-6 days. In the context of the stream power model, modifications to
the climatic and hydrologic boundary conditions are effectively changes in the erodi-
bility rate constant K, which are already understood (e.g. Lague, Hovius, and Davy,
2005; DiBiase and Whipple, 2011; Lague, 2014). However, we attempt to show with the
numerical experiments that reasonable changes in climatic and hydrological boundary
conditions can result in significant changes in the steady state stream profile relief and
steepness index.

In this model, the hydrological response time, ⌧, is the sole parameter that influences
the streamflow variability independent of the mean daily streamflow. Therefore, it’s im-
pact may be over-exaggerated here. However, the impact the response time has on the
steady state long river profile is significant, suggesting that the response time should
be an important control on streamflow variability and fluvial erosion rates. Rivers with
shorter response times will be characterized by rapid streamflow responses to rainfall
that have higher peak discharges than rivers with longer response times. In the model,
this translates to a higher coefficient of variability, which usually leads to more ef-
ficient fluvial erosion. River basins at steady state with short response times should
have lower relief and smaller steepness indices than similar river basins with longer
response times, all else equal. This is borne out in the first numerical experiment, in
which two river basins, identical except for the response time, are evolved to steady
state (figure 23).

The river basin with a shorter response time has lower relief and steepness indices,
as anticipated (figure 23a and b). It also exhibits a different scaling relationship be-
tween the steepness index and erosion rate (figure 23c). This is because the relative
erosion threshold is greater than one, which puts the rivers in regime 3 as described
by Lague, Hovius, and Davy, (2005) and DiBiase and Whipple, (2011). In this regime
the coefficient of variability controls the scaling between steepness index and erosion
rate. An interesting consequences of the two different scalings is that for the right set
of conditions, the river with the largest steepness index for a given erosion rate could
switch. This means that one river would be steeper at low erosion rates, and the other
would be steeper at high erosion rates.

Changing the response time from 3 to 6 days, which is well within the observed
range (figure 24), results in a factor 3 change in relief (figure 23a). The conditions of
the numerical experiment are ideally suited to be influenced by the response time,
i.e. the threshold is larger than the mean. However, there is evidence that this is not
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Figure 23: Panel (a) steady state river long profile for short response time (3 days - dashed
line) and long response time (6 days - solid line) for an uplift rate of 0.5 mm/year.
Panel (b) slope-area relationship associated with long river profiles in panel (a). The
concavity is the same for both rivers, but the steepness index is greater for river
with longer response time. Panel (c) the relationship between steepness index and
erosion rate is nonlinear and different in both cases due to influence of hydrological
response time.

uncommon (e.g. Lague, 2014). Thus we conclude that the hydrologic response time,
which can be an expression of tectonic history (i.e. fracturing), lithology or basin size,
may be an important control on streamflow variability, and by extension, the steady
state profile of rivers.

Differences in the aridity index, �, or the effective soil depth, h
s

, between basins
will have a similar effect as the response time. These nondimensional numbers control
the runoff ratio, which influences both the mean and variability of streamflow. We
explore this effect here by modifying the soil moisture storage capacity, s

o

. However,
differences in other controls on the aridity index or effective soil depth, such as the
intensity or frequency of rainfall, or the mean evapotranspiration rate should have
similar effects. In this numerical experiment, we model three identical river basins,
with the exception of s

o

, which is 3, 10 and 30 mm. For the chosen conditions this
equates to effective soil depths of 0.3, 1 and 3 respectively. The aridity index, � = 4.3,
is the same for all three basins. As a result the difference in soil storage capacity means
that the basin with s

o

= 3 is in the thin, dry soil regime, while the basin with s

o

= 30

is in the thick, dry soil regime. This has significant consequences for the runoff ratio,
resulting in different streamflow means and coefficients of variability between the three
basins, and different steady state river profiles (figure 25a). As before, the difference
is in the steepness index only, and all rivers have the same concavity index, set by
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Figure 24: Observed distribution of ⌧ from 1144 rivers, 725 in Europe (Berghuijs, Hartmann,
and Woods, 2016) and 419 in the US [Berghuijs, personal communication]. This dis-
tribution does not control for river setting, steepness, catchment size, or fraction of
snowfall. Regardless, it is clear that the range of the nonlinear hydrological response
time, ⌧, is large.

the ratio of the stream power exponents m and n (figure 25b). Similarly, the scaling
of steepness index and erosion rate is also different between the basins, for the same
reasons as with the response time experiment (figure 25c).

In the final experiment, we change hydrologic response time progressively along
the length of a river as a function of the catchment area. We calibrate the magnitude
of the change in the hydrological response time using a data set from the Thur river
in Switzerland (Basso, Schirmer, and Botter, 2015), see figure 26a. When the resulting
steady state profile is compared to the steady state profile of a river with a constant
response time of 5 days, the relief between the two is significantly different, similar
to previous experiments. However, in this case, the concavity of the two rivers is also
significantly different. This is because the increase in the response time downstream
increases the steepness index downstream, resulting in a lower concavity. A similar
response is expected when the other climatic and hydrological boundary conditions
such as the soil storage capacity or evapotranspiration rate are spatially variable.

3.5.3.3 The failure to find trends between rainfall rates and erosion rates

Regional comparisons of mean rainfall rates to longterm erosion rates rarely find signif-
icant correlation between the two (e.g. Riebe et al., 2001b; Burbank et al., 2003; Blanck-
enburg, 2005; Bermudez, van der Beek, and Bernet, 2012; Godard et al., 2014; Acosta et
al., 2015). This is perhaps not surprising as there are several confounding factors such
as river slope, catchment area, and spatially varying lithology and uplift rate. How-
ever, even when controlling for these factors, there is reason to think that rainfall will
not be a good predictor of erosion rate. Different ecohydrological conditions can give
rise to different fluvial responses to the same climatic forcing, and therefore different
longterm erosion rates.
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Figure 25: For constant climatic conditions, changes in soil storage capacity, s
o

lead to long
river profiles of different relief (panel (a)), as well as different steepness indices,
(panel (b)), and different scaling relationships between steepness index and erosion
rate (panel (c)). This is because the storage capacity influences both the mean and
variability of streamflow, which drive erosion efficiency. Here we have changed the
storage capacity, but changes in rainfall intensity and frequency or evapotranspira-
tion rates would have a similar effect.

This is demonstrated in figure 27a, which plots the result 2 million Monte Carlo sim-
ulations of the longterm erosion rate for a wide range of ecohydrological and climatic
conditions. We have shown a small sub-sample of the simulations as black dots. The
contours represent the probability distribution of the full two million simulations as
a function of rainfall rate and longterm erosion rate. For each simulation, longterm
erosion rate is calculated using equation 27 from a random set of values of the climatic
and ecohydrological parameters chosen from normal distributions spanning a wide
range of reasonable values. The river slope S, catchment area A, erodibility coefficient
K, and the exponents n and m were held constant. The longterm erosion rate can be
seen to vary significantly (2-6 orders of magnitude) for a given rainfall rate. This is
mostly due to variations in streamflow ratio, !, the streamflow variability (parameter-
ized by b and ⌫), the erosion threshold, q

c⇤, and the erosion nonlinearity, �. Figure 27

illustrates how spatially and temporally varying ecohydrological, climatic and channel
conditions can obfuscate the relationship between mean rainfall rate and the longterm
erosion rate. However, a trend between mean annual rainfall rate and the erosion rate
emerges from the Monte Carlo simulations when these important controls are taken
into consideration. To show this we selected a set of values for b, ⌫, !, q

c⇤ and �. The
predicted trend between mean rainfall rate and longterm erosion rate for this set of val-
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Figure 26: Panel (a) proposed increase of hydrological response time as a function of catchment
area from 2.5 days to 5.5 days agrees well with data from Thur river (data from Basso,
Schirmer, and Botter, (2015)). Panel (b) long river profile for river with response time
of 5 days (solid line) compared to long river profile of river with response time that
increase from 2.5 days to 5.5. days downstream (dashed line). Panel (c) slope-area
relationships associated with long river profiles in panel (b). The change in response
time along the river length as a function of catchment area causes the steepness
index to change continuously, leading to a different channel concavity than river
with constant response time.

ues is shown as a black line. The river basins that have values for these key parameters
within 10% of the selected values are shown as blue points.

Although the predicted trend between mean rainfall rate and longterm erosion rate
is as expected (increasing the rainfall rate increases the erosion rate), the general trend
of the Monte Carlo simulations is opposite this, with higher probability of lower ero-
sion rates as the mean rainfall rate increases. While it is tempting to conclude that
this unexpected trend is robust, i.e. something that would also be observed in nature,
that would be premature. The shape of the distribution of Monte Carlo simulations
is a function of the chosen distributions of the governing parameters. Here we used
normal distributions spanning reasonable ranges, ignoring any correlation between
parameters. Our goal was simply to show the significant spread in erosion rates pos-
sible for a given rainfall rate. A proper assessment of appropriate distributions for the
governing parameters, correlations between them, and the resulting shape of the distri-
bution Monte Carlo simulations, though fascinating, is beyond the scope of this work.
We leave it to a future study.

An important caveat to any comparison of mean rainfall rates to longterm erosion
rates is that in a steady state landscape - a landscape where the erosion rate approxi-
mately balances the uplift rate everywhere - the erosion rate must necessarily be deter-
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Figure 27: The distribution of two million Monte Carlo simulations of the long-term erosion
rate for a wide range of ecohydrological and climatic conditions plotted against
(a) normalized erosion rate and (b) steepness index required to achieve an erosion
rate of 1 mm/year. Contours encompass given percentage of all simulations, in 10%
steps. Additionally, we have shown a small sub-sample of the simulations as black
dots. The trend of the normalized erosion rate or steepness index for a selected set
of ecohydroclimatic parameters according to equation 27 is shown as black lines in
(a) and (b), the simulations with parameters falling with ±10% of the selected set
are shown as yellow points.

mined by the uplift rate (i.e. tectonics). This decouples mean rainfall rates and mean
erosion rates in a landscape. However, the influence of climate should still manifest
itself in the shape of the landscape, with higher uplift rates or weaker climatic forc-
ing giving rise to generally steeper landscapes, all else equal. The channel steepness
index takes this the landscape form into account, and can be used as a measure of
erosional efficiency even in steady state landscapes. The erosional efficiency is in part
determined by lithology, but must also contain information about the strength of the
climatic forcing.

In general, comparisons of the steepness index against longterm erosion rates yield
much clearer trends than rainfall rates (Wobus et al., 2006; DiBiase et al., 2010; DiBiase
and Whipple, 2011). However, they still exhibit considerable spread. Spatially varying
lithologies can be responsible for this spread, but, similar to figure 27a, 27b shows how
spatial variation of b, ⌫, !, q

c⇤ and � can also cause this spread. Figure 27b shows the
steepness index required to erode one mm/year based on the erosional efficiency of
the river basins in the Monte Carlo simution. As the erosional efficiency is determined
by streamflow mean and variability and the erosion threshold, etc. (the erodibility
coefficient K is held constant) we see a similar story as with the mean erosion rate. For
a given mean annual rainfall rate, ecohydrology and erosion thresholds intervene to
produce a wide range (upwards of four orders of magnitude) of steepness indices. The
probability of a low steepness index is higher for moderate to low mean annual rainfall
rates, as with 27a, and we urge the same caution in interpreting this trend.

Figure 27 suggests that it should be expected that comparisons of mean rainfall
rate, specific stream power or channel steepness index against the longterm erosion
rate over large regions of the Earth do not yield a clear relationship, even when the
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landscape is expected to be at steady state and the spatial distribution of uplift rate is
known and accounted for. The implication is that the failure of many studies to find
regional trends in erosion rate correlated to mean rainfall rate or stream power does
not necessarily point to a dominance of tectonics over climate. It may simply reflect the
fact that not nearly all of the important factors determining how rainfall drives erosion
in a fluvially dominated landscape have been taken into account.

3.5.4 Outstanding issues and limitations

3.5.4.1 The erosion threshold

In this study we have parameterized the erosion threshold using q

c⇤, and treated it
as an independent parameter. However, the concept of a simple erosion threshold for
fluvial erosion hides a much more complex relationship between sediment transport
dynamics, river streamflow, and fluvial bedrock erosion. Adding this complexity by
including a model for q

c⇤ that depends on slope, grain size and channel hydraulics or
by replacing equation 17 with one that accounts more explicitly for channel hydraulics
and sediment transport is an important step to understand the influence of climate on
fluvial erosion across a range of timescales. Also important are empirical investigations
into what determines the erosion threshold in bedrock mountainous rivers, and how it
evolves with changing climate and landscape. As suggested by Phillips and Jerolmack,
(2016), the behavior of q

c⇤ might be quite different than has been expected.

