Giannoula 
  
Ryan Abdo 
  
Afshin, Janusz, Ed Katherine Clare 
  
Manon Perrine 
  
! ! Boris 
  
Claudia Olivier 
  
Guillaume L Thomas 
  
Merci Cindy 
  
Diane 
  
Anne Raouf 
  
Sébastien Benzekry 
email: benzekry@phare.normalesup.org
  
Col- Laboration With 
  
V Pérez-Garcia 
  
A Martinez-González May 
  
A D'onofrio 
  
Robert Kerbel' 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Workshop on hybrid and multiscale modelling in cell and cell population biology

Keywords: 

Je tiens tout d'abord à remercier Mark Chaplain, Emmanuel Grenier ainsi que Larry Norton qui m'ont fait l'honneur de rapporter sur mes travaux. Leurs recherches en modélisation du cancer sont pionnières à bien des égards et ont constitué une grande source d'inspiration.

Ensuite, je voudrais exprimer ma gratitude aux membres du jury

Introduction

Cancer diseases are a major health concern in the modern society. Taken together, they represent the second leading cause of death worldwide (they were responsible for 8.8 million deaths in 2015, which represents nearly 1 in 6 deaths) and the first cause of death in France1 [Ferlay et al., 2013, InVS and[START_REF] Invs | Projection de l'incidence et de la mortalité par cancer en France en[END_REF]. In face of such a public health challenge and considering the "unreasonable effectiveness of mathematics in natural sciences" [Wigner, 1960], one might wonder: can mathematical models be of help in oncology?

Since a wide variety of mathematical tools could be considered, some -such as epidemiological statistical models, stochastic evolutionary models or bioinformatics algorithms -being beyond the scope of my research, I should start by defining what I mean by a "mathematical model". In the context of the work reported here it will be: a function, most often (but not necessarily), deterministic, depending on the time and a set of parameters, intended to describe the dynamics of a biological system and thus often defined by a set of ordinary or partial differential equations.

With the development of novel measurement methods (especially from molecular biology and imaging), accumulation of biological and clinical data is currently driving oncology toward a quantitative science, which raises the question of inferring general patterns and structures behind the data as well as extracting the most information from these. Meanwhile, the number of mathematical models developed by theoreticians in the field of so-called "mathematical oncology" [START_REF] Gatenby | Mathematical oncology: cancer summed up[END_REF] has been exponentially growing in the last decades [START_REF] Barbolosi | Computational oncology-mathematical modelling of drug regimens for precision medicine[END_REF], Altrock et al., 2015, Byrne, 2010, Anderson and Quaranta, 2008, Bellomo et al., 2008]. However, these formal constructs have often remained confined to qualitative conclusions and rarely been confronted to the observations. The driving force behind my work since my PhD has been to try to bridge the gap between theories/models and empirical data. Crucially, my objectives have always been to do so motivated by a specific biological or clinical question, thus not considering the modeling process as an end in itself but rather as a mean. So far, my work has been focused about two possible aims of mathematical modeling in oncology:

1. better understand the biology. Indeed, by allowing the simulation (or analysis) of the implications of biological hypotheses, mathematical and computational models provide a way Introduction to test these hypotheses against experimental data. This improves our understanding of the biology by discriminating theories that are able to describe the data and, perhaps even more importantly, reject theories that are not.

2. predict the future of a cancer disease or the impact of a therapeutic strategy. In this case, even if the model is only phenomenological (i.e., weakly connected to a mechanistic description of the biological process), if its predictive power of the model is properly validated, it can provide a powerful numerical tool for clinical applications. To this regard, I believe applications can be divided into (at least) two subclasses:

(a) the rational design of treatment regimen in clinical trials (b) patient-specific predictive tools of help for personalized medicine (personalized prognosis of tumor growth, decrease or relapse and/or metastatic state or relapse in order to plan the individualized intervention).

With this in mind, my research has been focused on specific problems concerning processes in cancer that have a dynamical component, including tumor growth, metastasis and anti-cancer systemic treatments. Although these biological, clinical and therapeutic problems shall be defined at a later stage in this document, one canonical example is the prediction of the occult burden of metastases at diagnosis in breast cancer, for personalized adaptation of peri-operative treatment.

To address these open problems, I consider fundamental to depart from the published knowledge on the biological processes on one hand and from experimental or clinical data on the other. Therefore, several of the studies reported here were done in collaboration with biologists or clinicians, including people from the Center of Cancer and Systems Biology (Tufts University, Boston, MA, USA), the Roswell Park Cancer Institute (Buffalo, NY, USA), the Laboratoire de l'Angiogénèse et du Microenvironnement des Cancers (LAMC, Inserm, Bordeaux, France) and the "Simulation & Modelling: Adaptive Response for Therapeutics in Cancer" team (SMARTc, Inserm, Marseille, France). My strategy in these integrative in vivo/in silico works has been the following:

1. define, from the current state of the art, a clinically or biologically relevant problem addressable by mathematical modeling methods (not all of them are), given the obtainable data 2. design an experiment (this part having been sometimes performed by myself and other times by others) or collect relevant existing data from the literature and/or collaborations with biologists and clinicians 3. define mathematical models to be tested against the data 4. implement the models numerically 5. confront the models to the data using statistical tools (nonlinear mixed-effects), test their relative likelihood and identify the ones that can be rejected 6. and most importantly, use this methodology to derive biologically or clinically meaningful results.

Short summary of research contributions since the PhD

As stated above, departing from a PhD where my research had focused on theoretical, numerical and simulation aspects of a few mathematical models in oncology, my subsequent research efforts have concentrated on confronting the models to the observations, in order to answer meaningful clinical or biological problems. Reported below is a short summary of a selection of results that I obtained, which are described in more details in the following chapters.

The driving force has been to establish mathematical models that would in fine have clinical use.

This often means a situation with metastatic patients, treated with systemic agents. However, as a pre-requisite, I considered essential to further first my understanding of the biology of the processes and thus started with experimental data on biological studies, which are often richer than what is obtainable in the clinic. To build and validate the models step by step on solid ground, instead of directly starting with the case of metastases under treatment, the path I followed was the following:

1. first, to assess the descriptive and predictive power of classical models of tumor growth [Benzekry et al., 2014c] 2. then, model the natural history of metastasis, in the pre-surgical [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF] or post-surgical [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF] settings (thus adding dissemination to growth)

3. study the organism-scale interactions between established tumors, mostly qualitatively when considering the full tumor-metastases system [Benzekry et al., 2014b] but also quantitatively in a two-tumors system [Benzekry et al., 2017] 4. and finally, investigate models of the effect of therapies (combination of chemotherapy and anti-angiogenics) [START_REF] Mollard | Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis[END_REF], Imbs et al., 2017].

Of course, I don't pretend to any exhaustivity since the topics mentioned above cover an extremely wide range of processes. Rather, I followed a specific path, driven by the identification of concrete 20 Short summary of research contributions since the PhD problems where mathematical modeling was of help. The publications mentioned above don't cover the entirety of my contributions but are the ones that I consider most meaningful. To enlighten the reading, in this summary, no reference to the literature is given. We refer the reader to the body of the document for this matter.

0 Methodological prerequisite: a software for fitting models to data

To accomplish the research program stated above, one first key aspect was to dispose of a numerical tool to fit models to data, i.e. to estimate the parameters, to quantify the uncertainty of this estimation and to statistically compare the goodness-of-fit of the models. Therefore, I programmed a software for nonlinear regression of models in oncology and statistical inference named CARCINOM (for Computer-Assisted Research about Cancer growth and INsights on Oncological Mechanisms).

Given a data set of longitudinal measurements of in a population, it fits user-provided models, computes several goodness-of-fit statistical metrics, identifies the parameters of the models and estimates the uncertainty associated to their determination. It provides several graphical and numerical outputs that I extensively use in my daily work (in the form of LaTeX tables). Three options are available to the user: fitting the average population data, fitting each subject's data individually (and independently) or using a population approach (nonlinear mixed-effects modeling) to estimate a population distribution of the parameters from the pooled data of all subjects.

The latter is based on the SAEM 2 algorithm already implemented in Matlab.

The library of models implemented so far include models of tumor growth, metastatic development and effect of specific therapies.

The software is developed in two versions, one written in Matlab and one in python. Currently, the population parameter estimation is only available in the Matlab version.

Tumor growth

Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, I performed a quantitative analysis of the most classical of these: exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. One biological problem that I wanted to address was:

2 Stochastic Approximation of Expectation-Maximization

Biological problem 1. What are the general laws of macroscopic tumor growth? What are minimal biological processes able to recover the kinetics of tumor growth curves?

The goals of the study were then threefold: 1) to determine a statistical model for description of the measurement error of the tumor volumes, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth.

For point 1) we found that both a constant and a proportional error model had to be rejected.

Therefore, we designed and validated a specific error model.

Theories of tumor growth

The first finding was that the exponential model was not able to fit the tumor growth curves during the entire measured period. Consistently with previous observations, this means that there is a non-constant relative growth rate, with growth retardation (i.e. the larger the tumor the slower the growth). For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description.

Interestingly, although often pushed forward in the literature for description of tumor growth and despite its attractive biological explanation of growth retardation as caused by competition for space or nutrients, the logistic model exhibited substantially lower descriptive power, suggesting rejection of this theory for explanation of tumor growth retardation. This finding was consistently confirmed in several other data sets that I was given to analyze, including melanoma and kidney experimental tumors.

In line with classical results, the Gompertz model dV dt = (αβ ln(V )) V had excellent descriptive power. However, its etiology is still unresolved and its parameters not all physiologically defined.

In contrast, I found that another simple and biologically grounded model was equally able to describe the tumor growth curves, the power law model:

dV dt = aV γ
This model has the interpretation that the proliferative tissue has a fractal dimension (equal to 3γ), possibly not equal to 1. The origin of this fractal dimension might stem from the fractal dimension of the tumor vasculature (since the proliferative cells are the one that have access to the nutrients and thus are close to the blood vessels). Following this interpretation, a fully infiltrative (and functional) vasculature would mean a value of γ = 1 while blood vessels limited to the surface of the tumor would imply γ = 2/3. Supporting this model further, I found in the case of the lung data a value of the parameter a close to the in vitro proliferation rate, which would make sense because a is the growth rate when V = 1, corresponding to the initial tumor size at injection (V = 10 6 cells 1 mm 3 ).

Predictive power of classical models of tumor growth

For the breast data, the exponential-linear model exhibited the highest predictive power, with excellent prediction scores (80%) extending out as far as 12 days in the future and using only 3 data points with two days interval. In contrast, for the lung data, not one of the models was able to achieve a substantial prediction rate (70%) beyond the next day data point even when using 5 data points (one or two days interval) to estimate the parameters.

In this context, a major result that I obtained was that adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves (i.e. up to 14 days in the future), using just three data points with one day interval.

Together, my results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.

This study is the subject of the publication [Benzekry et al., 2014c].

Metastasis

Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach

Rapid improvements in the detection and tracking of earlystage tumor progression aim to guide decisions regarding cancer treatments as well as predict metastatic recurrence in patients following surgery. Mathematical models may have the potential to further assist in estimating metastatic risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease progression. One clinical problem associated with this can be stated as

Clinical problem 1. Estimate the amount of occult distant metastases at diagnosis

In order to have data about metastatic development necessary to quantitatively investigate the process -typically hard to obtain due to the intravital nature of the process -I collaborated with a biologist (John Ebos, Roswell Park Cancer Institute, Buffalo, USA) who investigates mouse experimental systems of spontaneous metastasis developing after surgical removal of orthotopically implanted primary tumors. The particular biological problem that was investigated was:

Biological problem 2. What are the qualitative and quantitative differences among experimental models of metastasis for different cancer types? Is the growth of secondary tumors identical to the growth of the primary tumor, in a given experimental system? How does the dissemination process depend on the size of the primary tumor? What is the impact of surgery on metastatic growth and dissemination?

To do so, the data were confronted to a previously established class of mathematical models for the dissemination and growth of a population of secondary tumors. The models are written as physiologically structured partial differential equations of transport type for the density ρ(t, v) of metastases with size v at time t. Considering that the primary tumor volume V p (t) follows a model

   dVp(t) dt = g p (V p (t)) V p (0) = V 0 , ( 1 
)
the equation on ρ then depends on two fundamental (functional) coefficients g and d both quantifying the two main aspects of metastatic development: dissemination (d) and growth (g). It

writes      ∂ t ρ(t, v) + ∂ v (g(t, v)ρ(t, v)) = 0 ]0, T [×]V 0 , +∞[ g(V 0 )ρ(t, V 0 ) = d(V p (t)) ]0, T [ ρ(0, v) = 0 ]V 0 , +∞[ (2) 
where V 0 is the minimal size of a lesion (typically, the size of one cell) and T is the final time.

Two models for the two experimental systems (breast and kidney) were able to fit and predict pre/postsurgical data at the level of the individual as well as the population. These revealed different metastatic dynamics for the two systems:

1. For the breast: same growth law (Gompertz-exp) and parameter values for the primary and secondary tumors and metastatic burden dynamics mostly driven by proliferation 2. For the kidney: same growth law (exponential) but different values of the parameters for the primary and secondary tumors and metastatic burden dynamics mostly driven by dissemination Our approach also enabled retrospective analysis of clinical data describing the probability of metastatic relapse as a function of primary tumor size. In my data-based models, inter-individual variability was quantified by a population distribution of one key parameter of intrinsic metastatic potential. My analysis also identified a highly nonlinear relationship between primary tumor size and postsurgical survival, suggesting possible threshold limits for the utility of tumor size as a predictor of metastatic recurrence.

These findings validated the descriptive and predictive power of specific quantitative mathematical models of total experimental metastatic burden growth, inter-patient variability of metastatic relapse risk and may guide optimal timing of treatments in neoadjuvant (presurgical) and adjuvant (postsurgical) settings to maximize patient benefit.

This study is the subject of the publications [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF]Ebos, 2015].

Short summary of research contributions since the PhD

Challenging the classical view of metastatic initiation and growth

The biology of the metastatic colonization process remains a poorly understood phenomenon. To improve our knowledge of its dynamics further than the previous study that only involved data from total metastatic burden, together with a PhD student that I co-supervised with Thierry

Colin and Olivier Saut (Etienne Baratchart), and in collaboration with a team of biologists at the LAMC (Inserm, Bordeaux, France) and a team of magnetic resonance imaging specialists (RMSB, CNRS, Bordeaux, France), we conducted a modeling study based on multi-modal data from an orthotopic murine experimental system of metastatic renal cell carcinoma. These data allowed to have access, in addition to the mere total number of metastatic cells, to the dynamics of the size distribution of secondary lesions. The biological problem we addressed was:

Biological problem 3. Is the "standard" view of metastatic initiation and growth -that secondary lesions once established grow without interactions with each other or with the primary tumorquantitatively valid for description of the dynamics of the number and size of metastases?

To quantitatively test this theory against the data, we used the same modeling framework as above (equations ( 1) and ( 3)). Critically, when calibrated on the growth of the primary tumor and total metastatic burden, the predicted theoretical size distributions were not in agreement with the MRI observations. Specifically, in the size distribution predicted by the model, with a similar total mass, there were more but smaller tumors than in the data. Moreover, tumor expansion only based on proliferation was not able to explain the volume increase of the metastatic lesions. These findings strongly suggested rejection of the standard theory, demonstrating that the time development of the size distribution of metastases could not be explained by independent growth of metastatic foci. This led us to propose two possible explanatory hypotheses that could reconcile the theory with the data: 1) merging of existing metastatic foci (which we retrospectively observed in our data) and 2) exchange of cells between established lesions (for instance, from the primary tumor to secondary colonies).

Together, these results have implications for theories of the metastatic process and suggest that global dynamics of metastasis development is dependent on interactions between metastatic lesions.

This study is the subject of the publication [Baratchart, 2016].

A theoretical model of "cancer without disease"

Autopsy studies of adults dying of non-cancer causes have shown that virtually all of us possess occult, cancerous lesions. This suggests that, for most individuals, cancer will become dormant and not progress, while only in some will it become symptomatic disease. Naming this phenomenon global dormancy, I investigated the following problem:

Biological problem 4. What are the determinants of global dormancy of secondary tumors leading to what has been referred as "cancer without disease"? Can systemic inhibition of angiogenesis explain this phenomenon?

To explain the autopsy findings in light of the preclinical research data, together with Philip Hahnfeldt (Center of Cancer and Systems Biology, Tufts University, Boston, USA) and Alberto Gandolfi (IASI, CNR, Roma, Italy), we used a mathematical model of cancer development at the organism scale describing a growing population of metastases, which, together with the primary tumor, can exert a progressively greater level of systemic angiogenesis-inhibitory influence that eventually overcomes local angiogenesis stimulation to suppress the growth of all lesions. The structure of the model was extended from the equations ( 1) and ( 3) in two ways: 1) consideration of a two-dimensional variable for characterization of a tumor's state (tumor size and carrying capacity) and 2) growth interactions between the tumors, which translated into a velocity that depended on ρ, thus making the transport equation non linear.

Based on parameters calibrated from literature data, this in silico study of the dynamics of the tumor/metastasis system identified ranges of parameter values where mutual angioinhibitory interactions within a population of tumor lesions could yield global dormancy, i.e., an organism-level homeostatic steady state in total tumor burden.

Additionally, numerical investigations of the dynamics of the model revealed interesting, non-trivial patterns.

This study is the subject of the publications [Benzekry et al., 2014b, Benzekry et al., 2014a].

A combined in vivo/in silico study of tumor-tumor interactions

Interactions between different tumors within the same organism have major clinical implications, especially in the context of surgery and metastatic disease. Indeed, the suppressive effect of a primary tumor on secondary tumors' growth (experimentally observed since more than a century) might lead to post-surgery metastatic acceleration. Three main explanatory theories (competition, angiogenesis inhibition and proliferation inhibition) have been proposed but precise determinants of the phenomenon remain poorly understood. After the rather theoretical results from the previous study, I wanted to have a better quantitative understanding of this phenomenon and to address the following problem:

Biological problem 5. Among existing theories of concomitant resistance (i.e. tumor-tumor cross inhibition of growth) all qualitatively valid for explanation of the phenomenon, which one (s) have to be quantitatively rejected and which one(s) are valid?

To do so, I formalized these theories into mathematical models and designed biological experiments (together with Philip Hahnfeldt and Lynn Hlatky and conducted together with Clare Lamont) to test them with empirical data. The experimental findings were that in syngeneic mice bearing two simultaneously implanted tumors, growth of only one of the tumors was significantly suppressed (61% size reduction at day 15, p < 0.05 by Student's t-test).

Turning to the results inferred from the modeling analysis (that confronted in total more than 40 models to the data), the competition theory had to be rejected while the angiogenesis inhibition and proliferation inhibition models were able to describe the data. Additional models including a theory based on distant cytotoxic log-kill effects were unable to fit the data. The model that I found more robust for description of the data -based on the proliferation inhibition theory -was identifiable and minimal (4 parameters), and its descriptive power was validated against the data, including consistency in predictions of single tumor growth when no secondary tumor was present. This model may also shed new light on single cancer growth insofar as it offers a biologically translatable picture of how local and global action may combine to control local tumor growth, and in particular, the role of tumor-tumor inhibition.

This model offers a depiction of concomitant resistance that provides an improved theoretical basis for tumor growth control and may also find utility in therapeutic planning to avoid post-surgery metastatic acceleration.

This study is the subject of the publications [Benzekry, 2017].

Treatments

Investigating the role of mathematical modeling in theoretical thinking of therapeutic oncology, I co-authored a review about historical theoretical concepts that were influential in the mode of administration of anti-cancer agents, with a particular emphasis on the concept of metronomic chemotherapies (frequent administration of low dose of cytotoxic agents with no prolonged drugfree breaks) [Benzekry et al., 2015b].

Together with Joseph Ciccolini (SMARTc, Inserm, Marseille, France) who is a clinical pharmacologist and biologist in experimental therapeutics in oncology, I studied a specific problem concerning the combination of an anti-angiogenic agent (the anti-VEGF 3 monoclonal antibody bevacizumab) and cytotoxics. Indeed, in the clinic, bevacizumab has only been approved in combination with these agents, which brings the questions of the scheduling and sequence of administration.

Currently, bevacizumab is given concomitantly with the cytotoxics. However, several biological rationales lead to think that this might not be the best strategy (or not the best strategy for all the patients). Mathematical modeling could be of help in order to determine improved sequences of combination (delay between the administration of the drugs) and personalize the scheduling of the combination. This led us to define the following problem:

Therapeutic problem 1. What is the optimal time gap between administration of an antiangiogenic agent such as bevacizumab and cytotoxic chemotherapy?

There are nontrivial interactions between anti-angiogenics and cytotoxics from the very nature of the functional role of the agents. Indeed, the drug delivery is ensured by the blood vasculature, which is the aimed target of anti-angiogenic therapy. However, another seemingly counter-intuitive effect of anti-VEGF therapy has been reported: vascular normalization. It consists in a transient improvement of the leaky, tortuous and functionally inefficient tumor vasculature following administration of bevacizumab. In a series of iterative rounds between modeling and experiments, we investigated who to capture the dynamics of this process in order to suggest an optimized delay between the administration of the drugs.

Departing from an initially purely theoretical model (i.e., not confronted to experimental data), I used experimental data from a breast cancer animal model obtained by the SMARTc team to design a model that was able to reproduce the differences in tumor growth kinetics due to modulation of the scheduling. This quantitative fit could generate interesting insights such as an estimation of a 5-fold improvement of the quality of the vasculature when giving bevacizumab and paclitaxel (a cytotoxic agent specific to the treatment of breast cancer) sequentially rather than concomitantly. This study is the subject of the publication [START_REF] Mollard | Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis[END_REF].

Further on, using data from a more clinically relevant experimental system of non-small cell lung carcinoma treated with bevacizumab and the cisplatin-pemetrexed doublet, I simplified the model (due to identifiability issues) and used nonlinear mixed effects for calibration of the parameters in order to predict an optimal delay between bevacizumab and chemotherapy. This prediction (3 days) was subsequently confirmed experimentally, with reduced tumor growth of 38% as compared to concomitant scheduling, and prolonged survival (70 vs. 74 days). Alternate sequencing of 8 days failed in achieving similar increase in efficacy, thus suggesting that modeling support is critical to identify optimal scheduling.

Together, this proof-of-concept study exemplified how mathematical modeling can help for the rational design of treatment protocols. In addition, the experimentally validated model that was established could reveal a precious tool for personalized adaptation of the scheduling of the combination between anti-angiogenics and cytotoxics.

This study is the subject of the publication [START_REF] Imbs | Revisiting bevacizumab + cytotoxics scheduling using mathematical modeling: proof of concept study in experimental non-small cell lung carcinoma[END_REF].

Studies that are not included in this document

For the sake of conciseness, several of other published works are not included in this document, either because I considered them of secondary relevance or because my contribution was minor as compared to others.

These include a study about the topological structure of protein-protein interaction networks across cancer types (performed together with Edward Rietman and Giannoula Klement from the Center of Cancer and Systems Biology at Tufts University, Boston, USA) [Benzekry et al., 2015c]. I found that quantification of the topology using persistent Betti numbers correlated with epidemiological survival, thus suggesting specific proteins to be prioritarily targeted in order to target the intracellular regulatory network.

Another recent study -in collaboration with Raphaël Serre, Dominique Barbolosi, Fabrice Barlési and Xavier Muracciole (SMARTc, Inserm UMR S_911, Marseille, France) -was devoted to the establishment of a mathematical model for the combination of radiotherapy and novel immune checkpoint inhibitors (including both anti-CTLA-4 and anti-PD1/PDL1 agents) [START_REF] Serre | Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy[END_REF].

It also gave insights into the very interesting topic of the abscopal effect by which a local radiotherapeutic intervention has distant implications, possibly through immune-mediated mechanisms.

On the matter of radiotherapy, in collaboration with Araceli Henares-Molina, Alicia Martínez-González and Victor Pérez-García, we investigated how radiotherapy schemes impact on the time to malignant progression from low grade to high grade in gliomas.

Statistical prelude: models versus data and the population approach

When dealing with data in the natural sciences, it is necessary to invoke tools from statistics. Here, I briefly introduce the regression tools that have been constantly used to confront simulations from mathematical models to empirical data. The models I have considered are generally dynamical models and thus naturally require longitudinal data to be compared to. Given such data in a population of multiple subjects, three strategy are possible to identify the model's parameters that give the best fit to the data.

The first two consist in either considering the dynamics of each subject separately or the average across all subjects at each time point. These two tasks fall within the classical theory of nonlinear regression. The first approach is limited to situations where parameters of the model are identifiable given the dynamics of only one subject and does not offer a structural framework for description of the variability within the population. The second approach can take this last point into account but is biased by the fact that it might not make sense to associate the average trajectory to a trajectory itself, as soon as the model is nonlinear with respect to the parameters. For instance, if

λ 1 = λ 2 ,
then there is no λ such that e λt = e λ 1 t +e λ 2 t

2

. In this context, a very powerful framework for model fitting and parameters estimation is the framework of nonlinear mixed-effect modeling [Lavielle, 2014]. This method revealed to be particularly well adapted in the context of our studies [Benzekry et al., 2014c, Benzekry et al., 2016, Mollard et al., 2016, Imbs et al., 2017, Baratchart et al., 2015].

In the general theory of nonlinear regression [START_REF] Seber | Nonlinear regression[END_REF], fitting a model to experimental data is a problem that is often addressed by maximizing the likelihood of the data under the hypothesis that the data has been generated by the model plus some error resulting from the model misspecification (structural error) and the precision of the measures. More precisely, denoting by (y j i ) 1≤i≤N j the measurements (in a subject j, 1 ≤ j ≤ J) at the times t j i and M (t j i ; θ j ) the corresponding values of the model function (dependent on a vector of parameters θ j ∈ R p ), it is considered that the y j i 's are realizations of random variables Y j i , with

Y j i = M (t j i ; θ j ) + σ j i ε j i , ε j 1 , . . . , ε j N j ∼ N (0, 1), (3) 
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Statistical prelude: models versus data and the population approach where N (0, 1) denotes the standard gaussian probability law. The standard deviation of the Y j i 's, denoted by σ j i is therefore of great importance in the definition of the regression problem and corresponds to the measurement error model. For instance, typical error models are the constant error model (the measurement error does not depend on the measure itself), σ j i = σ, ∀i, j, or the proportional error model σ j i = σM (t j i ; θ j ). The mixed-effect approach consists in pooling all the subjects together and estimating a global distribution of the model parameters in the population. More precisely, the individual parameter vectors θ 1 , . . . , θ J are assumed to be realizations of a random variable θ following a (parametric) probability law that is then the object to be estimated (this law is often assumed to be log-normal to preserve the positivity of the parameters). The statistical representation is then formula (3), together with

θ j = θ pop + η j , η j ∼ N (0, Ω)
where θ pop ∈ R p and Ω ∈ R p×p are the new parameters to be estimated that characterize the population. The θ pop,k , k = 1 . . . p are called the fixed effects and the η j the random effects. Hence, instead of the J parameter sets in the individual approach, resulting in a total number of parameters of pJ, only p + p 2 parameters have to be estimated. Combined with an appropriate description of the error variance, a population likelihood of all the data pooled together can be defined. Usually, no explicit formula can be computed for its expression, making its maximization a more difficult task than the individual approach (which, provided the error model is fixed, reduces to least squares minization). This is implemented in several softwares such as Monolix [START_REF] Lixoft | Monolix software[END_REF], which maximizes the likelihood using the stochastic approximation expectation maximization (SAEM) algorithm [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF]. This population approach, to the price of more structure on the description of the dispersion on the parameters within the population, gains in robustness of the estimation and potentiates the estimation by pooling all the data points of all subjects, thus potentially resolving identifiability issues when only few data are available per subject.

A great advantage of the statistical framework for estimation of the parameters, apart from giving a rational basis to the criterion to be minimized when fitting a model to data, is that it views the parameters estimates as random variables. As such, they have a distribution, which reflects the uncertainty in the estimated values, itself linked to the uncertainty of the data. From the combination of the error model and the sensitivity of the model to the parameters (i.e. the jacobian matrix of the model with respect to the parameters) one can compute an asymptotically4 valid covariance matrix of this distribution [START_REF] Seber | Nonlinear regression[END_REF]. This leads to the concept of standard errors on the parameters' estimates, defined as the squared roots of the diagonal entries of the covariance matrix. This concept is very useful to quantify the "practical" identifiability of the parameters from a model and some given data.

I have incorporated these concepts of statistical estimation of the parameters into a user-friendly software (termed CARCINOM 5 ) dedicated to the modeling analysis of population longitudinal data arising in my research (mostly, tumor and metastatic burden growth curves), together with libraries of models for tumor growth, metastatic development and effect of therapies. From data provided in excel files and either pre-existing or user-defined models, the software performs the regression, computes several goodness-of-fit statistical metrics (such as the Akaike Information Criterion, the Root Mean Squared Error or statistical tests for the normality of residuals) as well as the linearized approximation of the standard errors of the parameters (from a finite-differences approximation of the model's jacobian matrix). Outputs from multiple models are exported as L A T E X tables for the model's fit performances and the parameters values. A population mixed-effects approach can also be performed6 , relying on the already existing nlmefitsa function. 

Abstract

In the intent to bridge the gap between mathematical models of increasing complexity and the reality of experimental observations in oncology, the first step was to question established models of macroscopic tumor growth. Indeed, the growth of a population of tumor cells is at the heart of a large body of studies in mathematical oncology. However, few of these actually confronted the models to experimental data, and even fewer compared several models among them. Therefore, we first asked: what are the relative descriptive properties of classical models of tumor growth?

Of particular interest to us was the assessment of theoretical concepts and theories as able or not to describe quantitative tumor growth data. Then, we wondered about the utility of such models as predictive tools. Specifically, we investigated how bayesian estimation (i.e., combination of an a priori population distribution on the parameters' estimates and a small number of individual initial time points) could improve the accuracy of predictions. 

Introduction

Biological considerations

Tumor growth recapitulates several levels of complexity concerning not only the tumor cells themselves (at the genetic, molecular and inter-cellular signaling levels) but also intricate relationships with their environment through processes such as stromal recruitment, angiogenesis or escape from immune surveillance. This results in a possibly complex organization of the cells at the tissue level (Figure 1.1). However, a surprising regularity can be observed when looking at tumor growth from a macroscopic point of view, with relatively smooth tumor volume growth curves (see below).

The process of tumor growth can classically be observed in three classes of natural systems: 1) in vitro cultures (2D cell culture or more realistic 3D spheroid growth [START_REF] Sutherland | Growth of multicell spheroids in tissue culture as a model of nodular carcinomas[END_REF]), 2) experimental in vivo systems (tumor cells injected either subcutaneously or orthotopically7 and using either isografts8 or xenografts9 , or genetically engineered mouse models) or 3) clinical tumor growth, usually observed by means of non invasive imaging techniques. These three empirical ways have increasing level of measurement accuracy, inversely linked to their relevance for the study of human cancer.

Extensive biological studies have been devoted to tumor volume growth kinetics. We refer the reader to [Mayneord, 1932] and [START_REF] Collins | Observations on growth rates of human tumors[END_REF] for early studies on rodent and human data, respectively, to [Steel, 1977] for an extensive review of experimental research using various proliferation indices and to [START_REF] Hart | The growth law of primary breast cancer as inferred from mammography screening trials data[END_REF], Friberg and Mattson, 1997, Spratt et al., 1996, Heuser Chapter 1. Tumor growth et al., 1979] for later work on human tumor growth. One of the most common findings for animal [Laird, 1965] and human [START_REF] Steel | The growth rate of human tumours[END_REF], Spratt et al., 1993, Akanuma, 1978] tumors alike is that their relative growth rates decrease with time [Wheldon, 1988]; or equivalently, that their doubling times increase.

These observations suggest that principles of tumor growth might result from general growth laws, often amenable to expression as ordinary differential equations [Gerlee, 2013]. The utility of these models can be twofold: 1) testing growth hypotheses or theories by assessing their descriptive power against experimental data and 2) estimating the prior or future course of tumor progression [Laird, 1965, Norton et al., 1976] either as a personalized prognostic tool in a clinical context [START_REF] Colin | Prediction of the Evolution of Thyroidal Lung Nodules Using a Mathematical Model[END_REF], Baldock et al., 2013, Wang et al., 2009, Portz et al., 2012], or in order to determine the efficacy of a therapy by determination of the deviation from the natural history of the disease either in a preclinical [START_REF] Bernard | Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development[END_REF], Simeoni et al., 2004] or clinical [START_REF] Ribba | A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy[END_REF] setting.

A brief state of the art of mathematical models of tumor growth

On the other hand, building on the tremendous amount of discoveries in cancer biology during the 20th century, numerous mathematical and computational models of tumor growth have flourished, trying to integrate more and more parts of an extremely complex process. Without aiming at any exhaustivity (a complete review of the field is far beyond the scope of this document), one could cite evolutionary (often stochastic) models of clonal evolution that elaborate on several (epi)genetic alterations found to lead to carcinogenesis [START_REF] Waclaw | A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity[END_REF] (see the work of Franziska Michor [Michor, 2008, Chmielecki et al., 2011, Altrock et al., 2015]). Cell-cell interactions can be studied within the framework of cellular automata. For example, [START_REF] Enderling | Migration rules: tumours are conglomerates of self-metastases[END_REF] explores implications of the concept of cancer stem cells (first discovered in the context of leukemia, then also evidenced for solid tumors such as breast tumors [START_REF] Al-Hajj | Prospective identification of tumorigenic breast cancer cells[END_REF]) and suggests to see tumors as conglomerates of self-metastases. The authors identified different emergent patterns of growth depending on values of cellular parameters (such as proliferation, death or migration). This framework is also well adapted to the study of mechanical cell-cell interactions [START_REF] Drasdo | A single-cell-based model of tumor growth in vitro: monolayers and spheroids[END_REF].

To describe spatial tumor growth at the tissue scale, models based on partial differential equations are more adapted, due to the computational limitations of agent-based models that require simulation of the behavior of each cell. In a landmark study, Greenspan used a diffusion-based model to offer insights on the development of a necrotic core within multicellular tumor spheroids experimental systems [Greenspan, 1972]. Later on, culminating in the 1990's with an important body of literature, investigators proposed to use principles of continuum mechanics and the theory of mixtures to model tumor growth. The populations of cells at play (for instance, tumor and healthy) are viewed as different phases, which can coexist within a given delimited region of space (in contrast with diffusion-limited models). This type of models allows for instance to account for the effect of growth-induced mechanical stresses. We refer the reader to existing extensive reviews 1.2. Theories of tumor growth of these works for more information of all the processes that can be integrated in this approach (interactions with the extra-cellular matrix, mechanical properties of the different phases,...) [Byrne, 2010, Lowengrub et al., 2010, Bellomo et al., 2008, Araujo and McElwain, 2004]. See in particular [START_REF] Araujo | A history of the study of solid tumour growth: the contribution of mathematical modelling[END_REF] for an excellent review of the intermingled development of our understanding of tumor growth using both experimental and theoretical methods. Later examples of the use of such models can also be found in the work of Ribba et al. for investigation of the effect of radiotherapy schemes [Ribba et al., 2006a] or anti-invasive agents [Ribba et al., 2006b]. Another approach, initiated in the early 2000's by Kristin Swanson and James D Murray and intended for description of invasive brain tumors proposes to use a reaction-diffusion equation where the (logistic) reaction term corresponds to local proliferation and the diffusion term stands for the random motility of the cells [START_REF] Swanson | Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy[END_REF], Neal et al., 2013].

Going further in complexity, several mathematical models were designed to bring insights on the process of tumor neo-angiogenesis, which involves the coupling of dynamics of blood vessels formation (stimulated by the release of growth factors by hypoxic cancer cells) and tumor growth (dependent on the vasculature for the supply of nutrients). We refer the reader to [START_REF] Anderson | Continuous and discrete mathematical models of tumor-induced angiogenesis[END_REF]] for one of the most influential paper in this field and [START_REF] Chaplain | Mathematical modeling of tumor-induced angiogenesis[END_REF] for a review. Integration of the tumor vasculature and its dynamics into spatial models can also reveal very useful when studying intra-tumor drug delivery and transport [van de Ven et al., 2012, Welter andRieger, 2013]. To cite one last illustrating example of the use of mathematical modeling to improve our biological understanding, Anderson et al. used a hybrid discrete-continuum model to investigate the role of the micro-environment on tumor growth. They observed distinct emergent patterns of invasion depending on the extra-cellular matrix structure [START_REF] Anderson | Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment[END_REF].

All these models allow, to some extent, integration of the tumor growth complexity but they have -to date -remained far from direct confrontation to empirical data. Indeed, the task is hard as data sets, even in controlled experimental conditions, rarely have the level of granularity of these spatial models (such as the spatial distribution of distinct clonal populations within the tumor). It is the subject of current active research to bridge the gap between continuum-mechanics based models of tumor growth and multi-dimensional data of tumor growth provided by clinical images [Baratchart, 2016, Lefebvre et al., 2016, Raman et al., 2016, Colin et al., 2015, Weis et al., 2015, Baratchart et al., 2015, Scribner et al., 2014, Cornelis et al., 2013, Yankeelov et al., 2013, Weis et al., 2013, Colin et al., 2012, Colin et al., 2010].

Theories of tumor growth

In this context, my first effort when I had the chance to have access to experimental data of (scalar) tumor volume growth was to take a step back and address the question of a quantitative comparison of classical scalar models of tumor growth in two experimental systems: a syngeneic animal model of Lewis Lung Carcinoma (LLC) cells grafted subcutaneously, and an exogenic animal model of human breast cancer cells (MDA-MB-231) grafted orthotopically.

Chapter 1. Tumor growth

The main variable of interest will be the tumor volume, denoted by V (t) and assumed to be proportional to the number of tumor cells, according to the well-established conversion rule 1 mm 3 10 6 cells [START_REF] Spratt | Rates of growth of human solid neoplasms: Part I[END_REF].

Exponential model

The simplest conceivable theory of tumor growth is to consider proliferation only (with constant length of the cell cycle). However, as expressed above, non-constant doubling time have been reported in the literature. Accordingly, we also found in our data (for both animal systems) that the exponential model was not able to fit the data (Figure 1.2).

Remark 1.1 (Measurement error). In our case, examination of the distribution of the measurement error as a function of the caliper-measured volumes of subcutaneous tumors from 133 measurements performed twice spanning a wide range of values (20.7 -1429 mm 3 ) led to the following model for the standard deviation of the error (where M (t j i ; θ j ) stands for the values of the model M at times t j i for the parameter set θ j ):

σ j i = σM (t j i ; θ j ) α , if M (t j i ; θ j ) ≥ V m σV α m , if M (t j i ; θ j ) < V m
with α = 0.84, V m = 83 mm 3 and σ = 0.21 (see [Benzekry et al., 2014c] for details). This model means that, above a given threshold V m , the measurement error is sub-proportional and, below this threshold, the error made is the same as when measuring V m .

Once the measurement error model fixed and provided that σ is known, likelihood maximization reduced to minimization of the sum of the weighted least squares.

Generally, we found that considerations of the measurement error model had an important impact on model fits and therefore acceptance or rejection of theories as able or not to describe the data.

In all graphical representations of tumor volume within this chapter, the data presented are individual measurements and the error bar represents one standard deviation according to the measurement error model described above.

Logistic model Going one parameter further than the exponential model, we considered a very classical model in population dynamics that does exhibit a growth slowdown due to competition among the individuals (for space, or food): the logistic model. Interestingly, this additional assumption was not able to recapitulate tumor growth, in neither of the two experimental systems, see Figure 1.3, nor additional in vivo tumor growth data that we were given to analyze, including experimental melanoma and renal cell carcinoma tumor growth (data not shown). Even though among the volume range studied the fits were visually not so inaccurate (but still less accurate than other models), the value inferred for the maximally reachable volume was systemically biologically unrealistically small (medians of 1297 mm 3 for the lung system and 1221 mm 3 for the breast system). Indeed, for the LLC system for instance, much larger volumes are obtained when tumors are allowed to grow larger (up to at least 10 000 mm 3 in [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF] for in- 
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Gompertz

Biologically agnostic. Exponential decrease in time of the growth fraction.

V c = volume of one cell.

   dV dt = α 0 -β ln V Vc V V (t = 0) = 1
Power law Fractional (Hausdorff) dimension of the proliferative tissue

dV dt = aV γ V (t = 0) = 1 Generalized logistic Biologically agnostic    dV dt = aV 1 -V K α V (t = 0) = 1
Table 1.1 -Classical models for single tumor growth.
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A.

The exponential model does not fit

no constant proliferation of a fraction of the tumor volume as the Gompertz or the power law model (Table 1.2).
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Gompertz model While this model emerged first as a "survival" function describing the number of living people as a function of age [Gompertz, 1825], as expressed above, the Gompertz function (or more precisely an expression with parameters generating an increasing curve) has experienced considerable success as a growth function, and specifically in the field of clinical oncology under the impulsion of Larry Norton who employed this model to revisit the log-kill concept of Skipper, Schabel and Wilcox for the effect of chemotherapies [Skipper, 1965] into the so-called Norton-

Simon hypothesis [START_REF] Norton | A Gompertzian model of human breast cancer growth[END_REF], Norton et al., 1976, Norton and Simon, 1977, Norton and Simon, 1986, Simon and Norton, 2006]. These ideas played then an important role in the design of a pivotal large phase III trial for investigating densification of adjuvant chemotherapy protocols for the treatment of breast cancer [START_REF] Citron | Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741[END_REF].

Consistently with previous studies in experimental in vivo systems [Laird, 1964, Laird, 1965, Demicheli et al., 1989, Michelson et al., 1987], we also found excellent descriptive properties of the Gompertz model (see Table 1.1 for its expression) in our data , for both experimental systems (Figure 1.4 and Table 1.2). While still not fully explained up to our knowledge (despite several at-1.2. Theories of tumor growth tempts that recover approximative Gompertz growth from more fundamental principles of growth such as the assumption of a maturation velocity that decreases as a function of the global size of the cell population [START_REF] Frenzen | A Cell Kinetics Justification for Gompertz' Equation[END_REF]), the dynamics of gompertzian growth state that the growth fraction of the tumor volume (i.e. the portion of cycling tumor cells) is a decreasing function of time. Parameters of the model were highly identifiable when the model is written in the form considered here and reported in Table 1.1 (lower identifiability was obtained when considering the common parameterization dV dt = aV ln K V ), with median normalized standard errors inferior to 12% (Table 1.3). In contrast to the logistic model, inferred values for the maximal tumor volume were biologically consistent (median 12195 mm 3 and 2987 mm 3 for the lung and breast data, respectively).
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Of note, several studies also found good agreement between the Gompertz model and empirical data of clinical tumor growth (bening thyroid tumors [START_REF] Parfitt | Gompertzian growth curves in parathyroid tumours: further evidence for the set-point hypothesis[END_REF], lung metastases from testicular tumors [Demicheli, 1980], IgG multiple myeloma [START_REF] Sullivan | Kinetics of tumor growth and regression in IgG multiple myeloma[END_REF] or breast tumors [START_REF] Norton | A Gompertzian model of human breast cancer growth[END_REF]).

Metabolic considerations and the power law model

Von Bertalanffy [Bertalanffy, 1957], followed later on by others [START_REF] West | A general model for ontogenetic growth[END_REF], proposed to derive general laws of organic growth from basic energetics principles. Stating that the net growth rate should result from the balance of synthesis and destruction, observing that metabolic rates very often follow the law of allometry (i.e. that they scale with a power of the total size) and assuming that catabolic rates are in proportion 

dV dt = aV γ -bV, (1) 
which has already been successfully applied to describe tumor growth [START_REF] Guiot | Does tumor growth follow a "universal law[END_REF], Herman et al., 2011]. More elaborate considerations linking tumor growth, metabolic rate and vascularization leading to equation ( 1) can be found in [START_REF] Herman | A Quantitative Theory of Solid Tumor Growth, Metabolic Rate and Vascularization[END_REF]. This study also provides expressions of the coefficients in terms of measurable energetic quantities. From the observation that our data does not exhibit a clear saturation phase, a qualitative feature of equation ( 1), we also considered another model, derived from [START_REF] Mollard | In Vivo Bioluminescence Tomography for Monitoring Breast Tumor Growth and Metastatic Spreading: Comparative Study and Mathematical Modeling[END_REF], by neglecting the loss term, i.e. taking b = 0. This model will be termed the power law model. As can be seen in Figure 1.4 and Table 1.2, it was able to give a very good description of our data.

Pushing further the reasoning of [Bertalanffy, 1957] and arguing that the rate of synthesis of new material, in the context of tumor growth, should be proportional to the number of proliferative cells (under the assumption of a constant cell cycle length), this model assumes that the proliferative tissue is proportional to V γ . This could be further interpreted as a possible fractional Hausdorff 1.2. Theories of tumor growth dimension of the proliferative tissue, when viewed as a metric subspace of the full tumor volume (itself a three-dimensional subset of the three-dimensional Euclidean space). This dimension would be equal to 3 γ and could be less than 3 when γ < 1. In this interpretation, the case γ = 2/3 (i.e.

dimension equal to 2) could correspond to a proliferative rim limited to the surface of the tumor, a very well known phenomenon observed in tumor growth [Mayneord, 1932]. This implies that the tumor radius -proportional to V 1/3 -grows linearly in time. Such linear growth of the tumor radius has been reported for tumor growth, for instance in the case of gliomas, thus confirming this model prediction [START_REF] Baldock | From patient-specific mathematical neuro-oncology to precision medicine[END_REF]. At the other extreme, a three-dimensional proliferative tissue (γ = 1) represents proliferative cells uniformly distributed within the tumor and leads to exponential growth. Any power 0 < γ < 1 gives a tumor growth with decreasing growth fraction (and thus decreasing relative growth rate), for which the power law model provides a description in terms of a geometrical feature of the proliferative tissue. Interestingly, the values of γ that we inferred from fitting the tumor growth curves were highly identifiable and found to have small inter-animal variability (especially in the LLC case). They suggested values of 2.37 and 1.74 for the fractal dimensions of the proliferative tissues for the lung and breast tumors, respectively.

This model was first used (though without mention of the previous interpretation) for murine tumor growth in [START_REF] Dethlefsen | Analysis of tumor growth curves[END_REF] and was also applied to human data in [START_REF] Hart | The growth law of primary breast cancer as inferred from mammography screening trials data[END_REF].

Other growth models with more parameters We also tried to fit several other models with more than two free parameters, including the generalized logistic model or a model with dynamic carrying capacity. Descriptive properties were found excellent (Table 1.2). However, the major drawback of these models was the lack of identifiability of their parameters, as can be observed in the Table 1.3. This translated into poor utility in terms of predictive power (see below). Table 1.2 -Fit performances of growth models. Models were ranked in ascending order of the means of the Root Mean Squared Error (RMSE), defined from the sum of squared errors (SSE) by (for an animal j)

Lung data

Model

SSE j = N j i=1   y j i -M (t j i ; θj ) σ j i σ   2 , RM SE j = 1 N j -p SSE j
with θj the maximum likelihood estimate of the parameter vector for animal j (i.e., minimizer of SSE j ) and p the number of free parameters in the model. For each metric, indicated are the median values (among all animals) and in parenthesis the minimal and maximal values. When reported, value inside brackets is the rank of the model for the underlying metric. The model ranking first is highlighted in bold. The Akaike Information Criterion (AIC) is defined by [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]]

AIC j = N j ln SSE j N j + 2p
(caption continued on next page). . See [Benzekry et al., 2014c] or [START_REF] Seber | Nonlinear regression[END_REF] for methods of computation of the standard errors. The human breast tumor experimental system consisted of MDA-MB-231 cells [START_REF] Ebos | Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth[END_REF] orthotopically injected into the right inguinal mammary fat pads of severe combined immunodeficient mice. For description, of this data, a model with initial exponential phase followed by a linear phase (see Table 1.1 for its mathematical expression) was particularly adapted, both at the individual [Benzekry et al., 2014c] and population [Mollard et al., 2016] levels (Figure 1.5), as previously introduced by others, although on data from ovarian and colorectal cancer [START_REF] Simeoni | Predictive pharmacokineticpharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents[END_REF].

Breast data

Model

In collaboration with experimentalists, I have had access to additional data about tumor growth in the same experimental system. These consisted in quantification of bioluminescence emission from tumor cells previously transfected with firefly luciferase (an enzyme capable of generating light in the presence of luciferin). The particularity of this tumor growth assay is that it allowed to distinguish the concurrently measured total tumor volume from the number of living tumor cells.

Indeed, only the latter is responsible for the bioluminescence signal (see [Mollard et al., 2016] for materials and methods). As a general observation, it was found a saturation of this signal with time, while tumor volume was keeping increasing.

To inform on the volume and bioluminescence combined kinetics, we investigated mathematical models that would be able to reproduced the data and proposed a biologically-based model that would both reproduce the data and explain the exponential-linear growth pattern previously observed. We divided the total volume into a proliferative compartment (as recorded by the bioluminescence and denoted P (t)) and another compartment (possibly composed of necrotic debris and thus denoted by N (t)) that would not be proliferatively active but nevertheless contribute to the caliper-measured volume while stopping to emit light signal (Figure 1.6.a). Growth of the proliferative cells is assumed to be logistic, i.e. proliferation limited by competition (for space or Chapter 1. Tumor growth nutrients). Assuming a micro-environment carrying capacity K and a proliferation rate a = ln 2 τ , with τ the cell cycle length, the probability of cell division during a small time interval of length dt is a 1 -P (t) K dt and we have dP dt = aP 1 -P (t) K = aP -a K P 2 . When tumor cells are unable to proliferate, we assume that they enter the necrotic compartment. Writing a law of mass conservation we have

           dP dt = aP 1 -P (t) K = aP -a K P 2 P (t = 0) = P 0 dN dt = a K P 2 N (t = 0) = 0 V = P + N
where P 0 is the number of cells injected, converted into a bioluminescence signal using a predetermined cell-to-light ratio. Identifiability of the parameters was excellent, as revealed by low standard errors [Mollard et al., 2016]. Based on these parameters retrieved from the bioluminescence data, simulation of the full model kinetics predicted a biphasic pattern for the tumor volume growth curve: first an exponential phase, followed by a linear phase (Figure 1.6.c). Interestingly, this prediction was both qualitatively and quantitatively in agreement with the caliper-measured volume experimental data (Figure 1.6.d). Indeed, the model was able to accurately predict the volume growth kinetics up to a proportionality constant λ that was estimated to 2.25 ± 0.23, after renormalization of the signal into a cm 3 unit using the cell-to-signal ratio determined above. We hypothesize that this constant λ is associated to the reported fact that not the entire tumor volume is composed of tumor tissue (i.e., alive plus necrotic) as it also comprises a non-negligible part of stroma (estimated here to 56% of the total volume). Taken together, our results show that our simple mathematical model was able to describe the dynamics of both the proliferative component and the entire tumor volume.

In doing so, it also provides a valid explanation of the exponential-linear pattern of the tumor volume kinetics. In our theoretical framework, when the proliferative tissue reaches saturation, this generates a constant growth rate of the volume (because dV dt = aP ), which in turn provokes the transition to the linear phase.

Predictive power of classical models of tumor growth 1.4.1 Using individual data points only

We then addressed the problem of forecasting future tumor growth using a given number of initial data points. As can be seen in a representative example in Figure 1.7 using n = 5 data points, the predictive power of all the models was rather limited. Quantitatively, variable prediction error was observed across the two tumor types and across the mice. Using n = 5 data points and predicting at a depth of d = 2 days, the mean relative errors ranged 21 -28 % for the LLC system and 13 -18 % for the breast tumors (Table 1.4). As could have been expected, when using less data points, the predictive power decreased. Using only three time points and predicting either the next data point (LLC data) or at a depth of d = 2 days (breast data), the mean relative error was 29 -31 % for the LLC system (with the notable exception of the exponential-linear model at 21%) and 27 -33% for the breast system (Table 1.4). Interestingly, the same setting (using three data points to predict at depth d = 1 for the LLC data or d = 2 for the breast data) but in a different part of the growth curve, namely in the last phase (starting volumes of 1245 ± 254 mm 3 and 1383 ± 211 mm 3 for the LLC and breast data, respectively), led to improved predictive power, with relative errors ranging 8-14% (LLC data) and 14 -17% (breast data), see Table 1.4. This last setting might be the most clinically relevant since in this setting, diagnosis might occur when the tumor is already quite large (typically, 1 g 10 9 cells for a breast tumor). Notably, the exponential-linear model Chapter 1. Tumor growth exhibited excellent predictive power for the breast data, in line with the previous findings of its accurate descriptive power for this experimental model. In particular, even when using only one data point (plus the initial condition V (t = 0) = 1 mm 3 ), the predictive power was excellent, even at a depth of more than 10 days.

We refer the interested reader to [Benzekry et al., 2014c] for more details, including the descriptive power of the models at larger depths. 0.15 (0.03 -0.57) 0.33 (0.09 -0.97) 0.14 (0.00 -0.41) 0.15 (0.00 -0.54) 0.33 (0.08 -0.97) 0.17 (0.00 -0.61) 0.13 (0.01 -0.36) 0.27 (0.08 -0.84) 0.10 (0.00 -0.32) 0.18 (0.00 -0.54) 0.27 (0.10 -0.73) 0.15 (0.00 -0.41) Table 1.4 -Predictive power of selected models. RE n,d = relative error of the prediction using n data points and predicting d days in the future. RE f = final portion of the growth curve. Reported are the mean (min -max).
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Predictions improvement when employing bayesian estimation

When relatively fewer data points were used, for example with only three, individual predictions based on individual fits were found to be globally limited for the lung tumor data, especially over a large time frame. However, this situation is likely to be the clinically relevant since few clinical examinations are performed before the beginning of therapy. On the other hand, large databases might be available from previous examinations of other patients and this information could be useful to predict future tumor growth in a particular patient. In a preclinical setting of drug investigation, tumor growth curves of animals from a control group could be available and usable when inferring information on the individual time course of one particular treated animal.

An interesting statistical method that could potentiate this is bayesian estimation. It consists in using a priori information, i.e. learning the population distribution of the model parameters from a given pre-established database and to combine it with the individual parameter estimation from the available restricted data points on a given animal. We investigated this method in order to determine if it could improve the predictive performances of the models. Each dataset was randomly divided into two groups. One was used to learn the parameter distribution (based on the full time curves), while the other was dedicated to predictions (limited number of data points).

For a given animal of this last group, no information from his growth curve was used to estimate the a priori distributions. The full procedure was replicated 100 times to ensure statistical significance, resulting in respectively 2000 and 3400 fits performed for each model.

Let a dataset and a model M be given. Individual fits for the first group (the "learning" group) were performed using all the available data, generating mean values (θ 1 , . . . , θ p ) and standard deviations (ω 1 , . . . , ω p ) of the parameters within the population. This information was subsequently used when estimating the individual parameter set of a given animal from the second group (the "forecast" group ). Indeed, assuming a gaussian distribution of each parameter within the population and using Baye's formula, the new likelihood of the data points y j 1 , . . . , y j N j in animal j writes:

p y j 1 , . . . , y j N j , θ j = p(y j 1 , . . . , y j N j |θ j )p(θ j )
which leads to minimization of the following objective function for the log-likelihood:

J(θ j ) = N j i=1 y j i -M (t j i ; θj ) σ j i 2 + p k=1 θ j k -θ k ω k 2 (2) 
Predictions obtained using this technique were significantly improved for the LLC subcutaneous tumors. Prediction improvement was particularly high for models exhibiting a small dispersion of the parameters within the population distribution, such as the power law model (see Figure 1.9).

Indeed, when using formula (2) above for estimation of the parameters, we see that adjunction of the a priori information is only useful if the standard deviation of the parameters within the population is not too important. This was indeed the case for the power law model with coefficients of variation of 9% and 42 % for the parameters γ and a, respectively. According to a success Chapter 1. Tumor growth metrics defined (using the measurement error model established above) as the error being within three standard deviations [Benzekry et al., 2014c], the average prediction successes reached 90%

using the power law model at depth d = 1 day, it was only 57.1% using an individual approach.

Prediction success rates were improved even at large future depths. For instance, for d = 7 days, the average success rate was 50.6% versus 6.07% using individual prediction. For the breast data, due to already high prediction scores without adjunction of a priori information, the exponential-linear model did not benefit from the method. For the next day data point of the breast tumor growth curves, predictability was already almost maximal without adjunction of a priori information and thus no important impact was observed.

Taken together, our results demonstrated that, for each experimental system, a prediction method could be applied that ensures good predictions of future tumor growth using a minimal number of data points.

For the orthotopic breast xenografts, the exponential-linear model generated excellent predictions, even without the addition of population information. For the LLC ectopic subcutaneous tumors, combination of bayesian estimation (a priori on the population distribution) and the power law model was the best strategy. While encouraging, this last result however highly depends on the large degree of homogeneity across the tumor growth curves in this animal model, which is well captured by parameters with small population coefficients of variation. This feature comes from the fact that the experimental conditions were actually controlled to ensure maximal reproducibility and thus minimal heterogeneity. The tumor cells all come from the same cell line. They were injected in mice from an inbred strain (C57BL/6) and thus the hosts are nearly all identical to each other in genotype.

This makes the situation very different from clinical human cancers, which much more heterogenous in their growth patterns, even within the same tumor type and histology. Indeed, when we applied this bayesian methodology to a dataset meningiomas growth in 24 patients, no prediction improvement was obtained (unpublished results). It is the subject of current active research to bridge the gap between continuum-mechanics based models of tumor growth and multi-dimensional data of tumor growth provided by clinical images [START_REF] Colin | Patient-specific simulation of tumor growth, response to the treatment, and relapse of a lung metastasis: a clinical case[END_REF], Colin et al., 2010, Colin et al., 2012, Cornelis et al., 2013, Raman et al., 2016, Scribner et al., 2014, Baratchart et al., 2015, Baratchart, 2016, Lefebvre et al., 2016, Yankeelov et al., 2013, Weis et al., 2013, Weis et al., 2015]. 

Abstract

While a large zoology of mathematical models exist for tumor growth as seen in the previous chapter, few have been developed for description of the metastatic process, despite its fundamental clinical importance. Furthermore, mathematical models of invasion and metastasis are most often confined to local determinants of these processes and seldom consider the systemic nature of metastatic dynamics. Nevertheless, recent findings in cancer biology have uncovered nontrivial dynamics occurring at the organism scale. In the studies of this chapter, in collaboration with several teams of biologists, we attached ourselves to gather experimental data obtainable for quantification of the metastatic process and used a unified mathematical framework to interrogate several biological questions.

First, in collaboration with John Ebos at the Roswell Park Cancer Institute (Buffalo, USA), we investigated the relevance of quantitative laws of metastatic dissemination and growth for description of pre-surgical primary tumor and post-surgical metastatic burden data (quantified by bioluminescence), in two clinically relevant "ortho-surgical" animal models of metastasis (section 2.3 and [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF]).

The against the experimental data (section 2.4 and [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF]).

During my postdoctoral stay at the Center of Cancer and Systems Biology (CCSB, Tufts University, Boston, USA), in collaboration with Philip Hahnfeldt (CCSB) and Alberto Gandolfi (Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", Roma, IT), we investigated systemic tumor-tumor interactions from a theoretical perspective to shed light on global metastatic dormancy (section 2.5 and [Benzekry et al., 2014b, Benzekry et al., 2014a]). Finally, using a combined experimental and modeling approach to address theories of tumor-tumor distant interactions (section 2.6 and [Benzekry et al., 2017]). The experiments were designed by myself in concertation with Lynn Hlatky and Philip Hahnfeldt but were mostly performed by Clare Lamont.

Introduction

Metastasis (from the greek µετ ά = beyond and στ άσιζ = place) is the colonization of one or multiple distant site(s) from the primary tumor location. A wide heterogeneity of distant metastatic locations is observed across cancer types, some of them not generating any metastasis at all (such as gliomas), and others exhibiting preferential distant sites for establishment of secondary colonies [START_REF] Valastyan | Tumor metastasis: molecular insights and evolving paradigms[END_REF]. For instance, prostate cancer almost exclusively metastasizes to the bones. While some locations have a natural explanation (the lungs are typical sites of metastasis due to the small size of capillaries there, the liver as well due to its filtering role and the portal vein directly effluxing into it), elucidating precise determinants of metastatic tropism remains an open biological question in cancer biology. However, this is mentioned here just for the curiosity of the reader as this problem cannot be addressed within the formalism developed here.