3.5.4.2 Climate nonstationarity

In this study we have chosen daily rainfall to represent the variability in climate and
study how it affects mean erosion rate which evolves over much longer timescales.
The difference in timescales between the forcing (rainfall) and the response (erosion)
is very large. While a stochastic approach is useful to upscale these daily processes
to landscape evolution timescales, it assumes that the climatic and ecohydrological
conditions are stationary - that they do not change over long periods of time. However,
it is clear that climate does in general change consistently over periods as short as
decades to centuries. Some of the key parameters, such as the streamflow ratio !,
streamflow variability ⌫ and recession exponent b are relatively straightforward to
measure in present day basins, but it raises the important question of whether or not
these values have any meaning over geological time.

3.5.4.3 Catchment-scale parameters

The model presented here is purposely minimalistic. It reflects an effort to simply cap-
ture the key behaviors of complex nonlinear systems while retaining low dimensional-
ity. A result of this is that the presented framework makes use of spatially integrated
catchment-scale parameters, with the implicit assumption that that a single value can
be used to represent spatially heterogeneous local, or point-scale, parameters. This
produces a challenge. It is not always clear how the behavior at the point-scale relates
to a catchment-scale parameter. For example, although the mean rainfall rate at the
catchment-scale is simply the arithmetic mean of the point-scale mean rainfall rates,
the same is not true for the mean storm depth or the mean storm frequency. An under-
standing of how the point-scale parameters relate to the catchment-scale parameters,
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either empirical or theoretical, is needed to extend this work to 2D or 3D landscape
evolution models.

[It is worth noting, however, that the specific storm depth, ↵, is not necessarily the
same as the mean storm depth that would be measured at a point. There are often
scaling effects that can cause the point-scale value and the catchment-scale specific
value to differ. In the case of rainfall, for ↵ to be equal to the point-scale storm depth
requires uniform rainfall across the catchment, which is usually not the case. Thus,
in general, and for the majority of parameters discussed in this work, the point-scale
value and the catchment-scale specific value will differ.]

3.5.4.4 Heavy tailed rainfall

There are three important statistical characteristics of daily rainfall in the context of flu-
vial erosion rates. The mean storm depth, the mean storm frequency and the heaviness
of the tail of the distribution of rainfall. In this work, we use an exponential distribution
for daily rainfall that prohibits exploring the effects of a heavier tail. The exponential
distribution is known to be imperfect for modelling daily distributions of storm depths,
because it is often lighter tailed than empirical rainfall distributions. However, the
stochastic nature of rainfall is still captured, with the exponential distribution approx-
imating the strongly right skewed magnitude-frequency structure observed in nature
while exhibiting the key memoryless property that makes it analytically tractable. It
has been shown that there are no true analytical solutions for the probability distribu-
tion of soil moisture, and therefore for the probability distributions of daily streamflow
and erosion for other functions commonly used to represent daily rainfall, such as the
gamma distribution (Verma, Yeates, and Daly, 2011).

Müller, Dralle, and Thompson, (2014) tested numerically the error in the estimated
distribution of daily streamflow produced by using an exponential distribution to rep-
resent rainfall, and found it to be a poor assumption only in the case of heavy tailed
storm depth distributions (gamma shape parameter < 0.5) . While there is some evi-
dence that the heaviness of the tail of rainfall is important in arid regions (Daly and
Porporato, 2010; Müller, Dralle, and Thompson, 2014), Rossi, Whipple, and Vivoni,
(2016) presented an empirical analysis that suggests it is only a secondary control on
the distribution of daily streamflow. We feel that the uncertainties in other parts of
the derivation, mainly the streamflow-erosion relation preclude the need to focus on
the details of rainfall. The fact that the exponential model of storm depths captures
the highly right skewed nature of rainfall distributions is sufficient. Additionally we
find the benefits of analytical solutions make the exponential distribution a worthwhile
choice for daily storm depth.

3.5.4.5 Limitations of the stream power approach

The stream power approach used in this study is limited in that it does not allow
for sediment transport dynamics to be modelled at all, and does not work well on
short timescales (Beer and Turowski, 2015). The hydrological model outlined above
could be integrated with a more sophisticated model of fluvial erosion. However the
stream power approach remains popular because it successfully predicts many aspects
of the steady state long river profile (Lague, 2014). Further, as pointed out by DiBiase
and Whipple, (2011) at steady state it is not possible to distinguish between the stream
power model and sediment transport driven models. We have chosen to use the stream
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power approach because its simplicity enhances clarity in an already complex analysis,
which is useful for a first step. It also allows us to compare our results with previous
results and provides a standard for future analysis using a more sophisticated erosion
model.

3.5.5 Significance and Future work

A very early example of the application of stochastic concepts to the problems of fluvial
erosion appears in Wolman and Miller, (1960) wherein they discuss the relative impor-
tance of moderate versus extreme events. Free from the constraints of a quantitative
approach, they offer a sophisticated qualitative analysis of the roles of erosion thresh-
olds and stochastic forcing in setting the pace and style of landscape evolution. Among
their conclusions is the realization that the relative importance of extreme events will
be heavily influenced by the nature and magnitude of the erosion threshold. More than
50 years later, we reach the same conclusion.

With the application of the latest stochastic hydrology model, we find that to under-
stand the importance of variability and the role of extreme events we must know more
about the threshold streamflow and how it evolves with the landscape. This leads to
two paths of future research. The first is to apply the stochastic streamflow distribu-
tions to a more physically realistic model of fluvial erosion than the stream power law
in order to estimate the erosion threshold based on measurable channel properties. The
second is an empirical investigation into what controls the erosion threshold and how
it evolves with changing boundary conditions.

One of the main strengths of integrating hydrology into the stream power model is to
reveal the dependence of both streamflow mean and variability on the climatic forcing
and ecohydrological response. The anticorrelation of the mean and variability vastly
restricts the likely responses of a river basin to changing climate and must therefore
guide our understanding. The ecohydrological aspect of this relationship (parameter-
ized by !) has a heavy biotic influence which is partly determined by the landscape
setting and climate and will respond to changes in both. Furthermore the hydrologic
response timescale ⌧ and recession exponent b have been shown to be influenced to
some degree by catchment vegetation and soil type (Berghuijs et al., 2014). This frame-
work can be used as a foundation for a holistic landscape evolution model exploring
the coevolution of climate, ecology, hydrology and geomorphology as called for by Is-
tanbulluoglu, (2009). The inclusion of climate, ecology and hydrology into landscape
evolution models may at first seem like a dauntingly large and complex parameter
space, however it is possible that the interdependence of the different processes on one
another may yield a relatively restricted realistic parameter space similar to what we
demonstrated between streamflow mean and variability.

3.6 conclusions

We have developed a theoretical framework for the longterm erosion rate based on a
stochastic-mechanistic model of hydrology in the context of the stream power incision
model. This theory points to seven important controls: 1) the statistics of rainfall, de-
scribed by the mean storm depth ↵ and frequency �, 2) soil and vegetation dynamics
which interact with rainfall to drive streamflow, described here by aridity index �, the
effective soil storage capacity h

s

and the streamflow ratio !, 3) basin response to input
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described by the hydrological response time ⌧ and the nonlinearity of the response b

to forcing, 4) the maximum streamflow ever seen by the system, q
m⇤, 5) the erosion

threshold, q
c⇤, 6) the nonlinearity of the daily streamflow-erosion relationship, �, and

7) the stream power parameters (the exponents m and n, the erodibility coefficient K,
and the river slope S). The first four controls determine the distribution of daily stream-
flow (essentially by setting µ, ⌫ and b), and the last three controls determine how that
distribution of streamflow relates to the distribution of daily erosion and the mean
longterm erosion rate. This highlights the two necessary aspects of any climate driven
fluvial erosion model, a model for how rainfall translates into streamflow, and a model
for how streamflow drives fluvial erosion. The framework presented here allows for a
large range of daily streamflow regimes and makes use of a general daily streamflow-
erosion law (a power law with a threshold and an exponent that can be less than or
greater than one). Therefore, we expect that the main conclusions laid out here will
generally apply, even when compared to models with more sophisticated hydrological
or streamflow-erosion laws.

We defined a coefficient of daily streamflow variability that it is applicable to a wide
range of hydrological regimes and established that it has a solid physical basis. We also
provided a theoretical basis for how it is anticorrelated with the mean daily streamflow,
a long observed relationship which is useful for determining the erosional response to
changing climate in a threshold-stochastic stream power context. Furthermore, by us-
ing the hydrological model to relate both the mean and variability of streamflow to
the climatic and ecohydrological boundary conditions we show how fluvial erosion re-
sponds to realistic climatic forcing. This allows for direct comparison to meteorological,
hydrological and geomorphological observations.

The erosion threshold, parameterized as q

c⇤ emerged as a major unknown with an
influence on how the longterm erosion rate responds to climate. In particular it is vital
in determining the sensitivity of the longterm erosion rate to the mean streamflow
magnitude, which may not be as important as previously thought.

Finally we demonstrated that the ecohydrological conditions in a river basin and
the stochastic-threshold nature of the streamflow-erosion relationship can cause the
longterm erosion rate to vary over several orders of magnitude for a given mean an-
nual rainfall or streamflow rate. Since these effects have generally not been taken into
account in studies comparing measured rainfall or streamflow rates with measured
erosion rates, the failure to find a dependence of the erosion rate on rainfall rates does
not necessarily imply that climate is not an important control on erosion rates and
landscape evolution.

3.7 appendix a : distribution of daily streamflow when b = 2

Botter et al., (2009) showed that the pdf of q is,

f
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(q) = C

dr(q)/dq
q
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o
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(28)

where C is a normalising constant, p
o

�(q) is an atom of probability that q = 0, g(x) is
the storage loss function q = g(W) and r(q) is its inverse,

W = g

-1(q) = r(q). (29)
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To find r(q) in the case b = 2, we start with,

dq
dt

= -aq

2. (30)

We also note that due to conservation of mass, the storage term W will change over
time as,

dW
dt

= -q. (31)

Integrating both 30 and 31, it is straightforward to show that (with the assumption that
q(0) = 0),

q(t) = (at)-1 (32)

and,

W(t) = -
1

a

ln(t) + c. (33)

Inverting 32 and substituting it into 33 leads to,

r(q) =
1

a

ln(cq), (34)

where c is some constant. Putting r(q) into the general solution for the pdf of daily
stream flow (equation 28) we find that for b = 2,

f

Q

(q) =
(!�/a)1/↵a+1

�(1/↵a+ 1)
q

-1/↵a-2 exp [-!�/aq] , (35)

which is an inverse gamma function equivalent to equation 13 when the substitution
a = µ

1-b

/⌧ is made.

3.8 appendix b : analytical approximations for c

We can rewrite the general distribution of daily streamflow (equation 14) as,
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where k

1

= k/(b- 1) and k

2

= k/(b- 2). To find C, we need to integrate from 0 to 1,
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If we make the substitution t = x

1-b and dt = (1- b)x-bdx,
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where � = -k

1

/k

2

= (2- b)/(1- b). This is equivalent to the laplace transform of the
first term of the integrand,
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This is the laplace transform of a stretched exponential, and it is known that there
is no analytical solution, though some approximations and fast numerical algorithms
exist. We offer one approximation, valid only for 1 < b < 2, arrived at by noting the
similarity between equations 12, 13 and 14, and by taking advantage of the known
normalizing factors from equations 12 and 13,

C =

✓
2⇡(2- b)(b- 1)

µ

2

k

◆
1/2 (k/(2- b))k/(2-b)

�(k/(2- b))

k/(b- 1)k/(b-1)

�(k/(b- 1))
(40)

This approximation has very low error when k > 1. When k < 1, the error is low when
b is close to 1 or 2, and reaches a maximum when b = 1.5. The error reaches about 50%
for b = 1.5 when k = 0.01.

3.9 appendix c : channel hydraulics

A common starting point for derivations of the stream power model is (Tucker, 2004;
Lague, Hovius, and Davy, 2005),
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, (41)

which relates the daily fluvial incision rate " to the excess shear stress on the riverbed.
In order to make use of the distribution of daily streamflow, it is necessary to relate
the streamflow to the shear stress it exerts. To do this we use the derivation of Lague,
Hovius, and Davy, (2005) to relate the shear stress exerted on the riverbed to the flow
depth (approximated by the streamflow q divided by the river width) and the riverbed
slope using a formulation equivilant to the Manning or Darcy-Weisbach equation, de-
pending on the values for ↵

t

and �
t
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where w is the channel width, S is the riverbed slope, and k

t

is a factor accounting for
acceleration of gravity, density of water and a friction factor. This implies that what we
need to know in order to estimate the shear stress ⌧

s

from the distribution of stream-
flow is the relationship between stage (the height of water surface) and streamflow.
Lague, Hovius, and Davy, (2005) accomplish this with two empirical relations. First
they describe how the width of the river at one location on the river changes relative
to a benchmark width - e.g. bankfull width or mean streamflow width - with daily
variations in streamflow,
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where w

a

is the benchmark width. This amounts to describing the cross sectional
profile of the channel. Different shapes can be described by changing the value of !

s

.
Lague, Hovius, and Davy, (2005) then describe how the benchmark width of the river
increases with increasing hQi downstream as a power law,
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w
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where k

w

and !
a

are empirically derived constants.
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Substituting equations 42, 43 and 44 into 41 leads to equation 18 which describes the
daily erosion rate in terms of daily streamflow and river slope.