The metastatic process is complex and results from a cascade of several events (Figure 2.1). Briefly, several bottlenecks have to be overcome before establishment of a distant metastasis. These include: detachment from the primary tumor, migration and invasion in the local micro-environment (involving phenotypical changes of the tumor cell such as the epithelial-to-mesenchymal transition), intravasation into blood vessels, survival in transit, extravasation at a distant site, possibly a dormancy phase either as an isolated cell or as a micro-tumor [START_REF] Chambers | Dissemination and growth of cancer cells in metastatic sites[END_REF] for periods lasting from months to decades [START_REF] Nguyen | Metastasis: from dissemination to organ-specific colonization[END_REF], stromal recruitment at the distant site, angiogenesis and growth to a macroscopic size. In addition, new findings in the last three decades about organism-scale phenomena rendered the picture even more complex and the relationship between primary tumor growth and eventual metastasis remains enigmatic [Klein, 2009]. Metastatic seeding was initially thought to occur only during late stages of primary tumor growth and invasion [START_REF] Hanahan | The hallmarks of cancer[END_REF]; however, recent evidence suggests systemic dissemination is a much earlier event [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF]. Indeed, even the direction of tumor spread, initially thought to occur unidirectionally from primary to secondary sites, has been replaced by more complex and dynamic theories of interaction. These include models where primary and secondary lesions grow (and evolve) in parallel [Klein, 2009] and the possibility that cell seeding can be bidirectional, with metastasis potentially "re-seeding" back to original primary location [START_REF] Norton | Is cancer a disease of selfseeding?[END_REF], Comen et al., 2011, Kim et al., 2009]. Other examples of nonlinear interactions at the systemic scale include: distant inhibition of angiogenesis, possibly leading to post-surgical acceleration [START_REF] O'reilly | Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[END_REF], Demicheli et al., 2008], distant preparation of the pre-metastatic niche through recruiting of bone marrow-derived hematopoietic progenitors [START_REF] Kaplan | VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[END_REF]. We refer the reader to [START_REF] Valastyan | Tumor metastasis: molecular insights and evolving paradigms[END_REF] for an excellent review of the current knowledge of metastatic biology, including details about the molecular players involved in different steps of the metastatic cascade, as well as the estalished roles of several stromal cells.

This paper also reviews the current theoretical models of metastasis formation. For more historical considerations of the study of cancer metastasis, see [START_REF] Talmadge | AACR centennial series: the biology of cancer metastasis: historical perspective[END_REF].

To assist in understanding this complexity, mathematical modeling has been used to determine the relationship between primary (localized) and secondary (metastatic) tumor dissemination and multiplication within organ parenchyma (Fig. 3). These successful metastatic cells ("seed") have been likened to a decathlon champion who must be proficient in 10 events, rather than just a few (64). However, some steps in this pro-cess incorporate stochastic elements. Overall, metastasis favors the survival and growth of a few subpopulations of cells that preexist within the parent neoplasm. The current data, especially studies focused on isolated tumor cells, Table 1. Steps in the metastatic process

Step Description

1
After the initial transforming event, the growth of neoplastic cells is progressive and frequently slow; 2

Vascularization is required for a tumor mass to exceed a 1-to 2-mm diameter (200,201), and the synthesis and secretion of angiogenesis factors has a critical role in establishing a vascular network within the surrounding host tissue (201); 3

Local invasion of the host stroma by tumor cells can occur by multiple mechanisms, including, but not limited to, thin-walled venules and lymphatic channels, both of which offer little resistance to tumor cell invasion (202); 4

Detachment and embolization of tumor cell aggregates, which may be increased in size via interaction with hematopoietic cells within the circulation; 5

Circulation of these emboli within the vascular; both hematologic and lymphatic; 6

Survival of tumor cells that trafficked through the circulation and arrest in a capillary bed; 7

Extravasation of the tumor embolus, by mechanisms similar to those involved in the initial tissue invasion; 8 Proliferation of the tumor cells within the organ parenchyma resulting in a metastatic focus; 9 Establish vascularization, and defenses against host immune responses; and 10 Reinitiate these processes for the development of metastases from metastases. [START_REF] Talmadge | AACR centennial series: the biology of cancer metastasis: historical perspective[END_REF] growth. A detailed review of all the mathematical modeling studies that addressed the questions of metastatic dissemination and growth is beyond the scope of the present document (and can be found, in part, elsewhere [Scott et al., 2013b, Clare et al., 2000]) but a few publications of biological or clinical interest that the curious reader can consult are: [START_REF] Slack | Therapeutic implications from a mathematical model characterizing the course of breast cancer[END_REF], Liotta et al., 1976a, Saidel et al., 1976, Guiguet et al., 1982, Koscielny et al., 1985, Klein and Bartoszyński, 1991, Kimmel and Flehinger, 1991, Yorke et al., 1993, Retsky et al., 1997, Koscielny and Tubiana, 1999, Iwata et al., 2000, Michor et al., 2006, Hanin et al., 2006, Barbolosi et al., 2009, Bethge et al., 2012, Haeno et al., 2012, Newton et al., 2012, Newton et al., 2013, Scott et al., 2014, Scott et al., 2013a, Mehrara et al., 2013, Coumans et al., 2013, Araujo et al., 2014, Bazhenova et al., 2014, Brodbeck et al., 2014, Hanin and Bunimovich-Mendrazitsky, 2014, Hanin et al., 2015, Hanin and Rose, 2016, Poleszczuk et al., 2016].

The mathematical formalism that we develop below has been employed to address the following biological questions about metastasis, which have the common characteristic of concerning dynamics of the disease at the organism scale.

Biological problem 2. What are the qualitative and quantitative differences among experimental models of metastasis for different cancer types? Is the growth of secondary tumors identical to the

growth of the primary tumor, in a given experimental system? How does the dissemination process depend on the size of the primary tumor? What is the impact of surgery on metastatic growth and dissemination? Biological problem 3. Is the "standard" view of metastatic initiation and growth -that secondary lesions once established grow without interactions with each other or with the primary tumorquantitatively valid for description of the dynamics of the number and size of metastases?
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Biological problem 4. What are the determinants of global dormancy of secondary tumors leading

to what has been referred as "cancer without disease" [START_REF] Folkman | Cancer without disease[END_REF]? Can systemic inhibition of angiogenesis explain this phenomenon? Biological problem 5. Among existing theories of concomitant resistance (i.e. tumor-tumor cross inhibition of growth) all qualitatively valid for explanation of the phenomenon, which one(s) have to be quantitatively rejected and which one(s) are valid?

We refer the reader to the introduction of each section for more precise biological background on each of these questions.

A general mathematical formalism for metastatic development

As in every modeling process, simplifications of the reality have to be made following ion order to address the problematic for which the model is built or fit the type of data that is experimentally or clinically obtainable. In our case, in accordance with the biological literature, we chose to divide the metastatic process into two main phenomena: dissemination and colonization [START_REF] Valastyan | Tumor metastasis: molecular insights and evolving paradigms[END_REF], Chaffer and Weinberg, 2011, Nguyen et al., 2009]. This is also in line with the clinically observable quantities (for stage IV disease, see Figure 2.2) and clinically relevant variables of interest for the clinical problem (number and size of secondary tumors).

Metastasis

Enhanced CT scan of the liver of a kidney cancer patient with multiple metastatic tumors + some of the metastases are not visible The metastatic modeling approach we used mostly follows a formalism initiated by Iwata, Kawasaki

and Shigesada [START_REF] Iwata | A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors[END_REF]. The main idea is to describe the population of secondary tumors Chapter 2. Metastasis: biological dynamics at the organism scale by means of a physiologically structured density ρ(t, v) where t is the time and v is the volume of the lesions. This means that for a small dv, the number of metastases having size comprised in the interval (v, v + dv) is given by

v+dv v ρ(t, u)du ρ(t, v)dv.
The original model of Iwata et al. was further expanded in three ways by our and others' work: (i) effect of systemic therapies [Benzekry et al., 2012a, Benzekry, 2012a], (ii) systemic growth interactions between established lesions [Benzekry et al., 2014b, Benzekry et al., 2014a] and (iii) use in in vivo human xenograft models involving orthotopic primary tumors (primary tumor) and metastasis both in nonsurgical [Hartung et al., 2014] and surgical [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF] systems. The two main components (growth and dissemination) are modeled by: 1. Presurgical primary (g p ) and secondary (g) tumor growth rates, defined as the infinitesimal Growth Dynamics As in chapter 1, the primary tumor volume V p (t) solves the following equations

   dVp dt = g p (t, V p , ρ) V p (t = 0) = V i (1)
The initial condition for the primary tumor, denoted by V i , was determined either by the number of injected cells (for confrontation to in vivo experiments) or the initial tumor size at inception (clinical cases, V i = 1 cell). Metastases were assumed to start from one cell (size denoted V 0 ). When treatment is taken into account, this problem can become non-autonomous [Benzekry, 2012a]. We also included a possible dependency of g p on ρ to account for possible non-trivial growth interactions between the primary tumor and the mets [Benzekry et al., 2014b, Benzekry et al., 2017]. Note also that for simplicity of the exposition here we considered a tumor state as represented by its volume v only but this can be extended to a multi-dimensional state (such as volume and carrying capacity, see section 2.5 and [START_REF] Benzekry ; Benzekry | Passing to the limit 2D-1D in a model for metastatic growth[END_REF], Benzekry, 2011a, Benzekry, 2012a, Benzekry et al., 2014b, Benzekry et al., 2014a[START_REF] Benzekry ; Benzekry | Passing to the limit 2D-1D in a model for metastatic growth[END_REF]).

From our previous study quantifying the descriptive power of several growth kinetics models using data from the same breast animal model (chapter 1), the Gompertz model accurately described primary tumor growth curves. However, a limitation of this model is that the tumor doubling time could become arbitrarily small for small volumes, a feature that we considered biologically irrelevant for volumes at metastatic initiation (of the order of the cell). A lower bound to this doubling time might be expressed by the in vitro doubling time of the cell line, which can be experimentally determined. Consequently, we adopted the Gomp-Exp model [Wheldon, 1988], defined by

g p (v) = g(v) = min λv, α 0 -β ln v
V 0 Under this model, growth is divided between two phases: an initial exponential phase, followed by a Gompertz growth phase. Parameter λ is the maximal proliferation rate that can be comouted from in vitro proliferation assays. The second term in the min function is the Gompertz growth rate, defined by two parameters. Parameter α 0 is the intrinsic relative (also termed specific) growth rate at the size V 0 of one cell. Parameter β is the exponential decay rate of the relative growth rate.

Metastatic dissemination

The formation of new metastases was assumed to occur at a volumedependent rate d(v) having the following parametric expression [START_REF] Iwata | A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors[END_REF]:

d(v) = µv γ (2)
where parameter µ is an intrinsic parameter of metastatic aggressiveness. This critical coefficient is the daily probability for a given tumor cell to successfully establish a metastasis. Therefore, it is the product of several probabilities: (i) the probability of having evolved the necessary genetic mutations to ensure the phenotypic abilities required at each step of the metastatic process, (ii)

Chapter 2. Metastasis: biological dynamics at the organism scale the probability of surviving all adverse events occurring in transit including survival in the blood or immune escape, among others, and (iii) the probability to generate a functional colony at the distant site. Following reported observations [START_REF] Steel | The growth rate of human tumours[END_REF], we assumed that all the metastases were growing at the same volume-dependent rate g and that they all started from the same volume corresponding to the volume of one cell. As for the primary tumor growth, we also allowed g to depend on ρ to account for metastases-metastases growth interactions (note that this transforms the transport equation into a nonlinear one).

     ∂ t ρ(t, v) + ∂ v (g(t, v, ρ)ρ(t, v)) = 0 ]0, T [×]V 0 , +∞[ g(t, V 0 , ρ)ρ(t, V 0 ) = d(V p (t)) + +∞ V0 d(v)ρ(t, v)dv ]0, T [ ρ(0, v) = 0 ]V 0 , +∞[ ( 3 
)
where T is the final time. The first equation is a continuity equation expressing conservation of the number of metastases when they grow (equivalent to the transport in size). The second equation is a Neumann boundary condition on the flux of entering metastases at size v = V 0 . Its right hand side is composed of two terms. The first one is the rate of birth of new metastases from the primary tumor. The second (integral term) represents the birth of metastases from metastases themselves, a feature for which there is no clear consensus in the literature [START_REF] Tait | Do metastases metastasize?[END_REF], Sugarbaker et al., 1971, Bethge et al., 2012] and that was not always relevant to our studies but is included here for generality. The third equation describes the initial condition (no metastases at the initial time).

From the solution of this problem, two main macroscopic quantities of interest can be derived, the metastatic burden M (t) and the number of metastases N (t). Of note, these have simple expressions when secondary dissemination and tumor-tumor interactions are neglected:

N (t) = +∞ V0 ρ(t, v)dv = t 0 d(V p (s))ds = µ t 0 V p (s) γ ds M (t) = +∞ V0 ρ(t, v)dv = t 0 d(V p (t -s)V (s))ds
In the convolution formula for M (t), V (s) represents a solution to the Cauchy problem (1), with g instead of g p and V 0 as initial condition. This formula allows fast simulation of the model using the fast Fourier transform algorithm [Hartung, 2015], which is essential for estimation of the parameters that requires a very large number of model evaluations.

Discrete and stochastic dynamics Although the formalism described above is very convenient for confrontation to data of the total metastatic burden because of its fast computation formula, a continuous rate of shedding of metastases (and thus, a continuous size distribution ρ) might be debatable. Indeed, metastasis is a discrete event and we are not in the limit of a large number of events that would justify approximation by a continuous rate. Moreover, typical clinical observations typically consist in a finite number of lesions, primarily characterized by their size (Figure 2.2).

Therefore, we also implemented a discrete and stochastic framework of the model (in the case of 

T i = inf {t ≥ 0; N (t) ≥ i}
Adapting the previous methodology to the case of randomly distributed dissemination times and denoting ρ the resulting random size distribution of metastases, ρ is a sum of Dirac masses solving the following problem:

           ∂ t ρ(t, v) + ∂ v (ρ(t, v)g(v)) = 0 t ∈]0, +∞[, v ∈]V 0 , +∞[ g(V 0 )ρ(t, V 0 ) = +∞ i=1 δ (t = T i ) t ∈]0, +∞[ ρ(0, v) = 0 v ∈]V 0 , +∞[ .
Equivalently, denoting by V i the volume of the i-th metastasis, we have

   dVi dt = g(V i (t)) V i (T i ) = V 0 , V i (t) = 0, for t ≤ T i
thus transforming the partial differential equation ( 3) into a set of differential equations. From these considerations the stochastic total metastatic burden at time t, denoted by M(t) is defined by the following expression

M(t) = +∞ V0 v ρ(t, v)dv = +∞ i=1 V i (t)
The two approaches (deterministic and stochastic) are in fact closely and consistently linked.

Indeed, it can be shown [START_REF] Hartung | A stochastic framework for secondary metastatic emission[END_REF] that the quantities M (t) and N (t) defined above in the deterministic framework are the respective expectations of M(t) and N (t).

Introduction

The dearth in experimental metastatic data stems largely from the complexity of studying metastasis itself. While clinical (retrospective) data have value [Klein, 2009, Slack et al., 1969, Yorke et al., 1993, Coumans et al., 2013, Koscielny et al., 1984], mouse tumor models have typically aimed to mimic (and distinguish between) several stages of the metastatic process. In certain mouse models, metastasis can derive from a tumor that is implanted ectopically or orthotopically into a primary or metastatic site ("ectopic", "orthotopic", or "ortho-metastatic" models, respectively [START_REF] Mcmillin | The role of tumour-stromal interactions in modifying drug response: challenges and opportunities[END_REF]) and can involve various immune states (i.e., human xenograft or mouse isograft). Although more rarely performed, models can also include surgical resection of the primary tumor, which allows for progression of clinically relevant spontaneous metastatic disease.

These can include surgery following ectopic implantation (i.e., "ecto-surgical", such as tumors grown in the ear or limb that are later amputated), or orthotopic implantation and resection (i.e., "ortho-surgical"), which more faithfully represent patient disease. To date, no studies have utilized data from ortho-surgical metastasis models for mathematical analysis.

Results

The data used in this study were obtained by the laboratory of J. Ebos at the Roswell Park Cancer Institute by M. Mastri and A. Tracz. They are derived from two ortho-surgical metastasis models representing competent and incompetent immune systems with luciferase-tagged human breast (LM2-4 LUC+ ) and mouse kidney (RENCA LUC+ ) cell lines (Figure 2.4A). The luciferase tagging of the cells allowed to longitudinally track the post-surgical growth of the total number of metastatic cells within the mice organisms, together with the pre-surgical primary tumor size.

The objective was to confront the mathematical formalism from the previous section to experiment in order to establish parsimonious 10 models of the metastatic dynamics for each experimental system. To do so, we combined our mechanistic model of metastatic development with the nonlinear mixed effects framework for parameters estimation (see the statistical prelude). A lognormal distribution of the parameters and a proportional error model were assumed. This allowed us to test different model assumptions, such as the functional expression of the primary tumor and metastases growth laws (exponential or Gomp-Exp) and the relationships between them (same or different growth law, same or different growth parameters). For each case, the optimal structure resulting from our investigations was to assume the same structural growth law for the primary tumor and the metastases, although with possibly different parameter values.

For the human breast (LM2-4 LUC+ ) metastasis system, the best identifiable 11 description model 10 i.e., minimally parameterized 11 in the sense of "acceptable" standard errors on the parameters estimation, i.e. inferior to 50%

included growth dynamics defined by the Gomp-Exp growth model and growth parameters for primary tumor and metastases treated identically (g = g p ).

For the kidney (RENCA LUC+ ) metastasis system, the optimal model considered growth dynamics defined by an exponential growth model and growth parameters for primary tumor and metastases treated differently.

In each case, we could fit our data equally well with various values of the parameter γ from the dissemination coefficient [START_REF] Beheshti | Host age is a systemic regulator of gene expression impacting cancer progression[END_REF], and thus concluded that it cannot be identified from combined primary tumor growth and metastatic burden dynamics data alone [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF]. Future studies would require more data, especially on the number and size distribution of the secondary lesions, to precisely determine the shape of the dissemination coefficient. Adopting thus the simplest theory, we assumed that all the cells within the tumor had equal metastatic potential and took γ = 1.

Importantly, combinations of the mechanistic model and the mixed-effects framework could quantify the dynamics of the process as well as the inter-animal variability. The latter was better characterized by the metastatic potential parameter µ (large coefficients of variation [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF]). Resulting population and individual fits of the best models to the data are shown in Figure 2.4B and C, and Figure 2.5, respectively. Notably, the models were able to accurately predict metastatic dynamics in independent data sets where surgery was performed on a different day, and that were not used during the parameters estimation process (Figures 2.4.C and E).

Our quantitative modeling study allowed us to better understand the metastatic process and identify differences between the two experimental systems. For the breast model, inference of µ revealed small metastatic potential (median value 4.43 × 10 -11 cell -1 • day -1 with considerable inter-animal variability (coefficient of variation of 176%)), which translated into late development of metastases following xenograft and growth of the metastatic burden mostly dominated by proliferation (Figures 2.4B and 2.5A-C). In contrast, the kidney model metastatic burden growth curves exhibited a different behavior, with a marked change of regimen at the time of surgery. In the context of the model, this means that most of the presurgical increase was driven by the dissemination process, and not by proliferation of the metastases themselves. This was reflected by a very large value of µ (median value 4.15 ×10 -2 cell -1 • day -1 ), with nine orders of magnitude of difference compared with the breast model. This feature was not directly visible, nor quantifiable, by direct examination of the data, and reflects the large metastatic aggressiveness of isograft spontaneous metastasis animal models, because overpassing the immune surveillance is a major challenge in the metastatic process [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF]. When the primary tumor was removed, dissemination stopped and only proliferation remained for further metastatic growth, which happened at a slower rate than at the primary site (Figures 2.4C and 2.5D-F). In some cases, growth of the metastatic burden remained constant or even decreased after surgery. This result reflects the fact that the competent immune status of the mice might have an important impact on the establishment of durable, fast-growing metastatic colonies at the secondary sites [START_REF] Milsom | Differential post-surgical metastasis and survival in SCID, NOD-SCID and NOD-SCID-IL-2Rγ(null) mice with parental and subline variants of human breast cancer: implications for host defense mechanisms regulating metastasis[END_REF].

Together, our data-based quantitative modeling analysis of presurgical primary tumor and postsur-Chapter 2. Metastasis: biological dynamics at the organism scale gical metastatic burden growth kinetics demonstrated the descriptive and predictive power of the models, unraveled distinct growth patterns between the two animal models, and emphasized the critical role of the parameter µ for quantification of the inter-animal variability in metastatic aggressiveness. .4 -Population fits and predictive power using perioperative data from ortho-surgical metastasis models. A, spontaneous metastasis were generated following orthotopic tumor cell implantation and then primary tumor resection ("ortho-surgical") in two models: (i) human xenograft model: intramammary fat pad implantation of 1 × 10 6 LM2-4 LUC+ human metastatic breast carcinoma cells followed by surgical excision after 34 and 38 days (two separate experiments, N = 22 mice total) and (ii) mouse isograft model: subcapsular implantation of 4 × 10 4 RENCA LUC+ mouse kidney carcinoma cells followed by full surgical nephrectomy 23, 26, and 30 days after implantation (N = 19 mice total). Representative examples of presurgical (primary tumor) and postsurgical (MB) bioluminescence. B and C, using a nonlinear mixed-effects modeling approach, a distribution of the parameters was estimated from the data, which, in turn, generated a distribution of model outputs (pre-and postsurgical growth curves). The solid lines depict the median of these distributions and the dashed lines the 10th and 90th percentiles. The population fit of the kidney data was established using two datasets with two resection times, only one of which is presented here for the sake of clarity. D and E, from the population fits obtained, the predictive power of the models was assessed against independent datasets with different resection times. .5 -Individual fits of perioperative primary and secondary disease in breast and kidney ortho-surgical metastasis systems. A-C, xenograft breast case. Gomp-Exp growth model for both primary and secondary tumors, with same growth parameters (3 degrees of freedom in total). D-F, isograft kidney case. Exponential growth for both primary and secondary tumors with different growth parameters (3 degrees of freedom total). For each animal, the fit was performed on the primary tumor first and then the metastatic burden. We only show here three representative examples for each dataset. All the individual fits can be found in the supplementary material of [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF] 

Challenging the classical view of metastatic initiation and growth

In a subsequent biological study of the metastatic process usin the same kidney cancer animal model as above (renal adenocarcinoma cell line RENCA orthotopically injected in the subcapsular space of Balb/c mice), although without surgery of the primary tumor, we had access to more precise multi-modal data about the metastatic development, including magnetic resonance images (MRI) quantifying the number and size of macroscopic vascularized lesions in a non-invasive and longitudinal fashion. This allowed to question the "standard" model of metastatic dissemination and growth as classically considered in the literature and so far in our mathematical modeling framework, formulated in the biological problem 3 that we recall here:

Biological problem 3. Is the "standard" view of metastatic initiation and growth -that secondary lesions once established grow without interactions with each other or with the primary tumor -valid for description of the dynamics of the number and size of metastases?

This study was performed in collaboration with a team of biologists at the "Laboratoire de l'Angiogénèse et du Micro-environnement des Cancers" led by A. Bikfalvi (Inserm, Bordeaux, FR)

and composed of W. Souleyreau and L. Cooley on one hand, and a team specialized in magnetic resonance imaging for in vivo experiments in small animals (E. Ribot and S. Miraux, magnetic resonance of biological systems center, Bordeaux, FR). The modeling work was performed in the framework of E. Baratchart's PhD that I co-supervised with T. Colin and O. Saut [Baratchart, 2016].

Two sources of quantitative data were available for analysis. First, cells were tagged with a green fluorescent protein (GFP), which allowed quantification of the number of cells in a given sample by means of quantitative real-time polymerase chain reaction (see [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF] for experimental details). This also permitted detection of single cells in a lung tissue slice through optical microscopy, thus estimating the appearance of the first metastatic cells in the lungs approximately 14 days after inoculation of the RENCA cells in the kidney (Figure 2.6). However, a drawback of this experimental technique was that sacrifice of the animal was required for quantifications and thus no longitudinal data within the same animal could be extracted. Therefore, GFP data points presented here represent each a given animal (n = 31 animals in total). Second, MRI data allowed detection of metastases but only when larger than a visibility threshold (of the order of 0.05 mm 3 ). A great advantage of this technique was its non-invasiveness, thus allowing longitudinal observations in the same animal (n = 6 mice in total were repeatedly imaged). At MRI, the first macro-metastases were observed at day 18-19 (Figure 2.6).

Data-driven modeling of metastatic development

Growth rates of individual metastatic tumours Assuming that each metastasis originates from one cell would imply that some metastases grow from the volume of one cell ( 10 -6 mm 3 ), to a volume of few mm 3 (between 0.022 and 12 mm 3 in our measurements) in five days at most. This would give tumor doubling times comprised between 5 and 8 hours, which represents less than one third of the doubling time observed in vitro (24.5 hours [START_REF] Miyake | Relative Expression of Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 in Mouse Renal Cell Carcinoma Cells Regulates Their Metastatic Potential[END_REF]). Even if considering that the metastases arose from a few cells (2-50) instead of one [Liotta et al., 1976b, Aceto et al., 2014], this would imply doubling times between 5.5 and 13.5 hours. These would also have to remain constant during 5 days. Such a fast growth is highly improbable since no mammalian cell has a cell cycle length smaller than 10 hours [START_REF] Steel | The growth rate of human tumours[END_REF]. Moreover, as expressed in chapter 1 the doubling time has been reported to be non-constant and to increase during in vivo growth. Hence, growth at initiation would have to be even faster in order to fit the data.

Therefore, the theory consisting in describing each metastasis with a tumour expansion only based on cell proliferation seemed unlikely.

Primary kidney tumor and the dynamics of lung metastasis

The standard theory of metastatic development assumes that secondary tumors are seeded from the primary tumor and that, once established at the distant sites (the lungs in our case), they grow independently from each other and from the rest of the organism [START_REF] Gupta | Cancer metastasis: building a framework[END_REF], Talmadge and Fidler, 2010, Fidler and Paget, 2003, Talmadge et al., 1982, Fidler and Talmadge, 1986, Klein, 2009],

as distinct foci initiated by single or few cells. To test this theory, we used our mathematical formalism as described above, and the following strategy. First the model was fitted to the GFP data quantifying primary tumor and total metastatic burden growths, thus allowing inference of the growth and dissemination parameters (with quantification of their inter-animal variability and estimation uncertainty). Second, the resulting predictions in terms of number and size of macroscopic metastases were compared to the MRI data. In contrast to the previous findings, for this non-surgical experimental study, we found that the model best adapted was a Gomp-Exp growth model for both the primary and secondary tumors, with same growth parameters (see [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF] for details).

Data from the primary tumour and the metastatic burden were fitted together, and the model demonstrated satisfactorily descriptive power for the total metastatic burden (Figure 2.7). The calibrated model was further used to predict the distribution of macro-metastases visible in the MRI images, and to confront this prediction to the observations. Among the MRI data, images of only one mouse (over 6) were eligible for reliable assessment of the complete size distribution of macro-metastases, which was performed by manual segmentation of metastatic lesions in each of the 142 coronal slices of the MRI (resolution 156 µm x 155 µm x 155 µm), for each time point. In the other mice, the images had no sufficiently defined contours to properly establish a complete size distribution of the metastases. In the mouse where number and size of the lesions could properly be assessed, the smallest detectable metastasis had a volume of 0.05 mm 3 , which was taken as the Chapter 2. Metastasis: biological dynamics at the organism scale minimal visibility threshold. Results of the model simulation for the metastatic size distribution are reported in Figure 2.8A, together with the experimental data. Inter-animal variability was simulated using the population (lognormal) distribution of the parameters distribution retrieved from the population mixed-effects fit. The maximal volumes predicted by the model/standard theory were considerably smaller than those observed by MRI. For example, at T = 19 days, while the total metastatic burden was similar in the data and in the model (Figure 2.7), the macrometastatic burden was three-fold larger in the data than in the model's average prediction (Figure 2.8B), and the largest metastasis five-fold larger. At T = 26 days, although macro-metastatic burdens were similar in the data and in the model, the standard theory predicted that the largest tumor would have a volume of only 1.14 mm 3 in average (standard deviation = 0.755 mm 3 ), while the largest observed metastasis had a volume more than 10 fold larger (13.6 mm 3 ). This was compensated by a considerably larger number of metastatic lesions in the model (95.4 ± 47 versus 11 in the data). For each of these quantities, the p-value (probability to obtain the data value -or larger -under the null hypothesis that the data would have been generated by the model, evaluated numerically) was statistically significant (p < 10 -5 ). These conclusions were limited by the fact that the entire time course of metastatic size distribution 2.4. Challenging the classical view of metastatic initiation and growth 75 of only one mouse was available for reliable comparison with the model. However, in all the 6 mice, the size of the largest metastasis at day 19 could be measured and ranged 0.45 -12 mm 3 , which was significantly larger than the model predictions (p < 10 -5 , z-test). The largest metastases predicted by the model ranged 9.5 × 10 -4 -0.3 mm 3 . This strongly suggested that the standard theory was not able to describe the volumes of individual foci. Moreover, even without statistical comparison of the model's predictions to the empirical data, the numbers predicted by the model (in particular the number of macro-metastatic lesions at day 26) seem highly unrealistic. To assess the robustness of our results regarding several assumptions of the model, we investigated varying several parameters, including the initial size of metastatic foci and the power in the dissemination coefficient (see [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF] for details). The results confirmed our conclusions.

RENCA cells orthotopic injection

Our findings strongly indicated that the standard theory of metastatic progression, as described by the model employed here (i.e., dissemination and independent growth), when calibrated to data of total metastatic burden, was in contradiction with experimental observations of number of metastatic foci and their size distributions.

For the same total metastatic burden, the model predicted much more lesions with smaller size than present in the data. It was beyond the scope of our study to elaborate (and validate) a unified model able to recapitulate the behavior of metastatic tumors during the colonization process.

However, as a first step toward this objective, we put forward two possible hypotheses to correct the inconsistency of the standard theory: 1) non-trivial interactions between metastases and 2) interactions between the metastatic foci and the circulating tumor cells (cells attraction). The plausibility of the first point was actually retrospectively demonstrated by observations of two metastases merging in our data (between days 21 and 24, see Figure 2.9) and therefore decided to investigate this further. More specifically, we wanted to address the following questions: do spatial interactions have an impact on the dynamics of the total metastatic burden? To what extent could this correct the theoretical predictions of the unlikely fast growth rates? Answers to these questions have implications on future theoretical models of metastatic development. 

Model

Spatial interactions between metastatic tumors

The possibility of merging for two neighboring metastases introduces a spatial aspect of metastatic colonization and, therefore, requires a spatial modeling approach. During his PhD work, E.

Baratchart derived such a model which had to full-fill the following requirements: 1) it should be based on biological knowledge of macroscopic tumor growth (retrieved from the literature), 2)

it should remain as parsimonious as possible (minimal number of parameters) and 3) it should be able to fit our spatial growth data.

The model that was developed belongs to the class of continuum mechanics-based mixture models.

It describes a saturated flow in a porous medium comprising two entities, the tumor tissue and the healthy tissue, with P denoting the tumor cell density and S the healthy cell density. The third variable is a pressure field Π. The model describes, on a domain Ω, the passive motion of the tissues due to the increase in volume caused by proliferation. Following others [START_REF] Ambrosi | On the closure of mass balance models for tumor growth[END_REF] in using Darcy's law for description of the velocity field v and writing mass-balance equations for the tissue densities, we have:

           ∂ t P + div(vP ) = γP ∂ t S + div(vS) = S v = -k∇Π
Writing the saturation condition P + S = 1, summing the two first equations leads and using the third one leads to    -k∆Π = γP

Π |∂Ω = Π eq
where Dirichlet boundary conditions were considered to represent the homeostatic pressure of the body Π eq . The main characteristic of the model was to consider, following works of others on tumor tissue biophysical properties [START_REF] Montel | Isotropic stress reduces cell proliferation in tumor spheroids[END_REF], Stylianopoulos et al., 2013, Stylianopoulos et al., 2012], that the growth rate γ was a decreasing function of Π. This was modeled by a decreasing exponential law [START_REF] Montel | Isotropic stress reduces cell proliferation in tumor spheroids[END_REF]:

γ(Π) = γ 0 exp - Π Π 0 .
Under the assumption of a constant porosity, the value of k has no impact. Indeed, as long as the product kΠ 0 remains constant, the solution remains unchanged. That is why we fixed k = 1.

Moreover, the boundary condition was taken homogeneous: Π eq = 0. Therefore, in fine, the model depended only on two parameters, consistently with our previous results that demonstrated (chapter 1) that two degrees of freedom are sufficient to describe tumor growth curves. Indeed, the model was able to fit longitudinal growth of four metastases observed by MRI (Figure 2.1012 ). The fits were performed on the volume only and considering the metastases as spherical, which allowed to derive explicit formula useful to establish bounds on the parameter space (see [Baratchart, 2016] for details). Endowed with this calibrated model of pressure-mediated tumor growth, we studied the quantitative impact of tumor merging on growth and found in simulations that the growth of two close tumors (initial distance of 0.2 mm) would result in a 31% ± 1.5% smaller total size after 7 days compared with a situation with two independent, non-merging tumors [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF] (see also https://www.youtube.com/watch?v=hTEy-O-oMMU for a movie of the spatial growth of two mechanically interacting tumors). We also investigated whether the merging of metastatic foci could have generated the formation of macro-metastases in the observed timeframe (from one cell at day 14 to a macroscopic size at day 19) with biologically realistic growth rates. We investigated the two situations: without spatial interactions (i.e., assuming the volume resulting from the merging as equal to the sum of the metastatic foci volumes), and with spatial interactions. To do so, we performed four simulations with the four fitted parameter sets, starting from one cell, to estimate the number of merging metastatic foci required to obtain the respective observed volumes (of 0.022, 0.046, 0.085 and 0.67 mm 3 ) seven days after initiation (day nineteen). Indeed, we chose day twelve and not day fourteen (which was the time at which the first metastatic cells were observed by direct examination of lung tissues) as the starting day because the GFP signal started to rise at day twelve (Figure 2.7). As can be seen in Table 2.1, since spatial interactions reduce the growth velocity, the number of metastases was higher when interactions were taken into account.

Chapter 2. Metastasis: biological dynamics at the organism scale

Because of potential variability (error measurements during the segmentation, differences between the MRI signal and the real lesion, especially for the small metastases, modeling assumptions), the estimated numbers of required metastatic foci may give only a rough estimate. For two of the metastases (Meta 2 and Meta 4), the estimated numbers appear to be reasonable. On the other hand, for the two other ones, the required number ranged respectively between 301 and 375 and between 1300 and 2100, which were probably too large to be biologically realistic. The inability of the merging theory to fully explain all of the observed volumes may indicate that besides merging by passive motion due to proliferation, other mechanisms such as chemokinemediated cells attraction occur [START_REF] Kaplan | VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[END_REF], Hiratsuka et al., 2006]. Circulating tumor cells may be attracted by some established niches and explain the abnormally fast volume expansions that we observed. Indeed, such chemokine-mediated attractions are presumed to play an important role for the pre-metastatic and metastatic niches establishment, in mediating myeloid and tumor cells attraction [START_REF] Kaplan | VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[END_REF], Hiratsuka et al., 2006, Psaila and Lyden, 2009]. Moreover, chemo-attractants may play a role in tissue tropism of metastatic cells [START_REF] Joyce | Microenvironmental regulation of metastasis[END_REF].

Chemotactic gradients can attract metastatic cells that express the chemokine receptor to specific locations. In subsequent work, additional phenomena such as aggregation and recruitment of cells during the metastatic process from the circulation have been integrated in a more elaborate mathematical model [Baratchart, 2016]. Another phenomenon that could possibly explain the observed volumes would be the presence of circulating tumour cell clusters that would give rise to metastases [START_REF] Aceto | Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis[END_REF]. Indeed, the authors of this study recently showed in a breast cancer animal model that metastases do not originate from single cells only but also from tumor cells clusters that have a higher metastatic potential than single cells. However, they did not show evidence of this phenomenon for kidney cancer and in their experiments, clusters were formed by at most 50 cells. As shown in our study [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF], this order of magnitude of the initial cell numbers that colonizes the lung was not able to describe the dynamics of metastasis formation in our model and experimental data.

Taken together, although spatial interactions might play an important role for the dynamics of metastasis development in the lung and probably also in other organs., it is unlikely that they alone control metastasis expansion. Other mechanisms are probably also involved such as recruitment of additional cells from the blood stream and micro-environmental cues such as nutrient depletion or responses to environmental stress.

A theoretical model of "cancer without disease"

While we studied contact interactions between two tumors in close vicinity in the previous section, distant systemic interactions between tumors possibly in distinct organs have also been evidenced since more than one century [START_REF] Demicheli | The effects of surgery on tumor growth: a century of investigations[END_REF]. From a modeling point of view, we published two studies on these phenomena [Benzekry et al., 2014b, Benzekry et al., 2017]. The first was focused on secondary tumors dormancy and investigated the possibility of global dormancy (also called "cancer without disease" [START_REF] Folkman | Cancer without disease[END_REF]). The second took a step back and -instead of directly considering a primary tumor and a population of metastases -focused as a first step on the dynamics of two tumors growing simultaneously in the same organism, with the objectives of quantitatively interrogating classical theories of concomitant resistance and validate a mathematical model of tumor-tumor growth interactions.

Introduction

Almost all of us carry small tumor lesions that for many will not progress to symptomatic disease.

Indeed, as evidenced in autopsy studies for adults without pre-established cancer such as [Welch andBlack, 2010, Black and[START_REF] Black | [END_REF], occult lesions are present in most healthy adults. Nielsen et al. [START_REF] Nielsen | Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies[END_REF] found that, out of 110 women cases, among which only one had been previously treated for breast cancer, 22% had at least one malignant lesion. Moreover, 45% of these had multicentric lesions. Similar results have been reported for prostate cancer in men [START_REF] Sánchez-Chapado | Prevalence of prostate cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: an autopsy study[END_REF]. For thyroid cancer, autopsy results [START_REF] Black | Advances in diagnostic imaging and overestimation of disease prevalence and the benefits of therapy[END_REF] showed a prevalence rate of 99.9% for occult carcinomas, while incidence of thyroid cancer is only 0.1% [START_REF] Folkman | Cancer without disease[END_REF].

To explain these results, it is necessary to understand the tumor dormancy phenomenon. Tumor dormancy [Aguirre-Ghiso, 2007, Almog, 2010] is defined by stable or very slow tumor growth. It can happen at the cellular level as a malignant cell remaining quiescent for a long period before awakening, but here we focused on the mm-scale lesions such as have surfaced in the several remarkable autopsy studies discussed, i.e., tissue-level tumor dormancy. Although the sizes of these dormant tumors remain almost constant, it is not due to a cessation in cell proliferation, but rather to increased apoptosis that leads to a near zero net growth rate [START_REF] Holmgren | Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression[END_REF].

Clinically, tumor dormancy has been observed in breast cancer [START_REF] Nielsen | Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies[END_REF], Retsky et al., 2008, Retsky et al., 2010, Brackstone et al., 2007], melanoma [START_REF] Ossowski | Dormancy of metastatic melanoma[END_REF] and prostate cancer [START_REF] Sánchez-Chapado | Prevalence of prostate cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: an autopsy study[END_REF], among many others [Aguirre-Ghiso, 2007]. Dormancy is particularly relevant to the situation where secondary tumors (metastases) remain small and undetectable for extended periods.

Various explanations have been proposed for tumor dormancy, among these being the achievement of a balance between stimulation and inhibition of angiogenesis [START_REF] Almog | Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis[END_REF], Almog, 2010, Hahnfeldt et al., 1999]. This mechanism offers one explanation for how secondary tumors may be suppressed to a near-dormant state by the primary; a phenomenon known as 'concomitant Chapter 2. Metastasis: biological dynamics at the organism scale resistance' [Prehn, 1993, Chiarella et al., 2012]. In fact, a number of explanations for the concomitant resistance phenomenon have been suggested, and were investigated in a subsequent study (see below). Because of evidence that concomitant resistance happens in immune-deficient mice [Gorelik, 1983] and considering the large and unequivocal body of support for the role angiogenesis inhibition plays in the maintenance of tumor dormancy [START_REF] Holmgren | Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression[END_REF], O'Reilly et al., 1994, O'Reilly et al., 1997, Rofstad and Graff, 2001, Volpert et al., 1998, Sckell et al., 1998] and the "angiogenic switch" [START_REF] Hanahan | Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[END_REF] in escape from dormancy, our focus here will be on the last theory. Angiogenesis, the process of creating new blood vessels and developing a supporting vascular network, was put forward by J. Folkman [Folkman, 1971] to be critical for tumor growth. Indeed, without development of new blood vessels, a malignant neoplasm cannot grow further than about 2 to 3 mm in diameter, due to nutrient supply limitations [Folkman, 1971].

This process is regulated by the release from cancer cells of stimulatory growth factors, such as vascular endothelial growth factor (VEGF), that induce proliferation, migration and maturation of surrounding endothelial cells, as well as the production of angiogenesis inhibitory factors that act to curtail endothelial expansion [Folkman, 2007] et al., 1994] discovered an endogenous molecule having an inhibitory effect on angiogenesis, which they called 'angiostatin', followed soon by the discovery of 'endostatin' [START_REF] O'reilly | Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[END_REF].

Endogenous anti-angiogenic molecules were also evidenced in human cancer, an example being thrombospondin-1 [START_REF] Volpert | A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1[END_REF]]. Overlaying the ability of tumors to stimulate vasculature, the discovery of their ability to also inhibit it [Folkman, 1995b] allows for the possibility that tumors may indirectly control their own growth [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF], Folkman, 2007, Folkman, 1995a], perhaps as a vestige of normal organ growth control. Further, inherent to this self-control notion, if the inhibitors were longer-lived and thus more persistent in the circulation, they could have the collateral effect of suppressing angiogenesis and growth at distant metastatic sites as the tumor mass gets large [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF]. Indeed, the half-life of angiogenesis stimulators has been reported to be on the order of minutes for VEGF [Folkman, 1995a], while that for angiogenesis inhibitors is on the order of hours [START_REF] O'reilly | Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[END_REF], Volpert et al., 1998].

Mathematics of systemic inhibition of angiogenesis

To describe the time dynamics of a metastatic population under systemic inhibition of angiogenesis (SIA), we employed a similar framework as previously introduced (section 2.2), although extended to a bi-dimensional "trait" for the state of a tumor. Tracking of tumors not only through their size/volume (one-dimensional model) but also with their vascular-dependent carrying capacity K (two-dimensional) had been previously developed by us to extend the initial Iwata, Kawasaki and Shigesada model [START_REF] Iwata | A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors[END_REF] in order to account for the angiogenic process in tumor growth [START_REF] Benzekry ; Benzekry | Modeling, mathematical and numerical analysis of anticancerous therapies for metastatic cancers[END_REF], Benzekry et al., 2014a, Benzekry, 2011a[START_REF] Benzekry ; Benzekry | Passing to the limit 2D-1D in a model for metastatic growth[END_REF]. The density ρ is now a function ρ(t, V, K), the physiologically structured density of metastases having volume V and carrying capacity K at time t. Denoting by G(V, K, V p , ρ) the tumors' growth rate, the model 2.5. A theoretical model of "cancer without disease" 81 writes:

         ∂ t ρ + div(Gρ) = 0 ]0, T [×Ω G(V 0 , K 0 , V p , ρ)ρ(t, V 0 , K 0 ) = δ (V,K)=(V0,K0) d(V p (t)) + Ω d(v)ρ(t, v, k)dvdk ]0, T [×∂Ω + ρ(0, V, K) = 0 Ω (4)
where Ω = (V 0 , +∞)×(0, +∞) is the physiological domain of possible sizes and carrying capacities, δ is the Dirac mass (see [START_REF] Benzekry ; Benzekry | Passing to the limit 2D-1D in a model for metastatic growth[END_REF] for details about the measure nature of the solution of this equation, in the linear case) and ∂Ω + stands for the subset of the boundary where the flux is pointing inward.

The main modeling effort consisted then in defining a biologically relevant value of the growth rate G. Following the approach of [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF] we assumed

G(V, K, V p , ρ) =   aV ln K V Stim(V, K) -Inhib(V, K, V p , ρ)  
In the previous expression, the first line is the rate of change of the tumor volume V (where a is a constant parameter driving the proliferation kinetics of the cancer tissue) and the second line is the rate of change of the carrying capacity K. The main idea of this tumor growth model was to start from a gompertzian growth of the tumor volume (or any carrying capacity-like growth model [d'Onofrio and Gandolfi, 2004]) and to assume that the carrying capacity K is a dynamical variable representing the tumor environment limitations (here limited to the vascular support) changing over time. The balance between a stimulation term Stim(V, K) and an inhibition term Inhib(V, K, V p (t), ρ(t, V, K)) governs the dynamics of the carrying capacity. For the stimulation term we followed [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF] and assumed

Stim(V, K) = bV
where the parameter b is related to the concentration of angiogenic stimulating factors such as VEGF. This last quantity was derived to be constant in [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF] from the consideration of very fast clearance of angiogenic stimulators [Folkman, 1995a].

For the inhibition term, Hahnfeldt et al. [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF] only considered a local inhibition coming from the tumor itself. Our main modeling novelty was to consider in addition a global inhibition coming from the release in the circulation of angiogenic inhibitors by the total (primary + secondary) population of tumors. Writing a diffusion equation for the local production of inhibitors, solving it and computing the average spatial amount of these factors, we finally obtained (see [Benzekry et al., 2014b] for details of the calculations)

G(V, K, V p , ρ) = aV ln K V bV -dV 2/3 K -eIK
where e is an inhibition efficacy coefficient and I is the amount of circulating inhibitors, given by

   dI dt = pV p + Ω pvρ(t, v, k)dvdk -kI I(t = 0) = 0 (5)
with p the inhibitor production rate and k an elimination rate. The expression of d was also established to depend on the diffusion coefficient of inhibitors D, pharmacokinetics volume of distribution V d , e and p:

d = eV d p 15D 2 3 4π 2/3 (6) 
For the primary tumor, we assumed the same structural growth model. The dynamics of (V p , K p ) was thus given by

d dt V p K p = G p (V p , K p , V p , ρ)
where G p had the same expression as G, except that the parameters a p and b p (the values of a and b that are associated with the function G for the primary) may be different from a and b associated with metastases. The inhibitor production rate p and effect of the inhibitor e were assumed to be the same for the primary and secondary tumors, which implied same value also for d in view of formula (6).

Biological results

At the time of this study, we did not dispose of quantitative experimental data sets about metastatic development allowing the inference of biologically relevant parameters. Therefore, for estimation of the growth and dissemination parameters, we employed published data on primary tumor growth as well as number and mean size of metastases [START_REF] Huang | Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein[END_REF]. For the determinant parameter p of inhibitor production, we derived its value from observations of [START_REF] O'reilly | Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[END_REF] that demonstrated that injection of 12.5 µg per day of recombinant human angiostatin reproduced the systemic inhibition due to the presence of a primary tumor removed when it reached the size of 1500 mm 3 . We refer the interested reader to [Benzekry et al., 2014b] for methodological details.

Simulation of the cancer history from the first cancer cell predicted uncontrolled metastatic burden

Using our model and based on the parameters estimated from literature data, we were able to extrapolate to a totally new setting where the primary tumor starts with one cell instead of an already large number of cells (approximately 10 5 ). In so doing, we were able to simulate the whole cancer natural history, starting from one initial cancerous cell (and initial carrying capacity of 1 mm 3 ) until the metastatic burden reached 5000 mm 3 , a burden we considered potentially lethal for a mouse. The simulation predicted this would happen 62.7 days after the first primary tumor Interestingly, the model simulation predicted that the metastatic burden would overcome the primary tumor mass, implying that the mouse would probably die from growth of its secondary lesions rather than from the initial tumor. This is consistent with the metastatically aggressive phenotype of the 4T1 cell line. Quantification of the number of metastases revealed a final number of about 217 tumors, lots of them being small (Figure 2.11A) and probably undetectable in an experimental setting. Simulation with the same set of parameters but neglecting the effect of SIA (I = 0) showed no detectable difference on this time frame. Significant changes were observed later on, for volumes that were not considered to be physiologically relevant. This confirms that for the 4T1 cell line, metastases do develop and do not exhibit global dormancy, even when SIA is present with the inhibitor production parameter value extracted from [START_REF] O'reilly | Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[END_REF]. 

Higher production of systemic angiogenesis inhibitor could result in long-term stable global dormancy in a population of self-inhibiting metastases

The previous simulations used parameter values derived from experimental data of a situation were metastases do develop and grow, because this is the only case where metastases are measurable and data are available. However we are interested here in global dormancy and situations where the Chapter 2. Metastasis: biological dynamics at the organism scale metastatic population could remain ultimately small. We postulated that this could happen when production of the angiogenesis inhibitor, represented by parameter p in our model, is significantly higher. Simulation results plotted in Figure 2.12 were obtained using a value of p a value about 30 times that extracted from [START_REF] O'reilly | Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[END_REF]. In this context, the first cancer cell initiated the disease by growing and generating a first pool of metastases, but the metastatic burden then quickly overshadowed the growth of the primary lesion (Figure 2.12A). The primary tumor reaches a small maximal size of 21.2 mm 3 at time 82.9 days (Figure 2.12A) and then shrunk due to inhibition of angiogenesis provoked by the distant metastases. There was a slowdown and eventual stabilization of the metastatic burden, with a plateau value of about 2200 mm 3 . The burden was composed of a large number of metastases (Figure 2.12B), most of them being occult micro-metastases as can be seen in the final size distribution (Figure 2.12C). This interesting feature of the model simulation could be an in silico replicate of the aforementioned situations of cancer without disease [START_REF] Folkman | Cancer without disease[END_REF]. In our model it translates into an asymptotical steady state for the metastatic burden while still composed of small lesions. The general dynamics of the metastatic burden results from the balance of two stimulating forces; growth and spread of new individuals, competing with systemic inhibition of angiogenesis. Stimulation depends on the parameters a and b, which capture the growth process, and µ and γ, which capture spreading. Inhibition depends on e and k, as well as on p, which controls the value of d. The present values of the parameters generated long-term stabilization of the mass. The size distribution of the population of secondary tumors at time T = 350 days was revealed to be non trivial, with different numbers in the various size ranges. By this time, all the metastases had volume lower than 10 mm 3 .

In sum, assuming substantial systemic inhibition of angiogenesis, we theoretically obtained an in silico replicate of a situation in which an important population of dormant micro-metastases inhibiting each others' growths is present, with a possibly non-lethal final total metastatic burden. This situation was seen to result when a 30-fold higher value for the inhibitor production compared to the case of growth of a breast cancer line 4T1 extracted from the literature, where unlimited expansion of the total metastatic burden was forecast. Our analysis showed that SIA could conceivably create such a situation, although it would require a very high value of the inhibitor production rate, which does not appear to be physiological. This suggests that SIA alone is probably not sufficient to induce spontaneous global dormancy and that other processes (such as immune effects) are probably significantly involved. This motivated us to study this phenomenon further and design a study of interactions among multiple tumor implants in controlled immune contexts (see below and [Benzekry et al., 2017]).

Mathematically intriguing nonlinear dynamics

In a subsequent study, we focused on the variety of dynamical behaviors possibly generated by the model [Benzekry et al., 2014a]. After nondimensionalization, we explored the growth/dissemina- all the forces in presence were in relative equilibrium, generating a bounded oscillatory regime for the total metastatic burden) towards more pronounced impact of either of the constitutive processes of our model generated more complex dynamics. Different parameters had different impacts on the global behavior. Potentiation of the growth velocity (as well as resistance to the inhibition pressure) through increase of b resulted in an asymptotic behavior of the global metastatic burden which, while still being periodic, repeated a much more complex pattern, revealing interesting underlying dynamics. In particular, observation that the same value of the metastatic burden did not always yield the same future evolution implies that no autonomous ordinary differential equation can be derived for the dynamics of M (t), since same values of M at different times lead to different future evolutions. Indeed, when M (t) returns to a previous value, the state of the global dynamical system is different because the composition of the tumors population (represented by ρ) itself is not the same. Interestingly, this happens despite the fact that the growth rate depends on ρ only through M .

Increase of µ resulted in densification of the oscillations and amplitude increase, yielding sharp repeated peaks of metastatic growth. Violent increases of the total metastatic burden were followed by similarly violent decreases that made the system reach almost-zero values. Stronger inhibition pressure delayed the stabilization of the system to an oscillatory regimen, intensified the oscillations frequency and lowered their amplitude. Note that in this situation, as well as in the base situation, the total metastatic volume remained away from zero, suggesting a non-negligible amount of longlasting residual disease. Turning our interest to the opposite situation, i.e. 10 fold decrease of the individual parameters, showed yet other interesting behaviors, for which we refer the interested reader to [Benzekry et al., 2014a]. These included the possibility of an homeostatic state of the system where all the forces in presence equilibrate to give a stable state where metastases don't grow while still remaining present in the organism, possibly with small volumes that would make the micro-metastases undetectable.

We also observed bounded non-periodic dynamics as well as periodic but tormented patterns, underlining the complexity of the dynamics of the density (Figure 2.14). On the opposite to this widely varying behavior, the model numerically exhibited convergence to a steady state for the total metastatic burden when initial conditions (for both primary tumor and metastases) were set to (V 0 , K 0 ) = (10 -4 , 10 -3 ). Same apparent convergence also occured for the number of metastases N (t) and the amount of inhibitor I(t). Looking closer to the volume distribution of metastases at the end of the simulation revealed concentration of the density to the smallest possible volume, suggesting convergence to a Dirac mass located in (V 0 , K 0 ).

A combined in vivo/in silico study of tumor-tumor interactions

Motivated by the previous theoretical considerations and by the clinical problem of post-surgical metastatic acceleration due to an inhibitory growth pressure from the primary tumor, we decided to conduct an experimental study of the phenomenon of tumor-tumor interactions [Benzekry et al., 2017]. To build on solid ground, instead of directly studying the tumor-metastases system, we decided to investigate first the interactions of two tumors growing distantly in the same organism (a phenomenon also termed "concomitant resistance"). The objectives were to: 1) investigate the relative likelihood of existing theories of this phenomenon (retrieved from a thorough review of the literature) and 2) establish and validate a minimal mathematical model, biologically grounded and with identifiable parameters.

Introduction

Concomitant tumor resistance (CR) is a phenomenon by which the presence of a tumor in an organism negatively influences the appearance and growth of another implant (see [START_REF] Chiarella | Concomitant tumor resistance[END_REF] for a review). It has been reported in numerous experimental studies spanning over a century, and implementing a large variety of animal models [Marie and Clunet, 1910, Gershon et al., 1967, Dewys, 1972, Gunduz et al., 1979, Gorelik et al., 1981, Gorelik, 1983, Ruggiero et al., 1985, Fisher et al., 1983, Sckell et al., 1998, Li et al., 2001, Demicheli et al., 2008]. These studies investigated either the concomitant or subsequent implantation of a second graft after a primary injection [START_REF] Gershon | On concomitant immunity in tumour-bearing hamsters[END_REF], Simpson-Herren et al., 1976, Gunduz et al., 1979, Gorelik, 1983, Ruggiero et al., 1985, Li et al., 2001], or the inhibition of secondary tumors arising from the primary (metastases) [Marie and Clunet, 1910, Dewys, 1972, Gorelik et al., 1978, O'Reilly et al., 1994, Rofstad and Graff, 2001]. They consistently evidenced a systemic growth suppression effect, demonstrated by the occurrence of post-removal growth acceleration [Marie and Clunet, 1910, Ketcham et al., 1961, Simpson-Herren et al., 1976, Gorelik et al., 1978, Gunduz et al., 1979, Fisher et al., 1983, Fisher et al., 1989, O'Reilly et al., 1994, Peeters et al., 2008]. In the clinic, suppression of the growth of metastases by the presence of the primary tumor has yet to be appreciated in general therapeutic planning, although it has been reported in patients [START_REF] Coffey | Excisional surgery for cancer cure: therapy at a cost[END_REF], Peeters et al., 2006, Peeters et al., 2008, Ceelen et al., 2014]. However, despite the abundance of reports of this phenomenon, the precise determinants of CR remain poorly understood and only qualitative theories have been advanced.

CR is of direct clinical relevance insofar as it implies that removal of a primary tumor, with the resultant release of its inhibitory pressure on occult secondary sites, could be followed by postsurgery metastatic acceleration (PSMA). PSMA has been demonstrated to occur in numerous animal experiments [Marie and Clunet, 1910, Simpson-Herren et al., 1976, Gorelik et al., 1978, Gunduz et al., 1979, Fisher et al., 1989], as well as in clinical case reports [START_REF] Coffey | Excisional surgery for cancer cure: therapy at a cost[END_REF], Peeters et al., 2006, Ceelen et al., 2014]. Further support for the occurrence of PSMA in a notable fraction of patients was also provided by the observation of two peaks in the hazard relapse rate of a large cohort of breast cancer patients [START_REF] Demicheli | Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: Further support about the concept of tumor dormancy[END_REF], Coffey et al., 2003, Demicheli et al., 2007, Retsky and Demicheli, 2014].

Several hypotheses have historically been proposed for the explanation of the underlying mechanism of CR. The first was due to P. Ehrlich and consisted in athrepsia, i.e. that two (or more) tumors in the same organism would compete for nutrients and that the growth of one tumor would leave less nutrients available for the other ( [Ehrlich, 1906], cited by [START_REF] Gorelik | On the mechanism of tumor "concomitant immunity[END_REF]). However, this was challenged by the observations that CR was decreased when the number of inoculated cells was increased [START_REF] Ruggiero | Concomitant immunity" in murine tumours of non-detectable immunogenicity[END_REF]. Another popular theory, first introduced by Bashford in 1908, was based on immunologic mechanisms and stipulated that the presence of a first tumor would activate an immune response preventing the second graft to take or grow [START_REF] Gershon | On concomitant immunity in tumour-bearing hamsters[END_REF], Gorelik et al., 1981]. However, several studies demonstrated the occurrence of CR in tumor models with no or weak immunogenicity, or in immune-deprived mice, thus challenging this explanation [Dewys,2.6. A combined in vivo/in silico study of tumor-tumor interactions 89 1972, [START_REF] Gorelik | On the mechanism of tumor "concomitant immunity[END_REF], Gorelik, 1983, Ruggiero et al., 1985]. This implies that, although immunologic factors might contribute to CR, they cannot explain it entirely.

As explained previously, in the 1990's, a team led by J. Folkman discovered endogenous inhibitors of angiogenesis by demonstrating that injection of these factors could substitute for the suppressive effect on lung metastases exerted by the primary tumor [START_REF] O'reilly | Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[END_REF], O'Reilly et al., 1997].

This led the investigators to link CR to distant systemic inhibition of angiogenesis.

The idea of circulating inhibiting factors due to the presence of a primary tumor had been proposed

and confirmed in earlier studies [Dewys, 1972, Gorelik et al., 1981], but their precise mode of action has remained elusive. Distinct from the angiogenesis inhibitors previously mentioned, another research group identified other blood-borne factors with direct anti-proliferative action, namely meta-and ortho-tyrosine, that would reduce proliferation by driving tumor cells into a G0-phase state of dormancy or induce an S-phase arrest [START_REF] Ruggiero | Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance[END_REF], Ruggiero et al., 2012].

So far, arguments and theories about CR have remained qualitative in nature. In the study published in [Benzekry et al., 2017], comparing alternative mathematical formalisms, we demonstrated that a simplified model with well-motivated parameters that addresses concomitant resistance specifically was able to capture features of coupled tumor growth and may shed more light on the understudied subject of systemic controls in cancer, a potentially critical step toward eventually understanding metastatic control.