" = KhQimS

n

q

�

⇤ - , q > q

c

(45)

where K = k

e

k

c

t

k

c↵

t

w

, m = c↵

t

(1 -!
a

), n = c�

t

, � = c↵

s

(1 -!
s

), and  = k

e

⌧

c

c

(Lague, Hovius, and Davy, 2005).

3.10 appendix d : long-term erosion rate

3.10.1 pdf of daily erosion

We start with the distributions of streamflow for b = 1,

f

Q⇤(q⇤) =
k

k

�(k)
q

k-1

⇤ exp [-kq⇤] (46)

b = 2,

f

Q⇤(q⇤) =
k

k

�(k)
q

-k-2

⇤ exp
⇥
-kq

-1

⇤
⇤

(47)

and b 6= 1, 2,

f

Q⇤(q⇤) = Cq

-b

⇤ exp

-k

✓
q

2-b

⇤
2- b

-
q

1-b

⇤
1- b

◆�
(48)

Imposing a maximum observed daily streamflow q

m⇤ and a erosion threshold q

c⇤
truncates the pdf above q

m⇤ and below q

c⇤ and requires that the pdf be renormalized
such that

R
q

m⇤
q

c⇤
f

Q⇤(q⇤)dq⇤ = 1. This leads to a new distribution f

t

Q⇤
(q⇤),

f

t

Q⇤(q⇤) =

8
>><

>>:

0 q⇤ < q

c⇤

Cf

Q⇤(q⇤) q

c⇤ 6 q⇤ 6 q

m⇤

0 q⇤ > q

m⇤

, (49)

where C is a normalising constant. We can find this constant by integrating f

t

Q⇤
(q⇤):

Z1

0

f

t

Q⇤(q⇤)dq⇤ =

Z
q

c⇤

0

0dq⇤ +C

Z
q⇤

q

c⇤

f

Q⇤(q⇤)dq⇤ +

Z1

q

m⇤

0dq⇤ = 1 (50)

which leads to in the case b = 1,

C = [�(k, kq
c⇤)- �(k, kq

m⇤)]
-1 (51)

and in the case b = 2,

C = [�(k+ 1, k/q
m⇤)- �(k+ 1, k/q

c⇤)]
-1 (52)

where �(a, x) is the regularised upper incomplete gamma function.
The effect of a threshold at q⇤ = q

c⇤ is different than truncating the pdf because we
gather the probability of q⇤ < q

c⇤ into an atom of probability in the pdf of " at " = 0.
This atom of probability is equal to Pr[q⇤ < q

c⇤]. We define this atom of probability as
1- �

"

. The probability that an erosion event occurs then is �
"

, defined in the text.
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If we assume a relationship between daily incision " and daily streamflow q of the
form " = g(q), then we can calculate the pdf of daily incision as a simple change of
variable,

f

E

(") = f

Q

(g-1("))
dq
d"

(53)

So then the overall pdf of " is composed of three parts. First the atom of probability
at " = 0, second the truncated probability distribution of q > q

c

as a function of ", and
finally 0 for all values of " corresponding to q > q

m

because the probability of q > q

m

is also 0:

f

E

(") =

8
>><

>>:

1- �
"

" = 0

�

"

f

t

Q

(g-1(")) 0 < " 6 "
m

0 " > "

m

, (54)

where "
m

= "(q
m

). If we want to use the pdf of daily incision to calculate the long-term
erosion rate, we simply calculate the mean incision rate:

hEi =
Z1

0

" f

E

(")d" (55)

Which, using the definition of f
E

(") breaks down into:

hEi = "(q
c

) (1- �
"

) +

Z
"

m
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" �

"

f

t

E

(")d" +
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"

m

" 0 d" (56)

Where "(q
c

) = 0. This reduces to:

hEi = �
"

Z
"

m

0

" f

t

Q

(g-1("))
dq
d"

d" (57)

This is functionally equivalent to the approach of Tucker and Bras, (2000), Lague, Hov-
ius, and Davy, (2005), Huang and Niemann, (2006a), and DiBiase and Whipple, (2011).
We integrate over the magnitude of daily incision as a function of streamflow prorated
by the probability of observing a particular streamflow magnitude,

hEi =

Z
q

m

q

c

"(q) ft
Q

(q)dq (58)

except we keep explicit track of the effects of the erosion threshold and streamflow
distribution on the frequency of erosion (�

"

) and the magnitude of daily erosion (ex-
pressed by the pdf of ").

The function g

-1(") can be found from daily incision as a function of daily stream-
flow as derived by Lague, Hovius, and Davy, (2005),

" = KhQimS

n

q

�

⇤ - (59)

where K is a complex erodibility coefficient, m,n, and� exponents defined in Lague,
Hovius, and Davy, (2005) and  is the threshold of erosion. It can easily be shown
 = KhQimS

n

q

�

c⇤, which, if we set "
o

= KhQimS

n (a constant w.r.t. q) reduces daily
incision to:

" = g(q) = "
o

q

�

⇤ - 
c

= "
o

(q�

⇤ - q

�

c⇤), (60)
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where q⇤ = q/µ. The inverse is then,

g

-1(") =

✓
"+ 

"

o

µ

-�

◆
1/�

(61)

and then

dq
d"

=
("+ )1/�-1
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1/�

o
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(62)

Recalling,

f

E

(") = f

t

Q

�
g

-1(")
� dq

d"
(63)

We arrive at the pdf of daily erosion by substituting equations 61 and 62 into 63, choos-
ing the appropriate form of ft

Q

(q) (equations 46-48). In the case b = 1,
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where �
"

= �(k)[�(k,kq
c⇤)- �(k,kq

m⇤)].
In the case b = 2,
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where �
"

= �(k+ 1)[�(k+ 1,k/q
m⇤)- �(k+ 1,k/q

c⇤)].
In the case b 6= 1, 2,
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3.10.2 long-term erosion rate

Before we solve the mean erosion intensity, it is useful to show two identities. First we
define a new variable "⇤.

"⇤ =
"+ 

"

o

. (67)

If we substitute x into the pdf of daily erosion, where, in the case b = 1,

x = k"

1/�

⇤ , (68)

it can be shown that,
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Similarly, in the case b = 2 if,

x = k"
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⇤ , (71)

then,
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To solve for the mean erosion intensity in the case b = 1,
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we multiply by "
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Which becomes,
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Making use of our identities we can write:
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Where x

c

= kq

c⇤, and x

m

= kq

m⇤. We complete the solution using the following
relationship derived from the definition of the incomplete gamma function:
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Therefore the analytical solution for the mean erosion intensity is,
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Recalling that �
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m⇤)] 79 can be rewritten as,
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In the case the b = 2 we follow the same steps to find that,
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Recalling again that here �
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The mean long-term erosion rate is,

hEi = �
"

Ē = �
"

 "

o

(83)

3.11 appendix e : importance of large floods

In order to calculate the frequency of occurrence of the largest erosion events respon-
sible for some fraction x of the total erosion rate, we must find a streamflow q

x

such
that:
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where x is the fraction of total erosion taking place above the streamflow magnitude
q

x

This is equal to
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We find numerically the value for q

x⇤ that satisfies equation 86. The frequency of the
largest erosion events responsible for the fraction x of the total erosion rate is then
simply the probability of daily streamflow to be above q

x⇤,
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N E G AT I V E C O R R E L AT I O N B E T W E E N M E A N A N D VA R I A B I L I T Y
O F D I S C H A R G E

4.1 abstract

Hydrology will always be ruled by local conditions, making it difficult to make global
predictions of the impact of climate change on the behavior of streams and rivers. De-
spite this, some general patterns can be observed everywhere, such as the observation
that river discharge increases after a rainstorm, and rivers get larger as their catchments
get larger. Another pattern commonly observed is that fluctuations in streamflow are
more dramatic when the average streamflow is less. The first two truisms have well es-
tablished explanations, the third less so. Here we demonstrate that an understanding
of how certain aspects of the hydrograph determine the long-term statistical features
of streamflow explains how mean streamflow is negatively correlated with its variance.

4.2 introduction

It has long been observed that rivers with high runoff exhibit lower variability in daily
flows than rivers with low runoff (Wolman and Miller, 1960; Molnar et al., 2006; Lague,
2014; Rossi, Whipple, and Vivoni, 2016). This is in part due to the fact that larger catch-
ments, which tend to have higher mean specific runoff, react more slowly to rainfall,
smearing out the effect of storm impulses and reducing the runoff variability. However,
the inverse relationship between mean runoff and daily variability persists even when
catchment area is controlled for (Molnar et al., 2006, figure 4). We introduce here a
stochastic hydrology model that predicts this observed inverse relationship between
mean and variability without appealing to catchment area. The model predicts several
other observed features of the mean runoff and variability relationship. It also predicts
a global upper limit on runoff variability as a simple function of mean runoff, mean
rainfall intensity and basin response time. The existence of a global limit on daily
runoff variability as a function of the mean runoff is useful to understand the range
of behaviours that could be expected, in particular for high mean runoff rivers, where
the limit is particularly restrictive.

Here we consider a simplified river hydrograph that consists of a series of rapid
peaks in river streamflow resulting from rainfall, each followed by a slow decline in
streamflow until the next peak. This decline is called a recession, and its shape is a
reflection of many hydrological processes operating inside the river basin. Botter et al.,
(2007) and Botter et al., (2009) showed that if a hydrograph can be approximated as
a marked poisson arrival process that resembles the simplified hydrograph described
above, then the long-term distribution of streamflow is only a function of a small set of
parameters controlling the recession shape, magnitude and frequency. These parame-
ters are the mean magnitude and mean arrival frequency of storm discharge impulses,
and the shape and speed of the resulting recessions. The long-term mean streamflow
is the product of the mean magnitude and mean frequency of impulses. The variance
is a function of the speed of the recessions and the mean period between peaks, which
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is the reciprocal of the mean frequency of peaks. It is this mutual dependence of the
mean and variance on the mean frequency of peaks and the reciprocal of the mean
frequency of peaks, respectively, that leads to the negative correlation between them.

This theory requires only the assumptions that the hydrograph can be approximated
by a marked poisson arrival process and the recessions can be modeled as a power law
function of streamflow. Any river meeting these simple requirements will exhibit a
relationship between mean and variance that can be understood in this framework.
However, a better understanding of the relationship between streamflow mean and
variance can be reached by adding a model for how rainfall drives the peaks in stream-
flow. Doing so implies that the mean properties of these peaks are a function of the
mean intensity and frequency of rainfall events modulated by ecohydrological condi-
tions in a river basin. This extension allows us to predict the impact of changes to the
climatic or ecohydrological regimes on the mean and variability of streamflow.

The mean intensity of rainstorms will modulate the negative correlation between the
mean and variance of streamflow. For a given intensity of storms, there will be an up-
per limit on the variance for streamflow with a certain magnitude. This limit decreases
rapidly with increasing streamflow mean, implying that rivers with significant stream-
flow are limited in the variance they will exhibit. However, increasing the intensity
of storms increases this upper limit on variance. Rivers that experience more intense
storms will have large variances relative to the mean. Climate change is predicted to
increase the intensity of rainfall (e.g. Trenberth et al., 2003; Berg, Moseley, and Haerter,
2013; O’Gorman, 2015) globally. As a result, the variance of streamflow may, in gen-
eral, increase alongside an increase in mean streamflow where rainfall becomes more
intense, despite the usual negative correlation between them.

The theory discussed here is simple and approximate. Therefore predictions using
more sophisticated models tailored to a particular location will always be more specific
and accurate. However, its power lies in the simplicity of its application, and the ability
to use it in regions where the information needed for more sophisticated models is not
available. A field that has these requirements is that of long-term landscape evolution,
which requires simple, yet accurate models of how climate and hydrology influence the
streamflow regime over long periods of time. It also useful to understand the general
response to changing climate in places that are not be carefully monitored. Finally,
simple models like ours are useful to develop intuition, interpret data and can help
validate more sophisticated models.

4.3 section 1 : estimating distributions of discharge from hydrographs

We use a probabilistic hydrology model to estimate the distribution of daily runoff
(Botter et al., 2007, 2009). Runoff derives from catchment-wide storage in a determin-
istic manner, where storage recharge is modelled as a Poisson point process that has
exponentially distributed waiting periods between recharge events with mean 1/!�

and exponentially distributed recharge magnitudes with mean ↵, where ↵ is the mean
rainfall intensity, � is the mean rainfall frequency and ! is the ratio of mean annual
runoff to mean annual precipitation (MAR/MAP). The recharge Poisson process de-
rives from a stochastic state dependent soil moisture model driven by rainfall modelled
by a Poisson process of its own, where soil moisture is decreased by evapotranspira-
tion and recharge of catchment-wide storage, and increased by random rainfall events.
Recharge events are considered to occur when the soil moisture reaches a critical sat-
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uration value. Both the soil moisture model (e.g. Milly, 1993; Rodriguez-Iturbe et al.,
1999; Laio et al., 2001; Porporato, Daly, and Rodriguez-Iturbe, 2004; Settin et al., 2007)
and the runoff model (e.g. Botter et al., 2010; Ceola et al., 2010; Müller, Dralle, and
Thompson, 2014; Basso et al., 2015; Doulatyari et al., 2015) have demonstrated con-
siderable predictive ability when tested against empirical distributions of daily soil
moisture and runoff respectively.