Mathematical modeling of concomitant resistance

More than 40 models in total were constructed and tested against our data. They were based on different structural expressions formalizing the three main theories of CR considered here: distant inhibition of proliferation, distant inhibition of angiogenesis and competition.

Volumes of the two tumors at time t were denoted V 1 (t) and V 2 (t) and differential equations were derived for the rate of change of these quantities. For biological relevance, we required that the models comply with the following conditions: 1) in the absence of a second tumor, the models had to be able to fit single-tumor growth curves, 2) the shape of the inhibition effect had to be identical from tumor 1 on tumor 2 as from tumor 2 to tumor 1 (structural symmetry) and 3) the parameters had to be identical for the two tumors (parametrical symmetry).

The source of the observed difference between the two growing tumors was assumed to result from an initial (small) discrepancy in the number of cells that took during the tumors grafts, respectively denoted V 0,1 and V 0,2 . After investigation of the sensitivity of several models to these quantities and their ratio, we considered more relevant for robustness of the results to fix their ratio for all the animals (25% percent higher cell loss in the inhibited tumor as compared to the non-inhibited one).

The model that was ultimately considered as giving the most robust and identifiable description of our data was based on the proliferation-inhibition theory and relied on experimental evidence from [START_REF] Ruggiero | Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance[END_REF], Ruggiero et al., 2012] demonstrating that a tumor produces inhibitory • Proportionality between volume and number of cells, using the conversion rule 1 mm 3 10 6 cells.

• Each tumor volume is divided into two compartments: proliferative cells (P i with i the tumor index) and non-proliferative tissue (Q i ).

• Proliferative cells have a constant length of the cell cycle τ . The proliferation rate = ln (2) τ is denoted α (day -1 ).

• Proliferative cells release IFs with a rate proportional to their number. The proportionality coefficient is denoted β 0 and is expressed in mol•mm -3 •day -1 . There is a local elimination of IFs with rate k loc (day -1 ) and the concentration is assumed to be at steady state.

• A fraction φ of these factors is released into the systemic circulation.

• In the blood, IFs are subject to a first order elimination process with rate k (day -1 ). We assume that the time scale of the blood distribution is faster than the tumor growth and thus consider the blood concentration at steady-state. Assuming that a fraction ψ reaches the distant site, the concentration of IFs at the distant site is therefore ψ β0φ k P i . At the local site it is β0 (1-φ) k loc P i .

• At each local site, the IFs induce a proliferation arrest, making cells go from a proliferative state to a quiescent state. A given amount of these molecules provokes cell cycle arrest of Chapter 2. Metastasis: biological dynamics at the organism scale DT group suggested that in each mouse, one tumor was growing faster than the other, possibly inhibiting the second one (Figure 2.16A). This behavior was observed consistently in all the animals of the DT group except in two of them (animals 2 and 9 in Figure 2.16A), and did not seem to result from the lateral location (left or right) of the tumors. Intriguingly, the two mice where the phenomenon was not observable were found to have a connecting blood vessel joining the two tumors and were the only ones to exhibit this macroscopic vascular structure. Direct sharing of same vasculature seemed to equilibrate tumor expansions. One possible explanation for the absence of cross growth suppression in these mice could be that the production of inhibitors was negligible in these tumor-host systems. This could also explain the formation of the connecting blood vessel due to increased neo-angiogenesis (under the theory of angiogenesis inhibition-driven growth suppression).

In order to statistically confirm that this observation was not purely due to intrinsic randomness in experimental conditions (such as the number of initial cells that "take" from the injection) that would by themselves generate different growth curves for the two implants in the same mice, we performed a statistical analysis. It aimed at testing the null hypothesis that both tumors would be identically and independently growing (i.i.g.). We artificially generated 10 couples of i.i.g. tumors by subdividing the control group of 20 animals into two groups of 10, randomly picking tumors from each subgroup and pairing them together. We then picked each small tumor from these pairs (and similarly, each large tumor), by choosing the one with smallest final volume. This yielded two samples of 10 "control small" and "control large" tumors that can be considered as what would have emerged from randomness only in initiation and growth. These two samples could then be statistically compared to the experimental samples of small and large tumors from the DT group.

We observed significant differences between the small tumors from the DT group and the "control small" tumors from day 12 until the end, with the exception of days 18 and 19 where differences were not significant due to large variability (Figures 2.16B and 2.16C). On the other hand, no statistical difference was observed between the large tumors from the DT group and their control counterparts.

These results demonstrated that in a mouse where two tumors were simultaneously growing, the larger tumor was growing at the same speed as would a single tumor, while the other had significantly slower kinetics.

A dynamical benchmark of models of concomitant resistance

After studying what could be extracted from single tumor growth models [Benzekry et al., 2017],

we investigated models of simultaneous growth of two tumors in the same organisms in order to study and quantify the possible underlying mechanisms of tumor-tumor interactions leading to the observed growth kinetics differences that were observed. A virtually infinite number of models can be conceived for description of CR, both in terms of structural shape (equations) and values of the parameters. We report here only on the results from analysis of 5 informative models (Table 2.2).

Interestingly, several models were found unable to fit the data, suggesting rejection of (at least one of) the hypotheses that they rely on. These include a model for the athrepsis theory (competition for nutrients) [Benzekry et al., 2017]. The other models were based on either systemic inhibition of angiogenesis (SIA) -formalized using a model of interaction between tumor growth and vascular support [d'Onofrio and Gandolfi, 2004] -or induction of quiescence due to a cytostatic seric factor.

We termed the models based on this last theory proliferation inhibition (PI) models. The SIA model was able to give a reasonably accurate description of our data. For PI models, which have Chapter 2. Metastasis: biological dynamics at the organism scale similar structures as equation ( 7), three hypotheses were investigated: 1) direct effect (a given quantity of IFs induces a given number of cells going to quiescence) (equation ( 7)), 2) log-kill effect (a given quantity of IFs induces a given fraction of cells going to quiescence) and 3) total number of cells (P i + Q i ) as a source of IFs. Notably, models 2) and 3) were unable to fit the data and had to be rejected [Benzekry et al., 2017]. On the other hand, the model 1) gave a particularly good fit to the data (Figures 2.17A and B). Table 2.3 summarizes statistical quantitative metrics of goodnessof-fit the models that allow comparison of their descriptive power, while Figure 2.17C shows the distribution of the residuals. Table 2.4 reports the parameter values of all the models estimated from the best fits, together with their inter-animal variability (parameters were individually fitted for each mouse) and standard errors for the estimates. These tables were obtained using the software Carcinom that we developed for fitting models to data. .17 -Individual fits of the two-tumors proliferation-inhibition model. A. Fits of all the animals. In each mouse the only difference between the two tumors lies in the number of tumor cells that take, i.e. parameter V 0,2 . Dashed lines are simulations of the model with no interactions between the two tumors (i.e. without terms containing P j in the equations on P i (i = j). B. Fitted values versus data points for all the two-tumors growth curves of A. The solid line is the identity function. C. Distribution of the residuals for the best-fits of the three two-tumors models. Table 2.4 -Two-tumors models' inferred parameters from fits to the data. CV = coefficient of variation. RSE = relative standard error.

These results demonstrate that a mathematical modeling approach was able, by confrontation of the best-fits of the model, to discriminate among qualitatively equally likely theories of CR and suggest a PI model, having attributes that may explain (or at least describe) this particular phenomenon.

Validation of a simple and biologically-based mathematical model of CR

Double tumor growth

The PI model 1), formalized by equations ( 7), consists in assuming a direct and mutual growth rate decrease between the two tumors, due to passage to quiescence (Figure 2.15). Goodness of fit was found excellent (Figure 2.17), as well as identifiability of the parameters (see standard errors in Table 2.4). Notably, while being fitted directly on the two tumors growths, the predicted behavior when simulating no interactions was in full agreement with the control growth curves. Indeed, the dashed lines in Figure 2.17A are close to the growth curves of the large tumors, which were found to be not significantly different from "naturally happening" large tumors. Hence the model was able to learn and identify the unaltered growth part from altered growth curves, highlighting its reliability.

Chapter 2. Metastasis: biological dynamics at the organism scale

In mouse number two (second plot in the top row of Figure 2.17A), consistently with the observation of identical growth kinetics between the two tumors, the model identified a value of parameter γ not significantly different from zero. On the other hand, the model did identify interactions between the two tumors in the other animals, as emphasized by 95% confidence intervals of parameter γ inferred from the parameter estimation process that did not contain 0 ((0.0374, 0.0436) in our estimation).

In turn, this translated into substantial differences in the kinetics (see Figure 2.17A where growth curves are plotted with or without interactions). Of important note, these differences in the kinetics were mostly due to the interaction between the two tumors, rather than the initial difference in cell loss. This is demonstrated in Figure 2.17A where it can be observed that the growth curves of the small tumors with only a different initial volume (dashed curves) were considerably higher than the curves where interaction was taken into account. Moreover, these curves were both close to the large tumor growth curves, indicating that the difference in V 0 had only a negligible impact on the difference between the two growth curves, the major determinant being the tumor-tumor cross inhibition effect. Critically, the differences for the large tumor curves were much smaller than for the small tumor curves (while the interaction parameter was the same for both tumors), indicating that the model gives a valid quantitative theory of why only one tumor was affected by CR.

Together, our results provide a biologically-based and minimally parameterized mathematical model

for tumor growth kinetics interactions in a two-tumors bearing host. The model confirmed a significative non-zero value for the interaction parameter in 9/10 mice, which gave a quantitative measure of the phenomenon. Asymmetry between the two tumors was explained by an initial difference in the take between the two implants.

Single tumor growth

In addition to being able to describe double tumor growth and CR, the elementary model that we proposed also offered a simple formalism for single tumor volume growth. The model consists in the division of the cancer cells into two sub-populations: proliferative and quiescent cells (which could also account for necrotic tissue still present in the total volume measurement). In the absence of a secondary tumor, the model ( 7) becomes:

dP dt = (α -β -γ)P, P (t = 0) = V 0 dQ dt = (β + γ)P, Q(t = 0) = 0
This provides a valid and simple linear mathematical construct able to describe the growth of single tumors [Benzekry et al., 2017]. It sheds new lights on general tumor growth laws as it demonstrates that classical Gompertzian growth -which is able to describe accurately Lewis Lung tumor growth curves (chapter 1 and [Benzekry et al., 2014c]) -can be reproduced by these equations, with no significant differences (i.e. a difference in Akaike Information Criterion less than 2, see [Benzekry et al., 2017]). Indeed, it had remained elusive why the Gompertzian curve, which was originally designed not even for growth processes [Gompertz, 1825], describes tumor growth curves and their consistent relative growth rate decrease with such important accuracy, while being only phenomenological and not biologically grounded. Interestingly, we obtained that a model where growth deceleration was assumed to result (only) from passage to quiescence due to the production of factors by the proliferative tumor cells themselves was able to explain single tumor growth curves as accurately as the Gompertz model, or other models such as the power law.

Parameters identifiability of this new model was also excellent.

Discussion

Arguments disregarding the competition theory had already been put forward by others [START_REF] Gershon | On concomitant immunity in tumour-bearing hamsters[END_REF], Gorelik et al., 1981, Prehn, 1993]. For example, Gorelik had argued that under this theory, the intensity of CR should be an increasing function of the amount of cells implanted in a subsequent graft, in contradiction with experimental findings, thus disqualifying the theory [START_REF] Gorelik | On the mechanism of tumor "concomitant immunity[END_REF]. However, these arguments had remained qualitative. Our formal study adds a quantitative basis to these considerations by showing that, under the modeling assumptions we operated, this theory was unable to accurately describe our data [Benzekry et al., 2017].

More elusive in the literature had remained the question to discriminate between angiogenesis inhibition, as evidenced by the work of Folkman and colleagues [START_REF] Holmgren | Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression[END_REF], O'Reilly et al., 1994], and direct induction of quiescence by seric factors, as proposed by Ruggiero and colleagues [START_REF] Ruggiero | Concomitant immunity" in murine tumours of non-detectable immunogenicity[END_REF], Ruggiero et al., 2011, Ruggiero et al., 2012]. Our results suggested that the latter theory, when considered alone, could be sufficient to drive CR, insofar as it exhibited good match to the data. However, this does not preclude systemic inhibition of angiogenesis (SIA)

to occur, since an SIA-based model was able to describe the data almost as well. Furthermore, the two theories are not mutually exclusive. This last remark also applies to the competition theory:

it cannot be completely disregarded that a combination of the three phenomena happens in the occurrence of CR. However, it was beyond the scope of this study to be able to disentangle between a combination of the phenomena and one phenomenon alone.

Our findings not only shed light on the dynamics of CR but also proposed a simple and biologicallybased model of (double and) single tumor growth able to describe the ubiquitously observed growth retardation with larger volumes already mentioned in the first chapter of this thesis and usually modeled by means of the Gompertz equation [Laird, 1964[START_REF] Norton | A Gompertzian model of human breast cancer growth[END_REF]. Although several attempts of deriving the Gompertz equation from basic principles have been performed in the literature [START_REF] Bajzer | New Dimensions in Gompertzian Growth[END_REF]Vuk-Pavlović, 2000, Frenzen andMurray, 1986], the model we propose here benefits from its simplicity. It has only two (aggregated) parameters, which quantify two phenomena: 1) proliferation of the active cancer cells and 2) production by these active cells themselves of factors that drive them to quiescence. Interestingly, this model brings new light on the so-called paradox of CR [Prehn, 1993], which can be expressed as follows: if distant inhibition occurs, potentially driving other tumors to dormancy, then why does the primary tumor continue growing?

Our general model gives a way to quantitatively formalize this. Indeed, the same factors act as local and distant inhibitors and we showed that, under appropriate values of the parameters (but identical for the two tumors), one could obtain at the same time almost unaltered growth of the large (primary) tumor and significant suppression of the growth of the small (secondary) tumor.

The presence of endogenous molecules with inhibitory activity thus challenges a naïve view where Chapter 2. Metastasis: biological dynamics at the organism scale growth retardation would only be due to interactions dictated by competition (for space or nutrients). Consistently, such a model (logistic growth), had already been shown unable to adequately fit experimental tumor growth curves in the first part of this thesis. Considering the implications, the mere fact a tumor would produce both angiogenesis stimulators and inhibitors at the same time, with near and far ranges, does not readily reconcile with a purely localized purpose, but instead speaks to tumor control being manifestly a systemic phenomenon, quite distinct from the naïve concept of an entity governed by local conditions alone, independent of other tumor sites.

Implicit in this, and as proposed by others [Prehn, 1991, Prehn, 1993], a vision of tumor growth as an integrated, organ-like development could bring sense to this seeming paradox.

Chapter 3

Metastasis: clinical data 

Introduction

Metastasis remains a major challenge as 90% of solid cancer patients die from this process and associated complications [Steeg, 2016, Chaffer andWeinberg, 2011]. Five-year survival rates drastically drop when the disease has spread to other sites of the organism (Figure 3.1). For instance, the 5-year survival rate of kidney cancer goes from 91.8% for a localized disease to 12.1% when metastases are present at diagnosis [START_REF] Howlader | SEER Cancer Statistics Review, 1975-2011[END_REF]. Surgical removal of an early-stage localized tumor remains one of the most effective strategies in reducing the probability of systemic metastatic disease spread [START_REF] Gupta | Cancer metastasis: building a framework[END_REF]. Improved technologies of early cancer detection aim to classify primary tumor stage to identify whether potential treatment modalitiessuch as presurgical "neoadjuvant" or postsurgical "adjuvant"-should be considered to complement surgery and reduce metastatic potential. c Distant disease which it began.
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Localized disease

In the clinic, disease that is limited to the tissue or organ in which it began.

Regional disease

Cancer that has grown beyond the original tumour and spread to nearby lymph nodes or tissues.

gene expression. Genomic instability can be found in a metastatically competent subclone of a primary tumour and/or can appear in the metastatic lesions 5-9 . Genomic instability is hypothesized to create many cellular pheno types, any one of which may have all the necessary properties to complete the metastatic process. Can therapeutic targeting of processes that control genomic stability improve outcome? Few of the tumour cells that originally invade the surrounding tissue of the primary tumour complete the metastatic process 10 ; however, those that do go on to kill the patient. Can we identify the metastatically competent tumour cells or their products in the circulation as biomarkers or end points for earlier intervention? These and other complexities of metastasis must be thoughtfully confronted to produce successful drugs. This Review identifies functional pathways of metastasis that are potentially efficacious for the prevention and treatment of metastases. It discusses the preclinical credentials that are required of lead antimetastatic agents. Finally, it looks into how we demonstrate an antimetastatic outcome in the clinic within reasonable time, patient and funding limits and how these drugs could be incorporated into the existing SOC.

Where are we? Patient survival. For the overwhelming majority of cancer patients, a diagnosis of metastatic disease indicates a terminal illness. Although cancer death rates have declined, do patients with metastatic disease share equally in the improvements? Cancer incidence and 5-year survival data 11,12 provide a broad impression (FIG. 1). Patients initially diagnosed with localized disease often experience excellent 5-year survival (FIG. 1a).Those with regional disease at diagnosis (for example, patients with invasion of cancer to the regional lymph nodes) have lower survival overall, but, excluding patients with bladder or prostate cancer, patients often have survival gains between the 2005 and 2015 reporting periods (FIG. 1b). Only 4 of the 12 cancer sites assessed (colorectal, oesophageal, lung and oral) were associated with gains in the survival of patients with distant metastatic disease at diagnosis, and only 1 site demonstrated a survival gain of more than 3% (FIG. 1c). Alarmingly, the 5-year survival of several types of cancer (including ovarian, prostate and uterine cancer) decreased between the two reporting periods. These trends could be debated because newer immunotherapy and molecular Figure 1 | Few improvements in 5-year survival for cancer patients initially diagnosed with metastatic disease. The percentage of patients surviving for 5 years is plotted based on their initial disease staging of localized (organ confined), regional (invasion to lymph nodes) or distant (metastases detected by imaging) using the US National Cancer Institute Surveillance, Epidemiology and End Results (SEER) registries 11,12 . Data covering 1995-2000 and 2004-2010 were reported in 2005 and 2015, respectively, to determine where improvements were attained. With few exceptions, 5-year survival after a diagnosis of localized disease was excellent; where it was low in 2005, gains were observed in 2015. Regional disease survival rates fluctuated by cancer type, but the majority saw increased survival in the later reporting period. Patients with metastatic disease at diagnosis had lower overall 5-year survival rates, with fewer than 20% of patients surviving after 5 years for half of the cancer sites.

The increase in survival between the 2005 and 2015 reporting periods was under 3% in three of the four cancer types for which increased survival was seen. For each type, stage categories may not total 100% because of insufficient information for all cases. Beneath each plot is the incidence of each stage at diagnosis for the reporting period. *Localized and regional data were combined.
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www.nature.com/nrc Figure 3.1 -Five-year survival rates of several cancer types according to the disease's state (local, regional or distant). Adapted from [Steeg, 2016] In this context, several clinical problems can be addressed by mathematical methods. The first that we identified is the following.

Clinical problem 1. Estimate the amount of occult distant metastases at diagnosis

This problem is of critical relevance to better personalize adjuvant (i.e. post-surgical) chemotherapy, which is particularly salient for breast cancer. In this disease, the 5-year survival rate is 88% [START_REF] Howlader | SEER Cancer Statistics Review, 1975-2011[END_REF] but the 20-year overall survival rate is not as good (39-45% reported in [START_REF] Litière | Breast conserving therapy versus mastectomy for stage I-II breast cancer: 20 year follow-up of the EORTC 10801 phase 3 randomised trial[END_REF]). Indeed, while 93% of breast cancers are diagnosed with a local or regional disease [START_REF] Howlader | SEER Cancer Statistics Review, 1975-2011[END_REF], metastasis is now thought to be an early event and it has been estimated that 90% of these early stage patients have already undergone distant dissemination, although still at the indolent and invisible stage [Fisher, 1980, Retsky et al., 2010]. This realization in the 1970's opened the era of adjuvant chemotherapy in the clinic in the 1980's, but still metastatic relapse occurs in approximately 30% of patients diagnosed with localized disease [Pollard, 2016]. This observation as well as the severe toxicities associated with cytotoxic drugs call for a better classification of patients at diagnosis, predictive of the benefit from adjuvant therapy.

Chapter 3. Metastasis: clinical data

The standard WHO classification for breast cancer is based on morphological features [START_REF] Lakhani | WHO Classification of Tumours[END_REF], but molecular markers (such as hormonal receptors and HER2 status or Ki67 level)

have also fundamental and increasing importance. Indeed, the hormonal receptors status are critical to determine the suitability of patients to hormonal therapy (Tamoxifen or aromatase inhibitors), and the HER2 status to targeted therapy (trastuzumab). These have generated a new classification of breast tumors that includes the following groups: luminal A (hormone-receptor positive, HER2-, low Ki-67 with good prognosis), luminal B (hormone-receptor positive, HER2+

or HER2-, high Ki-67, slightly worse prognosis), HER2 enriched (hormone-receptors negative, HER2+) and triple negative (also called basal-like, hormone-receptors negative, HER2-, bad prognosis). Going further in using methods from molecular biology -shown to be related to the receptors expression [START_REF] Perou | Molecular portraits of human breast tumours : Abstract : Nature[END_REF]] -gene expression signatures comprising either 70 genes [van 't Veer et al., 2002, van de Vijver et al., 2002] or 21 genes [START_REF] Paik | A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[END_REF] have been established as prognostic of 5-years metastatic relapse [Chibon, 2013]. These have yielded DNAmicroarray-based diagnostic tests such as Oncotype DX or Mammaprint with predictive value of the response to adjuvant chemotherapy and/or hormonotherapy. A prospective trial validated the usefulness of the Oncotype DX 21 genes expression signature for identification of patients to treat with hormonotherapy only (as opposed to combination with chemotherapy) and thus reducing the burden of unnecessary toxicities. In addition, factors derived from immuno-histochemistry more easily available at diagnosis in clinical routine from tissue micro-arrays -including for instance levels of adhesion proteins such as cadherins -have been reported as impacting the chance of metastatic relapse [de Mascarel et al., 2015].

However, there is a lack of a comprehensive framework to potentiate theses factors into personalized predictions of the risk of and time to metastatic relapse. Statistical softwares such as the Adjuvant! online13 (based on US cohorts) [START_REF] Ravdin | Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer[END_REF] and Predict 14 tools (for british patients and which additionally considers HER2 and Ki67 status) [START_REF] Wishart | PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer[END_REF] provide estimates for the 5 and 10-year survival rates as well as benefits from adjuvant therapy given particular entries. However, they do not consider any biological mechanism and are based on classical survival statistical analysis. As such, they might not take the best advantage of the increasing number of routinely available biological markers such as the aforementioned Ki67 level (linked to proliferation and growth fraction), E-cadherin or TRIO levels (adhesion proteins), or stem cells markers. In this context, a mathematical model of metastasis that would account for the biology of the process might yield more accurate estimations and personalized predictions of clinically relevant quantities such as the time to relapse or the amount of occult disease (number and size of distant lesions) present at diagnosis.

The other cancer that we focused on in clinical results reported in this manuscript is lung cancer, and more precisely non-small cell lung cancer (NSCLC). Lung cancer is still a rising concern in oncology as it is the first leading cause of death by cancer, with more than 1.5 million deaths in 2012 worldwide (World Health Organization). Nearly 80% of lung cancers are of the NSCLC type, and, in contrast with breast cancer, 50% of them are diagnosed at the metastatic stage. Brain

Primary tumor size-dependent probability of metastatic relapse

105 metastases (BM) affect more than 20% of patients with NSCLC [ [START_REF] Barnholtz-Sloan | Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System[END_REF].

Despite recent advances in this field, BMs remain a major concern as they are associated with a poor prognosis [START_REF] Oh | Number of metastatic sites is a strong predictor of survival in patients with nonsmall cell lung cancer with or without brain metastases[END_REF]. In addition, BMs are responsible for debilitating symptoms (asthenia, nausea, etc...) decreasing the patients' quality of life. Lung cancer is known to be the most deleterious in terms of brain metastases [START_REF] Barlesi | Management of brain metastases for lung cancer patients[END_REF], Métellus et al., 2013, Tabouret et al., 2013]. In addition to the clinical problem 1, also relevant for early stage NSCLC (i.e. locally diagnosed disease), another one might be stated.

Clinical problem 2.

For patients with a limited number (typically, one to three) of BMs, decide what therapeutic strategy to follow, in particular regarding the use of whole-brain radiotherapy (WBRT).

Indeed, as of today, the utility of WBRT in the management of BMs from NSCLC is still controversial, in particular due to important neuro-cognitive toxicities [START_REF] Barlesi | Management of brain metastases for lung cancer patients[END_REF], Owonikoko et al., 2014, Tallet et al., 2012]. Several phase III trials were conducted but no firm conclusion that would be valid for all patients could be drawn [START_REF] Mulvenna | Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial[END_REF], Pechoux et al., 2016]. This points to the need of rational tools to decide therapeutic action in a patient-specific way. Similarly, the clinical follow-up and planning of cerebral MRI could highly benefit from individualized predictions of the probability of relapse.

Primary tumor size-dependent probability of metastatic relapse

Our methodology for fitting clinical data of metastatic relapse probability followed the same format as in [START_REF] Barbolosi | Modélisation du risque d'évolution métastatique chez les patients supposés avoir une maladie localisée[END_REF]. For the two datasets that we considered, we made the assumption that the probability of developing a metastasis in the future was to have already one present (but possibly invisible) at diagnosis. This assumption is particularly relevant for breast cancer where, following diagnosis, surgery was performed, thus leaving no possibility for the origin of the metastases than before diagnosis. It is more debatable for lung adenocarcinomas but we considered it reasonable as a first attempt.

To avoid over-parameterization, parameters for the growth of the primary and secondary tumors were fixed (not subject to optimization) and corresponded to a maximal volume of 10 12 cells ( 1 kg) [START_REF] Retsky | Computer simulation of a breast cancer metastasis model[END_REF] and doubling times taken from the literature (7.5 months at 1 gram for breast cancer [START_REF] Koscielny | A simulation model of the natural history of human breast cancer[END_REF], Coumans et al., 2013] and 169 days for lung ADK [START_REF] Detterbeck | Turning gray: the natural history of lung cancer over time[END_REF]). The parameter γ was considered identical for all the patients. For the breast study, following our preclinical findings where γ = 1 was able to describe the data, we kept also this value in the clinical case. For the lung study, several values were investigated (see below).

We considered thus that the parameter µ alone was responsible for inter-patient variability in metastatic relapse, and assumed that it followed a lognormal distribution with mean µ m and standard deviation µ σ . From a given size V 1 p at diagnosis, the unobserved time period

T 1 (V 1 p ) can
Chapter 3. Metastasis: clinical data be computed by:

T 1 (V 1 p ) = - 1 β ln 1 - β α 0 ln(V 1 p )
where α 0 and β are the two Gompertz parameters. The probability of having at least one metastasis at diagnosis was then given by

P (Mets) = P N T 1 V 1 p ≥ 1 = P µ T1(V 1 p ) 0 V p (t) γ dt ≥ 1 .
This last quantity can be computed by Monte Carlo simulations for a given (µ m , µ σ ). Additionally, when the data was given as a range of primary tumor sizes, we considered a uniform distribution within each range for the size at diagnosis (see [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF] for details).

Breast cancer

Clinical data of metastatic relapse probability

Before the generalization of adjuvant therapy for breast cancer, Koscielny and colleagues [START_REF] Koscielny | Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination[END_REF] reported data from a cohort of 2 648 patients followed for 20 years after surgery of the primary tumor, without additional treatment. Their data (reproduced in Table 3.1) demonstrated that, despite a clear association between primary tumor size at diagnosis and the probability of metastatic relapse, not all the patients having a given primary tumor size were relapsing. For instance, only 42% of patients with a primary tumor diameter at diagnosis between 2.5 and 3.5 cm developed metastasis. Using a lognormal population distribution of parameter µ, we were able to obtain a good fit to the data of metastatic relapse for all size ranges (Table 3.1). These results demonstrated that, within our semi-mechanistic modeling approach, parameter µ was able to capture the inter-individual metastatic variability, not only in animal models but also for patient data.
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Number of patients

Proportion of patients developing metastasis (%)
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Assessing the impact of surgery on metastasis and survival

When diagnosis detects only a localized primary tumor, distant occult disease might already be present. In our model, the extent of this invisible metastatic burden depends on: (i) the primary tumor size at diagnosis and (ii) the patient's metastatic potential µ. For instance, if the primary tumor size (or µ) is small, then the occult metastatic burden might be negligible and surgery would substantially benefit to the patient in terms of metastatic reduction, by stopping further spread of new foci. Conversely, if the primary tumor size (or µ) is large, then the occult metastatic burden might already be consequent and removing the primary tumor might only have a marginal impact.

Virtual simulation of two breast cancer patients

We simulated the quantitative impact of primary tumor surgery in two virtual breast cancer patients having a primary tumor diagnosed at 4.32 cm and two values of µ (median and 90th percentile within a population lognormally distributed according to our fit to the data from [START_REF] Koscielny | Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination[END_REF]). Results are reported in Figure 3.2 15 . A discrete and stochastic version of the metastatic dissemination process was used here for the simulations. Interestingly, our simulation revealed that at the time of diagnosis, no metastasis was detectable (i.e., below the imaging detection limit, taken here to 10 8 cells) in both cases (Figure 3.2A and B). In clinical terms, this means that both patients would have been diagnosed with a localized disease, which is in line with the aforementioned clinical reports. However, the two size distributions were very different, with a much larger residual burden in the "large µ" case, illustrative of the increased metastatic potential. For the "median µ" case, our model predicted the presence of two small metastases, with respective sizes of 6 and 278 cells. Not surprisingly, when no surgery was simulated, this number continued to increase, reaching 160 secondary lesions after 15 years (Fig. 3.2C). However, most of the metastatic burden (126 tumors, i.e., 78.8% of the total burden) was composed of lesions smaller than 10 9 cells ( 1g). Figures 3.2E and G demonstrate that a substantial relative benefit (larger than 10%) in metastatic burden reduction was eventually obtained, but only after 7.8 years. Nevertheless, at the end of the simulation (15 years after surgery), the predicted two occult metastases at diagnosis had reached substantial sizes (1.41 × 10 11 and 1.89 × 10 11 cells). Therefore, for this patient with median metastatic potential, the model indicates an important benefit in using surgery and adjuvant therapy. For a patient with higher metastatic potential (at the level of the 90th percentile, see Figure 3.2B, D, F, and H), even with a primary tumor diagnosed at the same size, the predicted metastatic burden at diagnosis was considerably more important, with 76 lesions and the largest comprising 6.23 × 10 6 cells. This consequent occult burden translated into poor outcome and the metastatic mass would have reached a lethal burden of 10 12 cells 9.3 years after the initial diagnosis if no therapy would have been administrated.

These results illustrate the potential of the model as a diagnostic and prognostic numerical tool for assessment of the occult metastatic burden and postsurgery growth. In this, it could help to 15 see also https://www.youtube.com/watch?v=C2LwnGISfug&index=3&list=PLnuDkx_ YTHSxvPMI2QBbKXSoFsD9BU8cI for a movie of the simulated natural history of the disease 108 Chapter 3. Metastasis: clinical data determine the extent of adjuvant therapy necessary to achieve a long-term control of the disease. Simulations were performed using the calibration of the parameter µ from the clinical dataset for the median value and the value of the level of the upper 90th percentile within the population distribution. The primary tumor size at detection was assumed to be 4.32 cm. Simulations were performed using a stochastic version of the model. A and B, size distribution of the metastases at detection. The dashed line corresponds to the detection limit by imaging devices (assumed to be 10 8 cells). C and D, time dynamics of the total number of metastases with and without resection of the primary tumor. The horizontal solid line represents a lethal burden threshold of 10 12 cells. E and F, time dynamics of the metastatic burden with and without resection of the primary tumor. G and H, surgery metastatic burden benefit as a function of the future, defined by Bres-Bnores Bnores × 100, where B res and B nores stand for the simulated metastatic burdens with and without resection of the primary tumor, respectively. The dashed line represents a 10% relative benefit.

Impact of tumor size on postsurgical survival

To further examine the relationship between the primary tumor size at surgery and survival, we performed simulations for (i) an individual with fixed value of µ (the population median, see Figure 3.3A) or (ii) an entire population (simulated survival curves in Figure 3.3B) for three primary tumor sizes. Numerical survival was defined by the time to reach a lethal burden of 1 kg [Klein, 2009] from the time of cancer initiation. Interestingly, we observed a highly nonlinear relationship between the primary tumor size and the survival, which suggested three size ranges delimited by two thresholds (Figure 3.3A). The lower threshold-termed "recurrence" threshold (4 cm in Figure 3.3A)-was defined as the maximal limit whereupon no metastasis was present at surgery (number of metastases lower than 1). The upper size threshold-termed "benefit" threshold (5.2 cm in Figure 3.3A)-was defined as the size above which surgery had a negligible (<10%) impact on survival time. Above and below these "recurrence" and "benefit" thresholds, primary tumor size had no important correlative value. Conversely, within the primary tumor size range delimited by these two bounds, the relationship between pre-surgical primary tumor and post-surgical metastatic burden/survival was highly correlative, with a large value of the derivative and a sharp transition between the two extremes. The same qualitative primary tumor size/survival relationship was 3.4. Modeling cerebral metastasis from lung cancer 109 obtained for any value of µ sampled within the population distribution, although with substantial quantitative differences [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF].

In Figure 3.3C, we present quantitative estimates of the recurrence and benefit thresholds for various percentiles of µ within the population distribution. Our simulations predicted that for the first half of the population, surgery was almost always leading to negligible metastatic recurrence risk, with large values of the recurrence threshold (larger than the usual detection levels). On the other hand, the patients with large metastatic potential were predicted not to substantially benefit from the surgery, as far as reduction of future metastatic burden was concerned. For instance, a patient with µ at the level of the 90th percentile and a primary tumor diagnosed at 4 cm would have an increase in absolute survival time of only 1.9% following surgery (Figure 3.3C).

Mathematical modeling of cerebral metastatic apparition and growth for EGFR mutated NSCLC patients

Clinical data of metastatic relapse probability

We performed a review of clinical studies of both the qualitative (growth function) and quantitative (doubling time) features of unperturbed growth of primary lung tumors. A total of 20 publications were found to contain such information, spanning from 1961 to current days. Doubling times (DT) were reviewed from different types of studies, including large screening trials where the tumors were only detected retrospectively, allowing calculation of a doubling time from at least two data points of the tumor size. A few empirical studies with more than 2 time points supported the exponential model during the visible phase of growth of the primary tumor [Friberg andMattson, 1997, Mizuno et al., 1984]. The Gompertz model was also considered by others [START_REF] Detterbeck | Turning gray: the natural history of lung cancer over time[END_REF].

In the patient case that we investigated, for a primary tumor (adenocarcinoma) diagnosed at a diameter of about 3.6 cm, the pre-detection time (time elapsed between the first cancer cell and clinical detection) was estimated to 16 years with the exponential model and the assumption of a doubling time of 169 days [START_REF] Detterbeck | Turning gray: the natural history of lung cancer over time[END_REF]. In contrast, the Gompertz model led to a more reasonable estimate of 4.5 years of undetected history. Thus, we further assumed Gompertzian growth for the pre-treatment phase of the primary tumor.

A published clinical study reported the primary tumor size-stratified frequency of BM, either present at diagnosis or developed during monitoring of the disease, for NSCLC patients (n = 264), including descrition of the ADK patients subgroup (n = 136) [START_REF] Mujoomdar | Clinical Predictors of Metastatic Disease to the Brain from Non-Small Cell Lung Carcinoma: Primary Tumor Size, Cell Type, and Lymph Node Metastases1[END_REF]. For various values of γ (but constant within the population), we could obtain fits of this data (see Figure 3.4).

However, in contrast with our results on breast cancer, the fits that we obtained were rejected by a Pearson χ 2 test. ×100, where AS res and AS nores stand for the simulated absolute survival times with and without surgery of the primary tumor, respectively. * the recurrence threshold was defined as the maximal size below which the patient had no metastasis at diagnosis in the simulation. * * the benefit threshold was defined by a 10% improvement of the absolute survival time due to surgery (horizontal dashed line). The plain line at the bottom corresponds to survival without resection of the primary tumor. Parameter values are those of a virtual patient from with median value of µ. B, survival curves for a simulated population with inter-individual variability on the metastatic potential inferred from the fit to the clinical data (see [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF] for values of the parameters). Three representative primary tumor sizes at resection were considered. RS, resection size; HR, hazard ratio using Cox proportional hazard regression analysis. C, surgical survival benefit, cure, and benefit thresholds as functions of the inter-individual variability in metastatic potential µ. Displayed in the first row are the relative surgical benefits for simulations of a virtual patient with a primary tumor diagnosed at a diameter of 4 cm and values of parameter µ at the indicated percentiles. ∞, the metastatic burden never reached the lethal value of 10 12 cells during the total simulation time (70 years). RSB, relative survival benefit. Recurrence and benefit thresholds defined as in A. When no value is reported, the value was larger than the larger size considered in the simulations (9 cm). D, schematic of the mutual relationship between primary tumor growth and post-surgery overall survival.
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(respectively p = 1.69x10 -4 and p = 3.33x10 -16 for γ = 0.5 and γ = 1). This suggests either a misspecification of the dissemination rate or a patient-dependent value of γ and calls for further modeling investigation. We further investigated individual-level clinical data of BM dynamics (longitudinal number and size of visible lesions) obtained from team 3. From its size structure, the model is particularly suited to describe this type of data. For a particular patient, the Gompertz growth parameters were fixed according to the histologic type, using the doubling time values found from our review of the literature. Then, when trying to fit the data with γ = 1, the best-fit of the model predicted a number of metastases (visible + invisible) of 6.2 × 10 6 at T1 (diagnosis time). This value is unrealistic and suggests rejection of the γ = 1 theory. While the model was able to fit the dynamics of the number of visible metastases relatively well with a different value of γ (γ = 0.5), the predictions of the sizes of the metastases were inaccurate (Figure 3), suggesting again that the descriptive power of the model has to be improved. So far, 7 patients were analyzed. No constant value of γ was able to yield reasonable fits for all the patients, even if only limited to the number of visible BMs.

All together our preliminary results are encouraging for the descriptive potential of the model in terms of clinical dynamics of the number of visible BMs but point to the need for further investigation of the modeling in order to capture the size dynamics. [START_REF] Mujoomdar | Clinical Predictors of Metastatic Disease to the Brain from Non-Small Cell Lung Carcinoma: Primary Tumor Size, Cell Type, and Lymph Node Metastases1[END_REF]. Plain line = fit from the model. Simulation performed over 1000 virtual patients.

Individual description and prediction of cerebral metastases apparition and growth

Data and statement of the problem

We dispose of measurements of the primary tumor and brain metastases (BM) sizes at the times 

Mathematical formalism

The post-diagnosis kinetics of the primary tumor were simply assumed to be bi-exponential and thus determined by: 1) an exponential decrease rate during efficacy of the treatment, 2) a duration of treatment effectiveness before regrowth and 3) an exponential growth rate during relapse. See simulations below (Figure 3.6A). In a first attempt, the effect of therapy on the metastases was ignored, arguing that the observed growth of the metastases did not seem to be impacted by the therapy (this was confirmed by direct fits of the metastases growth showing kinetics not substantially different than the one assumed for the primary tumor from its histological type). Under our formalism (section 2.2), the total number of metastases at time t can be computed by:

N (t) = t 0 µV p (s) γ ds. ( 1 
)
In order to use all the data of the size distributions at all time points, since the continuous distribution ρ cannot be directly compared to the data (which would correspond to a sum of Dirac masses), we fitted the cumulative density functions (cdf), defined by:

F (t, s) = +∞ s ρ(t, u)du.
In a discrete version of the model, if we denote X 1 (t), . . . , X N (t) (t) the sizes of the metastases at time t then

F (t, s) = N (t) n=1 
1 Xn(t)≥s .

These cdfs were to be compared and fitted to their empirical equivalent (Figure 3.5E). In order to do so, it is useful to notice that the number of metastases of size larger than s at time t is the total number of metastases at time tτ (s) with τ (s) the time needed to reach the size s under the mets growth law. For a Gompertz growth with parameters α 0 and β s(t) = e α 0

β (1-e -βt ) , this time is given by

τ (s) = - 1 β ln 1 - β α 0 ln(s) .
Therefore, we have, for all t

F (t, s) = N (t -τ (s)),
which allows to easily compute the cdfs in view of [START_REF] Mollard | In Vivo Bioluminescence Tomography for Monitoring Breast Tumor Growth and Metastatic Spreading: Comparative Study and Mathematical Modeling[END_REF]. The fits were then performed by classical likelihood maximization leading to a least squares optimization problem solved with the Matlab function fminsearch.

Results

Not all the primary tumor cells have the same metastatic ability When trying to fit the data with γ = 1, the best-fit of the model predicted a number of metastases (visible + invisible) of 6.2 × 10 6 at T 1 (diagnosis time) and even 4.8 × 10 8 metastases at the last time T 7 . These values are highly unrealistic and suggest rejection of the γ = 1 theory.

The model was able to describe the dynamics of the data with (only) three free parameters As expressed above, the primary tumor growth parameters were set from the histologic type and its size at detection. This leaves four free parameters in the model: α 0 , β, µ and γ. A reasonable hypothesis would be to assume the same growth parameters for the BMs as for the primary tumor, thus setting α 0 = α 0,p and β = β p . However, this model was not able to accurately fit the data. This suggested a growth difference between the primary tumor and the BMs (which, among themselves, seemed to behave similarly, see Figure 3.5B). Allowing α 0 to differ generated a good fit, for both the dynamics of the number and sizes of the lesions (see Figure 3.6). Therefore, 

Conclusion

Our modeling philosophy elaborates on Fisher's theory [Fisher, 1977] of cancer as a systemic disease and relates also to the parallel progression model [Klein, 2009]. The dissemination rate d, characterized by the parameters µ and γ, quantifies the metastatic potential and allows for a continuum of possibilities between early and late dissemination. Our results seem to parallel clinical evidence of the impact (and importance) of early surgery-particularly in the case of breast cancer.

For example, in a retrospective study of 2 838 breast cancer patients, the postsurgical residual risk of recurrence at 5 years for stage I disease was 7% [START_REF] Brewster | Residual risk of breast cancer recurrence 5 years after adjuvant therapy[END_REF]. Consistently, our quantitative analysis demonstrates that in this case, for most patients, metastases that could have been shed before diagnosis would not develop into overt clinical disease during the remaining life history of the patient. For stage IV breast cancer (that would correspond, in our formalism, to a large value of µ), our analysis predicts only negligible benefit of the surgery (if only considering reduction of metastatic shedding), in accordance with preliminary results of a recent clinical trial

Introduction

Innovative technologies have dramatically changed the way we treat cancer. From crude surgery for centuries, to the introduction of radiotherapy in the 1930's and that of chemotherapy in the 1950's [Mukherjee, 2011], we can now envision the development of personalized treatments for cancer patients, thanks to the advances made in biology, chemistry, physics, mathematics and engineering. Immune checkpoint inhibitors, anti-angiogenics and targeted therapies have already entered the clinic with various level of success, and innovative technologies in imaging, PK/PD modeling and the -omics are helping clinicians in their decision making on a daily basis. Yet, chemotherapy is still administered today almost the exact same way it was fifty years ago. In [Benzekry et al., 2015b] we reviewed some of the theoretical concepts that were most influential for the administration of anti-cancer agents.

Historical concepts of chemotherapy

Skipper-Schabel-Wilcox and the log-kill model

Fifty years ago, Skipper, Schabel and Wilcox were the first to introduce theoretical concepts for the optimal design of chemotherapy schedules [START_REF] Skipper | Experimental evaluation of potential anticancer agents XIII. On the criteria and kinetics associated with "curability" of experimental leukemia[END_REF]. Based on experimental studies involving L1210 leukemic cells -which exhibit exponential growth when left untreated -, they introduced and demonstrated the log-kill effect for several cytotoxic agents, including 6mercaptopurine, 5-fluoruracil and vinblastine [START_REF] Skipper | Experimental evaluation of potential anticancer agents XIII. On the criteria and kinetics associated with "curability" of experimental leukemia[END_REF]. This principle, based on an analogy with the law of mass action for kinetic reactions in chemistry, states that exposure to a given amount of drug kills a constant fraction of a cancer cell population, hence reducing it of a constant amount in logarithmic scale (Figure 4.1). Further on, based on their experimental work that demonstrated that the presence of as little as one single leukemic cell was sufficient to lead to the host death, they argued that the goal of the therapy should be to achieve complete cure of the disease, i.e. eradication of all malignant cells. In this context, they demonstrated that a largedose/short-time (single administration) schedule was superior to a chronic (daily) low-dose schedule (with similar or larger total dose), thus leading to the maximum tolerated dose (MTD) paradigm [Skipper, 1965]. However, when this view (that was involved in the calculation of the number of cycles required for cure) was applied to the adjuvant systemic treatment of micrometastases (for :

dV dt = aV ln Ä K V ä ≠ -1 e ≠R R t 0 C(s)ds C(t)V dK dt = bV ≠ dV 2/3 K≠-2 C(t)K ( dV dt = aV ln Ä K V ä dK dt = bV ≠ dV 2/3 K≠eA(t)K 8 > > < > > : dV dt = aV ln Ä S V ä ≠ e CT QSC(t)V dU dt = bV ≠ dV 2/3 U ≠ ‰U ≠ e AA QSA(t)U dS dt = ‰U ≠ • S Q = S S + 1 Figure 4.1 -Left: Skipper-Schabel-Wilcox log-kill model.
Tumor growth is exponential (linear in log-scale) and each cycle of chemotherapy results in removal of a constant fraction of the tumor volume (as opposed to a constant amount of cells). The dashed line represents the size of one cell, that classical MTD chemotherapy approaches consider as the goal to achieve for eradication of the disease. Right: Norton-Simon model. Untreated tumor growth is Gompertzian and exhibits a decreasing specific growth rate. The Norton-Simon hypothesis implies a larger log-kill for smaller tumors and suggests to densify the chemotherapy administration protocol. This is illustrated by comparison of a three-weeks regimen (black curve) and a densified two-weeks regimen (gray curve). The latter exhibits deeper drop of the tumor burden and thus larger probability of "cure". However, note that when tumor regrows, both schedules have the same time to recurrence.

Clonal resistance and the Goldie-Coldman model

Regarding point [START_REF] Mollard | In Vivo Bioluminescence Tomography for Monitoring Breast Tumor Growth and Metastatic Spreading: Comparative Study and Mathematical Modeling[END_REF], substantial efforts in the modeling of resistance to cytotoxic agents have been provided by the work of Goldie and Coldman [START_REF] Goldie | A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate[END_REF]. The Goldie-Coldman model states that mutation rates toward resistance are relatively high within a population of tumor cells and that mutations develop spontaneously during the natural course of the disease (innate resistance). This implies that the treatment should start as soon as possible in order to avoid the natural tumor progression leading to the presence of more resistant cells. It also implies that if several drugs are to be administered and cannot be given simultaneously for toxicity constraints, they should be delivered alternatively in order to avoid resistance to drug B to develop during therapy with drug A. However, predictions of this model were ruled out by several trials, in breast cancer patients for instance, where strategies that delayed therapy or did not respect strict alternation of combination regimen were proven to perform at least as well as the Goldie-Coldman recommended strategy [START_REF] Frei | Studies of Sequential and Combination Antimetabolite Therapy in Acute Leukemia: 6-Mercaptopurine and Methotrexate[END_REF]. One of the main hypotheses underlying the Goldie-Coldman model is the concept of absolute resistance, which is discussable. Indeed, there is some evidence that tumors can exhibit various levels of relative drug resistance [START_REF] Kern | Human melanoma cell lines selected in vitro displaying various levels of drug resistance against cisplatin, fotemustine, vindesine or etoposide: modulation of protooncogene expression[END_REF].

Kinetic resistance and the Norton-Simon hypothesis

In the 1960s, thorough study of tumor kinetics led to the realization that the specific tumor growth rate for solid tumors, instead of being constant (exponential growth), was rather a decreasing function of the volume, provided tumor growth is observed long enough [Steel andLamerton, 1966, Spratt et al., 1993] (see also chapter 1). In mathematical terms, tumor growth can be formalized by means of the following differential equation:

dV dt = f (V )V (1) 
In the 1970s, Norton and Simon [START_REF] Norton | Tumor size, sensitivity to therapy, and design of treatment schedules[END_REF] revisited the Skipper-Schabel-Wilcox log-kill hypothesis, in order to extend it to growing tumors with non-constant specific growth rate.

They suggested that since chemotherapy is mostly based on anti-mitotic agents, it should only be active against these cells that are actively proliferating, i.e. precisely the ones that contribute to the volume increase in ( 1) [START_REF] Norton | Tumor size, sensitivity to therapy, and design of treatment schedules[END_REF]. Moreover, the current view of the effect of chemotherapy (log-kill) was in contradiction with clinical observations such as: (a) the effect on small tumors in an adjuvant setting not as pronounced as expected and (b) decreased sensitivity to therapy observed also for very large tumors. Instead of a killing term proportional to the volume of the tumor, they proposed a killing term proportional to the tumor growth rate, i.e.:

dV dt = f (V )V (1 -C(t))
They demonstrated that their model was consistent with clinical observations, able to fit preclinical experiments and superior to the log-kill model in predicting the future course of an experimental treated growth curve from a few initial measurements [START_REF] Norton | Tumor size, sensitivity to therapy, and design of treatment schedules[END_REF]. This model has profound clinical implications. First, it predicts a superiority of densified dosing regimens. Indeed, if less inter-cycle time is allowed to the tumor to regrow, it reaches a smaller size at the beginning of the next cycle, thus a larger growth rate (Gompertzian growth) and consequently a larger amount of cells killed by the drug. This prediction was confirmed by clinical trials that densified administration drug schedules from every 21 days to every 14 days and showed benefit of applying the second regimen [START_REF] Held | Dose-Intensified Treatment of Advanced-Stage Diffuse Large B-Cell Lymphomas[END_REF]. Second, extending these concepts to drug combinations, the Norton-Simon model advocates for sequential administration of the drugs (in order to densify the treatment for each drug separately), as opposed to the strict alternation supported by the Goldie-Coldman model. Clinical trials (for the treatment of breast cancer for instance) again confirmed this prediction of the Norton-Simon model [START_REF] Bonadonna | Clinical relevance of different sequencing of doxorubicin and cyclophosphamide, methotrexate, and Fluorouracil in operable breast cancer[END_REF], Citron et al., 2003].

This example demonstrates how rational thinking and mathematical methods, based on phenomenological theories, can help to successfully guide clinical trials [Norton andSimon, 1986, Simon andNorton, 2006]. Under the Norton-Simon hypothesis, larger absolute kill of cancer cells resulting from early chemotherapy, as opposed to late chemotherapy, might be counter-balanced by faster regrowth due to high growth rates of small tumors (see Figure 4.1), thus leading to similar overall survival in both cases, despite significantly different times to relapse [START_REF] Dang | Growth curve analysis[END_REF].

Modern cancer biology and metronomics

During the early phases of the development of chemotherapy, the ultimate goal of therapy was always complete cure from the disease. As stated by Skipper et al.: "(...) it appears that highlevel, short-term schedules offer considerably greater potential for obtaining "cures" " [START_REF] Skipper | Experimental evaluation of potential anticancer agents XIII. On the criteria and kinetics associated with "curability" of experimental leukemia[END_REF]. Interestingly, even if these investigators were pleading for this option, they already had noticed that this might not be the best strategy to achieve best long-term control of the disease. Indeed, the previous quote continues with "This preference does not necessarily hold with regards to achieving maximum increase in life span of animals which die in spite of therapy". Since several years, there is an increasing trend toward a paradigm shift in clinical oncology: in view of the failure to cure patients using conventional approaches, investigators proposed to change the goal of therapy from complete eradication of the tumor to a long-term management of the disease [Gatenby, 2009]. This suggests that instead of waiting for "magic bullets" that would provide an absolute and complete solution, one might instead look into optimization of already existing therapeutic tools. In order to improve current cancer treatments, historical concepts need to be revised to better take into account the complexity of the disease, including the toxicities of anticancer agents, impact of the tumor microenvironment (e.g. vasculature and immune system) and clonal heterogeneity on the efficacy of chemotherapy protocols. While an exhaustive review of the concepts underlying modern anti-cancer biology, even if only from the scope of the contribution of mathematical modeling, is beyond the aim of this review, we mention hereafter specific examples that we believe are illustrative and inspirational for the usefulness of mathematical constructs to counteract cancer dynamics.

Toxicities of cytotoxic agents

Following the implications from the Norton-Simon hypothesis, densification of the cytotoxic treatment protocols in the treatment of breast cancer led to agressive schedules that induced severe toxicities. Of particular importance are hematological toxicities such as neutropenia potentially leading to toxic death of the patients. In an effort of controlling these toxicities, Barbolosi and

Iliadis developed a pharmacokinetics/pharmacodynamics model for white blood cell counts and defined an optimal control problem for minimization of the tumor burden under clinically relevant toxicity constraints [START_REF] Iliadis | Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model[END_REF], Barbolosi and Iliadis, 2001, Barbolosi et al., 2003]. This model was further enhanced with an interface model for description of the exposure as a function of the circulating concentration [START_REF] Meille | An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics[END_REF]. Importantly, these investigators were the first (up to our knowledge) to use such a mathematical model for the design of a phase I/II clinical trial [START_REF] Meille | Revisiting Dosing Regimen Using Pharmacokinetic/Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy[END_REF], Hénin et al., 2016]. The MODEL1 trial was designed for dose-escalation and dose-densification of the combined administration of docetaxel and epirubicin in the treatment of metastatic breast cancer. Not only could the model-based regimen control otherwise life-threatening toxicities, but efficacy was also improved [START_REF] Hénin | Revisiting dosing regimen using PK/PD modeling: the MODEL1 phase I/II trial of docetaxel plus epirubicin in metastatic breast cancer patients[END_REF]. Extension of this model for the treatment of small cell lung cancer has been considered recently in [START_REF] Faivre | Mathematical optimisation of the cisplatin plus etoposide combination for managing extensive-stage small-cell lung cancer patients[END_REF].
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Tumor heterogeneity and (epi)-genetic resistances

In a very elegant, simple and conceptually powerful theoretical study, Hahnfeldt, Folkman and

Hlatky [START_REF] Hahnfeldt | Minimizing long-term tumor burden : the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis[END_REF] re-analyzed the problem of dose repartition in light of tumor heterogeneity. They considered two subpopulations of cancer cells with two distinct sensitivities to a given drug, with transition rates between the two populations. Importantly, the transition rate from the less sensitive population to the most sensitive one was assumed to be positive, thus allowing for a resensitization effect. Under their minimal framework that allows to perform explicit computations, they demonstrated that more regularly spaced dosing of the drug yields better final tumor reduction when compared to irregular spacing, for both single and multiple cycles therapies.

Eventually, based on the assumption that the endothelium is more subject to resensitization than the tumor compartment, they also proposed their model as an explanation for the anti-angiogenic basis of metronomic chemotherapy [START_REF] Kerbel | The anti-angiogenic basis of metronomic chemotherapy[END_REF]].

Inspired by the example of invasive species in ecology and the use of pesticides, a situation where complete eradication is usually impossible due to high phenotypic diversity that leaves resistant individuals after intervention, Gatenby [Gatenby, 2009] proposes to see a tumor as an ecosystem ruled by evolutionary laws. In this context, high dose chemotherapy might have the deleterious effect of selecting for the most resistant cells, by eliminating the sensitive competitors. On the other hand, a low-dose continuous therapy, by keeping a positive amount of sensitive cells, might provide a better long-term control of the total population [Gatenby, 2009]. In a study using both mathematical and experimental approaches, Gatenby and colleagues further developed this concept and introduced the idea of adaptive therapy. It consists in modulating the dose and frequency of therapeutic administrations in order to maintain a constant tumor volume, as opposed to the conventional approach that administers a fixed dosing regimen repeated over several cycles [START_REF] Enriquez-Navas | Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer[END_REF], Gatenby et al., 2009].

Applying the same evolutionary concepts to population dynamics of cancer cells, Clairambault et al. developed a modeling framework that revisited the concepts underlying the Delbrück-Luria / Goldie-Coldman model of spontaneous development of resistance [START_REF] Chisholm | Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation[END_REF]. In their work, they made two major hypotheses: (1) reversible, drug-induced (rather than irreversible and spontaneous) development of resistance, based on a recent experimental study and (2) varying levels of resistance (instead of the classic sensitive/resistant dichotomy). Point ( 2) was elegantly formalized in mathematical terms within the context of structured evolutionary population dynamics, by means of one (or more) continuous variable representing a phenotyping trait [START_REF] Lorz | Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies[END_REF], Lorz et al., 2015]. Full implications of these recent studies in terms of optimal scheduling have recently been published and generate non-trivial insights on optimal administration schedules emerging from the complex dynamics due to tumor heterogeneity [START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy[END_REF].

Anti-angiogenesis

In 1999, Hahnfeldt et al. [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF] Schättler performed a full optimal control analysis for theoretical optimization of the scheduling of a drug with anti-angiogenic properties [START_REF] Ledzewicz | Antiangiogenic therapy in cancer treatment as an optimal control problem[END_REF]. Interestingly, they found that the optimal control, instead of having a bang-bang expression (constant full-dose sections separated by breaks -i.e. conventional chemotherapy), could exhibit singular arc portions where the drug is administered at a lower dose than the MTD, with varying rates. This is the expression in mathematical terms of the concept of a biologically optimal dose, which might differ from the MTD.

Metronomic chemotherapy

Using the Hahnfeldt model further, d 'Onofrio et al. [d'Onofrio et al., 2009] studied the effect of scheduling variations and obtained that a drug targeting the vasculature would have a better effect if administered more frequently at lower doses (assuming constant total dose). When the drug effect was further assumed to depend on the vascular density, a nontrivial optimal metronomic inter-administration time was found [d'Onofrio and Gandolfi, 2010a]. Interestingly, metronomic scheduling additionally exhibited enhanced robustness toward noise-induced transitions (i.e. escape from therapeutic control) in response to stochasticity in the clearance rate [d'Onofrio and Gandolfi, 2010b].

Recently, mathematical models specifically tailored for the analysis of the anti-angiogenic effect of metronomic chemotherapy in various concrete clinical settings were introduced [Benzekry et al., 2012a, Faivre et al., 2013, Barbolosi et al., 2016]. All these rely on the same assumptions: (a)

chemotherapy has an anti-angiogenic effect by killing endothelial cells in addition to its cytotoxic effect on cancer cells [START_REF] Browder | Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer[END_REF], Klement et al., 2000], (b) cancer cells develop resistance whereas endothelial cells do not (due to larger genetic stability) and (c) drug action is stronger on endothelial cells than on tumor cells [START_REF] Klement | Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity[END_REF]. Using realistic pharmacokinetic models and an interface model for description of the efficacy from the concentration of the drug in the central compartment, MTD and metronomic schedules were compared in silico for the administration of docetaxel [Benzekry et al., 2012a] or temozolomide [START_REF] Faivre | A mathematical model for the administration of temozolomide: comparative analysis of conventional and metronomic chemotherapy regimens[END_REF]. A model-designed regimen employing of an adapted version of this model for the use of gemcitabine in the treatment of neuroblastoma was recently shown to be superior to the standard schedule in preclinical experiments [START_REF] Ciccolini | Pharmacokinetics and pharmacodynamics-based mathematical modeling identifies an optimal protocol for metronomic chemotherapy[END_REF]. In parallel, this model was also used to design the metronomic schedule in a phase Ia/Ib clinical trial of oral vinorelbine in metastatic non-small cell lung cancer [START_REF] Elharrar | A phase Ia/Ib clinical trial of metronomic chemotherapy based on a mathematical model of oral vinorelbine in metastatic non-small cell lung cancer and malignant pleural mesothelioma: rationale and study protocol[END_REF].