The daily runoff is related to catchment wide water storage monotonically, such that
there is a unique daily runoff for each possible storage amount, and runoff always
decreases with decreasing storage. This leads to

dq
dt

= -aq

b (89)

Where q is the (specific) daily discharge, a is the recession coefficient and b the re-
cession exponent (e.g. Brutsaert and Nieber, 1977; Botter et al., 2009; Kirchner, 2009).
The parameter a is a function of the mean length of time that water is retained in the
catchment after a storm (Botter et al., 2013). The mean water retention time defines
a characteristic timescale of the catchment’s hydrologic response to a storm, which
depends on important catchment wide hydrological features (catchment morphology
and aspect ratio, average hydrological pathway length and conductivity, etc.) (Botter
et al., 2013). The timescale of the hydrologic response is in fact a function of the catch-
ment wide storage, leading to faster response times for higher water storage (and by
extension river runoff). This implicitly captures the fact that different hydrological pro-
cesses are dominant at different levels of catchment saturation, such as surface runoff
(quick) at high levels of saturation, and subsurface flow (slow) at low levels of satura-
tion (Basso, Schirmer, and Botter, 2015). However, we can still define a mean response
time ⌧ by using the mean daily runoff µ such that ⌧ = µ

1-b

/a with the caveat that
the mean response time may not be accurate for values of q far from the mean daily
runoff.

Botter et al., (2007) and Botter et al., (2009) showed that we can use equation 89 and
knowledge about the arrival frequency and magnitude of storm impulses to the hydro-
logical system to calculate the steady state probability distribution of daily discharge.
This work also shows how the arrival frequency and magnitude of storm impulses
can be related to ecohydroclimatic boundary conditions, which is valuable as it allows
us to relate climatic boundary conditions directly to discharge distributions. Though
powerful, this minimalistic statistical model necessarily makes strong assumptions and
approximations that may weaken its accuracy and general acceptance. In order to ad-
dress this we split the model into two components. The first component, at the core
of the model, is a mathematical relationship between the hydrograph and the prob-
ability distribution of discharge. The second component consists of ecohydrological
models that predict how the frequency and magnitude of storm impulses are driven
by climatic and ecohydrological conditions. In the following work, we outline the as-
sumptions demanded by the first component of the model, and investigate how well
they are met using a data set of river discharge data. We do not test the second com-
ponent of the model here, as it has already been tested extensively (e.g. Milly, 1993;
Rodriguez-Iturbe et al., 1999; Laio et al., 2001; Porporato, Daly, and Rodriguez-Iturbe,
2004; Settin et al., 2007).
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4.3.1 Theory

Botter et al., (2007) and Botter et al., (2009) showed that there is a mathematical rela-
tionship between the hydrograph and the probability distribution of daily discharge
if the hydrograph can be approximated as a marked Poisson arrival process, which
requires three assumptions be met:

1. Recessions can be well approximated using equation 89

2. Interarrival periods between storm impulses are exponentially distributed

3. Magnitudes of recharge events to catchment wide storage are exponentially dis-
tributed

Here we show how these assumptions can be tested by using a time series of daily
discharge data.

4.3.1.1 Approximation of recessions

We test the first assumption by calculating values for the recession coefficient a and ex-
ponent b from equation 89 from the hydrograph and comparing the resulting synthetic
recession using measured values of a and b to the measured recessions.

4.3.1.2 Interarrival periods

The second assumption is easily tested by finding all of the storm impulses in a hydro-
graph and measuring the length of the periods between them. The assumption requires
that they be exponentially distributed,

f

T

(t) =
1

⌧

s

exp-t/⌧

s (90)

where ⌧
s

is the mean of the interarrival period distribution.

4.3.1.3 Recharge magnitudes

The final assumption is not as straightforward to test assuming we only have a time
series of daily discharge data to test it. We must observe the magnitudes of catchment
wide storage recharge from discharge data. We can indirectly observe this using equa-
tion 89, which is consistent with a storage-discharge model,

S = c

s

q

d, (91)

where S is catchment-wide storage above a base storage, c
s

= [a(2 - b)]d and d =
1/(2- b) (Clark et al., 2009; Bogaart, Lyon, and Dekker, 2016). Using this, the magni-
tude of storage recharge can be related to changes in discharge over storm impulses. If
S
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and q
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are the storage and discharge right before a storm impulse and S
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and q
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those right after, then the magnitude of storage recharge �S = S
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can be rewritten
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2

, which can easily be measured,
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We can rewrite this using the relationships between a,b, c
s

and d,
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- q
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, (93)
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where a,b,q
1

and q

2

can all be measured from a daily discharge time series. The
distribution of storage recharge magnitudes should also be exponentially distributed,

f

�S

(�S) =
1

↵

s

exp-�S/↵

s , (94)

with a mean of ↵
s

.

4.3.1.4 Time series processing

In order to test the assumptions of the model, we need to find the start and the end
of each recession. We can then obtain the recessions and recession parameters a and b,
storm impulse magnitudes, and interarrival periods. We find the recessions by finding
all increases in discharge that are sufficiently rapid. The rate of increase in river dis-
charge was found by taking the derivative of the daily discharge where it was positive.
The criterion for rapid increase was chosen to be at least 1/200

th of the maximum rate
of increase in the time series. This threshold was chosen because we observed it to
perform well in selecting storm impulses for a wide range of time series (for example,
see figure 28 where recession starts and endings are shown with red points and green
points respectively). The recession parameters a and b were found by fitting the solu-
tion to equation 89 to every recession in a time series and taking the median values for
a and b, where the solution is,

q(t) = [q1-b

o

- a(1- b)t]1/(1-b), (95)

and q

o

is the discharge at the beginning of the recession.

4.3.2 Results and discussion

We test the assumptions required for the Poisson arrival process using a data set of
time series of daily discharge, all spanning at least 30 years, from 177 rivers in the
US taken from Newman et al., (2015). In the following section we show the results
obtained from a specific station (station ID 9081600) for reference, as well as the overall
results from the entire data set.

4.3.2.1 Approximation of recessions

We calculate values for a and b from each discharge time series by fitting each recession
in the time series, and taking the median values of a and b. We then compare each
measured recession in a discharge time series to a synthetic one constructed using the
median of a and b. To asses the quality of the fits, we compute the root mean square
error (RMSE) of each recession, normalized by the mean discharge magnitude over
the recession. A RMSE of 0.1 implies that the average misfit between the measured
and synthetic recessions is 10% of the mean discharge. An example recession with
associated RMSE is given for reference (figure 29a), as well as the distribution of the
mean RMSE from each river (figure 29b).

4.3.2.2 Interarrival periods

We compared the distribution of interarrival periods of storm impulses to an exponen-
tial distribution characterized by the mean interarrival period from each time series.
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Figure 28: A year of discharge data with recession starts marked in red and recession ends
marked in green.

The exponential distribution (figure 30a) is not fit or optimized to the observed estima-
tion, we simply calculate the mean interarrival period from the time series. The quality
of the fit was measured by the coefficient of determination, r2, of the match between
the observed quantiles and the theoretical quantiles of the exponential distribution (fig-
ure 30a). The higher the coefficient of determination, up to a maximum value of one,
the better the fit. The values of r

2 for the interarrival distribution range from 0.1 to
1, with the bulk of the values above 0.6 (figure 30b). An r

2 value above 0.9 implies
a good fit, 0.6 implies an acceptable to poor fit. We can conclude from this that for
a representative data set of 177 rivers in the US, the assumption of exponentially dis-
tributed interarrival periods is often an acceptable to good assumption, with a small,
but non-negligible chance of being a poor assumption.

4.3.2.3 Recharge magnitudes

We conduct the same tests on the distribution of recharge magnitudes to catchment-
wide storage (figure 31). Overall the quality of the fit is better than with the distribution
of interarrival periods, with the majority of fits above 0.9, and many above 0.95. We con-
clude that the assumption of exponentially distributed recharge magnitudes is often a
good one for the 177 rivers in the US data set.

4.3.2.4 Implications for relationship between mean and variability

The joint distribution of the quality of the assumptions of exponentially distributed
interarrival periods and recharge magnitudes shows that most rivers fall in the upper
right quadrant of the parameter space, implying that both assumptions are generally
met together in this data set (figure 32). As we discussed earlier, Botter et al., (2007)
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(a)

(b)

Figure 29: (a) A long recession from our example station with its associated synthetic recession
and error. The RMSE of this recession is 0.17. (b) Distribution of the mean RMSE of
each of the 177 discharge time series.

and Botter et al., (2009) showed that when these conditions are met, the steady-state
distribution of daily discharge will be determined by the mean magnitude of recharge
events, ↵

s

, the mean interarrival period, ⌧
s

, and the recession coefficient a and expo-
nent b. These parameters can be measured directly from the hydrograph, and do not
need to be related to climatic or ecohydrological boundary conditions in order to be
useful.

For example, these parameters can be used to estimate the long-term distribution of
discharge from short time series. Botter (personal communication) recently presented
work showing that the error in predicting the magnitude of rare events (e.g. 100 and
1000 year floods) using this method does not increase when the magnitude of progres-
sively rarer floods is estimated. In contrast, for traditional statistical methods, the error
associated with the prediction of the magnitude of rare events increases with the infre-
quency of the flood in question - e.g. prediction of the 1000 year flood magnitude is
worse than that of the 100 year flood magnitude.
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(a)

(b)

Figure 30: (a) Top panel: comparison of observed distribution of interarrival periods from ex-
ample station to the exponential distribution required to meet assumption 2. Bottom
panel: quantile-quantile plot with 1:1 line shown for reference. (b) Distribution of r2

values assessing quality of fit between observed interarrival distribution and expo-
nential distribution from 177 rivers in the US.

These parameters can also be used to understand the nature of the relationship be-
tween the mean and variability of daily discharge, which we discuss in the following
section. We also relate the parameters ↵

s

, ⌧
s

,a and b to ecohydrological and climatic
parameters. This provides more insight into the relationship between rainfall, hydrol-
ogy and distributions of discharge, but potentially at the cost of more approximations
and simplifications because of the added layer of ecohydrological models. Therefore,
we wish to point out that as long as the three assumptions are met, the relationship be-
tween the mean and variability of discharge that we discuss arises from the frequency
and magnitude of discharge impulses, whatever the cause behind them.
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(a)

(b)

Figure 31: (a) Top panel: comparison of observed distribution of recharge magnitudes from ex-
ample station to the exponential distribution required to meet assumption 3. Bottom
panel: quantile-quantile plot with 1:1 line shown for reference. (b) Distribution of r2

values assessing quality of fit between observed recharge distribution and exponen-
tial distribution from 177 rivers in the US.

4.4 section 2 : negative correlation of mean and variability

4.4.1 Coefficient of variability

In chapter 3, we showed that the shape parameter of the distribution of daily discharge
is 1/⌫, regardless of the value of b. This is the inverse of the coefficient of variability,

⌫ = !�⌧, (96)

where ! is the runoff ratio, � is the mean storm frequency, and ⌧ is the response time
of the river basin. When ⌫ is small, the likelihood of very large magnitude floods is
very low and the runoff variability is also low. When ⌫ is large, the likelihood of large
floods can be orders of magnitude higher, leading to high variability runoff.
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Figure 32: Joint distribution of coefficient of determination for fit to exponential distribution
for both interarrival periods and recharge magnitudes.

Also known as the erraticity index (Botter et al., 2013), the coefficient of variability, ⌫,
is a nondimensional ratio of the timescale of the catchment-scale hydrologic response
to an average storm (⌧), to the mean interarrival period of runoff producing storms
(⌧

s

= 1/!�). If the mean time ⌧
s

between runoff producing storms is small compared
to the time ⌧ for a storm pulse to completely leave the basin, the supply of water to
the river will be relatively consistent, and the daily discharge will stay close to the
mean daily discharge (as in figure 33b). This will yield a discharge regime with low
variability. On the other hand if the time it takes for the river basin to drain a storm
pulse is small relative to the interstorm period ⌧

s

then the river discharge will often be
well below the mean, with infrequent but significant deviations well above the mean
(as in figure 33a). This would be considered a flashy basin, and will yield a discharge
regime with high variability. The response time of the basin is determined by the mean
daily discharge, and the recession coefficient and exponent (⌧ = a

-1

µ

1-b).
The coefficient of variability can also be understood in terms of damped and un-

damped oscillating systems, where the basin response time is a measure of the degree
of damping. The longer the response time, the higher the degree of damping, and the
more steady the long-term behaviour as a result. However, whether the response time
of the river is long (damped) or short (undamped) can only be understood relative to
the frequency of the forcing !�. So it is logical that the variability of river discharge
is the ratio of the interarrival period of runoff producing storms to the basin response
time (⌫ = ⌧

s

/⌧ = 1/!�⌧).
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Figure 33: Figure adapted from Botter et al. 2013, discharge time series from rivers in the erratic
regime (A) and persistent regime (B) are shown along with the associated distribu-
tions. It can easily be seen that the erratic river has a much higher probability of
significantly exceeding the mean discharge, which has implications for its ability to
erode its bed.