In the clinic, most cancer-related deaths are not due to the primary tumor, but rather to the metastases [START_REF] Chaffer | A perspective on cancer cell metastasis[END_REF]. To address the issue of treatment on a population of tumors (rather than a single tumor), as well as the effect on the dissemination process, we defined an optimal control problem written for an organism-scale model of metastatic development [Benzekry and Hahnfeldt, 2013]. Although complete mathematical analysis was too complicated to be achieved, we could perform a simulation study and found that the overall efficacy of cytotoxic 4.2. Model-driven optimization of antiangiogenics + cytotoxics 125 agents, either alone or in combination with anti-angiogenic drugs, was generally maximized when employing a metronomic schedule rather than the MTD. Interestingly, in some instances (e.g. values of the parameters, objective function considered), differences in the best strategy occurred between the treatment of the (isolated) primary tumor and the treatment of the (systemic) cancer at the organism scale. These theoretical predictions were independently confirmed in pre-clinical studies using mouse models of spontaneous metastases [START_REF] Ebos | Neoadjuvant antiangiogenic therapy reveals contrasts in primary and metastatic tumor efficacy[END_REF].

Model-driven optimization of antiangiogenics + cytotoxics

In the previous section, we described how mathematical modeling could be used to improve treatment regimen of single anti-cancer drugs or combination of drugs with similar (cytotoxic) action.

However, given the current wide scope of possible anti-cancer therapeutic action, even with only chemical weapons, mathematical modeling has also relevance for the matter of the sequence of administration of several agents with different modes of action. Of particular relevance is the combination of chemotherapy and anti-angiogenics, in view of the intrinsic link between the vasculature extent and functionality and the drugs' delivery. Relevant to this matter is the phenomenon of vascular normalization, a counter-intuitive effect of anti-VEGF agents that transiently improves the functional properties of the vasculature and thus the delivery of cytotoxic compounds. Based on previous theoretical modeling work [START_REF] Benzekry ; Benzekry | Passing to the limit 2D-1D in a model for metastatic growth[END_REF], in collaboration with the SMARTc team (Inserm S_911, Marseille, France), we conducted a series of experimental and modeling studies to investigate the utility of mathematical modeling in finding an optimal therapeutic window for sequential administration of bevacizumab and cytotoxic agents [Ciccolini et al., 2015]. These were published in two papers, one for breast cancer [START_REF] Mollard | Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis[END_REF] and the other for non-small cell lung cancer [START_REF] Imbs | Revisiting bevacizumab + cytotoxics scheduling using mathematical modeling: proof of concept study in experimental non-small cell lung carcinoma[END_REF]. Experiments were conducted by Joseph Ciccolini, Arnaud Boyer and Séverine Mollard. Part of the modeling analysis of the second study was conducted during the postdoctoral contracts of Diane-Charlotte Imbs and Raouf El Cheikh, who I supervised on this part.

Introduction: vascular normalization and implications for combination of antiangiogenic and cytotoxic agents

Launched in 2004, bevacizumab has been approved since then in a variety of settings in solid tumors such as colorectal, breast, lung or ovarian cancers, with mixed and sometimes still questioned impact on survival [Keating, 2014]. Of note, bevacizumab has always only been approved as a concomitant administration with associated cytotoxics. Several studies from independent academic groups have suggested that anti-angiogenics could induce a transient phase of vasculature normalization with increased tumor blood perfusion, prior to exerting its antiangiogenics properties [Jain, 2001, Jain, 2005, Dickson et al., 2007, Jain, 2014, Arjaans et al., 2016]. Indeed, while the unaltered tumor vasculature is tortuous, chaotic and poorly functional (Figure 4.2) [START_REF] Carmeliet | Angiogenesis in cancer and other diseases[END_REF], bevacizumab prunes and remodels tumor vessels to make them resemble normal tissues in terms of structure and function [Carmeliet andJain, 2011, Jain, 2013].

Tumor angiogenesis: the double-edged sword Vakoc et al., Jain, 2009, Nat Reproduced from [START_REF] Vakoc | Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[END_REF].

This paradoxical action has been considered as possibly generating a time-window to administrate chemotherapeutic agents, thus suggesting a paradigm shift from concomitant to sequential dosing. Indeed, delaying chemotherapy could allow higher quantities of drugs to reach the tumor, provided that their administration coincides with this normalization phase. This led us to define the following problem, for which we believe mathematical modeling can be of help.

Therapeutic problem 1. What is the optimal time gap between administration of an antiangiogenic agent such as bevacizumab and cytotoxic chemotherapy?

As early as 2004, it has been shown that blocking VEGFR2 could decrease tumor hypoxia at the beginning of the treatment, thus demonstrating that transient normalization of tumor neovessels happens indeed with antiangiogenics [START_REF] Tong | Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors[END_REF], Winkler et al., 2004]. This was 4.2. Model-driven optimization of antiangiogenics + cytotoxics 127 already associated with improved efficacy of combined radiotherapy or chemotherapy. Indeed, because disrupted tumor vasculature may lead to resistance to chemotherapy and radiotherapy due to subsequent higher interstitial fluid pressure, and reduced blood flow lowering drug delivery [START_REF] Tejpar | Overcoming resistance to antiangiogenic therapies[END_REF], alternate scheduling with antiangiogenics could overcome these resistances.

Ever since, several groups have worked on this issue, mostly as part of experimental therapeutics [START_REF] Arjaans | VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside[END_REF], Cesca et al., 2016, Dickson et al., 2007].

Only few clinical trials have investigated on alternate scheduling with bevacizumab. The BRANCH study evaluated bevacizumab in rectal cancer patients after standard concomitant dosing or alternative sequential administration. Whereas concomitant dosing was little effective, the sequential administration led to 50% of tumor regression rate with 85% of 5-years survival and better tolerance [START_REF] Avallone | Critical role of bevacizumab scheduling in combination with pre-surgical chemo-radiotherapy in MRI-defined high-risk locally advanced rectal cancer: results of the branch trial[END_REF]. These promising results supported the ongoing OBELICS study (Optimization of BEvacizumab scheduLIng within Chemotherapy Scheme), a phase-3 trial that will compare different sequences of bevacizumab associated with chemotherapy [START_REF] Avallone | A randomized phase 3 study on the optimization of the combination of bevacizumab with FOLFOX/OXXEL in the treatment of patients with metastatic colorectal cancer-OBELICS (Optimization of BEvacizumab scheduLIng within Chemotherapy Scheme)[END_REF]. Despite these encouraging findings, the need for identifying proper biomarkers to forecast bevacizumab impact on neovessels remains critical [START_REF] Tredan | Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model[END_REF] and until they are made available, in silico tools could be helpful to optimize alternate schedules.

In contrast to the many pharmacodynamic models describing the action of cytotoxics on tumor growth [START_REF] Barbolosi | Computational oncology-mathematical modelling of drug regimens for precision medicine[END_REF], and despite substantial theoretical efforts in the field of cancer modeling to simulate angiogenesis and tumor-vasculature interactions [START_REF] Anderson | Continuous and discrete mathematical models of tumor-induced angiogenesis[END_REF], Chaplain et al., 2006, Billy, 2009, Lignet et al., 2013], relatively few mathematical models of anti-angiogenic therapy have been actually confronted to experimental data [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF], Rocchetti et al., 2013], and even less have investigated combined effects of cytotoxics with antiangiogenics [START_REF] Rocchetti | Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth after administration of an anti-angiogenic agent, bevacizumab, as single-agent and combination therapy in tumor xenografts[END_REF], Wilson et al., 2015]. To address this issue, we developed a phenomenological model describing the effect of antiangiogenics on vasculature quality throughout time, thus potentially forecasting when the normalization phase occurs (see Figure 4.3) [Benzekry, 2012a]. When coupled with an efficacy component, this model should allow to compare in silico differences in efficacy depending on the lag-time between cytotoxics and antiangiogenics, thus helping in decision-making prior to start the actual experiments.

Mathematical modeling of vascular normalization

Semi-mechanistic model

In our studies, we used several models with several purposes. The main idea of all of them was to depart from the Hahnfeldt model which accounts for the effect of anti-angiogenic agents by means of a dynamic carrying capacity K(t) [START_REF] Hahnfeldt | Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy[END_REF]. While associating the carrying capacity with the vascular supply, this model by itself does not allow for a description of the quality of the vasculature. Therefore, we first extended it in a minimal way to account for a description of this feature.

For all drugs, appropriate pharmacokinetic models (often one-compartmental with absorption) drugs.

2. employed mixed-effects modeling for fitting population distribution of the parameters to the pooled data of all animals. This reduces the number of parameters to be estimated from N × p to p 2 + p where N is the number of animals and p the number of parameters.

This new model writes:

                                 dV dt = aV ln K V -e CT QC(t)V V (t = 0) = V 0 dK dt = bN -dN 2/3 K -e AA QA(t)K K(t = 0) = K 0 dQ dt = A(t) -g(Q -Q 0 ) Q(t = 0) = Q 0 dZ1 dt = e CT QC(t)V -kZ 1 Z 1 (t = 0) = 0 dZ2 dt = kZ 1 -kZ 2 Z 2 (t = 0) = 0 dZ3 dt = kZ 2 -kZ 3 Z 3 (t = 0) = 0 N = V + Z 1 + Z 2 + Z 3
In comparison with the previous one, we abandoned the semi-mechanistic description of the quality of the vasculature as deriving from the division into mature and immature blood vessels. We also removed the dependence of the drugs' delivery on the vasculature (S in the previous model, K in the current one) since simulations showed that this feature had only little impact. The parameter Q 0 corresponds to a baseline value of vascular efficiency, hence thought to be small in view of the poor functionality of untreated tumor blood vessels [START_REF] Carmeliet | Angiogenesis in cancer and other diseases[END_REF]. In this simpler model, the dynamics of Q are thus assumed to be stimulated by the presence of the anti-angiogenic agent, whose circulating concentration follows its own pharmacokinetics. The latter has long half-life of the order of ten days for bevacizumab [START_REF] Lin | Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor[END_REF].

Calibration, predictions and validation of the model in experimental non-small cell lung carcinoma

To investigate the usability of our model and verify its predictions, we employed the following strategy: We refer the interested reader to [START_REF] Imbs | Revisiting bevacizumab + cytotoxics scheduling using mathematical modeling: proof of concept study in experimental non-small cell lung carcinoma[END_REF] for materials and methods details.

Together, this proof-of-concept study demonstrated the validity of a simple semi-mechanistic mathematical model for description of tumor growth curves under the action of combined antiangiogenics + cytotoxics therapy with different sequences of administration of the drugs. Moreover, predictions of the model in terms of improved delay between the administration of the two types of drugs were confirmed experimentally, thus emphasizing the utility of mathematical modeling for a rational design of anti-cancer treatment regimen, instead of the empirical, costly, trial-and-error approach.

In addition, our model could be used in a biomarker-based strategy for improving anti-angiogenic therapy. No predictive biomarker has been clearly validated yet with anti-angiogenics [START_REF] Collinson | Biomarkers and response to bevacizumab-response[END_REF]. Our model parameters could be quantitatively linked to imaging and predictive circulating biomarkers with bevacizumab [START_REF] Heist | Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer[END_REF], Lassau et al., 2016]. Consequently, this would provide personalized simulations of tumor growth allowing to predict early the patient's response and to adapt the dose and timing of the treatment in order to maximize the treatment efficacy. • Inhibition de contact : expériences au Ki67
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Brain metastases from lung cancer

In collaboration with several medical teams in Marseille (Fabrice Barlési and Pascale Tomasini from the Multidisciplinary Oncology and Therapeutic Innovations Service, AP-HM and Xavier Muracciole from the radiotherapy unit of the AP-HM), we have started to build a devoted database reporting several clinical entries of interest including molecular data (mutation status of EGFR, KRAS, BRAF, PI3KA, HER2, ALK, ROS1 and TTF1) as well as information on the brain metastases. Moreover, in collaboration with Jean-Luc Mari (Laboratoire des Sciences de l'Information et des Systèmes, Marseille) we also plan to apply computational geometry tools to clinical images of the lung primary tumors in order to infer and quantify topological and geometrical metrics.

While we plan to link the molecular data to the cell-scale parameter µ, the latter geometrical indices will be linked to the tumor-scale parameter γ (see Figure 5.2).

Tumor-tumor interactions in metastasis from thyroid cancers

In a recent publication, Terroir et al. reported unexpected findings of an absence of correlation between 18 fluorodeoxyglucose (FDG) uptake measured by positron emission tomography (PET)

and the growth rate of individual tumors [START_REF] Terroir | The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer[END_REF]. Indeed, this functional imaging metric -supposedly correlated with the metabolic activity of the lesion -is classically thought to be linked to the aggressiveness of the cancer disease, which is in contradiction with the results of [START_REF] Terroir | The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer[END_REF]. However, these authors considered the tumors independently from each other, even if they originated from the same patient. As suggested by and in collaboration with David Taieb (MCU-PH in nuclear medicine, AP-HM, Marseille), we want to reassess the findings of [START_REF] Terroir | The intensity of 18FDG uptake does not predict tumor growth in patients with metastatic differentiated thyroid cancer[END_REF] in light of possible tumor-tumor interactions that could act as confounding factors and bias the absence of correlations reported. In this context, our tumor-tumor interactions model [Benzekry et al., 2017] could be particularly relevant since: 1) it is minimally parameterized M edical imaging is one of the major factors that have informed medical science and treatment. By assessing the characteristics of human tissue noninvasively, imaging is often used in clinical practice for oncologic diagnosis and treatment guidance 1-3 . A key goal of imaging is 'personalized medicine', where treatment is increasingly tailored on the basis of specific characteristics of the patient and their disease 4 .

Much of the discussion of personalized medicine has focused on molecular characterization using genomic and proteomic technologies. However, as tumours are spatially and temporally heterogeneous, these techniques are limited. They require biopsies or invasive surgeries to extract and analyse what are generally small portions of tumour tissue, which do not allow for a complete characterization of the tumour. Imaging has great potential to guide therapy because it can provide a more comprehensive view of the entire tumour and it can be used on an ongoing basis to monitor the development and progression of the disease or its response to therapy. Further, imaging is noninvasive and is already often repeated during treatment in routine practice, on the contrary of genomics or proteomics, which are still challenging to implement into clinical routine.

The most widely used imaging modality in oncology is X-ray computed tomography (CT), which assesses tissue density. Indeed, CT images of lung cancer tumours exhibit strong contrast reflecting differences in the intensity of a tumour on the image, intratumour texture and tumour shape (Fig. 1a).

However, in clinical practice, tumour response to therapy is only measured using one-or two-dimensional descriptors of tumour size (RECIST and WHO, respectively) 5 . Although a change in tumour size can indicate response to therapy, it often does not predict overall or progression free survival 6,7 . Although some investigations have characterized the appearance of a tumour on CT images, these characteristics are typically described subjectively and qualitatively ('moderate heterogeneity', 'highly spiculated', 'large necrotic core'). However, recent advances in image acquisition, standardization and image analysis allow for objective and precise quantitative imaging descriptors that could potentially be used as noninvasive prognostic or predictive biomarkers.

Radiomics is an emerging field that converts imaging data into a high dimensional mineable feature space using a large number of automatically extracted data-characterization algorithms 8,9 . We hypothesize that these imaging features capture distinct phenotypic differences of tumours and may have prognostic power and thus clinical significance across different diseases. Here we assess the clinical relevance of 440 radiomic features, many of which currently have no known clinical significance, in seven independent cohorts consisting of 1,019 lung cancer and headand-neck cancer patients. Two data sets are used to assess the stability of the features, four data sets to assess the prognostic value of radiomic features on lung cancer patients and head-and-neck cancer patients, and one data set for association (four parameters) and 2) it includes two populations of cells within a tumor which are well suited to be inferred from the two information given by the functional PET imaging and morphometric CT imaging both routinely performed in patients with metastatic thyroid cancer.

In addition, the case of metastatic thyroid cancer is particularly well suited for our model because there is a wait-and-see strategy for some of the patients, thus making the data adapted to be confronted to our model where no validation of the effect of treatments has yet been established.

Finally, there is a systemic biomarker measured in the blood (the thyroglobulin) that is produced by each of the cancer cell, thus allowing access to the invisible disseminated burden. A modeling study of the dynamics of thyroglobulin has recently been published and can be used as a starting point [START_REF] Barbolosi | Modeling Therapeutic Response to Radioiodine in Metastatic Thyroid Cancer: A proof-of-concept study for individualized medicine[END_REF].

In collaboration with David Taieb and Dominique Barbolosi (both authors of the previous study),

we want to apply our model to be able to predict, on an per-patient and per-lesion basis, the future evolution of the disease in order to help clinical decision about therapeutic intervention.

Differential effects of therapies on primary tumor and metastases

Our mathematical methodology for modeling data of metastatic development provides a quantitative in silico framework that could be of valuable help for therapeutic preclinical aims. One of my current projects is to address the differential effects of systemic therapies on primary tumor growth and metastases, including possible acceleration following anti-angiogenic treatment [START_REF] Ebos | Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis[END_REF], Ebos et al., 2014]. In collaboration with John Ebos we have access to a large database containing longitudinal data for more than 400 animals treated in the neo-adjuvant setting by two drugs with anti-angiogenic activity (Suntinib and Axitinib), with multiple schemes of administration. These include not only data on primary tumor growth curves but, crucially, also longitudinal measurements of the post-surgical metastatic burden by bioluminescence as well as survival. In addition, quantification of several biomarkers such as the CTCs 16 or myeloid-derived suppressor cells counts and stromal and tumor immuno-histochemistry data (CD31 17 and Ki67 18 ) are also available and could be of interest as meaningful covariates in the model.

We will start by establishing a validated model for the treatment of renal cell carcinoma. The current standard of care for this cancer in the metastatic setting is sunitinib, an anti-angiogenic drug [START_REF] Motzer | Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma[END_REF]. However, development of resistance almost inevitably occurs, eventually leading to the patient's death. In 2016, a novel immunotherapy (nivolumab) has been approved

as second line treatment [START_REF] Motzer | Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma[END_REF]. Our model could address several currently open questions, including:

1. What is the best scheduling in the neo-adjuvant (i.e. pre-surgical) setting, considering the 16 circulating tumor cells 17 endothelial cells marker 18 proliferation marker impact of the "rebound" effect?

2. What are the precise mechanisms of resistance to sunitinib and how to delay them?

3. What is the best sequence of administration for combination of sunitinib and nivolumab?

In the context of this project, I have supervised several master's internships about the modeling of the effect of Sunitinib on tumor growth (Aristoteles Camillo [Camillo, 2014] and Simon Evain [Evain and Benzekry, 2016]) and I am co-supervising (together with Olivier Saut) a PhD student, Chiara Nicolò (Inria grant, started October 2016).

Mathematical models for combinations in immunotherapy

Following an ongoing collaboration with Raphaël Serre, Dominique Barbolosi, Xavier Muracciole and Fabrice Barlési about mathematical models of the effect of immune-checkpoint inhibitors [START_REF] Serre | Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy[END_REF], we plan to use the model to guide the sequence and scheduling of the combination between radiotherapy, chemotherapy and immunotherapy. In order to do so, we will first investigate several treatment regimen in experimental systems to validate the applicability of the model. Moreover, dedicated toxicity models remain to be established as this topic is the first limiting concern when it comes to clinical anti-cancer therapeutics. This is even more relevant for immune-checkpoint inhibitors which, by their mode of action consisting in releasing immune "brakes" also restores cytotoxicity of lymphocytes against healthy cells, thus increasing the risk of auto-immune diseases.

Mathematical modeling of anti-cancer nanoparticles

In collaboration with Raphaëlle Fanciullino and Joseph Ciccolini from the SMARTc team (Inserm, Marseille, France) and Clair Poignard from the MONC team (Inria Bordeaux Sud-Ouest, France), we are starting a project about the optimization of the design and scheduling of anticancer nanodrugs using an integrative in vitro/in vivo/in silico approach.

One of the major challenge in anti-cancer chemotherapy is the very high toxicity associated with cytotoxic agents (such as the folfirinox triplet in the treatment of colorectal cancer). To overcome this issue, nanoparticles conjugated with cancer cell specific antibodies are being developed that ensure delivery of the drug to the therapeutic target only. However, intra-tumor penetration of antibody nanoconjugates (ANC) properties are not fully understood and could be improved. The goal of this project is to establish and to validate a mathematical model of of the biophysics of these ANC drugs intra-tumor transport (continuum mechanics partial differential equations) in order to inform on the parameters (size, antibody graft rate, etc...) that will ensure

  However, population estimations by Monolix are much less computationally expensive. I have developed two versions of the software: one in Matlab and one in python. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Biological considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 A brief state of the art of mathematical models of tumor growth . . . . power of classical models of tumor growth . . . . . . . . 1.4.1 Using individual data points only . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Predictions improvement when employing bayesian estimation . . . . . 34 Chapter 1. Tumor growth
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 11 Figure 1.1 -Haematoxylin and eosin staining of a tumor-bearing mouse kidney (the area with higher density of nuclei on the left). Hematoxylin colors nuclei of cells in blue. Eosin stains cytoplasmic proteins, collagen and muscle fibers. Image courtesy of Dr John Ebos.
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 312 Figure 1.2 -Exponential growth. A. Scheme of tumor growth under proliferation only. B. Representative fit of an exponential model (starting from the initial number of injected cells -10 6 cells 1 mm 3 -at the time of injection) to experimental data of LLC tumor growth.
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 113 Figure 1.3 -Best-fit of the logistic model on two representative growth curves from the two experimental systems.
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 14 Figure 1.4 -Representative fits of the Gompertz and power law models for tumor growth curves in the lung and breast experimental systems

Figure 1 . 5 -

 15 Figure 1.5 -Examples of fits of the Exponential-linear model to orthotopically implanted breast tumor growth
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 16 Figure 1.6 -Combined quantitative mathematical modeling of the bioluminescence emission and the caliper-measured volume kinetics. (a) Model scheme. (b) Model fit of the proliferative compartment to the 3D bioluminescence signal, using a population approach (mixed-effects) for interanimal variability. Solid line = median. Dashed lines = 10th and 90th percentiles. Log scale. (c) Resulting model prediction of the total tumor volume, up to a proportionality constant λ and to appropriate conversion into cm 3 (see text). (d) Simulation of the model dynamics with P = proliferative tissue, N = necrotic tissue, V = total volume.
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 1718 Figure 1.7 -Representative examples of the predictive power of 4 models of tumor growth when using 5 data points (plus a fixed initial condition V (t = 0) = 1 mm 3 ). LLC data.

Figure 1

 1 Figure1.9 -Example of improvement of the predictive power using bayesian estimation and the power law model.

  second study was performed in the framework of the PhD thesis of Etienne Baratchart that I co-supervised with Thierry Colin and Olivier Saut. It has been performed in collaboration with a team of biologists led by Andreas Bikfalvi and composed also of Lin Cooley and Wilfried Souleyreau (Laboratoire de l'Angiogénèse et du Micro-Environnement des Cancers, Inserm U1029, Bordeaux, FR) and a team specialized in in vivo animal magnetic resonance imaging led by Sylvain Miraux with MRI observations performed by Emeline Ribot (Centre de Résonance Magnétique des Systèmes Biologiques, CNRS, Bordeaux, FR). It consisted in quantitatively challenging the "classical" model of metastatic development where no interactions occur between established lesions
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 321 Figure3. The process of cancer metastasis consists of sequential, interlinked, and selective steps with some stochastic elements. The outcome of each step is influenced by the interaction of metastatic cellular subpopulations with homeostatic factors. Each step of the metastatic cascade is potentially rate limiting such that failure of a tumor cell to complete any step effectively impedes that portion of the process. Therefore, the formation of clinically relevant metastases represents the survival and growth of selected subpopulations of cells that preexist in primary tumors.
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 22 Figure 2.2 -Enhanced CT scan of the liver of a kidney cancer patient with multiple metastatic tumors showing progression of the disease characterized by apparition of new lesions and growth of existing ones. Images courtesy of Dr F. Cornelis (radiology unit, CHU Bordeaux)

  tumor size increase per time unit (expressed in [size] × [time] -1 ) 2. A dissemination rate (d), defined as the infinitesimal number of new metastases per time unit (expressed in [time] -1 ). A schematic description of the model is depicted in Figure 2.3. Surgery Injection (or first cell) Metastases Primary Tumor (PT) Dissemination law: d(Vp)PT growth law: gp(t,Vp, 𝜌)Metastases growth law: g(t,Vp,V, 𝜌)
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 23 Figure 2.3 -Model scheme for metastatic dynamics divided into growth and dissemination. The grey area represents the pre-surgical phase, often equal to the indolent pre-diagnosis period. The green dotted-line represents the possibility of metastases from metastases. TX = treatment.

1 Figure 2

 12 Figure2.4 -Population fits and predictive power using perioperative data from ortho-surgical metastasis models. A, spontaneous metastasis were generated following orthotopic tumor cell implantation and then primary tumor resection ("ortho-surgical") in two models: (i) human xenograft model: intramammary fat pad implantation of 1 × 10 6 LM2-4 LUC+ human metastatic breast carcinoma cells followed by surgical excision after 34 and 38 days (two separate experiments, N = 22 mice total) and (ii) mouse isograft model: subcapsular implantation of 4 × 10 4 RENCA LUC+ mouse kidney carcinoma cells followed by full surgical nephrectomy 23, 26, and 30 days after implantation (N = 19 mice total). Representative examples of presurgical (primary tumor) and postsurgical (MB) bioluminescence. B and C, using a nonlinear mixed-effects modeling approach, a distribution of the parameters was estimated from the data, which, in turn, generated a distribution of model outputs (pre-and postsurgical growth curves). The solid lines depict the median of these distributions and the dashed lines the 10th and 90th percentiles. The population fit of the kidney data was established using two datasets with two resection times, only one of which is presented here for the sake of clarity. D and E, from the population fits obtained, the predictive power of the models was assessed against independent datasets with different resection times.
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 212 Figure2.5 -Individual fits of perioperative primary and secondary disease in breast and kidney ortho-surgical metastasis systems. A-C, xenograft breast case. Gomp-Exp growth model for both primary and secondary tumors, with same growth parameters (3 degrees of freedom in total). D-F, isograft kidney case. Exponential growth for both primary and secondary tumors with different growth parameters (3 degrees of freedom total). For each animal, the fit was performed on the primary tumor first and then the metastatic burden. We only show here three representative examples for each dataset. All the individual fits can be found in the supplementary material of[START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF] 
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 12126 Figure 1: At day 14 after GFP+ RENCA cells injection, the first tumor cells are observed in the lungs; At day 18, first macrometastases are observed at MRI
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 12127 Figure 1: At day 14 after GFP+ RENCA cells injection, the first tumor cells are observed in the lungs; At day 18, first macrometastases are observed at MRI
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 128 Figure 2.8 -Time course of the macro-metastases size distribution: standard model versus observations. (A) Top row: Simulation of the mathematical formalism of the standard theory (i.e. dissemination and independent growth of the resulting tumour foci), using the parameter values inferred from the data of the total metastatic burden (total GFP signal in the lungs). Only tumors larger than the visible threshold at MRI (0.05 mm3) are plotted. Shown are the results of 1000 simulations, mean + standard deviation. Bottom row: Observations of macro-metastases numbers and sizes in one mouse on MRI data. (B) Comparison of several metrics derived from the metastatic size distributions. For the model, numbers are represented as mean value and standard deviation in parenthesis. The data corresponds to the mouse presented in the upper histogram.
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 34229 Figure 3: Time course of the macro-metastases size distribution: naive model versus observations.Top row: Simulation of the mathematical formalism of the naive theory (i.e. dissemination and independent growth of the resulting tumor foci), using the parameter values inferred from the total metastatic burden data (total GFP signal in the lungs). Only tumors larger than the visible threshold at MRI (0.05 mm 3 ) were plotted. Bottom row: Observations of macro-metastases numbers and sizes in one mouse on MRI data.

Figure 2 .

 2 Figure 2.10 -Spatial model fitting. (A) Top: Coronal MRI data of the lungs at days 19 and 26. Bottom: the simulated growth by the model using the fitted parameters and starting from the real shape of the observed metastasis at day 19 on the coronal MRI slice. (B) Volumes compared to simulations by the fitted model for the growth of four individual metastasis.
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 5 A theoretical model of "cancer without disease" 83 cancer cell. Time development of the primary tumor volume, metastatic burden, total number and mean size of metastases as well as inhibitor amount in the host are plotted in Figure2.11.

Figure 2 .

 2 Figure 2.11 -Simulation of the natural cancer history from the first cancer cell. Size expressed in mm 3 .

  tion/inhibition balance by varying the values of parameters b (for growth), µ (for dissemination) and e (for inhibition). Simulation results of individual increase of each parameter from a baseline value are reported in Figure 2.13. As appears, disruption of the base regime of parameters (where A. PT volume and metasta1c burden B. Total number of metastases C. Size distribu1on of metastases D. Circula1ng inhibitor
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 2 Figure 2.12 -Simulation of the cancer history from the first cancer cell.
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 212 Figure 1. Dynamics of the metastatic burden under 10 fold increase of representative parameters.

1

 1 

Figure 2 .

 2 Figure 2.13 -Dynamics of the metastatic burden under 10 fold increase of representative parameters. Size expressed in mm 3 .

2 µFigure 3 .

 23 Figure 3. Examples of other interesting dynamicsFigure 2.14 -Examples of other interesting dynamics.
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 2 Metastasis: biological dynamics at the organism scale factors (IF), such as meta-and ortho-tyrosines, that induce a cell cycle arrest (Figure 2.15).
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 215 Figure 2.15 -Scheme of the proliferation-inhibition model
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 31216 Figure2.16 -Data of dynamics of simultaneous tumor growth. A. Dynamics of the left and right tumors from mice inoculated with 1×10 6 LLC cells on the two lateral sides at day 0. B. Comparison of large and small tumors with large and small tumors extracted from artificially paired control tumor growth curves (see text for details). Mean ± standard error. Circles indicate statistically significant differences between the small tumors from the simultaneous group and the small control tumors (Student's t-test with unequal variance, p < 0.05). C. Tumor sizes at day 15. Mean ± standard error. * = p < 0.05, Student's t-test with equal variance.