As stated above, this measure of variability is independent of the choice of b. The
value of b will modify the tail heaviness, and therefore the overall variability, which is
important when absolute values of storm frequency and magnitude are sought. How-
ever, for a given value of b, changing ⌫ has a proportional effect in terms of the change
in frequency of high magnitude, low frequency events. For example, doubling the co-
efficient of variability from 1 to 2 increases the frequency of high magnitude events by
about an order of magnitude across all values of b (figure 34). Using the set of equa-
tions from chapter 3 (equations 12, 13, and 14), the distribution of discharge is fully
defined by b, ⌫, and the mean daily discharge µ. The mean discharge is the fraction of
precipitation that ends up in the river, making it the product of the mean precipitation
rate and the runoff ratio,

µ = !↵�, (97)

where the mean precipitation rate is the product of the mean storm depth ↵ and the
mean storm frequency �. This definition of µ is also independent of the value of b.
Therefore, µ and ⌫ are consistent for all values of b.

Historically, in work that addresses the variability of discharge in context of fluvial
erosion, a pdf is chosen to represent discharge distributions, and fit to data to estimate
the shape parameter as a measure of variability (Lague, Hovius, and Davy, 2005; Mol-
nar et al., 2006; DiBiase and Whipple, 2011; Rossi, Whipple, and Vivoni, 2016). This is
equivalent to setting b beforehand, and investigating only variations in ⌫. In the follow-
ing sections, we don’t concern ourselves with the value of b, measured or theoretical,
but instead only variations in ⌫ and µ. This is supported by the proportional effect of
variations in ⌫ for all values of b, and allows comparison with earlier work.
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Figure 34: Runoff distributions for b = 1.0, 1.5, 1.8, 2.0 and 2.2. For all distributions, µ = 1 and
⌫ = 1. The shaded regions correspond to the range of ⌫ from 0.5 to 2 for b = 1

and b = 2. Note that the predicted frequency of moderate events is similar for all
distributions, but the frequency of large events depends strongly on the value of b.

4.4.2 Covariation of daily runoff variability and mean

The mean and variability share an important term, the frequency of effective, or runoff-
producing, storms, !�. We can use this to establish an analytical relationship between
µ and ⌫,

⌫ =
↵

⌧µ

(98)

This relationship is simple; it predicts that variability is a power law function of
the specific daily discharge with an exponent of -1, providing a negative correlation
between µ and ⌫. Several studies have found an inverse relationship of the form ⌫ /
µ

-⌘ (Molnar et al., 2006; Lague, 2014; Rossi, Whipple, and Vivoni, 2016). However,
these studies typically find that ⌘ ⇡ 0.3 (35a). We also find that in general, using Monte
Carlo simulations, ⌘ < 1 because ⌫ and µ both depend on the same parameters, and
changing ⌫ usually results in a change to µ, and vice versa. This is made particularly
complex by the runoff ratio !, which appears in both ⌫ and µ and is a nonlinear
function of rainfall intensity ↵, rainfall frequency � as well as the maximum potential
evapotranspiration rate ET

max

and the soil water storage capacity w

o

,

! =
�h

h

s

/�

s

e

-h

s

h

s

�(h
s

/�,h
s

)
, (99)

where � is the Budyko aridity index (� = ET

max

/↵�), h
s

is the effective soil capacity
(h

s

= w

o

/↵), and the �(·, ·) is the lower incomplete gamma function. The predicted
linear relationship between µ and ⌫, along with an understanding of how the under-
lying climatic and ecohydrologic parameters control both simultaneously allows the
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Figure 35: Measured variability for rivers from Taiwan, the West Andes and the US from
(Lague, 2014, and references therein). (a) We use variability parameter k = 1/⌫,
assuming b = 2 (Lague, 2014). The trend of an ’average’ river is shown as
dashed line, the upper limit is shown as solid line. Upper limit and ’average’ are
defined by response time and mean rainfall intensity (⌧

avg

= 4days ,↵
avg

=
15mm/day , ⌧

min

= 1/2day ,↵
max

= 30mm/day. (b) Upper limit is seen as more
restrictive when the ⌫ is plotted directly, and does not capture the two most extreme
rivers from Taiwan.

observed relationships between µ and ⌫ on earth to be well explained. Even if equa-
tion 98 does not capture the proper value for ⌘, it is still useful for providing upper
bounds on the trend of variability with the mean by recognizing that this bound is
modulated by the maximum rainfall intensity expected and the shortest response time
expected, ↵

max

/⌧

min

, (solid line in figure 35).

4.5 results and discussion

4.5.1 Monte Carlo simulations

To further probe the controls on discharge variability, we conducted a series of Monte
Carlo simulation for a wide range of ecohydroclimatic conditions, similar to the ranges
found on Earth. The parameter space is as follows: ET

max

= [0.2- 20mm/day], ↵ =
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[0.25- 25mm/day], � = [0.01- 1.0day-1]], s
o

= [0.5- 10mm], ⌧ = [1- 10days]. The
parameters are chosen randomly from either uniform distributions or uniform distri-
butions in logarithmic space over the above ranges. Uniform-logarithmic distributions
are sometimes used to provide a more uniform distribution of simulations when loga-
rithmic axes are used for plotting.

These simulations reproduce one of the main features of empirical data, which is an
inverse relationship between ⌫ and µ. The theory predicts that the maximum variability
for a given mean runoff will be determined by the maximum average storm intensity
that can produce that mean runoff (↵

max

) and the minimum expected response time
(⌧

min

). Because a basin could potentially have perfect transmission of rainfall to dis-
charge (no soil and/or no evapotranspiration), the ↵

max

that applies for any µ will
simply be the regional or global maximum average storm intensity.

On Earth, ↵
max

is in the range of tens of mm/day. Here we take a value of 25 mm/-
day. Similarly, we choose a reasonable value of one day as the fastest basin response
time, assuming a basin size larger than a few tens of km2. This leads to an upper limit
on variability as a function of mean discharge (⌫

max

= (↵
max

/⌧

min

)µ-1). This limit
is quite restrictive for high specific mean daily discharge (black solid line in figure 36),
and has important implications for long-term threshold fluvial erosion rates as a func-
tion of rainfall. The upper limit will vary from region to region and through time as a
function of ↵

max

and ⌧
min

.

Figure 36: Monte Carlo simulations of mean and variability using parameter space described
in text, with response time between 4 and 5 days. No correlation between rainfall
intensity, ↵ and rainfall frequency �. Dashed-dotted, dashed and dotted line show
trends of mean and variability for different aridity levels with average conditions;
drier conditions lead to overall trend between mean and variability with exponent
less than one.
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Figure 37: Monte Carlo simulations of mean and variability using parameter space described
in text, with response time between 4 and 5 days. In contrast to figure 36, there is
a positive correlation between rainfall intensity and frequency weakens correlation
between mean and variability further, leading to smaller exponents.

4.5.2 Empirical nonlinear dependence of variability on mean runoff

The analytical relationship between ⌫ and µ is linear. However, a nonlinear relationship
naturally arises in this theoretical framework using Monte Carlo simulations (figure
36). When we conduct simulations with completely uncorrelated parameters, we find
a exponent ⌘ ⇡ 0.7 instead of ⌘ = 1. This can be understood through ecohydrological
controls on both µ and ⌫. For mean conditions, the higher the aridity index, the lower
the coefficient of variability for a given mean (dashed, dotted and dashed-dotted lines
in figure 36). Most basins do not have mean conditions, and therefore do not fall on this
trend, however, as the mean discharge becomes much lower, basins become much drier
basins on average, and move towards the trend of higher aridity and lower variability.
This is visible in figure 36, where the basins from the Monte Carlo simulation cluster
around the dry basin trend (� = 10) at low mean runoff and transition to the wet
basin trend (� = 1) at high mean runoff. This trend only manifests itself on the scale
of the entire parameter space. For a given mean discharge, more arid basins tend to
have higher variability, because most basins do not have mean parameter values, and
locally the relationship between aridity and variability is controlled by other factors.

In the previous set of simulations, the governing parameters were assumed to be
uncorrelated, however, we observed that rainfall intensity and frequency are posi-
tively correlated in the Himalaya (chapter 2) an observation that can be made in
other data sets (Rossi, Whipple, and Vivoni, 2016). The relationship we find is ↵ =
(1 - �)-c

2 ; c
2

⇡ 1. If we use this relationship in our simulations, we find it weak-
ens the negative correlation between the mean and variability of discharge, leading to
values for the exponent, ⌘, more in line with observations (figure 37).

The trend of mean and variability in our simulations can be understood as a combi-
nations of the response of the variability to changes in the mean rainfall frequency and
mean rainfall intensity (figure 44). The variability decreases in response to increasing
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Figure 38: Monte Carlo simulations of variability as a function of rainfall frequency and inten-
sity using parameter space described in text, with response time between 4 and 5

days. Response of variability to changes in rainfall frequency is a power law with
higher variability at low rainfall frequencies.

rainfall frequency and intensity. However, the manner of the response is quite different
for the two controlling rainfall parameters. The changes in variability are essentially
power law trends (linear in log-log space) as a function of rainfall frequency, with de-

Figure 39: Monte Carlo simulations of variability as a function of rainfall frequency and inten-
sity using parameter space described in text, with response time between 4 and 5

days. Response of variability to changes in rainfall intensity is notably different than
the response to changes in the rainfall frequency. The variability does not decrease
for increases in rainfall intensity above a certain point.
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Figure 40: Monte Carlo simulations of mean and variability using parameter space described
in text, with response time between 1 and 30 days and positive correlation between
rainfall intensity and frequency. Trends observed with narrow range of response
times still have the same exponents with wider range of response times.

Figure 41: Monte Carlo simulations of mean and variability using parameter space described
in text, with response time between 1 and 30 days and positive correlation between
rainfall intensity and frequency. Further correlation between maximum response
time and mean daily discharge has been included as described in text. The result
is a further weakened correlation between mean and variability, and yet smaller
exponents.

creasing variance for higher rainfall frequencies. In contrast, the variability responds
sensitively to changes in rainfall frequency for low rainfall intensities, but is insensi-
tive when the rainfall intensity is high. When the intensity and frequency of rainfall
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are correlated, the insensitivity of variability to high rainfall intensities is more clearly
expressed, leading to lower values of the exponent ⌘ when mean discharge is high.

Up to this point we have restricted the hydrologic response time, ⌧, to a narrow
range of 4-5 days. When we allow it to vary over a larger range, 1-30 days, we observe
a larger range of variability for a given mean discharge. However, the exponents of
power law fits to the simulation results remain essentially unchanged (figure 40).

We find that accounting for the correlation between rainfall mean and intensity
changes the aggregate result of our simulations, bringing them more in line with ob-
servations. We imagine that in general there are often other important correlations
between governing climatic and ecohydrological parameters that may vary from re-
gion to region. We test briefly another correlation between the mean annual discharge
and the maximum response time, ⌧

max

. The basis for this is the observation that in
the data set of variability and mean discharge from Rossi, Whipple, and Vivoni, (2016),
the basins with the longest response time tend to have low mean discharges. This may
only be a sampling bias, but we find that this correlation further weakens the correla-
tion between the mean and variability of discharge, bringing the simulations closer to
observations across a wider range of discharges (figure 41). For the following simula-
tions, we retain the correlation between mean rainfall intensity and frequency, but not
between maximum response time and mean annual discharge.

4.5.3 The effect of the basin response time

The only controlling variable that effects just one of µ or ⌫ is the basin response time
⌧. The response time changes only the daily variability, with longer response times
resulting in lower variability. Changing ⌧ changes the scaling of of ⌫ with µ. Therefore,
we would expect that regions with different average response times should exhibit
different ⌫-µ scaling. If we plot the ’classic’ variability parameter k = 1/v (Lague, Hov-
ius, and Davy, 2005), we see that the simulations capture the general features of the
observed variability and mean discharge from Lague, (2014) (figure 42). It is striking
that this theory can capture the first order features of empirical ⌫-µ scalings even with
simplistic parameter ranges (independent, uniformly distributed parameters). One im-
portant caveat is that the simulations tend to have higher variability at low mean an-
nual discharges than observations. This may be due to sampling bias or important
correlations between governing parameters that we have not taken into account.

The importance of the response time ⌧ in organizing the scaling of variability with
mean annual discharge is clear (figure 43). There are several effects that can systemati-
cally change the basin response time. One example would be the lithology of the basin,
which can control the response time with different groundwater permeabilities and
conductivities. Basin response time is also known to scale with basin area, because wa-
ter must travel further to exit the basin, which takes longer. Another influence on the
basin response time is the temperature of the basin during the winter season. A basin
that gathers snowpack during the winter will retain that water until spring or summer.
This can be roughly parameterised with a longer response time for winter precipitation.
In this way, snowmelt dominated catchments can be taken into account in an approxi-
mate way in our framework. By accounting for the winter delay in snowmelt such that
the hydrological response time is ⌧

w

= ⌧+ ⌧
d

, where ⌧
d

is the delay between snowfall
and snowmelt, Schaefli, Rinaldo, and Botter, (2013) showed that this yields a winter
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Figure 42: Monte Carlo simulations of mean and variability using parameter space described
in text, with response time between 1 and 30 days and positive correlation between
rainfall intensity and frequency. Results replotted in the parameter space of Lague,
Hovius, and Davy, (2005) for comparison to previous results.

variability ⌫
w

= (!�⌧
w

)-1 that is systematically lower in catchments with solid phase
precipitation, matching general observations.

Figure 43: Monte Carlo simulations of mean and variability using parameter space described
in text, with response time between 1 and 30 days and positive correlation between
rainfall intensity and frequency. Same plot as figure 42, but colored by response
time instead of aridity index. The importance of the response time as a control on
variability is clear.
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(a)

(b)

(c)

Figure 44: Monte Carlo simulations of variability as a function of aridity index (1 6 ⌧ 6 10).
(a) When � < 1, response time is the main control on variability. (b) When � > 1,
the effective soil depth, h

s

, is the main control on variability. (c) The effective soil
depth is mainly controlled by the soil capacity, s

o

, which is therefore a key control
on variability when � > 1.

4.5.4 Understanding controls on discharge variability

We can understand the controls on variability in the Monte Carlo simulations by refer-
ring to the ecohydroclimatic parameters that describe variability, ⌫ = 1/!�⌧. Clearly,
from this equation, as well as the results of the simulations, aridity is an important con-
trol. Aridity is expressed in ⌫ through the runoff ratio !. This is supported by Rossi,
Whipple, and Vivoni, (2016), which find aridity to be an important control of variability.
Plotting the results of the simulations as a function of variability and aridity, we find
that more arid basins lead to higher variability (figure 44).
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However, there is a lot of spread in this trend, which is explained by the dependence
on other parameters. When the aridity is less than one (wet basins), the response time,
⌧, is the main control on discharge variability, with faster response times leading to
higher variability (figure 44a). This is not surprising given the form of ⌫. However, as
the aridity increases, the importance of the response time in determining variability de-
creases. Instead, the effective soil depth, h

s

= s

o

/↵ becomes the dominant determinant
of variability (figure 44b). When the effective soil depth increases, it causes an increase
in variability. In chapter 3, we showed that the runoff ratio can be explained in terms of
the aridity index and the effective soil depth. When � > 1, we see the expression of the
effective soil depth through the runoff ratio, and its effect on the variability. Because the
aridity is closely related to the rainfall intensity, it is the soil storage capacity, s

o

, that
controls the effective soil depth for a given aridity. Therefore, the soil storage capacity
is the dominant control on variability when � > 1. Even though the rainfall frequency
is part of the definition of ⌫, we don’t see its effects here because it is closely linked to
the aridity index. However, insofar as rainfall frequency drives the basin aridity, it also
drives discharge variability.

4.5.5 Comparison to data

The data set of Rossi, Whipple, and Vivoni, (2016) shows the ⌫-µ scaling for a large
sample of basins from around the United States, as well as a smaller sample from
Puerto Rico. The basins from the US have an interquartile range of 118 to 796 km2,
while the basins in Puerto Rico range from 3 to 48 km2. We performed a Monte Carlo
simulation with uniformly distributed, ecohydroclimatic parameters, all independent
except for the previously discussed correlation between rainfall frequency and inten-
sity, and assume that catchments with greater than 10% snow have a response time of
15-60 days, that those with less than 10% have a mean response time of 5-8 days (a
common response time for moderate sized basins) and that the small basins of Puerto
Rico have a response time of 2-4 days.

The theory presented here captures the first order features of empirical ⌫-µ scalings
even with simplistic parameter ranges (uniformly distributed parameters) and simple
estimates of the response time behaviour (figure 45) .

Similar to the mean runoff, the scaling of ⌫ with the ratio of wet days to dry days
(f = �/(1- �)) can also be simulated. First, the patterns observed by Rossi, Whipple,
and Vivoni, (2016), that the variability decreases (c

r

increases) with higher rainfall
frequency (figure 47b), matches general theoretical expectations (figure 44a). Further,
we find that the scaling found with our simulation matches the empirical data well
(figure 47). The assumed difference in the basin response time between the US sample
and the Puerto Rico sample due to basin size can potentially explain the observed
differences in the scaling of ⌫ with �/(1- �) between the two regions.

The final comparison we make to this data set is the scaling of daily variability with
the aridity index (�). The general trend of increasing variability (decreasing c

r

) with
aridity observed by Rossi, Whipple, and Vivoni, (2016) (figure 48b) is again in line with
theoretical predictions (figure 44). Again, as before, we can replicate the observations
with our Monte Carlo simulation (figure 48a).

The effect of increasing the basin size on the µ-⌫ scaling can be approximated if it is
assumed that the basin response time increases with increasing basin area. In addition
to an increasing response time (due to longer travel paths for the water), it is also likely
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Figure 45: Figure from Rossi, Whipple, and Vivoni, (2016) showing observed relationship be-
tween µ and ⌫ for rivers from the US with >10% contribution from snow (light grey
points), <10% contribution from snow(dark grey points), and rivers from Puerto Rico.
I believe the relationship between MAR and c

r

in the figure is written backwards,
and should be c

r

/ MAR0.2, which means ⌘ ⇡ 0.2 in this data set.

Figure 46: Results of the Monte Carlo simulation. The blue points correspond the moderate
sized US catchments with < 10% snow (dark grey points in figure 45), the grey
points to the US catchments with > 10% (light grey points in figure 45) and the
yellow points to small Puerto Rico catchments (white points in figure 45). c

r

is a
measure of daily variability linearly related to 1/⌫ used by Rossi, Whipple, and
Vivoni, (2016) to describe variability.

that the storm intensity will decrease. This is because the storm intensity is averaged
over the entire basin, and as the basin increases in size, the likelihood that a storm only
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(a)

(b)

Figure 47: (a) Results of the Monte Carlo simulation. The blue points correspond the moderate
sized US catchments with < 10% snow (grey points in panel b) and the yellow
points to the small Puerto Rico catchments (black points in panel b) from Rossi,
Whipple, and Vivoni, (2016). (b) Figure from Rossi, Whipple, and Vivoni, (2016)
showing observed relationship between rainfall frequency and variability for rivers
in the US (gray points) and Puerto Rico (black points).

effects a portion of the basin increases. These ’partial’ storms are then averaged over
the entire area of the basin, with the effect of decreasing the observed storm intensity.
We compare the results of a Monte Carlo simulation to a different data set from Molnar
et al., (2006). Figure 49 compares the model results to the data set. The fact that larger
basins are shifted to the right relative to smaller basins is well reproduced by the
simulations. Increasing the response time and decreasing the storm intensity have the
same effect on the µ-⌫ scaling, so either one is sufficient to replicate the observations,
but together they have a stronger effect.
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(a)

(b)

Figure 48: (a) Results of the Monte Carlo simulation. The blue points correspond the moderate
sized US catchments with < 10% snow (grey points in panel b) and the yellow
points to the small Puerto Rico catchments (black points in panel b) from Rossi,
Whipple, and Vivoni, (2016). (b) Figure from Rossi, Whipple, and Vivoni, (2016)
showing observed relationship between aridity and variability for rivers in the US
(gray points) and Puerto Rico (black points).

4.6 conclusion

We have demonstrated that there exists a global limit on variability as a function of
mean runoff that depends on a few easily measured parameters. Because it is the com-
bined knowledge of the mean runoff and the runoff variability that yields information
about the frequency and magnitude of flood events, this scaling allows for the estima-
tion of the upper limit of flood distributions with limited information. By combining
this upper limit with an estimate of the shape of the runoff distribution, concrete esti-
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Figure 49: (a) Coloured points represent changes in the µ-⌫ scaling as a result of increasing the
basin response time and decreasing the storm intensity as a surrogate for increasing
catchment area. Solid lines show the upper variability limit, dashed lines show fit
trend. (b) Figure from Molnar et al., (2006) showing data set of discharge variability
and mean separated by basin size. Lines represent fit trends.

mates of the upper limit on flood distribution can be made. The close match between
the theory and the observations with very limited knowledge about the individual
river basins implies a generality to the controls on discharge variability.

The theoretical scaling of daily variability with several ecohydroclimatic parameters,
and especially the mean runoff, provides a simple framework to interpret the observed
range of daily runoff variability and its controls. We find that the aridity index, �, the
basin response time, ⌧, and the effective soil depth, h

s

, are the most important controls
on the coefficient of variability; a result that emerges from theoretical considerations
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and the Monte Carlo simulations. This conclusion is further supported by the data
set of Rossi, Whipple, and Vivoni, (2016). Finally, a power law relationship between the
mean and variability of discharge with a negative exponent emerges naturally from the
theory, and the value of the exponent matches observations when correlation between
governing ecohydroclimatic parameters is taken into account.



5
P R O C E S S I N D E P E N D E N T I N F L U E N C E O F C L I M AT I C
VA R I A B I L I T Y

5.1 abstract

How climate and short-term climate variability (i.e. meteorology) modulate erosional
processes and, on the longer term, control the shape of the Earth’s surface is a much
debated issue. Here we demonstrate that the way the Earth’s surface responds to short-
term climatic forcing variability is primarily determined by the existence and magni-
tude of erosional thresholds. We show that, irrespective of the nature of the erosional
process, it is the ratio between the threshold magnitude and the mean magnitude of
climatic forcing that determines whether variability matters or not and in which way.
Among many other implications, our findings help provide a general framework to
understand and predict the response of the Earth’s surface to changes in mean and
variability of, in particular, rainfall, associated with the anthropogenic release of green-
house gases into the atmosphere.

5.2 introduction

Climatic forcing undoubtedly plays an important role in shaping the Earth’s surface.
However, precisely how climate affects erosion rates, landscape morphology and the
sedimentary record is highly debated (e.g. Burbank et al., 2003; Dadson et al., 2003;
Reiners et al., 2003a; Tucker and Hancock, 2010a; Finnegan, Schumer, and Finnegan,
2014; Godard et al., 2014; Willenbring and Jerolmack, 2015; Herman and Champagnac,
2016). Much attention is paid to how erosion responds to changes in climate (e.g. Mol-
nar and England, 1990; Molnar, 2004). However, even stable climatic conditions are in-
trinsically variable over short timescales, as rainfall rate and temperature change from
hour to hour and month to month. An important question that arises is to determine
how this ‘meteorological variability’ influences erosion rates. This is essential to pre-
dict not only the long-term evolution of Earth’s landforms but also how the warming
climate of the Anthropocene and the associated changes in the distribution of extreme
climatic events are likely to affect the frequency of landslides, rockfalls and mudslides.
It is now well established that the intensity of rainfall increases with air temperature
(Trenberth et al., 2003; Berg, Moseley, and Haerter, 2013; O’Gorman, 2015), changing
the probability distribution of both stratiform and convective rainfall, which will in-
crease rainfall variability without substantially increasing the mean amount of rainfall
(figure 50a).

Previous studies have shown that the cumulative erosional effect of rain storms and
floods of different magnitudes cannot be understood in terms of their mean tendencies
alone (Tucker and Bras, 2000; Snyder et al., 2003; Tucker, 2004; Lague, Hovius, and
Davy, 2005; Lague, 2014). This is attributable in large part to the existence of erosion
thresholds that inhibit erosion during small to moderate meteorological events. This
can be understood intuitively following, for example Leopold, (1951), who argued
that because sediment is only mobilized by storms with rainfall intense enough to
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produce surface runoff, the maximum rainfall intensity might be a better measure of
the erosivity of a given climate than mean annual rainfall.

Erosional thresholds have been demonstrated or hypothesised to exist for many pro-
cesses, including erosion and channel head initiation due to overland flow (e.g. Horton,
1945; Montgomery and Dietrich, 1992; Prosser and Dietrich, 1995), fluvial transport of
bed-load sediment (e.g. Shields, 1936; Bagnold, 1980), fluvial erosion of bedrock chan-
nels (e.g. Howard, 1994; Baker and Kale, 1998), debris flows and shallow land sliding
(e.g. Gabet et al., 2004; Guzzetti et al., 2008), as well as solifluction and soil creep (e.g.
Matsuoka, 2001). Throughout the history of quantitative geomorphology, they have
been invoked to describe the complexity of the relationship between climate and ero-
sion, as well as the relative importance of moderate vs. extreme climatic events (Wol-
man and Miller, 1960; Schumm, 1979; Blum and Valastro, 1989; Tucker and Bras, 1998;
Lague, 2014).