1 Figure 2

 12 Figure2.17 -Individual fits of the two-tumors proliferation-inhibition model. A. Fits of all the animals. In each mouse the only difference between the two tumors lies in the number of tumor cells that take, i.e. parameter V 0,2 . Dashed lines are simulations of the model with no interactions between the two tumors (i.e. without terms containing P j in the equations on P i (i = j). B. Fitted values versus data points for all the two-tumors growth curves of A. The solid line is the identity function. C. Distribution of the residuals for the best-fits of the three two-tumors models.
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 1 Figure 1 | Few improvements in cancer patients initially diagno disease. The percentage of patien
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 132 Figure 4

  Figure 5

Figure 2 :

 2 Figure 2: BM probability as a function of PT size at diagnosis for ADK (n = 136), with γ = 0.5 or γ = 1. Circles = data from (Mujoomdar et al., 2007). Plain line = fit from the model (see text). Simulation performed over 1000 virtual patients. Benzekry et al., unpublished.

Figure 3 :

 3 Figure 3: A. Fit of the longitudinal dynamics of the number of visible BMs in a patient with metachronous BM, with γ = 0.5. The two vertical dashed lines represent the diagnosis time and time of first BM relapse, respectively. B. Prediction of the sizes of the visible lesions at the last time of observation (17 months post-diagnosis). C. Prediction of the BM size distribution at the diagnosis (here two BMs are predicted, of size comprised between 1 and 10 cells and 10 3 and 10 4 cells, respectively. Benzekry et al., unpublished. II.2. Overview of the Tasks
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 34 Figure 3.4 -Brain metastasis probability as a function of primary tumor size at diagnosis for ADK (n = 136), with γ = 0.5 (left) or γ = 1. Circles = data from[START_REF] Mujoomdar | Clinical Predictors of Metastatic Disease to the Brain from Non-Small Cell Lung Carcinoma: Primary Tumor Size, Cell Type, and Lymph Node Metastases1[END_REF]. Plain line = fit from the model. Simulation performed over 1000 virtual patients.

T 1 ,

 1 . . . , T 7 . From this data, we are interested in: 1) finding an appropriate, minimal, semimechanistic model of the time dynamics of the metastatic population (description of the data) and 2) predict the BM data from data at previous time point(s): either T 1 alone and possibly only the primary tumor (ultimate goal), T 1 and T 2 or T 1 , T 2 and additional metastatic time point(s).We will only report results regarding point 1) here.One patient from the Bergonié EGFR mutated patients has been investigated in details. This patient had a lung adenocarcinoma (ADK) with primary tumor first detected on 08/19/2009, and no overt metastasis at this time. A treatment with erlotinib (tyrosine kinase inhibitor specifically suitable for EGFR-mutated patients) was initiated, which induced an initial decrease of the primary tumor size, followed by a regrowth (Figure3.5A). At this time, the therapy was changed to cytotoxic chemotherapy. Of note, size variations were small (see the scale in Figure3.5A). About 20 months after diagnosis, one large (7.5 mm) BM was detected, which kept growing uncontrolled (Figure3.5B). After a one-year interval without brain imaging examination, five additional BM were detected. These continued to grow and new secondary lesions appeared, reaching a total of 20 BMs on 07/15/2013. We dispose thus of a rich data set for this patient with complete follow-up of the kinetics of BMs at 6 time points (see Figure3.5B for the growth of the 20 BMs and Figure3.5C for the longitudinal evolution of the number of visible BMs).
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 3135 Figure 3.5 -Data on a patient with an EGFR+ lung adenocarcinoma. A. Primary tumor kinetics under erlotinib. B. BMs curves. C. Number of visible BMs. D. CT scan of the brain on 07/15/2013. E. Cumulative size distribution of the BMs on 07/15/2013. primary tumor = Primary Tumor. BM = Brain Metastasis.
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 336 Figure 3.6 -Fit of the model with α 0 , µ and γ as free parameters. A. cumulative distribution functions. time expressed in months. Red circles = data. Line = model fit. B. Comparison of the size distributions at T 7 . C. number of visible metastases. The two vertical dashed lines correspond to the diagnosis time and the time of first detection of BM. Circles = data. Curve = fit
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 37 Figure 3.7 -Inference from the model. A. Reconstruction of the primary tumor growth curve. B. Predicted size distribution of metastases at diagnosis. C. Prediction of the birth times of the BMs. D. Prediction of the growth curves of the BMs

  breast cancer for instance), it did not lead to the expected results[Early Breast Cancer Trialists' Collaborative Group (EBCTCG), 1992]. Two major criticisms were addressed to the work ofSkipper et al.: (1) they considered a homogeneously sensitive population of cancer cells (i.e. no resistance was explicitly taken into account) and (2) the experimental system they employed was limited to a single leukemic cell line and their conclusions might not extend to solid tumors. ≠bt N ≠ eC(t)e ≠bt N dN dt = ae ≠bt N dN dt = ae ≠bt (1 ≠ eC(t))N 8 <
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 42 Figure 4.2 -Whole brain vasculature of a mouse bearing a xenografted U87 glioma tumor showing abnormal organization of the tumor vasculature. Reproduced from[START_REF] Vakoc | Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[END_REF].
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 12 A first set of experiments (experiment-1) was performed with three arms: a control arm (no treatment), a concomitant arm and a sequential arm, with a delay of 4 days (determined arbitrarily) between bevacizumab and the two cytotoxics (cisplatin and pemetrexed). It demonstrated the superiority of the sequential regimen for both tumor growth and survival (Figure 4.4). Data from experiment-1 were used to calibrate the parameters of the model (Figure 4.5). Simulation of the median behavior from the estimated population parameters confirmed the superiority of the sequential schedule (Figure 4.6A).

4. 2 . 3 .

 23 Model-driven optimization of antiangiogenics + cytotoxics131 This calibration allowed to test in silico a wide range of possible gaps between the administration of the drugs and predicted an optimal delay of 3 days (Figure4.6B-C). At the same time, a delay of 8 days was predicted to perform substantially worse. Of note, the model was also able to quantitatively predict inter-animal variability of this optimal delay, which was found to be small but non zero (Figure4.6D).4. These predictions were subsequently tested in a second round of experiments(experiment-2) involving two sequential arms(3 days and 8 days). The experiments confirmed the superiority of the 3 days sequential arm over the 8 days one (Figure4.7).

1 Figure 4 1 Figure 4 1 Figure 4 1 Figure 4

 14141414 Figure 4.4 -Efficacy and Kaplan-Meier survival curves of experiment-1 A: Mean tumor growth curves for the 4 treatment arms of experiment-1. Signs above curves indicate statistically significant difference with the control arm (Student's t-test, p < 0.05). Sequential 4 days versus concomitant: 36% tumor growth reduction at study conclusion. B: Kaplan Meier plot of the overall survival for the 4 treatment arms of experiment-1. Median survival times: 39 days (control), 49 days (concomitant) and 67 days (sequential 4 days). Sequential 4 days was significantly superior to the concomitant group (p = 0.0485, log-rank test).

Figure 5 . 1 -

 51 Figure 5.1 -Orthotopic injection of red-tagged (m-cherry) RENCA cells followed 15 days later by intra-caudal intra-veinous injection of green-tagged (GFP) RENCA cells demonstrating that secondary injected cells join already established colonies. Experiments performed by Wilfried Souleyreau and Lin Cooley within the LAMC (Inserm U1029, Bordeaux) led by Andreas Bikfalvi

  clinical data = PT size, covariates (age, sex, smoking status), histological grade, lymph node status… Model Diagnosis µ

Figure 1 |

 1 Figure 1 | Extracting radiomics data from images. (a) Tumours are different. Example computed tomography (CT) images of lung cancer patients. CT images with tumour contours left, three-dimensional visualizations right. Please note strong phenotypic differences that can be captured with routine CT imaging, such as intratumour heterogeneity and tumour shape. (b) Strategy for extracting radiomics data from images. (I) Experienced physicians contour the tumour areas on all CT slices. (II) Features are extracted from within the defined tumour contours on the CT images, quantifying tumour intensity, shape, texture and wavelet texture. (III) For the analysis the radiomics features are compared with clinical data and gene-expression data.

.05 # Generalized logistic 0.12(0.019 -0.416)[1] -13(-30.4 -0.978)[1]

  

		SSE	AIC	RMSE p > 00.398(0.174 -0.816)[3] R2 0.982(0.94 -0.997)[1] 100	3
	Power law	0.155(0.0158 -0.713)[2]	-13.4(-34.5 -2.95)[2]	0.409(0.145 -0.957)[2]	0.962(0.784 -0.998)[3]	100	2
	Gompertz	0.155(0.019 -0.67)[3]	-13.4(-32.4 -2.39)[3]	0.407(0.159 -0.928)[1]	0.97(0.815 -0.997)[2]	100	2
	Logistic	0.232(0.0498 -0.726)[4]	-8.34(-18.4 -3.44)[4]	0.518(0.273 -0.984)[4]	0.964(0.92 -0.989)[4]	100	2
	Exponential-linear	0.22(0.0481 -0.76)[5]	-8.51(-17.1 -3.8)[5]	0.507(0.268 -1.01)[5]	0.96(0.911 -0.988)[5]	100	2
	Exponential	1.36(0.31 -2.36)[6]	6.01(-5.38 -13.4)[6]	1.22(0.595 -1.61)[6]	0.64(0.281 -0.944)[6]	15	1

Breast data Model Par. Unit Median value (CV) NSE (%) (CV)

  

									Chapter 1. Tumor growth
					Lung data
					SSE			AIC	RMSE	R2	p > 0.05 #
	Gompertz Model	0.0976(0.0147 -0.328)[3] Par. Unit	-11.3(-27.8 --0.848)[1] Median value (CV)	0.348(0.14 -0.677)[2] NSE (%) (CV)	0.922(0.674 -0.985)[3]	100	2
	Exponential-linear Generalized logistic 0.0919(0.0159 -0.49)[1] a -K -α -		-11.7(-24.9 -1.01)[2] 2.55e+03 (810) 4.38e+03 (7.37e+03) 0.000141 (4.29e+05)	0.336(0.163 -0.828)[1] 4e+04 (162) 57.9 (626) 4e+04 (162)	0.915(0.664 -0.989)[4]	100	2
	Generalized logistic 0.0814(0.00366 -0.328)[2] Power law α mm 3(1-γ) • day -1 γ -	-10.7(-26.4 -0.19)[3] 0.921 (41.9) 0.788 (9.35)	0.355(0.0956 -0.757)[3] 10.6 (55) 3.42 (62.4)	0.94(0.803 -0.988)[1]	100	3
	Power law	0.102(0.0159 -0.323)[4]		-10.9(-21.7 --0.0172)[4]	0.356(0.163 -0.707)[4]	0.917(0.613 -0.986)[2]	100	2
	Logistic	Gompertz	0.145(0.00367 -0.417)[5] α 0 day -1 β day -1		-8.1(-22 --0.129)[5] 1.84 (35.7) 0.0792 (43)	0.429(0.0782 -0.764)[5] 9.28 (65.3) 12 (74.4)	0.863(0.648 -0.988)[5]	100	2
	Exponential Logistic	2.19(0.617 -3.44)[6] a day -1 K mm 3		8.77(0.616 -13.5)[6] 0.502 (17.5) 1.3e+03 (23.3)	1.59(0.848 -2)[6] 2.74 (54.1) 15.3 (49)	-0.907(-5.94 -0.875)[6]	53	1
	Table 1.2 -(continued caption). The R 2 is informative of how good is the model fit compared to a completely agnostic one that would result from assuming just the mean of the data and is defined by: Exponential-linear a 0 day -1 0.49 (19.5) 4.17 (58.1) a 1 mm 3 • day -1 116 (24) 15.4 (63.3)
		Exponential		a	R 2,j = 1 -day -1	N j i=1 y j i -M (t j i ; θj N j i=1 y j i -y j 0.399 (14.1)	, y j = 2.95 (23.8)	N j 1	i=1 N j	i y j
	the resulting from the mixed-effect estimation (see Materials and Methods) and is defined in (14). Values reported in the column are percentages of animals for which Kolmogorov-Smirnov test for normality of residuals was not rejected at the significance level of 0.05. # = number of parameters. Gompertz α 0 day -1 1.55 (22.5) 8.52 (66.2) β day -1 0.0719 (25) 9.73 (84.4)
		Exponential-linear	a 0 a 1	day -1 mm 3 • day -1			0.31 (16.9) 67.8 (34.8)	5.61 (72.2) 11.8 (87.4)
		Generalized logistic	a K α	---		2.75e+03 (264) 1.96e+03 (1.5e+04) 2.67e-05 (2.16e+06)	6.26e+04 (567) 25.2 (1.32e+03) 6.26e+04 (567)
		Power law		α γ	mm 3(1-γ) • day -1 -		1.32 (92.2) 0.58 (23.4)	29.4 (51.7) 9.73 (77.5)
		Logistic		a K	day -1 mm 3			0.305 (10.1) 1.22e+03 (34)	3.18 (34.8) 10.9 (79.6)
		Exponential		a	day -1			0.223 (5.88)	3.75 (21.1)
	Table 1.3 -Values of the parameters estimates, associated inter-animal variability and standard errors. CV = Coefficient of Variation = standard deviation mean × 100. NSE = Normalized Standard Error = standard error on the parameter estimate estimate

  ). Breast data.

		Lung data				Breast data	
	Model	RE 5,2	RE 3,1	RE f 3,1	RE 5,2	RE 3,2	RE f 3,2

Power law 0.21 (0.02 -0.52) 0.29 (0.01 -1.08) 0.08 (0.01 -0.29) Gompertz 0.25 (0.07 -0.57) 0.30 (0.03 -1.08) 0.10 (0.00 -0.30) Exponential linear 0.22 (0.04 -0.43) 0.21 (0.03 -0.99) 0.10 (0.01 -0.33) Generalized logistic 0.28 (0.07 -0.57) 0.31 (0.03 -1.08) 0.14 (0.01 -0.30)

  2.2. A general mathematical formalism for metastatic development65negligible secondary dissemination and tumor-tumor interactions). The stochasticity here refers to intra-individual randomness in the metastatic dissemination. The formation of new metastatic foci is assumed to be a sequence of random events exponentially distributed with rate d(V

p (t)). The number of metastases follows then a Poisson process N (t) with intensity d(V p (t)). The appearance time of the i-th metastasis is defined by

Table 2 .

 2 1 -Number of required merging foci to grow from one cell to a macro-metastasis in 7 days

		Without spatial interactions With spatial interactions
	Meta 1	1337	2127
	Meta 2	20	65
	Meta 3	301	375
	Meta 4	40	70

Table 2 .

 2 3 -SSE = Sum of Square Errors, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion, R2 = coefficient of determination. # = number of parameters. The numbers in parentheses indicate the (min -max) range of the values and the numbers inside the brackets are ranks of the models relatively to the criterion. The "p<0.05" column contains number of animals for which the null hypothesis of a gaussian distribution of the residuals was rejected for either the large or the small tumor (Kolmogorov-Smirnov goodness-of-fit test).

	Model	SSE	AIC	RMSE	R2	p < 0.05 #
	Proliferation inhibition	0.194(0.0319 -0.713)[1] -12(-54 -2.26)[1] 0.453(0.182 -0.845)[1]	0.964(0.87 -0.987)[2]	1/10	3
	Angiogenesis inhibition	0.296(0.121 -0.693)[2]	-4.28(-32.2 -2.31)[2]	0.557(0.355 -0.844)[2]	0.965(0.924 -0.985)[1]	1/10	4
	Proliferation inhibition (P+Q)	0.328(0.144 -0.822)[3]	-3.86(-30.8 -5.4)[3]	0.59(0.388 -0.909)[3]	0.956(0.72 -0.987)[3]	5/10	3
	Competition	0.666(0.141 -2.2)[4]	0.71(-33.2 -13.1)[4]	0.828(0.383 -1.5)[4]	0.694(-0.0757 -0.964)[4]	9/10	2
	Proliferation inhibition (log-kill)	0.721(0.308 -2.04)[5]	2.92(-13.2 -14.4)[5]	0.863(0.558 -1.45)[5]	0.594(-0.135 -0.937)[5]	9/10	3

  Figure 3.3 -Impact of surgery on survival as a function of primary tumor size. A, simulations of absolute survival time and corresponding relative survival benefit as functions of the primary tumor size at surgery. The relative survival benefit is defined by RSB = ASres-ASnores
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  Chapter 4. Therapy able to describe the effect of several anti-angiogenic molecules. Based on this model,Ledzewicz and 

derived a biologically-based (yet technically simple) mathematical model for tumor growth under endogenous angiogenic signaling that was

In France, cancer represents

27.3% of deaths, before cardio-vascular diseases (26% of deaths)[START_REF] Invs | Projection de l'incidence et de la mortalité par cancer en France en[END_REF]. Cumulative lifetime risk of death by cancer are 14.3% in males and and 9% in females in more developed areas of the world versus respectively 12% and 8.1% in less developed areas (excluding nonmelanoma skin cancer)[START_REF] Torre | Global cancer statistics[END_REF] 

when the number of data points goes to infinity
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only in the Matlab version

at the natural tumor site, e.g. the mammalian fat pad for a breast tumor

graft from cells of the same species, therefore possible in immune-competent animals (mice)

graft from cells of a different species (typically human cells), therefore only possible in immune-deprived animals (mice)

See also a movie of the simulation at the following url: https://www.youtube.com/watch?v=FbATGHFjj3s

https://www.adjuvantonline.com/#
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a constant number of proliferative cells (in contrast to a constant fraction usually employed log-kill law valid for cytotoxic agents on leukemic cells [Skipper, 1965]), with rate β 1 (mol -1 • mm 3 • day -1 ). Denoting β = β0 (1-φ) k loc β 1 (day -1 ) and γ = ψ β0φ k β 1 (day -1) the number of cells going from a proliferative state to a quiescent state within the tumor i is thus βP i +γ(P i +P j ).

Note that this includes both local inhibition and global inhibition, which accounts for factors released by the other tumor (tumor j) but also tumor i itself.

The model then writes:

The Heaviside functions 1 Pi>0 (equal to one if P i > 0 and zero elsewhere) stand for the fact that when factors are present but no proliferative cells exist, no cells go to quiescence. In particular, they ensure that the solutions (understood in the weak sense due to the discontinuous nature of the Heaviside function) remain positive.

The equations of the other 4 models reported in our study, including those formalizing competition for nutrients and distant inhibition of angiogenesis, are shown in the Table 2.2.

Results

We studied the phenomenon of CR by combining experiments and mathematical modeling, informed by pre-existing theories in the literature. For the experiments, two groups were considered.

The first group (control) consisted of twenty mice in which single implants were performed. In the second group (double tumors, abbreviated as DT) consisting of ten mice, two grafts with identical load (10 6 cells) were performed on day 0, at the same locations on opposite flanks of the mice. We refer the reader to [Benzekry et al., 2017] for a complete description of the materials and methods.

In a mouse bearing two tumors, one has normal kinetics and the growth of the other is suppressed

We first performed a direct (i.e., not model-based) statistical analysis of the data. We compared control tumor growth kinetics in mice bearing single implants with the growth curves of tumors in a double-tumor bearing host (Figure 2.16). Observations of the kinetics of each tumor in the

Model name Equations

Competition 

Abstract

While experimental data on the natural course of metastasis are hard to obtain, it is even harder to get access to clinical data, mainly because: 1) metastasis can only be diagnosed and measured once they have reached a substantial size (diameter of about 5-10 mm on clinical images, which corresponds to approximately 10 8 cells) and 2) when patients are diagnosed with advanced stage they usually benefit from therapy with a systemic drug. Nevertheless, for the cases of breast and lung cancers, we could find in the literature two useful data sets of the probability of metastatic relapse as a function of the size of the primary tumor [START_REF] Koscielny | Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination[END_REF], Mujoomdar et al., 2007], which were used to test our modeling framework in a clinical setting. For the breast data set, we demonstrated the ability of our mathematical model to describe the inter-individual variability in the probability of metastatic relapse in terms of the only parameter µ (additionally to the primary tumor size), thus emphasizing its critical role and clinical usefulness. Further on, leveraging this quantitative calibration for description of metastatic aggressiveness, we conducted a simulation study that was able to simulate relevant survival curves and revealed a nonlinear dependence between the size of the primary tumor at diagnosis and the survival benefit from surgery. These results were published in [START_REF] Benzekry | Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach[END_REF].

In parallel, we had access to clinical images of a patient with apparition and longitudinal follow up of cerebral metastases from an EGFR-mutated lung adenocarcinoma (6 time points and 47 metastatic size measurements, data from the Bergonié Institute (Dr F. Chomy)), which provided a unique opportunity to further study the kinetics of metastatic dynamics in a human cancer disease.

We found that the model was able to describe accurately the data with only three free parameters, thus bringing hope to a clinical identification of these from data at diagnosis. Moreover, the model made interesting predictions such as the time of initiation of the first brain metastasis (predicted here to have occurred before diagnosis).

Finally, conclusions and perspectives of future work are drawn.

[ [START_REF] Badwe | Surgical removal of primary tumor and axillary lymph nodes in women with metastatic breast cancer at first presentation: A randomized controlled trial[END_REF].

Clinically, our methodology could be used to refine/optimize therapeutic strategies for patients diagnosed with a localized cancer and inform on the timing of surgery, extent of occult metastatic disease, and probability of recurrence. In turn, this may affect decisions on duration and intensity 

Abstract

After having investigated problems regarding the natural history of tumor growth and metastasis (from both the biological and clinical point of views) in the previous chapters, we report now our contributions regarding quantitative modeling of the effect of systemic therapies.

In the introduction, we perform a short and non-exhaustive review of historical successes of mathematical modeling as underlying theoretical concepts for the administration of systemic therapies (mostly cytotoxic chemotherapies). This review was written mostly in collaboration with Eddy Pasquier, Nicolas André and Joseph Ciccolini and published in [Benzekry et al., 2015b].

So far, we have identified two general classes of therapeutic applications of mathematical modeling.

The first concerns the rational design of the scheduling of anti-cancer agents in clinical trials.

Given the increasingly diverse arsenal of systemic agents in oncology (from targeted therapies to immune checkpoint inhibitors passing by classical cytotoxic agents and anti-angiogenic drugs), we

believe mathematical modeling has the potential to guide rational combinations and sequences of administration and improve on the empirical trial-and-error current practice. This is the sense of the combined modeling and experimental studies reported in the second section of this chapter that were the topic of several publications [START_REF] Imbs | Revisiting bevacizumab + cytotoxics scheduling using mathematical modeling: proof of concept study in experimental non-small cell lung carcinoma[END_REF], Mollard et al., 2017, Ciccolini et al., 2015]. These were performed in strong interaction with the experimental side of the SMARTc team A second class of applications of mathematical modeling that we identified concerns the personalized adaptation of the dosing and timing of the drugs' administrations, given accessible clinical data accessible (e.g. imaging, circulating biomarkers or biopsies). Although this is a trend that has been present in the proceedings of our studies and that we are engaged in in current and future projects, we have not achieved yet any significant contribution in this area.

Chapter 4. Therapy and parameters have been described previously in the literature and were employed to describe the concentrations of the cytotoxic and antiangiogenic drugs , respectively denoted C(t) and A(t)

(see [START_REF] Mollard | Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis[END_REF], Imbs et al., 2017] and references therein) .

The effects of the cytotoxic drugs (paclitaxel for the breast study, cisplatin and pemetrexed for the lung study) were modeled similarly as in [START_REF] Simeoni | Predictive pharmacokineticpharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents[END_REF] where the authors considered a delay in the effect the drug(s), due to the fact that the cells are not directly removed after cytotoxic administration because they only die when reaching a specific step of the cell cycle. After being affected by the drug(s), the tumor cells thus stop proliferating and go through three compartments Z 1 , Z 2 and Z 3 before being removed from the system. Following reported observations, we considered that paclitaxel also had an anti-angiogenic effect [START_REF] Pasquier | Metronomic chemotherapy: new rationale for new directions[END_REF].

Following biological rationales [START_REF] Tong | Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors[END_REF] and previous theoretical work [Lignet et al., 2013], our idea for the definition of a dynamical quality of the vasculature was to divide K(t)

into two compartments: a stable one S(t) (mature vessels) and an unstable one U (t) (immature vessels), see Figure 4.3. The anti-angiogenic action of the drugs was then further assumed to occur on U (rather than S), because it represents the component of the vasculature directly affected by VEGF stimulation, which is the target of bevacizumab. Then, the (macroscopic) quality of the vasculature was defined as the ratio of the stable component of the vasculature over the total amount of blood vessels. The drugs delivery was assumed to be modulated by the mature vascular capacity, represented in the model by the variable S(t). The equations write:

with V 0 denoting the number of cells injected in the experiments and U 0 and S 0 the initial conditions of the vasculature subject to fit to the data. The variable N (t) denoted the total number of tumor cells alive at time t.

In [START_REF] Mollard | Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis[END_REF] we demonstrated that this model was able to reproduce experimental data that demonstrated the superiority of a sequential scheme where bevacizumab was administrated before paclitaxel (48% reduction in tumor size at study conclusion compared with concomitant dosing). However, due to the high number of variables and parameters in the model in comparison 

C(t) A(t)

Q(t) = S(t)/(S(t)+U(t))

Drug delivery S Q the model was highly unidentifiable with very large standard errors on the parameters estimates [START_REF] Mollard | Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis[END_REF]. Thus, only moderate confidence can be attributed to the optimal interval predicted by the model (of 2.4 days). To address the identifiability issue, we also built a simpler model with fixed, schedule-dependent quality of the vasculature. While this model was by definition not able to address the therapeutic problem 1, it was nevertheless useful in quantitative inference for the effect of a sequential administration of the two drugs with bevacizumab first, for which it estimated (under our model assumptions) an approximate 5-fold increase in drug delivery.

Simpler model

To address the identifiability issue of the previous model, we :

1. investigated iteratively simpler models that would nevertheless still keep a dynamic quality of the vasculature. This last feature was indeed essential to keep in the model in order to capture the trade-off between vascular normalization and disruption following the administration of anti-angiogenic agents and thus predict the best delay between administration of the two 

Theoretical biology of the metastatic process

In recent years, using sequencing data investigating phylogeny of clones within primary tumors and across metastases, several studies have brought new lights on systemic-scale metastatic dynamics [START_REF] Gundem | The evolutionary history of lethal metastatic prostate cancer[END_REF], Hong et al., 2015, Yachida et al., 2010]. In particular, several of the results from these studies have relevance regarding our own findings about the origin of metastases and the possibility of cells' exchanges between established tumors [START_REF] Baratchart | Computational Modelling of Metastasis Development in Renal Cell Carcinoma[END_REF]. This brings back to the self-seeding theory proposed by Larry Norton and Joan Massagué who put forward the hypothesis that metastatic cells from distant lesions might seed back the original tumor [START_REF] Norton | Is cancer a disease of selfseeding?[END_REF]. While the quantitative contribution of self-seeding to the growth of the primary tumor has been debated (of note, by means of mathematical methods [Scott et al., 2013a]), experimental proof of exchange of cells between artificially implanted tumors was established in [START_REF] Kim | Tumor self-seeding by circulating cancer cells[END_REF]. Nevertheless, exchange of cells between the primary and the metastases remains to be studied, especially from the quantitative point of view. To this end, our biological collaborators at the LAMC obtained interesting preliminary results supporting the recruitment of circulating cells by established metastatic colonies (Figure 5.1). We want to further pursue these investigations and use modeling for example to quantify the relative amounts of disseminated cells that join established colonies as compared to the ones generating new lesions.

Modeling can also be used to compare alternative hypothesis concerning the still open debate of metastases from metastases [START_REF] Bethge | Are metastases from metastases clinical relevant? Computer modelling of cancer spread in a case of hepatocellular carcinoma[END_REF], Tait et al., 2004, Sugarbaker et al., 1971] challenged by the previously cited recent reports [START_REF] Gundem | The evolutionary history of lethal metastatic prostate cancer[END_REF], Hong et al., 2015].

Clinical metastasis

In order to transfer the modeling framework for metastasis that I have contributed to develop into a practical diagnosis and prognosis tool that could help to refine and individualize adjuvant therapy, the critical next step is to find a way to estimate the parameter µ (for breast cancer) and maximal delivery and cytotoxicity, based on previous research efforts that developed relevant mathematical models for poroelastic description of 3D tissue [START_REF] Deville | A continuum mechanics model of enzyme-based tissue degradation in cancer therapies[END_REF].

We also want to perform organism-scale modeling of the pharmacokinetics and pharmacodynamics of the drug. This will allow the in silico determination of improved schedules of the drugs that will ensure optimization of the efficacy/toxicity balance. See Figure 5.3 for a general scheme of this project.

We have recently obtained an Inria-Inserm PhD grant for a student from the Politecnico di Milano (Cristina Vaghi) who will start her PhD in the fall of 2017.

Experimental data

Mechanistic models

Phenomenological models

In vitro (Spheroids)

In vivo 

Abstract

Accumulation of new biological and clinical data thanks to the development and generalization of novel measurement techniques (especially in imaging or molecular biology) is currently driving oncology towards a quantitative science. Meanwhile, mathematical models developed by theoreticians have often remained confined to qualitative conclusions and rarely been confronted to the observations. The work presented here aims to bridge this gap.

Motivated by concrete biological or clinical questions, I have conducted combined experimental and theoretical studies with two main objectives: 1) better understand and 2) better predict.

The contributions belong to three axis of research: tumor growth, metastasis and scheduling of anti-cancer treatments. The mathematical tools are mostly ordinary differential equations or physiologically structured partial differential equations. Statistical tools were also largely employed to fit the models to the data and test the hypotheses, with a major focus on nonlinear mixed-effects models.

Together, these contributions represent a step forward towards the development of quantitative methods in cancer biology. They also set the basis for computational tools of clinical value to help defining the design of clinical trials (at the population level) but also to better assess the diagnosis and prognosis of a cancer disease in a personalized way, in order to individually tailor the therapeutic intervention.

Keywords: Mathematical modeling, Cancer, Metastasis, Pharmacometrics, Nonlinear mixedeffect models, Personalized oncology