Although previous studies have demonstrated the important role of erosion thresh-
olds and meteorological variability in erosional systems, they have exclusively dealt
with fluvial sediment transport and erosion, and have made use of process laws where
erosion is a monotonically increasing function of meteorological forcing, such as the
stream power model. Such simple process laws are known to dramatically oversim-
plify the process of fluvial erosion and transport, and the wisdom of their application
in modelling fluvial erosion, particularly over short timescales, is debated (e.g. Beer
and Turowski, 2015) (c.f. Ferrier, Huppert, and Perron, 2013). In particular, these laws
ignore the effect of sediment supply entirely, which is known to be important (others;
Sklar and Dietrich, 2004), especially when variable climatic forcing is taken into ac-
count (Lague, 2010).

Here we demonstrate that the influence of erosion thresholds and the relative im-
portance of extreme events to the mean magnitude of forcing (i.e. variability) are fun-
damental in nature, and do not depend on any given process law. We show how this
general conclusion arises mostly from the nature of the probability distribution of me-
teorological forcing. We demonstrate that even without a functional description of a
process law, these results hold true, further supporting the process independence of
the dynamics of variability and erosion thresholds.

5.3 results and discussion

The most important factor determining the influence of meteorological variability and
erosion thresholds on long-term erosion rates is the erosion frequency (the fraction of
time erosion is occurring). How the frequency of erosion responds to changes in vari-
ability depends on the magnitude of the erosion threshold. When erosion thresholds
are low, they are exceeded often and erosion frequency is high. This is true for both
low and high variability forcing. When thresholds are high, low variability systems
suffer a major reduction in erosion frequency because large magnitude events that can
exceed the erosion threshold are rare (solid lines in figure 50b and c). The result is
a significant decrease in the erosion efficiency (erosion rate divided by mean climatic
forcing). In contrast, the erosion efficiency of high variability streamflow is relatively
immune to high erosion thresholds (dashed lines in figure 50b and c).
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Figure 50: (a) Observed changes in distributions of hourly rainfall intensity as a function of
temperature over Germany (adapted from Berg, Moseley, and Haerter, (2013)). There
is less than a factor of 2 change in mean hourly rainfall rate, but greater than factor 5

increase for maximum annual hourly rainfall rate. (b) Comparison of low variability
and high variability distributions (shown is inverse gamma distribution commonly
used to model daily river discharge). Black circles show mean. (c) Erosion frequency
as a function of relative erosion threshold magnitude for distributions in (b). When
x

⇤
c

> 1, the frequency of erosion for high and low variability distributions quickly
deviates.

Erosion frequency is the probability of exceeding the erosion threshold (figure 50c),
which can be calculated from the probability distribution of meteorological forcing
f

X

(x) (figure 50b),

Pr[x > x

c

] =

Z1

x

c

f

X

(x)dx. (100)

where x

c

is the critical meteorological forcing magnitude required to exceed the
erosion threshold. For simplicity, we will call x

c

the climatic threshold. Equation 100

implies that erosion frequency is independent of the erosion process law used, depend-
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ing solely on the probability distribution of meteorological forcing and the magnitude
of the erosion threshold.

By definition, low variability distributions are more tightly clustered around the
mean (figure 50b). As a result, the erosion efficiency of systems under low variabil-
ity meteorological forcing begins to decrease rapidly when the erosion threshold is
large enough that the climatic threshold, x

c

, becomes larger than the mean climatic
forcing, x̄. In contrast, the erosion efficiency of systems under high variability forcing
is dominated by extreme events that are only impacted by very large erosion thresh-
olds. Therefore the erosion efficiency of climatic regimes with high and low variability
begins to diverge when the climatic threshold, x

c

, approaches the mean magnitude
of climatic forcing (equivalently when x

⇤
c

= x

c

/x̄ ⇡ 1). This critical erosion threshold
value is a fundamental property of probability distributions, and not related to any
particular meteorological probability distribution or erosion process law.

Figure 51: Monte Carlo simulations were conducted for super-liner stream power like laws (a),
sub-linear stream power like laws (b), and tool and cover like laws with sediment
supply characterized as flood cleaning (c) and flood depositing (d). Noise was intro-
duced into each law (gray points in a-d). (e) shows the result of 50,000 simulations
for super-linear laws (1 6 � 6 1.5). Each point represents a simulation, the color
shows the variance of the meteorological forcing distribution. Theoretical bounds
are shown as colored lines. (f) shows the result of 50,000 simulations for sub-linear
laws (1 6 � 6 1.5). (g) shows the result of 100,000 simulations for decreasing, tools
and cover laws (-3 6 ⇤ 6 3).

We tested our theoretical predictions by investigating the impact of meteorological
variability on erosional efficiency using a variety of erosion process laws. We consid-
ered laws where erosion rate increases monotonically with climatic forcing (similar
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to the stream power model) and the relationship between erosion efficiency and cli-
matic forcing can be sub-linear or super-linear, parameterized by � < 1 and � > 1

respectively (figure 51a and b). We also considered laws were erosion rate can decrease
with increasing climatic forcing (similar to the tool-and-cover effect (Sklar and Diet-
rich, 2004)) where we parameterize the relationship between fluvial transport capacity
and sediment supply in a manner that allows for a flood-cleaning regime (⇤ < 0 - big
floods expose riverbed to erosion, figure 51c) and a flood-depositing regime (⇤ > 0 -
big floods cover riverbed, protecting it from erosion„ figure 51d) (Turowski et al., 2013).
These are all fluvial erosion laws, but they also represent a wide range of functional
forms that could parameterize many other processes. To further emphasise the process
independence and simulate multiple controls on erosion (e.g. river discharge and sedi-
ment supply for fluvial erosion), we introduce a significant random element by making
the rate constant in each process law a random variable that is normally distributed
with standard deviation equal to half the mean value of the rate constant (� = K̄/2).
For each law we explored the impact of variability with 50,000 Monte Carlo simula-
tions, each averaging 50,000 individual erosion events (figure 51e-g). To describe the
forcing, we used both heavy tailed and light tailed gamma distributions with randomly
chosen shape parameters. This provided a range of variability similar to that seen in
natural systems (Lague, 2014; Rossi, Whipple, and Vivoni, 2016). We further randomly
selected the erosion threshold and calculated the resulting long-term erosion efficiency
(for more details on the model setup see appendix).

Despite random noise, the Monte Carlo simulations match the theory (figure 51e
and f). In addition, the Monte Carlo simulations of tools and cover laws yield similar
results (figure 51g). We stress how striking it is that the results are so similar, despite
the use of very different functions for erosion as well as both heavy- (inverse gamma)
and light-tailed (gamma) distributions simulating meteorological forcing. Even the in-
troduction of significant random noise into the process laws does not change the influ-
ence of thresholds and variability on the erosion efficiency: when the climatic threshold
is much smaller than the mean magnitude of climatic forcing (x⇤

c

< 1 - left-hand side
of figure 51e-g), variability in forcing has little to no influence on erosional efficiency. If
it does, whether high variability systems are more or less erosive than low variability
ones depends on the nonlinearity of the relationship between meteorological forcing
and erosion. Sub-linear or decreasing process laws (figure 51b-d) lead to high variabil-
ity systems having less efficient erosion than low variability systems. When the climatic
threshold is larger than the mean magnitude of climatic forcing (x⇤

c

> 1 - right-hand
side of 51e-g) variability dominates and erosion systems driven by higher variability
are always more erosive. One marked difference is that decreasing and sub-linear pro-
cess laws cannot exceed an erosion efficiency of 1 (figure 51e and g), in contrast to the
super-linear laws, which are unbounded (figure 51e).

Table 1: The efficiency of erosion driven by high variability meteorological forcing relative to
low variability meteorological forcing

Low threshold: x
c

/x̄ < 1 High threshold: x
c

/x̄ > 1

� < 1 erosion moderately less efficient erosion more efficient

� = 1 Variability doesn’t matter erosion more efficient

� > 1 erosion moderately more efficient erosion more efficient
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Our calculation, summarized in table 1, reproduces the main results of previous
studies on the role of variability in determining long-term erosion efficiency in predom-
inantly fluvial systems. We can also confirm more specific results concerning critical
erosion threhold values, for example, that of Tucker, (2004) which stated that rainfall
variability begins to become significant when more than half of all rainfall events are
filtered out by the threshold. Also confirmed is the critical return time of 1 to 7 days
determined in Lague, Hovius, and Davy, (2005), which is associated with an x

c

ap-
proximately equal to the mean daily discharge. Finally, also shown to match are the
regimes defined by Lague, Hovius, and Davy, (2005) and DiBiase and Whipple, (2011)
that stated that variability influences the scaling of river channel steepness with erosion
rate when the long-term erosion rate is smaller than the normalized erosion threshold,
and has little to no influence when the erosion rate is greater than the threshold. How-
ever, we can now demonstrate that this behaviour (table 1) is not limited to a specific
process, nor is the critical threshold.

To illustrate our point, consider an erosion process driven by rainfall such as soil
erosion by surface runoff. If erosion thresholds are small relative to the mean rainfall
rate, most storms will cause enough surface runoff to trigger erosion, and the erosion
rate will be proportional to mean rainfall rate. The erosion rate will increase during
wetter periods and decrease during drier ones. In contrast, when the erosion thresh-
old is large relative to the mean rainfall rate, only storms with high rainfall intensity
will trigger erosion. In this case, changes in the intensity of large storms will have a
significant impact.

The absolute magnitude of erosional thresholds is likely defined by a combination
of external conditions, such as the fracture density of bedrock and the chemical weath-
ering rate on hill slopes which partly determine the average grain size and the degree
to which the landscape is vegetated (Sklar et al., 2016). The relative magnitude of the
climatic threshold x

⇤
c

, i.e. - the ratio of the absolute threshold magnitude x

c

to the
mean climatic forcing x̄ - does, however, vary when the magnitude of climatic forcing
changes through time. This tends to reduce the influence of variability. Returning to
the soil erosion example, if climate changes such that the mean rainfall rate increases
significantly, the relative magnitude of the erosion threshold decreases, turning high
threshold processes into low threshold processes, and rendering variability less impor-
tant. On the other hand, if the mean rainfall rate decreases significantly, the relative
threshold can become so large that nearly no storms can cause surface runoff suffi-
cient to drive soil erosion. As a result erosion rate decreases despite high variability
and high thresholds. Therefore, we expect that changes in mean magnitude of meteo-
rological forcing alone influences both high and low threshold processes through the
associated change in the relative threshold magnitude (figure 52b).

Note that the situation described above is more likely to occur when the distribution
of meteorological forcing is light tailed (dashed line in figure 52a and b). For light-
tailed distributions there is a small range of relative threshold magnitudes that are
large enough for variability to be important, but small enough to be exceeded on a
regular basis. Thresholds larger than this are exceeded so rarely that erosion efficiency
is very low. High threshold processes driven by heavy tailed distributions, such a river
discharge, respond more consistently to changes in variability across a wider range
of relative threshold magnitudes. Because rainfall tends to be light tailed, this implies
that erosion processes driven directly by rainfall (such as land sliding) will respond



5.3 results and discussion 115

to changes in the mean rainfall more than changes in the intensity as mean climatic
forcing changes through time, regardless of the magnitude of the threshold.

Our findings have important implications for the response of erosional processes
to changes in Earth’s mean surface temperature. It is well known that the intensity of
rainstorms, a major factor in determining rainfall variability, increases in response to in-
creases in the temperature of the atmosphere (Trenberth et al., 2003; Berg, Moseley, and
Haerter, 2013). Therefore, high threshold, rainfall driven processes will increase sys-
tematically with temperature, while low threshold processes will respond to changes
in mean annual rainfall rates, which will vary from location to location (figure 52c).

Our findings leads to even more interesting implications if one considers that the
mean magnitude and variability of climatic forcing are often negatively correlated. Re-
gions with high mean rainfall or river discharge tend to exhibit low variability and vice
versa chapter 2 as well as (Tucker, 2004; Lague, Hovius, and Davy, 2005; Molnar et al.,
2006; Rossi, Whipple, and Vivoni, 2016). This implies that changes in erosion rates of
high threshold processes can be negatively correlated with changes in the mean magni-
tude of climatic forcing through time, as well as negatively correlated with changes in
erosion rates of low threshold processes in the same landscape (figure 52d). In agree-
ment with Molnar et al., (2006), we find that the range of conditions over which this
is possible is relatively narrow, though it is broader for heavier tailed distributions of
meteorological forcing. The negative correlation of mean and variability also has the
effect of tempering the response of high threshold processes to changes in either. We
expect that the sensitivity of high threshold processes will be largest when meteorolog-
ical variability changes independent of the mean - e.g. changes in air temperature, or
when the relative magnitude of the threshold changes due to external controls on the
absolute magnitude - e.g. changes in grain size on hillslopes or in rivers.

There is field evidence to support the idea that the response of erosion processes to
climate change is governed by the magnitude of the erosion threshold. In the region
encompassing Owen’s and Death valleys in the US, it is known that during glacial
maxima, when temperatures were lower, the mean annual rainfall rate was higher due
to changes in global atmospheric circulation (D’Arcy, Whittaker, and Roda-Boluda,
2016, and references therein). In addition, the Clausius-Clapyron relation, which is the
physical basis for the prediction that rainfall intensity will increase with air tempera-
ture (Berg, Moseley, and Haerter, 2013; O’Gorman, 2015), implies that these cold, wet
periods had low intensity rainfall. Interglacials, on the other hand, were warmer and
drier, yet associated with more intense storms. (D’Arcy, Whittaker, and Roda-Boluda,
2016) found evidence in Death Valley that the fluvial transport of sand and gravels in-
creased during cold, wet periods and decreased during warm, dry periods. This makes
sense given that transport of these fines is a relatively low threshold process. On the
other hand (D’Arcy, 2015) found evidence that in nearby Owen’s Valley, the grain size
distribution of debris flows decreased during cold, wet glacial maxima and increased
again during warmer, drier interglacials. Debris flows are a higher threshold process
than the transport of sand and gravel observed in Death Valley, and taking the grain
size distribution as a marker of the magnitude of the debris flows, they appear to have
responded to increases in rainfall intensity even while the mean annual rainfall rate
decreased.

Finally, there are implications for how meteorological variability and erosion thresh-
olds influences the equilibrium form of landscapes. There is a general expectation for
many erosion processes that climatic thresholds decrease as slope steepness increases.
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Figure 52: (a) Comparison of the heavy-tailed distribution to the light tailed distribution used
in the calculation of (a)-(c). (b) Relative changes in the erosion efficiency due to dou-
bling the mean meteorological forcing and then halving it. Shown are high threshold
processes (gray lines) and low threshold processes (black lines) driven by light-tailed
distributions of meteorological forcing (dashed lines) or heavy-tailed ones (solid
lines). The relative magnitude of the high and low erosion thresholds are shown
in solid and dashed red lines, respectively. (c) Same as (b), but halving and then
doubling variability of meteorological forcing while holding the mean constant. (d)
Same as (b) and (c), but variability and mean vary simultaneously and in the oppo-
site sense.

In the case of fluvial erosion, for example, the streamflow required to exceed the ero-
sion threshold decreases as the riverbed becomes steeper. This implies that steep land-
scapes (or the steeper parts of a given landscape) are less sensitive to meteorological
variability than their less steep counterparts. For fluvial erosion, it has also been demon-
strated that the scaling between erosion rate and channel steepness index (a measure of
river channel steepness normalized by catchment area) should be a power law (chan-
nel steepness ⇠ (erosion rate)') (Lague, Hovius, and Davy, 2005). When thresholds
are high, the exponent, ', is expected to be less than one. Bolstered by the results of
this study that these results are process independent, the frequent observations of scal-
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ing between channel steepness index and erosion rate with exponents less than one
(Ouimet, Whipple, and Granger, 2009; DiBiase and Whipple, 2011; Lague, 2014) is ev-
idence that fluvial erosion thresholds are commonly larger than the mean streamflow
(regardless of fluvial erosion law).

This work provides a basis for the intuition that high variability increases erosion
efficiency - with the important qualifier “when thresholds are high”. It further provides
a metric to assess whether thresholds are high or low. Knowledge of the specifics of
a particular place in space and time will be important to understand in detail the
erosional response to climatic change. But the generality of these results suggest that
previous work on variability and erosion thresholds can be more widely applied. This
will be useful as a rule of thumb for making first order approximations for places and
processes about which little is known and helps us understand the impact of rapid
climate change on the frequency of extreme erosional events.

5.4 appendix a : threshold stream power model

Tucker and Bras, (2000) derived equations to describe the impact of stochastic rainfall
on sediment transport (using divergence of sediment transport capacity) and erosion
in a detachment limited case (using threshold stream power model). These equations
can be cast in the general form,

" = K(x- x

c

)�, (101)

where " is the instantaneous erosion rate, K is a rate constant, x is the meteorological
forcing (in the case of Tucker and Bras, (2000), it is surface runoff), x

c

is the climatic
threshold and � is the nonlinearity between erosion and meteorological forcing.

5.5 appendix b : derivation of tool and cover transport law

We start with an approximate form of the cover and tool law, ignoring effects from the
suspension of sediment,

"(x) ⇠
Q

s

(⌧- ⌧
c

)1/2
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Q

s

Qcap

◆
, (102)

Q

s

is the mass sediment supply rate, Qcap is the transport capacity, ⌧ and ⌧
c

are the
shear stress and critical shear stress for transport respectively (Sklar and Dietrich, 2006,
eq. 1). Relating transport capacity to excess shear stress as Qcap ⇠ (⌧- ⌧

c

)3/2 (Sklar
and Dietrich, 2006), we can simplify equation 102,
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Finally, we the relationship between transport capacity, sediment supply, and river
discharge from Turowski et al., (2013),
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, (104)

where x is daily streamflow, x
c

is a critical streamflow to move sediment and x

b

is a
reference streamflow. We make the further assumption that the transport capacity is



118 process independent influence of climatic variability

approximately proportional to daily streamflow (x ⇠ Qcap). This allows us to reach an
approximate erosion rate as a function of daily streamflow, as well as represent both
flood cleaning and flood depositing regimes,
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where K is a rate constant to provide equality.

5.6 appendix c : monte carlo simulation setup

To provide an even spread of simulations in the logarithmic space of figure 51, half
of the erosion threshold x

c

values are selected randomly from a uniform distribution
(0.1 6 x

⇤
c

6 100) and half are selected randomly from a uniform distribution of the
log of the threshold (-1 6 log

10

(x⇤
c

) 6 2). The probability distribution used is either a
light tailed gamma distribution,
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e
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or a heavy tailed inverse gamma distribution,
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e
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where k is the shape parameter that controls the variability for both distributions. There
is a 50% chance of selecting one or the other distribution. The natural log of the shape
parameter is chosen from a uniform distribution for -3 6 log(k) 6 1.5, which covers
most of the natural range of shape parameters observed on Earth (Rossi, Whipple,
and Vivoni, 2016). We chose from a distribution of log(k) to ensure that high variable
regimes (k < 1) are properly sampled.

Each simulation consists of 20,000 daily erosion events. The daily erosion rate "(x)
is calculated using either equation 101 or 105. The exponents � and ⇤, which dictates
the behavior of the process law, were randomly selected from a uniform distribution
(0.5 6 � 6 1.5 or -3 6 ⇤ 6 3), and are held constant for all 20,000 events in a single
simulation. The erosion threshold x

c

, meteorological probability distribution function
f

X

(x) and shape parameter k are also held constant over each simulation. Noise is intro-
duced into the process laws by substituting the rate constant K with a random variable
Krand normally distributed around the value of K, with a standard deviation equal to
K/2. For each daily erosion event, a value of Krand is selected randomly. The rare values
of Krand that would be negative are reflected back into the positive domain. The long-
term erosion rate is calculated by taking the mean of the 20,000 erosion events, and is
normalized with the mean of Krand. Referred to as K̄, the mean value is approximately
equal to K, which in these simulations is set to one.
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Ecohydrology Symbols

↵

s

Mean magnitude of storage recharge

�S Catchment-wide storage change

⌘ Exponent of power law relationship between discharge mean and variability

â Decorrelated recession coefficient

hETi Long-term average daily rate of evapotranspiration

µ Specific long-term average daily rate of discharge

⌫ Coefficient of variability

⌫

w

Coefficient of variability for winter season in catchments affected by winter
snowfall

⌫max Maximum coefficient expected in a region for a given mean daily discharge

! Runoff ratio

� Aridity index

⌧ Average catchment-scale hydrologic response time

⌧

d

Delay between snow fall and snow melting [days]

⌧

w

Winter catchment-scale hydrologic response time in basins with significant snow-
fall [days]

⌧max Maximum catchment-scale hydrologic response time in a region [days]

⌧min Minimum catchment-scale hydrologic response time in a region

⌧storm Average time between discharge producing rainstorms

⇠

r

Stochastic catchment-wide recharge events

a Recession coefficient

b Recession exponent

C Normalization constant of pdf of daily discharge when b 6= 1, 2

c

r

Shape parameter of stretched exponential distribution, used in Rossi, Whipple,
and Vivoni, (2016) to describe variability. Related to ⌫ as c

r

= 0.177/⌫

c

s

Coefficient of catchment-wide storage-discharge relationship

d Exponent of catchment-wide storage-discharge relationship
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ET

max

Maximum or potential evapotranspiration rate [mm day-1]

f

t

Q

(q) pdf of daily discharge truncated at q = q

m

and renormalized so integral over
pdf equals one

f

T

(t) pdf of rainstorm interarrival periods

f

�S

(�S) pdf of catchment-wide storage recharge magnitudes

h

s

Effective soil depth

k Shape parameter of pdf of daily discharge

n

s

Soil layer porosity

p

o

Atom of probability that q = 0

q Random variable representing daily discharge magnitude

q⇤ Daily discharge magnitude normalized by mean daily discharge

q

o

Daily discharge magnitude at beginning of recession

S Catchment-wide storage

s Random variable representing soil layer moisture fraction

s

1

Soil moisture saturation threshold

s

o

Dynamic soil moisture capacity [mm]

s

w

Wilting point at which evapotranspiration stops - soil moisture does not de-
crease below this threshold

Z

r

Active soil layer depth [mm]

Stream Power Symbols

Ē Mean long-term daily erosion intensity [mm]

K̄ Mean magnitude of noisy erodibility constant used in chapter 5

� At-a-station stream power discharge-erosion exponent

�

"

Mean frequency of stream power erosion events [day-1]

hQi Long-term average daily rate of river discharge

 Normalized erosion threshold

 Stochastic term describing impact of threshold on discharge events that exceed
that threshold

⌧

c

Critical shear stress for erosion to begin

⌧

s

Shear stress applied by flowing water

" Instantaneous stream power erosion rate
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"

m

Daily stream power erosion magnitude associated with maximum discharge q

m

"

o

Reference constant-discharge threshold-free stream power erosion rate

A Contributing catchment area

c Exponent of shear stress erosion law

C

"

Normalizing constant for pdf of daily erosion when b 6= 1, 2

f

E

(") pdf of daily stream power erosion intensity

K Erodibility coefficient

k

e

Shear stress erosion law rate constant

m Exponent on A in stream power model

n Exponent on S in stream power model

q

c

Critical daily discharge magnitude that exceeds shear stress erosion threshold
⌧

c

q

m

Maximum daily discharge magnitude observed over period of observation

q

c⇤ Critical daily discharge magnitude that exceeds erosion threshold normalized
by mean daily discharge

q

m⇤ Maximum daily discharge magnitude normalized by mean daily discharge

S River channel slope

Other Symbols

x̄ Mean magnitude of general daily meteorological forcing

�(·) Dirac delta function

�(·) Gamma function

�(·, ·) Regularized upper incomplete gamma function

�(·, ·) Regularized lower incomplete gamma function

hEi Long-term average erosion rate

E[·] Expected value

� Standard deviation of normal distribution used for noise generation in chapter
5

f

X

(x) pdf of general meteorological forcing

Q

s

Sediment supply rate

Qcap Sediment transport capacity

r

2 Coefficient of determination - used as a measure of quality of fit
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x Random variable representing general daily meteorological forcing magnitude
of an erosional system

x

b

Reference streamflow, such as bankfull

x

c

Critical meteorological forcing magnitude required to exceed erosion threshold

x

⇤
c

Critical meteorological forcing magnitude required to exceed erosion threshold
normalized by mean magnitude of meteorological forcing

Rainfall Symbols

↵ Mean daily rainfall intensity [mm] (mean rainfall on days with rainfall)

↵

d

Dry season mean rainfall intensity

↵

w

Monsoon season mean rainfall intensity

↵max Maximum mean daily rainfall intensity in a region

p̄ Specific long-term average daily rate of rainfall

� Scale parameter of gamma distribution

�

d

Scale parameter of dry season gamma distribution

�

w

Scale parameter of monsoon season gamma distribution

 Shape parameter of gamma distribution



d

Shape parameter of dry season gamma distribution



w

Shape parameter of monsoon season gamma distribution

� Mean daily rainfall frequency

�

d

Dry season mean rainfall frequency

�

w

Monsoon season mean rainfall frequency

hPi Long-term average daily rate of rainfall

c

1

Exponent of power law relationship between gamma shape parameter and rain-
fall frequency

c

1

Exponent of power law relationship between rainfall frequency and intensity

c

2

Exponent of power law relationship between gamma shape parameter and rain-
fall intensity

f

d

(p) Dry season pdf of daily rainfall intensity

f

w

(p) Monsoon season pdf of daily rainfall intensity

f

max

(p) pdf of maximum annual daily rainfall intensity

F

P

(p) Annual cdf of daily rainfall intensity

f

P

(p) Annual pdf of daily rainfall intensity



5.6 appendix c : monte carlo simulation setup 123

n

a

Number of rainy days per year

n

w

Number of rainy days per monsoon season

p Random variable representing daily rainfall rate

Pmax Mean maximum annual daily rainfall intensity

T

w

Length of monsoon season [days]
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